WorldWideScience

Sample records for formation hydrothermal auto-oxidated

  1. Hydrothermal oxidation in the Biwabik Iron Formation, MN, USA

    Science.gov (United States)

    Losh, Steven; Rague, Ryan

    2018-02-01

    Precambrian iron formations throughout the world, notably in Australia, Brazil, and South Africa, show evidence of hypogene (≥ 110 °C, mostly > 250 °C) oxidation, alteration, and silica dissolution as a result of tectonic or magmatic activity. Although hydrothermal oxidation has been proposed for the prototype Lake Superior-type iron formation, the Biwabik Iron Formation in Minnesota (USA), it has not been documented there. By examining oxidized and unoxidized Biwabik Iron Formation in three mines, including material from high-angle faults that are associated with oxidation, we document an early hypogene oxidation event ( 175 °C) involving medium-salinity aqueous fluids (8.4 ± 4.9 wt% NaCl equiv) that infiltrated iron formation along high-angle faults. At the Hibbing Taconite Mine, hydrothermal fluids oxidized iron carbonates and silicates near faults, producing goethite ± quartz. In contrast with much of the oxidized iron ores on the Mesabi Range, silica was not removed but rather recrystallized during this event, perhaps lying in a rock-dominated system at low cumulative fluid flux. During the hydrothermal oxidation event in the Hibbing Taconite deposit, quartz-filled microfractures and irregular inclusions commonly formed in coarse variably oxidized magnetite, currently the ore mineral: these inclusions degrade the ore by introducing excess silica in magnetic concentrate. Hydrothermal oxidation at Hibbing Taconite Mine is overprinted by later, relatively minor supergene oxidation both along faults and near the surface, which locally dissolved quartz. At the Fayal Reserve Mine, widespread silicate and carbonate gangue dissolution and iron oxidation was followed by precipitation of pyrite, Mn-siderite, apatite, and other minerals in void spaces, which prevented post-oxidation compaction and significant volume loss in the sampled rocks. Although definitive temperature data for this assemblage are needed, the weight of evidence indicates that this

  2. Cuprous oxide thin films grown by hydrothermal electrochemical deposition technique

    International Nuclear Information System (INIS)

    Majumder, M.; Biswas, I.; Pujaru, S.; Chakraborty, A.K.

    2015-01-01

    Semiconducting cuprous oxide films were grown by a hydrothermal electro-deposition technique on metal (Cu) and glass (ITO) substrates between 60 °C and 100 °C. X-ray diffraction studies reveal the formation of cubic cuprous oxide films in different preferred orientations depending upon the deposition technique used. Film growth, uniformity, grain size, optical band gap and photoelectrochemical response were found to improve in the hydrothermal electrochemical deposition technique. - Highlights: • Cu 2 O thin films were grown on Cu and glass substrates. • Conventional and hydrothermal electrochemical deposition techniques were used. • Hydrothermal electrochemical growth showed improved morphology, thickness and optical band gap

  3. Radiogeochemical features of hydrothermal metasomatic formations

    International Nuclear Information System (INIS)

    Plyushchev, E.V.; Ryabova, L.A.; Shatov, V.V.

    1978-01-01

    Considered are the most general peculiarities of uranium and thorium distributions in hydrothermal-metasomatic formations of three levels of substance formation: 1) in hydrothermal minerals; 2) in natural associations of these minerals (in the altered rocks, metasomatites, ores, etc.); 3) ordened series of zonally and in stage conjugated hydrothermal-metasomatic formations. Statistically stable recurrence of natural combinations of hydrothermal-metasomatic formations points out conjugation of their formation in the directed evolution in the general hydrothermal process. Series of metasomatic formations, the initial members of which are potassium metasomatites, mostly result in accumulation up to industrial concentrations of radioactive elements in final members of these formations. Development of midlow-temperature propylitic alterations in highly radiative rocks causes the same accumulation

  4. Formate as an energy source for microbial metabolism in chemosynthetic zones of hydrothermal ecosystems.

    Science.gov (United States)

    Windman, Todd; Zolotova, Natalya; Schwandner, Florian; Shock, Everett L

    2007-12-01

    Formate, a simple organic acid known to support chemotrophic hyperthermophiles, is found in hot springs of varying temperature and pH. However, it is not yet known how metabolic strategies that use formate could contribute to primary productivity in hydrothermal ecosystems. In an effort to provide a quantitative framework for assessing the role of formate metabolism, concentration data for dissolved formate and many other solutes in samples from Yellowstone hot springs were used, together with data for coexisting gas compositions, to evaluate the overall Gibbs energy for many reactions involving formate oxidation or reduction. The result is the first rigorous thermodynamic assessment of reactions involving formate oxidation to bicarbonate and reduction to methane coupled with various forms of iron, nitrogen, sulfur, hydrogen, and oxygen for hydrothermal ecosystems. We conclude that there are a limited number of reactions that can yield energy through formate reduction, in contrast to numerous formate oxidation reactions that can yield abundant energy for chemosynthetic microorganisms. Because the energy yields are so high, these results challenge the notion that hydrogen is the primary energy source of chemosynthetic microbes in hydrothermal ecosystems.

  5. Hydrothermal Fe-Si-Mn oxide deposits from the Central and South Valu Fa Ridge, Lau Basin

    International Nuclear Information System (INIS)

    Sun Zhilei; Zhou Huaiyang; Yang Qunhui; Sun Zhixue; Bao Shenxu; Yao Huiqiang

    2011-01-01

    Highlights: → The Fe-Mn crust in the HHF has seawater contribution, whereas the Fe-Si oxide in the MHF is dominated by hydrothermal fluid → The Nd isotope of diffuse flow Fe-Si-Mn deposits indicates the obvious hydrothermal origin. → The Mn/Fe ratio in hydrothermal deposit may be a good indicator of propagating activities of the Valu Fa Ridge. - Abstract: A series of samples from the Hine Hina hydrothermal field (HHF) and the Mariner hydrothermal field (MHF) in the Central and Southern Valu Fa Ridge (VFR), Lau Basin were examined to explain the source origin and formation of the hydrothermal Fe-Si-Mn oxide deposits. The mineralogy was studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), Moessbauer spectroscopy, and energy-dispersive spectroscopy (EDS). For the Fe-Mn oxide crusts in the HHF, varying amounts of volcanic fragments and some seawater contributions were recognized, along with higher concentrations of Mn, Al, Co, Ni, Zn, Sr, Mo, elevated ΣREE and negative Ce anomalies. In contrast, the Si-rich oxide samples of the MHF were enriched in Cu, Pb and Ba, indicative of proximity to a hydrothermal jet. Moreover, conductive cooling of hydrothermal fluid evoked the Si-rich deposit formation in the MHF. The Sr, Nd and Pb isotope data provided further constraints regarding the source and formation of the Fe-Si-Mn deposits in the VFR by showing that the samples of the HHF are a mixture of three components, namely, hydrothermal fluid, seawater and volcanic materials, whereas the samples of the MHF were dominated by hydrothermal fluids. The seawater had a minor influence on the Nd isotope data, and the Pb isotope data exhibited a close association with the substrate rock and preformed volcaniclastic layers in this area. The occurrence of relatively high Mn/Fe ratios in the hydrothermal deposits of this area may be a good indicator of the propagating activities of the VFR over geological time.

  6. Selective oxidation of propylene to acrolein by hydrothermally synthesized bismuth molybdates

    DEFF Research Database (Denmark)

    Schuh, Kirsten; Kleist, Wolfgang; Høj, Martin

    2014-01-01

    Hydrothermal synthesis has been used as a soft chemical method to prepare bismuth molybdate catalysts for the selective oxidation of propylene to acrolein. All obtained samples displayed a plate-like morphology, but their individual aspect ratios varied with the hydrothermal synthesis conditions...... of nitric acid during hydrothermal synthesis enhanced both propylene conversion and acrolein yield, possibly due to a change in morphology. Formation of β-Bi2Mo2O9 was not observed under the applied conditions. In general, the catalytic performance of all samples decreased notably after calcination at 550...

  7. Geochemical and iron isotopic insights into hydrothermal iron oxyhydroxide deposit formation at Loihi Seamount

    Science.gov (United States)

    Rouxel, Olivier; Toner, Brandy; Germain, Yoan; Glazer, Brian

    2018-01-01

    Low-temperature hydrothermal vents, such as those encountered at Loihi Seamount, harbor abundant microbial communities and provide ideal systems to test hypotheses on biotic versus abiotic formation of hydrous ferric oxide (FeOx) deposits at the seafloor. Hydrothermal activity at Loihi Seamount produces abundant microbial mats associated with rust-colored FeOx deposits and variably encrusted with Mn-oxyhydroxides. Here, we applied Fe isotope systematics together with major and trace element geochemistry to study the formation mechanisms and preservation of such mineralized microbial mats. Iron isotope composition of warm (oxidation of Fe(II) during mixing of the hydrothermal fluid with seawater. By comparing the results with experimentally determined Fe isotope fractionation factors, we determined that less than 20% of Fe(II) is oxidized within active microbial mats, although this number may reach 80% in aged or less active deposits. These results are consistent with Fe(II) oxidation mediated by microbial processes considering the expected slow kinetics of abiotic Fe oxidation in low oxygen bottom water at Loihi Seamount. In contrast, FeOx deposits recovered at extinct sites have distinctly negative Fe-isotope values down to -1.77‰ together with significant enrichment in Mn and occurrence of negative Ce anomalies. These results are best explained by the near-complete oxidation of an isotopically light Fe(II) source produced during the waning stage of hydrothermal activity under more oxidizing conditions. Light Fe isotope values of FeOx are therefore generated by subsurface precipitation of isotopically heavy Fe-oxides rather than by the activity of dissimilatory Fe reduction in the subsurface. Overall, Fe-isotope compositions of microbial mats at Loihi Seamount display a remarkable range between -1.2‰ and +1.6‰ which indicate that Fe isotope compositions of hydrothermal Fe-oxide precipitates are particularly sensitive to local environmental conditions where

  8. Oxalic acid induced hydrothermal synthesis of single crystalline tungsten oxide nanorods

    International Nuclear Information System (INIS)

    Patil, V.B.; Adhyapak, P.V.; Suryavanshi, S.S.; Mulla, I.S.

    2014-01-01

    Highlights: • We report synthesis of 1D tungsten oxide using a hydrothermal route at 170 °C. • Oxalic acid plays an important role in the formation of 1D nanostructure. • Monoclinic transforms to hexagonal phase with increment in reaction duration. -- Abstract: One-dimensional single-crystalline tungsten oxide nanorods have been synthesized by the hydrothermal technique. The controlled morphology of tungsten oxide was obtained by using sodium tungstate and oxalic acid as an organic inducer. The reaction was carried out at 170 °C for 24, 48 and 72 h. The obtained tungsten oxides were investigated by using XRD, SEM and HRTEM techniques. In order to understand the role of organic inducer on the shape, size and phase formation of WO 3 was prepared with and without organic inducer. On heating of sodium tungstate without organic inducer for 72 h at 170 °C in the hydrothermal unit we obtain nanoparticles of monoclinic WO 3 , however, on addition of oxalic acid a single phase hexagonal WO 3 with distinct nanorods was formed. On addition of oxalic acid a systematic emergence of nanorod-like morphology was obtained with incrementing reaction times from 24 h to 48 h. The 72 h reaction generates self-assembled 20–30 nm diameter and 4–5 μm long h-WO 3 bundles of nanorods. The XRD studies show hexagonal structure of tungsten oxide, while SAED reveals its single crystalline nature. The photoluminescence (PL) emission spectrum shows a characteristic blue emission peak at 3 eV (410 nm). Raman spectra provide the evidence of hexagonal structure with stretching vibrations (830 cm −1 ) for 72 h of heating at 170 °C

  9. Oxalic acid induced hydrothermal synthesis of single crystalline tungsten oxide nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Patil, V.B. [School of Physical Sciences, Solapur University, Solapur 413255 (India); Adhyapak, P.V. [Centre for Materials for Electronic Technology (C-MET), Pune 411008 (India); Suryavanshi, S.S., E-mail: sssuryavanshi@rediffmail.com [School of Physical Sciences, Solapur University, Solapur 413255 (India); Mulla, I.S., E-mail: ismulla2001@gmail.com [Emeritus Scientist (CSIR), Centre for Materials for Electronic Technology (C-MET), Pune 411008 (India)

    2014-03-25

    Highlights: • We report synthesis of 1D tungsten oxide using a hydrothermal route at 170 °C. • Oxalic acid plays an important role in the formation of 1D nanostructure. • Monoclinic transforms to hexagonal phase with increment in reaction duration. -- Abstract: One-dimensional single-crystalline tungsten oxide nanorods have been synthesized by the hydrothermal technique. The controlled morphology of tungsten oxide was obtained by using sodium tungstate and oxalic acid as an organic inducer. The reaction was carried out at 170 °C for 24, 48 and 72 h. The obtained tungsten oxides were investigated by using XRD, SEM and HRTEM techniques. In order to understand the role of organic inducer on the shape, size and phase formation of WO{sub 3} was prepared with and without organic inducer. On heating of sodium tungstate without organic inducer for 72 h at 170 °C in the hydrothermal unit we obtain nanoparticles of monoclinic WO{sub 3}, however, on addition of oxalic acid a single phase hexagonal WO{sub 3} with distinct nanorods was formed. On addition of oxalic acid a systematic emergence of nanorod-like morphology was obtained with incrementing reaction times from 24 h to 48 h. The 72 h reaction generates self-assembled 20–30 nm diameter and 4–5 μm long h-WO{sub 3} bundles of nanorods. The XRD studies show hexagonal structure of tungsten oxide, while SAED reveals its single crystalline nature. The photoluminescence (PL) emission spectrum shows a characteristic blue emission peak at 3 eV (410 nm). Raman spectra provide the evidence of hexagonal structure with stretching vibrations (830 cm{sup −1}) for 72 h of heating at 170 °C.

  10. Trace elements in magnetite from massive iron oxide-apatite deposits indicate a combined formation by igneous and magmatic-hydrothermal processes

    Science.gov (United States)

    Knipping, Jaayke L.; Bilenker, Laura D.; Simon, Adam C.; Reich, Martin; Barra, Fernando; Deditius, Artur P.; Wälle, Markus; Heinrich, Christoph A.; Holtz, François; Munizaga, Rodrigo

    2015-12-01

    Iron oxide-apatite (IOA) deposits are an important source of iron and other elements (e.g., REE, P, U, Ag and Co) vital to modern society. However, their formation, including the namesake Kiruna-type IOA deposit (Sweden), remains controversial. Working hypotheses include a purely magmatic origin involving separation of an Fe-, P-rich, volatile-rich oxide melt from a Si-rich silicate melt, and precipitation of magnetite from an aqueous ore fluid, which is either of magmatic-hydrothermal or non-magmatic surface or metamorphic origin. In this study, we focus on the geochemistry of magnetite from the Cretaceous Kiruna-type Los Colorados IOA deposit (∼350 Mt Fe) located in the northern Chilean Iron Belt. Los Colorados has experienced minimal hydrothermal alteration that commonly obscures primary features in IOA deposits. Laser ablation-inductively coupled plasma-mass spectroscopy (LA-ICP-MS) transects and electron probe micro-analyzer (EPMA) wavelength-dispersive X-ray (WDX) spectrometry mapping demonstrate distinct chemical zoning in magnetite grains, wherein cores are enriched in Ti, Al, Mn and Mg. The concentrations of these trace elements in magnetite cores are consistent with igneous magnetite crystallized from a silicate melt, whereas magnetite rims show a pronounced depletion in these elements, consistent with magnetite grown from an Fe-rich magmatic-hydrothermal aqueous fluid. Further, magnetite grains contain polycrystalline inclusions that re-homogenize at magmatic temperatures (>850 °C). Smaller inclusions (500 ppm) concentrations.

  11. Thermal oxidation of seeds for the hydrothermal growth of WO3 nanorods on ITO glass substrate

    International Nuclear Information System (INIS)

    Ng, Chai Yan; Abdul Razak, Khairunisak; Lockman, Zainovia

    2015-01-01

    This work reports a simple seed formation method for the hydrothermal growth of tungsten oxide (WO 3 ) nanorods. A WO 3 seed layer was prepared by thermal oxidation, where a W-sputtered substrate was heated and oxidized in a furnace. Oxidation temperatures and periods were varied at 400–550 °C and 5–60 min, respectively, to determine an appropriate seed layer for nanorod growth. Thermal oxidation at 500 °C for 15 min was found to produce a seed layer with sufficient crystallinity and good adhesion to the substrate. These properties prevented the seed from peeling off during the hydrothermal process, thereby allowing nanorod growth on the seed. The nanorod film showed better electrochromic behavior (higher current density of − 1.11 and + 0.65 mA cm −2 ) than compact film (lower current density of − 0.54 and + 0.28 mA cm −2 ). - Highlights: • A simple seed formation method (thermal oxidation) on sputtered W film is reported. • Crystalline seed with good adhesion to substrate is required for nanorod growth. • The appropriate temperature and period for seed formation were 500 °C and 15 min. • WO 3 nanorods exhibited higher electrochromic current density than WO 3 compact film.

  12. Hydrothermal Synthesis of Analcime from Kutingkeng Formation Mudstone

    Science.gov (United States)

    Hsiao, Yin-Hsiu; Chen, Kuan-Ting; Ray, Dah-Tong

    2015-04-01

    In southwest of Taiwan, the foothill located in Tainan-Kaohsiung city is the exposed area of Pliocene strata to early Pleistocene strata. The strata are about a depth of five thousand, named as Kutigkeng Formation. The outcrop of Kutigkeng Formation is typical badlands, specifically called 'Moon World.' It is commonly known as no important economic applications of agricultural land. The mineral compositions of Kutingkeng Formation are quartz, clay minerals and feldspar. The clay minerals consist of illite, clinochlore and swelling clays. To study how the phase and morphology of analcime formed by hydrothermal synthesis were affected, analcime was synthesized from the mudstone of Kutinkeng Formation with microwave hydrothermal reaction was investigated. The parameters of the experiment were the reaction temperature, the concentration of mineralizer, solids/liquid ratio and time. The sodium silicate (Na2SiO3) were used as mineralizer. The results showed that the analcime could be synthesized by hydrothermal reaction above 180° from Kutinkeng Formation mudstone samples. At the highest temperature (240°) of this study, the high purity analcime could be produced. When the concentration of Na2SiO3=3~6M, analcime could be synthesized at 240°. The best solids/liquid ratio was approximate 1 to 5. The hydrothermal reaction almost was completed after 4 hours.

  13. Thermal oxidation of seeds for the hydrothermal growth of WO{sub 3} nanorods on ITO glass substrate

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Chai Yan [School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia); Department of Mechanical and Material Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Cheras, 43000 Kajang, Selangor (Malaysia); Abdul Razak, Khairunisak, E-mail: khairunisak@usm.my [School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia); NanoBiotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Lockman, Zainovia, E-mail: zainovia@usm.my [School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia)

    2015-11-30

    This work reports a simple seed formation method for the hydrothermal growth of tungsten oxide (WO{sub 3}) nanorods. A WO{sub 3} seed layer was prepared by thermal oxidation, where a W-sputtered substrate was heated and oxidized in a furnace. Oxidation temperatures and periods were varied at 400–550 °C and 5–60 min, respectively, to determine an appropriate seed layer for nanorod growth. Thermal oxidation at 500 °C for 15 min was found to produce a seed layer with sufficient crystallinity and good adhesion to the substrate. These properties prevented the seed from peeling off during the hydrothermal process, thereby allowing nanorod growth on the seed. The nanorod film showed better electrochromic behavior (higher current density of − 1.11 and + 0.65 mA cm{sup −2}) than compact film (lower current density of − 0.54 and + 0.28 mA cm{sup −2}). - Highlights: • A simple seed formation method (thermal oxidation) on sputtered W film is reported. • Crystalline seed with good adhesion to substrate is required for nanorod growth. • The appropriate temperature and period for seed formation were 500 °C and 15 min. • WO{sub 3} nanorods exhibited higher electrochromic current density than WO{sub 3} compact film.

  14. Hydrothermal oxidation of ammonia/organic waste mixtures

    International Nuclear Information System (INIS)

    Luan, Li; Proesmans, P.I.; Buelow, S.J.

    1997-01-01

    Hydrothermal oxidation is a promising new technology for the treatment of radioactive contaminated hazardous organic wastes. Los Alamos National Laboratory is currently evaluating this technology for the U. S. Department of Energy. In this paper, we present experimental results from the study of the hydrothermal oxidation of an ammonia/alcohol/uranium waste mixture. The use of a co-oxidant system consisting of hydrogen peroxide combined with nitrate is discussed. Experiments demonstrate near complete destruction of ammonia and organic compounds at 500 degrees C, 38 MPa, and 50 seconds reaction time. The ammonia and total organic carbon (TOC) concentrations in a waste simulant is reduced from 8,500 mg/L of ammonia and 12,500 mg/L TOC to 30 mg/L ammonia and less than 10 mg/L TOC. The major reaction products are CO 2 , N 2 , and a small amount of N 2 O. Comparison experiments with nitrate and hydrogen peroxide used individually show the advantage of the co-oxidant system

  15. Facile hydrothermal preparation of titanium dioxide decorated reduced graphene oxide nanocomposite

    Science.gov (United States)

    Chang, Betty Yea Sze; Huang, Nay Ming; An’amt, Mohd Nor; Marlinda, Abdul Rahman; Norazriena, Yusoff; Muhamad, Muhamad Rasat; Harrison, Ian; Lim, Hong Ngee; Chia, Chin Hua

    2012-01-01

    A simple single-stage approach, based on the hydrothermal technique, has been introduced to synthesize reduced graphene oxide/titanium dioxide nanocomposites. The titanium dioxide nanoparticles are formed at the same time as the graphene oxide is reduced to graphene. The triethanolamine used in the process has two roles. It acts as a reducing agent for the graphene oxide as well as a capping agent, allowing the formation of titanium dioxide nanoparticles with a narrow size distribution (~20 nm). Transmission electron micrographs show that the nanoparticles are uniformly distributed on the reduced graphene oxide nanosheet. Thermogravimetric analysis shows the nanocomposites have an enhanced thermal stability over the original components. The potential applications for this technology were demonstrated by the use of a reduced graphene oxide/titanium dioxide nanocomposite-modified glassy carbon electrode, which enhanced the electrochemical performance compared to a conventional glassy carbon electrode when interacting with mercury(II) ions in potassium chloride electrolyte. PMID:22848166

  16. Hydrothermal synthesis of magnetic reduced graphene oxide sheets

    International Nuclear Information System (INIS)

    Shen, Jianfeng; Shi, Min; Ma, Hongwei; Yan, Bo; Li, Na; Ye, Mingxin

    2011-01-01

    Graphical abstract: An environmental friendly and efficient route for preparation of magnetic reduced graphene oxide composite with a one-step hydrothermal method was demonstrated. The reducing process was accompanied by generation of magnetic nanoparticles. Highlights: → A one-step hydrothermal method for preparation of MN-CCG was demonstrated. → Glucose was used as the 'green' reducing agent. → The reducing process was accompanied by generation of magnetic nanoparticles. → The prepared MN-CCG is highly water suspendable and sensitive to magnetic field. -- Abstract: We demonstrated an environmental friendly and efficient route for preparation of magnetic reduced graphene oxide composite (MN-CCG). Glucose was used as the reducing agent in this one-step hydrothermal method. The reducing process was accompanied by generation of magnetic nanoparticles. The structure and composition of the nanocomposite was confirmed by Fourier transform infrared spectroscopy, Raman spectroscopy, X-ray diffraction, thermal gravimetric analysis, atomic force microscopy and transmission electron microscopy. It was found that the prepared MN-CCG is highly water suspendable and sensitive to magnetic field.

  17. Skill Formation in Malaysia: The Case of Auto Parts Industry

    OpenAIRE

    Sadoi, Yuri

    1998-01-01

    This study takes the auto parts industry in Malaysia to demonstrate the difficulties a developing country faces in promoting skill development. Auto parts production needs a wide range of production techniques, which in turn require many types and levels of skilled workers. Realizing the importance of skilled workers, the Malaysian government has been emphasizing skill formation by increasing the number of technical schools, introducing a skill certification system, and giving a tax incentive...

  18. Hydrothermal synthesis of a layered-type W-Ti-O mixed metal oxide and its solid acid activity

    NARCIS (Netherlands)

    Murayama, T.; Nakajima, K.; Hirata, J.; Omata, K.; Hensen, E.J.M.; Ueda, W.

    2017-01-01

    A layered-type W–Ti–O mixed oxide was synthesized by hydrothermal synthesis from an aqueous solution of ammonium metatungstate and titanium sulfate. To avoid the formation of titania, oxalic acid was used as a reductant. Optimized synthesis led to rod-like particles comprised of MO6 (M = W, Ti)

  19. One-pot hydrothermal synthesis of ruthenium oxide nanodots on reduced graphene oxide sheets for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Chen Yao [Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Graduate University of Chinese Academy Sciences, Beijing 100049 (China); Zhang Xiong [Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Zhang Dacheng [Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Graduate University of Chinese Academy Sciences, Beijing 100049 (China); Ma Yanwei, E-mail: ywma@mail.iee.ac.cn [Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China)

    2012-01-15

    Highlights: > Graphite oxide instead of graphene as precursor has been used to synthesize reduced graphene oxide/ruthenium oxide composites by a hydrothermal treatment. > Using NaOH solution to adjust pH of GO colloids leads to homogeneous ruthenium oxide deposited on reduced graphene oxide sheets. > A maximum capacitance of 471 F g{sup -1} is obtained at 0.5 A g{sup -1} for the composites when loading 40% of RuO{sub 2} and its life retention reaches 92% after 3000 cycles. - Abstract: Ruthenium oxide nanodots have been deposited on reduced graphene oxide (RGO) sheets homogeneously by hydrothermal and annealing methods. Adding NaOH solution in GO colloids prevents the restack and agglomeration of GO sheets when mixed with ruthenium chloride solution. Local crystallization of RuO{sub 2} in the composites is revealed by X-ray diffraction and transmission electron microscopy. The element mapping image demonstrates the uniform distribution of Ru on RGO sheets. Unlike the pure crystalline RuO{sub 2} exhibiting poor electrochemical performance, the composites present superior capacitive properties. The hydrothermal time is optimized and a maximum of 471 F g{sup -1} is measured in the composites at 0.5 A g{sup -1} when loaded with 45 wt% of RuO{sub 2}. After 3000 cycles, its specific capacitance remains 92% of the maximum capacitance. Our results suggest potential application of the reduced graphene oxide/ruthenium oxide composites to supercapacitors.

  20. One-pot hydrothermal synthesis of ruthenium oxide nanodots on reduced graphene oxide sheets for supercapacitors

    International Nuclear Information System (INIS)

    Chen Yao; Zhang Xiong; Zhang Dacheng; Ma Yanwei

    2012-01-01

    Highlights: → Graphite oxide instead of graphene as precursor has been used to synthesize reduced graphene oxide/ruthenium oxide composites by a hydrothermal treatment. → Using NaOH solution to adjust pH of GO colloids leads to homogeneous ruthenium oxide deposited on reduced graphene oxide sheets. → A maximum capacitance of 471 F g -1 is obtained at 0.5 A g -1 for the composites when loading 40% of RuO 2 and its life retention reaches 92% after 3000 cycles. - Abstract: Ruthenium oxide nanodots have been deposited on reduced graphene oxide (RGO) sheets homogeneously by hydrothermal and annealing methods. Adding NaOH solution in GO colloids prevents the restack and agglomeration of GO sheets when mixed with ruthenium chloride solution. Local crystallization of RuO 2 in the composites is revealed by X-ray diffraction and transmission electron microscopy. The element mapping image demonstrates the uniform distribution of Ru on RGO sheets. Unlike the pure crystalline RuO 2 exhibiting poor electrochemical performance, the composites present superior capacitive properties. The hydrothermal time is optimized and a maximum of 471 F g -1 is measured in the composites at 0.5 A g -1 when loaded with 45 wt% of RuO 2 . After 3000 cycles, its specific capacitance remains 92% of the maximum capacitance. Our results suggest potential application of the reduced graphene oxide/ruthenium oxide composites to supercapacitors.

  1. Interactions between iron oxides and copper oxides under hydrothermal conditions

    Energy Technology Data Exchange (ETDEWEB)

    McGarvey, G B; Owen, D G

    1995-08-01

    Under hydrothermal conditions, magnetite and hematite have been shown to undergo interconversion reactions, the extent of which is controlled in part by the presence of copper oxides. In oxygenated water, the degree to which magnetite was oxidized to hematite was found to be dependent on the presence of CuO or Cu{sub 2}O. When these materials were absent, the oxidation of magnetite was limited by the dissolved oxygen in the aqueous system. Participation of the copper oxides in the oxidation process was confirmed by more complete conversion of magnetite was also influenced by the presence of the copper oxides. In addition to driving the reduction to completion, the presence of the copper oxides also exerted a strong influence over the morphology of the magnetite that formed. (author). 13 refs., 1 tab., 3 figs.

  2. Synthesis of high intrinsic loss power aqueous ferrofluids of iron oxide nanoparticles by citric acid-assisted hydrothermal-reduction route

    International Nuclear Information System (INIS)

    Behdadfar, Behshid; Kermanpur, Ahmad; Sadeghi-Aliabadi, Hojjat; Morales, Maria del Puerto; Mozaffari, Morteza

    2012-01-01

    Monodispersed aqueous ferrofluids of iron oxide nanoparticle were synthesized by hydrothermal-reduction route. They were characterized by X-ray diffraction analysis, Fourier transform infrared spectroscopy, scanning and transmission electron microscopy and dynamic light scattering. The results showed that certain concentrations of citric acid (CA) are required to obtain only magnetic iron oxides with mean particle sizes around 8 nm. CA acts as a modulator and reducing agent in iron oxide formation which controls nanoparticle size. The XRD, magnetic and heating measurements showed that the temperature and time of hydrothermal reaction can affect the magnetic properties of obtained ferrofluids. The synthesized ferrofluids were stable at pH 7. Their mean hydrodynamic size was around 80 nm with polydispersity index (PDI) of 0.158. The calculated intrinsic loss power (ILP) was 9.4 nHm 2 /kg. So this clean and cheap route is an efficient way to synthesize high ILP aqueous ferrofluids applicable in magnetic hyperthermia. - Graphical abstract: Monodispersed aqueous ferrofluids of iron oxide nanoparticles were synthesized by hydrothermal-reduction method with citric acid as reductant which is an efficient way to synthesize aqueous ferrofluids applicable in magnetic hyperthermia. Highlights: ► Aqueous iron oxide ferrofluids were synthesized by hydrothermal-reduction route. ► Citric acid acted as reducing agent and surfactant in the route. ► This is a facile, low energy and environmental friendly route. ► The aqueous iron oxide ferrofluids were monodispersed and stable at pH of 7. ► The calculated intrinsic loss power of the synthesized ferrofluids was very high.

  3. Synthesis of mesoporous cerium-zirconium mixed oxides by hydrothermal templating method

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Mesoporous cerium-zirconium mixed oxides were prepared by hydrothermal method using cetyl trimethyl ammonium bromide (CTAB) as template.The effects of amount of template,pH value of solution and hydrothermal temperature on mesostructure of samples were systematically investigated.The final products were characterized by XRD,TEM,FT-IR,and BET.The results indicate that all the cerium-zirconium mixed oxides present a meso-structure.At molar ratio of n(CTAB)/n((Ce)+(Zr))=0.15,pH value of 9,and hydrothermal temperature of 120 ℃,the samples obtained possess a specific surface area of 207.9 m2/g with pore diameter of 3.70 nm and pore volume of 0.19 cm3/g.

  4. Hydrothermal Synthesis of MoO2 and Supported MoO2 Cata-lysts for Oxidative Desulfurization of Dibenzothiophene

    Institute of Scientific and Technical Information of China (English)

    Wang Danhong; Zhang Jianyong; Liu Ni; Zhao Xin; Zhang Minghui

    2014-01-01

    A novel method for obtaining spherical MoO2 nanoparticles and SiO2-Al2O3 supported MoO2 by hydrothermal reduction of Mo (VI) species was studied. The obtained MoO2 catalysts show very high catalytic activity in the oxidative desulfurization (ODS) process. The effect of hydrothermal temperature and crystallization temperature on ODS activity was investigated. The ODS activity of supported MoO2 catalysts with various MoO2 contents were also investigated. The mecha-nism for formation of MoO2 involving oxalic acid was proposed.

  5. Char and coke formation as unwanted side reaction of the hydrothermal biomass gasification

    Energy Technology Data Exchange (ETDEWEB)

    Karayildirim, T. [Department of Chemistry, Science Faculty, Ege University, Bornova-Izmir (Turkey); Sinag, A. [Department of Chemistry, Science Faculty, Ankara University, Besevler-Ankara (Turkey); Kruse, A. [Institut fuer Technische Chemie CPV, Forschungszentrum Karlsruhe GmbH, Karlsruhe (Germany)

    2008-11-15

    The hydrothermal biomass gasification is a promising technology to produce hydrogen and/or methane from wet biomass with a water content of {>=}80 % (g/g). In the process, the coke formation usually is very low, but already low amounts may cause problems like, e.g., fouling in the heat exchanger. To learn more about the product formation, the results of the hydrothermal treatment (at 400,500,600 C and 1 h) of different biomass feedstocks (artichoke stalk, pinecone, sawdust, and cellulose as model biomass) in a microreactor are compared. The gas composition and the total organic carbon content of the aqueous phase were determined after reaction. The gas formation rises with increasing temperature. The formation of carbon deposits and their characterization has been investigated by scanning electron microscopy (SEM). The variation of the solid morphology during the hydrothermal conversion is discussed based on chemical pathways occurring during hydrothermal biomass degradation. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  6. Base hydrolysis and hydrothermal processing of PBX-9404

    International Nuclear Information System (INIS)

    Flesner, R.L.; Spontarelli, T.; Dell'Orco, P.C.; Sanchez, J.A.

    1994-01-01

    Base hydrolysis in combination with hydrothermal processing has been proposed as an environmentally acceptable alternative to open burning/open detonation for degradation and destruction of high explosives. In this report, the authors examine gaseous and aqueous products of base hydrolysis of the HMX-based plastic bonded explosive, PBX-9404. They also examined products from the subsequent hydrothermal treatment of the base hydrolysate. The gases produced from hydrolysis of PBX-9404 are ammonia, nitrous oxide, and nitrogen. Major aqueous products are sodium formate, acetate, nitrate, and nitrite, but not all carbon products have been identified. Hydrothermal processing of base hydrolysate destroyed up to 98% of the organic carbon in solution, and higher destruction efficiencies are possible. Major gas products detected from hydrothermal processing were nitrogen and nitrous oxide

  7. Primary Formation Path of Formaldehyde in Hydrothermal Vents

    Science.gov (United States)

    Inaba, Satoshi

    2018-03-01

    Formaldehyde is abundant in the universe and one of the fundamental molecules for life. Hydrothermal vents produce a substantial amount of hydrogen molecules by serpentinization and promote reductive reactions of single carbon compounds. The abundance of formaldehyde is expected to be low due to the high Gibbs free energy in hydrothermal vents. We consider two competing formation pathways of formaldehyde: (1) the reduction of CO by H2 and (2) the reduction of HCOOH by H2 to form a methanediol, followed by the dehydration of the methanediol. We performed a number of quantum chemical simulations to examine the formation of formaldehyde in the gas phase as well as in aqueous solution. The energy barrier is significantly reduced by the catalytic effect of water molecules in aqueous solution and becomes lowest when a water cluster consisted of 5 water molecules catalyzes the reduction. The energy barrier to form a methanediol by the reduction of HCOOH is lower by 17.5 kcal/mol than that to form a formaldehyde by the reduction of CO. Considering the low energy barrier to dehydrate methanediol, the primary pathway to form formaldehyde in hydrothermal vents is concluded to be the reduction of HCOOH by H2, followed by the dehydration of methanediol.

  8. Resource recovery of WC-Co cermet using hydrothermal oxidation technique

    International Nuclear Information System (INIS)

    Gao Ningfeng; Inagaki, F.; Sasai, R.; Itoh, H.; Watari, K.

    2005-01-01

    WC-Co cermet is widely used in industrial applications such as cutting tools, dies, wear parts and so on. It is of great importance to establish the recycling process for the precious metal resources contained in WC-Co cermet, because all these metals used in Japan are imported. In this paper we reported a hydrothermal oxidation technique using nitric acid for the reclamation of WC and Co. The WC-Co cermet specimens with various WC particle sizes and Co contents were hydrothermally treated in HNO 3 aqueous solutions at temperatures of 110-200 C for durations of 6-240 h. The Co was preferentially leached out into the acidic solution, while the WC was oxidized to insoluble WO 3 hydrate which was subsequently separated by filtration. The hydrothermal treatment parameters such as solvent concentrations, treatment temperatures, holding time were optimized in respect to different kinds of WC-Co cermets. A hydrothermal oxidation treatment in 3M HNO 3 aqueous solution at 150 C for 24 h was capable of fully disintegrating the cermet chip composed of coarse WC grains of 1-5 μm in size with 20 wt% of Co as binder. While the more oxidation resistant specimen composed of fine WC grains of 0.5-1.0 μm in size with 13 wt% of Co, was completely disintegrated by a treatment in 7 M HNO 3 aqueous solution at 170 C for 24 h. The filtered solid residues were composed of fine WO 3 .0.33H 2 O powder and a small amount of WO 3 . The recovered WO 3 .0.33H 2 O powder can be easily returned to the industrial process for the synthesis of WC powder so that the overall recycling cost can be possibly lowered. (orig.)

  9. Template-assisted hydrothermally synthesized iron-titanium binary oxides and their application as catalysts for ethyl acetate oxidation

    Czech Academy of Sciences Publication Activity Database

    Tsoncheva, T.; Ivanova, R.; Dimitrov, M.; Paneva, D.; Kovacheva, D.; Henych, Jiří; Vomáčka, Petr; Kormunda, M.; Velinov, N.; Mitov, I.; Štengl, Václav

    2016-01-01

    Roč. 528, NOV (2016), s. 24-35 ISSN 0926-860X R&D Projects: GA MŠk(CZ) LM2015073 Institutional support: RVO:61388980 Keywords : Effect of Fe/Ti ratio and temperature of hydrothermal treatment * Hydrothermal synthesis * Iron-titanium binary oxides Subject RIV: CA - Inorganic Chemistry Impact factor: 4.339, year: 2016

  10. Hydrothermal deposition and characterization of silicon oxide nanospheres

    International Nuclear Information System (INIS)

    Pei, L.Z.

    2008-01-01

    Silicon oxide nanospheres with the average diameter of about 100 nm have been synthesized by hydrothermal deposition process using silicon and silica as the starting materials. The silicon oxide nanospheres were characterized by field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectrum (EDS), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and photoluminescence (PL) spectrum, respectively. The results show that large scale silicon oxide nanospheres with the uniform size are composed of Si and O showing the amorphous structure. Strong PL peak at 435 nm is observed demonstrating the good blue light emission property

  11. Production of Valuables Organic Acids from Organic Wastes with Hydrothermal Treatment Process

    Directory of Open Access Journals (Sweden)

    Muhammad Faisal

    2009-06-01

    Full Text Available This article reports production of valuables organic acids from the hydrothermal treatment of representative organic wastes and compounds (i. e. domestic sludge, proteinaceous, cellulosic and plastic wastes with or without oxidant (H2O2. Organic acids such as acetic, formic, propionic, succinic and lactic acids were obtained in significant amounts. At 623 K (16.5 MPa, acetic acid of about 26 mg/g-dry waste fish entrails was obtained. This increased to 42 mg/g dry waste fish entrails in the presence of H2O2. Experiments on glucose to represent cellulosic wastes were also carried out, getting acetic acid of about 29 mg/g-glucose. The study was extended to terephthalic acid and glyceraldehyde, reaction intermediates of hydrothermal treatment of PET plastic wastes and glucose, respectively. Studies on temperature dependence of formation of organic acids showed thermal stability of acetic acid, whereas, formic acid decomposed readily under hydrothermal conditions. In general, results demonstrated that the presence of oxidants favored formation of organic acids with acetic acid being the major product. Keywords: hydrothermal treatment, organic acids, organic wastes, oxidant, supercritical water oxidation

  12. First-order hydrothermal oxidation kinetics of digested sludge compared with raw sludge.

    Science.gov (United States)

    Shanableh, A; Imteaz, M

    2008-09-01

    This article presents an assessment of the first-order hydrothermal oxidation kinetics of a selected digested sludge at subcritical ( 374 degrees C) temperatures in the range of 250-460 degrees C. Furthermore, the results were compared with reported oxidation kinetics of raw sludge treated under identical experimental conditions. In the assessment, oxidation was considered to proceed in two steps: (1) decomposition of the particulate, or non-filterable, chemical oxygen demand (PCOD); followed by (2) ultimate oxidation and removal of the total, particulate and soluble, COD. The accumulation and removal of soluble COD (SCOD) was determined from the difference between the rates of sludge decomposition and ultimate oxidation. Using results from batch and continuous-flow hydrothermal treatment experiments, the reacting organic ingredients were separated into groups according to the ease or difficulty at which they were decomposed or removed, with Arrhenius-type activation energy levels assigned to the different groups. The analysis confirmed that within the treatment range of 75% to more than 97% COD removal, the oxidation kinetics of the digested and raw sludges were nearly identical despite differences in the proportions of their original organic ingredients. The original organic ingredients were mostly removed above 75% COD removal, and the oxidation kinetics appeared to be dominated by the removal of acetic acid, an intermediate by-product which constituted 50% to more than 80% of the remaining COD. Furthermore, the oxidation kinetics of both sludge types were consistent with reported first-order oxidation kinetics of pure acetic acid solutions. The resulting kinetic models adequately represented hydrothermal oxidation of digested sludge, in terms of COD and PCOD removals, as well as accumulation and removal of the soluble SCOD.

  13. Synthesis of nickel oxide - zirconia composites by coprecipitation route followed by hydrothermal treatment

    International Nuclear Information System (INIS)

    Yoshito, Walter Kenji; Ussui, Valter; Lazar, Dolores Ribeiro Ricci; Paschoal, Jose Octavio Armani

    2009-01-01

    Nickel oxide-yttria stabilized zirconia (NiO-YSZ) for use as solid oxide fuel cell anode were synthesized by coprecipitation to obtain amorphous zirconia and crystallized β-nickel gels of the corresponding metal hydroxides. Hydrothermal treatment at 200°C and 220 psi from 2 up to 16 hours, under stirring, was performed to produce nanocrystalline powder. The as-synthesized powders were uniaxially pressed and sintered in air. Powders were characterized by X-ray diffraction, laser scattering, scanning and transmission electron microscopy (SEM/TEM), gas adsorption technique (BET) and TGDTA thermal analysis. Ceramic samples were characterized by dilatometric analysis and density measurements by Archimedes method. The characteristics of hydrothermally synthesized powders and compacts were compared to those produced without temperature and pressure application. Crystalline powders were obtained after hydrothermal process, excluding the calcination step from this route. The specific surface area of powders decreases with increasing time of hydrothermal treatment while the agglomerate mean size is not affected by this parameter. (author)

  14. Formation of hydrothermal tin deposits: Raman spectroscopic evidence for an important role of aqueous Sn(IV) species

    Science.gov (United States)

    Schmidt, Christian

    2018-01-01

    The speciation of tin and the solubility of cassiterite in H2O + HCl were determined at temperatures to 600 °C using in situ Raman spectroscopy. In addition, information on the fluid-melt partition of Sn was obtained at 700 °C and indicated a preference of the fluid only at HCl concentrations that are much higher than in fluids exsolved from natural felsic melts. Dissolution of cassiterite generally resulted in formation of Sn(IV) species unless reduced conditions were generated by hydrogen permeation or carbohydrates in the starting material. The prevalent aqueous Sn(IV) species was [SnCl4(H2O)2]0, with additional [SnCl3(H2O)3]+ and [SnCl5(H2O)]-. The only detectable Sn(II) species was very likely [Sn(II)Cl3]-. Cassiterite solubility increased with HCl concentration and was generally high in H2O+HCl fluids, with no strong dependencies on temperature, pressure, or the oxidation state of tin in the fluid. The Sn(IV) concentrations at 500 and 600 °C determined from the integrated ν1[Sn(IV)sbnd Cl] band intensity are in good agreement with literature data on the cassiterite solubility in H2O + HCl at oxygen fugacities along the hematite-magnetite buffer. The combined results from previous experimental studies and this study demonstrate that HCl molality is a crucial parameter for hydrothermal mobilization and transport of tin and for cassiterite precipitation, and that pH, pressure and temperature are less important. Current models on hydrothermal tin deposit formation need to be augmented to include Sn(IV)sbnd Cl complexes as significant tin-transporting species. Irrespective of the oxidation state of tin in the fluid, cassiterite precipitates due to reaction of the hydrothermal fluid with the wall rock (greisen or skarn formation), dilution (mixing with meteoric water) or a decrease in the HCl activity in the aqueous liquid by boiling. A redox reaction is only required for tin transported as Sn(II) to be converted to Sn(IV).

  15. Changes in Fe Oxidation Rate in Hydrothermal Plumes as a Potential Driver of Enhanced Hydrothermal Input to Near-Ridge Sediments During Glacial Terminations

    Science.gov (United States)

    Cullen, J. T.; Coogan, L. A.

    2017-12-01

    Recent studies have hypothesized that changes in sea level due to glacial-interglacial cycles lead to changes in the rate of melt addition to the crust at mid-ocean ridges with globally significant consequences. Arguably the most compelling evidence for this comes from increases in the hydrothermal component in near-ridge sediments during glacial-interglacial transitions. Here we explore the hypothesis that changes in ocean bottom water [O2] and pH across glacial-interglacial transitions would lead to changes in the rate of Fe oxidation in hydrothermal plumes. A simple model shows that a several fold increase in the rate of Fe oxidation is expected at glacial-interglacial transitions. Uncertainty in bottom water chemistry and the relationship between oxidation and sedimentation rates prevent direct comparison of the model and data. However, it appears that the null hypothesis of invariant hydrothermal vent fluxes into ocean bottom water that changed in O2 content and pH across these transitions cannot currently be discounted.

  16. Generalized first-order kinetic model for biosolids decomposition and oxidation during hydrothermal treatment.

    Science.gov (United States)

    Shanableh, A

    2005-01-01

    The main objective of this study was to develop generalized first-order kinetic models to represent hydrothermal decomposition and oxidation of biosolids within a wide range of temperatures (200-450 degrees C). A lumping approach was used in which oxidation of the various organic ingredients was characterized by the chemical oxygen demand (COD), and decomposition was characterized by the particulate (i.e., nonfilterable) chemical oxygen demand (PCOD). Using the Arrhenius equation (k = k(o)e(-Ea/RT)), activation energy (Ea) levels were derived from 42 continuous-flow hydrothermal treatment experiments conducted at temperatures in the range of 200-450 degrees C. Using predetermined values for k(o) in the Arrhenius equation, the activation energies of the various organic ingredients were separated into 42 values for oxidation and a similar number for decomposition. The activation energy values were then classified into levels representing the relative ease at which the organic ingredients of the biosolids were oxidized or decomposed. The resulting simple first-order kinetic models adequately represented, within the experimental data range, hydrothermal decomposition of the organic particles as measured by PCOD and oxidation of the organic content as measured by COD. The modeling approach presented in the paper provide a simple and general framework suitable for assessing the relative reaction rates of the various organic ingredients of biosolids.

  17. Effect of hydrothermal treatment of coal on the oxidation susceptibility and electrical resistivity of HTT coke

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, N.B.; Sarkar, P.; Choudhury, A. [Central Fuel Research Institute, P.O. FRI, Dhanbad-828108, Jharkhand (India)

    2005-02-25

    The influence of hydrothermal treatment of coal prior to carbonization, on the oxidation susceptibility of resultant coke/char, calcined at 1350, 1800 and 2200 {sup o}C has been investigated. The non-isothermal thermogravimetric analysis technique has been employed, and parameters such as onset, DTG peak temperatures, and cumulative oxidation loss (wt.%) at different temperatures have been utilized to compare proneness to oxidation with respective untreated samples apart from electrical resistivity. Data suggest that all the cokes/chars samples produced from hydrothermally treated coals are less reactive and more electrically conductive (less resistive) than their respective untreated counterparts. But the extent of improvement of oxidation resistance and electrical conductivity appears to be coal-specific. The kinetic parameters obtained by non-linear regression analysis on multi-curve reveal that the n{sup th} order reaction model (where 'n' was found to vary from 0.9 to 1.3) is the best-fitted model. The higher activation energy values observed for hydrothermally treated coke samples are in agreement with the observation of TG analysis data. Overall results indicate the importance of introducing a hydrothermal treatment step for the improvement of oxidation resistance as well as electrical conductivity of the coke samples.

  18. Low-temperature abatement of toluene over Mn-Ce oxides catalysts synthesized by a modified hydrothermal approach

    Science.gov (United States)

    Du, Jinpeng; Qu, Zhenping; Dong, Cui; Song, Lixin; Qin, Yuan; Huang, Na

    2018-03-01

    Mn-Ce oxides catalysts were synthesized by a novel method combining redox-precipitation and hydrothermal approach. The results indicate that the ratio between manganese and cerium plays a crucial role in the formation of catalysts, and the textual properties as well as catalytic activity are remarked affected. Mn0.6Ce0.4O2 possesses a predominant catalytic activity in the oxidation of toluene, over 70% of toluene is converted at 200 °C, and the complete conversion temperature is 210 °C. The formation of Mn-Ce solid solution markedly improves the surface area as well as pore volume of Mn-Ce oxide catalyst, and Mn0.6Ce0.4O2 possesses the largest surface area of 298.5 m2/g. The abundant Ce3+ and Mn3+ on Mn0.6Ce0.4O2 catalyst facilitate the formation of oxygen vacancies, and improve the transfer of oxygen in the catalysts. Meanwhile, it is found that cerium in Mn-Ce oxide plays a key role in the adsorption of toluene, while manganese is proved to be crucial in the oxidation of toluene, the cooperation between manganese and cerium improves the catalytic reaction process. In addition, the reaction process is investigated by in situ DRIFT measurement, and it is found that the adsorbed toluene could be oxidized to benzyl alcohol as temperature rises around 80-120 °C that can be further be oxidized to benzoic acid. Then benzoic acid could be decomposed to formate and/or carbonate species as temperature rises to form CO2 and H2O. In addition, the formed by-product phenol could be further oxidized into CO2 and H2O when the temperature is high enough.

  19. Hydrothermal formation and characterization of magnesium oxysulfate whiskers

    International Nuclear Information System (INIS)

    Xiang, L.; Liu, F.; Li, J.; Jin, Y.

    2004-01-01

    Magnesium oxysulfate (5Mg(OH) 2 ·MgSO 4 ·3H 2 O) whiskers with a diameter of 0.2-1.0 μm and a length of 20-50 μm were synthesized via the hydrothermal treatment of the slurry formed by mixing the MgSO 4 and NaOH solutions at room temperature. The composition, morphology, structure and thermal behavior of the hydrothermal products were examined with X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermo-gravimetric analysis (TGA) and chemical analysis. The experimental results indicated that the process parameters, such as the concentration of the reactant, the dispersion of the Mg(OH) 2 slurry and the temperature in hydrothermal treatment should be controlled carefully to synthesis 5Mg(OH) 2 ·MgSO 4 ·3H 2 O whiskers and to avoid the formation of the sectorial or granular impurities. 5Mg(OH) 2 ·MgSO 4 ·3H 2 O whiskers were decomposed gradually and converted finally to MgO particles after being heated in air at temperature up to 1050 deg. C. Granular products formed if the heating temperature was above 320 deg. C

  20. Variability of Fe isotope compositions of hydrothermal sulfides and oxidation products at mid-ocean ridges

    Science.gov (United States)

    Li, Xiaohu; Wang, Jianqiang; Chu, Fengyou; Wang, Hao; Li, Zhenggang; Yu, Xing; Bi, Dongwei; He, Yongsheng

    2018-04-01

    Significant Fe isotopic fractionation occurs during the precipitation and oxidative weathering of modern seafloor hydrothermal sulfides, which has an important impact on the cycling of Fe isotopes in the ocean. This study reports the Fe-isotope compositions of whole-rock sulfides and single-mineral pyrite collected from hydrothermal fields at the South Mid-Atlantic Ridge (SMAR) and the East Pacific Rise (EPR) and discusses the impacts of precipitation and late-stage oxidative weathering of sulfide minerals on Fe isotopic fractionation. The results show large variation in the Fe-isotope compositions of the sulfides from the different hydrothermal fields on the mid-oceanic ridges, indicating that relatively significant isotope fractionation occurs during the sulfide precipitation and oxidative weathering processes. The Fe-isotope compositions of the sulfides from the study area at the SMAR vary across a relatively small range, with an average value of 0.01‰. This Fe-isotope composition is similar to the Fe-isotope composition of mid-oceanic ridge basalt, which suggests that Fe was mainly leached from basalt. In contrast, the Fe-isotope composition of the sulfides from the study area at the EPR are significantly enriched in light Fe isotopes (average value - 1.63‰), mainly due to the kinetic fractionation during the rapid precipitation process of hydrothermal sulfide. In addition, the pyrite from different hydrothermal fields is enriched in light Fe isotopes, which is consistent with the phenomenon in which light Fe isotopes are preferentially enriched during the precipitation of pyrite. The red oxides have the heaviest Fe-isotope compositions (up to 0.80‰), indicating that heavy Fe isotopes are preferentially enriched in the oxidation product during the late-stage oxidation process. The data obtained from this study and previous studies show a significant difference between the Fe-isotope compositions of the sulfides from the SMAR and EPR. The relatively heavy

  1. Role of Sulfur in the Formation of Magmatic-Hydrothermal Copper-Gold Deposits

    Science.gov (United States)

    Seo, J.; Guillong, M.; Heinrich, C.

    2009-05-01

    Sulfur plays essential roles in hydrothermal ore-forming processes [1], which calls for precise and accurate quantitative sulfur determination in fluid inclusions. Feasibility tests for sulfur quantification by comparing data from both LA-Quadrupole (Q) - ICP-MS and LA-High Resolution (HR) - ICP-MS show that reliable sulfur quantification in fluid inclusions is possible [2], provided that a very careful baseline correction is applied. We investigate the metal transporting capabilities of sulfur by measuring sulfur together with copper and other elements in cogenetic brine and vapor inclusions ('boiling assemblages') in single healed crack hosted by quartz veins. Samples are from high-temperature magmatic-hydrothermal ore deposits and miarolitic cavities of barren granitoid. Clear compositional correlations of sulfur with copper and gold were found. A molar S/Cu ratio commonly close to 2 but never above 2, indicates sulfur-complexed metal transportation in the high-temperature hydrothermal vapor, and probably also in the Na-Fe-K-Cl-enriched brines. Vapor/brine partitioning trends of the S and Cu are shown to be related with the chemistry of the fluids (possibly by various sulfur speciations in varying pH, fO2) and causative magma source. In the boiling hydrothermal environments, higher vapor partitioning of Cu and S is observed at reduced and peraluminous Sn-W granite, whereas oxidized and perakaline porphyry-style deposits have a lower partitioning to the vapor although the total concentration of S, Cu, Au in both fluid phase is higher than in the Sn-W granite [3]. Vapor inclusion in the boiling assemblages from magmatic-hydrothermal ore deposits and granitic intrusions generally contain an excess of sulfur over ore metals such as Cu, Fe, and Mo. This allows efficient sulfide ore precipitation in high-temperature porphyry-type deposits, and complexation of gold by the remaining sulfide down to lower temperatures. The results confirm earlier interpretations [1] and

  2. Sol-gel/hydrothermal synthesis of mixed metal oxide of Titanium and ...

    African Journals Online (AJOL)

    Mixed metal oxides of titanium and zinc nanocomposites were prepared through sol-gel method under hydrothermal condition using titanium oxy-(1, 2 - pentadione) and zinc acetate without hazardous additives. The resulting composites were characterized by X-Ray Diffractometer (XRD), Scanning Electron Microscope ...

  3. Fossilization of Iron-Oxidizing Bacteria at Hydrothermal Vents: a Useful Biosignature on Mars?

    Science.gov (United States)

    Leveille, R. J.; Lui, S.

    2009-05-01

    -concentric growth bands. In the bioreactor cultures, constant conditions led to abundant microbial growth and formation of an iron oxyhydroxide precipitate, either in direct association with the cells or within the growth medium. This suggests that not all of the iron precipitation is biogenic in origin. Cells typically show a filamentous morphology reminiscent of the mineral-encrusted forms observed in the natural samples. Continuing work includes high-resolution TEM observations of cultured organisms, examination of 2-year long in situ seafloor incubation experiments, and bioreactor silicification experiments in order to better understand the roles of iron and silica in the fossilization process. Microaerophilic iron oxidation could have existed on the early Earth in environments containing small amounts of oxygen produced either by locally concentrated photosynthetic microorganisms (e.g., cyanobacteria) or abiotically, as proposed for the subsurface of the Fe-dominated Rio Tinto (Spain) basin system. By analogy, similar subsurface or near-surface microaerophilic environments could have existed on Mars in the past. The distinctive morphologies and mineralization patterns of iron oxidizing bacteria could be a useful biosignature to search for on Mars. Deposits and biogenic features similar to those described here could theoretically be identified on Mars with existing imaging and analytical technologies. Therefore, future missions to Mars should target ancient hydrothermal systems, some of which have been putatively identified already.

  4. Formation conditions of uranium minerals in oxidation zone of uranium deposits

    International Nuclear Information System (INIS)

    Li Youzhu

    2005-01-01

    The paper concerns about the summary and classification of hydrothermal uranium deposit with oxidation zone. Based on the summary of observation results of forty uranium deposits located in CIS and Bulgaria which are of different sizes and industrial-genetic types, analysis on available published information concerning oxidation and uranium mineral enrichment in supergenic zone, oxidation zone classification of hydrothermal uranium had been put forward according to the general system of the exogenetic uranium concentration. (authors)

  5. Hydrothermal synthesis and characterization of novel vanadium oxides and their application as cathodes in lithium secondary batteries

    Science.gov (United States)

    Chirayil, Thomas George

    Novel layered or tunneled vanadium oxides are sought as a substitute for the expensive Lisb{x}CoOsb2 cathode material in lithium rechargeable batteries. The hydrothermal synthesis approach was taken in search of new vanadium oxides in the presence of a structure directing cation, TMA. A systematic study was done on the hydrothermal synthesis of the Vsb{2}Osb{5}-TMAOH-LiOH system. It was determined from this study that the pH of the reaction mixture was very critical in the formation of many compounds. Acetic acid utilized to adjust the pH of the reaction mixture in the presence of TMA behaved as a buffer and maintained a constant pH during the reaction. Hydrothermal synthesis conducted between pH 10 and 2 resulted in the formation of 7 compounds. At the highest pH, a well known compound Lisb3VOsb4, was formed. Between pH 5.2-9, a layered compound, TMAVsb3Osb7 resulted. The thermal treatment of TMAVsb3Osb7 under oxygen lead to an oxidized phase, TMAVsb3Osb8, which increased its lithium capacity significantly. Between pH 5-6, a cluster compound, TMAsb8lbrack Vsb{22}Osb{54}(CHsb3COO)rbrack{*}4Hsb2O with the acetate ion trapped inside the caged Vsb{22}Osb{54} cluster, and a layered vanadium oxide, Lisb{x}Vsb{2-delta}Osb{4-delta}{*}Hsb2O was obtained. The Lisb{x}Vsb{2-delta}Osb{4-delta}{*}Hsb2O compound was dehydrated to form Lisb{x}Vsb{2-delta}Osb{4-delta} and the lithium was removed electrochemically to form a new type of "VOsb2". Several alkylamines, DMSO and an additional water molecule were intercalated to swell the layers of Lisb{x}Vsb{2-delta}Osb{4-delta}{*}Hsb2O. Lowering the pH between 3.0-3.5, resulted in layered compound, TMAVsb4Osb{10}, with TMA residing between the layers. Layered compounds, TMAVsb8Osb{20} and TMAsb{0.17}Hsp+sb{0.1}Vsb2Osb5, were obtained at very acidic conditions. The hydrothermally grown TMAsb{0.17}Hsp+sb{0.1}Vsb2Osb5 is similar to the xerogel Vsb2Osb5 intercalated with TMA synthesized by the sol-gel process. Several trends were observed

  6. Timing of multiple hydrothermal events in the iron oxide-copper-gold deposits of the Southern Copper Belt, Carajás Province, Brazil

    Science.gov (United States)

    Moreto, Carolina P. N.; Monteiro, Lena V. S.; Xavier, Roberto P.; Creaser, Robert A.; DuFrane, S. Andrew; Melo, Gustavo H. C.; Delinardo da Silva, Marco A.; Tassinari, Colombo C. G.; Sato, Kei

    2015-06-01

    The Southern Copper Belt, Carajás Province, Brazil, hosts several iron oxide-copper-gold (IOCG) deposits, including Sossego, Cristalino, Alvo 118, Bacuri, Bacaba, Castanha, and Visconde. Mapping and U-Pb sensitive high-resolution ion microprobe (SHRIMP) IIe zircon geochronology allowed the characterization of the host rocks, situated within regional WNW-ESE shear zones. They encompass Mesoarchean (3.08-2.85 Ga) TTG orthogneiss, granites, and remains of greenstone belts, Neoarchean (ca. 2.74 Ga) granite, shallow-emplaced porphyries, and granophyric granite coeval with gabbro, and Paleoproterozoic (1.88 Ga) porphyry dykes. Extensive hydrothermal zones include albite-scapolite, biotite-scapolite-tourmaline-magnetite alteration, and proximal potassium feldspar, chlorite-epidote and chalcopyrite formation. U-Pb laser ablation multicollector inductively coupled mass spectrometry (LA-MC-ICP-MS) analysis of ore-related monazite and Re-Os NTIMS analysis of molybdenite suggest multiple Neoarchean (2.76 and 2.72-2.68 Ga) and Paleoproterozoic (2.06 Ga) hydrothermal events at the Bacaba and Bacuri deposits. These results, combined with available geochronological data from the literature, indicate recurrence of hydrothermal systems in the Southern Copper Belt, including 1.90-1.88-Ga ore formation in the Sossego-Curral ore bodies and the Alvo 118 deposit. Although early hydrothermal evolution at 2.76 Ga points to fluid migration coeval with the Carajás Basin formation, the main episode of IOCG genesis (2.72-2.68 Ga) is related to basin inversion coupled with Neoarchean (ca. 2.7 Ga) felsic magmatism. The data suggest that the IOCG deposits in the Southern Copper Belt and those in the Northern Copper Belt (2.57-Ga Salobo and Igarapé Bahia-Alemão deposits) do not share a common metallogenic evolution. Therefore, the association of all IOCG deposits of the Carajás Province with a single extensive hydrothermal system is precluded.

  7. Metal Oxide Decomposition In Hydrothermal Alkaline Sodium Phosphate Solutions

    Energy Technology Data Exchange (ETDEWEB)

    S.E. Ziemniak

    2003-09-24

    Alkaline hydrothermal solutions of sodium orthophosphate (2.15 < Na/P < 2.75) are shown to decompose transition metal oxides into two families of sodium-metal ion-(hydroxy)phosphate compounds. Equilibria for these reactions are quantified by determining phosphate concentration-temperature thresholds for decomposition of five oxides in the series: Ti(IV), Cr(III), Fe(III, II), Ni(II) and Zn(II). By application of a computational chemistry method General Utility Lattice Program (GULP), it is demonstrated that the unique non-whole-number Na/P molar ratio of sodium ferric hydroxyphosphate is a consequence of its open-cage structure in which the H{sup +} and excess Na{sup +} ions are located.

  8. Facile hydrothermal synthesis of CeO 2 nanopebbles

    Indian Academy of Sciences (India)

    Cerium oxide (CeO2) nanopebbles have been synthesized using a facile hydrothermal method. X-ray diffraction pattern (XRD) and transmission electron microscopy analyses confirm the presence of CeO2 nanopebbles. XRD shows the formation of cubic fluorite CeO2 and the average particle size estimated from the ...

  9. Genome-resolved metagenomics reveals that sulfur metabolism dominates the microbial ecology of rising hydrothermal plumes

    Science.gov (United States)

    Anantharaman, K.; Breier, J. A., Jr.; Jain, S.; Reed, D. C.; Dick, G.

    2015-12-01

    Deep-sea hydrothermal plumes occur when hot fluids from hydrothermal vents replete with chemically reduced elements and compounds like sulfide, methane, hydrogen, ammonia, iron and manganese mix with cold, oxic seawater. Chemosynthetic microbes use these reduced chemicals to power primary production and are pervasive throughout the deep sea, even at sites far removed from hydrothermal vents. Although neutrally-buoyant hydrothermal plumes have been well-studied, rising hydrothermal plumes have received little attention even though they represent an important interface in the deep-sea where microbial metabolism and particle formation processes control the transformation of important elements and impact global biogeochemical cycles. In this study, we used genome-resolved metagenomic analyses and thermodynamic-bioenergetic modeling to study the microbial ecology of rising hydrothermal plumes at five different hydrothermal vents spanning a range of geochemical gradients at the Eastern Lau Spreading Center (ELSC) in the Western Pacific Ocean. Our analyses show that differences in the geochemistry of hydrothermal vents do not manifest in microbial diversity and community composition, both of which display only minor variance across ELSC hydrothermal plumes. Microbial metabolism is dominated by oxidation of reduced sulfur species and supports a diversity of bacteria, archaea and viruses that provide intriguing insights into metabolic plasticity and virus-mediated horizontal gene transfer in the microbial community. The manifestation of sulfur oxidation genes in hydrogen and methane oxidizing organisms hints at metabolic opportunism in deep-sea microbes that would enable them to respond to varying redox conditions in hydrothermal plumes. Finally, we infer that the abundance, diversity and metabolic versatility of microbes associated with sulfur oxidation impart functional redundancy that could allow it to persist in the dynamic settings of hydrothermal plumes.

  10. Organic Acids as Hetrotrophic Energy Sources in Hydrothermal Systems

    Science.gov (United States)

    Windman, T. O.; Zolotova, N.; Shock, E.

    2004-12-01

    Many thermophilic microbes are heterotrophs, but little is known about the organic compounds present in hydrothermal ecosystems. More is known about what these organisms will metabolize in lab experiments than what they do metabolize in nature. In an effort to bridge this gap, we have begun to incorporate organic analyses into ongoing research on Yellowstone hydrothermal ecosystems. After filtering at least a liter of hot spring water to minimize contamination, samples were collected into sixty-milliliter serum vials containing ultra-pure phosphoric acid, sodium hydroxide, or benzalkonium chloride. Approximately 80 sites were sampled spanning temperatures from 60 to 90°C and pH values from 2 to 9. Analytical data for organic acid anions (including formate, acetate, lactate, and succinate) were obtained by ion chromatography. Preliminary results indicate that concentrations of organic acids anions range from 5 to 300 ppb. These results can be used with other field and lab data (sulfate, sulfide, nitrate, ammonia, bicarbonate, pH, hydrogen) in thermodynamic calculations to evaluate the amounts of energy available in heterotrophic reactions. Preliminary results of such calculations show that sulfate reduction to sulfide coupled to succinate oxidation to bicarbonate yields about 6 kcal per mole of electrons transferred. When formate oxidation to bicarbonate or hydrogen oxidation to water is coupled to sulfate reduction there is less energy available by approximately a factor of two. A comparison with nitrate reduction to ammonia involving succinate and/or formate oxidation reveals several similarities. Using formate to reduce nitrate can yield about as much energy as nitrate reduction with hydrogen (typically 12 to 14 kcal per mole of electrons transferred), but using succinate can yield more than twice as much energy. In fact, reduction of nitrate with succinate can provide more energy than any of the inorganic nitrate reduction reactions involving sulfur, iron

  11. Hydrothermally Processed Oxide Nanostructures and Their Lithium–ion Storage Properties

    Directory of Open Access Journals (Sweden)

    Kim Yong-Jin

    2010-01-01

    Full Text Available Abstract Y- and Si-based oxide nanopowders were synthesized by a hydrothermal reaction of Y or Si powders with NaOH or LiOH aqueous solution. Nanoparticles with different morphology such as elongated nanospheres, flower-like nanoparticles and nanowires were produced by a control of processing parameters, in particular, the starting composition of solution. The preliminary result of electrochemical examination showed that the hydrothermally processed nanowires exhibit high initial capacities of Li-ion storage: 653 mAh/g for Y2O3 nanowires as anode materials and 186 mAh/g for Li2Si2O5 nanowires as cathode materials in a Li secondary cell. Compared to the powder with elongated sphere or flower-like shapes, the nanowires showed a higher Li-ion capacity and a better cycle property.

  12. Selective formation of VO2(A) or VO2(R) polymorph by controlling the hydrothermal pressure

    International Nuclear Information System (INIS)

    Ji Shidong; Zhang Feng; Jin Ping

    2011-01-01

    Missing VO 2 (A) usually occurs during the preparation of VO 2 polymorphs. This leads to an ambiguous understanding of the transformation between VO 2 polymorphs. The calculation of the ground state energies for different VO 2 polymorphs indicated that there is only a small energy gap between VO 2 (A) and VO 2 (R), which destined that the transformation from VO 2 (A) to VO 2 (R) should be pressure sensitive. This hypothesis was verified during the synthesizing of VO 2 polymorphs by reducing V 2 O 5 with oxalic acid through hydrothermal treatment process. Selective formation of pure phase VO 2 (A) or VO 2 (R) was achieved by controlling the hydrothermal pressure through varying the filling ratio at 270 deg. C. It was found that a filling ratio over 0.5 favors the formation of pure VO 2 (R) while a reduced filling ratio to 0.4 or lower results in the formation of VO 2 (A). Based on our experiments, VO 2 (B) nanobelts were always first formed and then it transformed to VO 2 (A) by assembling process at increased temperature or extended reaction time. Under further higher pressure, the VO 2 (A) transformed spontaneously to VO 2 (R) initialized from the volume shrinkage due to the formation of denser VO 2 (R). - Graphical abstract: Selective formation of VO 2 (A) or VO 2 (R) could be achieved by controlling the system pressure through varying the filling ratio during hydrothermal treatment. Highlights: → Selective formation of VO 2 polymorphs by controlling hydrothermal pressure. → Ground state energy characteristics were revealed for the first time. → Phase transformation mechanism was clearly elucidated.

  13. Deeply-sourced formate fuels sulfate reducers but not methanogens at Lost City hydrothermal field.

    Science.gov (United States)

    Lang, Susan Q; Früh-Green, Gretchen L; Bernasconi, Stefano M; Brazelton, William J; Schrenk, Matthew O; McGonigle, Julia M

    2018-01-15

    Hydrogen produced during water-rock serpentinization reactions can drive the synthesis of organic compounds both biotically and abiotically. We investigated abiotic carbon production and microbial metabolic pathways at the high energy but low diversity serpentinite-hosted Lost City hydrothermal field. Compound-specific 14 C data demonstrates that formate is mantle-derived and abiotic in some locations and has an additional, seawater-derived component in others. Lipids produced by the dominant member of the archaeal community, the Lost City Methanosarcinales, largely lack 14 C, but metagenomic evidence suggests they cannot use formate for methanogenesis. Instead, sulfate-reducing bacteria may be the primary consumers of formate in Lost City chimneys. Paradoxically, the archaeal phylotype that numerically dominates the chimney microbial communities appears ill suited to live in pure hydrothermal fluids without the co-occurrence of organisms that can liberate CO 2 . Considering the lack of dissolved inorganic carbon in such systems, the ability to utilize formate may be a key trait for survival in pristine serpentinite-hosted environments.

  14. Activity of flavonoids and β-carotene during the auto-oxidative deterioration of model food oil-in water emulsions.

    Science.gov (United States)

    Kiokias, Sotirios; Varzakas, Theodoros

    2014-05-01

    The antioxidant effects of flavonoids and β-carotene during the thermal auto-oxidation of food relevant oil-in-water emulsions were spectrophotometrically assessed by measuring the formation of primary oxidation products (conjugated dienes and lipid hydroperoxides). An oxidatively "sensitive" model emulsion was selected as substrate of this study in terms of processing and compositional factors. At a concentration of 1.5mmolkgr(-1), only quercetin among the tested compounds significantly reduced the oxidative deterioration of cottonseed oil-in-water emulsions. Structural characteristics (positioning of hydroxyl group) or partitioning behaviour between the emulsion phases may modulate the flavonoid activity. The high oxygen pressure conditions of the experimental system may explain the lack of any antioxidant activity for β-carotene. The antioxidant potential of quercetin increased with its concentration until a specific level. On the contrary, the antioxidant concentration within the same tested range (0.75-3mmolkgr(-1)) did not impact the activity of catechin and β-carotene. Mixtures of β-carotene with flavonoids did not exert a tendency for increasing the activity of each individual compound. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Hydrothermal manganese oxide deposits from the Izu-Ogasawara (Bonin)-Mariana Arc and adjacent areas

    Energy Technology Data Exchange (ETDEWEB)

    Usui, A.; Nishimura, A. (Geological Survey of Japan, Tsukuba (Japan))

    1992-04-27

    Modern and fossil hydrothermal manganese oxide deposits were discovered from a number of locations in the Izu-Ogasawara(Bonin)-Mariana Arc and adjacent areas during the Hakurei-Maru cruises from 1984 to 1989. This paper describes the occurrence and characteristics of these manganese deposits and their geological significance. It was found that the mineralogical and chemical composition and microstructure of the deposits are typically different from manganese nodules and crusts of hydrogenetic or diagenetic origin. Hardpans, veinlets, sheets, and irregular mass of the hydrothermal manganese deposits often cover a large area of sea bed, which suggests possible high-temperature hydrothermal sulfide deposits in their vicinity. On the other hand, the manganese minerals sometimes occur as substrate of younger hydrogenetic crusts and as nucleus of hydrogenetic nodules, which can provide a geological history of low-temperature hydrothermal activity on the past island arcs. 45 refs., 19 figs., 3 tabs.

  16. Rapid formation of nanocrystalline HfO2 powders from amorphous hafnium hydroxide under ultrasonically assisted hydrothermal treatment

    International Nuclear Information System (INIS)

    Meskin, Pavel E.; Sharikov, Felix Yu.; Ivanov, Vladimir K.; Churagulov, Bulat R.; Tretyakov, Yury D.

    2007-01-01

    Peculiarities of hafnium hydroxide hydrothermal decomposition were studied by in situ heat flux calorimetry for the first time. It was shown that this process occurs in one exothermal stage (ΔH = -17.95 kJ mol -1 ) at 180-250 deg. C resulting in complete crystallization of amorphous phase with formation of pure monoclinic HfO 2 . It was found that the rate of m-HfO 2 formation can be significantly increased by combining hydrothermal treatment with simultaneous ultrasonic activation

  17. Low temperature oxidation, co-oxidation and auto-ignition of olefinic and aromatic blending compounds: Experimental study of interactions during the oxidation of a surrogate fuel; Oxydation, co-oxydation et auto-inflammation a basses temperatures d'alcenes et aromatiques types: etude experimentale des interactions au sein d'un carburant-modele

    Energy Technology Data Exchange (ETDEWEB)

    Vanhove, G.

    2004-12-15

    The low-temperature (600-900 K) and high-pressure (5-25 bar) oxidation and auto-ignition of the three position isomers of hexene, of binary mixtures of 1-hexene, toluene and iso-octane, and of a surrogate fuel composed of these three compounds were studied in motor conditions using a rapid compression machine. Auto-ignition delay times were measured as long as intermediate products concentrations during the delay. The results show that the oxidation chemistry of the hexenes is very dependent on the position of the double bond inside the molecule, and that strong interactions between the oxidation mechanisms of hydrocarbons in mixtures can occur. The data obtained concerning the surrogate fuel give a good insight into the behaviour of a practical gasoline after an homogeneous charge compression. (author)

  18. Effect of hydrothermal treatment on catalytic activity of amorphous mesoporous Cr2O3–ZrO2 nanomaterials for ethanol oxidation

    International Nuclear Information System (INIS)

    Mahmoud, Hala R.

    2015-01-01

    Mesoporous 0.25Cr 2 O 3 –0.75ZrO 2 binary oxide catalysts (CZ-H) with high specific surface areas were successfully synthesized by hydrothermal treatment. The effect of synthesis conditions, such as hydrothermal temperature and time of CZ-H nanomaterials were investigated by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HR-TEM), energy dispersive spectroscopic (EDS), UV–vis diffuse reflectance spectroscopy (DRS) and N 2 adsorption–desorption measurements (BET). The XRD analysis indicated the formation of amorphous materials of binary oxides. The results showed that hydrothermal temperature and time of CZ-H nanomaterials had great influence on the average particle diameter and surface area. Under the optimum synthesis conditions, the best CZ-H nanomaterial synthesized at 210 °C for 3 h (i.e., CZ-H213), presented spherical structure with smallest average particle diameter found to be 1.5 nm and possessed highest surface area of 526.6 m 2 /g. Optical studies by UV–vis spectroscopy for the different CZ-H nanomaterials exhibit slightly blue shift from 3.20 to 3.33 eV due to quantum confined exciton absorption. Moreover, hydrothermal synthesis leads to catalysts with higher surface area and with better acid–base properties than conventional co-precipitation method. Compared to the other nanomaterials, the CZ-H213 catalyst appears to be the best candidate for further application in acid–base catalysis and reusability. - Graphical abstract: Display Omitted - Highlights: • Mesoporous 25%Cr 2 O 3 –75%ZrO 2 catalysts (CZ-H) were prepared by hydrothermal method. • The hydrothermal temperature and time modified the properties of CZ-H nanomaterials. • The best CZ-H nanomaterial synthesized at 210 °C for 3 h (i.e., CZ-H213). • A CZ-H213 nanomaterial had the highest S BET and smallest average particle diameter. • A mesoporous CZ-H213 used as a reusable active catalyst in the ethanol conversion

  19. Iron oxide deposits associated with the ectosymbiotic bacteria in the hydrothermal vent shrimp Rimicaris exoculata

    Directory of Open Access Journals (Sweden)

    P. Compère

    2008-09-01

    Full Text Available The Rimicaris exoculata shrimp is considered as a primary consumer that dominates the fauna of most Mid-Atlantic Ridge (MAR hydrothermal ecosystems. These shrimps harbour in their gill chambers an important ectosymbiotic community of chemoautotrophic bacteria associated with iron oxide deposits. The structure and elemental composition of the mineral concretions associated with these bacteria have been investigated by using LM, ESEM, TEM STEM and EDX microanalyses. The nature of the iron oxides in shrimps obtained from the Rainbow vent field has also been determined by Mössbauer spectroscopy. This multidisciplinary approach has revealed that the three layers of mineral crust in the Rimicaris exoculata shrimps consist of large concretions formed by aggregated nanoparticles of two-line ferrihydrite and include other minor elements as Si, Ca, Mg, S and P, probably present as silicates cations, sulphates or phosphates respectively that may contribute to stabilise the ferrihydrite form of iron oxides. TEM-observations on the bacteria have revealed their close interactions with these minerals. Abiotic and biotic precipitation could occur within the gill chamber of Rimicaris exoculata, suggesting the biologically-mediated formation of the iron oxide deposits. The difference of the bacterial density in the three-mineral crust layers could be correlated to the importance of the iron oxide concretions and suggest that the first mineral particles precipitates on the lower layer which could be considered as the most likely location of iron-oxidizing bacteria.

  20. Methanol electrocatalytic oxidation on Pt nanoparticles on nitrogen doped graphene prepared by the hydrothermal reaction of graphene oxide with urea

    International Nuclear Information System (INIS)

    Xu, Xiao; Zhou, Yingke; Yuan, Tao; Li, Yawei

    2013-01-01

    A facile hydrothermal reaction of graphene oxide with urea was used to produce nitrogen doped graphene, and Pt nanoparticles were deposited on the obtained nitrogen doped graphene by the NaBH 4 reduction route. The morphology and microstructure of the synthesized catalysts were characterized by transmission electron microscopy, X-ray powder diffraction and X-ray photoelectron spectroscopy, while the functional groups on the surface of the catalysts were investigated by the Fourier transform infrared spectroscopy and ultraviolet-visible absorption spectra. Cyclic voltammetry, chronoamperometry and electrochemical impedance techniques were carried out to evaluate the methanol electrocatalytic oxidation activity and durability of Pt catalysts supported on the nitrogen doped graphene. The results showed that nitrogen doping and reduction of GO were achieved simultaneously by the facile hydrothermal reaction, which had beneficial effects for the deposition process and electrocatalytic activity of Pt nanoparticles. The Pt catalysts supported on the nitrogen doped graphene substrate presented excellent activity and durability of methanol oxidation reaction, which might be promising for application in direct methanol fuel cells

  1. Hydrothermal Alteration Products as Key to Formation of Duricrust and Rock Coatings on Mars

    Science.gov (United States)

    Bishop, J. L.

    1999-03-01

    A model is presented for the formation of duricrust and rock coatings on Mars. Hydrothermal alteration of volcanic tephra may produce a corrosive agent that attacks rock surfaces and binds dust particles to form duricrust.

  2. Ruthenium(V) oxides from low-temperature hydrothermal synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Hiley, Craig I.; Walton, Richard I. [Department of Chemistry, University of Warwick, Coventry (United Kingdom); Lees, Martin R. [Department of Physics, University of Warwick, Coventry (United Kingdom); Fisher, Janet M.; Thompsett, David [Johnson Matthey Technology Centre, Reading (United Kingdom); Agrestini, Stefano [Max-Planck Institut, CPfS, Dresden (Germany); Smith, Ronald I. [ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Harwell Oxford, Didcot (United Kingdom)

    2014-04-22

    Low-temperature (200 C) hydrothermal synthesis of the ruthenium oxides Ca{sub 1.5}Ru{sub 2}O{sub 7}, SrRu{sub 2}O{sub 6}, and Ba{sub 2}Ru{sub 3}O{sub 9}(OH) is reported. Ca{sub 1.5}Ru{sub 2}O{sub 7} is a defective pyrochlore containing Ru{sup V/VI}; SrRu{sub 2}O{sub 6} is a layered Ru{sup V} oxide with a PbSb{sub 2}O{sub 6} structure, whilst Ba{sub 2}Ru{sub 3}O{sub 9}(OH) has a previously unreported structure type with orthorhombic symmetry solved from synchrotron X-ray and neutron powder diffraction. SrRu{sub 2}O{sub 6} exhibits unusually high-temperature magnetic order, with antiferromagnetism persisting to at least 500 K, and refinement using room temperature neutron powder diffraction data provides the magnetic structure. All three ruthenates are metastable and readily collapse to mixtures of other oxides upon heating in air at temperatures around 300-500 C, suggesting they would be difficult, if not impossible, to isolate under conventional high-temperature solid-state synthesis conditions. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Factors influencing formation of highly dispersed BaTiO3 nanospheres with uniform sizes in static hydrothermal synthesis

    International Nuclear Information System (INIS)

    Gao, Jiabing; Shi, Haiyue; Dong, Huina; Zhang, Rui; Chen, Deliang

    2015-01-01

    Highly dispersed BaTiO 3 nanospheres with uniform sizes have important applications in micro/nanoscale functional devices. To achieve well-dispersed spherical BaTiO 3 nanocrystals, we carried out as reported in this paper the systematic investigation on the factors that influence the formation of BaTiO 3 nanospheres by the static hydrothermal process, including the NaOH concentrations [NaOH], molar Ba/Ti ratios (R Ba/Ti ), hydrothermal temperatures, and durations, with an emphasis on understanding the related mechanisms. Barium nitrate and TiO 2 sols derived from tetrabutyl titanate were used as the starting materials. The as-synthesized BaTiO 3 samples were characterized by X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray analysis, thermogravimetry, differential thermal analysis, and FT-IR spectra. The highly dispersed BaTiO 3 nanospheres (76 ± 13 nm) were achieved under the optimum hydrothermal conditions at 200 °C for 10 h: [NaOH] = 2.0 mol L −1 and R Ba/Ti  = 1.5. Higher NaOH concentrations, higher Ba/Ti ratios, higher hydrothermal temperatures, and longer hydrothermal durations are favorable in forming BaTiO 3 nanospheres with larger fractions of tetragonal phase and higher yields; but too long hydrothermal durations resulted in abnormal growth and reduced the uniformity in particle sizes. The possible formation mechanisms for BaTiO 3 nanocrystals under the static hydrothermal conditions were investigated

  4. Iron-Oxidizing Bacteria Found at Slow-Spreading Ridge: a Case Study of Capelinhos Hydrothermal Vent (Lucky Strike, MAR 37°N)

    Science.gov (United States)

    Henri, P. A.; Rommevaux, C.; Lesongeur, F.; Emerson, D.; Leleu, T.; Chavagnac, V.

