WorldWideScience

Sample records for form test material

  1. Tests with ceramic waste form materials made by pressureless consolidation

    International Nuclear Information System (INIS)

    Lewis, M. A.; Hash, M. C.; Hebden, A. S.; Ebert, W. L.

    2002-01-01

    A multiphase waste form referred to as the ceramic waste form (CWF) will be used to immobilize radioactively contaminated salt wastes recovered after the electrometallurgical treatment of spent sodium-bonded nuclear fuel. The CWF is made by first occluding salt in zeolite and then encapsulating the zeolite in a borosilicate binder glass. A variety of surrogate CWF materials were made using pressureless consolidation (PC) methods for comparison with CWF consolidated using a hot isostatic press (HIP) method and to study the effects of glass/zeolite batching ratio and processing conditions on the physical and chemical properties of the resulting materials. The data summarized in this report will also be used to support qualification of the PC CWF for disposal in the proposed federal high-level radioactive waste repository at Yucca Mountain. The phase composition and microstructure of HIP CWF and PC CWF are essentially identical: both are composed of about 70% sodalite, 25% binder glass, and a 5% total of inclusion phases (halite, nepheline, and various oxides and silicates). The primary difference is that PC CWF materials have higher porosities than HIP CWFs. The product consistency test (PCT) that was initially developed to monitor homogeneous glass waste forms was used to measure the chemical durabilities of the CWF materials. Series of replicate tests with several PC CWF materials indicate that the PCT can be conducted with the same precision with CWF materials as with borosilicate glasses. Short-term (7-day) PCTs were used to evaluate the repeatability of making the PC CWF and the effects of the glass/zeolite mass ratio, process temperature, and processing time on the chemical durability. Long-term (up to 1 year) PCTs were used to compare the durabilities of HIP and PC CWFs and to estimate the apparent solubility limit for the PC CWF that is needed for modeling. The PC and HIP CWF materials had similar disabilities, based on the release of silicon in long

  2. Materials interactions test methods to measure radionuclide release from waste forms under repository-relevant conditions

    International Nuclear Information System (INIS)

    Strickert, R.G.; Erikson, R.L.; Shade, J.W.

    1984-10-01

    At the request of the Basalt Waste Isolation Project, the Materials Characterization Center has collected and developed a set of procedures into a waste form compliance test method (MCC-14.4). The purpose of the test is to measure the steady-state concentrations of specified radionuclides in solutions contacting a waste form material. The test method uses a crushed waste form and basalt material suspended in a synthetic basalt groundwater and agitated for up to three months at 150 0 C under anoxic conditions. Elemental and radioisotopic analyses are made on filtered and unfiltered aliquots of the solution. Replicate experiments are performed and simultaneous tests are conducted with an approved test material (ATM) to help ensure precise and reliable data for the actual waste form material. Various features of the test method, equipment, and test conditions are reviewed. Experimental testing using actinide-doped borosilicate glasses are also discussed. 9 references, 2 tables

  3. Materials Characterization Center meeting on impact testing of waste forms. Summary report

    International Nuclear Information System (INIS)

    Merz, M.D.; Atteridge, D.; Dudder, G.

    1981-10-01

    A meeting was held on March 25-26, 1981 to discuss impact test methods for waste form materials to be used in nuclear waste repositories. The purpose of the meeting was to obtain guidance for the Materials Characterization Center (MCC) in preparing the MCC-10 Impact Test Method to be approved by the Materials Review Board. The meeting focused on two essential aspects of the test method, namely the mechanical process, or impact, used to effect rapid fracture of a waste form and the analysis technique(s) used to characterize particulates generated by the impact

  4. Accurate anisotropic material modelling using only tensile tests for hot and cold forming

    Science.gov (United States)

    Abspoel, M.; Scholting, M. E.; Lansbergen, M.; Neelis, B. M.

    2017-09-01

    Accurate material data for simulations require a lot of effort. Advanced yield loci require many different kinds of tests and a Forming Limit Curve (FLC) needs a large amount of samples. Many people use simple material models to reduce the effort of testing, however some models are either not accurate enough (i.e. Hill’48), or do not describe new types of materials (i.e. Keeler). Advanced yield loci describe the anisotropic materials behaviour accurately, but are not widely adopted because of the specialized tests, and data post-processing is a hurdle for many. To overcome these issues, correlations between the advanced yield locus points (biaxial, plane strain and shear) and mechanical properties have been investigated. This resulted in accurate prediction of the advanced stress points using only Rm, Ag and r-values in three directions from which a Vegter yield locus can be constructed with low effort. FLC’s can be predicted with the equations of Abspoel & Scholting depending on total elongation A80, r-value and thickness. Both predictive methods are initially developed for steel, aluminium and stainless steel (BCC and FCC materials). The validity of the predicted Vegter yield locus is investigated with simulation and measurements on both hot and cold formed parts and compared with Hill’48. An adapted specimen geometry, to ensure a homogeneous temperature distribution in the Gleeble hot tensile test, was used to measure the mechanical properties needed to predict a hot Vegter yield locus. Since for hot material, testing of stress states other than uniaxial is really challenging, the prediction for the yield locus adds a lot of value. For the hot FLC an A80 sample with a homogeneous temperature distribution is needed which is due to size limitations not possible in the Gleeble tensile tester. Heating the sample in an industrial type furnace and tensile testing it in a dedicated device is a good alternative to determine the necessary parameters for the FLC

  5. Method for forming materials

    Science.gov (United States)

    Tolle, Charles R [Idaho Falls, ID; Clark, Denis E [Idaho Falls, ID; Smartt, Herschel B [Idaho Falls, ID; Miller, Karen S [Idaho Falls, ID

    2009-10-06

    A material-forming tool and a method for forming a material are described including a shank portion; a shoulder portion that releasably engages the shank portion; a pin that releasably engages the shoulder portion, wherein the pin defines a passageway; and a source of a material coupled in material flowing relation relative to the pin and wherein the material-forming tool is utilized in methodology that includes providing a first material; providing a second material, and placing the second material into contact with the first material; and locally plastically deforming the first material with the material-forming tool so as mix the first material and second material together to form a resulting material having characteristics different from the respective first and second materials.

  6. Equipping a glovebox for waste form testing and characterization of plutonium bearing materials

    International Nuclear Information System (INIS)

    Noy, M.; Johnson, S.G.; Moschetti, T.L.

    1997-01-01

    The recent decision by the Department of Energy to pursue a hybrid option for the disposition of weapons plutonium has created the need for additional facilities that can examine and characterize waste forms that contain Pu. This hybrid option consists of the placement of plutonium into stable waste forms and also into mixed oxide fuel for commercial reactors. Glass and glass-ceramic waste forms have a long history of being effective hosts for containing radionuclides, including plutonium. The types of tests necessary to characterize the performance of candidate waste forms include: static leaching experiments on both monolithic and crushed waste forms, microscopic examination, and density determination. Frequently, the respective candidate waste forms must first be produced using elevated temperatures and/or high pressures. The desired operations in the glovebox include, but are not limited to the following: (1) production of vitrified/sintered samples, (2) sampling of glass from crucibles or other vessels, (3) preparing samples for microscopic inspection and monolithic and crushed static leach tests, and (4) performing and analyzing leach tests in situ. This paper will describe the essential equipment and modifications that are necessary to successfully accomplish the goal of outfitting a glovebox for these functions

  7. Materials and material testing

    International Nuclear Information System (INIS)

    Joergens, H.

    1978-01-01

    A review based on 105 literature quotations is given on the latest state of development in the steel sector and in the field of non-ferrous metals and plastics. The works quoted also include, preparation, working, welding including simulation methods, improvement of weldability, material mechanics (explanation of defects mechanisms by means of fracture mechanics), defect causes (corrosion, erosion, hydrogen influence), mechanical-technological and non-destructive material testing. Examples from the field of reactor building are also given within there topics. (IHOE) [de

  8. Standardized waste form test methods

    International Nuclear Information System (INIS)

    Slate, S.C.

    1984-11-01

    The Materials Characterization Center (MCC) is developing standard tests to characterize nuclear waste forms. Development of the first thirteen tests was originally initiated to provide data to compare different high-level waste (HLW) forms and to characterize their basic performance. The current status of the first thirteen MCC tests and some sample test results is presented: The radiation stability tests (MCC-6 and 12) and the tensile-strength test (MCC-11) are approved; the static leach tests (MCC-1, 2, and 3) are being reviewed for full approval; the thermal stability (MCC-7) and microstructure evaluation (MCC-13) methods are being considered for the first time; and the flowing leach tests methods (MCC-4 and 5), the gas generation methods (MCC-8 and 9), and the brittle fracture method (MCC-10) are indefinitely delayed. Sample static leach test data on the ARM-1 approved reference material are presented. Established tests and proposed new tests will be used to meet new testing needs. For waste form production, tests on stability and composition measurement are needed to provide data to ensure waste form quality. In transportation, data are needed to evaluate the effects of accidents on canisterized waste forms. The new MCC-15 accident test method and some data are presented. Compliance testing needs required by the recent draft repository waste acceptance specifications are described. These specifications will control waste form contents, processing, and performance. 2 references, 2 figures

  9. Standardized waste form test methods

    International Nuclear Information System (INIS)

    Slate, S.C.

    1984-01-01

    The Materials Characterization Center (MCC) is developing standard tests to characterize nuclear waste forms. Development of the first thirteen tests was originally initiated to provide data to compare different high-level waste (HLW) forms and to characterize their basic performance. The current status of the first thirteen MCC tests and some sample test results are presented: the radiation stability tests (MCC-6 and 12) and the tensile-strength test (MCC-11) are approved; the static leach tests (MCC-1, 2, and 3) are being reviewed for full approval; the thermal stability (MCC-7) and microstructure evaluation (MCC-13) methods are being considered for the first time; and the flowing leach test methods (MCC-4 and 5), the gas generation methods (MCC-8 and 9), and the brittle fracture method (MCC-10) are indefinitely delayed. Sample static leach test data on the ARM-1 approved reference material are presented. Established tests and proposed new tests will be used to meet new testing needs. For waste form production, tests on stability and composition measurement are needed to provide data to ensure waste form quality. In transporation, data are needed to evaluate the effects of accidents on canisterized waste forms. The new MCC-15 accident test method and some data are presented. Compliance testing needs required by the recent draft repository waste acceptance specifications are described. These specifications will control waste form contents, processing, and performance

  10. Package materials, waste form

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    The schedules for waste package development for the various host rocks were presented. The waste form subtask activities were reviewed, with the papers focusing on high-level waste, transuranic waste, and spent fuel. The following ten papers were presented: (1) Waste Package Development Approach; (2) Borosilicate Glass as a Matrix for Savannah River Plant Waste; (3) Development of Alternative High-Level Waste Forms; (4) Overview of the Transuranic Waste Management Program; (5) Assessment of the Impacts of Spent Fuel Disassembly - Alternatives on the Nuclear Waste Isolation System; (6) Reactions of Spent Fuel and Reprocessing Waste Forms with Water in the Presence of Basalt; (7) Spent Fuel Stabilizer Screening Studies; (8) Chemical Interactions of Shale Rock, Prototype Waste Forms, and Prototype Canister Metals in a Simulated Wet Repository Environment; (9) Impact of Fission Gas and Volatiles on Spent Fuel During Geologic Disposal; and (10) Spent Fuel Assembly Decay Heat Measurement and Analysis

  11. Dictionary materials engineering, materials testing

    International Nuclear Information System (INIS)

    1994-01-01

    This dictionary contains about 9,500 entries in each part of the following fields: 1) Materials using and selection; 2) Mechanical engineering materials -Metallic materials - Non-metallic inorganic materials - Plastics - Composites -Materials damage and protection; 3) Electrical and electronics materials -Conductor materials - Semiconductors - magnetic materials - Dielectric materials - non-conducting materials; 4) Materials testing - Mechanical methods - Analytical methods - Structure investigation - Complex methods - Measurement of physical properties - Non-destructive testing. (orig.) [de

  12. Waste Isolation Pilot Plant Materials Interface Interactions Test: Papers presented at the Commission of European Communities workshop on in situ testing of radioactive waste forms and engineered barriers

    International Nuclear Information System (INIS)

    Molecke, M.A.; Sorensen, N.R.

    1993-08-01

    The three papers in this report were presented at the second international workshop to feature the Waste Isolation Pilot Plant (WIPP) Materials Interface Interactions Test (MIIT). This Workshop on In Situ Tests on Radioactive Waste Forms and Engineered Barriers was held in Corsendonk, Belgium, on October 13--16, 1992, and was sponsored by the Commission of the European Communities (CEC). The Studiecentrum voor Kernenergie/Centre D'Energie Nucleaire (SCK/CEN, Belgium), and the US Department of Energy (via Savannah River) also cosponsored this workshop. Workshop participants from Belgium, France, Germany, Sweden, and the United States gathered to discuss the status, results and overviews of the MIIT program. Nine of the twenty-five total workshop papers were presented on the status and results from the WIPP MIIT program after the five-year in situ conclusion of the program. The total number of published MIIT papers is now up to almost forty. Posttest laboratory analyses are still in progress at multiple participating laboratories. The first MIIT paper in this document, by Wicks and Molecke, provides an overview of the entire test program and focuses on the waste form samples. The second paper, by Molecke and Wicks, concentrates on technical details and repository relevant observations on the in situ conduct, sampling, and termination operations of the MIIT. The third paper, by Sorensen and Molecke, presents and summarizes the available laboratory, posttest corrosion data and results for all of the candidate waste container or overpack metal specimens included in the MIIT program

  13. Equilibrium leach tests with cobalt in the system cemented waste form/container material/aqueous solution

    International Nuclear Information System (INIS)

    Vejmelka, P.; Koester, R.; Lee, M. J.; Han, K. W.

    1991-01-01

    The equilibrium concentrations of Co in the system of cemented waste form/aqueous solutions were determined including the effect of the container material and its corrosion products under the respective conditions. The chemical conditions in the near field of the waste form were characterized by measurement of the pH and E h value. As disposal relevant solutions, saturated sodium chloride, Q-brine (main constituent MgCl 2 ) and a granitic type groundwater were used. For comparison, also experiments using deionized water were performed. In all systems investigated the cemented waste form itself has a strong influence on the chemical conditions in the near field. The pH and E h values are affected in all cases by the addition of the cemented waste form. There is no or only a slight difference between the E h values if iron powder or iron hydroxide is added to the cemented waste form/solution systems, but the E h is markedly decreased when iron powder is added to the solution free of cement. The Co concentration is decreased in all solutions by the addition of the cemented waste form, the largest effect is observed in Q-brine and this can be attributed either to the sorption of the Co-ions on the corrosion products of the cement or to the coprecipitation of Co-hydroxide and Mg-hydroxide. In the other solutions the Co concentration is decreased by precipitation of Co-hydroxide due to the high pH value of 12.5, and the concentrations are comparable for the different solutions

  14. Waste form development/test

    International Nuclear Information System (INIS)

    Kalb, P.D.; Colombo, P.

    1983-01-01

    The main objective of this study is to investigate new solidification agents relative to their potential application to wastes generated by advanced high volume reduction technologies, e.g., incinerator ash, dry solids, and ion exchange resins. Candidate materials selected for the solidification of these wastes include a modified sulfur cement and low-density polyethylene, neither of which are currently employed commerically for the solidification of low-level waste (LLW). As both the modified sulfur cement and the polyethylene are thermoplastic materials, a heated screw type extruder is utilized in the production of waste form samples for testing and evaluation. In this regard, work is being conducted to determine the range of conditions under which these solidification agents can be satisfactorily applied to the specific LLW streams and to provide information relevant to operating parameters and process control

  15. Automated Test-Form Generation

    Science.gov (United States)

    van der Linden, Wim J.; Diao, Qi

    2011-01-01

    In automated test assembly (ATA), the methodology of mixed-integer programming is used to select test items from an item bank to meet the specifications for a desired test form and optimize its measurement accuracy. The same methodology can be used to automate the formatting of the set of selected items into the actual test form. Three different…

  16. Forming Tests for Laser Welded Blanks

    DEFF Research Database (Denmark)

    Bagger, Claus; Olsen, Flemming Ove; Rasmussen, Mads

    1998-01-01

    Ratio test (LDR)Tensile testBulge testMarziniak testPractical examples obtained for laser welded blanks are shown. In combination, tensile tests and the Bulge test can form the so-called Forming Limiting Curves and examples of curves obtained from laser welded blanks are shown.......In this paper different means for testing the formability of new material combinations used as tailored blanks in the automotive industry are presented. The following forming techniques will be described and their benefits and drawbacks presented :Limiting Dome Height test (LDH)Limiting Drawing...

  17. Materials testing 1985

    International Nuclear Information System (INIS)

    1985-01-01

    The following subjects were dealt with at the meeting: Testing with vibration loads; Hardness testing; Calibration of test devices and equipment; Test technique for compound materials; Vibration strength testing and expense of experiments; Solving problems in introducing forces into samples and components and process of ambulant materials testing. There are 17 separate abstracts from among 43 lectures. (orig./PW) [de

  18. Advancing Material Models for Automotive Forming Simulations

    International Nuclear Information System (INIS)

    Vegter, H.; An, Y.; Horn, C.H.L.J. ten; Atzema, E.H.; Roelofsen, M.E.

    2005-01-01

    Simulations in automotive industry need more advanced material models to achieve highly reliable forming and springback predictions. Conventional material models implemented in the FEM-simulation models are not capable to describe the plastic material behaviour during monotonic strain paths with sufficient accuracy. Recently, ESI and Corus co-operate on the implementation of an advanced material model in the FEM-code PAMSTAMP 2G. This applies to the strain hardening model, the influence of strain rate, and the description of the yield locus in these models. A subsequent challenge is the description of the material after a change of strain path.The use of advanced high strength steels in the automotive industry requires a description of plastic material behaviour of multiphase steels. The simplest variant is dual phase steel consisting of a ferritic and a martensitic phase. Multiphase materials also contain a bainitic phase in addition to the ferritic and martensitic phase. More physical descriptions of strain hardening than simple fitted Ludwik/Nadai curves are necessary.Methods to predict plastic behaviour of single-phase materials use a simple dislocation interaction model based on the formed cells structures only. At Corus, a new method is proposed to predict plastic behaviour of multiphase materials have to take hard phases into account, which deform less easily. The resulting deformation gradients create geometrically necessary dislocations. Additional micro-structural information such as morphology and size of hard phase particles or grains is necessary to derive the strain hardening models for this type of materials.Measurements available from the Numisheet benchmarks allow these models to be validated. At Corus, additional measured values are available from cross-die tests. This laboratory test can attain critical deformations by large variations in blank size and processing conditions. The tests are a powerful tool in optimising forming simulations prior

  19. The use of a flow test and a flow model in evaluating the durability of various nuclear waste-form materials

    International Nuclear Information System (INIS)

    Barkatt, A.; Barkatt, A.; Boroomand, M.A.

    1983-01-01

    The comprehensive predictive model described in this paper has been briefly outlined for a single particular set of repository parameters in an earlier paper. A general detailed derivation and a detailed illustration of the use of this method in comparative evaluation of a variety of waste-form materials are given. The model focuses on the long-term leach rate of materials under all possible water flow rates through a repository site, given any exposure configuration (i.e., ratio between the exposed area of the waste form and the volume of water with which it is in effective contact) which is considered most representative of the actual repository conditions. The model permits direct calculation of the annual fractional release rate of the major matrix elements as well as of any other components of a waste form. This makes it possible to evaluate how well various waste forms meet long-term durability criteria such as those proposed by the U.S. Nuclear Regulatory Commission, makes it possible to obtain such release rates, corresponding to the entire range of flow conditions expected in a repository down to very slow flow rates by conducting dynamic laboratory tests at practical rates of leachant exchange at relatively high surfaceto-volume ratios, following the leachate composition until the leach rates approach constant values, and normalizing the data to the surface-to-volume ratio expected under repository conditions. The purpose of this paper is to outline the general derivation of the model and to describe the results of applying the model in dynamic leach tests carried out on five different waste-form materials over the entire range of effective flow rates expected under repository conditions

  20. Testing of abrasion materials

    International Nuclear Information System (INIS)

    Hummert, G.

    1983-01-01

    A method of abrasion testing according to ASTM C 704-76 a is presented for steel fibre concrete mortar, fusion-cast basalt and a surface coating material and results of practical interest are mentioned. Due to the high technical demands on these materials and their specific fields of application, the very first test already supplied interesting findings. From the user's point of view, the method is an interesting alternative to the common test methods, e.g. according to DIN 52 108 (wheel test according to Boehme). In English-speaking countries, testing according to ASTM is often mandatory in the refractory industry in order to assure constant quality of refractory materials after setting. The method is characterized by good comparability and high accuracy of measurement. Only the test piece is exchanged while the test conditions remain constant, so that accurate information on the material studied is obtained. (orig.) [de

  1. Composite materials formed with anchored nanostructures

    Science.gov (United States)

    Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei

    2015-03-10

    A method of forming nano-structure composite materials that have a binder material and a nanostructure fiber material is described. A precursor material may be formed using a mixture of at least one metal powder and anchored nanostructure materials. The metal powder mixture may be (a) Ni powder and (b) NiAl powder. The anchored nanostructure materials may comprise (i) NiAl powder as a support material and (ii) carbon nanotubes attached to nanoparticles adjacent to a surface of the support material. The process of forming nano-structure composite materials typically involves sintering the mixture under vacuum in a die. When Ni and NiAl are used in the metal powder mixture Ni.sub.3Al may form as the binder material after sintering. The mixture is sintered until it consolidates to form the nano-structure composite material.

  2. Materials Test Station

    Data.gov (United States)

    Federal Laboratory Consortium — When completed, the Materials Test Station at the Los Alamos Neutron Science Center will meet mission need. MTS will provide the only fast-reactor-like irradiation...

  3. Status of waste form testing

    International Nuclear Information System (INIS)

    Lawroski, H.

