WorldWideScience

Sample records for formation confers aluminum

  1. The effect of surface modification on initial ice formation on aluminum surfaces

    DEFF Research Database (Denmark)

    Rahimi, Maral; Afshari, Alireza; Fojan, Peter

    2015-01-01

    material of heat exchanger fins is aluminum, this paper focuses on the effect of aluminum wettability on the initial stages of ice formation. The ice growth was studied on bare as well as hydrophilically and hydrophobically modified surfaces of aluminum (8011A) sheets, commonly used in heat exchangers...

  2. High-aluminum-affinity silica is a nanoparticle that seeds secondary aluminosilicate formation.

    Directory of Open Access Journals (Sweden)

    Ravin Jugdaohsingh

    Full Text Available Despite the importance and abundance of aluminosilicates throughout our natural surroundings, their formation at neutral pH is, surprisingly, a matter of considerable debate. From our experiments in dilute aluminum and silica containing solutions (pH ~ 7 we previously identified a silica polymer with an extraordinarily high affinity for aluminium ions (high-aluminum-affinity silica polymer, HSP. Here, further characterization shows that HSP is a colloid of approximately 2.4 nm in diameter with a mean specific surface area of about 1,000 m(2 g(-1 and it competes effectively with transferrin for Al(III binding. Aluminum binding to HSP strongly inhibited its decomposition whilst the reaction rate constant for the formation of the β-silicomolybdic acid complex indicated a diameter between 3.6 and 4.1 nm for these aluminum-containing nanoparticles. Similarly, high resolution microscopic analysis of the air dried aluminum-containing silica colloid solution revealed 3.9 ± 1.3 nm sized crystalline Al-rich silica nanoparticles (ASP with an estimated Al:Si ratio of between 2 and 3 which is close to the range of secondary aluminosilicates such as imogolite. Thus the high-aluminum-affinity silica polymer is a nanoparticle that seeds early aluminosilicate formation through highly competitive binding of Al(III ions. In niche environments, especially in vivo, this may serve as an alternative mechanism to polyhydroxy Al(III species binding monomeric silica to form early phase, non-toxic aluminosilicates.

  3. High-Aluminum-Affinity Silica Is a Nanoparticle That Seeds Secondary Aluminosilicate Formation

    Science.gov (United States)

    Jugdaohsingh, Ravin; Brown, Andy; Dietzel, Martin; Powell, Jonathan J.

    2013-01-01

    Despite the importance and abundance of aluminosilicates throughout our natural surroundings, their formation at neutral pH is, surprisingly, a matter of considerable debate. From our experiments in dilute aluminum and silica containing solutions (pH ~ 7) we previously identified a silica polymer with an extraordinarily high affinity for aluminium ions (high-aluminum-affinity silica polymer, HSP). Here, further characterization shows that HSP is a colloid of approximately 2.4 nm in diameter with a mean specific surface area of about 1,000 m2 g-1 and it competes effectively with transferrin for Al(III) binding. Aluminum binding to HSP strongly inhibited its decomposition whilst the reaction rate constant for the formation of the β-silicomolybdic acid complex indicated a diameter between 3.6 and 4.1 nm for these aluminum-containing nanoparticles. Similarly, high resolution microscopic analysis of the air dried aluminum-containing silica colloid solution revealed 3.9 ± 1.3 nm sized crystalline Al-rich silica nanoparticles (ASP) with an estimated Al:Si ratio of between 2 and 3 which is close to the range of secondary aluminosilicates such as imogolite. Thus the high-aluminum-affinity silica polymer is a nanoparticle that seeds early aluminosilicate formation through highly competitive binding of Al(III) ions. In niche environments, especially in vivo, this may serve as an alternative mechanism to polyhydroxy Al(III) species binding monomeric silica to form early phase, non-toxic aluminosilicates. PMID:24349573

  4. Porosity in fiber laser formation of 5A06 aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Yang Chun; Wang, Chun Ming; Hu, Xi Yuan; Wang, Jun; Yu, Sheng Fu [HUST, Wuhan (China)

    2010-05-15

    The mechanism of porosity formation and its suppression methods in laser formation of aluminum alloy have been studied using a 4kW fiber laser to weld 5A06 aluminum alloy with SAl-Mg5 filler. It was found that the porosity formation is closely related to the stability of the keyhole and fluctuation of the molten pool in the laser welding aluminum alloy. The filling wire increased the instability of the keyhole and weld pool, thus further increasing the amount of gas cavities in the joint. Prefabrication of a suitable gap for the butt joint can provide a natural passage for the flow of the liquid metal, which can weaken, and even completely eliminate the disturbance of the filling wire on the formation of keyhole. The gap can also provide a passage for the escape of the bubble. Thus, this method can greatly decrease the sheet's susceptibility to porosity. Moreover, for a thin sheet, if the power of the laser is sufficient to form a keyhole with stable penetration through the weld sheet, a weld bead without porosity can also be obtained because closing the keyhole is almost impossible

  5. Porosity in fiber laser formation of 5A06 aluminum alloy

    International Nuclear Information System (INIS)

    Yu, Yang Chun; Wang, Chun Ming; Hu, Xi Yuan; Wang, Jun; Yu, Sheng Fu

    2010-01-01

    The mechanism of porosity formation and its suppression methods in laser formation of aluminum alloy have been studied using a 4kW fiber laser to weld 5A06 aluminum alloy with SAl-Mg5 filler. It was found that the porosity formation is closely related to the stability of the keyhole and fluctuation of the molten pool in the laser welding aluminum alloy. The filling wire increased the instability of the keyhole and weld pool, thus further increasing the amount of gas cavities in the joint. Prefabrication of a suitable gap for the butt joint can provide a natural passage for the flow of the liquid metal, which can weaken, and even completely eliminate the disturbance of the filling wire on the formation of keyhole. The gap can also provide a passage for the escape of the bubble. Thus, this method can greatly decrease the sheet's susceptibility to porosity. Moreover, for a thin sheet, if the power of the laser is sufficient to form a keyhole with stable penetration through the weld sheet, a weld bead without porosity can also be obtained because closing the keyhole is almost impossible

  6. Vaporization thermodynamics and enthalpy of formation of aluminum silicon carbide

    International Nuclear Information System (INIS)

    Behrens, R.G.; Rinehart, G.H.

    1984-01-01

    The vaporization thermodynamics of aluminum silicon carbide was investigated using Knudsen effusion mass spectrometry. Vaporization occurred incongruently to give Al(g), SiC(s), and graphite as reaction products. The vapor pressure of aluminum above (Al 4 SiC 4 + SiC + C) was measured using graphite effusion cells with orifice areas between 1.1 X 10 -2 and 3.9 X 10 -4 cm 2 . The vapor pressure of aluminum obtained between 1427 and 1784 K using an effusion cell with the smallest orifice area, 3.9 X 10 -4 cm 2 , is expressed as log p (Pa) = - (18567 + or - 86) (K/T) + (12.143 + or - 0.054) The third-law calculation of the enthalpy change for the reaction Al 4 SiC 4 (s) = 4Al(g) + SiC(hex) + 3C(s) using the present aluminum pressures gives ΔH 0 (298.15 K) = (1455 + or - 79) kJ /SUP ./ mol -1 . The corresponding second-law result is ΔH 0 (298.15 K) = (1456 + or - 47) kJ /SUP ./ mol -1 . The standard enthalpy of formation of Al 4 SiC 4 (s) from the elements calculated from the present vaporization enthalpy (third-law calculation) and the enthalpies of formation of Al(g) and hexagonal SiC is ΔH 0 /SUB f/ (298.15 K) = -(221 + or - 85) kJ /SUP ./ mol -1 . The standard enthalpy of formation of Al 4 SiC 4 (s) from its constituent carbides Al 4 C 3 (s) and SiC(c, hex) is calculated to be ΔH 0 (298.15 K) = (38 + or - 92) KJ /SUP ./ mol -1

  7. Formation of aluminum titanate with small additions of MgO and SiO2

    International Nuclear Information System (INIS)

    Guedes-Silva, Cecilia Chaves; Ferreira, Thiago dos Santos; Genova, Luis Antonio; Carvalho, Flavio Machado de Souza

    2016-01-01

    The formation of aluminum titanate was investigated by isothermal treatments of samples obtained from equimolar mixtures of alumina and titania, containing small amounts of silica and magnesia. Results of differential thermal analysis and Rietveld refinements of data collected by X-ray powder diffraction (XRPD) showed that additions of silica in amounts used in this work did not influence the formation of aluminum titanate. However, the presence of magnesia favored the formation of aluminum titanate in two steps, first one by incorporating Mg 2+ into Al 2 TiO 5 lattice during its initial formation, and the second one by accelerating the Al 2 TiO 5 formation, contributing to large quantities of this phase. MgO doped samples have also developed a more suitable microstructure for stabilizing of Al 2 TiO 5 , what make them promising for applications such as thermal barriers, internal combustion engines and support material for catalyst. (author)

  8. Influence of short-term aluminum exposure on demineralized bone matrix induced bone formation

    Energy Technology Data Exchange (ETDEWEB)

    Severson, A.R. (Minnesota Univ., Duluth, MN (United States). Dept. of Anatomy and Cell Biology); Haut, C.F.; Firling, C.E. (Minnesota Univ., Duluth, MN (United States). Dept. of Biology); Huntley, T.E. (Minnesota Univ., Duluth, MN (United States). Dept. of Biochemistry and Molecular Biology)

    1992-12-01

    The effects of aluminum exposure on bone formation employing the demineralized bone matrix (DBM) induced bone development model were studied using 4-week-old Sprague-Dawley rats injected with a saline (control) or an aluminum chloride (experimental) solution. After 2 weeks of aluminum treatment, 20-mg portions of rat DBM were implanted subcutaneously on each side in the thoracic region of the control and experimental rats. Animals were killed 7, 12, or 21 days after implantation of the DBM and the developing plaques removed. No morphological, histochemical, or biochemical differences were apparent between plaques from day 7 control and experimental rats. Plaques from day 12 control and experimental rats exhibited cartilage formation and alkaline phosphatase activity localized in osteochondrogenic cells, chondrocytes, osteoblasts, and extracellular matrix. Unlike the plaques from control rats that contained many osteoblastic mineralizing fronts, the plaques from the 12-day experimental group had a preponderance of cartilaginous tissue, no evidence of mineralization, increased levels of alkaline phosphatase activity, and a reduced calcium content. Plaques developing for 21 days in control animals demonstrated extensive new bone formation and bone marrow development, while those in the experimental rats demonstrated unmineralized osteoid-like matrix with poorly developed bone marrow. Alkaline phosphatase activity of the plaques continued to remain high on day 21 for the control and experimental groups. Calcium levels were significantly reduced in the experimental group. These biochemical changes correlated with histochemical reductions in bone calcification. Thus, aluminum administration to rats appears to alter the differentiation and calcification of developing cartilage and bone in the DBM-induced bone formation model and suggests that aluminum by some mechanism alters the matrix calcification in growing bones. (orig.).

  9. Pore formation during C.W.Nd: YAG laser welding of aluminum alloys for automotive applications

    International Nuclear Information System (INIS)

    Pastor, M.; Zhao, H.; DebRoy, T.

    2000-01-01

    Pore formation is an important concern in laser welding of automotive aluminum alloys. This paper investigates the influence of the laser beam defocusing on pore formation during continuous wave Nd:YAG laser welding of aluminum automotive alloys 5182 and 5754. It was found that the instability of the keyhole during welding was a dominant cause of pore formation while hydrogen rejection played an insignificant role. The defocusing of the laser beam greatly affected the stability of the keyhole. Finally, the mechanism of the collapse of the keyhole and pore formation is proposed. (Author) 45 refs

  10. Formation of aluminum titanate with small additions of MgO and SiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Guedes-Silva, Cecilia Chaves; Ferreira, Thiago dos Santos; Genova, Luis Antonio [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Carvalho, Flavio Machado de Souza, E-mail: cecilia.guedes@ipen.br [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Instituto de Geociencias

    2016-03-15

    The formation of aluminum titanate was investigated by isothermal treatments of samples obtained from equimolar mixtures of alumina and titania, containing small amounts of silica and magnesia. Results of differential thermal analysis and Rietveld refinements of data collected by X-ray powder diffraction (XRPD) showed that additions of silica in amounts used in this work did not influence the formation of aluminum titanate. However, the presence of magnesia favored the formation of aluminum titanate in two steps, first one by incorporating Mg{sup 2+} into Al{sub 2}TiO{sub 5} lattice during its initial formation, and the second one by accelerating the Al{sub 2}TiO{sub 5} formation, contributing to large quantities of this phase. MgO doped samples have also developed a more suitable microstructure for stabilizing of Al{sub 2}TiO{sub 5}, what make them promising for applications such as thermal barriers, internal combustion engines and support material for catalyst. (author)

  11. Aluminum Oxide Formation On Fecral Catalyst Support By Electro-Chemical Coating

    Directory of Open Access Journals (Sweden)

    Yang H.S.

    2015-06-01

    Full Text Available FeCrAl is comprised essentially of Fe, Cr, Al and generally considered as metallic substrates for catalyst support because of its advantage in the high-temperature corrosion resistance, high mechanical strength, and ductility. Oxidation film and its adhesion on FeCrAl surface with aluminum are important for catalyst life. Therefore various appropriate surface treatments such as thermal oxidation, Sol, PVD, CVD has studied. In this research, PEO (plasma electrolytic oxidation process was applied to form the aluminum oxide on FeCrAl surface, and the formed oxide particle according to process conditions such as electric energy and oxidation time were investigated. Microstructure and aluminum oxide particle on FeCrAl surface after PEO process was observed by FE-SEM and EDS with element mapping analysis. The study presents possibility of aluminum oxide formation by electro-chemical coating process without any pretreatment of FeCrAl.

  12. A mechanism for the formation of equiaxed grains in welds of aluminum-lithium alloy 2090

    International Nuclear Information System (INIS)

    Lin, D.C.; Wang, G.-X.; Srivatsan, T.S.

    2003-01-01

    In this technical note, the formation and presence of a zone of equiaxed grains (EQZ) along the fusion boundary of welded aluminum-lithium alloy 2090 using filler metals containing zirconium and lithium is presented and discussed. However, no EQZ was evident in welded joints of alloy 2090 using the commercial filler metals: aluminum alloy 2319 and 4145. Under identical conditions, aluminum-lithium alloy 2090 was fusion welded using several new filler metals containing various amounts of zirconium and lithium. Results reveal an increase in the width of the zone of equiaxed grains with an increase in zirconium and lithium content in the filler metal. A viable mechanism for the formation of equiaxed grains and its relationship to filler metal composition is highlighted

  13. Graphene-aluminum nanocomposites

    International Nuclear Information System (INIS)

    Bartolucci, Stephen F.; Paras, Joseph; Rafiee, Mohammad A.; Rafiee, Javad; Lee, Sabrina; Kapoor, Deepak; Koratkar, Nikhil

    2011-01-01

    Highlights: → We investigated the mechanical properties of aluminum and aluminum nanocomposites. → Graphene composite had lower strength and hardness compared to nanotube reinforcement. → Processing causes aluminum carbide formation at graphene defects. → The carbides in between grains is a source of weakness and lowers tensile strength. - Abstract: Composites of graphene platelets and powdered aluminum were made using ball milling, hot isostatic pressing and extrusion. The mechanical properties and microstructure were studied using hardness and tensile tests, as well as electron microscopy, X-ray diffraction and differential scanning calorimetry. Compared to the pure aluminum and multi-walled carbon nanotube composites, the graphene-aluminum composite showed decreased strength and hardness. This is explained in the context of enhanced aluminum carbide formation with the graphene filler.

  14. Formation of self-assembled stripes on the anodic aluminum oxide

    International Nuclear Information System (INIS)

    Liu Hongwen; Guo Haiming; Wang Yeliang; Shen Chengmin; Yang Haitao; Wang Yutian; Wei Long

    2004-01-01

    Non-polished aluminum sheets were anodized and the coexistence of self-assembled stripes and porous arrays on the Al surface was observed. The nanostructures were investigated in details using an atomic force microscope. And the formation mechanism of the stripes was discussed and simulated using Brusselator model in this work. The authors demonstrated that the self-assembled patterns on the Al surface were governed by the competition of formation and dissolution of alumina film during the reaction process. Moreover, this type of ordered structure could only form in certain conditions

  15. Research progress in formation mechanism of anodizing aluminum oxide

    Science.gov (United States)

    Lv, Yudong

    2017-12-01

    The self-ordering porous anodizing aluminum oxide (AAO) has attracted much attention because of its potential value of application. Valve metals (Al, Ti, Zr etc.) anodic studies have been conducted for more than 80 years, but the mechanism of the formation of hexagonal prismatic cell structure has so far been different. In this paper, the research results of AAO film formation mechanism are reviewed, and the growth models of several AAO films are summarized, including the field-assisted dissolution (FAD), the viscous flow model, the critical current density effect model, the bulk expansion stress model and the steady-state pore growth model and so on. It analyzed the principle of each model and its rationality. This paper will be of great help to reveal the nature of pore formation and self-ordering, and with the hope that through the study of AAO film formation mechanism, the specific effects of various oxidation parameters on AAO film morphology can be obtained.

  16. Effect of oxide film formation on the fatigue behavior of aluminum alloy

    International Nuclear Information System (INIS)

    Kim, Jong Cheon; Cheong, Seong Kyun

    2012-01-01

    In this study, the effects of surface oxide film formation on the fatigue behavior of 7075-T6 aluminum alloy were analyzed in terms of the corrosion time of the alloy. The aluminum material used is known to have high corrosion resistance due to the passivation phenomenon that prevents corrosion. Aluminum alloys have been widely used in various industrial applications such as aircraft component manufacturing because of their lighter weight and higher strength than other materials. Therefore, studies on the fatigue behavior of materials and passivation properties that prevent corrosion are required. The fatigue behavior in terms of the corrosion time was analyzed by using a four pointing bending machine, and the surface corrosion level of the aluminum material in terms of the corrosion time was estimated by measuring the surface were studied by scanning electron microscopy (SEM). The results indicated that corrosion actively progressed for four weeks during the initial corrosion phase, the fatigue life significantly decreased, and the surface roughness increased. However, after four weeks, the corrosion reaction tended to slow down due to the passivation phenomenon of the material. Therefore, on the basis of SEM analysis results, it was concluded that the growth of the surface oxide film was reduced after four weeks and then the oxide film on the material surface served as a protection layer and prevented further corrosion

  17. Formation of aluminum films on silicon by ion beam deposition: a comparison with ionized cluster beam deposition

    International Nuclear Information System (INIS)

    Zuhr, R.A.; Haynes, T.E.; Galloway, M.D.; Tanaka, S.; Yamada, A.; Yamada, I.

    1991-01-01

    The direct ion beam deposition (IBD) technique has been used to study the formation of oriented aluminum films on single crystal silicon substrates. In the IBD process, thin film growth is accomplished by decelerating a magnetically analyzed ion beam to low energies (10-200 eV) for direct deposition onto the substrate under UHV conditions. The aluminum-on-silicon system is one which has been studied extensively by ionized cluster beam (ICB) deposition. This technique has produced intriguing results for aluminum, with oriented crystalline films being formed at room temperature in spite of the 25% mismatch in lattice constant between aluminum and silicon. In this work, we have studied the formation of such films by IBD, with emphasis on the effects of ion energy, substrate temperature, and surface cleanliness. Oriented films have been grown on Si(111) at temperatures from 40 to 300degC and with ion energies of 30-120 eV per ion. Completed films were analyzed by ion scattering, X-ray diffraction, scanning-electron microscopy, and optical microscopy. Results achieved for thin films grown by IBD are comparable to those for similar films grown by ICB deposition. (orig.)

  18. Formation and stability of aluminum-based metallic glasses in Al-Fe-Gd alloys

    International Nuclear Information System (INIS)

    He, Y.; Poon, S.J.; Shiflet, G.J.

    1988-01-01

    Metallic glasses, a class of amorphous alloys made by rapid solidification, have been studied quite extensively for almost thirty years. It has been recognized for a long time that metallic glasses are usually very strong and ductile, and exhibit high corrosion resistance relative to crystalline alloys with the same compositions. Recently, metallic glasses containing as much as 90 atomic percent aluminum have been discovered independently by two groups. This discovery has both scientific and technological implications. The formability of these new glasses have been found to be unusual. Studies of mechanical properties in these new metallic glasses show that many of them have tensile strengths over 800MPa, greatly exceeding the strongest commercial aluminum alloys. The high strengths of aluminum-rich metallic glasses can be of significant importance in obtaining high strength low density materials. Therefore, from both scientific and technological standpoints, it is important to understand the formation and thermal stability of these metallic glasses. Al-Fe-Gd alloys were chosen for a more detailed study since they exhibit high tensile strengths

  19. The effect of different aluminum alloy surface compositions on barrier anodic film formation

    International Nuclear Information System (INIS)

    Panitz, J.K.G.; Sharp, D.J.

    1984-01-01

    The authors have grown barrier anodic coatings on samples of aluminum alloy with different elemental surface compositions. In one series of experiments, they characterized the surface composition present on 6061 aluminum alloy samples after different chemical treatments including a detergent-water and methyl-ethyl ketone solvent clean, a 50% nitric acid-water etch, and a concentrated nitric acid-ammonium bifluoride etch. They anodized samples which were prepared similarly to those analyzed to evaluate the practical effects of the three different surface compositions. The anodization voltage rise time to 950V at constant current was used as a figure of merit. The solvent cleaned and the 50% nitric acid etched samples required, respectively, 113% and 41% more time to reach 950V than the concentrated nitric acidammonium bifloride etched samples. In a second series of experiments, they alternately anodized groups of either 6061 or 1100 (commercially pure) aluminum alloy, observed rise times to 950V, and measured chloride ion concentrations in the electrolyte. Longer rise times and higher chloride ion concentrations were observed for the 1100 samples. It was observed that the chloride ion concentration fell from initially high levels when 6061 samples were anodized. The results of both series of experiments augment the results of other investigators, who report that the surface species initially present on aluminum have a significant effect on anodic film formation

  20. Formation Mechanism of Micropores on the Surface of Pure Aluminum Induced by High-Current Pulsed Electron Beam Irradiation

    International Nuclear Information System (INIS)

    Zou Yang; Cai Jie; Wan Ming-Zhen; Lv Peng; Guan Qing-Feng

    2011-01-01

    The mechanism of micropores formed on the surface of polycrystalline pure aluminum under high-current pulsed electron beam (HCPEB) irradiation is explained. It is discovered that dispersed micropores with sizes of 0.1–1 μm on the irradiated surface of pure aluminum can be successfully fabricated after HCPEB irradiation. The dominant formation mechanism of the surface micropores should be attributed to the formation of supersaturation vacancies within the near surface during the HCPEB irradiation and the migration of vacancies along grain boundaries and/or dislocations towards the irradiated surface. It is expected that the HCPEB technique will become a new method for the rapid synthesis of surface porous materials. (condensed matter: structure, mechanical and thermal properties)

  1. Polyphenol-aluminum complex formation: Implications for aluminum tolerance in plants

    Science.gov (United States)

    Natural polyphenols may play an important role in aluminum detoxification in some plants. We examined the interaction between Al3+ and the purified high molecular weight polyphenols pentagalloyl glucose (940 Da) and oenothein B (1568 Da), and the related compound methyl gallate (184 Da) at pH 4 and ...

  2. Experimental and numerical study of spatter formation and composition change in fiber laser welding of aluminum alloy

    Science.gov (United States)

    Wu, Dongsheng; Hua, Xueming; Ye, Youxiong; Huang, Lijin; Li, Fang; Huang, Ye

    2018-05-01

    A laser welding experiment with glass is conducted to directly observe the keyhole behavior and spatter formation in fiber laser welding of aluminum alloy. A 3D model is developed to investigate the spatter formation and composition change. An additional conservation equation is introduced to describe the Mg element distribution, and the Mg element loss due to evaporation is also considered. Based on numerical and experimental results, it is found that the keyhole geometry in laser welding of aluminum alloy is different from that in laser welding of steel. There are three required steps for spatter formation around the keyhole. The high momentum of the molten metal, the high recoil pressure and vapor shear stress, and the low surface tension around the keyhole contribute to the easy formation of spatter. The in-homogeneous distribution of Mg element in the weld can be attributable to the continuous evaporation of Mg element at the top surface of keyhole rear, the upward flow of low Mg element region from the bottom of the keyhole to the top surface of keyhole rear along the fusion line, the collapse of the keyhole, and the ejection of spatters.

  3. Joining thick section aluminum to steel with suppressed FeAl intermetallic formation via friction stir dovetailing

    Energy Technology Data Exchange (ETDEWEB)

    Reza-E-Rabby, Md.; Ross, Kenneth; Overman, Nicole R.; Olszta, Matthew J.; McDonnell, Martin; Whalen, Scott A.

    2018-04-01

    A new solid-phase technique called friction stir dovetailing (FSD) has been developed for joining thick section aluminum to steel. In FSD, mechanical interlocks are formed at the aluminum-steel interface and are reinforced by metallurgical bonds where intermetallic growth has been uniquely suppressed. Lap shear testing shows superior strength and extension at failure compared to popular friction stir approaches where metallurgical bonding is the only joining mechanism. High resolution microscopy revealed the presence of a 40-70 nm interlayer having a composition of 76.4 at% Al, 18.4 at% Fe, and 5.2 at% Si, suggestive of limited FeAl3 intermetallic formation.

  4. Formation and evolution of tweed structures on high-purity aluminum polycrystalline foils under cyclic tension

    International Nuclear Information System (INIS)

    Kuznetsov, P. V.; Vlasov, I. V.; Sklyarova, E. A.; Smekalina, T. V.

    2015-01-01

    Peculiarities of formation and evolution of tweed structures on the surface of high-purity aluminum polycrystalline foils under cyclic tension were studied using an atom force microscope and a white light interferometer. Tweed structures of micron and submicron sizes were found on the foils at different number of cycles. In the range of 42,000 < N < 95,000 cycles destruction of tweed patterns is observed, which leads to their disappearance from the surface of the foils. Formation of tweed structures of various scales is discussed in terms of the Grinfeld instability

  5. Enthalpy of formation of vanadates of iron, chromium, and aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Kesler, Y.A.; Cheshnitskii, S.M.; Fotiev, A.A.; Tret' yakov, Y.D.

    1985-09-01

    The study of vanadates of iron, aluminum and chromium is of importance for the analysis of the functioning of catalysts of organic synthesis reactions and for the study of vanadium corrosion of structural materials. Of principal interest, however, are the processes in the treatment of vanadium-containing metallurgical slags and waste from thermal power plants, in which these compounds play a major role. At the same time, the thermochemical properties of these substances, which are necessary for creating the physicochemical foundations of industrially important processes, have not been investigated sufficiently. The authors therefore undertake here a study of the compounds FeVO/sub 4/, AIVO/sub 4/, CrVO/sub 4/ and FeCr(VO/sub 4/)/sub 2/, to determine their enthalpies of formation.

  6. Effect of Fe- and Si-Enriched Secondary Precipitates and Surface Roughness on Pore Formation on Aluminum Plate Surfaces During Anodizing

    Science.gov (United States)

    Zhu, Yuanzhi; Wang, Shizhi; Yang, Qingda; Zhou, Feng

    2014-09-01

    Two twin roll casts (TRCs) and one hot rolled (HR) AA 1235 aluminum alloy plates with different microstructures are prepared. The plates were electrolyzed in a 1.2 wt% HCl solution with a voltage of 21 V and a current of 1.9 mA. The shape, size, and number of pores formed on the surfaces of these plates were analyzed and correlated with the microstructures of the plates. It is found that pores are easier to form on the alloy plates containing subgrains with a lower dislocation density inside the subgrains, rather than along the grain boundaries. Furthermore, Fe- and Si-enriched particles in the AA1235 aluminum alloys lead to the formation of pores on the surface during electrolyzing; the average precipitate sizes of 4, 3.5, and 2 μm in Alloy 1#, Alloy 2# and Alloy 3# result in the average pore sizes of 3.78, 2.76, and 1.9 μm on the surfaces of the three alloys, respectively; The G.P zone in the alloy also facilitates the surface pore formation. High-surface roughness enhances the possibility of entrapping more lubricants into the plate surface, which eventually blocks the formation of the pores on the surface of the aluminum plates in the following electrolyzing process.

  7. Study of Shell Zone Formation in Lithographic and Anodizing Quality Aluminum Alloys: Experimental and Numerical Approach

    Science.gov (United States)

    Brochu, Christine; Larouche, André; Hark, Robert

    Shell thickness is an important quality factor for lithographic and anodizing quality aluminum alloys. Increasing pressure is placed on casting plants to produce a thinner shell zone for these alloys. This study, based on plant trials and mathematical modelling highlights the most significant parameters influencing shell zone formation. Results obtained show the importance of metal temperature and distribution and mould metal level on shell zone formation. As an answer to specific plant problems, this study led to the development of improved metal distribution systems for DC casting of litho and anodizing quality alloys.

  8. MICROSTRUCTURE CHARACTERISTIC OF ALUMINUM TITANATE SYNTHESIED BY BOTH SOLID- STATE AND SOL-GEL PROCESSES

    Directory of Open Access Journals (Sweden)

    M. Khosravi Saghezchi

    2015-12-01

    Full Text Available A comparing study on formation and microstructure features of aluminum titanate is investigated through both solid-state and sol-gel processes. Aluminum titanate formed by firing at 1350ºC and 1450ºC for 4h in solid-state process. In the sol-gel process formation of submicron sized particles is followed by addition of sucrose into the transparent sol. XRD analysis was confirmed the formation of aluminum titanate at 1400ºC  in lower duration of calcination (3h without any additives in the sol-gel process. In this work 2wt% MgO is added to the samples as the additive for forming acceleration of aluminum titanate. The influence of MgO addition and heat treatment are studied on phase formation and microstructure development of aluminum titanate in both procedures. Additive optimizes aluminum titanate formation at lower temperatures (1300-1350ºC. Phase and microstructure studies of Mg containing samples optimally show significance in aluminum titanate formation.

  9. Features of the theories of the formation of oxide films on aluminum alloys piston diesel engines with micro-arc oxidation

    OpenAIRE

    Skryabin M.L.; Smekhova I. N.

    2017-01-01

    The article considers one of the promising methods of surface hardening of piston aluminum alloy – microarc oxidation. Described fundamental differences from the micro-arc oxidation anodizing and similar electrochemical processes. The schemes of formation of the barrier and outer layers surface treatment in aqueous electrolytes. Shows the mechanism of formation of the interface. Considers the formation of layers with high porosity and method of exposure. Also describes the exponential depende...

  10. Aluminum-based metal-air batteries

    Science.gov (United States)

    Friesen, Cody A.; Martinez, Jose Antonio Bautista

    2016-01-12

    Provided in one embodiment is an electrochemical cell, comprising: (i) a plurality of electrodes, comprising a fuel electrode that comprises aluminum and an air electrode that absorbs gaseous oxygen, the electrodes being operable in a discharge mode wherein the aluminum is oxidized at the fuel electrode and oxygen is reduced at the air electrode, and (ii) an ionically conductive medium, comprising an organic solvent; wherein during non-use of the cell, the organic solvent promotes formation of a protective interface between the aluminum of the fuel electrode and the ionically conductive medium, and wherein at an onset of the discharge mode, at least some of the protective interface is removed from the aluminum to thereafter permit oxidation of the aluminum during the discharge mode.

  11. In situ formation of ZrB2 particulates and their influence on microstructure and tensile behavior of AA7075 aluminum matrix composites

    Directory of Open Access Journals (Sweden)

    J. David Raja Selvam

    2017-02-01

    Full Text Available In situ synthesis of aluminum matrix composites (AMCs has become a popular method due to several advantages over conventional stir casting method. In the present study, AA7075/ZrB2 AMCs reinforced with various content of ZrB2 particulates (0, 3, 6, 9 and 12 wt.% were synthesized by the in situ reaction of molten aluminum with inorganic salts K2ZrF6 and KBF4. The composites were characterized using XRD, OM, SEM, EBSD and TEM. The XRD patterns revealed the formation of ZrB2 particulates without the presence of any other compounds. The formation of ZrB2 particulates refined the grains of aluminum matrix extensively. Most of the ZrB2 particulates were located near the grain boundaries. The ZrB2 particulates exhibited various morphologies including spherical, cylindrical and hexagonal shapes. The size of the ZrB2 particulates was in the order of nano, sub micron and micron level. A good interfacial bonding was observed between the aluminum matrix and the ZrB2 particulates. The in situ formed ZrB2 particulates enhanced the mechanical properties such as microhardness and the ultimate tensile strength. Various strengthening mechanisms were identified.

  12. 3. world TRIGA users conference. Papers and abstracts

    International Nuclear Information System (INIS)

    2006-01-01

    The Conference is focused on TRIGA reactors operation and applications. The main topics are: use of the reactor as a research tool; inspection of spent fuel elements; integrity of fuel rods cladding checks; evaluation of corrosion of aluminum-base fuel cladding materials; Pitting behavior of Aluminum alloys; Monte Carlo simulation of TRIGA: reactivity worth, burnup, flux and power; irradiation facilities; thermal hydraulics analyses etc

  13. Effect of Aluminum Purity on the Pore Formation of Porous Anodic Alumina

    International Nuclear Information System (INIS)

    Kim, Byeol; Lee, Jin Seok

    2014-01-01

    Anodic alumina oxide (AAO), a self-ordered hexagonal array, has various applications in nanofabrication such as the fabrication of nanotemplates and other nanostructures. In order to obtain highly ordered porous alumina membranes, a two-step anodization or prepatterning of aluminum are mainly conducted with straight electric field. Electric field is the main driving force for pore growth during anodization. However, impurities in aluminum can disturb the direction of the electric field. To confirm this, we anodized two different aluminum foil samples with high purity (99.999%) and relatively low purity (99.8%), and compared the differences in the surface morphologies of the respective aluminum oxide membranes produced in different electric fields. Branched pores observed in porous alumina surface which was anodized in low-purity aluminum and the size; dimensions of the pores were found to be usually smaller than those obtained from high-purity aluminum. Moreover, anodization at high voltage proceeds to a significant level of conversion because of the high speed of the directional electric field. Consequently, anodic alumina membrane of a specific morphology, i. e., meshed pore, was produced

  14. Effect of Aluminum Purity on the Pore Formation of Porous Anodic Alumina

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byeol; Lee, Jin Seok [Sookmyung Women' s Univ., Seoul (Korea, Republic of)

    2014-02-15

    Anodic alumina oxide (AAO), a self-ordered hexagonal array, has various applications in nanofabrication such as the fabrication of nanotemplates and other nanostructures. In order to obtain highly ordered porous alumina membranes, a two-step anodization or prepatterning of aluminum are mainly conducted with straight electric field. Electric field is the main driving force for pore growth during anodization. However, impurities in aluminum can disturb the direction of the electric field. To confirm this, we anodized two different aluminum foil samples with high purity (99.999%) and relatively low purity (99.8%), and compared the differences in the surface morphologies of the respective aluminum oxide membranes produced in different electric fields. Branched pores observed in porous alumina surface which was anodized in low-purity aluminum and the size; dimensions of the pores were found to be usually smaller than those obtained from high-purity aluminum. Moreover, anodization at high voltage proceeds to a significant level of conversion because of the high speed of the directional electric field. Consequently, anodic alumina membrane of a specific morphology, i. e., meshed pore, was produced.

  15. Electroerosion formation and technology of cast iron coatings on aluminum alloys

    Directory of Open Access Journals (Sweden)

    Smolentsev Vladislav P.

    2017-01-01

    Full Text Available At present in the course of designing basic production parts and industrial equipment designers pay more and more attention to aluminum alloys having a number of properties compared favorably with other materials. In particular, technological aluminum tool electrodes without coating in the presence of products of processing with alkali in the composition of operation environment are being destroyed at the expense of intensified material dissolution. It is shown in the paper that the method offered by the authors and covered by the patents on cast iron coating of products made of aluminum alloys, allows obtaining on a product surface the layers with high adhesion durability ensuring a high protection against destruction in the friction units including operation in hostile environment. Thereupon, aluminum, as compared with iron-based alloys used at manufacturing technological equipment for electrical methods of processing, has a high electrical and thermal conduction, its application will allow achieving considerable energy-saving in the course of parts production. A procedure for the design of a technological process of qualitative cast iron coatings upon aluminum tool electrodes and parts of basic production used in different branches of mechanical engineering is developed.

  16. Rule of formation of aluminum electroplating layer on Q235 steel.

    Science.gov (United States)

    Ding, Zhimin; Feng, Qiuyuan; Shen, Changbin; Gao, Hong

    2011-06-01

    Aluminum electroplating layer on Q235 steel in AlCl3-NaCl-KCl molten salt was obtained, and the rule of its nucleation and growth were investigated. The results showed that aluminum electroplating layer formed through nucleating and growing of aluminum particles, and thickened by delaminating growth pattern. At low current density, the morphology of aluminum particles took on flake-like, while at high current density they changed to spherical. The thickness of plating layer increases with increasing current density and electroplating time. The relationship between the plating thickness (δ) and electroplating time (t) or current density (i) can be expressed as δ = 0.28f(137), and δ = 1.1i(1-39). Copyright © 2011 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  17. Carbon contaminant in the ion processing of aluminum oxide film

    International Nuclear Information System (INIS)

    Chaug, Y.; Roy, N.

    1989-01-01

    Ion processing can induce contamination on the bombarded surface. However, this process is essential for the microelectronics device fabrication. Auger electron spectroscopy has been used to study the simultaneous deposition of carbon impurity during ion bombardment of magnetron rf-sputtering deposited aluminum oxide film. Ion bombardment on aluminum oxide results in a preferential removal of surface oxygen and a formation of a metastable state of aluminum suboxide. Cosputtered implanted carbon contaminant appears to have formed a new state of stoichiometry on the surface of the ion bombarded aluminum oxide and existed as an aluminum carbide. This phase has formed due to the interaction of the implanted carbon and the aluminum suboxide. The Ar + ion sputter etching rate is reduced for the carbon contaminated oxide. The electrical resistance of the aluminum oxide between two gold strips has been measured. It is found that the electrical resistance is also reduced due to the formation of the new stoichiometry on the surface

  18. 75 FR 17436 - Certain Aluminum Extrusions From China

    Science.gov (United States)

    2010-04-06

    ... States at less than fair value and alleged to be subsidized by the Government of China. Unless the... response to a petition filed on March 31, 2010, by the Aluminum Extrusions Fair Trade Committee... presentation at the conference. A nonparty who has testimony that may aid the Commission's deliberations may...

  19. Formulation and method for preparing gels comprising hydrous aluminum oxide

    Science.gov (United States)

    Collins, Jack L.

    2014-06-17

    Formulations useful for preparing hydrous aluminum oxide gels contain a metal salt including aluminum, an organic base, and a complexing agent. Methods for preparing gels containing hydrous aluminum oxide include heating a formulation to a temperature sufficient to induce gel formation, where the formulation contains a metal salt including aluminum, an organic base, and a complexing agent.

  20. Features of the theories of the formation of oxide films on aluminum alloys piston diesel engines with micro-arc oxidation

    Directory of Open Access Journals (Sweden)

    Skryabin M.L.

    2017-12-01

    Full Text Available The article considers one of the promising methods of surface hardening of piston aluminum alloy – microarc oxidation. Described fundamental differences from the micro-arc oxidation anodizing and similar electrochemical processes. The schemes of formation of the barrier and outer layers surface treatment in aqueous electrolytes. Shows the mechanism of formation of the interface. Considers the formation of layers with high porosity and method of exposure. Also describes the exponential dependence of the current density from the electric field in the surface film of the base metal. The role of discharges in the formation of oxide layers on the treated surface. Proposed and described features of the three main theories of formation of oxide films on the surface of the piston: physical and geometrical model of Keller; models of formation of oxide films as a colloid formations and plasma theory (theory of oxidation with the formation of plasma in the zone of oxidation. The features of formation of films in each of the models. For the model of Keller porous oxide film is a close-Packed oxide cell, having the shape of a prism. They are based on a hexagonal prism. These cells have normal orientation to the surface of the metal. In the center of the unit cell there is one season that is a channel, whose size is determined by the composition of the electrolyte, the chemical composition of the base metal and the electrical parameters of the process of oxidation. In the micro-arc oxidation process according to this model, the beginning of the formation of cells occurs with the formation of the barrier layer, passing in the porous layer and, over time, the elonga-tion of the pores, due to the constant etching electrolyte. In the theory of formation of the oxide films as kolloidnyh formations revealed that formation of pores in the film is a result of their growth. The anodic oxide is represented by a directed electric field, the alumina gel colloidal and

  1. Deposition behavior of residual aluminum in drinking water distribution system: Effect of aluminum speciation.

    Science.gov (United States)

    Zhang, Yue; Shi, Baoyou; Zhao, Yuanyuan; Yan, Mingquan; Lytle, Darren A; Wang, Dongsheng

    2016-04-01

    Finished drinking water usually contains some residual aluminum. The deposition of residual aluminum in distribution systems and potential release back to the drinking water could significantly influence the water quality at consumer taps. A preliminary analysis of aluminum content in cast iron pipe corrosion scales and loose deposits demonstrated that aluminum deposition on distribution pipe surfaces could be excessive for water treated by aluminum coagulants including polyaluminum chloride (PACl). In this work, the deposition features of different aluminum species in PACl were investigated by simulated coil-pipe test, batch reactor test and quartz crystal microbalance with dissipation monitoring. The deposition amount of non-polymeric aluminum species was the least, and its deposition layer was soft and hydrated, which indicated the possible formation of amorphous Al(OH)3. Al13 had the highest deposition tendency, and the deposition layer was rigid and much less hydrated, which indicated that the deposited aluminum might possess regular structure and self-aggregation of Al13 could be the main deposition mechanism. While for Al30, its deposition was relatively slower and deposited aluminum amount was relatively less compared with Al13. However, the total deposited mass of Al30 was much higher than that of Al13, which was attributed to the deposition of particulate aluminum matters with much higher hydration state. Compared with stationary condition, stirring could significantly enhance the deposition process, while the effect of pH on deposition was relatively weak in the near neutral range of 6.7 to 8.7. Copyright © 2015. Published by Elsevier B.V.

  2. Sister Mary Emil Penet, I.H.M.: Founder of the Sister Formation Conference

    Science.gov (United States)

    Glisky, Joan

    2006-01-01

    Mary Emil Penet, I.H.M., (1916-2001) used her talents and charisma to shape the first national organization of American women religious, the Sister Formation Conference (SFC; 1954-1964), facilitating the integrated intellectual, spiritual, psychological, and professional development of vowed women religious. In the decade preceding Vatican II, her…

  3. Formation of interlayer gap and control of interlayer burr in dry drilling of stacked aluminum alloy plates

    Directory of Open Access Journals (Sweden)

    Tian Wei

    2016-02-01

    Full Text Available In aircraft assembly, interlayer burr formation in dry drilling of stacked metal materials is a common problem. Traditional manual deburring operation seriously affects the assembly quality and assembly efficiency, is time-consuming and costly, and is not conducive to aircraft automatic assembly based on industrial robot. In this paper, the formation of drilling exit burr and the influence of interlayer gap on interlayer burr formation were studied, and the mechanism of interlayer gap formation in drilling stacked aluminum alloy plates was investigated, a simplified mathematical model of interlayer gap based on the theory of plates and shells and finite element method was established. The relationship between interlayer gap and interlayer burr, as well as the effect of feed rate and pressing force on interlayer burr height and interlayer gap was discussed. The result shows that theoretical interlayer gap has a positive correlation with interlayer burr height and preloading pressing force is an effective method to control interlayer burr formation.

  4. Aluminum-activated citrate and malate transporters from the MATE and ALMT families function independently to confer Arabidopsis aluminum tolerance.

    Science.gov (United States)

    Liu, Jiping; Magalhaes, Jurandir V; Shaff, Jon; Kochian, Leon V

    2009-02-01

    Aluminum-activated root malate and citrate exudation play an important role in plant Al tolerance. This paper characterizes AtMATE, a homolog of the recently discovered sorghum and barley Al-tolerance genes, shown here to encode an Al-activated citrate transporter in Arabidopsis. Together with the previously characterized Al-activated malate transporter, AtALMT1, this discovery allowed us to examine the relationship in the same species between members of the two gene families for which Al-tolerance genes have been identified. AtMATE is expressed primarily in roots and is induced by Al. An AtMATE T-DNA knockdown line exhibited very low AtMATE expression and Al-activated root citrate exudation was abolished. The AtALMT1 AtMATE double mutant lacked both Al-activated root malate and citrate exudation and showed greater Al sensitivity than the AtALMT1 mutant. Therefore, although AtALMT1 is a major contributor to Arabidopsis Al tolerance, AtMATE also makes a significant but smaller contribution. The expression patterns of AtALMT1 and AtMATE and the profiles of Al-activated root citrate and malate exudation are not affected by the presence or absence of the other gene. These results suggest that AtALMT1-mediated malate exudation and AtMATE-mediated citrate exudation evolved independently to confer Al tolerance in Arabidopsis. However, a link between regulation of expression of the two transporters in response to Al was identified through work on STOP1, a transcription factor that was previously shown to be necessary for AtALMT1 expression. Here we show that STOP1 is also required for AtMATE expression and Al-activated citrate exudation.

  5. Preparation of boron-rich aluminum boride nanoparticles by RF thermal plasma

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Sooseok [Inha University, Department of Chemical Engineering and Regional Innovation Center for Environmental Technology of Thermal Plasma (Korea, Republic of); Matsuo, Jiro; Cheng, Yingying [Tokyo Institute of Technology, Department of Environmental Chemistry and Engineering (Japan); Watanabe, Takayuki, E-mail: watanabe@chemenv.titech.ac.jp [Kyushu University, Department of Chemical Engineering (Japan)

    2013-08-15

    Boron-rich compounds of AlB{sub 12} and AlB{sub 10} nanoparticles were synthesized by a radiofrequency thermal plasma. Aluminum and boron raw powders were evaporated in virtue of high enthalpy of the thermal plasma in upstream region, followed by the formation of aluminum boride nanoparticles in the tail region of plasma flame with rapid quenching. A high production rate of aluminum boride was confirmed by the X-ray diffraction measurement in the case of high input power, high boron content in raw material and helium inner gas. Polyhedral nanoparticles of 20.8 nm in mean size were observed by a transmission electron microscope. In the raw powder mixture of aluminum, titanium, and boron, titanium-boride nanoparticles were synthesized preferentially, because the Gibbs free energy for the boridation of titanium is lower than that of aluminum. Since the nucleation temperature of boron is higher than that of aluminum, the condensation of metal monomers onto boron nuclei results in the formation of boron-rich aluminum boride nanoparticles.

  6. Inhibition of the formation of intermetallic compounds in aluminum-steel welded joints by friction stir welding

    Directory of Open Access Journals (Sweden)

    Torres López, Edwar A.

    2015-12-01

    Full Text Available Formation of deleterious phases during welding of aluminum and steel is a challenge of the welding processes, for decades. Friction Stir Welding (FSW has been used in an attempt to reduce formation of intermetallic compounds trough reducing the heat input. In this research, dissimilar joint of 6063-T5 aluminum alloy and AISI-SAE 1020 steel were welded using this technique. The temperature of welded joints was measured during the process. The interface of the welded joints was characterized using optical microscopy, scanning and transmission electron microscopy. Additionally, composition measurements were carried out by X-EDS and DRX. The experimental results revealed that the maximum temperature on the joint studied is less than 360 °C. The microstructural characterization in the aluminum-steel interface showed the absence of intermetallic compounds, which is a condition attributed to the use of welding with low thermal input parameters.La unión de juntas aluminio-acero, sin la formación de fases deletéreas del tipo FexAly, ha sido, por décadas, un desafío para los procesos de soldadura. La soldadura por fricción-agitación ha sido empleada para intentar reducir el aporte térmico y evitar la formación de compuestos intermetálicos. Usando esta técnica fueron soldadas juntas disimilares de aluminio 6063-T5 y acero AISI-SAE 1020. La soldadura fue acompañada de medidas de temperatura durante su ejecución. La interfase de las juntas soldadas fue caracterizada utilizando microscopía óptica, electrónica de barrido y electrónica de transmisión. Adicionalmente fueron realizadas medidas puntuales X-EDS y DRX. Los resultados experimentales revelan que la temperatura máxima en la junta es inferior a 360 °C. La caracterización microestructural en la interfase aluminio-acero demostró la ausencia de compuestos intermetálicos, condición atribuida al uso de parámetros de soldadura con bajo aporte térmico.

  7. Reduction of Oxidative Melt Loss of Aluminum and Its Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Subodh K. Das; Shridas Ningileri

    2006-03-17

    This project led to an improved understanding of the mechanisms of dross formation. The microstructural evolution in industrial dross samples was determined. Results suggested that dross that forms in layers with structure and composition determined by the local magnesium concentration alone. This finding is supported by fundamental studies of molten metal surfaces. X-ray photoelectron spectroscopy data revealed that only magnesium segregates to the molten aluminum alloy surface and reacts to form a growing oxide layer. X-ray diffraction techniques that were using to investigate an oxidizing molten aluminum alloy surface confirmed for the first time that magnesium oxide is the initial crystalline phase that forms during metal oxidation. The analytical techniques developed in this project are now available to investigate other molten metal surfaces. Based on the improved understanding of dross initiation, formation and growth, technology was developed to minimize melt loss. The concept is based on covering the molten metal surface with a reusable physical barrier. Tests in a laboratory-scale reverberatory furnace confirmed the results of bench-scale tests. The main highlights of the work done include: A clear understanding of the kinetics of dross formation and the effect of different alloying elements on dross formation was obtained. It was determined that the dross evolves in similar ways regardless of the aluminum alloy being melted and the results showed that amorphous aluminum nitride forms first, followed by amorphous magnesium oxide and crystalline magnesium oxide in all alloys that contain magnesium. Evaluation of the molten aluminum alloy surface during melting and holding indicated that magnesium oxide is the first crystalline phase to form during oxidation of a clean aluminum alloy surface. Based on dross evaluation and melt tests it became clear that the major contributing factor to aluminum alloy dross was in the alloys with Mg content. Mg was

  8. The role of hexafluorozirconate in the formation of chromate conversion coatings on aluminum alloys

    International Nuclear Information System (INIS)

    Chidambaram, Devicharan; Clayton, Clive R.; Halada, Gary P.

    2006-01-01

    Aluminum based surfaces are routinely coated with a chromate based layer that provides unparalleled corrosion protection. Widely used conversion coating treatment formulations contain hexafluorozirconate as a major constituent besides chromate, ferricyanide, fluoride, and fluoborate. The function of hexafluorozirconate is the subject of this study as its function is still largely unknown. Hydrophobicity, surface morphology, and the chemistry of the surface, resulting from treatment with hexafluorozirconate, were studied using contact angle measurements, scanning electron microscopy, and energy dispersive spectroscopy, respectively. X-ray photoelectron spectroscopy was extensively utilized to determine the chemistry of the surface resulting from the hexafluorozirconate pretreatment. Our results indicate that fluoride ion containing hexafluorozirconate complex does not attack the oxide film in a manner that uncomplexed simple fluoride ion does. Hexafluorozirconate is involved in the formation of an Al-Zr-O-F based hydrated layer that increases the hydrophilicity of the surface, activates the surface, and lowers the corrosion resistance. These factors enhance the interaction of chromate with the alloy surface to result in the formation of a uniform conversion coating. Based on these results, a new model has been proposed for the formation of chromate conversion coatings

  9. Silicon effects on formation of EPO oxide coatings on aluminum alloys

    International Nuclear Information System (INIS)

    Wang, L.; Nie, X.

    2006-01-01

    Electrolytic plasma processes (EPP) can be used for cleaning, metal-coating, carburizing, nitriding, and oxidizing. Electrolytic plasma oxidizing (EPO) is an advanced technique to deposit thick and hard ceramic coatings on a number of aluminum alloys. However, the EPO treatment on Al-Si alloys with a high Si content has rarely been reported. In this research, an investigation was conducted to clarify the effects of silicon contents on the EPO coating formation, morphology, and composition. Cast hypereutectic 390 alloys (∼ 17% Si) and hypoeutectic 319 alloys (∼ 7% Si) were chosen as substrates. The coating morphology, composition, and microstructure of the EPO coatings on those substrates were investigated using scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) analysis and X-ray diffraction (XRD). A stylus roughness tester was used for surface roughness measurement. It was found that the EPO process had four stages where each stage was corresponding to various coating surface morphology, composition, and phase structures, characterised by different coating growth mechanisms

  10. Regeneration of aluminum hydride

    Science.gov (United States)

    Graetz, Jason Allan; Reilly, James J.

    2009-04-21

    The present invention provides methods and materials for the formation of hydrogen storage alanes, AlH.sub.x, where x is greater than 0 and less than or equal to 6 at reduced H.sub.2 pressures and temperatures. The methods rely upon reduction of the change in free energy of the reaction between aluminum and molecular H.sub.2. The change in free energy is reduced by lowering the entropy change during the reaction by providing aluminum in a state of high entropy, by increasing the magnitude of the change in enthalpy of the reaction or combinations thereof.

  11. Regeneration of aluminum hydride

    Science.gov (United States)

    Graetz, Jason Allan; Reilly, James J; Wegrzyn, James E

    2012-09-18

    The present invention provides methods and materials for the formation of hydrogen storage alanes, AlH.sub.x, where x is greater than 0 and less than or equal to 6 at reduced H.sub.2 pressures and temperatures. The methods rely upon reduction of the change in free energy of the reaction between aluminum and molecular H.sub.2. The change in free energy is reduced by lowering the entropy change during the reaction by providing aluminum in a state of high entropy, and by increasing the magnitude of the change in enthalpy of the reaction or combinations thereof.

  12. Effects of Ni(2+) on aluminum hydroxide scale formation and transformation on a simulated drinking water distribution system.

    Science.gov (United States)

    Wang, Wendong; Song, Shan; Zhang, Xiaoni; Mitchell Spear, J; Wang, Xiaochang; Wang, Wen; Ding, Zhenzhen; Qiao, Zixia

    2014-07-01

    Observations of aluminum containing sediments/scales formed within the distribution pipes have been reported for several decades. In this study, the effect of Ni(2+) on the formation and transformation processes of aluminum hydroxide sediment in a simulated drinking water distribution system were investigated using X-ray diffraction spectrum (XRD), Fourier transform infrared spectrum (FT-IR), scanning electron microscope (SEM), and thermodynamic calculation methods. It was determined that the existence of Ni(2+) had notable effects on the formation of bayerite. In the system without Ni(2+) addition, there was no X-ray diffraction signal observed after 400 d of aging. The presence of Ni(2+), however, even when present in small amounts (Ni/Al=1:100) the formation of bayerite would occur in as little as 3d at pH 8.5. As the molar ratio of Ni/Al increase from 1:100 to 1:10, the amount of bayerite formed on the pipeline increased further; meanwhile, the specific area of the pipe scale decreased from 160 to 122 m(2)g(-1). In the system with Ni/Al molar ratio at 1:3, the diffraction spectrum strength of bayerite became weaker, and disappeared when Ni/Al molar ratios increased above 1:1. At these highs Ni/Al molar ratios, Ni5Al4O11⋅18H2O was determined to be the major component of the pipe scale. Further study indicated that the presence of Ni(2+) promoted the formation of bayerite and Ni5Al4O11⋅18H2O under basic conditions. At lower pH (6.5) however, the existence of Ni(2+) had little effect on the formation of bayerite and Ni5Al4O11⋅18H2O, rather the adsorption of amorphous Al(OH)3 for Ni(2+) promoted the formation of crystal Ni(OH)2. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Investigation of magnetism in aluminum-doped silicon carbide nanotubes

    Science.gov (United States)

    Behzad, Somayeh; Chegel, Raad

    2013-11-01

    The effect of aluminum doping on the structural, electronic and magnetic properties of (8,0) silicon carbide nanotube (SiCNT) is investigated using spin-polarized density functional theory. It is found from the calculation of the formation energies that aluminum substitution for silicon atom is preferred. Our results show that the magnetization depends on the substitutional site, aluminum substitution at silicon site does not introduce any spin-polarization, whereas the aluminum substitution for carbon atom yields a spin polarized, almost dispersionless π band within the original band gap.

  14. Using an ACTIVE teaching format versus a standard lecture format for increasing resident interaction and knowledge achievement during noon conference: a prospective, controlled study

    Science.gov (United States)

    2014-01-01

    Background The traditional lecture is used by many residency programs to fulfill the mandate for regular didactic sessions, despite limited evidence to demonstrate its effectiveness. Active teaching strategies have shown promise in improving medical knowledge but have been challenging to implement within the constraints of residency training. We developed and evaluated an innovative structured format for interactive teaching within the residency noon conference. Methods We developed an ACTIVE teaching format structured around the following steps: assemble (A) into groups, convey (C) learning objectives, teach (T) background information, inquire (I) through cases and questions, verify (V) understanding, and explain (E) answer choices and educate on the learning points. We conducted a prospective, controlled study of the ACTIVE teaching format versus the standard lecture format, comparing resident satisfaction, immediate knowledge achievement and long-term knowledge retention. We qualitatively assessed participating faculty members’ perspectives on the faculty development efforts and the feasibility of teaching using the ACTIVE format. Results Sixty-nine internal medicine residents participated in the study. Overall, there was an improvement in perceived engagement using the ACTIVE teaching format (4.78 vs. 3.80, P teaching format (overall absolute score increase of 11%, P = 0.04) and a trend toward improvement in long-term knowledge retention. Faculty members felt adequately prepared to use the ACTIVE teaching format, and enjoyed teaching with the ACTIVE teaching format more than the standard lecture. Conclusions A structured ACTIVE teaching format improved resident engagement and initial knowledge, and required minimal resources. The ACTIVE teaching format offers an exciting alternative to the standard lecture for resident noon conference and is easy to implement. PMID:24985781

  15. Plant adaptation to acid soils: the molecular basis for crop aluminum resistance

    Science.gov (United States)

    Aluminum (Al) toxicity on acid soils is a significant limitation to crop production worldwide, as approximately 50% of the world’s potentially arable soils are acidic. Because acid soils are such an important constraint to agriculture, understanding the mechanisms and genes conferring resistance to ...

  16. Aluminum Corrosion and Turbidity

    International Nuclear Information System (INIS)

    Longtin, F.B.

    2003-01-01

    Aluminum corrosion and turbidity formation in reactors correlate with fuel sheath temperature. To further substantiate this correlation, discharged fuel elements from R-3, P-2 and K-2 cycles were examined for extent of corrosion and evidence of breaking off of the oxide film. This report discusses this study

  17. Reassembling Solid Materials by Femtosecond Laser Ablation: Case of Aluminum Nitride

    Science.gov (United States)

    Kobayashi, Tohru; Matsuo, Yukari

    2013-06-01

    Through atomization and ionization, we could completely alter the composition of a nonconductive material, aluminum nitride, by femtosecond laser ablation. Preferential production of pure aluminum cluster cations Aln+ (n≤32) reflects not only their higher energetic stability compared with mixed clusters AlnNm+ but also completion of thermal relaxation in ablation plasma. Observation of metastable dissociation of Aln+ indicates that cluster cations have still enough internal energy for dissociation to occur, although the process is much slower than the cluster formation. Almost no cluster formation has been observed after nanosecond laser ablation of aluminum nitride, which highlights the distinct nature of ablation plasma produced by femtosecond laser ablation.

  18. A melt refining method for uranium-contaminated aluminum

    International Nuclear Information System (INIS)

    Uda, T.; Iba, H.; Hanawa, K.

    1986-01-01

    Melt refining of uranium-contaminated aluminum which has been difficult to decontaminate because of the high reactivity of aluminum, was experimentally studied. Samples of contaminated aluminum and its alloys were melted after adding various halide fluxes at various melting temperatures and various melting times. Uranium concentration in the resulting ingots was determined. Effective flux compositions were mixtures of chlorides and fluorides, such as LiF, KCl, and BaCl 2 , at a fluoride/chloride mole ratio of 1 to 1.5. The removal of uranium from aluminum (the ''decontamination effect'') increased with decreasing melting temperature, but the time allowed for reaction had little influence. Pure aluminum was difficult to decontaminate from uranium; however, uranium could be removed from alloys containing magnesium. This was because the activity of the aluminum was decreased by formation of the intermetallic compound Al-Mg. With a flux of LiF-KCl-BaCl 2 and a temperature of 800 0 C, uranium added to give an initial concentration of 500 ppm was removed from a commercial alloy of aluminum, A5056, which contains 5% magnesium, to a final concentration of 0.6 ppm, which is near that in the initial aluminum alloy

  19. Chemical Reduction Synthesis of Iron Aluminum Powders

    Science.gov (United States)

    Zurita-Méndez, N. N.; la Torre, G. Carbajal-De; Ballesteros-Almanza, L.; Villagómez-Galindo, M.; Sánchez-Castillo, A.; Espinosa-Medina, M. A.

    In this study, a chemical reduction synthesis method of iron aluminum (FeAl) nano-dimensional intermetallic powders is described. The process has two stages: a salt reduction and solvent evaporation by a heat treatment at 1100°C. The precursors of the synthesis are ferric chloride, aluminum foil chips, a mix of Toluene/THF in a 75/25 volume relationship, and concentrated hydrochloric acid as initiator of the reaction. The reaction time was 20 days, the product obtained was dried at 60 °C for 2 h and calcined at 400, 800, and 1100 °C for 4 h each. To characterize and confirm the obtained synthesis products, X-Ray Diffraction (XRD), and Scanning Electron Microscopy (SEM) techniques were used. The results of morphology and chemical characterization of nano-dimensional powders obtained showed a formation of agglomerated particles of a size range of approximately 150 nm to 1.0 μm. Composition of powders was identified as corundum (Al2O3), iron aluminide (FeAl3), and iron-aluminum oxides (Fe0. 53Al0. 47)2O3 phases. The oxide phases formation were associated with the reaction of atmospheric concentration-free oxygen during synthesis and sintering steps, reducing the concentration of the iron aluminum phase.

  20. Aluminum break-point contacts

    NARCIS (Netherlands)

    Heinemann, Martina; Groot, R.A. de

    1997-01-01

    Ab initio molecular dynamics is used to study the contribution of a single Al atom to an aluminum breakpoint contact during the final stages of breaking and the initial stages of the formation of such a contact. A hysteresis effect is found in excellent agreement with experiment and the form of the

  1. The role of stress in self-ordered porous anodic oxide formation and corrosion of aluminum

    Science.gov (United States)

    Capraz, Omer Ozgur

    The phenomenon of plastic flow induced by electrochemical reactions near room temperature is significant in porous anodic oxide (PAO) films, charging of lithium batteries and stress-corrosion cracking (SCC). As this phenomenon is poorly understood, fundamental insight into flow from our work may provide useful information for these problems. In-situ monitoring of the stress state allows direct correlation between stress and the current or potential, thus providing fundamental insight into technologically important deformation and failure mechanisms induced by electrochemical reactions. A phase-shifting curvature interferometry was designed to investigate the stress generation mechanisms on different systems. Resolution of our curvature interferometry was found to be ten times more powerful than that obtained by state-of-art multiple deflectometry technique and the curvature interferometry helps to resolve the conflicting reports in the literature. During this work, formation of surface patterns during both aqueous corrosion of aluminum and formation of PAO films were investigated. Interestingly, for both cases, stress induced plastic flow controls the formation of surface patterns. Pore formation mechanisms during anodizing of the porous aluminum oxide films was investigated . PAO films are formed by the electrochemical oxidation of metals such as aluminum and titanium in a solution where oxide is moderately soluble. They have been used extensively to design numerous devices for optical, catalytic, and biological and energy related applications, due to their vertically aligned-geometry, high-specific surface area and tunable geometry by adjusting process variables. These structures have developed empirically, in the absence of understanding the process mechanism. Previous experimental studies of anodizing-induced stress have extensively focused on the measurement of average stress, however the measurement of stress evolution during anodizing does not provide

  2. Inhibition of the formation of intermetallic compounds in aluminum-steel welded joints by friction stir welding; Inhibicion de la formacion de compuestos intermetalicos en juntas aluminio-acero soldadas por friccion-agitacion

    Energy Technology Data Exchange (ETDEWEB)

    Torres Lopez, E. A.; Ramirez, A. J.