    2015-12-01

    Iron-oxidizing bacteria becomes increasingly described in different geological settings from volcanically active seamounts, coastal waters, to diffuse hydrothermal vents near seafloor spreading centers [Emerson et al., 2010]. They have been mostly identified and described in Pacific Ocean, and have been only recently found in hydrothermal systems associated to slow spreading center of the Mid-Atlantic Ridge (MAR) [Scott et al., 2015]. During the MoMARSAT'13 cruise at Lucky Strike hydrothermal field (MAR), a new hydrothermal site was discovered at about 1.5 km eastward from the lava lake and from the main hydrothermal vents. This active venting site, named Capelinhos, is therefore the most distant from the volcano, features many chimneys, both focused and diffuses. The hydrothermal end-member fluids from Capelinhos are different from those of the other sites of Lucky Strike, showing the highest content of iron (Fe/Mn≈3.96) and the lowest chlorinity (270 mmol/l) [Leleu et al., 2015]. Most of the chimneys exhibit rust-color surfaces and bacterial mats near diffuse flows. During the MoMARSAT'15 cruise, an active chimney, a small inactive one, and rust-color bacterial mat near diffuse flow were sampled at Capelinhos. Observations by SEM of the hydrothermal samples revealed the presence of iron oxides in an assemblage of tubular "sheaths", assembled "stalks", helical "stalks" and amorphous aggregates. These features are similar to those described from the Loihi iron-mats deposits and argue for the occurrence of iron-oxidizing bacteria. Cultures under micro-aerobic and neutral pH conditions allowed us to isolate strains from the small inactive chimney. Pyrosequencing of the 16S rRNA gene of the isolates and environmental samples will soon be performed, which should confirm the presence of iron-oxidizing bacteria and reveal the organization of bacterial communities in this original and newly discovered hydrothermal site of the slow spreading Mid-Atlantic Ridge. Emerson

  5. Directly auto-transplanted mesenchymal stem cells induce bone formation in a ceramic bone substitute in an ectopic sheep model.

    Science.gov (United States)

    Boos, Anja M; Loew, Johanna S; Deschler, Gloria; Arkudas, Andreas; Bleiziffer, Oliver; Gulle, Heinz; Dragu, Adrian; Kneser, Ulrich; Horch, Raymund E; Beier, Justus P

    2011-06-01

    Bone tissue engineering approaches increasingly focus on the use of mesenchymal stem cells (MSC). In most animal transplantation models MSC are isolated and expanded before auto cell transplantation which might be critical for clinical application in the future. Hence this study compares the potential of directly auto-transplanted versus in vitro expanded MSC with or without bone morphogenetic protein-2 (BMP-2) to induce bone formation in a large volume ceramic bone substitute in the sheep model. MSC were isolated from bone marrow aspirates and directly auto-transplanted or expanded in vitro and characterized using fluorescence activated cell sorting (FACS) and RT-PCR analysis before subcutaneous implantation in combination with BMP-2 and β-tricalcium phosphate/hydroxyapatite (β-TCP/HA) granules. Constructs were explanted after 1 to 12 weeks followed by histological and RT-PCR evaluation. Sheep MSC were CD29(+), CD44(+) and CD166(+) after selection by Ficoll gradient centrifugation, while directly auto-transplanted MSC-populations expressed CD29 and CD166 at lower levels. Both, directly auto-transplanted and expanded MSC, were constantly proliferating and had a decreasing apoptosis over time in vivo. Directly auto-transplanted MSC led to de novo bone formation in a heterotopic sheep model using a β-TCP/HA matrix comparable to the application of 60 μg/ml BMP-2 only or implantation of expanded MSC. Bone matrix proteins were up-regulated in constructs following direct auto-transplantation and in expanded MSC as well as in BMP-2 constructs. Up-regulation was detected using immunohistology methods and RT-PCR. Dense vascularization was demonstrated by CD31 immunohistology staining in all three groups. Ectopic bone could be generated using directly auto-transplanted or expanded MSC with β-TCP/HA granules alone. Hence BMP-2 stimulation might become dispensable in the future, thus providing an attractive, clinically feasible approach to bone tissue engineering. © 2011

  6. Metal mobilisation in hydrothermal sediments at the TAG Hydrothermal Field (MAR, 26°N)

    Science.gov (United States)

    Dutrieux, A. M.; Lichtschlag, A.; Martins, S.; Barriga, F. J.; Petersen, S.; Murton, B. J.

    2017-12-01

    Metalliferous sediments in the vicinity of hydrothermal systems are enriched in base metals, but few studies have addressed their potential as mineral resources. These metalliferous sediments have been accumulated by different processes and reflect modifications of the primary mineral deposits by: oxidation of the chimney materials, in situ precipitation of low-temperature minerals and mass wasting. To understand the post-formation processes in metalliferous sediments, we investigated sub-seafloor metal mobilisation in different geological environments. This presentation focuses on the TAG Hydrothermal Field (Mid-Atlantic Ridge, 26°N) and explores sediment and pore water compositions using ICP-MS and ICP-OES. We use reactive transport modelling to interpret the degree of metal remobilisation and to identify the most important geochemical reactions in the different sediments. The pore water concentrations measured in sediments above inactive sulphide mounds present constant major elements composition that indicates this environment is dominated by complete exchange with seawater. The sediments, that are mainly composed of hematite and goethite formed during the oxidation of sulphides, have low Cu concentrations (sediments and capped by more recent sediment slumping. In the depositionary channels, pore waters show metal concentrations affected by diagenesis and redox-sensitive metals are released at depth (e.g. Mn2+ and Cu2+). The leaching of the primary sulphides (e.g. deprecated grains of chalcopyrite), and metal mobilisation lead to an enrichment of Cu and Zn at shallower depth. Here, some stratigraphic horizons scavenge metallic cations back into solid phases and form Mn-oxide crusts between 30 and 60 cm, in which Cu concentrations also increase. Our results demonstrate that metal mobilisation differs depending on the geological environment and their related accumulation processes, causing the absence of Cu on the top of inactive hydrothermal mounds but enriched

  7. Influence of synthesis procedure on the formation and properties of zinc oxide

    International Nuclear Information System (INIS)

    Music, S.; Popovic, S.; Maljkovic, M.; Dragcevic, D.

    2002-01-01

    Formation and properties of zinc oxide were investigated in dependence on the synthesis procedure. Zinc oxide did not crystallize upon hydrothermal treatment of Zn(NO 3 ) 2 aqueous solutions containing urea, up to 160 deg. C. Hydrozincite was formed instead. Changes in the X-ray diffraction patterns and Fourier transform infrared (FT-IR) spectra were interpreted in terms of stacking disorder in hydrozincite crystals. Zinc oxide powder was obtained by thermal treatment in air of precipitated hydrozincite. The conditions for instantaneous synthesis of very fine zinc oxide particles were found. This procedure is based on addition of TMAH (tetramethylammonium hydroxide) solution to an ethanolic solution of zinc acetate dihydrate, up to pH∼14. On the other hand, addition of an equivalent volume of water to the ethanolic solution of zinc acetate dihydrate, prior to the addition of TMAH solution up to pH∼14, yielded ZnO flakes without any specific shape. All zinc oxide particles produced upon heating at 600 deg. C in air showed similar morphology and tendency to aggregation due to the sintering effect. The features of the FT-IR spectra of zinc oxide particles were related to their shapes

  8. Nucleation control and inhibition of BaTiO3 films using hydrothermal-electrochemical method

    International Nuclear Information System (INIS)

    Escobar, Ivan; Silva, Carmen; Silva, Eric; Vargas, Tomas; Fuenzalida, Victor

    1999-01-01

    The microstructure of BaTiO 3 films on titanium by the hydrothermal-electrochemical method was investigated using a three electrode high pressure electrochemical cell in a 0.2 M Ba(OH) 2 electrolyte at 150 0 C. The spontaneous initial linked to pure hydrothermal BaTiO 3 formation can be inhibited by cathodically protecting titanium electrode since its immersion in the electrolyte. The application of initial nucleation pulses of varying the cathodic potentials affected the grain size of the deposit. It is suggested that the formation of a titanium oxide layers is a necessary step previous to the nucleation of BaTiO 3

  9. Contours, 2ft Contour Information in AutoCAD & ArcInfo formats. AutoCAD contains cut line information. NAD83, Nevada State Plane, West Zone, US Foot. Broken into Township, Range, and Section Grids, Published in 2006, City of Carson City Government.

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — Contours dataset current as of 2006. 2ft Contour Information in AutoCAD & ArcInfo formats. AutoCAD contains cut line information. NAD83, Nevada State Plane, West...

  10. One-step hydrothermal synthesis of hexangular starfruit-like vanadium oxide for high power aqueous supercapacitors

    Science.gov (United States)

    Shao, Jie; Li, Xinyong; Qu, Qunting; Zheng, Honghe

    2012-12-01

    Homogenous hexangular starfruit-like vanadium oxide was prepared for the first time by a one-step hydrothermal method. The assembly process of hexangular starfruit-like structure was observed from TEM images. The electrochemical performance of starfruit-like vanadium oxide was examined by cyclic voltammetry and galvanostatic charge/discharge. The obtained starfruit-like vanadium oxide exhibits a high power capability (19 Wh kg-1 at the specific power of 3.4 kW kg-1) and good cycling stability for supercapacitors application.

  11. Enhanced Hydrothermal Stability and Catalytic Activity of La x Zr y O z Mixed Oxides for the Ketonization of Acetic Acid in the Aqueous Condensed Phase

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Ruiz, Juan A. [Energy and Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, United States; Cooper, Alan R. [Energy and Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, United States; Li, Guosheng [Energy and Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, United States; Albrecht, Karl O. [Energy and Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, United States

    2017-08-24

    Common ketonization catalysts such as ZrO2, CeO2, CexZryOz, and TiO2-based catalysts have been reported to lose surface area, undergo phase-transformation, and lose catalytic activity when utilized in the condensed aqueous phase. In this work, we synthesized and tested a series of LaxZryOz mixed metal oxides with different La:Zr atomic ratios with the goal of enhancing the catalytic activity and stability for the ketonization of acetic acid in condensed aqueous media at 568 K. We synthesized a hydrothermally stable LaxZryOz mixed-metal oxide catalyst with enhanced ketonization activities 360 and 40 times more active than La2O3 and ZrO2, respectively. Catalyst characterization techniques suggest that the formation of a hydrothermally stable catalyst which is isomorphic with tetragonal-ZrO2 under hydrothermal reaction conditions.

  12. Effect of pH-induced chemical modification of hydrothermally reduced graphene oxide on supercapacitor performance

    KAUST Repository

    Bai, Yaocai; Baby, Rakhi Raghavan; Chen, Wei; Alshareef, Husam N.

    2013-01-01

    Three kinds of reduced graphene oxides are prepared by hydrothermal reduction under different pH conditions and their pseudocapacitive performances are evaluated using full-cell supercapacitor devices. The pH values are found to have great influence on the performance of the supercapacitors, achieving the highest specific capacitance value reported for hydrothermal reduced graphene oxide supercapacitors. Acidic and neutral media yield reduced graphene oxides with more oxygen-functional groups and lower surface areas but with broader pore size distributions than those in basic medium. The graphene produced in the basic solution (nitrogen-doped graphene) presents mainly electrochemical double layer (ECDL) behavior with specific capacitance of 185 F g-1, while the graphene produced under neutral or acidic conditions show both ECDL and pseudocapacitive behavior with specific capacitance of 225 F g-1 (acidic) and 230 F g-1 (neutral), respectively, at a constant current density of 1 A g-1. The influence of pH on cycling performance and electrochemical impedance of the supercapacitive devices is also presented. © 2013 Elsevier B.V. All rights reserved.

  13. Effect of pH-induced chemical modification of hydrothermally reduced graphene oxide on supercapacitor performance

    KAUST Repository

    Bai, Yaocai

    2013-07-01

    Three kinds of reduced graphene oxides are prepared by hydrothermal reduction under different pH conditions and their pseudocapacitive performances are evaluated using full-cell supercapacitor devices. The pH values are found to have great influence on the performance of the supercapacitors, achieving the highest specific capacitance value reported for hydrothermal reduced graphene oxide supercapacitors. Acidic and neutral media yield reduced graphene oxides with more oxygen-functional groups and lower surface areas but with broader pore size distributions than those in basic medium. The graphene produced in the basic solution (nitrogen-doped graphene) presents mainly electrochemical double layer (ECDL) behavior with specific capacitance of 185 F g-1, while the graphene produced under neutral or acidic conditions show both ECDL and pseudocapacitive behavior with specific capacitance of 225 F g-1 (acidic) and 230 F g-1 (neutral), respectively, at a constant current density of 1 A g-1. The influence of pH on cycling performance and electrochemical impedance of the supercapacitive devices is also presented. © 2013 Elsevier B.V. All rights reserved.

  14. Enhanced sludge processing of HLW: Hydrothermal oxidation of chromium, technetium, and complexants by nitrate. 1998 annual progress report

    International Nuclear Information System (INIS)

    Buelow, S.J.; Robinson, J.M.

    1998-01-01

    'The objective of this project is to develop the scientific basis for hydrothermal separation of chromium from High Level Waste (HLW) sludges. The worked is aimed at attaining a fundamental understanding of chromium speciation, oxidation/reduction and dissolution kinetics, reaction mechanisms, and transport properties under hydrothermal conditions in both simple and complex salt solutions that will ultimately lead to an efficient chromium leaching process. This report summarizes the research over the first 1.5 years of a 3 year project. The authors have examined the dissolution of chromium hydroxide using different oxidants as a function of temperature and alkalinity. The results and possible applications to HLW sludges are discussed'

  15. Growth Mechanism of γ-MnS Nanorod-Arrays by Hydrothermal Method on Anodic Aluminum Oxide Template

    International Nuclear Information System (INIS)

    Huang, Jianming; Liu, Weifeng; Lv, Yong; Yao, Lianzeng

    2010-01-01

    Hydrothermal method is a general, low-cost and convenience method which was utilized for synthesis of nanomaterials. Our research group has reported that oriented MnS nanorods on anodic aluminum oxide template were synthesized under a hydrothermal condition and demonstrated the effect of precursor content on the morphology evolution of as-samples. In order to research the growth mechanism of the arrays, herein we synthesized MnS nanorod arrays by combination of anodic aluminum oxide template and hydrothermal method on different substrates. Through-hole anodic aluminum oxide templates were prepared using Al foil (99.999%) via a two-step anodization process as described in literature. To investigate the effect of different substrates on the morphology of the-products, different substrates including anodic aluminum oxide template (sample A), one-step anodization Al foil (sample B, which was prepared by first anodizing Al foil for 10h and then removing the alumina layer with the mixed acid (0.6 M H 3 PO 4 and 0.15 M H 2 CrO 4 ), where the foil still kept the close-packed concave nano-pits consistently with the nanopole of anodic aluminum oxide template), Al foil (sample C, dipped in HNO 3 solution and covered by a compact alumina layer), Si wafer (sample D) respectively were put into Teflon-lined stainless steel autoclaves of 20 mL capacity filled with 16 mL mixed solution consisting of 2 mol/L MnCl 4 and 2 mol/L thiourea. We kept the reaction at 150 .deg. C for 20 h. When reactions completed the products were washed three times with distilled water and absolute ethanol, respectively. Then the products were dried in an oven at 60 .deg. C

  16. Growth Mechanism of γ-MnS Nanorod-Arrays by Hydrothermal Method on Anodic Aluminum Oxide Template

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jianming; Liu, Weifeng; Lv, Yong; Yao, Lianzeng [Chinese Academy of Science, Hefei, Anhui (China)

    2010-09-15

    Hydrothermal method is a general, low-cost and convenience method which was utilized for synthesis of nanomaterials. Our research group has reported that oriented MnS nanorods on anodic aluminum oxide template were synthesized under a hydrothermal condition and demonstrated the effect of precursor content on the morphology evolution of as-samples. In order to research the growth mechanism of the arrays, herein we synthesized MnS nanorod arrays by combination of anodic aluminum oxide template and hydrothermal method on different substrates. Through-hole anodic aluminum oxide templates were prepared using Al foil (99.999%) via a two-step anodization process as described in literature. To investigate the effect of different substrates on the morphology of the-products, different substrates including anodic aluminum oxide template (sample A), one-step anodization Al foil (sample B, which was prepared by first anodizing Al foil for 10h and then removing the alumina layer with the mixed acid (0.6 M H{sub 3}PO{sub 4} and 0.15 M H{sub 2}CrO{sub 4}), where the foil still kept the close-packed concave nano-pits consistently with the nanopole of anodic aluminum oxide template), Al foil (sample C, dipped in HNO{sub 3} solution and covered by a compact alumina layer), Si wafer (sample D) respectively were put into Teflon-lined stainless steel autoclaves of 20 mL capacity filled with 16 mL mixed solution consisting of 2 mol/L MnCl{sub 4} and 2 mol/L thiourea. We kept the reaction at 150 .deg. C for 20 h. When reactions completed the products were washed three times with distilled water and absolute ethanol, respectively. Then the products were dried in an oven at 60 .deg. C.

  17. BCT phase formation in synthesis via microwave assisted hydrothermal method

    International Nuclear Information System (INIS)

    Barra, B.C.; Souza, A.E.; Teixeira, S.R.; Santos, G.T.A.; Lanzi, C.A.C.

    2012-01-01

    In previous work, samples of barium and calcium titanate (Ba1-xCaxTiO3 (BCT x = 0- 1) were prepared using the microwave assisted hydrothermal method in conditions of relatively short time and temperature. To the sample with 75wt% of Ca no BCT phase was formed but the photoluminescent emission was improved. In the present study, these titanates were synthesized by the same method with other concentrations of Ca, Ba1-xCaxTiO3 (x = 0, 0.20, 0.40, 0. 60, 0.80 and 1) to evaluate the limit of BCT phase formation. Results of X-ray diffraction showed that the phase BCT is formed between zero and 50wt%-Ca, in Ba substitution. Above this concentration, was observed only the formation of carbonates, and to x = 1 there was carbonate formation together with CaTiO3. These results were confirmed by micro Raman spectroscopy. (author)

  18. Clay mineral formation under oxidized conditions and implications for paleoenvironments and organic preservation on Mars.

    Science.gov (United States)

    Gainey, Seth R; Hausrath, Elisabeth M; Adcock, Christopher T; Tschauner, Oliver; Hurowitz, Joel A; Ehlmann, Bethany L; Xiao, Yuming; Bartlett, Courtney L

    2017-11-01

    Clay mineral-bearing locations have been targeted for martian exploration as potentially habitable environments and as possible repositories for the preservation of organic matter. Although organic matter has been detected at Gale Crater, Mars, its concentrations are lower than expected from meteoritic and indigenous igneous and hydrothermal reduced carbon. We conducted synthesis experiments motivated by the hypothesis that some clay mineral formation may have occurred under oxidized conditions conducive to the destruction of organics. Previous work has suggested that anoxic and/or reducing conditions are needed to synthesize the Fe-rich clay mineral nontronite at low temperatures. In contrast, our experiments demonstrated the rapid formation of Fe-rich clay minerals of variable crystallinity from aqueous Fe 3+ with small amounts of aqueous Mg 2+ . Our results suggest that Fe-rich clay minerals such as nontronite can form rapidly under oxidized conditions, which could help explain low concentrations of organics within some smectite-containing rocks or sediments on Mars.

  19. Clay mineral formation under oxidized conditions and implications for paleoenvironments and organic preservation on Mars

    Energy Technology Data Exchange (ETDEWEB)

    Gainey, Seth R.; Hausrath, Elisabeth M.; Adcock, Christopher T.; Tschauner, Oliver; Hurowitz, Joel A.; Ehlmann, Bethany L.; Xiao, Yuming; Bartlett, Courtney L. (CIW); (UNLV); (CIT); (SBU)

    2017-11-01

    Clay mineral-bearing locations have been targeted for martian exploration as potentially habitable environments and as possible repositories for the preservation of organic matter. Although organic matter has been detected at Gale Crater, Mars, its concentrations are lower than expected from meteoritic and indigenous igneous and hydrothermal reduced carbon. We conducted synthesis experiments motivated by the hypothesis that some clay mineral formation may have occurred under oxidized conditions conducive to the destruction of organics. Previous work has suggested that anoxic and/or reducing conditions are needed to synthesize the Fe-rich clay mineral nontronite at low temperatures. In contrast, our experiments demonstrated the rapid formation of Fe-rich clay minerals of variable crystallinity from aqueous Fe3+ with small amounts of aqueous Mg2+. Our results suggest that Fe-rich clay minerals such as nontronite can form rapidly under oxidized conditions, which could help explain low concentrations of organics within some smectite-containing rocks or sediments on Mars.

  20. Development of a model for the anodic behavior of T60 titanium in chlorinated and oxygenated aqueous media. Application to the specific conditions of hydrothermal oxidation (1 MPa

    International Nuclear Information System (INIS)

    Frayret, C.; Jaszay, Th.; Lestienne, B.; Delville, M.H.

    2003-01-01

    This work evaluates the anodic electrochemical behavior of titanium metal in hydrothermal oxidation conditions (up to 400 deg. C and 28 MPa) in chlorinated media in order to estimate the supercritical water oxidation reactors reliability for the treatment of less than 10% organic-waste waters. The titanium room temperature dissolution mechanism in chlorinated acidic medium (pH 2 oxide formation with a very limited tetravalent dissolution). In hydrothermal oxidation (pH>1), only the second branch is effective. The titanium protection is directly related to the oxide stability in high pH systems. The mechanism model is expressed in terms of 'current-potential' laws, which provide kinetic parameters using optimization calculations. The different elementary steps reaction rates were estimated as well as the evolution of the reaction intermediates coverage ratios with the potential. The quantification of each elementary step was performed to understand and/or orient the materials behavior according to different factors (pH, chloride ions contents, potentials...)

  1. Third O2 addition reactions promote the low-temperature auto-ignition of n-alkanes

    KAUST Repository

    Wang, Zhandong

    2016-01-20

    Comprehensive low-temperature oxidation mechanisms are needed to accurately predict fuel auto-ignition properties. This paper studies the effects of a previously unconsidered third O2 addition reaction scheme on the simulated auto-ignition of n-alkanes. We demonstrate that this extended low-temperature oxidation scheme has a minor effect on the simulation of n-pentane ignition; however, its addition significantly improves the prediction of n-hexane auto-ignition under low-temperature rapid compression machine conditions. Additional simulations of n-hexane in a homogeneous charge compression ignition engine show that engine-operating parameters (e.g., intake temperature and combustion phasing) are significantly altered when the third O2 addition kinetic mechanism is considered. The advanced combustion phasing is initiated by the formation and destruction of additional radical chain-branching intermediates produced in the third O2 addition process, e.g. keto-dihydroperoxides and/or keto-hydroperoxy cyclic ethers. Our results indicate that third O2 addition reactions accelerate low-temperature radical chain branching at conditions of relevance to advance engine technologies, and therefore these chemical pathways should also be considered for n-alkanes with 6 or more carbon atoms. © 2015 The Combustion Institute.

  2. Origin of Magnetism in Hydrothermally Aged 2-Line Ferrihydrite Suspensions.

    Science.gov (United States)

    Cao, Liang; Jiang, Zhao-Xia; Du, Yong-Hua; Yin, Xin-Mao; Xi, Shi-Bo; Wen, Wen; Roberts, Andrew P; Wee, Andrew T S; Xiong, Yi-Min; Liu, Qing-Song; Gao, Xing-Yu

    2017-03-07

    As an iron oxyhydroxide, nanosized ferrihydrite (Fh) is important in Earth science, biology, and industrial applications. However, its basic structure and origin of its magnetism have long been debated. We integrate synchrotron-based techniques to explore the chemical structures of 2-line ferrihydrite and to determine the origin of its magnetism during hydrothermal aging in air. Our results demonstrate that both the magnetism and X-ray magnetic circular dichroism (XMCD) signal of 2-line ferrihydrite are enhanced with aging time, and that XMCD spectral patterns resemble that of maghemite (γ-Fe 2 O 3 ) rather than magnetite (Fe 3 O 4 ). Fe L-edge and K-edge X-ray absorption spectroscopy (XAS) further indicate formation of both maghemite and hematite (α-Fe 2 O 3 ) with increasing concentrations with longer hydrothermal aging time. Thus, magnetic enhancement with longer hydrothermal aging time is attributed to increasing maghemite concentration instead of a magnetically ordered ferrihydrite as previously reported. Moreover, L-edge and K-edge XAS spectra with different probing depths yield different ratios of these Fe oxides, which suggest the formation of a core (ferrihydrite-rich)-shell (with a mixture of both allotropes; α-Fe 2 O 3 and γ-Fe 2 O 3 ) structure during hydrothermal aging. Our results provide insights into the chemical evolution of 2-line ferrihydrite that reveal unambiguously the origin of its magnetism.

  3. Growth kinetics of tin oxide nanocrystals in colloidal suspensions under hydrothermal conditions

    International Nuclear Information System (INIS)

    Lee, Eduardo J.H.; Ribeiro, Caue; Longo, Elson; Leite, Edson R.

    2006-01-01

    Colloidal suspensions of tin oxide nanocrystals were synthesized at room temperature by the hydrolysis reaction of tin chloride (II), in an ethanolic solution. The coarsening kinetics of such nanocrystals was studied by submitting the as-prepared suspensions to hydrothermal treatments at temperatures of 100, 150 and 200 deg. C for periods between 60 and 12,000 min. Transmission electron microscopy (TEM) was used to characterize the samples (i.e. distribution of nanocrystal size, average particle radius and morphology). The results show that the usual Ostwald ripening coarsening mechanism does not fit well the experimental data, which is an indicative that this process is not significant for SnO 2 nanocrystals, in the studied experimental conditions. The morphology evolution of the nanocrystals upon hydrothermal treatment indicates that growth by oriented attachment (OA) should be significant. A kinetic model that describes OA growth is successfully applied to fit the data

  4. On the anomalous concentrations of uranium in sediments from hydrothermal mounds. A geochemical roll-type mechanism

    International Nuclear Information System (INIS)

    Bernat, M.; Benhassaine, A.

    1987-01-01

    Sediments close to the nontronite formations of hydrothermal mounds often show anomalously high concentrations of uranium. This is frequently interpreted as being due to seeping of low temperature U bearing hydrothermal water through the basal basalt and into the overlying sediments. But we think that this phenomenon is the consequence of leaching of the sediment by hydrothermal water initially depleted in uranium. The migration of U is favoured by the pH of these water which dissolve the iron oxides and hydroxides giving Fe +++ ions in solution. The location and strength of the formed U anomalies are controlled by geochemical and hydrodynamicals factors. 22 refs [fr

  5. Hydrothermal processing of radioactive combustible waste

    International Nuclear Information System (INIS)

    Worl, L.A.; Buelow, S.J.; Harradine, D.; Le, L.; Padilla, D.D.; Roberts, J.H.

    1998-01-01

    Hydrothermal processing has been demonstrated for the treatment of radioactive combustible materials for the US Department of Energy. A hydrothermal processing system was designed, built and tested for operation in a plutonium glovebox. Presented here are results from the study of the hydrothermal oxidation of plutonium and americium contaminated organic wastes. Experiments show the destruction of the organic component to CO 2 and H 2 O, with 30 wt.% H 2 O 2 as an oxidant, at 540 C and 46.2 MPa. The majority of the actinide component forms insoluble products that are easily separated by filtration. A titanium liner in the reactor and heat exchanger provide corrosion resistance for the oxidation of chlorinated organics. The treatment of solid material is accomplished by particle size reduction and the addition of a viscosity enhancing agent to generate a homogeneous pumpable mixture

  6. The competing oxide and sub-oxide formation in metal-oxide molecular beam epitaxy

    International Nuclear Information System (INIS)

    Vogt, Patrick; Bierwagen, Oliver

    2015-01-01

    The hetero-epitaxial growth of the n-type semiconducting oxides β-Ga 2 O 3 , In 2 O 3 , and SnO 2 on c- and r-plane sapphire was performed by plasma-assisted molecular beam epitaxy. The growth-rate and desorbing flux from the substrate were measured in-situ under various oxygen to metal ratios by laser reflectometry and quadrupole mass spectrometry, respectively. These measurements clarified the role of volatile sub-oxide formation (Ga 2 O, In 2 O, and SnO) during growth, the sub-oxide stoichiometry, and the efficiency of oxide formation for the three oxides. As a result, the formation of the sub-oxides decreased the growth-rate under metal-rich growth conditions and resulted in etching of the oxide film by supplying only metal flux. The flux ratio for the exclusive formation of the sub-oxide (e.g., the p-type semiconductor SnO) was determined, and the efficiency of oxide formation was found to be the highest for SnO 2 , somewhat lower for In 2 O 3 , and the lowest for Ga 2 O 3 . Our findings can be generalized to further oxides that possess related sub-oxides

  7. Controlled synthesis of graphene sheets with tunable sizes by hydrothermal cutting

    International Nuclear Information System (INIS)

    Ma Chen; Chen Zhongxin; Fang Ming; Lu Hongbin

    2012-01-01

    We report a hydrothermal method that directly reduces graphene oxide (GO) into graphene nanosheets (GNs) with different sizes. In the presence of NaOH and hydrazine, the hydrothermal reaction at 80 °C resulted in the formation of GNs with a lateral size of ∼1 μm but the size of GNs decreased to ∼300 and ∼100 nm upon increasing the reaction temperature to 150 and 200 °C, respectively. The morphology of the resulting GNs was observed by atomic force microscopy and transmission electron microscopy. The thickness of GNs is basically <3 nm, indicates the GNs stack together in a few-layer manner. XRD, XPS, FTIR, and Raman spectroscopy were used to characterize the structural changes before and after reduction. The results suggested that the defect stability in GO and reduced GNs could be responsible for the temperature dependence of the size of reduced GNs.Graphical AbstractA hydrothermal method is proposed to simultaneously reduce and cut graphene oxide into graphene sheets with different sizes in a controlled manner, in which the reaction temperature as a critical parameter is used to control the size of resulting graphene sheets.

  8. Comparison of anti-corrosive properties between hot alkaline nitrate blackening and hydrothermal blackening routes

    Energy Technology Data Exchange (ETDEWEB)

    Fattah-alhosseini, A. [Department of Materials Engineering, Bu-Ali Sina University, Hamedan 65178-38695 (Iran, Islamic Republic of); Yazdani Khan, H., E-mail: hamid.yazdanikhan@gmail.com [Department of Materials Engineering, Bu-Ali Sina University, Hamedan 65178-38695 (Iran, Islamic Republic of); Heidarpour, A. [Department of Metallurgy and Materials Engineering, Hamedan University of Technology, Hamedan, 65155-579 (Iran, Islamic Republic of)

    2016-08-15

    In this study, the oxide films were formed on carbon steel by using hot alkaline nitrate and hydrothermal treatments. A dense and protective oxide film was obtained by hydrothermal method due to application of high pressure and by increasing solution temperature from boiling temperature (155 °C) to 250 °C. Oxide films were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), and electrochemical tests including potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). These analyses showed that the magnetite film which was formed on carbon steel surface by hydrothermal treatment offers the best resistance in 3.5 wt.% NaCl solution. Although thicker oxide film could be obtained via hot alkaline nitrate black oxidizing, corrosion resistance was lower as a result of being highly porous and the presence of hematite. - Highlights: • Oxide films have been formed on steel by using of hot alkaline nitrate and hydrothermal treatments. • A dense and protective oxide film was obtained by hydrothermal treatment. • SEM micrographs showed that a dense and protective oxide film was obtained by hydrothermal treatment. • Film formed by hydrothermal treatment could have the best resistance in 3.5 wt.% NaCl solution.

  9. Séminaire de l'enseignement technique : Forum AutoCAD 2006 et AutoCAD Mechanical 2006 - French version only

    CERN Multimedia

    Davide Vitè

    2005-01-01

    Jeudi 17 novembre 2005 de 14:30 à 16:30 - Training Centre Auditorium Forum AutoCAD 2006 et AutoCAD Mechanical 2006 CADSCHOOL, CH-1207 GENEVE, Suisse Ce nouveau séminaire de l'Enseignement technique, organisé en forme de forum et en collabora- tion avec TS-MME et notre entreprise partenaire en formation, sera consacré à la présentation de la nouvelle version d'AutoCAD, AutoCAD 2006 et AutoCAD Mechanical 2006, disponible au CERN. Au programme : Présentation d'AutoCAD Mechanical 2006 Améliorations par rapport à AutoCAD Mechanical 6 Power Pack Questions - Réponses Langue: Français. Séminaire libre, sans inscription. Organisateurs: Manfred Mayer / TS-MME / 74499 ; Davide Vitè / HR-PMD / 75141 Pour plus d'information, veuillez SVP visiter les pages des Séminaires de l'Enseignement Technique à l'adresse http://www.cern.ch/TechnicalTraining/special/TTseminars.asp . ENSEIGNEMENT TECHNIQUE TECHNICAL TRAINING technical.training@cern.ch

  10. Enhanced sludge processing of HLW: Hydrothermal oxidation of chromium, technetium, and complexants by nitrate. 1997 mid-year progress report

    International Nuclear Information System (INIS)

    Buelow, S.

    1997-01-01

    'Treatment of High Level Waste (HLW) is the second most costly problem identified by OEM. In order to minimize costs of disposal, the volume of HLW requiring vitrification and long term storage must be reduced. Methods for efficient separation of chromium from waste sludges, such as the Hanford Tank Wastes (HTW), are key to achieving this goal since the allowed level of chromium in high level glass controls waste loading. At concentrations above 0.5 to 1.0 wt.% chromium prevents proper vitrification of the waste. Chromium in sludges most likely exists as extremely insoluble oxides and minerals, with chromium in the plus III oxidation state [1]. In order to solubilize and separate it from other sludge components, Cr(III) must be oxidized to the more soluble Cr(VI) state. Efficient separation of chromium from HLW could produce an estimated savings of $3.4B[2]. Additionally, the efficient separation of technetium [3], TRU, and other metals may require the reformulation of solids to free trapped species as well as the destruction of organic complexants. New chemical processes are needed to separate chromium and other metals from tank wastes. Ideally they should not utilize additional reagents which would increase waste volume or require subsequent removal. The goal of this project is to apply hydrothermal processing for enhanced chromium separation from HLW sludges. Initially, the authors seek to develop a fundamental understanding of chromium speciation, oxidation/reduction and dissolution kinetics, reaction mechanisms, and transport properties under hydrothermal conditions in both simple and complex salt solutions. The authors also wish to evaluate the potential of hydrothermal processing for enhanced separations of technetium and TRU by examining technetium and TRU speciation at hydrothermal conditions optimal for chromium dissolution.'

  11. Bacterial diversity in Fe-rich hydrothermal sediments at two South Tonga Arc submarine volcanoes.

    Science.gov (United States)

    Forget, N L; Murdock, S A; Juniper, S K

    2010-12-01

    Seafloor iron oxide deposits are a common feature of submarine hydrothermal systems. Morphological study of these deposits has led investigators to suggest a microbiological role in their formation, through the oxidation of reduced Fe in hydrothermal fluids. Fe-oxidizing bacteria, including the recently described Zetaproteobacteria, have been isolated from a few of these deposits but generally little is known about the microbial diversity associated with this habitat. In this study, we characterized bacterial diversity in two Fe oxide samples collected on the seafloor of Volcanoes 1 and 19 on the South Tonga Arc. We were particularly interested in confirming the presence of Zetaproteobacteria at these two sites and in documenting the diversity of groups other than Fe oxidizers. Our results (small subunit rRNA gene sequence data) showed a surprisingly high bacterial diversity, with 150 operational taxonomic units belonging to 19 distinct taxonomic groups. Both samples were dominated by Zetaproteobacteria Fe oxidizers. This group was most abundant at Volcano 1, where sediments were richer in Fe and contained more crystalline forms of Fe oxides. Other groups of bacteria found at these two sites include known S- and a few N-metabolizing bacteria, all ubiquitous in marine environments. The low similarity of our clones with the GenBank database suggests that new species and perhaps new families were recovered. The results of this study suggest that Fe-rich hydrothermal sediments, while dominated by Fe oxidizers, can be exploited by a variety of autotrophic and heterotrophic micro-organisms. © 2010 Blackwell Publishing Ltd.

  12. Characteristics of hydrogen produced by partial oxidation and auto-thermal reforming in a small methanol reformer

    Science.gov (United States)

    Horng, Rong-Fang; Chou, Huann-Ming; Lee, Chiou-Hwang; Tsai, Hsien-Te

    This paper investigates experimentally, the transient characteristics of a small methanol reformer using partial oxidation (POX) and auto-thermal reforming (ATR) for fuel cell applications. The parameters varied were heating temperature, methanol supply rate, steady mode shifting temperature, O 2/C (O 2/CH 3OH) and S/C (H 2O/CH 3OH) molar ratios with the main aim of promoting a rapid response and a high flow rate of hydrogen. The experiments showed that a high steady mode shifting temperature resulted in a faster temperature rise at the catalyst outlet and vice versa and that a low steady mode shifting temperature resulted in a lower final hydrogen concentration. However, when the mode shifting temperature was too high, the hydrogen production response was not necessarily improved. It was subsequently shown that the optimum steady mode shifting temperature for this experimental set-up was approximately 75 °C. Further, the hydrogen concentration produced by the auto-thermal process was as high as 49.12% and the volume flow rate up to 23.0 L min -1 compared to 40.0% and 20.5 L min -1 produced by partial oxidation.

  13. Catalytic Oxidation of Toluene on Hydrothermally Prepared Ceria Nanocrystals

    Directory of Open Access Journals (Sweden)

    M. Duplančić

    2018-01-01

    Full Text Available Ceria nanocrystals were prepared hydrothermally and tested as potential catalysts for oxidation of volatile organic compounds using toluene as a model compound. Pure ceria with a crystallite size of 4 nm, determined by the Scherrer method from XRD pattern has been obtained. The specific surface area of the prepared nanoparticles determined by BET analysis yielded 201 m2 g–1, while the band gap of 3.2 eV was estimated from DRS spectrum via Tauc’s plot. Catalytic tests were performed on calcined ceria (500 °C with increased crystallite size (9 nm caused by thermal treatment. The tests showed good activities for the toluene oxidation with T50 temperatures, corresponding to 50 % toluene conversion, observed at 250 °C and even lower temperatures depending on the total flow rate of the gas mixture. The one-dimensional pseudo-homogeneous model of the fixed bed reactor was proposed to describe the reactor performance and the appropriate kinetic parameters were estimated. Good agreement between experimental data and the proposed model was observed.

  14. Hydrothermal synthesis of nickel oxide nanosheets for lithium-ion batteries and supercapacitors with excellent performance.

    Science.gov (United States)

    Mondal, Anjon Kumar; Su, Dawei; Wang, Ying; Chen, Shuangqiang; Wang, Guoxiu

    2013-11-01

    Nickel oxide nanosheets have been successfully synthesized by a facile ethylene glycol mediated hydrothermal method. The morphology and crystal structure of the nickel oxide nanosheets were characterized by X-ray diffraction, field-emission SEM, and TEM. When applied as electrode materials for lithium-ion batteries and supercapacitors, nickel oxide nanosheets exhibited a high, reversible lithium storage capacity of 1193 mA h g(-1) at a current density of 500 mA g(-1), an enhanced rate capability, and good cycling stability. Nickel oxide nanosheets also demonstrated a superior specific capacitance of 999 F g(-1) at a current density of 20 A g(-1) in supercapacitors. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. OPAQUE MINERAL CONTENT OF DUTLUCA VOLCANICS (BURHANİYE - BALIKESİR: THE EFFECT OF HYDROTHERMAL ALTERATION ON THESE MINERALS

    Directory of Open Access Journals (Sweden)

    Şükrü KOÇ

    2016-12-01

    Full Text Available Dutluca volcanics, which are known as Hallaçlar Formation in regional scale in the study area (Kurshens- ky, 1976, are composed of hydrothermally altered andesite and basaltic andesite. In these rocks, sulfidic minerals such as pyrite, enargite and chalcosine, and oxide and hydroxide minerals such as magnetite, hematite and goethite were detected as opaque minerals. The presence of enargite in opaque mineral para- genesis, and the changes observed in structures and textures of opaque and silicate minerals indicate that examined volcanics have been altered by highly sulfidic hydrothermal solutions. During the hydrothermal alteration process, which indicates at least in two phases, a diffuse pyritization rich in H S in reducing conditions and enargite mineral, which is known as pathfinder minerals in such processes, formed in the first phase. Later on; the extensive martitization developed in oxidizing conditions.

  16. Continuous Hydrothermal Flow Synthesis of Functional Oxide Nanomaterials Used in Energy Conversion Devices

    DEFF Research Database (Denmark)

    Xu, Yu

    Continuous hydrothermal flow synthesis (CHFS) was used to prepare functional oxide nanoparticles. Materials synthesized include NiO, Y-doped ZrO2, Gd-doped CeO2, LaCrO3 and Ni-substituted CoFe2O4. These types of oxides can be applied in several energy conversion devices, e.g. as active materials...... as materials are continuously produced, and the technology can be scaled-up to an industrial-relevant production capacity. The thesis starts with investigating the most appropriate mixer design for a novel two-stage reactor by computational fluid dynamics modelling. On basis of the modelling results, a two......, dense continuous layers (

  17. Structure/function analysis of PARP-1 in oxidative and nitrosative stress-induced monomeric ADPR formation.

    Directory of Open Access Journals (Sweden)

    Ben Buelow

    2009-07-01

    Full Text Available Poly adenosine diphosphate-ribose polymerase-1 (PARP-1 is a multifunctional enzyme that is involved in two major cellular responses to oxidative and nitrosative (O/N stress: detection and response to DNA damage via formation of protein-bound poly adenosine diphosphate-ribose (PAR, and formation of the soluble 2(nd messenger monomeric adenosine diphosphate-ribose (mADPR. Previous studies have delineated specific roles for several of PARP-1's structural domains in the context of its involvement in a DNA damage response. However, little is known about the relationship between the mechanisms through which PARP-1 participates in DNA damage detection/response and those involved in the generation of monomeric ADPR. To better understand the relationship between these events, we undertook a structure/function analysis of PARP-1 via reconstitution of PARP-1 deficient DT40 cells with PARP-1 variants deficient in catalysis, DNA binding, auto-PARylation, and PARP-1's BRCT protein interaction domain. Analysis of responses of the respective reconstituted cells to a model O/N stressor indicated that PARP-1 catalytic activity, DNA binding, and auto-PARylation are required for PARP-dependent mADPR formation, but that BRCT-mediated interactions are dispensable. As the BRCT domain is required for PARP-dependent recruitment of XRCC1 to sites of DNA damage, these results suggest that DNA repair and monomeric ADPR 2(nd messenger generation are parallel mechanisms through which PARP-1 modulates cellular responses to O/N stress.

  18. A numerical study of the influence of ammonia addition on the auto-ignition limits of methane/air mixtures

    International Nuclear Information System (INIS)

    Van den Schoor, F.; Norman, F.; Vandebroek, L.; Verplaetsen, F.; Berghmans, J.

    2009-01-01

    In this study the auto-ignition limit of ammonia/methane/air mixtures is calculated based upon a perfectly stirred reactor model with convective heat transfer. The results of four different reaction mechanisms are compared with existing experimental data at an initial temperature of 723 K with ammonia concentrations of 0-20 mol.% and methane concentrations of 2.5-10 mol.%. It is found that the calculation of the auto-ignition limit pressure at constant temperature leads to larger relative deviations between calculated and experimental results than the calculation of the auto-ignition temperature at constant pressure. In addition to the calculations, a reaction path analysis is performed to explain the observed lowering of the auto-ignition limit of methane/air mixtures by ammonia addition. It is found that this decrease is caused by the formation of NO and NO 2 , which enhance the oxidation of methane at low temperatures.

  19. One-pot hydrothermal synthesis and characterization of CoFe2O4 nanoparticles and its application as magnetically recoverable catalyst in oxidation of alcohols by periodic acid

    International Nuclear Information System (INIS)

    Paul, Bappi; Purkayastha, Debraj Dhar; Dhar, Siddhartha Sankar

    2016-01-01

    A novel and facile approach for one-pot synthesis of spinel cobalt ferrite (CoFe 2 O 4 ) nanoparticles (NPs) is presented here. The synthesis involves homogeneous chemical precipitation followed by hydrothermal heating, using tributylamine (TBA) as a hydroxylating agent. Polyethylene glycol (PEG) 4000 was used as surfactant. As-synthesized CoFe 2 O 4 NPs were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), N 2 adsorption-desorption isotherm (BET) and vibrating sample magnetometry (VSM). TEM image showed formation of spherical particles of sizes 2–30 nm. These NPs were used as magnetically recoverable catalyst in oxidation of alcohols to their corresponding aldehydes by periodic acid. This oxidative procedure is found to be highly efficient affording products in very high yield and selectivity. The easy magnetic separation of the catalyst and efficient reusability are key features of this methodology. - Highlights: • Hydrothermal synthesis of CoFe 2 O 4 NPs with (C 4 H 9 ) 3 N as hydroxylating agent. • The TEM images showed the particles to be spherical in shape with sizes 2–30 nm. • CoFe 2 O 4 was used as recyclable catalyst for oxidation of alcohols by periodic acid.

  20. Software planning and analysis for automated design system AutoCAD

    OpenAIRE

    Koskutė, Lina

    2007-01-01

    AutoCAD sistemos papildymas sukurtas tam, kad būtų lengviau ir paprasčiau dirbti su AutoCAD grafine sistema. Funkcijos sukurtos naudojant AutoLisp ir VisualLISP programavimo kalbas. Sistemos papildymą galima įdiegti į bet kurią AutoCAD versiją. Sukurtas papildymas lankstus naujų funkcijų prijungimui, lengvai eksploatuojamas. Funkcijos suskirstytos į keletą grupių pagal jų formatą. AutoCAD system complement is created to make more easy working with AutoCAD graphic system. Functions are crea...

  1. Hydrothermal decomposition of actinide(IV oxalates: a new aqueous route towards reactive actinide oxide nanocrystals

    Directory of Open Access Journals (Sweden)

    Walter Olaf

    2016-01-01

    Full Text Available The hydrothermal decomposition of actinide(IV oxalates (An= Th, U, Pu at temperatures between 95 and 250 °C is shown to lead to the production of highly crystalline, reactive actinide oxide nanocrystals (NCs. This aqueous process proved to be quantitative, reproducible and fast (depending on temperature. The NCs obtained were characterised by X-ray diffraction and TEM showing their size to be smaller than 15 nm. Attempts to extend this general approach towards transition metal or lanthanide oxalates failed in the 95–250 °C temperature range. The hydrothermal decomposition of actinide oxalates is therefore a clean, flexible and powerful approach towards NCs of AnO2 with possible scale-up potential.

  2. Hydrothermal synthesis of zinc oxide nanoparticles using rice as soft biotemplate.

    Science.gov (United States)

    Ramimoghadam, Donya; Bin Hussein, Mohd Zobir; Taufiq-Yap, Yun Hin

    2013-01-01

    Rice as a renewable, abundant bio-resource with unique characteristics can be used as a bio-template to synthesize various functional nanomaterials. Therefore, the effect of uncooked rice flour as bio-template on physico-chemical properties, especially the morphology of zinc oxide nanostructures was investigated in this study. The ZnO particles were synthesized through hydrothermal-biotemplate method using zinc acetate-sodium hydroxide and uncooked rice flour at various ratios as precursors at 120°C for 18 hours. The results indicate that rice as a bio-template can be used to modify the shape and size of zinc oxide particles. Different morphologies, namely flake-, flower-, rose-, star- and rod-like structures were obtained with particle size at micro- and nanometer range. Pore size and texture of the resulting zinc oxide particles were found to be template-dependent and the resulting specific surface area enhanced compared to the zinc oxide synthesized without rice under the same conditions. However, optical property particularly the band gap energy is generally quite similar. Pure zinc oxide crystals were successfully synthesized using rice flour as biotemplate at various ratios of zinc salt to rice. The size- and shape-controlled capability of rice to assemble the ZnO particles can be employed for further useful practical applications.

  3. WO{sub 3} nanorods prepared by low-temperature seeded growth hydrothermal reaction

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Chai Yan [School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia); Abdul Razak, Khairunisak, E-mail: khairunisak@eng.usm.my [School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia); NanoBiotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Lockman, Zainovia, E-mail: zainovia@eng.usm.my [School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia)

    2014-03-05

    Highlights: • WO{sub 3} nanorods with 5–10 nm diameter were grown directly on seeded tungsten foil. • WO{sub 3} nanorods were successfully grown at low temperature of 80 °C. • WO{sub 3} nanorods were grown on the entire surface of the seed layer after 24 h. • Annealed nanorods showed better electrochromic properties than as-made nanorods. -- Abstract: This work describes the first tungsten oxide (WO{sub 3}) nanorods hydrothermally grown on W foil. WO{sub 3} nanorods were successfully grown at low hydrothermal temperature of 80 °C by seeded growth hydrothermal reaction. The seed layer was prepared by thermally oxidized the W foil at 400 °C for 0.5 h. This work discusses the effect of hydrothermal reaction and annealing period on the morphological, structural, and electrochromic properties of WO{sub 3} nanorods. Various hydrothermal reaction periods (8–24 h) were studied. Monoclinic WO{sub 3} nanorods with 5–10 nm diameter were obtained after hydrothermal reaction for 24 h. These 24 h WO{sub 3} nanorods were also annealed at 400 °C with varying dwelling periods (0.5–4 h). Electrochromic properties of WO{sub 3} nanorods in an acidic electrolyte were analyzed using cyclic voltammetry and UV–vis spectrophotometry. WO{sub 3} nanorods annealed at 400 °C for 1 h showed the highest charge capacity and the largest optical contrast among the 24 h WO{sub 3} films. The sample also showed good cycling stability without significant degradation. Based on the results, the reaction mechanism of WO{sub 3} nanorod formation on W foil was proposed.

  4. Séminaire de l'enseignement technique : Forum AutoCAD 2006 et AutoCAD Mechanical 2006

    - French version only

    CERN Multimedia

    Davide Vitè

    2005-01-01

    Jeudi 17 novembre 2005 de 14:30 à 16:30 - Training Centre Auditorium, Bât 593 Forum AutoCAD 2006 et AutoCAD Mechanical 2006 CADSCHOOL, CH-1207 GENEVE, Suisse Ce nouveau séminaire de l'Enseignement technique, organisé en forme de forum et en collaboration avec TS-MME et notre entreprise partenaire en formation, sera consacré à la présentation de la nouvelle version d'AutoCAD, AutoCAD 2006 et AutoCAD Mechanical 2006, disponible au CERN. Au programme : Présentation d'AutoCAD Mechanical 2006 Améliorations par rapport à AutoCAD Mechanical 6 Power Pack Questions - Réponses Langue: Français. Séminaire libre, sans inscription. Organisateurs: Manfred Mayer / TS-MME / 74499 ; Davide Vitè / HR-PMD / 75141 Pour plus d'information, veuillez SVP visiter les pages des Séminaires de l'Enseignement Technique à l'adresse http://www.cern.ch/TechnicalTraining/special/TTseminars.asp . ENSEIGNEMENT TECHNIQUE TECHNICAL TRAINING technical.training@cern.ch

  5. Hydrothermal processing of inorganic components of Hanford tank sludge

    International Nuclear Information System (INIS)

    Oldenborg, R.; Buelow, S.J.; Dyer, R.B.; Anderson, G.; Dell'Orco, P.C.; Funk, K.; Wilmanns, E.; Knutsen, K.

    1994-09-01

    Hydrothermal Processing (HTP) is an attractive approach for the treatment of Hanford tank sludge. Hydrothermal Processing refers to a waste treatment technique in which an aqueous waste stream is fed through a chemical reactor at elevated temperatures and pressures to effect desired chemical transformations and separations. Transformations such as organic and nitrate destruction and sludge reformulation have been demonstrated at pilot scale using simulants of Hanford tank wastes. At sufficiently high temperatures and pressures organics and nitrates are destroyed in seconds, producing primarily simple products such as CO 3 2- , H 2 O, N 2 , N 2 O and OH - , and sludges are reduced in volume and reformulated as rapid settling oxides amenable to downstream separation, or in some cases reformulated as soluble products. This report describes the hydrothermal dissolution of chromium and chromium oxide; the hydrothermal oxidation of chromium with nitrate; hydrothermal dissolution of aluminum-bearing sludges; the solubility of aluminum compounds in caustic hydrothermal media; experimental techniques for the study of solubility and phase behavior; optical cell studies of basic aluminate solution solubilities; and high temperature, low density salt solubility in the packed-bed flow apparatus

  6. In situ reduction of as-prepared γ-Iron Oxide Nanoparticles

    DEFF Research Database (Denmark)

    Garbus, Pelle Gorm; Ahlburg, Jakob; Christensen, Mogens

    -ray diffraction measurement. The as-prepared maghemite nanoparticles were synthesized by the continuous decomposition of solutes in supercritical hydrothermal flow synthesis [3, 4]. The reagent used was ferric ammonium citrate (C6H8O7•xFe(III)•yNH3) that under hydrothermal flow synthesis decomposes into the γ......-iron oxide Fe2O3. The reduction of maghemite to body centered cubic (BCC) iron does not go through a detectable intermediate state.1.Jensen, K.M., et al., Mechanisms for iron oxide formation under hydrothermal conditions: an in situ total scattering study. ACS nano, 2014. 8(10): p. 10704-10714.2.Andersen, H...

  7. Geochemical constraints on chemolithoautotrophic reactions in hydrothermal systems

    Science.gov (United States)

    Shock, Everett L.; McCollom, Thomas; Schulte, Mitchell D.

    1995-06-01

    Thermodynamic calculations provide the means to quantify the chemical disequilibrium inherent in the mixing of redeuced hydrothermal fluids with seawater. The chemical energy available for metabolic processes in these environments can be evaluated by taking into account the pressure and temperature dependence of the apparent standard Gibbs free energies of reactions in the S-H2-H2O system together with geochemical constraints on pH, activities of aqueous sulfur species and fugacities of H2 and/or O2. Using present-day mixing of hydrothermal fluids and seawater as a starting point, it is shown that each mole of H2S entering seawater from hydrothermal fluids represents about 200,000 calories of chemical energy for metabolic systems able to catalyze H2S oxidation. Extrapolating to the early Earth, which was likely to have had an atmosphere more reduced than at present, shows that this chemical energy may have been a factor of two or so less. Nevertheless, mixing of hydrothermal fluids with seawater would have been an abundant source of chemical energy, and an inevitable consequence of the presence of an ocean on an initially hot Earth. The amount of energy available was more than enough for organic synthesis from CO2 or CO, and/or polymer formation, indicating that the vicinity of hydrothermal systems at the sea floor was an ideal location for the emergence of the first chemolithoautotrophic metabolic systems.

  8. A process to enhance the specific surface area and capacitance of hydrothermally reduced graphene oxide

    KAUST Repository

    Alazmi, Amira

    2016-08-26

    The impact of post-synthesis processing in reduced graphene oxide materials for supercapacitor electrodes has been analyzed. A comparative study of vacuum, freeze and critical point drying was carried out for hydrothermally reduced graphene oxide demonstrating that the optimization of the specific surface area and preservation of the porous network are critical to maximize its supercapacitance performance. As described below, using a supercritical fluid as the drying medium, unprecedented values of the specific surface area (364 m2 g−1) and supercapacitance (441 F g−1) for this class of materials have been achieved.

  9. A process to enhance the specific surface area and capacitance of hydrothermally reduced graphene oxide

    KAUST Repository

    Alazmi, Amira; El Tall, Omar; Rasul, Shahid; Hedhili, Mohamed N.; Patole, Shashikant P.; Da Costa, Pedro M. F. J.

    2016-01-01

    The impact of post-synthesis processing in reduced graphene oxide materials for supercapacitor electrodes has been analyzed. A comparative study of vacuum, freeze and critical point drying was carried out for hydrothermally reduced graphene oxide demonstrating that the optimization of the specific surface area and preservation of the porous network are critical to maximize its supercapacitance performance. As described below, using a supercritical fluid as the drying medium, unprecedented values of the specific surface area (364 m2 g−1) and supercapacitance (441 F g−1) for this class of materials have been achieved.

  10. Hydrothermal stability investigation of micro- and mesoporous silica containing long-range ordered cobalt oxide clusters by XAS.

    Science.gov (United States)

    Liu, Liang; Wang, David K; Kappen, Peter; Martens, Dana L; Smart, Simon; Diniz da Costa, João C

    2015-07-15

    This work investigates the hydrothermal stability of cobalt doped silica materials with different Co/Si molar ratios (0, 0.05, 0.10, and 0.25). The resultant materials were characterized by N2 sorption and chemical structures by Raman and X-ray absorption spectroscopy before and after a harsh hydrothermal exposure (550 °C, 75 mol% vapour and 40 h). The cobalt silica materials showed a lower surface area loss from 48% to 12% with increasing Co/Si molar ratio from 0.05 to 0.25 and relatively maintaining their pore size distribution, while pure silica exhibited significant surface area reduction (80%) and pore size broadening. For low cobalt loading sample (Co/Si = 0.05), the cobalt was highly dispersed in the silica network in a tetrahedral coordination with oxygen and a small proportion of Co-Co interaction in the second shell. Long range order Co3O4 was observed when Co/Si molar ratio increased to 0.10 and 0.25. The hydrothermal exposure did not affect the local cobalt environments and no cobalt-silicon interaction was observed by X-ray absorption spectroscopy. The hydrothermal stability of the silica matrix was attributed to the physical barrier of cobalt oxide in opposing densification and silica mobility under harsh hydrothermal conditions.

  11. Hydrothermal waste package interactions with methane-containing basalt groundwater

    International Nuclear Information System (INIS)

    McGrail, B.P.

    1984-01-01

    Hydrothermal waste package interaction tests were conducted with a mixture of crushed glass, basalt, and steel in methane-containing synthetic basalt groundwater. In the absence of gamma radiolysis, methane was found to have little influence on the corrosion behavior of the waste package constituents. Under gamma radiolysis, methane was found to significantly lower the solution oxidation potential when compared to identical tests without methane. In addition, colloidal hydrocarbon polymers that have been produced under the irradiation conditions of these experiments were not formed. The presence of the waste package constituents apparently inhibited the formation of the polymers. However, the mechanism which prevented their formation was not determined

  12. Structural and optical characterization and efficacy of hydrothermal synthesized Cu and Ag doped zinc oxide nanoplate bactericides

    Energy Technology Data Exchange (ETDEWEB)

    Abinaya, C.; Marikkannan, M.; Manikandan, M. [Department of Materials Science, School of Chemistry, Madurai Kamaraj University, Madurai, 625 021, Tamil Nadu (India); Mayandi, J., E-mail: jeyanthinath@yahoo.co.in [Department of Materials Science, School of Chemistry, Madurai Kamaraj University, Madurai, 625 021, Tamil Nadu (India); Department of Materials Science and Engineering, Michigan Technological University, Houghton, 49931 1295, MI (United States); Suresh, P.; Shanmugaiah, V. [Department of Microbial Technology, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625 021, Tamil Nadu (India); Ekstrum, C. [Department of Materials Science and Engineering, Michigan Technological University, Houghton, 49931 1295, MI (United States); Pearce, J.M. [Department of Materials Science and Engineering, Michigan Technological University, Houghton, 49931 1295, MI (United States); Department of Electrical & Computer Engineering, Michigan Technological University, Houghton, 49931 1295, MI (United States)

    2016-12-01

    This study reports on a novel synthesis of pure zinc oxide and both Cu and Ag doped ZnO nanoplates using a simple and low-cost hydrothermal method. The structural and optical properties of the nanoplates were quantified and the materials were tested for antibacterial activity. X-ray diffraction revealed the formation of the wurtzite phase of ZnO and scanning and transmission electron microscopy showed the formation of randomly oriented ZnO nanoplates, having a thickness less than 80 nm and diameter less than 350 nm. The elemental analyses of both the pure and doped samples were evaluated by energy dispersive X-ray spectrometry. The FTIR spectra of ZnO nanomaterials showed the predictable bands at 3385 cm{sup −1} (O−H stretching), 1637 cm{sup −1} (stretching vibration of H{sub 2}O), 400 cm{sup −1}–570 cm{sup −1} (M−O stretching). The as synthesized samples showed a strong absorption peak in the UV region (∼376 nm) and a near band edge emission at 392 nm with some defect peaks in the visible region. From the XPS spectra the oxidation states of Zn, Cu and Ag were found to be +2, +2 and 0 respectively. Escherichia coli, Staphylococcus aureus and Salmonella typhi bacteria were used to evaluate the antibacterial activity of undoped and doped ZnO. Ag doped ZnO exhibited low minimum inhibitory concentration (MIC) values as 40 μg/ml for E. coli and S. aureus and 20 μg/ml for S. typhi, which are comparable to commercial antibiotics without optimization. Further, these chemically modified nanoparticles will be applicable in the development of medicine to control the spread and infection of a variety of bacterial strains. - Highlights: • Distinct ZnO nanoplates were successfully synthesized by facile hydrothermal method. • Cu and Ag doped ZnO exhibits significant destruction of bacteria with low MIC value. • Ag:ZnO has a noteworthy bactericidal effect against E. coli, S. aureus &S. typhi. • It projects that, a feasible low cost industrial process can

  13. Formation of ultralong copper nanowires by hydrothermal growth for transparent conducting applications

    Science.gov (United States)

    Balela, Mary Donnabelle L.; Tan, Michael

    2017-07-01

    Transparent conducting electrodes are key components of optoelectronic devices, such as touch screens, organic light emitting diodes (OLEDs) and solar cells. Recent market surveys have shown that the demands for these devices are rapidly growing at a tremendous rate. Semiconducting oxides, in particular indium tin oxide (ITO) are the material of choice for transparent conducting electrodes. However, these conventional oxides are typically brittle, which limits their applicability in flexible electronics. Metal nanowires, e.g. copper (Cu) nanowires, are considered as the best candidate as substitute for ITO due to their excellent mechanical and electrical properties. In this paper, ultralong copper (Cu) nanowires with were successfully prepared by hydrothermal growth at 50-80°C for 1 h. Ethylenediamine was employed as the structure-directing agents, while hydrazine was used as the reductant. In situ mixed potential measurement was also carried out to monitor Cu deposition. Higher temperature shifted the mixed potential negatively, leading to thicker Cu nanowires. Transparent conducting electrode, with a sheet resistance of 197 Ω sq-1 at an optical transmittance of around 61 %, was fabricated with the Cu nanowire ink.

  14. Purification of simple substances by distillation with impurity hydrothermal oxidation

    International Nuclear Information System (INIS)

    Kalashnik, O.N.; Nisel'son, L.A.

    1987-01-01

    A possibility of applying distillation method in water vapours for purification of simple substances from impurities is studied. Based on thermodynamic analysis of interaction processes in E-H 2 O system, conducted using a computer, it is as certained that SS, Se, Te, As, Cd, Hg can be purified from the majority of the impurities analysed by distillation in a water vapour flow. Behaviour of Zn, C, Ge, Al, Sb characteristic impurities under cadmium, arsenic and tellurium distillation is studied. Experiments on cadmium, arsenic and tellurium purification have confirmed, that distillation with hydrothermal oxidation of Zn, C, Ge impurities sometimes appears to be a more effective method as compared to distillation in a hydrogen flow

  15. Hydrothermal synthesis of 3D urchin-like Ag/TiO_2/reduced graphene oxide composites and its enhanced photocatalytic performance

    International Nuclear Information System (INIS)

    Liu, Yuhuan; Zhou, Yi; Yang, Luyue; Wang, Yutang; Wu, Yiwei; Li, Chaocheng; Lu, Jun

    2016-01-01

    Innovative 3D urchin-like ternary TiO_2 composites, which combine Ag nanoparticles with graphene, have been successfully synthesized through a simple hydrothermal method. This process employed nontoxic and mild dihydrate sodium citrate as a reducing agent. During the hydrothermal process, graphene oxide and AgNO_3 were reduced to reduced graphene oxide (RGO) and Ag, respectively. Subsequently, they were grown on the surface of rutile TiO_2 with a 3D urchin-like microsphere (1.5 μm). The as-prepared 3D urchin-like composites were characterized by X-ray diffraction, SEM and TEM. These techniques were also employed to ensure the morphology of urchin-like and rutile phase of TiO_2. FT-IR, Raman spectroscopy and XPS characterization demonstrated the successful reduction in AgNO_3 and graphite oxide to metallic Ag and RGO. The UV–visible spectrum of the ternary composite displayed strong absorption in the visible light region, which was attributed to the efficient electron transport of well-dispersed Ag nanoparticles (20–40 nm) and the formation of Ti–O–C bond between graphene and titania. The synthesized urchin-like ternary composite exhibited enhanced photocatalytic activity (98.7 %) for Rhodamine B degradation. This work provides a very convenient chemical route to the scalable production of Ag/TiO_2/RGO ternary composite photocatalyst for potential applications in solving the environmental problems and energy issues. Also, the proposed mechanism underlying the photocatalytic degradation of Rhodamine B dyes was discussed.Graphical AbstractFourier transform infrared (FTIR) spectra of pure UT, UTG and Ag–UTG composite. The scheme of proposed mechanism for the photocatalytic degradation of RhB on Ag–UTG.

  16. Surface characterization and corrosion behavior of micro-arc oxidized Ti surface modified with hydrothermal treatment and chitosan coating

    International Nuclear Information System (INIS)

    Neupane, Madhav Prasad; Park, Il Song; Lee, Min Ho

    2014-01-01

    In the present work, we describe the surface modification of commercially pure titanium (CP-Ti) by a composite/multilayer coating approach for biomedical applications. CP-Ti samples were treated by micro-arc oxidation (MAO) and subsequently some of the samples were coated with chitosan (Chi) by dip coating method, while others were subjected to hydrothermal treatment (HT) followed by chitosan coating. The MAO, MAO/Chi, and MAO/HT/Chi coated Ti were characterized and their characteristics were compared with CP-Ti. X-ray diffraction and scanning electron microscopy were used to assess the structural and morphological characteristics. The average surface roughness was determined using a surface profilometer. The corrosion resistance of untreated and surface modified Ti in commercial saline at 298 K was evaluated by potentiodynamic polarization test. The results indicated that the chitosan coating is very well integrated with the MAO and MAO/HT coating by physically interlocking itself with the coated layer and almost sealed all the pores. The surface roughness of hydrothermally treated and chitosan coated MAO film was superior evidently to that with other sample groups. The corrosion studies demonstrated that the MAO, hydrothermally treated and chitosan coated sample enhanced the corrosion resistance of titanium. The result indicates that fabrication of hydrothermally treated MAO surface coatings with chitosan is a significant approach to protect the titanium from corrosion, hence enhancing the potential use of titanium as bio-implants. - Highlights: • Micro-arc oxidized (MAO) and hydrothermally treated (HT) Ti surfaces are coated with chitosan (Chi). • The MAO/HT/Chi surface exhibits pores sealing and enhanced the surface roughness. • The MAO/HT/Chi surface significantly increase the corrosion resistance. • The MAO/HT/Chi can be a potential surface of titanium for bio-implants

  17. Hydrothermal Formation Of Hemi-hydrate Calcium Sulfate Whiskers In The Presence Of Additives

    International Nuclear Information System (INIS)

    Luo, K. B.; Li, C. M.; Li, H. P.; Ning, P.; Xiang, L.

    2010-01-01

    The influence of addictives on the hydrothermal formation of hemi-hydrate calcium sulfate (CaSO 4 ·0.5H 2 O) whiskers were discussed in this paper, using CaCl 2 and Na 2 SO 4 as the reactants. The presence of NaCl, CaCl 2 or Na 2 SO 4 increased the concentrations of Ca 2+ and SO 4 2- , leading to the formation of CaSO 4 ·0.5H 2 O whiskers with aspect ratio lower than 50. The one dimensional growth of CaSO 4 ·0.5H 2 O whiskers was enhanced in water with no additives owing to the low super-saturation, leading to the formation of uniform whiskers with a length of 200-2000 μm and an aspect ratio higher than 100.

  18. A shortcut hydrothermal strategy for the synthesis of zinc nanowires

    International Nuclear Information System (INIS)

    Hu Jianqiang; Chen Zhiwu; Xie Jingsi; Yu Ying

    2008-01-01

    Synthesis of metal nanowires has opened many new possibilities for designing ideal building blocks for future nanodevices. In this work, zinc nanowires with lengths of micrometre magnitude were synthesized in high yield by a shortcut hydrothermal strategy. The synthesis involves a template-free, non-seed and catalyst-free solution-phase process to high-quality zinc nanowires, which is low-cost and proceeds at relatively short time. In this process, zinc nanowires were prepared through the reduction of zinc acetate with absolute ethanol in the presence of silver nitrate under hydrothermal atmosphere. The strategy suggests that silver ion plays a vital role in the synthesis of zinc nanowires, without which the substituted product is zinc oxide nanowires. X-ray diffraction and energy-dispersive x-ray spectroscopy measurements confirm the final formation of zinc nanowires and component transformation from zinc oxide nanowires in the introduction of silver ion. We believe that with the efficient synthesis, longer zinc nanowires can be fabricated and may find potential applications for superconductors and nanodevices. (fast track communication)

  19. Numerical Simulation of a Non-volcanic Hydrothermal System Caused by Formation of a High Permeability Fracture Zone

    Science.gov (United States)

    Oka, Daisuke; Ehara, Sachio; Fujimitsu, Yasuhiro

    2010-05-01

    Because in the Japanese islands the earth crust activity is very active, a disposal stratum for high-level radioactive waste produced by reprocessing the spent nuclear fuel from nuclear power plants will be selected in the tectonically stable areas in which the waste can be disposed underground safely for a long term and there is no influence of earthquakes, seismic activities, volcanic activities, upheaval, sedimentation, erosion, climate and global sea level change and so on, which causes the risk of the inflow of the groundwater to destroy the disposal site or the outflow to the ground surface. However, even if the disposal stratum in such condition will be chosen, in case that a new high permeability fracture zone is formed by the earthquake, and a new hydrothermal system may be formed for a long term (thousands or millions years) and the system may affect the disposal site. Therefore, we have to understand the feature of the non-volcanic hydrothermal system through the high permeability fracture zone. We estimated such influence by using HYDROTHERM Ver2.2 (Hayba & Ingebritsen, 1994), which is a three-dimensional numerical reservoir simulator. The model field is the northwestern part of Kego Fault, which was formed by a series of earthquakes called "the 2005 Fukuoka Prefecture Western Offshore Earthquakes" (the main shock of Mjma 7.0 on 20 March 2005) in Kyushu, Japan. The results of the numerical simulations show the development of a low temperature hydrothermal system as a new fracture zone is formed, in case that there is no volcanic heat source. The results of the simulations up to 100,000 years after formation of the fracture zone show that the higher heat flow and the wider and more permeable fracture zone accelerate the development of the hydrothermal system in the fracture zone. As a result of calculation of up to10 million years, we clarified the evolutional process of the non-volcanic hydrothermal system through the high permeability fracture zone. At

  20. One-pot hydrothermal synthesis and characterization of CoFe{sub 2}O{sub 4} nanoparticles and its application as magnetically recoverable catalyst in oxidation of alcohols by periodic acid

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Bappi; Purkayastha, Debraj Dhar; Dhar, Siddhartha Sankar, E-mail: ssd_iitg@hotmail.com

    2016-09-15

    A novel and facile approach for one-pot synthesis of spinel cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles (NPs) is presented here. The synthesis involves homogeneous chemical precipitation followed by hydrothermal heating, using tributylamine (TBA) as a hydroxylating agent. Polyethylene glycol (PEG) 4000 was used as surfactant. As-synthesized CoFe{sub 2}O{sub 4} NPs were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), N{sub 2} adsorption-desorption isotherm (BET) and vibrating sample magnetometry (VSM). TEM image showed formation of spherical particles of sizes 2–30 nm. These NPs were used as magnetically recoverable catalyst in oxidation of alcohols to their corresponding aldehydes by periodic acid. This oxidative procedure is found to be highly efficient affording products in very high yield and selectivity. The easy magnetic separation of the catalyst and efficient reusability are key features of this methodology. - Highlights: • Hydrothermal synthesis of CoFe{sub 2}O{sub 4} NPs with (C{sub 4}H{sub 9}){sub 3}N as hydroxylating agent. • The TEM images showed the particles to be spherical in shape with sizes 2–30 nm. • CoFe{sub 2}O{sub 4} was used as recyclable catalyst for oxidation of alcohols by periodic acid.

  1. Partial oxidation of TiN coating by hydrothermal treatment and ozone treatment to improve its osteoconductivity

    International Nuclear Information System (INIS)

    Shi, Xingling; Xu, Lingli; Le, Thi Bang; Zhou, Guanghong; Zheng, Chuanbo; Tsuru, Kanji; Ishikawa, Kunio

    2016-01-01

    Dental implants made of pure titanium suffer from abrasion and scratch during routine oral hygiene procedures. This results in an irreversible surface damage, facilitates bacteria adhesion and increases risk of peri-implantitis. To overcome these problems, titanium nitride (TiN) coating was introduced to increase surface hardness of pure titanium. However, the osteoconductivity of TiN is considered to be similar or superior to that of titanium and its alloys and therefore surface modification is necessary. In this study, TiN coating prepared through gas nitriding was partially oxidized by hydrothermal (HT) treatment and ozone (O 3 ) treatment in pure water to improve its osteoconductivity. The effects of HT treatment and O 3 treatment on surface properties of TiN were investigated and the osteoconductivity after undergoing treatment was assessed in vitro using osteoblast evaluation. The results showed that the critical temperature for HT treatment was 100 °C since higher temperatures would impair the hardness of TiN coating. By contrast, O 3 treatment was more effective in oxidizing TiN surfaces, improving its wettability while preserving its morphology and hardness. Osteoblast attachment, proliferation, alkaline phosphatase (ALP) expression and mineralization were improved on oxidized specimens, especially on O 3 treated specimens, compared with untreated ones. These effects seemed to be consequences of partial oxidation, as well as improved hydrophilicity and surface decontamination. Finally, it was concluded that, partially oxidized TiN is a promising coating to be used for dental implant. - Highlights: • TiN coating surface was oxidized by hydrothermal or ozone treatment while preserving its hardness. • Improved wettability, decontamination and interstitial N promoted osteoblast responses. • Partial oxidation makes TiN a promising coating for dental implant with good osteoconductivity.

  2. Partial oxidation of TiN coating by hydrothermal treatment and ozone treatment to improve its osteoconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Xingling [School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003 (China); Department of Biomaterials, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582 (Japan); Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huaian 223003 (China); Xu, Lingli, E-mail: linly311@163.com [School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003 (China); Le, Thi Bang [Department of Mechanical Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Zhou, Guanghong [Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huaian 223003 (China); Zheng, Chuanbo, E-mail: zjust316@163.com [School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003 (China); Tsuru, Kanji; Ishikawa, Kunio [Department of Biomaterials, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582 (Japan)

    2016-02-01

    Dental implants made of pure titanium suffer from abrasion and scratch during routine oral hygiene procedures. This results in an irreversible surface damage, facilitates bacteria adhesion and increases risk of peri-implantitis. To overcome these problems, titanium nitride (TiN) coating was introduced to increase surface hardness of pure titanium. However, the osteoconductivity of TiN is considered to be similar or superior to that of titanium and its alloys and therefore surface modification is necessary. In this study, TiN coating prepared through gas nitriding was partially oxidized by hydrothermal (HT) treatment and ozone (O{sub 3}) treatment in pure water to improve its osteoconductivity. The effects of HT treatment and O{sub 3} treatment on surface properties of TiN were investigated and the osteoconductivity after undergoing treatment was assessed in vitro using osteoblast evaluation. The results showed that the critical temperature for HT treatment was 100 °C since higher temperatures would impair the hardness of TiN coating. By contrast, O{sub 3} treatment was more effective in oxidizing TiN surfaces, improving its wettability while preserving its morphology and hardness. Osteoblast attachment, proliferation, alkaline phosphatase (ALP) expression and mineralization were improved on oxidized specimens, especially on O{sub 3} treated specimens, compared with untreated ones. These effects seemed to be consequences of partial oxidation, as well as improved hydrophilicity and surface decontamination. Finally, it was concluded that, partially oxidized TiN is a promising coating to be used for dental implant. - Highlights: • TiN coating surface was oxidized by hydrothermal or ozone treatment while preserving its hardness. • Improved wettability, decontamination and interstitial N promoted osteoblast responses. • Partial oxidation makes TiN a promising coating for dental implant with good osteoconductivity.

  3. Hydrothermal-reduction synthesis of manganese oxide nanomaterials for electrochemical supercapacitors.

    Science.gov (United States)

    Zhang, Xiong; Chen, Yao; Yu, Peng; Ma, Yanwei

    2010-11-01

    In the present work, amorphous manganese oxide nanomaterials have been synthesized by a common hydrothermal method based on the redox reaction between MnO4(-) and Fe(2+) under an acidic condition. The synthesized MnO2 samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and electrochemical studies. XRD results showed that amorphous manganese oxide phase was obtained. XPS quantitative analysis revealed that the atomic ratio of Mn to Fe was 3.5 in the MnO2 samples. TEM images showed the porous structure of the samples. Electrochemical properties of the MnO2 electrodes were studied using cyclic voltammetry and galvanostatic charge-discharge cycling in 1 M Na2SO4 aqueous electrolyte, which showed excellent pseudocapacitance properties. A specific capacitance of 192 Fg(-1) at a current density of 0.5 Ag(-1) was obtained at the potential window from -0.1 to 0.9 V (vs. SCE).

  4. Microwave assisted facile hydrothermal synthesis and characterization of zinc oxide flower grown on graphene oxide sheets for enhanced photodegradation of dyes

    International Nuclear Information System (INIS)

    Kashinath, L.; Namratha, K.; Byrappa, K.

    2015-01-01

    Graphical abstract: - Highlights: • Synthesis of hybrid ZnO–GO nanocomposite via microwave assisted facile hydrothermal method. • The in situ flower like ZnO nano particles are densely decorated and anchored on the surfaces of graphene oxide sheets. • They exhibited high adsorption measurement, increase in surface area and meso/micro porous in nature. • The structure and morphology plays a vital role in enhancing the photo response activities of degradation of dyes. - Abstract: Microwave assisted hydrothermal process of synthesis of ZnO–GO nanocomposite by using ZnCl 2 and NaOH as precursors is being reported first time. In this investigation, a novel route to study on synthesis, interaction, kinetics and mechanism of hybrid zinc oxide–graphene oxide (ZnO–GO) nanocomposite using microwave assisted facile hydrothermal method has been reported. The results shows that the ZnO–GO nanocomposite exhibits an enhancement and acts as stable photo-response degradation performance of Brilliant Yellow under the UV light radiation better than pure GO and ZnO nanoparticles. The microwave exposure played a vital role in the synthesis process, it facilitates with well define crystalline structure, porosity and fine morphology of ZnO/GO nanocomposite. Different molar concentrations of ZnO precursors doped to GO sheets were been synthesized, characterized and their photodegradation performances were investigated. The optical studies by UV–vis and Photo Luminescence shows an increase in band gap of nanocomposite, which added an advantage in photodegradation performance. The in situ flower like ZnO nano particles are were densely decorated and anchored on the surfaces of graphene oxide sheets which aids in the enhancement of the surface area, adsorption, mass transfer of dyes and evolution of oxygen species. The nanocomposite having high surface area and micro/mesoporous in nature. This structure and morphology supports significantly in increasing photo catalytic

  5. Displaying of formation of atomic clusters in radioactive lutetium oxide films

    International Nuclear Information System (INIS)

    Kartashov, V.M.; Troitskata, A.G.

    2002-01-01

    We earlier reported the results of our investigations of electron spectra of radioactive lutetium oxide films on the magnetic β-spectrometer π√2 with momentum resolution 0.04-0.1 %. The researches were conducted many times during ≅15 years, and a lot of the data has resulted us in the conclusion about possible formation of toroidal structures in these films. It is impossible to consider a radioactive oxide layer, deposited on metallic foil support having the electric potential of its foil support on all its depth because of its high dielectric properties. There is the potential gradient (≅10 6 -10 7 V/c) on its depth because of constant outflow of electrons from its surface. Our experiments included in itself also giving a potential, accelerating for electrons, to the metallic foil support. In this case we received a capability to watch the segments of auto emission and low energy Auger electrons. The analysis of the threshold relations and behavior (in time) of the M 4 NN and M 5 NN Auger electron intensities have resulted us in the conclusion that the greatest contribution to structure formations of these oxide films is introduced by electrons of M 4 -, M 5 - and N-sub-shell of ytterbium atoms (being formed as the result of radioactive decay of the lutetium fraction with half-times from 140 to 1200 days). The auto emission electron spectrum testifies to composite scission of M4 and M5 stationary states of the atom. It is possible to offer as the explanation a quantum flat rotator. If the particle orbit un-compresses the solenoid with a magnetic flux Φ, power condition of a rotator E m =h 2 (m-Φ/Φ 0 ) 2 /(8πm e R 0 2 ), where m e - electron mass, R 0 - an electron orbit radius; m - a magnetic quantum number, a Φ 0 =h c/e - a quantum of magnetic flux. At a quantum flow Φ=nΦ 0 (n - integer) and the power spectrum does not differ from a spectrum without the solenoid. The behavior (in time) of the experimental auto emission electron spectrum responds

  6. Development and evaluation of a tracer-injection hydrothermal technique for studies of waste package interactions

    International Nuclear Information System (INIS)

    Jones, T.E.; Coles, D.G.; Britton, R.C.; Burnell, J.R.

    1986-11-01

    A tracer-injection system has been developed for use in characterizing reactions of waste package materials under hydrothermal conditions. High-pressure liquid chromatographic instrumentation has been coupled with Dickson-type rocking autoclaves to allow injection of selected components into the hydrothermal fluid while maintaining run temperature and pressure. Hydrothermal experiments conducted using this system included the interactions of depleted uranium oxide and Zircaloy-4 metal alloy discs with trace levels of 99 Tc and non-radioactive Cs and I in a simulated groundwater matrix. After waste-package components and simulated waste forms were pre-conditioned in the autoclave systems (usually 4 to 6 weeks), known quantities of tracer-doped fluids were injected into the autoclaves' gold reaction bag at run conditions. Time-sequenced sampling of the hydrothermal fluid providing kinetic data on the reactions of tracers with waste package materials. The injection system facilitates the design of experiments that will better define ''steady-state'' fluid compositions in hydrothermal reactions. The injection system will also allow for the formation of tracer-bearing solid phases in detectable quantities

  7. The rapid size- and shape-controlled continuous hydrothermal synthesis of metal sulphide nanomaterials

    Science.gov (United States)

    Dunne, Peter W.; Starkey, Chris L.; Gimeno-Fabra, Miquel; Lester, Edward H.