    1984-01-01

    The promulgation of the amendment of 10 CFR Part 61 by the Nuclear Regulatory Commission of December 27, 1982 by Federal Register Notice with an effective date of December 27, 1983 established the criteria for licensing requirements, paragraph 60.56, contained the description to provide adequate stability of the site through the use of suitable waste forms. In May, 1983, the NRC published a final Branch Technical Position (BTP) paper on waste form. The position taken by the BTP was considerably more severe than indicated in 10 CFR Part 61. An extensive and expensive testing program was started in 1983. As an interim measure, the presently utilized solidification processes such as cement, Dow binder, Envirostone and bitumen, and the presently qualified High Integrity containers (HICs) were considered acceptable with the caveat that acceptable process control programs were being utilized. The NRC requested that topical reports for licenses be submitted. The topical reports were to contain test results to substantiate the acceptability of the waste forms. The test results to date show that the volume of wastes will have to increase to meet the position taken by the NRC in the BTP. This position will cause more waste to be generated which is contrary to the emphasis by states and others to reduce the volume of waste. The details of testing will be discussed in the paper to be presented

  4. Lubricant Test Methods for Sheet Metal Forming

    DEFF Research Database (Denmark)

    Bay, Niels; Olsson, David Dam; Andreasen, Jan Lasson

    2008-01-01

    appearing in different sheet forming operations such as stretch forming, deep drawing, ironing and punching. The laboratory tests have been especially designed to model the conditions in industrial production. Application of the tests for evaluating new lubricants before introducing them in production has......Sheet metal forming of tribologically difficult materials such as stainless steel, Al-alloys and Ti-alloys or forming in tribologically difficult operations like ironing, punching or deep drawing of thick plate requires often use of environmentally hazardous lubricants such as chlorinated paraffin...... oils in order to avoid galling. The present paper describes a systematic research in the development of new, environmentally harmless lubricants focusing on the lubricant testing aspects. A system of laboratory tests has been developed to study the lubricant performance under the very varied conditions...

  5. Nondestructive testing of materials

    International Nuclear Information System (INIS)

    NUKEM has transferred know-how from reactor technology to materials testing. The high and to a large extent new quality standards in the nuclear industry necessitate reliable measuring and testing equipment of the highest precision. Many of the tasks presented to us could not be solved with the equipment available on the market, for which reason we have developed our own measuring, testing and control systems. We have therefore acquired considerable experience in dealing with specific measuring, testing and control tasks and can handle even out-of-the-way problems that are submitted to us from a wide variety of fields. Our mechanical systems for the checking of close-tolerance gaps, the automatic determination of pellet dimensions and the measurement of absolute lengths and absolute velocities are in use in many different industrial fields. We have succeeded in solving unusual testing and sorting problems with the aid of automated surface testing equipment working on optical principles. Our main activities in the field of non-destructive testing have been concentrated on ultrasonic and eddy current testing and, of late, acoustic emission analysis. NUKEM ultrasonic systems are notable for their high defect detection rate and testing accuracy, combined with high testing speed. The equipment we supply includes ultrasonic rotary systems for the production testing of quality tubes, ultrasonic immersion systems for the final testing of reactor cladding tubes, weld testing equipment, and test equipment for the bonds in multi-layer plates. (orig./RW) [de

  6. NNWSI waste form performance test development

    International Nuclear Information System (INIS)

    Bates, J.K.; Gerding, T.J.

    1984-01-01

    A test method has been developed to measure the release of radionuclides from the waste package under simulated NNWSI repository conditions, and to provide information concerning materials interactions that may occur in the repository. Data from 13 weeks of unsaturated testing are discussed and compared to that from a 13-week analog test. The data indicate that the waste form test is capable of producing consistent, reproducible results that will be useful in evaluating the role of the waste in the long-term performance of the repository. 6 references, 3 figures

  7. Development of standard testing methods for nuclear-waste forms

    International Nuclear Information System (INIS)

    Mendel, J.E.; Nelson, R.D.

    1981-11-01

    Standard test methods for waste package component development and design, safety analyses, and licensing are being developed for the Nuclear Waste Materials Handbook. This paper describes mainly the testing methods for obtaining waste form materials data

  8. Materials and test methods

    International Nuclear Information System (INIS)

    Kasen, M.B.

    1984-01-01

    The industrial specification for production of the G-10CR grade of cryogenic high-pressure laminate has been revised and accepted by US manufacturers. The objective was to make the specification as generic as possible without adversely affecting performance and to add a material performance criteria to the specification. G-10CR and G-11CR products have been produced by five US industrial laminating forms. No significant differences in cryogenic mechanical properties were found among G-10CR material produced by these manufacturers. This indicates that the specifications are fulfilling their intended purpose. An efficient system for producing research materials for systematic screening of the parameters influencing cryogenic radiation resistance was devised. Laboratories in Japan and England have agreed to actively cooperate with NBS in further development of this system

  9. Dictionary of materials testing

    International Nuclear Information System (INIS)

    Goedecke, W.

    1992-01-01

    This trilingual dictionary contains about 12000 terms from the field of non-destructive and destructive materials testing; the English and French terms can be looked up in two separate, alphabetical indexes. The compilation also presents terms from related fields such as quality control, production control, environmental protection and radiological protection, and wherever appropriate in the context from the fields of physics, chemistry, mathematics and electronic data processing. (HP) [de

  10. Developmental toxicity studies with 6 forms of titanium dioxide test materials (3 pigment-different grade & 3 nanoscale) demonstrate an absence of effects in orally-exposed rats.

    Science.gov (United States)

    Warheit, D B; Boatman, R; Brown, S C

    2015-12-01

    Six different commercial forms and sizes of titanium dioxide particles were tested in separate developmental toxicity assays. The three pigment-grade (pg) or 3 ultrafine (uf)/nanoscale (anatase and/or rutile) titanium dioxide (TiO2) particle-types were evaluated for potential maternal and developmental toxicity in pregnant rats by two different laboratories. All studies were conducted according to OECD Guideline 414 (Prenatal Developmental Toxicity Study). In addition, all test materials were robustly characterized. The BET surface areas of the pg and uf samples ranged from 7 to 17 m(2)/g and 50-82 m(2)/g respectively (see Table 1). The test substances were formulated in sterile water. In all of the studies, the formulations were administered by oral gavage to time-mated rats daily beginning around the time of implantation and continuing until the day prior to expected parturition. In 3 of the studies (uf-1, uf-3, & pg-1), the formulations were administered to Crl:CD(SD) rats beginning on gestation day (GD) 6 through GD 20. In 3 additional studies (uf-2, and pg-2, pg-3 TiO2 particles), the formulations were administered to Wistar rats beginning on GD 5 through 19. The dose levels used in all studies were 0, 100, 300, or 1000 mg/kg/day; control group animals were administered the vehicle. During the in-life portions of the studies, body weights, food consumption, and clinical observations before and after dosing were collected on a daily basis. All dams were euthanized just prior to expected parturition (GD 21 for Crl:CD(SD) rats and GD 20 for Wistar rats). The gross necropsies included an examination and description of uterine contents including counts of corpora lutea, implantation sites, resorptions, and live and dead fetuses. All live fetuses were sexed, weighed, and examined externally and euthanized. Following euthanasia, fresh visceral and head examinations were performed on selected fetuses. The fetal carcasses were then processed and examined for skeletal

  11. Continuous spray forming of functionally gradient materials

    International Nuclear Information System (INIS)

    McKechnie, T.N.; Richardson, E.H.

    1995-01-01

    Researchers at Plasma Processes Inc. have produced a Functional Gradient Material (FGM) through advanced vacuum plasma spray processing for high heat flux applications. Outlined in this paper are the manufacturing methods used to develop a four component functional gradient material of copper, tungsten, boron, and boron nitride. The FGM was formed with continuous gradients and integral cooling channels eliminating bondlines and providing direct heat transfer from the high temperature exposed surface to a cooling medium. Metallurgical and x-ray diffraction analyses of the materials formed through innovative VPS (vacuum plasma spray) processing are also presented. Applications for this functional gradient structural material range from fusion reactor plasma facing components to missile nose cones to boilers

  12. Railgun bore material test results

    International Nuclear Information System (INIS)

    Wang, S.Y.; Burton, R.L.; Witherspoon, F.D.; Bloomberg, H.W.; Goldstein, S.A.; Tidman, D.A.; Winsor, N.K.

    1987-01-01

    GT-Devices, Inc. has constructed a material test facility (MTF) to study the fundamental heat transfer problem of both railgun and electrothermal guns, and to test candidate gun materials under real plasma conditions. The MTF electrothermally produces gigawatt-level plasmas with pulse lengths of 10-30 microseconds. Circular bore and non-circular bore test barrels have been successfully operated under a wide range of simulated heating environments for EM launchers. Diagnostics include piezoelectric MHz pressure probes, time-of-flight probes, and current and voltage probes. Ablation measurements are accomplished by weighing and optical inspection, including borescope, optical microscope, and scanning electron microscope (SEM). From these measurements the ablation threshold for both the rail and insulator materials can be determined as a function of plasma heating. The MTF diagnostics are supported by an unsteady 1-D model of MTF which uses the flux-corrected transport (FCT) algorithm to calculate the fluid equations in conservative form. A major advantage of the FCT algorithm is that it can model gas dynamic shock behaviour without the requirement of numerical diffusion. The principle use of the code is to predict the material surface temperature ΔT/α from the unsteady heat transfer q(t)

  13. Integrating Test-Form Formatting into Automated Test Assembly

    Science.gov (United States)

    Diao, Qi; van der Linden, Wim J.

    2013-01-01

    Automated test assembly uses the methodology of mixed integer programming to select an optimal set of items from an item bank. Automated test-form generation uses the same methodology to optimally order the items and format the test form. From an optimization point of view, production of fully formatted test forms directly from the item pool using…

  14. Biodegradation testing of TMI-2 EPICOR-II waste forms

    International Nuclear Information System (INIS)

    Rogers, R.D.; McConnell, J.W. Jr.

    1988-06-01

    ASTM biodegradation tests were conducted on waste forms containing high specific activity ion exchange resins from EPICOR-II prefilters. Those tests were part of a program to test waste forms in accordance with the NRC Branch Technical Position on Waste Form. Small waste forms were manufactured using two different solidification agents, Portland Type I-II cement and vinyl ester-styrene (VES). Ion exchange material was taken from two EPICOR-II prefilters; PF-7, which contained all organic material, and PF-20, which contained organic resins and a layer of inorganic zeolites. Test results showed that the VES waste forms supported microbial growth, while cement waste forms did not support that growth. Growth was also observed adjacent to some VES waste forms. Radiation levels found in the ion exchange resins used in this study were not found to inhibit microbial growth. The extent of degradation of the waste forms could not be determined using the ASTM tests specified by the NRC Branch Technical Position on Waste Form. As a result of this work, a different testing methodology is recommended, which would provide direct verification of waste form capabilities. That methodology would evaluate solidification materials without using the ASTM procedures or subsequent compression testing. The proposed tests would provide exposure to a wide range of microbial species, use appropriately sized specimens, provide for possible use of alternate carbon sources, and extend the test length. Degradation would be determined directly by measuring metabolic activity or specimen weight loss. 16 refs., 15 figs., 3 tabs

  15. Materials and test methods

    International Nuclear Information System (INIS)

    Kase, M.B.

    1985-01-01

    The objective of this study was to provide, in cooperation with ORNL and LANL, specimens required for studies to develop organic insulators having the cryogenic neutron irradiation resistance required for MFE systems utilizing superconducting magnetic confinement. To develop test methods and analytical procedures for assessing radiation damage. To stimulate and participate in international cooperation directed toward accomplishing these objectives. The system for producing uniaxially reinforced, 3-4 mm (0.125 in) diameter rod specimens has been refined and validated by production of excellent quality specimens using liquid-mix epoxy resin systems. The methodology is undergoing further modification to permit use of hot-melt epoxy and polyimide resin systems as will be required for the experimental program to be conducted in the NLTNIF reactor at ORNL. Preliminary studies indicate that short beam and torsional shear test methods will be useful in evaluating radiation degradation. Development of these and other applicable test methods are continuing. A cooperative program established with laboratories in Japan and in England has resulted in the production and testing of specimens having an identical configuration

  16. Laboratory procedures for waste form testing

    International Nuclear Information System (INIS)

    Mast, E.S.

    1994-01-01

    The 100 and 300 areas of the Hanford Site are included on the US Environmental Protection Agencies (EPA) National Priorities List under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). Soil washing is a treatment process that is being considered for the remediation of the soil in these areas. Contaminated soil washing fines can be mixed or blended with cementations materials to produce stable waste forms that can be used for beneficial purposes in mixed or low-level waste landfills, burial trenches, environmental restoration sites, and other applications. This process has been termed co-disposal. The Co-Disposal Treatability Study Test Plan is designed to identify a range of cement-based formulations that could be used in disposal efforts in Hanford in co-disposal applications. The purpose of this document is to provide explicit procedural information for the testing of co-disposal formulations. This plan also provides a discussion of laboratory safety and quality assurance necessary to ensure safe, reproducible testing in the laboratory

  17. Laboratory procedures for waste form testing

    Energy Technology Data Exchange (ETDEWEB)

    Mast, E.S.

    1994-09-19

    The 100 and 300 areas of the Hanford Site are included on the US Environmental Protection Agencies (EPA) National Priorities List under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). Soil washing is a treatment process that is being considered for the remediation of the soil in these areas. Contaminated soil washing fines can be mixed or blended with cementations materials to produce stable waste forms that can be used for beneficial purposes in mixed or low-level waste landfills, burial trenches, environmental restoration sites, and other applications. This process has been termed co-disposal. The Co-Disposal Treatability Study Test Plan is designed to identify a range of cement-based formulations that could be used in disposal efforts in Hanford in co-disposal applications. The purpose of this document is to provide explicit procedural information for the testing of co-disposal formulations. This plan also provides a discussion of laboratory safety and quality assurance necessary to ensure safe, reproducible testing in the laboratory.

  18. Materials Testing - Digital Ecology

    Directory of Open Access Journals (Sweden)

    Seth Wiley

    2013-03-01

    Full Text Available Access to credible building product performance information throughout the design and construction process is critical to enable project development, vet product selections, ensure as-built quality, and successfully complete construction. This is common knowledge and part of common practice for nearly all parties involved in design and construction. The sources of such information can range from vernacular to formal – from common practice to special reference. The focus of this paper is one of the more formal or specialized information sources, performance testing, as well as how such performance testing information can be better used. This paper’s goals are to familiarize the reader with performance testing and to depict a new kind of valuable informational tool (digital ecology. Reference to pertinent nomenclature, description of a real world example, and detailed description of such an informational tool’s values will be provided.The major content of this paper was developed during project-based work and firm-funded internal research at point b design, ltd. over approximately the previous 4 years. The phrase ‘digital ecology’ as herein used is a new concept proposed by the author. The analysis contained in this paper could be applied to the field of operations and maintenance as it is herein applied to design and construction; however, operations and maintenance is beyond the scope of this paper and may be addressed in future papers. It is my hope that this paper will contribute to tangible and real improvements of the built environment via continued, positive development within academic and professional practice.

  19. Testing of Replacement Bag Material

    International Nuclear Information System (INIS)

    Laurinat, J.E.

    1998-01-01

    Recently, the FB-Line bagout material was changed to simplify the processing of sand, slag, and crucible.The results of the strength tests and the outgassing measurements and calculations demonstrate that the proposed replacement nylon bag materials (HRMP and orange anti-static material) are acceptable substitutes for LDPE and the original nylon with respect to mechanical properties

  20. Developing test materials for dyscalculia

    DEFF Research Database (Denmark)

    Lindenskov, Lena; Bent, Lindhardt,

    Aims, requirements and context for the development of test materials for dyscalculia are analyzed. The test materials are to be used for Grade 4 pupils in Danish primary schools. Preliminary results are presented from focus group interview with adolescents and adults, who see themselves as being...

  1. Biocidal Energetic Materials for the Destruction of Spore Forming Bacteria

    Science.gov (United States)

    2015-07-01

    agent (GA). During a reaction the GA generates nucleation sites that promote the formation of bubbles. As the reaction wave passes, the gas pockets...studies have shown iodine producing reactive materials are effective against spore forming bacteria, but are sensitive to the relative humidity in the...testing environment. Results from tests run in relative high humidity environments show a decreased ability of iodine to effectively neutralize

  2. Simulator for materials testing reactors

    International Nuclear Information System (INIS)

    Takemoto, Noriyuki; Sugaya, Naoto; Ohtsuka, Kaoru; Hanakawa, Hiroki; Onuma, Yuichi; Hosokawa, Jinsaku; Hori, Naohiko; Kaminaga, Masanori; Tamura, Kazuo; Hotta, Kohji; Ishitsuka, Tatsuo

    2013-06-01

    A real-time simulator for both reactor and irradiation facilities of a materials testing reactor, “Simulator of Materials Testing Reactors”, was developed for understanding reactor behavior and operational training in order to utilize it for nuclear human resource development and to promote partnership with developing countries which have a plan to introduce nuclear power plant. The simulator is designed based on the JMTR (Japan Materials Testing Reactor), and it simulates operation, irradiation tests and various kinds of anticipated operational transients and accident conditions caused by the reactor and irradiation facilities. The development of the simulator was sponsored by the Japanese government as one of the specialized projects of advanced research infrastructure in order to promote basic as well as applied researches. This report summarizes the simulation components, hardware specification and operation procedure of the simulator. (author)

  3. Construction of solid waste form test facility

    International Nuclear Information System (INIS)

    Park, Hyun Whee; Lee, Kang Moo; Koo, Jun Mo; Jung, In Ha; Lee, Jong Ryeul; Kim, Sung Whan; Bae, Sang Min; Cho, Kang Whon; Sung, Suk Jong

    1989-02-01

    The Solid Waste Form Test Facility (SWFTF) is now construction at DAEDUCK in Korea. In SWFTF, the characteristics of solidified waste products as radiological homogeneity, mechanical and thermal property, water resistance and lechability will be tested and evaluated to meet conditions for long-term storage or final disposal of wastes. The construction of solid waste form test facility has been started with finishing its design of a building and equipments in Sep. 1984, and now building construction is completed. Radioactive gas treatment system, extinguishers, cooling and heating system for the facility, electrical equipments, Master/Slave manipulator, power manipulator, lead glass and C.C.T.V. has also been installed. SWFTF will be established in the beginning of 1990's. At this report, radiation shielding door, nondestructive test of the wall, instrumentation system for the utility supply system and cell lighting system are described. (Author)

  4. Phosphate bonded ceramics as candidate final-waste-form materials

    International Nuclear Information System (INIS)

    Singh, D.; Wagh, A.S.; Cunnane, J.; Sutaria, M.; Kurokawa, S.; Mayberry, J.

    1994-04-01

    Room-temperature setting phosphate-bonded ceramics were studied as candidate materials for stabilization of DOE low-level problem mixed wastes which cannot be treated by other established stabilization techniques. Phosphates of Mg, Mg-Na, Al and Zr were studied to stabilize ash surrogate waste containing RCRA metals as nitrates and RCRA organics. We show that for a typical loading of 35 wt.% of the ash waste, the phosphate ceramics pass the TCLP test. The waste forms have high compression strength exceeding ASTM recommendations for final waste forms. Detailed X-ray diffraction studies and differential thermal analyses of the waste forms show evidence of chemical reaction of the waste with phosphoric acid and the host matrix. The SEM studies show evidence of physical bonding. The excellent performance in the leaching tests is attributed to a chemical solidification and physical as well as chemical bonding of ash wastes in these phosphate ceramics

  5. Radioactive material package seal tests

    International Nuclear Information System (INIS)

    Madsen, M.M.; Humphreys, D.L.; Edwards, K.R.

    1990-01-01

    General design or test performance requirements for radioactive materials (RAM) packages are specified in Title 10 of the US Code of Federal Regulations Part 71 (US Nuclear Regulatory Commission, 1983). The requirements for Type B packages provide a broad range of environments under which the system must contain the RAM without posing a threat to health or property. Seals that provide the containment system interface between the packaging body and the closure must function in both high- and low-temperature environments under dynamic and static conditions. A seal technology program, jointly funded by the US Department of Energy Office of Environmental Restoration and Waste Management (EM) and the Office of Civilian Radioactive Waste Management (OCRWM), was initiated at Sandia National Laboratories. Experiments were performed in this program to characterize the behavior of several static seal materials at low temperatures. Helium leak tests on face seals were used to compare the materials. Materials tested include butyl, neoprene, ethylene propylene, fluorosilicone, silicone, Eypel, Kalrez, Teflon, fluorocarbon, and Teflon/silicone composites. Because most elastomer O-ring applications are for hydraulic systems, manufacturer low-temperature ratings are based on methods that simulate this use. The seal materials tested in this program with a fixture similar to a RAM cask closure, with the exception of silicone S613-60, are not leak tight (1.0 x 10 -7 std cm 3 /s) at manufacturer low-temperature ratings. 8 refs., 3 figs., 1 tab

  6. Radioactive material packaging performance testing

    International Nuclear Information System (INIS)

    Romano, T.; Cruse, J.M.

    1991-02-01

    To provide uniform packaging of hazardous materials on an international level, the United Nations has developed packaging recommendations that have been implemented worldwide. The United Nations packaging recommendations are performance oriented, allowing for a wide variety of package materials and systems. As a result of this international standard, efforts in the United States are being directed toward use of performance-oriented packaging and elimination of specification (designed) packaging. This presentation will focus on trends, design evaluation, and performance testing of radioactive material packaging. The impacts of US Department of Transportation Dockets HM-181 and HM-169A on specification and low-specific activity radioactive material packaging requirements are briefly discussed. The US Department of Energy's program for evaluating radioactive material packings per US Department of Transportation Specification 7A Type A requirements, is used as the basis for discussing low-activity packaging performance test requirements. High-activity package testing requirements are presented with examples of testing performed at the Hanford Site that is operated by Westinghouse Hanford Company for the US Department of Energy. 5 refs., 2 tabs

  7. Testing competing forms of the Milankovitch hypothesis

    DEFF Research Database (Denmark)

    Kaufmann, Robert K.; Juselius, Katarina

    2016-01-01

    We test competing forms of the Milankovitch hypothesis by estimating the coefficients and diagnostic statistics for a cointegrated vector autoregressive model that includes 10 climate variables and four exogenous variables for solar insolation. The estimates are consistent with the physical...... ice volume and solar insolation. The estimated adjustment dynamics show that solar insolation affects an array of climate variables other than ice volume, each at a unique rate. This implies that previous efforts to test the strong form of the Milankovitch hypothesis by examining the relationship...... that the latter is consistent with a weak form of the Milankovitch hypothesis and that it should be restated as follows: Internal climate dynamics impose perturbations on glacial cycles that are driven by solar insolation. Our results show that these perturbations are likely caused by slow adjustment between land...