    2015-07-01

    Formation of deleterious phases during welding of aluminum and steel is a challenge of the welding processes, for decades. Friction Stir Welding (FSW) has been used in an attempt to reduce formation of intermetallic compounds trough reducing the heat input. In this research, dissimilar joint of 6063-T5 aluminum alloy and AISI-SAE 1020 steel were welded using this technique. The temperature of welded joints was measured during the process. The interface of the welded joints was characterized using optical microscopy, scanning and transmission electron microscopy. Additionally, composition measurements were carried out by X-EDS and DRX. The experimental results revealed that the maximum temperature on the joint studied is less than 360 degree centigrade. The microstructural characterization in the aluminum-steel interface showed the absence of intermetallic compounds, which is a condition attributed to the use of welding with low thermal input parameters. (Author)

  3. XI International conference Problems of solvation and complex formation in solutions, and VI Conference of young scientists Theoretical and experimental chemistry of liquid-phase systems (Krestovsky readings). Summary of reports

    International Nuclear Information System (INIS)

    2011-01-01

    The collection contains materials of plenary, sectional and poster sessions, presented at the XI International conference Problems of solvation and complex formation in solutions, and VI Conference of young scientists Theoretical and experimental chemistry of liquid-phase systems (Krestovsky readings). Theoretical questions and new experimental methods of chemistry of solutions, structure and dynamics of molecular and ion-molecular systems in solution and at the phase boundary; modern aspects of applied chemistry of solutions are discussed [ru

  4. New Process for Grain Refinement of Aluminum. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Joseph A. Megy

    2000-09-22

    A new method of grain refining aluminum involving in-situ formation of boride nuclei in molten aluminum just prior to casting has been developed in the subject DOE program over the last thirty months by a team consisting of JDC, Inc., Alcoa Technical Center, GRAS, Inc., Touchstone Labs, and GKS Engineering Services. The Manufacturing process to make boron trichloride for grain refining is much simpler than preparing conventional grain refiners, with attendant environmental, capital, and energy savings. The manufacture of boride grain refining nuclei using the fy-Gem process avoids clusters, salt and oxide inclusions that cause quality problems in aluminum today.

  5. Silicon diffusion in aluminum for rear passivated solar cells

    International Nuclear Information System (INIS)

    Urrejola, Elias; Peter, Kristian; Plagwitz, Heiko; Schubert, Gunnar

    2011-01-01

    We show that the lateral spread of silicon in a screen-printed aluminum layer increases by (1.50±0.06) μm/ deg. C, when increasing the peak firing temperature within an industrially applicable range. In this way, the maximum spread limit of diffused silicon in aluminum is predictable and does not depend on the contact area size but on the firing temperature. Therefore, the geometry of the rear side pattern can influence not only series resistance losses within the solar cell but the process of contact formation itself. In addition, too fast cooling lead to Kirkendall void formations instead of an eutectic layer.

  6. First-principles surface interaction studies of aluminum-copper and aluminum-copper-magnesium secondary phases in aluminum alloys

    Science.gov (United States)

    da Silva, Thiago H.; Nelson, Eric B.; Williamson, Izaak; Efaw, Corey M.; Sapper, Erik; Hurley, Michael F.; Li, Lan

    2018-05-01

    First-principles density functional theory-based calculations were performed to study θ-phase Al2Cu, S-phase Al2CuMg surface stability, as well as their interactions with water molecules and chloride (Cl-) ions. These secondary phases are commonly found in aluminum-based alloys and are initiation points for localized corrosion. Density functional theory (DFT)-based simulations provide insight into the origins of localized (pitting) corrosion processes of aluminum-based alloys. For both phases studied, Cl- ions cause atomic distortions on the surface layers. The nature of the distortions could be a factor to weaken the interlayer bonds in the Al2Cu and Al2CuMg secondary phases, facilitating the corrosion process. Electronic structure calculations revealed not only electron charge transfer from Cl- ions to alloy surface but also electron sharing, suggesting ionic and covalent bonding features, respectively. The S-phase Al2CuMg structure has a more active surface than the θ-phase Al2Cu. We also found a higher tendency of formation of new species, such as Al3+, Al(OH)2+, HCl, AlCl2+, Al(OH)Cl+, and Cl2 on the S-phase Al2CuMg surface. Surface chemical reactions and resultant species present contribute to establishment of local surface chemistry that influences the corrosion behavior of aluminum alloys.

  7. Nanosized aluminum nitride hollow spheres formed through a self-templating solid-gas interface reaction

    International Nuclear Information System (INIS)

    Zheng Jie; Song Xubo; Zhang Yaohua; Li Yan; Li Xingguo; Pu Yikang

    2007-01-01

    Nanosized aluminum nitride hollow spheres were synthesized by simply heating aluminum nanoparticles in ammonia at 1000 deg. C. The as-synthesized sphere shells are polycrystalline with cavity diameters ranging from 15 to 100 nm and shell thickness from 5 to 15 nm. The formation mechanism can be explained by the nanoscale Kirkendall effect, which results from the difference in diffusion rates between aluminum and nitrogen. The Al nanoparticles served as both reactant and templates for the hollow sphere formation. The effects of precursor particle size and temperature were also investigated in terms of product morphology. Room temperature cathode luminescence spectrum of the nanosized hollow spheres showed a broad emission band centered at 415 nm, which is originated from oxygen related luminescence centers. The hollow structure survived a 4-h heat treatment at 1200 deg. C, exhibiting excellent thermal stability. - Graphical abstract: Nanosized aluminum nitride hollow spheres were synthesized by nitridation of aluminum nanoparticles at 1000 deg. C using ammonia

  8. Numerical simulation of spatter formation during fiber laser welding of 5083 aluminum alloy at full penetration condition

    Science.gov (United States)

    Wu, Dongsheng; Hua, Xueming; Huang, Lijin; Zhao, Jiang

    2018-03-01

    The droplet escape condition in laser welding is established in this paper. A three-dimensional numerical model is developed to study the weld pool convection and spatter formation at full penetration during the fiber laser welding of 5083 aluminum alloy. It is found that when laser power is 9 kW, the bottom of the keyhole is dynamically opened and closed. When the bottom of the keyhole is closed, the molten metal at the bottom of the back keyhole wall flows upwards along the fusion line. When the bottom of the keyhole is opened, few spatters can be seen around the keyhole at the top surface, two flow patterns exists in the rear part of the keyhole: a portion of molten metal flows upwards along the fusion line, other portion of molten metal flows to the bottom of the keyhole, which promote the spatter formation at the bottom of the keyhole rear wall.

  9. Voltammetry of Aluminum Nanoparticles in Aqueous Media with Hanging Mercury Drop Electrode

    Czech Academy of Sciences Publication Activity Database

    Korshunov, A.; Heyrovský, Michael

    2010-01-01

    Roč. 22, 17-18 (2010), s. 1989-1993 ISSN 1040-0397. [International Conference on Modern Electroanalytical Methods. Prague, 09.12.2009-14.12.2009] R&D Projects: GA AV ČR IAA400400806 Institutional research plan: CEZ:AV0Z40400503 Keywords : linear cyclic voltammetry * Hanging mercury drop electrode * Aluminum nanoparticles dispersion Subject RIV: CG - Electrochemistry Impact factor: 2.721, year: 2010

  10. Gas fluxing of aluminum: a bubble probe for optimization of bubbles/bubble distribution and minimization of splashing/droplet formation

    International Nuclear Information System (INIS)

    James W. Evans; Auitumn Fjeld

    2006-01-01

    totaling 1.549 million lbs. for only thirteen of the twenty three primary smelters then in operation in the US. The research work described in the body of this report (the doctoral dissertation of Dr. Autumn M. Fjeld) had as its objective the improvement of gas fluxing technology to reduce emissions while still maintaining fluxing unit metal throughput. A second objective was a better understanding of the splashing and droplet emission that occurs during fluxing at high gas throughput rates. In the extreme such droplets can form undesired accretions on the walls and gas exit lines of the fluxing unit. Consequently, the productivity of a fluxing unit is sometimes limited by the need to avoid such spraying of droplets produced as gas bubbles break at the metal surface. The approach used was a combination of experimental work in laboratories at UC Berkeley and at the Alcoa Technical Center. The experimental work was mostly on a bubble probe that could be used to determine the extent of dispersion of gas bubbles in the fluxing unit (a parameter affecting the utilization of the injected chlorine). Additionally a high speed digital movie camera was used to study droplet formation due to gas bubbles bursting at the surface of a low melting point alloy. The experimental work was supported by mathematical modeling. In particular, two FLUENT? base mathematical models were developed to compute the metal flow and distribution of the gas within a fluxing unit. Results from these models were then used in a third model to compute emissions and the progress of impurity removal as a function of parameters such as rotor speed. The project was successful in demonstrating that the bubble probe could detect bubbles in a gas fluxing unit at the Alcoa technical Center outside Pittsburgh, PA. This unit is a commercial sized one and the probe, with its associated electronics, was subjected to the hostile molten aluminum, electrical noise etc. Despite this the probes were, on several occasions

  11. Hosting an eConference: Interactive video conference grand rounds between two institutions

    Directory of Open Access Journals (Sweden)

    Jeffrey Rixe

    2018-01-01

    Full Text Available Audience: The eConference is an interactive video conference grand rounds innovation to augment the didactic curriculum provided for medical students, interns, residents, fellows, and attending physicians. Introduction: Formal education during emergency medicine (EM training has historically emphasized aspects of humanism and constructivism; the former through self-directed reading in books and journals, the latter through the content and discussion during resident didactics.1 However, some studies suggest that the current generation of EM learners are increasingly using digital and internet technologies to connect with online peer networks, a phenomenon known as connectivism.2 As such, contemporary EM learners are increasingly utilizing social media and Free Open Access Medical Education (FOAM to supplement traditional learning resources. The eConference was developed to be an interactive, virtual grand rounds that marries the merits of constructivism with connectivism; a new format of EM didactics that goes beyond the “typical lecture” model to incorporate the changing landscape in technology and medical education by combining classroom teaching at multiple institutions alongside digital learning tools. This manuscript outlines how to plan and execute a joint video conference with another institution. Objectives: Our objectives were to create and implement a novel virtual conference format through the integration of social media tools which allows for interdisciplinary and multi-site participation to enhance EM resident education. We wish to outline the steps required to reproduce this innovative session and share lessons learned. Conclusion: We designed and executed a multi-centered, novel form of virtual conference into the EM residency curriculum at two participating institutions. The virtual conference took place during a routine conference day for both programs, an hour in duration. The format utilized a hybrid of live and virtual

  12. Aluminum-catalyzed silicon nanowires: Growth methods, properties, and applications

    Energy Technology Data Exchange (ETDEWEB)

    Hainey, Mel F.; Redwing, Joan M. [Department of Materials Science and Engineering, Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States)

    2016-12-15

    Metal-mediated vapor-liquid-solid (VLS) growth is a promising approach for the fabrication of silicon nanowires, although residual metal incorporation into the nanowires during growth can adversely impact electronic properties particularly when metals such as gold and copper are utilized. Aluminum, which acts as a shallow acceptor in silicon, is therefore of significant interest for the growth of p-type silicon nanowires but has presented challenges due to its propensity for oxidation. This paper summarizes the key aspects of aluminum-catalyzed nanowire growth along with wire properties and device results. In the first section, aluminum-catalyzed nanowire growth is discussed with a specific emphasis on methods to mitigate aluminum oxide formation. Next, the influence of growth parameters such as growth temperature, precursor partial pressure, and hydrogen partial pressure on nanowire morphology is discussed, followed by a brief review of the growth of templated and patterned arrays of nanowires. Aluminum incorporation into the nanowires is then discussed in detail, including measurements of the aluminum concentration within wires using atom probe tomography and assessment of electrical properties by four point resistance measurements. Finally, the use of aluminum-catalyzed VLS growth for device fabrication is reviewed including results on single-wire radial p-n junction solar cells and planar solar cells fabricated with nanowire/nanopyramid texturing.

  13. Effects of filling material and laser power on the formation of intermetallic compounds during laser-assisted friction stir butt welding of steel and aluminum alloys

    Science.gov (United States)

    Fei, Xinjiang; Jin, Xiangzhong; Peng, Nanxiang; Ye, Ying; Wu, Sigen; Dai, Houfu

    2016-11-01

    In this paper, two kinds of materials, Ni and Zn, are selected as filling material during laser-assisted friction stir butt welding of Q235 steel and 6061-T6 aluminum alloy, and their influences on the formation of intermetallic compounds on the steel/aluminum interface of the joints were first studied. SEM was used to analyze the profile of the intermetallic compound layer and the fractography of tensile fracture surfaces. In addition, EDS was applied to investigate the types of the intermetallic compounds. The results indicate that a thin iron-abundant intermetallic compound layer forms and ductile fracture mode occurs when Ni is added, but a thick aluminum-abundant intermetallic compound layer generates and brittle fracture mode occurs when Zn is added. So the tensile strength of the welds with Ni as filling material is greater than that with Zn as filling material. Besides, the effect of laser power on the formation of intermetallic compound layer when Ni is added was investigated. The preheated temperature field produced by laser beam in the cross section of workpiece was calculated, and the tensile strength of the joints at different laser powers was tested. Results show that only when suitable laser power is adopted, can suitable preheating temperature of the steel reach, then can thin intermetallic compound layer form and high tensile strength of the joints reach. Either excessive or insufficient laser power will reduce the tensile strength of the joints.

  14. Electroless Growth of Aluminum Dendrites in NaCl-AlCl3 Melts

    DEFF Research Database (Denmark)

    Li, Qingfeng; Hjuler, H.A.; Berg, Rolf W.

    1989-01-01

    The spontaneous growth of aluminum dendrites after deposition was observed and examined in sodium chloride-aluminumchloride melts. The concentration gradient of AlCl3 in the vicinity of the cathode surface resulting from electrolysisconstitutes a type of concentration cell with aluminum dendrites...... as electrodes. The short-circuit discharge of thecell is found to be the driving force for the growth of aluminum dendrites. Such a concentration gradient is proposed to beone of the causes for dendrite formation in the case of metal deposition....

  15. Aluminum anode for aluminum-air battery - Part I: Influence of aluminum purity

    Science.gov (United States)

    Cho, Young-Joo; Park, In-Jun; Lee, Hyeok-Jae; Kim, Jung-Gu

    2015-03-01

    2N5 commercial grade aluminum (99.5% purity) leads to the lower aluminum-air battery performances than 4N high pure grade aluminum (99.99% purity) due to impurities itself and formed impurity complex layer which contained Fe, Si, Cu and others. The impurity complex layer of 2N5 grade Al declines the battery voltage on standby status. It also depletes discharge current and battery efficiency at 1.0 V which is general operating voltage of aluminum-air battery. However, the impurity complex layer of 2N5 grade Al is dissolved with decreasing discharge voltage to 0.8 V. This phenomenon leads to improvement of discharge current density and battery efficiency by reducing self-corrosion reaction. This study demonstrates the possibility of use of 2N5 grade Al which is cheaper than 4N grade Al as the anode for aluminum-air battery.

  16. Fabrication of high quality anodic aluminum oxide (AAO) on low purity aluminum—A comparative study with the AAO produced on high purity aluminum

    International Nuclear Information System (INIS)

    Michalska-Domańska, Marta; Norek, Małgorzata; Stępniowski, Wojciech J.; Budner, Bogusław

    2013-01-01

    Highlights: • Nanoporous alumina was fabricated by anodization in sulfuric acid solution with glycol. • The AAO manufacturing on low- and high-purity Al was compared. • The pores size was ranging between 30 and 50 nm. • No difference in the quality of the AAO fabricated on both Al types was observed. • The current vs. anodization time curves were recorded. -- Abstract: In this work the quality, arrangement, composition, and regularity of nanoporous AAO formed on the low-purity (AA1050) and high-purity aluminum during two-step anodization in a mixture of sulfuric acid solution (0.3 M), water and glycol (3:2, v/v), at various voltages (15, 20, 25, 30, 35 V) and at temperature of −1 °C, are investigated. The electrochemical conditions have allowed to obtain pores with the size ranging from 30 to 50 nm, which are much larger than those usually obtained by anodization in a pure sulfuric acid solution (<20 nm). The mechanism of the AAO growth is discussed. It was found that with the increase of applied anodizing voltage a number of incorporated sulfate ions in the aluminum oxide matrix increases, which was connected with the appearance of an unusual area in the current vs. time curves. On the surface of anodizing low- and high-purity aluminum, the formation of hillocks was observed, which was associated with the sulfate ions incorporation. The sulfate ions are replacing the oxygen atom/atoms in the AAO amorphous crystal structure and, consequently, the AAO template swells, the oxide cracks and uplifts causing the formation of hillocks. The same mechanism occurs for both low- and high-purity aluminum. Nanoporous AAO characterized by a very high regularity, not registered previously for low purity aluminum, was obtained. Furthermore, no significant difference in the regularity ratio between the AAO obtained on low- and high-purity aluminum, was observed. The electrochemical conditions applied in this study can be, thus, used for the fabrication of high quality

  17. Aluminum enhances inflammation and decreases mucosal healing in experimental colitis in mice

    Science.gov (United States)

    Pineton de Chambrun, G; Body-Malapel, M; Frey-Wagner, I; Djouina, M; Deknuydt, F; Atrott, K; Esquerre, N; Altare, F; Neut, C; Arrieta, M C; Kanneganti, T-D; Rogler, G; Colombel, J-F; Cortot, A; Desreumaux, P; Vignal, C

    2014-01-01

    The increasing incidence of inflammatory bowel diseases (IBDs) in developing countries has highlighted the critical role of environmental pollutants as causative factors in their pathophysiology. Despite its ubiquity and immune toxicity, the impact of aluminum in the gut is not known. This study aimed to evaluate the effects of environmentally relevant intoxication with aluminum in murine models of colitis and to explore the underlying mechanisms. Oral administration of aluminum worsened intestinal inflammation in mice with 2,4,6-trinitrobenzene sulfonic acid- and dextran sodium sulfate-induced colitis and chronic colitis in interleukin 10-negative (IL10−/−) mice. Aluminum increased the intensity and duration of macroscopic and histologic inflammation, colonic myeloperoxidase activity, inflammatory cytokines expression, and decreased the epithelial cell renewal compared with control animals. Under basal conditions, aluminum impaired intestinal barrier function. In vitro, aluminum induced granuloma formation and synergized with lipopolysaccharide to stimulate inflammatory cytokines expression by epithelial cells. Deleterious effects of aluminum on intestinal inflammation and mucosal repair strongly suggest that aluminum might be an environmental IBD risk factor. PMID:24129165

  18. Making Conferences Human Places of Learning

    Science.gov (United States)

    Kenny, Michael

    2014-01-01

    Open Space Technology is a cumbersome name for a participative conference model that enables dynamic inclusive engagement and challenges traditional, highly structured hierarchical conference formats. Based on self-organising systems, (Wenger, 1998) Open Space Technology conferences have an open process, start with no agenda and empower the most…

  19. Aluminum electroplating on steel from a fused bromide electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Prabhat K. Tripathy; Laura A. Wurth; Eric J. Dufek; Toni Y. Gutknecht; Natalie J. Gese; Paula Hahn; Steven M. Frank; Guy L. Frederickson; J. Stephen Herring

    2014-08-01

    A quaternary bromide bath (LiBr–KBr–CsBr–AlBr3) was used to electro-coat aluminum on steel substrates. The electrolytewas prepared by the addition of AlBr3 into the eutectic LiBr–KBr–CsBr melt. A smooth, thick, adherent and shiny aluminum coating could be obtained with 80 wt.% AlBr3 in the ternary melt. The SEM photographs of the coated surfaces suggest the formation of thick and dense coatings with good aluminum coverage. Both salt immersion and open circuit potential measurement suggested that the coatings did display a good corrosionresistance behavior. Annealing of the coated surfaces, prior to corrosion tests, suggested the robustness of the metallic aluminum coating in preventing the corrosion of the steel surfaces. Studies also indicated that the quaternary bromide plating bath can potentially provide a better aluminumcoating on both ferrous and non-ferrous metals, including complex surfaces/geometries.

  20. Anti-icing/frosting and self-cleaning performance of superhydrophobic aluminum alloys

    Science.gov (United States)

    Feng, Libang; Yan, Zhongna; Shi, Xueting; Sultonzoda, Firdavs

    2018-02-01

    Ice formation and frost deposition on cryogenic equipment and systems can result in serious problems and huge economic loss. Hence, it is quite necessary to develop new materials to prevent icing and frosting on cold surfaces in engineering fields. Here, a superhydrophobic aluminum alloy with enhanced anti-frosting, anti-icing, and self-cleaning performance has been developed by a facile one-step method. The anti-frosting/icing performance of superhydrophobic aluminum alloys is confirmed by frosting/icing time delay, consolidating and freezing temperature reduction, and lower amount of frost/ice adhesion. Meanwhile, the excellent self-cleaning performance is authenticated by the fact that simulated pollution particles can be cleaned out by rolling water droplets completely. Finally, based on the classical nucleation theory, anti-icing and anti-frosting mechanisms of the superhydrophobic aluminum alloys are deduced. Results show that grounded on "air cushion" and "heat insulation" effect, a larger nucleation barrier and a lower crystal growth rate can be observed, which, hence, inhibit ice formation and frost deposition. It can be concluded that preparing superhydrophobic surfaces would be an effective strategy for improving anti-icing, anti-frosting, and self-cleaning performance of aluminum alloys.

  1. Using an ACTIVE teaching format versus a standard lecture format for increasing resident interaction and knowledge achievement during noon conference: a prospective, controlled study

    OpenAIRE

    Sawatsky, Adam P; Berlacher, Kathryn; Granieri, Rosanne

    2014-01-01

    Background The traditional lecture is used by many residency programs to fulfill the mandate for regular didactic sessions, despite limited evidence to demonstrate its effectiveness. Active teaching strategies have shown promise in improving medical knowledge but have been challenging to implement within the constraints of residency training. We developed and evaluated an innovative structured format for interactive teaching within the residency noon conference. Methods We developed an ACTIVE...

  2. Passivation process for superfine aluminum powders obtained by electrical explosion of wires

    International Nuclear Information System (INIS)

    Kwon, Young-Soon; Gromov, Alexander A.; Ilyin, Alexander P.; Rim, Geun-Hie

    2003-01-01

    The process of passivation of superfine aluminum powders (SFAPs) (a s ≤100 nm), obtained with the electrical explosion of wires (EEW) method, has been studied. The passivation coatings of different nature (oxides, stearic acid and aluminum diboride) were covered on the particle surface. The process of passivation and analysis of passivated powders was studied by X-ray photoelectron spectroscopy (XPS), XRD, TEM, infrared spectroscopy (IR), mass spectrometry (MS), thermocouple method and bomb calorimetry. After the comprehensive testing of coatings, a model of stabilization of the superfine aluminum particles was suggested, explaining the anomalous high content of aluminum metal in the electroexplosive powders. The main characteristic of the model is a formation of charged structures, which prevent metal oxidation

  3. Physical simulation method for the investigation of weld seam formation during the extrusion of aluminum alloys

    NARCIS (Netherlands)

    Fang, G; Zhou, J.

    2017-01-01

    Extrusion through the porthole die is a predominant forming process used in the production of hollow aluminum alloy profiles across the aluminum extrusion industry. Longitudinal weld seams formed during the process may negatively influence the quality of extruded profiles. It is therefore of

  4. Oxidation of nano-sized aluminum powders

    International Nuclear Information System (INIS)

    Vorozhtsov, A.B.; Lerner, M.; Rodkevich, N.; Nie, H.; Abraham, A.; Schoenitz, M.; Dreizin, E.L.

    2016-01-01

    Highlights: • Weight gain measured in TG oxidation experiments was split between particles of different sizes. • Reaction kinetics obtained by isoconversion explicitly accounting for the effect of size distribution. • Activation energy is obtained as a function of oxide thickness for growth of amorphous alumina. • Oxidation mechanism for nanopowders remains the same as for coarser aluminum powders. - Abstract: Oxidation of aluminum nanopowders obtained by electro-exploded wires is studied. Particle size distributions are obtained from transmission electron microscopy (TEM) images. Thermo-gravimetric (TG) experiments are complemented by TEM and XRD studies of partially oxidized particles. Qualitatively, oxidation follows the mechanism developed for coarser aluminum powder and resulting in formation of hollow oxide shells. Sintering of particles is also observed. The TG results are processed to account explicitly for the particle size distribution and spherical shapes, so that oxidation of particles of different sizes is characterized. The apparent activation energy is obtained as a function of the reaction progress using model-free isoconversion processing of experimental data. A complete phenomenological oxidation model is then proposed assuming a spherically symmetric geometry. The oxidation kinetics of aluminum powder is shown to be unaffected by particle sizes reduced down to tens of nm. The apparent activation energy describing growth of amorphous alumina is increasing at the very early stages of oxidation. The higher activation energy is likely associated with an increasing homogeneity in the growing amorphous oxide layer, initially containing multiple defects and imperfections. The trends describing changes in both activation energy and pre-exponent of the growing amorphous oxide are useful for predicting ignition delays of aluminum particles. The kinetic trends describing activation energies and pre-exponents in a broader range of the oxide

  5. ON THE REACTIONS IN ILMENITE, ALUMINUM AND GRAPHITE SYSTEM

    Directory of Open Access Journals (Sweden)

    R. Khoshhal

    2016-03-01

    Full Text Available Al2O3/TiC composites are used as cutting tools for machining gray cast iron and steels. The addition of iron improves the toughness of Al2O3/TiC composites. Ilmenite, aluminum and graphite can be used to produce in-situ Al2O3/TiC–Fe composites. However, the formation mechanism and reaction sequences of this system are not clear enough. Therefore, the present research is designed to determine the reactions mechanism of the first step of reactions that may be occurred between raw materials. In this research, pure ilmenite was synthesized to eliminate the effects of impurities available in the natural ilmenite in the system. The milled and pressed samples, prepared from the synthesized ilmenite, aluminum and graphite mixture with a molar ratio of 1:2:1, were heat treated at 720°C for 48h. In addition, two samples one containing ilmenite and aluminum with a molar ratio of 1:2 and ilmenite and graphite with a molar ratio of 1:1 were heat treated at 720°C for 48h. The final products were analyzed with XRD. It was found that at 720°C, aluminum reacts with FeTiO3, forming Fe, TiO2 and Al2O3. Since the aluminum content used in the mixture was more than the stoichiometry for reaction of ilmenite and aluminum, some unreacted aluminum remains. Therefore, the residual aluminum reacts with the reduced Fe to form Fe2Al5.

  6. Aluminum inhibits phosphatidic acid formation by blocking the phospholipase C pathway

    NARCIS (Netherlands)

    Ramos-Díaz, A.; Brito-Argáez, L.; Munnik, T.; Hernández-Sotomayor, S.M.T.

    2007-01-01

    Aluminum (Al(3+)) has been recognized as a main toxic factor in crop production in acid lands. Phosphatidic acid (PA) is emerging as an important lipid signaling molecule and has been implicated in various stress-signaling pathways in plants. In this paper, we focus on how PA generation is affected

  7. Packaging material and aluminum. Hoso zairyo to aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Itaya, T [Mitsubishi Aluminum Co. Ltd., Tokyo (Japan)

    1992-02-01

    The present paper introduces aluminum foil packaging materials among the relation between packing materials and aluminum. The characteristics of aluminum foil in the packaging area are in its barrier performance, non-toxicity, tastelessness and odorlessness. Its excellent functions and processibility suit best as functional materials for food, medicine and industrial material packaging. While an aluminum foil may be used as a single packing material as in foils used in homes, many of it as a packaging material are used in combination with adhesives, papers or plastic films, or coated or printed. It is used as composite materials laminated or coated with other materials according to their use for the purpose of complementing the aluminum foil as the base material. Representative method to laminate aluminum foils include the wet lamination, dry lamination, thermally dissolved lamination and extruded lamination. The most important quality requirement in lamination is the adhesion strength, which requires a close attention in selecting the kinds of adhesive, laminating conditions, and aging conditions. 8 figs., 6 tabs.

  8. In-line high-rate evaporation of aluminum for the metallization of silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Mader, Christoph Paul

    2012-07-11

    This work focuses on the in-line high-rate evaporation of aluminum for contacting rear sides of silicon solar cells. The substrate temperature during the deposition process, the wafer bow after deposition, and the electrical properties of evaporated contacts are investigated. Furthermore, this work demonstrates for the first time the formation of aluminum-doped silicon regions by the in-line high-rate evaporation of aluminum without any further temperature treatment. The temperature of silicon wafers during in-line high-rate evaporation of aluminum is investigated in this work. The temperatures are found to depend on the wafer thickness W, the aluminum layer thickness d, and on the wafer emissivity {epsilon}. Two-dimensional finite-element simulations reproduce the measured peak temperatures with an accuracy of 97%. This work also investigates the wafer bow after in-line high-rate evaporation and shows that the elastic theory overestimates the wafer bow of planar Si wafers. The lower bow is explained with plastic deformation in the Al layer. Due to the plastic deformation only the first 79 K in temperature decrease result in a bow formation. Furthermore the electrical properties of evaporated point contacts are examined in this work. Parameterizations for the measured saturation currents of contacted p-type Si wafers and of contacted boron-diffused p{sup +}-type layers are presented. The contact resistivity of the deposited Al layers to silicon for various deposition processes and silicon surface concentrations are presented and the activation energy of the contact formation is determined. The measured saturation current densities and contact resistivities of the evaporated contacts are used in one-dimensional numerical Simulations and the impact on energy conversion efficiency of replacing a screen-printed rear side by an evaporated rear side is presented. For the first time the formation of aluminum-doped p{sup +}-type (Al-p{sup +}) silicon regions by the in

  9. Initial Stages of Recrystallization in Aluminum of Commercial Purity

    DEFF Research Database (Denmark)

    Hansen, Niels; Bay, Bent

    1979-01-01

    In commercial aluminum with a purity of 99.4 pct, the formation and growth of recrystallization nuclei were studied by techniques such asin-situ annealing in a high voltage electron microscope, transmission electron microscopy and light microscopy. Sample parameters were the initial grain size (370...... by the FeAl3 particles present in the commercial aluminum as impurities. The nucleation temperatures determined by high voltage electron microscopy and transmission electron microscopy decrease markedly when the initial grain size is decreased both after 50 and 90 pct cold rolling; a less pronounced...

  10. Helium trapping in aluminum and sintered aluminum powders

    International Nuclear Information System (INIS)

    Das, S.K.; Kaminsky, M.; Rossing, T.

    1975-01-01

    The surface erosion of annealed aluminum and of sintered aluminum powder (SAP) due to blistering from implantation of 100-keV 4 He + ions at room temperature has been investigated. A substantial reduction in the blistering erosion rate in SAP was observed from that in pure annealed aluminum. In order to determine whether the observed reduction in blistering is due to enhanced helium trapping or due to helium released, the implanted helium profiles in annealed aluminum and in SAP have been studied by Rutherford backscattering. The results show that more helium is trapped in SAP than in aluminum for identical irradiation conditions. The observed reduction in erosion from helium blistering in SAP is more likely due to the dispersion of trapped helium at the large Al-Al 2 O 3 interfaces and at the large grain boundaries in SAP than to helium release

  11. Formation of Self-assembled Nanostructure on Noble Metal Islands Based on Anodized Aluminum Oxide

    International Nuclear Information System (INIS)

    Park, Jong Bae; Kim, Young Sic; Kim, Seong Kyu; Lee, Hae Seong

    2004-01-01

    We have developed the methodology to produce nanoscale gold rods using an AAO template. Each gold rod was generated in every AAO pore. This nanoislands array of gold formed over the AAO pores can be used as corner stones for building nanostructures. We demonstrated this by forming a nanostructure on the Au/AAO by binding a self-assembly class of molecules onto the metal islands. Anodized aluminum oxide (AAO) has been considered an attractive template for simple fabrication of highly-ordered nanostructures. It provides a 2-dimensional array of hexagonal cells with pores of uniform diameter and inter-pore distance that are adjustable in the range of a few tens to hundreds of nanometers. It can be easily grown on an aluminum sheet with high purity by a sequence of several electrochemical steps; electro-polishing, the 1st anodization, etching, and the 2nd anodization. The pores are grown vertically with respect to the AAO surface. The regularity of the pore structure is usually limited by the inherent grain domain in the aluminum sheet to a few micrometers, but can be improved to cover many millimeters of monodomain by pre-indenting the aluminum sheet with SiC 7 or Si 3 N 4 molds. Although fabrication of such molds requires elaborate and costly processes with e-beam nanolithography, such potentially superb regularity can be practically applied to fabrication of nanoscale devices in electronics, optics, biosensors, etc

  12. Uptake of Au(III) Ions by Aluminum Hydroxide and Their Spontaneous Reduction to Elemental Gold (Au(0)).

    Science.gov (United States)

    Yokoyama; Matsukado; Uchida; Motomura; Watanabe; Izawa

    2001-01-01

    The behavior of AuCl(4)(-) ions during the formation of aluminum hydroxide at pH 6 was examined. With an increase in NaCl concentration, the content of gold taken up by aluminum hydroxide decreased, suggesting that chloro-hydroxy complexes of Au(III) ion were taken up due to the formation of Al-O-Au bonds. It was found unexpectedly that the Au(III) ions taken up were spontaneously reduced to elemental gold without addition of a specific reducing reagent and then colloidal gold particles were formed. The mechanisms for the uptake of Au(III) ions by aluminum hydroxide and for their spontaneous reduction are discussed. Copyright 2001 Academic Press.

  13. Continuous internal channels formed in aluminum fusion welds

    Science.gov (United States)

    Gault, J.; Sabo, W.

    1967-01-01

    Process produces continuous internal channel systems on a repeatable basis in 2014-T6 aluminum. Standard machining forms the initial channel, which is filled with tungsten carbide powder. TIG machine fusion welding completes formation of the channel. Chem-mill techniques enlarge it to the desired size.

  14. Cerium oxide as conversion coating for the corrosion protection of aluminum

    Directory of Open Access Journals (Sweden)

    JELENA GULICOVSKI

    2013-11-01

    Full Text Available CeO2 coatings were formed on the aluminum after Al surface preparation, by dripping the ceria sol, previously prepared by forced hydrolysis of Ce(NO34. The anticorrosive properties of ceria coatings were investigated by the electrochemical impedance spectroscopy (EIS during the exposure to 0.03 % NaCl. The morphology of the coatings was examined by the scanning electron microscopy (SEM. EIS data indicated considerably larger corrosion resistance of CeO2-coated aluminum than for bare Al. The corrosion processes on Al below CeO2 coating are subjected to more pronounced diffusion limitations in comparison to the processes below passive aluminum oxide film, as the consequence of the formation of highly compact protective coating. The results show that the deposition of ceria coatings is an effective way to improve corrosion resistance for aluminum.

  15. Selective Adsorption of Sodium Aluminum Fluoride Salts from Molten Aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Leonard S. Aubrey; Christine A. Boyle; Eddie M. Williams; David H. DeYoung; Dawid D. Smith; Feng Chi

    2007-08-16

    Aluminum is produced in electrolytic reduction cells where alumina feedstock is dissolved in molten cryolite (sodium aluminum fluoride) along with aluminum and calcium fluorides. The dissolved alumina is then reduced by electrolysis and the molten aluminum separates to the bottom of the cell. The reduction cell is periodically tapped to remove the molten aluminum. During the tapping process, some of the molten electrolyte (commonly referred as “bath” in the aluminum industry) is carried over with the molten aluminum and into the transfer crucible. The carryover of molten bath into the holding furnace can create significant operational problems in aluminum cast houses. Bath carryover can result in several problems. The most troublesome problem is sodium and calcium pickup in magnesium-bearing alloys. Magnesium alloying additions can result in Mg-Na and Mg-Ca exchange reactions with the molten bath, which results in the undesirable pickup of elemental sodium and calcium. This final report presents the findings of a project to evaluate removal of molten bath using a new and novel micro-porous filter media. The theory of selective adsorption or removal is based on interfacial surface energy differences of molten aluminum and bath on the micro-porous filter structure. This report describes the theory of the selective adsorption-filtration process, the development of suitable micro-porous filter media, and the operational results obtained with a micro-porous bed filtration system. The micro-porous filter media was found to very effectively remove molten sodium aluminum fluoride bath by the selective adsorption-filtration mechanism.

  16. The formation of chondrules at high gas pressures in the solar nebula.

    Science.gov (United States)

    Galy, A; Young, E D; Ash, R D; O'Nions, R K

    2000-12-01

    High-precision magnesium isotope measurements of whole chondrules from the Allende carbonaceous chondrite meteorite show that some aluminum-rich Allende chondrules formed at or near the time of formation of calcium-aluminum-rich inclusions and that some others formed later and incorporated precursors previously enriched in magnesium-26. Chondrule magnesium-25/magnesium-24 correlates with [magnesium]/[aluminum] and size, the aluminum-rich, smaller chondrules being the most enriched in the heavy isotopes of magnesium. These relations imply that high gas pressures prevailed during chondrule formation in the solar nebula.

  17. Effect of Degassing Treatment on the Interfacial Reaction of Molten Aluminum and Solid Steel

    Directory of Open Access Journals (Sweden)

    Triyono T.

    2017-06-01

    Full Text Available The gas porosity is one of the most serious problems in the casting of aluminum. There are several degassing methods that have been studied. During smelting of aluminum, the intermetallic compound (IMC may be formed at the interface between molten aluminum and solid steel of crucible furnace lining. In this study, the effect of degassing treatment on the formations of IMC has been investigated. The rectangular substrate specimens were immersed in a molten aluminum bath. The holding times of the substrate immersions were in the range from 300 s to 1500 s. Two degassing treatments, argon degassing and hexachloroethane tablet degassing, were conducted to investigate their effect on the IMC formation. The IMC was examined under scanning electron microscope with EDX attachment. The thickness of the IMC layer increased with increasing immersion time for all treatments. Due to the high content of hydrogen, substrate specimens immersed in molten aluminum without degasser had IMC layer which was thicker than others. Argon degassing treatment was more effective than tablet degassing to reduce the IMC growth. Furthermore, the hard and brittle phase of IMC, FeAl3, was formed dominantly in specimens immersed for 900 s without degasser while in argon and tablet degasser specimens, it was formed partially.

  18. The learning conference

    DEFF Research Database (Denmark)

    Ravn, Ib

    little support amongst serious students of learning. The professional conference as a forum for knowledge sharing is in dire need of a new learning theory and a more enlightened practice. The notion of human flourishing is offered as basis for theory, and four simple design principles for the so......The typical one-day conference attended by managers or professionals in search of inspiration is packed with PowerPoint presentations and offers little opportunity for involvement or knowledge sharing. Behind the conventional conference format lurks the transfer model of learning, which finds......-called “learning conference” are proposed: People go to conferences to 1. get concise input, 2. interpret it in the light of their ongoing concerns, 3. talk about their current projects and 4. meet the other attendees and be inspired by them. Six practical techniques that induce attendees to do these things...

  19. Synthesis of oxide-free aluminum nanoparticles for application to conductive film

    Science.gov (United States)

    Jong Lee, Yung; Lee, Changsoo; Lee, Hyuck Mo

    2018-02-01

    Aluminum nanoparticles are considered promising as alternatives to conventional ink materials, replacing silver and copper nanoparticles, due to their extremely low cost and low melting temperature. However, a serious obstacle to realizing their use as conductive ink materials is the oxidation of aluminum. In this research, we synthesized the oxide-free aluminum nanoparticles using catalytic decomposition and an oleic acid coating method, and these materials were applied to conductive ink for the first time. The injection time of oleic acid determines the size of the aluminum nanoparticles by forming a self-assembled monolayer on the nanoparticles instead of allowing the formation of an oxide phase. Fabricated nanoparticles were analyzed by transmission electron microscopy and x-ray photoelectron spectroscopy to verify their structural and chemical composition. In addition, conductive inks made of these nanoparticles exhibit electrical properties when they are sintered at over 300 °C in a reducing atmosphere. This result shows that aluminum nanoparticles can be used as an alternative conductive material in printed electronics and can solve the cost issues associated with noble metals.

  20. Aluminum recovery as a product with high added value using aluminum hazardous waste

    International Nuclear Information System (INIS)

    David, E.; Kopac, J.

    2013-01-01

    Highlights: • Granular and compact aluminum dross were physically and chemically characterized. • A relationship between density, porosity and metal content from dross was established. • Chemical reactions involving aluminum in landfill and negative consequences are shown. • A processing method for aluminum recovering from aluminum dross was developed. • Aluminum was recovered as an value product with high grade purity such as alumina. -- Abstract: The samples of hazardous aluminum solid waste such as dross were physically and chemically characterized. A relationship between density, porosity and metal content of dross was established. The paper also examines the chemical reactions involving aluminum dross in landfill and the negative consequences. To avoid environmental problems and to recovery the aluminum, a processing method was developed and aluminum was recovered as an added value product such as alumina. This method refers to a process at low temperature, in more stages: acid leaching, purification, precipitation and calcination. At the end of this process aluminum was extracted, first as Al 3+ soluble ions and final as alumina product. The composition of the aluminum dross and alumina powder obtained were measured by applying the leaching tests, using atomic absorption spectrometry (AAS) and chemical analysis. The mineralogical composition of aluminum dross samples and alumina product were determined by X-ray diffraction (XRD) and the morphological characterization was performed by scanning electron microscopy (SEM). The method presented in this work allows the use of hazardous aluminum solid waste as raw material to recover an important fraction from soluble aluminum content as an added value product, alumina, with high grade purity (99.28%)

  1. Formation of stacking faults and the screw dislocation-driven growth: a case study of aluminum nitride nanowires.

    Science.gov (United States)

    Meng, Fei; Estruga, Marc; Forticaux, Audrey; Morin, Stephen A; Wu, Qiang; Hu, Zheng; Jin, Song

    2013-12-23

    Stacking faults are an important class of crystal defects commonly observed in nanostructures of close packed crystal structures. They can bridge the transition between hexagonal wurtzite (WZ) and cubic zinc blende (ZB) phases, with the most known example represented by the "nanowire (NW) twinning superlattice". Understanding the formation mechanisms of stacking faults is crucial to better control them and thus enhance the capability of tailoring physical properties of nanomaterials through defect engineering. Here we provide a different perspective to the formation of stacking faults associated with the screw dislocation-driven growth mechanism of nanomaterials. With the use of NWs of WZ aluminum nitride (AlN) grown by a high-temperature nitridation method as the model system, dislocation-driven growth was first confirmed by transmission electron microscopy (TEM). Meanwhile numerous stacking faults and associated partial dislocations were also observed and identified to be the Type I stacking faults and the Frank partial dislocations, respectively, using high-resolution TEM. In contrast, AlN NWs obtained by rapid quenching after growth displayed no stacking faults or partial dislocations; instead many of them had voids that were associated with the dislocation-driven growth. On the basis of these observations, we suggest a formation mechanism of stacking faults that originate from dislocation voids during the cooling process in the syntheses. Similar stacking fault features were also observed in other NWs with WZ structure, such as cadmium sulfide (CdS) and zinc oxide (ZnO).

  2. The initial growth stage in PVT growth of aluminum nitride

    Energy Technology Data Exchange (ETDEWEB)

    Heimann, P.; Epelbaum, B.M.; Bickermann, M.; Winnacker, A. [Department of Materials Science 6, University of Erlangen-Nuernberg, Martensstr. 7, 91058 Erlangen (Germany); Nagata, S. [Functional Materials Development Center, Research Laboratories, JFE Mineral Company, Ltd., 1, Niihama-cho, Chuou-ku, Chiba-shi, Chiba 260-0826 (Japan)

    2006-06-15

    The main issue in homoepitaxial growth of aluminum nitride (AlN) on native seed substrates is the formation of an aluminum oxynitride (AlON) layer at temperatures between 1850-1950 C leading to polycrystalline growth. On the contrary, heteroepitaxial growth of AlN on silicon carbide (SiC) is relatively easy to achieve due to natural formation of a thin molten layer of (Al{sub 2}OC{sub x}) on the seed surface and consequent growth of AlN via the molten buffer layer. Optimization of the seeding process can be achieved by use of ultra-pure starting material. Another critical issue of AlN growth on SiC is cracking of the grown layer upon cooling as a result of different thermal expansion coefficients. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. A study of aluminum-lithium alloy solidification using acoustic emission techniques. Ph.D. Thesis, 1991

    Science.gov (United States)

    Henkel, Daniel P.

    1992-01-01

    Physical phenomena associated with the solidification of an aluminum lithium alloy was characterized using acoustic emission (AE) techniques. It is shown that repeatable patterns of AE activity may be correlated to microstructural changes that occur during solidification. The influence of the experimental system on generated signals was examined in the time and frequency domains. The analysis was used to show how an AE signal from solidifying aluminum is changed by each component in the detection system to produce a complex waveform. Conventional AE analysis has shown that a period of high AE activity occurs in pure aluminum, an Al-Cu alloy, and the Al-Li alloy, as the last fraction of solid forms. A model attributes this to the internal stresses of grain boundary formation. An additional period of activity occurs as the last fraction of solid forms, but only in the two alloys. A model attributes this to the formation of interdendritic porosity which was not present in the pure aluminum. The AE waveforms were dominated by resonant effects of the waveguide and the transducer.

  4. Nanoengineered Superhydrophobic Surfaces of Aluminum with Extremely Low Bacterial Adhesivity

    NARCIS (Netherlands)

    Hizal, Ferdi; Rungraeng, Natthakan; Lee, Junghoon; Jun, Soojin; Busscher, Henk J.; van der Mei, Henny C.; Choi, Chang-Hwan

    2017-01-01

    Bacterial adhesion and biofilm formation on surfaces are troublesome in many industrial processes. Here, nanoporous and nanopillared aluminum surfaces were engineered by anodizing and postetching processes and made hydrophilic (using the inherent oxide layer) or hydrophobic (applying a Teflon

  5. Enhancing the Ductility of Laser-Welded Copper-Aluminum Connections by using Adapted Filler Materials

    Science.gov (United States)

    Weigl, M.; Albert, F.; Schmidt, M.

    Laser micro welding of direct copper-aluminum connections typically leads to the formation of intermetallic phases and an embrittlement of the metal joints. By means of adapted filler materials it is possible to reduce the brittle phases and thereby enhance the ductility of these dissimilar connections. As the element silicon features quite a well compatibility with copper and aluminum, filler materials based on Al-Si and Cu-Si alloys are used in the current research studies. In contrast to direct Cu-Al welds, the aluminum filler alloy AlSi12 effectuates a more uniform element mixture and a significantly enhanced ductility.

  6. QCD@LHC International Conference

    CERN Document Server

    2016-01-01

    The particle physics groups of UZH and ETH will host the QCD@LHC2016 conference (22.8.-26.8., UZH downtown campus), which is part of an annual conference series bringing together theorists and experimentalists working on hard scattering processes at the CERN LHC, ranging from precision studies of Standard Model processes to searches for new particles and phenomena. The format of the conference is a combination of plenary review talks and parallel sessions, with the latter providing a particularly good opportunity for junior researchers to present their results. The conference will take place shortly after the release of the new data taken by the LHC in sping 2016 at a collision energy of 13TeV, expected to more than double the currently available data set. It will be one of the first opportunities to discuss these data in a broader context, and we expect the conference to become a very lively forum at the interface of phenomenology and experiment.

  7. Influence of Mg O and B2O3 addition on reaction sintering, properties and microstructure of Aluminum titanate

    International Nuclear Information System (INIS)

    Ajami, R.; Sarpoolaki, H.; Akbari, G. H.

    2007-01-01

    The effect of Mg O and B 2 O 3 on the formation, physical properties, phase analysis and microstructure of aluminum titanate was investigated. Density results showed the sample containing of 1 wt percent B 2 O 3 and 2 wt percent Mg O leads to the highest density while the lowest density was seen in samples containing 1 wt percent B 2 O 3 compared to pure aluminum titanate. Regarding the phase analysis of samples, Mg O was found most effective additive on reaction sintering of aluminum titanate through the intermediate phases. Furthermore at the temperatures above 1350 d eg C , B 2 O 3 promote the formation reaction of aluminum titanate. Microstructural analysis showed the samples containing Mg O are fine grain and homogeneous. Thermal expansion coefficient of samples with additives is greater than pure aluminum titanate. Pure aluminum titanate samples and one containing B 2 O 3 additive decompose to Al 2 O 3 and TiO 2 after 5 hours heat treatment at 1150 d eg C while the samples containing 2 wt percent Mg O was stable even after 25 hours

  8. Aluminum powder metallurgy processing

    Energy Technology Data Exchange (ETDEWEB)

    Flumerfelt, J.F.

    1999-02-12

    The objective of this dissertation is to explore the hypothesis that there is a strong linkage between gas atomization processing conditions, as-atomized aluminum powder characteristics, and the consolidation methodology required to make components from aluminum powder. The hypothesis was tested with pure aluminum powders produced by commercial air atomization, commercial inert gas atomization, and gas atomization reaction synthesis (GARS). A comparison of the GARS aluminum powders with the commercial aluminum powders showed the former to exhibit superior powder characteristics. The powders were compared in terms of size and shape, bulk chemistry, surface oxide chemistry and structure, and oxide film thickness. Minimum explosive concentration measurements assessed the dependence of explosibility hazard on surface area, oxide film thickness, and gas atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization oxidation of aluminum powder. An Al-Ti-Y GARS alloy exposed in ambient air at different temperatures revealed the effect of reactive alloy elements on post-atomization powder oxidation. The pure aluminum powders were consolidated by two different routes, a conventional consolidation process for fabricating aerospace components with aluminum powder and a proposed alternative. The consolidation procedures were compared by evaluating the consolidated microstructures and the corresponding mechanical properties. A low temperature solid state sintering experiment demonstrated that tap densified GARS aluminum powders can form sintering necks between contacting powder particles, unlike the total resistance to sintering of commercial air atomization aluminum powder.

  9. The Oxidation Products of Aluminum Hydride and Boron Aluminum Hydride Clusters

    Science.gov (United States)

    2016-01-04

    AFRL-AFOSR-VA-TR-2016-0075 The Oxidation Products of Aluminum Hydride and Boron Aluminum Hydride Clusters KIT BOWEN JOHNS HOPKINS UNIV BALTIMORE MD...2. REPORT TYPE Final Performance 3. DATES COVERED (From - To) 30-09-2014 to 29-09-2015 4. TITLE AND SUBTITLE The Oxidation Products of Aluminum ...Hydride and Boron Aluminum Hydride Clusters 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA9550-14-1-0324 5c.  PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S) KIT

  10. Aluminum Hydroxide

    Science.gov (United States)

    Aluminum hydroxide is used for the relief of heartburn, sour stomach, and peptic ulcer pain and to ... Aluminum hydroxide comes as a capsule, a tablet, and an oral liquid and suspension. The dose and ...

  11. Fabrication of a novel aluminum surface covered by numerous high-aspect-ratio anodic alumina nanofibers

    Science.gov (United States)

    Nakajima, Daiki; Kikuchi, Tatsuya; Natsui, Shungo; Sakaguchi, Norihito; Suzuki, Ryosuke O.

    2015-11-01

    The formation behavior of anodic alumina nanofibers via anodizing in a concentrated pyrophosphoric acid under various conditions was investigated using electrochemical measurements and SEM/TEM observations. Pyrophosphoric acid anodizing at 293 K resulted in the formation of numerous anodic alumina nanofibers on an aluminum substrate through a thin barrier oxide and honeycomb oxide with narrow walls. However, long-term anodizing led to the chemical dissolution of the alumina nanofibers. The density of the anodic alumina nanofibers decreased as the applied voltage increased in the 10-75 V range. However, active electrochemical dissolution of the aluminum substrate occurred at a higher voltage of 90 V. Low temperature anodizing at 273 K resulted in the formation of long alumina nanofibers measuring several micrometers in length, even though a long processing time was required due to the low current density during the low temperature anodizing. In contrast, high temperature anodizing easily resulted in the formation and chemical dissolution of alumina nanofibers. The structural nanofeatures of the anodic alumina nanofibers were controlled by choosing of the appropriate electrochemical conditions, and numerous high-aspect-ratio alumina nanofibers (>100) can be successfully fabricated. The anodic alumina nanofibers consisted of a pure amorphous aluminum oxide without anions from the employed electrolyte.

  12. Conference summary

    International Nuclear Information System (INIS)

    Clark, D.J.

    1975-10-01

    A brief review is given of the main results presented at the International Conference on Heavy Ion Sources, October 27--30, 1975. The sections are as follows: highlights, general observations, fundamental processes in sources, positive ion sources, negative ion sources, beam formation and emittance measurements, stripping, accelerators and experiments, and future prospects

  13. Removing hydrochloric acid exhaust products from high performance solid rocket propellant using aluminum-lithium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Terry, Brandon C., E-mail: terry13@purdue.edu [School of Aeronautics and Astronautics, Purdue University, Zucrow Laboratories, 500 Allison Rd, West Lafayette, IN 47907 (United States); Sippel, Travis R. [Department of Mechanical Engineering, Iowa State University, 2025 Black Engineering, Ames, IA 50011 (United States); Pfeil, Mark A. [School of Aeronautics and Astronautics, Purdue University, Zucrow Laboratories, 500 Allison Rd, West Lafayette, IN 47907 (United States); Gunduz, I.Emre; Son, Steven F. [School of Mechanical Engineering, Purdue University, Zucrow Laboratories, 500 Allison Rd, West Lafayette, IN 47907 (United States)

    2016-11-05

    Highlights: • Al-Li alloy propellant has increased ideal specific impulse over neat aluminum. • Al-Li alloy propellant has a near complete reduction in HCl acid formation. • Reduction in HCl was verified with wet bomb experiments and DSC/TGA-MS/FTIR. - Abstract: Hydrochloric acid (HCl) pollution from perchlorate based propellants is well known for both launch site contamination, as well as the possible ozone layer depletion effects. Past efforts in developing environmentally cleaner solid propellants by scavenging the chlorine ion have focused on replacing a portion of the chorine-containing oxidant (i.e., ammonium perchlorate) with an alkali metal nitrate. The alkali metal (e.g., Li or Na) in the nitrate reacts with the chlorine ion to form an alkali metal chloride (i.e., a salt instead of HCl). While this technique can potentially reduce HCl formation, it also results in reduced ideal specific impulse (I{sub SP}). Here, we show using thermochemical calculations that using aluminum-lithium (Al-Li) alloy can reduce HCl formation by more than 95% (with lithium contents ≥15 mass%) and increase the ideal I{sub SP} by ∼7 s compared to neat aluminum (using 80/20 mass% Al-Li alloy). Two solid propellants were formulated using 80/20 Al-Li alloy or neat aluminum as fuel additives. The halide scavenging effect of Al-Li propellants was verified using wet bomb combustion experiments (75.5 ± 4.8% reduction in pH, ∝ [HCl], when compared to neat aluminum). Additionally, no measurable HCl evolution was detected using differential scanning calorimetry coupled with thermogravimetric analysis, mass spectrometry, and Fourier transform infrared absorption.

  14. Removing hydrochloric acid exhaust products from high performance solid rocket propellant using aluminum-lithium alloy

    International Nuclear Information System (INIS)

    Terry, Brandon C.; Sippel, Travis R.; Pfeil, Mark A.; Gunduz, I.Emre; Son, Steven F.

    2016-01-01

    Highlights: • Al-Li alloy propellant has increased ideal specific impulse over neat aluminum. • Al-Li alloy propellant has a near complete reduction in HCl acid formation. • Reduction in HCl was verified with wet bomb experiments and DSC/TGA-MS/FTIR. - Abstract: Hydrochloric acid (HCl) pollution from perchlorate based propellants is well known for both launch site contamination, as well as the possible ozone layer depletion effects. Past efforts in developing environmentally cleaner solid propellants by scavenging the chlorine ion have focused on replacing a portion of the chorine-containing oxidant (i.e., ammonium perchlorate) with an alkali metal nitrate. The alkali metal (e.g., Li or Na) in the nitrate reacts with the chlorine ion to form an alkali metal chloride (i.e., a salt instead of HCl). While this technique can potentially reduce HCl formation, it also results in reduced ideal specific impulse (I_S_P). Here, we show using thermochemical calculations that using aluminum-lithium (Al-Li) alloy can reduce HCl formation by more than 95% (with lithium contents ≥15 mass%) and increase the ideal I_S_P by ∼7 s compared to neat aluminum (using 80/20 mass% Al-Li alloy). Two solid propellants were formulated using 80/20 Al-Li alloy or neat aluminum as fuel additives. The halide scavenging effect of Al-Li propellants was verified using wet bomb combustion experiments (75.5 ± 4.8% reduction in pH, ∝ [HCl], when compared to neat aluminum). Additionally, no measurable HCl evolution was detected using differential scanning calorimetry coupled with thermogravimetric analysis, mass spectrometry, and Fourier transform infrared absorption.

  15. Molecular dynamic simulations of the high-speed copper nanoparticles collision with the aluminum surface

    Science.gov (United States)

    Pogorelko, V. V.; Mayer, A. E.

    2016-11-01

    With the use of the molecular dynamic simulations, we investigated the effect of the high-speed (500 m/s, 1000 m/s) copper nanoparticle impact on the mechanical properties of an aluminum surface. Dislocation analysis shows that a large number of dislocations are formed in the impact area; the total length of dislocations is determined not only by the speed and size of the incoming copper nanoparticle (kinetic energy of the nanoparticle), but by a temperature of the system as well. The dislocations occupy the whole area of the aluminum single crystal at high kinetic energy of the nanoparticle. With the decrease of the nanoparticle kinetic energy, the dislocation structures are formed in the near-surface layer; formation of the dislocation loops takes place. Temperature rise of the system (aluminum substrate + nanoparticle) reduces the total dislocation length in the single crystal of aluminum; there is deeper penetration of the copper atoms in the aluminum at high temperatures. Average energy of the nanoparticles and room temperature of the system are optimal for production of high-quality layers of copper on the aluminum surface.

  16. Aluminum deoxidation equilibria and inclusion modification mechanism by calcium treatment of stainless steel melts

    International Nuclear Information System (INIS)

    Park, Joo Hyun; Kim, Dong Sik; Kim, Yong Hwan; Lee, Sang Beom

    2005-01-01

    A thermodynamic equilibrium between aluminum and oxygen along with the inclusion morphology in Fe-16%Cr stainless steel was investigated to understand the fundamentals of aluminum deoxidation technology for ferritic stainless steels. Further, the effects of calcium addition on the changes in chemistry and morphology of inclusions were discussed. The measured results for aluminum-oxygen equilibria exhibit relatively good agreement with the calculated values, indicating that the introduction of the first- and second-order interaction parameters, recently reported, is reasonable to numerically express aluminum deoxidation equilibrium in a ferritic stainless steel. In the composition of dissolved aluminum content greater than about 60 ppm, pure alumina particles were observed, while the alumino-manganese silicates containing Cr 2 O 3 were appeared at less than 20 mass ppm of dissolved aluminum. The formation of calcium aluminate inclusions after Ca treatment could be discussed based on the thermodynamic equilibrium with calcium, aluminum, and oxygen in the steel melts. In the composition of steel melt with relatively high content of calcium and low aluminum, the log(X CaO /X Al 2 O 3 ) of inclusions linearly increases with increasing the log [a Ca /a Al 2 ·a O 2 ] with the slope close to unity. However, the slope of the line is significantly lower than the expected value in the composition of steel melt with relatively low calcium and high aluminum contents

  17. Origin of 6-fold coordinated aluminum at (010-type pyrophyllite edges

    Directory of Open Access Journals (Sweden)

    M. Okumura

    2017-05-01

    Full Text Available To better understand the aqueous chemical reactivity of clay mineral edges we explored the relationships between hydration and the structure of (010-type edges of pyrophyllite. In particular, we used density functional theory and the quantum theory of atoms in molecules to evaluate the stability of 6-fold coordinated hydrated aluminum at the edge in terms of the electron density distribution. Geometrical optimization revealed an intra-edge hydrogen bond network between aluminol hydroxyls and water ligands completing the aluminum coordination shell. From the electron density isosurfaces one water ligand is not covalently bonded to aluminum. Bader charge analysis revealed that OH2 ligands have small negative charge. In addition, it is also found that the charge of the 6-fold coordinated aluminum is larger than one of the 5-fold aluminum. From these results, the charging of the OH2 ligands is interpreted as charge transfer originated from the formation of the hydrogen bond network and not from Al-OH2 interaction per se. This suggests that the weakly bound water ligand in question, and more generally 6-fold hydrated edge Al coordination, is stabilized primarily by the hydrogen bond network which in turn leads to weak ionic attraction to the aluminum center itself. The finding highlights the importance of cooperative effects between solvent structure and the coordination of metal cations exposed at clay mineral edges.

  18. Is the Aluminum Hypothesis Dead?

    Science.gov (United States)

    2014-01-01

    The Aluminum Hypothesis, the idea that aluminum exposure is involved in the etiology of Alzheimer disease, dates back to a 1965 demonstration that aluminum causes neurofibrillary tangles in the brains of rabbits. Initially the focus of intensive research, the Aluminum Hypothesis has gradually been abandoned by most researchers. Yet, despite this current indifference, the Aluminum Hypothesis continues to attract the attention of a small group of scientists and aluminum continues to be viewed with concern by some of the public. This review article discusses reasons that mainstream science has largely abandoned the Aluminum Hypothesis and explores a possible reason for some in the general public continuing to view aluminum with mistrust. PMID:24806729

  19. 75 FR 70689 - Kaiser Aluminum Fabricated Products, LLC; Kaiser Aluminum-Greenwood Forge Division; Currently...

    Science.gov (United States)

    2010-11-18

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-70,376] Kaiser Aluminum Fabricated Products, LLC; Kaiser Aluminum- Greenwood Forge Division; Currently Known As Contech Forgings, LLC..., applicable to workers of Kaiser Aluminum Fabricated Products, LLC, Kaiser Aluminum-Greenwood Forge Division...

  20. The effect of zinc on the aluminum anode of the aluminum-air battery

    Science.gov (United States)

    Tang, Yougen; Lu, Lingbin; Roesky, Herbert W.; Wang, Laiwen; Huang, Baiyun

    Aluminum is an ideal material for batteries, due to its excellent electrochemical performance. Herein, the effect of zinc on the aluminum anode of the aluminum-air battery, as an additive for aluminum alloy and electrolytes, has been studied. The results show that zinc can decrease the anodic polarization, restrain the hydrogen evolution and increase the anodic utilization rate.

  1. Superior light metals by texture engineering: Optimized aluminum and magnesium alloys for automotive applications

    International Nuclear Information System (INIS)

    Hirsch, J.; Al-Samman, T.

    2013-01-01

    Aluminum and magnesium are two highly important lightweight metals used in automotive applications to reduce vehicle weight. Crystallographic texture engineering through a combination of intelligent processing and alloying is a powerful and effective tool to obtain superior aluminum and magnesium alloys with optimized strength and ductility for automotive applications. In the present article the basic mechanisms of texture formation of aluminum and magnesium alloys during wrought processing are described and the major aspects and differences in deformation and recrystallization mechanisms are discussed. In addition to the crystal structure, the resulting properties can vary significantly, depending on the alloy composition and processing conditions, which can cause drastic texture and microstructure changes. The elementary mechanisms of plastic deformation and recrystallization comprising nucleation and growth and their orientation dependence, either within the homogeneously formed microstructure or due to inhomogeneous deformation, are described along with their impact on texture formation, and the resulting forming behavior. The typical face-centered cubic and hexagonal close-packed rolling and recrystallization textures, and related mechanical anisotropy and forming conditions are analyzed and compared for standard aluminum and magnesium alloys. New aspects for their modification and advanced strategies of alloy design and microstructure to improve material properties are derived

  2. Aluminum phosphate shows more adjuvanticity than Aluminum hydroxide in recombinant hepatitis –B vaccine formulation

    Directory of Open Access Journals (Sweden)

    2008-08-01

    Full Text Available Background: Although a number of investigation have been carried out to find alternative adjuvants to aluminum salts in vaccine formulations, they are still extensively used due to their good track record of safety, low cost and proper adjuvanticity with a variety of antigens. Adsorption of antigens onto aluminum compounds depends heavily on electrostatic forces between adjuvant and antigen. Commercial recombinant protein hepatitis B vaccines containing aluminum hydroxide as adjuvant is facing low induction of immunity in some sections of the vaccinated population. To follow the current global efforts in finding more potent hepatitis B vaccine formulation, adjuvanticity of aluminum phosphate has been compared to aluminum hydroxide. Materials and methods: The adjuvant properties of aluminum hydroxide and aluminum phosphate in a vaccine formulation containing a locally manufactured hepatitis B (HBs surface antigen was evaluated in Balb/C mice. The formulations were administered intra peritoneally (i.p. and the titers of antibody which was induced after 28 days were determined using ELISA technique. The geometric mean of antibody titer (GMT, seroconversion and seroprotection rates, ED50 and relative potency of different formulations were determined. Results: All the adjuvanicity markers obtained in aluminum phosphate formulation were significantly higher than aluminum hydroxide. The geometric mean of antibody titer of aluminum phosphate was approximately three folds more than aluminum hydroxide. Conclusion: Aluminum phosphate showed more adjuvanticity than aluminum hydroxide in hepatitis B vaccine. Therefore the use of aluminum phosphate as adjuvant in this vaccine may lead to higher immunity with longer duration of effects in vaccinated groups.