    2014-01-01

    Continuous flow hydrothermal synthesis offers a cheap, green and highly scalable route for the preparation of inorganic nanomaterials which has predominantly been applied to metal oxide based materials. In this work we report the first continuous flow hydrothermal synthesis of metal sulphide nanomaterials. A wide range of binary metal sulphides, ZnS, CdS, PbS, CuS, Fe(1-x)S and Bi2S3, have been synthesised. By varying the reaction conditions two different mechanisms may be invoked; a growth dominated route which permits the formation of nanostructured sulphide materials, and a nucleation driven process which produces nanoparticles with temperature dependent size control. This offers a new and industrially viable route to a wide range of metal sulphide nanoparticles with facile size and shape control.Continuous flow hydrothermal synthesis offers a cheap, green and highly scalable route for the preparation of inorganic nanomaterials which has predominantly been applied to metal oxide based materials. In this work we report the first continuous flow hydrothermal synthesis of metal sulphide nanomaterials. A wide range of binary metal sulphides, ZnS, CdS, PbS, CuS, Fe(1-x)S and Bi2S3, have been synthesised. By varying the reaction conditions two different mechanisms may be invoked; a growth dominated route which permits the formation of nanostructured sulphide materials, and a nucleation driven process which produces nanoparticles with temperature dependent size control. This offers a new and industrially viable route to a wide range of metal sulphide nanoparticles with facile size and shape control. Electronic supplementary information (ESI) available: Experimental details, refinement procedure, fluorescence spectra of ZnS samples. See DOI: 10.1039/c3nr05749f

  8. Hydrothermally-induced changes in mineralogy and magnetic properties of oxidized A-type granites

    Science.gov (United States)

    Nédélec, Anne; Trindade, Ricardo; Peschler, Anne; Archanjo, Carlos; Macouin, Mélina; Poitrasson, Franck; Bouchez, Jean-Luc

    2015-01-01

    The changes in magnetic mineralogy due to the hydrothermal alteration of A-type granitic rocks have been thoroughly investigated in samples from the granite of Tana (Corsica, France), and compared with other A-type granites: Meruoca (NE Brazil), Bushveld (South Africa), Mount Scott (Wichita Mountains, Oklahoma, USA) and the stratoid hypersolvus granites of Madagascar. The altered red-colored samples and their non-altered equivalents were magnetically characterized by means of magnetic susceptibility measurements, hysteresis loops, remanent coercivity spectra, and Lowrie test. It is shown that hydrothermalization in magnetite-bearing granites is related to the formation of fine-grained magnetite and hematite, and to coeval depletion in the content of primary low-coercive coarse-grained magnetite. These mineralogical changes give typical rock magnetic signatures, namely lower susceptibility magnitudes and anisotropy degrees, prolate AMS (anisotropy of magnetic susceptibility) fabrics and increased coercivities. Optical microscopy and SEM (scanning electronic microscopy) images suggest that the orientation of the secondary magnetic minerals is related to fluid-pathways and micro-fractures formed during the hydrothermal event and therefore may be unrelated to magma emplacement and crystallization fabrics. Changes in magnetic mineralogy and grain-size distribution have also to be considered for any paleomagnetic and iron isotope studies in granites.

  9. Zinc stannate nanostructures: hydrothermal synthesis

    International Nuclear Information System (INIS)

    Baruah, Sunandan; Dutta, Joydeep

    2011-01-01

    Nanostructured binary semiconducting metal oxides have received much attention in the last decade owing to their unique properties rendering them suitable for a wide range of applications. In the quest to further improve the physical and chemical properties, an interest in ternary complex oxides has become noticeable in recent times. Zinc stannate or zinc tin oxide (ZTO) is a class of ternary oxides that are known for their stable properties under extreme conditions, higher electron mobility compared to its binary counterparts and other interesting optical properties. The material is thus ideal for applications from solar cells and sensors to photocatalysts. Among the different methods of synthesizing ZTO nanostructures, the hydrothermal method is an attractive green process that is carried out at low temperatures. In this review, we summarize the conditions leading to the growth of different ZTO nanostructures using the hydrothermal method and delve into a few of its applications reported in the literature. (topical review)

  10. Manipulating the self-assembling process to obtain control over the morphologies of copper oxide in hydrothermal synthesis and creating pores in the oxide architecture.

    Science.gov (United States)

    Zhong, Ziyi; Ng, Vivien; Luo, Jizhong; Teh, Siew-Pheng; Teo, Jaclyn; Gedanken, Aharon

    2007-05-22

    Copper oxide with various morphologies was synthesized by the hydrolysis of Cu(ac)2 with urea under mild hydrothermal conditions. In the synthesis, a series of organic amines with one or two amine groups (monoamine and diamine), including isobutylamine, octylamine (OLA), dodecylamine, octadecylamine (monoamines), ethylenediamine dihydrochloride, and hexamethylenediamine (diamines), was used as the "structure-directing agent". The monoamines led to the formation of one-dimensional (1D) aggregates of the copper oxide precursor particles (Pre-CuO), while the diamines led to the formation of two-dimensional (2D) aggregates. In both cases, the shorter carbon-chain amine molecules showed a stronger structure-directing function than that of the longer carbon-chain amine molecules. Next, in a series of syntheses, OLA was selected for further study, and the experimental parameters were systematically manipulated. When the hydrolysis was adjusted to a very slow rate by coupling the hydrolysis reaction with an esterification reaction, 1D aggregates of Pre-CuO were formed; when the hydrolysis rate was in the middle range, spherical Pre-CuO architectures composed of smaller linear aggregates were formed. However, under the high hydrolysis rates achieved by increasing the precipitation agent (urea) or by conducting the reaction at high temperatures (>/=120 degrees C), only Pre-CuO nanoparticles with a featureless morphology were formed. The formed spherical Pre-CuO architectures can be converted to a porous structure (CuOx) after removing the OLA molecules via calcination. Compared to the 1D and 2D aggregates, this porous architecture is highly thermally stable and did not collapse even after calcination at 500 degrees C. Preliminary results showed that the porous structure can be used both as a catalyst support and as a catalyst for the oxidation of CO at low temperatures.

  11. Hydrothermal synthesis of 3D urchin-like Ag/TiO{sub 2}/reduced graphene oxide composites and its enhanced photocatalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yuhuan; Zhou, Yi, E-mail: zhouyihn@aliyun.com, E-mail: zhouyihn@163.com; Yang, Luyue [Changsha University of Science and Technology, Department of Chemical and Biological Engineering (China); Wang, Yutang [Changsha University, Hunan Province Key Laboratory of Applied Environmental Photocatalysis (China); Wu, Yiwei; Li, Chaocheng; Lu, Jun [Changsha University of Science and Technology, Department of Chemical and Biological Engineering (China)

    2016-09-15

    Innovative 3D urchin-like ternary TiO{sub 2} composites, which combine Ag nanoparticles with graphene, have been successfully synthesized through a simple hydrothermal method. This process employed nontoxic and mild dihydrate sodium citrate as a reducing agent. During the hydrothermal process, graphene oxide and AgNO{sub 3} were reduced to reduced graphene oxide (RGO) and Ag, respectively. Subsequently, they were grown on the surface of rutile TiO{sub 2} with a 3D urchin-like microsphere (1.5 μm). The as-prepared 3D urchin-like composites were characterized by X-ray diffraction, SEM and TEM. These techniques were also employed to ensure the morphology of urchin-like and rutile phase of TiO{sub 2}. FT-IR, Raman spectroscopy and XPS characterization demonstrated the successful reduction in AgNO{sub 3} and graphite oxide to metallic Ag and RGO. The UV–visible spectrum of the ternary composite displayed strong absorption in the visible light region, which was attributed to the efficient electron transport of well-dispersed Ag nanoparticles (20–40 nm) and the formation of Ti–O–C bond between graphene and titania. The synthesized urchin-like ternary composite exhibited enhanced photocatalytic activity (98.7 %) for Rhodamine B degradation. This work provides a very convenient chemical route to the scalable production of Ag/TiO{sub 2}/RGO ternary composite photocatalyst for potential applications in solving the environmental problems and energy issues. Also, the proposed mechanism underlying the photocatalytic degradation of Rhodamine B dyes was discussed.Graphical AbstractFourier transform infrared (FTIR) spectra of pure UT, UTG and Ag–UTG composite. The scheme of proposed mechanism for the photocatalytic degradation of RhB on Ag–UTG.

  12. Auto-oscillations of temperature and defect density in impure crystals under irradiation

    International Nuclear Information System (INIS)

    Selishchev, P.A.; Sugakov, V.I.

    1990-01-01

    Appearance of auto-oscillations in temperature and defect density of impurity crystals under irradiation is studied. It is shown that at certain critical parameters stationary distribution of temperature and defect density of the sample irradiated becomes unstable as regards the formation of temporal dissipative structures: auto-oscillations of temperature and defect density. Critical parameters are determined (the rate of defect formation, temperature of crystal environment, etc.) and the frequency of appearing auto-oscillations, its dependence on irradiation conditions and crystal properties are found

  13. The Durban Auto Cluster

    DEFF Research Database (Denmark)

    Lorentzen, Jochen; Robbins, Glen; Barnes, Justin

    2004-01-01

    The paper describes the formation of the Durban Auto Cluster in the context of trade liberalization. It argues that the improvement of operational competitiveness of firms in the cluster is prominently due to joint action. It tests this proposition by comparing the gains from cluster activities...

  14. The Characterization of Lithium Titanate Microspheres Synthesized by a Hydrothermal Method

    Directory of Open Access Journals (Sweden)

    Wei Liu

    2013-01-01

    Full Text Available Lithium titanate microspheres were synthesized by a hydrothermal method. The structure and morphology of samples were characterized by X-ray diffraction, infrared spectroscopy, Raman spectroscopy, scanning electron microscopy, and transmission electron microscopy, respectively. The specific surface area and average pore diameter of samples were studied by N2 adsorption-desorption isotherms. The results indicated that amorphous phase changed to lithium titanium oxide hydrate, accompanying mesopores formed between agglomerated primary particles in hydrothermal reaction. After sintering, mesoporous Li4Ti5O12 microspheres assembled by nanosized particle were obtained and had a diameter of about 400–700 nm. Then, a possible formation process analogous to the Kirkendall effect was proposed. Moreover, the effect of sintering temperature on the electrochemical properties of Li4Ti5O12 microspheres was investigated.

  15. Fundamental mechanisms and reactions in non-catalytic subcritical hydrothermal processes: A review.

    Science.gov (United States)

    Yousefifar, Azadeh; Baroutian, Saeid; Farid, Mohammed M; Gapes, Daniel J; Young, Brent R

    2017-10-15

    The management and disposal of solid waste is of increasing concern across the globe. Hydrothermal processing of sludge has been suggested as a promising solution to deal with the considerable amounts of sludge produced worldwide. Such a process not only degrades organic compounds and reduces waste volume, but also provides an opportunity to recover valuable substances. Hydrothermal processing comprises two main sub-processes: wet oxidation (WO) and thermal hydrolysis (TH), in which the formation of various free radicals results in the production of different intermediates. Volatile fatty acids (VFAs), especially acetic acid, are usually the main intermediates which remain as a by-product of the process. This paper aims to review the fundamental mechanism for hydrothermal processing of sludge, and the formation of different free radicals and intermediates therein. In addition, the proposed kinetic models for the two processes (WO and TH) from the literature are reviewed and the advantages and disadvantages of each model are outlined. The effect of mass transfer as a critical component of the design and development of the processes, which has been neglected in most of these proposed models, is also reviewed, and the effect of influencing parameters on the processes' controlling step (reaction or mass transfer) is discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Chemical fingerprint of iron oxides related to iron enrichment of banded iron formation from the Cauê Formation - Esperança Deposit, Quadrilátero Ferrífero, Brazil: a laser ablation ICP-MS study

    Directory of Open Access Journals (Sweden)

    Lucilia Aparecida Ramos de Oliveira

    Full Text Available Chemical signatures of iron oxides from dolomitic itabirite and high-grade iron ore from the Esperança deposit, located in the Quadrilátero Ferrífero, indicate that polycyclic processes involving changing of chemical and redox conditions are responsible for the iron enrichment on Cauê Formation from Minas Supergroup. Variations of Mn, Mg and Sr content in different generations of iron oxides from dolomitic itabirite, high-grade iron ore and syn-mineralization quartz-carbonate-hematite veins denote the close relationship between high-grade iron ore formation and carbonate alteration. This indicates that dolomitic itabirite is the main precursor of the iron ore in that deposit. Long-lasting percolation of hydrothermal fluids and shifts in the redox conditions have contributed to changes in the Y/Ho ratio, light/heavy rare earth elements ratio and Ce anomaly with successive iron oxide generations (martite-granular hematite, as well as lower abundance of trace elements including rare earth elements in the younger specularite generations.

  17. Effects of heat-flow and hydrothermal fluids from volcanic intrusions on authigenic mineralization in sandstone formations

    Directory of Open Access Journals (Sweden)

    Wolela Ahmed

    2002-06-01

    Full Text Available Volcanic intrusions and hydrothermal activity have modified the diagenetic minerals. In the Ulster Basin, UK, most of the authigenic mineralization in the Permo-Triassic sandstones pre-dated tertiary volcanic intrusions. The hydrothermal fluids and heat-flow from the volcanic intrusions did not affect quartz and feldspar overgrowths. However, clay mineral-transformation, illite-smectite to illite and chlorite was documented near the volcanic intrusions. Abundant actinolite, illite, chlorite, albite and laumontite cementation of the sand grains were also documented near the volcanic intrusions. The abundance of these cementing minerals decreases away from the volcanic intrusions.In the Hartford Basin, USA, the emplacement of the volcanic intrusions took place simultaneous with sedimentation. The heat-flow from the volcanic intrusions and hydrothermal activity related to the volcanics modified the texture of authigenic minerals. Microcrystalline mosaic albite and quartz developed rather than overgrowths and crystals near the intrusions. Chlorite clumps and masses were also documented with microcrystalline mosaic albite and quartz. These features are localized near the basaltic intrusions. Laumontite is also documented near the volcanic intrusions. The reservoir characteristics of the studied sandstone formations are highly affected by the volcanic and hydrothermal fluids in the Hartford and the Ulster Basin. The porosity dropped from 27.4 to zero percent and permeability from 1350 mD to 1 mD.

  18. Amidation of single-walled carbon nanotubes by a hydrothermal process for the electrooxidation of nitric oxide

    International Nuclear Information System (INIS)

    Kan Kan; Xia Tingliang; Li Li; Bi Hongmei; Fu Honggang; Shi Keying

    2009-01-01

    Single-walled carbon nanotubes (SWCNTs) have been amidated by hydrothermal treatment with different aliphatic amines. The amido groups modified on the surface of the SWCNTs were characterized by Fourier transform infrared spectroscopy. The electrooxidation of nitric oxide (NO) at the modified electrodes of amidated SWCNTs was investigated. The modified electrodes of amidated SWCNTs exhibited different electrocatalytic activity for NO when different aliphatic amines were being used. The electrode amidated by ammonia has the highest activity, which is 1.8 times value of the SWCNT modified electrode. The electrocatalytic activity of the amidated SWCNT modified electrodes depends on the length of the alkyl groups. The results demonstrate that hydrothermal treatment is an efficient way to modify SWCNTs with amines, and the reaction rate of NO electrooxidation can be changed by the amidation of SWCNTs.

  19. Synthesis of indium oxide cubic crystals by modified hydrothermal route for application in room temperature flexible ethanol sensors

    International Nuclear Information System (INIS)

    Seetha, M.; Meena, P.; Mangalaraj, D.; Masuda, Yoshitake; Senthil, K.

    2012-01-01

    Highlights: ► For the first time HMT is used in the preparation of indium oxide. ► HMT itself acts as base for the precursor and results in cubic indium hydroxide. ► Modified hydrothermal route used for the preparation of cubic indium oxide crystals. ► As a new approach a composite film synthesized with prepared indium oxide. ► Film showed good response to ethanol vapours with quick response and recovery times. - Abstract: Indium oxide cubic crystals were prepared by using hexamethylenetetramine and indium chloride without the addition of any structure directing agents. The chemical route followed in the present work was a modified hydrothermal synthesis. The average crystallite size of the prepared cubes was found to be 40 nm. A blue emission at 418 nm was observed at room temperature when the sample was excited with a 380 nm Xenon lamp. This emission due to oxygen vacancies made the material suitable for gas sensing applications. The synthesized material was made as a composite film with polyvinyl alcohol which was more flexible than the films prepared on glass substrates. This flexible film was used as a sensing element and tested with ethanol vapours at room temperature. The film showed fast response as well as recovery to ethanol vapours with a sensor response of about 1.4 for 100 ppm of the gas.

  20. Myocarditis in auto-immune or auto-inflammatory diseases.

    Science.gov (United States)

    Comarmond, Cloé; Cacoub, Patrice

    2017-08-01

    Myocarditis is a major cause of heart disease in young patients and a common precursor of heart failure due to dilated cardiomyopathy. Some auto-immune and/or auto-inflammatory diseases may be accompanied by myocarditis, such as sarcoidosis, Behçet's disease, eosinophilic granulomatosis with polyangiitis, myositis, and systemic lupus erythematosus. However, data concerning myocarditis in such auto-immune and/or auto-inflammatory diseases are sparse. New therapeutic strategies should better target the modulation of the immune system, depending on the phase of the disease and the type of underlying auto-immune and/or auto-inflammatory disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Process integration and optimization of a solid oxide fuel cell – Gas turbine hybrid cycle fueled with hydrothermally gasified waste biomass

    International Nuclear Information System (INIS)

    Facchinetti, Emanuele; Gassner, Martin; D’Amelio, Matilde; Marechal, François; Favrat, Daniel

    2012-01-01

    Due to its suitability for using wet biomass, hydrothermal gasification is a promising process for the valorization of otherwise unused waste biomass to synthesis gas and biofuels. Solid oxide fuel cell (SOFC) based hybrid cycles are considered as the best candidate for a more efficient and clean conversion of (bio) fuels. A significant potential for the integration of the two technologies is expected since hydrothermal gasification requires heat at 673–773 K, whereas SOFC is characterized by heat excess at high temperature due to the limited electrochemical fuel conversion. This work presents a systematic process integration and optimization of a SOFC-gas turbine (GT) hybrid cycle fueled with hydrothermally gasified waste biomass. Several design options are systematically developed and compared through a thermodynamic optimization approach based on First Law and exergy analysis. The work demonstrates the considerable potential of the system that allows for converting wet waste biomass into electricity at a First Law efficiency of up to 63%, while simultaneously enabling the separation of biogenic carbon dioxide for further use or sequestration. -- Highlights: ► Hydrothermal gasification is a promising process for the valorization of waste wet biomass. ► Solid Oxide Fuel Cell – Gas Turbine hybrid cycle emerges as the best candidates for conversion of biofuels. ► A systematic process integration and optimization of a SOFC-GT hybrid cycle fuelled with hydrothermally gasified biomass is presented. ► The system may convert wet waste biomass to electricity at a First Law efficiency of 63% while separating the biogenic carbon dioxide. ► The process integration enables to improve the First Law efficiency of around 4% with respect to a non-integrated system.

  2. Hydrothermal synthesis and formation mechanism of hexagonal yttrium hydroxide fluoride nanobundles

    International Nuclear Information System (INIS)

    Tian, Li; Sun, QiLiang; Zhao, RuiNi; He, HuiLin; Xue, JianRong; Lin, Jun

    2013-01-01

    Graphical abstract: The formation of yttrium hydroxide fluorides nanobundles can be expressed as a precipitation transformation from cubic NaYF 4 to hexagonal NaYF 4 and to hexagonal Y(OH) 2.02 F 0.98 owing to ion exchange. - Highlights: • Novel Y(OH) 2.02 F 0.98 nanobundles have been successfully prepared by hydrothermal method. • The branched nanobundles composed of numerous oriented-attached nanoparticles has been studied. • The growth mechanism is proposed to be ion exchange and precipitation transformation. - Abstract: This article presents the fabrication of hexagonal yttrium hydroxide fluoride nanobundles via one-pot hydrothermal process, using yttrium nitrate, sodium hydroxide and ammonia fluoride as raw materials to react in propanetriol solvent. The X-ray diffraction pattern clearly reveals that the grown product is pure yttrium hydroxide fluoride, namely Y(OH) 2.02 F 0.98 . The morphology and microstructure of the synthesized product is testified to be nanobundles composed of numerous oriented-attached nanoparticles as observed from the field emission scanning electron microscopy (FESEM). The chemical composition was analyzed by the energy dispersive spectrum (EDS), confirming the phase transformation of the products which was clearly consistent with the result of XRD analysis. It is proposed that the growth of yttrium hydroxide fluoride nanobundles be attributed to ion exchange and precipitation transformation

  3. AutoCAD 2008 and AutoCAD LT 2008 Bible

    CERN Document Server

    Finkelstein, Ellen

    2011-01-01

    "Whether you're new to AutoCAD or a veteran, you will undoubtedly find this book to be an excellent resource."-- Abhi Singh, AutoCAD Product Manager, Autodesk, Inc.Here's the book that makes AutoCAD approachableEven the people at Autodesk look to Ellen Finkelstein for AutoCAD training, so who better to teach you about AutoCAD 2008? This comprehensive guide brings veterans up to speed on AutoCAD updates and takes novices from the basics to programming in AutoLISP(r) and VBA. Every feature is covered in a logical order, and with the Quick Start chapter, you'll be creating drawings on your very f

  4. Shortening of the Lactobacillus paracasei subsp. paracasei BGNJ1-64 AggLb protein switches its activity from auto-aggregation to biofilm formation

    Directory of Open Access Journals (Sweden)

    Marija Miljković

    2016-09-01

    Full Text Available AggLb is the largest (318.6 kDa aggregation-promoting protein of Lactobacillus paracasei subsp. paracasei BGNJ1-64 responsible for forming large cell aggregates, which causes auto-aggregation, collagen binding and pathogen exclusion in vitro. It contains an N-terminus leader peptide, followed by six successive collagen binding domains, 20 successive repeats (CnaB-like domains and an LPXTG sorting signal at the C-terminus for cell wall anchoring. Experimental information about the roles of the domains of AggLb is currently unknown. To define the domain that confers cell aggregation and the key domains for interactions of specific affinity between AggLb and components of the extracellular matrix (ECM, we constructed a series of variants of the aggLb gene and expressed them in Lactococcus lactis subsp. lactis BGKP1-20 using a lactococcal promoter. All of the variants contained a leader peptide, an inter collagen binding-CnaB domain region (used to raise an anti-AggLb antibody, an anchor domain and a different number of collagen binding and CnaB-like domains. The role of the collagen binding repeats of the N-terminus in auto-aggregation and binding to collagen and fibronectin was confirmed. Deletion of the collagen binding repeats II, III and IV resulted in a loss of the strong auto-aggregation, collagen and fibronectin binding abilities whereas the biofilm formation capability was increased. The strong auto-aggregation, collagen and fibronectin binding abilities of AggLb were negatively correlated to biofilm formation.

  5. Rapid Formation of 1D Titanate Nanotubes Using Alkaline Hydrothermal Treatment and Its Photocatalytic Performance

    Directory of Open Access Journals (Sweden)

    Chin Wei Lai

    2015-01-01

    Full Text Available One-dimensional (1D titanate nanotubes (TNT were successfully synthesized using alkaline hydrothermal treatment of commercial TiO2 nanopowders in a Teflon lined stainless steel autoclave at 150°C. The minimum time required for the formation of the titanate nanotubes was 9 h significantly. After the hydrothermal processing, the layered titanate was washed with acid and water in order to control the amount of Na+ ions remaining in the sample solutions. In this study, the effect of different reaction durations in a range of 3 h to 24 h on the formation of nanotubes was carried out. As the reaction duration is extended, the changes in structure from particle to tubular shapes of alkaline treated TiO2 were obtained via scanning electron microscope (SEM. Also, the significant impact on the phase transformation and crystal structure of TNT was characterized through XRD and Raman analysis. Indeed, the photocatalytic activity of TNT was investigated through the degradation of methyl orange aqueous solution under the ultraviolet light irradiation. As a result, TNT with reaction duration at 6 h has a better photocatalytic performance than other samples which was correlated to the higher crystallinity of the samples as shown in XRD patterns.

  6. The effect of iridium(III) ions on the formation of iron oxides in a highly alkaline medium

    Energy Technology Data Exchange (ETDEWEB)

    Krehula, Stjepko, E-mail: krehul@irb.hr [Division of Materials Chemistry, Ruder Boskovic Institute, PO Box 180, HR-10002 Zagreb (Croatia); Music, Svetozar [Division of Materials Chemistry, Ruder Boskovic Institute, PO Box 180, HR-10002 Zagreb (Croatia)

    2012-03-05

    Highlights: Black-Right-Pointing-Pointer Study of the influence of Ir{sup 3+} ions on the precipitation of iron oxides. Black-Right-Pointing-Pointer Ir{sup 3+} doping in {alpha}-FeOOH caused significant changes in the microstructural properties. Black-Right-Pointing-Pointer Ir{sup 3+} doping in {alpha}-Fe{sub 2}O{sub 3} caused an increase in the Morin transition temperature. Black-Right-Pointing-Pointer Ir{sup 3+} ions caused a phase transformation {alpha}-(Fe,Ir)OOH {yields} {alpha}-(Fe,Ir){sub 2}O{sub 3} {yields} Fe{sub 3}O{sub 4} + Ir{sup 0}. - Abstract: The effect of the presence of Ir{sup 3+} ions on the formation of iron oxides in a highly alkaline precipitation system was investigated using X-ray powder diffraction (XRD), {sup 57}Fe Moessbauer and FT-IR spectroscopies, field emission scanning electron microscopy (FE-SEM) and energy dispersive X-ray spectroscopy (EDS). Monodispersed lath-like {alpha}-FeOOH (goethite) particles precipitated by hydrothermal treatment in a highly alkaline medium with the addition of tetramethylammonium hydroxide (TMAH) were used as reference material. The presence of Ir{sup 3+} ions in the precipitation system strongly influenced the phase composition, magnetic, structural and morphological properties of obtained samples. The formation of {alpha}-Fe{sub 2}O{sub 3} (hematite) along with {alpha}-FeOOH in the first stage of hydrothermal treatment and the transformation of {alpha}-FeOOH and {alpha}-Fe{sub 2}O{sub 3} to Fe{sub 3}O{sub 4} (magnetite) by a longer hydrothermal treatment was caused by the presence of Ir{sup 3+} ions. Ir{sup 3+} for Fe{sup 3+} substitution in the structure of {alpha}-FeOOH brought about changes in unit-cell dimensions, crystallinity, particle size and shape, hyperfine magnetic field and infrared bands positions. Ir{sup 3+} for Fe{sup 3+} substitution in the structure of {alpha}-Fe{sub 2}O{sub 3} led to an increase in the temperature of the Morin transition; Moessbauer spectroscopy showed the presence of

  7. Native oxide formation on pentagonal copper nanowires: A TEM study

    Science.gov (United States)

    Hajimammadov, Rashad; Mohl, Melinda; Kordas, Krisztian

    2018-06-01

    Hydrothermally synthesized copper nanowires were allowed to oxidize in air at room temperature and 30% constant humidity for the period of 22 days. The growth of native oxide layer was followed up by high-resolution transmission electron microscopy and diffraction to reveal and understand the kinetics of the oxidation process. Copper oxides appear in the form of differently oriented crystalline phases around the metallic core as a shell-like layer (Cu2O) and as nanoscopic islands (CuO) on the top of that. Time dependent oxide thickness data suggests that oxidation follows the field-assisted growth model at the beginning of the process, as practically immediately an oxide layer of ∼2.8 nm thickness develops on the surface. However, after this initial rapid growth, the local field attenuates and the classical parabolic diffusion limited growth plays the main role in the oxidation. Because of the single crystal facets on the side surface of penta-twinned Cu nanowires, the oxidation rate in the diffusion limited regime is lower than in polycrystalline films.

  8. Molecular isotopic evidence for anaerobic oxidation of methane in deep-sea hydrothermal vent environment in Okinawa Trough

    Science.gov (United States)

    Uchida, M.; Takai, K.; Inagaki, F.

    2003-04-01

    Large amount of methane in anoxic marine sediments as well as cold seeps and hydrothermal vents is recycled through for an anoxic oxidation of methane processes. Now that combined results of field and laboratory studies revealed that microbiological activity associated with syntrophic consortium of archaea performing reversed methanogenesis and sulfate-reducing bacteria is significant roles in methane recycling, anaerobic oxidation of methane (AOM). In this study, we examined the diversity of archaeal and bacterial assemblages of AOM using compound-specific stable carbon isotopic and phylogenetic analyses. "Iheya North" in Okinawa Trough is sediment-rich, back arc type hydrothermal system (27^o47'N, 126^o53'E). Sediment samples were collected from three sites where are "bubbling sites", yellow-colored microbial mats are formed with continuous bubbling from the seafloor bottom, vent mussel's colonies site together with slowly venting and simmering, and control site off 100 m distance from thermal vent. This subsea floor structure has important effect in the microbial ecosystem and interaction between their activity and geochemical processes in the subseafloor habitats. Culture-independent, molecular biological analysis clearly indicated the presence of thermophilic methanogens in deeper area having higher temperatures and potential activity of AMOs consortium in the shallower area. AMO is composed with sulfate-reducing bacterial components (Desulfosarcina spp.) and anoxic methane oxidizing archaea (ANME-2). These results were consistent with the results of compound-specific carbon analysis of archaeal biomarkers. They showed extremely depleted 13C contents (-80 ppm ˜ -100 ppm), which also appeared to be capable of directly oxidizing methane.

  9. Optical and structural properties of ZnO nanorods grown on graphene oxide and reduced graphene oxide film by hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Alver, U., E-mail: alver@ksu.edu.tr [Department of Physics, Kahramanmaras Sutcu Imam University, K. Maras 46100 (Turkey); Zhou, W.; Belay, A.B. [Nanoscience and Technology Center, University of Central Florida, Orlando, FL 32816 (United States); Florida Solar Energy Center, Cocoa, FL 32922 (United States); Krueger, R. [Nanoscience and Technology Center, University of Central Florida, Orlando, FL 32816 (United States); Davis, K.O.; Hickman, N.S. [Nanoscience and Technology Center, University of Central Florida, Orlando, FL 32816 (United States); Florida Solar Energy Center, Cocoa, FL 32922 (United States)

    2012-01-15

    ZnO nanorods were grown on graphene oxide (GO) and reduced graphene oxide (RGO) films with seed layers by using simple hydrothermal method. The GO films were deposited by spray coating and then annealed at 400 Degree-Sign C in argon atmosphere to obtain RGO films. The optical and structural properties of the ZnO nanorods were systematically studied by scanning electron microscopy (SEM), X-ray diffraction (XRD) and ultraviolet-visible spectroscopy. The XRD patterns and SEM images show that without a seed layer, no ZnO nanorod deposition occurs on GO or RGO films. Transmittance of ZnO nanorods grown on RGO films was measured to be approximately 83% at 550 nm. Furthermore, while transmittance of RGO films increases with ZnO nanorod deposition, transmittance of GO decreases.

  10. AutoCAD 2014 and AutoCAD LT 2014

    CERN Document Server

    Gladfelter, Donnie

    2013-01-01

    A step-by-step tutorial introduction to AutoCAD As the only book to teach AutoCAD using a continuous tutorial which allows you to follow along sequentially or jump in at any exercise by downloading the drawing files, this Autodesk Official Press book is ideal for the AutoCAD novice. Industry expert and AutoCAD guru Donnie Gladfelter walks you through the powerful features of AutoCAD, provides you with a solid foundation of the basics, and shares the latest industry standards and techniques. The hands-on tutorial project inspired by real-world workflows that runs throughout the book

  11. Constraints on superoxide mediated formation of manganese oxides

    Directory of Open Access Journals (Sweden)

    Deric R. Learman

    2013-09-01

    Full Text Available Manganese (Mn oxides are among the most reactive sorbents and oxidants within the environment, where they play a central role in the cycling of nutrients, metals, and carbon. Recent discoveries have identified superoxide (O2- (both of biogenic and abiogenic origin as an effective oxidant of Mn(II leading to the formation of Mn oxides. Here we examined the conditions under which abiotically produced superoxide led to oxidative precipitation of Mn and the solid-phases produced. Oxidized Mn, as both aqueous Mn(III and Mn(III/IV oxides, was only observed in the presence of active catalase, indicating that hydrogen peroxide, a product of the reaction of O2- with Mn(II, inhibits the oxidation process presumably through the reduction of Mn(III. Citrate and pyrophosphate increased the yield of oxidized Mn but decreased the amount of Mn oxide produced via formation of Mn(III-ligand complexes. While complexing ligands played a role in stabilizing Mn(III, they did not eliminate the inhibition of net Mn(III formation by H2O2. The Mn oxides precipitated were highly disordered colloidal hexagonal birnessite, similar to those produced by biotically generated superoxide. Yet, in contrast to the large particulate Mn oxides formed by biogenic superoxide, abiotic Mn oxides did not ripen to larger, more crystalline phases. This suggests that the deposition of crystalline Mn oxides within the environment requires a biological, or at least organic, influence. This work provides the first direct evidence that, under conditions relevant to natural waters, oxidation of Mn(II by superoxide can occur and lead to formation of Mn oxides. For organisms that oxidize Mn(II by producing superoxide, these findings may also point to other microbially mediated processes, in particular enzymatic hydrogen peroxide degradation and/or production of organic ligand metabolites, that allow for Mn oxide formation.

  12. Synthesis of indium oxide cubic crystals by modified hydrothermal route for application in room temperature flexible ethanol sensors

    Energy Technology Data Exchange (ETDEWEB)

    Seetha, M., E-mail: seetha.phy@gmail.com [Department of Physics, SRM University, Kattankulathur, Kancheepuram Dt 603 203 (India); Meena, P. [Department of Physics, PSGR Krishnammal College for Women, Coimbatore 641 046 (India); Mangalaraj, D., E-mail: dmraj800@yahoo.com [DRDO-BU Centre for Life Sciences, Bharathiar University Campus, Coimbatore (India); Department of Nanoscience and Technology, Bharathiar University, Coimbatore 641 014 (India); Masuda, Yoshitake [National Institute of Advanced Industrial Science and Technology (AIST), Nagoya 463-8560 (Japan); Senthil, K. [School of Advanced Materials Science and Engineering, Sungkyunkwan University (Suwon Campus), Cheoncheon-dong 300, Jangan-gu, Suwon 440-746 (Korea, Republic of)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer For the first time HMT is used in the preparation of indium oxide. Black-Right-Pointing-Pointer HMT itself acts as base for the precursor and results in cubic indium hydroxide. Black-Right-Pointing-Pointer Modified hydrothermal route used for the preparation of cubic indium oxide crystals. Black-Right-Pointing-Pointer As a new approach a composite film synthesized with prepared indium oxide. Black-Right-Pointing-Pointer Film showed good response to ethanol vapours with quick response and recovery times. - Abstract: Indium oxide cubic crystals were prepared by using hexamethylenetetramine and indium chloride without the addition of any structure directing agents. The chemical route followed in the present work was a modified hydrothermal synthesis. The average crystallite size of the prepared cubes was found to be 40 nm. A blue emission at 418 nm was observed at room temperature when the sample was excited with a 380 nm Xenon lamp. This emission due to oxygen vacancies made the material suitable for gas sensing applications. The synthesized material was made as a composite film with polyvinyl alcohol which was more flexible than the films prepared on glass substrates. This flexible film was used as a sensing element and tested with ethanol vapours at room temperature. The film showed fast response as well as recovery to ethanol vapours with a sensor response of about 1.4 for 100 ppm of the gas.

  13. Hydrothermal assisted synthesis of iron oxide-based magnetic silica spheres and their performance in magnetophoretic water purification

    Energy Technology Data Exchange (ETDEWEB)

    Caparros, C., E-mail: ccaparros@fisica.uminho.pt [Centro de Fisica, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Benelmekki, M.; Martins, P.M. [Centro de Fisica, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Xuriguera, E. [Facultat de Quimica, Universitat de Barcelona, 08028 Barcelona (Spain); Silva, C.J.R. [Departamento de Quimica, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Martinez, Ll.M. [Sepmag Technologies, Parc Tecnologic del Valles, 08290 Barcelona (Spain); Lanceros-Mendez, S. [Centro de Fisica, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal)

    2012-08-15

    Porous Magnetic Silica (PMS) spheres of about 400 nm diameter were synthesised by one-pot process using the classical Stber method combined with hydrothermal treatment. Maghemite nanoparticles ({gamma}-Fe{sub 2}O{sub 3}) were used as fillers and cetyltrimethylammonium bromide (CTAB) was used as templating agent. The application of the hydrothermal process (120 Degree-Sign C during 48 h) before the calcination leads to the formation of homogeneous and narrow size distribution PMS spheres. X-ray diffraction patterns (XRD), Infrared measurements (FTIR) and Transmission Electron microscopy (TEM) methods were used to determine the composition and morphology of the obtained PMS spheres. The results show a homogeneous distribution of the {gamma}-Fe{sub 2}O{sub 3} nanoparticles in the silica matrix with a 'hollow-like' morphology. Magnetophoresis measurements at 60 T m{sup -1} show a total separation time of the PMS spheres suspension of about 16 min. By using this synthesis method, the limitation of the formation of silica spheres without incorporation of magnetic nanoparticles is overcome. These achievements make this procedure interesting for industrial up scaling. The obtained PMS spheres were evaluated as adsorbents for Ni{sup 2+} in aqueous solution. Their adsorption capacity was compared with the adsorption capacity of magnetic silica spheres obtained without hydrothermal treatment before calcination process. PMS spheres show an increase of the adsorption capacity of about 15% of the initial dissolution of Ni{sup 2+} without the need to functionalize the silica surface. Highlights: Black-Right-Pointing-Pointer Homogeneous and controlled size porous magnetic silica spheres were obtained. Black-Right-Pointing-Pointer Magnetophoretic removing of Ni{sup 2+} processes was successfully preformed at HLGMF. Black-Right-Pointing-Pointer PMS show higher Ni{sup 2+} removing capacity than spheres without hydrothermal treatment. Black-Right-Pointing-Pointer PMS can be

  14. The role of magmas in the formation of hydrothermal ore deposits

    Science.gov (United States)

    Hedenquist, Jeffrey W.; Lowenstern, Jacob B.

    1994-01-01

    Magmatic fluids, both vapour and hypersaline liquid, are a primary source of many components in hydrothermal ore deposits formed in volcanic arcs. These components, including metals and their ligands, become concentrated in magmas in various ways from various sources, including subducted oceanic crust. Leaching of rocks also contributes components to the hydrothermal fluid—a process enhanced where acid magmatic vapours are absorbed by deeply circulating meteoric waters. Advances in understanding the hydrothermal systems that formed these ore deposits have come from the study of their active equivalents, represented at the surface by hot springs and volcanic fumaroles.

  15. Replacive sulfide formation in anhydrite chimneys from the Pacmanus hydrothermal field, Papua New Guinea

    Science.gov (United States)

    Los, Catharina; Bach, Wolfgang; Plümper, Oliver

    2016-04-01

    Hydrothermal flow within the oceanic crust is an important process for the exchange of energy and mass between the lithosphere, hydrosphere and biosphere. Infiltrated seawater heats up and interacts with wall rock, causing mineral replacement reactions. These play a large role in the formation of ore deposits; at the discharge zone, a hot, acidic and metal-rich potential ore fluid exits the crust. It mixes with seawater and forms chimneys, built up of sulfate minerals such as anhydrite (CaSO4), which are subsequently replaced by sulfide minerals. Sulfide formation is related to fluid pathways, defined by cracks and pores in the sulfate chimney. Over time, these systems might develop into massive sulfide deposits. The big question is then: how is sulfate-sulfide replacement related to the evolution of rock porosity? To address this question, sulfide-bearing anhydrite chimneys from the Pacmanus hydrothermal field (Manus Basin, Papua New Guinea) were studied using X-ray tomography, EMPA, FIB-SEM and -TEM. The apparently massive anhydrite turns out highly porous on the micro scale, with sulfide minerals in anhydrite cleavage planes and along grain boundaries. The size of the sulfide grains relates to the pores they grew into, suggesting a tight coupling between dissolution (porosity generation) and growth of replacive minerals. Some of the sulfide grains are hollow and apparently used the dissolving anhydrite as a substrate to start growth in a pore. Another mode of sulfide development is aggregates of euhedral pyrite cores surrounded by colloform chalcopyrite. This occurrence implies that fluid pathways have remained open for some time to allow several stages of precipitation during fluid evolution. To start the replacement and to keep it going, porosity generation is crucial. Our samples show that dissolution of anhydrite occurred along pathways where fluid could enter, such as cleavage planes and grain boundaries. It appears that fluids ascending within the inner

  16. Comprehensive Auto CAD

    International Nuclear Information System (INIS)

    Jang, Taekju

    1993-06-01

    This book starts introduction of conception, application system, software for CAD, function of Auto CAD, kinds and function of Auto CAD files. It deals with starting of Auto CAD, dialogue box and Auto CAD interface, utility command, 2D drawing command, check command, control system, dimension, hatching command, layer command, block, 3D drawing, plotting and printing, auto CAD and application of data, supply program of auto CAD, AME and region modeler, EDLIN, script optimization of Auto CAD and composition on demand.

  17. Designing porous metallic glass compact enclosed with surface iron oxides

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jae Young; Park, Hae Jin; Hong, Sung Hwan; Kim, Jeong Tae; Kim, Young Seok; Park, Jun-Young; Lee, Naesung [Hybrid Materials Center (HMC), Faculty of Nanotechnology and Advanced Materials Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 143-747 (Korea, Republic of); Seo, Yongho [Graphene Research Institute (GRI) & HMC, Faculty of Nanotechnology and Advanced Materials Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 143-747 (Korea, Republic of); Park, Jin Man, E-mail: jinman_park@hotmail.com [Global Technology Center, Samsung Electronics Co., Ltd, 129 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-742 (Korea, Republic of); Kim, Ki Buem, E-mail: kbkim@sejong.ac.kr [Hybrid Materials Center (HMC), Faculty of Nanotechnology and Advanced Materials Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 143-747 (Korea, Republic of)

    2015-06-25

    Highlights: • Porous metallic glass compact was developed using electro-discharge sintering process. • Uniform PMGC can only be achieved when low electrical input energy was applied. • Functional iron-oxides were formed on the surface of PMGCs by hydrothermal technique. - Abstract: Porous metallic glass compact (PMGC) using electro-discharge sintering (EDS) process of gas atomized Zr{sub 41.2}Ti{sub 13.8}Cu{sub 12.5}Ni{sub 10}Be{sub 22.5} metallic glass powder was developed. The formation of uniform PMGC can only be achieved when low electrical input energy was applied. Functional iron-oxides were formed on the surface of PMGCs by hydrothermal technique. This finding suggests that PMGC can be applied in the new area such as catalyst via hydrothermal technique and offer a promising guideline for using the metallic glasses as a potential functional application.

  18. A high-temperature hydrothermal deposit on the East Pacific Rise near 70N

    International Nuclear Information System (INIS)

    Boulegue, J.; Stouff, P.; Perseil, E.A.; Bernat, M.; Dupre, B.; Francheteau, J.

    1984-01-01

    A SEABEAM survey of the East Pacific Rise (EPR) led to the selection of several sites having structural characteristics favorable for hydrothermal activity. Dredging of such an area located at 7 0 N on the EPR resulted in the recovery of sulfides, oxides and fresh basalt. Chemical analyses and isotopic compositions showed that the recovered pyrites were probably precipitated directly from hot vent hydrothermal waters. Chemical analyses and isotopic composition of manganese-iron oxides indicated that they too were of hydrothermal origin. 210 Pb/Pb measurements yielded ages of 90 +- 10 years for the deposits. This site may still be undergoing hydrothermal activity. (orig.)

  19. Immiscibility of Fluid Phases at Magmatic-hydrothermal Transition: Formation of Various PGE-sulfide Mineralization for Layered Basic Intrusions

    Science.gov (United States)

    Zhitova, L.; Borisenko, A.; Morgunov, K.; Zhukova, I.

    2007-12-01

    Fluid inclusions in quartz of the Merensky Reef (Bushveld Complex, South Africa) and the Chineisky Pluton (Transbaikal Region, Russia) were studied using cryometry, microthermometry, Raman-spectroscopy, LA ICP- MS, scanning electronic microscopy, gas-chromatography and isotopic methods. This allowed us to document some examples of fluid phase separation resulting in formation of different types of PGE-sulfide mineralization for layered basic intrusions. The results obtained show at least three generations of fluid separated from boiling residual alumosilicate intercumulus liquid of the Merensky Reef. The earliest fluid phase composed of homogenous high-dense methane and nitrogen gas mixture was identified in primary gas and co-existing anomalous fluid inclusions from symplectitic quartz. The next generation, heterophase fluid, composed of brines containing a free low-dense (mostly of carbon dioxide) gas phase, was observed in primary multiphase and coexisting gas-rich inclusions of miarolitic quartz crystals. The latest generation was also a heterophase fluid (low salinity water-salt solution and free low-dense methane gas phase) found in primary water-salt and syngenetic gas inclusions from peripheral zones of miarolitic quartz crystals. For the Chineisky Pluton reduced endocontact magmatogene fluids changed to oxidized low salinity hydrothermal fluids in exocontact zone. This resulted in formation of sulfide-PGE enrichment marginal zones of intrusion. The results obtained give us a possibility to suggest that: 1) Fluid phase separation is a typical feature of magmatogene fluids for layered basic intrusions. 2) Reduced fluids can extract and transport substantial PGE and sulfide concentrations. 3) Oxidation of reduced fluids is one of the most important geochemical barriers causing abundant PGE minerals and sulfides precipitation. This in turn results in both formation of PGE reefs or enriched contact zones of layered basic intrusions. This work was supported by

  20. AutoCAD / AutoCAD LT 2014 fundamentals metric

    CERN Document Server

    ASCENT center for technical knowledge

    2014-01-01

    The objective of AutoCAD/AutoCAD LT 2014 Fundamentals is to enable students to create a basic 2D drawing in the AutoCAD software. Even at this fundamental level, the AutoCAD software is one of the most sophisticated computer applications that you are likely to encounter. Therefore learning to use it can be challenging. To make the process easier and provide flexibility for instructors and students, the training guide is divided into two parts that can be taken independently.

  1. Hydrothermal synthesis of hydrous ruthenium oxide/graphene sheets for high-performance supercapacitors

    International Nuclear Information System (INIS)

    Lin, Na; Tian, Jianhua; Shan, Zhongqiang; Chen, Kuan; Liao, Wenming

    2013-01-01

    Ruthenium oxide particles were supported on graphene sheets (GS) by hydrothermal and low temperature annealing process. The GS was prepared from graphene oxide by an expansion process and different expanding temperatures were studied and polystyrene sulfonate sodium was used as dispersion agent of hydrophobic GS. Different Ru content of the RuO 2 /GS composites on the influence of the electrochemical properties was studied. Atomic force microscope analysis was applied to test the layers of GS. The morphology of GS and RuO 2 /GS composites were confirmed by field emission transmission electron microscopy analysis. X-ray diffraction, Raman spectroscopy and liquid-nitrogen cryosorption were used to characterize the structure and morphology of the GS and RuO 2 /GS. The RuO 2 /GS (Ru:40 wt%) composites used as electrode materials of supercapacitors exhibited a specific capacitance of 551 F/g at 1 A/g in 1 M H 2 SO 4 electrolyte. Besides, both the rate capability and cycle performance of RuO 2 /GS composites had a great improvement compared with GS

  2. Culture-Independent Identification of Manganese-Oxidizing Genes from Deep-Sea Hydrothermal Vent Chemoautotrophic Ferromanganese Microbial Communities Using a Metagenomic Approach

    Science.gov (United States)

    Davis, R.; Tebo, B. M.

    2013-12-01

    Microbial activity has long been recognized as being important to the fate of manganese (Mn) in hydrothermal systems, yet we know very little about the organisms that catalyze Mn oxidation, the mechanisms by which Mn is oxidized or the physiological function that Mn oxidation serves in these hydrothermal systems. Hydrothermal vents with thick ferromanganese microbial mats and Mn oxide-coated rocks observed throughout the Pacific Ring of Fire are ideal models to study the mechanisms of microbial Mn oxidation, as well as primary productivity in these metal-cycling ecosystems. We sampled ferromanganese microbial mats from Vai Lili Vent Field (Tmax=43°C) located on the Eastern Lau Spreading Center and Mn oxide-encrusted rhyolytic pumice (4°C) from Niua South Seamount on the Tonga Volcanic Arc. Metagenomic libraries were constructed and assembled from these samples and key genes known to be involved in Mn oxidation and carbon fixation pathways were identified in the reconstructed genomes. The Vai Lili metagenome assembled to form 121,157 contiguous sequences (contigs) greater than 1000bp in length, with an N50 of 8,261bp and a total metagenome size of 593 Mbp. Contigs were binned using an emergent self-organizing map of tetranucleotide frequencies. Putative homologs of the multicopper Mn-oxidase MnxG were found in the metagenome that were related to both the Pseudomonas-like and Bacillus-like forms of the enzyme. The bins containing the Pseudomonas-like mnxG genes are most closely related to uncultured Deltaproteobacteria and Chloroflexi. The Deltaproteobacteria bin appears to be an obligate anaerobe with possible chemoautotrophic metabolisms, while the Chloroflexi appears to be a heterotrophic organism. The metagenome from the Mn-stained pumice was assembled into 122,092 contigs greater than 1000bp in length with an N50 of 7635 and a metagenome size of 385 Mbp. Both forms of mnxG genes are present in this metagenome as well as the genes encoding the putative Mn

  3. Hydrothermal processing of actinide contaminated organic wastes

    International Nuclear Information System (INIS)

    Worl, A.; Buelow, S.J.; Le, L.A.; Padilla, D.D.; Roberts, J.H.

    1997-01-01

    Hydrothermal oxidation is an innovative process for the destruction of organic wastes, that occurs above the critical temperature and pressure of water. The process provides high destruction and removal efficiencies for a wide variety of organic and hazardous substances. For aqueous/organic mixtures, organic materials, and pure organic liquids hydrothermal processing removes most of the organic and nitrate components (>99.999%) and facilitates the collection and separation of the actinides. We have designed, built and tested a hydrothermal processing unit for the removal of the organic and hazardous substances from actinide contaminated liquids and solids. Here we present results for the organic generated at the Los Alamos National Laboratory Plutonium Facility

  4. A self-seeded, surfactant-directed hydrothermal growth of single crystalline lithium manganese oxide nanobelts from the commercial bulky particles.

    Science.gov (United States)

    Zhang, Lizhi; Yu, Jimmy C; Xu, An-Wu; Li, Quan; Kwong, Kwan Wai; Wu, Ling

    2003-12-07

    Single crystalline lithium manganese oxide nanobelts were obtained through a self-seeded, surfactant-directed growth process from the commercial bulky particles under hydrothermal treatment. A possible mechanism was proposed to explain the growth of the nanobelts. This new process could be extended to prepare other one-dimensional nanomaterials such as Se nanorods, Te nanotubes, and MnO2 nanowires.

  5. Mesoporous nickel oxide nanowires: hydrothermal synthesis, characterisation and applications for lithium-ion batteries and supercapacitors with superior performance.

    Science.gov (United States)

    Su, Dawei; Kim, Hyun-Soo; Kim, Woo-Seong; Wang, Guoxiu

    2012-06-25

    Mesoporous nickel oxide nanowires were synthesized by a hydrothermal reaction and subsequent annealing at 400 °C. The porous one-dimensional nanostructures were analysed by field-emission SEM, high-resolution TEM and N(2) adsorption/desorption isotherm measurements. When applied as the anode material in lithium-ion batteries, the as-prepared mesoporous nickel oxide nanowires demonstrated outstanding electrochemical performance with high lithium storage capacity, satisfactory cyclability and an excellent rate capacity. They also exhibited a high specific capacitance of 348 F g(-1) as electrodes in supercapacitors. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Direct hydrothermal growth of GDC nanorods for low temperature solid oxide fuel cells

    Science.gov (United States)

    Hong, Soonwook; Lee, Dohaeng; Yang, Hwichul; Kim, Young-Beom

    2018-06-01

    We report a novel synthesis technique of gadolinia-doped ceria (GDC) nano-rod (NRs) via direct hydrothermal process to enhance performance of low temperature solid oxide fuel cell by increasing active reaction area and ionic conductivity at interface between cathode and electrolyte. The cerium nitrate hexahydrate, gadolinium nitrate hexahydrate and urea were used to synthesis GDC NRs for growth on diverse substrate. The directly grown GDC NRs on substrate had a width from 819 to 490 nm and height about 2200 nm with a varied urea concentration. Under the optimized urea concentration of 40 mMol, we confirmed that GDC NRs able to fully cover the substrate by enlarging active reaction area. To maximize ionic conductivity of GDC NRs, we synthesis varied GDC NRs with different ratio of gadolinium and cerium precursor. Electrochemical analysis revealed a significant enhanced performance of fuel cells applying synthesized GDC NRs with a ratio of 2:8 gadolinium and cerium precursor by reducing polarization resistance, which was chiefly attributed to the enlarged active reaction area and enhanced ionic conductivity of GDC NRs. This method of direct hydrothermal growth of GDC NRs enhancing fuel cell performance was considered to apply other types of catalyzing application using nano-structure such as gas sensing and electrolysis fields.

  7. Linking geology, fluid chemistry, and microbial activity of basalt- and ultramafic-hosted deep-sea hydrothermal vent environments.

    Science.gov (United States)

    Perner, M; Hansen, M; Seifert, R; Strauss, H; Koschinsky, A; Petersen, S

    2013-07-01

    Hydrothermal fluids passing through basaltic rocks along mid-ocean ridges are known to be enriched in sulfide, while those circulating through ultramafic mantle rocks are typically elevated in hydrogen. Therefore, it has been estimated that the maximum energy in basalt-hosted systems is available through sulfide oxidation and in ultramafic-hosted systems through hydrogen oxidation. Furthermore, thermodynamic models suggest that the greatest biomass potential arises from sulfide oxidation in basalt-hosted and from hydrogen oxidation in ultramafic-hosted systems. We tested these predictions by measuring biological sulfide and hydrogen removal and subsequent autotrophic CO2 fixation in chemically distinct hydrothermal fluids from basalt-hosted and ultramafic-hosted vents. We found a large potential of microbial hydrogen oxidation in naturally hydrogen-rich (ultramafic-hosted) but also in naturally hydrogen-poor (basalt-hosted) hydrothermal fluids. Moreover, hydrogen oxidation-based primary production proved to be highly attractive under our incubation conditions regardless whether hydrothermal fluids from ultramafic-hosted or basalt-hosted sites were used. Site-specific hydrogen and sulfide availability alone did not appear to determine whether hydrogen or sulfide oxidation provides the energy for primary production by the free-living microbes in the tested hydrothermal fluids. This suggests that more complex features (e.g., a combination of oxygen, temperature, biological interactions) may play a role for determining which energy source is preferably used in chemically distinct hydrothermal vent biotopes. © 2013 John Wiley & Sons Ltd.

  8. AutoCAD 2015 and AutoCAD LT 2015 bible

    CERN Document Server

    Finkelstein, Ellen

    2014-01-01

    The perfect reference for all AutoCAD users AutoCAD 2015 and AutoCAD LT 2015 Bible is the book you want to have close at hand to answer those day-to-day questions about this industry-leading software. Author and Autodesk University instructor Ellen Finkelstein guides readers through AutoCAD 2015 and AutoCAD LT 2015 with clear, easy-to-understand instruction and hands-on tutorials that allow even total beginners to create a design on their very first day. Although simple and fundamental enough to be used by those new to CAD, the book is so comprehensive that even Autodesk power u

  9. AutoCAD 2012 and AutoCAD LT 2012 Bible

    CERN Document Server

    Finkelstein, Ellen

    2011-01-01

    The latest version of this perennial favorite, in-depth, reference-tutorial This top-selling book has been updated by AutoCAD guru and author Ellen Finkelstein to provide you with the very latest coverage of both AutoCAD 2012 and AutoCAD LT 2012. It begins with a Quick Start tutorial, so you start creating right away. From there, the book covers so much in-depth material on AutoCAD that it is said that even Autodesk employees keep this comprehensive book at their desks. A DVD is included that features before-and-after drawings of all the tutorials and plenty of great examples from AutoCAD prof

  10. Random laser based on Rhodamine 6G (Rh6G doped poly(methyl methacrylate (PMMA films coating on ZnO nanorods synthesized by hydrothermal oxidation

    Directory of Open Access Journals (Sweden)

    Hua Zhang

    Full Text Available Random laser based on Rh6G doped PMMA thin films coating on ZnO nanorods synthesized by a simple hydrothermal oxidation method has been demonstrated. This kind of random laser medium is based on waveguide structure consisting of ZnO nanorods, Rh6G doped PMMA film and air. By controlling the time of hydrothermal oxidation reaction, wheat-like and hexagonal prism ZnO nanorods have been successfully fabricated. The emission spectra of these gain mediums based on different ZnO nanorods are different. The one based on wheat-like ZnO nanorods mainly exhibits amplified spontaneous emission, and the other one based on hexagonal prism ZnO nanorods shows random laser emission. The threshold of the random laser medium is about 73.8 μJ/pulse, and the full width at half maximum (FWHM is around 2.1 nm. The emission spectra measured at different detecting angles reveal that the output direction is strongly confined in ±30° by the waveguide effect. Our experiments demonstrate a promising method to achieve organic random laser medium. Keywords: Random laser, ZnO nanorods, Hydrothermal oxidation, Rhodamine 6G (Rh6G, Poly(methyl methacrylate (PMMA

  11. The chemistry of hydrothermal magnetite: a review

    Science.gov (United States)

    Nadoll, Patrick; Angerer, Thomas; Mauk, Jeffrey L.; French, David; Walshe, John

    2014-01-01

    Magnetite (Fe3O4) is a well-recognized petrogenetic indicator and is a common accessory mineral in many ore deposits and their host rocks. Recent years have seen an increased interest in the use of hydrothermal magnetite for provenance studies and as a pathfinder for mineral exploration. A number of studies have investigated how specific formation conditions are reflected in the composition of the respective magnetite. Two fundamental questions underlie these efforts — (i) How can the composition of igneous and, more importantly, hydrothermal magnetite be used to discriminate mineralized areas from barren host rocks, and (ii) how can this assist exploration geologists to target ore deposits at greater and greater distances from the main mineralization? Similar to igneous magnetite, the most important factors that govern compositional variations in hydrothermal magnetite are (A) temperature, (B) fluid composition — element availability, (C) oxygen and sulfur fugacity, (D) silicate and sulfide activity, (E) host rock buffering, (F) re-equilibration processes, and (G) intrinsic crystallographic controls such as ionic radius and charge balance. We discuss how specific formation conditions are reflected in the composition of magnetite and review studies that investigate the chemistry of hydrothermal and igneous magnetite from various mineral deposits and their host rocks. Furthermore, we discuss the redox-related alteration of magnetite (martitization and mushketovitization) and mineral inclusions in magnetite and their effect on chemical analyses. Our database includes published and previously unpublished magnetite minor and trace element data for magnetite from (1) banded iron formations (BIF) and related high-grade iron ore deposits in Western Australia, India, and Brazil, (2) Ag–Pb–Zn veins of the Coeur d'Alene district, United States, (3) porphyry Cu–(Au)–(Mo) deposits and associated (4) calcic and magnesian skarn deposits in the southwestern United

  12. Apparatus-Program Complexes Processing and Creation of Essentially non-Format Documents on the Basis of Technology Auto-Adaptive Fonts

    Directory of Open Access Journals (Sweden)

    E. G. Andrianova

    2014-01-01

    Full Text Available The need to translate paper documents into electronic form demanded a development of methods and algorithms for automatic processing systems and web publishing unformatted graphic documents of on-line libraries. Translation of scanned images into modern formats of electronic documents using OCR programmes faces serious difficulties. These difficulties are connected with the standardization set of fonts and design of printed documents. There is also a need to maintain the original form of electronic format of such documents. The article discusses the possibility for building an extensible adaptive dictionary of graphic objects, which constitute unformatted graphics documents. Dictionary automatically adjusted as graphics processing and accumulation of statistical information for each new document. This adaptive extensible dictionary of graphic letters, fonts, and other objects of automated particular document processing is called "auto-adaptive font", and a set of its application methods is named "auto-adaptive font technology."Based on the theory of estimation algorithms, a mathematical model is designed. It allows us to represent all objects of unformatted graphic document in a unified manner to build a feature vector for each object, and evaluate a similarity of these objects in the selected metric. The algorithm of the adaptive models of graphic images is developed and a criterion for combining similar properties in one element to build an auto-adaptive font is offered thus allowing us to build a software core of hardware-software complex for processing the unformatted graphic documents. A standard block diagram of hardware-software complex is developed to process the unformatted graphic documents. The article presents a description of all the blocks of this complex, including document processing station and its interaction with the web server of publishing electronic documents.

  13. Microwave-assisted hydrothermal synthesis of coralloid nanostructured nickel hydroxide hydrate and thermal conversion to nickel oxide

    International Nuclear Information System (INIS)

    Lai, Teh-Long; Lai, Yuan-Lung; Yu, Jen-Wei; Shu, Youn-Yuen; Wang, Chen-Bin

    2009-01-01

    Coralloid nanostructured nickel hydroxide hydrate has been successfully synthesized by a simple microwave-assisted hydrothermal process using nickel sulfate hexahydrate as precursor and urea as hydrolysis-controlling agent. A pure coralloid nanostructured nickel oxide can be obtained from the nickel hydroxide hydrate after calcination at 400 deg. C. The thermal property, structure and morphology of samples were characterized by thermogravimetry (TG), temperature-programmed reduction (TPR), X-ray (XRD), infrared spectroscopy (IR), scanning electron microscopy (SEM) and transmission electron microscopy (TEM).

  14. Microwave-assisted hydrothermal synthesis of coralloid nanostructured nickel hydroxide hydrate and thermal conversion to nickel oxide

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Teh-Long [Environmental Analysis Laboratory, Department of Chemistry, National Kaohsiung Normal University, Kaohsiung 802, Taiwan (China); Lai, Yuan-Lung [Department of Mechanical and Automation Engineering, Da-Yeh University, Changhua 515, Taiwan (China); Yu, Jen-Wei [Environmental Analysis Laboratory, Department of Chemistry, National Kaohsiung Normal University, Kaohsiung 802, Taiwan (China); Shu, Youn-Yuen, E-mail: shuyy@nknucc.nknu.edu.tw [Environmental Analysis Laboratory, Department of Chemistry, National Kaohsiung Normal University, Kaohsiung 802, Taiwan (China); Wang, Chen-Bin, E-mail: chenbin@ccit.edu.tw [Department of Applied Chemistry and Materials Science, Chung Cheng Institute of Technology, National Defense University, Tahsi, Taoyuan 335, Taiwan (China)

    2009-10-15

    Coralloid nanostructured nickel hydroxide hydrate has been successfully synthesized by a simple microwave-assisted hydrothermal process using nickel sulfate hexahydrate as precursor and urea as hydrolysis-controlling agent. A pure coralloid nanostructured nickel oxide can be obtained from the nickel hydroxide hydrate after calcination at 400 deg. C. The thermal property, structure and morphology of samples were characterized by thermogravimetry (TG), temperature-programmed reduction (TPR), X-ray (XRD), infrared spectroscopy (IR), scanning electron microscopy (SEM) and transmission electron microscopy (TEM).

  15. Hydrothermal Cold Sintering

    Science.gov (United States)

    Kang, Xiaoyu

    Solid state sintering transforms particle compact to a physically robust and dense polycrystalline monolith driven by reduction of surface energy and curvature. Since bulk diffusion is required for neck formation and pore elimination, sintering temperature about 2/3 of melting point is needed. It thus places limitations for materials synthesis and integration, and contributes to significant energy consumption in ceramic processing. Furthermore, since surface transport requires lower temperature than bulk processes, grain growth is often rapid and can be undesired for physical properties. For these reasons, several techniques have been developed including Liquid Phase Sintering (LPS), Hot Pressing (HP) and Field Assisted Sintering Technique (FAST), which introduce either viscous melt, external pressure or electric field to speed up densification rates at lower temperature. However, because of their inherent reliability on bulk diffusion, temperatures required are often too high for integrating polymers and non-noble metals. Reduction of sintering temperature below 400 °C would require a different densification mechanism that is based on surface transport with external forces to drive volume shrinkage. Densification method combining uniaxial pressure and solution under hydrothermal condition was first demonstrated by Kanahara's group at Kochi University in 1986 and was brought to our attention by the work of Kahari, etc, from University of Oulu on densification of Li2MoO 4 in 2015. This relatively new process showed promising ultra-low densification temperature below 300 °C, however little was known about its fundamental mechanism and scope of applications, which became the main focus of this dissertation. In this work, a uniaxial hydraulic press, a standard stainless steel 1/2 inch diameter die with heating band were utilized in densifying metal oxides. Applied pressure and sintering temperature were between 100 MPa and 700 MPa and from room temperature to 300

  16. Uranium metallogenesis of the peraluminous leucogranite from the Pontivy-Rostrenen magmatic complex (French Armorican Variscan belt): the result of long-term oxidized hydrothermal alteration during strike-slip deformation

    Science.gov (United States)

    Ballouard, C.; Poujol, M.; Mercadier, J.; Deloule, E.; Boulvais, P.; Baele, J. M.; Cuney, M.; Cathelineau, M.

    2018-06-01

    In the French Armorican Variscan belt, most of the economically significant hydrothermal U deposits are spatially associated with peraluminous leucogranites emplaced along the south Armorican shear zone (SASZ), a dextral lithospheric scale wrench fault that recorded ductile deformation from ca. 315 to 300 Ma. In the Pontivy-Rostrenen complex, a composite intrusion, the U mineralization is spatially associated with brittle structures related to deformation along the SASZ. In contrast to monzogranite and quartz monzodiorite (3 3), the leucogranite samples are characterized by highly variable U contents ( 3 to 27 ppm) and Th/U ratios ( 0.1 to 5) suggesting that the crystallization of magmatic uranium oxide in the more evolved facies was followed by uranium oxide leaching during hydrothermal alteration and/or surface weathering. U-Pb dating of uranium oxides from the deposits reveals that they mostly formed between ca. 300 and 270 Ma. In monzogranite and quartz monzodiorite, apatite grains display magmatic textures and provide U-Pb ages of ca. 315 Ma reflecting the time of emplacement of the intrusions. In contrast, apatite grains from the leucogranite display textural, geochemical, and geochronological evidences for interaction with U-rich oxidized hydrothermal fluids contemporaneously with U mineralizing events. From 300 to 270 Ma, infiltration of surface-derived oxidized fluids leached magmatic uranium oxide from fertile leucogranite and formed U deposits. This phenomenon was sustained by brittle deformation and by the persistence of thermal anomalies associated with U-rich granitic bodies.

  17. Size-controlled synthesis of NiFe2O4 nanospheres via a PEG assisted hydrothermal route and their catalytic properties in oxidation of alcohols by periodic acid

    International Nuclear Information System (INIS)

    Paul, Bappi; Purkayastha, Debraj Dhar; Dhar, Siddhartha Sankar

    2016-01-01

    Graphical abstract: - Highlights: • Hydrothermal synthesis of NiFe 2 O 4 NPs with (C 4 H 9 ) 3 N as hydroxylating agent. • PEG 4000 was used as surfactant to control sizes of NPs. • The TEM images revealed the material to be spherical in shape with sizes 2–10 nm. • NiFe 2 O 4 was used as recyclable catalyst for oxidation of alcohols by periodic acid. - Abstract: A novel and facile approach for synthesis of spinel nickel ferrites (NiFe 2 O 4 ) nanoparticles (NPs) employing homogeneous chemical precipitation followed by hydrothermal heating is reported. The synthesis involves use of tributylamine (TBA) as a hydroxylating agent in synthesis of nickel ferrites. Polyethylene glycol (PEG) 4000 was used as surfactant. As-synthesized NiFe 2 O 4 NPs were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), N 2 adsorption–desorption isotherm (BET) and vibrating sample magnetometry (VSM). The XRD pattern revealed formation of cubic face-centered NiFe 2 O 4 and TEM image showed spherical particles of sizes 2–10 nm. These NiFe 2 O 4 NPs were used as magnetically recoverable catalyst in oxidation of cyclic alcohols to their corresponding aldehydes by periodic acid. This eco-friendly procedure affords products in very high yield and selectivity. The reusability of the catalyst is proved to be noteworthy as the material exhibits no significant changes in its catalytic activity even after five cycles of reuse.

  18. Increased formate overflow is a hallmark of oxidative cancer.

    Science.gov (United States)

    Meiser, Johannes; Schuster, Anne; Pietzke, Matthias; Vande Voorde, Johan; Athineos, Dimitris; Oizel, Kristell; Burgos-Barragan, Guillermo; Wit, Niek; Dhayade, Sandeep; Morton, Jennifer P; Dornier, Emmanuel; Sumpton, David; Mackay, Gillian M; Blyth, Karen; Patel, Ketan J; Niclou, Simone P; Vazquez, Alexei

    2018-04-10

    Formate overflow coupled to mitochondrial oxidative metabolism\\ has been observed in cancer cell lines, but whether that takes place in the tumor microenvironment is not known. Here we report the observation of serine catabolism to formate in normal murine tissues, with a relative rate correlating with serine levels and the tissue oxidative state. Yet, serine catabolism to formate is increased in the transformed tissue of in vivo models of intestinal adenomas and mammary carcinomas. The increased serine catabolism to formate is associated with increased serum formate levels. Finally, we show that inhibition of formate production by genetic interference reduces cancer cell invasion and this phenotype can be rescued by exogenous formate. We conclude that increased formate overflow is a hallmark of oxidative cancers and that high formate levels promote invasion via a yet unknown mechanism.

  19. AutoCAD platform customization user interface, AutoLISP, VBA, and beyond

    CERN Document Server

    Ambrosius, Lee

    2015-01-01

    Take control of AutoCAD to boost the speed, quality, and precision of your work Senior drafters and savvy users are increasingly taking AutoCAD customization out of the hands of system administrators, and taking control of their own workflow. In AutoCAD Platform Customization, Autodesk customization guru Lee Ambrosius walks you through a multitude of customization options using detailed tutorials and real-world examples applicable to AutoCAD, AutoCAD LT, Civil 3D, Plant 3D, and other programs built on the AutoCAD platform. By unleashing the full power of the software, you'll simplify and str

  20. Iron isotope fractionation during hydrothermal ore deposition and alteration

    Science.gov (United States)

    Markl, Gregor; von Blanckenburg, Friedhelm; Wagner, Thomas

    2006-06-01

    Iron isotopes fractionate during hydrothermal processes. Therefore, the Fe isotope composition of ore-forming minerals characterizes either iron sources or fluid histories. The former potentially serves to distinguish between sedimentary, magmatic or metamorphic iron sources, and the latter allows the reconstruction of precipitation and redox processes. These processes take place during ore formation or alteration. The aim of this contribution is to investigate the suitability of this new isotope method as a probe of ore-related processes. For this purpose 51 samples of iron ores and iron mineral separates from the Schwarzwald region, southwest Germany, were analyzed for their iron isotope composition using multicollector ICP-MS. Further, the ore-forming and ore-altering processes were quantitatively modeled using reaction path calculations. The Schwarzwald mining district hosts mineralizations that formed discontinuously over almost 300 Ma of hydrothermal activity. Primary hematite, siderite and sulfides formed from mixing of meteoric fluids with deeper crustal brines. Later, these minerals were partly dissolved and oxidized, and secondary hematite, goethite and iron arsenates were precipitated. Two types of alteration products formed: (1) primary and high-temperature secondary Fe minerals formed between 120 and 300 °C, and (2) low-temperature secondary Fe minerals formed under supergene conditions (illustrates the potential of the new technique in deciphering ore formation and alteration processes. Isotope ratios are strongly dependent on and highly characteristic of fluid and precipitation histories. Therefore, they are less suitable to provide information on Fe sources. However, it will be possible to unravel the physico-chemical processes leading to the formation, dissolution and redeposition of ores in great detail.

  1. rGO-ZnO nanocomposites for high electrocatalytic effect on water oxidation obtained by microwave-hydrothermal method

    Science.gov (United States)

    Romeiro, Fernanda C.; Rodrigues, Mônica A.; Silva, Luiz A. J.; Catto, Ariadne C.; da Silva, Luis F.; Longo, Elson; Nossol, Edson; Lima, Renata C.

    2017-11-01

    Reduced graphene oxide-zinc oxide (rGO-ZnO) nanocomposites were successfully synthesized using a facile microwave-hydrothermal method under mild conditions, and their electrocatalytic properties towards O2 evolution were investigated. The microwave radiation played an important role in obtainment of well dispersed ZnO nanoparticles directly on reduced graphene oxide sheets without any additional reducing reagents or passivation agent. X-ray diffraction (XRD), Raman and infrared spectroscopies indicated the reduction of GO as well as the successful synthesis of rGO-ZnO nanocomposites. The chemical states of the samples were shown by XPS analyses. Due to the synergic effect, the resulting nanocomposites exhibited high electronic interaction between ZnO and rGO sheets, which improved the electrocatalytic oxidation of water with low onset potential of 0.48 V (vs. Ag/AgCl) in neutral pH and long-term stability, with high current density during electrolysis. The overpotential for water oxidation decreased in alkaline pH, suggesting useful insight on the catalytic mechanism for O2 evolution.

  2. Hydrothermal oxidation of an epoxy resin through the study of two model molecules: N-methyl-acetamide and N,N-di[1(phenoxy)2-hydroxy propyl-3] propyl-amine

    International Nuclear Information System (INIS)

    Moutonnet-Fromonteil, C.

    2000-01-01

    The study consists in choosing and developing a technology to realize damage experiments of an epoxy resin which is used as coating of embedded nuclear samples. Hydrothermal oxidation is the chosen method. We first identified the chemical composition of the epoxy resin. Then we studied hydrolysis and oxidation of a molecule which contains a function of the epoxy network: N-methyl-acetamide. The comparison between our results and those already existing allowed to validate this degradation method. In a second part, we studied a model molecule of the polymer network: N, N-di[1(phenoxy)2-hydroxy propyl-3] propyl-amine. The hydrolysis temperatures are relatively high: the compound is totally destroyed at 300 deg C. Its oxidation leads to the formation of acetic acid from 220 deg C. In the third study, we determined the best experimental conditions to destroy the epoxy resin. Experiments were performed at different temperatures between 200 deg C and 410 deg C. The degradation rates are classically defined by amounts of constituents in liquid and gaseous phases. (author)

  3. Hydrothermally processed 1D hydroxyapatite: Mechanism of formation and biocompatibility studies

    Energy Technology Data Exchange (ETDEWEB)

    Stojanović, Zoran S.; Ignjatović, Nenad [Centre for Fine Particles Processing and Nanotechnologies, Institute of Technical Sciences of the Serbian Academy of Sciences and Arts, Knez Mihailova 35/4, 11000 Belgrade (Serbia); Wu, Victoria [Advanced Materials and Nanobiotechnology Laboratory, Department of Bioengineering, University of Illinois, 851 South Morgan Street, Chicago, IL 60607-7052 (United States); Žunič, Vojka [Advanced Materials Department, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana (Slovenia); Veselinović, Ljiljana [Centre for Fine Particles Processing and Nanotechnologies, Institute of Technical Sciences of the Serbian Academy of Sciences and Arts, Knez Mihailova 35/4, 11000 Belgrade (Serbia); Škapin, Srečo [Advanced Materials Department, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana (Slovenia); Miljković, Miroslav [Laboratory for Electron Microscopy, Faculty of Medicine University of Niš, Dr. Zoran Đinđić Boulevard 81, 18 000 Niš (Serbia); Uskoković, Vuk [Advanced Materials and Nanobiotechnology Laboratory, Department of Bioengineering, University of Illinois, 851 South Morgan Street, Chicago, IL 60607-7052 (United States); Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, 9401 Jeronimo Road, Irvine, CA 92618-1908 (United States); and others

    2016-11-01

    Recent developments in bone tissue engineering have led to an increased interest in one-dimensional (1D) hydroxyapatite (HA) nano- and micro-structures such as wires, ribbons and tubes. They have been proposed for use as cell substrates, reinforcing phases in composites and carriers for biologically active substances. Here we demonstrate the synthesis of 1D HA structures using an optimized, urea-assisted, high-yield hydrothermal batch process. The one-pot process, yielding HA structures composed of bundles of ribbons and wires, was typified by the simultaneous occurrence of a multitude of intermediate reactions, failing to meet the uniformity criteria over particle morphology and size. To overcome these issues, the preparation procedure was divided to two stages: dicalcium phosphate platelets synthesized in the first step were used as a precursor for the synthesis of 1D HA in the second stage. Despite the elongated particle morphologies, both the precursor and the final product exhibited excellent biocompatibility and caused no reduction of viability when tested against osteoblastic MC3T3-E1 cells in 2D culture up to the concentration of 2.6 mg/cm{sup 2}. X-ray powder diffraction combined with a range of electron microscopies and laser diffraction analyses was used to elucidate the formation mechanism and the microstructure of the final particles. The two-step synthesis involved a more direct transformation of DCP to 1D HA with the average diameter of 37 nm and the aspect ratio exceeding 100:1. The comparison of crystalline domain sizes along different crystallographic directions showed no signs of significant anisotropy, while indicating that individual nanowires are ordered in bundles in the b crystallographic direction of the P6{sub 3/m} space group of HA. Intermediate processes, e.g., dehydration of dicalcium phosphate, are critical for the formation of 1D HA alongside other key aspects of this phase transformation, it must be investigated in more detail in the

  4. Formation of iron (hydr)oxides during the abiotic oxidation of Fe(II) in the presence of arsenate.

    Science.gov (United States)

    Song, Jia; Jia, Shao-Yi; Yu, Bo; Wu, Song-Hai; Han, Xu

    2015-08-30

    Abiotic oxidation of Fe(II) is a common pathway in the formation of Fe (hydr)oxides under natural conditions, however, little is known regarding the presence of arsenate on this process. In hence, the effect of arsenate on the precipitation of Fe (hydr)oxides during the oxidation of Fe(II) is investigated. Formation of arsenic-containing Fe (hydr)oxides is constrained by pH and molar ratios of As:Fe during the oxidation Fe(II). At pH 6.0, arsenate inhibits the formation of lepidocrocite and goethite, while favors the formation of ferric arsenate with the increasing As:Fe ratio. At pH 7.0, arsenate promotes the formation of hollow-structured Fe (hydr)oxides containing arsenate, as the As:Fe ratio reaches 0.07. Arsenate effectively inhibits the formation of magnetite at pH 8.0 even at As:Fe ratio of 0.01, while favors the formation of lepidocrocite and green rust, which can be latterly degenerated and replaced by ferric arsenate with the increasing As:Fe ratio. This study indicates that arsenate and low pH value favor the slow growth of dense-structured Fe (hydr)oxides like spherical ferric arsenate. With the rapid oxidation rate of Fe(II) at high pH, ferric (hydr)oxides prefer to precipitate in the formation of loose-structured Fe (hydr)oxides like lepidocrocite and green rust. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Synthesis of ZrO2 nanoparticles by hydrothermal treatment

    International Nuclear Information System (INIS)

    Machmudah, Siti; Widiyastuti, W.; Prastuti, Okky Putri; Nurtono, Tantular; Winardi, Sugeng; Wahyudiono,; Kanda, Hideki; Goto, Motonobu

    2014-01-01

    Zirconium oxide (zirconia, ZrO 2 ) is the most common material used for electrolyte of solid oxide fuel cells (SOFCs). Zirconia has attracted attention for applications in optical coatings, buffer layers for growing superconductors, thermal-shield, corrosion resistant coatings, ionic conductors, and oxygen sensors, and for potential applications including transparent optical devices and electrochemical capacitor electrodes, fuel cells, catalysts, and advanced ceramics. In this work, zirconia particles were synthesized from ZrCl 4 precursor with hydrothermal treatment in a batch reactor. Hydrothermal treatment may allow obtaining nanoparticles and sintered materials with controlled chemical and structural characteristics. Hydrothermal treatment was carried out at temperatures of 150 – 200°C with precursor concentration of 0.1 – 0.5 M. Zirconia particles obtained from this treatment were analyzed by using SEM, PSD and XRD to characterize the morphology, particle size distribution, and crystallinity, respectively. Based on the analysis, the size of zirconia particles were around 200 nm and it became smaller with decreasing precursor concentration. The increasing temperature caused the particles formed having uniform size. Zirconia particles formed by hydrothermal treatment were monoclinic, tetragonal and cubic crystal

  6. Ideas and perspectives: hydrothermally driven redistribution and sequestration of early Archaean biomass - the "hydrothermal pump hypothesis"

    Science.gov (United States)

    Duda, Jan-Peter; Thiel, Volker; Bauersachs, Thorsten; Mißbach, Helge; Reinhardt, Manuel; Schäfer, Nadine; Van Kranendonk, Martin J.; Reitner, Joachim

    2018-03-01

    Archaean hydrothermal chert veins commonly contain abundant organic carbon of uncertain origin (abiotic vs. biotic). In this study, we analysed kerogen contained in a hydrothermal chert vein from the ca. 3.5 Ga Dresser Formation (Pilbara Craton, Western Australia). Catalytic hydropyrolysis (HyPy) of this kerogen yielded n-alkanes up to n-C22, with a sharp decrease in abundance beyond n-C18. This distribution ( ≤ n-C18) is very similar to that observed in HyPy products of recent bacterial biomass, which was used as reference material, whereas it differs markedly from the unimodal distribution of abiotic compounds experimentally formed via Fischer-Tropsch-type synthesis. We therefore propose that the organic matter in the Archaean chert veins has a primarily microbial origin. The microbially derived organic matter accumulated in anoxic aquatic (surface and/or subsurface) environments and was then assimilated, redistributed and sequestered by the hydrothermal fluids (hydrothermal pump hypothesis).

  7. Hydrothermal Synthesis of Hydroxyapatite Nanorods for Rapid Formation of Bone-Like Mineralization

    Science.gov (United States)

    Hoai, Tran Thanh; Nga, Nguyen Kim; Giang, Luu Truong; Huy, Tran Quang; Tuan, Phan Nguyen Minh; Binh, Bui Thi Thanh

    2017-08-01

    Hydroxyapatite (HAp) is an excellent biomaterial for bone repair and regeneration. The biological functions of HAp particles, such as biomineralization, cell adhesion, and cell proliferation, can be enhanced when their size is reduced to the nanoscale. In this work, HAp nanoparticles were synthesized by the hydrothermal technique with addition of cetyltrimethylammonium bromide (CTAB). These particles were also characterized, and their size controlled by modifying the CTAB concentration and hydrothermal duration. The results show that most HAp nanoparticles were rod-like in shape, exhibiting the most uniform and smallest size (mean diameter and length of 39 nm and 125 nm, respectively) at optimal conditions of 0.64 g CTAB and hydrothermal duration of 12 h. Moreover, good biomineralization capability of the HAp nanorods was confirmed through in vitro tests in simulated body fluid. A bone-like mineral layer of synthesized HAp nanorods formed rapidly after 7 days. This study shows that highly bioactive HAp nanorods can be easily prepared by the hydrothermal method, being a potential nanomaterial for bone regeneration.

  8. Hydrothermal Alteration Promotes Humic Acid Formation in Sediments: A Case Study of the Central Indian Ocean Basin

    Science.gov (United States)

    Sarma, Nittala S.; Kiran, Rayaprolu; Rama Reddy, M.; Iyer, Sridhar D.; Peketi, A.; Borole, D. V.; Krishna, M. S.