  8. DURABILITY TESTING OF FLUIDIZED BED STEAM REFORMER (FBSR) WASTE FORMS

    International Nuclear Information System (INIS)

    Jantzen, C

    2006-01-01

    Fluidized Bed Steam Reforming (FBSR) is being considered as a potential technology for the immobilization of a wide variety of high sodium aqueous radioactive wastes. The addition of clay and a catalyst as co-reactants converts high sodium aqueous low activity wastes (LAW) such as those existing at the Hanford and Idaho DOE sites to a granular ''mineralized'' waste form that may be made into a monolith form if necessary. Simulant Hanford and Idaho high sodium wastes were processed in a pilot scale FBSR at Science Applications International Corporation (SAIC) Science and Technology Applications Research (STAR) facility in Idaho Falls, ID. Granular mineral waste forms were made from (1) a basic Hanford Envelope A low-activity waste (LAW) simulant and (2) an acidic INL simulant commonly referred to as sodium-bearing waste (SBW). The FBSR waste forms were characterized and the durability tested via ASTM C1285 (Product Consistency Test), the Environmental Protection Agency (EPA) Toxic Characteristic Leaching Procedure (TCLP), and the Single Pass Flow Through (SPFT) test. The durability of the FBSR waste form products was tested in order to compare the measured durability to previous FBSR waste form testing on Hanford Envelope C waste forms that were made by THOR Treatment Technologies (TTT) and to compare the FBSR durability to vitreous LAW waste forms, specifically the Hanford low activity waste (LAW) glass known as the Low-activity Reference Material (LRM). The durability of the FBSR waste form is comparable to that of the LRM glass for the test responses studied

  9. Method of forming aluminum oxynitride material and bodies formed by such methods

    Science.gov (United States)

    Bakas, Michael P [Ammon, ID; Lillo, Thomas M [Idaho Falls, ID; Chu, Henry S [Idaho Falls, ID

    2010-11-16

    Methods of forming aluminum oxynitride (AlON) materials include sintering green bodies comprising aluminum orthophosphate or another sacrificial material therein. Such green bodies may comprise aluminum, oxygen, and nitrogen in addition to the aluminum orthophosphate. For example, the green bodies may include a mixture of aluminum oxide, aluminum nitride, and aluminum orthophosphate or another sacrificial material. Additional methods of forming aluminum oxynitride (AlON) materials include sintering a green body including a sacrificial material therein, using the sacrificial material to form pores in the green body during sintering, and infiltrating the pores formed in the green body with a liquid infiltrant during sintering. Bodies are formed using such methods.

  10. Impact test for solid waste forms

    International Nuclear Information System (INIS)

    Wallace, R.M.; Kelley, J.A.

    1976-03-01

    Samples of concretes and glasses being considered for incorporation of radioactive waste sludge were subjected to impact tests to determine the relationship between the energy of the impact and the resulting increase in surface area of the damaged sample. Test results indicate that the increased surface area per unit of energy input for glass waste forms is less by a factor of about three than that for concretes containing 40 wt percent simulated sludge (average values of 9.6 cm 2 /Joule and 24.7 cm 2 /Joule for glass and concrete, respectively)

  11. Compatibility testing of vitrified waste forms

    International Nuclear Information System (INIS)

    Rankin, W.N.

    1978-01-01

    The compatibility of vitrified radioactive waste with candidate canister materials will be evaluated with both cast and in-can melted vitrified waste. Both real and simulated sludges will be used. In addition, the compatibility of these materials with salt from a possible final storage location will be determined. Cast vitrified waste will be tested with ASTM A 333 and ASTM A 516 low-carbon steels and Type 304L stainless steel at 100, 600 and 800 0 C. Cast vitrified waste that has been devitrified by heat treatment will be tested at 100 0 C. Two types of test specimens will be used with either simulated or real sludges: (1) unsealed capsules made of pieces of mill-finished pipe into which vitrified waste is cast, and (2) sealed capsules containing a small container of vitrified waste identical to the ones in the unsealed capsule. In-can melted vitrified waste will be tested with synthetic sludge only and with ASTM A 333 and ASTM A 516 low-carbon steels, Type 304L stainless steel and Inconel 600. Two types of tests will be carried out: (1) melting vitrified waste in miniature metal canisters and (2) exposure of small (carefully measured) metal coupons to molten glass. The air oxidation rates of candidate canister materials will be determined, and specimens will also be exposed to salt from Drill Hole AEC-8 in Carlsbad, New Mexico. Sealed capsules containing an ASTM A 516 low-carbon steel or Type 304L stainless steel specimen partially embedded in a small block of salt will be heated

  12. the JHR Material Testing Reactor

    International Nuclear Information System (INIS)

    Roure, C.; Cornu, B.; Berthet, B.; Simon, E.; Estre, N.; Guimbal, P.; Kinnunen, P.; Kotiluoto, P.

    2013-06-01

    The Jules Horowitz Reactor (JHR) is a European experimental reactor under construction in CEA Cadarache. It will be dedicated to material and fuel irradiation tests, and to medical isotopes production. Non-Destructive nuclear Examinations systems (NDE) will be implemented in pools to analyse the irradiated fuel or tested material in their supporting experimental irradiation devices extracted from the core or its immediate periphery. The Nuclear Measurement Laboratory (NML) of CEA Cadarache is working in collaboration with VTT (Technical Research Centre in Finland) in designing and developing NDE systems implementing gamma-ray spectroscopy and high energy X-ray imaging of the sample and irradiation device. CEA is also designing a neutron radiography system for which NML is working on the detection system. Design studies are performed with Monte Carlo transport codes and specific simulation tools developed by the NML for Xray and neutron imaging. (authors)

  13. Oral Solid Dosage Form Disintegration Testing - The Forgotten Test.

    Science.gov (United States)

    Al-Gousous, Jozef; Langguth, Peter

    2015-09-01

    Since its inception in the 1930s, disintegration testing has become an important quality control (QC) test in pharmaceutical industry, and disintegration test procedures for various dosage forms have been described by the different pharmacopoeias, with harmonization among them still not quite complete. However, because of the fact that complete disintegration does not necessarily imply complete dissolution, much more research has been focused on dissolution rather than on disintegration testing. Nevertheless, owing to its simplicity, disintegration testing seems to be an attractive replacement to dissolution testing as recognized by the International Conference on Harmonization guidelines, in some cases. Therefore, with proper research being carried out to overcome the associated challenges, the full potential of disintegration testing could be tapped saving considerable efforts allocated to QC testing and quality assurance. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  14. Research reactors and materials testing

    International Nuclear Information System (INIS)

    Vidal, H.

    1986-01-01

    Research reactors can be classified in three main groups according to the moderator which is used. Their technical characteristics are given and the three most recent research and materials testing reactors are described: OSIRIS, ORPHEE and the high-flux reactor of Grenoble. The utilization of research reactors is reviewed in four fields of activity: training, fundamental or applied research and production (eg. radioisotopes) [fr

  15. Radioactive material packaging performance testing

    International Nuclear Information System (INIS)

    Romano, T.

    1992-06-01

    In an effort to provide uniform packaging of hazardous material on an international level, recommendations for the transport of dangerous goods have been developed by the United Nations. These recommendations are performance oriented and contrast with a large number of packaging specifications in the US Department of Transportation's hazard materials regulations. This dual system presents problems when international shipments enter the US Department of Transportation's system. Faced with the question of continuing a dual system or aligning with the international system, the Research and Special Programs Administration of the US Department of Transportation responded with Docket HM-181. This began the transition toward the international transportation system. Following close behind is Docket HM-169A, which addressed low specific activity radioactive material packaging. This paper will discuss the differences between performance-oriented and specification packaging, the transition toward performance-oriented packaging by the US Department of Transportation, and performance-oriented testing of radioactive material packaging by Westinghouse Hanford Company. Dockets HM-181 and HM-169A will be discussed along with Type A (low activity) and Type B (high activity) radioactive material packaging evaluations

  16. Test device for measuring permeability of a barrier material

    Science.gov (United States)

    Reese, Matthew; Dameron, Arrelaine; Kempe, Michael

    2014-03-04

    A test device for measuring permeability of a barrier material. An exemplary device comprises a test card having a thin-film conductor-pattern formed thereon and an edge seal which seals the test card to the barrier material. Another exemplary embodiment is an electrical calcium test device comprising: a test card an impermeable spacer, an edge seal which seals the test card to the spacer and an edge seal which seals the spacer to the barrier material.

  17. Electrochemical corrosion testing of metal waste forms

    International Nuclear Information System (INIS)

    Abraham, D. P.; Peterson, J. J.; Katyal, H. K.; Keiser, D. D.; Hilton, B. A.

    1999-01-01

    Electrochemical corrosion tests have been conducted on simulated stainless steel-zirconium (SS-Zr) metal waste form (MWF) samples. The uniform aqueous corrosion behavior of the samples in various test solutions was measured by the polarization resistance technique. The data show that the MWF corrosion rates are very low in groundwaters representative of the proposed Yucca Mountain repository. Galvanic corrosion measurements were also conducted on MWF samples that were coupled to an alloy that has been proposed for the inner lining of the high-level nuclear waste container. The experiments show that the steady-state galvanic corrosion currents are small. Galvanic corrosion will, hence, not be an important mechanism of radionuclide release from the MWF alloys

  18. NNWSI waste form test method for unsaturated disposal conditions

    International Nuclear Information System (INIS)

    Bates, J.K.; Gerding, T.J.

    1985-03-01

    A test method has been developed to measure the release of radionuclides from the waste package under simulated NNWSI repository conditions, and to provide information concerning materials interactions that may occur in the repository. Data are presented from Unsaturated testing of simulated Savannah River Laboratory 165 glass completed through 26 weeks. The relationship between these results and those from parametric and analog testing are described. The data indicate that the waste form test is capable of producing consistent, reproducible results that will be useful in evaluating the role of the waste package in the long-term performance of the repository. 6 refs., 7 figs., 5 tabs

  19. Fusion Materials Irradiation Test Facility

    International Nuclear Information System (INIS)

    Kemp, E.L.; Trego, A.L.

    1979-01-01

    A Fusion Materials Irradiation Test Facility is being designed to be constructed at Hanford, Washington, The system is designed to produce about 10 15 n/cm-s in a volume of approx. 10 cc and 10 14 n/cm-s in a volume of 500 cc. The lithium and target systems are being developed and designed by HEDL while the 35-MeV, 100-mA cw accelerator is being designed by LASL. The accelerator components will be fabricated by US industry. The total estimated cost of the FMIT is $105 million. The facility is scheduled to begin operation in September 1984

  20. Repetitively pulsed material testing facility

    International Nuclear Information System (INIS)

    Zucker, O.; Bostick, W.; Gullickson, R; Long, J.; Luce, J.; Sahlin, H.

    1975-01-01

    A continuously operated, 1 pps, dense-plasma-focus device capable of delivering a minimum of 10 15 neutrons per pulse for material testing purposes is described. Moderate scaling from existing results is sufficient to provide 2 x 10 13 n/cm 2 .s to a suitable target. The average power consumption, which has become a major issue as a result of the energy crisis, is analyzed with respect to other plasma devices and is shown to be highly favorable. A novel approach to the capacitor bank and switch design allowing repetitive operation is discussed. (U.S.)

  1. Repetitively pulsed material testing facility

    International Nuclear Information System (INIS)

    Zucker, O.; Bostick, W.; Gullickson, R.; Long, J.; Luce, J.; Sahlin, H.

    1975-01-01

    A continuously operated, 1 pps, dense-plasma-focus device capable of delivering a minimum of 10 15 neutrons per pulse for material testing purposes is described. Moderate scaling from existing results is sufficient to provide 2 x 10 13 n/cm 2 . s to a suitable target. The average power consumption, which has become a major issue as a result of the energy crisis, is analyzed with respect to other plasma devices and is shown to be highly favorable. A novel approach to the capacitor bank and switch design allowing repetitive operation is discussed

  2. Contribution of prototypic material tests on the Plinius platform to the study of nuclear reactor severe accident; Contribution des essais en materiaux prototypiques sur la plate-forme Plinius a l'etude des accidents graves de reacteurs nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Journeau, Ch

    2008-01-15

    The PLINIUS experimental platform at CEA Cadarache is dedicated to the experimental study of nuclear reactor severe accidents thanks to experiments between 2000 and 3500 K with prototypic corium. Corium is the mixture that would be formed by an hypothetical core melting and its mixing with structural materials. Prototypical corium has the same chemical composition as the corium corresponding to a given accident scenario but has a different isotopic composition (use of depleted uranium,...). Research programs and test series have been performed to study corium thermophysical properties, fission product behaviour, corium spreading, solidification and interaction with concrete as well as its coolability. It was the frame of research training of many students and was realized within national, European and international collaborations. (author)

  3. A System of Test Methods for Sheet Metal Forming Tribology

    DEFF Research Database (Denmark)

    Bay, Niels; Olsson, David Dam; Andreasen, Jan Lasson

    2007-01-01

    Sheet metal forming of tribologically difficult materials such as stainless steel, Al-alloys and Ti-alloys or forming in tribologically difficult operations like ironing, punching or deep drawing of thick plate requires often use of environmentally hazardous lubricants such as chlorinated paraffin...... oils in order to avoid galling. The present paper describes a systematic research in the development of new, environmentally harmless lubricants focusing on the lubricant testing aspects. A system of laboratory tests has been developed to study the lubricant performance under the very varied conditions...... appearing in different sheet forming operations such as stamping, deep drawing, ironing and punching. The laboratory tests have been especially designed to model the conditions in industrial production....

  4. Yucca Mountain project canister material corrosion studies as applied to the electrometallurgical treatment metallic waste form

    International Nuclear Information System (INIS)

    Keiser, D.D.

    1996-11-01

    Yucca Mountain, Nevada is currently being evaluated as a potential site for a geologic repository. As part of the repository assessment activities, candidate materials are being tested for possible use as construction materials for waste package containers. A large portion of this testing effort is focused on determining the long range corrosion properties, in a Yucca Mountain environment, for those materials being considered. Along similar lines, Argonne National Laboratory is testing a metallic alloy waste form that also is scheduled for disposal in a geologic repository, like Yucca Mountain. Due to the fact that Argonne's waste form will require performance testing for an environment similar to what Yucca Mountain canister materials will require, this report was constructed to focus on the types of tests that have been conducted on candidate Yucca Mountain canister materials along with some of the results from these tests. Additionally, this report will discuss testing of Argonne's metal waste form in light of the Yucca Mountain activities

  5. Testing of high-level waste forms under repository conditions

    International Nuclear Information System (INIS)

    Mc Menamin, T.

    1989-01-01

    The workshop on testing of high-level waste forms under repository conditions was held on 17 to 21 October 1988 in Cadarache, France, and sponsored by the Commission of the European Communities (CEC), the Commissariat a l'energie atomique (CEA) and the Savannah River Laboratory (US DOE). Participants included representatives from Australia, Belgium, Denmark, France, Germany, Italy, Japan, the Netherlands, Sweden, Switzerland, The United Kingdom and the United States. The first part of the conference featured a workshop on in situ testing of simulated nuclear waste forms and proposed package components, with an emphasis on the materials interface interactions tests (MIIT). MIIT is a sevent-part programme that involves field testing of 15 glass and waste form systems supplied by seven countries, along with potential canister and overpack materials as well as geologic samples, in the salt geology at the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico, USA. This effort is still in progress and these proceedings document studies and findings obtained thus far. The second part of the meeting emphasized multinational experimental studies and results derived from repository systems simulation tests (RSST), which were performed in granite, clay and salt environments

  6. Accelerators for Fusion Materials Testing

    Science.gov (United States)

    Knaster, Juan; Okumura, Yoshikazu

    Fusion materials research is a worldwide endeavor as old as the parallel one working toward the long term stable confinement of ignited plasma. In a fusion reactor, the preservation of the required minimum thermomechanical properties of the in-vessel components exposed to the severe irradiation and heat flux conditions is an indispensable factor for safe operation; it is also an essential goal for the economic viability of fusion. Energy from fusion power will be extracted from the 14 MeV neutron freed as a product of the deuterium-tritium fusion reactions; thus, this kinetic energy must be absorbed and efficiently evacuated and electricity eventually generated by the conventional methods of a thermal power plant. Worldwide technological efforts to understand the degradation of materials exposed to 14 MeV neutron fluxes >1018 m-2s-1, as expected in future fusion power plants, have been intense over the last four decades. Existing neutron sources can reach suitable dpa (“displacement-per-atom”, the figure of merit to assess materials degradation from being exposed to neutron irradiation), but the differences in the neutron spectrum of fission reactors and spallation sources do not allow one to unravel the physics and to anticipate the degradation of materials exposed to fusion neutrons. Fusion irradiation conditions can be achieved through Li (d, xn) nuclear reactions with suitable deuteron beam current and energy, and an adequate flowing lithium screen. This idea triggered in the late 1970s at Los Alamos National Laboratory (LANL) a campaign working toward the feasibility of continuous wave (CW) high current linacs framed by the Fusion Materials Irradiation Test (FMIT) project. These efforts continued with the Low Energy Demonstrating Accelerator (LEDA) (a validating prototype of the canceled Accelerator Production of Tritium (APT) project), which was proposed in 2002 to the fusion community as a 6.7MeV, 100mA CW beam injector for a Li (d, xn) source to bridge

  7. Metallurgy and properties of plasma spray formed materials

    Science.gov (United States)

    Mckechnie, T. N.; Liaw, Y. K.; Zimmerman, F. R.; Poorman, R. M.

    1992-01-01

    Understanding the fundamental metallurgy of vacuum plasma spray formed materials is the key to enhancing and developing full material properties. Investigations have shown that the microstructure of plasma sprayed materials must evolve from a powder splat morphology to a recrystallized grain structure to assure high strength and ductility. A fully, or near fully, dense material that exhibits a powder splat morphology will perform as a brittle material compared to a recrystallized grain structure for the same amount of porosity. Metallurgy and material properties of nickel, iron, and copper base alloys will be presented and correlated to microstructure.

  8. Data package for the Turkey Point material interaction test capsules

    International Nuclear Information System (INIS)

    Krogness, J.C.; Davis, R.B.

    1979-01-01

    Objective of the Materials Interaction Test (MIT) is to obtain interaction information on candidate package storage materials and geologies under prototypic temperatures in gamma and low level neutron fields. Compatibility, structural properties, and chemical transformations will be studied. The multiple test samples are contained within test capsules connected end-to-end to form a test train. Only passive instrumentation has been used to monitor temperatures and record neutron fluence. The test train contains seven capsules: three to test compatibility, two for structural tests, and two for chemical transformation studies. The materials tested are potential candidates for the spent fuel package canister and repository geologies

  9. Unmanned Vehicle Material Flammability Test

    Science.gov (United States)

    Urban, David; Ruff, Gary A.; Fernandez-Pello, A. Carlos; T’ien, James S.; Torero, Jose L.; Cowlard, Adam; Rouvreau, Sebastian; Minster, Olivier; Toth, Balazs; Legros, Guillaume; hide

    2013-01-01

    Microgravity combustion phenomena have been an active area of research for the past 3 decades however, there have been very few experiments directly studying spacecraft fire safety under low-gravity conditions. Furthermore, none of these experiments have studied sample and environment sizes typical of those expected in a spacecraft fire. All previous experiments have been limited to samples of the order of 10 cm in length and width or smaller. Terrestrial fire safety standards for all other habitable volumes on earth, e.g. mines, buildings, airplanes, ships, etc., are based upon testing conducted with full-scale fires. Given the large differences between fire behavior in normal and reduced gravity, this lack of an experimental data base at relevant length scales forces spacecraft designers to base their designs using 1-g understanding. To address this question a large scale spacecraft fire experiment has been proposed by an international team of investigators. This poster presents the objectives, status and concept of this collaborative international project to examine spacecraft material flammability at realistic scales. The concept behind this project is to utilize an unmanned spacecraft such as Orbital Cygnus vehicle after it has completed its delivery of cargo to the ISS and it has begun its return journey to earth. This experiment will consist of a flame spread test involving a meter scale sample ignited in the pressurized volume of the spacecraft and allowed to burn to completion while measurements are made. A computer modeling effort will complement the experimental effort. Although the experiment will need to meet rigorous safety requirements to ensure the carrier vehicle does not sustain damage, the absence of a crew removes the need for strict containment of combustion products. This will facilitate the examination of fire behavior on a scale that is relevant to spacecraft fire safety and will provide unique data for fire model validation. This will be

  10. Testing and Characterization of Engineered Forms of Monosodium Titanate (MST)

    International Nuclear Information System (INIS)

    Taylor-Pashow, K.; Nash, C.; Hobbs, D.

    2012-01-01

    Engineered forms of MST and mMST were prepared at ORNL using an internal gelation process. Samples of these two materials were characterized at SRNL to examine particle size and morphology, peroxide content, tapped densities, and Na, Ti, and C content. Batch contact tests were also performed to examine the performance of the materials. The E mMST material was found to contain less than 10% of the peroxide found in a freshly prepared batch of mMST. This was also evidenced in batch contact testing with both simulated and actual waste, where little difference in performance was seen between the two engineered materials, E MST and E mMST. Based on these results, attempts were made to increase the peroxide content of the materials by post-treatment with hydrogen peroxide. The peroxide treatment resulted in a slight (∼10%) increase in peroxide content; however, the peroxide:Ti molar ratio was still much lower (∼0.1 X) than what is seen in a freshly prepared batch of mMST. Testing with simulated waste showed the performance of the peroxide treated materials was improved. Batch contact tests were also performed with an earlier (2003) prepared lot of E MST to examine the effect of ionic strength on the performance of the material. In general the results showed a decrease in removal performance with increasing ionic strength, which is consistent with previous testing with MST. A Sr loading isotherm was also determined, and the E MST material was found to reach a Sr loading as high as 13.2 wt % after 100 days of contact at a phase ratio of 20000 mL/g. At the typical MST phase ratio of 2500 mL/g (0.4 g/L), a Sr loading of 2.64 wt % was reached after 506 hours of contact. Samples of E MST and the post-peroxide treated E mMST were also tested in a column configuration using simulated waste solution. The breakthrough curves along with analysis of the sorbent beds at the conclusion of the experiments showed that the peroxide treated E mMST has a higher Sr and Np capacity, but

  11. TESTING AND CHARACTERIZATION OF ENGINEERED FORMS OF MONOSODIUM TITANATE (MST)

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, K.; Nash, C.; Hobbs, D.