  3. Conference report for nuclear fusion phenomena in ionized gases

    International Nuclear Information System (INIS)

    Porkolab, M.

    1975-10-01

    A summary of the Conference on Phenomena in Ionized Gases, held in Eindhoven, The Netherlands, is given. In particular, the format of the conference and the content of the review papers are summarized

  4. Aluminum fin-stock alloys

    International Nuclear Information System (INIS)

    Gul, R.M.; Mutasher, F.

    2007-01-01

    Aluminum alloys have long been used in the production of heat exchanger fins. The comparative properties of the different alloys used for this purpose has not been an issue in the past, because of the significant thickness of the finstock material. However, in order to make fins lighter in weight, there is a growing demand for thinner finstock materials, which has emphasized the need for improved mechanical properties, thermal conductivity and corrosion resistance. The objective of this project is to determine the effect of iron, silicon and manganese percentage increment on the required mechanical properties for this application by analyzing four different aluminum alloys. The four selected aluminum alloys are 1100, 8011, 8079 and 8150, which are wrought non-heat treatable alloys with different amount of the above elements. Aluminum alloy 1100 serve as a control specimen, as it is commercially pure aluminum. The study also reports the effect of different annealing cycles on the mechanical properties of the selected alloys. Metallographic examination was also preformed to study the effect of annealing on the precipitate phases and the distribution of these phases for each alloy. The microstructure analysis of the aluminum alloys studied indicates that the precipitated phase in the case of aluminum alloys 1100 and 8079 is beta-FeAI3, while in 8011 it is a-alfa AIFeSi, and the aluminum alloy 8150 contains AI6(Mn,Fe) phase. The comparison of aluminum alloys 8011 and 8079 with aluminum alloy 1100 show that the addition of iron and silicon improves the percent elongation and reduces strength. The manganese addition increases the stability of mechanical properties along the annealing range as shown by the comparison of aluminum alloy 8150 with aluminum alloy 1100. Alloy 8150 show superior properties over the other alloys due to the reaction of iron and manganese, resulting in a preferable response to thermal treatment and improved mechanical properties. (author)

  5. Conference report: formulating better medicines for children: 4th European Paediatric Formulation Initiative conference.

    Science.gov (United States)

    Walsh, Jennifer; Mills, Simon

    2013-01-01

    The fourth annual European Paediatric Formulation Initiative (EuPFI) conference on Formulating Better Medicines for Children was held on 19-20 September 2012 at the Institute of Molecular Genetics Congress Centre, Prague, Czech Republic. The 2-day conference concentrated on the latest advances, challenges and opportunities for developing medicinal products and administration devices for pediatric use, both from European and US perspectives. It was aimed specifically at providing exposure to emerging practical applications, and for illustrating remedies utilized by pediatric drug-development teams to overcome hurdles faced in developing medicines for pediatric patients. The conference format included plenary talks, focus sessions on each of the EuPFI work streams (extemporaneous preparations, excipients, pediatric administration devices, taste masking and taste assessment, age-appropriate formulations), case studies, soapbox sessions and a parallel poster display. This conference report summarizes the keynote lectures and also gives a flavor of other presentations and posters from the conference.

  6. The Membrane Topology of ALMT1, an Aluminum-Activated Malate Transport Protein in Wheat (Triticum aestivum)

    OpenAIRE

    Motoda, Hirotoshi; Sasaki, Takayuki; Kano, Yoshio; Ryan, Peter R; Delhaize, Emmanuel; Matsumoto, Hideaki; Yamamoto, Yoko

    2007-01-01

    The wheat ALMT1 gene encodes an aluminum (Al)-activated malate transport protein which confers Al-resistance. We investigated the membrane topology of this plasma-membrane localized protein with immunocytochemical techniques. Several green fluorescent protein (GFP)-fused and histidine (His)-tagged chimeras of ALMT1 were prepared based on a computer-predicted secondary structure and transiently expressed in cultured mammalian cells. Antibodies raised to polypeptide epitopes of ALMT1 were used ...

  7. Discharge Simulation and Fabrication Process of an Aluminum Electrode and an Alumina Layer in AC-PDP

    International Nuclear Information System (INIS)

    Liu Qifa; Ding Guifu; Liu Chang; Wang Yan; Yan Qun

    2013-01-01

    A larger space PDP cell with patterned aluminum as the addressing electrode and alumina as the dielectric layer was proposed. The aluminum electrode and the alumina dielectric layer formed on the aluminum electrode were prepared separately by magnetron sputtering and anodic oxidation for plasma display panel. The properties of the aluminum electrode and the alumina dielectric layer were tested and can meet the demand of PDP application. The resistivity of the aluminum electrode is about 5 × 10 −8 Ω·m, the voltage withstanding of the alumina dielectric layer exceeds 100 V/μm and the relative permittivity is about 3.5 at 1 MHz. With this structure, the manufacturing cost of PDP could be cut and the addressing discharge formative delay is reduced by 0.67%, which is proved by PIC-MCC simulation. (plasma technology)

  8. Investigation of Methods for Selectively Reinforcing Aluminum and Aluminum-Lithium Materials

    Science.gov (United States)

    Bird, R. Keith; Alexa, Joel A.; Messick, Peter L.; Domack, Marcia S.; Wagner, John A.

    2013-01-01

    Several studies have indicated that selective reinforcement offers the potential to significantly improve the performance of metallic structures for aerospace applications. Applying high-strength, high-stiffness fibers to the high-stress regions of aluminum-based structures can increase the structural load-carrying capability and inhibit fatigue crack initiation and growth. This paper discusses an investigation into potential methods for applying reinforcing fibers onto the surface of aluminum and aluminum-lithium plate. Commercially-available alumina-fiber reinforced aluminum alloy tapes were used as the reinforcing material. Vacuum hot pressing was used to bond the reinforcing tape to aluminum alloy 2219 and aluminum-lithium alloy 2195 base plates. Static and cyclic three-point bend testing and metallurgical analysis were used to evaluate the enhancement of mechanical performance and the integrity of the bond between the tape and the base plate. The tests demonstrated an increase in specific bending stiffness. In addition, no issues with debonding of the reinforcing tape from the base plate during bend testing were observed. The increase in specific stiffness indicates that selectively-reinforced structures could be designed with the same performance capabilities as a conventional unreinforced structure but with lower mass.

  9. Improving Joint Formation and Tensile Properties of Dissimilar Friction Stir Welding of Aluminum and Magnesium Alloys by Solving the Pin Adhesion Problem

    Science.gov (United States)

    Liu, Zhenlei; Ji, Shude; Meng, Xiangchen

    2018-03-01

    Friction stir welding (FSW), as a solid-state welding technology invented by TWI in 1991, has potential to join dissimilar Al/Mg alloys. In this study, the pin adhesion phenomenon affecting joint quality during FSW of 6061-T6 aluminum and AZ31B magnesium alloys was investigated. The adhesion phenomenon induced by higher heat input easily transformed the tapered-and-screwed pin into a tapered pin, which greatly reduced the tool's ability to drive the plasticized materials and further deteriorated joint formation. Under the condition without the pin adhesion, the complex intercalated interlayer at the bottom of stir zone was beneficial to mechanical interlocking of Al/Mg alloys, improving tensile properties. However, the formation of intermetallic compounds was still the main reason of the joint fracture, significantly deteriorating tensile properties. Under the welding speed of 60 mm/min without the pin adhesion phenomenon, the maximum tensile strength of 107 MPa and elongation of 1.2% were achieved.

  10. 40 CFR 180.1091 - Aluminum isopropoxide and aluminum secondary butoxide; exemption from the requirement of a...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Aluminum isopropoxide and aluminum... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1091 Aluminum isopropoxide and aluminum secondary butoxide; exemption from the requirement of a tolerance. Aluminum isopropoxide (CAS Reg. No. 555...

  11. A simple aluminum gasket for use with both stainless steel and aluminum flanges

    Energy Technology Data Exchange (ETDEWEB)

    Langley, R.A.

    1991-01-01

    A technique has been developed for making aluminum wire seal gaskets of various sizes and shapes for use with both stainless steel and aluminum alloy flanges. The gasket material used is 0.9999 pure aluminum, drawn to a diameter of 3 mm. This material can be easily welded and formed into various shapes. A single gasket has been successfully used up to five times without baking. The largest gasket tested to date is 3.5 m long and was used in the shape of a parallelogram. Previous use of aluminum wire gaskets, including results for bakeout at temperatures from 20 to 660{degree}C, is reviewed. A search of the literature indicates that this is the first reported use of aluminum wire gaskets for aluminum alloy flanges. The technique is described in detail, and the results are summarized. 11 refs., 4 figs.

  12. ALUMINUM AND CHROMIUM LEACHING WORKSHOP WHITEPAPER

    International Nuclear Information System (INIS)

    McCabe, D; Jeff Pike, J; Bill Wilmarth, B

    2007-01-01

    A workshop was held on January 23-24, 2007 to discuss the status of processes to leach constituents from High Level Waste (HLW) sludges at the Hanford and Savannah River Sites. The objective of the workshop was to examine the needs and requirements for the HLW flowsheet for each site, discuss the status of knowledge of the leaching processes, communicate the research plans, and identify opportunities for synergy to address knowledge gaps. The purpose of leaching of non-radioactive constituents from the sludge waste is to reduce the burden of material that must be vitrified in the HLW melter systems, resulting in reduced HLW glass waste volume, reduced disposal costs, shorter process schedules, and higher facility throughput rates. The leaching process is estimated to reduce the operating life cycle of SRS by seven years and decrease the number of HLW canisters to be disposed in the Repository by 1000 [Gillam et al., 2006]. Comparably at Hanford, the aluminum and chromium leaching processes are estimated to reduce the operating life cycle of the Waste Treatment Plant by 20 years and decrease the number of canisters to the Repository by 15,000-30,000 [Gilbert, 2007]. These leaching processes will save the Department of Energy (DOE) billions of dollars in clean up and disposal costs. The primary constituents targeted for removal by leaching are aluminum and chromium. It is desirable to have some aluminum in glass to improve its durability; however, too much aluminum can increase the sludge viscosity, glass viscosity, and reduce overall process throughput. Chromium leaching is necessary to prevent formation of crystalline compounds in the glass, but is only needed at Hanford because of differences in the sludge waste chemistry at the two sites. Improving glass formulations to increase tolerance of aluminum and chromium is another approach to decrease HLW glass volume. It is likely that an optimum condition can be found by both performing leaching and improving

  13. Thermoelectrical power analysis of precipitation in 6013 aluminum alloy

    International Nuclear Information System (INIS)

    Abdala, M.R.W.S.; Garcia de Blas, J.C.; Barbosa, C.; Acselrad, O.

    2008-01-01

    The 6013 aluminum alloy was first developed for application in the aircraft industry and, more recently, as a replacement option for the use of the 6061 alloy in the automotive industry. The present work describes the evolution of the process of formation and dissolution of different kinds of precipitates in 6013 aluminum alloy, subjected to different conditions of heat treatment, using for this purpose measurements of thermoelectrical power, Vickers microhardness and differential scanning calorimeter (DSC). Although in the last years many works have been published on the use of thermoelectrical power (TEP) measurements for the analysis of precipitation process in traditional alloys such as 6061, there is still little information related to 6013 alloy. The results obtained are compared with a previous characterization work on the same alloy using transmission electron microscopy. It was observed that TEP measurements are very sensitive to precipitation phenomena in this alloy, and it has been found that there is an inverse relation between TEP and Vickers microhardness values, which allowed proposing a precipitation sequence for 6013 aluminum alloy

  14. Microstructure and texture evolution in aluminum and commercially pure titanium dissimilar welds fabricated using ultrasonic additive manufacturing

    International Nuclear Information System (INIS)

    Sridharan, Niyanth; Wolcott, Paul; Dapino, Marcelo; Babu, S.S.

    2016-01-01

    Ultrasonic additive manufacturing (UAM) is a solid-state hybrid manufacturing technique. In this work characterization using electron back scatter diffraction was performed on aluminum–titanium dissimilar metal welds made using a 9 kW ultrasonic additive manufacturing system. The results showed that the aluminum texture at the interface after ultrasonic additive manufacturing is similar to aluminum texture observed during accumulative roll bonding of aluminum alloys. It is finally concluded that the underlying mechanism of bond formation in ultrasonic additive manufacturing primarily relies on severe shear deformation at the interface.

  15. VMEbus in physics conference

    International Nuclear Information System (INIS)

    1986-01-01

    The first conference ''VMEbus in Physics'' was held at CERN on 7th and 8th October 1985. The conference surveyed the applications of the VMEbus standards in physics, with special emphasis on particle physics and accelerator control. Developments in the definition of the standards and in the formation of users groups were discussed. Manufacturer's representatives were given the opportunity to appreciate the requirements of the fast-growing VMEbus market in the physics community. These proceedings contain the unedited text of the oral and poster presentations given on that occasion. (orig.)

  16. The power of change conference

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    Business aspects of the electrical power utility industry in Canada were discussed in these proceedings of The Power of Change Conference, held in Vancouver, BC on April 9-11, 1995. Topics of discussion included the future of the electric utility industry in Canada, integrated resource planning, rate design, load forecasting, regulatory changes, supplier relationships, training needs and economic and demographic outlooks. These proceedings were accompanied by proceedings from four other conferences in a digital CD-ROM format

  17. Dry Machining Aeronautical Aluminum Alloy AA2024-T351: Analysis of Cutting Forces, Chip Segmentation and Built-Up Edge Formation

    Directory of Open Access Journals (Sweden)

    Badis Haddag

    2016-08-01

    Full Text Available In this paper, machining aeronautical aluminum alloy AA2024-T351 in dry conditions was investigated. Cutting forces, chip segmentation, and built-up edge formation were analyzed. Machining tests revealed that the chip formation process depends on cutting conditions and tool geometry. So continuous and segmented chips are generated. Under some cutting conditions, built-up edge formation occurs. A predictive machining theory, based on a finite elements method (FEM, was applied to reproduce and explain these phenomena. Thermomechanical behaviors of the work material and the tool-work material interface were considered. Results of the proposed modelling were compared to experimental data for a wide range of cutting speed. It was shown that the feed force is well reproduced by the ALE-FE (arbitrary lagrangian-eulerian finite element formulation and highly underestimated by the lagrangian finite element (LAG-FE one. While, the periodic localized shear band, leading to a chip segmentation, is well reproduced with the Lagrangian FE formulation. It was found that the chip segmentation can be correlated to the cutting force evolution using the defined chip segmentation intensity parameter. For the built-up edge (BUE phenomenon, it was shown that it depends on the contact/friction at the tool-chip interface, and this is possible to simulate by making the friction coefficient time-dependent.

  18. Friction stir processing of an aluminum-magnesium alloy with pre-placing elemental titanium powder: In-situ formation of an Al{sub 3}Ti-reinforced nanocomposite and materials characterization

    Energy Technology Data Exchange (ETDEWEB)

    Khodabakhshi, F., E-mail: farzadkhodabakhshi83@gmail.com [Department of Materials Science and Engineering, School of Engineering, Shiraz University, Zand Boulevard, Shiraz (Iran, Islamic Republic of); Simchi, A. [Department of Materials Science and Engineering, Sharif University of Technology, P.O. Box 11365-9466, Azadi Avenue, 14588 Tehran (Iran, Islamic Republic of); Institute for Nanoscience and Nanotechnology, Sharif University of Technology, P.O. Box 11365-9466, Azadi Avenue, 14588 Tehran (Iran, Islamic Republic of); Kokabi, A.H. [Department of Materials Science and Engineering, Sharif University of Technology, P.O. Box 11365-9466, Azadi Avenue, 14588 Tehran (Iran, Islamic Republic of); Gerlich, A.P. [Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON (Canada)

    2015-10-15

    A fine-grained Al–Mg/Al{sub 3}Ti nanocomposite was fabricated by friction stir processing (FSP) of an aluminum-magnesium (AA5052) alloy with pre-placed titanium powder in the stirred zone. Microstructural evolutions and formation of intermetallic phases were analyzed by optical and electron microscopic techniques across the thickness section of the processed sheets. The microstructure of the nanocomposite consisted of a fine-grained aluminum matrix (1.5 µm), un-reacted titanium particles (<40 µm) and reinforcement particles of Al{sub 3}Ti (<100 nm) and Mg{sub 2}Si (<100 nm). Detailed microstructural analysis indicated solid-state interfacial reactions between the aluminum matrix and micro-sized titanium particles to form Al{sub 3}Ti intermetallic phase. The hard inclusions were then fractured and re-distributed in the metal matrix by the severe thermo-mechanical conditions imposed by FSP. Evaluation of mechanical properties by hardness measurement and uniaxial tensile test determined significant enhancement in the mechanical strength (by 2.5 order of magnetite) with a high ductility (~22%). Based on a dislocation-based model analysis, it was suggested that the strength enhancement was governed by grain refinement and the presence of hard inclusions (4 vol%) in the metal matrix. Fractographic studies also showed a ductile-brittle fracture mode for the nanocomposite compared with fully ductile rupture of the annealed alloy as well as the FSPed specimen without pre-placing titanium particles. - Highlights: • FSP was employed to fabricate in situ nanocomposite. • The AA5052 Al alloy with pre-placed micro-sized Ti particles were utilized. • The structural analysis was revealed that the in situ formation of Al{sub 3}Ti nanophase. • The SZ grain structure was refined by PSN and ZHP mechanisms during DRX. • Hardness and tensile strength were improved up to ~2.5 times with a good ductility.

  19. Micro-mechanisms of Surface Defects Induced on Aluminum Alloys during Plastic Deformation at Elevated Temperatures

    Science.gov (United States)

    Gali, Olufisayo A.

    Near-surface deformed layers developed on aluminum alloys significantly influence the corrosion and tribological behavior as well as reduce the surface quality of the rolled aluminum. The evolution of the near-surface microstructures induced on magnesium containing aluminum alloys during thermomechanical processing has been investigated with the aim generating an understanding of the influence of individual forming parameters on its evolution and examine the microstructure of the roll coating induced on the mating steel roll through material transfer during rolling. The micro-mechanisms related to the various features of near-surface microstructure developed during tribological conditions of the simulated hot rolling process were identified. Thermomechanical processing experiments were performed with the aid of hot rolling (operating temperature: 550 to 460 °C, 4, 10 and 20 rolling pass schedules) and hot forming (operating temperature: 350 to 545 °C, strain rate: 4 x 10-2 s-1) tribo-simulators. The surface, near-surface features and material transfer induced during the elevated temperature plastic deformation were examined and characterized employing optical interferometry, SEM/EDS, FIB and TEM. Near-surface features characterized on the rolled aluminum alloys included; cracks, fractured intermetallic particles, aluminum nano-particles, oxide decorated grain boundaries, rolled-in oxides, shingles and blisters. These features were related to various individual rolling parameters which included, the work roll roughness, which induced the formation of shingles, rolling marks and were responsible for the redistribution of surface oxide and the enhancements of the depth of the near-surface damage. The enhanced stresses and strains experienced during rolling were related to the formation and propagation of cracks, the nanocrystalline structure of the near-surface layers and aluminum nano-particles. The mechanism of the evolution of the near-surface microstructure were

  20. The aluminum smelting process.

    Science.gov (United States)

    Kvande, Halvor

    2014-05-01

    This introduction to the industrial primary aluminum production process presents a short description of the electrolytic reduction technology, the history of aluminum, and the importance of this metal and its production process to modern society. Aluminum's special qualities have enabled advances in technologies coupled with energy and cost savings. Aircraft capabilities have been greatly enhanced, and increases in size and capacity are made possible by advances in aluminum technology. The metal's flexibility for shaping and extruding has led to architectural advances in energy-saving building construction. The high strength-to-weight ratio has meant a substantial reduction in energy consumption for trucks and other vehicles. The aluminum industry is therefore a pivotal one for ecological sustainability and strategic for technological development.

  1. Production of aluminum metal by electrolysis of aluminum sulfide

    Science.gov (United States)

    Minh, Nguyen Q.; Loutfy, Raouf O.; Yao, Neng-Ping

    1984-01-01

    Production of metallic aluminum by the electrolysis of Al.sub.2 S.sub.3 at 700.degree.-800.degree. C. in a chloride melt composed of one or more alkali metal chlorides, and one or more alkaline earth metal chlorides and/or aluminum chloride to provide improved operating characteristics of the process.

  2. Mirror-finished superhydrophobic aluminum surfaces modified by anodic alumina nanofibers and self-assembled monolayers

    Science.gov (United States)

    Nakajima, Daiki; Kikuchi, Tatsuya; Natsui, Shungo; Suzuki, Ryosuke O.

    2018-05-01

    We demonstrate mirror-finished superhydrophobic aluminum surfaces fabricated via the formation of anodic alumina nanofibers and subsequent modification with self-assembled monolayers (SAMs). High-density anodic alumina nanofibers were formed on the aluminum surface via anodizing in a pyrophosphoric acid solution. The alumina nanofibers became tangled and bundled by further anodizing at low temperature because of their own weight, and the aluminum surface was completely covered by the long falling nanofibers. The nanofiber-covered aluminum surface exhibited superhydrophilic behavior, with a contact angle measuring less than 10°. As the nanofiber-covered aluminum surface was modified with n-alkylphosphonic acid SAMs, the water contact angle drastically shifted to superhydrophobicity, measuring more than 150°. The contact angle increased with the applied voltage during pyrophosphoric acid anodizing, the anodizing time, and the number of carbon atoms contained in the SAM molecules modified on the alumina nanofibers. By optimizing the anodizing and SAM-modification conditions, superhydrophobic behavior could be achieved with only a brief pyrophosphoric acid anodizing period of 3 min and subsequent simple immersion in SAM solutions. The superhydrophobic aluminum surface exhibited a high reflectance, measuring approximately 99% across most of the visible spectrum, similar to that of an electropolished aluminum surface. Therefore, our mirror-finished superhydrophobic aluminum surface based on anodic alumina nanofibers and SAMs can be used as a reflective mirror in various optical applications such as concentrated solar power systems.

  3. Electrosynthesized polyaniline for the corrosion protection of aluminum alloy 2024-T3

    Directory of Open Access Journals (Sweden)

    Huerta-Vilca Domingo

    2003-01-01

    Full Text Available Adherent polyaniline films on aluminum alloy 2024-T3 have been prepared by electrodeposition from aniline containing oxalic acid solution. The most appropriate method to prepare protective films was a successive galvanostatic deposition of 500 seconds. With this type of film, the open circuit potential of the coating shifted around 0.065V vs. SCE compared to the uncoated alloy. The polyaniline coatings can be considered as candidates to protect copper-rich (3 - 5% aluminum alloys by avoiding the galvanic couple between re-deposited copper on the surface and the bulk alloy. The performance of the polyaniline films was verified by immersion tests up to 2.5 months. It was good with formation of some aluminum oxides due to electrolyte permeation so, in order to optimize the performance a coating formulation would content an isolation topcoat.

  4. BONDING ALUMINUM METALS

    Science.gov (United States)

    Noland, R.A.; Walker, D.E.

    1961-06-13

    A process is given for bonding aluminum to aluminum. Silicon powder is applied to at least one of the two surfaces of the two elements to be bonded, the two elements are assembled and rubbed against each other at room temperature whereby any oxide film is ruptured by the silicon crystals in the interface; thereafter heat and pressure are applied whereby an aluminum-silicon alloy is formed, squeezed out from the interface together with any oxide film, and the elements are bonded.

  5. [Atmospheric emission of PCDD/Fs from secondary aluminum metallurgy industry in the southwest area, China].

    Science.gov (United States)

    Lu, Yi; Zhang, Xiao-Ling; Guo, Zhi-Shun; Jian, Chuan; Zhu, Ming-Ji; Deng, Li; Sun, Jing; Zhang, Qin

    2014-01-01

    Five secondary aluminum metallurgy enterprises in the southwest area of China were measured for emissions of PCDD/Fs. The results indicated that the emission levels of PCDD/Fs (as TEQ) were 0.015-0.16 ng x m(-3), and the average was 0.093 ng x m(-3) from secondary aluminum metallurgy enterprises. Emission factors of PCDD/Fs (as TEQ) from the five secondary aluminum metallurgy enterprises varied between 0.041 and 4.68 microg x t(-1) aluminum, and the average was 2.01 microg x t(-1) aluminum; among them, PCDD/Fs emission factors from the crucible smelting furnace was the highest. Congener distribution of PCDD/F in stack gas from the five secondary aluminum metallurgies was very different from each other. Moreover, the R(PCDF/PCDD) was the lowest in the enterprise which was installed only with bag filters; the R(PCDF/PCDD) were 3.8-12.6 (the average, 7.7) in the others which were installed with water scrubbers. The results above indicated that the mechanism of PCDD/Fs formation was related to the types of exhaust gas treatment device. The results of this study can provide technical support for the formulation of PCDD/Fs emission standards and the best available techniques in the secondary aluminum metallurgy industry.

  6. Borated aluminum alloy manufacturing technology

    International Nuclear Information System (INIS)

    Shimojo, Jun; Taniuchi, Hiroaki; Kajihara, Katsura; Aruga, Yasuhiro

    2003-01-01

    Borated aluminum alloy is used as the basket material of cask because of its light weight, thermal conductivity and superior neutron absorbing abilities. Kobe Steel has developed a unique manufacturing process for borated aluminum alloy using a vacuum induction melting method. In this process, aluminum alloy is melted and agitated at higher temperatures than common aluminum alloy fabrication methods. It is then cast into a mold in a vacuum atmosphere. The result is a high quality aluminum alloy which has a uniform boron distribution and no impurities. (author)

  7. 21 CFR 73.1645 - Aluminum powder.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Aluminum powder. 73.1645 Section 73.1645 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1645 Aluminum powder. (a) Identity. (1) The color additive aluminum powder shall be composed of finely divided particles of aluminum prepared from virgin aluminum. It...

  8. Precipitation and Deposition of Aluminum-Containing Phases in Tank Wastes. Final Report

    International Nuclear Information System (INIS)

    Dabbs, Daniel M.; Aksay, Ilhan A.

    2009-01-01

    Aluminum-containing phases compose the bulk of solids precipitating during the processing of radioactive tank wastes. Processes designed to minimize the volume of high-level waste through conversion to glassy phases require transporting waste solutions near-saturated with aluminum-containing species from holding tank to processing center. The uncontrolled precipitation within transfer lines results in clogged pipes and lines and fouled ion exchangers, with the potential to shut down processing operations. The principal focus of our research was to maintain the fluidity of aluminum- or silicon-containing suspensions and solutions during transport, whether by preventing particle formation, stabilizing colloidal particles in suspension, or by combining partial dissolution with particle stabilization. We have found that all of these can be effected in aluminum-containing solutions using the simple organic, citric acid. Silicon-containing solutions were found to be less tractable, but we have strong indications that chemistries similar to the citric acid/aluminum suspensions can be effective in maintaining silicon suspensions at high alkalinities. In the first phase of our study, we focused on the use of simple organics to raise the solubility of aluminum oxyhydroxides in high alkaline aqueous solvents. In a limited survey of common organic acids, we determined that citric acid had the highest potential to achieve our goal. However, our subsequent investigation revealed that the citric acid appeared to play two roles in the solutions: first, raising the concentration of aluminum in highly alkaline solutions by breaking up or inhibiting 'seed' polycations and thereby delaying the nucleation and growth of particles; and second, stabilizing nanometer-sized particles in suspension when nucleation did occur. The second phase of our work involved the solvation of silicon, again in solutions of high alkalinity. Here, the use of polyols was determined to be effective in

  9. ALUMINUM BOX BUNDLING PRESS

    Directory of Open Access Journals (Sweden)

    Iosif DUMITRESCU

    2015-05-01

    Full Text Available In municipal solid waste, aluminum is the main nonferrous metal, approximately 80- 85% of the total nonferrous metals. The income per ton gained from aluminum recuperation is 20 times higher than from glass, steel boxes or paper recuperation. The object of this paper is the design of a 300 kN press for aluminum box bundling.

  10. Removing hydrochloric acid exhaust products from high performance solid rocket propellant using aluminum-lithium alloy.

    Science.gov (United States)

    Terry, Brandon C; Sippel, Travis R; Pfeil, Mark A; Gunduz, I Emre; Son, Steven F

    2016-11-05

    Hydrochloric acid (HCl) pollution from perchlorate based propellants is well known for both launch site contamination, as well as the possible ozone layer depletion effects. Past efforts in developing environmentally cleaner solid propellants by scavenging the chlorine ion have focused on replacing a portion of the chorine-containing oxidant (i.e., ammonium perchlorate) with an alkali metal nitrate. The alkali metal (e.g., Li or Na) in the nitrate reacts with the chlorine ion to form an alkali metal chloride (i.e., a salt instead of HCl). While this technique can potentially reduce HCl formation, it also results in reduced ideal specific impulse (ISP). Here, we show using thermochemical calculations that using aluminum-lithium (Al-Li) alloy can reduce HCl formation by more than 95% (with lithium contents ≥15 mass%) and increase the ideal ISP by ∼7s compared to neat aluminum (using 80/20 mass% Al-Li alloy). Two solid propellants were formulated using 80/20 Al-Li alloy or neat aluminum as fuel additives. The halide scavenging effect of Al-Li propellants was verified using wet bomb combustion experiments (75.5±4.8% reduction in pH, ∝ [HCl], when compared to neat aluminum). Additionally, no measurable HCl evolution was detected using differential scanning calorimetry coupled with thermogravimetric analysis, mass spectrometry, and Fourier transform infrared absorption. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Selective binding behavior of humic acid removal by aluminum coagulation.

    Science.gov (United States)

    Jin, Pengkang; Song, Jina; Yang, Lei; Jin, Xin; Wang, Xiaochang C

    2018-02-01

    The reactivity characteristics of humic acid (HA) with aluminium coagulants at different pH values was investigated. It revealed that the linear complexation reaction occurred between aluminum and humic acid at pH aluminum existed in the form of free aluminum and remained unreacted in the presence of HA until the concentration reached to trigger Al(OH) 3(s) formation. Differentiating the change of functional groups of HA by 1 H nuclear magnetic resonance spectroscopy and X-ray photoelectron spectra analysis, it elucidated that there was a selective complexation between HA and Al with lower Al dosage at pH 5, which was probably due to coordination of the activated functional groups onto aluminium. While almost all components were removed proportionally by sweep adsorption without selectivity at pH 7, as well as that with higher Al dosage at pH 5. This study provided a promising pathway to analyse the mechanism of the interaction between HA and metal coagulants in future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Progress in Aluminum Electrolysis Control and Future Direction for Smart Aluminum Electrolysis Plant

    Science.gov (United States)

    Zhang, Hongliang; Li, Tianshuang; Li, Jie; Yang, Shuai; Zou, Zhong

    2017-02-01

    The industrial aluminum reduction cell is an electrochemistry reactor that operates under high temperatures and highly corrosive conditions. However, these conditions have restricted the measurement of key control parameters, making the control of aluminum reduction cells a difficult problem in the industry. Because aluminum electrolysis control systems have a significant economic influence, substantial research has been conducted on control algorithms, control systems and information systems for aluminum reduction cells. This article first summarizes the development of control systems and then focuses on the progress made since 2000, including alumina concentration control, temperature control and electrolyte molecular ratio control, fault diagnosis, cell condition prediction and control system expansion. Based on these studies, the concept of a smart aluminum electrolysis plant is proposed. The frame construction, key problems and current progress are introduced. Finally, several future directions are discussed.

  13. Formation of oxide layers on aluminum, niobium, and tantalum in molten alkali metal carbonates

    Science.gov (United States)

    Nikitina, E. V.; Kazakovtseva, N. A.

    2013-08-01

    The electrochemical synthesis of niobium, tantalum, and aluminum oxide nanolayers is studied in the melt of lithium, sodium, and potassium carbonates with various additives to a salt phase in an oxidizing atmosphere at a temperature of 773 and 873 K. A scheme is proposed for high-temperature anion local activation of the process.

  14. Research of plating aluminum and aluminum foil on internal surface of carbon fiber composite material centrifuge rotor drum

    International Nuclear Information System (INIS)

    Lu Xiuqi; Dong Jinping; Dai Xingjian

    2014-01-01

    In order to improve the corrosion resistance, thermal conductivity and sealability of the internal surface of carbon fiber/epoxy composite material centrifuge rotor drum, magnetron sputtering aluminum and pasting an aluminum foil on the inner wall of the drum are adopted to realize the aim. By means of XRD, SEM/EDS and OM, the surface topography of aluminum coated (thickness of 5 μm and 12 μm) and aluminum foil (12 μm) are observed and analyzed; the cohesion of between aluminum coated (or aluminum foil) and substrate material (CFRP) is measured by scratching experiment, direct drawing experiment, and shear test. Besides, the ultra-high-speed rotation experiment of CFRP ring is carried out to analyze stress and strain of coated aluminum (or aluminum foil) which is adhered on the ring. The results showed aluminum foil pasted on inner surface do better performance than magnetron sputtering aluminum on CFRP centrifuge rotor drum. (authors)

  15. Self-Ordered Nanoporous Alumina Templates Formed by Anodization of Aluminum in Oxalic Acid

    Science.gov (United States)

    Vida-Simiti, Ioan; Nemes, Dorel; Jumate, Nicolaie; Thalmaier, Gyorgy; Sechel, Niculina

    2012-10-01

    Anodic aluminum oxide (AAO) membranes with highly ordered nanopores serve as ideal templates for the formation of various nanostructured materials. The procedure of the template preparation is based on a two-step self-organized anodization of aluminum. In the current study, AAO templates were fabricated in 0.3 M oxalic acid under the anodizing potential range of 30-60 V at an electrolyte temperature of ~5°C. The AAO templates were analyzed using scanning electron microscopy, x-ray diffraction, Fourier-transform infrared spectroscopy, and differential thermal analysis. The as obtained layers are amorphous; the mean pore size is between 40 nm and 75 nm and increases with the increase of the anodization potential. Well-defined pores across the whole aluminum template, a pore density of ~1010 pores/cm2, and a tendency to form a porous structure with hexagonal symmetry were observed.

  16. Porous aluminum room temperature anodizing process in a fluorinated-oxalic acid solution

    Science.gov (United States)

    Dhahri, S.; Fazio, E.; Barreca, F.; Neri, F.; Ezzaouia, H.

    2016-08-01

    Anodizing of aluminum is used for producing porous insulating films suitable for different applications in electronics and microelectronics. Porous-type aluminum films are most simply realized by galvanostatic anodizing in aqueous acidic solutions. The improvement in application of anodizing technique is associated with a substantial reduction of the anodizing voltage at appropriate current densities as well as to the possibility to carry out the synthesis process at room temperature in order to obtain a self-planarizing dielectric material incorporated in array of super-narrow metal lines. In this work, the anodizing of aluminum to obtain porous oxide was carried out, at room temperature, on three different substrates (glass, stainless steel and aluminum), using an oxalic acid-based electrolyte with the addition of a relatively low amount of 0.4 % of HF. Different surface morphologies, from nearly spherical to larger porous nanostructures with smooth edges, were observed by means of scanning electron microscopy. These evidences are explained by considering the formation, transport and adsorption of the fluorine species which react with the Al3+ ions. The behavior is also influenced by the nature of the original substrate.

  17. Intraneuronal aluminum accumulation in amyotrophic lateral sclerosis and Parkinsonism-dementia of Guam

    International Nuclear Information System (INIS)

    Perl, D.P.; Gajdusek, D.C.; Garruto, R.M.; Yanagihara, R.T.; Gibbs, C.J.

    1982-01-01

    Scanning electron microscopy with energy-dispersive x-ray spectrometry was used to analyze the elemental content of neurofibrillary tangle (NFT)-bearing and NFT-free neurons within the Sommer's sector (H1 region) of the hippocampus in Guamanian Chamorros with amyotrophic lateral sclerosis and parkinsonism-dementia and in neurologically normal controls. Preliminary data indicate prominent accumulation of aluminum within the nuclear region and perikaryal cytoplasm of NFT-bearing hippocampal neurons, regardless of the underlying neurological diagnosis. These findings further extend the association between intraneuronal aluminum and NFT formation and support the hypothesis that environmental factors are related to the neurodegenerative changes seen in the Chamorro population

  18. Coordination Structure of Aluminum in Magnesium Aluminum Hydroxide Studied by 27Al NMR

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The coordination structure of aluminum in magnesium aluminum hydroxide was studiedby 27Al NMR. The result showed that tetrahedral aluminum (AlⅣ) existed in magnesiumaluminum hydroxide, and the contents of AlⅣ increased with the increase of the ratio of Al/Mg andwith the peptizing temperature. AlⅣ originated from the so-called Al13 polymer with the structureof one Al tetrahedron surrounded by twelve Al octahedrons.

  19. Aluminum surface modification by a non-mass-analyzed nitrogen ion beam

    Science.gov (United States)

    Ohira, Shigeo; Iwaki, Masaya

    Non-mass-analyzed nitrogen ion implantation into polycrystal and single crystal aluminum sheets has been carried out at an accelerating voltage of 90 kV and a dose of 1 × 10 18 N ions/cm 2 using a Zymet implanter model Z-100. The pressure during implantation rose to 10 -3 Pa due to the influence of N gas feeding into the ion source. The characteristics of the surface layers were investigated by means of Auger electron spectroscopy (AES), X-ray diffraction (XRD), transmission electron diffraction (TED), and microscopy (TEM). The AES depth profiling shows a rectangular-like distribution of N atoms and little migration of O atoms near the surface. The high dose N-implantation forms c-axis oriented aluminum nitride (AIN) crystallines, and especially irradiation of Al single crystals with N ions leads to the formation of a hcp AlN single crystal. It is concluded that the high dose N-implantation in Al can result in the formation of AlN at room temperature without any thermal annealing. Furthermore, non-mass-analyzed N-implantation at a pressure of 10 -3 Pa of the nitrogen atmosphere causes the formation of pure AlN single crystals in the Al surface layer and consequently it can be practically used for AlN production.

  20. Plasma source ion implantation process for corrosion protection of 6061 aluminum

    International Nuclear Information System (INIS)

    Zhang, L.; Booske, J.H.; Shohet, J.L.; Jacobs, J.R.; Bernardini, A.J.

    1995-01-01

    This paper describes results of an investigation of the feasibility of using nitrogen plasma source ion implantation (PSII) treatment to improve corrosion resistance of 6061 aluminum to salt water. Flat Al samples were implanted with various doses of nitrogen. The surface microstructures and profiles of Al and N in the flat samples were examined using transmission electron microscopy (TEM), scanning Auger microprobe, x-ray diffraction. Corrosion properties of the samples and the components were evaluated using both a 500 hour salt spray field test and a laboratory electrochemical corrosion system. The tested samples were then analyzed by scanning electron microscopy. Corrosion measurements have demonstrated that PSII can significantly improve the pitting resistance of 6061 aluminum. By correlating the analytical results with the corrosion test results, it has been verified that the improved corrosion resistance in PSII-treated coupons is due to the formation of a continuous AlN layer. It was also identified that the formation of a continuous AlN layer. It was also identified that the formation of a continuous AlN layer is mainly determined by the bias voltage and the total integrated implantation dose, and relatively insensitive to factors such as the plasma source, pulse length, or frequency

  1. Paired and interacting galaxies: Conference summary

    International Nuclear Information System (INIS)

    Norman, C.A.

    1990-01-01

    The author gives a summary of the conference proceedings. The conference began with the presentation of the basic data sets on pairs, groups, and interacting galaxies with the latter being further discussed with respect to both global properties and properties of the galactic nuclei. Then followed the theory, modelling and interpretation using analytic techniques, simulations and general modelling for spirals and ellipticals, starbursts and active galactic nuclei. Before the conference the author wrote down the three questions concerning pairs, groups and interacting galaxies that he hoped would be answered at the meeting: (1) How do they form, including the role of initial conditions, the importance of subclustering, the evolution of groups to compact groups, and the fate of compact groups; (2) How do they evolve, including issues such as relevant timescales, the role of halos and the problem of overmerging, the triggering and enhancement of star formation and activity in the galactic nuclei, and the relative importance of dwarf versus giant encounters; and (3) Are they important, including the frequency of pairs and interactions, whether merging and interactions are very important aspects of the life of a normal galaxy at formation, during its evolution, in forming bars, shells, rings, bulges, etc., and in the formation and evolution of active galaxies? Where possible he focuses on these three central issues in the summary

  2. SIAM conference on applications of dynamical systems

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    A conference (Oct.15--19, 1992, Snowbird, Utah; sponsored by SIAM (Society for Industrial and Applied Mathematics) Activity Group on Dynamical Systems) was held that highlighted recent developments in applied dynamical systems. The main lectures and minisymposia covered theory about chaotic motion, applications in high energy physics and heart fibrillations, turbulent motion, Henon map and attractor, integrable problems in classical physics, pattern formation in chemical reactions, etc. The conference fostered an exchange between mathematicians working on theoretical issues of modern dynamical systems and applied scientists. This two-part document contains abstracts, conference program, and an author index.

  3. Air-Impregnated Nanoporous Anodic Aluminum Oxide Layers for Enhancing the Corrosion Resistance of Aluminum.

    Science.gov (United States)

    Jeong, Chanyoung; Lee, Junghoon; Sheppard, Keith; Choi, Chang-Hwan

    2015-10-13

    Nanoporous anodic aluminum oxide layers were fabricated on aluminum substrates with systematically varied pore diameters (20-80 nm) and oxide thicknesses (150-500 nm) by controlling the anodizing voltage and time and subsequent pore-widening process conditions. The porous nanostructures were then coated with a thin (only a couple of nanometers thick) Teflon film to make the surface hydrophobic and trap air in the pores. The corrosion resistance of the aluminum substrate was evaluated by a potentiodynamic polarization measurement in 3.5 wt % NaCl solution (saltwater). Results showed that the hydrophobic nanoporous anodic aluminum oxide layer significantly enhanced the corrosion resistance of the aluminum substrate compared to a hydrophilic oxide layer of the same nanostructures, to bare (nonanodized) aluminum with only a natural oxide layer on top, and to the latter coated with a thin Teflon film. The hydrophobic nanoporous anodic aluminum oxide layer with the largest pore diameter and the thickest oxide layer (i.e., the maximized air fraction) resulted in the best corrosion resistance with a corrosion inhibition efficiency of up to 99% for up to 7 days. The results demonstrate that the air impregnating the hydrophobic nanopores can effectively inhibit the penetration of corrosive media into the pores, leading to a significant improvement in corrosion resistance.

  4. Synergistic cloud point extraction behavior of aluminum(III) with 2-methyl-8-quinolinol and 3,5-dichlorophenol.

    Science.gov (United States)

    Ohashi, Akira; Tsuguchi, Akira; Imura, Hisanori; Ohashi, Kousaburo

    2004-07-01

    The cloud point extraction behavior of aluminum(III) with 8-quinolinol (HQ) or 2-methyl-8-quinolinol (HMQ) and Triton X-100 was investigated in the absence and presence of 3,5-dichlorophenol (Hdcp). Aluminum(III) was almost extracted with HQ and 4(v/v)% Triton X-100 above pH 5.0, but was not extracted with HMQ-Triton X-100. However, in the presence of Hdcp, it was almost quantitatively extracted with HMQ-Triton X-100. The synergistic effect of Hdcp on the extraction of aluminum(III) with HMQ and Triton X-100 may be caused by the formation of a mixed-ligand complex, Al(dcp)(MQ)2.

  5. Decarbonization process for carbothermically produced aluminum

    Science.gov (United States)

    Bruno, Marshall J.; Carkin, Gerald E.; DeYoung, David H.; Dunlap, Sr., Ronald M.

    2015-06-30

    A method of recovering aluminum is provided. An alloy melt having Al.sub.4C.sub.3 and aluminum is provided. This mixture is cooled and then a sufficient amount of a finely dispersed gas is added to the alloy melt at a temperature of about 700.degree. C. to about 900.degree. C. The aluminum recovered is a decarbonized carbothermically produced aluminum where the step of adding a sufficient amount of the finely dispersed gas effects separation of the aluminum from the Al.sub.4C.sub.3 precipitates by flotation, resulting in two phases with the Al.sub.4C.sub.3 precipitates being the upper layer and the decarbonized aluminum being the lower layer. The aluminum is then recovered from the Al.sub.4C.sub.3 precipitates through decanting.

  6. CONFERENCE: Quark matter 88

    International Nuclear Information System (INIS)

    Jacob, Maurice

    1988-01-01

    The 'Quark Matter' Conference caters for physicists studying nuclear matter under extreme conditions. The hope is that relativistic (high energy) heavy ion collisions allow formation of the long-awaited quark-gluon plasma, where the inter-quark 'colour' force is no longer confined inside nucleon-like dimensions

  7. Weld Repair of Thin Aluminum Sheet

    Science.gov (United States)

    Beuyukian, C. S.; Mitchell, M. J.

    1986-01-01

    Weld repairing of thin aluminum sheets now possible, using niobium shield and copper heat sinks. Refractory niobium shield protects aluminum adjacent to hole, while copper heat sinks help conduct heat away from repair site. Technique limits tungsten/inert-gas (TIG) welding bombardment zone to melt area, leaving surrounding areas around weld unaffected. Used successfully to repair aluminum cold plates on Space Shuttle, Commercial applications, especially in sealing fractures, dents, and holes in thin aluminum face sheets or clad brazing sheet in cold plates, heat exchangers, coolers, and Solar panels. While particularly suited to thin aluminum sheet, this process also used in thicker aluminum material to prevent surface damage near weld area.

  8. Gas evolution behavior of aluminum in mortar

    Energy Technology Data Exchange (ETDEWEB)

    Hashizume, Shuji; Matsumoto, Junko; Banba, Tsunetaka [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1996-10-01

    As a part of study of leaching behavior for solidified dry low level radioactive waste, gas evolution behavior of aluminum in mortar was investigated, and a plan of our research was proposed. The effect of pH on corrosion rate of aluminum, corrosion product, time dependency of corrosion rate of aluminum in mortar, change of corrosion mechanism, the effects of Na, Ca and Cl ions on corrosion rate of aluminum in mortar and corrosion behavior of aluminum when aluminum was used as sacrificed anode in reinforced concrete were previously clarified. Study of the effects of environmental factors such as pH, kind of ions and temperature on gas evolution behavior of aluminum and the effect of aluminum/carbon steel surface ratio no gas evolution behavior of aluminum were planed. (author). 75 refs.

  9. Gas evolution behavior of aluminum in mortar

    International Nuclear Information System (INIS)

    Hashizume, Shuji; Matsumoto, Junko; Banba, Tsunetaka

    1996-10-01

    As a part of study of leaching behavior for solidified dry low level radioactive waste, gas evolution behavior of aluminum in mortar was investigated, and a plan of our research was proposed. The effect of pH on corrosion rate of aluminum, corrosion product, time dependency of corrosion rate of aluminum in mortar, change of corrosion mechanism, the effects of Na, Ca and Cl ions on corrosion rate of aluminum in mortar and corrosion behavior of aluminum when aluminum was used as sacrificed anode in reinforced concrete were previously clarified. Study of the effects of environmental factors such as pH, kind of ions and temperature on gas evolution behavior of aluminum and the effect of aluminum/carbon steel surface ratio no gas evolution behavior of aluminum were planed. (author). 75 refs

  10. The Changing Academic Profession in Asia: The Formation, Work, Academic Productivity, and Internationalization of the Academy. Report of the International Conference on the Changing Academic Profession Project, 2014. RIHE International Seminar Reports. No. 22

    Science.gov (United States)

    Research Institute for Higher Education, Hiroshima University, 2015

    2015-01-01

    The International Conference on the Changing Academic Profession Project convened in Hiroshima City, Japan, January 24-25, 2014. It was jointly hosted by the Research Institutes of Higher Education at Hiroshima and Kurashiki Sakuyo Universities. The theme of the conference was "The Changing Academic Profession in Asia: The Formation, Work,…

  11. Dissimilar Joining of Stainless Steel and 5083 Aluminum Alloy Sheets by Gas Tungsten Arc Welding-Brazing Process

    Science.gov (United States)

    Cheepu, Muralimohan; Srinivas, B.; Abhishek, Nalluri; Ramachandraiah, T.; Karna, Sivaji; Venkateswarlu, D.; Alapati, Suresh; Che, Woo Seong

    2018-03-01

    The dissimilar joining using gas tungsten arc welding - brazing of 304 stainless steel to 5083 Al alloy had been conducted with the addition of Al-Cu eutectic filler metal. The interface microstructure formation between filler metal and substrates, and spreading of the filler metal were studied. The interface microstructure between filler metal and aluminum alloy characterized that the formation of pores and elongated grains with the initiation of micro cracks. The spreading of the liquid braze filler on stainless steel side packed the edges and appeared as convex shape, whereas a concave shape has been formed on aluminum side. The major compounds formed at the fusion zone interface were determined by using X-ray diffraction techniques and energy-dispersive X-ray spectroscopy analysis. The micro hardness at the weld interfaces found to be higher than the substrates owing to the presence of Fe2Al5 and CuAl2 intermetallic compounds. The maximum tensile strength of the weld joints was about 95 MPa, and the tensile fracture occurred at heat affected zone on weak material of the aluminum side and/or at stainless steel/weld seam interface along intermetallic layer. The interface formation and its effect on mechanical properties of the welds during gas tungsten arc welding-brazing has been discussed.

  12. Report: Fourth International Conference on Gas Hydrates, held at Yokohama, Japan, 19-23 May 2002

    Digital Repository Service at National Institute of Oceanography (India)

    Karisiddaiah, S.M.

    formations, while Dr. L. Stern presented ne insights into the phenomena of anomalous or self- preservation of gas hydrates. JOUR.GEOL.SOC.INDIA, VOL.61, JAN. 2001 Posters on hydrate formation and prevention in pipelines and hydrate based...-1 REPORT ON THE 4TH INTERNATIONAL CONFERENCE ON GAS HYDRATES The fourth International Conference on Gas Hydrates was recently held at Yokohama, Japan, between 19-23 May 2002 following the earlier conferences held in USA (1993...

  13. Anti-corrosion layer prepared by plasma electrolytic carbonitriding on pure aluminum

    International Nuclear Information System (INIS)

    Wu, Jie; Zhang, Yifan; Liu, Run; Wang, Bin; Hua, Ming; Xue, Wenbin

    2015-01-01

    Highlights: • PEC/N can be applied to low melting point metal. • The spectroscopic characterization of plasma discharge is investigated. • Electron concentration and electron temperature are evaluated for PEC/N. • Phase composition of the carbonitrided layer is determined. • PEC/N improves the corrosion resistance of aluminum greatly. - Abstract: In this paper, plasma electrolytic carbonitriding (PEC/N) method was applied to pure aluminum for the first time. The spectroscopic characterization of plasma discharge during PEC/N process was analyzed and the electron temperature was calculated in terms of optical emission spectroscopy. The results showed the discharge plasma was in local thermal equilibrium (LTE) state. Electron concentration and electron temperature were about 6 × 10 21 m −3 and 4000 K, respectively. The carbonitrided layer contained Al 4 C 3 , AlN and Al 7 C 3 N 3 phases. After PEC/N treatment, the corrosion resistance of pure aluminum was significantly improved, which was related to the formation of nitride phases. This work expands the application of plasma electrolysis technology on the surface modification of low melting point metal

  14. Laser surface alloying of aluminum (AA1200) with Ni and SiC Powders

    CSIR Research Space (South Africa)

    Mabhali, Luyolo AB

    2010-12-01

    Full Text Available . The dissociated C reacted with Al to form Al4C3. The addition of Ni resulted in the formation of the Al3Ni phase. A hardness increase of approximately four times that of aluminum AA1200 was achieved in the alloyed layer....

  15. Protective Performance of Polyaniline-Sulfosalicylic Acid/Epoxy Coating for 5083 Aluminum

    Science.gov (United States)

    Liu, Suyun; Liu, Li; Meng, Fandi; Li, Ying; Wang, Fuhui

    2018-01-01

    Epoxy coatings incorporating different content of sulfosalicylic acid doped polyaniline (PANI-SSA) have been investigated for corrosion protection of 5083 aluminum alloy in 3.5% NaCl solution. The performance of the coatings is studied using a combination of electrochemical impedance spectroscopy (EIS), open circuit potential (OCP), gravimetric tests, adhesion tests, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The results demonstrate that the content of PANI-SSA not only affects the coating compactness and the transportation of aggressive medium, but also has a significant influence on the-based aluminum. The coating with 2 wt. % PANI-SSA exhibits the best corrosion inhibition due to its good protective properties and the formation of a complete PANI-SSA induced oxide layer. PMID:29438304

  16. A Virtual Aluminum Reduction Cell

    Science.gov (United States)

    Zhang, Hongliang; Zhou, Chenn Q.; Wu, Bing; Li, Jie

    2013-11-01

    The most important component in the aluminum industry is the aluminum reduction cell; it has received considerable interests and resources to conduct research to improve its productivity and energy efficiency. The current study focused on the integration of numerical simulation data and virtual reality technology to create a scientifically and practically realistic virtual aluminum reduction cell by presenting complex cell structures and physical-chemical phenomena. The multiphysical field simulation models were first built and solved in ANSYS software (ANSYS Inc., Canonsburg, PA, USA). Then, the methodology of combining the simulation results with virtual reality was introduced, and a virtual aluminum reduction cell was created. The demonstration showed that a computer-based world could be created in which people who are not analysis experts can see the detailed cell structure in a context that they can understand easily. With the application of the virtual aluminum reduction cell, even people who are familiar with aluminum reduction cell operations can gain insights that make it possible to understand the root causes of observed problems and plan design changes in much less time.

  17. Effect of Aluminum Coating on the Surface Properties of Ti-(~49 at. pct) Ni Alloy

    Science.gov (United States)

    Sinha, Arijit; Khan, Gobinda Gopal; Mondal, Bholanath; Majumdar, Jyotsna Dutta; Chattopadhyay, Partha Protim

    2015-08-01

    Stable porous layer of mixed Al2O3 and TiO2 has been formed on the Ti-(~49 at. pct) Ni alloy surface with an aim to suppress leaching of Ni from the alloy surface in contact with bio-fluid and to enhance the process of osseointegration. Aluminum coating on the Ni-Ti alloy surface prior to the anodization treatment has resulted in enhancement of depth and uniformity of pores. Thermal oxidation of the anodized aluminum-coated Ni-Ti samples has exhibited the formation of Al2O3 and TiO2 phases with dense porous structure. The nanoindentation and nanoscratch measurements have indicated a remarkable improvement in the hardness, wear resistance, and adhesiveness of the porous aluminum-coated Ni-Ti sample after thermal oxidation.

  18. Electrically conductive anodized aluminum coatings

    Science.gov (United States)

    Alwitt, Robert S. (Inventor); Liu, Yanming (Inventor)

    2001-01-01

    A process for producing anodized aluminum with enhanced electrical conductivity, comprising anodic oxidation of aluminum alloy substrate, electrolytic deposition of a small amount of metal into the pores of the anodized aluminum, and electrolytic anodic deposition of an electrically conductive oxide, including manganese dioxide, into the pores containing the metal deposit; and the product produced by the process.

  19. Mesoporous aluminum phosphite

    International Nuclear Information System (INIS)

    El Haskouri, Jamal; Perez-Cabero, Monica; Guillem, Carmen; Latorre, Julio; Beltran, Aurelio; Beltran, Daniel; Amoros, Pedro

    2009-01-01

    High surface area pure mesoporous aluminum-phosphorus oxide-based derivatives have been synthesized through an S + I - surfactant-assisted cooperative mechanism by means of a one-pot preparative procedure from aqueous solution and starting from aluminum atrane complexes and phosphoric and/or phosphorous acids. A soft chemical extraction procedure allows opening the pore system of the parent as-prepared materials by exchanging the surfactant without mesostructure collapse. The nature of the pore wall can be modulated from mesoporous aluminum phosphate (ALPO) up to total incorporation of phosphite entities (mesoporous aluminum phosphite), which results in a gradual evolution of the acidic properties of the final materials. While phosphate groups in ALPO act as network building blocks (bridging Al atoms), the phosphite entities become basically attached to the pore surface, what gives practically empty channels. The mesoporous nature of the final materials is confirmed by X-ray diffraction (XRD), transmission electron microscopy (TEM) and N 2 adsorption-desorption isotherms. The materials present regular unimodal pore systems whose order decreases as the phosphite content increases. NMR spectroscopic results confirm the incorporation of oxo-phosphorus entities to the framework of these materials and also provide us useful information concerning the mechanism through which they are formed. - Abstract: TEM image of the mesoporous aluminum phosphite showing the hexagonal disordered pore array that is generated by using surfactant micelles as template. Also a scheme emphasizing the presence of an alumina-rich core and an ALPO-like pore surface is presented.

  20. AstroNet-II International Final Conference

    CERN Document Server

    Masdemont, Josep

    2016-01-01

    These are the proceedings of the "AstroNet-II International Final Conference". This conference was one of the last milestones of the Marie-Curie Research Training Network on Astrodynamics "AstroNet-II", that has been funded by the European Commission under the Seventh Framework Programme. The aim of the conference, and thus this book, is to communicate work on astrodynamics problems to an international and specialised audience. The results are presented by both members of the network and invited specialists. The topics include: trajectory design and control, attitude control, structural flexibility of spacecraft and formation flying. The book addresses a readership across the traditional boundaries between mathematics, engineering and industry by offering an interdisciplinary and multisectorial overview of the field.

  1. Gut: An underestimated target organ for Aluminum.

    Science.gov (United States)

    Vignal, C; Desreumaux, P; Body-Malapel, M

    2016-06-01

    Since World War II, several factors such as an impressive industrial growth, an enhanced environmental bioavailability and intensified food consumption have contributed to a significant amplification of human exposure to aluminum. Aluminum is particularly present in food, beverages, some drugs and airbone dust. In our food, aluminum is superimposed via additives and cooking utensils. Therefore, the tolerable intake of aluminum is exceeded for a significant part of the world population, especially in children who are more vulnerable to toxic effects of pollutants than adults. Faced with this oral aluminum influx, intestinal tract is an essential barrier, especially as 38% of ingested aluminum accumulates at the intestinal mucosa. Although still poorly documented to date, the impact of oral exposure to aluminum in conditions relevant to real human exposure appears to be deleterious for gut homeostasis. Aluminum ingestion affects the regulation of the permeability, the microflora and the immune function of intestine. Nowadays, several arguments are consistent with an involvement of aluminum as an environmental risk factor for inflammatory bowel diseases. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  2. Infrared radiation properties of anodized aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Kohara, S. [Science Univ. of Tokyo, Noda, Chiba (Japan). Dept. of Materials Science and Technology; Niimi, Y. [Science Univ. of Tokyo, Noda, Chiba (Japan). Dept. of Materials Science and Technology

    1996-12-31

    The infrared radiation heating is an efficient and energy saving heating method. Ceramics have been used as an infrared radiant material, because the emissivity of metals is lower than that of ceramics. However, anodized aluminum could be used as the infrared radiant material since an aluminum oxide film is formed on the surface. In the present study, the infrared radiation properties of anodized aluminum have been investigated by determining the spectral emissivity curve. The spectral emissivity curve of anodized aluminum changed with the anodizing time. The spectral emissivity curve shifted to the higher level after anodizing for 10 min, but little changed afterwards. The infrared radiant material with high level spectral emissivity curve can be achieved by making an oxide film thicker than about 15 {mu}m on the surface of aluminum. Thus, anodized aluminum is applicable for the infrared radiation heating. (orig.)

  3. Vapor corrosion of aluminum cladding alloys and aluminum-uranium fuel materials in storage environments

    International Nuclear Information System (INIS)

    Lam, P.; Sindelar, R.L.; Peacock, H.B. Jr.

    1997-04-01

    An experimental investigation of the effects of vapor environments on the corrosion of aluminum spent nuclear fuel (A1 SNF) has been performed. Aluminum cladding alloys and aluminum-uranium fuel alloys have been exposed to environments of air/water vapor/ionizing radiation and characterized for applications to degradation mode analysis for interim dry and repository storage systems. Models have been developed to allow predictions of the corrosion response under conditions of unlimited corrodant species. Threshold levels of water vapor under which corrosion does not occur have been identified through tests under conditions of limited corrodant species. Coupons of aluminum 1100, 5052, and 6061, the US equivalent of cladding alloys used to manufacture foreign research reactor fuels, and several aluminum-uranium alloys (aluminum-10, 18, and 33 wt% uranium) were exposed to various controlled vapor environments in air within the following ranges of conditions: Temperature -- 80 to 200 C; Relative Humidity -- 0 to 100% using atmospheric condensate water and using added nitric acid to simulate radiolysis effects; and Gamma Radiation -- none and 1.8 x 10 6 R/hr. The results of this work are part of the body of information needed for understanding the degradation of the A1 SNF waste form in a direct disposal system in the federal repository. It will provide the basis for data input to the ongoing performance assessment and criticality safety analyses. Additional testing of uranium-aluminum fuel materials at uranium contents typical of high enriched and low enriched fuels is being initiated to provide the data needed for the development of empirical models

  4. The research of Ti-rich zone on the interface between TiCx and aluminum melt and the formation of Ti3Al in rapid solidified Al-Ti-C master alloys

    International Nuclear Information System (INIS)

    Jiang Kun; Ma Xiaoguang; Liu Xiangfa

    2009-01-01

    In the present work, the thermodynamic tendency of formation of Ti-rich zone on the interface between TiC x and aluminum melt is calculated and a high titanium concentration can exist in the zone according to the thermodynamic calculation. Rapid solidified Al-5Ti-0.5C master alloy is analyzed by X-ray diffraction (XRD) and transmission electronic microscopy (TEM). The appearance of Ti 3 Al in the master alloy results from the existence of high-concentration Ti-rich zone.

  5. PREPARATION OF ACTINIDE-ALUMINUM ALLOYS

    Science.gov (United States)

    Moore, R.H.

    1962-09-01

    BS>A process is given for preparing alloys of aluminum with plutonium, uranium, and/or thorium by chlorinating actinide oxide dissolved in molten alkali metal chloride with hydrochloric acid, chlorine, and/or phosgene, adding aluminum metal, and passing air and/or water vapor through the mass. Actinide metal is formed and alloyed with the aluminum. After cooling to solidification, the alloy is separated from the salt. (AEC)

  6. Studies on Preparation and Characterization of Aluminum Nitride-Coated Carbon Fibers and Thermal Conductivity of Epoxy Matrix Composites

    Directory of Open Access Journals (Sweden)

    Hyeon-Hye Kim

    2017-08-01

    Full Text Available In this work; the effects of an aluminum nitride (AlN ceramic coating on the thermal conductivity of carbon fiber-reinforced composites were studied. AlN were synthesized by a wet-thermal treatment (WTT method in the presence of copper catalysts. The WTT method was carried out in a horizontal tube furnace at above 1500 °C under an ammonia (NH3 gas atmosphere balanced by a nitrogen using aluminum chloride as a precursor. Copper catalysts pre-doped enhance the interfacial bonding of the AlN with the carbon fiber surfaces. They also help to introduce AlN bonds by interrupting aluminum oxide (Al2O3 formation in combination with oxygen. Scanning electron microscopy (SEM; Transmission electron microscopy (TEM; and X-ray diffraction (XRD were used to analyze the carbon fiber surfaces and structures at each step (copper-coating step and AlN formation step. In conclusion; we have demonstrated a synthesis route for preparing an AlN coating on the carbon fiber surfaces in the presence of a metallic catalyst.