    2018-01-01

    Anomalously high concentrations of humic-rich dissolved organic matter (DOM) in extant submarine hydrothermal vent plumes traveled far from source are increasingly being reported. This DOM, able to mobilize trace metals (e.g., Fe2+) has been hypothesized as originating from organic matter produced by thermogenic bacteria. To eliminate a possible abiogenic origin of this DOM, study is required of well-preserved organic compounds that can be attributed to thermogenic bacteria. The Central Indian Ocean Basin (CIOB) is part of a diffuse plate boundary and an intraplate deformation zone. Coarse fraction (>63 µ) characteristics, mineralogy, magnetic susceptibility, and geochemistry were examined in sediments of a core raised close to a north-south fracture zone near the Equator. Two horizons of distinctly brown-colored sediments were shown as hydrothermally altered from their charred fragments and geochemistry (CaCO3, Corg, Ti/Al, Al/(Al + Fe + Mn), Sr/Ba, Mg/Li, Mn micronodules, Fe/Mn). We examined whether humic substances were preserved in these sediments, and if so whether their carbon isotope distribution would support their hydrothermal origin. Alkali extraction of sediments afforded humic acids (HA) in yields up to 1.2% in the brown sediments. The remaining portions of the core had nil or low concentrations of HA. The carbon of hydrothermal HA is isotopically heavier (average δ13C, ˜ -16.3‰) compared to nonhydrothermal HA (-18.1‰), suggesting that they were probably formed from organic matter that remained after elimination of lighter carbon enriched functional groups during diagenesis. The results provide compelling evidence of HA formation from lipids originating from thermogenic bacteria.

  9. On the origin of whewellite in a hydrothermal uranium deposit

    International Nuclear Information System (INIS)

    Galimov, Eh.M.; Tugarinov, A.I.; Nikitin, A.A.

    1975-01-01

    Whewellite (calcium oxalate - Ca(COO) 2 H 2 O) is one of the rare minerals that occur principally in rocks of sedimentary origin. The authors of the article explained the origin of whewellite selected on a hydrothermal uranium deposit. To do this, they investigated the isotope composition of the carbon contained in the mineral and also of the carbon in the accompanying calcite and carbonaceous material. It was established that hydrothermal whewellite is markedly different in isotope composition from diagenetic whewellite. The whewellite investigated is a product of oxidation-reduction reactions that have taken place in a hydrothermal solution and in which organic substances are involved. U 6+ was reduced and precipitated in the form of pitchblende and the oxidized forms of organic substances including oxalic acid, were formed, with subsequent precipitation of the oxalate in the form of whewellite. (V.Ya.)

  10. Thermodynamic analysis of tar reforming through auto-thermal reforming process

    Energy Technology Data Exchange (ETDEWEB)

    Nurhadi, N., E-mail: nurhadi@tekmira.esdm.go.id; Diniyati, Dahlia; Efendi, M. Ade Andriansyah [R& D Centre for Mineral and Coal Technology, Jln. Jend.Sudirman no. 623, Bandung. Telp. 022-6030483 (Malaysia); Istadi, I. [Department of Chemical Engineering, Diponegoro University, Jln. Jl. Prof. Soedarto, SH, Semarang (Malaysia)

    2015-12-29

    Fixed bed gasification is a simple and suitable technology for small scale power generation. One of the disadvantages of this technology is producing tar. So far, tar is not utilized yet and being waste that should be treated into a more useful product. This paper presents a thermodynamic analysis of tar conversion into gas producer through non-catalytic auto-thermal reforming technology. Tar was converted into components, C, H, O, N and S, and then reacted with oxidant such as mixture of air or pure oxygen. Thus, this reaction occurred auto-thermally and reached chemical equilibrium. The sensitivity analysis resulted that the most promising process performance occurred at flow rate of air was reached 43% of stoichiometry while temperature of process is 1100°C, the addition of pure oxygen is 40% and preheating of oxidant flow is 250°C. The yield of the most promising process performance between 11.15-11.17 kmol/h and cold gas efficiency was between 73.8-73.9%.The results of this study indicated that thermodynamically the conversion of tar into producer gas through non-catalytic auto-thermal reformingis more promising.

  11. Mineralogy, geologic and physico-chemical characteristics of uranotitanate formation

    International Nuclear Information System (INIS)

    Korolev, K.G.; Miguta, A.K.; Polyakova, V.M.; Rumyantseva, G.V.

    1979-01-01

    Results of experimental and field study of varieties of brannerite and davidite are described. Special attention is paid to medium-low temperature variety of brannerite, which is the component of the majority of known uranotitanate ores. Natural concentrations of uranium are characterized: geologic peculiarities of their localization, mineral paragenesis, periore alterations. Syntheses of brannerite and davidite have been realized for the first time under hydrothermal conditions. Complex multiphase products of uranium titanate transformation, decomposition reactions of brannerite into constituent oxides in particular. Peculiarities of uranium and titanium migration in aqueous solutions at high temperatures and pressures are discussed. The processes of brannerite and davidite formation in hydrothermal conditions and from the melts are considered. Application of thermodynamic calculations of equilibria to the reactions of solid phase formation out of diluted ( -6 M) solutions and to the solid dispersoids in general is found to be erroneous as the formation of the latters is connected with kinetic phenomena

  12. Hydrothermal synthesis of Fe_2O_3/polypyrrole/graphene oxide composites as highly efficient electrocatalysts for oxygen reduction reaction in alkaline electrolyte

    International Nuclear Information System (INIS)

    Ren, Suzhen; Ma, Shaobo; Yang, Ying; Mao, Qing; Hao, Ce

    2015-01-01

    Graphical abstract: Fe_2O_3/polypyrrole/graphene oxide electrocatalysts for oxygen reduction reaction (ORR) are successfully prepared through one simple polypyrrole-assisted hydrothermal method and possess very high ORR activity and are able to selectively reduce O_2 to water through the four-electron transfer reaction mechanism in alkaline electrolyte. - Abstract: Advantages in low cost, and excellent catalytic activity of Fe-based nanomaterials dispersed on nitrogen-doped graphene supports render them to be good electrocatalysts for the oxygen reduction reaction (ORR) in fuel cells. Here, Fe_2O_3/polypyrrole/graphene oxide (Fe_2O_3/Ppy/GO) composites with the Fe_2O_3 embedded in the Ppy modified GO are synthesized using hydrothermal method. With an optimal iron atom content ratio of 1.6% in graphene oxide and heat treatment at 800 °C, the Fe_2O_3/Ppy/GO exhibited enhanced catalytic performance for ORR with the onset potential of −0.1 V (vs SCE), cathodic potential of −0.24 V (vs SCE), an approximate 4e"− transfer process in O_2-saturated 0.1 M KOH, and superior stability that only reduced 5% catalytic activity after 5000 cycles. The decisive factors in improving the electrocatalytic and durable performance are the intimate and large contact interfaces between nanocrystallines of Fe_2O_3 and Ppy/GO, in addition to the high electron withdrawing/storing ability and the high conductivity of GO doped with nitrogen from Ppy during the hydrothermal reaction. The Fe_2O_3/Ppy/GO showed significantly improved ORR properties and confirmed that Fe-N-C-based electrocatalysts played a key role in fuel cells.

  13. Hydrothermal synthesis of cathode materials

    Science.gov (United States)

    Chen, Jiajun; Wang, Shijun; Whittingham, M. Stanley

    A number of cathodes are being considered for the next generation of lithium ion batteries to replace the expensive LiCoO 2 presently used. Besides the layered oxides, such as LiNi yMn yCo 1-2 yO 2, a leading candidate is lithium iron phosphate with the olivine structure. Although this material is inherently low cost, a manufacturing process that produces electrochemically active LiFePO 4 at a low cost is also required. Hydrothermal reactions are one such possibility. A number of pure phosphates have been prepared using this technique, including LiFePO 4, LiMnPO 4 and LiCoPO 4; this method has also successfully produced mixed metal phosphates, such as LiFe 0.33Mn 0.33Co 0.33PO 4. Ascorbic acid was found to be better than hydrazine or sugar at preventing the formation of ferric ions in aqueous media. When conductive carbons are added to the reaction medium excellent electrochemical behavior is observed.

  14. Formation conditions for regenerated uranium blacks in uranium-molybdenum deposits

    International Nuclear Information System (INIS)

    Skvortsova, K.V.; Sychev, I.V.; Modnikov, I.S.; Zhil'tsova, I.G.

    1980-01-01

    Formation conditions of regenerated uranium blacks in the zone of incomplete oxidation and cementation of uranium-molybdenum deposit have been studied. Mixed and regenerated blacks were differed from residual ones by the method of determining excess quantity of lead isotope (Pb 206 ) in ores. Determined were the most favourable conditions for formation of regenerated uranium blacks: sheets of brittle and permeable volcanic rocks characterized by heterogeneous structure of a section, by considerable development of gentle interlayer strippings and zones of hydrothermal alteration; predominance of reduction conditions in a media over oxidation ones under limited oxygen access and other oxidating agents; the composition of hypogenic ores characterized by optimum correlations of uranium minerals, sulfides and carbonates affecting violations of pH in oxidating solutions in the range of 5-6; the initial composition of ground water resulting from climatic conditions of the region and the composition of ore-bearing strata and others. Conditions unfavourable for the formation of regenerated uranium blacks are shown

  15. Deep Drilling and Sampling via the Wireline Auto-Gopher Driven by Piezoelectric Percussive Actuator and EM Rotary Motor

    Science.gov (United States)

    Bar-Cohen, Yoseph; Badescu, Mircea; Sherrit, Stewart; Zacny, Kris; Paulsen, Gale L; Beegle, Luther; Bao, Xiaoqi

    2012-01-01

    The ability to penetrate subsurfaces and perform sample acquisition at depths of meters is critical for future NASA in-situ exploration missions to bodies in the solar system, including Mars and Europa. A corer/sampler was developed with the goal of acquiring pristine samples by reaching depths on Mars beyond the oxidized and sterilized zone. To developed rotary-hammering coring drill, called Auto-Gopher, employs a piezoelectric actuated percussive mechanism for breaking formations and an electric motor rotates the bit to remove the powdered cuttings. This sampler is a wireline mechanism that is incorporated with an inchworm mechanism allowing thru cyclic coring and core removal to reach great depths. The penetration rate is being optimized by simultaneously activating the percussive and rotary motions of the Auto-Gopher. The percussive mechanism is based on the Ultrasonic/Sonic Drill/Corer (USDC) mechanism that is driven by piezoelectric stack and that was demonstrated to require low axial preload. The Auto-Gopher has been produced taking into account the a lessons learned from the development of the Ultrasonic/Sonic Gopher that was designed as a percussive ice drill and was demonstrated in Antarctica in 2005 to reach about 2 meters deep. A field demonstration of the Auto-Gopher is currently being planned with objective of reaching as deep as 3 to 5 meters in tufa subsurface.

  16. Template-Assisted Hydrothermal Growth of Aligned Zinc Oxide Nanowires for Piezoelectric Energy Harvesting Applications.

    Science.gov (United States)

    Ou, Canlin; Sanchez-Jimenez, Pedro E; Datta, Anuja; Boughey, Francesca L; Whiter, Richard A; Sahonta, Suman-Lata; Kar-Narayan, Sohini

    2016-06-08

    A flexible and robust piezoelectric nanogenerator (NG) based on a polymer-ceramic nanocomposite structure has been successfully fabricated via a cost-effective and scalable template-assisted hydrothermal synthesis method. Vertically aligned arrays of dense and uniform zinc oxide (ZnO) nanowires (NWs) with high aspect ratio (diameter ∼250 nm, length ∼12 μm) were grown within nanoporous polycarbonate (PC) templates. The energy conversion efficiency was found to be ∼4.2%, which is comparable to previously reported values for ZnO NWs. The resulting NG is found to have excellent fatigue performance, being relatively immune to detrimental environmental factors and mechanical failure, as the constituent ZnO NWs remain embedded and protected inside the polymer matrix.

  17. Properties of ZnO Nano rods Arrays Growth via Low Temperature Hydrothermal Reaction

    International Nuclear Information System (INIS)

    Nur Syafinaz Ridhuan; Zainovia Lockman; Azlan Abdul Aziz; Azlan Abdul Aziz; Khairunisak Abdul Razak; Khairunisak Abdul Razak

    2011-01-01

    This work describes properties of 1- D ZnO nano rods (NRs) arrays growth using low temperature hydrothermal method on seeded substrate. The properties of ZnO seed were studied by varying annealed temperature from 250-450 degree Celsius. The optimum oxidation temperature to produce seeded ZnO template was 400 degree Celsius. The formations of ZnO NRs were further studied by varying hydrothermal reaction growth time from 1 to 24 hours. I-V characteristic of ZnO NRs photodetector in dark, ambient light and UV light were also studied. The change in the photoconductivity under UV illumination was found to be 1 order higher in magnitude compared to dark current and ambient light. With an incident wavelength of 370 nm and applied bias of 3V, the responsivity of photodetector was 5.0 mA/ W, which was higher compared to other reported works. The increase of photosensitivity indicated that the produced ZnO NRs were suitable for UV photodetector applications.(author)

  18. Rare Earth Oxide Fluoride Nanoparticles And Hydrothermal Method For Forming Nanoparticles

    Science.gov (United States)

    Fulton, John L.; Hoffmann, Markus M.

    2003-12-23

    A hydrothermal method for forming nanoparticles of a rare earth element, oxygen and fluorine has been discovered. Nanoparticles comprising a rare earth element, oxygen and fluorine are also described. These nanoparticles can exhibit excellent refractory properties as well as remarkable stability in hydrothermal conditions. The nanoparticles can exhibit excellent properties for numerous applications including fiber reinforcement of ceramic composites, catalyst supports, and corrosion resistant coatings for high-temperature aqueous solutions.

  19. Spontaneous and Widespread Electricity Generation in Natural Deep-Sea Hydrothermal Fields.

    Science.gov (United States)

    Yamamoto, Masahiro; Nakamura, Ryuhei; Kasaya, Takafumi; Kumagai, Hidenori; Suzuki, Katsuhiko; Takai, Ken

    2017-05-15

    Deep-sea hydrothermal vents discharge abundant reductive energy into oxidative seawater. Herein, we demonstrated that in situ measurements of redox potentials on the surfaces of active hydrothermal mineral deposits were more negative than the surrounding seawater potential, driving electrical current generation. We also demonstrated that negative potentials in the surface of minerals were widespread in the hydrothermal fields, regardless of the proximity to hydrothermal fluid discharges. Lab experiments verified that the negative potential of the mineral surface was induced by a distant electron transfer from the hydrothermal fluid through the metallic and catalytic properties of minerals. These results indicate that electric current is spontaneously and widely generated in natural mineral deposits in deep-sea hydrothermal fields. Our discovery provides important insights into the microbial communities that are supported by extracellular electron transfer and the prebiotic chemical and metabolic evolution of the ocean hydrothermal systems. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Hydrothermal synthesis of electrode materials pyrochlore tungsten trioxide film

    Science.gov (United States)

    Guo, Jingdong; Li, Yingjeng James; Stanley Whittingham, M.

    Hydrothermal synthesis methods have been successfully used to prepare new transition-metal oxides for cathodes in electrochemical devices such as lithium batteries and electrochromic windows. The tungsten oxides were the first studied, but the method has been extended to the oxides of molybdenum, vanadium and manganese. Sodium tungsten oxide films with the pyrochlore structure have been prepared on gold/alumina and indium-doped tin oxide substrates. These films reversibly and rapidly intercalate lithium and hydrogen ions.

  1. Weathering of post-impact hydrothermal deposits from the Haughton impact structure: implications for microbial colonization and biosignature preservation.

    Science.gov (United States)

    Izawa, M R M; Banerjee, Neil R; Osinski, G R; Flemming, R L; Parnell, J; Cockell, C S

    2011-01-01

    Meteorite impacts are among the very few processes common to all planetary bodies with solid surfaces. Among the effects of impact on water-bearing targets is the formation of post-impact hydrothermal systems and associated mineral deposits. The Haughton impact structure (Devon Island, Nunavut, Canada, 75.2 °N, 89.5 °W) hosts a variety of hydrothermal mineral deposits that preserve assemblages of primary hydrothermal minerals commonly associated with secondary oxidative/hydrous weathering products. Hydrothermal mineral deposits at Haughton include intra-breccia calcite-marcasite vugs, small intra-breccia calcite or quartz vugs, intra-breccia gypsum megacryst vugs, hydrothermal pipe structures and associated surface "gossans," banded Fe-oxyhydroxide deposits, and calcite and quartz veins and coatings in shattered target rocks. Of particular importance are sulfide-rich deposits and their associated assemblage of weathering products. Hydrothermal mineral assemblages were characterized structurally, texturally, and geochemically with X-ray diffraction, micro X-ray diffraction, optical and electron microscopy, and inductively coupled plasma atomic emission spectroscopy. Primary sulfides (marcasite and pyrite) are commonly associated with alteration minerals, including jarosite (K,Na,H(3)O)Fe(3)(SO(4))(2)(OH)(6), rozenite FeSO(4)·4(H(2)O), copiapite (Fe,Mg)Fe(4)(SO(4))(6)(OH)(2)·20(H(2)O), fibroferrite Fe(SO(4))(OH)·5(H(2)O), melanterite FeSO(4)·7(H(2)O), szomolnokite FeSO(4)·H(2)O, goethite α-FeO(OH), lepidocrocite γ-FeO(OH) and ferrihydrite Fe(2)O(3)·0.5(H(2)O). These alteration assemblages are consistent with geochemical conditions that were locally very different from the predominantly circumneutral, carbonate-buffered environment at Haughton. Mineral assemblages associated with primary hydrothermal activity, and the weathering products of such deposits, provide constraints on possible microbial activity in the post-impact environment. The initial period of

  2. Molybdenum isotopes in modern marine hydrothermal Fe/Mn deposits: Implications for Archean and Paleoproterozoic Mo cycles

    Science.gov (United States)

    Goto, K. T.; Hein, J. R.; Shimoda, G.; Aoki, S.; Ishikawa, A.; Suzuki, K.; Gordon, G. W.; Anbar, A. D.

    2016-12-01

    Molybdenum isotope (δ98/95Mo) variations recorded in Archean and Paleoproterozoic Fe/Mn-rich sediments have been used to constrain ocean redox conditions at the time of deposition (Canfield et al., 2013 PNAS; Planavsky et al., 2014 Nat. Geo.; Kurzweil et al., 2015 GCA). However, except for hydrogenous Fe-Mn crusts (Siebert et al., 2003), δ98/95Mo variation of modern Fe and Mn oxide deposits has been poorly investigated. Marine hydrothermal systems are thought to be the major source of Fe and Mn in Archean and Paleoproterozoic Fe- and Mn-rich sediments. Hence, to accurately interpret Mo isotope data of those ancient sedimentary rocks, it is important to evaluate the possible influence of hydrothermally derived Mo on δ98/95Mo of modern Fe- and Mn-rich sediments. In this study, we analyzed Mo isotopic compositions of one hydrothermal Fe oxide and 15 Mn oxides from five different hydrothermal systems in the modern ocean. The Fe oxide is composed mainly of goethite, and has a δ98/95Mo of 0.7‰, which is 1.4‰ lighter than that of present-day seawater. The observed offset is similar to isotope fractionation observed during adsorption experiments of Mo on goethite (Δ98/95Mogoethite-solution = -1.4 ± 0.5%; Goldberg et al., 2009 GCA). The 15 hydrothermal Mn oxides show large variations in δ98/95Mo ranging from -1.7 to 0.5‰. However, most of the values are similar to those of modern hydrogenous Fe-Mn crusts (Siebert et al., 2003 EPSL), and fall within the range of estimated δ98/95Mo of Mn oxides precipitated from present-day seawater using the isotope offset reported from adsorption experiments (Δ98/95Mo = -2.7 ± 0.3‰; Wasylenki et al., 2008 GCA). These findings indicate that seawater is the dominant source of Mo for modern hydrothermal Fe and Mn deposits. However, the observed large variation indicates that the contribution Mo from local hydrothermal systems is not negligible. The oceanic Mo inventory during the Archean and Paleoproterozoic is thought to be

  3. Synthesis and Characterization of Si Oxide Coated Nano Ceria by Hydrolysis, and Hydrothermal Treatment at Low Temperature

    Directory of Open Access Journals (Sweden)

    Kong M.

    2017-06-01

    Full Text Available The purpose of this work was to the application of Si oxide coatings. This study deals with the preparation of ceria (CeO2 nanoparticles coating with SiO2 by water glass and hydrolysis reaction. First, the low temperature hydro-reactions were carried out at 30~100°C. Second, Silicon oxide-coated Nano compounds were obtained by the catalyzing synthesis. CeO2 Nano-powders have been successfully synthesized by means of the hydrothermal method, in a low temperature range of 100~200°C. In order to investigate the structure and morphology of the Nano-powders, scanning electron microscopy (SEM and X-ray diffraction (XRD were employed. The XRD results revealed the amorphous nature of silica nanoparticles. To analyze the quantity and properties of the compounds coated with Si oxide, transmission electron microscopy (TEM in conjunction with electron dispersive spectroscopy was used. Finally, it is suggested that the simple growth process is more favorable mechanism than the solution/aggregation process.

  4. AutoFACT: An Automatic Functional Annotation and Classification Tool

    Directory of Open Access Journals (Sweden)

    Lang B Franz

    2005-06-01

    Full Text Available Abstract Background Assignment of function to new molecular sequence data is an essential step in genomics projects. The usual process involves similarity searches of a given sequence against one or more databases, an arduous process for large datasets. Results We present AutoFACT, a fully automated and customizable annotation tool that assigns biologically informative functions to a sequence. Key features of this tool are that it (1 analyzes nucleotide and protein sequence data; (2 determines the most informative functional description by combining multiple BLAST reports from several user-selected databases; (3 assigns putative metabolic pathways, functional classes, enzyme classes, GeneOntology terms and locus names; and (4 generates output in HTML, text and GFF formats for the user's convenience. We have compared AutoFACT to four well-established annotation pipelines. The error rate of functional annotation is estimated to be only between 1–2%. Comparison of AutoFACT to the traditional top-BLAST-hit annotation method shows that our procedure increases the number of functionally informative annotations by approximately 50%. Conclusion AutoFACT will serve as a useful annotation tool for smaller sequencing groups lacking dedicated bioinformatics staff. It is implemented in PERL and runs on LINUX/UNIX platforms. AutoFACT is available at http://megasun.bch.umontreal.ca/Software/AutoFACT.htm.

  5. Synthesis of binary bismuth-cadmium oxide nanorods with sensitive electrochemical sensing performance

    International Nuclear Information System (INIS)

    Wen, Yong; Pei, Lizhai; Wei, Tian

    2017-01-01

    Binary bismuth-cadmium oxide nanorods have been synthesized by a simple hydrothermal process without templates and additives. X-ray diffraction and high-resolution transmission electron microscopy reveal that the nanorods possess single crystalline tetragonal Bi 2 CdO 4 phase. Scanning electron microscopy and transmission electron microscopy images show that the length and diameter of the nanorods are 20-300 nm and 5-10 μm, respectively. The formation of the binary bismuth-cadmium oxide nanorods is closely related to the hydrothermal parameters. The electrochemical sensing performance of the binary bismuth-cadmium oxide nanorods has been investigated using the nanorods as glassy carbon electrode modifiers. The detection limit is 0.19 μM with a linear range of 0.0005-2 mM. The nanorod-modified glassy carbon electrode exhibits good electrocatalytic activity toward L-cysteine and great application potential for electrochemical sensors.

  6. Surface mapping and drilling of extinct seafloor massive sulphide deposits (eSMS) from the TAG Hydrothermal Field, 26oN: A tale of two `Jaspers'

    Science.gov (United States)

    Stobbs, I. J.; Lusty, P.; Petersen, S.; Murton, B. J.

    2017-12-01

    Two extinct seafloor massive sulphide (eSMS) deposits within the TAG hydrothermal field, 26oN, mid-Atlantic ridge, were mapped and drilled: Southern Mound and the newly discovered `Rona Mound'. Surface mapping was undertaken by combining high definition video footage and high resolution bathymetry to interpret surface geological and geomorphological features. Drill core was recovered using the BGS RD2 robotic drilling rig. Surface mapping of the mounds revealed a superficial cover of carbonate and iron-oxyhydroxides sediments, observed to directly overly oxide coated sulphide material within fault scarps, which dissect the flanks of both mounds. Drilling at the summits of the mounds revealed similar stratigraphy to the mapping, with the addition of a coherent and dense layer of red-coloured silica-rich `jasper', up to 3m thick, underlying the sediments and overlying unoxidised massive sulphides. The jasper mineralogy is dominated by silica, with minor iron oxides and rare disseminated sulphides. It displays a range of complex textures including filamentous and dendritic iron oxides often coated in silica. Drill core samples show the material to be porous, but relatively impermeable. Strong and positive Eu (REE) anomalies indicates a hydrothermal origin with little evidence of a seawater signature (lack of negative Ce anomaly). Silica precipitation is associated with low temperature hydrothermal activity, chert and jasper materials are locally present within the nearby hydrothermally active TAG mound and are more widespread at low-temperature diffuse hydrothermal sites such as within the MESO field. We interpret the `jasper' layers to be a common product, formed during the waning, low temperature, stage of the hydrothermal cycle which may form an impermeable and resistant `cap' that protects the underlying massive sulphide ore body from oxidation and dissolution. The formation of a `jasper cap' could act automatically to preserve eSMS deposits when hydrothermal

  7. Synthesis of ZrO{sub 2} nanoparticles by hydrothermal treatment

    Energy Technology Data Exchange (ETDEWEB)

    Machmudah, Siti, E-mail: machmudah@chem-eng.its.ac.id; Widiyastuti, W., E-mail: machmudah@chem-eng.its.ac.id; Prastuti, Okky Putri, E-mail: machmudah@chem-eng.its.ac.id; Nurtono, Tantular, E-mail: machmudah@chem-eng.its.ac.id; Winardi, Sugeng, E-mail: machmudah@chem-eng.its.ac.id [Chemical Engineering Department, Sepuluh Nopember Institute of Technology, Surabaya 60111 (Indonesia); Wahyudiono,; Kanda, Hideki; Goto, Motonobu [Department of Chemical Engineering, Nagoya University, Nagoya 464-8603 (Japan)

    2014-02-24

    Zirconium oxide (zirconia, ZrO{sub 2}) is the most common material used for electrolyte of solid oxide fuel cells (SOFCs). Zirconia has attracted attention for applications in optical coatings, buffer layers for growing superconductors, thermal-shield, corrosion resistant coatings, ionic conductors, and oxygen sensors, and for potential applications including transparent optical devices and electrochemical capacitor electrodes, fuel cells, catalysts, and advanced ceramics. In this work, zirconia particles were synthesized from ZrCl{sub 4} precursor with hydrothermal treatment in a batch reactor. Hydrothermal treatment may allow obtaining nanoparticles and sintered materials with controlled chemical and structural characteristics. Hydrothermal treatment was carried out at temperatures of 150 – 200°C with precursor concentration of 0.1 – 0.5 M. Zirconia particles obtained from this treatment were analyzed by using SEM, PSD and XRD to characterize the morphology, particle size distribution, and crystallinity, respectively. Based on the analysis, the size of zirconia particles were around 200 nm and it became smaller with decreasing precursor concentration. The increasing temperature caused the particles formed having uniform size. Zirconia particles formed by hydrothermal treatment were monoclinic, tetragonal and cubic crystal.

  8. Hydrothermal synthesis and characterization of zirconia based catalysts

    Science.gov (United States)

    Caillot, T.; Salama, Z.; Chanut, N.; Cadete Santos Aires, F. J.; Bennici, S.; Auroux, A.

    2013-07-01

    In this work, three equimolar mixed oxides ZrO2/CeO2, ZrO2/TiO2, ZrO2/La2O3 and a reference ZrO2 have been synthesized by hydrothermal method. The structural and surface properties of these materials have been fully characterized by X-ray diffraction, transmission electron microscopy, surface area measurement, chemical analysis, XPS, infrared spectroscopy after adsorption of pyridine and adsorption microcalorimetry of NH3 and SO2 probe molecules. All investigated mixed oxides are amphoteric and possess redox centers on their surface. Moreover, hydrothermal synthesis leads to catalysts with higher surface area and with better acid-base properties than classical coprecipitation method. Both Lewis and Brønsted acid sites are present on the surface of the mixed oxides. Compared to the other samples, the ZrO2/TiO2 material appears to be the best candidate for further application in acid-base catalysis.

  9. Hydrothermal synthesis of hexagonal magnesium hydroxide nanoflakes

    International Nuclear Information System (INIS)

    Wang, Qiang; Li, Chunhong; Guo, Ming; Sun, Lingna; Hu, Changwen

    2014-01-01

    Graphical abstract: Hexagonal Mg(OH) 2 nanoflakes were synthesized via hydrothermal method in the presence of PEG-20,000. Results show that PEG-20,000 plays an important role in the formation of this kind of nanostructure. The SAED patterns taken from the different positions on a single hexagonal Mg(OH) 2 nanoflake yielded different crystalline structures. The structure of the nanoflakes are polycrystalline and the probable formation mechanism of Mg(OH) 2 nanoflakes is discussed. - Highlights: • Hexagonal Mg(OH) 2 nanoflakes were synthesized via hydrothermal method. • PEG-20,000 plays an important role in the formation of hexagonal nanostructure. • Mg(OH) 2 nanoflakes show different crystalline structures at different positions. • The probable formation mechanism of hexagonal Mg(OH) 2 nanoflakes was reported. - Abstract: Hexagonal magnesium hydroxide (Mg(OH) 2 ) nanoflakes were successfully synthesized via hydrothermal method in the presence of the surfactant polyethylene glycol 20,000 (PEG-20,000). Results show that PEG-20,000 plays an important role in the formation of this kind of nanostructure. The composition, morphologies and structure of the Mg(OH) 2 nanoflakes were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HRTEM), and selected area electron diffraction (SAED). The SAED patterns taken from the different positions on a single hexagonal Mg(OH) 2 nanoflake show different crystalline structures. The structure of the nanoflakes are polycrystalline and the probable formation mechanism of Mg(OH) 2 nanoflakes is discussed. Brunauer–Emmett–Teller (BET) analysis were performed to investigate the porous structure and surface area of the as-obtained nanoflakes

  10. Hydrothermal synthesis of TiO2-ZnO-graphene nanocomposite towards photocatalytic and photovoltaic applications

    Science.gov (United States)

    Gayathri, S.; Jayabal, P.; Ramakrishnan, V.

    2015-06-01

    Titanium dioxide (TiO2) - Zinc oxide (ZnO) - Graphene (G) nanocomposite was successfully synthesized through facile hydrothermal method. The X-ray diffraction (XRD) pattern and the micro-Raman spectroscopic technique revealed the formation of TiO2-ZnO-Graphene (TZG) nanocomposite. The ZnO and TiO2 nanoparticles decorated graphene sheets were clearly noticeable in the Field Emission Scanning Electron Micrograph (FE-SEM). The UV-Visible absorption spectra clearly indicated that the formation of TZG nanocomposite enriched the absorption in the visible region. Hence, the prepared nanocomposite can be used as photocatalyst to remove organic dyes from water and as photoanode in the fabrication of dye sensitized solar cells (DSSCs).

  11. Hydrothermal synthesis of TiO2-ZnO-graphene nanocomposite towards photocatalytic and photovoltaic applications

    International Nuclear Information System (INIS)

    Gayathri, S.; Jayabal, P.; Ramakrishnan, V.

    2015-01-01

    Titanium dioxide (TiO 2 ) - Zinc oxide (ZnO) - Graphene (G) nanocomposite was successfully synthesized through facile hydrothermal method. The X-ray diffraction (XRD) pattern and the micro-Raman spectroscopic technique revealed the formation of TiO 2 -ZnO-Graphene (TZG) nanocomposite. The ZnO and TiO 2 nanoparticles decorated graphene sheets were clearly noticeable in the Field Emission Scanning Electron Micrograph (FE-SEM). The UV-Visible absorption spectra clearly indicated that the formation of TZG nanocomposite enriched the absorption in the visible region. Hence, the prepared nanocomposite can be used as photocatalyst to remove organic dyes from water and as photoanode in the fabrication of dye sensitized solar cells (DSSCs)

  12. Effect of preparation procedure on the formation of nanostructuredceria–zirconia mixed oxide catalysts for ethyl acetate oxidation:Homogeneous precipitation with urea vs template-assistedhydrothermal synthesis

    Czech Academy of Sciences Publication Activity Database

    Tsoncheva, T.; Ivanova, R.; Henych, Jiří; Dimitrov, M.; Kormunda, M.; Kovacheva, D.; Scotti, N.; Dal Santo, V.; Štengl, Václav

    2015-01-01

    Roč. 502, JUL (2015), s. 418-432 ISSN 0926-860X Institutional support: RVO:61388980 Keywords : Ceria–zirconia mixed oxides * Template -assisted hydrothermal method * Urea hydrolysis * Ethyl acetate oxidationa Subject RIV: CA - Inorganic Chemistry Impact factor: 4.012, year: 2015

  13. Sol-gel auto-combustion synthesis of hydroxyapatite nanotubes array in porous alumina template

    International Nuclear Information System (INIS)

    Yuan Yuan; Liu Changsheng; Zhang Yuan; Shan Xiaoqian

    2008-01-01

    In this paper, an array of highly ordered hydroxyapatite (HAP) nanotubes was synthesized by sol-gel auto-combustion method with porous anodic aluminum oxide (AAO) template for the first time. Based on thermogravimetry (DTA/TG), Fourier transform infrared (FTIR) and X-ray diffraction (XRD), the dried gel, derived from the sol solution with Ca(NO 3 ) 2 .4H 2 O and PO(CH 3 O) 3 as precursors and ethylene glycol as the polymeric matrix, exhibited a typical self-propagating combustion behavior at low temperature, directly resulting in hexagonal crystalline HAP materials. The resultant HAP arrays fabricated from the above sol-gel in the AAO template were uniformly distributed, highly ordered nanotubes with uniform length and diameter according to the observations of scanning electron microscopy (SEM) and transmission electron microscope (TEM). The electron diffraction (ED), XRD and X-ray photoelectron spectroscopy (XPS) survey proved the formation of HAP phase with polycrystalline structure in the AAO template. Based on these results, a potential mechanism of 'an auto-combustion from dried gel to nanoparticles and a subsequent in situ reaction from nanoparticles to nanotubes' was proposed

  14. Hierarchical Assembly of Multifunctional Oxide-based Composite Nanostructures for Energy and Environmental Applications

    Directory of Open Access Journals (Sweden)

    Hui-Jan Lin

    2012-06-01

    Full Text Available Composite nanoarchitectures represent a class of nanostructured entities that integrates various dissimilar nanoscale building blocks including nanoparticles, nanowires, and nanofilms toward realizing multifunctional characteristics. A broad array of composite nanoarchitectures can be designed and fabricated, involving generic materials such as metal, ceramics, and polymers in nanoscale form. In this review, we will highlight the latest progress on composite nanostructures in our research group, particularly on various metal oxides including binary semiconductors, ABO3-type perovskites, A2BO4 spinels and quaternary dielectric hydroxyl metal oxides (AB(OH6 with diverse application potential. Through a generic template strategy in conjunction with various synthetic approaches—such as hydrothermal decomposition, colloidal deposition, physical sputtering, thermal decomposition and thermal oxidation, semiconductor oxide alloy nanowires, metal oxide/perovskite (spinel composite nanowires, stannate based nanocompostes, as well as semiconductor heterojunction—arrays and networks have been self-assembled in large scale and are being developed as promising classes of composite nanoarchitectures, which may open a new array of advanced nanotechnologies in solid state lighting, solar absorption, photocatalysis and battery, auto-emission control, and chemical sensing.

  15. The effects of synthesis parameters on the formation of PbI2 particles under DTAB-assisted hydrothermal process

    International Nuclear Information System (INIS)

    Zhu Gangqiang; Hojamberdiev, Mirabbos; Liu Peng; Peng Jianhong; Zhou Jianping; Bian Xiaobin; Huang Xijin

    2011-01-01

    Highlights: ► Submicron- and micron-sized PbI 2 particles were hydrothermally synthesized. ► Structural transformation form belt-like to rod- and microtube-like was observed. ► Phase-pure PbI 2 particles could be hydrothermally obtained at pH 2 particles. ► The optical band gap energy of PbI 2 was slightly affected by morphology. - Abstract: Submicron- and micron-sized lead iodide (PbI 2 ) particles with well-controlled morphologies were successfully fabricated via a low-temperature hydrothermal process assisted by dodecyltrimethylammonium bromide (DTAB) as cationic surfactant. The as-synthesized powders were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and UV–vis spectroscopy. The effects of synthesis parameters (temperature, time, pH, and surfactant amount) were systematically investigated. The obtained results showed that the submicron structure was belt-like at 100–120 °C, transformed to rod-like by increasing temperature to 140 °C and it became a microtube-like at 160–200 °C. By changing the pH of the synthesizing solution, it was found that a pure PbI 2 phase could be obtained below 7. With the addition of increasing amount of surfactant, microparticles were converted to microrods → submicron belts → microtubes. The time-dependent experimental results revealed that the dissolution–recrystallization and dissolution–recrystallization–self-oriented-attachment were considered to be the possible mechanisms for the formation of the belt- and tube-like PbI 2 submicron- and micron-sized particles, respectively. The optical properties of the PbI 2 particles synthesized at 100–200 °C for 8 h under hydrothermal conditions were also studied.

  16. Microbial communities in methane- and short chain alkane-rich hydrothermal sediments of Guaymas Basin

    Directory of Open Access Journals (Sweden)

    Frederick eDowell

    2016-01-01

    Full Text Available The hydrothermal sediments of Guaymas Basin, an active spreading center in the Gulf of California (Mexico, are rich in porewater methane, short-chain alkanes, sulfate and sulfide, and provide a model system to explore habitat preferences of microorganisms, including sulfate-dependent, methane- and short chain alkane-oxidizing microbial communities. In this study, sediments (above 60˚C covered with sulfur-oxidizing microbial mats surrounding a hydrothermal mound (termed Mat Mound were characterized by porewater geochemistry of methane, C2-C6 short-chain alkanes, sulfate, sulfide, sulfate reduction rate measurements, in-situ temperature gradients, bacterial and archaeal 16S rRNA gene clone libraries and V6 tag pyrosequencing. The most abundantly detected groups in the Mat mound sediments include anaerobic methane-oxidizing archaea of the ANME-1 lineage and its sister clade ANME-1Guaymas, the uncultured bacterial groups SEEP-SRB2 within the Deltaproteobacteria and the separately branching HotSeep-1 Group; these uncultured bacteria are candidates for sulfate-reducing alkane oxidation and for sulfate-reducing syntrophy with ANME archaea. The archaeal dataset indicates distinct habitat preferences for ANME-1, ANME-1-Guaymas and ANME-2 archaea in Guaymas Basin hydrothermal sediments. The bacterial groups SEEP-SRB2 and HotSeep-1 co-occur with ANME-1 and ANME-1Guaymas in hydrothermally active sediments underneath microbial mats in Guaymas Basin. We propose the working hypothesis that this mixed bacterial and archaeal community catalyzes the oxidation of both methane and short-chain alkanes, and constitutes a microbial community signature that is characteristic for hydrothermal and/or cold seep sediments containing both substrates.

  17. Acid-Base Behavior in Hydrothermal Processing of Wastes - Final Report

    International Nuclear Information System (INIS)

    Johnston, K.; Rossky, P.

    2000-01-01

    A major obstacle to development of hydrothermal oxidation technology has been a lack of scientific knowledge of chemistry in hydrothermal solution above 350 C, particularly acid-base behavior, and transport phenomena, which is needed to understand corrosion, metal-ion complexation, and salt precipitation and recovery. Our objective has been to provide this knowledge with in situ UV-visible spectroscopic measurements and fully molecular computer simulation. Our recent development of relatively stable organic UV-visible pH indicators for supercritical water oxidation offers the opportunity to characterize buffers and to monitor acid-base titrations. These results have important implications for understanding reaction pathways and yields for decomposition of wastes in supercritical water

  18. A novel hydrogen oxidizer amidst the sulfur-oxidizing Thiomicrospira lineage

    Science.gov (United States)

    Hansen, Moritz; Perner, Mirjam

    2015-01-01

    Thiomicrospira species are ubiquitously found in various marine environments and appear particularly common in hydrothermal vent systems. Members of this lineage are commonly classified as sulfur-oxidizing chemolithoautotrophs. Although sequencing of Thiomicrospira crunogena's genome has revealed genes that encode enzymes for hydrogen uptake activity and for hydrogenase maturation and assembly, hydrogen uptake ability has so far not been reported for any Thiomicrospira species. We isolated a Thiomicrospira species (SP-41) from a deep sea hydrothermal vent and demonstrated that it can oxidize hydrogen. We show in vivo hydrogen consumption, hydrogen uptake activity in partially purified protein extracts and transcript abundance of hydrogenases during different growth stages. The ability of this strain to oxidize hydrogen opens up new perspectives with respect to the physiology of Thiomicrospira species that have been detected in hydrothermal vents and that have so far been exclusively associated with sulfur oxidation. PMID:25226028

  19. Ideas and perspectives: hydrothermally driven redistribution and sequestration of early Archaean biomass – the “hydrothermal pump hypothesis”

    Directory of Open Access Journals (Sweden)

    J.-P. Duda

    2018-03-01

    Full Text Available Archaean hydrothermal chert veins commonly contain abundant organic carbon of uncertain origin (abiotic vs. biotic. In this study, we analysed kerogen contained in a hydrothermal chert vein from the ca. 3.5 Ga Dresser Formation (Pilbara Craton, Western Australia. Catalytic hydropyrolysis (HyPy of this kerogen yielded n-alkanes up to n-C22, with a sharp decrease in abundance beyond n-C18. This distribution ( ≤  n-C18 is very similar to that observed in HyPy products of recent bacterial biomass, which was used as reference material, whereas it differs markedly from the unimodal distribution of abiotic compounds experimentally formed via Fischer–Tropsch-type synthesis. We therefore propose that the organic matter in the Archaean chert veins has a primarily microbial origin. The microbially derived organic matter accumulated in anoxic aquatic (surface and/or subsurface environments and was then assimilated, redistributed and sequestered by the hydrothermal fluids (hydrothermal pump hypothesis.

  20. Auto Safety

    Science.gov (United States)

    ... Safe Videos for Educators Search English Español Auto Safety KidsHealth / For Parents / Auto Safety What's in this ... by teaching some basic rules. Importance of Child Safety Seats Using a child safety seat (car seat) ...

  1. Chicxulub: testing for post-impact hydrothermal inputs into the Tertiary ocean

    Science.gov (United States)

    Rowe, A.; Wilkinson, J.; Morgan, J.

    2003-04-01

    Large terrestrial impacts produce intense fracturing of the crust and large melt sheets, providing ideal conditions for extensive hydrothermal circulation. In marine settings, such as Chicxulub, there is the potential for downward penetration of cold seawater, heating by the thermal anomaly at the impact site and leaching of metals, prior to buoyancy driven flow back to the surface. There, fluids may undergo venting into the water column. A large proportion of the metals in such vent fluids precipitate close to the site of discharge; however, a proportion of the fluid is dispersed as a hydrothermal plume. Dissolved and particulate materials (in particular manganese and iron oxyhydroxides) can be carried for several hundreds of kilometers, before falling out to form metal-rich sediments. A series of Tertiary core samples has been obtained from the International Continental Drilling Program at Chicxulub (CSDP). These comprise fine-grained cream coloured carbonate sediments with fine laminations. Transmitted light and cathodoluminescence petrography have been used to carry out a preliminary characterization of the samples. Multi-element analysis has also been undertaken by ICP-AES. Samples were reduced to powder and digested using a nitric-perchloric-hydrofluoric acid attack. Rare earth elements (REE) have been analysed by ICP-MS and solutions were prepared using a modified nitric-perchloric-hydrofluoric acid attack. Geochemical analyses have been carried out to test for characteristic signals of hydrothermal input, such as enrichments in Mn, Fe, Cu, Zn, Pb, Mg, Ba, Co, Cr and Ni. The REE are scavenged from seawater onto iron oxide surfaces in the plume; hence anomalous REE concentrations are also indicative of hydrothermal addition. Furthermore, the type of anomaly can differentiate between sediments proximal (+ve Eu) distal (-ve Ce) to the vent site. The stratigraphic extent of any anomalies can be used to constrain the duration of any post-impact circulation. The

  2. Studies on supercritical hydrothermal syntheses of uranium and lanthanide oxide particles and their reaction mechanisms

    Science.gov (United States)

    Hwang, DongKi; Tsukahara, Takehiko; Tanaka, Kosuke; Osaka, Masahiko; Ikeda, Yasuhisa

    2015-11-01

    In order to develop preparation method of raw metal oxide particles for low decontaminated MOX fuels by supercritical hydrothermal (SH) treatments, we have investigated behavior of aqueous solutions dissolving U(VI), Ln(III) (Ln: lanthanide = Ce, Pr, Nd, Sm, Tb), Cs(I), and Sr(II) nitrate or chloride compounds under SH conditions (temperature = 400-500 °C, pressure = 30-40 MPa). As a result, it was found that Ln(NO3)3 (Ln = Ce, Pr, Tb) compounds produce LnO2, that Ln(NO3)3 (Ln = Nd, Sm) compounds are hardly converted to their oxides, and that LnCl3 (Ln = Ce, Pr, Nd, Sm, Tb), CsNO3, and Sr(NO3)2 do not form their oxide compounds. Furthermore, HNO2 species were detected in the liquid phase obtained after treating HNO3 aqueous solutions containing Ln(NO3)3 (Ln = Ce, Pr, Tb) under SH conditions, and also NO2 and NO compounds were found to be produced by decomposition of HNO3. From these results, it was proposed that the Ln oxide (LnO2) particles are directly formed with oxidation of Ln(III) to Ln(IV) by HNO3 and HNO2 species in the SH systems. Moreover, the uranyl ions were found to form U3O8 and UO3 depending on the concentration of HNO3. From these results, it is expected that the raw metal oxide particles for low decontaminated MOX fuels are efficiently prepared by the SH method.

  3. Hydrothermal processes above the Yellowstone magma chamber: Large hydrothermal systems and large hydrothermal explosions

    Science.gov (United States)

    Morgan, L.A.; Shanks, W.C. Pat; Pierce, K.L.

    2009-01-01

    Hydrothermal explosions are violent and dramatic events resulting in the rapid ejection of boiling water, steam, mud, and rock fragments from source craters that range from a few meters up to more than 2 km in diameter; associated breccia can be emplaced as much as 3 to 4 km from the largest craters. Hydrothermal explosions occur where shallow interconnected reservoirs of steam- and liquid-saturated fluids with temperatures at or near the boiling curve underlie thermal fields. Sudden reduction in confi ning pressure causes fluids to fl ash to steam, resulting in signifi cant expansion, rock fragmentation, and debris ejection. In Yellowstone, hydrothermal explosions are a potentially signifi cant hazard for visitors and facilities and can damage or even destroy thermal features. The breccia deposits and associated craters formed from hydrothermal explosions are mapped as mostly Holocene (the Mary Bay deposit is older) units throughout Yellowstone National Park (YNP) and are spatially related to within the 0.64-Ma Yellowstone caldera and along the active Norris-Mammoth tectonic corridor. In Yellowstone, at least 20 large (>100 m in diameter) hydrothermal explosion craters have been identifi ed; the scale of the individual associated events dwarfs similar features in geothermal areas elsewhere in the world. Large hydrothermal explosions in Yellowstone have occurred over the past 16 ka averaging ??1 every 700 yr; similar events are likely in the future. Our studies of large hydrothermal explosion events indicate: (1) none are directly associated with eruptive volcanic or shallow intrusive events; (2) several historical explosions have been triggered by seismic events; (3) lithic clasts and comingled matrix material that form hydrothermal explosion deposits are extensively altered, indicating that explosions occur in areas subjected to intense hydrothermal processes; (4) many lithic clasts contained in explosion breccia deposits preserve evidence of repeated fracturing

  4. AutoCAD 2015 and AutoCAD LT 2015 essentials

    CERN Document Server

    Onstott, Scott

    2014-01-01

    Step-by-step instructions for the AutoCAD fundamentals AutoCAD 2015 Essentials contains 400 pages of full-color, comprehensive instruction on the world's top drafting and architecture software. This 2015 edition features architectural, manufacturing, and landscape architecture examples. And like previous editions, the detailed guide introduces core concepts using interactive tutorials and open-ended projects, which can be completed in any order, thanks to downloadable data sets (an especially useful feature for students and professionals studying for Autodesk AutoCAD certification). Unlike man

  5. Heating subsurface formations by oxidizing fuel on a fuel carrier

    Science.gov (United States)

    Costello, Michael; Vinegar, Harold J.

    2012-10-02

    A method of heating a portion of a subsurface formation includes drawing fuel on a fuel carrier through an opening formed in the formation. Oxidant is supplied to the fuel at one or more locations in the opening. The fuel is combusted with the oxidant to provide heat to the formation.

  6. Diffuse flow hydrothermal manganese mineralization along the active Mariana and southern Izu-Bonin arc system, western Pacific

    Science.gov (United States)

    Hein, James R.; Schulz, Marjorie S.; Dunham, Rachel E.; Stern, Robert J.; Bloomer, Sherman H.

    2008-08-01

    Abundant ferromanganese oxides were collected along 1200 km of the active Izu-Bonin-Mariana arc system. Chemical compositions and mineralogy show that samples were collected from two deposit types: Fe-Mn crusts of mixed hydrogenetic/hydrothermal origin and hydrothermal Mn oxide deposits; this paper addresses only the second type. Mn oxides cement volcaniclastic and biogenic sandstone and breccia layers (Mn sandstone) and form discrete dense stratabound layers along bedding planes and within beds (stratabound Mn). The Mn oxide was deposited within coarse-grained sediments from diffuse flow systems where precipitation occurred below the seafloor. Deposits were exposed at the seabed by faulting, mass wasting, and erosion. Scanning electron microscopy and microprobe analyses indicate the presence of both amorphous and crystalline 10 Å and 7 Å manganate minerals, the fundamental chemical difference being high water contents in the amorphous Mn oxides. Alternation of amorphous and crystalline laminae occurs in many samples, which likely resulted from initial rapid precipitation of amorphous Mn oxides from waxing pulses of hydrothermal fluids followed by precipitation of slow forming crystallites during waning stages. The chemical composition is characteristic of a hydrothermal origin including strong fractionation between Fe (mean 0.9 wt %) and Mn (mean 48 wt %) for the stratabound Mn, generally low trace metal contents, and very low rare earth element and platinum group element contents. However, Mo, Cd, Zn, Cu, Ni, and Co occur in high concentrations in some samples and may be good indicator elements for proximity to the heat source or to massive sulfide deposits. For the Mn sandstones, Fe (mean 8.4%) and Mn (12.4%) are not significantly fractionated because of high Fe contents in the volcaniclastic material. However, the proportion of hydrothermal Fe (nondetrital Fe) to total Fe is remarkably constant (49-58%) for all the sample groups, regardless of the degree of

  7. Diffuse flow hydrothermal manganese mineralization along the active Mariana and southern Izu-Bonin arc system, western Pacific

    Science.gov (United States)

    Hein, J.R.; Schulz, M.S.; Dunham, R.E.; Stern, R.J.; Bloomer, S.H.

    2008-01-01

    Abundant ferromanganese oxides were collected along 1200 km of the active Izu-Bonin-Mariana arc system. Chemical compositions and mineralogy show that samples were collected from two deposit types: Fe-Mn crusts of mixed hydrogenetic/hydrothermal origin and hydrothermal Mn oxide deposits; this paper addresses only the second type. Mn oxides cement volcaniclastic and biogenic sandstone and breccia layers (Mn sandstone) and form discrete dense stratabound layers along bedding planes and within beds (stratabound Mn). The Mn oxide was deposited within coarse-grained sediments from diffuse flow systems where precipitation occurred below the seafloor. Deposits were exposed at the seabed by faulting, mass wasting, and erosion. Scanning electron microscopy and microprobe analyses indicate the presence of both amorphous and crystalline 10 ?? and 7 ?? manganate minerals, the fundamental chemical difference being high water contents in the amorphous Mn oxides. Alternation of amorphous and crystalline laminae occurs in many samples, which likely resulted from initial rapid precipitation of amorphous Mn oxides from waxing pulses of hydrothermal fluids followed by precipitation of slow forming crystallites during waning stages. The chemical composition is characteristic of a hydrothermal origin including strong fractionation between Fe (mean 0.9 wt %) and Mn (mean 48 wt %) for the stratabound Mn, generally low trace metal contents, and very low rare earth element and platinum group element contents. However, Mo, Cd, Zn, Cu, Ni, and Co occur in high concentrations in some samples and may be good indicator elements for proximity to the heat source or to massive sulfide deposits. For the Mn sandstones, Fe (mean-8.4%) and Mn (12.4%) are not significantly fractionated because of high Fe contents in the volcaniclastic material. However, the proportion of hydrothermal Fe (nondetrital Fe) to total Fe is remarkably constant (49-58%) for all the sample groups, regardless of the degree of

  8. Aromatics oxidation and soot formation in flames

    Energy Technology Data Exchange (ETDEWEB)

    Howard, J.B.; Pope, C.J.; Shandross, R.A.; Yadav, T. [Massachusetts Institute of Technology, Cambridge (United States)

    1993-12-01

    This project is concerned with the kinetics and mechanisms of aromatics oxidation and soot and fullerenes formation in flames. The scope includes detailed measurements of profiles of stable and radical species concentrations in low-pressure one-dimensional premixed flames. Intermediate species identifications and mole fractions, fluxes, and net reaction rates calculated from the measured profiles are used to test postulated reaction mechanisms. Particular objectives are to identify and to determine or confirm rate constants for the main benzene oxidation reactions in flames, and to characterize fullerenes and their formation mechanisms and kinetics.

  9. Phase formation, morphology and magnetic properties of MgFe{sub 2}O{sub 4} nanoparticles synthesized by hydrothermal technique

    Energy Technology Data Exchange (ETDEWEB)

    Nonkumwong, Jeeranan [Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Ananta, Supon [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Jantaratana, Pongsakorn [Department of Physics, Faculty of Science, Kasetsart University, Bangkok 11900 (Thailand); Phumying, Santi; Maensiri, Santi [Advanced Materials Physics Laboratory (Amp.), School of Physics, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000 (Thailand); Srisombat, Laongnuan, E-mail: slaongnuan@yahoo.com [Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2015-05-01

    In the present work, the processing conditions for obtaining monodispersed magnesium ferrite (MgFe{sub 2}O{sub 4}) nanoparticles with the desired morphology and relatively high saturation magnetization via hydrothermal technique were developed. For the first time, the effects of base type and reaction conditions (i.e. temperature and time) on phase formation, morphology and magnetic properties of the obtained products were determined by using a combination of XRD, TEM/EDX and VSM techniques. It is seen that the saturation magnetization of the particles can be increased by employing lower reaction temperature and/or shorter reaction time, while narrow size distribution of the particles can be maintained. In addition, it was found that pure phase of superparamagnetic MgFe{sub 2}O{sub 4} nanoparticles with the smallest size of about 65 nm was obtained by using CH{sub 3}COONa as a base at 180 °C for 14 h. - Highlights: • Preparation of MgFe{sub 2}O{sub 4} nanoparticles by hydrothermal method. • Effects of base and reaction conditions on formation and morphology MgFe{sub 2}O{sub 4} particles. • Producing the 65 nm MgFe{sub 2}O{sub 4} nanoparticles with superparamagnetic property.

  10. Low temperature hydrothermal processing of organic contaminants in Hanford tank waste

    International Nuclear Information System (INIS)

    Jones, E.O.; Pederson, L.R.; Freeman, H.D.; Schmidt, A.J.; Babad, H.

    1993-02-01

    Batch and continuous flow reactor tests at Pacific Northwest Laboratory (PNL) have shown that organics similar to those present in the single-shell and double-shell underground storage tanks at Hanford can be decomposed in the liquid phase at relatively mild temperatures of 150 degree C to 350 degree C in an aqueous process known as hydrothermal processing (HTP). The organics will react with the abundant oxidants such s nitrite already present in the Hanford tank waste to form hydrogen, carbon dioxide, methane, and ammonia. No air or oxygen needs to be added to the system. Ferrocyanides and free cyanide will hydrolyze at similar temperatures to produce formate and ammonia and may also react with nitrates or other oxides. During testing, the organic carbon was transformed first to oxalate at∼310 degree C and completely oxidized to carbonate at ∼350 degree C accompanied by hydroxide consumption. Solids were formed at higher temperatures, causing a small-diameter outlet tube to plug. The propensity for plugging was reduced by diluting the feed with concentrated hydroxide

  11. Hydrothermal synthesis of TiO{sub 2}-ZnO-graphene nanocomposite towards photocatalytic and photovoltaic applications

    Energy Technology Data Exchange (ETDEWEB)

    Gayathri, S., E-mail: s.gayathri1010@gmail.com; Jayabal, P. [Department of Laser Studies, School of Physics, Madurai Kamaraj University, Madurai-625021 (India); Ramakrishnan, V. [Department of Laser Studies, School of Physics, Madurai Kamaraj University, Madurai-625021 (India); Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram-695016 (India)

    2015-06-24

    Titanium dioxide (TiO{sub 2}) - Zinc oxide (ZnO) - Graphene (G) nanocomposite was successfully synthesized through facile hydrothermal method. The X-ray diffraction (XRD) pattern and the micro-Raman spectroscopic technique revealed the formation of TiO{sub 2}-ZnO-Graphene (TZG) nanocomposite. The ZnO and TiO{sub 2} nanoparticles decorated graphene sheets were clearly noticeable in the Field Emission Scanning Electron Micrograph (FE-SEM). The UV-Visible absorption spectra clearly indicated that the formation of TZG nanocomposite enriched the absorption in the visible region. Hence, the prepared nanocomposite can be used as photocatalyst to remove organic dyes from water and as photoanode in the fabrication of dye sensitized solar cells (DSSCs)

  12. Sulfur metabolizing microbes dominate microbial communities in Andesite-hosted shallow-sea hydrothermal systems.

    Directory of Open Access Journals (Sweden)

    Yao Zhang

    Full Text Available To determine microbial community composition, community spatial structure and possible key microbial processes in the shallow-sea hydrothermal vent systems off NE Taiwan's coast, we examined the bacterial and archaeal communities of four samples collected from the water column extending over a redoxocline gradient of a yellow and four from a white hydrothermal vent. Ribosomal tag pyrosequencing based on DNA and RNA showed statistically significant differences between the bacterial and archaeal communities of the different hydrothermal plumes. The bacterial and archaeal communities from the white hydrothermal plume were dominated by sulfur-reducing Nautilia and Thermococcus, whereas the yellow hydrothermal plume and the surface water were dominated by sulfide-oxidizing Thiomicrospira and Euryarchaeota Marine Group II, respectively. Canonical correspondence analyses indicate that methane (CH(4 concentration was the only statistically significant variable that explains all community cluster patterns. However, the results of pyrosequencing showed an essential absence of methanogens and methanotrophs at the two vent fields, suggesting that CH(4 was less tied to microbial processes in this shallow-sea hydrothermal system. We speculated that mixing between hydrothermal fluids and the sea or meteoric water leads to distinctly different CH(4 concentrations and redox niches between the yellow and white vents, consequently influencing the distribution patterns of the free-living Bacteria and Archaea. We concluded that sulfur-reducing and sulfide-oxidizing chemolithoautotrophs accounted for most of the primary biomass synthesis and that microbial sulfur metabolism fueled microbial energy flow and element cycling in the shallow hydrothermal systems off the coast of NE Taiwan.

  13. Sulfur metabolizing microbes dominate microbial communities in Andesite-hosted shallow-sea hydrothermal systems.

    Science.gov (United States)

    Zhang, Yao; Zhao, Zihao; Chen, Chen-Tung Arthur; Tang, Kai; Su, Jianqiang; Jiao, Nianzhi

    2012-01-01

    To determine microbial community composition, community spatial structure and possible key microbial processes in the shallow-sea hydrothermal vent systems off NE Taiwan's coast, we examined the bacterial and archaeal communities of four samples collected from the water column extending over a redoxocline gradient of a yellow and four from a white hydrothermal vent. Ribosomal tag pyrosequencing based on DNA and RNA showed statistically significant differences between the bacterial and archaeal communities of the different hydrothermal plumes. The bacterial and archaeal communities from the white hydrothermal plume were dominated by sulfur-reducing Nautilia and Thermococcus, whereas the yellow hydrothermal plume and the surface water were dominated by sulfide-oxidizing Thiomicrospira and Euryarchaeota Marine Group II, respectively. Canonical correspondence analyses indicate that methane (CH(4)) concentration was the only statistically significant variable that explains all community cluster patterns. However, the results of pyrosequencing showed an essential absence of methanogens and methanotrophs at the two vent fields, suggesting that CH(4) was less tied to microbial processes in this shallow-sea hydrothermal system. We speculated that mixing between hydrothermal fluids and the sea or meteoric water leads to distinctly different CH(4) concentrations and redox niches between the yellow and white vents, consequently influencing the distribution patterns of the free-living Bacteria and Archaea. We concluded that sulfur-reducing and sulfide-oxidizing chemolithoautotrophs accounted for most of the primary biomass synthesis and that microbial sulfur metabolism fueled microbial energy flow and element cycling in the shallow hydrothermal systems off the coast of NE Taiwan.

  14. Chemical environments of submarine hydrothermal systems

    Science.gov (United States)

    Shock, Everett L.

    1992-01-01

    determinations rely on studies of pieces of deep oceanic crust uplifted by tectonic forces such as along the Southwest Indian Ridge, or more complete sections of oceanic crust called ophiolite sequences which are presently exposed on continents owing to tectonic emplacement. Much of what is thought to happen in submarine hydrothermal systems is inferred from studies of ophiolite sequences, and especially from the better-exposed ophiolites in Oman, Cyprus and North America. The focus of much that follows is on a few general features: pressure, temperature, oxidation states, fluid composition and mineral alteration, because these features will control whether organic synthesis can occur in hydrothermal systems.

  15. Selection of hydrothermal pre-treatment conditions of waste sludge destruction using multicriteria decision-making.

    Science.gov (United States)

    Al-Shiekh Khalil, Wael; Shanableh, Abdullah; Rigby, Portia; Kokot, Serge

    2005-04-01

    The effectiveness of hydrothermal treatment for the destruction of the organic content of sludge waste was investigated. The sludge sampled in this study contained approximately 2% solids. The experimental program consisted of hydrothermal treatment experiments conducted in a batch reactor at temperatures between 100 and 250 degrees C, with the addition of an oxidant (hydrogen peroxide) in the range of 0-150% with reference to TCOD, and reaction times of up to 60 min. The results suggested that the availability of oxidant, reaction temperature and reaction time were the determining factors for COD removal. A significant fraction of the COD remaining after treatment consisted of the dissolved COD. The results confirmed that hydrothermal treatment proceeds through hydrolysis resulting in the production of dissolved organic products followed by COD removal through oxidation. Two MCDM chemometrics methods, PROMETHEE and GAIA, were applied to process the large data matrix so as to facilitate the selection of the most suitable hydrothermal conditions for sludge destruction. Two possible scenarios were produced from this analysis-one depended on the use of high temperatures and no oxidant, while the second offered a choice of compromise solutions at lower temperatures but with the use of at least some oxidant. Thus, for the final choice of operating conditions, the decision maker needs local knowledge of the costs and available infrastructure. In principle, such information could be added as further criteria to the data matrix and new rankings obtained.

  16. Synthesis of binary bismuth-cadmium oxide nanorods with sensitive electrochemical sensing performance

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Yong [Xinjiang Univ., Xinjiang (China). School of Civil Engineering and Architecture; Pei, Lizhai; Wei, Tian [Anhui Univ. of Technology, Anhui (China). School of Materials Science and Engineering

    2017-07-15

    Binary bismuth-cadmium oxide nanorods have been synthesized by a simple hydrothermal process without templates and additives. X-ray diffraction and high-resolution transmission electron microscopy reveal that the nanorods possess single crystalline tetragonal Bi{sub 2}CdO{sub 4} phase. Scanning electron microscopy and transmission electron microscopy images show that the length and diameter of the nanorods are 20-300 nm and 5-10 μm, respectively. The formation of the binary bismuth-cadmium oxide nanorods is closely related to the hydrothermal parameters. The electrochemical sensing performance of the binary bismuth-cadmium oxide nanorods has been investigated using the nanorods as glassy carbon electrode modifiers. The detection limit is 0.19 μM with a linear range of 0.0005-2 mM. The nanorod-modified glassy carbon electrode exhibits good electrocatalytic activity toward L-cysteine and great application potential for electrochemical sensors.

  17. Comparative analyses of the bacterial community of hydrothermal deposits and seafloor sediments across Okinawa Trough

    Science.gov (United States)

    Wang, Long; Yu, Min; Liu, Yan; Liu, Jiwen; Wu, Yonghua; Li, Li; Liu, Jihua; Wang, Min; Zhang, Xiao-Hua

    2018-04-01

    As an ideal place to study back-arc basins and hydrothermal eco-system, Okinawa Trough has attracted the interests of scientists for decades. However, there are still no in-depth studies targeting the bacterial community of the seafloor sediments and hydrothermal deposits in Okinawa Trough. In the present study, we reported the bacterial community of the surface deposits of a newly found hydrothermal field in the southern Okinawa Trough, and the horizontal and vertical variation of bacterial communities in the sediments of the northern Okinawa Trough. The hydrothermal deposits had a relatively high 16S rRNA gene abundance but low bacterial richness and diversity. Epsilonproteobacteria and Bacteroidetes were predominant in hydrothermal deposits whereas Deltaproteobacteria, Gammaproteobacteria and Chloroflexi were abundant across all samples. The bacterial distribution in the seafloor of Okinawa Trough was significantly correlated to the content of total nitrogen, and had consistent relationship with total carbon. Gradual changes of sulfur-oxidizing bacteria were found with the distance away from hydrothermal fields, while the hydrothermal activity did not influence the distribution of the major clades of sulfate-reducing bacteria. Higher abundance of the sulfur cycle related genes (aprA and dsrB), and lower abundance of the bacterial ammonia-oxidizing related gene (amoA) were quantified in hydrothermal deposits. In addition, the present study also compared the inter-field variation of Epsilonproteobacteria among multi-types of hydrothermal vents, revealing that the proportion and diversity of this clade were quite various.

  18. Electron microscopy study of microbial mat in the North Fiji basin hydrothermal vent

    Science.gov (United States)

    Park, H.; Kim, J. W.; Lee, J. W.

    2017-12-01

    Hydrothermal vent systems consisting of hydrothermal vent, hydrothermal sediment and microbial mat are widely spread around the ocean, particularly spreading axis, continental margin and back-arc basin. Scientists have perceived that the hydrothermal systems, which reflect the primeval earth environment, are one of the best places to reveal the origin of life and extensive biogeochemical process of microbe-mineral interaction. In the present study multiline of analytical methods (X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM)) were utilized to investigate the mineralogy/chemistry of microbe-mineral interaction in hydrothermal microbial mat. Microbial mat samples were recovered by Canadian scientific submersible ROPOS on South Pacific North Fiji basin KIOST hydrothermal vent expedition 1602. XRD analysis showed that red-colored microbial mat contains Fe-oxides and Fe-oxyhydroxides. Various morphologies of minerals in the red-colored microbial mat observed by SEM are mainly showed sheath shaped, resembled with Leptothrix microbial structure, stalks shaped, similar with Marioprofundus microbial structure and globule shaped microbial structures. They are also detected with DNA analysis. The cross sectional observation of microbial structures encrusted with Fe-oxide and Fe-oxyhydroxide at a nano scale by Transmission Electron Microscopy (TEM) and Focused Ion Beam (FIB) technique was developed to verify the structural/biogeochemical properties in the microbe-mineral interaction. Systematic nano-scale measurements on the biomineralization in the microbial mat leads the understandings of biogeochemical environments around the hydrothermal vent.

  19. Size-controlled synthesis of NiFe{sub 2}O{sub 4} nanospheres via a PEG assisted hydrothermal route and their catalytic properties in oxidation of alcohols by periodic acid

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Bappi; Purkayastha, Debraj Dhar; Dhar, Siddhartha Sankar, E-mail: ssd_iitg@hotmail.com

    2016-05-01

    Graphical abstract: - Highlights: • Hydrothermal synthesis of NiFe{sub 2}O{sub 4} NPs with (C{sub 4}H{sub 9}){sub 3}N as hydroxylating agent. • PEG 4000 was used as surfactant to control sizes of NPs. • The TEM images revealed the material to be spherical in shape with sizes 2–10 nm. • NiFe{sub 2}O{sub 4} was used as recyclable catalyst for oxidation of alcohols by periodic acid. - Abstract: A novel and facile approach for synthesis of spinel nickel ferrites (NiFe{sub 2}O{sub 4}) nanoparticles (NPs) employing homogeneous chemical precipitation followed by hydrothermal heating is reported. The synthesis involves use of tributylamine (TBA) as a hydroxylating agent in synthesis of nickel ferrites. Polyethylene glycol (PEG) 4000 was used as surfactant. As-synthesized NiFe{sub 2}O{sub 4} NPs were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), N{sub 2} adsorption–desorption isotherm (BET) and vibrating sample magnetometry (VSM). The XRD pattern revealed formation of cubic face-centered NiFe{sub 2}O{sub 4} and TEM image showed spherical particles of sizes 2–10 nm. These NiFe{sub 2}O{sub 4} NPs were used as magnetically recoverable catalyst in oxidation of cyclic alcohols to their corresponding aldehydes by periodic acid. This eco-friendly procedure affords products in very high yield and selectivity. The reusability of the catalyst is proved to be noteworthy as the material exhibits no significant changes in its catalytic activity even after five cycles of reuse.

  20. Metagenomic Assembly of the Dominant Zetaproteobacteria in an Iron-oxidizing Hydrothermal Microbial Mat

    Science.gov (United States)

    Moyer, C. L.; Fullerton, H.

    2013-12-01

    Iron is the fourth most abundant element in the Earth's crust and is potentially one of the most abundant energy sources on the earth as an electron donor for chemolithoautotrophic growth coupled to Fe(II) oxidation. Despite the rapid abiotic oxidation rate of iron, many microbes have adapted to feeding off this fleeting energy source. One such bacterial class is the Zetaproteobacteria. Iron-dominated microbial mat material was collected with a small-scale syringe sampler from Loihi Seamount, Hawaii. From this sample, gDNA was extracted and prepared for paired-end Illumina sequencing. Reconstruction of SSU rDNA genes using EMERGE allowed for comparison to previous SSU rDNA surveys. Clone libraries and qPCR show these microbial mats to be dominated by Zetaproteobacteria. Results from our in silico reconstruction confirm these initial findings. RDP classification of the EMERGE reconstructed sequences resulted in 44% of the community being identified as Zetaproteobacteria. The most abundant SSU rDNA has 99% similarity to Zeta OTU-2, and only a 94% similarity to M. ferrooxidans PV-1. Zeta OTU-2 has been shown to be the most cosmopolitan population in iron-dominated hydrothermal systems from across Pacific Ocean. Metagenomic assembly has resulted in many contigs with high identity to M. ferrooxidans as identified, by BLAST. However, with large differences in SSU rRNA similarity, M. ferrooxidans PV-1 is not an adequate reference. Current work is focusing on reconstruction of the dominant microbial mat member, without the use of a reference genome through an iterative assembly approach. The resulting 'pan-genome' will be compared to other Zetaproteobacteria (at the class level) and the functional ecology of this cosmopolitan microbial mat community member will be extrapolated. Thus far, we have detected multiple housekeeping genes involved in DNA replication, transcription and translation. The most abundant metabolic gene we have found is Aconitase, a key enzyme in the

  1. Generalized trends in the formation energies of perovskite oxides.

    Science.gov (United States)

    Zeng, ZhenHua; Calle-Vallejo, Federico; Mogensen, Mogens B; Rossmeisl, Jan

    2013-05-28

    Generalized trends in the formation energies of several families of perovskite oxides (ABO3) and plausible explanations to their existence are provided in this study through a combination of DFT calculations, solid-state physics analyses and simple physical/chemical descriptors. The studied elements at the A site of perovskites comprise rare-earth, alkaline-earth and alkaline metals, whereas 3d and 5d metals were studied at the B site. We also include ReO3-type compounds, which have the same crystal structure of cubic ABO3 perovskites except without A-site elements. From the observations we extract the following four conclusions for the perovskites studied in the present paper: for a given cation at the B site, (I) perovskites with cations of identical oxidation state at the A site possess close formation energies; and (II) perovskites with cations of different oxidation states at the A site usually have quite different but ordered formation energies. On the other hand, for a given A-site cation, (III) the formation energies of perovskites vary linearly with respect to the atomic number of the elements at the B site within the same period of the periodic table, and the slopes depend systematically on the oxidation state of the A-site cation; and (IV) the trends in formation energies of perovskites with elements from different periods at the B site depend on the oxidation state of A-site cations. Since the energetics of perovskites is shown to be the superposition of the individual contributions of their constituent oxides, the trends can be rationalized in terms of A-O and B-O interactions in the ionic crystal. These findings reveal the existence of general systematic trends in the formation energies of perovskites and provide further insight into the role of ion-ion interactions in the properties of ternary compounds.

  2. The metatranscriptome of a deep-sea hydrothermal plume is dominated by water column methanotrophs and lithotrophs.

    Science.gov (United States)

    Lesniewski, Ryan A; Jain, Sunit; Anantharaman, Karthik; Schloss, Patrick D; Dick, Gregory J

    2012-12-01

    Microorganisms mediate geochemical processes in deep-sea hydrothermal vent plumes, which are a conduit for transfer of elements and energy from the subsurface to the oceans. Despite this important microbial influence on marine geochemistry, the ecology and activity of microbial communities in hydrothermal plumes is largely unexplored. Here, we use a coordinated metagenomic and metatranscriptomic approach to compare microbial communities in Guaymas Basin hydrothermal plumes to background waters above the plume and in the adjacent Carmen Basin. Despite marked increases in plume total RNA concentrations (3-4 times) and microbially mediated manganese oxidation rates (15-125 times), plume and background metatranscriptomes were dominated by the same groups of methanotrophs and chemolithoautotrophs. Abundant community members of Guaymas Basin seafloor environments (hydrothermal sediments and chimneys) were not prevalent in the plume metatranscriptome. De novo metagenomic assembly was used to reconstruct genomes of abundant populations, including Marine Group I archaea, Methylococcaceae, SAR324 Deltaproteobacteria and SUP05 Gammaproteobacteria. Mapping transcripts to these genomes revealed abundant expression of genes involved in the chemolithotrophic oxidation of ammonia (amo), methane (pmo) and sulfur (sox). Whereas amo and pmo gene transcripts were abundant in both plume and background, transcripts of sox genes for sulfur oxidation from SUP05 groups displayed a 10-20-fold increase in plumes. We conclude that the biogeochemistry of Guaymas Basin hydrothermal plumes is mediated by microorganisms that are derived from seawater rather than from seafloor hydrothermal environments such as chimneys or sediments, and that hydrothermal inputs serve as important electron donors for primary production in the deep Gulf of California.

  3. Mild hydrothermal treatment to prepare highly dispersed multi-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Zhang Li; Hashimoto, Yoshio; Taishi, Toshinori; Ni Qingqing

    2011-01-01

    Multi-walled carbon nanotubes (MWCNTs) with improved dispersion property have been prepared by a mild and fast hydrothermal treatment. The hydrothermal process avoids using harsh oxidants and organic solvents, which is environmental friendly and greatly decreases the damage to intrinsic structure of MWCNTs. The modified MWCNTs were highly soluble in polar solvents such as water, ethanol and dimethylformamide. Morphological observation by TEM indicated that the diameter and inherent structure were well reserved in modified MWCNTs. X-ray photoelectron spectroscopy and Raman spectroscopy were used to quantify functional groups created on the MWCNT surface, and to determine rational parameters of hydrothermal process.

  4. Impact of hydrothermalism on the ocean iron cycle.

    Science.gov (United States)

    Tagliabue, Alessandro; Resing, Joseph

    2016-11-28

    As the iron supplied from hydrothermalism is ultimately ventilated in the iron-limited Southern Ocean, it plays an important role in the ocean biological carbon pump. We deploy a set of focused sensitivity experiments with a state of the art global model of the ocean to examine the processes that regulate the lifetime of hydrothermal iron and the role of different ridge systems in governing the hydrothermal impact on the Southern Ocean biological carbon pump. Using GEOTRACES section data, we find that stabilization of hydrothermal iron is important in some, but not all regions. The impact on the Southern Ocean biological carbon pump is dominated by poorly explored southern ridge systems, highlighting the need for future exploration in this region. We find inter-basin differences in the isopycnal layer onto which hydrothermal Fe is supplied between the Atlantic and Pacific basins, which when combined with the inter-basin contrasts in oxidation kinetics suggests a muted influence of Atlantic ridges on the Southern Ocean biological carbon pump. Ultimately, we present a range of processes, operating at distinct scales, that must be better constrained to improve our understanding of how hydrothermalism affects the ocean cycling of iron and carbon.This article is part of the themed issue 'Biological and climatic impacts of ocean trace element chemistry'. © 2016 The Author(s).

  5. Polymer-Assisted Hydrothermal Synthesis of Hierarchically Arranged Hydroxyapatite Nanoceramic

    Directory of Open Access Journals (Sweden)

    A. Joseph Nathanael

    2013-01-01

    Full Text Available Flower-like hydroxyapatite (HA nanostructures were synthesized by a polymer-assisted hydrothermal method. The thickness of the petals/plates decreased from 200 nm to 40 nm as the polymer concentration increased. The thickness also decreased as the hydrothermal treatment time increased from 6 to 12 hr. The HRTEM and SAED patterns suggest that the floral-like HA nanostructures are single crystalline in nature. Structural analysis based on XRD and Raman experiments implied that the produced nanostructure is a pure form of HA without any other impurities. The possible formation mechanism was discussed for the formation of flower-like HA nanostructures during polymer-assisted hydrothermal synthesis. Finally, in vitro cellular analysis revealed that the hierarchically arranged HA nanoceramic had improved cell viability relative to other structures. The cells were actively proliferated over these nanostructures due to lower cytotoxicity. Overall, the size and the crystallinity of the nanostructures played a role in improving the cell proliferation.

  6. Features of the theories of the formation of oxide films on aluminum alloys piston diesel engines with micro-arc oxidation

    Directory of Open Access Journals (Sweden)

    Skryabin M.L.

    2017-12-01

    Full Text Available The article considers one of the promising methods of surface hardening of piston aluminum alloy – microarc oxidation. Described fundamental differences from the micro-arc oxidation anodizing and similar electrochemical processes. The schemes of formation of the barrier and outer layers surface treatment in aqueous electrolytes. Shows the mechanism of formation of the interface. Considers the formation of layers with high porosity and method of exposure. Also describes the exponential dependence of the current density from the electric field in the surface film of the base metal. The role of discharges in the formation of oxide layers on the treated surface. Proposed and described features of the three main theories of formation of oxide films on the surface of the piston: physical and geometrical model of Keller; models of formation of oxide films as a colloid formations and plasma theory (theory of oxidation with the formation of plasma in the zone of oxidation. The features of formation of films in each of the models. For the model of Keller porous oxide film is a close-Packed oxide cell, having the shape of a prism. They are based on a hexagonal prism. These cells have normal orientation to the surface of the metal. In the center of the unit cell there is one season that is a channel, whose size is determined by the composition of the electrolyte, the chemical composition of the base metal and the electrical parameters of the process of oxidation. In the micro-arc oxidation process according to this model, the beginning of the formation of cells occurs with the formation of the barrier layer, passing in the porous layer and, over time, the elonga-tion of the pores, due to the constant etching electrolyte. In the theory of formation of the oxide films as kolloidnyh formations revealed that formation of pores in the film is a result of their growth. The anodic oxide is represented by a directed electric field, the alumina gel colloidal and

  7. Hydrothermal Carbonization of Seaweed For Advanced Biochar Production

    Directory of Open Access Journals (Sweden)

    Prakoso Tirto

    2018-01-01

    Full Text Available Seaweed such as Eucheuma Cottonii is a potential source of biomaterialIts high moisture content makes it suitable for hydrothermal conversion process since it doesn’t need to utilize dry feedstock. The aim of this study is to convert the biomass of red seaweed Eucheuma Cottonii into alternative fuels and high value biomaterials using hydrothermal process. The hydrothermal process seaweed Eucheuma Cottonii produce two types of products, liquid product and char (solid. This research focus on the char product. The char from hydrothermal process was then activated using the tubular furnace. The yield for activated char is 7.5 % and results of SEM analysis of activated char showed the formation of allotropes carbon include carbon micro spheres, carbon micro fibres and graphene. These structures have encountered application in a wide range of technological fields, such as adsorption, catalysis, hydrogen storage or electronics.

  8. Abiotic synthesis of organic compounds from carbon disulfide under hydrothermal conditions.

    Science.gov (United States)

    Rushdi, Ahmed I; Simoneit, Bernd R T

    2005-12-01

    Abiotic formation of organic compounds under hydrothermal conditions is of interest to bio, geo-, and cosmochemists. Oceanic sulfur-rich hydrothermal systems have been proposed as settings for the abiotic synthesis of organic compounds. Carbon disulfide is a common component of magmatic and hot spring gases, and is present in marine and terrestrial hydrothermal systems. Thus, its reactivity should be considered as another carbon source in addition to carbon dioxide in reductive aqueous thermosynthesis. We have examined the formation of organic compounds in aqueous solutions of carbon disulfide and oxalic acid at 175 degrees C for 5 and 72 h. The synthesis products from carbon disulfide in acidic aqueous solutions yielded a series of organic sulfur compounds. The major compounds after 5 h of reaction included dimethyl polysulfides (54.5%), methyl perthioacetate (27.6%), dimethyl trithiocarbonate (6.8%), trithianes (2.7%), hexathiepane (1.4%), trithiolanes (0.8%), and trithiacycloheptanes (0.3%). The main compounds after 72 h of reaction consisted of trithiacycloheptanes (39.4%), pentathiepane (11.6%), tetrathiocyclooctanes (11.5%), trithiolanes (10.6%), tetrathianes (4.4%), trithianes (1.2%), dimethyl trisulfide (1.1%), and numerous minor compounds. It is concluded that the abiotic formation of aliphatic straight-chain and cyclic polysulfides is possible under hydrothermal conditions and warrants further studies.

  9. Petrology and geochemistry of REE-rich Mafé banded iron formations (Bafia group, Cameroon)

    Science.gov (United States)

    Nkoumbou, Charles; Gentry, Fuh Calistus; Tchakounte Numbem, Jacqueline; Belle Ekwe Lobé, Yolande Vanessa; Nwagoum Keyamfé, Christin Steve

    2017-07-01

    Archaean-Paleoproterozoic foliated amphibole-gneisses and migmatites interstratified with amphibolites, pyroxeno-amphibolites and REE-rich banded-iron formations outcrop at Mafé, Ndikinimeki area. The foliation is nearly vertical due to tight folds. Flat-lying quartz-rich mica schists and quartzites, likely of Pan-African age, partly cover the formations. Among the Mafé BIFs, the oxide BIF facies shows white layers of quartz and black layers of magnetite and accessory hematite, whereas the silicate BIF facies is made up of thin discontinuous quartz layers alternating with larger garnet (almandine-spessartine) + chamosite + ilmenite ± Fe-talc layers. REE-rich oxide BIFs compositions are close to the East Pacific Rise (EPR) hydrothermal deposit; silicate BIFs plot midway between EPR and the associated amphibolite, accounting for a contamination by volcanic materials, in addition to the hydrothermal influence during their oceanic deposition. The association of an oceanic setting with alkaline and tholeiitic magmatism is typical of the Algoma-type BIF deposit. The REE-rich BIFs indices recorded at Mafé are interpreted as resulting from an Archaean-Paleoproterozoic mineralization.