    2012-05-14

    Engineered forms of MST and mMST were prepared at ORNL using an internal gelation process. Samples of these two materials were characterized at SRNL to examine particle size and morphology, peroxide content, tapped densities, and Na, Ti, and C content. Batch contact tests were also performed to examine the performance of the materials. The {sup E}mMST material was found to contain less than 10% of the peroxide found in a freshly prepared batch of mMST. This was also evidenced in batch contact testing with both simulated and actual waste, where little difference in performance was seen between the two engineered materials, {sup E}MST and {sup E}mMST. Based on these results, attempts were made to increase the peroxide content of the materials by post-treatment with hydrogen peroxide. The peroxide treatment resulted in a slight ({approx}10%) increase in peroxide content; however, the peroxide:Ti molar ratio was still much lower ({approx}0.1 X) than what is seen in a freshly prepared batch of mMST. Testing with simulated waste showed the performance of the peroxide treated materials was improved. Batch contact tests were also performed with an earlier (2003) prepared lot of {sup E}MST to examine the effect of ionic strength on the performance of the material. In general the results showed a decrease in removal performance with increasing ionic strength, which is consistent with previous testing with MST. A Sr loading isotherm was also determined, and the {sup E}MST material was found to reach a Sr loading as high as 13.2 wt % after 100 days of contact at a phase ratio of 20000 mL/g. At the typical MST phase ratio of 2500 mL/g (0.4 g/L), a Sr loading of 2.64 wt % was reached after 506 hours of contact. Samples of {sup E}MST and the post-peroxide treated {sup E}mMST were also tested in a column configuration using simulated waste solution. The breakthrough curves along with analysis of the sorbent beds at the conclusion of the experiments showed that the peroxide treated

  12. Friction stir method for forming structures and materials

    Science.gov (United States)

    Feng, Zhili; David, Stan A.; Frederick, David Alan

    2011-11-22

    Processes for forming an enhanced material or structure are disclosed. The structure typically includes a preform that has a first common surface and a recess below the first common surface. A filler is added to the recess and seams are friction stir welded, and materials may be stir mixed.

  13. 49 CFR 173.476 - Approval of special form Class 7 (radioactive) materials.

    Science.gov (United States)

    2010-10-01

    ... (radioactive) materials must maintain on file for at least one year after the latest shipment, and provide to... evidence based on calculative methods to show that the material is able to pass the tests; or other... shipping papers as “Radioactive Material, Special Form, n.o.s.” [Amdt. 173-244, 60 FR 50307, Sept. 28, 1995...

  14. TRIBOLOGICAL TESTING IN SHEET METAL FORMING

    DEFF Research Database (Denmark)

    Vega Tarantino, Salvador

    alternative lubricants in order to substitute the old and harmful chlorinated paraffin oils. The present project is a small part included in that bigger project called Enlub, in which the newly developed lubricants have been tested by tribological simulative methods. The bending under tension test (BUT...

  15. Reference materials and representative test materials: the nanotechnology case

    International Nuclear Information System (INIS)

    Roebben, G.; Rasmussen, K.; Kestens, V.; Linsinger, T. P. J.; Rauscher, H.; Emons, H.; Stamm, H.

    2013-01-01

    An increasing number of chemical, physical and biological tests are performed on manufactured nanomaterials for scientific and regulatory purposes. Existing test guidelines and measurement methods are not always directly applicable to or relevant for nanomaterials. Therefore, it is necessary to verify the use of the existing methods with nanomaterials, thereby identifying where modifications are needed, and where new methods need to be developed and validated. Efforts for verification, development and validation of methods as well as quality assurance of (routine) test results significantly benefit from the availability of suitable test and reference materials. This paper provides an overview of the existing types of reference materials and introduces a new class of test materials for which the term ‘representative test material’ is proposed. The three generic concepts of certified reference material, reference material(non-certified) and representative test material constitute a comprehensive system of benchmarks that can be used by all measurement and testing communities, regardless of their specific discipline. This paper illustrates this system with examples from the field of nanomaterials, including reference materials and representative test materials developed at the European Commission’s Joint Research Centre, in particular at the Institute for Reference Materials and Measurements (IRMM), and at the Institute for Health and Consumer Protection (IHCP).

  16. Standard leach tests for nuclear waste materials

    International Nuclear Information System (INIS)

    Strachan, D.M.; Barnes, B.O.; Turcotte, R.P.

    1980-01-01

    Five leach tests were conducted to study time-dependent leaching of waste forms (glass). The first four tests include temperature as a variable and the use of three standard leachants. Three of the tests are static and two are dynamic (flow). This paper discusses the waste-form leach tests and presents some representative data. 4 figures

  17. Environmental testing techniques for electronics and materials

    CERN Document Server

    Dummer, Geoffrey W A; Fry, D W; Higinbotham, W

    2013-01-01

    Environmental Testing Techniques for Electronics and Materials reviews environmental testing techniques for evaluating the performance of electronic equipment, components, and materials. Environmental test planning, test methods, and instrumentation are described, along with the general environmental conditions under which equipment must operate. This book is comprised of 15 chapters and begins by explaining why environmental testing is necessary and describing the environment in which electronics must operate. The next chapter considers how an environmental test plan is designed; the methods

  18. Thermophysical tests of buffer materials

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, H. [ITC, Tokyo (Japan); Taniguchi, Wataru

    1999-03-01

    Thermodynamic properties of buffer materials were measured for putting in order thermodynamic constants to be used in the near-field thermal analysis. The thermal diffusivity and thermal conductivity were measured as functions of the water content and temperature to deduce the specific heat. The thermal conductivity and specific heat varied significantly as the water content changed. Obtained values of the specific heat agreed well the expected values calculated based on the constituents of the buffer material. Temperature dependence of the thermodynamic constants was found small below 90degC. From the findings, the thermal conductivity and specific heat of the buffer material were formulated as functions of the water content. Thermodynamic study of powdery bentonite was carried out as well with a purpose of use for filling apertures in the artificial barrier. (H. Baba)

  19. Leach testing of Idaho Chemical Processing Plant final waste forms

    International Nuclear Information System (INIS)

    Schuman, R.P.

    1980-01-01

    A number of pellets and highly durable glasses prepared from nonradioactive-simulated high-level wasste calcines have been leach tested. The leach tests are patterned on the IAEA standard test and the proposed Materials Characterization Center tests. Most tests are made with static distilled water at 25, 70, 95, 250, and 350 0 C and in refluxing distilled water, Soxhlet, at 95 0 C. Leach rates are determined by analyzing the leachate by instrumental activation analysis or spectrochemical analysis and from weight loss. Leaches are run on glass using cast and core drilled cylinders, broken pieces and coarse ground material. Sample form has a considerable effect on leach rates; solid pieces gave higher leach rates than ground glass when expressed in g/cm 2 /day. Cesium, molybdenum and weight loss leach rates of cast glass cylinders in distilled water varied from -7 g/cm 7 /day at 25 0 C to approx. 10 -3 g/cm 2 /day at 250 0 C. The leach rates in static distilled water at 95 0 C were considerably lower than those in refluxing distilled water, Soxhlet, at the same temperature. Even at 25 0 C, sodium, cesium, and molybdenum readily leached from the porous pellets, but the pellets showed no visible attack, even at 250 0 C

  20. Leach test of six 192-iridium pellets based on the IAEA 'special form' test procedures

    International Nuclear Information System (INIS)

    Gordon, G.; Gerdingh, R.

    1981-07-01

    The designation 'special form' may be applied to indispersible solid radioactive material if the material meets the requirements of the tests described in the International Atomic Energy Agency Regulations for the Safe Transport of Radioactive Type Materials. This report presents the procedures and results of a leach test performed as specified in the regulations on 6 'as received' active 192-iridium pellets. Mechanical tests were not carried out prior to or following the leach test. The activity of each of the first 6 water baths was found to be between 2.3 and 12.6 μCi, (8.5 x 10 4 and 4.7 x 10 5 Bq) and of the second 6, between 1.3 to 6.0 μCi, (4.8 x 10 4 to 2.2 x 10 5 Bq) thus exceeding the allowable limit

  1. Test procedure forms for sludge retrieval and packaging

    International Nuclear Information System (INIS)

    Feigenbutz, L.V.

    1994-01-01

    This document provides test procedure forms for sludge retrieval and packaging tests in the 305 Cold Test Facility. The completed and approved forms provide all descriptions, criteria and analysis to safely perform sludge equipment tests in the 305 Cold Test Facility

  2. Testing waste forms containing high radionuclide loadings

    International Nuclear Information System (INIS)

    McConnell, J.W. Jr.; Neilson, R.M. Jr.; Rogers, R.D.

    1986-01-01

    The Low-Level Waste Data Base Development - EPICOR-II Resin/Liner Investigation Program of the US Nuclear Regulatory Commission (NRC) is obtaining information on radioactive waste during NRC-prescribed tests and in a disposal environment. This paper describes the resin solidification task of that program, including the present status and results to date

  3. HFR irradiation testing of fusion materials

    International Nuclear Information System (INIS)

    Conrad, R.; von der Hardt, P.; Loelgen, R.; Scheurer, H.; Zeisser, P.

    1984-01-01

    The present and future role of the High Flux Reactor Petten for fusion materials testing has been assessed. For practical purposes the Tokamak-based fusion reactor is chosen as a point of departure to identify material problems and materials data needs. The identification is largely based on the INTOR and NET design studies, the reported programme strategies of Japan, the U.S.A. and the European Communities for technical development of thermonuclear fusion reactors and on interviews with several experts. Existing and planned irradiation facilities, their capabilities and limitations concerning materials testing have been surveyed and discussed. It is concluded that fission reactors can supply important contributions for fusion materials testing. From the point of view of future availability of fission testing reactors and their performance it appears that the HFR is a useful tool for materials testing for a large variety of materials. Prospects and recommendations for future developments are given

  4. 46 CFR 154.430 - Material test.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Material test. 154.430 Section 154.430 Shipping COAST... § 154.430 Material test. (a) The membrane and the membrane supporting insulation must be made of... test for the membrane and the membrane supporting insulation must be submitted to the Commandant (CG...

  5. Testing waste forms containing high radionuclide loadings

    International Nuclear Information System (INIS)

    McConnell, J.W. Jr.; Neilson, R.M. Jr.; Rogers, R.D.

    1986-01-01

    The Low-Level Waste Data Base Development - EPICOR-II Resin/Liner Investigation Program funded by the US Nuclear Regulatory Commission (NRC) is obtaining information on radioactive waste during NRC-prescribed tests and in a disposal environment. This paper describes the resin solidification task of that program, including the present status and results to date. An unusual aspect of this investigation is the use of commercial grade, ion exchange resins that have been loaded with over five times the radioactivity normally seen in a commercial application. That dramatically increases the total radiation dose to the resins. The objective of the resin solidification task is to determine the adequacy of test procedures specified by NRC for ion exchange resins having high radionuclide loadings

  6. Buffer mass test - Buffer materials

    International Nuclear Information System (INIS)

    Pusch, R.; Boergesson, L.

    1982-08-01

    Commercial Na bentonite (MX-80) is the clay component of the buffer material in the heater holes as well of the tunnel backfill. Important characteristics are the clay content, liquid limit, X-ray diffraction pattern, water content, and degree of granulation. The ballast material consists of quartz-rich sand and feldspar-rich filler. The preparation of highly compacted bentonite for the near-field isolation of the canister was made by using isostatic compaction technique. The resulting dense bentonite core was cut into regularly shaped blocks which were arranged around each heater and lowered as one unit - heavily instrumented - in the respective deposition holes. For three of the six holes a narrow slot was left open between the bentonite stack and the rock; for the remaining ones a wider slot was chosen with a fill of soft bentonite powder. Both arrangements are expected to yield an ultimate bulk density which is sufficiently high to fulfil the requirement of a negligible permeability and a sufficient swelling pressure as well as heat conductivity, which are the essential parameters. The tunnel backfill, which consists of a mixture of suitably graded ballast material and MX-80 powder, has a considerably lower swelling pressure and heat conductivity, and a higher permeability, all these parameters still within the requirements of the KBS 2 concept. The various zones with different bentonite/sand ratios and the technique to apply them are described in the final part of the report. (Author)

  7. Thermal testing of solid neutron shielding materials

    International Nuclear Information System (INIS)

    Boonstra, R.H.

    1990-03-01

    The GA-4 and GA-9 spent fuel shipping casks employ a solid neutron shielding material. During a hypothetical thermal accident, any combustion of the neutron shield must not compromise the ability of the cask to contain the radioactive contents. A two-phase thermal testing program was carried out to assist in selecting satisfactory shielding materials. In the first phase, small-scale screening tests were performed on nine candidate materials using ASTM procedures. From these initial results, three of the nine candidates were chosen for inclusion in the second phase of testing, These materials were Bisco Products NS-4-FR, Reactor Experiments 201-1, and Reactor Experiments 207. In the second phase, each selected material was fabricated into a test article which simulated a full-scale of neutron shield from the cask. The test article was heated in an environmental prescribed by NRC regulations. Results of this second testing phase showed that all three materials are thermally acceptable

  8. Thermal testing of solid neutron shielding materials

    International Nuclear Information System (INIS)

    Boonstra, R.N.

    1990-01-01

    The GA-4 and GA-9 spent fuel shipping casks employ a solid neutron shielding material. During a hypothetical thermal accident, any combustion of the neutron shield must not compromise the ability of the cask to contain the radioactive contents. A two-phase thermal testing program was carried out to assist in selecting satisfactory shielding materials. In the first phase, small-scale screening tests were performed on nine candidate materials using ASTM procedures. From these initial results, three of the nine candidates were chosen for inclusion in the second phase of testing. These materials were Bisco Products NS-4-FR, Reactor Experiments 201-1, and Reactor Experiments 207. In the second phase, each selected material was fabricated into a test article which simulated a full-scale section of neutron shield from the cask. The test article was heated in an environment prescribed by NRC regulations. Results of this second testing phase show that all three materials are thermally acceptable

  9. Secondary waste form testing: ceramicrete phosphate bonded ceramics

    International Nuclear Information System (INIS)

    Singh, D.; Ganga, R.; Gaviria, J.; Yusufoglu, Y.

    2011-01-01

    The cleanup activities of the Hanford tank wastes require stabilization and solidification of the secondary waste streams generated from the processing of the tank wastes. The treatment of these tank wastes to produce glass waste forms will generate secondary wastes, including routine solid wastes and liquid process effluents. Liquid wastes may include process condensates and scrubber/off-gas treatment liquids from the thermal waste treatment. The current baseline for solidification of the secondary wastes is a cement-based waste form. However, alternative secondary waste forms are being considered. In this regard, Ceramicrete technology, developed at Argonne National Laboratory, is being explored as an option to solidify and stabilize the secondary wastes. The Ceramicrete process has been demonstrated on four secondary waste formulations: baseline, cluster 1, cluster 2, and mixed waste streams. Based on the recipes provided by Pacific Northwest National Laboratory, the four waste simulants were prepared in-house. Waste forms were fabricated with three filler materials: Class C fly ash, CaSiO 3 , and Class C fly ash + slag. Optimum waste loadings were as high as 20 wt.% for the fly ash and CaSiO 3 , and 15 wt.% for fly ash + slag filler. Waste forms for physical characterizations were fabricated with no additives, hazardous contaminants, and radionuclide surrogates. Physical property characterizations (density, compressive strength, and 90-day water immersion test) showed that the waste forms were stable and durable. Compressive strengths were >2,500 psi, and the strengths remained high after the 90-day water immersion test. Fly ash and CaSiO 3 filler waste forms appeared to be superior to the waste forms with fly ash + slag as a filler. Waste form weight loss was ∼5-14 wt.% over the 90-day immersion test. The majority of the weight loss occurred during the initial phase of the immersion test, indicative of washing off of residual unreacted binder components from

  10. Secondary waste form testing : ceramicrete phosphate bonded ceramics.

    Energy Technology Data Exchange (ETDEWEB)

    Singh, D.; Ganga, R.; Gaviria, J.; Yusufoglu, Y. (Nuclear Engineering Division); ( ES)

    2011-06-21

    The cleanup activities of the Hanford tank wastes require stabilization and solidification of the secondary waste streams generated from the processing of the tank wastes. The treatment of these tank wastes to produce glass waste forms will generate secondary wastes, including routine solid wastes and liquid process effluents. Liquid wastes may include process condensates and scrubber/off-gas treatment liquids from the thermal waste treatment. The current baseline for solidification of the secondary wastes is a cement-based waste form. However, alternative secondary waste forms are being considered. In this regard, Ceramicrete technology, developed at Argonne National Laboratory, is being explored as an option to solidify and stabilize the secondary wastes. The Ceramicrete process has been demonstrated on four secondary waste formulations: baseline, cluster 1, cluster 2, and mixed waste streams. Based on the recipes provided by Pacific Northwest National Laboratory, the four waste simulants were prepared in-house. Waste forms were fabricated with three filler materials: Class C fly ash, CaSiO{sub 3}, and Class C fly ash + slag. Optimum waste loadings were as high as 20 wt.% for the fly ash and CaSiO{sub 3}, and 15 wt.% for fly ash + slag filler. Waste forms for physical characterizations were fabricated with no additives, hazardous contaminants, and radionuclide surrogates. Physical property characterizations (density, compressive strength, and 90-day water immersion test) showed that the waste forms were stable and durable. Compressive strengths were >2,500 psi, and the strengths remained high after the 90-day water immersion test. Fly ash and CaSiO{sub 3} filler waste forms appeared to be superior to the waste forms with fly ash + slag as a filler. Waste form weight loss was {approx}5-14 wt.% over the 90-day immersion test. The majority of the weight loss occurred during the initial phase of the immersion test, indicative of washing off of residual unreacted

  11. FBR metallic materials test manual (English version)

    International Nuclear Information System (INIS)

    Odaka, Susumu; Kato, Shoichi; Yoshida, Eiichi

    2003-06-01

    For the development of the fast breeder reactor, this manual describes the method of in-air and in-sodium material tests and the method of organization the data. This previous manual has revised in accordance with the revision of Japanese Industrial Standard (JIS) and the conversion to the international unit. The test methods of domestic committees such as the VAMAS (Versailles Project on Advanced Materials and Standards) workshop were also refereed. The material test technologies accumulated in this group until now were also incorporated. This English version was prepared in order to provide more engineers with the FBR metallic materials test manual. (author)

  12. Testing IFE materials on Z

    International Nuclear Information System (INIS)

    Tanaka, Tina J.; Rochau, Greg A.; Peterson, Robert R.; Olson, Craig L.

    2005-01-01

    On a single-pulse basis, the tungsten armor for the chamber walls in a laser inertial fusion energy power plant must withstand X-ray fluences of 0.4-1.2 J/cm 2 with almost no mass loss, and preferably no surface changes. We have exposed preheated tungsten samples to 0.27 and 0.9 J/cm 2 X-ray fluence from the Z accelerator at Sandia National Laboratories to determine the single-shot X-ray damage threshold. Earlier focused ion beam analysis has shown that rolled powdered metal formed tungsten and tungsten alloys, will melt when exposed to 2.3 J/cm 2 on Z, but not at 1.3 J/cm 2 . Three forms of tungsten - single-crystal (SING), chemical-vapor-deposited (CVD), and rolled powdered metal (PWM) - were exposed to fluence levels of 0.9 J/cm 2 without any apparent melting. However, the CVD and PWM sample surfaces were rougher after exposure than the SING sample, which was not roughened. BUCKY (1D) calculations show a threshold of 0.5 J/cm 2 for melting on Z. The present experiments indicate no melting but limited surface changes occur with polycrystalline samples (PWM and CVD) at 0.9 J/cm 2 and no surface changes other than debris for samples at 0.27 J/cm 2

  13. Thermal testing of solid neutron shielding materials

    International Nuclear Information System (INIS)

    Boonstra, R.H.

    1993-01-01

    In May-June 1989 the first series of full-scale thermal tests was performed on three shielding materials: Bisco Products NS-4-FR, and Reactor Experiments RX-201 and RX-207. The tests are described in Thermal Testing of Solid Neutron Shielding Materials, GA-A19897, R.H. Boonstra, General Atomics (1990), and demonstrated the acceptability of these materials in a thermal accident. Subsequent design changes to the cask rendered these materials unattractive in terms of weight or adequate service temperature margin. For the second test series a material specification was developed for a polypropylene based neutron shield with a softening point of at least 280degF. Table 1 lists the neutron shield materials tested. The Envirotech and Bisco materials are not polypropylene, but were tested as potential backup materials in the event that a satisfactory polypropylene could not be found. The Bisco modified NS-4 and Reactor Experiments HMPP are both acceptable materials from a thermal accident standpoint for use in the shipping cask. Tests of the Kobe PP-R01 and Envirotech HDPE were stopped for safety reasons, due to inability to deal with the heavy smoke, before completion of the 30-minute heating phase. However these materials may prove satisfactory if they could undergo the complete heating. (J.P.N.)

  14. Permeation Tests on Polypropylene Fiber Materials

    Science.gov (United States)

    2018-03-16

    Permeation Tests on Polypropylene Fiber Materials Brandy J. White Martin H. Moore Brian J. Melde Laboratory for the Study of Molecular Interfacial...ABSTRACT Permeation Tests on Polypropylene Fiber Materials Brandy J. White, Martin H. Moore, Brian J. Melde Center for Bio/Molecular Science

  15. Impact Testing of Stainless Steel Materials

    International Nuclear Information System (INIS)

    R. K. Blandford; D. K. Morton; T. E. Rahl; S. D. Snow

    2005-01-01

    Stainless steels are used for the construction of numerous spent nuclear fuel or radioactive material containers that may be subjected to high strains and moderate strain rates (10 to 200 per second) during accidental drop events. Mechanical characteristics of these materials under dynamic (impact) loads in the strain rate range of concern are not well documented. The goal of the work presented in this paper was to improve understanding of moderate strain rate phenomena on these materials. Utilizing a drop-weight impact test machine and relatively large test specimens (1/2-inch thick), initial test efforts focused on the tensile behavior of specific stainless steel materials during impact loading. Impact tests of 304L and 316L stainless steel test specimens at two different strain rates, 25 per second (304L and 316L material) and 50 per second (304L material) were performed for comparison to their quasi-static tensile test properties. Elevated strain rate stress-strain curves for the two materials were determined using the impact test machine and a ''total impact energy'' approach. This approach considered the deformation energy required to strain the specimens at a given strain rate. The material data developed was then utilized in analytical simulations to validate the final elevated stress-strain curves. The procedures used during testing and the results obtained are described in this paper

  16. Fusion Materials Irradiation Test Facility: experimental capabilities and test matrix

    International Nuclear Information System (INIS)

    Opperman, E.K.