  7. 40 CFR 63.5753 - How do I calculate the combined organic HAP content of aluminum wipedown solvents and aluminum...

    Science.gov (United States)

    2010-07-01

    ... HAP content of aluminum wipedown solvents and aluminum recreational boat surface coatings? 63.5753... Standards for Hazardous Air Pollutants for Boat Manufacturing Standards for Aluminum Recreational Boat Surface Coating Operations § 63.5753 How do I calculate the combined organic HAP content of aluminum...

  8. Casting Characteristics of High Cerium Content Aluminum Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, D; Rios, O R; Sims, Z C; McCall, S K; Ott, R T

    2017-09-05

    This paper compares the castability of the near eutectic aluminum-cerium alloy system to the aluminum-silicon and aluminum-copper systems. The alloys are compared based on die filling capability, feeding characteristics and tendency to hot tear in both sand cast and permanent mold applications. The castability ranking of the binary Al–Ce systems is as good as the aluminum-silicon system with some deterioration as additional alloying elements are added. In alloy systems that use cerium in combination with common aluminum alloying elements such as silicon, magnesium and/or copper, the casting characteristics are generally better than the aluminum-copper system. In general, production systems for melting, de-gassing and other processing of aluminum-silicon or aluminum-copper alloys can be used without modification for conventional casting of aluminum-cerium alloys.

  9. Experimenting with a Visible Copper-Aluminum Displacement Reaction in Agar Gel and Observing Copper Crystal Growth Patterns to Engage Student Interest and Inquiry

    Science.gov (United States)

    Xu, Xinhua; Wu, Meifen; Wang, Xiaogang; Yang, Yangyiwei; Shi, Xiang; Wang, Guoping

    2016-01-01

    The reaction process of copper-aluminum displacement in agar gel was observed at the microscopic level with a stereomicroscope; pine-like branches of copper crystals growing from aluminum surface into gel at a constant rate were observed. Students were asked to make hypotheses on the pattern formation and design new research approaches to prove…

  10. Fabrication of a novel aluminum surface covered by numerous high-aspect-ratio anodic alumina nanofibers

    OpenAIRE

    Nakajima, Daiki; Kikuchi, Tatsuya; Natsui, Shungo; Sakaguchi, Norihito; Suzuki, Ryosuke O.

    2015-01-01

    The formation behavior of anodic alumina nanofibers via anodizing in a concentrated pyrophosphoric acid under various conditions was investigated using electrochemical measurements and SEM/TEM observations. Pyrophosphoric acid anodizing at 293 K resulted in the formation of numerous anodic alumina nanofibers on an aluminum substrate through a thin barrier oxide and honeycomb oxide with narrow walls. However, long-term anodizing led to the chemical dissolution of the alumina nanofibers. The de...

  11. Structural features of anodic oxide films formed on aluminum substrate coated with self-assembled microspheres

    International Nuclear Information System (INIS)

    Asoh, Hidetaka; Uchibori, Kota; Ono, Sachiko

    2009-01-01

    The structural features of anodic oxide films formed on an aluminum substrate coated with self-assembled microspheres were investigated by scanning electron microscopy and atomic force microscopy. In the first anodization in neutral solution, the growth of a barrier-type film was partially suppressed in the contact area between the spheres and the underlying aluminum substrate, resulting in the formation of ordered dimple arrays in an anodic oxide film. After the subsequent second anodization in acid solution at a voltage lower than that of the first anodization, nanopores were generated only within each dimple. The nanoporous region could be removed selectively by post-chemical etching using the difference in structural dimensions between the porous region and the surrounding barrier region. The mechanism of anodic oxide growth on the aluminum substrate coated with microspheres through multistep anodization is discussed.

  12. Structural features of anodic oxide films formed on aluminum substrate coated with self-assembled microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Asoh, Hidetaka [Department of Applied Chemistry, Faculty of Engineering, Kogakuin University, 2665-1 Nakano, Hachioji, Tokyo 192-0015 (Japan)], E-mail: asoh@cc.kogakuin.ac.jp; Uchibori, Kota; Ono, Sachiko [Department of Applied Chemistry, Faculty of Engineering, Kogakuin University, 2665-1 Nakano, Hachioji, Tokyo 192-0015 (Japan)

    2009-07-15

    The structural features of anodic oxide films formed on an aluminum substrate coated with self-assembled microspheres were investigated by scanning electron microscopy and atomic force microscopy. In the first anodization in neutral solution, the growth of a barrier-type film was partially suppressed in the contact area between the spheres and the underlying aluminum substrate, resulting in the formation of ordered dimple arrays in an anodic oxide film. After the subsequent second anodization in acid solution at a voltage lower than that of the first anodization, nanopores were generated only within each dimple. The nanoporous region could be removed selectively by post-chemical etching using the difference in structural dimensions between the porous region and the surrounding barrier region. The mechanism of anodic oxide growth on the aluminum substrate coated with microspheres through multistep anodization is discussed.

  13. Application of anodizing as a pre-treatment for nickel plating on aluminum

    International Nuclear Information System (INIS)

    Mehmood, M.; Ahmad, J.; Aslam, M.; Iqbal, M.; Akhtar, J.I.

    2003-01-01

    Effect of anodizing on subsequent electroplating of nickel on aluminum was investigated. Electroplated nickel did not exhibit any adhesion with un-anodized aluminum. Formation of a very thin anodized alumina film prior to nickel plating led to an excellent adhesion between the nickel film and the substrate. If the thickness of the alumina film increased, adhesion of electroplated nickel was significantly deteriorated and became similar to that of un-anodized bare aluminum. The study revealed that deposition proceeded through pores and defects in the insulator alumina film. These pores and defects also acted as nucleation and anchor points for nickel deposit. There was larger number of nucleation/ anchor points on thin alumina films. This provided better adhesion of nickel with the substrate as well as excellent coverage in relatively shorter times. On the other hand, very rough and poorly adherent nickel deposits formed on thick anodized films. Therefore, it may be used as precursor for producing nickel powder with controlled particle size as well as a catalyst with high specific surface area for hydrogenation and dehydrogenation reactions. (author)

  14. REPORT ON QUALITATIVE VALIDATION EXPERIMENTS USING LITHIUM-ALUMINUM LAYERED DOUBLE-HYDROXIDES FOR THE REDUCTION OF ALUMINUM FROM THE WASTE TREATMENT PLANT FEEDSTOCK

    International Nuclear Information System (INIS)

    Huber, H.J.; Duncan, J.B.; Cooke, G.A.

    2010-01-01

    A process for removing aluminum from tank waste simulants by adding lithium and precipitating Li-Al-dihydroxide (Lithiumhydrotalcite, (LiAl 2 (OH) 6 ) + X - ) has been verified. The tests involved a double-shell tank (DST) simulant and a single-shell tank (SST) simulant. In the case of the DST simulant, the product was the anticipated Li-hydrotalcite. For the SST simulant, the product formed was primarily Li-phosphate. However, adding excess Li to the solution did result in the formation of traces of Li-hydrotalcite. The Li-hydrotalcite from the DST supernate was an easily filterable solid. After four water washes the filter cake was a fluffy white material made of < 100 (micro)m particles made of smaller spheres. These spheres are agglomerates of ∼ 5 (micro)m diameter platelets with < 1 (micro)m thickness. Chemical and mineralogical analyses of the filtrate, filter cake, and wash waters indicate a removal of 90+ wt% of the dissolved Al for the DST simulant. For the SST simulant, the main competing reaction to the formation of lithium hydrotalcite appears to be the formation of lithium phosphate. In case of the DST simulant, phosphorus co-precipitated with the hydrotalcite. This would imply the added benefit of the removal of phosphorus along with aluminum in the pre-treatment part of the waste treatment and immobilization plant (WTP). For this endeavor to be successful, a serious effort toward process parameter optimization is necessary. Among the major issues to be addressed are the dependency of the reaction yield on the solution chemistry, as well as residence times, temperatures, and an understanding of particle growth.

  15. Aluminum industry options paper

    International Nuclear Information System (INIS)

    1999-10-01

    In 1990, Canada's producers of aluminum (third largest in the world) emitted 10 million tonnes of carbon dioxide and equivalent, corresponding to 6.4 tonnes of greenhouse gas intensity per tonne of aluminum. In 2000, the projection is that on a business-as-usual (BAU) basis Canadian producers now producing 60 per cent more aluminum than in 1990, will emit 10.7 million tonnes of carbon dioxide and equivalent, corresponding to a GHG intensity of 4.2 tonnes per tonne of aluminum. This improvement is due to production being based largely on hydro-electricity, and partly because in general, Canadian plants are modern, with technology that is relatively GHG-friendly. The Aluminum Association of Canada estimates that based on anticipated production, and under a BAU scenario, GHG emissions from aluminum production will rise by 18 per cent by 2010 and by 30 per cent by 2020. GHG emissions could be reduced below the BAU forecast first, by new control and monitoring systems at some operations at a cost of $4.5 to 7.5 million per smelter. These systems could reduce carbon dioxide equivalent emissions by 0.8 million tonnes per year. A second alternative would require installation of breaker feeders which would further reduce perfluorocarbon (PFC) emissions by 0.9 million tonnes of carbon dioxide equivalent. Cost of the breakers feeders would be in the order of $200 million per smelter. The third option calls for the the shutting down of some of the smelters with older technology by 2015. In this scenario GHG emissions would be reduced by 2010 by 0.8 million tonnes per year of carbon dioxide equivalent. However, the cost in this case would be about $1.36 billion. The industry would support measures that would encourage the first two sets of actions, which would produce GHG emissions from aluminum production in Canada of about 10.2 million tonnes per year of carbon dioxide equivalent, or about two per cent above 1990 levels with double the aluminum production of 1990. Credit for

  16. Principles of Structure and Phase Composition Formation in Composite Master Alloys of the Al-Ti-B/B4c Systems Used for Aluminum Alloy Modification

    Science.gov (United States)

    Zhukov, I. A.; Promakhov, V. V.; Matveev, A. E.; Platov, V. V.; Khrustalev, A. P.; Dubkova, Ya. A.; Vorozhtsov, S. A.; Potekaev, A. I.

    2018-03-01

    The principles of formation of structure and properties of materials produced by self-propagating hightemperature synthesis (SHS) from the Al-Ti-B/B4C powder systems are identified. It is shown that the SHSmaterials produced from the Al-Ti-B powder systems consist of a TiAl intermetallic matrix with inclusions of titanium diboride particles. It is found out that an introduction of 1 wt.% of TiB2 particles into the melt of the AD35 aluminum alloy allows reducing the grain size from 620 to 220 μm and gives rise to an increase in the ultimate tensile strength of as-cast specimens from 100 to 145 MPa and in the plasticity from 7 to 9%.

  17. Final report on the Copper Mountain conference on multigrid methods

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    The Copper Mountain Conference on Multigrid Methods was held on April 6-11, 1997. It took the same format used in the previous Copper Mountain Conferences on Multigrid Method conferences. Over 87 mathematicians from all over the world attended the meeting. 56 half-hour talks on current research topics were presented. Talks with similar content were organized into sessions. Session topics included: fluids; domain decomposition; iterative methods; basics; adaptive methods; non-linear filtering; CFD; applications; transport; algebraic solvers; supercomputing; and student paper winners.

  18. Process for anodizing aluminum foil

    International Nuclear Information System (INIS)

    Ball, J.A.; Scott, J.W.

    1984-01-01

    In an integrated process for the anodization of aluminum foil for electrolytic capacitors including the formation of a hydrous oxide layer on the foil prior to anodization and stabilization of the foil in alkaline borax baths during anodization, the foil is electrochemically anodized in an aqueous solution of boric acid and 2 to 50 ppm phosphate having a pH of 4.0 to 6.0. The anodization is interrupted for stabilization by passing the foil through a bath containing the borax solution having a pH of 8.5 to 9.5 and a temperature above 80 0 C. and then reanodizing the foil. The process is useful in anodizing foil to a voltage of up to 760 V

  19. Friction stir welding of T joints of dissimilar aluminum alloy: A review

    Science.gov (United States)

    Thakare, Shrikant B.; Kalyankar, Vivek D.

    2018-04-01

    Aluminum alloys are preferred in the mechanical design due to their advantages like high strength, good corrosion resistance, low density and good weldability. In various industrial applications T joints configuration of aluminum alloys are used. In different fields, T joints having skin (horizontal sheet) strengthen by stringers (vertical sheets) were used to increase the strength of structure without increasing the weight. T joints are usually carried out by fusion welding which has limitations in joining of aluminum alloy due to significant distortion and metallurgical defects. Some aluminum alloys are even non weldable by fusion welding. The friction stir welding (FSW) has an excellent replacement of conventional fusion welding for T joints. In this article, FSW of T joints is reviewed by considering aluminum alloy and various joint geometries for defect analysis. The previous experiments carried out on T joints shows the factors such as tool geometry, fixturing device and joint configurations plays significant role in defect free joints. It is essential to investigate the material flow during FSW to know joining mechanism and the formation of joint. In this study the defect occurred in the FSW are studied for various joint configurations and parameters. Also the effect of the parameters and defects occurs on the tensile strength are studied. It is concluded that the T-joints of different joint configurations can be pretended successfully. Comparing to base metal some loss in tensile strength was observed in the weldments as well as overall reduction of the hardness in the thermos mechanically affected zone also observed.

  20. Pitting corrosion inhibition of aluminum 2024 by Bacillus biofilms secreting polyaspartate or gamma-polyglutamate.

    Science.gov (United States)

    Ornek, D; Jayaraman, A; Syrett, B C; Hsu, C-H; Mansfeld, F B; Wood, T K

    2002-04-01

    Pitting corrosion of aluminum 2024 in Luria Bertani medium was reduced by the secretion of anionic peptides by engineered and natural Bacillus biofilms and was studied in continuous reactors using electrochemical impedance spectroscopy. Compared to sterile controls, pitting was reduced dramatically by the presence of the biofilms. The secretion of a 20 amino acid polyaspartate peptide by an engineered Bacillus subtilis WB600/pBE92-Asp biofilm slightly reduced the corrosion rate of the passive aluminum alloy at pH 6.5; however, the secretion of gamma-polyglutamate by a Bacillus licheniformis biofilm reduced the corrosion rate by 90% (compared to the B. subtilis WB600/pBE92 biofilm which did not secrete polyaspartate or gamma-polyglutamate). The corrosion potential ( E(corr)) of aluminum 2024 was increased by about 0.15-0.44 V due to the formation of B. subtilis and B. licheniformis biofilms as compared to sterile controls. The increase of E(corr) and the observed prevention of pitting indicate that the pitting potential ( E(pit)) had increased. This result and the further decrease of corrosion rates for the passive aluminum alloy suggest that the rate of the anodic metal dissolution reaction was reduced by an inhibitor produced by the biofilms. Purified gamma-polyglutamate also decreased the corrosion rates of aluminum 2024.

  1. Anodizing Aluminum with Frills.

    Science.gov (United States)

    Doeltz, Anne E.; And Others

    1983-01-01

    "Anodizing Aluminum" (previously reported in this journal) describes a vivid/relevant laboratory experience for general chemistry students explaining the anodizing of aluminum in sulfuric acid and constrasting it to electroplating. Additions to this procedure and the experiment in which they are used are discussed. Reactions involved are…

  2. Scientific Background for Processing of Aluminum Waste

    Science.gov (United States)

    Kononchuk, Olga; Alekseev, Alexey; Zubkova, Olga; Udovitsky, Vladimir

    2017-11-01

    Changing the source of raw materials for producing aluminum and the emergence of a huge number of secondary alumina waste (foundry slag, sludge, spent catalysts, mineral parts of coal and others that are formed in various industrial enterprises) require the creation of scientific and theoretical foundations for their processing. In this paper, the aluminum alloys (GOST 4784-97) are used as an aluminum raw material component, containing the aluminum component produced as chips in the machine-building enterprises. The aluminum waste is a whole range of metallic aluminum alloys including elements: magnesium, copper, silica, zinc and iron. Analysis of the aluminum waste A1- Zn-Cu-Si-Fe shows that depending on the content of the metal the dissolution process of an aluminum alloy should be treated as the result of the chemical interaction of the metal with an alkaline solution. It is necessary to consider the behavior of the main components of alloys in an alkaline solution as applied to the system Na2O - Al2O3 - SiO2 - CO2 - H2O.

  3. Anti-corrosion layer prepared by plasma electrolytic carbonitriding on pure aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jie; Zhang, Yifan; Liu, Run; Wang, Bin; Hua, Ming [Key Laboratory for Beam Technology and Materials Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Xue, Wenbin, E-mail: xuewb@bnu.edu.cn [Key Laboratory for Beam Technology and Materials Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China)

    2015-08-30

    Highlights: • PEC/N can be applied to low melting point metal. • The spectroscopic characterization of plasma discharge is investigated. • Electron concentration and electron temperature are evaluated for PEC/N. • Phase composition of the carbonitrided layer is determined. • PEC/N improves the corrosion resistance of aluminum greatly. - Abstract: In this paper, plasma electrolytic carbonitriding (PEC/N) method was applied to pure aluminum for the first time. The spectroscopic characterization of plasma discharge during PEC/N process was analyzed and the electron temperature was calculated in terms of optical emission spectroscopy. The results showed the discharge plasma was in local thermal equilibrium (LTE) state. Electron concentration and electron temperature were about 6 × 10{sup 21} m{sup −3} and 4000 K, respectively. The carbonitrided layer contained Al{sub 4}C{sub 3}, AlN and Al{sub 7}C{sub 3}N{sub 3} phases. After PEC/N treatment, the corrosion resistance of pure aluminum was significantly improved, which was related to the formation of nitride phases. This work expands the application of plasma electrolysis technology on the surface modification of low melting point metal.

  4. ENVIRONMENTAL PROBLEM SOLVING WITH GEOGRAPHIC INFORMATION SYSTEMS: 1994 AND 1999 CONFERENCE PROCEEDINGS

    Science.gov (United States)

    These two national conferences, held in Cincinnati, Ohio in 1994 and 1999, addressed the area of environmental problem solving with Geographic Information Systems. This CD-ROM is a compilation of the proceedings in PDF format. The emphasis of the conference presentations were on ...

  5. Spray Forming Aluminum - Final Report (Phase II)

    Energy Technology Data Exchange (ETDEWEB)

    D. D. Leon

    1999-07-08

    The U.S. Department of Energy - Office of Industrial Technology (DOE) has an objective to increase energy efficient and enhance competitiveness of American metals industries. To support this objective, ALCOA Inc. entered into a cooperative program to develop spray forming technology for aluminum. This Phase II of the DOE Spray Forming Program would translate bench scale spray forming technology into a cost effective world class process for commercialization. Developments under DOE Cooperative Agreement No. DE-FC07-94ID13238 occurred during two time periods due to budgetary constraints; April 1994 through September 1996 and October 1997 and December 1998. During these periods, ALCOA Inc developed a linear spray forming nozzle and specific support processes capable of scale-up for commercial production of aluminum sheet alloy products. Emphasis was given to alloys 3003 and 6111, both being commercially significant alloys used in the automotive industry. The report reviews research performed in the following areas: Nozzel Development, Fabrication, Deposition, Metal Characterization, Computer Simulation and Economics. With the formation of a Holding Company, all intellectual property developed in Phases I and II of the Project have been documented under separate cover for licensing to domestic producers.

  6. Thermomechanical processing of aluminum micro-alloyed with Sc, Zr, Ti, B, and C

    Science.gov (United States)

    McNamara, Cameron T.

    Critical exploration of the minimalistic high strength low alloy aluminum (HSLA-Al) paradigm is necessary for the continued development of advanced aluminum alloys. In this study, scandium (Sc) and zirconium (Zr) are examined as the main precipitation strengthening additions, while magnesium (Mg) is added to probe the synergistic effects of solution and precipitation hardening, as well as the grain refinement during solidification afforded by a moderate growth restriction factor. Further, pathways of recrystallization are explored in several potential HSLA-Al syste =ms sans Sc. Aluminum-titanium-boron (Al-Ti-B) and aluminum-titanium-carbon (Al-Ti-C) grain refining master alloys are added to a series of Al-Zr alloys to examine both the reported Zr poisoning effect on grain size reduction and the impact on recrystallization resistance through the use of electron backscattered diffraction (EBSD) imaging. Results include an analysis of active strengthening mechanisms and advisement for both constitution and thermomechanical processing of HSLA-Al alloys for wrought or near-net shape cast components. The mechanisms of recrystallization are discussed for alloys which contain a bimodal distribution of particles, some of which act as nucleation sites for grain formation during annealing and others which restrict the growth of the newly formed grains.

  7. Synthesis of Aluminum-Aluminum Nitride Nanocomposites by a Gas-Liquid Reaction II. Microstructure and Mechanical Properties

    Science.gov (United States)

    Borgonovo, Cecilia; Makhlouf, Makhlouf M.

    2016-04-01

    In situ fabrication of the reinforcing particles in the metal matrix is an answer to many of the challenges encountered in manufacturing aluminum matrix nanocomposites. In this method, the nanoparticles are formed directly within the melt by means of a chemical reaction between a specially designed aluminum alloy and a gas. In this publication, we describe a process for synthesizing aluminum-aluminum nitride nanocomposites by reacting a nitrogen-containing gas with a molten aluminum-lithium alloy. We quantify the effect of the process parameters on the average particle size and particle distribution, as well as on the tendency of the particles to cluster in the alloy matrix, is quantified. Also in this publication, we present the measured room temperature and elevated temperature tensile properties of the nanocomposite material as well as its measured room temperature impact toughness.

  8. Development of new low activation aluminum alloys for fusion devices

    International Nuclear Information System (INIS)

    Kamada, Kohji; Kakihana, Hidetake.

    1985-01-01

    As the materials for the R facility (a tokamak nuclear fusion device in the R project intended for D-T burning) in the Institute of Plasma Physics, Nagoya University, Al-4 % Mg-0.2 % Bi (5083 improved type) and Al-4 % Mg-1 % Li, aimed at low radioactivability, high electric resistance and high strength, have been developed. The results of the nuclear properties evaluation with 14 MeV neutrons and of the measurements of electric resistance and mechanical properties were satisfactory. The possibility of producing large Al-4 % Mg-1 % Li plate (1 m x 2 m x 25 mm) in the existing factory was confirmed, with the properties retained. The electric resistances were higher than those in the conventional aluminum alloys, and still with feasibility for the further improvement. General properties of the fusion aluminum alloys and the 26 Al formation in (n, 2n) reaction were studied. (Mori, K.)

  9. 21 CFR 73.2645 - Aluminum powder.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Aluminum powder. 73.2645 Section 73.2645 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2645 Aluminum powder. (a) Identity and specifications. The color additive aluminum powder shall conform in identity and specifications to the requirements of...

  10. 21 CFR 582.1125 - Aluminum sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Aluminum sulfate. 582.1125 Section 582.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1125 Aluminum sulfate. (a) Product. Aluminum sulfate. (b) Conditions of use. This substance...

  11. 21 CFR 182.1125 - Aluminum sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Aluminum sulfate. 182.1125 Section 182.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1125 Aluminum sulfate. (a) Product. Aluminum sulfate. (b) Conditions of use. This substance...

  12. Fast LIBS Identification of Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    Tawfik W.

    2007-04-01

    Full Text Available Laser-induced breakdown spectroscopy (LIBS has been applied to analysis aluminum alloy targets. The plasma is generated by focusing a 300 mJ pulsed Nd: YAG laser on the target in air at atmospheric pressure. Such plasma emission spectrum was collected using a one-meter length wide band fused-silica optical fiber connected to a portable Echelle spectrometer with intensified CCD camera. Spectroscopic analysis of plasma evolution of laser produced plasmas has been characterized in terms of their spectra, electron density and electron temperature assuming the LTE and optically thin plasma conditions. The LIBS spectrum was optimized for high S/N ratio especially for trace elements. The electron temperature and density were determined using the emission intensity and stark broadening, respectively, of selected aluminum spectral lines. The values of these parameters were found to change with the aluminum alloy matrix, i.e. they could be used as a fingerprint character to distinguish between different aluminum alloy matrices using only one major element (aluminum without needing to analysis the rest of elements in the matrix. Moreover, It was found that the values of T(e and N(e decrease with increasing the trace elements concentrations in the aluminum alloy samples. The obtained results indicate that it is possible to improve the exploitation of LIBS in the remote on-line industrial monitoring application, by following up only the values of T(e and N(e for the aluminum in aluminum alloys using an optical fiber probe.

  13. Plastic Behavior and Fracture of Aluminum and Copper in Torsion Tests

    International Nuclear Information System (INIS)

    Bressan, Jose Divo

    2007-01-01

    Present work investigates the plastic behavior, work hardening and the beginning of plastic instabilities, of cylindrical specimens deformed by high speed cold plastic torsion tests and at low speed tensile test. The tests were carried out in a laboratory torsion test equipment and an universal tensile test machine. The tensile tests were performed at room temperature in an universal testing machine at low strain rate of 0.034/s. Experimental torsion tests were carried out at constant angular speed that imposed a constant shear strain rate to the specimen. In the tests, the rotation speed were set to 62 rpm and 200 rpm which imposed high strain rates of about 2/s and 6.5/s respectively. The torsion tests performed at room temperature on annealed commercial pure copper and aluminum. Two types of torsion specimen for aluminum were used: solid and tubular. The solid aluminum specimen curves presented various points of maximum torque. The tubular copper specimens showed two points of maximum. Shear bands or shear strain localization at specimen were possibly the mechanism of maximum torque points formation. The work hardening coefficient n and the strain rate sensitivity parameter m were evaluated from the equivalent stress versus strain curve from tensile and torsion tests. The n-value remained constant whereas the m-value increased ten folds for aluminum specimens: from tensile test m= 0.027 and torsion test m= 0.27. However, the hardening curves were sigmoidal

  14. Tonoplast- and plasma membrane-localized aquaporin-family transporters in blue hydrangea sepals of aluminum hyperaccumulating plant.

    Directory of Open Access Journals (Sweden)

    Takashi Negishi

    Full Text Available Hydrangea (Hydrangea macrophylla is tolerant of acidic soils in which toxicity generally arises from the presence of the soluble aluminum (Al ion. When hydrangea is cultivated in acidic soil, its resulting blue sepal color is caused by the Al complex formation of anthocyanin. The concentration of vacuolar Al in blue sepal cells can reach levels in excess of approximately 15 mM, suggesting the existence of an Al-transport and/or storage system. However, until now, no Al transporter has been identified in Al hyperaccumulating plants, animals or microorganisms. To identify the transporter being responsible for Al hyperaccumulation, we prepared a cDNA library from blue sepals according to the sepal maturation stage, and then selected candidate genes using a microarray analysis and an in silico study. Here, we identified the vacuolar and plasma membrane-localized Al transporters genes vacuolar Al transporter (VALT and plasma membrane Al transporter 1 (PALT1, respectively, which are both members of the aquaporin family. The localization of each protein was confirmed by the transient co-expression of the genes. Reverse transcription-PCR and immunoblotting results indicated that VALT and PALT1 are highly expressed in sepal tissue. The overexpression of VALT and PALT1 in Arabidopsis thaliana conferred Al-tolerance and Al-sensitivity, respectively.

  15. An all aluminum alloy UHV components

    International Nuclear Information System (INIS)

    Sugisaki, Kenzaburo

    1985-01-01

    An all aluminum components was developed for use with UHV system. Aluminum alloy whose advantage are little discharge gas, easy to bake out, light weight, little damage against radieactivity radiation is used. Therefore, as it is all aluminum alloy, baking is possible. Baking temperature is 150 deg C in case of not only ion pump, gate valve, angle valve but also aluminum components. Ion pump have to an ultrahigh vacuum of order 10 -9 torr can be obtained without baking, 10 -10 torr order can be obtained after 24 hour of baking. (author)

  16. Low-temperature resistance of cyclically strained aluminum

    International Nuclear Information System (INIS)

    Segal, H.R.; Richard, T.G.

    1977-01-01

    An experimental study of the resistance changes in high-purity, reinforced aluminum due to cyclic straining is presently underway. The purpose of this work is to determine the optimum purity of aluminum to be used as a stabilizing material for superconducting magnets used for energy storage. Since pure aluminum has a low yield strength, it is not capable of supporting the stress levels in an energized magnet. Therefore, it has been bonded to a high-strength material--in this case, 6061 aluminum alloy. This bonding permits pure aluminum to be strained cyclically beyond its elastic limit with recovery of large plastic strains upon release of the load. The resistance change in this composite material is less than that of pure, unreinforced aluminum

  17. Investigating aluminum alloy reinforced by graphene nanoflakes

    Energy Technology Data Exchange (ETDEWEB)

    Yan, S.J., E-mail: shaojiuyan@126.com [Beijing Institute of Aeronautical Materials, Beijing 100095 (China); Dai, S.L.; Zhang, X.Y.; Yang, C.; Hong, Q.H.; Chen, J.Z. [Beijing Institute of Aeronautical Materials, Beijing 100095 (China); Lin, Z.M. [Aviation Industry Corporation of China, Beijing 100022 (China)

    2014-08-26

    As one of the most important engineering materials, aluminum alloys have been widely applied in many fields. However, the requirement of enhancing their mechanical properties without sacrificing the ductility is always a challenge in the development of aluminum alloys. Thanks to the excellent physical and mechanical properties, graphene nanoflakes (GNFs) have been applied as promising reinforcing elements in various engineering materials, including polymers and ceramics. However, the investigation of GNFs as reinforcement phase in metals or alloys, especially in aluminum alloys, is still very limited. In this study, the aluminum alloy reinforced by GNFs was successfully prepared via powder metallurgy approach. The GNFs were mixed with aluminum alloy powders through ball milling and followed by hot isostatic pressing. The green body was then hot extruded to obtain the final GNFs reinforced aluminum alloy nanocomposite. The scanning electron microscopy and transmission electron microscope analysis show that GNFs were well dispersed in the aluminum alloy matrix and no chemical reactions were observed at the interfaces between the GNFs and aluminum alloy matrix. The mechanical properties' testing results show that with increasing filling content of GNFs, both tensile and yield strengths were remarkably increased without losing the ductility performance. These results not only provided a pathway to achieve the goal of preparing high strength aluminum alloys with excellent ductilitybut they also shed light on the development of other metal alloys reinforced by GNFs.

  18. Studies of aluminum in rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Lipman, J.J.; Brill, A.B.; Som, P.; Jones, K.W.; Colowick, S.; Cholewa, M.

    1985-01-01

    The effects of high aluminum concentrations in rat brains were studied using /sup 14/C autoradiography to measure the uptake of /sup 14/C 2-deoxy-D-glucose (/sup 14/C-2DG) and microbeam proton-induced x-ray emission (microPIXE) with a 20-..mu..m resolution to measure concentrations of magnesium, aluminum, potassium, and calcium. The aluminum was introduced intracisternally in the form of aluminum tartrate (Al-T) while control animals were given sodium tartrate (Na-T). The /sup 14/C was administered intravenously. The animals receiving Al-T developed seizure disorders and had pathological changes that included cerebral cortical atrophy. The results showed that there was a decreased uptake of /sup 14/C-2DG in cortical regions in which increased aluminum levels were measured, i.e., there is a correlation between the aluminum in the rat brain and decreased brain glucose metabolism. A minimum detection limit of about 16 ppM (mass fraction) or 3 x 10/sup 9/ Al atoms was obtained for Al under the conditions employed. 14 refs., 4 figs., 1 tab.

  19. Aluminum neurotoxicity in the rat brain

    International Nuclear Information System (INIS)

    Yumoto, S.; Ohashi, H.; Nagai, H.; Kakimi, S.; Ogawa, Y.; Iwata, Y.; Ishii, K.

    1992-01-01

    To investigate the etiology of Alzheimer's disease, we administered aluminum to healthy rats and examined the aluminum uptake in the brain and isolated brain cell nuclei by particle-induced X-ray emission (PIXE) analysis. Ten days after the last injection, Al was detected in the rat brain and in isolated brain cell nuclei by PIXE analysis. Al was also demonstrated in the brain after 15 months of oral aluminum administration. Moreover, Al was detected in the brain and isolated brain cell nuclei from the patients with Alzheimer's disease. Silver impregnation studies revealed that spines attached to the dendritic processes of cortical nerve cells decreased remarkably after aluminum administration. Electron microscopy revealed characteristic inclusion bodies in the hippocampal nerve cells 75 days after the injection. These morphological changes in the rat brain after the aluminum administration were similar to those reportedly observed in the brain of Alzheimer's disease patients. Our results indicate that Alzheimer's disease is caused by irreversible accumulation of aluminum in the brain, as well as in the nuclei of brain cells. (author)

  20. Aluminum neurotoxicity in the rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Yumoto, S [Tokyo Univ. (Japan). Faculty of Medicine; Ohashi, H; Nagai, H; Kakimi, S; Ogawa, Y; Iwata, Y; Ishii, K

    1993-12-31

    To investigate the etiology of Alzheimer`s disease, we administered aluminum to healthy rats and examined the aluminum uptake in the brain and isolated brain cell nuclei by particle-induced X-ray emission (PIXE) analysis. Ten days after the last injection, Al was detected in the rat brain and in isolated brain cell nuclei by PIXE analysis. Al was also demonstrated in the brain after 15 months of oral aluminum administration. Moreover, Al was detected in the brain and isolated brain cell nuclei from the patients with Alzheimer`s disease. Silver impregnation studies revealed that spines attached to the dendritic processes of cortical nerve cells decreased remarkably after aluminum administration. Electron microscopy revealed characteristic inclusion bodies in the hippocampal nerve cells 75 days after the injection. These morphological changes in the rat brain after the aluminum administration were similar to those reportedly observed in the brain of Alzheimer`s disease patients. Our results indicate that Alzheimer`s disease is caused by irreversible accumulation of aluminum in the brain, as well as in the nuclei of brain cells. (author).

  1. Studies of aluminum in rat brain

    International Nuclear Information System (INIS)

    Lipman, J.J.; Brill, A.B.; Som, P.; Jones, K.W.; Colowick, S.; Cholewa, M.

    1985-01-01

    The effects of high aluminum concentrations in rat brains were studied using 14 C autoradiography to measure the uptake of 14 C 2-deoxy-D-glucose ( 14 C-2DG) and microbeam proton-induced x-ray emission (microPIXE) with a 20-μm resolution to measure concentrations of magnesium, aluminum, potassium, and calcium. The aluminum was introduced intracisternally in the form of aluminum tartrate (Al-T) while control animals were given sodium tartrate (Na-T). The 14 C was administered intravenously. The animals receiving Al-T developed seizure disorders and had pathological changes that included cerebral cortical atrophy. The results showed that there was a decreased uptake of 14 C-2DG in cortical regions in which increased aluminum levels were measured, i.e., there is a correlation between the aluminum in the rat brain and decreased brain glucose metabolism. A minimum detection limit of about 16 ppM (mass fraction) or 3 x 10 9 Al atoms was obtained for Al under the conditions employed. 14 refs., 4 figs., 1 tab

  2. 2010 Gordon Research Conference On Radiation Chemistry

    International Nuclear Information System (INIS)

    Orlando, Thomas

    2010-01-01

    The 2010 Gordon Conference on Radiation Chemistry will present cutting edge research regarding the study of radiation-induced chemical transformations. Radiation Chemistry or 'high energy' chemistry is primarily initiated by ionizing radiation: i.e. photons or particles with energy sufficient to create conduction band electrons and 'holes', excitons, ionic and neutral free radicals, highly excited states, and solvated electrons. These transients often interact or 'react' to form products vastly different than those produced under thermal equilibrium conditions. The non-equilibrium, non-thermal conditions driving radiation chemistry exist in plasmas, star-forming regions, the outer solar system, nuclear reactors, nuclear waste repositories, radiation-based medical/clinical treatment centers and in radiation/materials processing facilities. The 2010 conference has a strong interdisciplinary flavor with focus areas spanning (1) the fundamental physics and chemistry involved in ultrafast (atto/femtosecond) energy deposition events, (2) radiation-induced processes in biology (particularly spatially resolved studies), (3) radiation-induced modification of materials at the nanoscale and cosmic ray/x-ray mediated processes in planetary science/astrochemistry. While the conference concentrates on fundamental science, topical applied areas covered will also include nuclear power, materials/polymer processing, and clinical/radiation treatment in medicine. The Conference will bring together investigators at the forefront of their field, and will provide opportunities for junior scientists and graduate students to present work in poster format or as contributors to the Young Investigator session. The program and format provides excellent avenues to promote cross-disciplinary collaborations.

  3. Aluminum Hydroxide and Magnesium Hydroxide

    Science.gov (United States)

    Aluminum Hydroxide, Magnesium Hydroxide are antacids used together to relieve heartburn, acid indigestion, and upset stomach. They ... They combine with stomach acid and neutralize it. Aluminum Hydroxide, Magnesium Hydroxide are available without a prescription. ...

  4. MCWASP XIV: International Conference on Modelling of Casting, Welding and Advanced Solidification Processes

    International Nuclear Information System (INIS)

    Yasuda, H

    2015-01-01

    The current volume represents contributed papers of the proceedings of the 14th international conference on ''Modeling of Casting, Welding and Advanced Solidification Processes (MCWASP XIV)'', Yumebutai International Conference Center, Awaji island, Hyogo, Japan on 21 – 26 June, 2016. The first conference of the series 'Modeling of Casting, Welding and Advanced Solidification Processes (MCWASP)' was started up in 1980, and this is the 14th conference. The participants are more than 100 scientists from industry and academia, coming from 19 countries. In the conference, we have 5 invited, 70 oral and 31 poster presentations on different aspects of the modeling. The conference deals with various casting processes (Ingot / shape casting, continuous casting, direct chill casting and welding), fundamental phenomena (nucleation and growth, dendritic growth, eutectic growth, micro-, meso- and macrostructure formation and defect formation), coupling problems (electromagnetic interactions, application of ultrasonic wave), development of experimental / computational methods and so on. This volume presents the cutting-edge research in the modeling of casting, welding and solidification processes. I would like to thank MAGMA Giessereitechnologie GmbH, Germany and SCSK Corporation, Japan for supporting the publication of contributed papers. Hideyuki Yasuda Conference Chairman Department of Materials Science and Engineering, Kyoto University Japan (preface)

  5. [Analysis of tartrazine aluminum lake and sunset yellow aluminum lake in foods by capillary zone electrophoresis].

    Science.gov (United States)

    Zhang, Yiding; Chang, Cuilan; Guo, Qilei; Cao, Hong; Bai, Yu; Liu, Huwei

    2014-04-01

    A novel analytical method for tartrazine aluminum lake and sunset yellow aluminum lake using capillary zone electrophoresis (CZE) was studied. The pigments contained in the color lakes were successfully separated from the aluminum matrix in the pre-treatment process, which included the following steps: dissolve the color lakes in 0.1 mol/L H2SO4, adjust the pH of the solution to 5.0, then mix it with the solution of EDTA x 2Na and heat it in a water bath, then use polyamide powder as the stationary phase of solid phase extraction to separate the pigments from the solution, and finally elute the pigments with 0.1 mol/L NaOH. The CZE conditions systematically optimized for tartrazine aluminum lake were: 48.50 cm of a fused silica capillary with 40.00 cm effective length and 50 microm i. d., the temperature controlled at 20.0 degrees C, 29.0 kV applied, HPO4(2-)-PO4(3-) (0.015 mol/L, pH 11.45) solution as running buffer, detection at 263 nm. The conditions for sunset yellow aluminum lake were: the same capillary and temperature, 25.0 kV applied, HPO4(2-)-PO4(3-) (0.025 mol/L, pH 11.45) solution as running buffer, detection at 240 nm. The limits of detection were 0.26 mg/L and 0.27 mg/L, and the linear ranges were 0.53-1.3 x 10(2) mg/L and 0.54-1.4 x 10(2) mg/L for tartrazine aluminum lake and sunset yellow aluminum lake, respectively. The RSDs were 4.3% and 5.7% (run to run, n = 6), 5.6% and 6.0% (day to day, n = 6) for tartrazine aluminum lake and sunset yellow aluminum lake, respectively. Further developments for this method could make it a routinely used method analyzing color lakes in foods.

  6. Fabrication of an Aluminum Based Hot Electron Mixer for Terahertz Applications

    Science.gov (United States)

    Echternach, P. M.; LeDuc, H. G.; Skalare, A.; McGrath, W. R.

    2000-01-01

    Aluminum based diffusion cooled hot electron bolometers (HEB) mixers, predicted to have better noise, bandwidth and to require less LO power than Nb based diffusion cooled HEBs, have been fabricated. Preliminary DC tests were performed. The bolometer elements consisted of short (0.1 to 0.3 micron), narrow (0.08 to 0. 15 micron) and thin (11 nm) aluminum wires connected to large contact pads consisting of a novel trilayer Al/Ti/Au. The patterns were defined by electron beam lithography and the metal deposition involved a double angle process, the Aluminum wires being deposited straight on and the pads being deposited at a 45 degree angle without breaking vacuum. The Al/Ti/Au trilayer was developed to provide a way of making contact between the aluminum wire and the gold antenna. The Titanium layer acts as a diffusion barrier to avoid damage of the Aluminum contact and bolometer wire and to lower the transition temperature of the pads to below that of the bolometer wire. The Au layer avoids the formation of an oxide on the Ti layer and provides good electrical contact to the IF/antenna structure. The resistance of the bolometers as a function of temperature was measured. It is clear that below the transition temperature of the wire (1.8K) but above the transition temperature of the contact pads (0.6K), the proximity effect drives most of the bolometer wire normal, causing a very broad transition. This effect should not affect the performance of the bolometers since they will be operated at a temperature below the TC of the pads. This is evident from the IV characteristics measured at 0.3K. RF characterization tests will begin shortly.

  7. Fast LIBS Identification of Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    Tawfik W.

    2007-04-01

    Full Text Available Laser-induced breakdown spectroscopy (LIBS has been applied to analysis aluminum alloy targets. The plasma is generated by focusing a 300 mJ pulsed Nd: YAG laser on the target in air at atmospheric pressure. Such plasma emission spectrum was collected using a one-meter length wide band fused-silica optical fiber connected to a portable Echelle spectrometer with intensified CCD camera. Spectroscopic analysis of plasma evolution of laser produced plasmas has been characterized in terms of their spectra, electron density and electron temperature assuming the LTE and optically thin plasma conditions. The LIBS spectrum was optimized for high S/N ratio especially for trace elements. The electron temperature and density were determined using the emission intensity and stark broadening, respectively, of selected aluminum spectral lines. The values of these parameters were found to change with the aluminum alloy matrix, i.e. they could be used as a fingerprint character to distinguish between different aluminum alloy matrices using only one major element (aluminum without needing to analysis the rest of elements in the matrix. Moreover, It was found that the values of T e and N e decrease with increasing the trace elements concentrations in the aluminum alloy samples. The obtained results indicate that it is possible to improve the exploitation of LIBS in the remote on-line industrial monitoring application, by following up only the values of T e and N e for aluminum in aluminum alloys as a marker for the correct alloying using an optical fiber probe.

  8. FLOWSHEET FOR ALUMINUM REMOVAL FROM SLUDGE BATCH 6

    International Nuclear Information System (INIS)

    Pike, J.; Gillam, J.

    2008-01-01

    Samples of Tank 12 sludge slurry show a substantially larger fraction of aluminum than originally identified in sludge batch planning. The Liquid Waste Organization (LWO) plans to formulate Sludge Batch 6 (SB6) with about one half of the sludge slurry in Tank 12 and one half of the sludge slurry in Tank 4. LWO identified aluminum dissolution as a method to mitigate the effect of having about 50% more solids in High Level Waste (HLW) sludge than previously planned. Previous aluminum dissolution performed in a HLW tank in 1982 was performed at approximately 85 C for 5 days and dissolved nearly 80% of the aluminum in the sludge slurry. In 2008, LWO successfully dissolved 64% of the aluminum at approximately 60 C in 46 days with minimal tank modifications and using only slurry pumps as a heat source. This report establishes the technical basis and flowsheet for performing an aluminum removal process in Tank 51 for SB6 that incorporates the lessons learned from previous aluminum dissolution evolutions. For SB6, aluminum dissolution process temperature will be held at a minimum of 65 C for at least 24 days, but as long as practical or until as much as 80% of the aluminum is dissolved. As planned, an aluminum removal process can reduce the aluminum in SB6 from about 84,500 kg to as little as 17,900 kg with a corresponding reduction of total insoluble solids in the batch from 246,000 kg to 131,000 kg. The extent of the reduction may be limited by the time available to maintain Tank 51 at dissolution temperature. The range of dissolution in four weeks based on the known variability in dissolution kinetics can range from 44 to more than 80%. At 44% of the aluminum dissolved, the mass reduction is approximately 1/2 of the mass noted above, i.e., 33,300 kg of aluminum instead of 66,600 kg. Planning to reach 80% of the aluminum dissolved should allow a maximum of 81 days for dissolution and reduce the allowance if test data shows faster kinetics. 47,800 kg of the dissolved

  9. Effect of aluminum addition on the optical, morphology and electrical behavior of spin coated zinc oxide thin films

    Directory of Open Access Journals (Sweden)

    Amit Kumar Srivastava

    2011-09-01

    Full Text Available Aluminum-doped ZnO thin films of high optical transmittance (∼ 84-100% and low resistivity (∼ 2.3x10-2 Ωcm have been prepared on glass substrate by the spin coating and subsequent annealing at 500°C for 1h in air or vacuum. Effect of aluminum doping and annealing environment on morphology, optical transmittance and electrical resistivity of ZnO thin films has been studied with possible application as a transparent electrode in photovoltaic. The changes occurring due to aluminum addition include reduction in grain size, root mean square roughness, peak-valley separation, and sheet resistance with improvement in the optical transmittance to 84-100% in the visible range. The origin of low electrical resistivity lies in increase in i electron concentration following aluminum doping (being trivalent, formation of oxygen vacancies due to vacuum annealing, filling of cation site with additional zinc at solution stage itself and ii carrier mobility.

  10. Experimental observation of the stratified electrothermal instability on aluminum with thickness greater than a skin depth

    Science.gov (United States)

    Hutchinson, T. M.; Awe, T. J.; Bauer, B. S.; Yates, K. C.; Yu, E. P.; Yelton, W. G.; Fuelling, S.

    2018-05-01

    A direct observation of the stratified electrothermal instability on the surface of thick metal is reported. Aluminum rods coated with 70 μ m Parylene-N were driven to 1 MA in 100 ns , with the metal thicker than the skin depth. The dielectric coating suppressed plasma formation, enabling persistent observation of discrete azimuthally correlated stratified thermal perturbations perpendicular to the current whose wave numbers, k , grew exponentially with rate γ (k ) =0.06 n s-1-(0.4 n s-1μ m2ra d-2 ) k2 in ˜1 g /c m3 , ˜7000 K aluminum.

  11. Experimental Observation of the Stratified Electrothermal Instability on Aluminum with Thickness Greater than a Skin Depth

    Energy Technology Data Exchange (ETDEWEB)

    Hutchinson, Trevor M. [Univ. of Nevada, Reno, NV (United States); Hutchinson, Trevor M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Awe, Thomas James [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bauer, Bruno S. [Univ. of Nevada, Reno, NV (United States); Yates, Kevin [Univ. of New Mexico, Albuquerque, NM (United States); Yu, Edmund p. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Yelton, William G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Fuelling, Stephan [Univ. of Nevada, Reno, NV (United States)

    2017-07-01

    The first direct observation of the stratified electrothermal instability on the surface of thick metal is reported. Aluminum rods coated with 70 μm Parylene-N were driven to 1 MA in approximately 100 ns, with the metal thicker than the skin depth. The dielectric coating suppressed plasma formation, enabling persistent observation of discrete azimuthally-correlated stratified structures perpendicular to the current. Strata amplitudes grow rapidly, while their Fourier spectrum shifts toward longer wavelength. Assuming blackbody emission, radiometric calculations indicate strata are temperature perturbations that grow exponentially with rate γ = 0.04 ns -1 in 3000- 10,000 K aluminum.

  12. Effects of internal hydrogen on the vacancy loop formation probability in Al

    International Nuclear Information System (INIS)

    Bui, T.X.; Sirois, E.; Robertson, I.M.

    1990-04-01

    The effect of internal hydrogen on the formation of vacancy dislocation loops from heavy-ion generated displacement cascades in Al has been investigated. Samples of high-purity aluminum and aluminum containing 900 and 1300 appM of hydrogen were irradiated at room temperature with 50 keV Kr+ ions. The ion dose rate was typically 2 x 10 10 ions cm -2 sec -1 and the ion dose was between 10 11 and 10 13 ion cm -2 . Under these irradiation conditions, dislocation loops were observed in all compositions, although the formation probability was relatively low (less than 10 percent of the displacement cascades produced a vacancy loop). The loop formation probability was further reduced by the presence of hydrogen. No difference in the geometry or the size of the loops created in the hydrogen free and hydrogen charged samples was found. These results are difficult to interpret, and the explanation may lie in the distribution and form of the hydrogen. To account for the large hydrogen concentrations and from calculations of the energy associated with hydrogen entry into aluminum, it has been suggested that the hydrogen enters the aluminum lattice with an accompanying vacancy. This will create hydrogen-vacancy complexes in the material; two dimensional complexes have been detected in the hydrogen-charged, but unirradiated, samples by the small-angle x-ray scattering technique. The possibility of these complexes trapping the vacancies produced by the cascade process exists thus lowering the formation probability. However, such a mechanism must occur within the lifetime of the cascade. Alternatively, if a displacement cascade overlaps with the hydrogen-vacancy complexes, the lower atomic density of the region will result in an increase in the cascade volume (decrease in the local vacancy concentration) which will also reduce the loop formation probability

  13. Pattern formation under residual compressive stress in free sustained aluminum films

    International Nuclear Information System (INIS)

    Yu Senjiang; Ye Quanlin; Zhang Yongju; Cai Pinggen; Xu Xiaojun; Chen Jiangxing; Ye Gaoxiang

    2005-01-01

    A nearly free sustained aluminum (Al) film system has been successfully fabricated by vapor phase deposition of Al atoms on silicone oil surfaces and an unusual type of ordered patterns at the micrometer scale has been systematically studied. The ordered patterns are composed of a large number of parallel key-shaped domains and possess a sandwiched structure. The nucleation and growth of the patterns are very susceptible to the growth period, deposition rate, nominal film thickness and location of the film. The experiment shows that the ordered patterns are induced by the residual compressive stress in the film owing to contraction of the liquid surface after deposition. The appearance of these stress relief patterns generally represents the stress distribution in the nearly free sustained Al films, which mainly results from the characteristic boundary condition and the nearly zero adhesion of the solid-liquid interface

  14. Effect of the aluminum flow pattern on the bonding of aluminum to oxidized Zircaloy-2

    International Nuclear Information System (INIS)

    Watson, R.D.; Lambert, J.P.

    1965-04-01

    The bonds produced when hot aluminum is allowed to flow smoothly from an extrusion die to the oxidized surface of a heated tube of Zircaloy-2 are consistently inferior to those produced with back-extruded flow. The difference is believed to be due to the reduction in, or elimination of, the oxide layer on the aluminum that comes in contact with the surface of the Zircaloy-2. This method of bonding aluminum to Zircaloy-2 is covered by Canadian patent 702,438 January 1965. (author)

  15. Reducing cell-to-cell spacing for large-format lithium ion battery modules with aluminum or PCM heat sinks under failure conditions

    International Nuclear Information System (INIS)

    Coleman, Brittany; Ostanek, Jason; Heinzel, John

    2016-01-01

    Highlights: • Finite element analysis to evaluate heat sinks for large format li-ion batteries. • Solid metal heat sink and composite heat sink (metal filler and wax). • Transient simulations show response from rest to steady-state with normal load. • Transient simulations of two different failure modes were considered. • Significance of spacing, material properties, interface quality, and phase change. - Abstract: Thermal management is critical for large-scale, shipboard energy storage systems utilizing lithium-ion batteries. In recent years, there has been growing research in thermal management of lithium-ion battery modules. However, there is little information available on the minimum cell-to-cell spacing limits for indirect, liquid cooled modules when considering heat release during a single cell failure. For this purpose, a generic four-cell module was modeled using finite element analysis to determine the sensitivity of module temperatures to cell spacing. Additionally, the effects of different heat sink materials and interface qualities were investigated. Two materials were considered, a solid aluminum block and a metal/wax composite block. Simulations were run for three different transient load profiles. The first profile simulates sustained high rate operation where the system begins at rest and generates heat continuously until it reaches steady state. And, two failure mode simulations were conducted to investigate block performance during a slow and a fast exothermic reaction, respectively. Results indicate that composite materials can perform well under normal operation and provide some protection against single cell failure; although, for very compact designs, the amount of wax available to absorb heat is reduced and the effectiveness of the phase change material is diminished. The aluminum block design performed well under all conditions, and showed that heat generated during a failure is quickly dissipated to the coolant, even under the

  16. [Microbiological corrosion of aluminum alloys].

    Science.gov (United States)

    Smirnov, V F; Belov, D V; Sokolova, T N; Kuzina, O V; Kartashov, V R

    2008-01-01

    Biological corrosion of ADO quality aluminum and aluminum-based construction materials (alloys V65, D16, and D16T) was studied. Thirteen microscopic fungus species and six bacterial species proved to be able to attack aluminum and its alloys. It was found that biocorrosion of metals by microscopic fungi and bacteria was mediated by certain exometabolites. Experiments on biocorrosion of the materials by the microscopic fungus Alternaria alternata, the most active biodegrader, demonstrated that the micromycete attack started with the appearance of exudate with pH 8-9 on end faces of the samples.

  17. Anodized aluminum on LDEF: A current status of measurements on chromic acid anodized aluminum

    International Nuclear Information System (INIS)

    Golden, J.L.

    1992-01-01

    Chromic acid anodize was used as the exterior coating for aluminum surfaces on LDEF to provide passive thermal control. Chromic acid anodized aluminum was also used as test specimens in thermal control coatings experiments. The following is a compilation and analysis of the data obtained thus far

  18. Anodized aluminum on LDEF: A current status of measurements on chromic acid anodized aluminum

    Science.gov (United States)

    Golden, Johnny L.

    1992-01-01

    Chromic acid anodize was used as the exterior coating for aluminum surfaces on LDEF to provide passive thermal control. Chromic acid anodized aluminum was also used as test specimens in thermal control coatings experiments. The following is a compilation and analysis of the data obtained thus far.

  19. A Topic Analysis of ISECON Conference Proceedings from 1982 through 2014

    Science.gov (United States)

    Clark, Jon; Athey, Susan; Plotnicki, Jon; Barnes, Jay

    2016-01-01

    The authors note a distinct shift in topics covered in curricula as well as in conference presentations. This research was undertaken to get a better understanding of what these shifts have been, and determine their magnitude over time. Since ISECON has published its conference proceedings in digital format since 1982, this was a logical source of…

  20. 75 FR 80527 - Aluminum Extrusions From China

    Science.gov (United States)

    2010-12-22

    ...)] Aluminum Extrusions From China AGENCY: United States International Trade Commission. ACTION: Scheduling of... of subsidized and less-than-fair-value imports from China of aluminum extrusions, primarily provided... contained in Aluminum Extrusions From the People's Republic of China: Notice of Preliminary Determination of...

  1. Proposal of 99.99%-aluminum/7N01-Aluminum clad beam tube for high energy booster of Superconducting Super Collider

    International Nuclear Information System (INIS)

    Ishimaru, Hajime

    1994-01-01

    Proposal of 99.99% pure aluminum/7N01 aluminum alloy clad beam tube for high energy booster in Superconducting Super Collider is described. This aluminum clad beam tube has many good performances, but a eddy current effect is large in superconducting magnet quench collapse. The quench test result for aluminum clad beam tube is basically no problem against magnet quench collapse. (author)

  2. Reshock and release response of aluminum single crystal

    International Nuclear Information System (INIS)

    Huang, H.; Asay, J. R.

    2007-01-01

    Reshock and release experiments were performed on single crystal aluminum along three orientations and on polycrystalline 1050 aluminum with 50 μm grain size at shock stresses of 13 and 21 GPa to investigate the mechanisms for previously observed quasielastic recompression behavior. Particle velocity profiles obtained during reshocking both single crystals and polycrystalline aluminum from initial shock stresses of 13-21 GPa show similar quasielastic recompression behavior. Quasielastic release response is also observed in all single crystals, but the magnitude of the effect is crystal orientation dependent, with [111] and [110] exhibiting more ideal elastic-plastic release for unloading from the shocked state than for the [100] orientation and polycrystalline aluminum. The quasielastic response of 1050 aluminum is intermediate to that of the [100] and [111] orientations. Comparison of the wave profiles obtained for both unloading and reloading of single crystals and polycrystalline 1050 aluminum from shocked states suggests that the observed quasielastic response of polycrystalline aluminum results from the averaging response of single crystals for shock propagation along different orientations, and that the response of 1050 aluminum with large grain boundaries is not significantly different from the results obtained on single crystal aluminum. The yield strength of the single crystals and 1050 aluminum is found to increase with shock stress, which is consistent with previous results [H. Huang and I. R. Asay, J. Appl. Phys. 98, 033524 (2005)

  3. Development of a double beam process for joining aluminum and steel

    Science.gov (United States)

    Frank, Sascha

    2014-02-01

    Multi-material structures pose an attractive option for overcoming some of the central challenges in lightweight design. An exceptionally high potential for creating cost-effective lightweight solutions is attributed to the combination of steel and aluminum. However, these materials are also particularly difficult to join due to their tendency to form intermetallic compounds (IMCs). The growth of these compounds is facilitated by high temperatures and long process times. Due to their high brittleness, IMCs can severely weaken a joint. Thus, it is only possible to create durable steel-aluminum joints when the formation of IMCs can be limited to a non-critical level. To meet this goal, a new joining method has been designed. The method is based on the combination of a continuous wave (pw) and a pulsed laser (pw) source. Laser beams from both sources are superimposed in a common process zone. This makes it possible to apply the advantages of laser brazing to mixed-metal joints without requiring the use of chemical fluxes. The double beam technology was first tested in bead-on-plate experiments using different filler wire materials. Based on the results of these tests, a process for joining steel and aluminum in a double-flanged configuration is now being developed. The double flanged seams are joined using zinc- or aluminum-based filler wires. Microsections of selected seams show that it is possible to achieve good base material wetting while limiting the growth of IMCs to acceptable measures. In addition, the results of tensile tests show that high joint strengths can be achieved.

  4. 49 CFR 178.505 - Standards for aluminum drums.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Standards for aluminum drums. 178.505 Section 178... PACKAGINGS Non-bulk Performance-Oriented Packaging Standards § 178.505 Standards for aluminum drums. (a) The following are the identification codes for aluminum drums: (1) 1B1 for a non-removable head aluminum drum...

  5. Aluminum low temperature smelting cell metal collection

    Science.gov (United States)

    Beck, Theodore R.; Brown, Craig W.

    2002-07-16

    A method of producing aluminum in an electrolytic cell containing alumina dissolved in an electrolyte. The method comprises the steps of providing a molten salt electrolyte in an electrolytic cell having an anodic liner for containing the electrolyte, the liner having an anodic bottom and walls including at least one end wall extending upwardly from the anodic bottom, the anodic liner being substantially inert with respect to the molten electrolyte. A plurality of non-consumable anodes is provided and disposed vertically in the electrolyte. A plurality of cathodes is disposed vertically in the electrolyte in alternating relationship with the anodes. The anodes are electrically connected to the anodic liner. An electric current is passed through the anodic liner to the anodes, through the electrolyte to the cathodes, and aluminum is deposited on said cathodes. Oxygen bubbles are generated at the anodes and the anodic liner, the bubbles stirring the electrolyte. Molten aluminum is collected from the cathodes into a tubular member positioned underneath the cathodes. The tubular member is in liquid communication with each cathode to collect the molten aluminum therefrom while excluding electrolyte. Molten aluminum is delivered through the tubular member to a molten aluminum reservoir located substantially opposite the anodes and cathodes. The molten aluminum is collected from the cathodes and delivered to the reservoir while avoiding contact of the molten aluminum with the anodic bottom.

  6. Friction welding of A 6061 aluminum alloy and S45C carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Shinoda, T. [Nagoya Univ., Furo-cho, Chikusa-ku, Nagoya (Japan); Kawata, S. [Post Graduate Student, Nagoya Univ., Nagoya (Japan)

    2004-07-01

    Many researches for friction welding of aluminum with either carbon steel or stainless steel have been carried out. From those results, it is concluded that the greatest problem is the formation of brittle intermetallic compounds at weld interface. However, it is not clearly demonstrated the effect of friction welding parameters on the formation of intermetallic compounds. This research purposes are to evaluate the formation of intermetallic compounds and to investigate the effect of friction welding parameters on the strength of welded joint. For these purposes, A6061 aluminum alloy and S45C carbon steel were used with a continuous drive vertical friction welding machine. Tensile test results revealed that the maximum tensile strength was achieved at extremely short friction time and high upset. The joint strength reached 92% of the tensile strength of A6061 base metal. Tensile strength of friction welding was increasing with increasing upset pressure when friction time 1sec. However, tensile properties were deteriorated with increasing friction time. It was observed that the amount of formed intermetallic compound was increasing with increasing friction time at weld interface. Partly formed intermetallic compound on weld interface were identified when friction time 1 sec. However, intermetallic compound layer were severely developed with longer friction time at weld interface. It was concluded that intermetallic compound layer deteriorated the tensile properties of weld joints. (orig.)

  7. 2012 HIV Diagnostics Conference: the molecular diagnostics perspective.

    Science.gov (United States)

    Branson, Bernard M; Pandori, Mark

    2013-04-01

    2012 HIV Diagnostic Conference Atlanta, GA, USA, 12-14 December 2012. This report highlights the presentations and discussions from the 2012 National HIV Diagnostic Conference held in Atlanta (GA, USA), on 12-14 December 2012. Reflecting changes in the evolving field of HIV diagnostics, the conference provided a forum for evaluating developments in molecular diagnostics and their role in HIV diagnosis. In 2010, the HIV Diagnostics Conference concluded with the proposal of a new diagnostic algorithm which included nucleic acid testing to resolve discordant screening and supplemental antibody test results. The 2012 meeting, picking up where the 2010 meeting left off, focused on scientific presentations that assessed this new algorithm and the role played by RNA testing and new developments in molecular diagnostics, including detection of total and integrated HIV-1 DNA, detection and quantification of HIV-2 RNA, and rapid formats for detection of HIV-1 RNA.

  8. Aluminum and Other Coatings for the Passivation of Tritium Storage Vessels

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, W. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Korinko, P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-11-16

    Using a highly sensitive residual gas analyzer, the off-gassing of hydrogen, water, and hydrocarbons from surface-treated storage vessels containing deuterium was measured. The experimental storage vessels were compared to a low-off-gassing, electro-polished 304L canister. Alternative vessels were made out of aluminum, or were coatings on 304L steel. Coatings included powder pack aluminide, electro-plated aluminum, powder pack chromide, dense electro-plated chromium, copper plated, and copper plated with 25 and 50 percent nano-diamond. Vessels were loaded with low pressure deuterium to observe exchange with protium or hydrogen as observed with formation of HD and HDO. Off gas of D2O or possible CD4 was observed at mass 20. The main off-gas in all of the studies was H2. The studies indicated that coatings required significant post-coating treatment to reduce off-gas and enhance the permeation barrier from gases likely added during the coating process. Dense packed aluminum coatings needed heating to drive off water. Electro-plated aluminum, chromium and copper coatings appeared to trap hydrogen from the plating process. Nano-diamond appeared to enhance the exchange rate with hydrogen off gas, and its coating process trapped significant amounts of hydrogen. Aluminum caused more protium exchange than chromium-treated surfaces. Aluminum coatings released more water, but pure aluminum vessels released small amounts of hydrogen, little water, and generally performed well. Chromium coating had residual hydrogen that was difficult to totally outgas but otherwise gave low residuals for water and hydrocarbons. Our studies indicated that simple coating of as received 304L metal will not adequately block hydrogen. The base vessel needs to be carefully out-gassed before applying a coating, and the coating process will likely add additional hydrogen that must be removed. Initial simple bake-out and leak checks up to 350° C for a few hours was

  9. Electrometallurgical treatment of aluminum-based fuels

    International Nuclear Information System (INIS)

    Willit, J. L.