  10. Hydrogen is an energy source for hydrothermal vent symbioses.

    Science.gov (United States)

    Petersen, Jillian M; Zielinski, Frank U; Pape, Thomas; Seifert, Richard; Moraru, Cristina; Amann, Rudolf; Hourdez, Stephane; Girguis, Peter R; Wankel, Scott D; Barbe, Valerie; Pelletier, Eric; Fink, Dennis; Borowski, Christian; Bach, Wolfgang; Dubilier, Nicole

    2011-08-10

    The discovery of deep-sea hydrothermal vents in 1977 revolutionized our understanding of the energy sources that fuel primary productivity on Earth. Hydrothermal vent ecosystems are dominated by animals that live in symbiosis with chemosynthetic bacteria. So far, only two energy sources have been shown to power chemosynthetic symbioses: reduced sulphur compounds and methane. Using metagenome sequencing, single-gene fluorescence in situ hybridization, immunohistochemistry, shipboard incubations and in situ mass spectrometry, we show here that the symbionts of the hydrothermal vent mussel Bathymodiolus from the Mid-Atlantic Ridge use hydrogen to power primary production. In addition, we show that the symbionts of Bathymodiolus mussels from Pacific vents have hupL, the key gene for hydrogen oxidation. Furthermore, the symbionts of other vent animals such as the tubeworm Riftia pachyptila and the shrimp Rimicaris exoculata also have hupL. We propose that the ability to use hydrogen as an energy source is widespread in hydrothermal vent symbioses, particularly at sites where hydrogen is abundant.

  11. Template-assisted hydrothermally obtained titania-ceria composites and their application as catalysts in ethyl acetate oxidation and methanol decomposition with a potential for sustainable environment protection

    Czech Academy of Sciences Publication Activity Database

    Tsoncheva, T.; Mileva, A.; Issa, G.; Dimitrov, M.; Kovacheva, D.; Henych, Jiří; Scotti, N.; Kormunda, M.; Atanasova, G.; Štengl, Václav

    2017-01-01

    Roč. 396, FEB (2017), s. 1289-1302 ISSN 0169-4332 R&D Projects: GA MŠk(CZ) LM2015073 Grant - others:AV ČR(CZ) BAS-17-13 Program:Bilaterální spolupráce Institutional support: RVO:61388980 Keywords : Ceria-titania binary oxides * Template assisted hydrothermal synthesis * Methanol decomposition * Ethyl acetate oxidation Subject RIV: CA - Inorganic Chemistry OBOR OECD: Inorganic and nuclear chemistry Impact factor: 3.387, year: 2016

  12. Sulfur Metabolism of Hydrogenovibrio thermophilus Strain S5 and Its Adaptations to Deep-Sea Hydrothermal Vent Environment

    Directory of Open Access Journals (Sweden)

    Lijing Jiang

    2017-12-01

    Full Text Available Hydrogenovibrio bacteria are ubiquitous in global deep-sea hydrothermal vents. However, their adaptations enabling survival in these harsh environments are not well understood. In this study, we characterized the physiology and metabolic mechanisms of Hydrogenovibrio thermophilus strain S5, which was first isolated from an active hydrothermal vent chimney on the Southwest Indian Ridge. Physiological characterizations showed that it is a microaerobic chemolithomixotroph that can utilize sulfide, thiosulfate, elemental sulfur, tetrathionate, thiocyanate or hydrogen as energy sources and molecular oxygen as the sole electron acceptor. During thiosulfate oxidation, the strain produced extracellular sulfur globules 0.7–6.0 μm in diameter that were mainly composed of elemental sulfur and carbon. Some organic substrates including amino acids, tryptone, yeast extract, casamino acids, casein, acetate, formate, citrate, propionate, tartrate, succinate, glucose and fructose can also serve as carbon sources, but growth is weaker than under CO2 conditions, indicating that strain S5 prefers to be chemolithoautotrophic. None of the tested organic carbons could function as energy sources. Growth tests under various conditions confirmed its adaption to a mesophilic mixing zone of hydrothermal vents in which vent fluid was mixed with cold seawater, preferring moderate temperatures (optimal 37°C, alkaline pH (optimal pH 8.0, microaerobic conditions (optimal 4% O2, and reduced sulfur compounds (e.g., sulfide, optimal 100 μM. Comparative genomics showed that strain S5 possesses more complex sulfur metabolism systems than other members of genus Hydrogenovibrio. The genes encoding the intracellular sulfur oxidation protein (DsrEF and assimilatory sulfate reduction were first reported in the genus Hydrogenovibrio. In summary, the versatility in energy and carbon sources, and unique physiological properties of this bacterium have facilitated its adaptation to deep

  13. Program auto

    International Nuclear Information System (INIS)

    Rawool-Sullivan, M.W.; Plagnol, E.

    1990-01-01

    The program AUTO was developed to be used in the analysis of dE vs E type spectra. This program is written in FORTRAN and calculates dE vs E lines in MeV. The provision is also made in the program to convert these lines from MeV to ADC channel numbers to facilitate the comparison with the raw data from the experiments. Currently the output of this program can be plotted with the display program, called VISU, but it can also be used independent of the program VISU, with little or no modification in the actual fortran code. The program AUTO has many useful applications. In this article the program AUTO is described along with its applications

  14. Application of Auto CAD 2000

    International Nuclear Information System (INIS)

    Kim, Hyeong Jun

    1999-11-01

    This book deals with basic of AutoCAD, beginning AutoCAD 2000, using design center of AutoCAD 2000, adding drawing element with design center, drawing lines, using 2D edit command, making layer, hatching, dimensioning, entering letters on the floor plan, making 3D object, practice of 3D command, edition of 3D object, making solid, rendering object, and using internet in AutoCAD 2000. This book is introduction of AutoCAD 2000 for beginner.

  15. AutoCAD 2010 For Dummies

    CERN Document Server

    Byrnes, David

    2009-01-01

    AutoCAD is the hot computer-aided design software known for both its powerful tools and its complexity. AutoCAD 2010 for Dummies is the bestselling guide that walks you through this complicated program so you can build complex 3D technical drawings, edit like a pro, enter new dimensions, and plot with style. AutoCAD 2010 for Dummies helps you navigate the program, use the AutoCAD Design Center, create a basic layout and work with dimension, and put your drawings on the Internet. You'll soon be setting up the AutoCAD environment, using the AutoCAD Ribbon, creating annotation and dimension drawi

  16. Nitrogen Dioxide-Sensing Properties at Room Temperature of Metal Oxide-Modified Graphene Composite via One-Step Hydrothermal Method

    Science.gov (United States)

    Zhang, Dongzhi; Liu, Jingjing; Xia, Bokai

    2016-08-01

    A metal oxide/graphene composite film-based sensor toward room-temperature detection of ppm-level nitrogen dioxide (NO2) gas has been demonstrated. The sensor prototype was constructed on a PCB substrate with microelectrodes, and a tin oxide-reduced graphene oxide (SnO2-rGO) composite as sensing film was prepared by one-step hydrothermal synthesis of tin tetrachloride pentahydrate solution in the presence of graphene oxide (GO). The SnO2-rGO hybrid composite was examined by scanning electron microscope and x-ray diffraction (XRD). The gas sensing properties of the SnO2-rGO composite were investigated at room temperature by exposing it to a wide concentration ranging from 1 ppm to 2000 ppm toward NO2 gas. The experiment results showed that the sensor exhibited a high response, superior selectivity, good repeatability, rapid response/recovery characteristics and low detection limit of 1 ppm, which exceeded that of a pure rGO sensor. The gas sensing mechanisms of the proposed sensor toward NO2 were possibly attributed to the nano-hybrid structures and n- p heterojunctions created at the interface of the SnO2 nanocrystals and rGO nanosheets.

  17. Production of fuel range oxygenates by supercritical hydrothermal liquefaction of lignocellulosic model systems

    DEFF Research Database (Denmark)

    Pedersen, Thomas Helmer; Rosendahl, Lasse Aistrup

    2015-01-01

    Lignocellulosic model compounds and aspen wood are processed at supercritical hydrothermal conditions to study and understand feedstock impact on biocrude formation and characteristics. Glucose and xylose demonstrate similar yield of biocrude and biochar, similar biocrude characteristics, and it ......Lignocellulosic model compounds and aspen wood are processed at supercritical hydrothermal conditions to study and understand feedstock impact on biocrude formation and characteristics. Glucose and xylose demonstrate similar yield of biocrude and biochar, similar biocrude characteristics...

  18. Easy Auto CAD

    International Nuclear Information System (INIS)

    Lee, Hyeon Jun

    1996-02-01

    This book explains Auto CAD easily, which introduces improved function in Auto CAD R 13, such as direct import and export of 3 DS pile, revised render order structure, and explanations of assist, view Draw, construct and modify. Next it gives descriptions of Auto CAD conception, application and system. The last part deals with line, arc, circle, ellipse, erase, undo, redo, redraw, line type, multi line, limits, zoom, move, copy, rotate, array, mirror, grid, snap, units, offset and poly line.

  19. Morphology and phase transformations of tin oxide nanostructures synthesized by the hydrothermal method in the presence of dicarboxylic acids

    International Nuclear Information System (INIS)

    Zima, Tatyana; Bataev, Ivan

    2016-01-01

    A new approach to the synthesis of non-stoichiometric tin oxide structures with different morphologies and the phase compositions has been evaluated. The nanostructures were synthesized by hydrothermal treatment of the mixtures of dicarboxylic acids ― aminoterephthalic or oxalic ― with nanocrystalline SnO 2 powder, which was obtained via the sol-gel technology. The products were characterized by Raman and IR spectroscopy, SEM, HRTEM, and XRD analysis. It was shown that the controlled addition of a dicarboxylic acid leads not only to a change in the morphology of the nanostructures, but also to SnO 2 –SnO 2 /Sn 3 O 4 –Sn 3 O 4 –SnO phase transformations. A single-phase Sn 3 O 4 in the form of the well-separated hexagonal nanoplates and mixed SnO 2 /Sn 3 O 4 phases in the form of hierarchical flower-like structures were obtained in the presence of organic additives. The effects of concentration, redox activity of the acids and heat treatment on the basic characteristics of the synthesized tin oxide nanostructures and phase transformations in the synthesized materials are discussed. - Graphical abstract: The controlled addition of aminoterephthalic or oxalic acid leads not only to a change in the morphology of the nanostructures, but also to SnO 2 –SnO 2 /Sn 3 O 4 –Sn 3 O 4 –SnO phase transformations. - Highlights: • A new approach to the synthesis of non-stoichiometric tin oxide structures is studied. • Tin oxide structures are synthesized via hydrothermal method with dicarboxylic acids. • Morphology and phase composition are changed with redox activity and dosage of acid. • The redox activity of acid has an effect on ratio of SnO and SnO 2 in crystal structure. • A pure phase Sn 3 O 4 nanoplates and SnO 2 /Sn 3 O 4 hierarchical structures are formed.

  20. Preparation and electrochemical characterization of MnOOH nanowire-graphene oxide

    International Nuclear Information System (INIS)

    Wang Lin; Wang Dianlong

    2011-01-01

    Highlights: → MnOOH nanowire-graphene oxide composites are prepared by hydrothermal reaction in distilled water or 5% ammonia aqueous solution at 130 deg. C, with MnO 2 -graphene oxide composites which are synthesized by a redox reaction between KMnO 4 and graphene oxide. → MnO 2 is deoxidized to MnOOH on graphene oxide through hydrothermal reaction without any extra reductants. → It is found that the electrochemical resistance of MnOOH nanowire-graphene oxide composites decreases and the capacitance increases to 76 F g -1 when hydrothermal reaction is conducted in ammonia aqueous solution. → MnOOH nanowire-graphene oxide composites prepared by hydrothermal reaction in 5% ammonia aqueous solution have excellent capacitance retention ratio at scan rate from 5 mV s -1 to 40 mV s -1 . - Abstract: MnOOH nanowire-graphene oxide composites are prepared by hydrothermal reaction in distilled water or 5% ammonia aqueous solution at 130 deg. C with MnO 2 -graphene oxide composites which are synthesized by a redox reaction between KMnO 4 and graphene oxide. Powder X-ray diffraction (XRD) analyses and energy dispersive X-ray analyses (EDAX) show MnO 2 is deoxidized to MnOOH on graphene oxide through hydrothermal reaction without any extra reductants. The electrochemical capacitance of MnOOH nanowire-graphene oxide composites prepared in 5% ammonia aqueous solution is 76 F g -1 at current density of 0.1 A g -1 . Moreover, electrochemical impedance spectroscopy (EIS) suggests the electrochemical resistance of MnOOH nanowire-graphene oxide composites is reduced when hydrothermal reaction is conducted in ammonia aqueous solution. The relationship between the electrochemical capacitance and the structure of MnOOH nanowire-graphene oxide composites is characterized by cyclic voltammetry (CV) and field emission scanning electron microscopy (FESEM). The results indicate the electrochemical performance of MnOOH nanowire-graphene oxide composites strongly depends on their

  1. Hydrothermal systems on Mars: an assessment of present evidence

    Science.gov (United States)

    Farmer, J. D.

    1996-01-01

    Hydrothermal processes have been suggested to explain a number of observations for Mars, including D/H ratios of water extracted from Martian meteorites, as a means for removing CO2 from the Martian atmosphere and sequestering it in the crust as carbonates, and as a possible origin for iron oxide-rich spectral units on the floors of some rifted basins (chasmata). There are numerous examples of Martian channels formed by discharges of subsurface water near potential magmatic heat sources, and hydrothermal processes have also been proposed as a mechanism for aquifer recharge needed to sustain long term erosion of sapping channels. The following geological settings have been identified as targets for ancient hydrothermal systems on Mars: channels located along the margins of impact crater melt sheets and on the slopes of ancient volcanoes; chaotic and fretted terranes where shallow subsurface heat sources are thought to have interacted with ground ice; and the floors of calderas and rifted basins (e.g. chasmata). On Earth, such geological environments are often a locus for hydrothermal mineralization. But we presently lack the mineralogical information needed for a definitive evaluation of hypotheses. A preferred tool for identifying minerals by remote sensing methods on Earth is high spatial resolution, hyperspectral, near-infrared spectroscopy, a technique that has been extensively developed by mineral explorationists. Future efforts to explore Mars for ancient hydrothermal systems would benefit from the application of methods developed by the mining industry to look for similar deposits on Earth. But Earth-based exploration models must be adapted to account for the large differences in the climatic and geological history of Mars. For example, it is likely that the early surface environment of Mars was cool, perhaps consistently below freezing, with the shallow portions of hydrothermal systems being dominated by magma-cryosphere interactions. Given the smaller

  2. Aromatics Oxidation and Soot Formation in Flames

    Energy Technology Data Exchange (ETDEWEB)

    Howard, J. B.; Richter, H.

    2005-03-29

    This project is concerned with the kinetics and mechanisms of aromatics oxidation and the growth process to polycyclic aromatic hydrocarbons (PAH) of increasing size, soot and fullerenes formation in flames. The overall objective of the experimental aromatics oxidation work is to extend the set of available data by measuring concentration profiles for decomposition intermediates such as phenyl, cyclopentadienyl, phenoxy or indenyl radicals which could not be measured with molecular-beam mass spectrometry to permit further refinement and testing of benzene oxidation mechanisms. The focus includes PAH radicals which are thought to play a major role in the soot formation process while their concentrations are in many cases too low to permit measurement with conventional mass spectrometry. The radical species measurements are used in critical testing and improvement of a kinetic model describing benzene oxidation and PAH growth. Thermodynamic property data of selected species are determined computationally, for instance using density functional theory (DFT). Potential energy surfaces are explored in order to identify additional reaction pathways. The ultimate goal is to understand the conversion of high molecular weight compounds to nascent soot particles, to assess the roles of planar and curved PAH and relationships between soot and fullerenes formation. The specific aims are to characterize both the high molecular weight compounds involved in the nucleation of soot particles and the structure of soot including internal nanoscale features indicative of contributions of planar and/or curved PAH to particle inception.

  3. Optimum injection and combustion for gaseous fuel engine : characteristics of hydrogen auto-ignition phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Tsujimura, T.; Mikami, S.; Senda, J.; Fujimoto, H. [Doshisha Univ. (Japan). Dept. of Mechanical Engineering; Nakatani, K. [Fuji Heavy Industries Ltd. (Japan); Tokunaga, Y. [Kawasaki Heavy Industries Ltd. (Japan)

    2002-07-01

    A study was conducted in which the auto-ignition characteristics of hydrogen were examined in order to determine which factors dominate auto-ignition delay of hydrogen jets. Experiments were performed in a rapid compression/expansion machine in order to study the effects of ambient gas density and oxygen concentration on the auto-ignition delays. The focus of research was on an inert gas circulation type cogeneration system to apply hydrogen to a medium-sized diesel engine. Freedom of fuel-oxidizer mixing, ignition and combustion in the system could be achieved for stable combustion, high thermal efficiency, and zero emission. The study also involved chemical analysis using a detailed hydrogen reaction model that could simulate auto-ignition delays under various temperature, pressures, equivalence ratio, and dilution. It is shown that auto-ignition delays of hydrogen jets are very dependent on the ambient gas temperature and less dependent on its density and oxygen concentration. Temperature and hydrogen concentrations have significant impacts on the production and consumption rates of H{sub 2}O{sub 2} and OH radicals. 21 refs., 1 tab., 10 figs.

  4. The effect of poly vinyl alcohol (PVA) surfactant on phase formation and magnetic properties of hydrothermally synthesized CoFe{sub 2}O{sub 4} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Jalalian, M.; Mirkazemi, S.M., E-mail: mirkazemi@iust.ac.ir; Alamolhoda, S.

    2016-12-01

    Nanoparticles of CoFe{sub 2}O{sub 4} were synthesized by hydrothermal process at 190 °C with and without poly vinyl alcohol (PVA) addition using treatment durations of 1.5–6 h. The synthesized powders were characterized with X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscope (SEM), Field emission scanning electron microscope (FESEM) and vibration sample magnetometer (VSM) techniques. XRD results show presence of CoFe{sub 2}O{sub 4} as the main phase and Co{sub 3}O{sub 4} as the lateral phase in some samples. The results show that in the samples synthesized without PVA addition considerable amount of lateral phase is present after 3 h of hydrothermal treatment while with PVA addition this phase is undetectable in the XRD patterns of the sample synthesized at the same conditions. Microstructural studies represent increasing of particle size with increasing of hydrothermal duration and formation of coarser particles with PVA addition. The highest maximum magnetization (M{sub max}) values in both of the samples that were synthesized with and without PVA addition are about 59 emu/g that were obtained after 4.5 h of hydrothermal treatment. Intrinsic coercive field ({sub i}H{sub c}) value of the sample without PVA addition increases from 210 to 430 Oe. While with PVA addition the {sub i}H{sub c} value changes from 83 Oe to 493 Oe. The mechanism of changes in M{sub max} and {sub i}H{sub c} values has been explained. - Highlights: • Nanoparticles of CoFe{sub 2}O{sub 4} hydrothermally synthesized with and without PVA addition. • PVA addition facilitates formation of single phase cobalt ferrite. • Coarser particles would be obtained with PVA addition. • The highest M{sub max} values in the samples with and without PVA are equal to 59 emu/g. • The highest {sub i}H{sub c} values are equalt to 320 and 493 Oe without and with PVA respectively.

  5. Enhanced mechanical properties of hydrothermal carbamated cellulose nanocomposite film reinforced with graphene oxide.

    Science.gov (United States)

    Gan, Sinyee; Zakaria, Sarani; Syed Jaafar, Sharifah Nabihah

    2017-09-15

    Cellulose carbamate (CC) was synthesized via hydrothermal process and mixed with graphene oxide (GO) to form a homogeneous cellulose matrix nanocomposite films. The properties of CC/GO nanocomposite films fabricated using simple solution-mixing method with different GO loadings were studied. Transmission electron microscope analysis showed the exfoliation of self-synthesized GO nanosheets within the CC matrix. X-ray diffraction results confirmed the crystalline structure of CC/GO films as the CC/GO mass ratio increased from 100/0 to 100/4. The mechanical properties of CC/GO film were significantly improved as compared to neat CC film. From thermogravimetric analysis result, the introduction of GO enhanced the thermal stability and carbon yields. The 3D homogeneous porous structures of the CC/GO films were observed under Field emission scanning electron microscope. These improvements in nanocomposite film properties could be confirmed by Fourier transform infrared spectroscopy due to the strong and good interactions between CC and GO. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. AutoCAD platform customization VBA

    CERN Document Server

    Ambrosius, Lee

    2015-01-01

    Boost productivity and streamline your workflow with expert AutoCAD: VBA programming instruction AutoCAD Platform Customization: VBA is the definitive guide to personalizing AutoCAD and the various programs that run on the AutoCAD platform, including AutoCAD Architecture, Civil 3D, Plant 3D, and more. Written by an Autodesk insider with years of customization and programming experience, this book features detailed discussions backed by real-world examples and easy-to-follow tutorials that illustrate each step in the personalization process. Readers gain expert guidance toward managing layout

  7. A novel route for synthesis and growth formation of metal oxides microspheres: Insights from V_2O_3 microspheres

    International Nuclear Information System (INIS)

    Zhang, Yifu; Huang, Chi; Meng, Changgong; Hu, Tao

    2016-01-01

    Highly polydisperse V_2O_3 solid microspheres with large specific surface area were successfully synthesized via a facile hydrothermal decomposition of VOC_2O_4 solution. The morphology and composition were characterized by scanning electron microscopy (SEM), Energy dispersive spectrometer (EDS), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). V_2O_3 microspheres display an obvious Mott phase transition at −128.5 °C (cooling curve) and −114.5 °C (heating curve). Some parameters including the reaction temperature, concentration of VOC_2O_4, reaction time, surfactant, H_2C_2O_4 and precursor were briefly discussed to reveal the formation of V_2O_3 microspheres. It was found that the precursor is crucial for the fabrication of microsphere. A self-assembly growth mechanism was suggested to explain the growth process of microspheres and the autogenic CO and CO_2 gas served as the soft templates. Furthermore, this route was developed to synthesize different metal oxides microspheres, and it was found that AlO(OH), Fe_3O_4, Fe_2O_3, Co_3O_4, Cr_2O_3, MoO_2 and WO_3 microspheres were obtained. All the results showed this process was successfully explored as a methodology to synthesize different metal oxides microspheres using the gas as the templates by this facile hydrothermal route. - Highlights: • Highly uniform V_2O_3 solid microspheres were synthesized. • V_2O_3 microspheres display an obvious Mott phase transition. • The autogenic CO and CO_2 gas served as the soft templates for designed synthesis. • AlO(OH), Fe_3O_4, Fe_2O_3, Co_3O_4, Cr_2O_3, MoO_2 and WO_3 microspheres were obtained. • A methodology to synthesize different metal oxides microspheres was developed.

  8. Numerical Analysis of the Interaction between Thermo-Fluid Dynamics and Auto-Ignition Reaction in Spark Ignition Engines

    Science.gov (United States)

    Saijyo, Katsuya; Nishiwaki, Kazuie; Yoshihara, Yoshinobu

    The CFD simulations were performed integrating the low-temperature oxidation reaction. Analyses were made with respect to the first auto-ignition location in the case of a premixed-charge compression auto-ignition in a laminar flow field and in the case of the auto-ignition in an end gas during an S. I. Engine combustion process. In the latter simulation, the spatially-filtered transport equations were solved to express fluctuating temperatures in a turbulent flow in consideration of strong non-linearity to temperature in the reaction equations. It is suggested that the first auto-ignition location does not always occur at higher-temperature locations and that the difference in the locations of the first auto-ignition depends on the time period during which the local end gas temperature passes through the region of shorter ignition delay, including the NTC region.

  9. Aloe vera mediated hydrothermal synthesis of reduced graphene oxide decorated ZnO nanocomposite: Luminescence and antioxidant properties

    Science.gov (United States)

    Kavyashree, D.; Nagabhushana, H.; Ananda Kumari, R.; Basavaraj, R. B.; Suresh, D.; Daruka Prasad, B.; Sharma, S. C.

    2016-05-01

    A zinc oxide/reduced graphene oxide (ZnO/rGO) nanocomposite was fabricated by facile hydrothermal route using Aloe vera gel as surfactant. The PL emission spectrum of the ZnO/rGO composite consists of four peaks at around 380, 394, 449 and 465nm. The PL intensity is found to diminish in ZnO-rGO composites rather than in pure ZnO, which was attributed to electron transfer from ZnO to rGO. A single intense glow curve was recorded in rGo-ZnO for a dose range of 1-8kGy. The TL response curve of rGO-ZnO is found to be a simple glow curve structure, linear dependence over a dose range of 1-8kGy. The obtained ZnO/rGO composite could provide a facile and eco-friendly method for the development of graphene-based nanocomposites with promising applications in radiation dosimetry and antioxidant activities.

  10. Modeling of the fault-controlled hydrothermal ore-forming systems

    International Nuclear Information System (INIS)

    Pek, A.A.; Malkovsky, V.I.

    1993-07-01

    A necessary precondition for the formation of hydrothermal ore deposits is a strong focusing of hydrothermal flow as fluids move from the fluid source to the site of ore deposition. The spatial distribution of hydrothermal deposits favors the concept that such fluid flow focusing is controlled, for the most part, by regional faults which provide a low resistance path for hydrothermal solutions. Results of electric analog simulations, analytical solutions, and computer simulations of the fluid flow, in a fault-controlled single-pass advective system, confirm this concept. The influence of the fluid flow focusing on the heat and mass transfer in a single-pass advective system was investigated for a simplified version of the metamorphic model for the genesis of greenstone-hosted gold deposits. The spatial distribution of ore mineralization, predicted by computer simulation, is in reasonable agreement with geological observations. Computer simulations of the fault-controlled thermoconvective system revealed a complex pattern of mixing hydrothermal solutions in the model, which also simulates the development of the modern hydrothermal systems on the ocean floor. The specific feature of the model considered, is the development under certain conditions of an intra-fault convective cell that operates essentially independently of the large scale circulation. These and other results obtained during the study indicate that modeling of natural fault-controlled hydrothermal systems is instructive for the analysis of transport processes in man-made hydrothermal systems that could develop in geologic high-level nuclear waste repositories

  11. AutoCAD workbook

    CERN Document Server

    Metherell, Phil

    1989-01-01

    AutoCAD Workbook helps new users learn the basics of AutoCad, providing guidance on most of the commonly used functions in which the program operates.This book discusses loading AutoCad and starting a drawing; drawing and erasing lines, circles, and arcs; and setting up the drawing environment. The topics on drawing and editing polylines; entering text and text styles; and layers, linetype, and color are also considered. This publication likewise covers creating and using blocks, hatching and extracting information, dimensioning drawings, 3D visualization, and plotting a drawing. Other

  12. Rare earth ions doped polyaniline/cobalt ferrite nanocomposites via a novel coordination-oxidative polymerization-hydrothermal route: Preparation and microwave-absorbing properties

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Chunming; Jiang, Junjun; Liu, Xiaohua; Yin, Chengjie; Deng, Cuifen

    2016-04-15

    Polyaniline/CoRE{sub x}Fe{sub 2−x}O{sub 4} (RE=La, Ce, Y, x=0.05–0.25) nanocomposites were successfully synthesized by a novel coordination-oxidative polymerization-hydrothermal method, and doped by sulfosalicylic acid. The resultant nanocomposites were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), vibrating sample magnetometer (VSM) and electromagnetic measurements. The composites mainly showed nanofibers with a diameter of ca. 70 nm and a length longer than 2 μm. The surface of composites was uniformly covered with numerous nanoparticles with an average size of ca. 10–20 nm. Microwave absorption properties of polyaniline/CoRE{sub x}Fe{sub 2−x}O{sub 4} nanocomposites doped with La ion were found to be better than those doped with Ce and Y ions. For the polyaniline/CoLa{sub x}Fe{sub 2−x}O{sub 4} nanocomposite, the optimal microwave absorption performance is at x=0.15, that is, the mass ratio of La in CoLa{sub x}Fe{sub 2−x}O{sub 4} is 7.5%, with the conductivity of the composite about 0.833 S/cm. Furthermore, when the layer thickness is 2 mm, the maximum reflection loss achieves the maximum number of −42.65 dB at 15.91 GHz with a bandwidth of 6.14 GHz above −10 dB loss, suggesting that these nanocomposites are excellent in microwave absorbing capacity. - Graphical abstract: Scheme PAn/CoRE{sub x}Fe{sub 2−x}O{sub 4} nanocomposites prepared via a novel coordination-oxidative polymerization-hydrothermal route. - Highlights: • An organic–inorganic hybrid―polyaniline/CoRE{sub x}Fe{sub 2−x}O{sub 4} (RE=La, Ce, Y, x=0.05–0.25) nanocomposites was prepared via a novel coordination-oxidative polymerization-hydrothermal route. • The as-prepared polyaniline/CoRE{sub x}Fe{sub 2−x}O{sub 4} nanocomposites exhibit excellent microwave absorbing performance compared with the composites prepared by using conventional method. • The novel method reported in this work could

  13. Rare earth ions doped polyaniline/cobalt ferrite nanocomposites via a novel coordination-oxidative polymerization-hydrothermal route: Preparation and microwave-absorbing properties

    International Nuclear Information System (INIS)

    Yang, Chunming; Jiang, Junjun; Liu, Xiaohua; Yin, Chengjie; Deng, Cuifen

    2016-01-01

    Polyaniline/CoRE_xFe_2_−_xO_4 (RE=La, Ce, Y, x=0.05–0.25) nanocomposites were successfully synthesized by a novel coordination-oxidative polymerization-hydrothermal method, and doped by sulfosalicylic acid. The resultant nanocomposites were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), vibrating sample magnetometer (VSM) and electromagnetic measurements. The composites mainly showed nanofibers with a diameter of ca. 70 nm and a length longer than 2 μm. The surface of composites was uniformly covered with numerous nanoparticles with an average size of ca. 10–20 nm. Microwave absorption properties of polyaniline/CoRE_xFe_2_−_xO_4 nanocomposites doped with La ion were found to be better than those doped with Ce and Y ions. For the polyaniline/CoLa_xFe_2_−_xO_4 nanocomposite, the optimal microwave absorption performance is at x=0.15, that is, the mass ratio of La in CoLa_xFe_2_−_xO_4 is 7.5%, with the conductivity of the composite about 0.833 S/cm. Furthermore, when the layer thickness is 2 mm, the maximum reflection loss achieves the maximum number of −42.65 dB at 15.91 GHz with a bandwidth of 6.14 GHz above −10 dB loss, suggesting that these nanocomposites are excellent in microwave absorbing capacity. - Graphical abstract: Scheme PAn/CoRE_xFe_2_−_xO_4 nanocomposites prepared via a novel coordination-oxidative polymerization-hydrothermal route. - Highlights: • An organic–inorganic hybrid―polyaniline/CoRE_xFe_2_−_xO_4 (RE=La, Ce, Y, x=0.05–0.25) nanocomposites was prepared via a novel coordination-oxidative polymerization-hydrothermal route. • The as-prepared polyaniline/CoRE_xFe_2_−_xO_4 nanocomposites exhibit excellent microwave absorbing performance compared with the composites prepared by using conventional method. • The novel method reported in this work could be employed to prepare other conductive polymers/inorganic nanocomposites as well.

  14. Moessbauer spectroscopy study on the hydrothermal transformation α-FeOOH → α-Fe2O3

    International Nuclear Information System (INIS)

    Barb, D.; Diamandescu, L.; Mihaila-Tarabsanu, D.; Rusi, A.; Moraria, M.

    1990-01-01

    The reaction kinetics of the hydrothermal transformation α-FeOOH→α-Fe 2 O 3 was studied by means of Moessbauer spectroscopy. From the reaction isotherms, a monomolecular, first order reaction was found to characterise the hydrothermal transformation of alpha oxihydroxide to the alpha iron oxide. The rate constant as well as the activation energy of this process were determined. No intermediate phases were identified in the hydrothermal samples. The thermodynamic properties of the hydrothermal system α-FeOOH→α-Fe 2 O 3 in correlation with Moessbauer spectroscopy data are discussed. (orig.)

  15. Water formation via HCl oxidation on Cu(1 0 0)

    Energy Technology Data Exchange (ETDEWEB)

    Suleiman, Ibrahim A., E-mail: isuleman@taibahu.edu.sa [College of Engineering, Taibah University, Yanbu 41911 (Saudi Arabia); Radny, Marian W. [School of Mathematical and Physical Sciences, The University of Newcastle, Callaghan, NSW 2308 (Australia); Institute of Physics, Poznan University of Technology, 62-956 Poznan (Poland); Gladys, Michael J.; Smith, Phillip V. [School of Mathematical and Physical Sciences, The University of Newcastle, Callaghan, NSW 2308 (Australia); Mackie, John C. [School of Engineering, The University of Newcastle, Callaghan, NSW 2308 (Australia); School of Chemistry, The University of Sydney (Australia); Stockenhuber, Michael; Kennedy, Eric M. [School of Engineering, The University of Newcastle, Callaghan, NSW 2308 (Australia); Dlugogorski, Bogdan Z. [School of Engineering, The University of Newcastle, Callaghan, NSW 2308 (Australia); School of Engineering and Information Technology, Murdoch University, Perth (Australia)

    2014-04-01

    Graphical abstract: This work investigates water formation on the Cu(1 0 0) surface via HCl oxidation using density functional theory and periodic slabs. We show that there are two different pathways for water formation on the surface depending on the temperature and oxygen coverage. - Highlights: • Pre-adsorbed chlorine increases the stability of water on Cu(1 0 0). • Two different pathways describe water formation on Cu(1 0 0) via HCl oxidation. • The mechanism of H{sub 2}O formation depends on the temperature and oxygen coverage. - Abstract: Using density functional theory and periodic slabs, we have studied water formation via HCl oxidation on the Cu(1 0 0) surface. We show that while adsorbed chlorine increases the stability of water on the Cu(1 0 0) surface, water molecules dissociate immediately when located next to an oxygen atom. We also show that these competing interactions, when arising from HCl reacting with oxygen on Cu(1 0 0), lead to water formation according to two different pathways depending on the temperature and oxygen coverage.

  16. Hydrothermal Processes

    Science.gov (United States)

    German, C. R.; von Damm, K. L.

    2003-12-01

    found at more than 40 locations throughout the Pacific, North Atlantic, and Indian Oceans (e.g., Van Dover et al., 2002) with further evidence - from characteristic chemical anomalies in the ocean water column - of its occurrence in even the most remote and slowly spreading ocean basins ( Figure 3), from the polar seas of the Southern Ocean (German et al., 2000; Klinkhammer et al., 2001) to the extremes of the ice-covered Arctic ( Edmonds et al., 2003). (61K)Figure 3. Schematic map of the global ridge crest showing the major ridge sections along which active hydrothermal vents have already been found (red circles) or are known to exist from the detection of characteristic chemical signals in the overlying water column (orange circles). Full details of all known hydrothermally active sites and plume signals are maintained at the InterRidge web-site: http://triton.ori.u-tokyo.ac.jp/~intridge/wg-gdha.htm The most spectacular manifestation of seafloor hydrothermal circulation is, without doubt, the high-temperature (>400 °C) "black smokers" that expel fluids from the seafloor along all parts of the global ocean ridge crest. In addition to being visually compelling, vent fluids also exhibit important enrichments and depletions when compared to ambient seawater. Many of the dissolved chemicals released from the Earth's interior during venting precipitate upon mixing with the cold, overlying seawater, generating thick columns of black metal-sulfide and oxide mineral-rich smoke - hence the colloquial name for these vents: "black smokers" (Figure 4). In spite of their common appearance, high-temperature hydrothermal vent fluids actually exhibit a wide range of temperatures and chemical compositions, which are determined by subsurface reaction conditions. Despite their spectacular appearance, however, high-temperature vents may only represent a small fraction - perhaps as little as 10% - of the total hydrothermal heat flux close to ridge axes. A range of studies - most notably

  17. Evidence for recent hydrothermal activity in the Central Indian Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Iyer, S.D.; ShyamPrasad, M.; Gupta, S.M.; Charan, S.N.

    fracturing provide conditions conducive to hydrothermal discharge and accumulation of the resultant hydrothermal precipitates (Alt et al., 1987). Bonatti and Joensuu (1966) were among the first to report on the occurrence of spongy iron-oxides from a...-S fracture zones, traverse at 73”E, 76”3O’E and 79”E in the basin (Kamesh Raju, 1993). Many seamounts dot the floor of the CIB (Mukhopadhyay and Khadge, 1990; Kamesh Raju et al., 1993), some of them having caldera (Kodagali, 1991; Kodagali, pers. commun...

  18. AutoCAD 2008 for dummies

    CERN Document Server

    Byrnes, David

    2007-01-01

    A gentle, humorous introduction to this fearsomely complex software that helps new users start creating 2D and 3D technical drawings right awayCovers the new features and enhancements in the latest AutoCAD version and provides coverage of AutoCAD LT, AutoCAD''s lower-cost siblingTopics covered include creating a basic layout, using AutoCAD DesignCenter, drawing and editing, working with dimensions, plotting, using blocks, adding text to drawings, and drawing on the InternetAutoCAD is the leading CAD software for architects, engineers, and draftspeople who need to create detailed 2D and 3D tech

  19. AutoCAD 2014 for dummies

    CERN Document Server

    Fane, Bill

    2013-01-01

    Find your way around AutoCAD 2014 with this full-color, For Dummies guide!Put away that pencil and paper and start putting the power of AutoCAD 2014 to work in your CAD projects and designs. From setting up your drawing environment to using text, dimensions, hatching, and more, this guide walks you through AutoCAD basics and provides you with a solid understanding of the latest CAD tools and techniques. You'll also benefit from the full-color illustrations that mirror exactly what you'll see on your AutoCAD 2014 screen and highlight the importance of AutoCAD's Mode

  20. AutoCAD platform customization autolisp

    CERN Document Server

    Ambrosius, Lee

    2014-01-01

    Customize and personalize programs built on the AutoCAD platform AutoLISP is the key to unlocking the secrets of a more streamlined experience using industry leading software programs like AutoCAD, Civil 3D, Plant 3D, and more. AutoCAD Platform Customization: AutoLISP provides real-world examples that show you how to do everything from modifying graphical objects and reading and setting system variables to communicating with external programs. It also features a resources appendix and downloadable datasets and customization examples-tools that ensure swift and easy adoption. Find out how to r

  1. Degradation of natural organic matter by UV/chlorine oxidation: Molecular decomposition, formation of oxidation byproducts and cytotoxicity.

    Science.gov (United States)

    Wang, Wen-Long; Zhang, Xue; Wu, Qian-Yuan; Du, Ye; Hu, Hong-Ying

    2017-11-01

    The degradation of natural organic matters (NOMs) by the combination of UV and chlorine (UV/chlorine) was investigated in this study. UV/chlorine oxidation can effectively degrade NOMs, with the degradation of chromophores (∼80%) and fluorophores (76.4-80.8%) being more efficient than that of DOC (15.1-18.6%). This effect was attributed to the chromophores and fluorophores (double bonds, aromatic groups and phenolic groups) being preferentially degraded by UV/chlorine oxidation, particularly reactive groups with high electron donating capacity. Radical species •OH and •Cl were generated during UV/chlorine oxidation, with the contribution of •OH 1.4 times as high as that of •Cl. The degradation kinetics of different molecular weight (MW) fractions suggests that UV/chlorine oxidation degrades high MW fractions into low MW fractions, with the degradation rates of high MW fractions (>3000 Da) 4.5 times of those of medium MW fractions (1000-3000 Da). In comparison with chlorination alone, UV/chlorine oxidation did not increase the formation (30 min) and formation potential (24 h) of trihalomethanes, but instead promoted the formation and formation potential of haloacetic acids and chloral hydrate. Adsorbable organic halogen (AOX) formed from UV/chlorine oxidation of NOM were 0.8 times higher than those formed from chlorination. Cytotoxicity studies indicated that the cytotoxicity of NOM increased after both chlorination and UV/chlorine oxidation, which may be due to the formation of AOX. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Learning Auto CAD 2004

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Gyeong Su; Song, Chun Dong; Park, Hyeong Jin; Kim, Yeong Min

    2004-02-15

    This book introduces basic knowledge of AutoCAD, practice method of command of AutoCAD like poly line, rotate, copy, break, trim, stretch, lengthen, chamfer, grips, extend, array polygon, spline, hatch, and image, writing letters, making library, application of design center and tool palette, drawing floor plan elevation, cross-sectional diagram, presentation materials, effective application of AutoCAD, and construction design using CAD POWER 2004.

  3. Learning Auto CAD 2004

    International Nuclear Information System (INIS)

    Shin, Gyeong Su; Song, Chun Dong; Park, Hyeong Jin; Kim, Yeong Min

    2004-02-01

    This book introduces basic knowledge of AutoCAD, practice method of command of AutoCAD like poly line, rotate, copy, break, trim, stretch, lengthen, chamfer, grips, extend, array polygon, spline, hatch, and image, writing letters, making library, application of design center and tool palette, drawing floor plan elevation, cross-sectional diagram, presentation materials, effective application of AutoCAD, and construction design using CAD POWER 2004.

  4. Origin of Abiotic Methane in Submarine Hydrothermal Systems

    Science.gov (United States)

    Seewald, J. S.; German, C. R.; Grozeva, N. G.; Klein, F.; McDermott, J. M.; Ono, S.; Reeves, E. P.; Wang, D. T.

    2018-05-01

    Results of recent investigations into the chemical and isotopic composition of actively venting submarine hydrothermal fluids and volatile species trapped in fluid inclusions will be discussed in the context of processes responsible for abiotic CH4 formation.

  5. Hydrothermal preparation of hydrophobic and hydrophilic nanoparticles of iron oxide and a modification with CM-dextran

    Energy Technology Data Exchange (ETDEWEB)

    Repko, Anton, E-mail: repko@natur.cuni.cz; Niznansky, Daniel; Matulkova, Irena [Charles University in Prague, Department of Inorganic Chemistry, Faculty of Science (Czech Republic); Kalbac, Martin [J. Heyrovsky Institute of Physical Chemistry of the AS CR, v.v.i. (Czech Republic); Vejpravova, Jana [Institute of Physics AS CR, v.v.i., Department of Magnetic Nanosystems (Czech Republic)

    2013-07-15

    Hydrophobic and hydrophilic particles of iron oxide (magnetite/maghemite) with diameter of 6-10 nm were prepared by hydrothermal hydrolysis of iron oleate in water/pentanol/oleic acid system at 180 Degree-Sign C. The hydrophobic/hydrophilic nature of resulting particles was controlled by the presence of sodium oleate and by manipulating the ionic strength (with NaCl). The final particle size was controlled by additional organic solvent (octanol or toluene) and by seed growth. Hydrophilic particles (6 nm) were further modified by carboxymethyl-dextran in water to obtain stable and well-dispersed superparamagnetic nanoparticles suitable for biomedical application. The prepared particles were characterized by transmission electron microscopy, thermogravimetry, Fourier-transform infrared spectroscopy, magnetic measurements, Moessbauer spectroscopy, dynamic light scattering, and zeta-potential measurement.

  6. Hydrothermal growth of hierarchical Ni3S2 and Co3S4 on a reduced graphene oxide hydrogel@Ni foam: a high-energy-density aqueous asymmetric supercapacitor.

    Science.gov (United States)

    Ghosh, Debasis; Das, Chapal Kumar

    2015-01-21

    Ni foam@reduced graphene oxide (rGO) hydrogel-Ni3S2 and Ni foam@rGO hydrogel-Co3S4 composites have been successfully synthesized with the aid of a two-step hydrothermal protocol, where the rGO hydrogel is sandwiched between the metal sulfide and Ni foam substrate. Sonochemical deposition of exfoliated rGO on Ni foam with subsequent hydrothermal treatment results in the formation of a rGO-hydrogel-coated Ni foam. Then second-time hydrothermal treatment of the dried Ni@rGO substrate with corresponding metal nitrate and sodium sulfide results in individual uniform growth of porous Ni3S2 nanorods and a Co3S4 self-assembled nanosheet on a Ni@rGO substrate. Both Ni@rGO-Ni3S2 and Ni@rGO-Co3S4 have been electrochemically characterized in a 6 M KOH electrolyte, exhibiting high specific capacitance values of 987.8 and 1369 F/g, respectively, at 1.5 A/g accompanied by the respective outstanding cycle stability of 97.9% and 96.6% at 12 A/g over 3000 charge-discharge cycles. An advanced aqueous asymmetric (AAS) supercapacitor has been fabricated by exploiting the as-prepared Ni@rGO-Co3S4 as a positive electrode and Ni@rGO-Ni3S2 as a negative electrode. The as-fabricated AAS has shown promising energy densities of 55.16 and 24.84 Wh/kg at high power densities of 975 and 13000 W/kg, respectively, along with an excellent cycle stability of 96.2% specific capacitance retention over 3000 charge-discharge cycles at 12 A/g. The enhanced specific capacitance, stupendous cycle stability, elevated energy density, and a power density as an AAS of these electrode materials indicate that it could be a potential candidate in the field of supercapacitors.

  7. Improvement of catalytic activity in selective oxidation of styrene with H{sub 2}O{sub 2} over spinel Mg–Cu ferrite hollow spheres in water

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Jinhui, E-mail: jinhuitong@126.com [Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education, Lanzhou 730070 (China); Key Laboratory of Gansu Polymer Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070 (China); Cai, Xiaodong; Wang, Haiyan; Zhang, Qianping [Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education, Lanzhou 730070 (China); Key Laboratory of Gansu Polymer Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070 (China)

    2014-07-01

    Graphical abstract: Uniform spinel Mg–Cu ferrite hollow spheres were prepared using carbon spheres as templates. Solid spinel Mg{sub 0.5}Cu{sub 0.5}Fe{sub 2}O{sub 4} ferrite nanocrystals were also prepared by sol–gel auto-combustion, hydrothermal and coprecipitation methods for comparison. The samples were found to be efficient catalysts for oxidation of styrene using hydrogen peroxide as oxidant. Especially, in the case of Mg{sub 0.5}Cu{sub 0.5}Fe{sub 2}O{sub 4} hollow spheres, obvious improvement on catalytic activity was observed and 21.2% of styrene conversion and 75.2% of selectivity for benzaldehyde were obtained at 80 °C for 6 h reaction in water. The catalyst can be magnetically separated easily for reuse and no obvious loss of activity was observed when reused in six consecutive runs. - Highlights: • Uniform spinel ferrite hollow spheres were prepared by a simple method. • The catalyst has been proved much more efficient for styrene oxidation than the reported analogues. • The catalyst can be easily separated by external magnetic field and has exhibited excellent reusability. • The catalytic system is environmentally friendly. - Abstract: Uniform spinel Mg–Cu ferrite hollow spheres were prepared using carbon spheres as templates. For comparison, solid Mg–Cu ferrite nanocrystals were also prepared by sol–gel auto-combustion, hydrothermal and coprecipitation methods. All the samples were characterized by Fourier transform infrared spectrophotometry (FT-IR), X-ray diffractometry (XRD), transmission electron microscopy (TEM) and N{sub 2} physisorption. The samples were found to be efficient catalysts for oxidation of styrene using hydrogen peroxide as oxidant. Especially, in the case of Mg{sub 0.5}Cu{sub 0.5}Fe{sub 2}O{sub 4} hollow spheres, obvious improvement on catalytic activity was observed, and 21.2% of styrene conversion and 75.2% of selectivity for benzaldehyde were obtained at 80 °C for 6 h reaction in water. The catalyst can be

  8. Formation of Nano-crystalline Todorokite from Biogenic Mn Oxides

    Energy Technology Data Exchange (ETDEWEB)

    Feng, X.; Zhu, M; Ginder-Vogel, M; Ni, C; Parikh, S; Sparks, D

    2010-01-01

    Todorokite, as one of three main Mn oxide phases present in oceanic Mn nodules and an active MnO{sub 6} octahedral molecular sieve (OMS), has garnered much interest; however, its formation pathway in natural systems is not fully understood. Todorokite is widely considered to form from layer structured Mn oxides with hexagonal symmetry, such as vernadite ({delta}-MnO{sub 2}), which are generally of biogenic origin. However, this geochemical process has not been documented in the environment or demonstrated in the laboratory, except for precursor phases with triclinic symmetry. Here we report on the formation of a nanoscale, todorokite-like phase from biogenic Mn oxides produced by the freshwater bacterium Pseudomonas putida strain GB-1. At long- and short-range structural scales biogenic Mn oxides were transformed to a todorokite-like phase at atmospheric pressure through refluxing. Topotactic transformation was observed during the transformation. Furthermore, the todorokite-like phases formed via refluxing had thin layers along the c* axis and a lack of c* periodicity, making the basal plane undetectable with X-ray diffraction reflection. The proposed pathway of the todorokite-like phase formation is proposed as: hexagonal biogenic Mn oxide {yields} 10-{angstrom} triclinic phyllomanganate {yields} todorokite. These observations provide evidence supporting the possible bio-related origin of natural todorokites and provide important clues for understanding the transformation of biogenic Mn oxides to other Mn oxides in the environment. Additionally this method may be a viable biosynthesis route for porous, nano-crystalline OMS materials for use in practical applications.

  9. AutoCAD 2012 and AutoCAD LT 2012 No Experience Required

    CERN Document Server

    Gladfelter, Donnie

    2011-01-01

    The perfect step-by-step introduction to Autodesk's powerful architectural design software With this essential guide, you'll learn how to plan, develop, document, and present a complete AutoCAD project by building a summer cabin from start to finish. You can follow each step sequentially or jump in at any point by downloading the drawing files from the book's companion web site. You'll also master all essential AutoCAD features, get a thorough grounding in the basics, learn the very latest industry standards and techniques, and quickly become productive with AutoCAD 2012.Features concise expla

  10. SPH based modelling of oxide and oxide film formation in gravity die castings

    International Nuclear Information System (INIS)

    Ellingsen, K; M'Hamdi, M; Coudert, T

    2015-01-01

    Gravity die casting is an important casting process which has the capability of making complicated, high-integrity components for e.g. the automotive industry. Oxides and oxide films formed during filling affect the cast product quality. The Smoothed particle hydrodynamics (SPH) method is particularly suited to follow complex flows. The SPH method has been used to study filling of a gravity die including the formation and transport of oxides and oxide films for two different filling velocities. A low inlet velocity leads to a higher amount of oxides and oxide films in the casting. The study demonstrates the usefulness of the SPH method for an increased understanding of the effect of different filling procedures on the cast quality. (paper)

  11. Argentine hydrothermal panorama

    Energy Technology Data Exchange (ETDEWEB)

    1976-12-01

    An attempt is made to give a realistic review of Argentine thermal waters. The topics discussed are the characteristics of the hydrothermal resources, classification according to their mineral content, hydrothermal flora and fauna, uses of hydrothermal resources, hydrothermal regions of Argentina, and meteorology and climate. A tabulation is presented of the principal thermal waters. (JSR)

  12. Hafnium carbide formation in oxygen deficient hafnium oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Rodenbücher, C. [Forschungszentrum Jülich GmbH, Peter Grünberg Institute (PGI-7), JARA-FIT, 52425 Jülich (Germany); Hildebrandt, E.; Sharath, S. U.; Kurian, J.; Komissinskiy, P.; Alff, L. [Technische Universität Darmstadt, Institute of Materials Science, 64287 Darmstadt (Germany); Szot, K. [Forschungszentrum Jülich GmbH, Peter Grünberg Institute (PGI-7), JARA-FIT, 52425 Jülich (Germany); University of Silesia, A. Chełkowski Institute of Physics, 40-007 Katowice (Poland); Breuer, U. [Forschungszentrum Jülich GmbH, Central Institute for Engineering, Electronics and Analytics (ZEA-3), 52425 Jülich (Germany); Waser, R. [Forschungszentrum Jülich GmbH, Peter Grünberg Institute (PGI-7), JARA-FIT, 52425 Jülich (Germany); RWTH Aachen, Institute of Electronic Materials (IWE 2), 52056 Aachen (Germany)

    2016-06-20

    On highly oxygen deficient thin films of hafnium oxide (hafnia, HfO{sub 2−x}) contaminated with adsorbates of carbon oxides, the formation of hafnium carbide (HfC{sub x}) at the surface during vacuum annealing at temperatures as low as 600 °C is reported. Using X-ray photoelectron spectroscopy the evolution of the HfC{sub x} surface layer related to a transformation from insulating into metallic state is monitored in situ. In contrast, for fully stoichiometric HfO{sub 2} thin films prepared and measured under identical conditions, the formation of HfC{sub x} was not detectable suggesting that the enhanced adsorption of carbon oxides on oxygen deficient films provides a carbon source for the carbide formation. This shows that a high concentration of oxygen vacancies in carbon contaminated hafnia lowers considerably the formation energy of hafnium carbide. Thus, the presence of a sufficient amount of residual carbon in resistive random access memory devices might lead to a similar carbide formation within the conducting filaments due to Joule heating.

  13. Reconstruction of Ancestral Hydrothermal Systems on Mount Rainier Using Hydrothermally Altered Rocks in Holocene Debris Flows and Tephras

    Science.gov (United States)

    John, D. A.; Breit, G. N.; Sisson, T. W.; Vallance, J. W.; Rye, R. O.

    2005-12-01

    Mount Rainier is the result of episodic stages of edifice growth during periods of high eruptive activity and edifice destruction during periods of relative magmatic quiescence over the past 500 kyr. Edifice destruction occurred both by slow erosion and by catastrophic collapses, some of which were strongly influenced by hydrothermal alteration. Several large-volume Holocene debris-flow deposits contain abundant clasts of hydrothermally altered rocks, most notably the 4-km3 clay-rich Osceola Mudflow which formed by collapse of the northeast side and upper 1000+ m of the edifice about 5600 ya and flowed >120 km downstream into Puget Sound. Mineral assemblages and stable isotope data of hydrothermal alteration products in Holocene debris-flow deposits indicate formation in distinct hydrothermal environments, including magmatic-hydrothermal, steam-heated (including a large fumarolic component), magmatic steam (including a possible fumarolic component), and supergene. The Osceola Mudflow and phreatic components of coeval tephras contain the highest-temperature and inferred most deeply formed alteration minerals; assemblages include magmatic-hydrothermal quartz-alunite, quartz-topaz, quartz-pyrophyllite and quartz-illite (all +pyrite), in addition to steam-heated opal-alunite-kaolinite and abundant smectite-pyrite. In contrast, the Paradise lahar, which formed by a collapse of the surficial upper south side of the edifice, contains only steam-heated assemblages including those formed largely above the water table from condensation of fumarolic vapor (opal-alunite-jarosite). Younger debris-flow deposits on the west side of the volcano (Round Pass lahar and Electron Mudflow) contain only smectite-pyrite alteration, whereas an early 20th century rock avalanche on Tahoma Glacier also contains magmatic-hydrothermal alteration that is exposed in the avalanche headwall of Sunset Amphitheater. Mineralogy and isotopic composition of the alteration phases, geologic and

  14. Bismuth molybdate catalysts prepared by mild hydrothermal synthesis: Influence of pH on the selective oxidation of propylene

    DEFF Research Database (Denmark)

    Schuh, Kirsten; Kleist, Wolfgang; Høj, Martin

    2015-01-01

    A series of bismuth molybdate catalysts with relatively high surface area was prepared via mild hydrothermal synthesis. Variation of the pH value and Bi/Mo ratio during the synthesis allowed tuning of the crystalline Bi-Mo oxide phases, as determined by X-ray diffraction (XRD) and Raman...... spectroscopy. The pH value during synthesis had a strong influence on the catalytic performance. Synthesis using a Bi/Mo ratio of 1/1 at pH ≥ 6 resulted in γ-Bi2MoO6, which exhibited a better catalytic performance than phase mixtures obtained at lower pH values. However, a significantly lower catalytic...

  15. Formation of methane and nitrous oxide in plants

    Science.gov (United States)

    Keppler, Frank; Lenhart, Katharina

    2017-04-01

    and mosses, so called cryptogamic covers, were recently identified to release substantial amounts of nitrous oxide (Lenhart et al. 2015). In this presentation we will give a brief overview of recent observations of aerobic methane formation and nitrous oxide emissions from terrestrial vegetation. Furthermore, we will present new results from laboratory incubation experiments that provide further insights into the formation of methane and nitrous oxide from plants. References: Bruhn, D. et al.: Leaf surface wax is a source of plant methane formation under UV radiation and in the presence of oxygen. Plant Biology 16, 512-516, 2014. Chang, C. et al.: Nitrous Oxide Emission through Plants. Soil Science Society of America Journal 62, 35-38, 1998. Dean, J. V., Harper, J. E.: Nitric oxide and nitrous oxide production by soybean and winged bean during the in vivo nitrate reductase assay. Plant Physiology 82, 718-723, 1986. Keppler, F., Boros, M., Frankenberg, C., Lelieveld, J., McLeod, A., Pirttilä, A. M., Röckmann, T., Schnitzler, J.: Methane formation in aerobic environments, Environmental Chemistry, 6, 459-465, 2009. Lenhart, K. et al.: Nitrous oxide and methane emissions from cryptogamic covers. Global Change Biology 21, 3889-3900, 2015. Pihlatie, M., Ambus, P., Rinne, J., Pilegaard, K., Vesala, T.: Plant-mediated nitrous oxide emissions from beech (Fagus sylvatica) leaves. New Phytologist 168, 93-98, 2005. Wang, Z.-P., Chang, S. X., Chen, H., Han, X.-G.: Widespread non-microbial methane production by organic compounds and the impact of environmental stresses, Earth-Science Reviews, 127, 193-202, 2013.

  16. Co3O4/reduced graphene oxide nanocomposite for removal of organic pollutants from aqueous medium

    Science.gov (United States)

    Mishra, Amodini; Kuanr, B. K.; Mohanty, T.

    2017-05-01

    The magnetic nanocomposite (MNC) of cobalt oxide/graphene oxide (Co3O4/rGO) has been synthesized by hydrothermal method to demonstrate its use as organic pollutants remover. The phase formation of the cobalt oxide magnetic nanoparticles (MNPs) has been confirmed by X-ray diffraction (XRD) analysis. The nanocomposite has been characterized by Raman spectroscopic technique and two Raman peaks associated with graphene oxide are observed. The morphological study of the nanocomposite has been done using scanning electron microscope (SEM). The nanocomposite has been used for removal of organic pollutants from aqueous medium by using ultra-violet spectroscopy.

  17. Easy Korean Auto CAD 14

    International Nuclear Information System (INIS)

    Lee, Jae Cheol

    1997-10-01

    This book introduces Auto CAD 14, which includes summary of basic things of Auto CAD 14, user interface for Auto CAD, basic drawing and advice, layer and set-up drawing, drawing with Auto CAD tools exactly, basic drawing of every thing, edit command, control of display, modeling and view ports of drawing space, various things drawing, writing letters, modification of floor plan, and check, block, X ref, lines and hatch, writing measurement, floor plan and OLE exchange of data, 3D floor plan, and rendering and presentation.

  18. Effect of the preparation method on the structural and catalytic properties of spinel cobalt-iron oxide

    Energy Technology Data Exchange (ETDEWEB)

    Hammiche-Bellal, Yasmina, E-mail: yasminahammiche@gmail.com [Laboratoire des Matériaux Catalytiques et Catalyse en Chimie Organique, Faculté de Chimie, USTHB, BP32 El Alia, Bab Ezzouar, 16111, Alger (Algeria); Djadoun, Amar [Laboratoire de Géophysique, FSTGAT, USTHB, BP32 El Alia, Bab Ezzouar, 16111, Alger (Algeria); Meddour-Boukhobza, Laaldja; Benadda, Amel [Laboratoire des Matériaux Catalytiques et Catalyse en Chimie Organique, Faculté de Chimie, USTHB, BP32 El Alia, Bab Ezzouar, 16111, Alger (Algeria); Auroux, Aline [Université Lyon 1, CNRS, UMR 5256, IRCELYON, Institut de Recherches sur la Catalyse et l' Environnement de Lyon, 2 Avenue Albert Einstein, F-69626, Villeurbanne (France); Berger, Marie-Hélène [Centre des Matériaux PIERRE-MARIE Fourt, UMR 7633, Paris (France); Mernache, Fateh [UDEC-CRND, COMENA, BP 43 Draria, 16050, Alger (Algeria)

    2016-07-01

    Spinel cobalt-iron oxide was synthesized by co-precipitation and hydrothermal routes. The effect of the co-precipitation experimental conditions, the calcination temperature and the hydrothermal synthesis time and temperature on the properties of the solids was studied. The prepared powders were evaluated as catalysts in the ethanol combustion reaction, and were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM/EDX), nitrogen adsorption–desorption isotherms (BET, BJH) and temperature programmed reduction (TPR) techniques. Using chloride salts as starting materials and sodium hydroxide as precipitating agent, the CoFe{sub 2}O{sub 4} prepared powders displayed a mesoporous structure with a pore distribution strongly dependent on the experimental conditions. A monophasic spinel phase in the case of the calcined solids was obtained while the hydrothermal process led to the formation of a mixture of single oxides in addition to the spinel phase. The variation of the crystallite size and the lattice parameter as a function of calcination temperature was similar, whereas this variation found to be irregular when the synthesis residence time in autoclave was increased. The hydrothermally treated solids show the best catalytic performance in the total oxidation of ethanol. The catalytic behavior was correlated with the crystallite size and the reduction temperature of cobalt species determined by the TPR analysis. - Highlights: • Pure CoFe{sub 2}O{sub 4} phase is obtained by co-precipitation method at calcination temperatures 500–900 °C. • The temperature of co-precipitation procedure influences strongly the growth of the solids during the calcination step. • The hydrothermal synthesis gives a mixture of oxides; CoFe{sub 2}O{sub 4} is the predominant phase. • The CoFe{sub 2}O{sub 4} spinel showed a good catalytic reactivity in the ethanol combustion reaction. • The catalysts prepared by hydrothermal process are more reactive and

  19. Iron-based microbial ecosystem on and below the seafloor: a case study of hydrothermal fields of the southern mariana trough.

    Science.gov (United States)

    Kato, Shingo; Nakamura, Kentaro; Toki, Tomohiro; Ishibashi, Jun-Ichiro; Tsunogai, Urumu; Hirota, Akinori; Ohkuma, Moriya; Yamagishi, Akihiko

    2012-01-01

    Microbial community structures in deep-sea hydrothermal vents fields are constrained by available energy yields provided by inorganic redox reactions, which are in turn controlled by chemical composition of hydrothermal fluids. In the past two decades, geochemical and microbiological studies have been conducted in deep-sea hydrothermal vents at three geographically different areas of the Southern Mariana Trough (SMT). A variety of geochemical data of hydrothermal fluids and an unparalleled microbiological dataset of various samples (i.e., sulfide structures of active vents, iron-rich mats, borehole fluids, and ambient seawater) are available for comparative analyses. Here, we summarize the geochemical and microbiological characteristics in the SMT and assess the relationship between the microbial community structures and the fluid geochemistry in the SMT by thermodynamic modeling. In the high temperature vent fluids, aerobic sulfide-oxidation has the potential to yield large amounts of bioavailable energy in the vent fluids, which is consistent with the detection of species related to sulfide-oxidizing bacteria (such as Thiomicrospira in the Gammaproteobacteria and Sulfurimonas in the Epsilonproteobacteria). Conversely, the bioavailable energy yield from aerobic iron-oxidation reactions in the low-temperature fluids collected from man-made boreholes and several natural vents were comparable to or higher than those from sulfide-oxidation. This is also consistent with the detection of species related to iron-oxidizing bacteria (Mariprofundus in the Zetaproteobacteria) in such low-temperature samples. The results of combination of microbiological, geochemical, and thermodynamic analyses in the SMT provide novel insights into the presence and significance of iron-based microbial ecosystems in deep-sea hydrothermal fields.

  20. Simulating Electrochemistry of Hydrothermal Vents on Enceladus and Other Ocean Worlds

    Science.gov (United States)

    Barge, L. M.; Krause, F. C.; Jones, J. P.; Billings, K.; Sobron, P.

    2017-12-01

    Gradients generated in hydrothermal systems provide a significant source of free energy for chemosynthetic life, and may play a role in present-day habitability on ocean worlds such as Enceladus that are thought to host hydrothermal activity. Hydrothermal vents are similar in some ways to typical fuel cell devices: redox/pH gradients between seawater and hydrothermal fluid are analogous to the oxidant and fuel reservoirs; conductive natural mineral deposits are analogous to electrodes; and, in hydrothermal chimneys, the porous chimney wall can function as a separator or ion-exchange membrane. Electrochemistry, founded on quantitative study of redox and other chemical disequilibria as well as the chemistry of interfaces, is uniquely suited to studying these systems. We have performed electrochemical studies to better understand the catalytic potential of seafloor minerals and vent chimneys, using samples from a black smoker vent chimney as an initial demonstration. Fuel cell experiments with electrodes made from black smoker chimney material accurately simulated the redox reactions that occur in a geological setting with this particular catalyst. Similar methods with other geo-catalysts (natural or synthetic) could be utilized to test which redox reactions or metabolisms could be driven in other hydrothermal systems, including putative vent systems on other worlds.

  1. Preservation of iron(II) by carbon-rich matrices in a hydrothermal plume

    Energy Technology Data Exchange (ETDEWEB)

    Toner, Brandy M.; Fakra, Sirine C.; Manganini, Steven J.; Santelli, Cara M.; Marcus, Matthew A.; Moffett, James W.; Rouxel, Olivier; German, Christopher R.; Edwards, Katrina J.

    2008-09-20

    Hydrothermal venting associated with mid-ocean ridge volcanism is globally widespread. This venting is responsible for a dissolved iron flux to the ocean that is approximately equal to that associated with continental riverine runoff. For hydrothermal fluxes, it has long been assumed that most of the iron entering the oceans is precipitated in inorganic forms. However, the possibility of globally significant fluxes of iron escaping these mass precipitation events and entering open-ocean cycles is now being debated, and two recent studies suggest that dissolved organic ligands might influence the fate of hydrothermally vented metals. Here we present spectromicroscopic measurements of iron and carbon in hydrothermal plume particles at the East Pacific Rise mid-ocean ridge. We show that organic carbon-rich matrices, containing evenly dispersed iron(II)-rich materials, are pervasive in hydrothermal plume particles. The absence of discrete iron(II) particles suggests that the carbon and iron associate through sorption or complexation. We suggest that these carbon matrices stabilize iron(II) released from hydrothermal vents in the region, preventing its oxidation and/or precipitation as insoluble minerals. Our findings have implications for deep-sea biogeochemical cycling of iron, a widely recognized limiting nutrient in the oceans.

  2. Xenopumice erupted on 15 October 2011 offshore of El Hierro (Canary Islands): a subvolcanic snapshot of magmatic, hydrothermal and pyrometamorphic processes

    Science.gov (United States)

    Del Moro, S.; Di Roberto, A.; Meletlidis, S.; Pompilio, M.; Bertagnini, A.; Agostini, S.; Ridolfi, F.; Renzulli, A.

    2015-06-01

    On 15 October 2011, a submarine eruption offshore of El Hierro Island gave rise to floating volcanic products, known as xenopumices, i.e., pumiceous xenoliths partly mingled and coated with the juvenile basanitic magma. Over the last few years, no consensus in the scientific community in explaining the origin of these products has been reached. In order to better understand the formation of xenopumice, we present a textural, mineralogical, and geochemical study of the possible magmatic, hydrothermal, and pyrometamorphic processes, which usually operate in the plumbing systems of active volcanoes. We carried out a comprehensive SEM investigation and Sr-Nd-Pb isotope analyses on some samples representative of three different xenopumice facies. All the data were compared with previous studies, new data for El Hierro extrusives and a literature dataset of Canary Islands igneous and sedimentary rocks. In the investigated xenopumices, we emphasize the presence of restitic magmatic phases as well as crystallization of minerals (mainly olivine + pyroxene + magnetite aggregates) as pseudomorphs after pre-existing mafic phenocrysts, providing evidence of pyrometamorphism induced by the high-T juvenile basanitic magma. In addition, we identify veins consisting of zircon + REE-oxides + mullite associated with Si-rich glass and hydrothermal quartz, which indicate the fundamental role played by hydrothermal fluid circulation in the xenopumice protolith. The petrological data agree with a pre-syneruptive formation of the xenopumice, when El Hierro basanite magma intruded hydrothermally altered trachyandesite to trachyte rocks and triggered local partial melting. Therefore, the El Hierro xenopumice represents a snapshot of the transient processes at the magma-wall rock interface, which normally occurs in the feeding system of active volcanoes.

  3. Modeling SOA formation from the oxidation of intermediate volatility n-alkanes

    Directory of Open Access Journals (Sweden)

    J. Lee-Taylor

    2012-08-01

    Full Text Available The chemical mechanism leading to SOA formation and ageing is expected to be a multigenerational process, i.e. a successive formation of organic compounds with higher oxidation degree and lower vapor pressure. This process is here investigated with the explicit oxidation model GECKO-A (Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere. Gas phase oxidation schemes are generated for the C8–C24 series of n-alkanes. Simulations are conducted to explore the time evolution of organic compounds and the behavior of secondary organic aerosol (SOA formation for various preexisting organic aerosol concentration (COA. As expected, simulation results show that (i SOA yield increases with the carbon chain length of the parent hydrocarbon, (ii SOA yield decreases with decreasing COA, (iii SOA production rates increase with increasing COA and (iv the number of oxidation steps (i.e. generations needed to describe SOA formation and evolution grows when COA decreases. The simulated oxidative trajectories are examined in a two dimensional space defined by the mean carbon oxidation state and the volatility. Most SOA contributors are not oxidized enough to be categorized as highly oxygenated organic aerosols (OOA but reduced enough to be categorized as hydrocarbon like organic aerosols (HOA, suggesting that OOA may underestimate SOA. Results show that the model is unable to produce highly oxygenated aerosols (OOA with large yields. The limitations of the model are discussed.

  4. Bacterial Diets of Primary Consumers at Hydrothermal Vents

    Science.gov (United States)

    Govenar, B.; Shank, T. M.

    2008-12-01

    Chemical energy produced by mixing hydrothermal fluids and seawater supports dense biological communities on mid-ocean ridges. The base of the food web at deep-sea hydrothermal vents is formed by chemolithoautotrophic bacteria that use the energy from the oxidation of reduced chemicals to fix inorganic carbon into simple sugars. With the exception of a few species that have chemolithoautotropic bacterial symbionts, most of the vent-endemic macrofauna are heterotrophs that feed on free-living bacteria, protists, and other invertebrates. The most abundant and diverse group of primary consumers in hydrothermal vent communities belong to the Gastropoda, particularly the patellomorph limpets. Gastropod densities can be as high as 2000 individuals m-2, and there can be as many as 13 species of gastropods in a single aggregation of the siboglinid tubeworm Riftia pachyptila and more than 40 species along the East Pacific Rise. Some gastropods are ubiquitous and others are found in specific microhabitats, stages of succession, or associated with different foundation species. To determine the mechanisms of species coexistence (e.g. resource partitioning or competition) among hydrothermal vent primary consumers and to track the flow of energy in hydrothermal vent communities, we employed molecular genetic techniques to identify the gut contents of four species of co-occurring hydrothermal vent gastropods, Eulepetopsis vitrea, Lepetodrilus elevatus, Lepetodrilus ovalis and Lepetodrilus pustulosus, collected from a single diffuse-flow hydrothermal vent site on the East Pacific Rise. Unique haplotypes of the 16S gene that fell among the epsilon-proteobacteria were found in the guts of every species, and two species had gut contents that were similar only to epsilon-proteobacteria. Two species had gut contents that also included haplotypes that clustered with delta-proteobacteria, and one species had gut contents that clustered with alpha- proteobacteria. Differences in the diets

  5. Genesis of the hydrothermal gold deposits in the Canan area, Lepaguare District, Honduras

    Science.gov (United States)

    Mattioli, Michele; Menichetti, Marco; Renzulli, Alberto; Toscani, Lorenzo; Salvioli-Mariani, Emma; Suarez, Pedro; Murroni, Alessandro

    2014-04-01

    The Canan area (Honduras) is characterized by a gold-bearing ore deposit that is associated with quartz-veined shear zones. Gold mineralization occurs in low-to medium-grade metamorphic host-rocks (graphitic and sericitic schists). Hydrothermal fluids, which are associated with the emplacement of Cretaceous-Tertiary granodioritic intrusions, are responsible for the formation of quartz veins and the hydrothermal alteration of wall-rocks. Three main altered zones have been detected in the wall-rocks as far as 150 cm from the quartz veins. The distal zone (up to 50-cm thick) contains quartz, chlorite and illite. The intermediate zone is the thickest (up to 80 cm) and is marked by quartz, muscovite, sulphides, kaolinite and native elements such as Au and Ag. The proximal zone, which is close to the quartz veins, is rather thin (up to 25 cm) and contains clay minerals, Al-oxides-hydroxides and sulphides. The transition from the distal to the proximal zone is accompanied by the enrichment of SiO2 and the depletion of all other major elements, except for Fe2O3(tot). Precious metals occur in the highest concentrations in the intermediate zone (Au up to 7.6 ppm and Ag up to 11 ppm). We suggest that gold was transported as a reduced sulphur complex and was precipitated from the hydrothermal solution by the reaction of the sulphur complexes with Fe2+ from the alteration of the mafic minerals of the host-rock. Fluid-wall-rock interactions seem to be the main cause of gold mineralization. Genetic relationships with a strike-slip fault system, hydrothermal alteration zones within the metamorphic wall-rocks, and an entire set of geochemical anomalies are consistent with orogenic-type gold deposits of the epizonal class.

  6. Metallogenic hydrothermal solution system of post volcanic magma in Xiangshan ore field

    International Nuclear Information System (INIS)

    Xu Hengli; Shao Fei; Zou Maoqin

    2009-01-01

    This paper has systematically described uranium metallogenic characteristics of Xiangshan ore field.Sources of metallogenic materials are discussed in different temporal and spatial scale. Combining with background analysis of metallogenic tectonic-magmatic-geodynamics, formation and evolution of metallogenic hydrothermal solution system in Xiangshan volcanic basin are studied. Metallogenic hydrothermal solution system in Xiangshan ore field is considered as the objective product of systematic evolution of hydrothermal solution in post volcanic magma constrained by regional tectonic environment. In time scale, metallogenic hydrothermal solution system developed for about 50 Ma, but its active spaces varied in different time domains. So temporal and spatial distribution of uranium mineralization is constrained. Further exploration for the ore field is also suggested in this paper. (authors)

  7. Development of high energy density supercapacitor through hydrothermal synthesis of RGO/nano-structured cobalt sulphide composites

    Science.gov (United States)

    Jana, Milan; Saha, Sanjit; Samanta, Pranab; Murmu, Naresh Chandra; Kim, Nam Hoon; Kuila, Tapas; Lee, Joong Hee

    2015-02-01

    Co9S8/reduced graphene oxide (RGO) composites were prepared on nickel foam substrate through hydrothermal reaction and used directly as supercapacitor electrode. The field emission scanning electron microscopy analysis of the composites showed the formation of Co9S8 nano-rods on the RGO surfaces. The average crystal size of the Co9S8 nano rods grown on the RGO sheets were ˜25-36 nm as calculated from x-ray diffraction analysis. The reduction of graphene oxide (GO) was confirmed by Raman and x-ray photoelectron spectroscopy analysis. The electrical conductivity of the Co9S8/RGO composite was recorded as 1690 S m-1 at room temperature, which is much higher than that of pure GO further confirming the hydrothermal reduction of GO. Cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy were investigated to check the electrochemical performances of the Co9S8/RGO composites. The Co9S8/RGO composites supported on nickel foam showed very high specific capacitance (Sc)(1349 F g-1 at a current density of 2.2 A g-1), energy density (68.6 W h kg-1) and power density (1319 W kg-1) in 6 M KOH electrolyte. The retention in Sc of the composite electrode was found to be ˜96% after 1000 charge-discharge cycles.

  8. Development of high energy density supercapacitor through hydrothermal synthesis of RGO/nano-structured cobalt sulphide composites.

    Science.gov (United States)

    Jana, Milan; Saha, Sanjit; Samanta, Pranab; Murmu, Naresh Chandra; Kim, Nam Hoon; Kuila, Tapas; Lee, Joong Hee

    2015-02-20

    Co9S8/reduced graphene oxide (RGO) composites were prepared on nickel foam substrate through hydrothermal reaction and used directly as supercapacitor electrode. The field emission scanning electron microscopy analysis of the composites showed the formation of Co9S8 nano-rods on the RGO surfaces. The average crystal size of the Co9S8 nano rods grown on the RGO sheets were ∼25-36 nm as calculated from x-ray diffraction analysis. The reduction of graphene oxide (GO) was confirmed by Raman and x-ray photoelectron spectroscopy analysis. The electrical conductivity of the Co9S8/RGO composite was recorded as 1690 S m(-1) at room temperature, which is much higher than that of pure GO further confirming the hydrothermal reduction of GO. Cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy were investigated to check the electrochemical performances of the Co9S8/RGO composites. The Co9S8/RGO composites supported on nickel foam showed very high specific capacitance (Sc)(1349 F g(-1) at a current density of 2.2 A g(-1)), energy density (68.6 W h kg(-1)) and power density (1319 W kg(-1)) in 6 M KOH electrolyte. The retention in Sc of the composite electrode was found to be ∼96% after 1000 charge-discharge cycles.

  9. Development of high energy density supercapacitor through hydrothermal synthesis of RGO/nano-structured cobalt sulphide composites

    International Nuclear Information System (INIS)

    Jana, Milan; Saha, Sanjit; Samanta, Pranab; Murmu, Naresh Chandra; Kuila, Tapas; Kim, Nam Hoon; Lee, Joong Hee

    2015-01-01

    Co 9 S 8 /reduced graphene oxide (RGO) composites were prepared on nickel foam substrate through hydrothermal reaction and used directly as supercapacitor electrode. The field emission scanning electron microscopy analysis of the composites showed the formation of Co 9 S 8 nano-rods on the RGO surfaces. The average crystal size of the Co 9 S 8 nano rods grown on the RGO sheets were ∼25–36 nm as calculated from x-ray diffraction analysis. The reduction of graphene oxide (GO) was confirmed by Raman and x-ray photoelectron spectroscopy analysis. The electrical conductivity of the Co 9 S 8 /RGO composite was recorded as 1690 S m −1 at room temperature, which is much higher than that of pure GO further confirming the hydrothermal reduction of GO. Cyclic voltammetry, galvanostatic charge–discharge and electrochemical impedance spectroscopy were investigated to check the electrochemical performances of the Co 9 S 8 /RGO composites. The Co 9 S 8 /RGO composites supported on nickel foam showed very high specific capacitance (Sc)(1349 F g −1 at a current density of 2.2 A g −1 ), energy density (68.6 W h kg −1 ) and power density (1319 W kg −1 ) in 6 M KOH electrolyte. The retention in Sc of the composite electrode was found to be ∼96% after 1000 charge–discharge cycles. (paper)

  10. chemical kinetic study of nitrogen oxides formation in methane flameless combustion

    International Nuclear Information System (INIS)

    Alvarado T, Pedro N; Cadavid S, Francisco; Mondragon, P Fanor; Ruiz, Wilson

    2009-01-01

    The present paper deals with the nitrogen oxides formation in a flameless combustion process characterized for using air highly diluted and preheated at high temperatures. The combustion model used in this study was the one dimensional counterflow methane air diffusion flame. The NOx production rate analysis showed that the thermal and prompt mechanisms are the most important for the formation and consumption of NO under dilution conditions for the oxidant in N 2 and combustion products. These mechanisms are related since the starting reaction for NO formation (N2 molecular dissociation) belongs to the prompt mechanism while the NO formation is reported mainly for the thermal mechanism reactions. On the other hand, the NO - NO 2 equilibrium showed that the reaction rates are comparable to that obtained by the thermal and prompt mechanisms, but its global contribution to NO formation are almost insignificant due to the oxidation reaction with radicals HO 2 .

  11. Petrogenesis, detrital zircon SHRIMP U-Pb geochronology, and tectonic implications of the Upper Paleoproterozoic Seosan iron formation, western Gyeonggi Massif, Korea

    Science.gov (United States)

    Kim, Chang Seong; Jang, Yirang; Samuel, Vinod O.; Kwon, Sanghoon; Park, Jung-Woo; Yi, Keewook; Choi, Seon-Gyu

    2018-05-01

    This study involves investigations on the Upper Paleoproterozoic iron formation (viz., Seosan iron formation) from the Seosan Group, Gyeonggi Massif of the southwestern Korean Peninsula. It occurs as thin banded layers within meta-arkosic sandstone, formed by alternating processes of chemical (hydrothermal) and detrital depositions under a shallow marine environment. It mainly consists of alternating layers of iron oxides, mostly hematite, and quartz. Minor amounts of magnetite surrounded by muscovite, clinopyroxene and amphibole indicate hydrothermal alteration since its formation. Meta-arkosic sandstone is composed of recrystallized or porphyroclastic quartz and microcline, with small amounts of hematite and pyrite clusters. The Seosan iron formation has high contents of total Fe2O3 and SiO2 with positive Eu anomalies similar to those of other Precambrian banded iron formations, and its formation is clearly related to hydrothermal alteration since its deposition. Detrital zircon SHRIMP U-Pb geochronology data from a meta-arkosic sandstone (SN-1) and an iron formation (SN-2) show mainly two age groups of ca. 2.5 Ga and ca. 1.9-1.75 Ga. This together with intrusion age of the granite gneiss (ca. 1.70-1.65 Ga) clearly indicate that the iron formations were deposited during the Upper Paleoproterozoic. The dominant Paleoproterozoic detrital zircon bimodal age peaks preserved in the Seosan iron formation compare well with those from the South China Craton sedimentary basins, reflecting global tectonic events related to the Columbia supercontinent in East Asia.

  12. Behavior of uranium during the formation of granitic magma by anatexis (I). Influence of redox conditions and the presence of chloride on the solubility of uranium in the hydrothermal solutions

    International Nuclear Information System (INIS)

    Satoru Nakashima; Toshimichi Iiyama, J.

    1983-01-01

    The behavior of uranium is examined experimentally in the course of partial fusion of natural or synthetic granitic rocks. Uranium is definitely soluble in the associated hydrothermal solutions containing chloride under oxidizing conditions, but it is not soluble in the same fluids under reducing conditions [fr

  13. Rapid hydrothermal route to synthesize cubic-phase gadolinium oxide nanorods

    International Nuclear Information System (INIS)

    Hazarika, Samiran; Paul, Nibedita; Mohanta, Dambarudhar

    2014-01-01

    An inexpensive fabrication route and growth mechanism is being reported for obtaining quality gadolinium oxide ( Gd 2 O 3 ) nanoscale rods. The elongated nanoscale systems, as produced via a hydrothermal process, were characterized by X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM), optical absorption spectroscopy, photoluminescence (PL) spectroscopy, Raman spectroscopy and magnetic hysteresis measurements. XRD patterns of the nanorods, as-prepared from independent precursors of different pH, depict a cubic crystal phase and an average crystallite size of 5-6.5 nm. As revealed from HRTEM micrographs, diameter of the nanorods prepared at pH = 13.3 (∼7 nm) was much smaller than the rods prepared at pH = 10.8 (∼19 nm). However, the aspect ratio was more than double in the former case than the latter case. PL response was found to be dominated by defect mediated emissions, whereas Raman spectrum of a given specimen (pH = 10.8) has revealed characteristic F g + A g modes of cubic phase of Gd 2 O 3 nanorods, apart from other independent modes. Furthermore, M ∼ H plot of the nanorod system (pH = 10.8) exhibited slight departure from the ideal superparamagnetic behaviour, with low remanence and coercive field values. The exploitation of one-dimensional Gd 2 O 3 nanorods have immense potential in the production of advanced contrast agents, smart drives and also in making novel ferrofluids of technological relevance. (author)

  14. Outstanding low temperature HC-SCR of NOx over platinum-group catalysts supported on mesoporous materials expecting diesel-auto emission regulation

    International Nuclear Information System (INIS)

    Komatsu, Tamikuni; Tomokuni, Keizou; Yamada, Issaku

    2006-01-01

    Outstanding low temperature HC-SCR of NOx over platinum-group catalysts supported on mesoporous materials, which does not rely on the conventional NOx-absorption-reduction-catalysts, is presented for the purpose of de-NOx of diesel-auto emissions. The established catalysts basically consist of mesoporous silica or metal-substituted mesoporous silicates for supports and platinum for active species, which is operated under lean- and rich-conditions. The new catalysts are very active at 150-200 o C and free from difficult problems of SOx-deactivation and hydrothermal ageing of the NOx-absorption-reduction catalyst. (author)

  15. AutoCAD 2014 essentials

    CERN Document Server

    Onstott, Scott

    2013-01-01

    Learn crucial AutoCAD tools and techniques with this Autodesk Official Press Book Quickly become productive using AutoCAD 2014 and AutoCAD LT 2014 with this full color Autodesk Official Press guide. This unique learning resource features concise, straightforward explanations and real-world, hands-on exercises and tutorials. Following a quick discussion of concepts and goals, each chapter moves on to an approachable hands-on exercise designed to reinforce real-world tactics and techniques. Compelling, full-color screenshots illustrate tutorial steps, and chapters conclude with relat

  16. AutoCAD 2015 and AutoCAD LT 2015

    CERN Document Server

    Gladfelter, Donnie

    2014-01-01

    Learn AutoCAD by example with this tutorial-based guide from Autodesk Official Press Whether you are just starting out or an experienced user wanting to brush up on your skills, this Autodesk Official Press book provides you with concise explanations, focused examples, and step-by-step instructions through a hands-on tutorial project that runs throughout the book. As you progress through the project, the book introduces you to the Microsoft Windows-based AutoCAD interface and then guides you through basic commands and creating drawings. A downloadable file is available from the website so that

  17. Evolution of Morphology and Crystallinity of Silica Minerals Under Hydrothermal Conditions

    Science.gov (United States)

    Isobe, H.