    1982-01-01

    This report describes the experimental capabilities of the Fusion Materials Irradiation Test Facility (FMIT) and reference material specimen test matrices. The description of the experimental capabilities and the test matrices has been updated to match the current single test cell facility ad assessed experimenter needs. Sufficient detail has been provided so that the user can plan irradiation experiments and conceptual hardware. The types of experiments, irradiation environment and support services that will be available in FMIT are discussed

  17. Thermal testing of solid neutron shielding materials

    International Nuclear Information System (INIS)

    Boonstra, R.H.

    1992-09-01

    Two legal-weight truck casks the GA-4 and GA-9, will carry four PWR and nine BWR spent fuel assemblies, respectively. Each cask has a solid neutron shielding material separating the steel body and the outer steel skin. In the thermal accident specified by NRC regulations in 10CFR Part 71, the cask is subjected to an 800 degree C environment for 30 minutes. The neutron shield need not perform any shielding function during or after the thermal accident, but its behavior must not compromise the ability of the cask to contain the radioactive contents. In May-June 1989 the first series of full-scale thermal tests was performed on three shielding materials: Bisco Products NS-4-FR, and Reactor Experiments RX-201 and RX-207. The tests are described in Thermal Testing of Solid Neutron Shielding Materials, GA-AL 9897, R. H. Boonstra, General Atomics (1990), and demonstrated the acceptability of these materials in a thermal accident. Subsequent design changes to the cask rendered these materials unattractive in terms of weight or adequate service temperature margin. For the second test series, a material specification was developed for a polypropylene based neutron shield with a softening point of at least 280 degree F. The neutron shield materials tested were boronated (0.8--4.5%) polymers (polypropylene, HDPE, NS-4). The Envirotech and Bisco materials are not polypropylene, but were tested as potential backup materials in the event that a satisfactory polypropylene could not be found

  18. Test for radioactive material transport package safety

    International Nuclear Information System (INIS)

    Li Guoqiang; Zhao Bing; Zhang Jiangang; Wang Xuexin; Ma Anping

    2012-01-01

    Regulations on radioactive material transport in China were introduced. Test facilities and data acquiring instruments for radioactive material package in China Institute for Radiation Protection were also introduced in this paper, which were used in drop test and thermal test. Test facilities were constructed according to the requirements of IAEA's 'Regulations for the Safe Transport of Radioactive Material' (TS-R-l) and Chinese 'Regulations for the Safe Transport of Radioactive Material' (GB 11806-2004). Drop test facilities were used in free drop test, penetration test, mechanical test (free drop test Ⅰ, free drop test Ⅱ and free drop test Ⅲ) of type A and type B packages weighing less than thirteen tons. Thermal test of type B packages can be carried out in the thermal test facilities. Certification tests of type FCo70-YQ package, type 30A-HB-01 package, type SY-I package and type XAYT-I package according to regulations were done using these facilities. (authors)

  19. Material forming apparatus using a directed droplet stream

    Science.gov (United States)

    Holcomb, David E.; Viswanathan, Srinath; Blue, Craig A.; Wilgen, John B.

    2000-01-01

    Systems and methods are described for rapidly forming precision metallic and intermetallic alloy net shape parts directly from liquid metal droplets. A directed droplet deposition apparatus includes a crucible with an orifice for producing a jet of material, a jet destabilizer, a charging structure, a deflector system, and an impact zone. The systems and methods provide advantages in that fully dense, microstructurally controlled parts can be fabricated at moderate cost.

  20. Glass solidification material confinement test device

    International Nuclear Information System (INIS)

    Namiki, Shigekazu.

    1997-01-01

    In a device for confining glass solidification materials, a pipeline connecting a detection vessel and a detector is formed to have a double walled structure, and air blowing holes are formed on the wall of the inner pipe, and an air supply mechanism is connected to inner and outer pipes for supplying blowing air thereby preventing deposition on the inner pipe wall. The air blowing holes are formed by constituting the pipe by using a porous sintered material and porous portions thereof are defined as the air blowing holes, or holes are formed on the pipe wall made of a metal by machining. A blowing boundary layer is formed by blowing the supplied air along the pipe wall of the inner pipe, by which deposition of the sucked materials to the inner wall of the inner pipe is prevented, and all of the materials sucked from the detection vessel are collected to the detector. In addition, an air exit pipe is formed into a double walled structure so as to be supplied blowing air from the air supply mechanism thereby enabling to prevent deposition of sucked materials more reliably. (N.H.)

  1. Nuclear reactor structural material forming less radioactive corrosion product

    International Nuclear Information System (INIS)

    Nakazawa, Hiroshi.

    1988-01-01

    Purpose: To provide nuclear reactor structural materials forming less radioactive corrosion products. Constitution: Ni-based alloys such as inconel alloy 718, 600 or inconel alloy 750 and 690 having excellent corrosion resistance and mechanical property even in coolants at high temperature and high pressure have generally been used as nuclear reactor structural materials. However, even such materials yield corrosion products being attacked by coolants circulating in the nuclear reactor, which produce by neutron irradiation radioactive corrosion products, that are deposited in primary circuit pipeways to constitute exposure sources. The present invention dissolves dissolves this problems by providing less activating nuclear reactor structural materials. That is, taking notice on the fact that Ni-58 contained generally by 68 % in Ni changes into Co-58 under irradiation of neutron thereby causing activation, the surface of nuclear reactor structural materials is applied with Ni plating by using Ni with a reduced content of Ni-58 isotopes. Accordingly, increase in the radiation level of the nuclear reactor structural materials can be inhibited. (K.M.)

  2. Results of field testing of waste forms using lysimeters

    International Nuclear Information System (INIS)

    McConnell, J.W. Jr.; Rogers, R.D.

    1988-01-01

    The purpose of the field testing task, using lysimeter arrays, is to expose samples of solidified resin waste to the actual physical, chemical, and microbiological conditions of disposal enviroment. Wastes used in the experiment include a mixture of synthetic organic ion exchange resins and a mixture of organic exchange resins and an inorganic zeolite. Solidification agents used to produce the 4.8-by 7.6-cm cylindrical waste forms used in the study were Portland Type I-II cement and Dow vinyl ester-styrene. Seven of these waste forms were stacked end-to-end and inserted into each lysimeter to provide a 1-L volume. There are 10 lysimeters, 5 at ORNL and 5 at ANL-E. Lysimeters used in this study were designed to be self-contained units which will be disposed at the termination of the 20-year study. Each is a 0.91-by 3.12-m right-circular cylinder divided into an upper compartment, which contains fill material, waste forms, and instrumentation, and an empty lower compartment, which collects leachate. Four lysimeters at each site are filled with soil, while a fifth (used as a control) is filled with inert silica oxide sand. Instrumentation within each lysimeter includes porous cup soil-water samplers and soil moisture/temperature probes. The probes are connected to an on-site data acquisition and storage system (DAS) which also collects data from a field meteorological station located at each site. 9 refs

  3. Hydroxylated ceramic waste forms and the absurdity of leach tests

    Energy Technology Data Exchange (ETDEWEB)

    Roy, R; Odoj, R; Merz, E [eds.

    1981-06-01

    The repository pressure and temperature conditions during the thermal period projected in US repositories have been drastically lowered in the last year or two to new values of say 175 +- 50/sup 0/K. Using the argument that the evidence from natural models indicates the most stable mineral (= ceramic) hosts for radionuclides, one finds that under these new repository conditions such crystalline assemblages would be micas, clays, zeolites and other hydrated minerals, plus the tetravalent anhydrous oxide families. A waste form consisting of specific hydroxylated candidate phases can be made via a simple in-can technology (demonstrated by Oak Ridge) by reacting liquid wastes with precursor gels or phyllo or tektosilicates at <200/sup 0/C under modest pressure within the final disposal canister. The data on the rate of reaction of typical oxide materials to yield hydroxylated phases under these conditions show that the typical leach test (at 25 to 100/sup 0/C in deionized water) does not provide a simulation of the reactions which will occur. Hence such tests are not only totally meaningless with respect to qualifying a waste form for its role in a repository, they can be downright misleading.

  4. Hydroxylated ceramic waste forms and the absurdity of 'leach tests'

    Energy Technology Data Exchange (ETDEWEB)

    Roy, R; Odoj, R; Merz, E [eds.

    1981-06-01

    The repository pressure and temperature conditions during the thermal period projected in U.S. repositories have been drastically lowered in the last year or two to new values of say 175 +- 50 K. Using the argument that the evidence from natural models indicates the most stable mineral (= ceramic) hosts for radionuclides, one finds that under these new repository conditions such crystalline assemblages would be micas, clays, zeolites, and other hydrated minerals, plus the tetravalent anhydrous oxide families. A waste form consisting of specific hydroxylated candidate phase can be made via a simple in-can technology (demonstrated by Oak Ridge) by reacting liquid wastes with precursor gels or phyllo or tektosilicates at <200/sup 0/C under modest pressure within the final disposal canister. The data on the rate of reaction of typical oxide materials to yield hydroxylated phases under these conditions show that the typical leach test (at 25-100/sup 0/C in deionized water) does not provide a simulation of the reactions which will occur. Hence such tests are not only totally meaningless with respect to qualifying a waste form for its role in a repository, they can be downright misleading.

  5. Operation of radiation monitoring system in radwaste form test facility

    International Nuclear Information System (INIS)

    Ryu, Young Gerl; Kim, Ki Hong; Lee, Jae Won; Kwac, Koung Kil

    1998-08-01

    RWFTF (RadWaste Form Test Facility) must have a secure radiation monitoring system (RMS) because of having a hot-cell capable of handling high radioactive materials. And then in controlled radiation zone, which is hot-cell and its maintenance and operation / control room, area dose rate, radioactivities in air-bone particulates and stack, and surface contamination are monitored continuously. For the effective management such as higher utilization, maintenance and repair, the status of this radiation monitoring system, the operation and characteristics of all kinds of detectors and other parts of composing this system, and signal treatment and its evaluation were described in this technical report. And to obtain the accuracy detection results and its higher confidence level, the procedure such as maintenance, functional check and system calibration were established and appended to help the operation of RMS. (author). 6 tabs., 30 figs

  6. Testing and modelling of industrial tribo-systems for sheet metal forming

    DEFF Research Database (Denmark)

    Friis, Kasper Leth; Nielsen, Peter Søe; Bay, Niels

    2008-01-01

    Galling is a well-known problem in sheet metal forming of tribological difficult materials such as stainless steel. In this work new, environmentally friendly lubricants and wear resistant tool materials are tested in a laboratory environment using a strip reduction test as well as in a real...

  7. Nuclear-waste-package materials degradation modes and accelerated testing

    International Nuclear Information System (INIS)

    1981-09-01

    This report reviews the materials degradation modes that may affect the long-term behavior of waste packages for the containment of nuclear waste. It recommends an approach to accelerated testing that can lead to the qualification of waste package materials in specific repository environments in times that are short relative to the time period over which the waste package is expected to provide containment. This report is not a testing plan but rather discusses the direction for research that might be considered in developing plans for accelerated testing of waste package materials and waste forms

  8. The characterization and testing of candidate immobilization forms for the disposal of plutonium

    International Nuclear Information System (INIS)

    Bakel, A. J.; Buck, E. C.; Chamberlain, D. B.; Ebbinghaus, B. B.; Fortner, J. A.; Marra, J. C.; Mcgrail, B. P.; Mertz, C. J.; Peeler, D. K.; Shaw, H. F.; Strachan, D. M.; Van Konynenburg, R. A.; Vienna, J. D.; Wolf, S. F.

    1997-01-01

    Candidate immobilization forms for the disposal of surplus weapons-useable are being tested and characterized. The goal of the testing program was to provide sufficient data that, by August 1997, an informed selection of a single immobilization form could be made so that the form development and production R and D could be more narrowly focused. Two forms have been under consideration for the past two years: glass and ceramic. In August, 1997, the Department of Energy (DOE) selected ceramic for plutonium disposition, halting further work on the glass material. In this paper, we will briefly describe these two waste forms, then describe our characterization techniques and testing methods. The analytical methods used to characterize altered and unaltered samples are the same. A full suite of microscopic techniques is used. Techniques used include optical, scanning electron, and transmission electron microscopies. For both candidate immobilization forms, the analyses are used to characterize the material for the presence of crystalline phases and amorphous material. Crystalline materials, either in the untested immobilization form or in the alteration products from testing, are characterized with respect to morphology, crystal structure, and composition. The goal of these analyses is to provide data on critical issues such as Pu and neutron absorber volubility in the immobilization form, thermal stability, potential separation of absorber and Pu, and the long-term behavior of the materials. Results from these analyses will be discussed in the presentation. Testing methods include MCC-1 tests, product consistency tests (methods A and B), unsaturated ''drip'' tests, vapor hydration tests, single-pass flow-through tests, and pressurized unsaturated flow tests. Both candidate immobilization forms have very low dissolution rates; examples of typical test results will be reported

  9. Porous silicon based anode material formed using metal reduction

    Science.gov (United States)

    Anguchamy, Yogesh Kumar; Masarapu, Charan; Deng, Haixia; Han, Yongbong; Venkatachalam, Subramanian; Kumar, Sujeet; Lopez, Herman A.

    2015-09-22

    A porous silicon based material comprising porous crystalline elemental silicon formed by reducing silicon dioxide with a reducing metal in a heating process followed by acid etching is used to construct negative electrode used in lithium ion batteries. Gradual temperature heating ramp(s) with optional temperature steps can be used to perform the heating process. The porous silicon formed has a high surface area from about 10 m.sup.2/g to about 200 m.sup.2/g and is substantially free of carbon. The negative electrode formed can have a discharge specific capacity of at least 1800 mAh/g at rate of C/3 discharged from 1.5V to 0.005V against lithium with in some embodiments loading levels ranging from about 1.4 mg/cm.sup.2 to about 3.5 mg/cm.sup.2. In some embodiments, the porous silicon can be coated with a carbon coating or blended with carbon nanofibers or other conductive carbon material.

  10. Real time simulator for material testing reactor

    Energy Technology Data Exchange (ETDEWEB)

    Takemoto, Noriyuki; Imaizumi, Tomomi; Izumo, Hironobu; Hori, Naohiko; Suzuki, Masahide [Japan Atomic Energy Agency, Oarai Research and Development Center, Oarai, Ibaraki (Japan); Ishitsuka, Tatsuo; Tamura, Kazuo [ITOCHU Techno-Solutions Corp., Tokyo (Japan)

    2012-03-15

    Japan Atomic Energy Agency (JAEA) is now developing a real time simulator for a material testing reactor based on Japan Materials Testing Reactor (JMTR). The simulator treats reactor core system, primary and secondary cooling system, electricity system and irradiation facility systems. Possible simulations are normal reactor operation, unusual transient operation and accidental operation. The developed simulator also contains tool to revise/add facility in it for the future development. (author)

  11. Real time simulator for material testing reactor

    International Nuclear Information System (INIS)

    Takemoto, Noriyuki; Imaizumi, Tomomi; Izumo, Hironobu; Hori, Naohiko; Suzuki, Masahide; Ishitsuka, Tatsuo; Tamura, Kazuo

    2012-01-01

    Japan Atomic Energy Agency (JAEA) is now developing a real time simulator for a material testing reactor based on Japan Materials Testing Reactor (JMTR). The simulator treats reactor core system, primary and secondary cooling system, electricity system and irradiation facility systems. Possible simulations are normal reactor operation, unusual transient operation and accidental operation. The developed simulator also contains tool to revise/add facility in it for the future development. (author)

  12. Benchmarking of direct and indirect friction tests in micro forming

    DEFF Research Database (Denmark)

    Eriksen, Rasmus Solmer; Calaon, Matteo; Arentoft, M.

    2012-01-01

    The sizeable increase in metal forming friction at micro scale, due to the existence of size effects, constitutes a barrier to the realization of industrial micro forming processes. In the quest for improved frictional conditions in micro scale forming operations, friction tests are applied...... to qualify the tribological performance of the particular forming scenario. In this work the application of a simulative sliding friction test at micro scale is studied. The test setup makes it possible to measure the coefficient of friction as a function of the sliding motion. The results confirm a sizeable...... increase in the coefficient of friction when the work piece size is scaled down. © (2012) Trans Tech Publications....

  13. Materials testing using laser energy deposition

    International Nuclear Information System (INIS)

    Wilcox, W.W.; Calder, C.A.

    1977-01-01

    A convenient method for determining the elastic constants of materials has been devised using the energy from a Q-switched neodymium-glass laser. Stress waves are induced in materials having circular rod or rectangular bar geometries by the absorption of energy from the laser. The wave transit times through the material are recorded with a piezoelectric transducer. Both dilatation and shear wave velocities are determined in a single test using an ultrasonic technique and these velocities are used to calculate the elastic constants of the material. A comparison of the constants determined for ten common engineering materials using this method is made with constants derived using the conventional ultrasonic pulse technique and agreement is shown to be about one percent in most cases. Effects of material geometry are discussed and surface damage to the material caused by laser energy absorption is shown

  14. Secondary Waste Cast Stone Waste Form Qualification Testing Plan

    Energy Technology Data Exchange (ETDEWEB)

    Westsik, Joseph H.; Serne, R. Jeffrey

    2012-09-26

    The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is being constructed to treat the 56 million gallons of radioactive waste stored in 177 underground tanks at the Hanford Site. The WTP includes a pretreatment facility to separate the wastes into high-level waste (HLW) and low-activity waste (LAW) fractions for vitrification and disposal. The LAW will be converted to glass for final disposal at the Integrated Disposal Facility (IDF). Cast Stone – a cementitious waste form, has been selected for solidification of this secondary waste stream after treatment in the ETF. The secondary-waste Cast Stone waste form must be acceptable for disposal in the IDF. This secondary waste Cast Stone waste form qualification testing plan outlines the testing of the waste form and immobilization process to demonstrate that the Cast Stone waste form can comply with the disposal requirements. Specifications for the secondary-waste Cast Stone waste form have not been established. For this testing plan, Cast Stone specifications are derived from specifications for the immobilized LAW glass in the WTP contract, the waste acceptance criteria for the IDF, and the waste acceptance criteria in the IDF Permit issued by the State of Washington. This testing plan outlines the testing needed to demonstrate that the waste form can comply with these waste form specifications and acceptance criteria. The testing program must also demonstrate that the immobilization process can be controlled to consistently provide an acceptable waste form product. This testing plan also outlines the testing needed to provide the technical basis for understanding the long-term performance of the waste form in the disposal environment. These waste form performance data are needed to support performance assessment analyses of the long-term environmental impact of the secondary-waste Cast Stone waste form in the IDF

  15. Material Recover and Waste Form Development--2016 Accomplishments

    Energy Technology Data Exchange (ETDEWEB)

    Todd, Terry A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Vienna, John [Idaho National Lab. (INL), Idaho Falls, ID (United States); Paviet, Patricia [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-12-01

    The Material Recovery and Waste Form Development (MRWFD) Campaign under the U.S. Department of Energy (DOE) Fuel Cycle Technologies (FCT) Program is responsible for developing advanced separation and waste form technologies to support the various fuel cycle options defined in the DOE Nuclear Energy Research and Development Roadmap, Report to Congress (April 2010). This MRWFD accomplishments report summarizes the results of the research and development (R&D) efforts performed within MRWFD in Fiscal Year (FY) 2016. Each section of the report contains an overview of the activities, results, technical point of contact, applicable references, and documents produced during the FY. This report briefly outlines campaign management and integration activities but primarily focuses on the many technical accomplishments of FY 2016. The campaign continued to use an engineering-driven, science-based approach to maintain relevance and focus.

  16. Fissile material disposition program final immobilization form assessment and recommendation

    International Nuclear Information System (INIS)

    Cochran, S.G.; Dunlop, W.H.; Edmunds, T.A.; MacLean, L.M.; Gould, T.H.

    1997-01-01

    Lawrence Livermore National Laboratory (LLNL), in its role as the lead laboratory for the development of plutonium immobilization technologies for the Department of Energy's Office of Fissile Materials Disposition (MD), has been requested by MD to recommend an immobilization technology for the disposition of surplus weapons- usable plutonium. The recommendation and supporting documentation was requested to be provided by September 1, 1997. This report addresses the choice between glass and ceramic technologies for immobilizing plutonium using the can-in-canister approach. Its purpose is to provide a comparative evaluation of the two candidate technologies and to recommend a form based on technical considerations

  17. Low-level radioactive waste form qualification testing

    Energy Technology Data Exchange (ETDEWEB)

    Sohal, M.S.; Akers, D.W.

    1998-06-01

    This report summarizes activities that have already been completed as well as yet to be performed by the Idaho National Engineering and Environmental Laboratory (INEEL) to develop a plan to quantify the behavior of radioactive low-level waste forms. It briefly describes the status of various tasks, including DOE approval of the proposed work, several regulatory and environmental related documents, tests to qualify the waste form, preliminary schedule, and approximate cost. It is anticipated that INEEL and Brookhaven National Laboratory will perform the majority of the tests. For some tests, services of other testing organizations may be used. It should take approximately nine months to provide the final report on the results of tests on a waste form prepared for qualification. It is anticipated that the overall cost of the waste quantifying service is approximately $150,000. The following tests are planned: compression, thermal cycling, irradiation, biodegradation, leaching, immersion, free-standing liquid tests, and full-scale testing.

  18. Low-level radioactive waste form qualification testing

    International Nuclear Information System (INIS)

    Sohal, M.S.; Akers, D.W.