    1998-01-01

    We have successfully demonstrated aluminum electrorefining from a U-Al-Si alloy that simulates spent aluminum-based reactor fuel. The aluminum product contains less than 200 ppm uranium. All the results obtained have been in agreement with predictions based on equilibrium thermodynamics. We have also demonstrated the need for adequate stirring to achieve a low-uranium product. Most of the other process steps have been demonstrated in other programs. These include uranium electrorefining, transuranic fission product scrubbing, fission product oxidation, and product consolidation by melting. Future work will focus on the extraction of active metal and rare earth fission products by a molten flux salt and scale-up of the aluminum electrorefining

  10. Use of low-cost aluminum in electric energy production

    Science.gov (United States)

    Zhuk, Andrey Z.; Sheindlin, Alexander E.; Kleymenov, Boris V.; Shkolnikov, Eugene I.; Lopatin, Marat Yu.

    Suppression of the parasitic corrosion while maintaining the electrochemical activity of the anode metal is one of the serious problems that affects the energy efficiency of aluminum-air batteries. The need to use high-purity aluminum or special aluminum-based alloys results in a significant increase in the cost of the anode, and thus an increase in the total cost of energy generated by the aluminum-air battery, which narrows the range of possible applications for this type of power source. This study considers the process of parasitic corrosion as a method for hydrogen production. Hydrogen produced in an aluminum-air battery by this way may be further employed in a hydrogen-air fuel cell (Hy-air FC) or in a heat engine, or it may be burnt to generate heat. Therefore, anode materials may be provided by commercially pure aluminum, commercially produced aluminum alloys, and secondary aluminum. These materials are much cheaper and more readily available than special anode alloys of aluminum and high-purity aluminum. The aim of present study is to obtain experimental data for comparison of energy and cost parameters of some commercially produced aluminum alloys, of high-purity aluminum, and of a special Al-ln anode alloy in the context of using these materials as anodes for an Al-air battery and for combined production of electrical power and hydrogen.

  11. Corrosion Protection of Aluminum

    Science.gov (United States)

    Dalrymple, R. S.; Nelson, W. B.

    1963-07-01

    Treatment of aluminum-base metal surfaces in an autoclave with an aqueous chromic acid solution of 0.5 to 3% by weight and of pH below 2 for 20 to 50 hrs at 160 to 180 deg C produces an extremely corrosion-resistant aluminum oxidechromium film on the surface. A chromic acid concentration of 1 to 2% and a pH of about 1 are preferred.

  12. Technological, Economic, and Environmental Optimization of Aluminum Recycling

    Science.gov (United States)

    Ioana, Adrian; Semenescu, Augustin

    2013-08-01

    The four strategic directions (referring to the entire life cycle of aluminum) are as follows: production, primary use, recycling, and reuse. Thus, in this work, the following are analyzed and optimized: reducing greenhouse gas emissions from aluminum production, increasing energy efficiency in aluminum production, maximizing used-product collection, recycling, and reusing. According to the energetic balance at the gaseous environment level, the conductive transfer model is also analyzed through the finished elements method. Several principles of modeling and optimization are presented and analyzed: the principle of analogy, the principle of concepts, and the principle of hierarchization. Based on these principles, an original diagram model is designed together with the corresponding logic diagram. This article also presents and analyzes the main benefits of aluminum recycling and reuse. Recycling and reuse of aluminum have the main advantage that it requires only about 5% of energy consumed to produce it from bauxite. The aluminum recycling and production process causes the emission of pollutants such as dioxides and furans, hydrogen chloride, and particulate matter. To control these emissions, aluminum recyclers are required to comply with the National Emission Standards for Hazardous Air Pollutants for Secondary Aluminum Production. The results of technological, economic, and ecological optimization of aluminum recycling are based on the criteria function's evaluation in the modeling system.

  13. Aluminum hydroxide issue closure package

    International Nuclear Information System (INIS)

    Bergman, T.B.

    1998-01-01

    Aluminum hydroxide coatings on fuel elements stored in aluminum canisters in K West Basin were measured in July and August 1998. Good quality data was produced that enabled statistical analysis to determine a bounding value for aluminum hydroxide at a 99% confidence level. The updated bounding value is 10.6 kg per Multi-Canister Overpack (MCO), compared to the previously estimated bounding value of 8 kg/MCO. Thermal analysis using the updated bounding value, shows that the MCO generates oxygen concentrate that are below the lower flammability limits during the 40-year interim storage period and are, therefore, acceptable

  14. 21 CFR 582.2122 - Aluminum calcium silicate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Aluminum calcium silicate. 582.2122 Section 582.2122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2 percent. (c...

  15. 21 CFR 182.2122 - Aluminum calcium silicate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Aluminum calcium silicate. 182.2122 Section 182.2122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2 percent. (c...

  16. 21 CFR 582.1781 - Sodium aluminum phosphate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium aluminum phosphate. 582.1781 Section 582.1781 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Additives § 582.1781 Sodium aluminum phosphate. (a) Product. Sodium aluminum phosphate. (b) Conditions of...

  17. 21 CFR 182.1781 - Sodium aluminum phosphate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium aluminum phosphate. 182.1781 Section 182.1781 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Food Substances § 182.1781 Sodium aluminum phosphate. (a) Product. Sodium aluminum phosphate. (b...

  18. Solidification of metallic aluminum on magnesium phosphate cements

    International Nuclear Information System (INIS)

    Lahalle, Hugo

    2016-01-01

    This work deals with the stabilization/solidification of radioactive waste using cement. More particularly, it aims at assessing the chemical compatibility between metallic aluminum and mortars based on magnesium phosphate cement. The physical and chemical processes leading to setting and hardening of the cement are first investigated. X-ray diffraction (XRD), thermogravimetry (TGA) and nuclear magnetic resonance spectroscopy ("3"1P and "1"1B MAS-NMR) are first used to characterize the solid phases formed during hydration, while inductively coupled plasma atomic emission spectroscopy analysis (ICP-AES), electrical conductometry and pH measurements provide information on the pore solution composition. Then, the corrosion of metallic aluminum in magnesium phosphate mortars is studied by monitoring the equilibrium potential and by electrochemical impedance spectroscopy (EIS). Magnesium phosphate cement is prepared from a mix of magnesium oxide (MgO) and potassium dihydrogen orthophosphate (KH_2PO_4). In the presence of water, hydration occurs according to a dissolution - precipitation process. The main hydrate is K-struvite (MgKPO_4.6H_2O). Its precipitation is preceded by that of two transient phases: phosphorrosslerite (MgHPO_4.7H_2O) and Mg_2KH(PO_4)_2.15H_2O. Boric acid retards cement hydration by delaying the formation of cement hydrates. Two processes may be involved in this retardation: the initial precipitation of amorphous or poorly crystallized minerals containing boron and phosphorus atoms, and/or the stabilization of cations (Mg"2"+, K"+) in solution. As compared with a Portland cement-based matrix, corrosion of aluminum is strongly limited in magnesium phosphate mortar. The pore solution pH is close to neutrality and falls within the passivation domain of aluminum. Corrosion depends on several parameters: it is promoted by a water-to-cement ratio (w/c) significantly higher than the chemical water demand of cement (w/c = 0.51), and by the addition of boric

  19. Trends in the global aluminum fabrication industry

    Science.gov (United States)

    Das, Subodh; Yin, Weimin

    2007-02-01

    The aluminum fabrication industry has become more vital to the global economy as international aluminum consumption has grown steadily in the past decades. Using innovation, value, and sustainability, the aluminum industry is strengthening its position not only in traditional packaging and construction applications but also in the automotive and aerospace markets to become more competitive and to face challenges from other industries and higher industrial standards. The aluminum fabrication industry has experienced a significant geographical shift caused by rapid growth in emerging markets in countries such as Brazil, Russia, India, and China. Market growth and distribution will vary with different patterns of geography and social development; the aluminum industry must be part of the transformation and keep pace with market developments to benefit.

  20. Proceedings of the Ontario Petroleum Institute's 48. annual conference : Ontario oil, gas and storage conference

    International Nuclear Information System (INIS)

    2009-01-01

    This conference discussed issues related to Ontario's petroleum industry and evaluated the province's potential hydrocarbon plays. Geological studies of interest to oil and gas operators were presented along with storage opportunities for hydrocarbons in underground formations. Regulatory issues related to the environmental impacts of oil and gas operations on soil and groundwater were reviewed, and various mitigation options for treating soils impacted by hydrocarbons were discussed. New technologies currently being used in Ontario's petroleum industry were presented together with various investment and exploration opportunities. An economic update of recent oil and gas activities in the region was also presented. The conference was divided into 7 sessions, and featured 17 presentations, of which 11 have been catalogued separately for inclusion in this database. tabs., figs.

  1. Characterization of the nitrogen split interstitial defect in wurtzite aluminum nitride using density functional theory

    International Nuclear Information System (INIS)

    Szállás, A.; Szász, K.; Trinh, X. T.; Son, N. T.; Janzén, E.; Gali, A.

    2014-01-01

    We carried out Heyd-Scuseria-Ernzerhof hybrid density functional theory plane wave supercell calculations in wurtzite aluminum nitride in order to characterize the geometry, formation energies, transition levels, and hyperfine tensors of the nitrogen split interstitial defect. The calculated hyperfine tensors may provide useful fingerprint of this defect for electron paramagnetic resonance measurement.

  2. Characterization of the nitrogen split interstitial defect in wurtzite aluminum nitride using density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Szállás, A., E-mail: szallas.attila@wigner.mta.hu [Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Szász, K. [Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Institute of Physics, Eötvös University, Pázmány Péter sétány 1/A, H-1117 Budapest (Hungary); Trinh, X. T.; Son, N. T.; Janzén, E. [Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping (Sweden); Gali, A., E-mail: gali.adam@wigner.mta.hu [Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Department of Atomic Physics, Budapest University of Technology and Economics, Budafoki út 8, H-1111 Budapest (Hungary)

    2014-09-21

    We carried out Heyd-Scuseria-Ernzerhof hybrid density functional theory plane wave supercell calculations in wurtzite aluminum nitride in order to characterize the geometry, formation energies, transition levels, and hyperfine tensors of the nitrogen split interstitial defect. The calculated hyperfine tensors may provide useful fingerprint of this defect for electron paramagnetic resonance measurement.

  3. 2005 annual nuclear technology conference

    International Nuclear Information System (INIS)

    Anon.

    2005-01-01

    This year's Annual Nuclear Technology Conference of the Deutsches Atomforum and Kerntechnische Gesellschaft was held in Nuremberg on May 10-12, 2005. More than 1 100 participants from eighteen countries make this specialized event one of the largest international conventions in the field of the peaceful uses of nuclear power, whose attendance has steadily increased over the past few years. The first day of the conference was devoted to plenary lectures traditionally dealing mainly with political and economic problems of the use of nuclear power. The partner country of JK 2005 was Switzerland. Traditionally, the program of the three-day conference was organized in the proven format of plenary sessions on the first day, followed by technical sessions, specialized sessions, poster sessions, and special events on the following days. For the third time, the ''Nuclear Campus'' was organized which successfully made the world of nuclear technology transparent to high school and university students in lectures and an exhibition. The meeting was accompanied by a technical exhibition with meeting points of manufacturers, suppliers, and service industries. (orig.)

  4. Electrical transport through single-wall carbon nanotube-anodic aluminum oxide-aluminum heterostructures

    International Nuclear Information System (INIS)

    Kukkola, Jarmo; Rautio, Aatto; Sala, Giovanni; Pino, Flavio; Toth, Geza; Leino, Anne-Riikka; Maeklin, Jani; Jantunen, Heli; Uusimaeki, Antti; Kordas, Krisztian; Gracia, Eduardo; Terrones, Mauricio; Shchukarev, Andrey; Mikkola, Jyri-Pekka

    2010-01-01

    Aluminum foils were anodized in sulfuric acid solution to form thick porous anodic aluminum oxide (AAO) films of thickness ∼6 μm. Electrodes of carboxyl-functionalized single-wall carbon nanotube (SWCNT) thin films were inkjet printed on the anodic oxide layer and the electrical characteristics of the as-obtained SWCNT-AAO-Al structures were studied. Nonlinear current-voltage transport and strong temperature dependence of conduction through the structure was measured. The microstructure and chemical composition of the anodic oxide layer was analyzed using transmission and scanning electron microscopy as well as x-ray photoelectron spectroscopy. Schottky emission at the SWCNT-AAO and AAO-Al interfaces allowed by impurity states in the anodic aluminum oxide film together with ionic surface conduction on the pore walls of AAO gives a reasonable explanation for the measured electrical conduction. Calcined AAO is proposed as a dielectric material for SWCNT-field effect transistors.

  5. 6th International Conference on Paleoceanography

    CERN Document Server

    Mix, Alan

    1999-01-01

    This volume is one outcome of the 6th International Conference on Paleoceano­ graphy (ICP VI). The conference was held August 23-28, 1998 in Lisbon, Portugal. The meeting followed the traditional format of a small number of invited oral presentations complemented by a large number ofcontributed posters. Over 550 participants attended, representing thirty countries and nearly 450 posters were presented. The invited speakers addressed the main themes of the 5oral sessions. The session topics were: Polar-Tropical and Interhemisphere Linkages; Does the Ocean Cause, or Respond to, Abrupt Climatic Changes?; Biotic Responses to Major Paleoceanographic Changes; Past Warm Climates; and Innovations In Monitoring Ocean History. This is the first time in ICP history that the Conference Proceedings are published. The aim of the organisers with the publication of this book is two-fold: to provide a useful review of the field and to document the ideas/controversies raised during the con­ ference that may stimulate future ...

  6. ORDERED POROUS ANODIC ALUMINUM OXIDE FILMS MADE BY TWO-STEP ANODIZATION

    OpenAIRE

    HANSONG XUE; HUAJI LI; YU YI; HUIFANG HU

    2007-01-01

    Porous Anodic Aluminum Oxide (AAO) films were prepared by two-step anodizing in sulfuric and oxalic acid solutions and observed by transmission electron microscope (TEM) and X-ray diffraction. The results show that the form of AAO film is affected by the varieties and concentrations of electrolyte, anodizing voltage, and the anodizing time; the formation and evolution processes of the AAO film are relative with the anodizing voltage severely, and the appropriate voltage is helpful to the orde...

  7. Initiation, Propagation, and Mitigation of Aluminum and Chlorine Induced Pitting Corrosion

    OpenAIRE

    Marshall, Becki Jean

    2004-01-01

    Previous research by Rushing et al. (2002) identified key factors contributing to the formation of pinhole leaks in copper plumbing. These factors included high chlorine, pH levels and the presence of aluminum solids. Experiments were conducted to 1) examine the interplay between these constituents, 2) confirm that the water was aggressive enough to eat a hole through a pipe, 3) examine phosphate inhibition, and 4) try to determine the scope of this pitting problem in other distribution sy...

  8. Solidification paths of multicomponent monotectic aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Mirkovic, Djordje; Groebner, Joachim [Clausthal University of Technology, Institute of Metallurgy, Robert-Koch-Street 42, D-38678 Clausthal-Zellerfeld (Germany); Schmid-Fetzer, Rainer [Clausthal University of Technology, Institute of Metallurgy, Robert-Koch-Street 42, D-38678 Clausthal-Zellerfeld (Germany)], E-mail: schmid-fetzer@tu-clausthal.de

    2008-10-15

    Solidification paths of three ternary monotectic alloy systems, Al-Bi-Zn, Al-Sn-Cu and Al-Bi-Cu, are studied using thermodynamic calculations, both for the pertinent phase diagrams and also for specific details concerning the solidification of selected alloy compositions. The coupled composition variation in two different liquids is quantitatively given. Various ternary monotectic four-phase reactions are encountered during solidification, as opposed to the simple binary monotectic, L' {yields} L'' + solid. These intricacies are reflected in the solidification microstructures, as demonstrated for these three aluminum alloy systems, selected in view of their distinctive features. This examination of solidification paths and microstructure formation may be relevant for advanced solidification processing of multicomponent monotectic alloys.

  9. Decontamination and reuse of ORGDP aluminum scrap

    International Nuclear Information System (INIS)

    Compere, A.L.; Griffith, W.L.; Hayden, H.W.; Wilson, D.F.

    1996-12-01

    The Gaseous Diffusion Plants, or GDPs, have significant amounts of a number of metals, including nickel, aluminum, copper, and steel. Aluminum was used extensively throughout the GDPs because of its excellent strength to weight ratios and good resistance to corrosion by UF 6 . This report is concerned with the recycle of aluminum stator and rotor blades from axial compressors. Most of the stator and rotor blades were made from 214-X aluminum casting alloy. Used compressor blades were contaminated with uranium both as a result of surface contamination and as an accumulation held in surface-connected voids inside of the blades. A variety of GDP studies were performed to evaluate the amounts of uranium retained in the blades; the volume, area, and location of voids in the blades; and connections between surface defects and voids. Based on experimental data on deposition, uranium content of the blades is 0.3%, or roughly 200 times the value expected from blade surface area. However, this value does correlate with estimated internal surface area and with lengthy deposition times. Based on a literature search, it appears that gaseous decontamination or melt refining using fluxes specific for uranium removal have the potential for removing internal contamination from aluminum blades. A melt refining process was used to recycle blades during the 1950s and 1960s. The process removed roughly one-third of the uranium from the blades. Blade cast from recycled aluminum appeared to perform as well as blades from virgin material. New melt refining and gaseous decontamination processes have been shown to provide substantially better decontamination of pure aluminum. If these techniques can be successfully adapted to treat aluminum 214-X alloy, internal and, possibly, external reuse of aluminum alloys may be possible

  10. Lithium-aluminum-magnesium electrode composition

    Science.gov (United States)

    Melendres, Carlos A.; Siegel, Stanley

    1978-01-01

    A negative electrode composition is presented for use in a secondary, high-temperature electrochemical cell. The cell also includes a molten salt electrolyte of alkali metal halides or alkaline earth metal halides and a positive electrode including a chalcogen or a metal chalcogenide as the active electrode material. The negative electrode composition includes up to 50 atom percent lithium as the active electrode constituent and a magnesium-aluminum alloy as a structural matrix. Various binary and ternary intermetallic phases of lithium, magnesium, and aluminum are formed but the electrode composition in both its charged and discharged state remains substantially free of the alpha lithium-aluminum phase and exhibits good structural integrity.

  11. Evaluation of aluminum migration into foodstuffs from aluminium cookware

    Directory of Open Access Journals (Sweden)

    M Radi

    2014-05-01

    Full Text Available Nowadays, the existence of aluminum in human diet as a food contaminant has attracted the concerns of many researchers. It seems that the cooking pans are common sources of aluminum exposure through foodstuffs in Iran. The aim of this study was to evaluate the migration of aluminum from cooking containers into foodstuffs. For this purpose, solutions with different concentrations of citric acid, sodium chloride, fat, protein and sugar were prepared and migration of aluminum into these solutions was measured using atomic absorption spectrometry. Results showed that salt and citric acid concentrations could enhance aluminum migration; whereas, acid concentration was more effective than salt due to its corrosive effect. The intensity of heat processing and the duration of heat treatment had direct relation with aluminum migration. The aluminum content of cooked foods in aluminum cooking pans was also significantly more than control samples.

  12. Sixth International Conference on Complex Systems

    CERN Document Server

    Minai, Ali; Bar-Yam, Yaneer; Unifying Themes in Complex Systems

    2008-01-01

    The International Conference on Complex Systems (ICCS) creates a unique atmosphere for scientists of all fields, engineers, physicians, executives, and a host of other professionals to explore the common themes and applications of complex systems science. In June 2006, 500 participants convened in Boston for the sixth ICCS, exploring an array of topics, including networks, systems biology, evolution and ecology, nonlinear dynamics and pattern formation, as well as neural, psychological, psycho-social, socio-economic, and global systems. This volume selects 77 papers from over 300 presented at the conference. With this new volume, Unifying Themes in Complex Systems continues to build common ground between the wide-ranging domains of complex systems science.

  13. Chemical effects in the Corrosion of Aluminum and Aluminum Alloys. A Bibliography

    Science.gov (United States)

    1976-10-01

    tances.II. Effect Of Pomegranate Juice And The Aqueous Extract Of Pomegranate Fruits And Tea leaves On The Corrosion Of Aluminum" The effect of the juices...T7651 tempers to exfoliation and stress- corrosion cracking . 1968-8 D.P. Doyle and H.P. Godard ,a) Tr. Mezhdunar. Kongr. Korroz. Metal, 4, 439-48, (1968...Tapper Brit. Corros. J., 3, 285-87, (1968) "Corrosion Of Aluminum" Summary of the literature of Al corrosion which includes stress- corrosion cracking

  14. Determining casting defects in near-net shape casting aluminum parts by computed tomography

    Science.gov (United States)

    Li, Jiehua; Oberdorfer, Bernd; Habe, Daniel; Schumacher, Peter

    2018-03-01

    Three types of near-net shape casting aluminum parts were investigated by computed tomography to determine casting defects and evaluate quality. The first, second, and third parts were produced by low-pressure die casting (Al-12Si-0.8Cu-0.5Fe-0.9Mg-0.7Ni-0.2Zn alloy), die casting (A356, Al-7Si-0.3Mg), and semi-solid casting (A356, Al-7Si-0.3Mg), respectively. Unlike die casting (second part), low-pressure die casting (first part) significantly reduced the formation of casting defects (i.e., porosity) due to its smooth filling and solidification under pressure. No significant casting defect was observed in the third part, and this absence of defects indicates that semi-solid casting could produce high-quality near-net shape casting aluminum parts. Moreover, casting defects were mostly distributed along the eutectic grain boundaries. This finding reveals that refinement of eutectic grains is necessary to optimize the distribution of casting defects and reduce their size. This investigation demonstrated that computed tomography is an efficient method to determine casting defects in near-net shape casting aluminum parts.

  15. Synthesis, Characterization and Hexavalent Chromium Adsorption Characteristics of Aluminum- and Sucrose-Incorporated Tobermorite

    Directory of Open Access Journals (Sweden)

    Zhiguang Zhao

    2017-05-01

    Full Text Available Tobermorites were synthesized from the lime-quartz slurries with incorporations of aluminum and sucrose under hydrothermal conditions, and then used for adsorption of Cr(VI. The chemical components, and structural and morphological properties of tobermorite were characterized by X-ray diffraction (XRD, thermogravimetric-differential scanning calorimetry (TG-DSC, Fourier transform infrared spectroscopy (FT-IR, nuclear magnetic resonance (NMR, scanning electron microscopy (SEM, X-ray photoelectron spectroscopic (XPS and N2 adsorption–desorption measurements. The formation and crystallinity of tobermorite could be largely enhanced by adding 2.3 wt.% aluminum hydroxide or 13.3 wt.% sucrose. Sucrose also played a significantly positive role in increasing the surface area. The adsorption performances for Cr(VI were tested using a batch method taking into account the effects of pH, the adsorption kinetics, and the adsorption isotherms. The adsorption capacities of the aluminum- and sucrose-incorporated tobermorites reached up to 31.65 mg/g and 28.92 mg/g, respectively. Thus, the synthesized tobermorites showed good adsorption properties for removal of Cr(VI, making this material a promising candidate for efficient bulk wastewater treatment.

  16. A Prediction Study of Aluminum Alloy Oxidation of the Fuel Cladding in Jordan Research and Training Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tahk, Y. W.; Oh, J. Y.; Lee, B. H.; Seo, C. G.; Chae, H. T.; Yim, J. S. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-10-15

    U{sub 3}Si{sub 2}-Al dispersion fuel with Al cladding will be used for Jordan Research and Training Reactor (JRTR). Aluminum alloy cladding experiences the oxidation layer growth on the surface during the reactor operation. The formation of oxides on the cladding affects fuel performance by increasing fuel temperature. According to the current JRTR fuel management scheme and operation strategy for 5 MW power, a fresh fuel is discharged after 900 effective full power days (EFPD) with 18 cycles of 50 days loading. For the proper prediction of the aluminum oxide thickness of fuel cladding during the long residence time, a reliable model is needed. In this work, several oxide thickness prediction models are compared with the measured data from in-pile test by RERTR program. Moreover, specific parametric studies and a preliminary prediction of the aluminum alloy oxidation using the latest model are performed for JRTR fuel

  17. Membrane Purification Cell for Aluminum Recycling

    Energy Technology Data Exchange (ETDEWEB)

    David DeYoung; James Wiswall; Cong Wang

    2011-11-29

    Recycling mixed aluminum scrap usually requires adding primary aluminum to the scrap stream as a diluent to reduce the concentration of non-aluminum constituents used in aluminum alloys. Since primary aluminum production requires approximately 10 times more energy than melting scrap, the bulk of the energy and carbon dioxide emissions for recycling are associated with using primary aluminum as a diluent. Eliminating the need for using primary aluminum as a diluent would dramatically reduce energy requirements, decrease carbon dioxide emissions, and increase scrap utilization in recycling. Electrorefining can be used to extract pure aluminum from mixed scrap. Some example applications include producing primary grade aluminum from specific scrap streams such as consumer packaging and mixed alloy saw chips, and recycling multi-alloy products such as brazing sheet. Electrorefining can also be used to extract valuable alloying elements such as Li from Al-Li mixed scrap. This project was aimed at developing an electrorefining process for purifying aluminum to reduce energy consumption and emissions by 75% compared to conventional technology. An electrolytic molten aluminum purification process, utilizing a horizontal membrane cell anode, was designed, constructed, operated and validated. The electrorefining technology could also be used to produce ultra-high purity aluminum for advanced materials applications. The technical objectives for this project were to: - Validate the membrane cell concept with a lab-scale electrorefining cell; - Determine if previously identified voltage increase issue for chloride electrolytes holds for a fluoride-based electrolyte system; - Assess the probability that voltage change issues can be solved; and - Conduct a market and economic analysis to assess commercial feasibility. The process was tested using three different binary alloy compositions (Al-2.0 wt.% Cu, Al-4.7 wt.% Si, Al-0.6 wt.% Fe) and a brazing sheet scrap composition (Al-2

  18. Investigation of the Reversible Lithiation of an Oxide Free Aluminum Anode by a LiBH4 Solid State Electrolyte

    Directory of Open Access Journals (Sweden)

    Jason A. Weeks

    2017-11-01

    Full Text Available In this study, we analyze and compare the physical and electrochemical properties of an all solid-state cell utilizing LiBH4 as the electrolyte and aluminum as the active anode material. The system was characterized by galvanostatic lithiation/delithiation, cyclic voltammetry (CV, X-ray diffraction (XRD, energy dispersive X-ray spectroscopy (EDS, Raman spectroscopy, electrochemical impedance spectroscopy (EIS, and scanning electron microscopy (SEM. Constant current cycling demonstrated that the aluminum anode can be reversibly lithiated over multiple cycles utilizing a solid-state electrolyte. An initial capacity of 895 mAh/g was observed and is close to the theoretical capacity of aluminum. Cyclic voltammetry of the cell was consistent with the constant current cycling data and showed that the reversible lithiation/delithiation of aluminum occurs at 0.32 V and 0.38 V (vs. Li+/Li respectively. XRD of the aluminum anode in the initial and lithiated state clearly showed the formation of a LiAl (1:1 alloy. SEM-EDS was utilized to examine the morphological changes that occur within the electrode during cycling. This work is the first example of reversible lithiation of aluminum in a solid-state cell and further emphasizes the robust nature of the LiBH4 electrolyte. This demonstrates the possibility of utilizing other high capacity anode materials with a LiBH4 based solid electrolyte in all-solid-state batteries.

  19. Correlating shaped charge performance with processing conditions and microstructure of an aluminum alloy 1100 liner enabled by a new method to arrest nascent jet formation

    Science.gov (United States)

    Scheid, James Eric

    Aluminum-lined shaped charges are used in special applications where jet and / or slug residue in the target is undesired. The three different microstructures of the aluminum liners studied herein resulted from three different manufacturing interpretations of the same design. One interpretation was completely machining the liners from best available annealed round stock. The second was to cold-forge the liners from annealed round-stock in an open-die forge to near-final dimensions, and then machine the liners to the final dimensions. The third variant in this study was to use the above forged liner, but with annealing after the machining. These three manufacturing choices resulted in significant variations in shaped charge performance. The goal of this research was to clarify the relationships between the liner metal microstructure and properties, and the corresponding shaped charge dynamic flow behavior. What began as an investigation into user-reported performance problems associated inherently with liner manufacturing processes and resultant microstructure, resolved into new understandings of the relationships between aluminum liner microstructure and shaped charge collapse kinetics. This understanding was achieved through an extensive literature review and the comprehensive characterization of the material properties of three variants of an 1100 aluminum shaped charge liner with a focus on collapse and nascent jet formation. The machined liner had a microstructure with large millimeter-sized grains and fine particles aligned in bands parallel to the charge axis. The forged liner microstructure consisted of very small one micrometer-sized (1 mum) subgrains and fine particles aligned largely in bands elongated parallel to the liner contour. The annealed liner was characterized by ten micrometer (10 mum) sized equiaxed grains with residual fine particles in the forged alignment. This characterization was enabled by the development, execution and validation of a

  20. Achieving Carbon Neutrality in the Global Aluminum Industry

    Science.gov (United States)

    Das, Subodh

    2012-02-01

    In the 21st century, sustainability is widely regarded as the new corporate culture, and leading manufacturing companies (Toyota, GE, and Alcoa) and service companies (Google and Federal Express) are striving towards carbon neutrality. The current carbon footprint of the global aluminum industry is estimated at 500 million metric tonnes carbon dioxide equivalent (CO2eq), representing about 1.7% of global emissions from all sources. For the global aluminum industry, carbon neutrality is defined as a state where the total "in-use" CO2eq saved from all products in current use, including incremental process efficiency improvements, recycling, and urban mining activities, equals the CO2eq expended to produce the global output of aluminum. This paper outlines an integrated and quantifiable plan for achieving "carbon neutrality" in the global aluminum industry by advocating five actionable steps: (1) increase use of "green" electrical energy grid by 8%, (2) reduce process energy needs by 16%, (3) deploy 35% of products in "in-use" energy saving applications, (4) divert 6.1 million metric tonnes/year from landfills, and (5) mine 4.5 million metric tonnes/year from aluminum-rich "urban mines." Since it takes 20 times more energy to make aluminum from bauxite ore than to recycle it from scrap, the global aluminum industry could set a reasonable, self-imposed energy/carbon neutrality goal to incrementally increase the supply of recycled aluminum by at least 1.05 metric tonnes for every tonne of incremental production via primary aluminum smelter capacity. Furthermore, the aluminum industry can and should take a global leadership position by actively developing internationally accepted and approved carbon footprint credit protocols.

  1. Role of Spirulina in mitigating hemato-toxicity in Swiss albino mice exposed to aluminum and aluminum fluoride.

    Science.gov (United States)

    Sharma, Shweta; Sharma, K P; Sharma, Subhasini

    2016-12-01

    Aluminum is ingested through foods, water, air, and even drugs. Its intake is potentiated further through foods and tea prepared in aluminum utensils and Al salt added in the drinking water for removal of suspended impurities and also fluoride in the affected areas. The ameliorating role of a blue green alga Spirulina is well documented to various pollutants in the animal models. We, therefore, examined its protective role (230 mg/kg body weight) on the hematology of male Swiss albino mice treated with aluminum (sub-acute = 78.4 mg/kg body weight for 7 days, sub-chronic = 7.8 mg/kg body weight for 90 days) and aluminum fluoride (sub-acute = 103 mg/kg body weight, sub-chronic = 21 mg/kg body weight), along with their recovery after 90 days of sub-chronic exposure. This study revealed significant reduction in the values of RBC (5-18 %), Hb (15-17 %), PCV (8-14 %), and platelets (26-36 %), and increase in WBC (54-124 %) in the treated mice, particularly after sub-acute exposure. Aluminum fluoride was comparatively more toxic than aluminum. Further, Spirulina supplement not only alleviated toxicity of test chemicals in Swiss albino mice but also led to their better recovery after withdrawal.

  2. Electrocoagulation of simulated reactive dyebath effluent with aluminum and stainless steel electrodes.

    Science.gov (United States)

    Arslan-Alaton, Idil; Kabdaşli, Işik; Vardar, Burcu; Tünay, Olcay

    2009-05-30

    Reactive dyebath effluents are ideal candidates for electrocoagulation due to their intensive color, medium strength, recalcitrant COD and high electrolyte (NaCl) content. The present study focused on the treatability of simulated reactive dyebath effluent (COD(o)=300 mg/L; color in terms of absorbance values A(o,436)=0.532 cm(-1), A(o,525)=0.693 cm(-1) and A(o,620)=0.808 cm(-1)) employing electrocoagulation with aluminum and stainless steel electrodes. Optimization of critical operating parameters such as initial pH (pH(o) 3-11), applied current density (J(c)=22-87 mA/cm(2)) and electrolyte type (NaCl or Na(2)SO(4)) improved the overall treatment efficiencies resulting in effective decolorization (99% using stainless steel electrodes after 60 min, 95% using aluminum electrodes after 90 min electrocoagulation) and COD abatement (93% with stainless steel electrodes after 60 min, 86% with aluminum electrodes after 90 min of reaction time). Optimum electrocoagulation conditions were established as pH(o) 5 and J(c)=22 mA/cm(2) for both electrode materials. The COD and color removal efficiencies also depended on the electrolyte type. No in situ, surplus adsorbable organically bound halogens (AOX) formation associated with the use of NaCl as the electrolyte during electrocoagulation was detected. An economical evaluation was also carried out within the frame of the study. It was demonstrated that electrocoagulation of reactive dyebath effluent with aluminum and stainless steel electrodes was a considerably less electrical energy-intensive, alternative treatment method as compared with advanced chemical oxidation techniques.

  3. Sixth International Conference on Precipitation: Predictability of Rainfall at the Various Scales. Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-06-29

    This volume contains abstracts of the papers presented at the Sixth International Conference on Precipitation: Predictability of Rainfall at the various scales, held at the Mauna Lani Bay and Bungalows, Hawaii, June 29 - July 1, 1998. The main goal of the conference was to bring together meteorologists, hydrologists, mathematicians, physicists, statisticians, and all others who are interested in fundamental principles governing the physical processes of precipitation. The results of the previous conferences have been published in issues of the Journal of Geophysical Research and Journal of Applied Meteorology. A similar format is planned for papers of this conference.

  4. Nanshan Aluminum Reached Strategic Cooperation with CSR Corporation Limited

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    As a key supplier of aluminum profiles and aluminum plate,sheet and trip products for CSR Corporation Limited,Nanshan Aluminum will join hands with CSR Corporation Limited to reach strategic cooperation.On January 5,Nanshan Aluminum signed strategic cooperation agreement with CSR Sifang Locomotive&Rolling; Stock Co.,Ltd,both

  5. Reactive ion assisted deposition of aluminum oxynitride thin films

    International Nuclear Information System (INIS)

    Hwangbo, C.K.; Lingg, L.J.; Lehan, J.P.; Macleod, H.A.; Suits, F.

    1989-01-01

    Optical properties, stoichiometry, chemical bonding states, and crystal structure of aluminum oxynitride (AlO/sub x/N/sub y/) thin films prepared by reactive ion assisted deposition were investigated. The results show that by controlling the amount of reactive gases the refractive index of aluminum oxynitride films at 550 nm is able to be varied from 1.65 to 1.83 with a very small extinction coefficient. Variations of optical constants and chemical bonding states of aluminum oxynitride films are related to the stoichiometry. From an x-ray photoelectron spectroscopy analysis it is observed that our aluminum oxynitride film is not simply a mixture of aluminum oxide and aluminum nitride but a continuously variable compound. The aluminum oxynitride films are amorphous from an x-ray diffraction analysis. A rugate filter using a step index profile of aluminum oxynitride films was fabricated by nitrogen ion beam bombardment of a growing Al film with backfill oxygen pressure as the sole variation. This filter shows a high resistivity to atmospheric moisture adsorption, suggesting that the packing density of aluminum oxynitride films is close to unity and the energetic ion bombardment densifies the film as well as forming the compound

  6. Porous and mesh alumina formed by anodization of high purity aluminum films at low anodizing voltage

    International Nuclear Information System (INIS)

    Abd-Elnaiem, Alaa M.; Mebed, A.M.; El-Said, Waleed Ahmed; Abdel-Rahim, M.A.

    2014-01-01

    Electrochemical oxidation of high-purity aluminum (Al) films under low anodizing voltages (1–10) V has been conducted to obtain anodic aluminum oxide (AAO) with ultra-small pore size and inter-pore distance. Different structures of AAO have been obtained e.g. nanoporous and mesh structures. Highly regular pore arrays with small pore size and inter-pore distance have been formed in oxalic or sulfuric acids at different temperatures (22–50 °C). It is found that the pore diameter, inter-pore distance and the barrier layer thickness are independent of the anodizing parameters, which is very different from the rules of general AAO fabrication. The brand formation mechanism has been revealed by the scanning electron microscope study. Regular nanopores are formed under 10 V at the beginning of the anodization and then serve as a template layer dominating the formation of ultra-small nanopores. Anodization that is performed at voltages less than 5 V leads to mesh structured alumina. In addition, we have introduced a simple one-pot synthesis method to develop thin walls of oxide containing lithium (Li) ions that could be used for battery application based on anodization of Al films in a supersaturated mixture of lithium phosphate and phosphoric acid as matrix for Li-composite electrolyte. - Highlights: • We develop anodic aluminum oxide (AAO) with small pore size and inter-pore distance. • Applying low anodizing voltages onto aluminum film leads to form mesh structures. • The value of anodizing voltage (1–10 V) has no effect on pore size or inter-pore distance. • Applying anodizing voltage less than 5 V leads to mesh structured AAO. • AAO can be used as a matrix for Li-composite electrolytes

  7. Porous and mesh alumina formed by anodization of high purity aluminum films at low anodizing voltage

    Energy Technology Data Exchange (ETDEWEB)

    Abd-Elnaiem, Alaa M., E-mail: alaa.abd-elnaiem@science.au.edu.eg [KACST-Intel Consortium Center of Excellence in Nano-manufacturing Applications (CENA), Riyadh (Saudi Arabia); Physics Department, Faculty of Science, Assiut University, Assiut 71516 (Egypt); Mebed, A.M. [Physics Department, Faculty of Science, Assiut University, Assiut 71516 (Egypt); Department of Physics, Faculty of Science, Al-Jouf University, Sakaka 2014 (Saudi Arabia); El-Said, Waleed Ahmed [Department of Chemistry, Faculty of Science, Assiut University, Assiut 71516 (Egypt); Abdel-Rahim, M.A. [Physics Department, Faculty of Science, Assiut University, Assiut 71516 (Egypt)

    2014-11-03

    Electrochemical oxidation of high-purity aluminum (Al) films under low anodizing voltages (1–10) V has been conducted to obtain anodic aluminum oxide (AAO) with ultra-small pore size and inter-pore distance. Different structures of AAO have been obtained e.g. nanoporous and mesh structures. Highly regular pore arrays with small pore size and inter-pore distance have been formed in oxalic or sulfuric acids at different temperatures (22–50 °C). It is found that the pore diameter, inter-pore distance and the barrier layer thickness are independent of the anodizing parameters, which is very different from the rules of general AAO fabrication. The brand formation mechanism has been revealed by the scanning electron microscope study. Regular nanopores are formed under 10 V at the beginning of the anodization and then serve as a template layer dominating the formation of ultra-small nanopores. Anodization that is performed at voltages less than 5 V leads to mesh structured alumina. In addition, we have introduced a simple one-pot synthesis method to develop thin walls of oxide containing lithium (Li) ions that could be used for battery application based on anodization of Al films in a supersaturated mixture of lithium phosphate and phosphoric acid as matrix for Li-composite electrolyte. - Highlights: • We develop anodic aluminum oxide (AAO) with small pore size and inter-pore distance. • Applying low anodizing voltages onto aluminum film leads to form mesh structures. • The value of anodizing voltage (1–10 V) has no effect on pore size or inter-pore distance. • Applying anodizing voltage less than 5 V leads to mesh structured AAO. • AAO can be used as a matrix for Li-composite electrolytes.

  8. Characterization of ultrafine aluminum nanoparticles

    International Nuclear Information System (INIS)

    Sandstrom, Mary M.; Jorgensen, Betty S.; Mang, Joseph T.; Smith, Bettina L.; Son, Steven F.

    2004-01-01

    Aluminum nanopowders with particle sizes ranging from ∼25 nm to 80 nm were characterized by a variety of methods. We present and compare the results from common powder characterization techniques including transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), BET gas adsorption surface area analysis, thermogravimetric analysis (TGA), photon correlation spectroscopy (PCS), and low angle laser light scattering (LALLS). Aluminum nanoparticles consist of an aluminum core with an aluminum oxide coating. HRTEM measurements of both the particle diameter and oxide layer thickness tend to be larger than those obtained from BET and TGA. LALLS measurements show a large degree of particle agglomeration in solution; therefore, primary particle sizes could not be determined. Furthermore, results from small-angle scattering techniques (SAS), including small-angle neutron (SANS) and x-ray (SAXS) scattering are presented and show excellent agreement with the BET, TGA, and HRTEM. The suite of analytical techniques presented in this paper can be used as a powerful tool in the characterization of many types of nanosized powders.

  9. 2009 Gordon Research Conference, Applied and Environmental Microbiology

    Energy Technology Data Exchange (ETDEWEB)

    Dubilier, Nicole [Max Planck Inst. for Marine Microbiology, Bremen (Germany)

    2009-07-12

    The topic of the 2009 Gordon Conference on Applied and Environmental Microbiology is: From Single Cells to the Environment. The Conference will present and discuss cutting-edge research on applied and environmental microbiology with a focus on understanding interactions between microorganisms and the environment at levels ranging from single cells to complex communities. The Conference will feature a wide range of topics such as single cell techniques (including genomics, imaging, and NanoSIMS), microbial diversity at scales ranging from clonal to global, environmental 'meta-omics', biodegradation and bioremediation, metal - microbe interactions, animal microbiomes and symbioses. The Conference will bring together investigators who are at the forefront of their field, and will provide opportunities for junior scientists and graduate students to present their work in poster format and exchange ideas with leaders in the field. Some poster presenters will be selected for short talks. The collegial atmosphere of this Conference, with extensive discussion sessions as well as opportunities for informal gatherings in the afternoons and evenings, provides an ideal setting for scientists from different disciplines to exchange ideas, brainstorm and discuss cross-disciplinary collaborations.

  10. All-Russian Conference with the School for Young Scientists “Thermophysics and Physical Hydrodynamics - 2016”

    International Nuclear Information System (INIS)

    2016-01-01

    The origins of the Conference start from 1970 in the Soviet Union, Novosibirsk. It was organized by Kutateladze Institute of Thermophysics SB RAS. The name of the conference was “Actual problems of thermophysics and physical hydrodynamics”. The conference has been organized under this name up to 2015. The conference chairs were Academician V.E. Nakoryakov, Prof. D.M. Marckovich and Prof. S.V. Alekseenko. Peer reviewed proceedings of the conference have been published in the format of printed books. In 2016 the conference is reorganized in a new format with a shorter name: “Thermophysics and physical hydrodynamics”. The conference took place in Yalta, a beautiful city in Crimea on the bank of the Black Sea. Lavrentev Institute of Hydrodynamics and the National committee on Heat and Mass Transfer are among other conference organizers besides Kutateladze Institute of Thermophysics. The present Conference covers the following topics: heat transfer and hydrodynamics in single phase and multiphase flows, phase transitions, reacting flows, detonation processes, experimental and numerical techniques in thermophysics and physical hydrodynamics, heat transfer and hydrodynamics on micro- and nanoscale and in industrial processes. The proceedings contain 91 papers grouped by topic. The scientific committee appreciates the enormous work of the editorial board and reviewers in the preparation of this volume. We would like to express our sincere thanks to all authors for their research contributions, and also to organizers of the conference for their valuable spadework. (paper)

  11. Enhanced active aluminum content and thermal behaviour of nano-aluminum particles passivated during synthesis using thermal plasma route

    International Nuclear Information System (INIS)

    Mathe, Vikas L.; Varma, Vijay; Raut, Suyog; Nandi, Amiya Kumar; Pant, Arti; Prasanth, Hima; Pandey, R.K.; Bhoraskar, Sudha V.; Das, Asoka K.

    2016-01-01

    Graphical abstract: - Highlights: • Synthesis of nano crystalline Al (nAl) using DC thermal plasma reactor. • In situ passivation of nAl by palmitic acid and air. • Enhanced active aluminum content obtained for palmitic acid passivated nAl. • Palmitic acid passivated nAl are quite stable in humid atmospheres. - Abstract: Here, we report synthesis and in situ passivation of aluminum nanoparticles using thermal plasma reactor. Both air and palmitc acid passivation was carried out during the synthesis in the thermal plasma reactor. The passivated nanoparticles have been characterized for their structural and morphological properties using X-ray diffraction (XRD) and transmission electron microscopy (TEM) techniques. In order to understand nature of passivation vibrational spectroscopic analysis have been carried out. The enhancement in active aluminum content and shelf life for a palmitic acid passivated nano-aluminum particles in comparison to the air passivated samples and commercially available nano Al powder (ALEX) has been observed. Thermo-gravimetric analysis was used to estimate active aluminum content of all the samples under investigation. In addition cerimetric back titration method was also used to estimate AAC and the shelf life of passivated aluminum particles. Structural, microstructural and thermogravomateric analysis of four year aged passivated sample also depicts effectiveness of palmitic acid passivation.

  12. Enhanced active aluminum content and thermal behaviour of nano-aluminum particles passivated during synthesis using thermal plasma route

    Energy Technology Data Exchange (ETDEWEB)

    Mathe, Vikas L., E-mail: vlmathe@physics.unipune.ac.in [Department of Physics, Savitribai Phule Pune University, Pune 411007, Maharashtra (India); Varma, Vijay; Raut, Suyog [Department of Physics, Savitribai Phule Pune University, Pune 411007, Maharashtra (India); Nandi, Amiya Kumar; Pant, Arti; Prasanth, Hima; Pandey, R.K. [High Energy Materials Research Lab, Sutarwadi, Pune 411021, Maharashtra (India); Bhoraskar, Sudha V. [Department of Physics, Savitribai Phule Pune University, Pune 411007, Maharashtra (India); Das, Asoka K. [Utkal University, VaniVihar, Bhubaneswar, Odisha 751004 (India)

    2016-04-15

    Graphical abstract: - Highlights: • Synthesis of nano crystalline Al (nAl) using DC thermal plasma reactor. • In situ passivation of nAl by palmitic acid and air. • Enhanced active aluminum content obtained for palmitic acid passivated nAl. • Palmitic acid passivated nAl are quite stable in humid atmospheres. - Abstract: Here, we report synthesis and in situ passivation of aluminum nanoparticles using thermal plasma reactor. Both air and palmitc acid passivation was carried out during the synthesis in the thermal plasma reactor. The passivated nanoparticles have been characterized for their structural and morphological properties using X-ray diffraction (XRD) and transmission electron microscopy (TEM) techniques. In order to understand nature of passivation vibrational spectroscopic analysis have been carried out. The enhancement in active aluminum content and shelf life for a palmitic acid passivated nano-aluminum particles in comparison to the air passivated samples and commercially available nano Al powder (ALEX) has been observed. Thermo-gravimetric analysis was used to estimate active aluminum content of all the samples under investigation. In addition cerimetric back titration method was also used to estimate AAC and the shelf life of passivated aluminum particles. Structural, microstructural and thermogravomateric analysis of four year aged passivated sample also depicts effectiveness of palmitic acid passivation.

  13. SIAM conference on applications of dynamical systems. Abstracts and author index

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-31

    A conference (Oct.15--19, 1992, Snowbird, Utah; sponsored by SIAM (Society for Industrial and Applied Mathematics) Activity Group on Dynamical Systems) was held that highlighted recent developments in applied dynamical systems. The main lectures and minisymposia covered theory about chaotic motion, applications in high energy physics and heart fibrillations, turbulent motion, Henon map and attractor, integrable problems in classical physics, pattern formation in chemical reactions, etc. The conference fostered an exchange between mathematicians working on theoretical issues of modern dynamical systems and applied scientists. This two-part document contains abstracts, conference program, and an author index.

  14. Defect reduction in seeded aluminum nitride crystal growth

    Science.gov (United States)

    Bondokov, Robert T.; Schowalter, Leo J.; Morgan, Kenneth; Slack, Glen A; Rao, Shailaja P.; Gibb, Shawn Robert

    2017-09-26

    Bulk single crystal of aluminum nitride (AlN) having an areal planar defect density.ltoreq.100 cm.sup.-2. Methods for growing single crystal aluminum nitride include melting an aluminum foil to uniformly wet a foundation with a layer of aluminum, the foundation forming a portion of an AlN seed holder, for an AlN seed to be used for the AlN growth. The holder may consist essentially of a substantially impervious backing plate.

  15. 46 CFR 154.195 - Aluminum cargo tank: Steel enclosure.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Aluminum cargo tank: Steel enclosure. 154.195 Section... Equipment Hull Structure § 154.195 Aluminum cargo tank: Steel enclosure. (a) An aluminum cargo tank and its... the aluminum cargo tank must meet the steel structural standards of the American Bureau of Shipping...

  16. Characterization of nanostructured pure aluminum tubes produced by tubular channel angular pressing (TCAP)

    Energy Technology Data Exchange (ETDEWEB)

    Mesbah, M. [Centre of Advanced Manufacturing and Material Processing, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Faraji, G., E-mail: ghfaraji@ut.ac.ir [School of Mechanical Engineering, College of Engineering, University of Tehran, 11155-4563 Tehran (Iran, Islamic Republic of); Centre of Advanced Manufacturing and Material Processing, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Bushroa, A.R. [Centre of Advanced Manufacturing and Material Processing, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2014-01-10

    Ultrafine grained (UFG) aluminum tubes were fabricated by the tubular channel angular pressing (TCAP) process. The microstructural evolution was characterized by transmission electron microscopy (TEM) and mechanical properties were evaluated by compression test and hardness measurements. TEM analysis of specimen subjected to one TCAP pass showed the formation of an array of elongated subgrains with high angle grain boundaries. Increase in the number of passes changes the elongated grains to equiaxed grains with ∼310 nm sizes. Microhardness value of the processed tubes was enhanced to 49.4 Hv after one pass from an initial value of 32.9 Hv. Yield and ultimate strengths were increased 2.5 and 2.28 times as compared to annealed specimen. Compression tests also showed that UFG aluminum tubes exhibit lower work hardening and almost perfect plastic behavior without any failure.

  17. Characterization of nanostructured pure aluminum tubes produced by tubular channel angular pressing (TCAP)

    International Nuclear Information System (INIS)

    Mesbah, M.; Faraji, G.; Bushroa, A.R.

    2014-01-01

    Ultrafine grained (UFG) aluminum tubes were fabricated by the tubular channel angular pressing (TCAP) process. The microstructural evolution was characterized by transmission electron microscopy (TEM) and mechanical properties were evaluated by compression test and hardness measurements. TEM analysis of specimen subjected to one TCAP pass showed the formation of an array of elongated subgrains with high angle grain boundaries. Increase in the number of passes changes the elongated grains to equiaxed grains with ∼310 nm sizes. Microhardness value of the processed tubes was enhanced to 49.4 Hv after one pass from an initial value of 32.9 Hv. Yield and ultimate strengths were increased 2.5 and 2.28 times as compared to annealed specimen. Compression tests also showed that UFG aluminum tubes exhibit lower work hardening and almost perfect plastic behavior without any failure

  18. Dissimilar material joining using laser (aluminum to steel using zinc-based filler wire)

    Science.gov (United States)

    Mathieu, Alexandre; Shabadi, Rajashekar; Deschamps, Alexis; Suery, Michel; Matteï, Simone; Grevey, Dominique; Cicala, Eugen

    2007-04-01

    Joining steel with aluminum involving the fusion of one or both materials is possible by laser beam welding technique. This paper describes a method, called laser braze welding, which is a suitable process to realize this structure. The main problem with thermal joining of steel/aluminum assembly with processes such as TIG or MIG is the formation of fragile intermetallic phases, which are detrimental to the mechanical performances of such joints. Braze welding permits a localized fusion of the materials resulting in a limitation on the growth of fragile phases. This article presents the results of a statistical approach for an overlap assembly configuration using a filler wire composed of 85% Zn and 15% Al. Tensile tests carried on these assemblies demonstrate a good performance of the joints. The fracture mechanisms of the joints are analyzed by a detailed characterization of the seams.

  19. Modeling of plastic localization in aluminum and Al–Cu alloys under shock loading

    International Nuclear Information System (INIS)

    Krasnikov, V.S.; Mayer, A.E.

    2014-01-01

    This paper focuses on the modeling of plastic deformation localization in pure aluminum and aluminum–copper alloys during the propagation of a plane shock wave. Modeling is carried out with the use of continual dislocation plasticity model in 2-D geometry. It is shown that the formation of localization bands occurs at an angle of 45° to the direction of propagation of the shock front. Effective initiators for plastic localization in pure aluminum are the perturbations of the initial dislocation density, in the alloys – perturbations of the dislocation density and the concentration of copper atoms. Perturbations of temperature field in a range of tens of kelvins are not so effective for plastic localization. In the alloy plastic localization intensity decreases with an increase of strain rate due to the thermally activated nature of the dislocation motion

  20. Precision forging technology for aluminum alloy

    Science.gov (United States)

    Deng, Lei; Wang, Xinyun; Jin, Junsong; Xia, Juchen

    2018-03-01

    Aluminum alloy is a preferred metal material for lightweight part manufacturing in aerospace, automobile, and weapon industries due to its good physical properties, such as low density, high specific strength, and good corrosion resistance. However, during forging processes, underfilling, folding, broken streamline, crack, coarse grain, and other macro- or microdefects are easily generated because of the deformation characteristics of aluminum alloys, including narrow forgeable temperature region, fast heat dissipation to dies, strong adhesion, high strain rate sensitivity, and large flow resistance. Thus, it is seriously restricted for the forged part to obtain precision shape and enhanced property. In this paper, progresses in precision forging technologies of aluminum alloy parts were reviewed. Several advanced precision forging technologies have been developed, including closed die forging, isothermal die forging, local loading forging, metal flow forging with relief cavity, auxiliary force or vibration loading, casting-forging hybrid forming, and stamping-forging hybrid forming. High-precision aluminum alloy parts can be realized by controlling the forging processes and parameters or combining precision forging technologies with other forming technologies. The development of these technologies is beneficial to promote the application of aluminum alloys in manufacturing of lightweight parts.

  1. Fifth international fungus spore conference

    Energy Technology Data Exchange (ETDEWEB)

    Timberlake, W.E.

    1993-04-01

    This folio contains the proceedings of the Fifth International Fungal Spore Conference held August 17-21, 1991 at the Unicoi State Park at Helen, Georgia. The volume contains abstracts of each oral presentation as well as a collection of abstracts describing the poster sessions. Presentations were organized around the themes (1) Induction of Sporulation, (2) Nuclear Division, (3) Spore Formation, (4) Spore Release and Dispersal, and (4) Spore Germination.

  2. Modification of mechanical properties of single crystal aluminum oxide by ion beam induced structural changes

    International Nuclear Information System (INIS)

    Ensinger, W.; Nowak, R.; Horino, Y.; Baba, K.

    1993-01-01

    The mechanical behaviour of ceramics is essentially determined by their surface qualities. As a surface modification technique, ion implantation provides the possibility to modify the mechanical properties of ceramics. Highly energetic ions are implanted into the near-surface region of a material and modify its composition and structure. Ions of aluminum, oxygen, nickel and tantalum were implanted into single-crystal α-aluminum oxide. Three-point bending tests showed that an increase in flexural strength of up to 30% could be obtained after implantation of aluminum and oxygen. Nickel and tantalum ion implantation increased the fracture toughness. Indentation tests with Knoop and Vickers diamonds and comparison of the lengths of the developed radial cracks showed that ion implantation leads to a reaction in cracking. The observed effects are assigned to radiation induced structural changes of the ceramic. Ion bombardment leads to radiation damage and formation of compressive stress. In case of tantalum implantation, the implanted near-surface zone becomes amorphous. These effects make the ceramic more resistant to fracture. (orig.)

  3. Role of aluminum doping on phase transformations in nanoporous titania anodic oxides

    Energy Technology Data Exchange (ETDEWEB)

    Bayata, Fatma [Istanbul Bilgi University, Department of Mechanical Engineering, 34060, Eyup, Istanbul (Turkey); Ürgen, Mustafa, E-mail: urgen@itu.edu.tr [Istanbul Technical University, Department of Metallurgical and Materials Engineering, 34469, Maslak, Istanbul (Turkey)

    2015-10-15

    The role of aluminium doping on anatase to rutile phase transformation of nanoporous titanium oxide films were investigated. For this purpose pure and aluminum doped metal films were deposited on alumina substrates by cathodic arc physical deposition. The nanoporous anodic oxides were prepared by porous anodizing of pure and aluminum doped titanium metallic films in an ethylene glycol + NH{sub 4}F based electrolyte. Nanoporous amorphous structures with 60–80 nm diameter and 2–4 μm length were formed on the surfaces of alumina substrates. The amorphous undoped and Al-doped TiO{sub 2} anodic oxides were heat-treated at different temperatures in the range of 280–720 °C for the investigation of their crystallization behavior. The combined effects of nanoporous structure and Al doping on crystallization behavior of titania were investigated using X-ray diffraction (XRD) and micro Raman analysis. The results indicated that both Al ions incorporated into the TiO{sub 2} structure and the nanoporous structure retarded the rutile formation. It was also revealed that presence or absence of metallic film underneath the nanopores has a major contribution to anatase-rutile transformation. - Highlights: • Al-doped TiO{sub 2} nanopores were grown on alumina substrates using anodization method. • The crystallization behavior of nanoporous Al-doped TiO{sub 2} were investigated. • Al doping into nanoporous TiO{sub 2} retarded the anatase-rutile transformation. • Nanostructuring has significant role in controlling rutile formation temperature. • The absence of the metallic film under the nanopores delayed the rutile formation.

  4. Energy analysis of hydrogen and electricity production from aluminum-based processes

    International Nuclear Information System (INIS)

    Wang, Huizhi; Leung, Dennis Y.C.; Leung, Michael K.H.

    2012-01-01

    The aluminum energy conversion processes have been characterized to be carbon-free and sustainable. However, their applications are restrained by aluminum production capacity as aluminum is never found as a free metal on the earth. This study gives an assessment of typical aluminum-based energy processes in terms of overall energy efficiency and cost. Moreover, characteristics associated with different processes are identified. Results in this study indicate the route from which aluminum is produced can be a key factor in determining the efficiency and costs. Besides, the aluminum–air battery provides a more energy-efficient manner for the conversion of energy stored in primary aluminum and recovered aluminum from products compared to aluminum-based hydrogen production, whereas the aluminum-based hydrogen production gives a more energy-efficient way of utilizing energy stored in secondary aluminum or even scrap aluminum.

  5. Aluminum anode for aluminum-air battery - Part II: Influence of In addition on the electrochemical characteristics of Al-Zn alloy in alkaline solution

    Science.gov (United States)

    Park, In-Jun; Choi, Seok-Ryul; Kim, Jung-Gu

    2017-07-01

    Effects of Zn and In additions on the aluminum anode for Al-air battery in alkaline solution are examined by the self-corrosion rate, cell voltage, current-voltage characteristics, anodic polarization, discharge performance and AC impedance measurements. The passivation behavior of Zn-added anode during anodic polarization decreases the discharge performance of Al-air battery. The addition of In to Al-Zn anode reduces the formation of Zn passivation film by repeated adsorption and desorption behavior of In ion onto anode surface. The attenuated Zn passive layer by In ion attack leads to the improvement of discharge performance of Al-air battery.

  6. Lead exposure from aluminum cookware in Cameroon

    International Nuclear Information System (INIS)

    Weidenhamer, Jeffrey D.; Kobunski, Peter A.; Kuepouo, Gilbert; Corbin, Rebecca W.; Gottesfeld, Perry

    2014-01-01

    Blood lead levels have decreased following the removal of lead from gasoline in most of the world. However, numerous recent studies provide evidence that elevated blood lead levels persist in many low and middle-income countries around the world at much higher prevalence than in the more developed countries. One potential source of lead exposure that has not been widely investigated is the leaching of lead from artisanal aluminum cookware, which is commonly used in the developing world. Twenty-nine samples of aluminum cookware and utensils manufactured by local artisans in Cameroon were collected and analyzed for their potential to release lead during cooking. Source materials for this cookware included scrap metal such as engine parts, radiators, cans, and construction materials. The lead content of this cookware is relatively low (< 1000 ppm by X-ray fluorescence), however significant amounts of lead, as well as aluminum and cadmium were released from many of the samples using dilute acetic acid extractions at boiling and ambient temperatures. Potential exposures to lead per serving were estimated to be as high as 260 μg, indicating that such cookware can pose a serious health hazard. We conclude that lead, aluminum and cadmium can migrate from this aluminum cookware during cooking and enter food at levels exceeding recommended public health guidelines. Our results support the need to regulate lead content of materials used to manufacture these pots. Artisanal aluminum cookware may be a major contributor to lead poisoning throughout the developing world. Testing of aluminum cookware in other developing countries is warranted. - Highlights: • Cookware is manufactured in Cameroon from scrap aluminum including car parts. • Twenty-nine cookware samples were evaluated for their potential to leach lead. • Boiling extractions to simulate the effects of cooking released significant lead. • Potential lead exposures per serving are estimated as high as 260 μg.

  7. Lead exposure from aluminum cookware in Cameroon

    Energy Technology Data Exchange (ETDEWEB)

    Weidenhamer, Jeffrey D.; Kobunski, Peter A. [Department of Chemistry, Geology and Physics, 401 College Ave., Ashland University, Ashland, OH 44805 (United States); Kuepouo, Gilbert [Research and Education Centre for Development (CREPD), Yaounde (Cameroon); Corbin, Rebecca W. [Department of Chemistry, Geology and Physics, 401 College Ave., Ashland University, Ashland, OH 44805 (United States); Gottesfeld, Perry, E-mail: pgottesfeld@okinternational.org [Occupational Knowledge International, San Francisco, CA (United States)

    2014-10-15

    Blood lead levels have decreased following the removal of lead from gasoline in most of the world. However, numerous recent studies provide evidence that elevated blood lead levels persist in many low and middle-income countries around the world at much higher prevalence than in the more developed countries. One potential source of lead exposure that has not been widely investigated is the leaching of lead from artisanal aluminum cookware, which is commonly used in the developing world. Twenty-nine samples of aluminum cookware and utensils manufactured by local artisans in Cameroon were collected and analyzed for their potential to release lead during cooking. Source materials for this cookware included scrap metal such as engine parts, radiators, cans, and construction materials. The lead content of this cookware is relatively low (< 1000 ppm by X-ray fluorescence), however significant amounts of lead, as well as aluminum and cadmium were released from many of the samples using dilute acetic acid extractions at boiling and ambient temperatures. Potential exposures to lead per serving were estimated to be as high as 260 μg, indicating that such cookware can pose a serious health hazard. We conclude that lead, aluminum and cadmium can migrate from this aluminum cookware during cooking and enter food at levels exceeding recommended public health guidelines. Our results support the need to regulate lead content of materials used to manufacture these pots. Artisanal aluminum cookware may be a major contributor to lead poisoning throughout the developing world. Testing of aluminum cookware in other developing countries is warranted. - Highlights: • Cookware is manufactured in Cameroon from scrap aluminum including car parts. • Twenty-nine cookware samples were evaluated for their potential to leach lead. • Boiling extractions to simulate the effects of cooking released significant lead. • Potential lead exposures per serving are estimated as high as 260 μg.