    2011-12-01

    Silica minerals are quite common mineral species in surface environment of the terrestrial planets. They are good indicator of terrestrial processes including hydrothermal alteration, diagenesis and soil formation. Hydrothermal quartz, metastable low temperature cristobalite and amorphous silica show characteristic morphology and crystallinity depending on their formation processes and kinetics under wide range of temperature, pressure, acidity and thermal history. In this study, silica minerals produced by acidic hydrothermal alteration related to volcanic activities and hydrothermal crystallization experiments from diatom sediment are examined with crystallographic analysis and morphologic observations. Low temperature form of cistobalite is a metastable phase and a common alteration product occured in highly acidic hydrothermal environment around fumaroles in geothermal / volcanic areas. XRD analysis revealed that the alteration degree of whole rock is represented by abundance of cristobalite. Detailed powder XRD analysis show that the primary diffraction peak of cristobalite composed with two or three phases with different d-spacing and FWHM by peak profile fitting analysis. Shorter d-spacing and narrower FWHM cristobalite crystallize from precursor materials with less-crystallized, longer d-spacing and wider FWHM cristobalite. Textures of hydrothermal cristobalite in altered rock shows remnant of porphylitic texture of the host rock, pyroxene-amphibole andesite. Diatom has amorphous silica shell and makes diatomite sediment. Diatomite found in less diagenetic Quarternary formation keeps amorphous silica diatom shells. Hydrothermal alteration experiments of amorphous silica diatomite sediment are carried out from 300 °C to 550 °C. Mineral composition of run products shows crystallization of cristobalite and quartz progress depending on temperature and run durations. Initial crystallization product, cristobalite grains occur as characteristic lepispheres and

  18. Biological Superoxide In Manganese Oxide Formation

    Science.gov (United States)

    Hansel, C.; Learman, D.; Zeiner, C.; Santelli, C. M.

    2011-12-01

    Manganese (Mn) oxides are among the strongest sorbents and oxidants within the environment, controlling the fate and transport of numerous elements and the degradation of recalcitrant carbon. Both bacteria and fungi mediate the oxidation of Mn(II) to Mn(III/IV) oxides but the genetic and biochemical mechanisms responsible remain poorly understood. Furthermore, the physiological basis for microbial Mn(II) oxidation remains an enigma. We have recently reported that a common marine bacterium (Roseobacter sp. AzwK-3b) oxidizes Mn(II) via reaction with extracellular superoxide (O2-) produced during exponential growth. Here we expand this superoxide-mediated Mn(II) oxidation pathway to fungi, introducing a surprising homology between prokaryotic and eukaryotic metal redox processes. For instance, Stibella aciculosa, a common soil Ascomycete filamentous fungus, precipitates Mn oxides at the base of asexual reproductive structures (synnemata) used to support conidia (Figure 1). This distribution is a consequence of localized production of superoxide (and it's dismutation product hydrogen peroxide, H2O2), leading to abiotic oxidation of Mn(II) by superoxide. Disruption of NADPH oxidase activity using the oxidoreductase inhibitor DPI leads to diminished cell differentiation and subsequent Mn(II) oxidation inhibition. Addition of Cu(II) (an effective superoxide scavenger) leads to a concentration dependent decrease in Mn oxide formation. We predict that due to the widespread production of extracellular superoxide within the fungal and likely bacterial kingdoms, biological superoxide may be an important contributor to the cycling of Mn, as well as other metals (e.g., Hg, Fe). Current and future explorations of the genes and proteins involved in superoxide production and Mn(II) oxidation will ideally lend insight into the physiological and biochemical basis for these processes.

  19. Auto-immune hepatitis following delivery.

    Science.gov (United States)

    Saini, Vandana; Gupta, Mamta; Mishra, S K

    2013-05-01

    Auto-immune hepatitis first presenting in the early postpartum period is rare. Immunosuppressive effects of pregnancy result in delayed manifestation of auto-immune hepatitis, and in established cases, the spontaneous improvements are there. Auto-immune hepatitis should be considered in the differential diagnosis of liver dysfunction first presenting in the early postpartum period. A case of postpartum hepatitis of auto-immune aetiology is being presented here. It is disease of unknown aetiology, characterised by inflammation of liver (as evidenced by raised serum transaminases, presence of interface hepatitis on histological examination), hypergammaglobulinaemia (> 1.5 times normal), presence of auto-antibodies [(antinuclear antibodies (ANA)], smooth muscle antibody (SMA) and antibody to liver-kidney microsome type 1 (LKM1) in the absence of viral markers ie, hepatitis B (HBsAg) and C (AntiHCV) and excellent response to corticosteroid therapy.

  20. Removal of Malachite Green from water using hydrothermally carbonized pine needles

    KAUST Repository

    Hammud, Hassan Hasan; Shmait, Abeer; Hourani, Nadim

    2015-01-01

    Hydrothermal carbonization of pine needles (HTC-PN) and their oxidized-activated form HTC-APN are prepared and applied for the adsorption of Malachite Green (MG) in aqueous solution. The HTC materials were characterized by thermal and TEM analysis

  1. Hydrothermal performance of catalyst supports

    Energy Technology Data Exchange (ETDEWEB)

    Elam, Jeffrey W.; Marshall, Christopher L.; Libera, Joseph A.; Dumesic, James A.; Pagan-Torres, Yomaira J.

    2018-04-10

    A high surface area catalyst with a mesoporous support structure and a thin conformal coating over the surface of the support structure. The high surface area catalyst support is adapted for carrying out a reaction in a reaction environment where the thin conformal coating protects the support structure within the reaction environment. In various embodiments, the support structure is a mesoporous silica catalytic support and the thin conformal coating comprises a layer of metal oxide resistant to the reaction environment which may be a hydrothermal environment.

  2. Anhydrite precipitation in seafloor hydrothermal systems

    Science.gov (United States)

    Theissen-Krah, Sonja; Rüpke, Lars H.

    2016-04-01

    The composition and metal concentration of hydrothermal fluids venting at the seafloor is strongly temperature-dependent and fluids above 300°C are required to transport metals to the seafloor (Hannington et al. 2010). Ore-forming hydrothermal systems and high temperature vents in general are often associated with faults and fracture zones, i.e. zones of enhanced permeabilities that act as channels for the uprising hydrothermal fluid (Heinrich & Candela, 2014). Previous numerical models (Jupp and Schultz, 2000; Andersen et al. 2015) however have shown that high permeabilities tend to decrease fluid flow temperatures due to mixing with cold seawater and the resulting high fluid fluxes that lead to short residence times of the fluid near the heat source. A possible mechanism to reduce the permeability and thereby to focus high temperature fluid flow are mineral precipitation reactions that clog the pore space. Anhydrite for example precipitates from seawater if it is heated to temperatures above ~150°C or due to mixing of seawater with hydrothermal fluids that usually have high Calcium concentrations. We have implemented anhydrite reactions (precipitation and dissolution) in our finite element numerical models of hydrothermal circulation. The initial results show that the precipitation of anhydrite efficiently alters the permeability field, which affects the hydrothermal flow field as well as the resulting vent temperatures. C. Andersen et al. (2015), Fault geometry and permeability contrast control vent temperatures at the Logatchev 1 hydrothermal field, Mid-Atlantic Ridge, Geology, 43(1), 51-54. M. D. Hannington et al. (2010), Modern Sea-Floor Massive Sulfides and Base Metal Resources: Toward an Estimate of Global Sea-Floor Massive Sulfide Potential, in The Challenge of Finding New Mineral Resources: Global Metallogeny, Innovative Exploration, and New Discoveries, edited by R. J. Goldfarb, E. E. Marsh and T. Monecke, pp. 317-338, Society of Economic Geologists

  3. Effects of iron-containing minerals on hydrothermal reactions of ketones

    Science.gov (United States)

    Yang, Ziming; Gould, Ian R.; Williams, Lynda B.; Hartnett, Hilairy E.; Shock, Everett L.

    2018-02-01

    Hydrothermal organic transformations occurring in geochemical processes are influenced by the surrounding environments including rocks and minerals. This work is focused on the effects of five common minerals on reactions of a model ketone substrate, dibenzylketone (DBK), in an experimental hydrothermal system. Ketones play a central role in many hydrothermal organic functional group transformations, such as those converting hydrocarbons to oxygenated compounds; however, how these minerals control the hydrothermal chemistry of ketones is poorly understood. Under the hydrothermal conditions of 300 °C and 70 MPa for up to 168 h, we observed that, while quartz (SiO2) and corundum (Al2O3) had no detectable effect on the hydrothermal reactions of DBK, iron-containing minerals, such as hematite (Fe2O3), magnetite (Fe3O4), and troilite (synthetic FeS), accelerated the reaction of DBK by up to an order of magnitude. We observed that fragmentation products, such as toluene and bibenzyl, dominated in the presence of hematite or magnetite, while use of troilite gave primarily the reduction products, e.g., 1, 3-diphenyl-propane and 1, 3-diphenyl-2-propanol. The roles of the three iron minerals in these transformations were further explored by (1) control experiments with various mineral surface areas, (2) measuring H2 in hydrothermal solutions, and (3) determining hydrogen balance among the organic products. These results suggest the reactions catalyzed by iron oxides (hematite and magnetite) are promoted mainly by the mineral surfaces, whereas the sulfide mineral (troilite) facilitated the reduction of ketone in the reaction solution. Therefore, this work not only provides a useful chemical approach to study and uncover complicated hydrothermal organic-mineral interactions, but also fosters a mechanistic understanding of ketone reactions in the deep carbon cycle.

  4. Mfa4, an Accessory Protein of Mfa1 Fimbriae, Modulates Fimbrial Biogenesis, Cell Auto-Aggregation, and Biofilm Formation in Porphyromonas gingivalis.

    Science.gov (United States)

    Ikai, Ryota; Hasegawa, Yoshiaki; Izumigawa, Masashi; Nagano, Keiji; Yoshida, Yasuo; Kitai, Noriyuki; Lamont, Richard J; Yoshimura, Fuminobu; Murakami, Yukitaka

    2015-01-01

    Porphyromonas gingivalis, a gram-negative obligate anaerobic bacterium, is considered to be a key pathogen in periodontal disease. The bacterium expresses Mfa1 fimbriae, which are composed of polymers of Mfa1. The minor accessory components Mfa3, Mfa4, and Mfa5 are incorporated into these fimbriae. In this study, we characterized Mfa4 using genetically modified strains. Deficiency in the mfa4 gene decreased, but did not eliminate, expression of Mfa1 fimbriae. However, Mfa3 and Mfa5 were not incorporated because of defects in posttranslational processing and leakage into the culture supernatant, respectively. Furthermore, the mfa4-deficient mutant had an increased tendency to auto-aggregate and form biofilms, reminiscent of a mutant completely lacking Mfa1. Notably, complementation of mfa4 restored expression of structurally intact and functional Mfa1 fimbriae. Taken together, these results indicate that the accessory proteins Mfa3, Mfa4, and Mfa5 are necessary for assembly of Mfa1 fimbriae and regulation of auto-aggregation and biofilm formation of P. gingivalis. In addition, we found that Mfa3 and Mfa4 are processed to maturity by the same RgpA/B protease that processes Mfa1 subunits prior to polymerization.

  5. Kinetics of the hydrothermal treatment of tannin for producing carbonaceous microspheres.

    Science.gov (United States)

    Braghiroli, F L; Fierro, V; Izquierdo, M T; Parmentier, J; Pizzi, A; Celzard, A

    2014-01-01

    Aqueous solutions of condensed tannins were submitted to hydrothermal carbonization (HTC) in a stainless steel autoclave, and the kinetics of hydrothermal carbon formation was investigated by changing several parameters: amount of tannin (0.5; 1.0; 1.5; 2.0 g in 16 mL of water), HTC temperature (130, 160, 180 and 200°C) and reaction times (from 1 to 720 h). The morphology and the structure of the tannin-based hydrothermal carbons were studied by TEM, krypton adsorption at -196°C and helium pycnometry. These materials presented agglomerated spherical particles, having surface areas ranging from 0.6 to 10.0 m(2) g(-1). The chemical composition of the hydrothermal carbons was found to be constant and independent of reaction time. HTC kinetics of tannin were determined and shown to correspond to first-order reaction. Temperature-dependent measurements led to an activation energy of 91 kJ mol(-1) for hydrothermal conversion of tannin into carbonaceous microspheres separable by centrifugation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Effect of Hydrothermal Alteration on Rock Properties in Active Geothermal Setting

    Science.gov (United States)

    Mikisek, P.; Bignall, G.; Sepulveda, F.; Sass, I.

    2012-04-01

    Hydrothermal alteration records the physical-chemical changes of rock and mineral phases caused by the interaction of hot fluids and wall rock, which can impact effective permeability, porosity, thermal parameters, rock strength and other rock properties. In this project, an experimental approach has been used to investigate the effects of hydrothermal alteration on rock properties. A rock property database of contrastingly altered rock types and intensities has been established. The database details horizontal and vertical permeability, porosity, density, thermal conductivity and thermal heat capacity for ~300 drill core samples from wells THM12, THM13, THM14, THM17, THM18, THM22 and TH18 in the Wairakei-Tauhara geothermal system (New Zealand), which has been compared with observed hydrothermal alteration type, rank and intensity obtained from XRD analysis and optical microscopy. Samples were selected from clay-altered tuff and intercalated siltstones of the Huka Falls Formation, which acts as a cap rock at Wairakei-Tauhara, and tuffaceous sandstones of the Waiora Formation, which is a primary reservoir-hosting unit for lateral and vertical fluid flows in the geothermal system. The Huka Falls Formation exhibits argillic-type alteration of varying intensity, while underlying Waiora Formations exhibits argillic- and propylithic-type alteration. We plan to use a tempered triaxial test cell at hydrothermal temperatures (up to 200°C) and pressures typical of geothermal conditions, to simulate hot (thermal) fluid percolation through the rock matrix of an inferred "reservoir". Compressibility data will be obtained under a range of operating (simulation reservoir) conditions, in a series of multiple week to month-long experiments that will monitor change in permeability and rock strength accompanying advancing hydrothermal alteration intensity caused by the hot brine interacting with the rock matrix. We suggest, our work will provide new baseline information concerning

  7. Apatite-brannerite-pitchblende association in hydrothermal quartz veins

    International Nuclear Information System (INIS)

    Brodin, B.V.; Mel'nikova, A.M.; Osipov, B.S.; Pavlov, E.G.

    1976-01-01

    A study into the vein quartz mineralization confined to the tectonic zones of crush and silicification in sedimentary-igneous rocks of the lower Paleozoic has been made. The physicochemical characteristics of minerals were studied by way of optical and electron microscopy, chemical, laser-microspectral and X-ray structural analyses, microprobing and alpha-microradiography. 3 mineral associations have been discriminated, representative of the sequence of hydrothermal mineralization. An unusual parogenesis of pitchblende and brannerite with apatite, xenotime and more recent goethite has been revealed. The results are indicative of a medium-low-temperature hydrothermal process occurring at the final stages of formation of uraniferrous quartz veins. By composition and mineralization sequence, the latters are close to low- and medium-temperature uranium-quartz-chlorite-hydromica formations with apatite, coffinite, brannerite and pitchblende. The weak initial metamictization of goethite in veins 80 to 100 million years old is due to the radioactive effect of the submicroscopic radioactive mineral impurity on the crystalline lattice

  8. Hydrothermal chimneys and Sulphide mineralised breccias from the Kolbeinsey and the Mohns Ridge

    Science.gov (United States)

    Nygård, T. E.; Bjerkgård, T.; Kelly, D.; Thorseth, I.; Pedersen, R. B.

    2003-04-01

    An inactive hydrothermal ventsite was discovered at the Kolbeinsey Ridge, (68^o56'N,17^o12'W) during the SUBMAR-99 cruise. The field is located in the neovolcanic sone at the flat top of a circular volcano at 900 m water depth. Two major fields contain about 30 chimneys. The top of one chimney was collected for further research. The mineralogy of the chimney is dominated by sphalerite, silica and barite, with minor amounts of galena and pyrrhotite, an assemblage which suggest a formation temperature white smokers [1]. The outer part of the chimney is enriched in LREE and shows a large positive Eu-anomaly compared to the inner parts of the chimney. Variation in Ce-anomaly reflects varying degrees of seawater infiltration during mineral precipitation. The first formed minerals in the lower part, and the outer part of the chimney appears to contain the most seawater-affected minerals. The Ag content of sphalerite may be as high as 1 wt%, but is restricted to small domains especially around fluid channels. A zonation in the Fe/Zn ratio of sphalerite is observed across fluid channels, suggesting variations in the fluid composition with time. The Pb-content of the chimney is extremely high, with up to 10 wt% in some sphalerite grains, and the bulk values are as high as 10 000 ppm. These high values suggest that sediments may have been present in the reaction zone of this hydrothermal system. Sulphide mineralised breccias were recovered by dredging the northern fault wall of the Mohns Ridge at 72^o39,33'N, 02^o40,87'E, during the SUBMAR-2000 cruise. The breccias exhibit several progressive stages of hydrothermal alteration: 1) the least altered parts are composed of partly altered basalt clasts and some chlorite, 2) more strongly altered samples mainly consist of quarts in a chlorite matrix, 3) and the most heavily mineralised parts contain secondary quarts and chalcopyrite. The final hydrothermal stage recorded by the breccias involved oxidation of chalcopyrite and

  9. Research progress in formation mechanism of anodizing aluminum oxide

    Science.gov (United States)

    Lv, Yudong

    2017-12-01

    The self-ordering porous anodizing aluminum oxide (AAO) has attracted much attention because of its potential value of application. Valve metals (Al, Ti, Zr etc.) anodic studies have been conducted for more than 80 years, but the mechanism of the formation of hexagonal prismatic cell structure has so far been different. In this paper, the research results of AAO film formation mechanism are reviewed, and the growth models of several AAO films are summarized, including the field-assisted dissolution (FAD), the viscous flow model, the critical current density effect model, the bulk expansion stress model and the steady-state pore growth model and so on. It analyzed the principle of each model and its rationality. This paper will be of great help to reveal the nature of pore formation and self-ordering, and with the hope that through the study of AAO film formation mechanism, the specific effects of various oxidation parameters on AAO film morphology can be obtained.

  10. Constraints on the source of Cu in a submarine magmatic-hydrothermal system, Brothers volcano, Kermadec island arc

    Science.gov (United States)

    Keith, Manuel; Haase, Karsten M.; Klemd, Reiner; Smith, Daniel J.; Schwarz-Schampera, Ulrich; Bach, Wolfgang

    2018-05-01

    Most magmatic-hydrothermal Cu deposits are genetically linked to arc magmas. However, most continental or oceanic arc magmas are barren, and hence new methods have to be developed to distinguish between barren and mineralised arc systems. Source composition, melting conditions, the timing of S saturation and an initial chalcophile element-enrichment represent important parameters that control the potential of a subduction setting to host an economically valuable deposit. Brothers volcano in the Kermadec island arc is one of the best-studied examples of arc-related submarine magmatic-hydrothermal activity. This study, for the first time, compares the chemical and mineralogical composition of the Brothers seafloor massive sulphides and the associated dacitic to rhyolitic lavas that host the hydrothermal system. Incompatible trace element ratios, such as La/Sm and Ce/Pb, indicate that the basaltic melts from L'Esperance volcano may represent a parental analogue to the more evolved Brothers lavas. Copper-rich magmatic sulphides (Cu > 2 wt%) identified in fresh volcanic glass and phenocryst phases, such as clinopyroxene, plagioclase and Fe-Ti oxide suggest that the surrounding lavas that host the Brothers hydrothermal system represent a potential Cu source for the sulphide ores at the seafloor. Thermodynamic calculations reveal that the Brothers melts reached volatile saturation during their evolution. Melt inclusion data and the occurrence of sulphides along vesicle margins indicate that an exsolving volatile phase extracted Cu from the silicate melt and probably contributed it to the overlying hydrothermal system. Hence, the formation of the Cu-rich seafloor massive sulphides (up to 35.6 wt%) is probably due to the contribution of Cu from a bimodal source including wall rock leaching and magmatic degassing, in a mineralisation style that is hybrid between Cyprus-type volcanic-hosted massive sulphide and subaerial epithermal-porphyry deposits.

  11. Photoluminescence properties of ZnO thin films grown by using the hydrothermal technique

    International Nuclear Information System (INIS)

    Sahoo, Trilochan; Jang, Leewoon; Jeon, Juwon; Kim, Myoung; Kim, Jinsoo; Lee, Inhwan; Kwak, Joonseop; Lee, Jaejin

    2010-01-01

    The photoluminescence properties of zinc-oxide thin films grown by using the hydrothermal technique have been investigated. Zinc-oxide thin films with a wurtzite symmetry and c-axis orientation were grown in aqueous solution at 90 .deg. C on sapphire substrates with a p-GaN buffer layer by using the hydrothermal technique. The low-temperature photoluminescence analysis revealed a sharp bound-exciton-related luminescence peak at 3.366 eV with a very narrow peak width. The temperature-dependent variations of the emission energy and of the integrated intensity were studied. The activation energy of the bound exciton complex was calculated to be 7.35 ± 0.5 meV from the temperature dependent quenching of the integral intensities.

  12. Energy landscapes shape microbial communities in hydrothermal systems on the Arctic Mid-Ocean Ridge.

    Science.gov (United States)

    Dahle, Håkon; Økland, Ingeborg; Thorseth, Ingunn H; Pederesen, Rolf B; Steen, Ida H

    2015-07-01

    Methods developed in geochemical modelling combined with recent advances in molecular microbial ecology provide new opportunities to explore how microbial communities are shaped by their chemical surroundings. Here, we present a framework for analyses of how chemical energy availability shape chemotrophic microbial communities in hydrothermal systems through an investigation of two geochemically different basalt-hosted hydrothermal systems on the Arctic Mid-Ocean Ridge: the Soria Moria Vent field (SMVF) and the Loki's Castle Vent Field (LCVF). Chemical energy landscapes were evaluated through modelling of the Gibbs energy from selected redox reactions under different mixing ratios between seawater and hydrothermal fluids. Our models indicate that the sediment-influenced LCVF has a much higher potential for both anaerobic and aerobic methane oxidation, as well as aerobic ammonium and hydrogen oxidation, than the SMVF. The modelled energy landscapes were used to develop microbial community composition models, which were compared with community compositions in environmental samples inside or on the exterior of hydrothermal chimneys, as assessed by pyrosequencing of partial 16S rRNA genes. We show that modelled microbial communities based solely on thermodynamic considerations can have a high predictive power and provide a framework for analyses of the link between energy availability and microbial community composition.

  13. Thermodynamic analysis of hydrogen production via hydrothermal gasification of hexadecane

    KAUST Repository

    Alshammari, Yousef M.

    2012-04-01

    This work reports the equilibrium behaviour of the hydrothermal gasification of hexadecane, a heavy saturate model compound, under non-oxidative isothermal and oxidative adiabatic conditions, using the Peng-Robinson equation of state and the direct minimisation of Gibbs free energy employed within the Aspen HYSYS. This modelling enabled establishing both the limits and optimum conditions at which the hydrogen molar yield may be theoretically maximised. The effects of parameters including the reactor isothermal temperature, pressure, water to carbon ratio, and oxygen to carbon ratio on the molar yields of produced gaseous species were analysed. The model has been validated by comparing its results with different reported modelling and experimental data under identical conditions which resulted in a good agreement. The results reported in this work show the potential of achieving economic yields of hydrogen and syngas from liquid hydrocarbons under downhole hydrothermal conditions. © 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights.

  14. Surface Mn(II) oxidation actuated by a multicopper oxidase in a soil bacterium leads to the formation of manganese oxide minerals.

    Science.gov (United States)

    Zhang, Zhen; Zhang, Zhongming; Chen, Hong; Liu, Jin; Liu, Chang; Ni, Hong; Zhao, Changsong; Ali, Muhammad; Liu, Fan; Li, Lin

    2015-06-03

    In this manuscript, we report that a bacterial multicopper oxidase (MCO266) catalyzes Mn(II) oxidation on the cell surface, resulting in the surface deposition of Mn(III) and Mn(IV) oxides and the gradual formation of bulky oxide aggregates. These aggregates serve as nucleation centers for the formation of Mn oxide micronodules and Mn-rich sediments. A soil-borne Escherichia coli with high Mn(II)-oxidizing activity formed Mn(III)/Mn(IV) oxide deposit layers and aggregates under laboratory culture conditions. We engineered MCO266 onto the cell surfaces of both an activity-negative recipient and wild-type strains. The results confirmed that MCO266 governs Mn(II) oxidation and initiates the formation of deposits and aggregates. By contrast, a cell-free substrate, heat-killed strains, and intracellularly expressed or purified MCO266 failed to catalyze Mn(II) oxidation. However, purified MCO266 exhibited Mn(II)-oxidizing activity when combined with cell outer membrane component (COMC) fractions in vitro. We demonstrated that Mn(II) oxidation and aggregate formation occurred through an oxygen-dependent biotic transformation process that requires a certain minimum Mn(II) concentration. We propose an approximate electron transfer pathway in which MCO266 transfers only one electron to convert Mn(II) to Mn(III) and then cooperates with other COMC electron transporters to transfer the other electron required to oxidize Mn(III) to Mn(IV).

  15. Analysis of oxide formation induced by UV laser coloration of stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Li, Z.L., E-mail: zlli@SIMTech.a-star.edu.sg [Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, 638075 (Singapore); Zheng, H.Y.; Teh, K.M.; Liu, Y.C.; Lim, G.C. [Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, 638075 (Singapore); Seng, H.L.; Yakovlev, N.L. [Institute of Materials Research and Engineering, 3 Research Link, 117602 (Singapore)

    2009-12-15

    Laser-induced coloration on metal surfaces has important applications in product identification, enhancing styles and aesthetics. The color generation is the result of controlled surface oxidation during laser beam interaction with the metal surfaces. In this study, we aim to obtain in-depth understanding of the oxide formation process when an UV laser beam interacts with stainless steel in air. The oxide layer is analysed by means of optical microscopy, scanning electron microscopy (SEM) and time-of-flight secondary ion mass spectrometer (TOF-SIMS). TOF-SIMS results clearly show the formation of duplex oxide structures. The duplex structure includes an inner layer of Cr oxide solution and an outer layer of Fe oxide solution. The oxide layer thickness increased as the results of Fe diffusion to surface during multiple laser scanning passes.

  16. Analysis of oxide formation induced by UV laser coloration of stainless steel

    International Nuclear Information System (INIS)

    Li, Z.L.; Zheng, H.Y.; Teh, K.M.; Liu, Y.C.; Lim, G.C.; Seng, H.L.; Yakovlev, N.L.

    2009-01-01

    Laser-induced coloration on metal surfaces has important applications in product identification, enhancing styles and aesthetics. The color generation is the result of controlled surface oxidation during laser beam interaction with the metal surfaces. In this study, we aim to obtain in-depth understanding of the oxide formation process when an UV laser beam interacts with stainless steel in air. The oxide layer is analysed by means of optical microscopy, scanning electron microscopy (SEM) and time-of-flight secondary ion mass spectrometer (TOF-SIMS). TOF-SIMS results clearly show the formation of duplex oxide structures. The duplex structure includes an inner layer of Cr oxide solution and an outer layer of Fe oxide solution. The oxide layer thickness increased as the results of Fe diffusion to surface during multiple laser scanning passes.

  17. Formation of iron oxides from acid mine drainage and magnetic separation of the heavy metals adsorbed iron oxides

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Hee Won; Kim, Jeong Jin; Kim, Young Hun [Andong National University, Andong (Korea, Republic of); Ha, Dong Woo [Korea Electrotechnology Research Institute, Changwon (Korea, Republic of)

    2016-03-15

    There are a few thousand abandoned metal mines in South Korea. The abandoned mines cause several environmental problems including releasing acid mine drainage (AMD), which contain a very high acidity and heavy metal ions such as Fe, Cu, Cd, Pb, and As. Iron oxides can be formed from the AMD by increasing the solution pH and inducing precipitation. Current study focused on the formation of iron oxide in an AMD and used the oxide for adsorption of heavy metals. The heavy metal adsorbed iron oxide was separated with a superconducting magnet. The duration of iron oxide formation affected on the type of mineral and the degree of magnetization. The removal rate of heavy metal by the adsorption process with the formed iron oxide was highly dependent on the type of iron oxide and the solution pH. A high gradient magnetic separation (HGMS) system successfully separated the iron oxide and harmful heavy metals.

  18. Production of lightweight refractory material by hydrothermal process

    International Nuclear Information System (INIS)

    Sulejmani, Ramiz B.

    2002-01-01

    Many different processes of production of lightweight refractories are well known over the World. Traditional production of lightweight refractories is by addition of combustibles or by a special frothing process. This work is concerned with hydrothermal of lightweight refractories from rice husk ash. The rice husk ash, used in present investigations were from Kocani region, R. Macedonia. The chemical analysis of the rice husk ash shows that it contains 91,8 - 93,7% SiO 2 and some alkaline and alkaline earth oxides. Microscopic and X - ray diffraction examinations of the rice husk ash have shown that it is composed of cristobalite, tridimite and amorphous silica. The composition of the mixture for lightweight refractory brick production is 93,4% rice husk ash and 6,6% Ca(OH) 2 . The mixtures were well mixed, moistened and pressed at 5 - 10 MPa. The hydrothermal reactions between calcium hydroxide and rice husk ash over the temperature range 80 - 160 o C were investigated. The period of autoclave treatment was from 2 to 72 h. After the hydrothermal treatment of the samples, the mineralogical composition, bulk density, density, cold crushing strength, porosity, refractoriness and thermal expansion were examined. Analysing the properties of the obtained samples it can be concluded that from rice husk ash and calcium hydroxide under hydrothermal condition it is possible to obtain lightweight acid refractory material with high quality.(Author)

  19. AutoCAD

    DEFF Research Database (Denmark)

    Jensen, Henrik

    1998-01-01

    I 1998 var AutoCAD Arkitektskolens basale CAD-tilbud til de studerende. Kursets vægt ligger på konstruktion og strukturering af 3d-modeller og med udgangspunkt i dette, 2d-tegning. Kurset er opbygget over CAD Clasic skabelonen (se min forskning). Kompendiet kan bruges til selvstudium.......I 1998 var AutoCAD Arkitektskolens basale CAD-tilbud til de studerende. Kursets vægt ligger på konstruktion og strukturering af 3d-modeller og med udgangspunkt i dette, 2d-tegning. Kurset er opbygget over CAD Clasic skabelonen (se min forskning). Kompendiet kan bruges til selvstudium....

  20. Effect of friction on oxidative graphite intercalation and high-quality graphene formation.

    Science.gov (United States)

    Seiler, Steffen; Halbig, Christian E; Grote, Fabian; Rietsch, Philipp; Börrnert, Felix; Kaiser, Ute; Meyer, Bernd; Eigler, Siegfried

    2018-02-26

    Oxidative wet-chemical delamination of graphene from graphite is expected to become a scalable production method. However, the formation process of the intermediate stage-1 graphite sulfate by sulfuric acid intercalation and its subsequent oxidation are poorly understood and lattice defect formation must be avoided. Here, we demonstrate film formation of micrometer-sized graphene flakes with lattice defects down to 0.02% and visualize the carbon lattice by transmission electron microscopy at atomic resolution. Interestingly, we find that only well-ordered, highly crystalline graphite delaminates into oxo-functionalized graphene, whereas other graphite grades do not form a proper stage-1 intercalate and revert back to graphite upon hydrolysis. Ab initio molecular dynamics simulations show that ideal stacking and electronic oxidation of the graphite layers significantly reduce the friction of the moving sulfuric acid molecules, thereby facilitating intercalation. Furthermore, the evaluation of the stability of oxo-species in graphite sulfate supports an oxidation mechanism that obviates intercalation of the oxidant.

  1. The hydrothermal evolution of the Kawerau geothermal system, New Zealand

    Science.gov (United States)

    Milicich, S. D.; Chambefort, I.; Wilson, C. J. N.; Charlier, B. L. A.; Tepley, F. J.

    2018-03-01

    Hydrothermal alteration zoning and processes provide insights into the evolution of heat source(s) and fluid compositions associated with geothermal systems. Traditional petrological techniques, combined with hydrothermal alteration studies, stable isotope analyses and geochronology can resolve the nature of the fluids involved in hydrothermal processes and their changes through time. We report here new findings along with previous unpublished works on alteration patterns, fluid inclusion measurements and stable isotope data to provide insights into the thermal and chemical evolution of the Kawerau geothermal system, New Zealand. These data indicate the presence of two hydrothermal events that can be coupled with chronological data. The earlier period of hydrothermal activity was initiated at 400 ka, with the heat driving the hydrothermal system inferred to be from the magmatic system that gave rise to rhyolite lavas and sills of the Caxton Formation. Isotopic data fingerprint fluids attributed to this event as meteoric, indicating that the magma primarily served as a heat source driving fluid circulation, and was not releasing magmatic fluids in sufficient quantity to affect the rock mineralogy and thus inferred fluid compositions. The modern Kawerau system was initiated at 16 ka with hydrothermal eruptions linked to shallow intrusion of magma at the onset of activity that gave rise to the Putauaki andesite cone. Likely associated with this later event was a pulse of magmatic CO2, resulting in large-scale deposition of hydrothermal calcite enriched in 18O. Meteoric water-dominated fluids subsequently overwhelmed the magmatic fluids associated with this 18O-rich signature, and both the fluid inclusion microthermometry and stable isotope data reflect a change to the present-day fluid chemistry of low salinity, meteoric-dominated waters.

  2. Oncoidal granular iron formation in the Mesoarchaean Pongola Supergroup, southern Africa: Textural and geochemical evidence for biological activity during iron deposition.

    Science.gov (United States)

    Smith, A J B; Beukes, N J; Gutzmer, J; Czaja, A D; Johnson, C M; Nhleko, N

    2017-11-01

    We document the discovery of the first granular iron formation (GIF) of Archaean age and present textural and geochemical results that suggest these formed through microbial iron oxidation. The GIF occurs in the Nconga Formation of the ca. 3.0-2.8 Ga Pongola Supergroup in South Africa and Swaziland. It is interbedded with oxide and silicate facies micritic iron formation (MIF). There is a strong textural control on iron mineralization in the GIF not observed in the associated MIF. The GIF is marked by oncoids with chert cores surrounded by magnetite and calcite rims. These rims show laminated domal textures, similar in appearance to microstromatolites. The GIF is enriched in silica and depleted in Fe relative to the interbedded MIF. Very low Al and trace element contents in the GIF indicate that chemically precipitated chert was reworked above wave base into granules in an environment devoid of siliciclastic input. Microbially mediated iron precipitation resulted in the formation of irregular, domal rims around the chert granules. During storm surges, oncoids were transported and deposited in deeper water environments. Textural features, along with positive δ 56 Fe values in magnetite, suggest that iron precipitation occurred through incomplete oxidation of hydrothermal Fe 2+ by iron-oxidizing bacteria. The initial Fe 3+ -oxyhydroxide precipitates were then post-depositionally transformed to magnetite. Comparison of the Fe isotope compositions of the oncoidal GIF with those reported for the interbedded deeper water iron formation (IF) illustrates that the Fe 2+ pathways and sources for these units were distinct. It is suggested that the deeper water IF was deposited from the evolved margin of a buoyant Fe 2+ aq -rich hydrothermal plume distal to its source. In contrast, oncolitic magnetite rims of chert granules were sourced from ambient Fe 2+ aq -depleted shallow ocean water beyond the plume. © 2017 John Wiley & Sons Ltd.

  3. Experimental evidence for non-redox transformations between magnetite and hematite under H 2-rich hydrothermal conditions

    Science.gov (United States)

    Otake, Tsubasa; Wesolowski, David J.; Anovitz, Lawrence M.; Allard, Lawrence F.; Ohmoto, Hiroshi

    2007-05-01

    Transformations of magnetite (Fe IIFe 2IIIO 4) to hematite (Fe 2IIIO 3) (and vice versa) have been thought by many scientists and engineers to require molecular O 2 and/or H 2. Thus, the presence of magnetite and/or hematite in rocks has been linked to a specific oxidation environment. However, the availability of reductants or oxidants in many geologic and industrial environments appears to have been too low to account for the transformations of iron oxides through redox reactions. Here, we report the results of hydrothermal experiments in mildly acidic and H 2-rich aqueous solutions at 150 °C, which demonstrate that transformations of magnetite to hematite, and hematite to magnetite, occur rapidly without involving molecular O 2 or H 2: Fe3O 4(Mt) + 2H (aq)+ ↔ Fe 2O 3(Hm) + Fe (aq)2+ + H 2O. The transformation products are chemically and structurally homogeneous, and typically occur as euhedral single crystals much larger than the precursor minerals. This suggests that, in addition to the expected release of aqueous ferrous species to solution, the transformations involve release of aqueous ferric species from the precursor oxides to the solution, which reprecipitate without being reduced by H 2. These redox-independent transformations may have been responsible for the formation of some iron oxides in natural systems, such as high-grade hematite ores that developed from Banded Iron Formations (BIFs), hematite-rich deposits formed on Mars, corrosion products in power plants and other industrial systems.

  4. Oxidative Ce"3"+ sequestration by fungal manganese oxides with an associated Mn(II) oxidase activity

    International Nuclear Information System (INIS)

    Zheng, Haisu; Tani, Yukinori; Naitou, Hirotaka; Miyata, Naoyuki; Tojo, Fuyumi

    2016-01-01

    Sequestration of Ce"3"+ by biogenic manganese oxides (BMOs) formed by a Mn(II)-oxidizing fungus, Acremonium strictum strain KR21-2, was examined at pH 6.0. In anaerobic Ce"3"+ solution, newly formed BMOs exhibited stoichiometric Ce"3"+ oxidation, where the molar ratio of Ce"3"+ sequestered (Ce_s_e_q) relative to Mn"2"+ released (Mn_r_e_l) was maintained at approximately two throughout the reaction. A similar Ce"3"+ sequestration trend was observed in anaerobic treatment of BMOs in which the associated Mn(II) oxidase was completely inactivated by heating at 85 °C for 1 h or by adding 50 mM NaN_3. Aerobic Ce"3"+ treatment of newly formed BMO (enzymatically active) resulted in excessive Ce"3"+ sequestration over Mn"2"+ release, yielding Ce_s_e_q/Mn_r_e_l > 200, whereas heated or poisoned BMOs released a significant amount of Mn"2"+ with lower Ce"3"+ sequestration efficiency. Consequently, self-regeneration by the Mn(II) oxidase in newly formed BMO effectively suppressed Mn"2"+ release and enhanced oxidative Ce"3"+ sequestration under aerobic conditions. Repeated treatments of heated or poisoned BMOs under aerobic conditions confirmed that oxidative Ce"3"+ sequestration continued even after most Mn oxide was released from the solid phase, indicating auto-catalytic Ce"3"+ oxidation at the solid phase produced through primary Ce"3"+ oxidation by BMO. From X-ray diffraction analysis, the resultant solid phases formed through Ce"3"+ oxidation by BMO under both aerobic and anaerobic conditions consisted of cerianite with crystal sizes of 5.00–7.23 Å. Such nano-sized CeO_2 (CeO_2_,_B_M_O) showed faster auto-catalytic Ce"3"+ oxidation than that on well-crystalized cerianite under aerobic conditions, where the normalized pseudo-first order rate constants for auto-catalytic Ce"3"+ oxidation on CeO_2_,_B_M_O was two orders of magnitude higher. Consequently, we concluded that Ce"3"+ contact with BMOs sequesters Ce"3"+ through two oxidation paths: primary Ce"3

  5. Immobilization of LiCl-Li 2 O pyroprocessing salt wastes in chlorosodalite using glass-bonded hydrothermal and salt-occlusion methods

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Brian J.; Peterson, Jacob A.; Kroll, Jared O.; Frank, Steven M.

    2018-04-01

    In this study, salt occlusion and hydrothermal processes were used to make chlorosodalite through reaction with a high-LiCl salt simulating a waste stream following pyrochemical treatment of oxide-based used nuclear fuel. Some products were reacted with glass binders to increase chlorosodalite yield through alkali ion exchange and aide in densification. Hydrothermal processes included reaction of the salt simulant in an acid digestion vessel with either zeolite 4A or sodium aluminate and colloidal silica. Chlorosodalite yields in the crystalline products were nearly complete in the glass-bonded materials at values of 100 mass% for the salt-occlusion method, up to 99.0 mass% for the hydrothermal synthesis with zeolite 4A, and up to 96 mass% for the hydrothermal synthesis with sodium aluminate and colloidal silica. These results show promise for using chemically stable chlorosodalite to immobilize oxide reduction salt wastes.

  6. Immobilization of LiCl-Li2O pyroprocessing salt wastes in chlorosodalite using glass-bonded hydrothermal and salt-occlusion methods

    Science.gov (United States)

    Riley, Brian J.; Peterson, Jacob A.; Kroll, Jared O.; Frank, Steven M.

    2018-04-01

    In this study, hydrothermal and salt-occlusion processes were used to make chlorosodalite through reactions with a high-LiCl salt simulating a waste stream generated from pyrochemical treatment of oxide-based used nuclear fuel. Some products were reacted with glass binders to increase chlorosodalite yield through alkali ion exchange and to aid in densification. Hydrothermal processes included reaction of the salt simulant in an autoclave with either zeolite 4A or sodium aluminate and colloidal silica. Chlorosodalite yields in the crystalline products were nearly complete in the glass-bonded materials at values of 100 mass% for the salt-occlusion method, up to 99.0 mass% for the hydrothermal synthesis with zeolite 4A, and up to 96 mass% for the hydrothermal synthesis with sodium aluminate and colloidal silica. These results show promise for using chemically stable chlorosodalite to immobilize oxide reduction salt wastes.

  7. The rapid size- and shape-controlled continuous hydrothermal synthesis of metal sulphide nanomaterials

    OpenAIRE

    Dunne, Peter W.; Starkey, Christopher L.; Gimeno-Fabra, Miquel; Lester, Edward

    2014-01-01

    Continuous flow hydrothermal synthesis offers a cheap, green and highly scalable route for the preparation of inorganic nanomaterials which has predominantly been applied to metal oxide based materials. In this work we report the first continuous flow hydrothermal synthesis of metal sulphide nanomaterials. A wide range of binary metal sulphides, ZnS, CdS, PbS, CuS, Fe₍₁₋ᵪ₎S and Bi₂S₃, have been synthesised. By varying the reaction conditions two different mechanisms may be invoked; a growth d...

  8. Hydrothermal growth of Cobalt germanate/reduced graphene oxide nanocomposite as superior anode materials for Lithium-ion batteries

    International Nuclear Information System (INIS)

    Zhang, Fan; Zhang, Ruihan; Zhang, Zhen; Wang, Hongkuan; Feng, Jinkui; Xiong, Shenglin; Qian, Yitai

    2014-01-01

    Highlights: • The nanosized Co 2 GeO 4 and Co 2 GeO 4 /RGO nanocomposites were prepared by a facile one pot hydrothermal route. • The Co 2 GeO 4 and Co 2 GeO 4 /RGO nanocomposites could be used as novel high capacity anodes with both alloying and conversion reactions. • The RGO incorporation can improve the electrochemical performance of Co 2 GeO 4 by buffering the volume changes and enhancing the conductivity of the electrodes. • The CGO/RGO nanocomposites exhibit a large reversible capacity of 1250 mAh g −1 for the first cycle and a capacity retention of 1085 mAh g −1 after 100 cycles. Remarkable rate performance was also recorded. - Abstract: Well dispersed Co 2 GeO 4 (CGO) nanoplates and CGO/reduced graphene oxide (RGO) nanocomposites are prepared via hydrothermal method and characterized as novel lithium anode materials for the first time. Electrochemical measurements demonstrate that the CGO/RGO nanocomposites exhibit a large reversible capacity of 1250 mAh g −1 for the first cycle and a capacity retention of 1085 mAh g −1 after 100 cycles. Remarkable rate performance was also recorded. The superior electrochemical performance of the CGO/RGO nanocomposites electrode compared to the pure CGO electrode can be attributed to the well dispersed RGO which enhances the electronic conductivity and accommodate the volume change during the conversion reactions

  9. Second auto-SCT for treatment of relapsed multiple myeloma.

    Science.gov (United States)

    Gonsalves, W I; Gertz, M A; Lacy, M Q; Dispenzieri, A; Hayman, S R; Buadi, F K; Dingli, D; Hogan, W J; Kumar, S K

    2013-04-01

    High-dose therapy and auto-SCT remain integral in the initial treatment of multiple myeloma (MM), and are increasingly being applied for management of relapsed disease. We examined the outcomes in 98 patients undergoing salvage auto-SCT (auto-SCT2) for relapsed MM after receiving an initial transplant (auto-SCT1) between 1994 and 2009. The median age at auto-SCT2 was 60 years (range: 35-74). The median time between auto-SCT1 and auto-SCT2 was 46 months (range: 10-130). Treatment-related mortality was seen in 4%. The median PFS from auto-SCT2 was 10.3 (95% confidence interval (CI): 7-14) months and the median OS from auto-SCT2 was 33 months (95% CI: 28-51). In a multivariable analysis, shorter time to progression (TTP) after auto-SCT1, not achieving a CR after auto-SCT2, higher number of treatment regimens before auto-SCT2 and a higher plasma cell labeling index at auto-SCT2 predicted for shorter PFS. However, only a shorter TTP after auto-SCT1 predicted for a shorter OS post auto-SCT2. Hence, auto-SCT2 is an effective and feasible therapeutic option for MM patients relapsing after other treatments, especially in patients who had a TTP of at least 12 months after their auto-SCT1.

  10. Esma Auto ja Mazda on loodud kestma

    Index Scriptorium Estoniae

    2003-01-01

    Ülevaade olulisematest sündmustest Esma Auto kümne tegevusaasta jooksul. Kommenteerivad Tarmo Järvoja, Mart Laar ja Enn Sau. Diagrammid ja skeemid: AS Esma Auto müügi statistika läbi aastate; AS Esma Auto kasum ja klientide arv aastate lõikes; Esma Auto esindused Eestis ja pakutavad teenused

  11. Hydrothermal signature in the axial-sediments from the Carlsberg Ridge in the northwest Indian Ocean

    Science.gov (United States)

    Yu, Zenghui; Li, Huaiming; Li, Mengxing; Zhai, Shikui

    2018-04-01

    30 sediments grabbed from 24 sites between the equator and 10°N along the Carlsberg Ridge (CR) in the northwest Indian Ocean has been analyzed for bulk chemical compositions. Hydrothermal components in the sediments are identified and characterized. They mainly occur at 6.3°N as sulfide debris and at 3.6°N as both sulfide and high temperature water-rock interaction products. The enrichment of chalcophile elements such as Zn, Cu, Pb and the depletion of alkalis metals such as K and Rb are the typical features of hydrothermal components. High U/Fe, low (Nd/Yb)N and negative Ce anomaly infer the uptake of seawater in the hydrothermal deposits by oxidizing after deposition. However, the general enrichment of Mn in hydrothermal plumed-derived materials is not found in the sediments, which may indicate the limited diffusion of fluids or plumes, at least in the direction along the Carlsberg spreading center. The hydrothermal components show their similarity to the hydrothermal deposits from the Indian Ocean Ridge. At 3.6°N ultramafic rocks or gabbroic intrusions, may be involved in the hydrothermal system.

  12. Auto-Gopher: A Wireline Deep Sampler Driven by Piezoelectric Percussive Actuator and EM Rotary Motor

    Science.gov (United States)

    Badescu, Mircea; Ressa, Aaron; Jae Lee, Hyeong; Bar-Cohen, Yoseph; Sherrit, Stewart; Zacny, Kris; Paulsen, Gale L.; Beegle, Luther; Bao, Xiaoqi

    2013-01-01

    The ability to penetrate subsurfaces and perform sample acquisition at depth of meters may be critical for future NASA in-situ exploration missions to bodies in the solar system, including Mars and Europa. A corer/sampler was developed with the goal of enabling acquisition of samples from depths of several meters where if used on Mars would be beyond the oxidized and sterilized zone. For this purpose, we developed a rotary-hammering coring drill, called Auto-Gopher, which employs a piezoelectric actuated percussive mechanism for breaking formations and an electric motor that rotates the bit to remove the powdered cuttings. This sampler is a wireline mechanism that can be fed into and retrieved from the drilled hole using a winch and a cable. It includes an inchworm anchoring mechanism allowing the drill advancement and weight on bit control without twisting the reeling and power cables. The penetration rate is being optimized by simultaneously activating the percussive and rotary motions of the Auto-Gopher. The percussive mechanism is based on the Ultrasonic/Sonic Drill/Corer (USDC) mechanism that is driven by piezoelectric stack and that was demonstrated to require low axial preload. The design and fabrication of this device were presented in previous publications. This paper presents the results of laboratory and field tests and lessons learned from this development.

  13. Hydrothermal synthesis of fluorinated anatase TiO_2/reduced graphene oxide nanocomposites and their photocatalytic degradation of bisphenol A

    International Nuclear Information System (INIS)

    Luo, Lijun; Yang, Ye; Zhang, Ali; Wang, Min; Liu, Yongjun; Bian, Longchun; Jiang, Fengzhi; Pan, Xuejun

    2015-01-01

    Graphical abstract: - Highlights: • F–TiO_2–RGO nanocomposites were synthesized via hydrothermal method. • Presence of F ion prevents phase transformation from anatase to rutile. • The adsorbed F"− and RGO improve the photocatalytic activity of TiO_2 synergistically. • The F–TiO_2–RGO nanocomposites were applied to degrade bisphenol A. - Abstract: The surface fluorinated TiO_2/reduced graphene oxide nanocomposites (denoted as F–TiO_2–RGO) were synthesized via hydrothermal method. The as-prepared materials were characterized by transmission electron microscopy (TEM), X-ray diffractometer (XRD), Raman spectroscopy, Fourier Transform Infrared spectra (FTIR), X-ray photoelectron spectroscopy (XPS) and X-ray fluorescence (XRF). The results showed that pure anatase TiO_2 particles were anchored on the surface of reduced graphene oxide. And the HF added during the preparation process can not only prevent phase transformation from anatase to rutile, but also the F"− ion adsorbed on the surface of TiO_2–RGO surface can enhance photocatalytic activity of F–TiO_2–RGO. The photocatalytic activities of F–TiO_2–RGO nanocomposites were evaluated by decomposing bisphenol A under UV light illumination. Under optimal degradation condition, the degradation rate constant of BPA over F–TiO_2–10RGO (0.01501 min"−"1) was 3.41 times than that over P25 (0.00440 min"−"1). The result indicated that the enhanced photocatalytic activity of F–TiO_2–10RGO was ascribed to the adsorbed F ion and RGO in F–TiO_2–RGO composite, which can reduce the recombination rate of the photo-generated electrons and holes synergistically.

  14. Generalized trends in the formation energies of perovskite oxides

    DEFF Research Database (Denmark)

    Zeng, Zhenhua; Calle-Vallejo, Federico; Mogensen, Mogens Bjerg

    2013-01-01

    Generalized trends in the formation energies of several families of perovskite oxides (ABO3) and plausible explanations to their existence are provided in this study through a combination of DFT calculations, solid-state physics analyses and simple physical/chemical descriptors. The studied...... elements at the A site of perovskites comprise rare-earth, alkaline-earth and alkaline metals, whereas 3d and 5d metals were studied at the B site. We also include ReO3-type compounds, which have the same crystal structure of cubic ABO3 perovskites except without A-site elements. From the observations we...... extract the following four conclusions for the perovskites studied in the present paper: for a given cation at the B site, (I) perovskites with cations of identical oxidation state at the A site possess close formation energies; and (II) perovskites with cations of different oxidation states at the A site...

  15. Auto-combustion synthesis, Mössbauer study and catalytic properties of copper-manganese ferrites

    International Nuclear Information System (INIS)

    Velinov, N.; Petrova, T.; Tsoncheva, T.; Genova, I.; Koleva, K.; Kovacheva, D.; Mitov, I.

    2016-01-01

    Spinel ferrites with nominal composition Cu _0_._5Mn _0_._5Fe _2O_4 and different distribution of the ions are obtained by auto-combustion method. Mössbauer spectroscopy, X-ray Diffraction, Thermogravimetry-Differential Scanning Calorimetry, Scanning Electron Microscopy and catalytic test in the reaction of methanol decomposition is used for characterization of synthesized materials. The spectral results evidence that the phase composition, microstructure of the synthesized materials and the cation distribution depend on the preparation conditions. Varying the pH of the initial solution microstructure, ferrite crystallite size, cation oxidation state and distribution of ions in the in the spinel structure could be controlled. The catalytic behaviour of ferrites in the reaction of methanol decomposition also depends on the pH of the initial solution. Reduction transformations of mixed ferrites accompanied with the formation of Hägg carbide χ-Fe _5C_2 were observed by the influence of the reaction medium.

  16. Auto-combustion synthesis, Mössbauer study and catalytic properties of copper-manganese ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Velinov, N., E-mail: nikivelinov@ic.bas.bg; Petrova, T. [Institute of Catalysis, Bulgarian Academy of Sciences (Bulgaria); Tsoncheva, T.; Genova, I. [Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences (Bulgaria); Koleva, K. [Institute of Catalysis, Bulgarian Academy of Sciences (Bulgaria); Kovacheva, D. [Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences (Bulgaria); Mitov, I. [Institute of Catalysis, Bulgarian Academy of Sciences (Bulgaria)

    2016-12-15

    Spinel ferrites with nominal composition Cu {sub 0.5}Mn {sub 0.5}Fe {sub 2}O{sub 4} and different distribution of the ions are obtained by auto-combustion method. Mössbauer spectroscopy, X-ray Diffraction, Thermogravimetry-Differential Scanning Calorimetry, Scanning Electron Microscopy and catalytic test in the reaction of methanol decomposition is used for characterization of synthesized materials. The spectral results evidence that the phase composition, microstructure of the synthesized materials and the cation distribution depend on the preparation conditions. Varying the pH of the initial solution microstructure, ferrite crystallite size, cation oxidation state and distribution of ions in the in the spinel structure could be controlled. The catalytic behaviour of ferrites in the reaction of methanol decomposition also depends on the pH of the initial solution. Reduction transformations of mixed ferrites accompanied with the formation of Hägg carbide χ-Fe {sub 5}C{sub 2} were observed by the influence of the reaction medium.

  17. Electrochemical sensing of glucose by reduced graphene oxide-zinc ferrospinels

    Energy Technology Data Exchange (ETDEWEB)

    Shahnavaz, Zohreh, E-mail: zohreh.shahnavaz@siswa.um.edu.my [Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Woi, Pei Meng, E-mail: pmwoi@um.edu.my [Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Center of Ionic Liquids, University of Malaya, 50603 Kuala Lumpur (Malaysia); Alias, Yatimah, E-mail: yatimah70@um.edu.my [Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Center of Ionic Liquids, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2016-08-30

    Highlights: • A facile in situ hydrothermal method for ZnFe{sub 2}O{sub 4} nanoparticles incorporation into graphene oxide sheets. • Excellent selectivity, reproducibility and stability properties compared to others Zn-based glucose sensor. • Amount of reduced graphene oxide directly affected the electro-catalytic activity of ZnFe{sub 2}O{sub 4}/rGO nanocomposite towards glucose detection. - Abstract: We have developed ZnFe{sub 2}O{sub 4} magnetic nanoparticles/reduced graphene oxide nanosheets modified glassy carbon (ZnFe{sub 2}O{sub 4}/rGO/GCE) electrode as a novel system for the electrochemical glucose sensing. Via a facile in situ hydrothermal route, the reduction of GO and the formation of ZnFe{sub 2}O{sub 4} nanoparticles occurred simultaneously. This enables the ZnFe{sub 2}O{sub 4} nanoparticles dispersed on the reduced graphene sheet. Characterization of nanocomposite by X-ray diffraction (XRD) and transmission electron microscopy (TEM) clearly demonstrate the successful attachment of ZnFe{sub 2}O{sub 4} nanoparticles to graphene sheets. Electrochemical studies revealed that the ZnFe{sub 2}O{sub 4}/rGO/GCE possess excellent electrocatalytic activities toward the oxidation of glucose and the performance of sensor is enhanced by integration of graphene nanosheets with ZnFe{sub 2}O{sub 4} nanoparticles.

  18. Self-excited hydrothermal waves in evaporating sessile drops

    Science.gov (United States)

    Sefiane, K.; Moffat, J. R.; Matar, O. K.; Craster, R. V.

    2008-08-01

    Pattern formation driven by the spontaneous evaporation of sessile drops of methanol, ethanol, and FC-72 using infrared thermography is observed and, in certain cases, interpreted in terms of hydrothermal waves. Both methanol and ethanol drops exhibit thermal wave trains, whose wave number depends strongly on the liquid volatililty and substrate thermal conductivity. The FC-72 drops develop cellular structures whose size is proportional to the local thickness. Prior to this work, hydrothermal waves have been observed in the absence of evaporation in shallow liquid layers subjected to an imposed temperature gradient. In contrast, here both the temperature gradients and the drop thickness vary spatially and temporally and are a natural consequence of the evaporation process.

  19. Control of the microstructure and surface chemistry of graphene aerogels via pH and time manipulation by a hydrothermal method.

    Science.gov (United States)

    García-Bordejé, E; Víctor-Román, S; Sanahuja-Parejo, O; Benito, A M; Maser, W K

    2018-02-15

    Three-dimensional graphene aerogels of controlled pore size have emerged as an important platform for several applications such as energy storage or oil-water separation. The aerogels of reduced graphene oxide are mouldable and light weight, with a porosity up to 99.9%, consisting mainly of macropores. Graphene aerogel preparation by self-assembly in the liquid phase is a promising strategy due to its tunability and sustainability. For graphene aerogels prepared by a hydrothermal method, it is known that the pH value has an impact on their properties but it is unclear how pH affects the auto-assembly process leading to the final properties. We have monitored the time evolution of the chemical and morphological properties of aerogels as a function of the initial pH value. In the hydrothermal treatment process, the hydrogel is precipitated earlier and with lower oxygen content for basic pH values (∼13 wt% O) than for acidic pH values (∼20 wt% O). Moreover, ∼7 wt% of nitrogen is incorporated on the graphene nanosheets at basic pH generated by NH 3 addition. To our knowledge, there is no precedent showing that the pH value affects the microstructure of graphene nanosheets, which become more twisted and bent for the more intensive deoxygenation occurring at basic pH. The bent nanosheets attained at pH = 11 reduce the stacking by the basal planes and they connect via the borders, hence leading eventually to higher pore volumes. In contrast, the flatter graphene nanosheets attained under acidic pH entail more stacking and higher oxygen content after a long hydrothermal treatment. The gravimetric absorption capacity of non-polar solvents scales directly with the pore volume. The aerogels have proved to be highly selective, recyclable and robust for the absorption of nonpolar solvents in water. The control of the porous structure and surface chemistry by manipulation of pH and time will also pave the way for other applications such as supercapacitors or batteries.

  20. A genetic link between magnetite mineralization and diorite intrusion at the El Romeral iron oxide-apatite deposit, northern Chile

    Science.gov (United States)

    Rojas, Paula A.; Barra, Fernando; Reich, Martin; Deditius, Artur; Simon, Adam; Uribe, Francisco; Romero, Rurik; Rojo, Mario

    2018-01-01

    El Romeral is one of the largest iron oxide-apatite (IOA) deposits in the Coastal Cordillera of northern Chile. The Cerro Principal magnetite ore body at El Romeral comprises massive magnetite intergrown with actinolite, with minor apatite, scapolite, and sulfides (pyrite ± chalcopyrite). Several generations of magnetite were identified by using a combination of optical and electron microscopy techniques. The main mineralization event is represented by zoned magnetite grains with inclusion-rich cores and inclusion-poor rims, which form the massive magnetite ore body. This main magnetite stage was followed by two late hydrothermal events that are represented by magnetite veinlets that crosscut the massive ore body and by disseminated magnetite in the andesite host rock and in the Romeral diorite. The sulfur stable isotope signature of the late hydrothermal sulfides indicates a magmatic origin for sulfur (δ34S between - 0.8 and 2.9‰), in agreement with previous δ34S data reported for other Chilean IOA and iron oxide-copper-gold deposits. New 40Ar/39Ar dating of actinolite associated with the main magnetite ore stage yielded ages of ca. 128 Ma, concordant within error with a U-Pb zircon age for the Romeral diorite (129.0 ± 0.9 Ma; mean square weighted deviation = 1.9, n = 28). The late hydrothermal magnetite-biotite mineralization is constrained at ca. 118 Ma by 40Ar/39Ar dating of secondary biotite. This potassic alteration is about 10 Ma younger than the main mineralization episode, and it may be related to post-mineralization dikes that crosscut and remobilize Fe from the main magnetite ore body. These data reveal a clear genetic association between magnetite ore formation, sulfide mineralization, and the diorite intrusion at El Romeral (at 129 Ma), followed by a late and more restricted stage of hydrothermal alteration associated with the emplacement of post-ore dikes at ca. 118 Ma. Therefore, this new evidence supports a magmatic-hydrothermal model for the

  1. Hydrothermal conversion of FAU zeolite into RUT zeolite in TMAOH system

    OpenAIRE

    Jon, Hery; Takahashi, Shoutarou; Sasaki, Hitoshi; Oumi, Yasunori; Sano, Tsuneji

    2008-01-01

    The highly crystalline and pure RUT (RUB-10) zeolite could be obtained from the hydrothermal conversion of FAU zeolite used as a crystalline Si/Al source in tetramethylammonium hydroxide (TMAOH) media. As compared to amorphous silica/Al(OH)3 and amorphous silica/γ-Al2O3 sources, the crystallization rate for the formation of RUT zeolite was clearly faster when FAU zeolite was employed as the Si/Al source. Moreover, it was found that the hydrothermal conversion of FAU zeolite into RUT zeolite d...

  2. Preparation of antimony-doped nanoparticles by hydrothermal method

    Institute of Scientific and Technical Information of China (English)

    JIANG Ming-xi; YANG Tian-zu; GU Ying-ying; DU Zuo-juan; LIU Jian-ling

    2005-01-01

    Antimony-doped tin oxide(ATO) nanoparticles were prepared by the mild hydrothermal method at 200 ℃ using sodium stannate, antimony oxide, sodium hydroxide and sulfuric acid as the starting materials. The doped powders were examined by differential thermal analysis(DTA), X-ray diffractometry(XRD) and transmission electron microscopy(TEM). The doping levels of antimony were determined by volumetric method and iodimetry.The results show that antimony is incorporated into the crystal lattice of tin oxide and the doping levels of antimony in the resulting powders are 2.4%, 4.3 % and 5.1 % (molar fraction). The mean particle size of ATO nanoparticles is in the range of 25 - 30 nm. The effects of antimony doping level on the crystalline size and crystallinity were also discussed.

  3. Microstructural and optical properties of Co doped NiO nanoparticles synthesized by auto combustion using NaOH as fuel

    Science.gov (United States)

    Parveen, Azra; Agrawal, Shraddha; Azam, Ameer

    2018-05-01

    The nanoparticles of 5% Co doped NiO were synthesized by auto-combustion method in aqueous medium using NaOH as a fuel. The obtained particles were characterized using X-ray diffraction studies XRD. The results of structural characterization shows the formation of Co doped Nickel oxide nanoparticles in single phase without any impurity. The optical absorption spectra of Co doped NiO sample recorded by UV-VIS spectrophotometer in the range of 200 to 800 nm have been presented. The variation of dielectric constant and dielectric loss has been studied as function of frequency. Co doping affects the optical properties and band gap. NiO can potentially be used in optical, electronic, catalytic materials, antimicrobial agent and super-paramagnetic devices.

  4. Auto-fotografi som metode

    DEFF Research Database (Denmark)

    Mogensen, Mette

    2014-01-01

    Artiklen sætter fokus på auto-fotografi som metode i arbejdsmiljøforskningen. Den organisationsæstetiske tilgang, som metoden ofte forbindes med, udfordres med afsæt i en performativ og aktørnetværks-teoretisk position. Gennem en analyse af et enkelt auto-fotografi vises hvordan en artikulation af...

  5. Archaea, Bacteria, and Sulfur-Cycling in a Shallow-Sea Hydrothermal Ecosystem

    Science.gov (United States)

    Amend, J. P.; Huang, C.; Amann, R.; Bach, W.; Meyerdierks, A.; Price, R. E.; Schubotz, F.; Summons, R. E.; Wenzhoefer, F.

    2009-12-01

    Deep-sea hydrothermal systems are windows to the marine subsurface biosphere. It often is overlooked, however, that their far more accessible shallow-sea counterparts can serve the same purpose. To characterize the extent, diversity, and activity of the subsurface microbial community in the shallow vent ecosystem near Panarea Island (Italy), sediment cores were analyzed with a broad array of analytical techniques. Vent fluid and sediment temperatures reached up to 135 °C, with pHs in porewaters generally measuring 5-6. Microsensor profiles marked a very sharp oxic-anoxic transition, and when coupled to pH and H2S profiles, pointed to aerobic sulfide oxidation. With increasing depth from the sediment-water interface, porewater analyses showed a decrease in sulfate levels from ~30 mM to thermophilic sulfate reducing and acidophilic sulfide oxidizing bacteria. Results from several sites also showed that with increasing depth and temperature, biomass abundance of archaea generally increased relative to that of bacteria. Lastly, DGGE fingerprinting and 16S rRNA clone libraries from several depths at Hot Lake revealed a moderate diversity of bacteria, dominated by Epsilonproteobacteria; this class is known to catalyze both sulfur reduction and oxidation reactions, and to mediate the formation of iron-sulfides, including framboidal pyrite. Archaeal sequences at Hot Lake are dominated by uncultured Thermoplasmatales, plus several sequences in the Korarchaeota.

  6. Chemical kinetic models for combustion of hydrocarbons and formation of nitric oxide

    Science.gov (United States)

    Jachimowski, C. J.; Wilson, C. H.

    1980-01-01

    The formation of nitrogen oxides NOx during combustion of methane, propane, and a jet fuel, JP-4, was investigated in a jet stirred combustor. The results of the experiments were interpreted using reaction models in which the nitric oxide (NO) forming reactions were coupled to the appropriate hydrocarbon combustion reaction mechanisms. Comparison between the experimental data and the model predictions reveals that the CH + N2 reaction process has a significant effect on NO formation especially in stoichiometric and fuel rich mixtures. Reaction models were assembled that predicted nitric oxide levels that were in reasonable agreement with the jet stirred combustor data and with data obtained from a high pressure (5.9 atm (0.6 MPa)), prevaporized, premixed, flame tube type combustor. The results also suggested that the behavior of hydrocarbon mixtures, like JP-4, may not be significantly different from that of pure hydrocarbons. Application of the propane combustion and nitric oxide formation model to the analysis of NOx emission data reported for various aircraft gas turbines showed the contribution of the various nitric oxide forming processes to the total NOx formed.

  7. Synthesis of high saturation magnetic iron oxide nanomaterials via low temperature hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Bhavani, P.; Rajababu, C.H. [Department of Materials Science & Nanotechnology, Yogivemana University, Vemanapuram 516003, Kadapa (India); Arif, M.D. [Environmental Magnetism Laboratory, Indian Institute of Geomagnetism (IIG), Navi Mumbai 410218, Mumbai (India); Reddy, I. Venkata Subba [Department of Physics, Gitam University, Hyderabad Campus, Rudraram, Medak 502329 (India); Reddy, N. Ramamanohar, E-mail: manoharphd@gmail.com [Department of Materials Science & Nanotechnology, Yogivemana University, Vemanapuram 516003, Kadapa (India)

    2017-03-15

    Iron oxide nanoparticles (IONPs) were synthesized through a simple low temperature hydrothermal approach to obtain with high saturation magnetization properties. Two series of iron precursors (sulfates and chlorides) were used in synthesis process by varying the reaction temperature at a constant pH. The X-ray diffraction pattern indicates the inverse spinel structure of the synthesized IONPs. The Field emission scanning electron microscopy and high resolution transmission electron microscopy studies revealed that the particles prepared using iron sulfate were consisting a mixer of spherical (16–40 nm) and rod (diameter ~20–25 nm, length <100 nm) morphologies that synthesized at 130 °C, while the IONPs synthesized by iron chlorides are found to be well distributed spherical shapes with size range 5–20 nm. On other hand, the IONPs synthesized at reaction temperature of 190 °C has spherical (16–46 nm) morphology in both series. The band gap values of IONPs were calculated from the obtained optical absorption spectra of the samples. The IONPs synthesized using iron sulfate at temperature of 130 °C exhibited high saturation magnetization (M{sub S}) of 103.017 emu/g and low remanant magnetization (M{sub r}) of 0.22 emu/g with coercivity (H{sub c}) of 70.9 Oe{sub ,} which may be attributed to the smaller magnetic domains (d{sub m}) and dead magnetic layer thickness (t). - Highlights: • Comparison of iron oxide materials prepared with Fe{sup +2}/Fe{sup +3} sulfates and chlorides at different temperatures. • We prepared super-paramagnetic and soft ferromagnetic magnetite nanoparticles. • We report higher saturation magnetization with lower coercivity.

  8. A redox-assisted molecular assembly of molybdenum oxide amine composite nanobelts

    International Nuclear Information System (INIS)

    Luo Haiyan; Wei Mingdeng; Wei Kemei

    2011-01-01

    Research highlights: → Nanobelts of molybdenum oxide amine were first synthesized via a redox-assisted molecular assembly route. → These nanobelts are highly crystalline with a several tens of micrometers in length and 20-30 nm in thickness. - Abstract: In this paper, the nanobelts of molybdenum oxide amine composite were successfully synthesized via a redox-assisted molecular assembly route under the hydrothermal conditions. The synthesized nanobelts were characterized by XRD, SEM, TEM, TG and FT-IR measurements. The thickness of nanobelts is found to be ca. 20-30 nm and their lengths are up to several tens of micrometers. Based on a series of the experimental results, a possible model, redox-intercalation-exfoliation, was suggested for the formation of nanobelts of molybdenum oxide amine composite.

  9. Coastal submarine hydrothermal activity off northern Baja California

    International Nuclear Information System (INIS)

    Vidal, V.M.V.; Vidal, F.V.; Isaacs, J.D.; Young, D.R.

    1978-01-01

    In situ observations of submarine hydrothermal activity have been conducted in Punta Banda. Baja Califronia, Mexico, approximately 400 m from the coast and at a seawater depth of 30 m. The hydrothermal activity occurs within the Agua Blanca Fault, a major transverse structure of Northern Baja California. Hot springwater samples have been collected and analyzed. Marked differences exist between the submarine hot springwater, local land hot springwaters, groundwater, and local seawater. SiO 2 , HCO 3 , Ca, K, Li, B, Ba, Rb, Fe, Mn, As, and Zn are enriched in the submarine hot springwater, while Cl, Na, So 4 2 , Mg, Cu, Ni, Cd, Cr, and perhaps Pb are depleted in relation to average and local seawater values. Very high temperatures, at the hydrothermal vents, have been recorded (102 0 C at 4-atm pressure). Visible gaseous emanations rich in CH 4 and N 2 coexist with the hydrothermal solutions. Metalliferous deposits, pyrite, have been encountered with high concentrations of Fe, S, Si, Al, Mn, Ca, and the volatile elements As, Hg, Sb, and Tl, X ray dispersive spectrometry (1500-ppm detection limit). X ray diffraction, and scanning electron microscopy of the isolated metalliferous precipitates indicate that the principal products of precipitation are pyrite and gypsum accompanied by minor amounts of amorphous material containing Si and Al. Chemical analyses and XRD of the reference control rocks of the locality (volcanics) versus the hydrothermally altered rocks indicate that high-temperature and high-pressure water-rock interactions can in part explain the water chemistry characteristics of the submarine hydrothermal waters. Their long residence time, the occurrence of an extensive marine sedimentary formation, their association with CH 4 and their similarities with connate waters of oil and gas fields suggest that another component of their genesis could be in cation exchange reactions within deeply buried sediments of marine origin

  10. Features of the theories of the formation of oxide films on aluminum alloys piston diesel engines with micro-arc oxidation

    OpenAIRE

    Skryabin M.L.; Smekhova I. N.

    2017-01-01

    The article considers one of the promising methods of surface hardening of piston aluminum alloy – microarc oxidation. Described fundamental differences from the micro-arc oxidation anodizing and similar electrochemical processes. The schemes of formation of the barrier and outer layers surface treatment in aqueous electrolytes. Shows the mechanism of formation of the interface. Considers the formation of layers with high porosity and method of exposure. Also describes the exponential depende...

  11. Production and analysis of hydroxyapatite from Australian corals via hydrothermal process

    International Nuclear Information System (INIS)

    Hu, J.; Russell, J.; Ben-Nissan, B.

    1999-01-01

    Since the 1970s it is well known that if a biocompatible ceramic prosthesis with appropriate interconnected pores is used, growth of hard and soft tissue into the surface pores will be observed. A very strong attachment and hence the resultant mechanical and chemical bond to the existing surrounding tissue will be produced. Current artificial eyes although widely used encounter various problems due to the their motility and fail to deliver natural movement. They also cause sagging of the lids due to unsupported weight of the prosthesis. It is expected that application of a porous bioceramic such as the hydroxyapatite can generate good bonding to the tissue and hence a life-like eye movement. Hydroxyapatite (HAp) and related calcium phosphates have been studied for many years as implant materials, due to their similarity with the mineral phase of bone. From the point of view of biocompatibility, HAp seems to be the most suitable ceramic material for tissue replacement implants. Hydroxyapatite ceramics do not exhibit any cytoxic effects. It shows excellent biocompatibility with hard and soft tissues. Moreover, HAp can directly bond to the bone. Various preparation methods for HAp including the hydrothermal method have been used. The hydrothermal method was first used for hydroxyapatite formation directly from corals in 1974 by Roy and Linnehan. Complete replacement of aragonite by phosphatic material was achieved under 270degC and 103MPa using the hydrothermal process. This process has the disadvantage that the hydrothermal treatment must be carried out at a relatively high temperature under very high pressure. In 1996, HAp derived from Indian coral using hydrothermal process was developed by Sivakumar et al. However, the resultant material was in the form of a powder. Australia has rich variety of corals. Their application for implants have been studied very little. In this study, Australian corals selected were used for hydroxyapatite conversion. A new hydrothermal

  12. Mineral-assisted production of benzene under hydrothermal conditions: Insights from experimental studies on C6 cyclic hydrocarbons

    Science.gov (United States)

    Venturi, Stefania; Tassi, Franco; Gould, Ian R.; Shock, Everett L.; Hartnett, Hilairy E.; Lorance, Edward D.; Bockisch, Christiana; Fecteau, Kristopher M.; Capecchiacci, Francesco; Vaselli, Orlando

    2017-10-01

    Volatile Organic Compounds (VOCs) are ubiquitously present at low but detectable concentrations in hydrothermal fluids from volcanic and geothermal systems. Although their behavior is strictly controlled by physical and chemical parameters, the mechanisms responsible for the production of most VOCs in natural environments are poorly understood. Among them, benzene, whose abundances were found to be relatively high in hydrothermal gases, can theoretically be originated from reversible catalytic reforming processes, i.e. multi-step dehydrogenation reactions, involving saturated hydrocarbons. However, this hypothesis and other hypotheses are difficult to definitively prove on the basis of compositional data obtained by natural gas discharges only. In this study, therefore, laboratory experiments were carried out to investigate the production of benzene from cyclic hydrocarbons at hydrothermal conditions, specifically 300 °C and 85 bar. The results of experiments carried out in the presence of water and selected powdered minerals, suggest that cyclohexane undergoes dehydrogenation to form benzene, with cyclohexene and cyclohexadiene as by-products, and also as likely reaction intermediates. This reaction is slow when carried out in water alone and competes with isomerization and hydration pathways. However, benzene formation was increased compared to these competing reactions in the presence of sulfide (sphalerite and pyrite) and iron oxide (magnetite and hematite) minerals, whereas no enhancement of any reaction products was observed in the presence of quartz. The production of thiols was observed in experiments involving sphalerite and pyrite, suggesting that sulfide minerals may act both to enhance reactivity and also as reactants after dissolution. These experiments demonstrate that benzene can be effectively produced at hydrothermal conditions through dehydrogenation of saturated cyclic organic structures and highlight the crucial role played by minerals in this

  13. The influence of different auto-ignition modes on the behavior of pressure waves

    International Nuclear Information System (INIS)

    Xu, Han; Yao, Anren; Yao, Chunde

    2015-01-01

    Highlights: • Modes of pressure oscillations in knocking, HCCI and super knock are recognized. • Three representative auto-ignition modes in engines are proposed. • A new method of “Energy Injected” is brought into understanding pressure wave. • Simulation results revealed the decisive factors for these three auto-ignition modes. • Different modes lead to different pressure wave behaviors damaging engines. - Abstract: For internal combustion engines, the knock of Homogeneous Charge Compression Ignition engines, the conventional knock of gasoline engines and the super knock are all caused by the auto-ignition of unburned mixture which leads to the oscillation burning, but their Maximal Pressure Oscillation Amplitude (MPOA) and Maximum Pressure Rising Rate (MPRR) are totally different. In order to explore the reason, we propose three typical auto-ignition modes and then bring up the method of “Energy Injected” (EI) which is based on the experiment measured heat release rate. Through changing the heat source term in the energy equation for different auto-ignition modes, we conducted a series of numerical simulations for these three modes. After that, the following pressure oscillations can be compared and analyzed. The numerical simulation results show that different combustion pressure waves with different oscillation characteristics come from different auto-ignition modes, thus the macroscopic MPRR and MPOA are totally different. Furthermore, the method of “EI” based on the experiment measured heat release rate can accurately and rapidly help to research the formation and propagation of pressure waves in the engine combustion chamber.

  14. Hydrothermal synthesis of graphene oxide/multiwalled carbon nanotube/Fe3O4 ternary nanocomposite for removal of Cu (II) and methylene blue

    Science.gov (United States)

    Long, Zhihang; Zhan, Yingqing; Li, Fei; Wan, Xinyi; He, Yi; Hou, Chunyan; Hu, Hai

    2017-09-01

    In this work, highly activated graphene oxide/multiwalled carbon nanotube/Fe3O4 ternary nanocomposite adsorbent was prepared from a simple hydrothermal route by using ferrous sulfate as precursor. For this purpose, the graphene oxide/multiwalled carbon nanotube architectures were formed through the π-π attractions between them, followed by attaching Fe3O4 nanoparticles onto their surface. The structure and composition of as-prepared ternary nanocomposite were characterized by XRD, FTIR, XPS, SEM, TEM, Raman, TGA, and BET. It was found that the resultant porous graphene oxide/multiwalled carbon nanotube/Fe3O4 ternary nanocomposite with large surface area could effectively prevent the π-π stacking interactions between graphene oxide nanosheets and greatly improve sorption sites on the surfaces. Thus, owing to the unique ternary nanocomposite architecture and synergistic effect among various components, as-prepared ternary nanocomposite exhibited high separation efficiency when they were used to remove the Cu (II) and methylene blue from aqueous solutions. Furthermore, the adsorption isotherms of ternary nanocomposite structures for Cu (II) and methylene blue removal fitted the Langmuir isotherm model. This work demonstrated that the graphene oxide/multiwalled carbon nanotube/Fe3O4 ternary nanocomposite was promising as an efficient adsorbent for heavy metal ions and organic dye removal from wastewater in low concentration.

  15. Formation of early-middle Miocene red beds in the South China Sea: element geochemistry and mineralogy analysis

    Science.gov (United States)

    Lyu, X.; Liu, Z.

    2017-12-01

    The formation of oceanic red beds that usually present oxic and oligotrophic conditions with low sedimentation rate has been used to trace depositional paleoenvironment and paleoclimate change. Red beds overlying oceanic basalts were drilled at two adjacent Sites U1433 and U1434 of IODP Expedition 349 in the Southwest Subbasin of the South China Sea. The occurrence of early-middle Miocene red beds may indicate that at that time there was oxic and quiet marine environment in the deep South China Sea. To understand their formation of red-color, local depositional condition, and potential paleoceanographic significance, major elements (XRF), trace and rare earth elements (ICP-MS), Fe chemical speciation (modified sequential iron extraction procedure), and Fe oxic minerals (CBD and DRS) were analyzed. Geochemical and mineralogical data reveal that hematite and goethite are responsible for the reddish color and red beds were deposited under highly oxic, oligotrophic conditions with a little later hydrothermal influence in the South China Sea. Our results indicate that: (1) after treatment using the CBD procedure, the red samples presented a change in color to greenish, showing the iron oxides being responsible for the sediment color; (2) enriched Mn, depleted U, S enrichment factors, and negative Ce anomaly show that the water mass was pre-oxidized before transported to the study location; (3) low primary productivity was inferred from the lower P, Ba enrichment factors in red beds compared to non-red beds; (4) the excess Mo influx at the bottom may come from the later hydrothermal input; (5) the diverse Ca enrichment factors and correlations between Fe and Al suggest different allogenic sources for red beds at our two sites. We conclude that the red beds at Sites U1433 and U1434 despite their diverse sources both developed in externally oxidized water mass and low primary productivity conditions, and partially altered by hydrothermal fluids after their pelagic

  16. AutoCAD platform customization user interface and beyond

    CERN Document Server

    Ambrosius, Lee

    2014-01-01

    Make AutoCAD your own with powerful personalization options Options for AutoCAD customization are typically the domain of administrators, but savvy users can perform their own customizations to personalize AutoCAD. Until recently, most users never thought to customize the AutoCAD platform to meet their specific needs, instead leaving it to administrators. If you are an AutoCAD user who wants to ramp up personalization options in your favorite software, AutoCAD Platform Customization: User Interface and Beyond is the perfect resource for you. Author Lee Ambrosius is recognized as a leader in Au

  17. Synthesis of ZnO nanorod–nanosheet composite via facile hydrothermal method and their photocatalytic activities under visible-light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Wai Kian [Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580 (Japan); Abdul Razak, Khairunisak; Lockman, Zainovia [School of Materials and Mineral Resources, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Pulau Pinang (Malaysia); Kawamura, Go; Muto, Hiroyuki [Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580 (Japan); Matsuda, Atsunori, E-mail: matsuda@ee.tut.ac.jp [Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580 (Japan)

    2014-03-15

    ZnO composite films consisting of ZnO nanorods and nanosheets were prepared by low-temperature hydrothermal processing at 80 °C on seeded glass substrates. The seed layer was coated on glass substrates by sol–gel dip-coating and pre-heated at 300 °C for 10 min prior to hydrothermal growth. The size of the grain formed after pre-heat treatment was ∼40 nm. A preferred orientation seed layer at the c-axis was obtained, which promoted vertical growth of the ZnO nanorod arrays and formation of the ZnO nanosheets. X-ray diffraction patterns and high-resolution transmission electron microscope (HR-TEM) images confirmed that the ZnO nanorods and nanosheets consist of single crystalline and polycrystalline structures, respectively. Room temperature photoluminescence spectra of the ZnO nanorod–nanosheet composite films exhibited band-edge ultraviolet (UV) and visible emission (blue and green) indicating the formation of ZnO crystals with good crystallinity and are supported by Raman scattering results. The formation of one-dimensional (1D) ZnO nanorod arrays and two-dimensional (2D) ZnO nanosheet films using seeded substrates in a single low-temperature hydrothermal step would be beneficial for realization of device applications that utilize substrates with limited temperature stability. The ZnO nanorods and nanosheets composite structure demonstrated higher photocatalytic activity during degradation of aqueous methylene blue under visible-light irradiation. -- Graphical abstract: Schematic illustration of ZnO nanorod–nanosheet composite structure formation by hydrothermal at low-temperature of 80 °C against time. Highlights: • Novel simultaneous formation of ZnO nanorods and nanosheets composite structure. • Facile single hydrothermal step formation at low-temperature. • Photoluminescence showed ultraviolet and visible emission. • Feasible application on substrates with low temperature stability. • Improved photocatalytic activity under visible

  18. Waste treatment process by solidifying cementitious materials using hydrothermal hot-pressing

    International Nuclear Information System (INIS)

    Matsumoto, Y.; Kamakura, T.; Yamasaki, N.; Hashida, T.