    1998-06-01

    This report summarizes activities that have already been completed as well as yet to be performed by the Idaho National Engineering and Environmental Laboratory (INEEL) to develop a plan to quantify the behavior of radioactive low-level waste forms. It briefly describes the status of various tasks, including DOE approval of the proposed work, several regulatory and environmental related documents, tests to qualify the waste form, preliminary schedule, and approximate cost. It is anticipated that INEEL and Brookhaven National Laboratory will perform the majority of the tests. For some tests, services of other testing organizations may be used. It should take approximately nine months to provide the final report on the results of tests on a waste form prepared for qualification. It is anticipated that the overall cost of the waste quantifying service is approximately $150,000. The following tests are planned: compression, thermal cycling, irradiation, biodegradation, leaching, immersion, free-standing liquid tests, and full-scale testing

  19. CANMET Gasifier Liner Coupon Material Test Report

    Energy Technology Data Exchange (ETDEWEB)

    Mark Fitzsimmons; Dave Grimmett; Bryan McEnerney

    2007-01-31

    This report provides detailed test results consisting of test data and post-test inspections from Task 1 ''Cooled Liner Coupon Development and Test'' of the project titled ''Development of Technologies and Capabilities for Coal Energy Resources--Advanced Gasification Systems Development (AGSD)''. The primary objective of this development and test program is to verify that ceramic matrix composite (CMC) liner materials planned for use in an advanced gasifier pilot plant will successfully withstand the environments in a commercial gasifier. Pratt & Whitney Rocketdyne (PWR) designed and fabricated the cooled liner test assembly article that was tested in a slagging gasifier at CANMET Energy Technology Center (CETC-O) in Ottawa, Ontario, Canada. The test program conducted in 2006 met the objective of operating the cooled liner test article at slagging conditions in a small scale coal gasifier at CETC-O for over the planned 100 hours. The test hardware was exposed to at least 30 high temperature excursions (including start-up and shut-down cycles) during the test program. The results of the testing has provided valuable information on gasifier startup and required cooling controls in steady state operation of future advanced gasifiers using similar liners. The test program also provided a significant amount of information in the areas of CMC materials and processing for improved capability in a gasifier environment and insight into CMC liner fabrication that will be essential for near-term advanced gasifier projects.

  20. Improved cytotoxicity testing of magnesium materials

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Janine [Helmholtz-Zentrum Geesthacht, Institute of Materials Research, Department for Structural Research on Macromolecules, Max-Planck Str. 1, D - 21502 Geesthacht (Germany); Proefrock, Daniel [Helmholtz-Zentrum Geesthacht, Institute for Coastal Research, Department for Marine Bioanalytical Chemistry, Max-Planck Str. 1, D - 21502 Geesthacht (Germany); Hort, Norbert [Helmholtz-Zentrum Geesthacht, Institute of Materials Research, Department for Magnesium Processing, Max-Planck Str. 1, D - 21502 Geesthacht (Germany); Willumeit, Regine; Feyerabend, Frank [Helmholtz-Zentrum Geesthacht, Institute of Materials Research, Department for Structural Research on Macromolecules, Max-Planck Str. 1, D - 21502 Geesthacht (Germany)

    2011-06-25

    Metallic magnesium (Mg) and its alloys are highly suitable for medical applications as biocompatible and biodegradable implant materials. Magnesium has mechanical properties similar to bone, stimulates bone regeneration, is an essential non-toxic element for the human body and degrades completely within the body environment. In consequence, magnesium is a promising candidate as implant material for orthopaedic applications. Protocols using the guideline of current ISO standards should be carefully evaluated when applying them for the characterization of the cytotoxic potential of degradable magnesium materials. For as-cast material we recommend using 10 times more extraction medium than recommended by the ISO standards to obtain reasonable results for reliable cytotoxicity rankings of degradable materials in vitro. In addition primary isolated human osteoblasts or mesenchymal stem cells should be used to test magnesium materials.

  1. Improved cytotoxicity testing of magnesium materials

    International Nuclear Information System (INIS)

    Fischer, Janine; Proefrock, Daniel; Hort, Norbert; Willumeit, Regine; Feyerabend, Frank

    2011-01-01

    Metallic magnesium (Mg) and its alloys are highly suitable for medical applications as biocompatible and biodegradable implant materials. Magnesium has mechanical properties similar to bone, stimulates bone regeneration, is an essential non-toxic element for the human body and degrades completely within the body environment. In consequence, magnesium is a promising candidate as implant material for orthopaedic applications. Protocols using the guideline of current ISO standards should be carefully evaluated when applying them for the characterization of the cytotoxic potential of degradable magnesium materials. For as-cast material we recommend using 10 times more extraction medium than recommended by the ISO standards to obtain reasonable results for reliable cytotoxicity rankings of degradable materials in vitro. In addition primary isolated human osteoblasts or mesenchymal stem cells should be used to test magnesium materials.

  2. Secondary organic material formed by methylglyoxal in aqueous aerosol mimics

    Directory of Open Access Journals (Sweden)

    N. Sareen

    2010-02-01

    Full Text Available We show that methylglyoxal forms light-absorbing secondary organic material in aqueous ammonium sulfate and ammonium nitrate solutions mimicking tropospheric aerosol particles. The kinetics were characterized using UV-Vis spectrophotometry. The results suggest that the bimolecular reaction of methylglyoxal with an ammonium or hydronium ion is the rate-limiting step for the formation of light-absorbing species, with kNH4+II=5×10−6 M−1 min−1 and kH3O+II≤10−3 M−1 min−1. Evidence of aldol condensation products and oligomeric species up to 759 amu was found using chemical ionization mass spectrometry with a volatilization flow tube inlet (Aerosol-CIMS. Tentative identifications of carbon-nitrogen species and a sulfur-containing compound were also made using Aerosol-CIMS. Aqueous solutions of methylglyoxal, with and without inorganic salts, exhibit significant surface tension depression. These observations add to the growing body of evidence that dicarbonyl compounds may form secondary organic material in the aerosol aqueous phase, and that secondary organic aerosol formation via heterogeneous processes may affect seed aerosol properties.

  3. Fuels and materials testing capabilities in Fast Flux Test Facility

    International Nuclear Information System (INIS)

    Baker, R.B.; Chastain, S.A.; Culley, G.E.; Ethridge, J.L.; Lovell, A.J.; Newland, D.J.; Pember, L.A.; Puigh, R.J.; Waltar, A.E.

    1989-01-01

    The Fast Flux Test Facility (FFTF) reactor, which started operating in 1982, is a 400 MWt sodium-cooled fast neutron reactor located in Hanford, Washington State, and operated by Westinghouse Hanford Co. under contract with U.S. Department of Energy. The reactor has a wide variety of functions for irradiation tests and special tests, and its major purpose is the irradiation of fuel and material for liquid metal reactor, nuclear reactor and space reactor projects. The review first describes major technical specifications and current conditions of the FFTF reactor. Then the plan for irradiation testing is outlined focusing on general features, fuel pin/assembly irradiation tests, and absorber irradiation tests. Assemblies for special tests include the material open test assembly (MOTA), fuel open test assembly (FOTA), closed loop in-reactor assembly (CLIRA), and other special fuel assemblies. An interim examination and maintenance cell (FFTF/IEM cell) and other hot cells are used for nondestructive/destructive tests and physical/mechanical properties test of material after irradiation. (N.K.)

  4. Forming artificial soils from waste materials for mine site rehabilitation

    Science.gov (United States)

    Yellishetty, Mohan; Wong, Vanessa; Taylor, Michael; Li, Johnson

    2014-05-01

    Surface mining activities often produce large volumes of solid wastes which invariably requires the removal of significant quantities of waste rock (overburden). As mines expand, larger volumes of waste rock need to be moved which also require extensive areas for their safe disposal and containment. The erosion of these dumps may result in landform instability, which in turn may result in exposure of contaminants such as trace metals, elevated sediment delivery in adjacent waterways, and the subsequent degradation of downstream water quality. The management of solid waste materials from industrial operations is also a key component for a sustainable economy. For example, in addition to overburden, coal mines produce large amounts of waste in the form of fly ash while sewage treatment plants require disposal of large amounts of compost. Similarly, paper mills produce large volumes of alkaline rejected wood chip waste which is usually disposed of in landfill. These materials, therefore, presents a challenge in their use, and re-use in the rehabilitation of mine sites and provides a number of opportunities for innovative waste disposal. The combination of solid wastes sourced from mines, which are frequently nutrient poor and acidic, with nutrient-rich composted material produced from sewage treatment and alkaline wood chip waste has the potential to lead to a soil suitable for mine rehabilitation and successful seed germination and plant growth. This paper presents findings from two pilot projects which investigated the potential of artificial soils to support plant growth for mine site rehabilitation. We found that pH increased in all the artificial soil mixtures and were able to support plant establishment. Plant growth was greatest in those soils with the greatest proportion of compost due to the higher nutrient content. These pot trials suggest that the use of different waste streams to form an artificial soil can potentially be used in mine site rehabilitation

  5. Testing of environmentally friendly lubricants for sheet metal forming

    DEFF Research Database (Denmark)

    Bay, Niels; Olsson, David Dam; Andreasen, Jan Lasson

    2005-01-01

    the authors have especially been involved in the development of a system of test methods for sheet metal forming and in testing of friction and limits of lubrication of new, environmentally friendly lubricants. An overview of the developed tests is presented together with selected results....

  6. Numerical Forming Simulations and Optimisation in Advanced Materials

    International Nuclear Information System (INIS)

    Huetink, J.; Boogaard, A. H. van den; Geijselears, H. J. M.; Meinders, T.

    2007-01-01

    With the introduction of new materials as high strength steels, metastable steels and fibre reinforced composites, the need for advanced physically valid constitutive models arises. In finite deformation problems constitutive relations are commonly formulated in terms the Cauchy stress as a function of the elastic Finger tensor and an objective rate of the Cauchy stress as a function of the rate of deformation tensor. For isotropic materials models this is rather straightforward, but for anisotropic material models, including elastic anisotropy as well as plastic anisotropy, this may lead to confusing formulations. It will be shown that it is more convenient to define the constitutive relations in terms of invariant tensors referred to the deformed metric. Experimental results are presented that show new combinations of strain rate and strain path sensitivity. An adaptive through- thickness integration scheme for plate elements is developed, which improves the accuracy of spring back prediction at minimal costs. A procedure is described to automatically compensate the CAD tool shape numerically to obtain the desired product shape. Forming processes need to be optimized for cost saving and product improvement. Until recently, a trial-and-error process in the factory primarily did this optimization. An optimisation strategy is proposed that assists an engineer to model an optimization problem that suits his needs, including an efficient algorithm for solving the problem

  7. Criteria for cesium capsules to be shipped as special form radioactive material

    International Nuclear Information System (INIS)

    Lundeen, J.E.

    1994-01-01

    The purpose of this report is to compile all the documentation which defines the criteria for Waste Encapsulation and Storage Facility (WESF) cesium capsules at the IOTECH facility and Applied Radiant Energy Corporation (ARECO) to be shipped as special form radioactive material in the Beneficial Uses Shipping System (BUSS) Cask. The capsules were originally approved as special form in 1975, but in 1988 the integrity of the capsules came into question. WHC developed the Pre-shipment Acceptance Test Criteria for capsules to meet in order to be shipped as special form material. The Department of Energy approved the criteria and directed WHC to ship the capsules at IOTECH and ARECO meeting this criteria to WHC as special form material

  8. Radiation damage in natural materials: implications for radioactive waste forms

    International Nuclear Information System (INIS)

    Ewing, R.C.

    1981-01-01

    The long-term effect of radiation damage on waste forms, either crystalline or glass, is a factor in the evaluation of the integrity of waste disposal mediums. Natural analogs, such as metamict minerals, provide one approach for the evaluaton of radiation damage effects that might be observed in crystalline waste forms, such as supercalcine or synroc. Metamict minerals are a special class of amorphous materials which were initially crystalline. Although the mechanism for the loss of crystallinity in these minerals (mostly actinide-containing oxides and silicates) is not clearly understood, damage caused by alpha particles and recoil nuclei is critical to the metamictization process. The study of metamict minerals allows the evaluation of long-term radiation damage effects, particularly changes in physical and chemical properties such as microfracturing, hydrothermal alteration, and solubility. In addition, structures susceptible to metamictization share some common properties: (1) complex compositions; (2) some degree of covalent bonding, instead of being ionic close-packed MO/sub x/ structures; and (3) channels or interstitial voids which may accommodate displaced atoms or absorbed water. On the basis of these empirical criteria, minerals such as pollucite, sodalite, nepheline and leucite warrant careful scrutiny as potential waste form phases. Phases with the monazite or fluorite structures are excellent candidates

  9. Erosion testing of hard materials and coatings

    Energy Technology Data Exchange (ETDEWEB)

    Hawk, Jeffrey A.

    2005-04-29

    Erosion is the process by which unconstrained particles, usually hard, impact a surface, creating damage that leads to material removal and component failure. These particles are usually very small and entrained in fluid of some type, typically air. The damage that occurs as a result of erosion depends on the size of the particles, their physical characteristics, the velocity of the particle/fluid stream, and their angle of impact on the surface of interest. This talk will discuss the basics of jet erosion testing of hard materials, composites and coatings. The standard test methods will be discussed as well as alternative approaches to determining the erosion rate of materials. The damage that occurs will be characterized in genera1 terms, and examples will be presented for the erosion behavior of hard materials and coatings (both thick and thin).

  10. Testing the Weak Form Efficiency of Karachi Stock Exchange

    Directory of Open Access Journals (Sweden)

    Muhammad Arshad Haroon

    2012-12-01

    Full Text Available In an efficient market, share prices reflect all available information. The study of efficient market hypothesis helps to take right decisions related to investments. In this research,weak form efficiency has been tested of Karachi Stock Exchange—KSE covering the period of 2nd November 1991 to 2nd November 2011. Descriptive statistics indicated the absence of weak form efficiency while results of non-parametric tests, showed consistency as well. We employed non-parametric tests were KS Goodness-of-Fit test,run test and autocorrelation test to find out serial independency of the data. Results prove that KSE is not weak-form-efficient. This happens because KSE is an emerging market and there, it has been observed that information take time to be processed. Thus it can besaid that technical analysis may be applied to gain abnormal returns.

  11. The construction of solid waste form test facility

    International Nuclear Information System (INIS)

    Park, Hun Hwee; Kim, Joon Hyung; Lee, Byung Jik; Koo, Jun Mo; Kim, Jeong Guk; Jung, In Ha

    1990-03-01

    The solid waste form test facility (SWFTF) to test and/or evaluate the characteristics of waste forms, such as homogeniety, mechanical properties, thermal properties, waste resistance and leachability, have been constructed, and some equipments for testing actual waste forms has been purchased; radiocative monitoring system, glove box for the manipulator repair room, and uninteruppted power supply system, et al. Classifications of radioactive wastes, basic requirements and criteria to be considered during waste management were also reviewed. Some of the described items above have been standardized for the purpose of indigenigation. Therefore, safety assurance of waste forms, as well as increase in the range of participating of domestic companies in construction of further nuclear facilities could be obtained as results through constructing this facility. In the furture this facility is going to be utilized not only for the inspection of waste forms but also for the periodic decontamination for extending the life time of some expensive radiological equipments using remote handling techniques. (author)

  12. Principles for supplying virus-tested material.

    Science.gov (United States)

    Varveri, Christina; Maliogka, Varvara I; Kapari-Isaia, Theodora

    2015-01-01

    Production of virus-tested material of vegetatively propagated crops through national certification schemes has been implemented in many developed countries for more than 60 years and its importance for being the best virus control means is well acknowledged by growers worldwide. The two most important elements of certification schemes are the use of sensitive, reliable, and rapid detection techniques to check the health status of the material produced and effective and simple sanitation procedures for the elimination of viruses if present in candidate material before it enters the scheme. New technologies such as next-generation sequencing platforms are expected to further enhance the efficiency of certification and production of virus-tested material, through the clarification of the unknown etiology of several graft-transmissible diseases. The successful production of virus-tested material is a demanding procedure relying on the close collaboration of researchers, official services, and the private sector. Moreover, considerable efforts have been made by regional plant protection organizations such as the European and Mediterranean Plant Protection Organization (EPPO), the North American Plant Protection Organization (NAPPO), and the European Union and the USA to harmonize procedures, methodologies, and techniques in order to assure the quality, safety, and movement of the vegetatively propagated material produced around the world. © 2015 Elsevier Inc. All rights reserved.

  13. Simulation and material testing of jet engines

    International Nuclear Information System (INIS)

    Tariq, M.M.

    2006-01-01

    The NASA software engine simulator version U 1.7a beta has been used for simulation and material testing of jet engines. Specifications of Modem Jet Engines are stated, and then engine simulator is applied on these specifications. This simulator can simulate turbojet, afterburner, turbofan and ram jet. The material of many components of engine may be varied. Conventional and advanced materials for jet engines can be simulated and tested. These materials can be actively cooled to increase the operating temperature limit. As soon as temperature of any engine component exceeds the temperature limit of material, a warning message flashes across screen. Temperature Limits Exceeded. This flashing message remainst here until necessaryc hangesa re carried out in engine operationp rocedure. Selection Criteria of Engines is stated for piston prop, turboprop, turbofan, turbojet, and turbojet with afterburner and Ramjet. Several standard engines are modeled in Engine Simulator. These engines can. be compared by several engineering specifications. The design, modeling, simulation and testing of engines helps to better understand different types of materials used in jet engines. (author)

  14. The Development of Man and His Culture: Old World Prehistory. Grade 5. Teacher Guide [And] Pupil Text [And] Pupil Guide [And] Teacher Background Material [And] A Sequential Curriculum in Anthropology. Test Form 5, Composite Form for Pre- and Post-Test. Revised, January 1968. Publications No. 25, 31, 23, 24 and 43.

    Science.gov (United States)

    Potterfield, James E.; And Others

    This social studies unit includes a teaching guide, student text, study guide, teacher background material, and composite pretest/posttest covering archaeological methods, evolution, fossils and man, and development of culture during the prehistoric periods in the Old World. It is part of the Anthropology Curriculum Project and is designed for…

  15. Plasma-Materials Interactions Test Facility

    International Nuclear Information System (INIS)

    Uckan, T.

    1986-11-01

    The Plasma-Materials Interactions Test Facility (PMITF), recently designed and constructed at Oak Ridge National Laboratory (ORNL), is an electron cyclotron resonance microwave plasma system with densities around 10 11 cm -3 and electron temperatures of 10-20 eV. The device consists of a mirror cell with high-field-side microwave injection and a heating power of up to 0.8 kW(cw) at 2.45 GHz. The facility will be used for studies of plasma-materials interactions and of particle physics in pump limiters and for development and testing of plasma edge diagnostics

  16. Nuclear waste package materials testing report: basaltic and tuffaceous environments

    International Nuclear Information System (INIS)

    Bradley, D.J.; Coles, D.G.; Hodges, F.N.; McVay, G.L.; Westerman, R.E.

    1983-03-01

    The disposal of high-level nuclear wastes in underground repositories in the continental United States requires the development of a waste package that will contain radionuclides for a time period commensurate with performance criteria, which may be up to 1000 years. This report addresses materials testing in support of a waste package for a basalt (Hanford, Washington) or a tuff (Nevada Test Site) repository. The materials investigated in this testing effort were: sodium and calcium bentonites and mixtures with sand or basalt as a backfill; iron and titanium-based alloys as structural barriers; and borosilicate waste glass PNL 76-68 as a waste form. The testing also incorporated site-specific rock media and ground waters: Reference Umtanum Entablature-1 basalt and reference basalt ground water, Bullfrog tuff and NTS J-13 well water. The results of the testing are discussed in four major categories: Backfill Materials: emphasizing water migration, radionuclide migration, physical property and long-term stability studies. Structural Barriers: emphasizing uniform corrosion, irradiation-corrosion, and environmental-mechanical testing. Waste Form Release Characteristics: emphasizing ground water, sample surface area/solution volume ratio, and gamma radiolysis effects. Component Compatibility: emphasizing solution/rock, glass/rock, glass/structural barrier, and glass/backfill interaction tests. This area also includes sensitivity testing to determine primary parameters to be studied, and the results of systems tests where more than two waste package components were combined during a single test

  17. Testing fireproof materials in a combustion chamber

    Directory of Open Access Journals (Sweden)

    Kulhavy Petr

    2017-01-01

    Full Text Available This article deals with a prototype concept, real experiment and numerical simulation of a combustion chamber, designed for testing fire resistance some new insulating composite materials. This concept of a device used for testing various materials, providing possibility of monitoring temperatures during controlled gas combustion. As a fuel for the combustion process propane butane mixture has been used and also several kinds of burners with various conditions of inlet air (forced, free and fuel flows were tested. The tested samples were layered sandwich materials based on various materials or foams, used as fillers in fire shutters. The temperature distribution was measured by using thermocouples. A simulation of whole concept of experimental chamber has been carried out as the non-premixed combustion process in the commercial final volume sw Pyrosim. The result was to design chamber with a construction suitable, according to the international standards, achieve the required values (temperature in time. Model of the combustion based on a stoichiometric defined mixture of gas and the tested layered samples showed good conformity with experimental results – i.e. thermal distribution inside and heat release rate that has gone through the sample.

  18. Development for advanced materials and testing techniques

    Energy Technology Data Exchange (ETDEWEB)

    Hishinuma, Akimichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    Recent studies using a JMTR and research reactors of JRR-2 and JRR-3 are briefly summarized. Small specimen testing techniques (SSTT) required for an effective use of irradiation volume and also irradiated specimens have been developed focussing on tensile test, fatigue test, Charpy test and small punch test. By using the small specimens of 0.1 - several mm in size, similar values of tensile and fatigue properties to those by standard size specimens can be taken, although the ductile-brittle transition temperature (DBTT) depends strongly on Charpy specimen size. As for advanced material development, R and D about low activation ferritic steels have been done to investigate irradiation response. The low activation ferritic steel, so-called F82H jointly-developed by JAERI and NKK for fusion, has been confirmed to have good irradiation resistance within a limited dose and now selected as a standard material in the fusion material community. It is also found that TiAi intermetallic compounds, which never been considered for nuclear application in the past, have an excellent irradiation resistance under an irradiation condition. Such knowledge can bring about a large expectation for developing advanced nuclear materials. (author)

  19. Development of rare earth regenerator materials in fine wire form

    International Nuclear Information System (INIS)

    Wong, T.; Seuntjens, J.M.