  8. Poster exhibitions at conferences: are we doing it properly?

    Science.gov (United States)

    Beamish, Andrew J; Ansell, James; Foster, Jessica J; Foster, Kathryn A; Egan, Richard J

    2015-01-01

    Literature exploring the educational value and quality of conference poster presentation is scarce. The aim of this study was to identify and describe the variation in poster exhibitions across a spectrum of conferences attended by trainees. Prospective observational assessment of conference posters was carried out across 7 variables at 4 conferences attended by surgical trainees in 2012. Posters were compared by individual variables and according to overall poster score combining all 7 variables examined. The number of authors listed was also compared. Random samples of consecutively numbered posters were examined at the exhibitions of 4 conferences, which included a UK national medical education conference (Association for the Study of Medical Education), a UK international surgical conference (Association of Surgeons of Great Britain and Ireland), a European oncology conference (European Society of Surgical Oncology), and a North American joint medical and surgical conference (Digestive Diseases Week). Significant variation existed between conferences in posters and their presentation. The proportion of presenters failing to display their posters ranged from 3% to 26% (p posters that were formatted using aims, methods, results, and conclusion sections (81%-93%; p = 0.513) or in the proportion of posters that were identified as difficult to read (24%-28%; p = 0.919). Association for the Study of Medical Education outperformed each of the other exhibitions overall (p Posters with greater than the median of 4 authors performed significantly better across all areas (p Poster exhibitions varied widely, with room for improvement at all 4 conferences. Lessons can be learned by all conferences from each other to improve presenter engagement with and the educational value of poster exhibitions. Copyright © 2014 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  9. Studies on the formation of aluminides in heated Nb–Al powder mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Sina, H.; Iyengar, S.

    2015-04-15

    Highlights: • Combustion initiates with NbAl{sub 3} formation above the melting point of aluminum. • Nb + 3Al samples yield almost 100% NbAl{sub 3} after combustion. • Nb-rich samples yield multi-phase products after heating to 1000 °C. • Reacted Nb-rich samples yield stable phases on reheating. • For NbAl{sub 3}, calculations show ΔH{sub formation} = −153 ± 15, E{sub activation} = 255 ± 26 kJ mol{sup −1}. - Abstract: The formation of aluminides during the heating of Nb–Al powder mixtures with different initial compositions (25, 33.3 and 75 at.% Al) has been studied using a differential scanning calorimeter. The effect of parameters like particle size, compaction and heating rate on the onset temperature of reaction has been determined. The results show that an increase in heating rate leads to an increase in onset temperature for compacted as well as loose powder samples in the particle size range considered. For Al-rich mixtures, compaction increases the onset temperature irrespective of particle size. For all samples, finer aluminum particles and slower heating rates resulted in a decrease in onset temperature while higher aluminum contents in the mixture led to a higher reaction temperature. In Nb-rich samples, compaction led to a decrease in the onset temperatures. NbAl{sub 3} was the first compound to form in all the mixtures, irrespective of the initial composition. After heating to 1000 °C, EDS and XRD analyses confirmed the formation of only NbAl{sub 3} in Al-rich samples and a mixture of NbAl{sub 3} and Nb{sub 2}Al along with unreacted niobium particles in Nb-rich samples. A subsequent heat treatment was necessary to obtain a single aluminide corresponding to the initial composition. These observations can be explained on the basis of niobium dissolution in molten aluminum and subsequent precipitation of NbAl{sub 3} in Al-rich samples and solid state diffusion through Nb{sub 3}Al and Nb{sub 2}Al phases in Nb-rich samples. For Nb

  10. Infrared reflection absorption spectroscopy study of radiation-heterogeneous processes in the system of aluminum-hexane

    International Nuclear Information System (INIS)

    Gadzhieva, N.N.; Rimikhanova, A.N.; Garibov, A.A.

    2004-01-01

    Full text: Infrared reflection absorption spectroscopy (IRRAS) was applied to study the regularities of radiation conversion of hexane on the surface of aluminum. The research object was the thin polished aluminum plate by mark of AD-00 with reflection coefficient R=0.8†0.85 in infrared range λ=2.2†15 μ . As adsorbate unsaturated vapors of spectroscopy clear hexane were used. The absorption of hexane (C 2 H 14 ) was being studied manometric at pressures P=(0.1†1.0)·10 2 Pa , what corresponded to monolayer value of 1-10. The samples were irradiated with γ-quanta of 60 Co with D=1.03 Gy·s -1 doze rate. Infrared reflection spectrum when linear-polarized radiation fall on the sample under angle ψ=10 o was measured by spectrophotometer 'Specord 71 JR' in diapason of 4000-650cm -1 at the temperature by mean of special reflecting arrangements. Formation of molecular hydrogen (H 2 ) and other gaseous products of decomposition were controlled by chromotographical and infrared spectroscopical methods. The analysis of hexane infrared absorption spectra after radiation-stimulated adsorption on the surface of aluminum, points out the formation of H-bonded hydrocarbon complex ( ν∼2680cm -1 ) with much loosening of C-H bond (the molecular form of absorption) and the possibility of proceeding dissociative absorption with formation of metal-alkyls (ν∼2880, 2920, 2970 cm -1 ). Probability of the last mentioned process, which proceeds in the most defective centers, increases with increasing of γ-radiation doze. It was established that the radiation processes in hetero system Al-ads.C 6 H 14 accelerate the radiolysis of hexane. At all these the radiation decomposition of hexane in hetero system Al-ads.C 6 H 14 is accompanied by formation the surface hydrides (ν∼1700-2000 cm -1 ), acetylene (ν∼3200-3300 cm -1 ), ethylene (ν∼980 cm -1 ), and also gaseous products of molecular hydrogen decomposition (H 2 ) and hydrocarbons C 1 -C 5 (bands with maxima 770, 790

  11. DeepTalk: A complete conference in a picture

    International Nuclear Information System (INIS)

    Watts, Gordon

    2010-01-01

    Particle physics conferences lasting a week (like CHEP) can have 100's of talks and posters presented. Current conference web interfaces (like Indico) are well suited to finding a talk by author or by time-slot. However, browsing the complete material in a modern large conference is not user friendly. Browsing involves continually making the expensive transition between HTML viewing and talk-slides (which are either PDF files or some other format). Further the web interfaces aren't designed for undirected browsing. The advent of multi-core computing and advanced video cards means that we have more processor power available for visualization than any time in the past. This poster describes a technique of rendering a complete conference's slides and posters as a single very large picture. Standard plug-in software for a browser allows a user to zoom in on a portion of the conference that looks interesting. As the user zooms further more and more details become visible, allowing the user to make a quick and chep decision on whether to spend more time on a particular talk. The project, DeepConference, has been implemented as a public web site and can render any conference whose agenda is powered by Indico. The rendering technology is powered by the free download, Silverlight. The poster discusses the implementation and use as well as cross platform performance and possible future directions. A demo will be shown.

  12. 49 CFR 178.512 - Standards for steel or aluminum boxes.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Standards for steel or aluminum boxes. 178.512... aluminum boxes. (a) The following are identification codes for steel or aluminum boxes: (1) 4A for a steel box; and (2) 4B for an aluminum box. (b) Construction requirements for steel or aluminum boxes are as...

  13. Painting rusted steel: The role of aluminum phosphosilicate

    International Nuclear Information System (INIS)

    Roselli, S.N.; Amo, B. del; Carbonari, R.O.; Di Sarli, A.R.; Romagnoli, R.

    2013-01-01

    Highlights: •Aluminum phosphosilicate is an acid pigment which could act as mild phosphating agent. •Aluminum phosphosilicate can phosphatize iron oxides on rusted surfaces. •Aluminum phosphosilicate is compatible with acid binders. •Aluminum phosphosilicate could replace chromate in complete painting schemes. •Aluminum phosphosilicate primers improve paints adhesion on rusted surfaces. -- Abstract: Surface preparation is a key factor for the adequate performance of a paint system. The aim of this investigation is to employ a wash-primer to accomplish the chemical conversion of rusted surface when current cleaning operations are difficult to carry out. The active component of the wash-primer was aluminum phosphosilicate whose electrochemical behavior and the composition of the generated protective layer, both, were studied by electrochemical techniques and scanning electron microscopy (SEM), respectively. Primed rusted steel panels were coated with an alkyd system to perform accelerated tests in the salt spray chamber and electrochemical impedance measurements (EIS). These tests were conducted in parallel with a chromate wash primer and the same alkyd system. Results showed that the wash-primer containing aluminum phosphosilicate could be used satisfactorily to paint rusted steel exhibiting a similar performance to the chromate primer

  14. Aluminum-air battery crystallizer

    Science.gov (United States)

    Maimoni, A.

    1987-01-01

    A prototype crystallizer system for the aluminum-air battery operated reliably through simulated startup and shutdown cycles and met its design objectives. The crystallizer system allows for crystallization and removal of the aluminium hydroxide reaction product; it is required to allow steady-state and long-term operation of the aluminum-air battery. The system has to minimize volume and maintain low turbulence and shear to minimize secondary nucleation and energy consumption while enhancing agglomeration. A lamella crystallizer satisfies system constraints.

  15. Unexpected temporal evolution of atomic spectral lines of aluminum in a laser induced breakdown spectroscopy experiment

    International Nuclear Information System (INIS)

    Saad, Rawad; L'Hermite, Daniel; Bousquet, Bruno

    2014-01-01

    The temporal evolution of the laser induced breakdown (LIBS) signal of a pure aluminum sample was studied under nitrogen and air atmospheres. In addition to the usual decrease of signal due to plasma cooling, unexpected temporal evolutions were observed for a spectral lines of aluminum, which revealed the existence of collisional energy transfer effects. Furthermore, molecular bands of AlN and AlO were observed in the LIBS spectra, indicating recombination of aluminum with the ambient gas. Within the experimental conditions reported in this study, both collisional energy transfer and recombination processes occurred around 1.5 μs after the laser shot. This highlights the possible influence of collisional and chemical effects inside the plasma that can play a role on LIBS signals. - Highlights: • Persistence of two Al I lines related to the 61,844 cm −1 energy level only under nitrogen atmosphere. • Collisional energy transfer effect exists between aluminum and nitrogen. • Observation of molecular band of AlN (under nitrogen) and AlO (under air) after a delay time of 1.5 µs. • 20% of oxygen in air is sufficient to annihilate both the collisional energy transfer effect and the AlN molecular formation

  16. Manufacturing of aluminum composite material using stir casting process

    International Nuclear Information System (INIS)

    Jokhio, M.H.; Panhwar, M.I.; Unar, M.A.

    2011-01-01

    Manufacturing of aluminum alloy based casting composite materials via stir casting is one of the prominent and economical route for development and processing of metal matrix composites materials. Properties of these materials depend upon many processing parameters and selection of matrix and reinforcements. Literature reveals that most of the researchers are using 2, 6 and 7 xxx aluminum matrix reinforced with SiC particles for high strength properties whereas, insufficient information is available on reinforcement of 'AI/sub 2/O/sub 3/' particles in 7 xxx aluminum matrix. The 7 xxx series aluminum matrix usually contains Cu-Zn-Mg; Therefore, the present research was conducted to investigate the effect of elemental metal such as Cu-Zn-Mg in aluminum matrix on mechanical properties of stir casting of aluminum composite materials reinforced with alpha 'AI/sub 2/O/sub 3/' particles using simple foundry melting alloying and casting route. The age hardening treatments were also applied to study the aging response of the aluminum matrix on strength, ductility and hardness. The experimental results indicate that aluminum matrix cast composite can be manufactured via conventional foundry method giving very good responses to the strength and ductility up to 10% 'AI/sub 2/O/sub 3/' particles reinforced in aluminum matrix. (author)

  17. Manufacturing of Aluminum Composite Material Using Stir Casting Process

    Directory of Open Access Journals (Sweden)

    Muhammad Hayat Jokhio

    2011-01-01

    Full Text Available Manufacturing of aluminum alloy based casting composite materials via stir casting is one of the prominent and economical route for development and processing of metal matrix composites materials. Properties of these materials depend upon many processing parameters and selection of matrix and reinforcements. Literature reveals that most of the researchers are using 2, 6 and 7xxx aluminum matrix reinforced with SiC particles for high strength properties whereas, insufficient information is available on reinforcement of \\"Al2O3\\" particles in 7xxx aluminum matrix. The 7xxx series aluminum matrix usually contains Cu-Zn-Mg. Therefore, the present research was conducted to investigate the effect of elemental metal such as Cu-Zn-Mg in aluminum matrix on mechanical properties of stir casting of aluminum composite materials reinforced with alpha \\"Al2O3\\" particles using simple foundry melting alloying and casting route. The age hardening treatments were also applied to study the aging response of the aluminum matrix on strength, ductility and hardness. The experimental results indicate that aluminum matrix cast composite can be manufactured via conventional foundry method giving very good responses to the strength and ductility up to 10% \\"Al2O3\\" particles reinforced in aluminum matrix.

  18. Hydrolysis of aluminum dross material to achieve zero hazardous waste

    International Nuclear Information System (INIS)

    David, E.; Kopac, J.

    2012-01-01

    Highlights: ► The hydrolysis of aluminum dross in tap water generates pure hydrogen. ► Aluminum particles from dross are activated by mechanically milling technique. ► The process is completely greenhouse gases free and is cleanly to environment. ► Hydrolysis process leads to recycling of waste aluminum by hydrogen production. - Abstract: A simple method with high efficiency for generating high pure hydrogen by hydrolysis in tap water of highly activated aluminum dross is established. Aluminum dross is activated by mechanically milling to particles of about 45 μm. This leads to removal of surface layer of the aluminum particles and creation of a fresh chemically active metal surface. In contact with water the hydrolysis reaction takes place and hydrogen is released. In this process a Zero Waste concept is achieved because the other product of reaction is aluminum oxide hydroxide (AlOOH), which is nature-friendly and can be used to make high quality refractory or calcium aluminate cement. For comparison we also used pure aluminum powder and alkaline tap water solution (NaOH, KOH) at a ratio similar to that of aluminum dross content. The rates of hydrogen generated in hydrolysis reaction of pure aluminum and aluminum dross have been found to be similar. As a result of the experimental setup, a hydrogen generator was designed and assembled. Hydrogen volume generated by hydrolysis reaction was measured. The experimental results obtained reveal that aluminum dross could be economically recycled by hydrolysis process with achieving zero hazardous aluminum dross waste and hydrogen generation.

  19. Effect of Interfacial Reaction on the Mechanical Performance of Steel to Aluminum Dissimilar Ultrasonic Spot Welds

    Science.gov (United States)

    Xu, Lei; Wang, Li; Chen, Ying-Chun; Robson, Joe D.; Prangnell, Philip B.

    2016-01-01

    The early stages of formation of intermetallic compounds (IMC) have been investigated in dissimilar aluminum to steel welds, manufactured by high power (2.5 kW) ultrasonic spot welding (USW). To better understand the influence of alloy composition, welds were produced between a low-carbon steel (DC04) and two different aluminum alloys (6111 and 7055). The joint strengths were measured in lap shear tests and the formation and growth behavior of IMCs at the weld interface were characterized by electron microscopy, for welding times from 0.2 to 2.4 seconds. With the material combinations studied, the η (Fe2Al5) intermetallic phase was found to form first, very rapidly in the initial stage of welding, with a discontinuous island morphology. Continuous layers of η and then θ (FeAl3) phase were subsequently seen to develop on extending the welding time to greater than 0.7 second. The IMC layer formed in the DC04-AA7055 combination grew thicker than for the DC04-AA6111 welds, despite both weld sets having near identical thermal histories. Zinc was also found to be dissolved in the IMC phases when welding with the AA7055 alloy. After post-weld aging of the aluminum alloy, fracture in the lap shear tests always occurred along the joint interface; however, the DC04-AA6111 welds had higher fracture energy than the DC04-AA7055 combination.

  20. The Block-Elmegreen conference

    CERN Document Server

    Elmegreen, Bruce; Block, David; Woolway, Matthew

    2015-01-01

     Our understanding of galaxy formation comes mostly from two sources: sensitive observations at high angular resolution of the high-redshift Universe, where galaxies are observed to be forming, and detailed observations of individual stars and clouds in the Local Group, where telltale remnants from its formative time remain and similar processes operate at a low level today. The current conference focusses on key aspects of the Local Group, composed of the Milky Way, Andromeda and Triangulum Spiral Galaxies, the Large and Small Magellanic Cloud galaxies, numerous dwarf and irregular galaxies, and intergalactic gas. Topics include the halo and thick disk of the Milky Way with its first stars and stellar streams; the Milky Way bar, bulge and outer edge; interstellar dust and turbulence; star formation processes and stellar scattering in spiral arms; views through the infrared Eyes of the Spitzer Space Telescope; globular clusters; the Local Gould Belt; stellar metallicities and elemental abundances; the enviro...

  1. New electrolytes for aluminum production: Ionic liquids

    Science.gov (United States)

    Zhang, Mingming; Kamavarum, Venkat; Reddy, Ramana G.

    2003-11-01

    In this article, the reduction, refining/recycling, and electroplating of aluminum from room-temperature molten salts are reviewed. In addition, the characteristics of several non-conventional organic solvents, electrolytes, and molten salts are evaluated, and the applicability of these melts for production of aluminum is discussed with special attention to ionic liquids. Also reviewed are electrochemical processes and conditions for electrodeposition of aluminum using ionic liquids at near room temperatures.

  2. Dissolution rates and solubility of some metals in liquid gallium and aluminum

    International Nuclear Information System (INIS)

    Yatsenko, S P; Sabirzyanov, N A; Yatsenko, A S

    2008-01-01

    The effect of liquid gallium and aluminum on some hard metals leading to dissolution and formation of intermetallic compounds (IMC) under static conditions and rotation of a specimen is studied. The solubility parameters from the Clapeyron-Clausius equation were considered to estimate the stability of still not studied metals. The presented experimental data on solubility and corrosion in a wide temperature range allow to calculate a number of parameters useful in manufacturing and application of master-alloys

  3. 21 CFR 73.1010 - Alumina (dried aluminum hydroxide).

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Alumina (dried aluminum hydroxide). 73.1010... GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1010 Alumina (dried aluminum hydroxide). (a) Identity. (1) The color additive alumina (dried aluminum hydroxide) is a white, odorless...

  4. The chemistry which created Green River Formation oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.W.

    1983-02-01

    The genesis pattern presented for Green River Formation oil shale explains the major observation. Deposition of relatively large quantities of hydrogen-rich organic matter in the oil shales is a natural consequence of the chemical conditions (basic water and reducing atmosphere) and the physical limitation of clastic materials developed in the stratified ancient Lake Uinta. Stability of the stratification produced the continuous deposition of the organic matter and its uniformity over the deposit. Authigenic formation of the oil-shale minerals proceeds naturally from the lake stratification, and the varve production stems from the seasonable development of organic matter. The lake's stratification produced uniform deposition over the entire area it covered, making the correlatable lateral persistence of the thin laminations a natural consequence. As the lake developed, the attack on aluminosilicates by sodium carbonate in the lake's lower layer produced a silicate skeleton protected by aluminum trihydroxide. On deposition, this aluminum-rich skeleton formed illite in quantity. As the lake became more basic, the protecting aluminum hydroxide coating dissolved amphoterically and illite production dropped at a specific point. Continual build-up of sodium carbonate and aluminate ion in the water of the lake's lower layer reached conditions which

  5. END 2015: International Conference on Education and New Developments. Conference Proceedings (Porto, Portugal, June 27-29, 2015)

    Science.gov (United States)

    Carmo, Mafalda, Ed.

    2015-01-01

    We are delighted to welcome you to the International Conference on Education and New Developments 2015-END 2015, taking place in Porto, Portugal, from 27 to 29 of June. Education, in our contemporary world, is a right since we are born. Every experience has a formative effect on the constitution of the human being, in the way one thinks, feels and…

  6. END 2016: International Conference on Education and New Developments. Conference Proceedings (Ljubljana, Slovenia, June 12-14, 2016)

    Science.gov (United States)

    Carmo, Mafalda, Ed.

    2016-01-01

    We are delighted to welcome you to the International Conference on Education and New Developments 2016--END 2016, taking place in Ljubljana, Slovenia, from 12 to 14 of June. Education, in our contemporary world, is a right since we are born. Every experience has a formative effect on the constitution of the human being, in the way one thinks,…

  7. Beryllium-aluminum alloys for investment castings

    International Nuclear Information System (INIS)

    Nachtrab, W.T.; Levoy, N.

    1997-01-01

    Beryllium-aluminum alloys containing greater than 60 wt % beryllium are very favorable materials for applications requiring light weight and high stiffness. However, when produced by traditional powder metallurgical methods, these alloys are expensive and have limited applications. To reduce the cost of making beryllium-aluminum components, Nuclear Metals Inc. (NMI) and Lockheed Martin Electronics and Missiles have recently developed a family of patented beryllium-aluminum alloys that can be investment cast. Designated Beralcast, the alloys can achieve substantial weight savings because of their high specific strength and stiffness. In some cases, weight has been reduced by up to 50% over aluminum investment casting. Beralcast is now being used to make thin wall precision investment castings for several advanced aerospace applications, such as the RAH-66 Comanche helicopter and F-22 jet fighter. This article discusses alloy compositions, properties, casting method, and the effects of cobalt additions on strength

  8. Recycling of aluminum to produce green energy

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Susana Silva; Lopez Benites, Wendy; Alvarez Gallegos, Alberto A. [Centro de Investigacion en Ingenieria y Ciencias Aplicadas, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Morelos C.P. 62210 (Mexico); Sebastian, P.J. [Centro de Investigacion en Energia-UNAM, 62580 Temixco, Morelos (Mexico)

    2005-07-15

    High-purity hydrogen gas was generated from the chemical reaction of aluminum with sodium hydroxide. Several molar relations of sodium hydroxide/aluminum were investigated in this study. The experimental results showed that hydrogen yields are acceptable and its purity was good enough to be used in a proton exchange membrane (PEM) fuel cell to produce electricity. An estimation of the amount of energy produced from the reaction of 100 aluminum cans with caustic soda showed that the hydrogen production is feasible to be scaled up to reach up to 5kWh in a few hours. This study is environmentally friendly and also shows that green energy can be produced from aluminum waste at a low cost.

  9. Low Velocity Impact Properties of Aluminum Foam Sandwich Structural Composite

    Directory of Open Access Journals (Sweden)

    ZHAO Jin-hua

    2018-01-01

    Full Text Available Sandwich structural composites were prepared by aluminum foam as core materials with basalt fiber(BF and ultra-high molecular weight polyethylene(UHMWPE fiber composite as faceplate. The effect of factors of different fiber type faceplates, fabric layer design and the thickness of the corematerials on the impact properties and damage mode of aluminum foam sandwich structure was studied. The impact properties were also analyzed to compare with aluminum honeycomb sandwich structure. The results show that BF/aluminum foam sandwich structural composites has bigger impact damage load than UHMWPE/aluminum foam sandwich structure, but less impact displacement and energy absorption. The inter-layer hybrid fabric design of BF and UHMWPE has higher impact load and energy absorption than the overlay hybrid fabric design faceplate sandwich structure. With the increase of the thickness of aluminum foam,the impact load of the sandwich structure decreases, but the energy absorption increases. Aluminum foam sandwich structure has higher impact load than the aluminum honeycomb sandwich structure, but smaller damage energy absorption; the damage mode of aluminum foam core material is mainly the fracture at the impact area, while aluminum honeycomb core has obvious overall compression failure.

  10. Utilization of Aluminum Waste with Hydrogen and Heat Generation

    Science.gov (United States)

    Buryakovskaya, O. A.; Meshkov, E. A.; Vlaskin, M. S.; Shkolnokov, E. I.; Zhuk, A. Z.

    2017-10-01

    A concept of energy generation via hydrogen and heat production from aluminum containing wastes is proposed. The hydrogen obtained by oxidation reaction between aluminum waste and aqueous solutions can be supplied to fuel cells and/or infrared heaters for electricity or heat generation in the region of waste recycling. The heat released during the reaction also can be effectively used. The proposed method of aluminum waste recycling may represent a promising and cost-effective solution in cases when waste transportation to recycling plants involves significant financial losses (e.g. remote areas). Experiments with mechanically dispersed aluminum cans demonstrated that the reaction rate in alkaline solution is high enough for practical use of the oxidation process. In theexperiments aluminum oxidation proceeds without any additional aluminum activation.

  11. [Process and mechanism of plants in overcoming acid soil aluminum stress].

    Science.gov (United States)

    Zhao, Tian-Long; Xie, Guang-Ning; Zhang, Xiao-Xia; Qiu, Lin-Quan; Wang, Na; Zhang, Su-Zhi

    2013-10-01

    Aluminum (Al) stress is one of the most important factors affecting the plant growth on acid soil. Currently, global soil acidification further intensifies the Al stress. Plants can detoxify Al via the chelation of ionic Al and organic acids to store the ionic Al in vacuoles and extrude it from roots. The Al extrusion is mainly performed by the membrane-localized anion channel proteins Al(3+)-activated malate transporter (ALMT) and multi-drug and toxin extrusion (MATE). The genes encoding ABC transporter and zinc-finger protein conferred plant Al tolerance have also been found. The identification of these Al-resistant genes makes it possible to increase the Al resistance of crop plants and enhance their production by the biological methods such as gene transformation and mark-associated breeding. The key problems needed to be solved and the possible directions in the researches of plant Al stress resistance were proposed.

  12. 21 CFR 172.310 - Aluminum nicotinate.

    Science.gov (United States)

    2010-04-01

    ... and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.310 Aluminum nicotinate. Aluminum nicotinate may be safely...

  13. Highly selective single-use fluoride ion optical sensor based on aluminum(III)-salen complex in thin polymeric film

    International Nuclear Information System (INIS)

    Badr, Ibrahim H.A.; Meyerhoff, Mark E.

    2005-01-01

    A highly selective optical sensor for fluoride ion based on the use of an aluminum(III)-salen complex as an ionophore within a thin polymeric film is described. The sensor is prepared by embedding the aluminum(III)-salen ionophore and a suitable lipophilic pH-sensitive indicator (ETH-7075) in a plasticized poly(vinyl chloride) (PVC) film. Optical response to fluoride occurs due to fluoride extraction into the polymer via formation of a strong complex with the aluminum(III)-salen species. Co-extraction of protons occurs simultaneously, with protonation of the indicator dye yielding the optical response at 529 nm. Films prepared using dioctylsebacate (DOS) are shown to exhibit better response (e.g., linear range, detection limit, and optical signal stability) compared to those prepared using ortho-nitrophenyloctyl ether (o-NPOE). Films formulated with aluminum(III)-salen and ETH-7075 indicator in 2 DOS:1 PVC, exhibit a significantly enhanced selectivity for fluoride over a wide range of lipophilic anions including salicylate, perchlorate, nitrate, and thiocyanate. The optimized films exhibit a sub-micromolar detection limit, using glycine-phosphate buffer, pH 3.00, as the test sample. The response times of the fluoride optical sensing films are in the range of 1-10 min depending on the fluoride ion concentration in the sample. The sensor exhibits very poor reversibility owing to a high co-extraction constant (log K = 8.5 ± 0.4), indicating that it can best be employed as a single-use transduction device. The utility of the aluminum(III)-salen based fluoride sensitive films as single-use sensors is demonstrated by casting polymeric films on the bottom of standard polypropylene microtiter plate wells (96 wells/plate). The modified microtiter plate optode format sensors exhibit response characteristics comparable to the classical optode films cast on quartz slides. The modified microtiter is utilized for the analysis of fluoride in diluted anti-cavity fluoride rinse

  14. 6th International Conference on Operator Theory

    CERN Document Server

    Douglas, R; Sz-Nagy, B; Voiculescu, D; Arsene, Gr

    1982-01-01

    The annual Operator Theory conferences in Timigoara are conceived as a means to promote cooperation and exchange of in­ formation between specialists in all areas of Operator Theory. The present volume consist of papers contributed by the partici­ pants of the 1981 Conference. Since many of these papers contain results on the invariant subspace problem or are related to the role of invariant subspaces in the study of operators or operator systems, we thought it appropiate to mention this in the title of the volume, though the "other topics" have a wide range. As in past years, special sessions concerning other fields of Functio­ nal Analysis were organized at the 1981 Conference, but contri­ butions to these sessions are not included in the present volume. The research contracts of the Department of Mathematics of INCREST with the National Council for Sciences and Technology of Romaliia provided the means for developping the research activity in Functional Analysis; these contracts constitute the generous...

  15. Chemistry which created Green River Formation oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.W.

    1983-01-01

    The genesis pattern presented for Green River Formation oil shale explains the major observation. Deposition of relatively large quantities of hydrogen-rich organic matter in the oil shales is a natural consequence of the chemical conditions (basic water and reducing atmosphere) and the physical limitation of clastic materials developed in the stratified ancient Lake Uinta. Stability of the stratification produced the continuous deposition of the organic matter and its uniformity over the deposit. Authigenic formation of the oil-shale minerals proceeds naturally from the lake stratification, and the varve production stems from the seasonable development of organic matter. The lake's stratification produced uniform deposition over the entire area it covered, making the correlatable lateral persistence of the thin laminations a natural consequence. As the lake developed, the attack on aluminosilicates by sodium carbonate in the lower layer produced a silicate skeleton protected by aluminum trihydroxide. On deposition, this aluminum-rich skeleton formed illite in quantity. As the lake became more basic, the protecting aluminum hydroxide coating dissolved amphoterically and illite production dropped at a specific point. Continual build-up of sodium carbonate and aluminate ion in the water of the lake's lower layer reached conditions which precipitated dawsonite and crystallized nahcolite in the sediment as a result of CO/sub 2/ production from organic matter. (JMT)

  16. Effect of Iron Impurity on the Phase Composition, Structure and Properties of Magnesium Alloys Containing Manganese and Aluminum

    Science.gov (United States)

    Volkova, E. F.

    2017-07-01

    Results of a study of the interaction between iron impurity and manganese and aluminum alloying elements during formation of phase composition in alloys of the Mg - Mn, Mg - Al, Mg - Al - Mn, and Mg - Al - Zn - Mn systems are presented. It is proved that this interaction results in introduction of Fe into the intermetallic phase. The phase compositions of model magnesium alloys and commercial alloys MA2-1 and MA5 are studied. It is shown that both manganese and aluminum may bind the iron impurity into phases. Composite Fe-containing intermetallic phases of different compositions influence differently the corrosion resistance of magnesium alloys.

  17. 21 CFR 73.1015 - Chromium-cobalt-aluminum oxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Chromium-cobalt-aluminum oxide. 73.1015 Section 73... LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1015 Chromium-cobalt-aluminum oxide. (a) Identity. The color additive chromium-cobalt-aluminum oxide is a blue-green pigment obtained by calcining a...

  18. Blending the Roles of Interpreter, Entrepreneur, Collaborator. A New Model for Conferences and Institutes Program Planners. The Guide Series.

    Science.gov (United States)

    Dahl, Carolyn Carson

    This six-chapter guide suggests a new approach to describing the knowledge, competencies, and managerial roles inherent in planning effective conferences and institutes. Chapter 1 introduces the many roles of the conferences and institutes program planner and discusses program formats and what makes conference programs unique learning events.…

  19. Electrometallurgical treatment of aluminum-matrix fuels

    International Nuclear Information System (INIS)

    Willit, J.L.; Gay, E.C.; Miller, W.E.; McPheeters, C.C.; Laidler, J.J.

    1996-01-01

    The electrometallurgical treatment process described in this paper builds on our experience in treating spent fuel from the Experimental Breeder Reactor (EBR-II). The work is also to some degree, a spin-off from applying electrometallurgical treatment to spent fuel from the Hanford single pass reactors (SPRs) and fuel and flush salt from the Molten Salt Reactor Experiment (MSRE) in treating EBR-II fuel, we recover the actinides from a uranium-zirconium fuel by electrorefining the uranium out of the chopped fuel. With SPR fuel, uranium is electrorefined out of the aluminum cladding. Both of these processes are conducted in a LiCl-KCl molten-salt electrolyte. In the case of the MSRE, which used a fluoride salt-based fuel, uranium in this salt is recovered through a series of electrochemical reductions. Recovering high-purity uranium from an aluminum-matrix fuel is more challenging than treating SPR or EBR-II fuel because the aluminum- matrix fuel is typically -90% (volume basis) aluminum

  20. Aluminum Solubility in Complex Electrolytes - 13011

    Energy Technology Data Exchange (ETDEWEB)

    Agnew, S.F. [Columbia Energy and Environmental Services, Inc., 1806 Terminal Dr., Richland, WA 99354 (United States); Johnston, C.T. [Dept. of Crop, Soil, and Environmental Sciences, Purdue University, West Lafayette, IN 47907 (United States)

    2013-07-01

    Predicting aluminum solubility for Hanford and Savannah River waste liquids is very important for their disposition. It is a key mission goal at each Site to leach as much aluminum as practical from sludges in order to minimize the amount of vitrified high level waste. And it is correspondingly important to assure that any soluble aluminum does not precipitate during subsequent decontamination of the liquid leachates with ion exchange. This report shows a very simple and yet thermodynamic model for aluminum solubility that is consistent with a wide range of Al liquors, from simple mixtures of hydroxide and aluminate to over 300 Hanford concentrates and to a set of 19 Bayer liquors for temperatures from 20-100 deg. C. This dimer-dS{sub mix} (DDS) model incorporates an ideal entropy of mixing along with previous reports for the Al dimer, water activities, gibbsite, and bayerite thermodynamics. We expect this model will have broad application for nuclear wastes as well as the Bayer gibbsite process industry. (authors)

  1. Report from the Third IUPAP International Conference on Women in Physics

    Science.gov (United States)

    Freeland, Emily E.; Murphy, N.; Jang-Condell, H.; Gomez Maqueo Chew, Y.

    2009-12-01

    The Third IUPAP (International Union of Pure and Applied Physics) International Conference on Women in Physics was held in Seoul, South Korea from October 8-10, 2008 with 283 participants from 57 countries. Topics discussed included personal and professional development, attracting girls to physics, site visits for assessing and improving the climate for women, fundraising and leadership, and organizing women in physics working groups. Resolutions unanimously passed by the conference assembly recommend (1) the formation of additional regional or national working groups for women in physics, (2) promotion of site visits as an effective tool for improving the climate of the physics workplace, (3) increased professional development opportunities and outreach activities associated with conferences, and (4) a global survey of physicists in 2009 to assess the status of women in physics. See http://www.icwip2008.org/ for the text of the resolutions and the conference program. In this poster, AAS members who participated will report on this conference as well as resolutions from the first (Paris, 2002) and second (Rio de Janeiro, 2005) conferences. The next IUPAP Conference on Women in Physics is expected to occur in South Africa in 2011.

  2. Electrochemically replicated smooth aluminum foils for anodic alumina nanochannel arrays

    International Nuclear Information System (INIS)

    Biring, Sajal; Tsai, K-T; Sur, Ujjal Kumar; Wang, Y-L

    2008-01-01

    A fast electrochemical replication technique has been developed to fabricate large-scale ultra-smooth aluminum foils by exploiting readily available large-scale smooth silicon wafers as the masters. Since the adhesion of aluminum on silicon depends on the time of surface pretreatment in water, it is possible to either detach the replicated aluminum from the silicon master without damaging the replicated aluminum and master or integrate the aluminum film to the silicon substrate. Replicated ultra-smooth aluminum foils are used for the growth of both self-organized and lithographically guided long-range ordered arrays of anodic alumina nanochannels without any polishing pretreatment

  3. Lithium-aluminum-iron electrode composition

    Science.gov (United States)

    Kaun, Thomas D.

    1979-01-01

    A negative electrode composition is presented for use in a secondary electrochemical cell. The cell also includes an electrolyte with lithium ions such as a molten salt of alkali metal halides or alkaline earth metal halides that can be used in high-temperature cells. The cell's positive electrode contains a a chalcogen or a metal chalcogenide as the active electrode material. The negative electrode composition includes up to 50 atom percent lithium as the active electrode constituent in an alloy of aluminum-iron. Various binary and ternary intermetallic phases of lithium, aluminum and iron are formed. The lithium within the intermetallic phase of Al.sub.5 Fe.sub.2 exhibits increased activity over that of lithium within a lithium-aluminum alloy to provide an increased cell potential of up to about 0.25 volt.

  4. Recrystallization in Commercially Pure Aluminum

    DEFF Research Database (Denmark)

    Bay, Bent; Hansen, Niels

    1984-01-01

    Recrystallization behavior in commercial aluminum with a purity of 99.4 pct was studied by techniques such as high voltage electron microscopy, 100 kV transmission electron microscopy, and light microscopy. Sample parameters were the initial grain size (290 and 24 microns) and the degree of defor......Recrystallization behavior in commercial aluminum with a purity of 99.4 pct was studied by techniques such as high voltage electron microscopy, 100 kV transmission electron microscopy, and light microscopy. Sample parameters were the initial grain size (290 and 24 microns) and the degree...... are discussed and compared with results from an earlier study1 covering the recrystallization behavior of commercial aluminum of the same purity deformed at higher degrees of deformation (50 to 90 pct reduction in thickness by cold-rolling)....

  5. Aluminum-carbon composite electrode

    Science.gov (United States)

    Farahmandi, C. Joseph; Dispennette, John M.

    1998-07-07

    A high performance double layer capacitor having an electric double layer formed in the interface between activated carbon and an electrolyte is disclosed. The high performance double layer capacitor includes a pair of aluminum impregnated carbon composite electrodes having an evenly distributed and continuous path of aluminum impregnated within an activated carbon fiber preform saturated with a high performance electrolytic solution. The high performance double layer capacitor is capable of delivering at least 5 Wh/kg of useful energy at power ratings of at least 600 W/kg.

  6. Preparation of aluminum nitride-silicon carbide nanocomposite powder by the nitridation of aluminum silicon carbide

    NARCIS (Netherlands)

    Itatani, K.; Tsukamoto, R.; Delsing, A.C.A.; Hintzen, H.T.J.M.; Okada, I.

    2002-01-01

    Aluminum nitride (AlN)-silicon carbide (SiC) nanocomposite powders were prepared by the nitridation of aluminum-silicon carbide (Al4SiC4) with the specific surface area of 15.5 m2·g-1. The powders nitrided at and above 1400°C for 3 h contained the 2H-phases which consisted of AlN-rich and SiC-rich

  7. Aluminum extrusion with a deformable die

    NARCIS (Netherlands)

    Assaad, W.

    2010-01-01

    Aluminum extrusion process is one of metal forming processes. In aluminum extrusion, a work-piece (billet) is pressed through a die with an opening that closely resembles a desired shape of a profile. By this process, long profiles with an enormous variety of cross-sections can be produced to

  8. Aluminum uptake from natural waters by a radiation-grafted membrane

    Energy Technology Data Exchange (ETDEWEB)

    Bazante-Yamaguishi, Renata; Moura, Eduardo; Manzoli, Jose E.; Geraldo, Aurea B.C., E-mail: ageraldo@ipen.br, E-mail: ryamaguishi@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Styrene grafted, chemically modified polymeric membranes were used to carry off aluminum of drinking water from wells located at Billings dam region. The membranes comprised polymeric substrates of PVC (polyvinylchloride) and PP (polypropylene), which were mutually grafted with gamma radiation. The chemical modification included three basic reaction paths: Friedel-Crafts acylation, 2-methylanisole coupling and a final oxidation; this modification enables aluminum selectivity on the membrane. This chemical process inserts a salicylated derivative bonded onto the aromatic ring of styrene; such molecular arrangement is responsible for complexation of aluminum ions. The aluminum sorption capacity of these membranes was evaluated firstly from an aluminum control solution, where parameters like the ideal pH value for aluminum sorption and the interfering species were studied and correlated to know the best conditions for aluminum uptake. Later, the membranes were used for aluminum remediation of natural waters (real-life samples). The applicability results and limits are then discussed. (author)

  9. Aluminum uptake from natural waters by a radiation-grafted membrane

    International Nuclear Information System (INIS)

    Bazante-Yamaguishi, Renata; Moura, Eduardo; Manzoli, Jose E.; Geraldo, Aurea B.C.

    2013-01-01

    Styrene grafted, chemically modified polymeric membranes were used to carry off aluminum of drinking water from wells located at Billings dam region. The membranes comprised polymeric substrates of PVC (polyvinylchloride) and PP (polypropylene), which were mutually grafted with gamma radiation. The chemical modification included three basic reaction paths: Friedel-Crafts acylation, 2-methylanisole coupling and a final oxidation; this modification enables aluminum selectivity on the membrane. This chemical process inserts a salicylated derivative bonded onto the aromatic ring of styrene; such molecular arrangement is responsible for complexation of aluminum ions. The aluminum sorption capacity of these membranes was evaluated firstly from an aluminum control solution, where parameters like the ideal pH value for aluminum sorption and the interfering species were studied and correlated to know the best conditions for aluminum uptake. Later, the membranes were used for aluminum remediation of natural waters (real-life samples). The applicability results and limits are then discussed. (author)

  10. Determination of aluminum by four analytical methods

    International Nuclear Information System (INIS)

    Hanson, T.J.; Smetana, K.M.

    1975-11-01

    Four procedures have been developed for determining the aluminum concentration in basic matrices. Atomic Absorption Spectroscopy (AAS) was the routine method of analysis. Citrate was required to complex the aluminum and eliminate matrix effects. AAS was the least accurate of the four methods studied and was adversely affected by high aluminum concentrations. The Fluoride Electrode Method was the most accurate and precise of the four methods. A Gran's Plot determination was used to determine the end point and average standard recovery was 100% +- 2%. The Thermometric Titration Method was the fastest method for determining aluminum and could also determine hydroxide concentration at the same time. Standard recoveries were 100% +- 5%. The pH Electrode Method also measures aluminum and hydroxide content simultaneously, but is less accurate and more time consuming that the thermal titration. Samples were analyzed using all four methods and results were compared to determine the strengths and weaknesses of each. On the basis of these comparisons, conclusions were drawn concerning the application of each method to our laboratory needs

  11. Plasticity and damage in aluminum syntactic foams deformed under dynamic and quasi-static conditions

    Energy Technology Data Exchange (ETDEWEB)

    Balch, Dorian K. [Northwestern University, Evanston, IL (United States); O' Dwyer, John G. [Waterford Institute of Technology (Ireland); Davis, Graham R. [Queen Mary, University of London (United Kingdom); Cady, Carl M. [Los Alamos National Laboratory, Los Alamos, NM (United States); Gray, George T. [Los Alamos National Laboratory, Los Alamos, NM (United States); Dunand, David C. [Northwestern University, Evanston, IL (United States)]. E-mail: dunand@northwestern.edu

    2005-01-25

    Syntactic foams were fabricated by liquid metal infiltration of commercially pure and 7075 aluminum into preforms of hollow ceramic microspheres. The foams exhibited peak strengths during quasi-static compression ranging from -100 to -230 MPa, while dynamic compression loading showed a 10-30% increase in peak strength magnitude, with strain rate sensitivities similar to those of aluminum-matrix composite materials. X-ray tomographic investigation of the post-compression loaded foam microstructures revealed sharp differences in deformation modes, with the unalloyed-Al foam failing initially by matrix deformation, while the alloy-matrix foams failed more abruptly through the formation of sharp crush bands oriented at about 45 deg. to the compression axis. These foams displayed pronounced energy-absorbing capabilities, suggesting their potential use in packaging applications or for impact protection; proper tailoring of matrix and microsphere strengths would result in optimized syntactic foam properties.

  12. Behaviour of aluminum foam under fire conditions

    Directory of Open Access Journals (Sweden)

    J. Grabian

    2008-07-01

    Full Text Available Taking into account fire-protection requirements it is advantageous for aluminum foam, after melting at a temperature considerably exceeding the melting point, to have a structure of discontinuous suspension of solid inclusions to liquid metal instead of liquid consistency. Continuity of the suspension depends on the solid phase content. The boundary value of the phase determined by J. Śleziona, above which the suspension becomes discontinuous, is provided by the formula (1. Figure 1 presents the relationship graphically. Boundary values of the vs content resulting from the above relationship is too low, taking into account the data obtained from the technology of suspension composites [4]. Therefore, based on the structure assumed for the suspension shown in Figure 2 these authors proposed another way of determining the contents, the value of which is determined by the relationship (3 [5].For purposes of the experimental study presented in the paper two foams have been molten: a commercially available one, made by aluminum foaming with titanium hydride, and a foam manufactured in the Marine Materials Plant of the Maritime University of Szczecin by blowing the AlSi7 +20% SiC composite with argon. Macrophotographs of foam cross-sections are shown in Figure 3. The foams have been molten in the atmosphere of air at a temperature of 750ºC. The products of melting are presented in Figure 4. It appears that molten aluminum foam may have no liquid consistency, being unable to flow, which is a desired property from the point of view of fire-protection. The above feature of the molten foam results from the fact that it may be a discontinuous suspension of solid particles in a liquid metal. The suspended particles may be solid particles of the composite that served for making the foam or oxide membranes formed on extended metal surface of the bubbles included in the foam. The desired foam ability to form a discontinuous suspension after melting may be

  13. Aluminum as anode for energy storage and conversion: a review

    Science.gov (United States)

    Li, Qingfeng; Bjerrum, Niels J.

    Aluminum has long attracted attention as a potential battery anode because of its high theoretical voltage and specific energy. The protective oxide layer on the aluminum surface is however detrimental to the battery performance, contributing to failure to achieve the reversible potential and causing the delayed activation of the anode. By developing aluminum alloys as anodes and solution additives to electrolytes, a variety of aluminum batteries have been extensively investigated for various applications. From molten salt and other non-aqueous electrolytes, aluminum can be electrodeposited and therefore be suitable for developing rechargable batteries. Considerable efforts have been made to develop secondary aluminum batteries of high power density. In the present paper, these research activities are reviewed, including aqueous electrolyte primary batteries, aluminum-air batteries and molten salt secondary batteries.

  14. A liquid aluminum corrosion resistance surface on steel substrate

    International Nuclear Information System (INIS)

    Wang Deqing; Shi Ziyuan; Zou Longjiang

    2003-01-01

    The process of hot dipping pure aluminum on a steel substrate followed by oxidation was studied to form a surface layer of aluminum oxide resistant to the corrosion of aluminum melt. The thickness of the pure aluminum layer on the steel substrate is reduced with the increase in temperature and time in initial aluminizing, and the thickness of the aluminum layer does not increase with time at given temperature when identical temperature and complete wetting occur between liquid aluminum and the substrate surface. The thickness of the Fe-Al intermetallic layer on the steel base is increased with increasing bath temperature and time. Based on the experimental data and the mathematics model developed by the study, a maximum exists in the thickness of the Fe-Al intermetallic at certain dipping temperature. X-ray diffraction (XRD) and energy dispersive X-ray (EDX) analysis reveals that the top portion of the steel substrate is composed of a thin layer of α-Al 2 O 3 , followed by a thinner layer of FeAl 3 , and then a much thicker one of Fe 2 Al 5 on the steel base side. In addition, there is a carbon enrichment zone in diffusion front. The aluminum oxide surface formed on the steel substrate is in perfect condition after corrosion test in liquid aluminum at 750 deg. C for 240 h, showing extremely good resistance to aluminum melt corrosion

  15. Les métiers innovants de la formation. Le champ de la formation professionnelle et l'ingénierie de formation à distance

    OpenAIRE

    Marty, Olivier

    2013-01-01

    National audience; This document is extracted from a conference for PhD students at La Sorbonne University (Paris) about innovative teaching professions. It describes and analyses the crafts of vocational education as well as public distance education engineering.; Ce document est le support d'une conférence sur les métiers innovants de la formation. Après les définitions d'usage, il décrit et analyse les métiers de la formation professionnelle continue et l'ingénierie de formation à distance...

  16. Fatigue analysis of aluminum drill pipes

    Directory of Open Access Journals (Sweden)

    João Carlos Ribeiro Plácido

    2005-12-01

    Full Text Available An experimental program was performed to investigate the fundamental fatigue mechanisms of aluminum drill pipes. Initially, the fatigue properties were determined through small-scale tests performed in an optic-mechanical fatigue apparatus. Additionally, full-scale fatigue tests were carried out with three aluminum drill pipe specimens under combined loading of cyclic bending and constant axial tension. Finally, a finite element model was developed to simulate the stress field along the aluminum drill pipe during the fatigue tests and to estimate the stress concentration factors inside the tool joints. By this way, it was possible to estimate the stress values in regions not monitored during the fatigue tests.

  17. Electronic structure and formation energy of a vacancy in aluminum

    International Nuclear Information System (INIS)

    Chakraborty, B.; Siegel, R.W.

    1981-11-01

    The electronic structure of a vacancy in Al was calculated self-consistently using norm-conserving ionic pseudopotentials obtained from ab initio atomic calculations. A 27-atom-site supercell containing 1 vacancy and 26 atoms was used to simulate the environment of the vacancy. A vacancy formation energy of 1.5 eV was also calculated (cf. the experimental value of 0.66 eV). The effects of the supercell and the nature of the ionic potential on the resulting electronic structure and formation energy are discussed. Results for the electronic structure of a divacancy are also presented. 3 figures

  18. Method of melting and decontaminating radioactive contaminated aluminum material

    International Nuclear Information System (INIS)

    Uda, Tatsuhiko; Miura, Noboru; Kawasaki, Katsuo; Iba, Hajime.

    1986-01-01

    Purpose: To improve the decontaminating efficiency upon melting decontamination of radioactive-contaminated aluminum materials. Method: This invention concerns an improvement for the method of melting decontamination by adding slug agent composed of organic compound to contaminated aluminum material and extracting the radioactive materials into the slug thereby decontaminating the aluminum material. Specifically metals effective for reducing the active amount of aluminum are added such that the content is greater than a predetermined value in the heat melting process. The metal comprises Mg, Cu or a mixture thereof and the content is more than 4 % including those previously contained in the aluminum material. (Ikeda, J.)

  19. Reuse of Aluminum Dross as an Engineered Product

    Science.gov (United States)

    Dai, Chen; Apelian, Diran

    To prevent the leaching of landfilled aluminum dross waste and save the energy consumed by recovering metallic aluminum from dross, aluminum dross is reused as an engineering product directly rather than "refurbished" ineffectively. The concept is to reduce waste and to reuse. Two kinds of aluminum dross from industrial streams were selected and characterized. We have shown that dross can be applied directly, or accompanied with a simple conditioning process, to manufacture refractory components. Dross particles below 50 mesh are most effective. Mechanical property evaluations revealed the possibility for dross waste to be utilized as filler in concrete, resulting in up to 40% higher flexural strength and 10% higher compressive strength compared to pure cement, as well as cement with sand additions. The potential usage of aluminum dross as a raw material for such engineering applications is presented and discussed.

  20. Investigation of the Precipitation Behavior in Aluminum Based Alloys

    KAUST Repository

    Khushaim, Muna S.

    2015-11-30

    ternary Al-Li-Cu alloys. Atom probe tomography and statistical testing are combined to investigate the fine scale segregation effects of dilute solutes in aluminum alloys. The optimum application of atom probe tomography in a wide range of materials is enabled by the integration of a laser pulse mode in the atom probe analysis. However, the nature of the laser mechanism used during atom probe tomography analyses is still debated. Systematic investigation of the microstructural change of δ′(Al3Li) precipitates influenced by different pulsed laser energies are used to describe the important phenome associated with the laser pulse mode. In this study, atom probe tomography presented a series of snapshots during in-situ reversion of ′(Al3Li) precipitates, initiated by laser irradiation, using different laser energies for the first time. An estimation method to investigate real sample temperatures during laser-APT analyses using an interface reaction itself as a probe has been proposed. Finally, the considerable potential of aluminum liquid is demonstrated as a powerful synthesis solvent of important intermetallic phases such as: Mg2Si, Al2Mg and CaMgSi .The atom probe tomography technique is utilized to characterize the intermediate reaction steps of the flux-grown intermetallic phases. The study proposed a direct approach to investigate the involved reactions during the formation of the synthesized intermetallic phase.

  1. Transition of hydrated oxide layer for aluminum electrolytic capacitors

    International Nuclear Information System (INIS)

    Chi, Choong-Soo; Jeong, Yongsoo; Ahn, Hong-Joo; Lee, Jong-Ho; Kim, Jung-Gu; Lee, Jun-Hee; Jang, Kyung-Wook; Oh, Han-Jun

    2007-01-01

    A hydrous oxide film for the application as dielectric film is synthesized by immersion of pure aluminum in hot water. From a Rutherford backscattering analysis, the ratio of aluminum to oxygen atoms was found to be 3:2 in the anodized aluminum oxide film, and 2:1 in the hydrous oxide layer. Anodization of the hydrous oxide layer was more effective for the transition of amorphous anodic oxides to the crystalline aluminum oxides

  2. Charge-density-shear-moduli relationships in aluminum-lithium alloys.

    Science.gov (United States)

    Eberhart, M

    2001-11-12

    Using the first principles full-potential linear-augmented-Slater-type orbital technique, the energies and charge densities of aluminum and aluminum-lithium supercells have been computed. The experimentally observed increase in aluminum's shear moduli upon alloying with lithium is argued to be the result of predictable changes to aluminum's total charge density, suggesting that simple rules may allow the alloy designer to predict the effects of dilute substitutional elements on alloy elastic response.

  3. Design and research on discharge performance for aluminum-air battery

    Science.gov (United States)

    Liu, Zu; Zhao, Junhong; Cai, Yanping; Xu, Bin

    2017-01-01

    As a kind of clean energy, the research of aluminum air battery is carried out because aluminum-air battery has advantages of high specific energy, silence and low infrared. Based on the research on operating principle of aluminum-air battery, a novel aluminum-air battery system was designed composed of aluminum-air cell and the circulation system of electrolyte. A system model is established to analyze the polarization curve, the constant current discharge performance and effect of electrolyte concentration on the performance of monomer. The experimental results show that the new energy aluminum-air battery has good discharge performance, which lays a foundation for its application.

  4. Microstructural transformation with heat-treatment of aluminum hydroxide with gibbsite structure

    International Nuclear Information System (INIS)

    Mitsui, Tomohiro; Matsui, Toshiaki; Eguchi, Koichi; Kikuchi, Ryuji

    2009-01-01

    Aluminum hydroxide with gibbsite structure was prepared, and the microstructural transformation of the sample heat-treated at various temperatures was investigated. The sample was characterized by field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), thermogravimetry and differential thermal analysis (TG-DTA), and BET surface area. The shape of the grains in the prepared sample was hexagonal prism-like morphology. The prepared sample kept a metastable state of alumina phase at higher temperatures than the commercially available gibbsite powders. The prepared gibbsite grains underwent characteristic structural change depending on the calcination temperature. The transformation of the surface morphology was initiated at 400degC, leading to the formation of cracks with the direction parallel to the basal plane. After calcination at 1200degC, a large number of grooves were formed on the surface of the lateral planes. The specific structural change of gibbsite induced by the heat treatment was strongly related to the topotactic dehydration from gibbsite and subsequent phase transition to aluminum oxides. (author)

  5. Electrochemical Thinning for Anodic Aluminum Oxide and Anodic Titanium Oxide

    Energy Technology Data Exchange (ETDEWEB)

    Lee, In Hae; Jo, Yun Kyoung; Kim, Yong Tae; Tak, Yong Sug; Choi, Jin Sub [Inha University, Incheon (Korea, Republic of)

    2012-05-15

    For given electrolytes, different behaviors of anodic aluminum oxide (AAO) and anodic titanium oxide (ATO) during electrochemical thinning are explained by ionic and electronic current modes. Branched structures are unavoidably created in AAO since the switch of ionic to electronic current is slow, whereas the barrier oxide in ATO is thinned without formation of the branched structures. In addition, pore opening can be possible in ATO if chemical etching is performed after the thinning process. The thinning was optimized for complete pore opening in ATO and potential-current behavior is interpreted in terms of ionic current-electronic current switching.

  6. Evidence of sub-10 nm aluminum-oxygen precipitates in silicon

    International Nuclear Information System (INIS)

    Moutanabbir, Oussama; Isheim, Dieter; Mao, Zugang; Seidman, David N

    2016-01-01

    In this research, ultraviolet laser-assisted atom-probe tomography (APT) was utilized to investigate precisely the behavior at the atomistic level of aluminum impurities in ultrathin epitaxial silicon layers. Aluminum atoms were incorporated in situ during the growth process. The measured average aluminum concentration in the grown layers exceeds by several orders of magnitude the equilibrium bulk solubility. Three-dimensional atom-by-atom mapping demonstrates that aluminum atoms precipitate in the silicon matrix and form nanoscopic precipitates with lateral dimensions in the 1.3 to 6.2 nm range. These precipitates were found to form only in the presence of oxygen impurity atoms, thus providing clear evidence of the long-hypothesized role of oxygen and aluminum-oxygen complexes in facilitating the precipitation of aluminum in a silicon lattice. The measured average aluminum and oxygen concentrations in the precipitates are ∼10 ± 0.5 at.% and ∼4.4 ± 0.5 at.%, respectively. This synergistic interaction is supported by first-principles calculations of the binding energies of aluminum-oxygen dimers in silicon. The calculations demonstrate that there is a strong binding between aluminum and oxygen atoms, with Al-O-Al and O-Al-Al as the energetically favorable sequences corresponding to precipitates in which the concentration of aluminum is twice as large as the oxygen concentration in agreement with APT data. (paper)

  7. Corrosion of aluminum components and remedial measures

    International Nuclear Information System (INIS)

    Sheikh, S.T.; Khalique, A.; Malik, F.A.

    2006-01-01

    Aluminum has versatile physical properties, mechanical strength, corrosion resistance, and is used in special applications like aerospace, automobiles and other strategic industries. The outdoor exposed structural components of aluminum have very good corrosion resistance due to the thick oxide layer (0.2 -0.4 micro). This study involves the corrosion of aluminum based components, though aluminum is protected by an oxide layer but due to extreme weather and environmental conditions the oxide layer was damaged. The corroded product was removed, pits or cavities formed due to the material removal were filled with epoxy resins and acrylic-based compounds containing fibreglass as reinforcement. Optimum results were obtained with epoxy resins incorporated with 5% glass fibers. The inner surface of the components was provided further protection with a cellulose nitrate compound. (author)

  8. Can You Hear Me Now? Assessing Students’ Classroom Communication Preferences via a Telephone Conference Activity

    Directory of Open Access Journals (Sweden)

    Sharon G. Heilmann

    2012-01-01

    Full Text Available Telephone conference presentation delivery was compared to face-to-face classroom delivery in an undergraduate business course setting to assess whether concern over presenting in front of the class and/or gender impacted presentation mode preference. After completing a classroom exercise, students (n=102 were surveyed and asked to compare delivery methods from two courses, one requiring a telephone conference and the other requiring a face-to-face classroom presentation, in terms of perceived effectiveness, feedback, teamwork, instructor cues, preparation time, and overall comfort. Independent sample t-test results indicated respondents who worried about presenting in front of the class believed the telephone conference format required more attention to verbal presentation quality, and they also worried more about presenting in the telephone conference format than respondents who did not worry about presenting in front of the class. In terms of gender, female respondents indicated more attention to visual aid was required during the teleconference format, believed the teleconference presentation format allowed for the same opportunity for feedback from the instructor as the formal presentation, were more likely to indicate they were concerned about speaking in front of the classroom during formal presentations, and were also more concerned about speaking during the teleconference than male respondents. Overall, results indicated the teleconference activity was perceived to be a practical alternative to the traditional face-to-face delivery method; however, females’ perceptions of discomfort across both delivery formats warrant further study. The views expressed in this paper are those of the author and do not reflect the official policy or position of the United States Air Force, Department of Defense, or the United States Government.

  9. Weld Growth Mechanisms and Failure Behavior of Three-Sheet Resistance Spot Welds Made of 5052 Aluminum Alloy

    Science.gov (United States)

    Li, Yang; Yan, Fuyu; Luo, Zhen; Chao, Y. J.; Ao, Sansan; Cui, Xuetuan

    2015-06-01

    This paper investigates the weld nugget formation in three-sheet aluminum alloy resistance spot welding. The nugget formation process in three equal thickness sheets and three unequal thickness sheets of 5052 aluminum alloy were studied. The results showed that the nugget was initially formed at the workpiece/workpiece interfaces (i.e., both upper interface and lower interface). The two small nuggets then grew along the radial direction and axial direction (welding direction) as the welding time increased. Eventually, the two nuggets fused into one large nugget. During the welding process, the Peltier effect between the Cu-Al caused the shift of the nugget in the welding direction. In addition, the mechanical strength and fracture mode of the weld nuggets at the upper and lower interfaces were also studied using tensile shear specimen configuration. Three failure modes were identified, namely interfacial, mixed, and pullout. The critical welding time and critical nugget diameter corresponding to the transitions of these modes were investigated. Finally, an empirical failure load formula for three-sheet weld similar to two-sheet spot weld was developed.

  10. RADIATION CHEMISTRY 2010 GORDON RESEARCH CONFERENCE JULY 18-23

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Orlando

    2010-07-23

    The 2010 Gordon Conference on Radiation Chemistry will present cutting edge research regarding the study of radiation-induced chemical transformations. Radiation Chemistry or 'high energy' chemistry is primarily initiated by ionizing radiation: i.e. photons or particles with energy sufficient to create conduction band electrons and 'holes', excitons, ionic and neutral free radicals, highly excited states, and solvated electrons. These transients often interact or 'react' to form products vastly different than those produced under thermal equilibrium conditions. The non-equilibrium, non-thermal conditions driving radiation chemistry exist in plasmas, star-forming regions, the outer solar system, nuclear reactors, nuclear waste repositories, radiation-based medical/clinical treatment centers and in radiation/materials processing facilities. The 2010 conference has a strong interdisciplinary flavor with focus areas spanning (1) the fundamental physics and chemistry involved in ultrafast (atto/femtosecond) energy deposition events, (2) radiation-induced processes in biology (particularly spatially resolved studies), (3) radiation-induced modification of materials at the nanoscale and cosmic ray/x-ray mediated processes in planetary science/astrochemistry. While the conference concentrates on fundamental science, topical applied areas covered will also include nuclear power, materials/polymer processing, and clinical/radiation treatment in medicine. The Conference will bring together investigators at the forefront of their field, and will provide opportunities for junior scientists and graduate students to present work in poster format or as contributors to the Young Investigator session. The program and format provides excellent avenues to promote cross-disciplinary collaborations.

  11. Metallic aluminum in combustion; Metalliskt aluminium i foerbraenningen

    Energy Technology Data Exchange (ETDEWEB)

    Backman, Rainer; Berg, Magnus; Bostroem, Dan; Hirota, Catherine; Oehman, Marcus; Oehrstroem, Anna

    2007-06-15

    Although aluminum is easily oxidized and melts at temperatures lower than those common in combustion, it can pass through the combustion chamber almost unscathed. If one performs calculations of thermodynamic equilibriums, conditions under which this could happen are extreme in comparison to those generally found in a furnace. Metallic aluminum may yet be found in rather large concentrations in fly ashes. There are also indications that metallic aluminum is present in deposits inside the furnaces. The objectives for the present investigation are better understanding of the behavior of the metallic aluminum in the fuel when it passes through an incinerator and to suggest counter/measures that deal with the problems associated with it. The target group is primary incineration plants using fuel that contains aluminum foil, for example municipal waste, industrial refuse or plastic reject from cardboard recycling. Combustion experiments were performed in a bench scale reactor using plastic reject obtained from the Fiskeby Board mill. First the gas velocity at which a fraction of the reject hovers was determined for the different fuel fractions, yielding a measure for their propensity to be carried over by the combustion gases. Second fractions rich in aluminum foils were combusted with time, temperature and gas composition as parameters. The partially combusted samples were analyzed using SEM/EDS. The degree of oxidation was determined using TGA/DTA. Reference material from full scale incinerators was obtained by collecting fly ash samples from five plants and analyzing them using XRD and SEM/EDS. The results show that thin aluminum foils may easily be carried over from the furnace. Furthermore, it was very difficult to fully oxidize the metallic flakes. The oxide layer on the surface prevents further diffusion of oxygen to the molten core of the flake. The contribution of these flakes to the build of deposits in a furnace is confirmed by earlier investigations in pilot

  12. Aluminum nitride insulating films for MOSFET devices

    Science.gov (United States)

    Lewicki, G. W.; Maserjian, J.