    2001-01-01

    Solidification of low-level radioactive wastes containing Na 2 SO 4 with cement by hydrothermal hot-pressing (HHP) technique was examined. Relatively high mechanical strength, reduced leaching ratio of SO 3 , and higher resistance to the carbonation of the HHP product were attained in comparison with conventional concrete. The solidification by the HHP treatment may be proceeded by the rearrangement of particles and the bonding material formation among the particles by dissolution-deposition process. The possibility of developing the accelerated testing method for duration of cemented materials by hydrothermal method was discussed. (author)

  19. Direct formation of gasoline hydrocarbons from cellulose by hydrothermal conversion with in situ hydrogen

    International Nuclear Information System (INIS)

    Yin, Sudong; Mehrotra, Anil Kumar; Tan, Zhongchao

    2012-01-01

    A new process based on aqueous-phase dehydration/hydrogenation (APD/H) has been developed to directly produce liquid alkanes (C 7–9 ), which are the main components of fossil gasoline, from cellulose in one single batch reactor without the consumption of external hydrogen (H 2 ). In this new process, part of the cellulose is first converted to in situ H 2 by steam reforming (SR) in the steam gas phase mainly; and, in the liquid water phase, cellulose is converted to an alkane precursor, such as 5-(hydroxymethyl)furfural (HMF). In the final reaction step, in situ H 2 reacts with HMF to form liquid alkanes through APD/H. Accordingly, this new process has been named SR(H 2 )-APD/H. Experimental results show that the volumetric ratio of the reactor headspace to the reactor (H/R) and an initial weakly alkaline condition are the two key parameters for SR(H 2 )-APD/H. With proper H/R ratios (e.g., 0.84) and initial weakly alkaline conditions (e.g., pH = 7.5), liquid alkanes are directly formed from the SR(H 2 )-APD/H of cellulose using in situ H 2 instead of external H 2 . In this study, compared with pyrolysis and hydrothermal liquefaction of cellulose at the same temperatures with same retetion time, SR(H 2 )-APD/H greatly increased the liquid alkane yields, by approximately 700 times and 35 times, respectively. Based on this process, direct formation of fossil gasoline from renewable biomass resources without using external H 2 becomes possible. -- Highlights: ► A process of producing gasoline alkanes from cellulose was proposed and studied. ► Alkane precursors and in situ H 2 were formed simultaneously in a single reactor. ► Alkanes subsequently formed by reactions between in situ H 2 and alkane precursors. ► The yields were 700 and 35 times higher than pyrolysis and hydrothermal conversion.

  20. Iron Oxide Deposition from Aqueous Solution and Iron Formations on Mars

    Science.gov (United States)

    Catling, David; Moore, Jeff

    2000-01-01

    Iron formations are ancient, laminated chemical sediments containing at least 15 wt% Fe. We discuss possible mechanisms for their formation in aqueous environments on early Mars. Such iron oxide deposits may be detectable today.

  1. Crystal-free Formation of Non-Oxide Optical Fiber

    Science.gov (United States)

    Nabors, Sammy A.

    2015-01-01

    Researchers at NASA Marshall Space Flight Center have devised a method for the creation of crystal-free nonoxide optical fiber preforms. Non-oxide fiber optics are extensively used in infrared transmitting applications such as communication systems, chemical sensors, and laser fiber guides for cutting, welding and medical surgery. However, some of these glasses are very susceptible to crystallization. Even small crystals can lead to light scatter and a high attenuation coefficient, limiting their usefulness. NASA has developed a new method of non-oxide fiber formation that uses axial magnetic fields to suppress crystallization. The resulting non-oxide fibers are crystal free and have lower signal attenuation rates than silica based optical fibers.

  2. Solution mining and heating by oxidation for treating hydrocarbon containing formations

    Science.gov (United States)

    Vinegar, Harold J.; Stegemeier, George Leo

    2009-06-23

    A method for treating an oil shale formation comprising nahcolite includes providing a first fluid to a portion of the formation. A second fluid is produced from the portion. The second fluid includes at least some nahcolite dissolved in the first fluid. A controlled amount of oxidant is provided to the portion of the formation. Hydrocarbon fluids are produced from the formation.

  3. Enhanced Water Oxidation Photoactivity of Nano-Architectured α-Fe2O3-WO3 Composite Synthesized by Single-Step Hydrothermal Method

    Science.gov (United States)

    Rahman, Gul; Joo, Oh-Shim; Chae, Sang Youn; Shah, Anwar-ul-Haq Ali; Mian, Shabeer Ahmad

    2018-04-01

    This study reports the one-step in situ synthesis of a hematite-tungsten oxide (α-Fe2O3-WO3) composite on fluorine-doped tin oxide substrate via a simple hydrothermal method. Scanning electron microscopy images indicated that the addition of tungsten (W) precursor into the reaction mixture altered the surface morphology from nanorods to nanospindles. Energy-dispersive x-ray spectroscopy analysis confirmed the presence of W content in the composite. From the ultraviolet-visible spectrum of α-Fe2O3-WO3, it was observed that absorption began at ˜ 600 nm which corresponded to the bandgap energy of ˜ 2.01 eV. The α-Fe2O3-WO3 electrode demonstrated superior performance, with water oxidation photocurrent density of 0.80 mA/cm2 (at 1.6 V vs. reversible hydrogen electrode under standard illumination conditions; AM 1.5G, 100 mW/cm2) which is 2.4 times higher than α-Fe2O3 (0.34 mA/cm2). This enhanced water oxidation performance can be attributed to the better charge separation properties in addition to the large interfacial area of small-sized particles present in the α-Fe2O3-WO3 nanocomposite film.

  4. Pyrophosphate synthesis in iron mineral films and membranes simulating prebiotic submarine hydrothermal precipitates

    Science.gov (United States)

    Barge, Laura M.; Doloboff, Ivria J.; Russell, Michael J.; VanderVelde, David; White, Lauren M.; Stucky, Galen D.; Baum, Marc M.; Zeytounian, John; Kidd, Richard; Kanik, Isik

    2014-03-01

    Cells use three main ways of generating energy currency to drive metabolism: (i) conversion of adenosine diphosphate (ADP) to adenosine triphosphate (ATP) by the proton motive force through the rotor-stator ATP synthase; (ii) the synthesis of inorganic phosphate˜phosphate bonds via proton (or sodium) pyrophosphate synthase; or (iii) substrate-level phosphorylation through the direct donation from an active phosphoryl donor. A mechanism to produce a pyrophosphate bond as “energy currency” in prebiotic systems is one of the most important considerations for origin of life research. Baltscheffsky (1996) suggests that inorganic pyrophosphate (PO74-; PPi) may have preceded ATP/ADP as an energy storage molecule in earliest life, produced by an H+ pyrophosphatase. Here we test the hypothesis that PPi could be synthesized in inorganic precipitates simulating hydrothermal chimney structures transected by thermal and/or ionic gradients. Appreciable yields of PPi were obtained via substrate phosphorylation by acetyl phosphate within the iron sulfide/silicate precipitates at temperatures expected for an alkaline hydrothermal system. The formation of PPi only occurred in the solid phase, i.e. when both Pi and the phosphoryl donor were precipitated with Fe-sulfides or Fe-silicates. The amount of Ac-Pi incorporated into the precipitate was a significant factor in the amount of PPi that could form, and phosphate species were more effectively incorporated into the precipitate at higher temperatures (⩾50 to >85 °C). Thus, we expect that the hydrothermal precipitate would be more enriched in phosphate (and especially, Ac-Pi) near the inner margins of a hydrothermal mound where PPi formation would be at a maximum. Iron sulfide and iron silicate precipitates effectively stabilized Ac-Pi and PPi against hydrolysis (relative to hydrolysis in aqueous solution). Thus it is plausible that PPi could accumulate as an energy currency up to useful concentrations for early life in a

  5. Spilitization processes in the Proterozoic Ongeluk Andesite Formation in Griqualand West, South Africa

    International Nuclear Information System (INIS)

    Schuette, S.S.; Cornell, D.H.

    1990-01-01

    The Ongeluk Formation is a thick succession of lavas which crops out over a large portion of the region. The formation thickness is poorly constrained and considered to be equivalent to the Hekpoort Basalts in the Transvaal, but large facies changes in the sedimentary formations obscure the correlation. At least two alteration events can be recognized in the Ongeluk Lava: a spilitization process, and a locally restricted hydrothermal event and oxidation process which obscures the spilitization process. The Ongeluk lavas probably covered a much greater area of Griqualand West than at present and could have provided a significant source of manganese, deposited in the Kalahari Manganese Field. A connection between the volcanic origin and alteration of the Ongeluk Formation and the Kalahari Manganese-type mineralization is demonstrated by Gresens' equations. 2 figs., 1 tab

  6. Hydrothermal synthesis of fluorinated anatase TiO{sub 2}/reduced graphene oxide nanocomposites and their photocatalytic degradation of bisphenol A

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Lijun [Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091 (China); Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650093 (China); Key Laboratory of Resource Clean Conversion in Ethnic Regions, Education Department of Yunnan, School of Chemistry and Biotechnology, Yunnan MinZu University, Kunming, 650500 (China); Yang, Ye [Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650093 (China); Zhang, Ali [Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091 (China); Wang, Min; Liu, Yongjun; Bian, Longchun [Advanced Analysis and Measurement Center, Yunnan University, Kunming, 650091 (China); Jiang, Fengzhi, E-mail: fengzhij@ynu.edu.cn [Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091 (China); Pan, Xuejun [Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650093 (China)

    2015-10-30

    Graphical abstract: - Highlights: • F–TiO{sub 2}–RGO nanocomposites were synthesized via hydrothermal method. • Presence of F ion prevents phase transformation from anatase to rutile. • The adsorbed F{sup −} and RGO improve the photocatalytic activity of TiO{sub 2} synergistically. • The F–TiO{sub 2}–RGO nanocomposites were applied to degrade bisphenol A. - Abstract: The surface fluorinated TiO{sub 2}/reduced graphene oxide nanocomposites (denoted as F–TiO{sub 2}–RGO) were synthesized via hydrothermal method. The as-prepared materials were characterized by transmission electron microscopy (TEM), X-ray diffractometer (XRD), Raman spectroscopy, Fourier Transform Infrared spectra (FTIR), X-ray photoelectron spectroscopy (XPS) and X-ray fluorescence (XRF). The results showed that pure anatase TiO{sub 2} particles were anchored on the surface of reduced graphene oxide. And the HF added during the preparation process can not only prevent phase transformation from anatase to rutile, but also the F{sup −} ion adsorbed on the surface of TiO{sub 2}–RGO surface can enhance photocatalytic activity of F–TiO{sub 2}–RGO. The photocatalytic activities of F–TiO{sub 2}–RGO nanocomposites were evaluated by decomposing bisphenol A under UV light illumination. Under optimal degradation condition, the degradation rate constant of BPA over F–TiO{sub 2}–10RGO (0.01501 min{sup −1}) was 3.41 times than that over P25 (0.00440 min{sup −1}). The result indicated that the enhanced photocatalytic activity of F–TiO{sub 2}–10RGO was ascribed to the adsorbed F ion and RGO in F–TiO{sub 2}–RGO composite, which can reduce the recombination rate of the photo-generated electrons and holes synergistically.

  7. Hydrothermal treatment for TiN as abrasion resistant dental implant coating and its fibroblast response

    International Nuclear Information System (INIS)

    Shi, Xingling; Xu, Lingli; Munar, Melvin L.; Ishikawa, Kunio

    2015-01-01

    Dental implant made of pure titanium (Ti) is prone to scratch and abrasion during routine oral hygiene procedures. This results an increase in surface roughness and therefore, facilitates the adhesion of bacteria. In severe cases, this could lead to peri-implantitis. To overcome this problem, surface modification of Ti is necessary to improve its abrasion resistance. Besides, a strong implant–gingiva interface should also be guaranteed to prevent the adhesion of bacteria. In this study, titanium nitride (TiN) coating was first prepared with gas nitriding to increase surface hardness of pure the substrate. Then, the TiN was hydrothermally treated in CaCl 2 solution in order to improve its soft tissue biocompatibility. The effect of hydrothermal treatment temperature on surface properties of TiN was investigated and its biocompatibility was assessed in vitro using NIH3T3 fibroblast cell. It was determined that 120 °C was the critical temperature for the hydrothermal treatment condition. Treatment below 120 °C could incorporate Ca into TiN surface, oxidize TiN surface partially and then improve the wettability while preserving its morphology and hardness. Fibroblast cell attachment and proliferation were improved and cell spreading was enhanced on hydrothermally treated specimens compared with untreated ones. Improved wettability, Ca incorporation and negative surface due to interstitial N were believed to be the main reasons. Hydrothermal treatment is expected to make TiN a promising dental implant coating with excellent abrasion resistance and good soft tissue affinity. - Highlights: • Ca was incorporated into TiN surface while not sacrificing its hardness. • Interstitial N due to oxidation promoted Ca adsorption and cell adhesion. • Hydrothermal treatment makes TiN a promising coating for dental implant

  8. Hydrothermal treatment for TiN as abrasion resistant dental implant coating and its fibroblast response

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Xingling, E-mail: shixingling1985@hotmail.com [School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003 (China); Department of Biomaterials, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582 (Japan); Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huaian 223003 (China); Xu, Lingli [School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003 (China); Munar, Melvin L.; Ishikawa, Kunio [Department of Biomaterials, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582 (Japan)

    2015-04-01

    Dental implant made of pure titanium (Ti) is prone to scratch and abrasion during routine oral hygiene procedures. This results an increase in surface roughness and therefore, facilitates the adhesion of bacteria. In severe cases, this could lead to peri-implantitis. To overcome this problem, surface modification of Ti is necessary to improve its abrasion resistance. Besides, a strong implant–gingiva interface should also be guaranteed to prevent the adhesion of bacteria. In this study, titanium nitride (TiN) coating was first prepared with gas nitriding to increase surface hardness of pure the substrate. Then, the TiN was hydrothermally treated in CaCl{sub 2} solution in order to improve its soft tissue biocompatibility. The effect of hydrothermal treatment temperature on surface properties of TiN was investigated and its biocompatibility was assessed in vitro using NIH3T3 fibroblast cell. It was determined that 120 °C was the critical temperature for the hydrothermal treatment condition. Treatment below 120 °C could incorporate Ca into TiN surface, oxidize TiN surface partially and then improve the wettability while preserving its morphology and hardness. Fibroblast cell attachment and proliferation were improved and cell spreading was enhanced on hydrothermally treated specimens compared with untreated ones. Improved wettability, Ca incorporation and negative surface due to interstitial N were believed to be the main reasons. Hydrothermal treatment is expected to make TiN a promising dental implant coating with excellent abrasion resistance and good soft tissue affinity. - Highlights: • Ca was incorporated into TiN surface while not sacrificing its hardness. • Interstitial N due to oxidation promoted Ca adsorption and cell adhesion. • Hydrothermal treatment makes TiN a promising coating for dental implant.

  9. Assessment of Factors Related to Auto-PEEP.

    Science.gov (United States)

    Natalini, Giuseppe; Tuzzo, Daniele; Rosano, Antonio; Testa, Marco; Grazioli, Michele; Pennestrì, Vincenzo; Amodeo, Guido; Marsilia, Paolo F; Tinnirello, Andrea; Berruto, Francesco; Fiorillo, Marialinda; Filippini, Matteo; Peratoner, Alberto; Minelli, Cosetta; Bernardini, Achille

    2016-02-01

    Previous physiological studies have identified factors that are involved in auto-PEEP generation. In our study, we examined how much auto-PEEP is generated from factors that are involved in its development. One hundred eighty-six subjects undergoing controlled mechanical ventilation with persistent expiratory flow at the beginning of each inspiration were enrolled in the study. Volume-controlled continuous mandatory ventilation with PEEP of 0 cm H2O was applied while maintaining the ventilator setting as chosen by the attending physician. End-expiratory and end-inspiratory airway occlusion maneuvers were performed to calculate respiratory mechanics, and tidal flow limitation was assessed by a maneuver of manual compression of the abdomen. The variable with the strongest effect on auto-PEEP was flow limitation, which was associated with an increase of 2.4 cm H2O in auto-PEEP values. Moreover, auto-PEEP values were directly related to resistance of the respiratory system and body mass index and inversely related to expiratory time/time constant. Variables that were associated with the breathing pattern (tidal volume, frequency minute ventilation, and expiratory time) did not show any relationship with auto-PEEP values. The risk of auto-PEEP ≥5 cm H2O was increased by flow limitation (adjusted odds ratio 17; 95% CI: 6-56.2), expiratory time/time constant ratio 15 cm H2O/L s (3; 1.3-6.9), age >65 y (2.8; 1.2-6.5), and body mass index >26 kg/m(2) (2.6; 1.1-6.1). Flow limitation, expiratory time/time constant, resistance of the respiratory system, and obesity are the most important variables that affect auto-PEEP values. Frequency expiratory time, tidal volume, and minute ventilation were not independently associated with auto-PEEP. Therapeutic strategies aimed at reducing auto-PEEP and its adverse effects should be primarily oriented to the variables that mainly affect auto-PEEP values. Copyright © 2016 by Daedalus Enterprises.

  10. Geochemical constraints on sources of metabolic energy for chemolithoautotrophy in ultramafic-hosted deep-sea hydrothermal systems.

    Science.gov (United States)

    McCollom, Thomas M

    2007-12-01

    Numerical models are employed to investigate sources of chemical energy for autotrophic microbial metabolism that develop during mixing of oxidized seawater with strongly reduced fluids discharged from ultramafic-hosted hydrothermal systems on the seafloor. Hydrothermal fluids in these systems are highly enriched in H(2) and CH(4) as a result of alteration of ultramafic rocks (serpentinization) in the subsurface. Based on the availability of chemical energy sources, inferences are made about the likely metabolic diversity, relative abundance, and spatial distribution of microorganisms within ultramafic-hosted systems. Metabolic reactions involving H(2) and CH(4), particularly hydrogen oxidation, methanotrophy, sulfate reduction, and methanogenesis, represent the predominant sources of chemical energy during fluid mixing. Owing to chemical gradients that develop from fluid mixing, aerobic metabolisms are likely to predominate in low-temperature environments (energy per kilogram of hydrothermal fluid, while anaerobic metabolic reactions can supply about 1 kJ, which is sufficient to support a maximum of approximately 120 mg (dry weight) of primary biomass production by aerobic organisms and approximately 20-30 mg biomass by anaerobes. The results indicate that ultramafic-hosted systems are capable of supplying about twice as much chemical energy as analogous deep-sea hydrothermal systems hosted in basaltic rocks.

  11. Hydrothermal synthesis and electrochemical properties of nano-sized Co-Sn alloy anodes for lithium ion batteries

    International Nuclear Information System (INIS)

    He Jianchao; Zhao Hailei; Wang Jing; Wang Jie; Chen Jingbo

    2010-01-01

    Research highlights: → Nano-sized Co-Sn alloys were synthesized by hydrothermal route. → Li 2 O and CoSn can buffer the large volume change associated with lithiation of Sn. → A two-step reaction mechanism of CoSn 2 alloy during cycling was confirmed. - Abstract: Nano-sized Co-Sn alloys with a certain amount of Sn oxides used as potential anode materials for lithium ion batteries were synthesized by hydrothermal route. The effects of hydrothermal conditions and post annealing on the phase compositions and the electrochemical properties of synthesized powders were characterized by means of X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM) with energy dispersive spectra (EDS) analysis and galvanostatic cycling tests. Prolonging the dwelling time at the same hydrothermal temperature can increase the content of Sn oxides, which will lead to a high initial irreversible capacity loss but a better cycling stability owing to the buffer effect of irreversible product Li 2 O. Heat-treatment can increase the crystallinity and cause the presence of a certain amount of inert CoSn component, which both have positive impact on the cycling stability of Co-Sn electrode. By comparison with the lithiation/delithiation processes of metal Sn, a two-step mechanism of CoSn 2 alloy during cycling was confirmed.

  12. CuO reduction induced formation of CuO/Cu2O hybrid oxides

    Science.gov (United States)

    Yuan, Lu; Yin, Qiyue; Wang, Yiqian; Zhou, Guangwen

    2013-12-01

    Reduction of CuO nanowires results in the formation of a unique hierarchical hybrid nanostructure, in which the parent oxide phase (CuO) works as the skeleton while the lower oxide (Cu2O) resulting from the reduction reaction forms as partially embedded nanoparticles that decorate the skeleton of the parent oxide. Using in situ transmission electron microscopy observations of the reduction process of CuO nanowires, we demonstrate that the formation of such a hierarchical hybrid oxide structure is induced by topotactic nucleation and growth of Cu2O islands on the parent CuO nanowires.

  13. Spot auto-focusing and spot auto-stigmation methods with high-definition auto-correlation function in high-resolution TEM.

    Science.gov (United States)

    Isakozawa, Shigeto; Fuse, Taishi; Amano, Junpei; Baba, Norio

    2018-04-01

    As alternatives to the diffractogram-based method in high-resolution transmission electron microscopy, a spot auto-focusing (AF) method and a spot auto-stigmation (AS) method are presented with a unique high-definition auto-correlation function (HD-ACF). The HD-ACF clearly resolves the ACF central peak region in small amorphous-thin-film images, reflecting the phase contrast transfer function. At a 300-k magnification for a 120-kV transmission electron microscope, the smallest areas used are 64 × 64 pixels (~3 nm2) for the AF and 256 × 256 pixels for the AS. A useful advantage of these methods is that the AF function has an allowable accuracy even for a low s/n (~1.0) image. A reference database on the defocus dependency of the HD-ACF by the pre-acquisition of through-focus amorphous-thin-film images must be prepared to use these methods. This can be very beneficial because the specimens are not limited to approximations of weak phase objects but can be extended to objects outside such approximations.

  14. Supercapacitive properties of hydrothermally synthesized sphere like MoS2 nanostructures

    International Nuclear Information System (INIS)

    Krishnamoorthy, Karthikeyan; Veerasubramani, Ganesh Kumar; Radhakrishnan, Sivaprakasam; Kim, Sang Jae

    2014-01-01

    Highlights: • MoS 2 nanostructures were synthesized by hydrothermal method. • Randomly stacked MoS 2 was obtained. • FE-SEM studies show the sphere like morphology of MoS 2 . • Specific capacitance of 92.85 F/g was achieved using charge–discharge analysis. • MoS 2 electrode shows capacitance retention of about 93.8% after 1000 cycles. - Abstract: In this communication, we have investigated the supercapacitive behaviour of MoS 2 nanostructures prepared by a facile one-pot hydrothermal approach using ammonium heptamolybdate and thiourea as starting materials. The X-ray diffraction study revealed the formation of randomly stacked layers of MoS 2 . The field-emission scanning electron microscope studies suggested the formation of sphere like MoS 2 nanostructures and a plausible mechanism for the formation of the obtained structure is discussed. The cyclic voltammetry study shows the typical rectangular shaped curves with a specific capacitance of 106 F/g at a scan rate of 5 mV/s. Galvanostatic charge–discharge measurements suggested the maximum specific capacitance of about 92.85 F/g at discharge current density of 0.5 mA/cm 2 . Cyclic stability tests revealed the capacitance retention of about 93.8% after 1000 cycles suggesting a good cyclic capacity of the prepared MoS 2 . The electrochemical impedance spectroscopic results such as Nyquist and Bode phase angle plots suggested that the hydrothermally synthesized MoS 2 nanostructures will be a suitable candidate for electrochemical supercapacitor applications

  15. AUTO

    DEFF Research Database (Denmark)

    Gammelgaard Nielsen, Anders; Aagaard, Tine; Diaz, pauline

    2011-01-01

    AUTO is the first assignment that the students of Architecture are introduced to at the Aarhus school of Architecture. The aim is to give students an understanding of design through a generic working method. This by disassembling a car engine and staging its components through a series of castings...

  16. Hydrothermal alteration and diagenesis of terrestrial lacustrine pillow basalts: Coordination of hyperspectral imaging with laboratory measurements

    Science.gov (United States)

    Greenberger, Rebecca N.; Mustard, John F.; Cloutis, Edward A.; Mann, Paul; Wilson, Janette H.; Flemming, Roberta L.; Robertson, Kevin M.; Salvatore, Mark R.; Edwards, Christopher S.

    2015-12-01

    We investigate an outcrop of ∼187 Ma lacustrine pillow basalts of the Talcott Formation exposed in Meriden, Connecticut, USA, focusing on coordinated analyses of one pillow lava to characterize the aqueous history of these basalts in the Hartford Basin. This work uses a suite of multidisciplinary measurements, including hyperspectral imaging, other spectroscopic techniques, and chemical and mineralogical analyses, from the microscopic scale up to the scale of an outcrop. The phases identified in the sample are albite, large iron oxides, and titanite throughout; calcite in vesicles; calcic clinopyroxene, aegirine, and Fe/Mg-bearing clay in the rind; and fine-grained hematite and pyroxenes in the interior. Using imaging spectroscopy, the chemistry and mineralogy results extend to the hand sample and larger outcrop. From all of the analyses, we suggest that the pillow basalts were altered initially after emplacement, either by heated lake water or magmatic fluids, at temperatures of at least 400-600 °C, and the calcic clinopyroxenes and aegirine identified in the rind are a preserved record of that alteration. As the hydrothermal system cooled to slightly lower temperatures, clays formed in the rind, and, during this alteration, the sample oxidized to form hematite in the matrix of the interior and Fe3+ in the pyroxenes in the rind. During the waning stages of the hydrothermal system, calcite precipitated in vesicles within the rind. Later, diagenetic processes albitized the sample, with albite replacing plagioclase, lining vesicles, and accreting onto the exterior of the sample. This albitization or Na-metasomatism occurred when the lake within the Hartford Basin evaporated during a drier past climatic era, resulting in Na-rich brines. As Ca-rich plagioclase altered to albite, Ca was released into solution, eventually precipitating as calcite in previously-unfilled vesicles, dominantly in the interior of the pillow. Coordinated analyses of this sample permit

  17. Ca isotope fractionation and Sr/Ca partitioning associated with anhydrite formation at mid-ocean ridge hydrothermal systems: An experimental approach

    Science.gov (United States)

    Syverson, D. D.; Scheuermann, P.; Pester, N. J.; Higgins, J. A.; Seyfried, W. E., Jr.

    2016-12-01

    The elemental and isotopic mass balance of Ca and Sr between seawater and basalt at mid-ocean ridge (MOR) hydrothermal systems is an integrated reflection of the various physiochemical processes, which induce chemical exchange, in the subseafloor. Specifically, the processes of anhydrite precipitation and recrystallization are recognized to be important controls on governing the Ca and Sr elemental and isotope compositions of high temperature vent fluids, however, few experimental data exist to constrain these geochemical effects. Thus, to better understand the associated Sr/Ca partitioning and Ca isotope fractionation and rate of exchange between anhydrite and dissolved constituents, anhydrite precipitation and recrystallization experiments were performed at 175, 250, and 350°C and 500 bar at chemical conditions indicative of active MOR hydrothermal systems. The experimental data suggest that upon entrainment of seawater into MOR hydrothermal systems, anhydrite will precipitate rapidly and discriminate against the heavy isotopes of Ca (Δ44/40Ca(Anh-Fluid) = -0.68 - -0.25 ‰), whereas Sr/Ca partitioning depends on the saturation state of the evolving hydrothermal fluid with respect to anhydrite at each PTX (KD(Anh-Fluid) = 1.24 - 0.55). Coupling experimental constraints with the temperature gradient inferred for high temperature MOR hydrothermal systems in the oceanic crust, data suggest that the Ca isotope and Sr elemental composition of anhydrite formed near the seafloor will be influenced by disequilibrium effects, while, at higher temperatures further into the oceanic crust, anhydrite will be representative of equilibrium Sr/Ca partitioning and Ca isotope fractionation conditions. These experimental observations are consistent with analyzed Sr/Ca and Ca isotope compositions of anhydrites and vent fluids sampled from modern MOR hydrothermal systems1,2 and can be used to further constrain the geochemical effects of hydrothermal circulation in the oceanic crust

  18. Zirconium oxide deposits (ZrO2) and titanium oxide (TiO2) on 304l stainless steel

    International Nuclear Information System (INIS)

    Davila N, M. L.

    2015-01-01

    This research project aims to carry out the surface and electrochemical characterization to obtain the optimum conditions of the hydrothermal deposits of zirconium oxide ZrO 2 (baddeleyite) and titanium oxide TiO 2 (anatase and rutile phases) on 304l stainless steel, simulating an inhibiting protective layer. 304l steel specimens were cut, pre-oxidized in water at a temperature of 288 degrees Celsius and 8 MPa, similar to those of a typical BWR conditions. From the titanium oxide anatase crystalline phase, the rutile phase was obtained by a heat treatment at 1000 degrees Celsius. The Sigma-Aldrich pre-oxidized powders and steel 304l were characterized using techniques of X-ray diffraction, scanning electron microscopy, X-ray dispersive energy, chemical mapping and Raman spectrometry. The pre-oxidized steel has two oxide layers, an inner layer with nano metric crystals and another outer of larger crystals to 1μm, with the formation of hematite and magnetite, this predominating. The surface that contacted the sample holder has larger crystals. Hydrothermal deposits were carry out from suspensions of 10, 100 and 1000 ppm, of the crystal phases of anatase, rutile and baddeleyite, on the pre-oxidized steel at a temperature of 150 degrees Celsius for 2 and 7 days, samples were analyzed by X-ray diffraction, scanning electron microscopy, X-ray dispersive energy, Raman spectrometry and Tafel polarization. The suspension to 1000 ppm for 7 days coated surface most; the baddeleyite deposit is noticed more homogeneous than anatase and rutile. The deposit is favored when hematite and magnetite crystals are larger. The chemical mapping on deposits show that even after being immersed in water to 288 degrees Celsius during 30 days, the deposits are still present although a loss is observed. A reference electrode was assembled to conduct electrochemical tests of Tafel able to withstand a temperature of 288 degrees Celsius and pressure of 8 MPa. The baddeleyite deposit presented

  19. Study of Oxide Formation on Alloy 800 by Potentiostatic Polarization

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Chong Hun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Momenib, M.; Wren, C. J. [University of Western Ontario, London (Canada)

    2015-10-15

    The objectives of study are to investigate the effect of potential on oxide formation and conversion on alloy 800 under potentiostatic conditions. For this study we have focused primarily on corrosion at pH{sub 25.}deg. C8.4. The results presented in Figures 1 show that in the range from -0.8 V{sub SCE} to +0.2 V{sub SCE} there are four potential regions having distinctly different short- and long-term characteristics in the log |i| vs. log t and Q vs. t plots. At a potential below -0.8 V{sub SCE}, the current becomes cathodic immediately (< 10 s) upon polarization, indicating negligible metal oxidation and hence is not of interest. In nuclear power plants, it is used for steam generator tubing in pressurized water reactors (PWRs), including Canadian Deuterium Uranium (CANDU) reactors. However, failures resulting from localized corrosion such as pitting, crevice and stress corrosion cracking (SCC) have been observed in the service environments. There exists still considerable controversy over the type of oxide that can be formed and the mechanism of oxide formation on Alloy 800.

  20. AutoCAD 2014 review for certification official certification preparation

    CERN Document Server

    ASCENT center for technical knowledge

    2014-01-01

    The AutoCAD® 2014 Review for Certification book is intended for users of AutoCAD® preparing to complete the AutoCAD 2014 Certified Professional exam. This book contains a collection of relevant instructional topics, practice exercises, and review questions from the Autodesk Official Training Guides (AOTG) from ASCENT - Center for Technical Knowledge pertaining specifically to the Certified Professional exam topics and objectives. This book is intended for experienced users of AutoCAD in preparation for certification. New users of AutoCAD should refer to the AOTG training guides from ASCENT, such as AutoCAD/AutoCAD LT 2014 Fundamentals, for more comprehensive instruction.

  1. Line Generalization and AutoCAD Map

    Directory of Open Access Journals (Sweden)

    Nada Vučetić

    2001-01-01

    Full Text Available The paper offers the results of original research made on the application of AutoCAD Map in line generalisation. The differences and similarities have been found out between the Douglas-Peucker method and the method of line simplification that is incorporated in AutoCAD Map. There have been also the inaccuracies found out in AutoCAD Map manual relating to the issues of buffer width and tolerance, and the line width before and after simplification. The paper gives recommendations about pseudo nodes dissolving. It has been noticed that AutoCAD Map simplification method is not independent of the order of points. The application of the method is illustrated by an example of coastal line of Istria.

  2. Projecting pipeline construction by AutoDesk Map; Projektierung von Rohrleitungsbaumassnahmen mit AutoDesk Map

    Energy Technology Data Exchange (ETDEWEB)

    Taschendorf, M.; Voigtlaender, M. [Hamburger Wasserwerke GmbH, Hamburg (Germany)

    2005-12-15

    Presented is AutoDesk Map, which enables the construction and planning of big grids for water- and gas supply. In this example industrial equipment is driven as objects in AutoDesk Map. Therefore the consistence of the data is guaranted and comprehensive CAD functions are available for industrial equipment and topologies. (GL)

  3. Hydrothermal growth of upright-standing ZnO sheet microcrystals

    International Nuclear Information System (INIS)

    Shi, Ruixia; Yang, Ping; Dong, Xiaobin; Jia, Changchao; Li, Jia

    2014-01-01

    Highlights: • Upright-standing ZnO sheet microcrystals were hydrothermally fabricated. • The ZnO sheets were prepared with sodium oxalate at 70 °C without any surfactant. • The preferable adsorption of oxalate anions causes the formation of ZnO sheet. • The continuous growth in six directions leads to the formation of hexagonal sheets. - Abstract: Large-scale upright-standing ZnO sheet microcrystals were fabricated on Zn substrate using sodium oxalate as structure-directing agent by a hydrothermal method at low temperature (70 °C) without any surfactant. The sheets are about 3–5 μm in dimension and 100–300 nm in thickness. The strong and narrow diffraction peaks of ZnO indicate that the sample has a good crystallinity and size. The morphology of sheet-like ZnO varied with the concentrations of sodium oxalate and reaction time. The sheet-like ZnO would transform into rod-like ones when sodium oxalate was substituted by equivalent sodium acetate. The formation of sheet-like ZnO is attributed to the preferable adsorption of oxalate anions on (0 0 0 1) face of ZnO, which inhibits the intrinsic growth of ZnO. Additionally, the continuous growth in six (0 1 −1 0) directions that have the lowest surface energy leads to the formation of hexagonal sheets

  4. Understanding the crystallization mechanism of delafossite CuGaO2 for controlled hydrothermal synthesis of nanoparticles and nanoplates.

    Science.gov (United States)

    Yu, Mingzhe; Draskovic, Thomas I; Wu, Yiying

    2014-06-02

    The delafossite CuGaO2 is an important p-type transparent conducting oxide for both fundamental science and industrial applications. An emerging application is for p-type dye-sensitized solar cells. Obtaining delafossite CuGaO2 nanoparticles is challenging but desirable for efficient dye loading. In this work, the phase formation and crystal growth mechanism of delafossite CuGaO2 under low-temperature (mechanism to explain the formation of large CuGaO2 nanoplates. Importantly, by suppressing this OA process, delafossite CuGaO2 nanoparticles that are 20 nm in size were successfully synthesized for the first time. Moreover, considering the structural and chemical similarities between the Cu-based delafossite series compounds, the understanding of the hydrothermal chemistry and crystallization mechanism of CuGaO2 should also benefit syntheses of other similar delafossites such as CuAlO2 and CuScO2.

  5. Gold-bearing hydrothermal veins in Chukotka

    Energy Technology Data Exchange (ETDEWEB)

    Davidenko, N.M.

    1980-01-01

    Indicators such as the correlation of mineralization to plutonic and vulcanic formations and various facies of metamorphism, the character of the structural-tectonic control of mineralization, characteristics of silica redistribution as well that of calcium, water, and other components in altering ore zones, the specificity of sygenetic fluid inclusions in minerals, morphology, the internal structure and other typomorphic indicators of native gold and its accessories are utilized in the working out of a genetic classification for compiling a complex of diagnostic indicators of post-magmatic mineralization on Chukotka at various depths. Those indicators, in addition to earlier known hydrothermal gold ore formations, can be used to identify still other types of mineralization, particularly pyrite group minerals.

  6. Oxide scale formation of modified FeCrAl coatings exposed to liquid lead

    Energy Technology Data Exchange (ETDEWEB)

    Fetzer, Renate, E-mail: renate.fetzer@kit.edu [Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe (Germany); Weisenburger, Alfons; Jianu, Adrian; Mueller, Georg [Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe (Germany)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Modified FeCrAl coatings show oxide scale formation when exposed to liquid lead. Black-Right-Pointing-Pointer Formation of thin Al-rich oxide scales is promoted by the presence of Y. Black-Right-Pointing-Pointer FeCrAlY with at least 8 wt.% Al forms thin Al-rich oxide scales. Black-Right-Pointing-Pointer For low Al content, thick multilayer Fe-based oxide scales are found. - Abstract: Modified FeCrAl coatings were studied with respect to their capability to form a thin protective oxide scale in liquid lead environment. They were manufactured by low pressure plasma spraying and GESA surface melting, thereby tuning the Al content. The specimens were exposed for 900 h to liquid lead containing 10{sup -6} and 10{sup -8} wt.% oxygen, respectively, at various temperatures from 400 to 550 Degree-Sign C. Threshold values for an Al content that guarantees the formation of thin protective Al-rich oxide scales are determined, dependent on the respective chromium content, on the presence of yttrium in the modified coating, and on the exposure conditions.

  7. Influence of bases on hydrothermal synthesis of titanate nanostructures

    CSIR Research Space (South Africa)

    Sikhwivhilu, LM

    2009-03-01

    Full Text Available a hydrothermal process. 14 In this study we report on the effect of base concentration, temperature and base type on the formation of nanotubes which form bundles. New information about the mechanism of the formation of the tubes is provided.... It appeared as though longer tubes were initially formed and then broke into shorter pieces with different sizes. The tube fracture is believed to be due to tube instability in base concentration. This clearly shows that depending on the experimental...

  8. N-Lauroyl sarcosine sodium salt mediated formation of hydroxyapatite microspheres via a hydrothermal route

    International Nuclear Information System (INIS)

    Xiao Xiufeng; Zheng Xuan; Liu Rongfang; Lu Yihua; Wu Shanshan

    2012-01-01

    Dandelion-like hydroxyapatite (HA) microspheres were successfully prepared using Ca(NO 3 ) 2 ·4H 2 O and (NH 4 ) 3 PO 4 ·3H 2 O as raw materials and N-Lauroyl sarcosine sodium salt (Sar-Na) as template via a hydrothermal route. The chemical composition, structure, morphology and thermal properties of the samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscope (FTIR), Scanning electron microscope (SEM) and Thermal gravimetric analysis (TG), respectively. The results demonstrate that, Sar-Na has great impact on the morphology of HA. With increasing the amount of Sar-Na, the morphology of HA varies from nanograins to nanorods, finally grows into dandelion-like microstructure. The obtained dandelion-like HA microspheres about 6 μm in diameter are composed of radially oriented nanorods. Furthermore, the possible formation mechanism of morphology change is also discussed. - Highlights: ► N-Lauroyl sarcosine sodium salt is firstly used to control the morphology of hydroxyapatite. ► The mechanism of Sar-Na on the morphology of hydroxyapatite are discussed in this paper. ► The dandelion-like microsphere hydroxyapatite are obtained at suitable conditions.

  9. Hydrothermal synthesis of nickel hydroxide nanostructures in mixed solvents of water and alcohol

    International Nuclear Information System (INIS)

    Yang Lixia; Zhu Yingjie; Tong Hua; Liang Zhenhua; Li Liang; Zhang Ling

    2007-01-01

    Nickel hydroxide nanosheets and flowers have been hydrothermally synthesized using Ni(CH 3 COO) 2 .4H 2 O in mixed solvents of ethylene glycol (EG) or ethanol and deionized water at 200 deg. C for different time. The phase and morphology of the obtained products can be controlled by adjusting the experimental parameters, including the hydrothermal time and the volume ratio of water to EG or ethanol. The possible reaction mechanism and growth of the nanosheets and nanoflowers are discussed based on the experimental results. Porous nickel oxide nanosheets are obtained by heating nickel hydroxide nanosheets in air at 400 deg. C. The products were characterized by using various methods including X-ray diffraction (XRD), fourier transform infrared (FTIR), transmission electron microscopy (TEM), selected-area electron diffraction (SAED), field emission scanning electron microscopy (FESEM). The electrochemical property of β-Ni(OH) 2 nanosheets was investigated through the cyclic voltammogram (CV) measurement. - Graphical abstract: Nickel hydroxide nanosheets and flowers have been hydrothermally synthesized using Ni(CH 3 COO) 2 .4H 2 O in mixed solvents of ethylene glycol (EG) or ethanol and deionized water at 200 deg. C for different reaction time. Porous nickel oxide nanosheets are obtained by heating nickel hydroxide nanosheets in air at 400 deg. C

  10. Formation of Oxides in the Interior of Friction Stir Welds

    Science.gov (United States)

    Schneider, Judy; Chen, Po; Nunes, Arthur C., Jr.

    2016-01-01

    In friction stir welding (FSWing) the actual solid state joining takes place between the faying surfaces which form the weld seam. Thus the seam trace is often investigated for clues when the strength of the weld is reduced. Aluminum and its alloys are known to form a native, protective oxide on the surface. If these native surface oxides are not sufficiently broken up during the FSW process, they are reported to remain in the FSW interior and weaken the bond strength. This type of weld defect has been referred to as a lazy "S", lazy "Z", joint line defect, kissing bond, or residual oxide defect. Usually these defects are mitigated by modification of the process parameters, such as increased tool rotation rate, which causes a finer breakup of the native oxide particles. This study proposes that there may be an alternative mechanism for formation of oxides found within the weld nugget. As the oxidation rate increases at elevated temperatures above 400ºC, it may be possible for enhanced oxidation to occur on the interior surfaces during the FSW process from entrained air entering the seam gap. Normally, FSWs of aluminum alloys are made without a purge gas and it is unknown how process parameters and initial fit up could affect a potential air path into the interior during the processing. In addition, variations in FSW parameters, such as the tool rotation, are known to have a strong influence on the FSW temperature which may affect the oxidation rate if internal surfaces are exposed to entrained air. A series of FSWs were made in 3 different thickness panels of AA2219 (0.95, 1.27 and 1.56 cm) at 2 different weld pitches. As the thickness of the panels increased, there was an increased tendency for a gap to form in advance of the weld tool. If sufficient air is able to enter the workpiece gap prior to consolidation, the weld temperature can increase the oxidation rate on the interior surfaces. These oxidation rates would also be accelerated in areas of localized

  11. Human neutrophils in auto-immunity.

    Science.gov (United States)

    Thieblemont, Nathalie; Wright, Helen L; Edwards, Steven W; Witko-Sarsat, Véronique

    2016-04-01

    Human neutrophils have great capacity to cause tissue damage in inflammatory diseases via their inappropriate activation to release reactive oxygen species (ROS), proteases and other tissue-damaging molecules. Furthermore, activated neutrophils can release a wide variety of cytokines and chemokines that can regulate almost every element of the immune system. In addition to these important immuno-regulatory processes, activated neutrophils can also release, expose or generate neoepitopes that have the potential to break immune tolerance and result in the generation of autoantibodies, that characterise a number of human auto-immune diseases. For example, in vasculitis, anti-neutrophil cytoplasmic antibodies (ANCA) that are directed against proteinase 3 or myeloperoxidase are neutrophil-derived autoantigens and activated neutrophils are the main effector cells of vascular damage. In other auto-immune diseases, these neutrophil-derived neoepitopes may arise from a number of processes that include release of granule enzymes and ROS, changes in the properties of components of their plasma membrane as a result of activation or apoptosis, and via the release of Neutrophil Extracellular Traps (NETs). NETs are extracellular structures that contain chromatin that is decorated with granule enzymes (including citrullinated proteins) that can act as neo-epitopes to generate auto-immunity. This review therefore describes the processes that can result in neutrophil-mediated auto-immunity, and the role of neutrophils in the molecular pathologies of auto-immune diseases such as vasculitis, rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). We discuss the potential role of NETs in these processes and some of the debate in the literature regarding the role of this phenomenon in microbial killing, cell death and auto-immunity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Synthesis of boehmite by hydrothermal treatment used as inorganic binder for alumina powder

    International Nuclear Information System (INIS)

    Lima, M.B.; Tercini, M.B.; Yoshimura, H.N.

    2012-01-01

    Presently, due to the concerns with the environment, it has been developed studies to replace the organic binder by an inorganic binder for forming of ceramic powders, in order to avoiding the generation of polluting gases during sintering (firing). A potential alternative is the use of boehmite, produced by hydrothermal treatment on the surfaces of the alumina powder, previously ground in a ball mill using zirconia milling media to produce hydrated phases on alumina powder which are converted to boehmite. In the treated alumina powders, it was observed the formation of boehmite phase by X-ray diffraction analysis and Fourier transformed infrared (FTIR) spectroscopy, demonstrating the efficiency of boehmite formation during the hydrothermal treatment at 150°C for 3 hours.(author)

  13. MS AutoCad

    DEFF Research Database (Denmark)

    Andersen, Michael Rye; Heinicke, Hugo

    1996-01-01

    Formålet med dette notat er at give en introduktion til tegning af et generalarrangement ved anvendelse af CAD-programmet AutoCAD. Generalarrangementets formål er at skabe en overskuelig præsentation af et skibsprojekt. Det skal gøres indenfor de rammer, som ligger til grund for praktiskprojekter......Formålet med dette notat er at give en introduktion til tegning af et generalarrangement ved anvendelse af CAD-programmet AutoCAD. Generalarrangementets formål er at skabe en overskuelig præsentation af et skibsprojekt. Det skal gøres indenfor de rammer, som ligger til grund...

  14. PERI auto-tuning

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, D H; Williams, S [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Chame, J; Chen, C; Hall, M [USC/ISI, Marina del Rey, CA 90292 (United States); Dongarra, J; Moore, S; Seymour, K; You, H [University of Tennessee, Knoxville, TN 37996 (United States); Hollingsworth, J K; Tiwari, A [University of Maryland, College Park, MD 20742 (United States); Hovland, P; Shin, J [Argonne National Laboratory, Argonne, IL 60439 (United States)], E-mail: mhall@isi.edu

    2008-07-15

    The enormous and growing complexity of today's high-end systems has increased the already significant challenges of obtaining high performance on equally complex scientific applications. Application scientists are faced with a daunting challenge in tuning their codes to exploit performance-enhancing architectural features. The Performance Engineering Research Institute (PERI) is working toward the goal of automating portions of the performance tuning process. This paper describes PERI's overall strategy for auto-tuning tools and recent progress in both building auto-tuning tools and demonstrating their success on kernels, some taken from large-scale applications.

  15. Hydrothermal synthesis and electrochemical performance of Co3O4/reduced graphene oxide nanosheet composites for supercapacitors

    International Nuclear Information System (INIS)

    Song, Zhaoxia; Zhang, Yujuan; Liu, Wei; Zhang, Song; Liu, Guichang; Chen, Huiying; Qiu, Jieshan

    2013-01-01

    Highlights: • Co 3 O 4 /reduced graphene oxide sheet-on-sheet nanocomposites are synthesized. • Co 3 O 4 nanosheets consist of homogeneously assembled nanoparticles. • Co 3 O 4 /rGONS shows a specific capacitance of 402 F g −1 at 2.0 A g −1 . • Co 3 O 4 /rGONS shows enhanced capacitive performance compared with Co 3 O 4 . • The improved properties are mainly attributed to the porous composite structure. - Abstract: The composites of Co 3 O 4 /reduced graphene oxide nanosheets (Co 3 O 4 /rGONS) are prepared via a facile hydrothermal route followed by calcination, of which the morphology and microstructure are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). It is found that the as-obtained Co 3 O 4 nanosheets on which many fine nanoparticles are homogeneously assembled aggregate in a flower shape on the surfaces of reduced graphene oxide. Electrochemical properties are investigated using cyclic voltammetry and galvanostatic charge/discharge in 1 M KOH aqueous solution. In comparison with pure Co 3 O 4 , the specific capacity and redox performance of the as-made Co 3 O 4 /rGONS composites have been significantly improved, which are mainly attributed to the composite structure with high porosity formed due to the interaction of Co 3 O 4 and reduced graphene oxide nanosheets during the fabrication process of the Co 3 O 4 /rGONS nanocomposites. The Co 3 O 4 /rGONS-II shows good cyclic performance and coulomb efficiency with a specific capacitance over 400 F g −1 at a current density of 0.5–2.0 A g −1

  16. Formation of jarosite during Fe{sup 2+} oxidation by Acidithiobacillus ferrooxidans

    Energy Technology Data Exchange (ETDEWEB)

    Daoud, J.; Karamanev, D. [University of Western Ontario, London, ON (Canada). Dept. of Chemical & Biochemical Engineering

    2006-07-15

    Jarosite precipitation is a very important phenomenon that is observed in many bacterial cultures. In many applications involving Acidithiobacillus ferrooxidans, like coal desulphurization and bioleaching, it is crucial to minimize jarosite formation in order to increase efficiency. The formation of jarosite during the oxidation of ferrous iron by free suspended cells of A. ferrooxidans was studied. The process was studied as a function of time, pH and temperature. The main parameter affecting the jarosite formation was pH. Several experiments yielded results showing oxidation rates as high as 0.181-0.194 g/L h, with low jarosite precipitation of 0.0125-0.0209 g at conditions of pH 1.6-1.7 with an operating temperature of 35{sup o} C.

  17. Efficient photocatalytic removal of nitric oxide with hydrothermal synthesized Na{sub 0.5}Bi{sub 0.5}TiO{sub 3} nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Ai, Zhihui, E-mail: jennifer.ai@mail.ccnu.edu.cn; Lu, Gang; Lee, Shuncheng

    2014-11-15

    Highlights: • Na{sub 0.5}Bi{sub 0.5}TiO{sub 3} nanotubes were prepared via a facile hydrothermal route. • The Na{sub 0.5}Bi{sub 0.5}TiO{sub 3} nanotubes exhibited superior photocatalytic performances for the removal of nitric oxide. • The Na{sub 0.5}Bi{sub 0.5}TiO{sub 3} nanotubes show potential for indoor and outdoor air purification. - Abstract: In this study, Na{sub 0.5}Bi{sub 0.5}TiO{sub 3} nanotubes were synthesized with a facile hydrothermal method using TiO{sub 2} P25 (Degussa) and bismuth citrate (BiC{sub 5}H{sub 6}O{sub 7}) as precursors in concentrated NaOH and ammonia alkali solution. The samples were systematically characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The as-prepared Na{sub 0.5}Bi{sub 0.5}TiO{sub 3} nanotubes exhibited superior activity for photocatalytic removal of gaseous nitric oxide (NO) over TiO{sub 2} P25 (Degussa) under simulated solar-light irradiation, the NO removal rate can reach as high as ca. 200 ppb·min{sup −1} over the Na{sub 0.5}Bi{sub 0.5}TiO{sub 3} nanotubes in a continuous reactor with an initial NO concentration of 400 ppb. The intrinsic hollow-nanotube structure of the Na{sub 0.5}Bi{sub 0.5}TiO{sub 3} photocatalysts contributes to its superior activity under simulated solar light. This work provides a facile route to prepare Na{sub 0.5}Bi{sub 0.5}TiO{sub 3} nanotubes and suggests that the Na{sub 0.5}Bi{sub 0.5}TiO{sub 3} nanotubes are ideal candidates for efficient removal of nitric oxide in indoor/outdoor air.

  18. Hydrothermal uranium deposits containing molybdenum and fluorite in the Marysvale volcanic field, west-central Utah

    Science.gov (United States)

    Cunningham, C.G.; Rasmussen, J.D.; Steven, T.A.; Rye, R.O.; Rowley, P.D.; Romberger, S.B.; Selverstone, J.

    1998-01-01

    Uranium deposits containing molybdenum and fluorite occur in the Central Mining Area, near Marysvale, Utah, and formed in an epithermal vein system that is part of a volcanic/hypabyssal complex. They represent a known, but uncommon, type of deposit; relative to other commonly described volcanic-related uranium deposits, they are young, well-exposed and well-documented. Hydrothermal uranium-bearing quartz and fluorite veins are exposed over a 300 m vertical range in the mines. Molybdenum, as jordisite (amorphous MoS2, together with fluorite and pyrite, increase with depth, and uranium decreases with depth. The veins cut 23-Ma quartz monzonite, 20-Ma granite, and 19-Ma rhyolite ash-flow tuff. The veins formed at 19-18 Ma in a 1 km2 area, above a cupola of a composite, recurrent, magma chamber at least 24 ?? 5 km across that fed a sequence of 21- to 14-Ma hypabyssal granitic stocks, rhyolite lava flows, ash-flow tuffs, and volcanic domes. Formation of the Central Mining Area began when the intrusion of a rhyolite stock, and related molybdenite-bearing, uranium-rich, glassy rhyolite dikes, lifted the fractured roof above the stock. A breccia pipe formed and relieved magmatic pressures, and as blocks of the fractured roof began to settle back in place, flat-lying, concave-downward, 'pull-apart' fractures were formed. Uranium-bearing, quartz and fluorite veins were deposited by a shallow hydrothermal system in the disarticulated carapace. The veins, which filled open spaces along the high-angle fault zones and flat-lying fractures, were deposited within 115 m of the ground surface above the concealed rhyolite stock. Hydrothermal fluids with temperatures near 200??C, ??18OH2O ~ -1.5, ?? -1.5, ??DH2O ~ -130, log fO2 about -47 to -50, and pH about 6 to 7, permeated the fractured rocks; these fluids were rich in fluorine, molybdenum, potassium, and hydrogen sulfide, and contained uranium as fluoride complexes. The hydrothermal fluids reacted with the wallrock resulting in

  19. Oxygen isotope exchange kinetics of mineral pairs in closed and open systems: Applications to problems of hydrothermal alteration of igneous rocks and Precambrian iron formations

    Science.gov (United States)

    Gregory, R.T.; Criss, R.E.; Taylor, H.P.

    1989-01-01

    heat-balance constraints, we can utilize the 18O 16O data on natural mineral assemblages to calculate the kinetic rate constants (k's) and the effective diffusion constants (D's) for mineral-H2O exchange: these calculated values (kqtz ??? 10-14, kfeld ??? 10-13-10-12) agree with experimental determinations of such constants. In nature, once the driving force or energy source for the external infiltrating fluid phase is removed, the disequilibrium mineral-pair arrays will either: (1) remain "frozen" in their existing state, if the temperatures are low enough, or (2) re-equilibrate along specific closed-system exchange vectors determined solely by the temperature path and the mineral modal proportions. Thus, modal mineralogical information is a particularly important parameter in both the open- and closed-system scenarios, and should in general always be reported in stable-isotopic studies of mineral assemblages. These concepts are applied to an analysis of 18O 16O systematics of gabbros (Plagioclase-clinopyroxene and plagioclase-amphibole pairs), granitic plutons (quartz-feldspar pairs), and Precambrian siliceous iron formations (quartz-magnetite pairs). In all these examples, striking regularities are observed on ??-?? and ??-?? plots, but we point out that ??-?? plots have many advantages over their equivalent ??-?? diagrams, as the latter are more susceptible to misinterpretation. Using the equations developed in this study, these regularities can be interpreted to give semiquantitative information on the exchange histories of these rocks subsequent to their formation. In particular, we present a new interpretation indicating that Precambrian cherty iron formations have in general undergone a complex fluid exchange history in which the iron oxide (magnetite precursor?) has exchanged much faster with low-temperature (< 400??C) fluids than has the relatively inert quartz. ?? 1989.

  20. The distribution and stabilisation of dissolved Fe in deep-sea hydrothermal plumes

    Science.gov (United States)

    Bennett, Sarah A.; Achterberg, Eric P.; Connelly, Douglas P.; Statham, Peter J.; Fones, Gary R.; German, Christopher R.

    2008-06-01

    We have conducted a study of hydrothermal plumes overlying the Mid-Atlantic Ridge near 5° S to investigate whether there is a significant export flux of dissolved Fe from hydrothermal venting to the oceans. Our study combined measurements of plume-height Fe concentrations from a series of 6 CTD stations together with studies of dissolved Fe speciation in a subset of those samples. At 2.5 km down plume from the nearest known vent site dissolved Fe concentrations were ˜ 20 nM. This is much higher than would be predicted from a combination of plume dilution and dissolved Fe(II) oxidation rates, but consistent with stabilisation due to the presence of organic Fe complexes and Fe colloids. Using Competitive Ligand Exchange-Cathodic Stripping Voltammetry (CLE-CSV), stabilised dissolved Fe complexes were detected within the dissolved Fe fraction on the edges of one non-buoyant hydrothermal plume with observed ligand concentrations high enough to account for stabilisation of ˜ 4% of the total Fe emitted from the 5° S vent sites. If these results were representative of all hydrothermal systems, submarine venting could provide 12-22% of the global deep-ocean dissolved Fe budget.

  1. Fate and behaviour of diclofenac during hydrothermal carbonization.

    Science.gov (United States)

    vom Eyser, C; Schmidt, T C; Tuerk, J

    2016-06-01

    Hydrothermal carbonization (HTC) has become an esteemed method to convert sewage sludge into biochar. Besides dewatering and disinfection the process is suggested to reduce the micropollutant load, which would be beneficial for the use of biochar as fertilizer. This study was designed to examine reduction of micropollutants and formation of transformation products during HTC using the example of diclofenac. We investigated compounds' removal at HTC conditions in inert experiments and in real samples. Results showed that HTC temperature (>190 °C) and pressure (∼15 bar) have the potential to fully degrade diclofenac in inert experiments and spiked sewage sludge (>99%) within 1 h. However, interfering effects hinder full removal in native samples resulting in 44% remaining diclofenac. Additionally, a combination of suspected-target and non-target analysis using LC-MS/MS and LC-HRMS resulted in the determination of six transformation products. These products have been reported in biochar from HTC for the first time, although other studies described them for other processes like advanced oxidation. Based on the detected transformation products, we proposed a degradation mechanism reflecting HTC reactions such as dehydroxylation and decarboxylation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Hydrous Ferric Oxides in Sediment Catalyze Formation of Reactive Oxygen Species during Sulfide Oxidation

    Directory of Open Access Journals (Sweden)

    Sarah A. Murphy

    2016-11-01

    Full Text Available Abstract: This article describes the formation of reactive oxygen species as a result of the oxidation of dissolved sulfide by Fe(III-containing sediments suspended in oxygenated seawater over the pH range 7.00 and 8.25. Sediment samples were obtained from across the coastal littoral zone in South Carolina, US, at locations from the beach edge to the forested edge of a Spartina dominated estuarine salt marsh and suspended in aerated seawater. Reactive oxygen species (superoxide and hydrogen peroxide production was initiated in sediment suspensions by the addition of sodium bisulfide. The subsequent loss of HS-, formation of Fe(II (as indicated by Ferrozine, and superoxide and hydrogen peroxide were monitored over time. The concentration of superoxide rose from the baseline and then persisted at an apparent steady state concentration of approximately 500 nanomolar at pH 8.25 and 200 nanomolar at pH 7.00 respectively until >97% hydrogen sulfide was consumed. Measured superoxide was used to predict hydrogen peroxide yield based on superoxide dismutation. Dismutation alone quantitatively predicted hydrogen peroxide formation at pH 8.25 but over predicted hydrogen peroxide formation at pH 7 by a factor of approximately 102. Experiments conducted with episodic spikes of added hydrogen peroxide indicated rapid hydrogen peroxide consumption could account for its apparent low instantaneous yield, presumably the result of its reaction with Fe(II species, polysulfides or bisulfite. All sediment samples were characterized for total Fe, Cu, Mn, Ni, Co and hydrous ferric oxide by acid extraction followed by mass spectrometric or spectroscopic characterization. Sediments with the highest loadings of hydrous ferric oxide were the only sediments that produced significant dissolved Fe(II species or ROS as a result of sulfide exposure.

  3. Relations of ammonium minerals at several hydrothermal systems in the western U.S.

    Science.gov (United States)

    Krohn, M.D.; Kendall, C.; Evans, J.R.; Fries, T.L.

    1993-01-01

    Ammonium bound to silicate and sulfate minerals has recently been located at several major hydrothermal systems in the western U.S. utilizing newly-discovered near-infrared spectral properties. Knowledge of the origin and mineralogic relations of ammonium minerals at known hydrothermal systems is critical for the proper interpretation of remote sensing data and for testing of possible links to mineralization. Submicroscopic analysis of ammonium minerals from two mercury- and gold-bearing hot-springs deposits at Ivanhoe, Nevada and McLaughlin, California shows that the ammonium feldspar, buddingtonite, occurs as fine-grained euhedral crystals coating larger sulfide and quartz crystals. Ammonium feldspar seems to precipitate relatively late in the crystallization sequence and shows evidence for replacement of NH4+ by K+ or other monovalent cations. Some buddingtonite is observed in close association with mercury, but not with gold. Ammonioalunite is found in a variety of isolated crystal forms at both deposits. Nitrogen isotopic values for ammonium-bearing minerals show a 14??? range in composition, precluding assignment of a specific provenance to the nitrogen. The correlations of nitrogen isotopic values with depth and ammonium content suggest some loss of nitrogen in the oxidizing supergene environment, possibly as a metastable mineral. The high ammonium content in these hydrothermal systems, the close association to mercury, and the small crystal size of the ammonium-bearing minerals all suggest that ammonium may be transported in a late-stage vapor phase or as an organic volatile. Such a process could lead to the formation of a non-carbonaceous organic aureole above a buried geothermal source. The discovery of a 10-km outcrop of ammonium minerals confirms that significant substitution of ammonium in minerals is possible over an extensive area and that remote sensing is a feasible means to detect such aureoles. ?? 1993.

  4. Factors affecting the formation of iodo-trihalomethanes during oxidation with chlorine dioxide.

    Science.gov (United States)

    Guo, Wanhong; Shan, Yingchun; Yang, Xin

    2014-01-15

    Effects of water characteristics, reaction time, temperature, bromide and iodide ion concentrations, oxidant doses, and pH on formation of iodinated trihalomethanes (I-THM) during oxidation of iodide-containing water with chlorine dioxide (ClO2) were investigated. Among the water samples collected from ten water sources, iodoform (CHI3) was the predominant I-THM and trace amount of chlorodiiodomethane (CHClI2) was occasionally found. CHI3 yields correlated moderately with specific UV absorbance (SUVA) (R(2)=0.79), indicating that hydrophobic aromatic content were important precursors. Longer reaction time led to continued formation of CHI3. I-THM containing bromide was also found in waters containing both bromide and iodide, but CHI3 was dominant. The formation of CHI3 was higher at 25°C than 5°C and 35°C. CHI3 formation showed an increase followed by a decrease trend with increasing ClO2 doses and iodide concentrations and the highest yields occurred at iodide to ClO2 molar ratios of 1-2. pH 8 resulted in the highest CHI3 formation. It should be noted that a high iodide concentration was spiked to waters before adding ClO2 and the results may not reflect the formation yields of iodinated THMs in real conditions, but they provide information about formation trend of I-THM during oxidation of ClO2. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Crystal size effect on the electrochemical oxidation of formate on carbon-supported palladium nanoparticles

    International Nuclear Information System (INIS)

    Santos, Rayana Marcela Izidoro da Silva; Nakazato, Roberto Zenhei; Ciapina, Eduardo Goncalves

    2016-01-01

    Full text: The electrochemical oxidation of formate in alkaline electrolytes has emerged an a promising anodic reaction in the Direct Formate Fuel Cells[1]. Although palladium is considered to be one of the best electro catalyst for the oxidation of formate, important structure-activity relationships are still not understood. In the present work, we investigated the effect of the size of the palladium crystals in the electrochemical oxidation of formate in 0.1 mol L -1 KOH. Carbon-supported palladium nanoparticles (Pd/C) were prepared by chemical reduction of palladium (II) chloride in aqueous media by sodium borohydride in the presence of varying quantities of sodium citrate in the reaction media to obtain metallic crystals with distinct sizes. Analysis of the X-ray diffraction profile revealed the presence of palladium crystals in the range of 6 to 19 nm. Potentiostatic oxidation of formate on the distinct Pd/C samples revealed a volcano-like dependence of the specific activity with the size of the palladium crystals, presenting the highest activity for crystals around 7.5 nm. Reference: [1] A.M. Bartrom, J.L. Haan, The direct formate fuel cell with an alkaline anion exchange membrane, J. Power Sources. 214 (2012) 68-74. (author)

  6. Weld oxide formation on lean duplex stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Westin, E.M. [Outokumpu Stainless, Avesta Research Centre, P.O. Box 74, SE-774 22 Avesta (Sweden)], E-mail: elin.westin@outokumpu.com; Olsson, C.-O.A. [Outokumpu Stainless, Avesta Research Centre, P.O. Box 74, SE-774 22 Avesta (Sweden); Hertzman, S. [Outokumpu Stainless Research Foundation, Brinellvaegen 23, SE-100 44 Stockholm (Sweden)

    2008-09-15

    Weld oxides have a strong influence on corrosion resistance, but have hitherto only been studied to a limited extent for duplex stainless steels. X-ray photoelectron spectroscopy (XPS) has here been used to study heat tint formed on gas tungsten arc (GTA) welds on the commercial duplex grades LDX 2101 (EN 1.4162/UNS S32101) and 2304 (EN 1.4362/UNS S32304) welded with and without nitrogen additions to the shielding gas. The process of heat tint formation is discussed in terms of transport phenomena to explain the effect of atmosphere, temperature and composition. The oxides formed were found to be enriched in manganese and corrosion testing shows that nitrogen has a strong influence on the weld oxide. A mechanism is proposed including evaporation from the weld pool and subsequent redeposition.

  7. Weld oxide formation on lean duplex stainless steel

    International Nuclear Information System (INIS)

    Westin, E.M.; Olsson, C.-O.A.; Hertzman, S.

    2008-01-01

    Weld oxides have a strong influence on corrosion resistance, but have hitherto only been studied to a limited extent for duplex stainless steels. X-ray photoelectron spectroscopy (XPS) has here been used to study heat tint formed on gas tungsten arc (GTA) welds on the commercial duplex grades LDX 2101 (EN 1.4162/UNS S32101) and 2304 (EN 1.4362/UNS S32304) welded with and without nitrogen additions to the shielding gas. The process of heat tint formation is discussed in terms of transport phenomena to explain the effect of atmosphere, temperature and composition. The oxides formed were found to be enriched in manganese and corrosion testing shows that nitrogen has a strong influence on the weld oxide. A mechanism is proposed including evaporation from the weld pool and subsequent redeposition

  8. From cation to oxide: hydroxylation and condensation of aqueous complexes

    International Nuclear Information System (INIS)

    Jolivet, J.P.

    1997-01-01

    Hydroxylation, condensation and precipitation of metal cations in aqueous solution are briefly reviewed. Hydroxylation of aqueous complexes essentially depends on the format charge (oxidation state), the size and the pH of the medium. It is the step allowing the condensation reaction. Depending on the nature of complexes (aqua-hydroxo, oxo-hydroxo), the. mechanism of condensation is different, olation or ox-olation respectively. The first one leads to poly-cations or hydroxides more or less stable against dehydration. The second one leads to poly-anions or oxides. Oligomeric species (poly-cations, poly-anions) are form from charged monomer complexes while the formation of solid phases requires non-charged precursors. Because of their high lability, charged oligomers are never the precursors of solids phases. The main routes for the formation of solid phases from solution are studied with two important and representative elements, Al and Si. For Al 3+ ions, different methods (base addition in solution, thermo-hydrolysis, hydrothermal synthesis) are discussed in relation to the crystal structure of the solid phase obtained. For silicic species condensing by ox-olation, the role of acid or base catalysis on the morphology of gels is studied. The influence of complexing ligands on the processes and on the characteristics of solids (morphology of particles, basic salts and polymetallic oxides formation) is studied. (author)

  9. Formation of oxide-trapped charges in 6H-SiC MOS structures

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, Masahito; Ohshima, Takeshi; Itoh, Hisayoshi; Nashiyama, Isamu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Okumura, Hajime; Yoshida, Sadafumi

    1997-03-01

    The silicon and the carbon faces of hexagonal silicon carbide (6H-SiC) substrates were oxidized pyrogenically at 1100degC, and the metal-oxide-semiconductor structures were formed on these faces. The MOS capacitors developed using the silicon and the carbon faces were irradiated with {sup 60}Co gamma-rays under argon atmosphere at room temperature. The bias voltages with the different polarity were applied to the gate electrode during irradiation to examine the formation mechanisms of the trapped charges in the oxides of these MOS capacitors. The amount of the trapped charges in the oxide were obtained from capacitance pulse voltage characteristics. The generation of the trapped charges are affects with not only the absorbed dose but also the bias polarity applied to the gate electrodes during irradiation. The formation mechanisms of the trapped charges in the oxides were estimated in conjunction with the surface orientation of 6H-SiC substrates. (author)

  10. The Production of Methane, Hydrogen, and Organic Compounds in Ultramafic-Hosted Hydrothermal Vents of the Mid-Atlantic Ridge

    Science.gov (United States)

    Charlou, J.L.; Holm, N.G.; Mousis, O.

    2015-01-01

    Abstract Both hydrogen and methane are consistently discharged in large quantities in hydrothermal fluids issued from ultramafic-hosted hydrothermal fields discovered along the Mid-Atlantic Ridge. Considering the vast number of these fields discovered or inferred, hydrothermal fluxes represent a significant input of H2 and CH4 to the ocean. Although there are lines of evidence of their abiogenic formation from stable C and H isotope results, laboratory experiments, and thermodynamic data, neither their origin nor the reaction pathways generating these gases have been fully constrained yet. Organic compounds detected in the fluids may also be derived from abiotic reactions. Although thermodynamics are favorable and extensive experimental work has been done on Fischer-Tropsch-type reactions, for instance, nothing is clear yet about their origin and formation mechanism from actual data. Since chemolithotrophic microbial communities commonly colonize hydrothermal vents, biogenic and thermogenic processes are likely to contribute to the production of H2, CH4, and other organic compounds. There seems to be a consensus toward a mixed origin (both sources and processes) that is consistent with the ambiguous nature of the isotopic data. But the question that remains is, to what proportions? More systematic experiments as well as integrated geochemical approaches are needed to disentangle hydrothermal geochemistry. This understanding is of prime importance considering the implications of hydrothermal H2, CH4, and organic compounds for the ocean global budget, global cycles, and the origin of life. Key Words: Hydrogen—Methane—Organics—MAR—Abiotic synthesis—Serpentinization—Ultramafic-hosted hydrothermal vents. Astrobiology 15, 381–399. PMID:25984920

  11. Auto-Interviewing, Auto-Ethnography and Critical Incident Methodology for Eliciting a Self-Conceptualised Worldview

    Directory of Open Access Journals (Sweden)

    Béatrice Boufoy-Bastick

    2004-01-01

    Full Text Available Knowing oneself has been an age-old humanistic concern for many western and oriental philosophers. The same concern is now shared by modern psychologists and anthropologists who seek to understand the "self" and others by eluci­dating their worldviews. This paper presents an auto-anthropological methodology which can ef­fec­tively elucidate one's worldview. This intro­spective qualitative methodology uses integratively three methodological processes, namely auto-inter­viewing, auto-ethnography and critical incident technique to elicit baseline cultural data. The paper reports on how this methodology was used to elicit my current worldview. It first explains how emic data were educed and rendered in emo­tionally enhanced narratives, which were then deconstructed to elicit the major recurring themes in the etic interpretive content analysis. To illus­trate this auto-anthropological methodology, two cultural life events have been used: a critical incident in Singapore and a consciousness raising process in Fiji. The first event revealed my own education ideology while the second made me realise my mitigated support for cultural diversity. URN: urn:nbn:de:0114-fqs0401371

  12. Components for more blue. BLUETEC takes away undesired nitrogen oxides and creates cleaner auto-ignition; Bausteine fuer mehr Blau. BLUETEC entfernt unerwuenschte Stickoxide und macht den Selbstzuender sauberer

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    The success story of the diesel engine is closely linked with the history of Mercedes-Benz. Now a new chapter is opened with BLUETEC. The modular technology package that is presented by Mercedes-Benz for the first time constitutes a milestone for cars with auto-ignition. BLUETEC enables to reduce the nitrogen oxide content considerably. The target is to build a diesel engine that is as clean as a gasoline engine. Thus DaimlerChrysler owns modern diesel drives, which are economical, powerful and at the same time the cleanest in the world. (orig.)

  13. Natural inorganic nanoparticles--formation, fate, and toxicity in the environment.

    Science.gov (United States)

    Sharma, Virender K; Filip, Jan; Zboril, Radek; Varma, Rajender S

    2015-12-07

    The synthesis, stability, and toxicity of engineered metal nanoparticles (ENPs) have been extensively studied during the past two decades. In contrast, research on the formation, fate, and ecological effects of naturally-occurring nanoparticles (NNPs) has become a focus of attention only recently. The natural existence of metal nanoparticles and their oxides/sulfides in waters, wastewaters, ore deposits, mining regions, and hydrothermal vents, as exemplified by the formation of nanoparticles containing silver and gold (AgNPs and AuNPs), Fe, Mn, pyrite (FeS2), Ag2S, CuS, CdS, and ZnS, is dictated largely by environmental conditions (temperature, pH, oxic/anoxic, light, and concentration and characteristics of natural organic matter (NOM)). Examples include the formation of nanoparticles containing pyrite, Cu and Zn-containing pyrite, and iron in hydrothermal vent black smoker emissions. Metal sulfide nanoparticles can be formed directly from their precursor ions or indirectly by sulfide ion-assisted transformation of the corresponding metal oxides under anaerobic conditions. This tutorial focuses on the formation mechanisms, fate, and toxicity of natural metal nanoparticles. Natural waters containing Ag(I) and Au(III) ions in the presence of NOM generate AgNPs and AuNPs under thermal, non-thermal, and photochemical conditions. These processes are significantly accelerated by existing redox species of iron (Fe(II)/Fe(III)). NOM, metal-NOM complexes, and reactive oxygen species (ROS) such as O2˙(-), ˙OH, and H2O2 are largely responsible for the natural occurrence of nanoparticles. AgNPs and AuNPs emanating from Ag(I)/Au(III)-NOM reactions are stable for several months, thus indicating their potential to be transported over long distances from their point of origin. However, endogenous cations present in natural waters can destabilize the nanoparticles, with divalent cations (e.g., Ca(2+), Mg(2+)) being more influential than their monovalent equivalents (e.g., Na

  14. [PSYCHOTHERAPEUTIC INTERVENTIONS IN PATIENTS WITH AUTO-AGGRESSIVE BEHAVIOR DURING THE FIRST PSYCHOTIC EPISODE].

    Science.gov (United States)

    Mudrenko, I; Potapov, A; Sotnikov, D; Kolenko, O; Kmyta, A

    2017-09-01

    In this article the formation of psychopathological predictors auto-aggressive behavior in patients with a first psychotic episode were identified, which became "targets" in the framework of a comprehensive emergency suicide assistance to conduct the crisis psychotherapy. The work was done on the basis of the Sumy regional psychoneurologic dispensary, where 100 patients with a first psychotic episode were examined: 52 of them (core group) had suicidal symptoms and 48 (control group) had not. According to the test results of severity of auto-aggressive predictors (pre-suicidal syndrome) to clinicopsychopathological predictors of auto-aggressive behavior include: the narrowing of the cognitive function (p≤0,001), the avoidance of interpersonal contact (r≤0,001), the presence of affective (p≤0,001) and vegetative (p≤0,01) violations, the autoaggression of moderate severity (p≤0,001) and impulsivity (p≤0,001). Patients of the core group with the auto-aggressive behavior (n=58) completed a course of a crisis psychotherapy comprising the stages of crisis support, crisis intervention and increase the adaptation layer. After a psychotherapy course levels of aggression (6,45±0,41), auto-aggression (of 9,68±0,67), disorders in the affective sphere (18,58±0,66) and impulsivity (of 4,23±0,30) decreased, which was manifested in increasing tolerance to emotional stress factors, control over their emotions and reduce their affective valence (p≤0,001). The expansion of interpersonal interaction, the increase of patients social activity, the blood relationships establishment (of 9,23±0,40) was observed.

  15. Thermodynamics of formation of coffinite, USiO 4

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Xiaofeng; Szenknect, Stéphanie; Mesbah, Adel; Labs, Sabrina; Clavier, Nicolas; Poinssot, Christophe; Ushakov, Sergey V.; Curtius, Hildegard; Bosbach, Dirk; Ewing, Rodney C.; Burns, Peter C.; Dacheux, Nicolas; Navrotsky, Alexandra

    2015-05-11

    Coffinite, USiO4, is an important U(IV) mineral, but its thermodynamic properties are not well-constrained. In this work, two different coffinite samples were synthesized under hydrothermal conditions and purified from a mixture of products. The enthalpy of formation was obtained by high-temperature oxide melt solution calorimetry. Coffinite is energetically metastable with respect to a mixture of UO2 (uraninite) and SiO2 (quartz) by 25.6 ± 3.9 kJ/mol. Its standard enthalpy of formation from the elements at 25 °C is -1,970.0 ± 4.2 kJ/mol. Decomposition of the two samples was characterized by X-ray diffraction and by thermogravimetry and differential scanning calorimetry coupled with mass spectrometric analysis of evolved gases. Coffinite slowly decomposes to U3O8 and SiO2 starting around 450 °C in air and thus has poor thermal stability in the ambient environment. The energetic metastability explains why coffinite cannot be synthesized directly from uraninite and quartz but can be made by low-temperature precipitation in aqueous and hydrothermal environments. These thermochemical constraints are in accord with observations of the occurrence of coffinite in nature and are relevant to spent nuclear fuel corrosion.

  16. Microbial Community Structure of Deep-sea Hydrothermal Vents on the Ultraslow Spreading Southwest Indian Ridge

    Directory of Open Access Journals (Sweden)

    Jian Ding

    2017-06-01

    Full Text Available Southwest Indian Ridge (SWIR is a typical oceanic ultraslow spreading ridge with intensive hydrothermal activities. The microbial communities in hydrothermal fields including primary producers to support the entire ecosystem by utilizing geochemical energy generated from rock-seawater interactions. Here we have examined the microbial community structures on four hydrothermal vents from SWIR, representing distinct characteristics in terms of temperature, pH and metal compositions, by using Illumina sequencing of the 16S small subunit ribosomal RNA (rRNA genes, to correlate bacterial and archaeal populations with the nature of the vents influenced by ultraslow spreading features. Epsilon-, Gamma-, Alpha-, and Deltaproteobacteria and members of the phylum Bacteroidetes and Planctomycetes, as well as Thaumarchaeota, Woesearchaeota, and Euryarchaeota were dominant in all the samples. Both bacterial and archaeal community structures showed distinguished patterns compared to those in the fast-spreading East Pacific Ridge or the slow-spreading Mid-Atlantic Ridge as previously reported. Furthermore, within SWIR, the microbial communities are highly correlated with the local temperatures. For example, the sulfur-oxidizing bacteria were dominant within bacteria from low-temperature vents, but were not represented as the dominating group recovered from high temperature (over 300°C venting chimneys in SWIR. Meanwhile, Thaumarchaeota, the ammonium oxidizing archaea, only showed high relative abundance of amplicons in the vents with high-temperature in SWIR. These findings provide insights on the microbial community in ultraslow spreading hydrothermal fields, and therefore assist us in the understanding of geochemical cycling therein.

  17. Lipid synthesis under hydrothermal conditions by Fischer-Tropsch-type reactions.

    Science.gov (United States)

    McCollom, T M; Ritter, G; Simoneit, B R

    1999-03-01

    Ever since their discovery in the late 1970's, mid-ocean-ridge hydrothermal systems have received a great deal of attention as a possible site for the origin of life on Earth (and environments analogous to mid-ocean-ridge hydrothermal systems are postulated to have been sites where life could have originated or Mars and elsewhere as well). Because no modern-day terrestrial hydrothermal systems are free from the influence of organic compounds derived from biologic processes, laboratory experiments provide the best opportunity for confirmation of the potential for organic synthesis in hydrothermal systems. Here we report on the formation of lipid compounds during Fischer-Tropsch-type synthesis from aqueous solutions of formic acid or oxalic acid. Optimum synthesis occurs in stainless steel vessels by heating at 175 degrees C for 2-3 days and produces lipid compounds ranging from C2 to > C35 which consist of n-alkanols, n-alkanoic acids, n-alkenes, n-alkanes and alkanones. The precursor carbon sources used are either formic acid or oxalic acid, which disproportionate to H2, CO2 and probably CO. Both carbon sources yield the same lipid classes with essentially the same ranges of compounds. The synthesis reactions were confirmed by using 13C labeled precursor acids.

  18. Mechano-hydrothermal preparation of Li-Al-OH layered double hydroxides

    Science.gov (United States)

    Zhang, Fengrong; Hou, Wanguo

    2018-05-01

    A mechano-hydrothermal (MHT) method was used to synthesize Li-Al-OH layered double hydroxides (LDHs) from LiOH·H2O, Al(OH)3 and H2O as starting materials. A two-step synthesis was conducted, that is, Al(OH)3 was milled for 1 h, followed by hydrothermal treatment with LiOH·H2O solution. Effects of the LiOH/Al(OH)3 molar ratio (RLi/Al) and hydrothermal temperature (Tht) on the crystallinity, morphology, and composition of the product were examined. The resulting LDHs were characterized by X-ray diffraction, transmission electron microscopy, scanning electron microscopy, Fourier transform infrared, and elemental analyses. The results showed that pre-milling plays a key role in the LDH formation during subsequent hydrothermal treatment. The Li/Al molar ratio of the obtained LDHs keeps constant at 0.5, independent from theRLi/Al (0.5-5.0) in the starting materials. An increase in the Tht (20-80 °C) can enhance the crystallinity and morphology regularity of the products. The so-obtained Li-Al-OH LDHs exhibit high crystallinity and well-dispersity, which may have wider applications than the aggregate ones obtained using conventional mechanochemical and Li+-imbibition methods.