    1997-01-01

    The use of rare earth metals, both in the pure and alloyed state, have been examined for use as regenerators in cryocooler applications and as the working material in active magnetic refrigerators. In both applications there is a requirement for the rare earth material to have a constant and uniform cross section, an average size on the order of 50-200 microns in diameter, and low levels of impurities. Existing powder production methods have drawbacks such as oxygen contamination, non-uniform size, inconsistent cross sections, and low production yields. A novel approach for the production of rare earth metals and alloys in fine wire form has been developed. This is accomplished by assembling a copperjacket and niobium barrier around a RE ingot, extruding the assembly, and reducing it with standard wire drawing practices. Strand anneals are utilized between drawing passes when necessary in order to recrystallize the RE core and restore ductility. The copperjacket is removed by chemical means at final size, leaving the Nb barrier in place as a protective coating. This process has been applied to gadolinium, dysprosium and a GdDy alloy

  20. Material Recovery and Waste Form Development FY 2015 Accomplishments Report

    Energy Technology Data Exchange (ETDEWEB)

    Todd, Terry Allen [Idaho National Lab. (INL), Idaho Falls, ID (United States); Braase, Lori Ann [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-11-01

    The Material Recovery and Waste Form Development (MRWFD) Campaign under the U.S. Department of Energy (DOE) Fuel Cycle Technologies (FCT) Program is responsible for developing advanced separation and waste form technologies to support the various fuel cycle options defined in the DOE Nuclear Energy Research and Development Roadmap, Report to Congress, April 2010. The FY 2015 Accomplishments Report provides a highlight of the results of the research and development (R&D) efforts performed within the MRWFD Campaign in FY-14. Each section contains a high-level overview of the activities, results, technical point of contact, applicable references, and documents produced during the fiscal year. This report briefly outlines campaign management and integration activities, but primarily focuses on the many technical accomplishments made during FY-15. The campaign continued to utilize an engineering driven-science-based approach to maintain relevance and focus. There was increased emphasis on development of technologies that support near-term applications that are relevant to the current once-through fuel cycle.

  1. Radioactive material package test standards and performance requirements - public perception

    International Nuclear Information System (INIS)

    Pope, R.B.; Shappert, L.B.; Rawl, R.R.

    1992-01-01

    This paper addresses issues related to the public perception of the regulatory test standards and performance requirements for packaging and transporting radioactive material. Specifically, it addresses the adequacy of the package performance standards and testing for Type B packages, which are those packages designed for transporting the most hazardous quantities and forms of radioactive material. Type B packages are designed to withstand accident conditions in transport. To improve public perception, the public needs to better understand: (a) the regulatory standards and requirements themselves, (b) the extensive history underlying their development, and (c) the soundness of the technical foundation. The public needs to be fully informed on studies, tests, and analyses that have been carried out worldwide and form the basis of the regulatory standards and requirements. This paper provides specific information aimed at improving the public perception of packages test standards

  2. Tests of candidate materials for particle bed reactors

    International Nuclear Information System (INIS)

    Horn, F.L.; Powell, J.R.; Wales, D.

    1987-01-01

    Rhenium metal hot frits and zirconium carbide-coated fuel particles appear suitable for use in flowing hydrogen to at least 2000 K, based on previous tests. Recent tests on alternate candidate cooled particle and frit materials are described. Silicon carbide-coated particles began to react with rhenium frit material at 1600 K, forming a molten silicide at 2000 K. Silicon carbide was extensively attacked by hydrogen at 2066 K for 30 minutes, losing 3.25% of its weight. Vitrous carbon was also rapidly attacked by hydrogen at 2123 K, losing 10% of its weight in two minutes. Long term material tests on candidate materials for closed cycle helium cooled particle bed fuel elements are also described. Surface imperfections were found on the surface of pyrocarbon-coated fuel particles after ninety days exposure to flowing (∼500 ppM) impure helium at 1143 K. The imperfections were superficial and did not affect particle strength

  3. Quality assurance in production and use of special form radioactive material - focal points in BAM approvals

    International Nuclear Information System (INIS)

    Rolle, A.; Buhlemann, L.

    2004-01-01

    BAM as the competent authority for approval of special form radioactive material attaches great importance to a detailed audit of the required quality assurance programs for design, manufacture, testing, documentation, use, maintenance and inspection. Applicants have to submit, together with application documentation information on general arrangements for quality assurance, as well as on quality assurance in production and in operation. Fields where BAM has often found deficiencies are leak test methods, weld seam quality and the safety level after use

  4. Double Retort System for Materials Compatibility Testing

    International Nuclear Information System (INIS)

    V. Munne; EV Carelli

    2006-01-01

    With Naval Reactors (NR) approval of the Naval Reactors Prime Contractor Team (NRPCT) recommendation to develop a gas cooled reactor directly coupled to a Brayton power conversion system as the Space Nuclear Power Plant (SNPP) for Project Prometheus (References a and b) there was a need to investigate compatibility between the various materials to be used throughout the SNPP. Of particular interest was the transport of interstitial impurities from the nickel-base superalloys, which were leading candidates for most of the piping and turbine components to the refractory metal alloys planned for use in the reactor core. This kind of contamination has the potential to affect the lifetime of the core materials. This letter provides technical information regarding the assembly and operation of a double retort materials compatibility testing system and initial experimental results. The use of a double retort system to test materials compatibility through the transfer of impurities from a source to a sink material is described here. The system has independent temperature control for both materials and is far less complex than closed loops. The system is described in detail and the results of three experiments are presented

  5. High Flux Materials Testing Reactor (HFR), Petten

    International Nuclear Information System (INIS)

    1975-09-01

    After conversion to burnable poison fuel elements, the High Flux Materials Testing Reactor (HFR) Petten (Netherlands), operated through 1974 for 280 days at 45 MW. Equipment for irradiation experiments has been replaced and extended. The average annual occupation by experiments was 55% as compared to 38% in 1973. Work continued on thirty irradiation projects and ten development activities

  6. Automation software for a materials testing laboratory

    Science.gov (United States)

    Mcgaw, Michael A.; Bonacuse, Peter J.

    1990-01-01

    The software environment in use at the NASA-Lewis Research Center's High Temperature Fatigue and Structures Laboratory is reviewed. This software environment is aimed at supporting the tasks involved in performing materials behavior research. The features and capabilities of the approach to specifying a materials test include static and dynamic control mode switching, enabling multimode test control; dynamic alteration of the control waveform based upon events occurring in the response variables; precise control over the nature of both command waveform generation and data acquisition; and the nesting of waveform/data acquisition strategies so that material history dependencies may be explored. To eliminate repetitive tasks in the coventional research process, a communications network software system is established which provides file interchange and remote console capabilities.

  7. Tests on irradiated magnet-insulator materials

    International Nuclear Information System (INIS)

    Schmunk, R.E.; Miller, L.G.; Becker, H.

    1983-01-01

    Fusion-reactor coils, located in areas where they will be only partially shielded, must be fabricated from materials which are as resistant to radiation as possible. They will probably incorporate resistive conductors with either water or cryogenic cooling. Inorganic insulators have been recommended for these situations, but the possibility exists that some organic insulators may be usuable as well. Results were previously reported for irradiation and testing of three glass reinforced epoxies: G-7, G-10, and G-11. Thin disks of these materials, nominally 0.5 mm thick by 11.1 mm diameter, were tested in compressive fatigue, a configuration and loading which represents reasonably well the magnet environment. In that work G-10 was shown to withstand repeated loading to moderately high stress levels without failure, and the material survived better at liquid nitrogen temperature than at room temperature

  8. Palmitic acid/polypyrrole composites as form-stable phase change materials for thermal energy storage

    International Nuclear Information System (INIS)

    Silakhori, Mahyar; Metselaar, Hendrik Simon Cornelis; Mahlia, Teuku Meurah Indra; Fauzi, Hadi; Baradaran, Saeid; Naghavi, Mohammad Sajad

    2014-01-01

    Highlights: • A novel phase change composite of palmitic acid–polypyrrole(PA–PPy) was fabricated. • Thermal properties of PA–PPy are characterized in different mass ratios of PA–PPy. • Thermal cycling test showed that form stable PCM had a favorable thermal reliability. - Abstract: In this study a novel palmitic acid (PA)/polypyrrole (PPy) form-stable PCMs were readily prepared by in situ polymerization method. PA was used as thermal energy storage material and PPy was operated as supporting material. Form-stable PCMs were investigated by SEM (scanning electron microscopy) and FTIR (Fourier transform infrared spectrometer) analysis that illustrated PA Particles were wrapped by PPy particles. XRD (X-ray diffractometer) was used for crystalline phase of PA/PPy composites. Thermogravimetry analysis (TGA) and differential scanning calorimetry (DSC) were used for investigating Thermal stability and thermal energy storage properties of prepared form-stable PCMs. According to the obtained results the form stable PCMs exhibited favorable thermal stability in terms of their phase change temperature. The form-stable PCMs (79.9 wt% loading of PA) were considered as the highest loading PCM with desirable latent heat storage of 166.3 J/g and good thermal stability. Accelerated thermal cycling tests also showed that form stable PCM had an acceptable thermal reliability. As a consequence of acceptable thermal properties, thermal stability and chemical stability, we can consider the new kind of form stable PCMs for low temperature solar thermal energy storage applications

  9. Recent developments in dynamic testing of materials

    Directory of Open Access Journals (Sweden)

    Gilat Amos

    2015-01-01

    Full Text Available New techniques for dynamic characterization of materials that have been developed in the last three years (since the last DYMAT conference in 2012, and results from recent dynamic testing of Inconel 718 are presented. The first development is a dynamic punch test in which three dimensional Digital Image Correlation (DIC is used to measure the deformation of the rear surface of a specimen as it being penetrated. The second experimental technique that is under development is a dynamic tension experiment in which full-field strain measurement with DIC and full-field temperature measurement are done simultaneously during the test.

  10. Test Review: Wilkinson, G. S., & Robertson, G. J. (2006). Wide Range Achievement Test--Fourth Edition. Lutz, FL: Psychological Assessment Resources. WRAT4 Introductory Kit (Includes Manual, 25 Test/Response Forms [Blue and Green], and Accompanying Test Materials): $243.00

    Science.gov (United States)

    Dell, Cindy Ann; Harrold, Barbara; Dell, Thomas

    2008-01-01

    The Wide Range Achievement Test-Fourth Edition (WRAT4) is designed to provide "a quick, simple, psychometrically sound assessment of academic skills". The test was first published in 1946 by Joseph F. Jastak, with the purpose of augmenting the cognitive performance measures of the Wechsler-Bellevue Scales, developed by David Wechsler.…

  11. Thermal performance study of form-stable composite phase change material with polyacrylic

    Science.gov (United States)

    Kee, Shin Yiing; Munusamy, Yamuna; Ong, Kok Seng; Chee, Swee Yong; Sanmuggam, Shimalaa

    2017-04-01

    Phase change material (PCM) is one of the most popular and widely used as thermal energy storage material because it is able to absorb and release a large amount of latent heat during a phase change process over a narrow temperature range. In this work, the form-stable composite PCM was prepared by blending of PMMA and myristic acid in different weight percentage. PMMA was used as a supporting material while myristic acid was used as PCM. Theoretically, PCM can be encapsulated in the support material after blending. However, a small amount of liquid PCMs can leak out from supporting material due to the volume change in phase change process. Therefore, a form-stable composite PCM with polyacrylic coating was studied. Leakage test was carried out to determine the leakage percentage of the form-stable composite PCM. Fourier transform infrared spectroscopy (FTIR) was used to characterize the chemical compatibility of the form-stable PCM composite while differential scanning calorimetry (DSC) was used to study the melting, freezing point and the latent heat of melting and freezing for the form-stable composite PCM.

  12. Preparation and thermal properties of form stable paraffin phase change material encapsulation

    International Nuclear Information System (INIS)

    Liu Xing; Liu Hongyan; Wang Shujun; Zhang Lu; Cheng Hua

    2006-01-01

    Paraffin waxes are cheap and have moderate thermal energy storage density but low thermal conductivity and, hence, require large surface area to be used in energy storage. Form stable paraffin phase change materials (PCM) in which paraffin serves as a latent heat storage material and polyolefins act as a supporting material, because of paraffin leakage, are required to be improved. The form stable paraffin PCM in the present paper was encapsulated in an inorganic silica gel polymer successfully by in situ polymerization. The differential scanning calorimeter (DSC) was used to measure its thermal properties. At the same time, the Washburn equation, which measures the wetting properties of powder materials, was used to test the hydrophilic-lipophilic properties of the PCMs. The result indicated that the enthalpy of the microencapsulated PCMs was reduced little, while their hydrophilic properties were enhanced largely

  13. Compilation of radiation damage test data cable insulating materials

    CERN Document Server

    Schönbacher, H; CERN. Geneva

    1979-01-01

    This report summarizes radiation damage test data on commercially available organic cable insulation and jacket materials: ethylene- propylene rubber, Hypalon, neoprene rubber, polyethylene, polyurethane, polyvinylchloride, silicone rubber, etc. The materials have been irradiated in a nuclear reactor to integrated absorbed doses from 5*10/sup 5/ to 5*10/sup 6/ Gy. Mechanical properties, e.g. tensile strength, elongation at break, and hardness, have been tested on irradiated and non-irradiated samples. The results are presented in the form of tables and graphs, to show the effect of the absorbed dose on the measured properties. (13 refs).

  14. Ablative Material Testing at Lewis Rocket Lab

    Science.gov (United States)

    1997-01-01

    The increasing demand for a low-cost, reliable way to launch commercial payloads to low- Earth orbit has led to the need for inexpensive, expendable propulsion systems for new launch vehicles. This, in turn, has renewed interest in less complex, uncooled rocket engines that have combustion chambers and exhaust nozzles fabricated from ablative materials. A number of aerospace propulsion system manufacturers have utilized NASA Lewis Research Center's test facilities with a high degree of success to evaluate candidate materials for application to new propulsion devices.

  15. FMIT - the fusion materials irradiation test facility

    International Nuclear Information System (INIS)

    Liska, D.J.

    1980-01-01

    A joint effort by the Hanford Engineering Development Laboratory (HEDL) and Los Alamos Scientific Laboratory (LASL) has produced a preliminary design for a Fusion Materials Irradiation Test Facility (FMIT) that uses a high-power linear accelerator to fire a deuteron beam into a high-speed jet of molten lithium. The result is a continuous energy spectrum of neutrons with a 14-MeV average energy which can irradiate material samples to projected end-of-life levels in about 3 years, with a total accumulated fluence of 10 21 to 10 22 n/cm 2

  16. On the material properties of shell plate formed by line heating

    Directory of Open Access Journals (Sweden)

    Hyung Kyun Lim

    2017-01-01

    Full Text Available This paper is concerned with investigating the plastic material properties of steel plate formed by line heating method, and is aimed at implementing more rational design considering the accidental limit states such as collision or grounding. For the present study, line heating test for marine grade steel plate has been carried out with varying plate thickness and heating speed, and then microscopic examination and tensile test have been carried out. From the microscopic, it is found that the grain refined zones like ferrite and pearlite are formed all around the heat affected zone. From the tensile test results, it is seen that yield strength, tensile strength, fracture strain, hardening exponent and strength coefficient vary with plate thickness and heat input quantity. The formulae relating the material properties and heat input parameter should be, therefore, derived for the design purpose considering the accidental impact loading. This paper ends with describing the extension of the present study.

  17. Coal Ash Corrosion Resistant Materials Testing

    Energy Technology Data Exchange (ETDEWEB)

    D. K. McDonald; P. L. Daniel; D. J. DeVault

    2007-12-31

    In April 1999, three identical superheater test sections were installed into the Niles Unit No.1 for the purpose of testing and ranking the coal ash corrosion resistance of candidate superheater alloys. The Niles boiler burns high sulfur coal (3% to 3.5%) that has a moderate alkali content (0.2% sodium equivalents), thus the constituents necessary for coal ash corrosion are present in the ash. The test sections were controlled to operate with an average surface metal temperature from approximately 1060 F to 1210 F which was within the temperature range over which coal ash corrosion occurs. Thus, this combination of aggressive environment and high temperature was appropriate for testing the performance of candidate corrosion-resistant tube materials. Analyses of the deposit and scale confirmed that aggressive alkali sulfate constituents were present at the metal surface and active in tube metal wastage. The test sections were constructed so that the response of twelve different candidate tube and/or coating materials could be studied. The plan was to remove and evaluate one of the three test sections at time intervals of 1 year, 3 years, and 5 years. This would permit an assessment of performance of the candidate materials as a function of time. Test Section A was removed in November 2001 after about 24 months of service at the desired steam temperature set point, with about 15.5 months of exposure at full temperature. A progress report, issued in October 2002, was written to document the performance of the candidate alloys in that test section. The evaluation described the condition of each tube sample after exposure. It involved a determination of the rate of wall thickness loss for these samples. In cases where there was more than one sample of a candidate material in the test section, an assessment was made of the performance of the alloy as a function of temperature. Test Sections B and C were examined during the November 2001 outage, and it was decided that

  18. Mechanisms of hydrogen induced delayed cracking in hydride forming materials

    International Nuclear Information System (INIS)

    Dutton, R.; Nuttall, K.; Puls, M.P.; Simpson, L.A.

    1977-01-01

    Mechanisms which have been formulated to describe delayed hydrogen cracking in hydride-forming metals are reviewed and discussed. Particular emphasis is placed on the commercial alloy Zr--2.5% Nb (Cb) which is extensively used in nuclear reactor core components. A quantitative model for hydrogen cracking in this material is presented and compared with available experimental data. The kinetics of crack propagation are controlled by the growth of hydrides at the stressed crack tip by the diffusive ingress of hydrogen into this region. The driving force for the diffusion flux is provided by the local stress gradient which interacts with both hydrogen atoms in solution and hydrogen atoms being dissolved and reprecipitated at the crack tip. The model is developed using concepts of elastoplastic fracture mechanics. Stage I crack growth is controlled by hydrides growing in the elastic stress gradient, while Stage II is controlled by hydride growth in the plastic zone at the crack tip. Recent experimental observations are presented which indicate that the process occurs in an intermittent fashion; hydride clusters accumulate at the crack tip followed by unstable crack advance and subsequent crack arrest in repeated cycles

  19. Mechanisms of hydrogen induced delayed cracking in hydride forming materials

    International Nuclear Information System (INIS)

    Dutton, R.; Nuttall, K.; Puls, M.P.; Simpson, L.A.

    1977-01-01

    Mechanisms which have been formulated to describe delayed hydrogen cracking in hydride-forming metals are reviewed and discussed. Particular emphasis is placed on the commercial alloy Zr-2.5 pct Nb which is extensively used in nuclear reactor core components. A quantitative model for hydrogen cracking in this material is presented and compared with available experimental data. The kinetics of crack propagation are controlled by the growth of hydrides at the stressed crack tip by the diffusive ingress of hydrogen into this region. The driving force for the diffusion flux is provided by the local stress gradient which interacts with both hydrogen atoms in solution and hydrogen atoms being dissolved and reprecipitated at the crack tip. The model is developed using concepts of elastoplastic fracture mechanics. Stage I crack growth is controlled by hydrides growing in the elastic stress gradient, while Stage II is controlled by hydride growth in the plastic zone at the crack tip. Recent experimental observations are presented which indicate that the process occurs in an intermittent fashion; hydride clusters accumulate at the crack tip followed by unstable crack advance and subsequent crack arrest in repeated cycles. 55 refs., 6 figs

  20. The construction of solid waste form test and inspection facility

    International Nuclear Information System (INIS)

    Park, Hun Hwee; Lee, Kang Moo; Jung, In Ha; Kim, Sung Hwan; Yoo, Jeong Woo; Lee, Jong Youl; Bae, Sang Min

    1988-01-01

    The solid waste form test and inspection facility is a facility to test and inspect the characteristics of waste forms, such as homogenity, mechanical structure, thermal behaviour, water resistance and leachability. Such kinds of characteristics in waste forms are required to meet a certain conditions for long-term storage or for final disposal of wastes. The facility will be used to evaluate safety for the disposal of wastes by test and inspection. At this moment, the efforts to search the most effective management of the radioactive wastes generated from power plants and radioisotope user are being executed by the people related to this field. Therefore, the facility becomes more significant tool because of its guidance of sucessfully converting wastes into forms to give a credit to the safety of waste disposal for managing the radioactive wastes. In addition the overall technical standards for inspecting of waste forms such as the standardized equipment and processes in the facility will be estabilished in the begining of 1990's when the project of waste management will be on the stream. Some of the items of the project have been standardized for the purpose of localization. In future, this facility will be utilized not only for the inspection of waste forms but also for the periodic decontamination apparatus by remote operation techniques. (Author)

  1. Materials characterization center workshop on the irradiation effects in nuclear waste forms

    International Nuclear Information System (INIS)

    Roberts, F.P.; Turcotte, R.P.; Weber, W.J.

    1981-01-01

    The Workshop on Irradiation Effects in Nuclear Waste Forms sponsored by the Materials Characterization Center (MCC) brought together experts in radiation damage in materials and waste-management technology to review the problems associated with irradiation effects on waste-form integrity and to evaluate standard methods for generating data to be included in the Nuclear Waste Materials Handbook. The workshop reached the following conclusions: the concept of Standard Test for the Effects of Alpha-Decay in Nuclear Waste Solids, (MCC-6) for evaluating the effects of alpha decay is valid and useful, and as a result of the workshop, modifications to the proposed procedure will be incorpoated in a revised version of MCC-6; the MCC-6 test is not applicable to the evaluation of radiation damage in spent fuel; plutonium-238 is recommended as the dopant for transuranic and defense high-level waste forms, and when high doses are required, as in the case of commercial high-level waste forms, 244 Cm can be used; among the important property changes caused by irradiation are those that lead to greater leachability, and additionally, radiolysis of the leachant may increase leach rates; research is needed in this area; ionization-induced changes in physical properties can be as important as displacement damage in some materials, and a synergism is also likely to exist from the combined effects of ionization and displacement damage; and the effect of changing the temperature and dose rates on property changes induced by radiation damage needs to be determined

  2. The choice of nuclear material measurement strategy in bulk-form in material balance area

    International Nuclear Information System (INIS)

    Smirnov, V.M.; Sergeev, S.A.; Kirsanov, V.S.