    1972-01-01

    Application of aluminum nitrides as electrical insulator for electric capacitors is discussed. Electrical properties of aluminum nitrides are analyzed and specific use with field effect transistors is defined. Operational limits of field effect transistors are developed.

  13. "Ripples" in an Aluminum Pool?

    Science.gov (United States)

    Rohr, James; Wang, Si-Yin; Nesterenko, Vitali F.

    2018-05-01

    Our motivation for this article is for students to realize that opportunities for discovery are all around them. Discoveries that can still puzzle present day researchers. Here we explore an observation by a middle school student concerning the production of what appears to be water-like "ripples" produced in aluminum foil when placed between two colliding spheres. We both applaud and explore the student's reasoning that the ripples were formed in a melted aluminum pool.

  14. Hybrid pulse anodization for the fabrication of porous anodic alumina films from commercial purity (99%) aluminum at room temperature

    International Nuclear Information System (INIS)

    Chung, C K; Zhou, R X; Chang, W T; Liu, T Y

    2009-01-01

    Most porous anodic alumina (PAA) or anodic aluminum oxide (AAO) films are fabricated using the potentiostatic method from high-purity (99.999%) aluminum films at a low temperature of approximately 0-10 deg. C to avoid dissolution effects at room temperature (RT). In this study, we have demonstrated the fabrication of PAA film from commercial purity (99%) aluminum at RT using a hybrid pulse technique which combines pulse reverse and pulse voltages for the two-step anodization. The reaction mechanism is investigated by the real-time monitoring of current. A possible mechanism of hybrid pulse anodization is proposed for the formation of pronounced nanoporous film at RT. The structure and morphology of the anodic films were greatly influenced by the duration of anodization and the type of voltage. The best result was obtained by first applying pulse reverse voltage and then pulse voltage. The first pulse reverse anodization step was used to form new small cells and pre-texture concave aluminum as a self-assembled mask while the second pulse anodization step was for the resulting PAA film. The diameter of the nanopores in the arrays could reach 30-60 nm.

  15. Functional aluminum alloys for ultra high vacuum use

    International Nuclear Information System (INIS)

    Kato, Yutaka; Tsukamoto, Kenji; Isoyama, Eizo

    1985-01-01

    Ultra high vacuum systems made of aluminum alloys are actively developed. The reasons for using aluminum alloys are low residual radioactivity, light weight, good machinability, good thermal conductivity, non-magnetism. The important function required for ultra high vacuum materials is low outgassing rate, but surface gas on ordinary aluminum is much. Then the research on aluminum surface structure with low outgassing rate has been made and the special extrusion method, that is, extrusion method with the conditions of preventing air from entering inside of pipe and of taking in mixture gas of Ar + O 2 , was developed. 6063 alloy obtained by special extrusion method showed low outgassing rate (2 x 10 -13 Torr. 1/s. cm 2 ) by only 150 deg C, 24 h baking. For the future it will be important to develop aluminum alloys with low dynamic outgassing rate as well as low static outgassing rate. (author)

  16. The aluminum chemistry and corrosion in alkaline solutions

    International Nuclear Information System (INIS)

    Zhang Jinsuo; Klasky, Marc; Letellier, Bruce C.

    2009-01-01

    Aluminum-alkaline solution systems are very common in engineering applications including nuclear engineering. Consequently, a thorough knowledge of the chemistry of aluminum and susceptibility to corrosion in alkaline solutions is reviewed. The aluminum corrosion mechanism and corrosion rate are examined based on current experimental data. A review of the phase transitions with aging time and change of environment is also performed. Particular attention is given to effect of organic and inorganic ions. As an example, the effect of boron is examined in detail because of the application in nuclear reactor power systems. Methods on how to reduce the corrosion rate of aluminum in alkaline solutions are also highlighted

  17. Dissolution mechanism of aluminum hydroxides in acid media

    Science.gov (United States)

    Lainer, Yu. A.; Gorichev, I. G.; Tuzhilin, A. S.; Gololobova, E. G.

    2008-08-01

    The effects of the concentration, temperature, and potential at the hydroxide/electrolyte interface on the aluminum hydroxide dissolution in sulfuric, hydrochloric, and perchloric acids are studied. The limiting stage of the aluminum hydroxide dissolution in the acids is found to be the transition of the complexes that form on the aluminum hydroxide surface from the solid phase into the solution. The results of the calculation of the acid-base equilibrium constants at the oxide (hydroxide)/solution interface using the experimental data on the potentiometric titration of Al2O3 and AlOOH suspensions are analyzed. A mechanism is proposed for the dissolution of aluminum hydroxides in acid media.

  18. Aluminum Target Dissolution in Support of the Pu-238 Program

    Energy Technology Data Exchange (ETDEWEB)

    McFarlane, Joanna [ORNL; Benker, Dennis [ORNL; DePaoli, David W [ORNL; Felker, Leslie Kevin [ORNL; Mattus, Catherine H [ORNL

    2014-09-01

    Selection of an aluminum alloy for target cladding affects post-irradiation target dissolution and separations. Recent tests with aluminum alloy 6061 yielded greater than expected precipitation in the caustic dissolution step, forming up to 10 wt.% solids of aluminum hydroxides and aluminosilicates. We present a study to maximize dissolution of aluminum metal alloy, along with silicon, magnesium, and copper impurities, through control of temperature, the rate of reagent addition, and incubation time. Aluminum phase transformations have been identified as a function of time and temperature, using X-ray diffraction. Solutions have been analyzed using wet chemical methods and X-ray fluorescence. These data have been compared with published calculations of aluminum phase diagrams. Temperature logging during the transients has been investigated as a means to generate kinetic and mass transport data on the dissolution process. Approaches are given to enhance the dissolution of aluminum and aluminosilicate phases in caustic solution.

  19. 76 FR 64083 - Reliability Technical Conference; Notice of Technical Conference

    Science.gov (United States)

    2011-10-17

    ... Technical Conference; Notice of Technical Conference Take notice that the Federal Energy Regulatory Commission will hold a Technical Conference on Tuesday, November 29, 2011, from 1 p.m. to 5 p.m. and... reliability that were identified in earlier Commission technical conferences. The conference also will discuss...

  20. Fracture toughness of steel--aluminum deformation welds

    International Nuclear Information System (INIS)

    Albright, C.E.

    1978-11-01

    A study of the fracture toughness (in this case, G/sub Ic/) of steel--aluminum deformation welds using a specially developed double cantilever beam fracture toughness specimen is presented. Welds made at 350 0 C were heat treated at 360, 380, 400, 420, and 440 0 C. An intermetallic reaction product layer of Fe 2 Al 5 is formed at the steel--aluminum interface with increasing heat treating temperature and time by a process of nucleation and growth of discrete particles. A transition in toughness from a higher average G/sub Ic/ value (6097 N/m) to a very low average G/sub Ic/ value (525 N/m) is observed. The decrease in toughness is accompanied by an increase in Fe 2 Al 5 particle diameter from 4 to 8 μm. Failure at the higher toughness values is characterized by ductile rupture through the aluminum. At the lower toughness values, failure occurs between the aluminum and the Fe 2 Al 5 reaction product layer. A void layer forming by a vacancy condensation mechanism in the aluminum adjacent to the Fe 2 Al 5 is shown to cause the embrittlement

  1. Bilayer lift-off process for aluminum metallization

    Science.gov (United States)

    Wilson, Thomas E.; Korolev, Konstantin A.; Crow, Nathaniel A.

    2015-01-01

    Recently published reports in the literature for bilayer lift-off processes have described recipes for the patterning of metals that have recommended metal-ion-free developers, which do etch aluminum. We report the first measurement of the dissolution rate of a commercial lift-off resist (LOR) in a sodium-based buffered commercial developer that does not etch aluminum. We describe a reliable lift-off recipe that is safe for multiple process steps in patterning thin (recipe consists of an acid cleaning of the substrate, the bilayer (positive photoresist/LOR) deposition and development, the sputtering of the aluminum film along with a palladium capping layer and finally, the lift-off of the metal film by immersion in the LOR solvent. The insertion into the recipe of postexposure and sequential develop-bake-develop process steps are necessary for an acceptable undercut. Our recipe also eliminates any need for accompanying sonication during lift-off that could lead to delamination of the metal pattern from the substrate. Fine patterns were achieved for both 100-nm-thick granular aluminum/palladium bilayer bolometers and 500-nm-thick aluminum gratings with 6-μm lines and 4-μm spaces.

  2. NASA-427: A New Aluminum Alloy

    Science.gov (United States)

    Nabors, Sammy A.

    2015-01-01

    NASA's Marshall Space Flight Center researchers have developed a new, stronger aluminum alloy, ideal for cast aluminum products that have powder or paint-baked thermal coatings. With advanced mechanical properties, the NASA-427 alloy shows greater tensile strength and increased ductility, providing substantial improvement in impact toughness. In addition, this alloy improves the thermal coating process by decreasing the time required for heat treatment. With improvements in both strength and processing time, use of the alloy provides reduced materials and production costs, lower product weight, and better product performance. The superior properties of NASA-427 can benefit many industries, including automotive, where it is particularly well-suited for use in aluminum wheels.

  3. Study of aluminum-doped silicon clusters

    International Nuclear Information System (INIS)

    Zhan Shichang; Li Baoxing; Yang Jiansong

    2007-01-01

    Using full-muffin-tin-orbital molecular-dynamics (FP-LMTO-MD) method, we have investigated the effect of aluminum heteroatoms on the geometric structures and bond characteristics of Si n (n=5-10) clusters in detail. It is found that the geometric framework of the ground state structures for Si n (n=5-10) clusters change to some extent upon the substitution of Al atoms in some Si atoms. The effect of aluminum doping on the silicon clusters depends on the geometric structures of Si n (n=5-10) clusters. In particular, the calculations suggest that the aluminum doping would improve the bond strength of some Si-Si bonds in the mixed Si n - m Al m clusters

  4. The aluminum-air battery for electric vehicles - An update

    Science.gov (United States)

    1980-11-01

    The development of aluminum-air batteries as mechanically rechargeable power sources to be used in electric vehicles is discussed. The chemistry of the aluminum-air battery, which has a potential for providing the range, acceleration and rapid refueling capability of contemporary automobiles and is based on the reaction of aluminum metal with atmospheric oxygen in the presence of an aqueous sodium hydroxide/sodium aluminate electrolyte, is examined, and it is pointed out that the electric vehicle would be practically emissionless. The battery development program at the Lawrence Livermore National Laboratory, which includes evaluations of electrochemical and chemical phenomena, studies of the economics and energy balance of a transportation system based on aluminum, and power cell design and performance analysis, is presented. It is concluded that although difficult problems must be overcome before the technical and economic feasibility of aluminum-air batteries for electric vehicles can be established, projections indicate that the aluminum-air vehicle is potentially competitive with internal combustion vehicles powered by synthetic liquid fuels.

  5. FORMATION OF ORGANIZATIONAL AND ECONOMIC INTEGRATED STRUCTURES IN THE ALUMINUM INDUSTRY

    Directory of Open Access Journals (Sweden)

    S. B. Kazbekova

    2013-01-01

    Full Text Available The paper reveals the theoretical foundations of economic efficiency of production and integrated structures formation. Their advantages are demonstrated by the example of the formation of vertically integrated structures in the aluminium industry in the framework created by smelting aluminium cluster inKazakhstan. Also examines the valuable experience gained in the organization of such structures in theRussian Federationin recent years

  6. High-speed collision of copper nanoparticle with aluminum surface: Molecular dynamics simulation

    Science.gov (United States)

    Pogorelko, Victor V.; Mayer, Alexander E.; Krasnikov, Vasiliy S.

    2016-12-01

    We investigate the effect of the high-speed collision of copper nanoparticles with aluminum surface by means of molecular dynamic simulations. Studied diameter of nanoparticles is varied within the range 7.2-22 nm and the velocity of impact is equal to 500 or 1000 m/s. Dislocation analysis shows that a large quantity of dislocations is formed within the impact area. Overall length of dislocations is determined, first of all, by the impact velocity and by the size of incident copper nanoparticle, in other words, by the kinetic energy of the nanoparticle. Dislocations occupy the total volume of the impacted aluminum single crystal layer (40.5 nm in thickness) in the form of intertwined structure in the case of large kinetic energy of the incident nanoparticle. Decrease in the initial kinetic energy or increase in the layer thickness lead to restriction of the penetration depth of the dislocation net; formation of separate dislocation loops is observed in this case. Increase in the initial system temperature slightly raises the dislocation density inside the bombarded layer and considerably decreases the dislocation density inside the nanoparticle. The temperature increase also leads to a deeper penetration of the copper atoms inside the aluminum. Additional molecular dynamic simulations show that the deposited particles demonstrate a very good adhesion even in the case of the considered relatively large nanoparticles. Medium energy of the nanoparticles corresponding to velocity of about 500 m/s and elevated temperature of the system about 700-900 K are optimal parameters for production of high-quality layers of copper on the aluminum surface. These conditions provide both a good adhesion and a less degree of the plastic deformation. At the same time, higher impact velocities can be used for combined treatment consisting of both the plastic deformation and the coating.

  7. Chrome - Free Aluminum Coating System

    Science.gov (United States)

    Bailey, John H.; Gugel, Jeffrey D.

    2010-01-01

    This slide presentation concerns the program to qualify a chrome free coating for aluminum. The program was required due to findings by OSHA and EPA, that hexavalent chromium, used to mitigate corrosion in aerospace aluminum alloys, poses hazards for personnel. This qualification consisted of over 4,000 tests. The tests revealed that a move away from Cr+6, required a system rather than individual components and that the maximum corrosion protection required pretreatment, primer and topcoat.

  8. Low energy helium implantation of aluminum

    International Nuclear Information System (INIS)

    Wilson, K.L.; Thomas, G.J.

    1976-02-01

    A series of 20 keV He + implantations was conducted on well-annealed MARZ grade aluminum at fluxes of 6 x 10 14 and 6 x 10 13 He + /cm 2 sec. Three distinct, temperature dependent He release mechanisms were found by He re-emission measurements during implantation, and by subsequent SEM and TEM investigations. At 0.08 of the melting temperature (T/sub m/) gas re-emission rose smoothly after a critical dose of 3 x 10 17 He + /cm 2 , with extensive blistering. The intermediate temperature range (approximately 0.3 T/sub m/) was characterized by repeated flake exfoliation and bursts of He after a dose of 3 x 10 17 He + /cm 2 . Rapid He evolution, with hole formation was found above 0.7 T/sub m/. No significant differences in either gas re-emission or surface deformation were found between the two fluxes employed

  9. Characterization of Cracking Mechanisms of Carbon Anodes Used in Aluminum Industry by Optical Microscopy and Tomography

    Science.gov (United States)

    Amrani, Salah; Kocaefe, Duygu; Kocaefe, Yasar; Bhattacharyay, Dipankar; Bouazara, Mohamed; Morais, Brigitte

    2016-10-01

    The objective of this work is to understand the different mechanisms of crack formation in dense anodes used in the aluminum industry. The first approach used is based on the qualitative characterization of the surface cracks and the depth of these cracks. The second approach, which constitutes a quantitative characterization, is carried out by determining the distribution of the crack width along its length as well as the percentage of the surface containing cracks. A qualitative analysis of crack formation was also carried out using 3D tomography. It was observed that mixing and forming conditions have a significant effect on crack formation in green anodes. The devolatilization of pitch during baking causes the formation and propagation of cracks in baked anodes in which large particles control the direction of crack propagation.

  10. Protective film formation on AA2024-T3 aluminum alloy by leaching of lithium carbonate from an organic coating

    NARCIS (Netherlands)

    Liu, Y.; Visser, P.; Zhou, X.; Lyon, S.B.; Hashimoto, T.; Curioni, M.; Gholinia, A.; Thompson, G.E.; Smyth, G.; Gibbon, S.R.; Graham, D.; Mol, J.M.C.; Terryn, H.A.

    2015-01-01

    An investigation into corrosion inhibition properties of a primer coating containing lithium carbonate as corrosion inhibitive pigment for AA2024 aluminum alloy was conducted. It was found that, during neutral salt spray exposure, a protective film of about 0.2 to 1.5 ?m thickness formed within the

  11. Sensitization of Naturally Aged Aluminum 5083 Armor Plate

    Science.gov (United States)

    2015-07-29

    5 - 1 - SENSITIZATION OF NATURALLY AGED ALUMINUM 5083 ARMOR PLATE INTRODUCTION Aluminum -magnesium alloys are important for both ship...boundaries [3,4]. The magnesium-rich phase (normally β-Al3Mg2) is highly anodic with respect to the surrounding aluminum phase, thus is susceptible... alloys , and with varying amounts of debris scattered about the surface consistent with corrosion product, Figure 2b, that often forms over time within

  12. Reactions of aluminum with uranium fluorides and oxyfluorides

    Energy Technology Data Exchange (ETDEWEB)

    Leitnaker, J.M.; Nichols, R.W.; Lankford, B.S. [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States)

    1991-12-31

    Every 30 to 40 million operating hours a destructive reaction is observed in one of the {approximately}4000 large compressors that move UF{sub 6} through the gaseous diffusion plants. Despite its infrequency, such a reaction can be costly in terms of equipment and time. Laboratory experiments reveal that the presence of moderate pressures of UF{sub 6} actually cools heated aluminum, although thermodynamic calculations indicate the potential for a 3000-4000{degrees}C temperature rise. Within a narrow and rather low (<100 torr; 1 torr = 133.322 Pa) pressure range, however, the aluminum is seen to react with sufficient heat release to soften an alumina boat. Three things must occur in order for aluminum to react vigorously with either UF{sub 6} or UO{sub 2}F{sub 2}. 1. An initiating source of heat must be provided. In the compressors, this source can be friction, permitted by disruption of the balance of the large rotating part or by creep of the aluminum during a high-temperature treatment. In the absence of this heat source, compressors have operated for 40 years in UF{sub 6} without significant reaction. 2. The film protecting the aluminum must be breached. Melting (of UF{sub 5} at 620 K or aluminum at 930 K) can cause such a breach in laboratory experiments. In contrast, holding Al samples in UF{sub 6} at 870 K for several hours produces only moderate reaction. Rubbing in the cascade can undoubtedly breach the protective film. 3. Reaction products must not build up and smother the reaction. While uranium products tend to dissolve or dissipate in molten aluminum, AIF{sub 3} shows a remarkable tendency to surround and hence protect even molten aluminum. Hence the initial temperature rise must be rapid and sufficient to move reactants into a temperature region in which products are removed from the reaction site.

  13. Method of forming aluminum oxynitride material and bodies formed by such methods

    Science.gov (United States)

    Bakas, Michael P [Ammon, ID; Lillo, Thomas M [Idaho Falls, ID; Chu, Henry S [Idaho Falls, ID

    2010-11-16

    Methods of forming aluminum oxynitride (AlON) materials include sintering green bodies comprising aluminum orthophosphate or another sacrificial material therein. Such green bodies may comprise aluminum, oxygen, and nitrogen in addition to the aluminum orthophosphate. For example, the green bodies may include a mixture of aluminum oxide, aluminum nitride, and aluminum orthophosphate or another sacrificial material. Additional methods of forming aluminum oxynitride (AlON) materials include sintering a green body including a sacrificial material therein, using the sacrificial material to form pores in the green body during sintering, and infiltrating the pores formed in the green body with a liquid infiltrant during sintering. Bodies are formed using such methods.

  14. Supersonic laser-induced jetting of aluminum micro-droplets

    International Nuclear Information System (INIS)

    Zenou, M.; Sa'ar, A.; Kotler, Z.

    2015-01-01

    The droplet velocity and the incubation time of pure aluminum micro-droplets, printed using the method of sub-nanosecond laser induced forward transfer, have been measured indicating the formation of supersonic laser-induced jetting. The incubation time and the droplet velocity were extracted by measuring a transient electrical signal associated with droplet landing on the surface of the acceptor substrate. This technique has been exploited for studying small volume droplets, in the range of 10–100 femto-litters for which supersonic velocities were measured. The results suggest elastic propagation of the droplets across the donor-to-acceptor gap, a nonlinear deposition dynamics on the surface of the acceptor and overall efficient energy transfer from the laser beam to the droplets

  15. Supersonic laser-induced jetting of aluminum micro-droplets

    Energy Technology Data Exchange (ETDEWEB)

    Zenou, M. [Racah Institute of Physics and the Harvey M. Kruger Family Center for Nano-science and Nanotechnology, The Hebrew University of Jerusalem, 91904 Jerusalem (Israel); Additive Manufacturing Lab, Orbotech Ltd., P.O. Box 215, 81101 Yavne (Israel); Sa' ar, A. [Racah Institute of Physics and the Harvey M. Kruger Family Center for Nano-science and Nanotechnology, The Hebrew University of Jerusalem, 91904 Jerusalem (Israel); Kotler, Z. [Additive Manufacturing Lab, Orbotech Ltd., P.O. Box 215, 81101 Yavne (Israel)

    2015-05-04

    The droplet velocity and the incubation time of pure aluminum micro-droplets, printed using the method of sub-nanosecond laser induced forward transfer, have been measured indicating the formation of supersonic laser-induced jetting. The incubation time and the droplet velocity were extracted by measuring a transient electrical signal associated with droplet landing on the surface of the acceptor substrate. This technique has been exploited for studying small volume droplets, in the range of 10–100 femto-litters for which supersonic velocities were measured. The results suggest elastic propagation of the droplets across the donor-to-acceptor gap, a nonlinear deposition dynamics on the surface of the acceptor and overall efficient energy transfer from the laser beam to the droplets.

  16. Preparation of anodic aluminum oxide (AAO) nano-template on silicon and its application to one-dimensional copper nano-pillar array formation

    International Nuclear Information System (INIS)

    Shen, Lan; Ali, Mubarak; Gu, Zhengbin; Min, Bonggi; Kim, Dongwook; Park, Chinho

    2013-01-01

    Anodized aluminum oxide (AAO) nanotemplates were prepared using the Al/Si substrates with an aluminum layer thickness of about 300 nm. A two-step anodization process was used to prepare an ordered porous alumina nanotemplate, and the pores of various sizes and depths were constructed electrochemically through anodic oxidation. The optimum morphological structure for large area application was constructed by adjusting the applied potential, temperature, time, and electrolyte concentration. SEM investigations showed that hexagonal-close-packed alumina nano-pore arrays were nicely constructed on Si substrate, having smooth wall morphologies and well-defined diameters. It is also reported that one dimensional copper nanopillars can be fabricated using the tunable nanopore sized AAO/Si template, by controlling the copper deposition process

  17. 'Observation' of dislocation motion in single crystal and polycrystalline aluminum during uniaxial deformation using photoemission technique

    International Nuclear Information System (INIS)

    Cai, M.; Levine, L.E.; Langford, S.C.; Dickinson, J.T.

    2005-01-01

    We report measurements of photostimulated electron emission (PSE) from single-crystalline aluminum (99.995%) and high-purity polycrystalline aluminum (>99.9%) during uniaxial tensile deformation. Photoelectron intensities are sensitive to changes in surface morphology accompanying deformation, including slip line and slip band formation. In the single crystalline material, the PSE intensity increases linearly with strain. In the polycrystalline material, the PSE intensity increases exponentially with strain. In both materials, time-resolved PSE measurements show step-like increases in intensity consistent with the heterogeneous nucleation and growth of slip bands during tensile deformation. In this sense, we have 'observed' dislocation motion by this technique. Slip bands on the surfaces of deformed samples were subsequently imaged by atomic-force microscopy (AFM). Photoelectron measurements can provide reliable, quantitative information for dislocation dynamics

  18. Ultrasonic Real-Time Quality Monitoring Of Aluminum Spot Weld Process

    Science.gov (United States)

    Perez Regalado, Waldo Josue

    The real-time ultrasonic spot weld monitoring system, introduced by our research group, has been designed for the unsupervised quality characterization of the spot welding process. It comprises the ultrasonic transducer (probe) built into one of the welding electrodes and an electronics hardware unit which gathers information from the transducer, performs real-time weld quality characterization and communicates with the robot programmable logic controller (PLC). The system has been fully developed for the inspection of spot welds manufactured in steel alloys, and has been mainly applied in the automotive industry. In recent years, a variety of materials have been introduced to the automotive industry. These include high strength steels, magnesium alloys, and aluminum alloys. Aluminum alloys have been of particular interest due to their high strength-to-weight ratio. Resistance spot welding requirements for aluminum vary greatly from those of steel. Additionally, the oxide film formed on the aluminum surface increases the heat generation between the copper electrodes and the aluminum plates leading to accelerated electrode deterioration. Preliminary studies showed that the real-time quality inspection system was not able to monitor spot welds manufactured with aluminum. The extensive experimental research, finite element modelling of the aluminum welding process and finite difference modeling of the acoustic wave propagation through the aluminum spot welds presented in this dissertation, revealed that the thermodynamics and hence the acoustic wave propagation through an aluminum and a steel spot weld differ significantly. For this reason, the hardware requirements and the algorithms developed to determine the welds quality from the ultrasonic data used on steel, no longer apply on aluminum spot welds. After updating the system and designing the required algorithms, parameters such as liquid nugget penetration and nugget diameter were available in the ultrasonic data

  19. Inhibition of aluminum corrosion using Opuntia extract

    International Nuclear Information System (INIS)

    El-Etre, A.Y.

    2003-01-01

    The inhibitive action of the mucilage extracted from the modified stems of prickly pears, toward acid corrosion of aluminum, is tested using weight loss, thermometry, hydrogen evolution and polarization techniques. It was found that the extract acts as a good corrosion inhibitor for aluminum corrosion in 2.0 M HCl solution. The inhibition action of the extract was discussed in view of Langmuir adsorption isotherm. It was found that the adsorption of the extract on aluminum surface is a spontaneous process. The inhibition efficiency (IE) increases as the extract concentration is increased. The effect of temperature on the IE was studied. It was found that the presence of extract increases the activation energy of the corrosion reaction. Moreover, the thermodynamic parameters of the adsorption process were calculated. It was found also that the Opuntia extract provides a good protection to aluminum against pitting corrosion in chloride ion containing solutions

  20. 21 CFR 73.3110a - Chromium-cobalt-aluminum oxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Chromium-cobalt-aluminum oxide. 73.3110a Section... LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Medical Devices § 73.3110a Chromium-cobalt-aluminum oxide. (a) Identity. The color additive chromium-cobalt-aluminum oxide (Pigment Blue 36) (CAS Reg. No...

  1. Aluminum phosphate ceramics for waste storage

    Science.gov (United States)

    Wagh, Arun; Maloney, Martin D

    2014-06-03

    The present disclosure describes solid waste forms and methods of processing waste. In one particular implementation, the invention provides a method of processing waste that may be particularly suitable for processing hazardous waste. In this method, a waste component is combined with an aluminum oxide and an acidic phosphate component in a slurry. A molar ratio of aluminum to phosphorus in the slurry is greater than one. Water in the slurry may be evaporated while mixing the slurry at a temperature of about 140-200.degree. C. The mixed slurry may be allowed to cure into a solid waste form. This solid waste form includes an anhydrous aluminum phosphate with at least a residual portion of the waste component bound therein.

  2. Physical and Electrical Characterization of Polymer Aluminum Capacitors

    Science.gov (United States)

    Liu, David; Sampson, Michael J.

    2010-01-01

    Polymer aluminum capacitors from several manufacturers with various combinations of capacitance, rated voltage, and ESR values were physically examined and electrically characterized. The physical construction analysis of the capacitors revealed three different capacitor structures, i.e., traditional wound, stacked, and laminated. Electrical characterization results of polymer aluminum capacitors are reported for frequency-domain dielectric response at various temperatures, surge breakdown voltage, and other dielectric properties. The structure-property relations in polymer aluminum capacitors are discussed.

  3. Physical and Electrical Characterization of Aluminum Polymer Capacitors

    Science.gov (United States)

    Liu, David; Sampson, Michael J.

    2010-01-01

    Polymer aluminum capacitors from several manufacturers with various combinations of capacitance, rated voltage, and ESR values were physically examined and electrically characterized. The physical construction analysis of the capacitors revealed three different capacitor structures, i.e., traditional wound, stacked, and laminated. Electrical characterization results of polymer aluminum capacitors are reported for frequency-domain dielectric response at various temperatures, surge breakdown voltage, and other dielectric properties. The structure-property relations in polymer aluminum capacitors are discussed.

  4. Assessment of secondary aluminum reserves of nations

    DEFF Research Database (Denmark)

    Maung, Kyaw Nyunt; Yoshida, Tomoharu; Liu, Gang

    2017-01-01

    aluminum resources are accumulated in landfill sites. Understanding the sizes of primary and secondary aluminum reserves enables us to extend knowledge of efficient raw material sourcing from a narrow perspective of primary reserves alone to a broader perspective of both primary and secondary reserves...

  5. Laboratory Powder Metallurgy Makes Tough Aluminum Sheet

    Science.gov (United States)

    Royster, D. M.; Thomas, J. R.; Singleton, O. R.

    1993-01-01

    Aluminum alloy sheet exhibits high tensile and Kahn tear strengths. Rapid solidification of aluminum alloys in powder form and subsequent consolidation and fabrication processes used to tailor parts made of these alloys to satisfy such specific aerospace design requirements as high strength and toughness.

  6. The intermetallic bonding between a ring carrier and aluminum piston alloy

    Directory of Open Access Journals (Sweden)

    Manasijevic, Srećko

    2015-09-01

    Full Text Available This paper presents the results of investigating the formation of intermetallic bond between a ring carrier and aluminum piston alloy. The ring carrier is made of austenitic cast iron (Ni-Resist in order to increase the wear resistance of the first ring groove and applied in highly loaded diesel engines. Metallographic examination of the quality of alfin bond was done. A metallographic investigation using an optical microscope in combination with the SEM/EDS analysis of the quality of the intermetallic bonding layer was done. The test results show that can be made successfully as well as the formation of metal connection (alfin bond between the ring carrier and aluminum piston alloy.El artículo presenta los resultados de la investigación sobre la formación de una unión intermetálica entre el portasegmento y la aleación de aluminio del pistón. El portasegmento es una fundición de hierro austenítico (Ni-Resist con el fin de aumentar la resistencia al desgaste de la unión Al-fin del primer segmento y se utiliza en motores diésel altamente cargados. Se realizó un examen metalográfico de la unión intermetálica, mediante un microscopio óptico en combinación con SEM/EDS. Los satisfactorios resultados obtenidos muestran la formación de contacto metálico (unión Al-fin del primer segmento entre el portasegmento y la aleación de aluminio del pistón.

  7. Online professional development conferences: An effective, economical and eco-friendly option

    Directory of Open Access Journals (Sweden)

    Lynn Anderson

    2010-05-01

    Full Text Available In order to stay current within their field, many professionals regularly attend conferences and training events in distant locales. Travel to these conferences costs professionals, and their sponsor organizations, both time and money. In the past the benefits afforded by these conferences, and the lack of comparable alternatives, have provided justification for these expenditures. However, recent studies have shown that the cost of travel extends beyond the pocketbook. Transportation is a major contributor of carbon dioxide (CO2 emissions, a key suspect in the argument for the negative impact of global climate change. This paper examines the potential effects of travel to these conferences on the environment and promotes online conferences as a comparable alternative to face-to-face events. A successful online conference is used to demonstrate the magnitude of the environmental and economical benefits of online conferences. The authors posit that online conferencing technologies have evolved such that they now offer another option for professional development that is effective, economical and environmentally friendly. Résumé : Afin de rester à jour dans leur domaine, de nombreux professionnels participent régulièrement à des colloques et à des activités de formation dans des endroits éloignés. Se déplacer pour assister à de tels congrès ou colloques demande des investissements à la fois en temps et en argent de la part des professionnels et de leurs établissements parrains. Si, par le passé, les bénéfices que procuraient ces colloques et l’absence de solutions de rechange comparables justifiaient de telles dépenses, des études récentes ont toutefois montré que les frais de déplacement s’étendent au-delà des coûts financiers. Les transports constituent une source majeure des émissions de dioxyde de carbone (CO2, un composé soupçonné d’être l’un des facteurs clés de l’impact négatif de l’humain sur le

  8. Formation and Entrapment of Tris(8-hydroxyquinoline)aluminum from 8-Hydroxyquinoline in Anodic Porous Alumina

    Science.gov (United States)

    Yamaguchi, Shohei; Matsui, Kazunori

    2016-01-01

    The formation and entrapment of tris(8-hydroxyquinoline)aluminum (Alq3) molecules on the surface of anodic porous alumina (APA) immersed in an ethanol solution of 8-hydroxyquinoline (HQ) were investigated by absorption, fluorescence, and Raman spectroscopies. The effects of the selected APA preparation conditions (galvanostatic or potentiostatic anodization method, anodizing current and voltage values, one- or two-step anodizing process, and sulfuric acid electrolyte concentration) on the adsorption and desorption of Alq3 species were examined. Among the listed parameters, sulfuric acid concentration was the most important factor in determining the Alq3 adsorption characteristics. The Alq3 content measured after desorption under galvanostatic conditions was 2.5 times larger than that obtained under potentiostatic ones, regardless of the adsorbed quantities. The obtained results suggest the existence of at least two types of adsorption sites on the APA surface characterized by different magnitudes of the Alq3 bonding strength. The related fluorescence spectra contained two peaks at wavelengths of 480 and 505 nm, which could be attributed to isolated Alq3 species inside nanovoids and aggregated Alq3 clusters in the pores of APA, respectively. The former species were attached to the adsorption sites with higher binding energies, whereas the latter ones were bound to the APA surface more weakly. Similar results were obtained for the Alq3 species formed from the HQ solution, which quantitatively exceeded the number of the Alq3 species adsorbed from the Alq3 solution. Alq3 molecules were formed in the HQ solution during the reaction of HQ molecules with the Al3+ ions in the oxide dissolution zone near the oxide/electrolyte interface through the cracks and the Al3+ ions adsorbed on surface of pore and cracks. In addition, it was suggested that HQ molecules could penetrate the nanovoids more easily than Alq3 species because of their smaller sizes, which resulted in higher

  9. Structural study of anodic films formed on aluminum in nitric acid electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Yakovleva, N.M.; Anicai, L.; Yakovlev, A.N.; Dima, L.; Khanina, E.Ya.; Buda, M.; Chupakhina, E.A

    2002-09-02

    The paper presents the results of investigations of porous Al anodic films formed in HNO{sub 3} electrolytes carried out by means of electrochemical techniques and X-ray diffraction as well as scanning electron microscopy (SEM). It was assumed that both electrochemical formation of a porous oxide and anodic dissolution of metal take place at Al/oxide interface at the same time. The analysis of short-range order (SRO) parameters for relatively high current density, 1x10{sup 3} A/m{sup 2}, and anodizing time, 10 min, leads to the conclusion that films mainly consist of amorphous alumina with {gamma}'-Al{sub 2}O{sub 3}-like SRO and a small amount ({approx}10%) of amorphous aluminum oxyhydroxide. SEM investigation of the films revealed strong dependence of the surface relief on different applied forming conditions. This marked change in the surface relief is discussed taking into account the relatively complex behavior of Al during anodization in HNO{sub 3} electrolytes, that involves both electrochemical growth and dissolution processes of anodic film associated with an electrochemical dissolution of aluminum substrate.

  10. Structural study of anodic films formed on aluminum in nitric acid electrolyte

    International Nuclear Information System (INIS)

    Yakovleva, N.M.; Anicai, L.; Yakovlev, A.N.; Dima, L.; Khanina, E.Ya.; Buda, M.; Chupakhina, E.A.

    2002-01-01

    The paper presents the results of investigations of porous Al anodic films formed in HNO 3 electrolytes carried out by means of electrochemical techniques and X-ray diffraction as well as scanning electron microscopy (SEM). It was assumed that both electrochemical formation of a porous oxide and anodic dissolution of metal take place at Al/oxide interface at the same time. The analysis of short-range order (SRO) parameters for relatively high current density, 1x10 3 A/m 2 , and anodizing time, 10 min, leads to the conclusion that films mainly consist of amorphous alumina with γ'-Al 2 O 3 -like SRO and a small amount (∼10%) of amorphous aluminum oxyhydroxide. SEM investigation of the films revealed strong dependence of the surface relief on different applied forming conditions. This marked change in the surface relief is discussed taking into account the relatively complex behavior of Al during anodization in HNO 3 electrolytes, that involves both electrochemical growth and dissolution processes of anodic film associated with an electrochemical dissolution of aluminum substrate

  11. High strength corrosion-resistant zirconium aluminum alloys

    International Nuclear Information System (INIS)

    Schulson, E.M.; Cameron, D.J.

    1976-01-01

    A zirconium-aluminum alloy is described possessing superior corrosion resistance and mechanical properties. This alloy, preferably 7.5-9.5 wt% aluminum, is cast, worked in the Zr(Al)-Zr 2 Al region, and annealed to a substantially continuous matrix of Zr 3 Al. (E.C.B.)

  12. Differential response of plants to aluminum. A review

    OpenAIRE

    Valencia R, Rubén A; Ligarreto M, Gustavo A

    2012-01-01

    Aluminum toxicity is a major limiting factor to the growth and development of plants in acidic soils worldwide, occurring in 40% of arable soils. The root seems to be the object of aluminum toxicity, particularly the apex, producing a rapid inhibition of cell division and elongation of the root. Fortunately, plants differ in their ability to tolerate aluminum and grow in acidic soils. Tolerance mechanisms have commonly been defined in genetic and physiological terms, however, tolerance mechan...

  13. Microhardness and wear resistance of PEO-coated 5754 aluminum alloy

    Science.gov (United States)

    Vyaliy, I. E.; Egorkin, V. S.; Sinebryukhov, S. L.; Minaev, A. N.; Gnedenkov, S. V.

    2017-09-01

    We present results of the study aimed at assessing the effect of duty cycle (D) during plasma electrolytic oxidation (PEO) on protective properties of the coatings produced on 5754 aluminum alloy. It is shown that increasing the duty cycle of a microsecond current pulses leads to increased hardness and reduced abrasive wear of the PEO-layers, improving mechanical properties. The obtained data allowed confirming, that increasing the amount of energy consumed for coating growth leads to the formation of thicker PEO-layers with improved tribological properties. The effect of duty cycle during plasma electrolytic oxidation on protective properties of the produced coatings was assessed.

  14. Carbide coated fibers in graphite-aluminum composites

    Science.gov (United States)

    Imprescia, R. J.; Levinson, L. S.; Reiswig, R. D.; Wallace, T. C.; Williams, J. M.

    1975-01-01

    The NASA-supported program at the Los Alamos Scientific Laboratory (LASL) to develop carbon fiber-aluminum matrix composites is described. Chemical vapor deposition (CVD) was used to uniformly deposit thin, smooth, continuous coats of TiC on the fibers of graphite tows. Wet chemical coating of fibers, followed by high-temperature treatment, was also used, but showed little promise as an alternative coating method. Strength measurements on CVD coated fiber tows showed that thin carbide coats can add to fiber strength. The ability of aluminum alloys to wet TiC was successfully demonstrated using TiC-coated graphite surfaces. Pressure-infiltration of TiC- and ZrC-coated fiber tows with aluminum alloys was only partially successful. Experiments were performed to evaluate the effectiveness of carbide coats on carbon as barriers to prevent reaction between alluminum alloys and carbon. Initial results indicate that composites of aluminum and carbide-coated graphite are stable for long periods of time at temperatures near the alloy solidus.

  15. Molybdate Coatings for Protecting Aluminum Against Corrosion

    Science.gov (United States)

    Calle, Luz Marina; MacDowell, Louis G.

    2005-01-01

    Conversion coatings that comprise mixtures of molybdates and several additives have been subjected to a variety of tests to evaluate their effectiveness in protecting aluminum and alloys of aluminum against corrosion. Molybdate conversion coatings are under consideration as replacements for chromate conversion coatings, which have been used for more than 70 years. The chromate coatings are highly effective in protecting aluminum and its alloys against corrosion but are also toxic and carcinogenic. Hexavalent molybdenum and, hence, molybdates containing hexavalent molybdenum, have received attention recently as replacements for chromates because molybdates mimic chromates in a variety of applications but exhibit significantly lower toxicity. The tests were performed on six proprietary formulations of molybdate conversion coatings, denoted formulations A through F, on panels of aluminum alloy 2024-T3. A bare alloy panel was also included in the tests. The tests included electrochemical impedance spectroscopy (EIS), measurements of corrosion potentials, scanning electron microscopy (SEM) with energy-dispersive spectroscopy (EDS), and x-ray photoelectron spectroscopy (XPS).

  16. Seacoast stress corrosion cracking of aluminum alloys

    Science.gov (United States)

    Humphries, T. S.; Nelson, E. E.

    1981-01-01

    The stress corrosion cracking resistance of high strength, wrought aluminum alloys in a seacoast atmosphere was investigated and the results were compared with those obtained in laboratory tests. Round tensile specimens taken from the short transverse grain direction of aluminum plate and stressed up to 100 percent of their yield strengths were exposed to the seacoast and to alternate immersion in salt water and synthetic seawater. Maximum exposure periods of one year at the seacoast, 0.3 or 0.7 of a month for alternate immersion in salt water, and three months for synthetic seawater were indicated for aluminum alloys to avoid false indications of stress corrosion cracking failure resulting from pitting. Correlation of the results was very good among the three test media using the selected exposure periods. It is concluded that either of the laboratory test media is suitable for evaluating the stress corrosion cracking performance of aluminum alloys in seacoast atmosphere.

  17. Aluminum alloy excellent in neutron absorbing performance

    International Nuclear Information System (INIS)

    Iida, Tetsuya; Tamamura, Tadao; Morimoto, Hiroyuki; Ouchi, Ken-ichiro.

    1987-01-01

    Purpose: To obtain structural materials made of aluminum alloys having favorable neutron absorbing performance and excellent in the performance as structural materials such as processability and strength. Constitution: Powder of Gd 2 O 3 as a gadolinium compound or metal gadolinium is uniformly mixed with the powder of aluminum or aluminum alloy. The amount of the gadolinium compound added is set to 0.1 - 30 % by weight. No sufficient neutron absorbing performance can be obtained if it is less than 0.1 % by weight, whereas the processability and mechanical property of the alloy are degraded if it exceeds 30 % by weight. Further, the grain size is set to less about 50 μm. Further, since the neutron absorbing performance varies greatly if the aluminum powder size exceeds 100 μm, the diameter is set to less than about 100 μm. These mixtures are molded in a hot press. This enables to obtain aimed structural materials. (Takahashi, M.)

  18. Analysis of Material Flow in Screw Extrusion of Aluminum

    International Nuclear Information System (INIS)

    Haugen, Bjoern; Oernskar, Magnus; Welo, Torgeir; Wideroee, Fredrik

    2010-01-01

    Screw extrusion of aluminum is a new process for production of aluminum profiles. The commercial potential could be large. Little experimental and numerical work has been done with respect to this process.The material flow of hot aluminum in a screw extruder has been analyzed using finite element formulations for the non-Newtonian Navier-Stokes equations. Aluminum material properties are modeled using the Zener-Holloman material model. Effects of stick-slip conditions are investigated with respect to pressure build up and mixing quality of the extrusion process.The numerical results are compared with physical experiments using an experimental screw extruder.

  19. Influence of nanosized carbon particles on the formation of the structure and properties of microarc ceramic coatings based on aluminum alloys

    International Nuclear Information System (INIS)

    Vityaz', P.A.; Komarov, A.I.; Komarova, V.I.

    2013-01-01

    A carbon-composite material based on a ceramic coating formed on aluminum alloys due to microarc oxidation and nanostructured carbon synthesized by the electric breakdown of liquid hydrocarbon (cyclohexane) is developed. The highest concentration of carbon nanoparticles is recorded in the coating surface coating 30-50 (μm in depth and also near the interface coating - base. It is shown that the nanocarbon introduced in electrolytes enhances the content of high-temperature modifications of aluminum oxide α-Al 2 O 3 by a factor of 3, as compared to the coating resulting in a solution without additives. The latter achieves higher tribomechanical properties - the 1.6-fold increase of microhardness, the multiple growth of wear resistance in the high pressure range (45,60 MPa) with a simultaneous reduction of the coefficient 2-9 times. (authors)

  20. The crystallization processes in the aluminum particles production technology

    Directory of Open Access Journals (Sweden)

    Arkhipov Vladimir

    2015-01-01

    Full Text Available The physical and mathematical model of the crystallization process of liquid aluminum particles in the spray-jet of the ejection-type atomizer was proposed. The results of mathematical modeling of two-phase flow in the spray-jet and the crystallization process of fluid particles are given. The influence of the particle size, of the flow rate and the stagnation temperature gas in the ranges of industrial technology implemented for the production of powders aluminum of brands ASD, on the crystallization characteristics were investigated. The approximations of the characteristics of the crystallization process depending on the size of the aluminum particles on the basis of two approaches to the mathematical description of the process of crystallization of aluminum particles were obtained. The results allow to optimize the process parameters of ejection-type atomizer to produce aluminum particles with given morphology.

  1. CHARACTERIZATION AND ALUMINUM DISSOLUTION DEMONSTRATION WITH A 3 LITER TANK 51H SAMPLE

    International Nuclear Information System (INIS)

    Hay, M; John Pareizs, J; Cj Bannochie, C; Michael Stone, M; Damon Click, D; Daniel McCabe, D

    2008-01-01

    A 3-liter sludge slurry sample was sent to SRNL for demonstration of a low temperature aluminum dissolution process. The sludge was characterized before and after the aluminum dissolution. Post aluminum dissolution sludge settling and the stability of the decanted supernate were also observed. The characterization of the as-received 3-liter sample of Tank 51H sludge slurry shows a typical high aluminum HM sludge. The XRD analysis of the dried solids indicates Boehmite is the predominant crystalline form of aluminum in the sludge solids. However, amorphous phases of aluminum present in the sludge would not be identified using this analytical technique. The low temperature (55 C) aluminum dissolution process was effective at dissolving aluminum from the sludge. Over the three week test, ∼42% of the aluminum was dissolved out of the sludge solids. The process appears to be selective for aluminum with no other metals dissolving to any appreciable extent. At the termination of the three week test, the aluminum concentration in the supernate had not leveled off indicating more aluminum could be dissolved from the sludge with longer contact times or higher temperatures. The slow aluminum dissolution rate in the test may indicate the dissolution of the Boehmite form of aluminum however; insufficient kinetic data exists to confirm this hypothesis. The aluminum dissolution process appears to have minimal impact on the settling rate of the post aluminum dissolution sludge. However, limited settling data were generated during the test to quantify the effects. The sludge settling was complete after approximately twelve days. The supernate decanted from the settled sludge after aluminum dissolution appears stable and did not precipitate aluminum over the course of several months. A mixture of the decanted supernate with Tank 11 simulated supernate was also stable with respect to precipitation

  2. Drying studies of simulated DOE aluminum plate fuels

    International Nuclear Information System (INIS)

    Lords, R.E.; Windes, W.E.; Crepeau, J.C.; Sidwell, R.W.

    1996-01-01

    Experiments have been conducted to validate the Idaho National Engineering Laboratory (INEL) drying procedures for preparation of corroded aluminum plate fuel for dry storage in an existing vented (and filtered) fuel storage facility. A mixture of hydrated aluminum oxide bound with a clay was used to model the aluminum corrosion product and sediment expected in these Department of Energy (DOE) owned fuel types. Previous studies demonstrated that the current drying procedures are adequate for removal of free water inside the storage canister and for transfer of this fuel to a vented dry storage facility. However, using these same drying procedures, the simulated corrosion product was found to be difficult to dry completely from between the aluminum clad plates of the fuel. Another related set of experiments was designed to ensure that the fuel would not be damaged during the drying process. Aluminum plate fuels are susceptible to pitting damage on the cladding that can result in a portion of UAl x fuel meat being disgorged. This would leave a water-filled void beneath the pit in the cladding. The question was whether bursting would occur when water in the void flashes to steam, causing separation of the cladding from the fuel, and/or possible rupture. Aluminum coupons were fabricated to model damaged fuel plates. These coupons do not rupture or sustain any visible damage during credible drying scenarios

  3. Aluminum and aluminum/silicon coatings on ferritic steels by CVD-FBR technology

    International Nuclear Information System (INIS)

    Perez, F.J.; Hierro, M.P.; Trilleros, J.A.; Carpintero, M.C.; Sanchez, L.; Bolivar, F.J.

    2006-01-01

    The use of chemical vapor deposition by fluidized bed reactors (CVD-FBR) offers some advantages in comparison to other coating techniques such as pack cementation, because it allows coating deposition at lower temperatures than pack cementation and at atmospheric pressure without affecting the mechanical properties of material due to heat treatments of the bulk during coating process. Aluminum and aluminum/silicon coatings have been obtained on two different ferritics steels (P-91 and P-92). The coatings were analyzed using several techniques like SEM/EDX and XRD. The results indicated that both coatings were form by Fe 2 Al 5 intermetallic compound, and in the co-deposition the Si was incorporated to the Fe 2 Al 5 structure in small amounts

  4. Application of physical and numerical simulations for interpretation of peripheral coarse grain structure during hot extrusion of AA7020 aluminum alloy

    NARCIS (Netherlands)

    Eivani, A.R.; Zhou, J.

    2017-01-01

    In this research, hot compression test is used to simulate the metallurgical phenomena occurring in the peripheral part of AA7020 aluminum alloy extrudates during hot extrusion and leading to the formation of the peripheral coarse grain (PCG) structure. The temperature profiles at a tracking

  5. A comparison of corrosion inhibition of magnesium aluminum and zinc aluminum vanadate intercalated layered double hydroxides on magnesium alloys

    Science.gov (United States)

    Guo, Lian; Zhang, Fen; Lu, Jun-Cai; Zeng, Rong-Chang; Li, Shuo-Qi; Song, Liang; Zeng, Jian-Min

    2018-04-01

    The magnesium aluminum and zinc aluminum layered double hydroxides intercalated with NO3 -(MgAl-NO3-LDH and ZnAl-NO3-LDH) were prepared by the coprecipitation method, and the magnesium aluminum and the zinc aluminum layered double hydroxides intercalated with VO x -(MgAl-VO x -LDH and ZnAl-VO x -LDH) were prepared by the anion-exchange method. Morphologies, microstructures and chemical compositions of LDHs were investigated by SEM, EDS, XRD, FTIR, Raman and TG analyses. The immersion tests were carried to determine the corrosion inhibition properties of MgAl-VO x -LDH and ZnAl-VO x -LDH on AZ31 Mg alloys. The results showed that ZnAl-VO x -LDH possesses the best anion-exchange and inhibition abilities. The influence of treatment parameters on microstructures of LDHs were discussed. Additionally, an inhibition mechanism for ZnAl-VO x -LDH on the AZ31 magnesium alloy was proposed and discussed.

  6. MPA/ESO/MPE/USM Joint Astronomy Conference

    CERN Document Server

    Böhringer, H; Finoguenov, A; Schuecker, P; Heating versus Cooling in Galaxies and Clusters of Galaxies

    2007-01-01

    The present volume is the record of a recent topical conference on the interplay between heating and cooling processes in galaxies and clusters of galaxies. The volume documents recent progress in our understanding of the dense central regions of these objects. Chapters detail recent results from multiwavelength observations and advances in numerical hydrodynamical simulations. An additional section covers new research on feedback and self-regulatory mechanisms during cosmic structure formation in general, and in galaxy formation in particular. With reviews and technical papers written by leading scientists, this state-of-the art report will be a valuable and comprehensive source of reference for all astronomers and astrophysicists active in this field.

  7. Improving of Corrosion Resistance of Aluminum Alloys by Removing Intermetallic Compound

    International Nuclear Information System (INIS)

    Seri, Osami

    2008-01-01

    It is well known that iron is one of the most common impurity elements sound in aluminum and its alloys. Iron in the aluminum forms an intermetallic compounds such as FeAl 3 . The FeAl 3 particles on the aluminum surface are one of the most detrimental phases to the corrosion process and anodizing procedure for aluminum and its alloys. Trial and error surface treatment will be carried out to find the preferential and effective removal of FeAl 3 particles on the surfaces without dissolution of aluminum matrix around the particles. One of the preferable surface treatments for the aim of getting FeAl 3 free surface was an electrochemical treatment such as cathodic current density of -2 kAm -2 in a 20-30 mass% HNO 3 solution for the period of 300s. The corrosion characteristics of aluminum surface with FeAl 3 free particles are examined in a 0.1 kmol/m 3 NaCl solution. It is found that aluminum with free FeAl 3 particles shows higher corrosion resistance than aluminum with FeAl 3 particles

  8. Effect of direct contact with iron on gas evolution behavior of aluminum

    International Nuclear Information System (INIS)

    Hashizume, Shuji; Matsumoto, Junko; Banba, Tsunetaka

    1998-01-01

    Dry Low-Level Radioactive Waste (LLW), incombustible solid LLW, generated from nuclear power stations is planed to be solidified with cement backfill in drums. The solidified dry LLW will be buried to shallow underground at Rokkasyo LLW Disposal Center. It is well known that corrosion of aluminum and hydrogen gas evolution occur in high pH environments such as mortar. Gas evolution from aluminum is likely to effect the leachability of solidified dry LLW with mortar. Though aluminum removal from dry LLW is planed, a small amount of aluminum will be actually included in dry LLW. Large effects of pH and temperature on corrosion rate of aluminum and gas evolution were recognized in our previous study. It was also found that 1.5 mole hydrogen gas evolves while 1 mole aluminum corrodes under 60degC. Actually aluminum in drums is likely to contact with carbon steel of which main element is iron. The gas evolution behavior of aluminum is expected to be affected by its direct contact with iron. Therefore, effect of direct contact with iron on gas evolution behavior of aluminum was studied. The corrosion rate of aluminum increased by contacting it with iron in simulating mortar environments. The amount of gas evolution from aluminum was reduced by contacting with iron. The reduction in gas evolution was considered to result from the change of cathode reaction from hydrogen evolution to oxygen reduction. When aluminum contacts with iron, the corrosion and gas evolution behavior of aluminum is significantly affected oxygen in environment. (author)

  9. Effects of different aging statuses and strain rate on the adiabatic shear susceptibility of 2195 aluminum-lithium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Y. [School of Materials Science and Engineering, Central South University, Changsha 410083, Hunan (China); State Key Laboratory of Explosion Science and Technology, Beijing 100081 (China); Tan, G.Y., E-mail: yangyanggroup@163.com [School of Materials Science and Engineering, Central South University, Changsha 410083, Hunan (China); Chen, P.X. [School of Materials Science and Engineering, Central South University, Changsha 410083, Hunan (China); Zhang, Q.M. [State Key Laboratory of Explosion Science and Technology, Beijing 100081 (China)

    2012-06-01

    The adiabatic shear susceptibility of 2195 aluminum-lithium alloy was investigated by means of split Hopkinson pressure bar. The stress collapse in true stress-true strain curves and true stress-time curves was observed. The adiabatic shear susceptibility of different aging statuses and strain rate were discussed by means of metallography observation. The critical strain, stress collapse time and formation energy of adiabatic shear bands were compared. The results show that different aging statuses and strain rate have significant influences on adiabatic shear behaviors of 2195 aluminum-lithium alloy. The peak-aged specimen has the highest adiabatic shearing susceptibility, while the under-aged specimen has the least adiabatic shear susceptibility. The susceptibility of adiabatic shearing increases with the increases of strain rate.

  10. New roots to formation of nanostructures on glass surface through anodic oxidation of sputtered aluminum

    Directory of Open Access Journals (Sweden)

    Satoru Inoue, Song-Zhu Chu, Kenji Wada, Di Li and Hajime Haneda

    2003-01-01

    Full Text Available New processes for the preparation of nanostructure on glass surfaces have been developed through anodic oxidation of sputtered aluminum. Aluminum thin film sputtered on a tin doped indium oxide (ITO thin film on a glass surface was converted into alumina by anodic oxidation. The anodic alumina gave nanometer size pore array standing vertically on the glass surface. Kinds of acids used in the anodic oxidation changed the pore size drastically. The employment of phosphoric acid solution gave several tens nanometer size pores. Oxalic acid cases produced a few tens nanometer size pores and sulfuric acid solution provided a few nanometer size pores. The number of pores in a unit area could be changed with varying the applied voltage in the anodization and the pore sizes could be increased by phosphoric acid etching. The specimen consisting of a glass substrate with the alumina nanostructures on the surface could transmit UV and visible light. An etched specimen was dipped in a TiO2 sol solution, resulting in the impregnation of TiO2 sol into the pores of alumina layer. The TiO2 sol was heated at ~400 °C for 2 h, converting into anatase phase TiO2. The specimens possessing TiO2 film on the pore wall were transparent to the light in UV–Visible region. The electro deposition technique was applied to the introduction of Ni metal into pores, giving Ni nanorod array on the glass surface. The removal of the barrier layer alumina at the bottom of the pores was necessary to attain smooth electro deposition of Ni. The photo catalytic function of the specimens possessing TiO2 nanotube array was investigated in the decomposition of acetaldehyde gas under the irradiation of UV light, showing that the rate of the decomposition was quite large.

  11. Spray rolling aluminum alloy strip

    Energy Technology Data Exchange (ETDEWEB)

    McHugh, Kevin M.; Delplanque, J.-P.; Johnson, S.B.; Lavernia, E.J.; Zhou, Y.; Lin, Y

    2004-10-10

    Spray rolling combines spray forming with twin-roll casting to process metal flat products. It consists of atomizing molten metal with a high velocity inert gas, cooling the resultant droplets in flight and directing the spray between mill rolls. In-flight convection heat transfer from atomized droplets teams with conductive cooling at the rolls to rapidly remove the alloy's latent heat. Hot deformation of the semi-solid material in the rolls results in fully consolidated, rapidly solidified product. While similar in some ways to twin-roll casting, spray rolling has the advantage of being able to process alloys with broad freezing ranges at high production rates. This paper describes the process and summarizes microstructure and tensile properties of spray-rolled 2124 and 7050 aluminum alloy strips. A Lagrangian/Eulerian poly-dispersed spray flight and deposition model is described that provides some insight into the development of the spray rolling process. This spray model follows droplets during flight toward the rolls, through impact and spreading, and includes oxide film formation and breakup when relevant.

  12. Influence of wire EDM parameters on the damping behaviour of A356.2 aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, Dora Siva, E-mail: dorasivaprasad@gmail.com [Dept of Mechanical Engineering, GITAM University, Visakhapatnam, 530045 (India); Shoba, Chintada [Dept of Industrial Engineering, GITAM University, Visakhapatnam, 530045 (India); Varma, Kalidindi Rahul [Dept of Mechanical Engineering, RAGHU College of Engineering, Visakhapatnam (India); Khurshid, Abdul [M.Tech (CAD/CAM), Dept of Mechanical Engineering, GITAM University, Visakhapatnam, 530045 (India)

    2015-10-15

    The effect of different Wire electrical discharge machining (WEDM) process parameters on the damping behavior of A356.2 aluminum alloy is investigated. In the present investigation pulse on time (T{sub ON}), pulse off time (T{sub OFF}) and peak current (IP) which are considered to be the most significant process parameters from the previous studies are varied using one factor at a time approach, to study the effect on damping behavior of A356.2 aluminum alloy. Damping experiments are performed on a dynamic mechanical analyzer (DMA 8000) at constant strain under dual cantilever mode over a frequency range of 1–100 Hz at room temperature. The scanning electron microscope was used for characterization of the wire EDMed samples. Experimental results reveal that the damping behavior greatly depends on the wire EDM process parameters. The related mechanisms are presented. - Highlights: • Damping capacity increase with the increase in frequency. • Increasing pulse on time increases the damping capacity of aluminum alloy. • The damping capacity was found to decrease with the increase in pulse off time. • No significant change in damping capacity was noticed with varied peak current. • The formation of white layer plays an important role in the damping behavior.

  13. Bone aluminum measurements in patients with end-stage renal disease

    International Nuclear Information System (INIS)

    Ellis, K.J.; Kelleher, S.P.

    1986-01-01

    Long-term use of aluminum-based phosphate binders and trace aluminum contamination of dialysate solution have led to increased body burden of this metal in patients with end-stage renal disease. Aluminum accumulates in bone and has been associated with the development of a renal osteodystrophy, called aluminum-induced osteomalacia. At present, bone biopsy is the method of diagnosis of this condition. When examined by quantitative histomorphometry, the aluminum accumulation was reported to correlate with the severity of the osteomalacia. This project was therefore undertaken to investigate the possibility of developing a non-invasive technique using neutron activation analysis for the direct in vivo assessment of bone aluminum levels. A bilateral exposure of the patient's hand is performed at the patient port of the Brookhaven Medical Research Reactor. The induced activity is then counted for 5 min using four 4'' x 4'' x 16'' NaI(T1) detectors arranged in a quasi-4! geometry. In addition to Al, Ca is also detected and serves as each individual's internal standard for the volume of bone mass irradiated. The Al/Ca ratio provides an index of the amount of elevated aluminum per unit bone mass. When this ratio is multiplied by the total body calcium value, an estimate of total skeletal aluminum is obtained. These measurements will be presented for a pilot study of ten asymptomatic renal patients

  14. Effects of aluminum and manganese on the growth of ectomycorrhizal fungi.

    Science.gov (United States)

    Thompson, G W; Medve, R J

    1984-09-01

    Cenococcum graniforme, Suillus luteus, Thelephora terrestris, and three isolates of Pisolithus tinctorius were cultured on modified Melin-Norkrans medium at pH 3.4 and adjusted to 0 to 500 ppm (0 to 500 mug/ml) of aluminum or manganese sulfate. Except for T. terrestris, which was intolerant of aluminum at 150 and 250 to 500 ppm, and P. tinctorius isolate 250, which was intolerant of aluminum at 450 ppm, all fungi showed some growth at all concentrations of aluminum. S. luteus was the most tolerant to aluminum. Manganese was less fungitoxic than aluminum, with all fungi showing at least 65% growth at 500 ppm as compared with the control. C. graniforme was not inhibited at any concentration of manganese, and S. luteus was only affected at 500 ppm. P. tinctorius isolate 230 showed no significant variation in growth when subjected to various concentrations of three forms of manganese salts. Significant differences in growth were detected in response to three aluminum salts, but no detectable pattern was apparent. Genotypic responses to aluminum and manganese were evident for P. tinctorius. Isolates 210 and 230 were more tolerant to manganese than was isolate 250. Aluminum tolerance was in the order of isolate 230 > 210 > 250. Results of in vitro studies concerning tolerance responses of ectomycorrhizal fungi to aluminum and manganese were not consistent with field observations of the successional sequence of these fungi on acid coal spoils.

  15. Effects of aluminum and manganese on the growth of ectomycorrhizal fungi

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, G.W.; Medve, R.J.

    1984-09-01

    Cenococcum graniforme, Suillus luteus, Thelephora terrestris, and three isolates of Pisolithus tinctorius were cultured on modified Melin-Norkrans medium at pH 3.4 and adjusted to 0 to 500 ppm (0 to 500 ..mu..g/ml) of aluminum or manganese sulfate. Except for T. terrestris, which was intolerant of aluminum at 150 and 250 to 500 ppm, and P. tinctorius isolate 250, which was intolerant of aluminum at 450 ppm, all fungi showed some growth at all concentrations of aluminum. S. luteus was the most tolerant to aluminum. Manganese was less fungitoxic than aluminum, with all fungi showing at least 65% growth at 500 ppm as compared with the control. C graniforme was not inhibited at any concentration of manganese, and S. luteus was only affected at 500 ppm. P. tinctorius isolate 230 showed no significant variation in growth when subjected to various concentrations of three forms of manganese salts. Significant differences in growth were detected in response to three aluminum salts, but no detectable pattern was apparent. Genotypic responses to aluminum and manganese were evident for P. tinctorius. Isolates 210 and 230 were more tolerant to manganese than was isolate 250. Aluminum tolerance was in the order of isolate 230 > 210 > 250. Results of in vitro studies concerning tolerance responses of ectomycorrhizal fungi to aluminum and manganese were not consistent with field observations of the successional sequence of these fungi on acid coal spoils. 43 references, 3 tables.