  19. Controls on thallium uptake during hydrothermal alteration of the upper ocean crust

    Science.gov (United States)

    Coggon, Rosalind M.; Rehkämper, Mark; Atteck, Charlotte; Teagle, Damon A. H.; Alt, Jeffrey C.; Cooper, Matthew J.

    2014-11-01

    , a correlation between the Tl and S concentrations of upper crustal basalts from Holes U1301B, 504B and 896A indicates that Tl is primarily incorporated into secondary sulfides. Given that some of these secondary sulfides formed as a result of microbial sulfate reduction, microbial action is at least indirectly responsible for Tl-uptake. Thallium-enrichment of ridge flank basalts requires a Tl-bearing fluid and physical, chemical and microbial conditions that favor secondary sulfide formation. Uptake of Tl occurs in reducing environments in the background rocks away from fluid flow pathways during early 'open' circulation of oxidizing seawater but more pervasively throughout the system during later 'restricted' circulation of reducing fluids. The Tl-isotope system is therefore a useful tracer of the fluid flux through both the 'open' and 'restricted' ridge flank hydrothermal regimes.

  20. Thermodynamics of Uranyl Minerals: Enthalpies of Formation of Uranyl Oxide Hydrates

    International Nuclear Information System (INIS)

    Kubatko, K.; Helean, K.; Navrotsky, A.; Burns, P.C.

    2005-01-01

    The enthalpies of formation of seven uranyl oxide hydrate phases and one uranate have been determined using high-temperature oxide melt solution calorimetry: [(UO 2 ) 4 O(OH) 6 ](H 2 O) 5 , metaschoepite; β-UO 2 (OH) 2 ; CaUO 4 ; Ca(UO 2 ) 6 O 4 (OH) 6 (H 2 O) 8 , becquerelite; Ca(UO 2 ) 4 O 3 (OH) 4 (H 2 O) 2 ; Na(UO 2 )O(OH), clarkeite; Na 2 (UO 2 ) 6 O 4 (OH) 6 (H 2 O) 7 , the sodium analogue of compreignacite and Pb 3 (UO 2 ) 8 O 8 (OH) 6 (H 2 O) 2 , curite. The enthalpy of formation from the binary oxides, ΔH f-ox , at 298 K was calculated for each compound from the respective drop solution enthalpy, ΔH ds . The standard enthalpies of formation from the elements, ΔH f o , at 298 K are -1791.0 ± 3.2, -1536.2 ± 2.8, -2002.0 ± 3.2, -11389.2 ± 13.5, -6653.1 ± 13.8, -1724.7 ± 5.1, -10936.4 ± 14.5 and -13163.2 ± 34.4 kJ mol -1 , respectively. These values are useful in exploring the stability of uranyl oxide hydrates in auxiliary chemical systems, such as those expected in U-contaminated environments

  1. Application of Auto CAD

    International Nuclear Information System (INIS)

    Park, Yong Un; Kim, Geun Ho

    1989-05-01

    This book has introduction to use this book and explanation of application on Auto CAD, which includes, sub directories, batch files, robot wrist, design of standard paper, title block, robort weld room, robert wrist joint, PC board, plant sym, electro, PID, machines, robots, bubbles, plant, schema, Pid, plant assembly, robots, dim plant, PL-ASSM, plotting line weight control, symbol drawing joint, Auto CAD using script file, set up of workout · MNU, workout MNU, ACAD, LSP and workout · MNU.

  2. Instant AutoIt scripting

    CERN Document Server

    Laso, Emilio Aristides de Fez

    2013-01-01

    Filled with practical, step-by-step instructions and clear explanations for the most important and useful tasks. This is a Packt Instant How-to guide, which provides concise and clear recipes for getting started with AutoIt.Instant AutoIt Scripting Essentials How-to is for beginners who wish to know more about automation and programming, system administration developers who intent to automate/manage clusters and servers, and for computer programmers who want to control any PC to create seamless automation apps.

  3. Hydrothermal decomposition of TBP and fixation of its decomposed residue by HHP technique

    International Nuclear Information System (INIS)

    Yamasaki, N.; Fujiki, M.; Nishioka, M.; Ioku, K.; Yanagisawa, K.; Kozai, N.; Muraoka, S.

    1991-01-01

    The tributyl phosphate (TBP) used for the fuel reprocessing by Purex process is discharged as spent solvent because of the chemical decomposition and the damage due to radiation. Alkaline hydrothermal treatment in oxygen which is the reaction in a closed system is effective for the decomposition of TBP as it can transform organic materials to stable inorganic ions. Hydrothermal hot pressing technique has been applied to the immobilization of various radioactive wastes. This work deals with the continuous treatment process for the decomposition of TBP waste and the immobilization of its decomposed residue under hydrothermal condition. These processes are outlined. The experiment and the results are reported. TBP was completely decomposed above 200degC, and COD value showed the maximum at 250degC. The reaction process consists of two steps of the hydrolysis of TBP and the oxidation of the formed organic material. (K.I.)

  4. A Novel Dual-Stage Hydrothermal Flow Reactor

    DEFF Research Database (Denmark)

    Hellstern, Henrik Christian; Becker, Jacob; Hald, Peter

    2015-01-01

    The dual-stage reactor is a novel continuous flow reactor with two reactors connected in series. It is designed for hydrothermal flow synthesis of nanocomposites, in which a single particle consists of multiple materials. The secondary material may protect the core nanoparticle from oxidation....... The dual-stage reactor combines the ability to produce advanced materials with an upscaled capacity in excess of 10 g/hour (dry mass). TiO2 was synthesized in the primary reactor and reproduced previous results. The dual-stage capability was succesfully demonstrated with a series of nanocomposites incl. Ti...

  5. Formation and dissolution of the anodic oxide film on zirconium in alcoholic aqueous solutions

    International Nuclear Information System (INIS)

    Mogoda, A.S.

    1995-01-01

    The dissolution behavior of the anodic oxide film formed in alcoholic aqueous solutions was studied. Results indicated the dissolution mechanism of the duplex oxide film followed a zero-order rate equation. The increase in methanol concentration in the formation medium (phosphoric acid [H 3 PO 4 ]) resulted in formation of an oxide film that incorporated little phosphate ion and that dissolved at a low rate. The dissolution rate of the oxide film decreased with increasing methanol concentration in the dissolution medium. This was attributed to the increase in the viscosity of the medium, which led to a decrease in the diffusion coefficient of the dissolution product of the zirconium oxide film. Dissolution of the anodic oxide film also was investigated as a function of the chain length of alcohols

  6. Preparation and characterization of hydrochar from waste eucalyptus bark by hydrothermal carbonization

    International Nuclear Information System (INIS)

    Gao, Pin; Zhou, Yiyuan; Meng, Fang; Zhang, Yihui; Liu, Zhenhong; Zhang, Wenqi; Xue, Gang

    2016-01-01

    HTC (hydrothermal carbonization) is a technically-attractive thermal conversion process for biomass to produce solid carbonaceous products at mild conditions. EB (eucalyptus bark) was used as a feedstock for producing hydrochar by HTC. Effect of process conditions on the yield and physicochemical properties of hydrochar was examined by varying carbonization temperature over the range of 220–300 °C and varying residence time over the range of 2–10 h. With increase in temperature, the hydrochar yield decreased slightly from 46.4% at 220 °C to 40.0% at 300 °C. The O/C and H/C atomic ratios reduced from 1.69 and 0.80 to 0.83 and 0.23, respectively, which was mostly related to dehydration, decarboxylation and demethanation reactions. The oxygen containing functional groups decreased with increasing temperature. HHV (higher heating value) of hydrochar was in the range of 20.2–29.2 MJ/kg. Thermogravimetric analysis showed that hydrochar products obtained at temperature over 220 °C exhibited almost the same thermal behaviors. In comparison, the influence of residence time on the yield, physicochemical properties and thermal behavior of hydrochar was marginal. - Highlights: • Hydrothermal carbonization was employed to convert eucalyptus bark into hydrochar. • Carbonization temperature had a significant effect on the formation of hydrochar. • Residence time had marginal influence on the hydrothermal reactions. • Energetic properties of hydrochar was improved by hydrothermal carbonization. • Primary mechanisms of hydrochar formation were proposed.

  7. Characterization of lignin during oxidative and hydrothermal pre-treatment processes of wheat straw and corn stover.

    Science.gov (United States)

    Kaparaju, Prasad; Felby, Claus

    2010-05-01

    The objective of the study was to characterize and map changes in lignin during hydrothermal and wet explosion pre-treatments of wheat straw and corn stover. Chemical composition, microscopic (atomic force microscopy and scanning electron microscopy) and spectroscopic (attenuated total reflectance Fourier transform infrared spectroscopy, ATR-FTIR) analyses were performed. Results showed that both pre-treatments improved the cellulose and lignin content with substantial removal of hemicellulose in the pre-treated biomasses. These values were slightly higher for hydrothermal compared to wet explosion pre-treatment. ATR-FTIR analyses also confirmed these results. Microscopic analysis showed that pre-treatments affected the biomass by partial difibration. Lignin deposition on the surface of the hydrothermally pre-treated fibre was very distinct while severe loss of fibril integrity was noticed with wet exploded fibre. The present study thus revealed that the lignin cannot be removed by the studied pre-treatments. However, both pre-treatments improved the accessibility of the biomass towards enzymatic hydrolysis. Copyright 2009 Elsevier Ltd. All rights reserved.

  8. Auto concept y rasgos de personalidad: Un estudio correlacional

    Directory of Open Access Journals (Sweden)

    Débora Cecílio Fernandes

    Full Text Available Este estudio ha investigado las relaciones entre los rasgos de personalidad y auto concepto. Fueron aplicadas la Escala de Traços de Personalidade para Crianças y la Escala de Autoconceito Infanto-Juvenil en 389 niños, con edad de 8 a 10 años de escuelas públicas y particulares. Se han hallado diferencias de sexo para casi todas las medidas hechas. Para los varones, ha sido observado correlaciones positivas entre extroversión y auto conceptos escolar y familiar, neuroticismo y psicoticismo con auto conceptos personal y social, y sociabilidad con auto concepto familiar; y correlaciones negativas entre extroversión y auto concepto social, psicoticismo y auto concepto familiar, y sociabilidad y auto concepto personal. Para las niñas, fueron observadas correlaciones positivas entre el auto concepto social y psicoticismo y sociabilidad con el familiar; y correlaciones negativas entre extroversión y el social, psicoticismo y neuroticismo con el familiar. Los análisis de los grupos extremos confirmaron los datos encontrados.

  9. Pathways for abiotic organic synthesis at submarine hydrothermal fields.

    Science.gov (United States)

    McDermott, Jill M; Seewald, Jeffrey S; German, Christopher R; Sylva, Sean P

    2015-06-23

    Arguments for an abiotic origin of low-molecular weight organic compounds in deep-sea hot springs are compelling owing to implications for the sustenance of deep biosphere microbial communities and their potential role in the origin of life. Theory predicts that warm H2-rich fluids, like those emanating from serpentinizing hydrothermal systems, create a favorable thermodynamic drive for the abiotic generation of organic compounds from inorganic precursors. Here, we constrain two distinct reaction pathways for abiotic organic synthesis in the natural environment at the Von Damm hydrothermal field and delineate spatially where inorganic carbon is converted into bioavailable reduced carbon. We reveal that carbon transformation reactions in a single system can progress over hours, days, and up to thousands of years. Previous studies have suggested that CH4 and higher hydrocarbons in ultramafic hydrothermal systems were dependent on H2 generation during active serpentinization. Rather, our results indicate that CH4 found in vent fluids is formed in H2-rich fluid inclusions, and higher n-alkanes may likely be derived from the same source. This finding implies that, in contrast with current paradigms, these compounds may form independently of actively circulating serpentinizing fluids in ultramafic-influenced systems. Conversely, widespread production of formate by ΣCO2 reduction at Von Damm occurs rapidly during shallow subsurface mixing of the same fluids, which may support anaerobic methanogenesis. Our finding of abiogenic formate in deep-sea hot springs has significant implications for microbial life strategies in the present-day deep biosphere as well as early life on Earth and beyond.

  10. Complexing and hydrothermal ore deposition

    CERN Document Server

    Helgeson, Harold C

    1964-01-01

    Complexing and Hydrothermal Ore Deposition provides a synthesis of fact, theory, and interpretative speculation on hydrothermal ore-forming solutions. This book summarizes information and theory of the internal chemistry of aqueous electrolyte solutions accumulated in previous years. The scope of the discussion is limited to those aspects of particular interest to the geologist working on the problem of hydrothermal ore genesis. Wherever feasible, fundamental principles are reviewed. Portions of this text are devoted to calculations of specific hydrothermal equilibriums in multicompone

  11. Evolution of interstellar organic compounds under asteroidal hydrothermal conditions

    Science.gov (United States)

    Vinogradoff, V.; Bernard, S.; Le Guillou, C.; Remusat, L.

    2018-05-01

    Carbonaceous chondrites (CC) contain a diversity of organic compounds. No definitive evidence for a genetic relationship between these complex organic molecules and the simple organic molecules detected in the interstellar medium (ISM) has yet been reported. One of the many difficulties arises from the transformations of organic compounds during accretion and hydrothermal alteration on asteroids. Here, we report results of hydrothermal alteration experiments conducted on a common constituent of interstellar ice analogs, Hexamethylenetetramine (HMT - C6H12N4). We submitted HMT to asteroidal hydrothermal conditions at 150 °C, for various durations (up to 31 days) and under alkaline pH. Organic products were characterized by gas chromatography mass spectrometry, infrared spectroscopy and synchrotron-based X-ray absorption near edge structure spectroscopy. Results show that, within a few days, HMT has evolved into (1) a very diverse suite of soluble compounds dominated by N-bearing aromatic compounds (> 150 species after 31 days), including for instance formamide, pyridine, pyrrole and their polymers (2) an aromatic and N-rich insoluble material that forms after only 7 days of experiment and then remains stable through time. The reaction pathways leading to the soluble compounds likely include HMT dissociation, formose and Maillard-type reactions, e.g. reactions of sugar derivatives with amines. The present study demonstrates that, if interstellar organic compounds such as HMT had been accreted by chondrite parent bodies, they would have undergone chemical transformations during hydrothermal alteration, potentially leading to the formation of high molecular weight insoluble organic molecules. Some of the diversity of soluble and insoluble organic compounds found in CC may thus result from asteroidal hydrothermal alteration.

  12. Formation of nano iridium oxide: material properties and neural cell culture

    International Nuclear Information System (INIS)

    Lee, In-Seop; Whang, Chung-Nam; Lee, Young-Hee; Hwan Lee, Gun; Park, Bong-Joo; Park, Jong-Chul; Seo, Won-Seon; Cui Fuzhai

    2005-01-01

    Iridium film with the thickness of 30 and 60 nm were formed on both Si wafer and commercially pure (CP) Ti by electron beam evaporation. The thin iridium film showed the identical charge injection capability with the bulk Ir. However, the charge injection value of iridium film was decreased with continuous potential cycling when the deposited iridium became depleted due to the formation of oxide. The number of cycles at which the charge injection value decreased was 800 and 1600 cycles for the 30- and 60-nm-thick Ir film, respectively. FE-SEM observations on the cross section of Ir film clearly showed the thicker iridium oxide was formed with the more potential cycling. Ar ion beam etching to substrates before deposition certainly improved the adhesion strength of Ir film enough to resist to the strain induced by the larger volume occupation of iridium oxide. Swiss 3T3 fibroblasts culture on Ir and Ir oxide showed no cytotoxicity. Also, embryonic cortical neural cell culture on electrode indicated neurons adhered and survived by the formation of neurofilament

  13. Hydrothermal Formation of the Head-to-Head Coalesced Szaibelyite MgBO2(OH Nanowires

    Directory of Open Access Journals (Sweden)

    Zhu Wancheng

    2009-01-01

    Full Text Available Abstract The significant effect of the feeding mode on the morphology and size distribution of the hydrothermal synthesized MgBO2(OH is investigated, which indicates that, slow dropping rate (0.5 drop s−1 and small droplet size (0.02 mL d−1 of the dropwise added NaOH solution are favorable for promoting the one-dimensional (1D preferential growth and thus enlarging the aspect ratio of the 1D MgBO2(OH nanostructures. The joint effect of the low concentration of the reactants and feeding mode on the hydrothermal product results in the head-to-head coalesced MgBO2(OH nanowires with a length of 0.5–9.0 μm, a diameter of 20–70 nm, and an aspect ratio of 20–300 in absence of any capping reagents/surfactants or seeds.

  14. A Novel Investigation of the Formation of Titanium Oxide Nanotubes on Thermally Formed Oxide of Ti-6Al-4V.

    Science.gov (United States)

    Butt, Arman; Hamlekhan, Azhang; Patel, Sweetu; Royhman, Dmitry; Sukotjo, Cortino; Mathew, Mathew T; Shokuhfar, Tolou; Takoudis, Christos

    2015-10-01

    Traditionally, titanium oxide (TiO2) nanotubes (TNTs) are anodized on Ti-6Al-4V alloy (Ti-V) surfaces with native TiO2 (amorphous TiO2); subsequent heat treatment of anodized surfaces has been observed to enhance cellular response. As-is bulk Ti-V, however, is often subjected to heat treatment, such as thermal oxidation (TO), to improve its mechanical properties. Thermal oxidation treatment of Ti-V at temperatures greater than 200°C and 400°C initiates the formation of anatase and rutile TiO2, respectively, which can affect TNT formation. This study aims at understanding the TNT formation mechanism on Ti-V surfaces with TO-formed TiO2 compared with that on as-is Ti-V surfaces with native oxide. Thermal oxidation-formed TiO2 can affect TNT formation and surface wettability because TO-formed TiO2 is expected to be part of the TNT structure. Surface characterization was carried out with field emission scanning electron microscopy, energy dispersive x-ray spectroscopy, water contact angle measurements, and white light interferometry. The TNTs were formed on control and 300°C and 600°C TO-treated Ti-V samples, and significant differences in TNT lengths and surface morphology were observed. No difference in elemental composition was found. Thermal oxidation and TO/anodization treatments produced hydrophilic surfaces, while hydrophobic behavior was observed over time (aging) for all samples. Reduced hydrophobic behavior was observed for TO/anodized samples when compared with control, control/anodized, and TO-treated samples. A method for improved surface wettability and TNT morphology is therefore discussed for possible applications in effective osseointegration of dental and orthopedic implants.

  15. Nanogeochemistry of hydrothermal magnetite

    Science.gov (United States)

    Deditius, Artur P.; Reich, Martin; Simon, Adam C.; Suvorova, Alexandra; Knipping, Jaayke; Roberts, Malcolm P.; Rubanov, Sergey; Dodd, Aaron; Saunders, Martin

    2018-06-01

    Magnetite from hydrothermal ore deposits can contain up to tens of thousands of parts per million (ppm) of elements such as Ti, Si, V, Al, Ca, Mg, Na, which tend to either structurally incorporate into growth and sector zones or form mineral micro- to nano-sized particles. Here, we report micro- to nano-structural and chemical data of hydrothermal magnetite from the Los Colorados iron oxide-apatite deposit in Chile, where magnetite displays both types of trace element incorporation. Three generations of magnetites (X-Z) were identified with concentrations of minor and trace elements that vary significantly: SiO2, from below detection limit (bdl) to 3.1 wt%; Al2O3, 0.3-2.3 wt%; CaO, bdl-0.9 wt%; MgO, 0.02-2.5 wt%; TiO2, 0.1-0.4 wt%; MnO, 0.04-0.2 wt%; Na2O, bdl-0.4 wt%; and K2O, bdl-0.4 wt%. An exception is V2O3, which is remarkably constant, ranging from 0.3 to 0.4 wt%. Six types of crystalline nanoparticles (NPs) were identified by means of transmission electron microscopy in the trace element-rich zones, which are each a few micrometres wide: (1) diopside, (2) clinoenstatite; (3) amphibole, (4) mica, (5) ulvöspinel, and (6) Ti-rich magnetite. In addition, Al-rich nanodomains, which contain 2-3 wt% of Al, occur within a single crystal of magnetite. The accumulation of NPs in the trace element-rich zones suggest that they form owing to supersaturation from a hydrothermal fluid, followed by entrapment during continuous growth of the magnetite surface. It is also concluded that mineral NPs promote exsolution of new phases from the mineral host, otherwise preserved as structurally bound trace elements. The presence of abundant mineral NPs in magnetite points to a complex incorporation of trace elements during growth, and provides a cautionary note on the interpretation of micron-scale chemical data of magnetite.

  16. Timing of porphyry (Cu-Mo) and base metal (Zn-Pb-Ag-Cu) mineralisation in a magmatic-hydrothermal system—Morococha district, Peru

    Science.gov (United States)

    Catchpole, Honza; Kouzmanov, Kalin; Bendezú, Aldo; Ovtcharova, Maria; Spikings, Richard; Stein, Holly; Fontboté, Lluís

    2015-12-01

    The Morococha district in central Peru is characterised by economically important Cordilleran polymetallic (Zn-Pb-Ag-Cu) vein and replacement bodies and the large Toromocho porphyry Cu-Mo deposit in its centre. U-Pb, Re-Os, and 40Ar/39Ar geochronology data for various porphyry-related hydrothermal mineralisation styles record a 3.5-Ma multi-stage history of magmatic-hydrothermal activity in the district. In the late Miocene, three individual magmatic-hydrothermal centres were active: the Codiciada, Toromocho, and Ticlio centres, each separated in time and space. The Codiciada centre is the oldest magmatic-hydrothermal system in the district and consists of a composite porphyry stock associated with anhydrous skarn and quartz-molybdenite veins. The hydrothermal events are recorded by a titanite U-Pb age at 9.3 ± 0.2 Ma and a molybdenite Re-Os age at 9.26 ± 0.03 Ma. These ages are indistinguishable from zircon U-Pb ages for porphyry intrusions of the composite stock and indicate a time span of 0.2 Ma for magmatic-hydrothermal activity. The small Ticlio magmatic-hydrothermal centre in the west of the district has a maximum duration of 0.3 Ma, ranging from porphyry emplacement to porphyry mineralisation at 8.04 ± 0.14 Ma (40Ar/39Ar muscovite cooling age). The Toromocho magmatic-hydrothermal centre has a minimum of five recorded porphyry intrusions that span a total of 1.3 Ma and is responsible for the formation of the giant Toromocho Cu-Mo deposit. At least two hydrothermal pulses are identified. Post-dating a first pulse of molybdenite mineralisation, wide-spread hydrous skarn covers an area of over 6 km2 and is recorded by five 40Ar/39Ar cooling ages at 7.2-6.8 Ma. These ages mark the end of the slowly cooling and long-lived Toromocho magmatic-hydrothermal centre soon after last magmatic activity at 7.26 ± 0.02 Ma. District-wide (50 km2) Cordilleran base metal vein and replacement bodies post-date the youngest recorded porphyry mineralisation event at Toromocho

  17. Evaluation of natural organic matter adsorption on Fe-Al binary oxide: Comparison with single metal oxides.

    Science.gov (United States)

    Kim, Kyung-Jo; Jang, Am

    2017-10-01

    The adsorption characteristics of three types of standard natural organic matter (NOM) on iron-aluminum (Fe-Al) binary oxide (FAO) and heated aluminum oxide (HAO) under natural surface water condition were investigated using various adsorption isotherms and kinetic models. FAO was synthesized by Fe oxide and Al oxide, mixed using the sol-gel hydrothermal method, and aluminum sulfate was used to make HAO. The amount of adsorbed NOM was increased to 79.6 mg g -1 for humic acid (HA), 101.1 mg g -1 for sodium alginate (SA) in the FAO, but the maximum adsorption capacity of bovine serum albumin (BSA) (461.3 mg g -1 ) was identified on the HAO. The adsorption of HA, BSA, and SA dramatically increased (>70%) on FAO in 5 min and HA was significantly removed (90%) among the three NOM. Mutual interaction among the adsorbed NOM (BSA) occurred on the HAO surface during adsorption due to formation of monolayer by protein molecules at neutral pH. The pseudo second order clearly represented the adsorption kinetics for both adsorbents. The equilibrium isotherm data of FAO was better exhibited by the Langmuir isotherm model than by the Freundlich isotherm, but HAO was a slightly non-linear Langmuir type. Also, the free energy, enthalpy, and entropy of adsorption were determined from the thermodynamic experiments. Adsorption on FAO was spontaneous and an exothermic process. Fluorescence excitation-emission matrix (FEEM) spectra were used to elucidate the variation in organic components. The results obtained suggests that the significant changes in the surface property of the adsorbent (large surface area, increased crystalline intensity, and fine particle size) were effectively determined by the Fe-synthesized Al oxide mixed using the sol-gel hydrothermal method. The results also suggest that the changes enhanced the adsorption capacity, whereby three NOM were notably removed on FAO regardless of NOM characteristics (hydrophobic and hydrophilic). Copyright © 2017 Elsevier

  18. Investigations on Bi25FeO40 powders synthesized by hydrothermal and combustion-like processes

    International Nuclear Information System (INIS)

    Köferstein, Roberto; Buttlar, Toni; Ebbinghaus, Stefan G.

    2014-01-01

    The syntheses of phase-pure and stoichiometric iron sillenite (Bi 25 FeO 40 ) powders by a hydrothermal (at ambient pressure) and a combustion-like process are described. Phase-pure samples were obtained in the hydrothermal reaction at 100 °C (1), whereas the combustion-like process leads to pure Bi 25 FeO 40 after calcination at 750 °C for 2 h (2a). The activation energy of the crystallite growth process of hydrothermally synthesized Bi 25 FeO 40 was calculated as 48(9) kJ mol −1 . The peritectic point was determined as 797(1) °C. The optical band gaps of the samples are between 2.70(7) eV and 2.81(6) eV. Temperature and field-depending magnetization measurements (5−300 K) show a paramagnetic behaviour with a Curie constant of 55.66×10 −6 m 3 K mol −1 for sample 1 and C=57.82×10 −6 m 3 K mol −1 for sample 2a resulting in magnetic moments of µ mag =5.95(8) µ B mol −1 and µ mag =6.07(4) µ B mol −1 . The influence of amorphous iron-oxide as a result of non-stoichiometric Bi/Fe ratios in hydrothermal syntheses on the magnetic behaviour was additionally investigated. - Graphical abstract: Bi 25 FeO 40 powders were prepared by a hydrothermal method and a combustion process. The optical band gaps and the peritectic point were determined. The magnetic behaviour was investigated depending on the synthesis and the initial Bi/Fe ratios. The influence of amorphous iron-oxide on the magnetic properties was examined. - Highlights: • Two simple syntheses routes for stoichiometric Bi 25 FeO 40 powders using starch as polymerization agent. • Monitoring the phase evolution and crystallite growth kinetics during the syntheses. • Determination of the optical band gap and melting point. • Investigations of the magnetic behaviour of Bi 25 FeO 40 powders. • Influence of amorphous iron oxide and a non-stoichiometric Bi/Fe ratio on the magnetic behaviour

  19. Reduction of nitrate and nitrite salts under hydrothermal conditions

    International Nuclear Information System (INIS)

    Foy, B.R.; Dell'Orco, P.C.; Wilmanns, E.; McInroy, R.; Ely, J.; Robinson, J.M.; Buelow, S.J.

    1994-01-01

    The feasibility of reducing nitrate/nitrite salts under hydrothermal conditions for the treatment of aqueous mixed wastes stored in the underground tanks at the Department of Energy site at Hanford, Washington was studied. The reduction of nitrate and nitrite salts by reaction with EDTA using a tank waste simulant was examined at temperatures between 623K and 800K and pressures between 0.6 and 1.2 kbar. Continuous flow reactors were used to determine kinetics and products of reactions. All reactions were studied under pressures high enough to produce single phase conditions. The reactions are rapid, go to completion in less than a minute, and produce simple products, such as carbonate, nitrogen, and nitrous oxide gases. The experimental results demonstrate the ability of chemical reactions under hydrothermal conditions to reduce the nitrate and nitrite salts and destroy organic compounds in the waste mixtures

  20. Auto-recognition of surfaces and auto-generation of material removal volume for finishing process

    Science.gov (United States)

    Kataraki, Pramod S.; Salman Abu Mansor, Mohd

    2018-03-01

    Auto-recognition of a surface and auto-generation of material removal volumes for the so recognised surfaces has become a need to achieve successful downstream manufacturing activities like automated process planning and scheduling. Few researchers have contributed to generation of material removal volume for a product but resulted in material removal volume discontinuity between two adjacent material removal volumes generated from two adjacent faces that form convex geometry. The need for limitation free material removal volume generation was attempted and an algorithm that automatically recognises computer aided design (CAD) model’s surface and also auto-generate material removal volume for finishing process of the recognised surfaces was developed. The surfaces of CAD model are successfully recognised by the developed algorithm and required material removal volume is obtained. The material removal volume discontinuity limitation that occurred in fewer studies is eliminated.

  1. Genotoxic damage in auto body shop workers.

    Science.gov (United States)

    Siebel, Anna Maria; Basso da Silva, Luciano

    2010-10-01

    Some studies have shown increased DNA damage among car painters, but other professionals working in auto body and paint shops have not been extensively assessed. The aim of this study was to assess DNA damage in different types of auto body shop workers by measuring micronucleus (MN) levels in exfoliated buccal cells. The mean number of cells with MN per 2000 exfoliated buccal cells was analyzed in three groups of male workers: auto body repair technicians, painters, and office workers (control group). All participants answered a questionnaire inquiring about age, smoking habits, alcohol consumption, work practices, occupational exposure time, job activities, and use of protective equipment. The mean number of cells with MN was 3.50 ± 1.50 in auto body painters, 3.91 ± 2.10 in auto body repair technicians, and 0.80 ± 0.78 in office workers, with a significant difference between the control group and the two other groups (p = 0.0001). Age, occupational exposure time, use of protective masks, alcohol consumption, and smoking habit did not affect MN results. The findings indicate that technicians and painters working in auto body shops are at risk for genotoxic damage, while office workers seem to be protected.

  2. Hydrothermal synthesis of size-controllable Yttrium Orthovanadate (YVO4) nanoparticles and its application in photocatalytic degradation of direct blue dye

    International Nuclear Information System (INIS)

    Mohamed, R.M.; Harraz, F.A.; Mkhalid, I.A.

    2012-01-01

    Graphical abstract: XRD patterns of YVO 4 nanopowders prepared at different hydrothermal times; where Y 1 = 4 h, Y 2 = 8 h, Y 3 = 12 h and Y 4 = 24 h. Highlights: ► Size control of Yttrium Orthovanadate. ► Hydrothermal synthesis. ► Removal of direct blue dye. - Abstract: Sized-controlled YVO 4 nanoparticles have been synthesized by a simple hydrothermal method by changing hydrothermal time from 4 to 24 h. The products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), specific surface area (Brunauer–Emmett–Teller (BET)), and ultraviolet–visible spectroscopy (UV–vis) measurements. The results showed that the size of as-synthesized YVO 4 nanoparticles was in the range of 11–40 nm and was extremely dependent on the hydrothermal time. Photocatalytic measurement showed that the YVO 4 nanoparticles with particle size of about 11 nm (prepared by 4 h hydrothermal time) possess superior photocatalytic properties in the decolorization of direct blue dye. Due to simple preparation, high photocatalytic oxidation of direct blue dye and low cost, the YVO 4 photocatalyst is a potential candidate for pollutants removal and will find wide application in the coming future in photocatalytic oxidation processes. The overall kinetics of photodegradation of direct blue dye using YVO 4 nanopowders photocatalyst was found to be of first order. The photocatalyst could be easily removed from the reaction mixture and its recyclability with no loss of activity was possible for six times. The catalytic performance was found to decrease by 5% after run number six.

  3. Secondary organic aerosol formation from in situ OH, O3, and NO3 oxidation of ambient forest air in an oxidation flow reactor

    Science.gov (United States)

    Palm, Brett B.; Campuzano-Jost, Pedro; Day, Douglas A.; Ortega, Amber M.; Fry, Juliane L.; Brown, Steven S.; Zarzana, Kyle J.; Dube, William; Wagner, Nicholas L.; Draper, Danielle C.; Kaser, Lisa; Jud, Werner; Karl, Thomas; Hansel, Armin; Gutiérrez-Montes, Cándido; Jimenez, Jose L.

    2017-04-01

    Ambient pine forest air was oxidized by OH, O3, or NO3 radicals using an oxidation flow reactor (OFR) during the BEACHON-RoMBAS (Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics and Nitrogen - Rocky Mountain Biogenic Aerosol Study) campaign to study biogenic secondary organic aerosol (SOA) formation and organic aerosol (OA) aging. A wide range of equivalent atmospheric photochemical ages was sampled, from hours up to days (for O3 and NO3) or weeks (for OH). Ambient air processed by the OFR was typically sampled every 20-30 min, in order to determine how the availability of SOA precursor gases in ambient air changed with diurnal and synoptic conditions, for each of the three oxidants. More SOA was formed during nighttime than daytime for all three oxidants, indicating that SOA precursor concentrations were higher at night. At all times of day, OH oxidation led to approximately 4 times more SOA formation than either O3 or NO3 oxidation. This is likely because O3 and NO3 will only react with gases containing C = C bonds (e.g., terpenes) to form SOA but will not react appreciably with many of their oxidation products or any species in the gas phase that lacks a C = C bond (e.g., pinonic acid, alkanes). In contrast, OH can continue to react with compounds that lack C = C bonds to produce SOA. Closure was achieved between the amount of SOA formed from O3 and NO3 oxidation in the OFR and the SOA predicted to form from measured concentrations of ambient monoterpenes and sesquiterpenes using published chamber yields. This is in contrast to previous work at this site (Palm et al., 2016), which has shown that a source of SOA from semi- and intermediate-volatility organic compounds (S/IVOCs) 3.4 times larger than the source from measured VOCs is needed to explain the measured SOA formation from OH oxidation. This work suggests that those S/IVOCs typically do not contain C = C bonds. O3 and NO3 oxidation produced SOA with elemental O : C and H : C

  4. Manufacture of nano graphite oxides derived from aqueous glucose solutions and in-situ synthesis of magnetite–graphite oxide composites

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiang, E-mail: liuxiang@ahut.edu.cn; Zhao, Tiantian; Liu, Pengpeng; Cui, Ping, E-mail: cokecp@sohu.com; Hu, Peng

    2015-03-01

    A “bottom up” approach of manufacturing graphite oxides (GOs) derived from aqueous glucose solutions by virtue of an environmentally-friendly process and the way of in-situ synthesizing magnetite–GOs composites are described in this work in detail. The dehydrations among glucose molecules under hydrothermal condition result in the initial carbon quantum dots and ultimate GOs. The structural information of the GOs is obtained by the infrared, ultraviolet–visible and X-ray photoelectron spectra. The magnetite–GOs composites were obtained by a one-pot method under the same hydrothermal conditions as the one of preparing GOs. The composites perform high activities in catalytic degradation of Rhodamine B in the presence of hydrogen peroxides without extra heating or pH adjusting. Both the GOs and the magnetite–GOs composites are also assured by measurements of transmission electron microscope and X-ray powder diffraction. - Highlights: • Graphite oxides are made from aqueous glucose solutions by hydrothermal reaction. • A way of in-situ synthesizing composites of magnetite–graphite oxides is depicted. • The composites perform high activities in catalytic degradation of Rhodamine B.

  5. High-grade iron ore at Windarling, Yilgarn Craton: a product of syn-orogenic deformation, hypogene hydrothermal alteration and supergene modification in an Archean BIF-basalt lithostratigraphy

    Science.gov (United States)

    Angerer, Thomas; Hagemann, Steffen G.; Danyushevsky, Leonid

    2013-08-01

    Banded iron formation (BIF)-hosted iron ore deposits in the Windarling Range are located in the lower greenstone succession of the Marda-Diemals greenstone belt, Southern Cross domain, Yilgarn Craton and constitute a total hematite-martite-goethite ore resource of minimum 52 Mt at 60 wt.% Fe (0.07 P). Banded iron formation is interlayered with high-Mg basalts at Windarling and precipitated during episodes of volcanic quiescence. Trace element content and the rare earth element (REE) ratios Y/Ho (42 to 45), Sm/Yb (1.5), together with positive La and Gd anomalies in `least-altered' hematite-magnetite-metachert-BIF indicate the precipitation from Archean seawater that was fertilised by hydrothermal vent fluids with a basaltic HREE-Y signature. Hypogene iron ore in sub-greenschist facies metamorphosed BIF formed during three distinct stages: ore stage 1 was a syn- to post-metamorphic, syn-D1, Fe-Ca-Mg-Ni-Co-P-REE metasomatism that produced local Ni-REE-rich Fe-dolomite-magnetite alteration in BIF. Hydrothermal alteration was induced by hot fluid flow controlled by brittle-ductile reactivation of BIF-basalt margins and crosscutting D1 faults. The Ni-Co-rich content of dolomite and a shift in REE ratios in carbonate-altered BIF towards Archean mafic rock signature (Y/Ho to 31 to 40, Sm/Yb to 1 to 2 and Gd/Gd* to 1.2 to 1.4) suggest that high-Mg basalts in the Windarling Range were the primary source of introduced metals. During ore stage 2, a syn-deformational and likely acidic and oxidised fluid flow along BIF-basalt margins and within D1 faults leached carbonate and precipitated lepidoblastic and anhedral/granoblastic hematite. High-grade magnetite-hematite ore is formed during this stage. Ore stage 3 hydrothermal specular hematite (spcH)-Fe-dolomite-quartz alteration was controlled by a late-orogenic, brittle, compressional/transpressional stage (D4; the regional-scale shear-zone-related D3 is not preserved in Windarling). This minor event remobilised iron oxides

  6. NO oxidation on Zeolite Supported Cu Catalysts: Formation and Reactivity of Surface Nitrates

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hai-Ying; Wei, Zhehao; Kollar, Marton; Gao, Feng; Wang, Yilin; Szanyi, Janos; Peden, Charles HF

    2016-04-18

    The comparative activities of a small-pore Cu-CHA and a large-pore Cu-BEA catalyst for the selective catalytic reduction (SCR) of NOx with NH3, and for the oxidation of NO to NO2 and the subsequent formation of surface nitrates were investigated. Although both catalysts are highly active in SCR reactions, they exhibit very low NO oxidation activity. Furthermore, Cu-CHA is even less active than Cu-BEA in catalyzing NO oxidation but is clearly more active for SCR reactions. Temperature-programed desorption (TPD) experiments following the adsorption of (NO2 + NO + O2) with different NO2:NO ratios reveal that the poor NO oxidation activity of the two catalysts is not due to the formation of stable surface nitrates. On the contrary, NO is found to reduce and decompose the surface nitrates on both catalysts. To monitor the reaction pathways, isotope exchange experiments were conducted by using 15NO to react with 14N-nitrate covered catalyst surfaces. The evolution of FTIR spectra during the isotope exchange process demonstrates that 14N-nitrates are simply displaced with no formation of 15N-nitrates on the Cu-CHA sample, which is clearly different from that observed on the Cu-BEA sample where formation of 15N-nitrates is apparent. The results suggest that the formal oxidation state of N during the NO oxidation on Cu-CHA mainly proceeds from its original +2 to a +3 oxidation state, whereas reaching a higher oxidation state for N, such as +4 or +5, is possible on Cu-BEA. The authors at PNNL gratefully acknowledge the US Department of Energy (DOE), Energy Efficiency and Renewable Energy, Vehicle Technologies Office for the support of this work. The research described in this paper was performed at the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the US DOE by Battelle.

  7. Chemistry of a serpentinization-controlled hydrothermal system at the Lost City hydrothermal vent field

    Science.gov (United States)

    Ludwig, K. A.; Kelley, D. S.; Butterfield, D. A.; Nelson, B. K.; Karson, J. A.

    2003-12-01

    The Lost City Hydrothermal Field (LCHF), at 30° N near the Mid-Atlantic Ridge, is an off-axis, low temperature, high-pH, ultramafic-hosted vent system. Within the field, carbonate chimneys tower up to 60 m above the seafloor, making them the tallest vent structures known. The chemistry of the vent structures and fluids at the LCHF is controlled by reactions between seawater and ultramafic rocks beneath the Atlantis massif. Mixing of warm alkaline vent fluids with seawater causes precipitation of calcium carbonate and growth of the edifaces, which range from tall, graceful pinnacles to fragile flanges and colloform deposits. Geochemical and petrological analyses of the carbonate rocks reveal distinct differences between the active and extinct structures. Actively venting chimneys and flanges are extremely porous, friable formations composed predominantly of aragonite and brucite. These structures provide important niches for well-developed microbial communities that thrive on and within the chimney walls. Some of the active chimneys may also contain the mineral ikaite, an unstable, hydrated form of calcium carbonate. TIMS and ICP-MS analyses of the carbonate chimneys show that the most active chimneys have low Sr isotope values and that they are low in trace metals (e.g., Mn, Ti, Pb). Active structures emit high-pH, low-Mg fluids at 40-90° C. The fluids also have low Sr values, indicating circulation of hydrothermal solutions through the serpentinite bedrock beneath the field. In contrast to the active structures, extinct chimneys are less porous, are well lithified, and they are composed predominantly of calcite that yields Sr isotopes near seawater values. Prolonged lower temperature seawater-hydrothermal fluid interaction within the chimneys results in the conversion of aragonite to calcite and in the enrichment of some trace metals (e.g., Mn, Ti, Co, Zn). It also promotes the incorporation of foraminifera within the outer, cemented walls of the carbonate

  8. Role of triton X-100 and hydrothermal treatment on the morphological features of nanoporous hydroxyapatite nanorods

    International Nuclear Information System (INIS)

    Iyyappan, E.; Wilson, P.; Sheela, K.; Ramya, R.

    2016-01-01

    Hydroxyapatite (HA) particles were synthesized using Ca(NO 3 ) 2 ·4H 2 O and (NH 4 ) 2 HPO 4 as precursors with varying contents of non-ionic surfactant viz., triton X-100 (organic modifier) via co-precipitation method followed by hydrothermal treatment. The prepared HA particles have been characterized by X-ray diffraction (XRD), Fourier Transform Infrared spectroscopy (FT-IR), Energy Dispersive X-ray Analysis (EDX), High Resolution Scanning Electron Microscopy (HRSEM), High Resolution Transmission Electron Microscopy (HRTEM) and Nitrogen adsorption–desorption experiments. The XRD and FTIR studies indicate the formation of HA phase in all the synthesized samples. The specific roles of triton X-100 and hydrothermal treatment in dispersing and in directing the crystal growth respectively have been discussed by comparing the observations from individual experiments using triton X-100 and hydrothermal treatment with that of combined protocol involving both. The plausible mechanism for the individual roles of both triton X-100 and hydrothermal treatment have been proposed. - Highlights: • Nanoporous HA nanorods are synthesized via triton X-100 assisted hydrothermal treatment. • Triton X-100 hinder the agglomeration of HA primary particles • Hydrothermal treatment increase the aspect ratio of the HA particles • Oriented attachment of HA particles occurs under hydrothermal treatment facilitated by triton X-100 stabilized HA collides • The percentage of mesopore volume is higher for hydrothermally treated samples

  9. One-pot hydrothermal synthesis of reduced graphene oxide/Ni(OH)2 films on nickel foam for high performance supercapacitors

    International Nuclear Information System (INIS)

    Min, Shudi; Zhao, Chongjun; Chen, Guorong; Qian, Xiuzhen

    2014-01-01

    Reduced graphene oxide (RGO) on nickel hydroxide (Ni(OH) 2 ) film was synthesized via a green and facile hydrothermal approach. In this process, graphene oxide (GO) was reduced by nickel foam (NF) while the nickel metal was oxidized to Ni(OH) 2 film simultaneously, which resulted in RGO on Ni(OH) 2 structure. The RGO/Ni(OH) 2 composite film was characterized using by X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and field-emission scanning electron microscope (FESEM). The electrochemical performances of the supercapacitor with the as-synthesized RGO/Ni(OH) 2 composite films as electrodes were evaluated using cyclic voltammetry (CV), galvanostatic charge–discharge (GCD), electrochemical impedance spectrometry (EIS) in 1 M KOH aqueous solution. Results indicated that the RGO/Ni(OH) 2 /NF composite electrodes exhibited superior capacitive performance with high capability (2500 mF cm −2 at a current density of 5 mA cm −2 , or 1667 F g −1 at 3.3 A g −1 ), compared with pure Ni(OH) 2 /NF (450 mF cm −2 at 5 mA cm −2 , 409 F g −1 at 3.3 A g −1 ) prepared under the identical conditions. Our study highlights the importance of anchoring RGO films on Ni(OH) 2 surface for maximizing the optimized utilization of electrochemically active Ni(OH) 2 and graphene for energy storage application in supercapacitors

  10. Hydrothermal plume anomalies over the southwest Indian ridge: magmatic control

    Science.gov (United States)

    Yue, X.; Li, H.; Tao, C.; Ren, J.; Zhou, J.; Chen, J.; Chen, S.; Wang, Y.

    2017-12-01

    Here we firstly reported the extensive survey results of the hydrothermal activity along the ultra-slow spreading southwest Indian ridge (SWIR). The study area is located at segment 27, between the Indomed and Gallieni transform faults, SWIR. The seismic crustal thickness reaches 9.5km in this segment (Li et al., 2015), which is much thicker than normal crustal. The anomaly thickened crust could be affected by the Crozet hotspot or highly focused melt delivery from the mantle. The Duanqiao hydrothermal field was reported at the ridge valley of the segment by Tao et al (2009). The Deep-towed Hydrothermal Detection System (DHDS) was used to collect information related with hydrothermal activity, like temperature, turbidity, oxidation-reduction potential (ORP) and seabed types. There are 15 survey lines at the interval of 2 to 3 km which are occupied about 1300 km2 in segment 27. After processing the raw data, including wiping out random noise points, 5-points moving average processing and subtracting the ambient, we got anomalous Nephelometric Turbidity Units values (ΔNTU). And dE/dt was used to identify the ORP anomalous as the raw data is easily influenced by electrode potentials drifting (Baker et al., 2016). According to the results of water column turbidity and ORP distributions, we confirmed three hydrothermal anomaly fields named A1, A2 and A3. The three fields are all located in the western part of the segment. The A1 field lies on the ridge valley, west side of Duanqiao field. The A2 and A3 field lie on the northern and southern of the ridge valley, respectively. We propose that recent magmatic activity probably focus on the western part of segment 27.And the extensive distribution of hydrothermal plume in the segment is the result of the discrete magma intrusion. References Baker E T, et al. How many vent fields? New estimates of vent field populations on ocean ridges from precise mapping of hydrothermal discharge locations. EPSL, 2016, 449:186-196. Li J

  11. Presença de auto-anticorpos não-tireóide-específicos no soro de pacientes com hipotireoidismo auto-imune

    OpenAIRE

    Soares Débora Vieira; Vanderborght Bart O. M.; Vaisman Mário

    2003-01-01

    Auto-anticorpos contra componentes não-específicos da tireóide foram encontrados no soro de pacientes com doença auto-imune da tireóide. Neste estudo avaliamos a presença de auto-anticorpos antinucleares (ANA), antimúsculo liso (anti-ML) e antimitocôndria (anti-Mc) no soro de pacientes com hipotireoidismo auto-imune (HA), comparando-os a controles saudáveis. Estudamos 70 pacientes com hipotireoidismo auto-imune (tireoidite de Hashimoto ou tireoidite atrófica ) e 70 controles saudáveis (sem di...

  12. Age of hydrothermal processes in the central iberian zone (Spain according TO U-Pb dating of cassiterite and apatite

    Directory of Open Access Journals (Sweden)

    Н. Г. Ризванова

    2017-06-01

    Full Text Available Results of isotope-geochemical studies by PbLS step-leaching method of cassiterite from greisens located in Logrosán granite massif (Central Iberian Zone, Spain and apatite from hydrothermal quartz-apatite vein on its exocontact indicate that in both cases a hydrothermal event is recorded in the interval of 114-126 Ma, which has been accompanied by lead supply. Within the limits of estimation error, the same age around 120 Ma corresponds to crystallization of hydrothermal apatite, formation of sticks and micro-inclusions in cassiterite from greisens and is suggested for Au-As-Sb-Pb ore mineralization, which calls for further confirmation. Xenogenous zircon from quartz-apatite vein does not react to this relatively low-temperature hydrothermal event either with building up new generations (sticks, areas of recrystallization or with rebalancing of U-Pb isotope system. The age of greisen formation has been confirmed to be around 305 Ma by PbLS method on final phases of cassiterite leaching. Earlier it was estimated with 40Ar/39Ar method on muscovite.

  13. The uptake and excretion of partially oxidized sulfur expands the repertoire of energy resources metabolized by hydrothermal vent symbioses.

    Science.gov (United States)

    Beinart, R A; Gartman, A; Sanders, J G; Luther, G W; Girguis, P R

    2015-05-07

    Symbiotic associations between animals and chemoautotrophic bacteria crowd around hydrothermal vents. In these associations, symbiotic bacteria use chemical reductants from venting fluid for the energy to support autotrophy, providing primary nutrition for the host. At vents along the Eastern Lau Spreading Center, the partially oxidized sulfur compounds (POSCs) thiosulfate and polysulfide have been detected in and around animal communities but away from venting fluid. The use of POSCs for autotrophy, as an alternative to the chemical substrates in venting fluid, could mitigate competition in these communities. To determine whether ESLC symbioses could use thiosulfate to support carbon fixation or produce POSCs during sulfide oxidation, we used high-pressure, flow-through incubations to assess the productivity of three symbiotic mollusc genera-the snails Alviniconcha spp. and Ifremeria nautilei, and the mussel Bathymodiolus brevior-when oxidizing sulfide and thiosulfate. Via the incorporation of isotopically labelled inorganic carbon, we found that the symbionts of all three genera supported autotrophy while oxidizing both sulfide and thiosulfate, though at different rates. Additionally, by concurrently measuring their effect on sulfur compounds in the aquaria with voltammetric microelectrodes, we showed that these symbioses excreted POSCs under highly sulfidic conditions, illustrating that these symbioses could represent a source for POSCs in their habitat. Furthermore, we revealed spatial disparity in the rates of carbon fixation among the animals in our incubations, which might have implications for the variability of productivity in situ. Together, these results re-shape our thinking about sulfur cycling and productivity by vent symbioses, demonstrating that thiosulfate may be an ecologically important energy source for vent symbioses and that they also likely impact the local geochemical regime through the excretion of POSCs.

  14. Female Infertility and Serum Auto-antibodies: a Systematic Review.

    Science.gov (United States)

    Deroux, Alban; Dumestre-Perard, Chantal; Dunand-Faure, Camille; Bouillet, Laurence; Hoffmann, Pascale

    2017-08-01

    On average, 10 % of infertile couples have unexplained infertility. Auto-immune disease (systemic lupus erythematosus, anti-phospholipid syndrome) accounts for a part of these cases. In the last 20 years, aspecific auto-immunity, defined as positivity of auto-antibodies in blood sample without clinical or biological criteria for defined diseases, has been evoked in a subpopulation of infertile women. A systematic review was performed (PUBMED) using the MESH search terms "infertility" and "auto-immunity" or "reproductive technique" or "assisted reproduction" or "in vitro fertilization" and "auto-immunity." We retained clinical and physiopathological studies that were applicable to the clinician in assuming joint management of both infertility associated with serum auto-antibodies in women. Thyroid auto-immunity which affects thyroid function could be a cause of infertility; even in euthyroidia, the presence of anti-thyroperoxydase antibodies and/or thyroglobulin are related to infertility. The presence of anti-phospholipid (APL) and/or anti-nuclear (ANA) antibodies seems to be more frequent in the population of infertile women; serum auto-antibodies are associated with early ovarian failure, itself responsible for fertility disorders. However, there exist few publications on this topic. The methods of dosage, as well as the clinical criteria of unexplained infertility deserve to be standardized to allow a precise response to the question of the role of serum auto-antibodies in these women. The direct pathogenesis of this auto-immunity is unknown, but therapeutic immunomodulators, prescribed on a case-by-case basis, could favor pregnancy even in cases of unexplained primary or secondary infertility.

  15. Hydrothermal synthesis of magnetite particles with uncommon crystal facets

    Directory of Open Access Journals (Sweden)

    Junki Sato

    2014-09-01

    Full Text Available Hydrothermal synthesis of Fe3O4 (magnetite particles was carried out using organic compounds as morphology control agents to obtain magnetite crystals with uncommon facets. It was established that the morphology of Fe3O4 crystals obtained by hydrothermal treatment of an aqueous solution containing Fe2+ and organic compounds depended on the organic compound used. The shape of the Fe3O4 particles obtained when no additives were used was quasi-octahedral. In contrast, the addition of picolinic acid, citric acid or pyridine resulted in the formation of polyhedral crystals, indicating the presence of not only {1 1 1}, {1 0 0} and {1 1 0} facets but also high-index facets including at least {3 1 1} and {3 3 1}. When citric acid was used as an additive, octahedral crystals with {1 1 1} facets also appeared, and their size decreased as the amount of citric acid was increased. Thus, control of Fe3O4 particle morphology was achieved by a simple hydrothermal treatment using additives.

  16. Economic evaluation of epinephrine auto-injectors for peanut allergy.

    Science.gov (United States)

    Shaker, Marcus; Bean, Katherine; Verdi, Marylee

    2017-08-01

    Three commercial epinephrine auto-injectors were available in the United States in the summer of 2016: EpiPen, Adrenaclick, and epinephrine injection, USP auto-injector. To describe the variation in pharmacy costs among epinephrine auto-injector devices in New England and evaluate the additional expense associated with incremental auto-injector costs. Decision analysis software was used to evaluate costs of the most and least expensive epinephrine auto-injector devices for children with peanut allergy. To evaluate regional variation in epinephrine auto-injector costs, a random sample of New England national and corporate pharmacies was compared with a convenience sample of pharmacies from 10 Canadian provinces. Assuming prescriptions written for 2 double epinephrine packs each year (home and school), the mean costs of food allergy over the 20-year model horizon totaled $58,667 (95% confidence interval [CI] $57,745-$59,588) when EpiPen was prescribed and $45,588 (95% CI $44,873-$46,304) when epinephrine injection, USP auto-injector was prescribed. No effectiveness differences were evident between groups, with 17.19 (95% CI 17.11-17.27) quality-adjusted life years accruing for each subject. The incremental cost per episode of anaphylaxis treated with epinephrine over the model horizon was $12,576 for EpiPen vs epinephrine injection, USP auto-injector. EpiPen costs were lowest at Canadian pharmacies ($96, 95% CI $85-$107). There was price consistency between corporate and independent pharmacies throughout New England by device brand, with the epinephrine injection, USP auto-injector being the most affordable device. Cost differences among epinephrine auto-injectors were significant. More expensive auto-injector brands did not appear to provide incremental benefit. Copyright © 2017 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  17. Hydrothermal synthesis of PEDOT/rGO composite for supercapacitor applications

    Science.gov (United States)

    Ahmed, Sultan; Rafat, M.

    2018-01-01

    In this study, PEDOT/rGO composite has been successfully synthesized using hydrothermal method. Precursor solution of EDOT monomer was mixed with a predetermined solution of graphene oxide (GO). The resultant mixture was then hydrothermally treated. Surface morphology, crystal structure vibrational response and thermal stability have been studied using standard characterization techniques: field-emission scanning electron microscopy, X-ray diffraction, Raman spectroscopy and thermo-gravimetric analysis. The observed results confirm that the required composite of PEDOT/rGO has indeed been synthesized. Electrochemical properties of the synthesized product were studied in 6 M KOH aqueous solution, using characterization techniques such as: cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charge-discharge measurements. The results show a high value of specific capacitance (102.8 F g-1) at 10 mV s-1, indicating that the composite can be profitably used for energy storage devices.

  18. Aluminum Oxide Formation On Fecral Catalyst Support By Electro-Chemical Coating

    Directory of Open Access Journals (Sweden)

    Yang H.S.

    2015-06-01

    Full Text Available FeCrAl is comprised essentially of Fe, Cr, Al and generally considered as metallic substrates for catalyst support because of its advantage in the high-temperature corrosion resistance, high mechanical strength, and ductility. Oxidation film and its adhesion on FeCrAl surface with aluminum are important for catalyst life. Therefore various appropriate surface treatments such as thermal oxidation, Sol, PVD, CVD has studied. In this research, PEO (plasma electrolytic oxidation process was applied to form the aluminum oxide on FeCrAl surface, and the formed oxide particle according to process conditions such as electric energy and oxidation time were investigated. Microstructure and aluminum oxide particle on FeCrAl surface after PEO process was observed by FE-SEM and EDS with element mapping analysis. The study presents possibility of aluminum oxide formation by electro-chemical coating process without any pretreatment of FeCrAl.

  19. On the theory system of hydrothermal uranium metallization in China

    International Nuclear Information System (INIS)

    Du Letian

    2011-01-01

    Based on summarizing the mass of research outcome of the predecessors, the author attempts to make a brief generalization on the theory system of hydrothermal uranium mineralization in China. The system of uranium metallization is founded in the basic way of uranium source-migration-transportation-richment-reservation. The system mainly consists of the following frames: (1) mineralization type of silification zone; (2) age gap of mineralization to host rock; (3) alkli metasomatism; (4) metallogenic layer of crust; (5)integratation of 4 types mineralization (granite, volcanics, carbonaceous-siliceous-argilaceous rock and sandstone) in tectonic-hydrothermal process; (6) pre-enrichment process of metallization; (7) decouplement of granite magma evolution; (8) types of rich ore by high tempreture sericitization; (9)basalt event;(10) rock and ore formation by HARCON. (authors)

  20. Hydrothermal liquefaction of biomass

    DEFF Research Database (Denmark)

    Toor, Saqib; Rosendahl, Lasse; Rudolf, Andreas

    2011-01-01

    This article reviews the hydrothermal liquefaction of biomass with the aim of describing the current status of the technology. Hydrothermal liquefaction is a medium-temperature, high-pressure thermochemical process, which produces a liquid product, often called bio-oil or bi-crude. During...... the hydrothermal liquefaction process, the macromolecules of the biomass are first hydrolyzed and/or degraded into smaller molecules. Many of the produced molecules are unstable and reactive and can recombine into larger ones. During this process, a substantial part of the oxygen in the biomass is removed...... by dehydration or decarboxylation. The chemical properties of bio-oil are highly dependent of the biomass substrate composition. Biomass constitutes of various components such as protein; carbohydrates, lignin and fat, and each of them produce distinct spectra of compounds during hydrothermal liquefaction...

  1. Reaction Mechanism for the Formation of Nitrogen Oxides (NO x ) During Coke Oxidation in Fluidized Catalytic Cracking Units

    KAUST Repository

    Chaparala, Sree Vidya

    2015-06-11

    Fluidized catalytic cracking (FCC) units in refineries process heavy feedstock obtained from crude oil distillation. While cracking feed, catalysts get deactivated due to coke deposition. During catalyst regeneration by burning coke in air, nitrogen oxides (NOx) are formed. The increase in nitrogen content in feed over time has resulted in increased NOx emissions. To predict NOx concentration in flue gas, a reliable model for FCC regenerators is needed that requires comprehensive understanding and accurate kinetics for NOx formation. Based on the nitrogen-containing functional groups on coke, model molecules are selected to study reactions between coke-bound nitrogen and O2 to form NO and NO2 using density functional theory. The reaction kinetics for the proposed pathways are evaluated using transition state theory. It is observed that the addition of O2 on coke is favored only when the free radical is present on the carbon atom instead of nitrogen atom. Thus, NOx formation during coke oxidation does not result from the direct attack by O2 on N atoms of coke, but from the transfer of an O atom to N from a neighboring site. The low activation energies required for NO formation indicate that it is more likely to form than NO2 during coke oxidation. The favorable pathways for NOx formation that can be used in FCC models are identified. Copyright © 2015 Taylor & Francis Group, LLC.

  2. Positron Spectroscopy of Hydrothermally Grown Actinide Oxides

    Science.gov (United States)

    2014-03-27

    actinide oxides . The work described here is an attempt to characterize the quality of crystals using positron annihilation spectroscopy (PALS). The...Upadhyaya, R. V. Muraleedharan, B. D. Sharma and K. G. Prasad, " Positron lifetime studies on thorium oxide powders," Philosohical Magazine A, vol. 45... crystals . A strong foundation for actinide PALS studies was laid, but further work is required to build a more effective system. Positron Spectroscopy

  3. The El Teniente porphyry Cu-Mo deposit from a hydrothermal rutile perspective

    Science.gov (United States)

    Rabbia, Osvaldo M.; Hernández, Laura B.; French, David H.; King, Robert W.; Ayers, John C.

    2009-11-01

    Mineralogical, textural, and chemical analyses (EPMA and PIXE) of hydrothermal rutile in the El Teniente porphyry Cu-Mo deposit help to better constrain ore formation processes. Rutile formed from igneous Ti-rich phases (sphene, biotite, Ti-magnetite, and ilmenite) by re-equilibration and/or breakdown under hydrothermal conditions at temperatures ranging between 400°C and 700°C. Most rutile nucleate and grow at the original textural position of its Ti-rich igneous parent mineral phase. The distribution of Mo content in rutile indicates that low-temperature (˜400-550°C), Mo-poor rutile (5.4 ± 1.1 ppm) is dominantly in the Mo-rich mafic wallrocks (high-grade ore), while high-temperature (˜550-700°C), Mo-rich rutile (186 ± 20 ppm) is found in the Mo-poor felsic porphyries (low-grade ore). Rutile from late dacite ring dikes is a notable exception to this distribution pattern. The Sb content in rutile from the high-temperature potassic core of the deposit to its low-temperature propylitic fringe remains relatively constant (35 ± 3 ppm). Temperature and Mo content of the hydrothermal fluids in addition to Mo/Ti ratio, modal abundance and stability of Ti-rich parental phases are key factors constraining Mo content and provenance in high-temperature (≥550°C) rutile. The initial Mo content of parent mineral phases is controlled by melt composition and oxygen fugacity as well as timing and efficiency of fluid-melt separation. Enhanced reduction of SO2-rich fluids and sulfide deposition in the Fe-rich mafic wallrocks influences the low-temperature (≤550°C) rutile chemistry. The data are consistent with a model of fluid circulation of hot (>550°C), oxidized (ƒO2 ≥ NNO + 1.3), SO2-rich and Mo-bearing fluids, likely exsolved from deeper crystallizing parts of the porphyry system and fluxed through the upper dacite porphyries and related structures, with metal deposition dominantly in the Fe-rich mafic wallrocks.

  4. Auto-immune Haemolytic Anaemia and Paroxys

    African Journals Online (AJOL)

    who presented with an acute auto-immune haemolytic anaemia. In addition to a persistently positive Coombs test, with specific red cell auto-antibodies, the acidified serum test and the sucrose haemolysis test were repeatedly positive. CASE REPORT. A 24-year-old Indian woman was admitted to hospital in. July 1969.

  5. Self-excited hydrothermal waves in evaporating sessile drops

    OpenAIRE

    Sefiane K.; Moffat J.R.; Matar O.K.; Craster R.V.

    2008-01-01

    Pattern formation driven by the spontaneous evaporation of sessile drops of methanol, ethanol, and FC-72 using infrared thermography is observed and, in certain cases, interpreted in terms of hydrothermal waves. Both methanol and ethanol drops exhibit thermal wave trains, whose wave number depends strongly on the liquid volatililty and substrate thermal conductivity. The FC- 72 drops develop cellular structures whose size is proportional to the local thickness. Prior to this work, hydrotherma...

  6. Impact of Formaldehyde Addition on Auto-Ignition in Internal-Combustion Engines

    Science.gov (United States)

    Kuwahara, Kazunari; Ando, Hiromitsu; Furutani, Masahiro; Ohta, Yasuhiko

    By employing a direct-injection diesel engine equipped with a common-rail type of injection system, by adding formaldehyde (CH2O) to the intake air, and by changing the fuel-injection timing, the compression ratio and the intake-air temperature, a mechanism for CH2O as a fuel additive to affect auto-ignition was discussed. Unlike an HCCI type of engine, the diesel engine can expose an air-fuel mixture only to a limited range of the in-cylinder temperature before the ignition, and can separate low- and high-temperature parts of the mechanism. When low-temperature oxidation starts at a temperature above 900K, there are cases that the CH2O advances the ignition timing. Below 900K, to the contrary, it always retards the timing. It is because, above 900K, a part of the CH2O changes into CO together with H2O2 as an ignition promoter. Below 900K, on the other hand, the CH2O itself acts as an OH radical scavenger against cool-flame reaction, from the beginning of low-temperature oxidation. Then, the engine was modified for its extraordinary function as a gasoline-knocking generator, in order that an effect of CH2O on knocking could be discussed. The CH2O retards the onset of auto-ignition of an end gas. Judging from a large degree of the retardation, the ignition is probably triggered below 900K.

  7. V isotope composition in modern marine hydrothermal sediments

    Science.gov (United States)

    Wu, F.; Owens, J. D.; Nielsen, S.; German, C. R.; Rachel, M.

    2017-12-01

    Vanadium is multivalence transition metal with two isotopes (51V and 50V). Recent work has shown that large V isotope variations occur with oxygen variations in modern sediments (Wu et al., 2016 and 2017 Goldschmidt Abstracts), providing its potential as a promising proxy for determining low oxygen conditions. However, the development of V isotopes as a proxy to probe past redox conditions requires a comprehensive understanding of the modern oceanic isotopic mass balance. Therein, the scavenging of V from the hydrous iron oxides in hydrothermal fluid has been shown to be an important removal process from seawater (Rudnicki and Elderfield, 1993 GCA) but remains unquantified. In this study, we analyzed V isotopic compositions of metalliferous sediments around the active TAG hydrothermal mound from the mid-Atlantic Ridge (26° degrees North) and the Eastern Pacific Zonal Transect (GEOTRACES EPZT cruise GP16). The TAG sediments deposited as Fe oxyhydroxides from plume fall-out, and have δ51V values between -0.3 to 0‰. The good correlation between Fe and V for these metalliferous sediments indicate that the accumulation of V in these samples is directly related to the deposition of Fe oxyhydroxides, which also control their V isotope signature. The EPZT samples cover 8,000 km in the South Pacific Ocean with sedimentary areas that underlie the Peru upwelling region and the well-oxygenated deep South Pacific Ocean influenced by hydtorthermal plume material from southern East Pacific Rise (EPR). The sediments collected at the east of the EPR have δ51V values between -1.2 to -0.7‰, similar to previous δ51V of oxic sediments. In contrast, the sediments from the west of the EPR have δ51V values (-0.4 to 0‰) similar to hydrothermal sediments from the mid-Atlantic Ridge, indicating the long transportation (more than 4,000 km, Fitzsimmons et al., 2017 NG) of Fe and Mn from hydrothermal plume and their incorporation into sediments have a major impact on the cycle of V

  8. Measurement of Antioxidant Effects on the Auto-oxidation Kinetics of Methyl Oleate – Methyl Laurate Blend as a Surrogate Biodiesel System

    Directory of Open Access Journals (Sweden)

    Tjokorde Walmiki Samadhi

    2017-05-01

    Full Text Available This research investigates the feasibility of methyl oleate-methyl laurate blend as a surrogate biodiesel system which represents jatropha-coconut oil biodiesel, a potentially suitable formulation for tropical climate, to quantify the efficacy of antioxidant additives in terms of their kinetic parameters. This blend was tested by the Rancimat EN14112 standard method. The Rancimat tests results were used to determine the primary oxidation induction period (OIP and first-order rate constants and activation energies. Addition of BHT and EcotiveTM antioxidants reduces the rate constants (k, h-1 between 15 to 90% in the 50-200 ppm dose range, with EcotiveTM producing significantly lower k values. Higher dose reduces the rate constant, while oleate/laurate ratio produces no significant impact. Antioxidants increase the oxidation activation energy (Ea, kJ/mol by 180 to almost 400% relative to the non-antioxidant value of 27.0 kJ/mol. EcotiveTM exhibits lower Ea, implying that its higher efficacy stems from a better steric hindrance as apparent from its higher pre-exponential factors. The ability to quantify oxidation kinetic parameters is indicative of the usefulness of methyl oleate-laurate pure FAME blend as a biodiesel surrogate offering better measurement accuracy due to the absence of pre-existing antioxidants in the test samples. Copyright © 2017 BCREC GROUP. All rights reserved Received: 6th July 2016; Revised: 7th December 2016; Accepted: 30th January 2017 How to Cite: Samadhi, T.W., Hirotsu, T., Goto, S. (2017. Measurement of Antioxidant Effects on the Auto-oxidation Kinetics of Methyl Oleate-Methyl Laurate Blend as a Surrogate Biodiesel System. Bulletin of Chemical Reaction Engineering & Catalysis, 12 (2: 157-166 (doi:10.9767/bcrec.12.2.861.157-166 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.12.2.861.157-166

  9. [Clinical overview of auto-inflammatory diseases].

    Science.gov (United States)

    Georgin-Lavialle, S; Rodrigues, F; Hentgen, V; Fayand, A; Quartier, P; Bader-Meunier, B; Bachmeyer, C; Savey, L; Louvrier, C; Sarrabay, G; Melki, I; Belot, A; Koné-Paut, I; Grateau, G

    2018-04-01

    Monogenic auto-inflammatory diseases are characterized by genetic abnormalities coding for proteins involved in innate immunity. They were initially described in mirror with auto-immune diseases because of the absence of circulating autoantibodies. Their main feature is the presence of peripheral blood inflammation in crisis without infection. The best-known auto-inflammatory diseases are mediated by interleukines that consisted in the 4 following diseases familial Mediterranean fever, cryopyrinopathies, TNFRSF1A-related intermittent fever, and mevalonate kinase deficiency. Since 10 years, many other diseases have been discovered, especially thanks to the progress in genetics. In this review, we propose the actual panorama of the main known auto-inflammatory diseases. Some of them are recurrent fevers with crisis and remission; some others evaluate more chronically; some are associated with immunodeficiency. From a physiopathological point of view, we can separate diseases mediated by interleukine-1 and diseases mediated by interferon. Then some polygenic inflammatory diseases will be shortly described: Still disease, Schnitzler syndrome, aseptic abscesses syndrome. The diagnosis of auto-inflammatory disease is largely based on anamnesis, the presence of peripheral inflammation during attacks and genetic analysis, which are more and more performant. Copyright © 2018 Société Nationale Française de Médecine Interne (SNFMI). Published by Elsevier SAS. All rights reserved.

  10. Hydrothermal alteration at Roosevelt Hot Springs KGRA: DDH 1976-1

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, N.L.; Parry, W.T.

    1977-09-01

    Hot waters of the Roosevelt Thermal Area, Utah, have altered granitic rocks and detritus of the Mineral Range pluton, Utah. Alteration and mineral deposition recognized in a 200' drill core from DDH 1-76 is most intense in the upper 100 feet which consists of altered alluvium and opal deposits; the lower 100 feet is weakly altered quartz monzonite. Petrographic, x-ray, and chemical methods were used to characterize systematic changes in chemistry and mineralogy. Comparison of the alteration mineral assemblages with known water chemistry and equilibrium activity diagrams suggests that a simple solution equilibrium model cannot account for the alteration. A model is proposed in which upward moving thermal water supersaturated with respect to quartz and a downward moving cool water undersaturated with respect to quartz produces the observed alteration. An estimate of the heat flow contributions from hydrothermal alteration was made by calculating reaction enthalpies for alteration reactions at each depth. The estimated heat flow varied from .02 HFU (for 200' depth, 400,000 yr duration, and no sulfur oxidation) to 67 HFU (for 5,000' depth, 1,000 yr duration, and all sulfur oxidized from sulfide). Heat flow contributions from hydrothermal alteration are comparable with those from a cooling granitic magma.

  11. Auto-regenerative thermoluminescence dating using zircon inclusions

    International Nuclear Information System (INIS)

    Templer, R.H.

    1993-01-01

    Fired ceramics containing zircon inclusions have been dated by allowing the zircons to regenerate their own thermoluminescence (TL) signal, hence auto-regenerative TL dating. The technique is conceptually straightforward. One first measures the TL accrued since the last heating of the material. The zircon grains are then stored for six months and the TL signal regenerated through self-irradiation is measured. Since the internal dose-rate for zircon is dominated by the internal component the age of the sample is simply given by the ratio of the natural to auto-regenerated signal times the laboratory storage period. The technique, however, requires the measurement of a very small auto-regenerated signal, which introduces a number of experimental and physical complications. The methods for overcoming these problems and successfully dating zircons by auto-regeneration are described. (Author)

  12. Lithosphere-biosphere interaction at a shallow-sea hydrothermal vent site; Hot Lake, Panarea, Italy

    Science.gov (United States)

    Huang, Chia-I.; Amann, Rudolf; Amend, Jan P.; Bach, Wolfgang; Brunner, Benjamin; Meyerdierks, Anke; Price, Roy E.; Schubotz, Florence; Summons, Roger; Wenzhöfer, Frank

    2010-05-01

    pore fluids geochemistry (anions, cations and stable isotope composition of water and sulfate) of depth profiles. DNA-fingerprinting techniques (DGGE, ARISA) revealed distinctly different bacterial 16S rRNA gene patterns for three separate sediment cores taken at Hot Lake. Intact polar lipid (IPL) biomarker analysis revealed a dominance of bacterial over archaeal biomass. The bacterial IPLs were mainly comprised of diether and diester phospholipids and ornithine lipids, indicative of viable thermophilic sulfate-reducing and acidophilic sulfide-oxidizing bacteria. Bacterial IPL abundance was highest in the sediment surface layer. Fluorescence in situ hybridization showed that with increasing depth and temperature, the abundance of archaea increased relative to that of bacteria. Comparative 16S rRNA gene analysis revealed a moderate diversity of bacteria, and a dominance of epsilonproteobacterial sequences. Cultured representatives of the detected epsilonproteobacterial classes are known to catalyze elemental sulfur reduction and oxidation reactions and to mediate the formation of iron-sulfides, including framboidal pyrite, which was found in sediment samples. We conclude that mixing between hydrothermal fluids and seawater leads to distinctly different temperature gradients and ecological niches in Hot Lake sediments. From the geochemical profiles and a preliminary characterization of the microbiological community, we found strong evidence of sulfur-related metabolism. Further investigation of certain clusters of bacteria and archaea as well as gene expression analysis will give us a deeper understanding of the interaction between geosphere and biosphere at this site in the future.

  13. Preparation of Reduced Graphene Oxides as Electrode Materials for Supercapacitors

    KAUST Repository

    Bai, Yaocai

    2012-06-01

    Reduced graphene oxide as outstanding candidate electrode material for supercapacitor has been investigated. This thesis includes two topics. One is that three kinds of reduced graphene oxides were prepared by hydrothermal reduction under different pH conditions. The pH values were found to have great influence on the reduction of graphene oxides. Acidic and neutral media yielded reduced graphene oxides with more oxygen-functional groups, lower specific surface areas but broader pore size distributions than those in basic medium. Variations induced by the pH changes resulted in great differences in the supercapacitor performance. The graphene produced in the basic solution presented mainly electric double layer behavior with specific capacitance of 185 F/g, while the other two showed additional pseudocapacitance behavior with specific capacitance of 225 F/g (acidic) and 230 F/g (neutral), all at a constant current density of 1A/g. The other one is that different reduced graphene oxides were prepared via solution based hydrazine reduction, low temperature thermal reduction, and hydrothermal reduction. The as- prepared samples were then investigated by UV-vis spectroscopy, X-ray diffraction, Raman spectroscopy, and Scanning electron microscope. The supercapacitor performances were also studied and the hydrothermally reduced graphene oxide exhibited the highest specific capacitance.

  14. Investigations on photoelectrochemical performance of boron doped ZnO nanorods synthesized by facile hydrothermal technique

    Science.gov (United States)

    Sharma, Akash; Chakraborty, Mohua; Thangavel, R.

    2018-05-01

    Undoped and 10% Boron (B)-doped Zinc Oxide nanorods (ZnO NRs) on Tin doped Indium Oxide (ITO) coated glass substrates were synthesized using facile sol-gel, spin coating and hydrothermal method. The impact of adding Boron on the structural, optical properties, surface morphology and photoelectrochemical (PEC) performances of the ZnO NRs have been investigated. The XRD pattern confirmed the formation of pure hexagonal phase with space group P63mc (186). The same can also be clearly observed form the FESEM images. The UV-Vis study shows the narrowing in band gap from 3.22 eV to 3.19 eV with incorporation of Boron in ZnO matrix. The B-doped ZnO NRs sample shows an enhanced photocurrent density of 1.31 mA/cm2 at 0.5 V (vs. Ag/AgCl), which is more than 171% enhancement compared to bare ZnO NRs (0.483 mA/cm2) in 0.1 M Na2SO4 aqueous solution. The results clearly indicates that the boron doped ZnO NRs can be used as an efficient photoelectrode material for photoelectrochemical cell.

  15. Effect of hydrothermal pretreatment on product distribution and characteristics of oil produced by the pyrolysis of Huadian oil shale

    International Nuclear Information System (INIS)

    Jiang, Haifeng; Deng, Sunhua; Chen, Jie; Zhang, Mingyue; Li, Shu; Shao, Yifei; Yang, Jiaqi; Li, Junfeng

    2017-01-01

    Highlights: • The maximum yield of pyrolysis oil is obtained at the pretreatment time of 2.0 h. • The higher H/C ratio of oil is obtained after hydrothermal pretreatment. • Hydrothermal treatment promotes the formation of aliphatic hydrocarbons in the oil. • Long pretreatment time causes the increase of heavier oil fraction in the oil. - Abstract: In this work, Huadian oil shale from China was treated by hydrothermal pretreatment at 200 °C with 1.0–2.5 h in order to investigate the effect of hydrothermal pretreatment on pyrolysis product distribution and characteristics of oil. The differences in the elemental composition and thermal behavior between the untreated and treated oil shale were analyzed and compared. The hydrothermal treatment process could decompose oxygen functional groups and remove some water soluble inorganics in oil shale, which decreased the formation of gas and water during the pyrolysis. However, hydrothermal pretreatment was conducive to increasing shale oil yield. The maximum of oil yield was obtained at the pretreatment time of 2.0 h. The enhancement of the free-radical reactions during the pyrolysis and the reduction of the secondary cracking reactions of the generated oil vapors were considered as the main reasons. The oil obtained by the treated oil shale had a higher H/C ratio, indicating it had high energy content. The analysis results of chemical compositions in oils showed that the relative content of aliphatic hydrocarbons significantly increased after hydrothermal pretreatment. The further analysis demonstrated that the increase in the pretreatment time caused the generated long chain hydrocarbons tended to be directly released from oil shale particles, and were condensed into the oil.

  16. Decoupling of Neoarchean sulfur sources recorded in Algoma-type banded iron formation

    Science.gov (United States)

    Diekrup, David; Hannington, Mark D.; Strauss, Harald; Ginley, Stephen J.

    2018-05-01

    Neoarchean Algoma-type banded iron formations (BIFs) are widely viewed as direct chemical precipitates from proximal volcanic-hydrothermal vents. However, a systematic multiple sulfur isotope study of oxide-facies BIF from a type locality in the ca. 2.74 Ga Temagami greenstone belt reveals mainly bacterial turnover of atmospheric elemental sulfur in the host basin rather than deposition of hydrothermally cycled seawater sulfate or sulfur from direct volcanic input. Trace amounts of chromium reducible sulfur that were extracted for quadruple sulfur isotope (32S-33S-34S-36S) analysis record the previously known mass-independent fractionation of volcanic SO2 in the Archean atmosphere (S-MIF) and biological sulfur cycling but only minor contributions from juvenile sulfur, despite the proximity of volcanic sources. We show that the dominant bacterial metabolisms were iron reduction and sulfur disproportionation, and not sulfate reduction, consistent with limited availability of organic matter and the abundant ferric iron deposited as Fe(OH)3. That sulfur contained in the BIF was not a direct volcanic-hydrothermal input, as expected, changes the view of an important archive of the Neoarchean sulfur cycle in which the available sulfur pools were strongly decoupled and only species produced photochemically under anoxic atmospheric conditions were deposited in the BIF-forming environment.

  17. Efficiency calibration of solid track spark auto counter

    International Nuclear Information System (INIS)

    Wang Mei; Wen Zhongwei; Lin Jufang; Liu Rong; Jiang Li; Lu Xinxin; Zhu Tonghua

    2008-01-01

    The factors influencing detection efficiency of solid track spark auto counter were analyzed, and the best etch condition and parameters of charge were also reconfirmed. With small plate fission ionization chamber, the efficiency of solid track spark auto counter at various experiment assemblies was re-calibrated. The efficiency of solid track spark auto counter at various experimental conditions was obtained. (authors)

  18. Geochemical Tracers of Processes Affecting the Formation of Seafloor Hydrothermal Fluids and Deposits in the Manus Back-Arc Basin

    Science.gov (United States)

    2009-02-01

    pp. 184-197. Grassle J. F. (1986) The ecology of deep-sea hydrothermal vent communities. Advances in Marine Biology 23, 301-362. Halbach P...Gesellschaft 82, 183-210. Tunnicliffe V. (1991) The biology of hydrothermal vents: Ecology and evolution. Oceanography and Marine Biology Annual Reviews 29...Evidence for Magmatic Contributions to Submarine and Subaerial Gold Mineralization: Conical Seamount and the Ladolam Gold Deposit, Papua New Guinea

  19. A model for Cryogenian iron formation

    Science.gov (United States)

    Cox, Grant M.; Halverson, Galen P.; Poirier, André; Le Heron, Daniel; Strauss, Justin V.; Stevenson, Ross

    2016-01-01

    The Neoproterozoic Tatonduk (Alaska) and Holowilena (South Australia) iron formations share many characteristics including their broadly coeval (Sturtian) ages, intimate association with glaciogenic sediments, and mineralogy. We show that these shared characteristics extend to their neodymium (εNd) and iron isotope (δ56Fe) systematics. In both regions δ56Fe values display a distinct up-section trend to isotopically heavier values, while εNd values are primitive and similar to non-ferruginous mudstones within these successions. The δ56Fe profiles are consistent with oxidation of ferruginous waters during marine transgression, and the εNd values imply that much of this iron was sourced from the leaching of continental margin sediments largely derived from continental flood basalts. Rare earth element data indicate a secondary hydrothermal source for this iron.

  20. Suppression of new particle formation from monoterpene oxidation by NOx

    Science.gov (United States)

    Wildt, J.; Mentel, T. F.; Kiendler-Scharr, A.; Hoffmann, T.; Andres, S.; Ehn, M.; Kleist, E.; Müsgen, P.; Rohrer, F.; Rudich, Y.; Springer, M.; Tillmann, R.; Wahner, A.

    2014-03-01

    The impact of nitrogen oxides (NOx = NO + NO2) on new particle formation (NPF) and on photochemical ozone production from real plant volatile organic compound (BVOC) emissions was studied in a laboratory setup. At high NOx conditions ([BVOC] / [NOx] 23 ppb) new particle formation was suppressed. Instead, photochemical ozone formation was observed resulting in higher hydroxyl radical (OH) and lower nitrogen monoxide (NO) concentrations. When [NO] was reduced back to levels below 1 ppb by OH reactions, NPF was observed. Adding high amounts of NOx caused NPF to be slowed by orders of magnitude compared to analogous experiments at low NOx conditions ([NOx] ~300 ppt), although OH concentrations were higher. Varying NO2 photolysis enabled showing that NO was responsible for suppression of NPF. This suggests that peroxy radicals are involved in NPF. The rates of NPF and photochemical ozone production were related by power law dependence with an exponent approaching -2. This exponent indicated that the overall peroxy radical concentration must have been similar when NPF occurred. Thus, permutation reactions of first-generation peroxy radicals cannot be the rate limiting step in NPF from monoterpene oxidation. It was concluded that permutation reactions of higher generation peroxy-radical-like intermediates limit the rate of new particle formation. In contrast to the strong effects on the particle numbers, the formation of particle mass was substantially less sensitive to NOx concentrations. If at all, yields were reduced by about an order of magnitude only at very high NOx concentrations.