  16. IFLA General Conference, 1986. Bibliographic Control Division. Section: Cataloguing. Papers.

    Science.gov (United States)

    International Federation of Library Associations and Institutions, The Hague (Netherlands).

    Papers on cataloging which were presented at the 1986 International Federation of Library Associations (IFLA) conference include: (1) "Cataloging of Government Documents in the Age of Automation" (Chong Y. Yoon, United States), which discusses the use of MARC (Machine-Readable Cataloging) formats to integrate government documents into…

  17. Strengthening of Aluminum Wires Treated with A206/Alumina Nanocomposites.

    Science.gov (United States)

    Florián-Algarín, David; Marrero, Raúl; Li, Xiaochun; Choi, Hongseok; Suárez, Oscar Marcelo

    2018-03-10

    This study sought to characterize aluminum nanocomposite wires that were fabricated through a cold-rolling process, having potential applications in TIG (tungsten inert gas) welding of aluminum. A206 (Al-4.5Cu-0.25Mg) master nanocomposites with 5 wt % γAl₂O₃ nanoparticles were first manufactured through a hybrid process combining semi-solid mixing and ultrasonic processing. A206/1 wt % γAl₂O₃ nanocomposites were fabricated by diluting the prepared master nanocomposites with a monolithic A206 alloy, which was then added to a pure aluminum melt. The fabricated Al-γAl₂O₃ nanocomposite billet was cold-rolled to produce an Al nanocomposite wire with a 1 mm diameter and a transverse area reduction of 96%. Containing different levels of nanocomposites, the fabricated samples were mechanically and electrically characterized. The results demonstrate a significantly higher strength of the aluminum wires with the nanocomposite addition. Further, the addition of alumina nanoparticles affected the wires' electrical conductivity compared with that of pure aluminum and aluminum-copper alloys. The overall properties of the new material demonstrate that these wires could be an appealing alternative for fillers intended for aluminum welding.

  18. Improving pitting corrosion resistance of aluminum by anodizing process

    International Nuclear Information System (INIS)

    John, P.; Khan, I.U.

    2013-01-01

    Summary: Anodizing of aluminum was studied in sulphuric/citric/boric acid electrolyte system to improve pitting corrosion resistance. Maximum oxide film thickness was obtained using 5% sulphuric acid, 3% citric acid and 0.5% boric acid electrolyte composition. The corrosion resistance of aluminum sample was determined to find the effectiveness of oxide coating by potentiodynamic polarization test. The surface morphology of aluminum samples was investigated using scanning electron microscope (SEM) before and after corrosion test. It was found that the coated aluminum sample obtained by anodizing in sulphuric/citric/boric acid electrolyte system exhibited better pitting corrosion resistance with no significant difference in surface morphology. (author)

  19. Aluminum nitrate recrystallization and recovery from liquid extraction raffinates

    International Nuclear Information System (INIS)

    Griffith, W.L.; Compere, A.L.; Googin, J.M.; Huxtable, W.P.

    1991-09-01

    The solid sludges resulting form biodenitrification of discarded aluminum nitrate are the largest Y-12 Plant process solid waste. Aluminum nitrate feedstocks also represent a major plant materials cost. The chemical constraints on aluminum nitrate recycle were investigated to determine the feasibility of increasing recycle while maintaining acceptable aluminum nitrate purity. Reported phase behavior of analogous systems, together with bench research, indicated that it would be possible to raise the recycle rate from 35% to between 70 and 90% by successive concentration and recrystallization of the mother liquor. A full scale pilot test successfully confirmed the ability to obtain 70% recycle in existing process equipment

  20. Crystallization of aluminum hydroxide in the aluminum-air battery: Literature review, crystallizer design and results of integrated system tests

    Science.gov (United States)

    Maimoni, A.

    1988-03-01

    The literature on aluminum trihydroxide crystallization is reviewed and the implications of crystallization on the design and performance of the aluminum-air battery are illustrated. Results of research on hydrargillite crystallization under battery operating conditions at Alcoa Laboratories, Alcan Kingston Laboratories, and Lawrence Livermore National Laboratory are summarized and are applied to the design of an electrolyte management system using lamella settlers for clarification of the electrolyte and product separation. The design principles were validated in a series of experiments that, for the first time in the aluminum-air program, demonstrated continuous operation of an integrated system consisting of cells, crystallizer, and a product-removal system.

  1. Improving the wettability of aluminum on carbon nanotubes

    International Nuclear Information System (INIS)

    So, Kang Pyo; Lee, Il Ha; Duong, Dinh Loc; Kim, Tae Hyung; Lim, Seong Chu; An, Kay Hyeok; Lee, Young Hee

    2011-01-01

    Research highlights: → The wettability of CNT in Al metal was improved by electroplating method. → This involves two steps: (i) Al electroplating and (ii) additional Al wetting. → The large surface tension difference was overcome by forming Al-C covalent bonds. → Al-C covalent bond was verified by Raman spectroscopy and XPS. → Density functional calculations confirmed structural model of CNT-vacancy-O-Al. - Abstract: The wetting of a metal on carbon nanotubes is fundamentally difficult due to the unusually large difference between their surface tensions and is a bottleneck for making metal-carbon nanotube (CNT) composites. Here, we report a simple method to enhance the wettability of metal particles on the CNT surface by applying aluminum, which is the material with the largest surface tension. This method involves two steps: (i) Al nanoparticles are decorated on multiwalled carbon nanotubes by electroplating and (ii) Al powder is further spread on Al-electroplated CNTs, followed by high-temperature annealing to accommodate complete wetting of the aluminum. The large surface tension difference is overcome by forming strong Al-C covalent bonds initiated by defects of the CNTs. The decrease in the D-band intensity, the G-band shift in the Raman spectroscopy and the formation of Al-C covalent bonds, as confirmed by X-ray photoelectron spectroscopy, were in agreement with our structural model of CNT-vacancy-O-Al determined by density functional calculations.

  2. Conference on chemical evolution and the origin of life: Self-organization of the macromolecules of life

    International Nuclear Information System (INIS)

    1993-10-01

    The formation of biomolecules was a necessary step in the evolution of life on earth. This interdisciplinary conference emphasized the role of replication in processes of self-organization of biological macromolecules. The present document contains abstracts of the 26 contributions to the conference on chemical evolution. The individual contributions have been indexed separately for the database

  3. Activated aluminum hydride hydrogen storage compositions and uses thereof

    Science.gov (United States)

    Sandrock, Gary; Reilly, James; Graetz, Jason; Wegrzyn, James E.

    2010-11-23

    In one aspect, the invention relates to activated aluminum hydride hydrogen storage compositions containing aluminum hydride in the presence of, or absence of, hydrogen desorption stimulants. The invention particularly relates to such compositions having one or more hydrogen desorption stimulants selected from metal hydrides and metal aluminum hydrides. In another aspect, the invention relates to methods for generating hydrogen from such hydrogen storage compositions.

  4. Mechanism of Corrosion of Activated Aluminum Particles by Hot Water

    International Nuclear Information System (INIS)

    Razavi-Tousi, S.S.; Szpunar, J.A.

    2014-01-01

    Mechanism of corrosion in aluminum particles by hot water treatment for hydrogen generation is evaluated. The aluminum powder was activated by ball milling for different durations, which modified size and microstructure of the particles. Open circuit potential test was carried out to elucidate different stages of the reaction. Tafel test was used to explain the effect of ball milling and growth of hydroxide layer on corrosion of the particles. Surface, cross section and thickness of the grown hydroxide on the aluminum particles were studied in a scanning electron microscope. The corrosion potential of the aluminum powders depends on microstructure of the aluminum particles, growth of the hydroxide layer and a change in pH because of cathodic reactions. The hydrogen production test showed that a deformed microstructure and smaller particle size accelerates the corrosion rate of aluminum by hot water, the effect of the deformed microstructure being more significant at the beginning of the reaction. Effect of growth of the hydroxide layer on corrosion mechanism is discussed

  5. Structural formation of aluminide phases on titanium alloy during annealing

    International Nuclear Information System (INIS)

    Mamaeva, A.A.; Romankov, S.E.; Sagdoldina, Zh.

    2006-01-01

    Full text: The aluminum layer on the surface of titanium alloy has been formed by thermal deposition. The structural formation of aluminide phases on the surface has been studied. The sequence of structural transformations at the Ti/Al interface is limited by the reaction temperature and time. The sequence of aluminide phase formation is occurred in compliance with Ti-Al equilibrium phase diagram. At the initial stages at the Ti/Al interface the Al3Ti alloy starts forming as a result of interdiffusion, and gradually the whole aluminum films is spent on the formation of this layer. The Al3Ti layer decomposes with the increase of temperature (>600C). At 800C the two-phase (Ti3Al+TiAl) layer is formed on the titanium surface. The TiAl compound is unstable and later on with the increase of the exposure time at 800C gradually transforms into the Ti3Al. The chain of these successive transformations leads to the formation of the continuous homogeneous layer consisting of the Ti3Al compound on the surface. At temperatures exceeding the allotropic transformation temperature (>900C) the Ti3Al compound starts decomposing. All structural changes taking place at the Ti/Al interface are accompanied by considerable changes in micro hardness. The structure of initial substrate influences on kinetics of phase transformation and microstructure development. (author)

  6. AlN powder synthesis via nitriding reaction of aluminum sub-chloride

    Energy Technology Data Exchange (ETDEWEB)

    Ohashi, T.; Nishida, T.; Sugiura, M. (Waseda Univ., Tokyo (Japan). Graduate School); Fuwa, A. (Waseda Univ., Tokyo (Japan))

    1993-06-01

    In order to obtain the pertinent properties of aluminium nitride in its sintered form, it is desirable to have powders of finer sizes with narrower size distribution and higher purity, thereby making the sintering processing easier and the final body denser. Instead of using sublimated aluminum tri-chloride vapor (AlCl3) as an aluminum source in the vapor phase nitriding reaction, the mixed aluminum chloride vapor consisted of aluminum tri-chloride, bi-chloride and mono-chloride are used in the reaction with ammonia at temperatures of 1000 and 1200K. The mixed chloride vapors are produced by reacting chlorine with molten aluminum at 1000 or 1200K under atmospheric pressure. The reaction of this mixed chloride vapor with ammonia is then experimentally investigated to study the aluminum nitride powder morphology. The aluminum nitride powders synthesized under various ammonia concentrations are characterized for size distribution, mean particle size and particle morphology. 24 refs., 8 figs., 2 tabs.

  7. Carrier gas effects on aluminum-catalyzed nanowire growth

    International Nuclear Information System (INIS)

    Ke, Yue; Hainey, Mel Jr; Won, Dongjin; Weng, Xiaojun; Eichfeld, Sarah M; Redwing, Joan M

    2016-01-01

    Aluminum-catalyzed silicon nanowire growth under low-pressure chemical vapor deposition conditions requires higher reactor pressures than gold-catalyzed growth, but the reasons for this difference are not well understood. In this study, the effects of reactor pressure and hydrogen partial pressure on silicon nanowire growth using an aluminum catalyst were studied by growing nanowires in hydrogen and hydrogen/nitrogen carrier gas mixtures at different total reactor pressures. Nanowires grown in the nitrogen/hydrogen mixture have faceted catalyst droplet tips, minimal evidence of aluminum diffusion from the tip down the nanowire sidewalls, and significant vapor–solid deposition of silicon on the sidewalls. In comparison, wires grown in pure hydrogen show less well-defined tips, evidence of aluminum diffusion down the nanowire sidewalls at increasing reactor pressures and reduced vapor–solid deposition of silicon on the sidewalls. The results are explained in terms of a model wherein the hydrogen partial pressure plays a critical role in aluminum-catalyzed nanowire growth by controlling hydrogen termination of the silicon nanowire sidewalls. For a given reactor pressure, increased hydrogen partial pressures increase the extent of hydrogen termination of the sidewalls which suppresses SiH_4 adsorption thereby reducing vapor–solid deposition of silicon but increases the surface diffusion length of aluminum. Conversely, lower hydrogen partial pressures reduce the hydrogen termination and also increase the extent of SiH_4 gas phase decomposition, shifting the nanowire growth window to lower growth temperatures and silane partial pressures. (paper)

  8. Gordon Research Conference on Genetic Toxicology

    Energy Technology Data Exchange (ETDEWEB)

    Project Director Penelope Jeggo

    2003-02-15

    conferences, the emphasis has moved to understanding how cells and organisms respond to the different forms of genotoxic damage incurred. By understanding these mechanisms, the risk to humans can be more rationally assessed and evaluated. More recently, the format of the meetings have aimed to facilitate input from the range of disciplines that can now provide insight into the field. This evolution in emphasis has been continued in the format of the proposed 2003 meeting. In the last Genetic Toxicology Gordon Conference (2001), the aim was to integrate studies on genetic toxicology at the structural, molecular and cellular level with those involving mice and humans (2 micron to Man). In the 2003 conference, we aim to integrate the approaches from 2 micron to man together with approaches where our basic knowledge has been exploited in an applied context (2 micron to Man to manipulation).

  9. Computational Biology Support: RECOMB Conference Series (Conference Support)

    Energy Technology Data Exchange (ETDEWEB)

    Michael Waterman

    2006-06-15

    This funding was support for student and postdoctoral attendance at the Annual Recomb Conference from 2001 to 2005. The RECOMB Conference series was founded in 1997 to provide a scientific forum for theoretical advances in computational biology and their applications in molecular biology and medicine. The conference series aims at attracting research contributions in all areas of computational molecular biology. Typical, but not exclusive, the topics of interest are: Genomics, Molecular sequence analysis, Recognition of genes and regulatory elements, Molecular evolution, Protein structure, Structural genomics, Gene Expression, Gene Networks, Drug Design, Combinatorial libraries, Computational proteomics, and Structural and functional genomics. The origins of the conference came from the mathematical and computational side of the field, and there remains to be a certain focus on computational advances. However, the effective use of computational techniques to biological innovation is also an important aspect of the conference. The conference had a growing number of attendees, topping 300 in recent years and often exceeding 500. The conference program includes between 30 and 40 contributed papers, that are selected by a international program committee with around 30 experts during a rigorous review process rivaling the editorial procedure for top-rate scientific journals. In previous years papers selection has been made from up to 130--200 submissions from well over a dozen countries. 10-page extended abstracts of the contributed papers are collected in a volume published by ACM Press and Springer, and are available at the conference. Full versions of a selection of the papers are published annually in a special issue of the Journal of Computational Biology devoted to the RECOMB Conference. A further point in the program is a lively poster session. From 120-300 posters have been presented each year at RECOMB 2000. One of the highlights of each RECOMB conference is a

  10. Predictors of Poor Prognosis in Aluminum Phosphide Intoxication

    Directory of Open Access Journals (Sweden)

    Fakhredin Taghaddosi Nejad

    2012-05-01

    Full Text Available Background: Aluminum phosphide as a fumigant is extensively used for wheat preservation from rodents and bugs especially in silos worldwide. There is increasing number of acute intoxication with this potentially lethal compound because of its easy availability. We have tried to locate predictors of poor prognosis in patients with aluminum phosphide intoxication in order to find patients who need more strict medical cares. Methods: All cases of aluminum phosphide intoxication that had been referred to our hospital during April 2008 to March 2010 were studied by their medical dossiers. Pertinent data including vital signs, demographic features, clinical and lab findings, and incidence of any complication were collected and analyzed by the relevant statistical methods. Results: Sixty seven cases of aluminum phosphide intoxication were included in the study. 44.8% of them were male. 97% of cases were suicidal. Mean amount of ingestion was 1.23+/- 0.71 tablets. Mortality rate was 41.8%. ECG abnormality and need for mechanical ventilation had negative relation with outcome. Conclusion: Correlation between some findings and complications with outcome in aluminum phosphide intoxication can be used as guidance for risk assessment and treatment planning in the patients.

  11. SLM processing-microstructure-mechanical property correlation in an aluminum alloy produced by additive manufacturing

    Science.gov (United States)

    Alejos, Martin Fernando

    Additive manufacturing has become a highly researched topic in recent years all over the world. The current research evaluates the merits of additive manufacturing based on the mechanical, microstructural, and fracture properties of additive manufactured AlSi10Mg test specimens. The additive manufactured build plates consisted of tensile and fatigue test specimens. They were printed in the 0°, 30°, 60°, and 90° orientations relative to the build platform. Tensile and dynamic fatigue tests were conducted followed by microstructural characterization and fracture analysis. A wrought 6061 T6 aluminum alloy was also tested for comparison. Tensile tests revealed similar ultimate tensile strengths for all aluminum tensile specimens (350-380 MPa). Fatigue strength was greatest for wrought 6061 T6 aluminum (175 MPa). The fatigue behavior was a strong function of build orientation for the additive manufactured specimens. The 0°, 30°, and 60° orientations had fatigue strengths close to 104 MPa while the 90° orientation had a fatigue strength of 125 MPa. All test specimens failed primarily in a ductile manner. The effect of laser power, hatch spacing, and scan speed were also studied using microstructural analysis. Increasing laser power decreased grain size and void size. Increasing scan speed led to the formation of columnar grains. Increasing hatch spacing decreased grain size and the amount of voids present in the microstructure.

  12. Improving of Corrosion Resistance of Aluminum Alloys by Removing Intermetallic Compound

    Energy Technology Data Exchange (ETDEWEB)

    Seri, Osami [Muroran it., Hokkaido (Japan)

    2008-06-15

    It is well known that iron is one of the most common impurity elements sound in aluminum and its alloys. Iron in the aluminum forms an intermetallic compounds such as FeAl{sub 3}. The FeAl{sub 3} particles on the aluminum surface are one of the most detrimental phases to the corrosion process and anodizing procedure for aluminum and its alloys. Trial and error surface treatment will be carried out to find the preferential and effective removal of FeAl{sub 3} particles on the surfaces without dissolution of aluminum matrix around the particles. One of the preferable surface treatments for the aim of getting FeAl{sub 3} free surface was an electrochemical treatment such as cathodic current density of -2 kAm{sup -2} in a 20-30 mass% HNO{sub 3} solution for the period of 300s. The corrosion characteristics of aluminum surface with FeAl{sub 3} free particles are examined in a 0.1 kmol/m{sup 3} NaCl solution. It is found that aluminum with free FeAl{sub 3} particles shows higher corrosion resistance than aluminum with FeAl{sub 3} particles.

  13. Practical Modeling of aluminum species in high-pH waste

    International Nuclear Information System (INIS)

    Reynolds, D.A.

    1995-10-01

    One of the main components of the nuclear waste stored at the Hanford Site is aluminum. As efforts are made to dispose of the waste, the need to predict the various phases of the aluminum becomes important for modeling of the disposal processes. Current databases of the aluminum species are not adequate as they stand. This study is not an attempt to present a rigorous discussion of aluminum chemistry, but to approach aluminum solubility as a practical application. The approach considers two different forms of aluminate; Al(OH) 4 - and AlO 2 - . By taking both of these forms of aluminate into consideration, a workable system of aluminium chemistry is formed that can be used to model the various waste disposal processes

  14. Aluminum alloy and associated anode and battery

    International Nuclear Information System (INIS)

    Tarcy, G.P.

    1990-01-01

    This patent describes an aluminum alloy. It comprises: eutectic amounts of at least two alloying elements selected from the group consisting of bismuth, cadmium, scandium, gallium, indium, lead, mercury, thallium, tin, and zinc with the balance being aluminum and the alloying elements being about 0.01 to 3.0 percent by weight of the alloy

  15. Aluminum-rich mesoporous MFI - type zeolite single crystals

    DEFF Research Database (Denmark)

    Kustova, Marina; Kustov, Arkadii; Christensen, Christina Hviid

    2005-01-01

    Zeolitcs are crystalline materials, which are widely used as solid acid catalysts and supports in many industrial processes. Recently, mesoporous MFI-type zeolite single crystals were synthesized by use of carbon particles as a mesopore template and sodium aluminate as the aluminum Source....... With this technique, only zeolites with relatively low Al contents were reported (Si/Al ratio about 100). In this work, the preparation of aluminum-rich mesoporous MFI-type zeolite single crystals (Si/Al similar to 16-50) using aluminum isopropoxide as the aluminum Source is reported for the first time. All samples...... are characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), ammonia temperature programmed desorption (NH3-TPD), and N-2 adsorption measurements. The obtained zeolites combine the high crystallinity and the characteristic micropores of zeolites with an intracrystalline mesopore system...

  16. The Advanced Aluminum Nitride Synthesis Methods and Its Applications: Patent Review.

    Science.gov (United States)

    Shishkin, Roman A; Elagin, Andrey A; Mayorova, Ekaterina S; Beketov, Askold R

    2016-01-01

    High purity nanosized aluminum nitride synthesis is a current issue for both industry and science. However, there is no up-to-date review considering the major issues and the technical solutions for different methods. This review aims to investigate the advanced methods of aluminum nitride synthesis and its development tendencies. Also the aluminum nitride application patents and prospects for development of the branch have been considered. The patent search on "aluminum nitride synthesis" has been carried out. The research activity has been analyzed. Special attention has been paid to the patenting geography and the leading researchers in aluminum nitride synthesis. Aluminum nitride synthesis methods have been divided into 6 main groups, the most studied approaches are carbothermal reduction (88 patents) and direct nitridation (107 patents). The current issues for each group have been analyzed; the main trends are purification of the final product and nanopowder synthesis. The leading researchers in aluminum nitride synthesis have represented 5 countries, namely: Japan, China, Russia, South Korea and USA. The main aluminum nitride application spheres are electronics (59,1 percent of applications) and new materials manufacturing (30,9 percent). The review deals with the state of the art data in nanosized aluminum nitride synthesis, the major issues and the technical solutions for different synthesis methods. It gives a full understanding of the development tendencies and of the current leaders in the sphere.

  17. Aluminum-air power cell research and development

    Science.gov (United States)

    Cooper, J. F.

    1984-12-01

    The wedge-shaped design, of the aluminum-air battery being developed, is mechanically simple and capable of full anode utilization and rapid full or partial recharge. To maintain constant interelectrode separation and to collect anodic current, the cell uses tin-coated copper tracks mounted on removable cassettes. Under gravity feed, slabs of aluminum enter the cell at a continuous and constant rate and gradually assume the wedge shape as they dissolve. Voltage losses at this tin-aluminum junction are 7 mV at 2 kA/m(2). A second-generation wedge cell incorporates air and electrolyte manifolding into individually replaceable air-cathode cassettes. Prototype wedge cells of one design were operated simultaneously with a fluidized-bed crystallizer, which stabilized aluminate concentration and produced a granular aluminum-trihydroxide reaction product. Electrolyte was circulated between the cell and crystallizer, and a hydrocyclone was used to retain particles larger than 0.015 mm within the crystallizer. Air electrodes were tested over simulated vehicle drive systems that include a standby phase in cold, supersaturated electrolyte.

  18. The use of aluminum dome tank roofs

    International Nuclear Information System (INIS)

    Morovich, G.L.

    1992-01-01

    Since the late 1970's the aluminum dome tank roof has gained wide usage for both new and retrofit applications. The increased application for the structure results from a need for maintenance reduction, environmental considerations, concern for product quality and economics. The American Petroleum Institute (API) has approved Standard API 650, Appendix G - Structurally Supported Aluminum Dome Roofs for publication. The aluminum dome was originally used as weather cover for retrofiting external floating roof tanks. The roof was considered for the reduction of maintenance related to draining water from the external floating roofs and problems resulting from freezing of drain lines and snow accumulation. This paper reports that environmental concerns have expanded the value of aluminum dome roofs. Rainwater bypassing the seals of an external floating roof became classified as a hazardous material requiring special and expensive disposal procedures. The marketing terminal facilities typically do not have the capacity for proper treatment of contaminated bottom water. With new fuel additives being water soluble, water contamination not only created a hazardous waste disposal problem, but resulted in reduced product quality

  19. 4th European Conference on Geostatistics for Environmental Applications

    CERN Document Server

    Carrera, Jesus; Gómez-Hernández, José

    2004-01-01

    The fourth edition of the European Conference on Geostatistics for Environmental Applications (geoENV IV) took place in Barcelona, November 27-29, 2002. As a proof that there is an increasing interest in environmental issues in the geostatistical community, the conference attracted over 100 participants, mostly Europeans (up to 10 European countries were represented), but also from other countries in the world. Only 46 contributions, selected out of around 100 submitted papers, were invited to be presented orally during the conference. Additionally 30 authors were invited to present their work in poster format during a special session. All oral and poster contributors were invited to submit their work to be considered for publication in this Kluwer series. All papers underwent a reviewing process, which consisted on two reviewers for oral presentations and one reviewer for posters. The book opens with one keynote paper by Philippe Naveau. It is followed by 40 papers that correspond to those presented orally d...

  20. Optical scattering from rough-rolled aluminum surfaces.

    Science.gov (United States)

    Rönnelid, M; Adsten, M; Lindström, T; Nostell, P; Wäckelgård, E

    2001-05-01

    Bidirectional, angular resolved scatterometry was used to evaluate the feasibility of using rolled aluminum as reflectors in solar thermal collectors and solar cells. Two types of rolled aluminum with different surface roughnesses were investigated. The results show that the smoother of the two samples [rms height, (0.20 ? 0.02) mum] can be used as a nonimaging, concentrating reflector with moderate reflection losses compared with those of optically smooth aluminum reflectors. The sample with the rougher surface [rms height, (0.6 ? 0.1) mum] is not suitable as a concentrating element but can be used as planar reflectors. The orientation of the rolling grooves is then of importance for minimizing reflection losses in the system.

  1. Precipitation and Deposition of Aluminum-Containing Phases in Tank Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Dabbs, Daniel M.; Aksay, I.A.

    2005-12-01

    In the first phase of our study, we focused on the use of simple organics to raise the solubility of aluminum oxyhydroxides in high alkaline aqueous solvents. In a limited survey of common organic acids, we determined that citric acid had the highest potential to achieve our goal. However, our subsequent investigation revealed that the citric acid appeared to play two roles in the solutions: first, raising the concentration of aluminum in highly alkaline solutions by breaking up or inhibiting ''seed'' polycations and thereby delaying the nucleation and growth of particles; and second, stabilizing nanometer-sized particles in suspension when nucleation did occur. The results of this work were recently published in Langmuir: D.M. Dabbs, U. Ramachandran, S. Lu, J. Liu, L.-Q. Wang, I.A. Aksay, ''Inhibition of Aluminum Oxyhydroxide Precipitation with Citric Acid'' Langmuir, 21, 11690-11695 (2005). The second phase of our work involved the solvation of silicon, again in solutions of high alkalinity. Citric acid, due to its unfavorable pKa values, was not expected to be useful with silicon-containing solutions. Here, the use of polyols was determined to be effective in maintaining silicon-containing particles under high pH conditions but at smaller size with respect to standard suspensions of silicon-containing particles. There were a number of difficulties working with highly alkaline silicon-containing solutions, particularly in solutions at or near the saturation limit. Small deviations in pH resulted in particle formation or dissolution in the absence of the organic agents. One of the more significant observations was that the polyols appeared to stabilize small particles of silicon oxyhydroxides across a wider range of pH, albeit this was difficult to quantify due to the instability of the solutions.

  2. Direct formation of LiAlH4 by a mechanochemical reaction

    International Nuclear Information System (INIS)

    Kojima, Yoshitsugu; Kawai, Yasuaki; Haga, Tetsuya; Matsumoto, Mitsuru; Koiwai, Akihiko

    2007-01-01

    A small amount of lithium tetrahydridoaluminate (LiAlH 4 ) was directly synthesized by ball-milling of lithium hydride LiH and aluminum Al in a H 2 atmosphere (1 MPa) at room temperature. Concomitant formation of lithium hexahydridoaluminate Li 3 AlH 6 was confirmed

  3. The Conference Proceedings of the 2003 Air Transport Research Society (ATRS) World Conference, Volume 2

    Science.gov (United States)

    Bowen, Brent (Editor); Gudmundsson, Sveinn (Editor); Oum, Tae (Editor)

    2003-01-01

    The UNO Aviation Institute Monograph Series began in 1994 as a key component of the education outreach and information transfer missions of the Aviation Institute and the NASA Nebraska Space Grant & EPSCoR Programs. The series is an outlet for aviation materials to be indexed and disseminated through an efficient medium. Publications are welcome in all aspects of aviation. Publication formats may include, but are not limited to, conference proceedings, bibliographies, research reports, manuals, technical reports, and other documents that should be archived and indexed for future reference by the aviation and world wide communities.

  4. Preparation of nano-aluminum and studies on thermo-reaction properties

    International Nuclear Information System (INIS)

    Wei Sheng; Wang Chaoyang; Huang Yong; Wu Weidong; Tang Yongjian; Wei Jianjun

    2002-01-01

    The author presents the fabrication of nano-aluminum powders by evaporation-condensation method. The thermo gravimetric-differential scanning calorimetry technique is used to characterize the thermo-reaction properties between nano-aluminum powders and N 2 or Ar. The experiment results confirm the different thermo-reaction properties between block- and nano-aluminum

  5. Comparative effects of macro-sized aluminum oxide and aluminum oxide nanoparticles on erythrocyte hemolysis: influence of cell source, temperature, and size

    Energy Technology Data Exchange (ETDEWEB)

    Vinardell, M. P., E-mail: mpvinardellmh@ub.edu; Sordé, A. [Universitat de Barcelona, Departament de Fisiologia, Facultat de Farmàcia (Spain); Díaz, J. [Universitat de Barcelona CCiT, Scientific and Technological Centers (Spain); Baccarin, T.; Mitjans, M. [Universitat de Barcelona, Departament de Fisiologia, Facultat de Farmàcia (Spain)

    2015-02-15

    Al{sub 2}O{sub 3} is the most abundantly produced nanomaterial and has been used in diverse fields, including the medical, military, and industrial sectors. As there are concerns about the health effects of nanoparticles, it is important to understand how they interact with cells, and specifically with red blood cells. The hemolysis induced by three commercial nano-sized aluminum oxide particles (nanopowder 13 nm, nanopowder <50 nm, and nanowire 2–6 × 200–400 nm) was compared to aluminum oxide and has been studied on erythrocytes from humans, rats, and rabbits, in order to elucidate the mechanism of action and the influence of size and shape on hemolytic behavior. The concentrations inducing 50 % hemolysis (HC{sub 50}) were calculated for each compound studied. The most hemolytic aluminum oxide particles were of nanopowder 13, followed by nanowire and nanopowder 50. The addition of albumin to PBS induced a protective effect on hemolysis in all the nano-forms of Al{sub 2}O{sub 3}, but not on Al{sub 2}O{sub 3}. The drop in HC{sub 50} correlated to a decrease in nanomaterial size, which was induced by a reduction of aggregation. Aluminum oxide nanoparticles are less hemolytic than other oxide nanoparticles and behave differently depending on the size and shape of the nanoparticles. The hemolytic behavior of aluminum oxide nanoparticles differs from that of aluminum oxide.

  6. Anodization process produces opaque, reflective coatings on aluminum

    Science.gov (United States)

    1965-01-01

    Opaque, reflective coatings are produced on aluminum articles by an anodizing process wherein the anodizing bath contains an aqueous dispersion of finely divided insoluble inorganic compounds. These particles appear as uniformly distributed occlusions in the anodic deposit on the aluminum.

  7. 2009 MICROBIAL POPULATION BIOLOGY GORDON RESEARCH CONFERENCES JULY 19-24,2009

    Energy Technology Data Exchange (ETDEWEB)

    ANTHONY DEAN

    2009-07-24

    The 2009 Gordon Conference on Microbial Population Biology will cover a diverse range of cutting edge issues in the microbial sciences and beyond. Firmly founded in evolutionary biology and with a strongly integrative approach, past Conferences have covered a range of topics from the dynamics and genetics of adaptation to the evolution of mutation rate, community ecology, evolutionary genomics, altruism, and epidemiology. The 2009 Conference is no exception, and will include sessions on the evolution of infectious diseases, social evolution, the evolution of symbioses, experimental evolution, adaptive landscapes, community dynamics, and the evolution of protein structure and function. While genomic approaches continue to make inroads, broadening our knowledge and encompassing new questions, the conference will also emphasize the use of experimental approaches to test hypotheses decisively. As in the past, this Conference provides young scientists and graduate students opportunities to present their work in poster format and exchange ideas with leading investigators from a broad spectrum of disciplines. This meeting is never dull: some of the most significant and contentious issues in biology have been thrashed out here. The 2009 meeting will be no exception.

  8. The Properties of Arc-Sprayed Aluminum Coatings on Armor-Grade Steel

    Directory of Open Access Journals (Sweden)

    Marcin Adamiak

    2018-02-01

    Full Text Available This article presents the results of an examination of the properties of arc-sprayed aluminum on alloyed armor-grade steel. Thermal arc spraying was conducted with a EuTronic Arc Spray 4 wire arc sprayer. Aluminum wire 1.6 mm in diameter was used to produce dense, abrasion- and erosion-resistant coatings approx. 1.0 mm thick with and without nickel/5% aluminum-buffered subcoating. Aluminum coatings were characterized in accordance with ASTM G 65-00 abrasion resistance test, ASTM G 76-95 erosion resistance tests, ASTM C 633-01 adhesion strength, HV0.1 hardness tests and metallographic analyses. Results demonstrate properties of arc-sprayed aluminum and aluminum-nickel material coatings that are especially promising in industrial applications where erosion-, abrasion- and corrosion-resistant coating properties are required.

  9. Nanoporous anodic aluminum oxide with a long-range order and tunable cell sizes by phosphoric acid anodization on pre-patterned substrates

    Science.gov (United States)

    Surawathanawises, Krissada; Cheng, Xuanhong

    2014-01-01

    Nanoporous anodic aluminum oxide (AAO) has been explored for various applications due to its regular cell arrangement and relatively easy fabrication processes. However, conventional two-step anodization based on self-organization only allows the fabrication of a few discrete cell sizes and formation of small domains of hexagonally packed pores. Recent efforts to pre-pattern aluminum followed with anodization significantly improve the regularity and available pore geometries in AAO, while systematic study of the anodization condition, especially the impact of acid composition on pore formation guided by nanoindentation is still lacking. In this work, we pre-patterned aluminium thin films using ordered monolayers of silica beads and formed porous AAO in a single-step anodization in phosphoric acid. Controllable cell sizes ranging from 280 nm to 760 nm were obtained, matching the diameters of the silica nanobead molds used. This range of cell size is significantly greater than what has been reported for AAO formed in phosphoric acid in the literature. In addition, the relationships between the acid concentration, cell size, pore size, anodization voltage and film growth rate were studied quantitatively. The results are consistent with the theory of oxide formation through an electrochemical reaction. Not only does this study provide useful operational conditions of nanoindentation induced anodization in phosphoric acid, it also generates significant information for fundamental understanding of AAO formation. PMID:24535886

  10. [The unbearable lightness of aluminum: the social and environmental impacts of Brazil's insertion in the primary aluminum global market].

    Science.gov (United States)

    Henriques, Alen Batista; Porto, Marcelo Firpo Souza

    2013-11-01

    This article assesses aluminum production in Brazil and its social, environmental and public health impacts. The effects of the aluminum production chain challenge the idea of sustainable growth affirmed by business groups that operate in the sector. This article upholds the theory that the insertion of Brazil in the global aluminum market is part of a new configuration of the International Division of Labor (IDL), the polluting economic and highly energy dependent activities of which - as is the case of aluminum - have been moving to peripheral nations or emerging countries. The laws in such countries are less stringent, and similarly the environmental movements and the claims of the affected populations in the territories prejudiced in their rights to health, a healthy environment and culture are less influential. The competitiveness of this commodity is guaranteed in the international market, from the production of external factors such as environmental damage, deforestation, emissions of greenhouse gases and scenarios of environmental injustice. This includes undertakings in the construction of hydroelectric dams that expose traditional communities to situations involving the loss of their territories.

  11. Diode laser welding of aluminum to steel

    International Nuclear Information System (INIS)

    Santo, Loredana; Quadrini, Fabrizio; Trovalusci, Federica

    2011-01-01

    Laser welding of dissimilar materials was carried out by using a high power diode laser to join aluminum to steel in a butt-joint configuration. During testing, the laser scan rate was changed as well as the laser power: at low values of fluence (i.e. the ratio between laser power and scan rate), poor joining was observed; instead at high values of fluence, an excess in the material melting affected the joint integrity. Between these limiting values, a good aesthetics was obtained; further investigations were carried out by means of tensile tests and SEM analyses. Unfortunately, a brittle behavior was observed for all the joints and a maximum rupture stress about 40 MPa was measured. Apart from the formation of intermeltallic phases, poor mechanical performances also depended on the chosen joining configuration, particularly because of the thickness reduction of the seam in comparison with the base material.

  12. Auger electron spectroscopy study on interaction between aluminum thin layers and uranium substrate

    International Nuclear Information System (INIS)

    Zhou Wei; Liu Kezhao; Yang Jiangrong; Xiao Hong; Jiang Chunli; Lu Lei

    2005-01-01

    Aluminum thin layers on uranium were prepared by sputter deposition at room temperature in ultra high vacuum analysis chamber. Interaction between U and Al, and growth mode were investigated by Auger electron spectroscopy (AES) and electron energy loss spectroscopy (EELS). It is shown that Al thin film growth follows the volmer-weber (VW) mode. At room temperature, Al and U interact with each other, resulting in interdiffusion action and formation of U-Al alloys at U/Al interface. Annealing promotes interaction and interdiffusion between U and Al, and UAl x maybe formed at interface. (authors)

  13. Architecture and Design for Virtual Conferences: A Case Study

    Directory of Open Access Journals (Sweden)

    Andrew Sempere

    2011-07-01

    Full Text Available This paper presents a case study of the design issues facing a large multi-format virtual conference. The conference took place twice in two different years, each time using an avatar-based 3D world with spatialized audio including keynote, poster and social sessions. Between year 1 and 2, major adjustments were made to the architecture and design of the space, leading to improvement in the nature of interaction between the participants. While virtual meetings will likely never supplant the effectiveness of face-to-face meetings, this paper seeks to outline a few design principles learned from this experience, which can be applied generally to make computer mediated collaboration more effective.

  14. 16. international conference on nuclear tracks in solids: abstracts

    International Nuclear Information System (INIS)

    1992-09-01

    16th International Conference on Nuclear Tracks in Solids was held on 7-11 September, 1992 in Beijing. The specialists discussed nuclear tracks formation, development and observation. The applications of nuclear tracks technique in the fields of nuclear physics, life science, geoscience and environment monitoring were discussed at the meeting. More than 300 papers were contributed to the meeting

  15. Accelerated Threshold Fatigue Crack Growth Effect-Powder Metallurgy Aluminum Alloy

    Science.gov (United States)

    Piascik, R. S.; Newman, J. A.

    2002-01-01

    Fatigue crack growth (FCG) research conducted in the near threshold regime has identified a room temperature creep crack growth damage mechanism for a fine grain powder metallurgy (PM) aluminum alloy (8009). At very low (Delta) K, an abrupt acceleration in room temperature FCG rate occurs at high stress ratio (R = K(sub min)/K(sub max)). The near threshold accelerated FCG rates are exacerbated by increased levels of K(sub max) (K(sub max) = 0.4 K(sub IC)). Detailed fractographic analysis correlates accelerated FCG with the formation of crack-tip process zone micro-void damage. Experimental results show that the near threshold and K(sub max) influenced accelerated crack growth is time and temperature dependent.

  16. Mercury-free dissolution of aluminum-clad fuel in nitric acid

    Science.gov (United States)

    Christian, Jerry D.; Anderson, Philip A.

    1994-01-01

    A mercury-free dissolution process for aluminum involves placing the aluminum in a dissolver vessel in contact with nitric acid-fluoboric acid mixture at an elevated temperature. By maintaining a continuous flow of the acid mixture through the dissolver vessel, an effluent containing aluminum nitrate, nitric acid, fluoboric acid and other dissolved components are removed.

  17. Patient-reported disease knowledge and educational needs in Lynch syndrome: findings of an interactive multidisciplinary patient conference.

    Science.gov (United States)

    Bannon, Sarah A; Mork, Maureen; Vilar, Eduardo; Peterson, Susan K; Lu, Karen; Lynch, Patrick M; Rodriguez-Bigas, Miguel A; You, Yiqian Nancy

    2014-02-05

    Patients with Lynch Syndrome, the most common hereditary colorectal cancer syndrome, benefit from genetic education and family counseling regarding diagnostic testing and cancer surveillance/prevention recommendations. Although genetic counseling is currently the most common venue where such education and counseling takes place, little is known about the level of disease knowledge and education needs as directly reported by patients and families with Lynch Syndrome. Furthermore, experiences with forums for larger-scale knowledge transfer have been limited in the current literature. We conducted a one-day interactive multidisciplinary patient conference, designed to complement individual genetic counseling for updating disease knowledge, supportive networking and needs assessment among Lynch Syndrome patients and their family members. The patient conference was designed utilizing the conceptual framework of action research. Paired pre- and post-conference surveys were administered to 44 conference participants anonymously to assess patient-reported disease knowledge and education needs. A multidisciplinary team of expert providers utilized a variety of educational formats during the one-day conference. Four main focus areas were: genetic testing, surveillance/prevention, living with Lynch Syndrome, and update on research. Thirty-two participants (73%) completed the pre-conference, and 28 (64%) participants completed the post-conference surveys. Nineteen respondents were affected and the remaining were unaffected. The scores of the disease-knowledge items significantly increased from 84% pre- to 92% post-conference (p = 0.012). Patients reported a high level of satisfaction and identified further knowledge needs in nutrition (71%), surveillance/prevention options (71%), support groups (36%), cancer risk assessment (32%), active role in medical care (32%), and research opportunities (5%). Our experience with a dedicated patient education conference focused on

  18. Final Technical Report Microwave Assisted Electrolyte Cell for Primary Aluminum Production

    Energy Technology Data Exchange (ETDEWEB)

    Xiaodi Huang; J.Y. Hwang

    2007-04-18

    This research addresses the high priority research need for developing inert anode and wetted cathode technology, as defined in the Aluminum Industry Technology Roadmap and Inert Anode Roadmap, with the performance targets: a) significantly reducing the energy intensity of aluminum production, b) ultimately eliminating anode-related CO2 emissions, and c) reducing aluminum production costs. This research intended to develop a new electrometallurgical extraction technology by introducing microwave irradiation into the current electrolytic cells for primary aluminum production. This technology aimed at accelerating the alumina electrolysis reduction rate and lowering the aluminum production temperature, coupled with the uses of nickel based superalloy inert anode, nickel based superalloy wetted cathode, and modified salt electrolyte. Michigan Technological University, collaborating with Cober Electronic and Century Aluminum, conducted bench-scale research for evaluation of this technology. This research included three sub-topics: a) fluoride microwave absorption; b) microwave assisted electrolytic cell design and fabrication; and c) aluminum electrowinning tests using the microwave assisted electrolytic cell. This research concludes that the typically used fluoride compound for aluminum electrowinning is not a good microwave absorbing material at room temperature. However, it becomes an excellent microwave absorbing material above 550°C. The electrowinning tests did not show benefit to introduce microwave irradiation into the electrolytic cell. The experiments revealed that the nickel-based superalloy is not suitable for use as a cathode material; although it wets with molten aluminum, it causes severe reaction with molten aluminum. In the anode experiments, the chosen superalloy did not meet corrosion resistance requirements. A nicked based alloy without iron content could be further investigated.

  19. Feasibility Study and Demonstration of an Aluminum and Ice Solid Propellant

    Directory of Open Access Journals (Sweden)

    Timothee L. Pourpoint

    2012-01-01

    Full Text Available Aluminum-water reactions have been proposed and studied for several decades for underwater propulsion systems and applications requiring hydrogen generation. Aluminum and water have also been proposed as a frozen propellant, and there have been proposals for other refrigerated propellants that could be mixed, frozen in situ, and used as solid propellants. However, little work has been done to determine the feasibility of these concepts. With the recent availability of nanoscale aluminum, a simple binary formulation with water is now feasible. Nanosized aluminum has a lower ignition temperature than micron-sized aluminum particles, partly due to its high surface area, and burning times are much faster than micron aluminum. Frozen nanoscale aluminum and water mixtures are stable, as well as insensitive to electrostatic discharge, impact, and shock. Here we report a study of the feasibility of an nAl-ice propellant in small-scale rocket experiments. The focus here is not to develop an optimized propellant; however improved formulations are possible. Several static motor experiments have been conducted, including using a flight-weight casing. The flight weight casing was used in the first sounding rocket test of an aluminum-ice propellant, establishing a proof of concept for simple propellant mixtures making use of nanoscale particles.

  20. Interfacial engineering of renewable metal organic framework derived honeycomb-like nanoporous aluminum hydroxide with tunable porosity.

    Science.gov (United States)

    Pan, Ye-Tang; Zhang, Lu; Zhao, Xiaomin; Wang, De-Yi

    2017-05-01

    Novel honeycomb-like mesoporous aluminum hydroxide (pATH) was synthesized via a facile one-step reaction by employing ZIF-8 as a template. This self-decomposing template was removed automatically under acidic conditions without the need for any tedious or hazardous procedures. Meanwhile, the pore size of pATH was easily modulated by tuning the dimensions of the ZIF-8 polyhedrons. Of paramount importance was the fact that the dissolved ZIF-8 in solution was regenerated upon deprotonation of the ligand under mild alkali conditions, and was reused in the preparation of pATH, thus forming a delicate synthesis cycle. The renewable template conferred cost-effective and sustainable features to the as-synthesized product. As a proof-of-concept application, the fascinating nanoporous structure enabled pATH to load more phosphorous-containing flame retardant and endowed better interaction with epoxy resin over that of commercial aluminum hydroxide. The limiting oxygen index, UL-94 vertical burning test and cone calorimeter test showed that the results of epoxy with the modified pATH rivalled those of epoxy with two times the loading amount of the commercial counterpart, while the former presented better mechanical properties. The proposed "amorphous replica method" used in this work will advance the potential for launching a vast area of research and technology development for the preparation of porous metal hydroxides for use in practical applications.

  1. Special conference on thermal energy 'Yugoslavia 1986'

    International Nuclear Information System (INIS)

    1986-01-01

    This volume contains various papers held at the conference 'Thermoenergetica 1986'. The papers cover subjects ranging from the development of thermal energy in Yugoslavia via fluidized-bed combustion and experience gained with the construction and operation of coal-fuelled plants to the grinding and combustion of coals rich in inerts, pollution problems, fouling and slag formation, service life, stress-induced crack corrosions, and to the planning, construction and operation of nuclear power plants. (HAG) [de

  2. The detection of tightly closed flaws by nondestructive testing (NDT) methods. [fatigue crack formation in aluminum alloy test specimens

    Science.gov (United States)

    Rummel, W. D.; Rathke, R. A.; Todd, P. H., Jr.; Mullen, S. J.

    1975-01-01

    Liquid penetrant, ultrasonic, eddy current and X-radiographic techniques were optimized and applied to the evaluation of 2219-T87 aluminum alloy test specimens in integrally stiffened panel, and weld panel configurations. Fatigue cracks in integrally stiffened panels, lack-of-fusion in weld panels, and fatigue cracks in weld panels were the flaw types used for evaluation. A 2319 aluminum alloy weld filler rod was used for all welding to produce the test specimens. Forty seven integrally stiffened panels containing a total of 146 fatigue cracks, ninety three lack-of-penetration (LOP) specimens containing a total of 239 LOP flaws, and one-hundred seventeen welded specimens containing a total of 293 fatigue cracks were evaluated. Nondestructive test detection reliability enhancement was evaluated during separate inspection sequences in the specimens in the 'as-machined or as-welded', post etched and post proof loaded conditions. Results of the nondestructive test evaluations were compared to the actual flaw size obtained by measurement of the fracture specimens after completing all inspection sequences. Inspection data were then analyzed to provide a statistical basis for determining the flaw detection reliability.

  3. Significance of the NCA's "Dialogue on Public Relations Education" Conference.

    Science.gov (United States)

    Kruckeberg, Dean; Paluszek, John L.

    1999-01-01

    Contends that the 1998 Summer Conference of the National Communication Association, and the massive formative research in preparation for it, were seminal in examining current public-relations practice and education, in advocating education norms for the future, and in contributing to a much-needed ecumenism among the diverse public-relations…

  4. Investigation of Inner Vacuum Sucking method for degassing of molten aluminum

    International Nuclear Information System (INIS)

    Zeng, Jianmin; Gu, Ping; Wang, Youbing

    2012-01-01

    Hydrogen is a harmful gas element that is appreciably soluble in aluminum and its alloys. Removal of hydrogen from molten aluminum has been one of the most important tasks in aluminum melt processing. In this paper, a patented degassing process, which is based on principle of vacuum metallurgy, is proposed. A porous head that connects a vacuum system is immersed in the molten aluminum. The vacuum is created within the porous head and the dissolved hydrogen will diffuse unidirectionally towards the porous head according to Sievert's law. In this way, the hydrogen in the molten aluminum can be removed. The Fick's diffusion equation is used to explain hydrogen transfer in the molten aluminum. RPT experiments are carried out to evaluate the effectiveness of the new degassing process. The experiments indicate that the hydrogen content can be dramatically reduced by use of this process.

  5. 26th Solvay Conference on Physics

    CERN Document Server

    Gross, David; Sevrin, Alexander; Astrophysics and Cosmology

    2016-01-01

    Ever since 1911, the Solvay Conferences have shaped modern physics. The format is quite different from other conferences as the emphasis is placed on discussion. The 26th edition held in October 2014 in Brussels and chaired by Roger Blandford continued this tradition and addressed some of the most pressing open questions in the fields of astrophysics and cosmology, gathering many of the leading figures working on a wide variety of profound problems.The proceedings contain the 'rapporteur talks' giving a broad overview with unique insights by distinguished renowned scientists. These lectures cover the five sessions: 'Neutron Stars', 'Black Holes', 'Cosmic Dawn', 'Dark Matter' and 'Cosmic Microwave Background'.In the Solvay tradition, the proceedings also include the prepared comments to the rapporteur talks. The discussions among the participants — expert, yet lively and sometimes contentious — have been edited to retain to retain their flavor and are reproduced in full. The reader is taken on a breathtaki...

  6. Cadmium plated steel caps seal anodized aluminum fittings

    Science.gov (United States)

    Padden, J.

    1971-01-01

    Cadmium prevents fracturing of hard anodic coating under torquing to system specification requirements, prevents galvanic coupling, and eliminates need for crush washers, which, though commonly used in industry, do not correct leakage problem experienced when anodized aluminum fittings and anodized aluminum cap assemblies are joined.

  7. Selenium Adsorption To Aluminum-Based Water Treatment Residuals

    Science.gov (United States)

    Aluminum-based water treatment residuals (WTR) can adsorb water-and soil-borne P, As(V), As(III), and perchlorate, and may be able to adsorb excess environmental selenium. WTR, clay minerals, and amorphous aluminum hydroxide were shaken for 24 hours in selenate or selenite solut...

  8. Radiation corrosion in aluminum alloy bellows

    International Nuclear Information System (INIS)

    Konno, Osamu

    1987-01-01

    Testing was carried out in which materials for vacuum devices (Al, Ti, Cu, SUS) are exposed to electron beams (50 MeV, average current 80 μA) to determine the changes in the quantity, partial pressure and composition of the gases released from the materials. The test appratus used are made of Al alloys alone. During the test, vacuum leak is found in the Al alloy bellows used in the drive device. The leak is found to result from corrosion caused by water. The surface structure is analyzed by SEM, EPMA, ESCA and IMA. It is confirmed that the Al alloy used as material for the bellows if highly resistant to corrosion. It is concluded that it is necessary to use high purity cooling water to prevent the cooling water from causing corrosion. It has been reported that high purity aluminum is very high in resistance to corrosion. Based on these measurements and considerations, it is suggested that when aluminum is to be used as material for vacuum devices in an accelerator, it is required to provide protection film on its surface to prevent corrosion or to use cooling water pipes cladded with pure aluminum and an aluminum alloy. In addition, the temperature of the cooling water should be set after adequately considering the environmental conditions in the room. (Nogami, K.)

  9. Study of the alloying additives and alkaline zincate solution effects on the commercial aluminum as galvanic anode for use in alkaline batteries

    International Nuclear Information System (INIS)

    Rashvand avei, M.; Jafarian, M.; Moghanni Bavil Olyaei, H.; Gobal, F.; Hosseini, S.M.; Mahjani, M.G.

    2013-01-01

    The corrosion behavior of different grades of commercial aluminum such as AA1040, AA5083, AA6060 and AA7075 in ZnO-containing 4 M NaOH has been determined by using open circuit potential-time measurements (OCP), galvanostatic and potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The results of scanning electron microscopy (SEM) and energy dispersive analysis of X-ray (EDAX) reveal that ZnO produces the inhibition effect by the formation of a zinc-containing deposit layer on the surface of aluminum electrodes. Although the influence of zincating on the performance of aluminum alloys and considering the amount of alloying elements such as zinc, magnesium and manganese in AA7075 and AA5083 alloys is much more than AA6060 one, the AA6060 aluminum exhibits negligible corrosion rate. Alloying aluminum with other elements and modifying the composition of the electrolyte is a necessary condition for reducing the self-corrosion of the aluminum anodes, whereas the proportion of the amount of additive elements is sufficient and important condition. As AA6060 with a low amount of Zn and Mg, but the high value of the ratio of (Mg/Zn) content (>400) can serve as a good galvanic anode in the alkaline media. - Highlights: • Decreasing the corrosion rate of tested alloys in 4 M NaOH solution specially AA6060. • Lowering the extent of anodic polarization at a current density of 50 mA cm −2 . • High inhibitor efficiency about 97% for AA6060

  10. Study of the alloying additives and alkaline zincate solution effects on the commercial aluminum as galvanic anode for use in alkaline batteries

    Energy Technology Data Exchange (ETDEWEB)

    Rashvand avei, M. [Department of Chemistry, K.N. Toosi University of Technology, P.O. Box 15875-4416, Tehran (Iran, Islamic Republic of); Jafarian, M., E-mail: mjafarian@kntu.ac.ir [Department of Chemistry, K.N. Toosi University of Technology, P.O. Box 15875-4416, Tehran (Iran, Islamic Republic of); Moghanni Bavil Olyaei, H. [Department of Chemistry, K.N. Toosi University of Technology, P.O. Box 15875-4416, Tehran (Iran, Islamic Republic of); Gobal, F. [Department of Chemistry, Sharif University of Technology, P.O. Box 11365-8516, Tehran (Iran, Islamic Republic of); Hosseini, S.M. [Jahad Organization – Science and Technology Center, Tehran (Iran, Islamic Republic of); Mahjani, M.G. [Department of Chemistry, K.N. Toosi University of Technology, P.O. Box 15875-4416, Tehran (Iran, Islamic Republic of)

    2013-12-16

    The corrosion behavior of different grades of commercial aluminum such as AA1040, AA5083, AA6060 and AA7075 in ZnO-containing 4 M NaOH has been determined by using open circuit potential-time measurements (OCP), galvanostatic and potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The results of scanning electron microscopy (SEM) and energy dispersive analysis of X-ray (EDAX) reveal that ZnO produces the inhibition effect by the formation of a zinc-containing deposit layer on the surface of aluminum electrodes. Although the influence of zincating on the performance of aluminum alloys and considering the amount of alloying elements such as zinc, magnesium and manganese in AA7075 and AA5083 alloys is much more than AA6060 one, the AA6060 aluminum exhibits negligible corrosion rate. Alloying aluminum with other elements and modifying the composition of the electrolyte is a necessary condition for reducing the self-corrosion of the aluminum anodes, whereas the proportion of the amount of additive elements is sufficient and important condition. As AA6060 with a low amount of Zn and Mg, but the high value of the ratio of (Mg/Zn) content (>400) can serve as a good galvanic anode in the alkaline media. - Highlights: • Decreasing the corrosion rate of tested alloys in 4 M NaOH solution specially AA6060. • Lowering the extent of anodic polarization at a current density of 50 mA cm{sup −2}. • High inhibitor efficiency about 97% for AA6060.

  11. Low Mass, Aluminum NOFBX Combustion Chamber Development, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Our team proposes to define a diffusion bonding process for aluminum as an enabling step to ultimately develop an innovative, lightweight, long life, aluminum...

  12. Passivation of aluminum with alkyl phosphonic acids for biochip applications

    Science.gov (United States)

    Attavar, Sachin; Diwekar, Mohit; Linford, Matthew R.; Davis, Mark A.; Blair, Steve

    2010-09-01

    Self-assembly of decylphosphonic acid (DPA) and octadecylphosphonic acid (ODPA) was studied on aluminum films using XPS, ToF-SIMS and surface wettability. Modified aluminum films were tested for passivation against silanization and subsequent oligonucleotide attachment. Passivation ratios of at least 450:1 compared to unprotected aluminum were obtained, as quantified by attachment of radio-labeled oligos.

  13. Conference Report: The First ATLAS.ti User Conference

    Directory of Open Access Journals (Sweden)

    Jeanine C. Evers

    2014-01-01

    Full Text Available This report on the First ATLAS.ti User Conference shares our impressions and experiences as longstanding ATLAS.ti users and trainers about the First ATLAS.ti User Conference in Berlin 2013. The origins, conceptual principles and development of the program are outlined, the conference themes discussed and experiences shared. Finally, the future of the program is discussed. URN: http://nbn-resolving.de/urn:nbn:de:0114-fqs1401197

  14. TiB2/Al2O3 ceramic particle reinforced aluminum fabricated by spray deposition

    International Nuclear Information System (INIS)

    Chen Xing; Yang Chengxiao; Guan Leding; Yan Biao

    2008-01-01

    Aluminum matrix ceramic particle reinforced composites (AMCs) is a kind of composite with great importance. Aluminum matrix composite reinforced with TiB 2 /Al 2 O 3 ceramic particles was successfully in situ synthesized in Al-TiO 2 -B 2 O 3 system in this paper, using spray deposition with hot-press treatment technique. Five groups of composites with different reinforcement volume contents were prepared and the comparisons of porosity, ultimate tensile strength (UTS), elongation and Brinell hardness (BH) between the composites with and without hot-press treating were carried out. The composite with 21.0% reinforcement volume content was analyzed by X-ray diffraction (XRD), Environmental Scanning Electron Microscope (ESEM), Transmission Electron Microscope (TEM) and Energy Disperse Spectroscopy (EDS). The results revealed the formation and uniform distribution of fine reinforcements in the matrix after hot-press treating, while a new intermetallic phase Al 3 Ti was found besides TiB 2 /Al 2 O 3 ceramic phase

  15. Numerical analysis of AC tungsten inert gas welding of aluminum plate in consideration of oxide layer cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Tashiro, Shinichi, E-mail: tashiro@jwri.osaka-u.ac.jp; Miyata, Minoru; Tanaka, Manabu

    2011-08-01

    A unified numerical simulation model of AC TIG welding of the aluminum plate considering energy balance among the electrode, the arc and the base metal and employing an analytical model for calculating cleaning rate of the oxide layer has been developed for investigating heat transport properties and weld pool formation process in AC TIG welding of aluminum plate. As a result of this simulation, it was shown that although the heat flux from the arc onto the base metal increases in EN (Electrode Negative) phase due to the electron condensation, that in EP (Electrode Positive) phase conversely decreases because mainly of cooling caused by the electron emission. Furthermore, the validity of the simulation model was confirmed by comparing to experimental results such as the arc voltage, the area of cleaning zone and the shape of weld pool.

  16. 40 CFR 464.10 - Applicability; description of the aluminum casting subcategory.

    Science.gov (United States)

    2010-07-01

    ... aluminum casting subcategory. 464.10 Section 464.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS METAL MOLDING AND CASTING POINT SOURCE CATEGORY Aluminum Casting Subcategory § 464.10 Applicability; description of the aluminum casting subcategory. The...

  17. Hydrogen uptake in alumina thin films synthesized from an aluminum plasma stream in an oxygen ambient

    International Nuclear Information System (INIS)

    Schneider, J.M.; Anders, A.; Hjoervarsson, B.; Petrov, I.; Macak, K.; Helmersson, U.; Sundgren, J.

    1999-01-01

    We describe the hydrogen uptake during the synthesis of alumina films from H 2 O present in the high vacuum gas background. The hydrogen concentration in the films was determined by the 1 H( 15 N,αγ) 12 C nuclear resonance reaction. Furthermore, we show the presence of hydrogen ions in the plasma stream by time-of-flight mass spectrometry. The hydrogen content increased in both the film and the plasma stream, as the oxygen partial pressure was increased. On the basis of these measurements and thermodynamic considerations, we suggest that an aluminum oxide hydroxide compound is formed, both on the cathode surface as well as in the film. The large scatter in the data reported in the literature for refractive index and chemical stability of alumina thin films can be explained on the basis of the suggested aluminum oxide hydroxide formation. copyright 1999 American Institute of Physics

  18. Joining of parts via magnetic heating of metal aluminum powders

    Science.gov (United States)

    Baker, Ian

    2013-05-21

    A method of joining at least two parts includes steps of dispersing a joining material comprising a multi-phase magnetic metal-aluminum powder at an interface between the at least two parts to be joined and applying an alternating magnetic field (AMF). The AMF has a magnetic field strength and frequency suitable for inducing magnetic hysteresis losses in the metal-aluminum powder and is applied for a period that raises temperature of the metal-aluminum powder to an exothermic transformation temperature. At the exothermic transformation temperature, the metal-aluminum powder melts and resolidifies as a metal aluminide solid having a non-magnetic configuration.

  19. 13th International Conference on Films and Coatings

    International Nuclear Information System (INIS)

    2017-01-01

    . For the first time this process was used to clean the surface of metals from radionuclides. The coefficient of purification at the level of 20 000 is the maximum compared to all existing methods. One of the new trends in the development of science and technology, reflected in the reports is the formation of pyrocarbon coatings in plasma of a vacuum arc discharge. For the first time such coating has been researched and applied to the electrodes of powerful generator tubes as antiemission coatings. Theoretically and experimentally were investigated the thermal processes during treatment of the inner surface of the cylindrical cavity by the cathode spots of a vacuum arc discharge. In a number of reports were reflected the characteristics of magnetron sputtering systems and principles of coatings deposition on their basis. The characteristics, technological aspects of production and results of testing of gradient coatings for aerospace optics were discussed. Promising technology of pulsed magnetron sputtering was noted. Possibilities of application of multilayer composite coatings in the systems of radiation protection of spacecraft were reviewed. Were shown the advantages of composite coatings before traditionally used in space technology aluminum alloys. At this Conference many reports were devoted to the formation of oxide coatings by different methods and for different fields of application. For example, the results of comparative studies of the original and processed in the plasma flow oxide microcomposites, consisting of TiO 2 , SiO 2 , Al 2 O 3 , and also plasma coatings from them – materials with amorphous-crystalline structure and a reinforced ultrafine phases of stishovite. It was shown that a reliable method of forming a specified surface nanorelief is a direct resistless lithography by a focused ion beam. The use of ions of different masses and energies significantly expands its abilities for nanoconstruction and nanoengineering of thin-layer structures

  20. Application of aluminum slag incorporated in lightweigh aggregate

    International Nuclear Information System (INIS)

    Takahashi, Elisa Akiko Nakano

    2006-01-01

    The use of industrial waste materials as additives in the manufacture of ceramic product has been attracting a growing interest in the last few years and is becoming common practice. The main purpose of this work is to evaluate the possibility of incorporation of aluminum slag into clay materials. Expansive clays are obtained from a pyro plastic expansion, and are usually employed like lightweight aggregate in structural concrete as ornamental garden products. The characterization of the aluminum slag and clay materials was carried out by Xray fluorescence spectrometry, Xray diffraction, granulometry, differential thermal analysis, thermal gravimetry (DTA and TG) and scanning electron microscopy. The studied compositions contained 5, 10, 15 and 20 weight % of aluminum slag into clay mass. The linear expansion, mass variation, apparent specific mass and water absorption of all compositions were determined. Leaching and solubilization experiments were also performed. The main results show the viability of using up to 5 wt% aluminum slag for producing expansive clays with characteristics within the accepted standards. (author)