    1999-01-01

    Concepts have been defined such as Shipment batch, Technological batch, and Accounting batch, it has been found that Shipment and Technological batches should be formed through the arrangement of group of measured Accounting batches. The strategy for nuclear material (NM) measurement based on the Accounting batch is shown to give a possibility to use the advantages for the accounting purposes: ensure safeguards of non-diversion of NM at quantitative (numerical) level, which is a higher grade of safeguards compared to the systems of accounting and control now in force of the US and EURATOM; ensure a guaranteed accuracy and reliability (confidence level) when making up NM balance in Material Balance Area (MBA) and at Federal level, which has been realized only in part in the NM control and accounting systems. Strategy of NM measurement for MBAs counting NM in bulk form has been proposed [ru

  3. Ultrasonic testing of materials at level 2

    International Nuclear Information System (INIS)

    1988-06-01

    Ultrasonic inspection is a nondestructive method in which high frequency sound waves are introduced into the material being inspected. Ultrasonic testing has a superior penetrating power to radiography and can detect flaws deep in the test specimen (say up to about 6 to 7 meters of steel). It is quite sensitive to small flaws and allows the precise determination of the location and size of the flaws. Basic ultrasonic test methods such as the through transmission method and the resonance method, sensors and testing techniques are described. Pulse echo type flaw detectors and their applications for inspection of welds are surveyed. Ultrasonic standards, calibration of the equipment and evaluation methods are presented. Examples of practical applications in welding, casting and forging processes are given. Figs and tabs

  4. Testing of Lubricant Performance in Sheet Metal Forming

    DEFF Research Database (Denmark)

    Bay, Niels; Olsson, David Dam; Friis, Kasper Leth

    2008-01-01

    Increasing focus on environmental issues in industrial production has urged a number of sheet metal forming companies to look for new tribo-systems in order to substitute hazardous lubricants such as chlorinated paraffin oils. The problems are especially pronounced, when forming tribologically...... of the lubricant film causing pick-up of work piece material on the tool surface and scoring of subsequent work piece surfaces. The present paper gives an overview of more than 10 years work by the authors’ research group through participation in national as well as international framework programmes on developing...

  5. Test System for Thermoelectric Modules and Materials

    Science.gov (United States)

    Hejtmánek, J.; Knížek, K.; Švejda, V.; Horna, P.; Sikora, M.

    2014-10-01

    We present a design for a complex measuring device that enables its user to assess the parameters of power-generating thermoelectric modules (TEMs) (or bulk thermoelectric materials) under a wide range of temperatures ( T cold = 25°C to 90°C, T hot TEM, the actual heat flow through the module, and its mechanical load, which can be varied during the measurement. Key components of our testing setup are (i) a measuring chamber where the TEM/material is compressed between thermally shielded heating blocks equipped with a mechanical loading system and water-cooled copper-based cooler, (ii) an electrical load system, (iii) a type K thermocouple array connected to a data acquisition computer, and (iv) a thermostatic water-based cooling system with electronically controlled flow rate and temperature of cooling water. Our testing setup represents a useful tool able to assess, e.g., the thermoelectric parameters of newly developed TEMs and materials or to evaluate the thermoelectric parameters of commercially available modules and materials for comparison with values declared by the manufacturer.

  6. Apparatus Tests Peeling Of Bonded Rubbery Material

    Science.gov (United States)

    Crook, Russell A.; Graham, Robert

    1996-01-01

    Instrumented hydraulic constrained blister-peel apparatus obtains data on degree of bonding between specimen of rubbery material and rigid plate. Growth of blister tracked by video camera, digital clock, pressure transducer, and piston-displacement sensor. Cylinder pressure controlled by hydraulic actuator system. Linear variable-differential transformer (LVDT) and float provide second, independent measure of change in blister volume used as more precise volume feedback in low-growth-rate test.

  7. Standard test methods for bend testing of material for ductility

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 These test methods cover bend testing for ductility of materials. Included in the procedures are four conditions of constraint on the bent portion of the specimen; a guided-bend test using a mandrel or plunger of defined dimensions to force the mid-length of the specimen between two supports separated by a defined space; a semi-guided bend test in which the specimen is bent, while in contact with a mandrel, through a specified angle or to a specified inside radius (r) of curvature, measured while under the bending force; a free-bend test in which the ends of the specimen are brought toward each other, but in which no transverse force is applied to the bend itself and there is no contact of the concave inside surface of the bend with other material; a bend and flatten test, in which a transverse force is applied to the bend such that the legs make contact with each other over the length of the specimen. 1.2 After bending, the convex surface of the bend is examined for evidence of a crack or surface irregu...

  8. Bees Algorithm for Construction of Multiple Test Forms in E-Testing

    Science.gov (United States)

    Songmuang, Pokpong; Ueno, Maomi

    2011-01-01

    The purpose of this research is to automatically construct multiple equivalent test forms that have equivalent qualities indicated by test information functions based on item response theory. There has been a trade-off in previous studies between the computational costs and the equivalent qualities of test forms. To alleviate this problem, we…

  9. Ultrasonic tests on materials with protective coatings

    International Nuclear Information System (INIS)

    Whaley, H.L.

    1977-01-01

    Protective coatings are applied to some nuclear components such as reactor vessels to inhibit surface corrosion. Since in-service ultrasonic inspection is required for such components, a study was performed to determine whether the use of protective coatings can affect ultrasonic tests. Two 2 in. thick steel plates were uniformly machined, sandblasted, and used as bases for two types of protective coatings. The type and thickness of the coating and the presence of contamination, such as fingerprints or mild oxidation under the paint, were the independent variables associated with the coating. Tests were run to determine the effects of the protective coatings on ultrasonic tests conducted on the steel plates. Significant variations in ultrasonic test sensitivity occurred as a function of the type and thickness of protective coating, couplant (material that conducts the ultrasound from the transducer into the test part, normally water or some type of oil), transducer wear plate, and ultrasonic test frequency. Ultrasonic tests can be strongly affected by a protective coating on the component to be inspected. As compared to the test sensitivity for an uncoated reference sample, the sensitivity may be dramatically shifted up or down on the coated surface. In certain coating thickness ranges, the sensitivity can fluctuate widely with small changes in coating thickness. If a coating is chosen properly, however, components with protective coatings can be tested ultrasonically with valid results. These results are for the case of ultrasonic input on the coated surface. It is not expected that an ultrasonic test conducted from the front surface would be appreciably affected by a coating on the rear surface

  10. Testing the Teacher's Report Form Syndromes in 20 Societies

    Science.gov (United States)

    Ivanova, Masha Y.; Achenbach, Thomas M.; Rescorla, Leslie A.; Dumenci, Levent; Almqvist, Fredrik; Bathiche, Marie; Bilenberg, Niels; Bird, Hector; Domuta, Anca; Erol, Nese; Fombonne, Eric; Fonseca, Antonio; Frigerio, Alessandra; Kanbayashi, Yasuko; Lambert, Michael C.; Leung, Patrick; Liu, Xianchen; Minaei, Asghar; Roussos, Alexandra; Simsek, Zeynep; Weintraub, Sheila; Wolanczyk, Tomasz; Zubrick, Stephen; Zukauskiene, Rita; Verhulst, Frank C.

    2007-01-01

    Standardized assessment instruments developed in one society are often used in other societies. However, it is important to determine empirically how assessment instruments developed in one society function in others. The present study tested the fit of the Teacher's Report Form syndrome structures in 20 diverse societies using data for 30,030 6-…

  11. Materials Characterization Center. Second workshop on irradiation effects in nuclear waste forms. Summary report

    International Nuclear Information System (INIS)

    Weber, W.J.; Turcotte, R.P.

    1982-01-01

    The purpose of this second workshop on irradiations effects was to continue the discussions initiated at the first workshop and to obtain guidance for the Materials Characterization Center in developing test methods. The following major conclusions were reached: Ion or neutron irradiations are not substitutes for the actinide-doping technique, as described by the MCC-6 Method for Preparation and Characterization of Actinide-Doped Waste Forms, in the final evaluation of any waste form with respect to the radiation effects from actinide decay. Ion or neutron irradiations may be useful for screening tests or more fundamental studies. The use of these simulation techniques as screening tests for actinide decay requires that a correlation between ion or neutron irradiations and actinide decay be established. Such a correlation has not yet been established and experimental programs in this area are highly recommended. There is a need for more fundamental studies on dose-rate effects, temperature dependence, and the nature and importance of alpha-particle effects relative to the recoil nucleus in actinide decay. There are insufficient data presently available to evaluate the potential for damage from ionizing radiation in nuclear waste forms. No additional test methods were recommended for using ion or neutron irradiations to simulate actinide decay or for testing ionization damage in nuclear waste forms. It was recognized that additional test methods may be required and developed as more data become available. An American Society for Testing and Materials (ASTM) Task Group on the Simulation of Radiation Effects in Nuclear Waste Forms (E 10.08.03) was organized to act as a continuing vehicle for discussions and development of procedures, particularly with regard to ion irradiations

  12. Standard test method for dynamic tear testing of metallic materials

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1983-01-01

    1.1 This test method covers the dynamic tear (DT) test using specimens that are 3/16 in. to 5/8 in. (5 mm to 16 mm) inclusive in thickness. 1.2 This test method is applicable to materials with a minimum thickness of 3/16 in. (5 mm). 1.3 The pressed-knife procedure described for sharpening the notch tip generally limits this test method to materials with a hardness level less than 36 HRC. Note 1—The designation 36 HRC is a Rockwell hardness number of 36 on Rockwell C scale as defined in Test Methods E 18. 1.4 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  13. Radioactive waste material testing capabilities in Romania

    International Nuclear Information System (INIS)

    Vieru, G.

    1999-01-01

    Radioactive material including wastes, generated by Romanian nuclear facilities are packaged in accordance with national and IAEA's Regulation for a safe transport to the disposal center. The evaluation and certification of packages is accomplished by subjecting these packages to normal and simulated test conditions in order to prove the package to technical performances. The standards provide to package designers the possibility to use analysis, testing or a combination of these. The paper describes the experimental and simulating qualification tests for type A packages used for transport and storage of radioactive wastes (low level). Testing are used to substantiate assumptions used in analytical models and to demonstrate package structural response. There are also presented testing capabilities which are used to perform and simulate the required qualification tests. By direct comparison of analysis and experimental results, the degree of reliability of analytical methods and admissibility of assumptions taken in package designing and in demonstrating its safety under conditions of INR - Pitesti, within the contract between the INR - Pitesti and IAEA - Vienna, were determined. (author)

  14. A smart predictor for material property testing

    International Nuclear Information System (INIS)

    Wang, Wilson; Kanneg, Derek

    2008-01-01

    A reliable predictor is very useful for real-world industrial applications to forecast the future behavior of dynamic systems. A smart predictor, based on a novel recurrent neural fuzzy (RNF) scheme, is developed in this paper for multi-step-ahead prediction of material properties. A systematic investigation based on two benchmark data sets is conducted in terms of performance and efficiency. Analysis results reveal that, of the data-driven forecasting schemes, predictors based on step input patterns outperform those based on sequential input patterns; the RNF predictor outperforms those based on recurrent neural networks and ANFIS schemes in multi-step-ahead prediction of nonlinear time series. An adaptive Levenberg–Marquardt training technique is adopted to improve the robustness and convergence of the RNF predictor. Furthermore, the proposed smart predictor is implemented for material property testing. Investigation results show that the developed RNF predictor is a reliable forecasting tool for material property testing; it can capture and track the system's dynamic characteristics quickly and accurately. It is also a robust predictor to accommodate different system conditions

  15. Development and testing of matrices for the encapsulation of glass and ceramic nuclear waste forms

    International Nuclear Information System (INIS)

    Wald, J.W.; Brite, D.W.; Gurwell, W.E.; Buckwalter, C.Q.; Bunnell, L.R.; Gray, W.J.; Blair, H.T.; Rusin, J.M.

    1982-02-01

    This report details the results of research on the matrix encapsulation of high level wastes at PML over the past few years. The demonstrations and tests described were designed to illustrate how the waste materials are effected when encapsulated in an inert matrix. Candidate materials evaluated for potential use as matrices for encapslation of pelletized ceramics or glass marbles were categorized into four groups: metals, glasses, ceramics, and graphite. Two processing techniques, casting and hot pressing, were investigated as the most promising methods of formation or densification of the matrices. The major results reported deal with the development aspects. However, chemical durability tests (leach tests) of the matrix materials themselves and matrix-waste form composites are also reported. Matrix waste forms can provide a low porosity, waste-free barrier resulting in increased leach protection, higher impact strength and improved thermal conductivity compared to unencapsulated glass or ceramic waste materials. Glass marbles encapsulated in a lead matrix offer the most significant improvement in waste form stability of all combinations evaluated. This form represents a readily demonstrable process that provides high thermal conductivity, mechanical shock resistance, radiation shielding and increased chemical durability through both a chemical passivation mechanism and as a physical barrier. Other durable matrix waste forms evaluated, applicable primarily to ceramic pellets, involved hot-pressed titanium or TiO 2 materials. In the processing of these forms, near 100% dense matrices were obtained. The matrix materials had excellent compatibility with the waste materials and superior potential chemical durability. Cracking of the hot-pressed ceramic matrix forms, in general, prevented the realization of their optimum properties

  16. DIAGNOSTIC CHARACTERISTICS OF THE COMPUTER TESTS FORMED BY METHOD OF RESTORED FRAGMENTS

    OpenAIRE

    Oleksandr O. Petkov

    2013-01-01

    Definition of validity and reliability of tests which are formed by a method of restored fragments is considered in the article. The structure of the controlled theoretical material of limit field of knowledge, language expressions that describe the subject of control, and reliability of test, is analyzed. The technique of definition of the most important components of reliability of the considered tests is given: reliability of quantitative determination of coefficient of assimilation and te...

  17. Material characterization models and test methods for historic building materials

    DEFF Research Database (Denmark)

    Hansen, Tessa Kvist; Peuhkuri, Ruut Hannele; Møller, Eva B.

    2017-01-01

    Predictions of long term hygrothermal performance can be assessed by dynamic hygrothermal simulations, in which material parameters are crucial input. Material parameters for especially historic materials are often unknown; therefore, there is a need to determine important parameters, and simple...

  18. Test or toy? Materiality and the measurement of infant intelligence.

    Science.gov (United States)

    Young, Jacy L

    2015-05-01

    Adopting a material culture perspective, this article interrogates the composition of the copy of the Cattell Infant Intelligence Scale housed at the University of Toronto Scientific Instruments Collection. As a deliberately assembled collection of toys, the Cattell Scale makes clear the indefinite boundary between test and toy in 20th-century American psychology. Consideration of the current condition of some of the material constituents of this particular Cattell Scale provides valuable insight into some of the elusive practices of intelligence testers in situ and highlights the dynamic nature of the testing process. At the same time, attending to the materiality of this intelligence test reveals some of the more general assumptions about the nature of intelligence inherent in tests for young children. The scale and others like it, I argue, exposes psychologists' often-uncritical equation of childhood intelligence with appropriate play undertaken with an appropriate toy, an approach complicit in, and fostered by, midcentury efforts to cultivate particular forms of selfhood. This analysis serves as an example of the kind of work that may be done on the history of intelligence testing when the material objects that were (and are) inherently a part of the testing process are included in historical scholarship. (c) 2015 APA, all rights reserved).

  19. Nondestructive Testing of Materials and Structures

    CERN Document Server

    Akkaya, Yılmaz

    2013-01-01

    Condition assessment and characterization of materials and structures by means of nondestructive testing (NDT) methods is a priority need around the world to meet the challenges associated with the durability, maintenance, rehabilitation, retrofitting, renewal and health monitoring of new and existing infrastructures including historic monuments. Numerous NDT methods that make use of certain components of the electromagnetic and acoustic spectra are currently in use to this effect with various levels of success and there is an intensive worldwide research effort aimed at improving the existing methods and developing new ones. The knowledge and information compiled in this book captures the current state-of-the-art in NDT methods and their application to civil and other engineering materials and structures. Critical reviews and advanced interdisciplinary discussions by world-renowned researchers point to the capabilities and limitations of the currently used NDT methods and shed light on current and future res...

  20. Electrochemical Corrosion Testing of Neutron Absorber Materials

    International Nuclear Information System (INIS)

    Tedd Lister; Ron Mizia; Sandra Birk; Brent Matteson; Hongbo Tian

    2006-01-01

    The Yucca Mountain Project (YMP) has been directed by DOE-RW to develop a new repository waste package design based on the transport, aging, and disposal canister (TAD) system concept. A neutron poison material for fabrication of the internal spent nuclear fuel (SNF) baskets for these canisters needs to be identified. A material that has been used for criticality control in wet and dry storage of spent nuclear fuel is borated stainless steel. These stainless products are available as an ingot metallurgy plate product with a molybdenum addition and a powder metallurgy product that meets the requirements of ASTM A887, Grade A. A new Ni-Cr-Mo-Gd alloy has been developed by the Idaho National Laboratory (INL) with its research partners (Sandia National Laboratory and Lehigh University) with DOE-EM funding provided by the National Spent Nuclear Fuel Program (NSNFP). This neutron absorbing alloy will be used to fabricate the SNF baskets in the DOE standardized canister. The INL has designed the DOE Standardized Spent Nuclear Fuel Canister for the handling, interim storage, transportation, and disposal in the national repository of DOE owned spent nuclear fuel (SNF). A corrosion testing program is required to compare these materials in environmental conditions representative of a breached waste canister. This report will summarize the results of crevice corrosion tests for three alloys in solutions representative of ionic compositions inside the waste package should a breech occur. The three alloys in these tests are Neutronit A978 (ingot metallurgy, hot rolled), Neutrosorb 304B4 Grade A (powder metallurgy, hot rolled), and Ni-Cr-Mo-Gd alloy (ingot metallurgy, hot rolled)

  1. Material test of concrete for PCCV

    International Nuclear Information System (INIS)

    Okada, Katsuya; Kamiyama, Yukio; Iwasawa, Jiro.

    1987-01-01

    The concrete used for the prestressed concrete containment vessel (PCCV) for Tsuruga No.2 plant of Japan Atomic Power Co. has the design standard strength as high as 420 kg/cm 2 , but for the purpose of preventing the cracking due to hydration heat at the time of concrete hardening, the medium heat cement mixed with flyash was adopted. The example of using the cement of this kind for high strength concrete has been few, and the data on its various properties have been scarce. First, the various mixing proportion for the high strength concrete using the medium heat cement mixed with flyash was experimented, and the basic mixing proportion for satisfying the design standard strength 420 kg/cm 2 was determined. Next, about this basic mixing proportion, the tests on the crrep characteristics and the thermal characteristics required for the design of PCCVs were carried out. In this report, the results of these tests on the concrete are described. By combining the concrete materials available in Tsuruga district, the test on unsolidified concrete and hardened concrete was carried out. The experimental method and the results are reported. Uniaxial compression creep test was carried out on the concrete having the selected mixing proportion to evaluate the propriety of the design creep factor. In the test of the thermal characteristics, the heat conductivity, heat diffusivity, linear thermal expansion and specific heat were measured. (Kako, I.)

  2. Smart material interfaces: a new form of physical interaction

    NARCIS (Netherlands)

    Chi, E.H.; Vyas, Dhaval; Poelman, Wim; Höök, K,; Nijholt, Antinus; De Bruijn, Arnoud

    2012-01-01

    Smart Material Interface (SMI) is the latest generation of user interface that makes use of engineered materials and leverages their special properties. SMIs are capable of changing their physical properties such as shape, size and color, and can be controlled under certain (external) conditions. We

  3. A material model for aluminium sheet forming at elevated temperatures

    NARCIS (Netherlands)

    van den Boogaard, Antonius H.; Werkhoven, R.J.; Bolt, P.J.

    2001-01-01

    In order to accurately simulate the deep drawing or stretching of aluminum sheet at elevated temperatures, a model is required that incorporates the temperature and strain-rate dependency of the material. In this paper two models are compared: a phenomenological material model in which the

  4. Tests on 'radio-active' material

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    The storage of radio-active waste from nuclear power stations is a well known problem and a subject for extensive investigation. In connection with the use of cement as storage material, tests were carried out on cement-filled 200-litre sheet-steel containers. In order to avoid contamination of the cement core by drilling sludge, any drilling operation must be carried out dry, i.e. without liquid cooling. Air-blast cooling was therefore used for the cooling of a diamond drill and also for the removal of swarf. (H.E.G.)

  5. Qualifications of and acceptance criteria for transporting special form radioactive material

    International Nuclear Information System (INIS)

    Hovingh, J.

    1991-01-01

    A special form radioactive material is a radioactive material that is in an inert, insoluble, indispersible form such that even in the event of an accident, it will not be dispersed into the environment in a way that could have an adverse impact on public health and safety. Methods of qualifying a special form radioactive material are discussed. Interpretation of acceptance criteria are proposed for the transportation of Type B quantities of a special form radioactive material. 11 refs

  6. Material testing of reconditioned orthodontic brackets.

    Science.gov (United States)

    Reimann, S; Rewari, A; Keilig, L; Widu, F; Jäger, A; Bourauel, C

    2012-12-01

    While all manufacturers of orthodontic brackets label these products for single use, there are commercial providers offering bracket reconditioning (or "recycling"). We conducted this study to investigate the effects of different recycling techniques on material-related parameters in orthodontic brackets, aiming to derive indications for clinical use and conclusions about the biocompatibility, longevity, and application of recycled brackets. New metal brackets (equilibrium(®); Dentaurum, Ispringen, Germany) were compared to brackets recycled by different techniques, including direct flaming with a Bunsen burner, chemical reconditioning in an acid bath, a commercial unit (Big Jane; Esmadent, IL, USA), and outsourcing to a company (Ortho Clean, Dellstedt, Germany). Material-related examinations included the following: (1) corrosion behavior by static immersion testing and use of a mass spectrometer to determine nickel-ion concentrations in the corrosive medium, (2) surface features in scanning electron micrographs before and after corrosion testing, (3) Vickers hardness using a hardness testing machine, (4) shear bond strength as defined in DIN 13990-1, (5) dimensional stability of the bracket slots by light microscopy, and (6) frictional loss as assessed by an orthodontic measurement and simulation system (OMSS). Each examination was performed on ten brackets. Student's t-test was used for statistical analysis. Compared to the new brackets, those recycled in an acid bath or by a commercial provider revealed significant dimensional changes (pbrackets varied according to the recycling techniques employed. The group of brackets recycled by one company revealed hardness values that differed from those of all the other groups. No significant differences were observed in nickel-ion release, frictional loss, and shear bond strength. Recycling was found to significantly reduce the corrosion resistance and dimensional stability of orthodontic brackets. As the savings

  7. Results of field testing of radioactive waste forms using lysimeters

    International Nuclear Information System (INIS)

    McConnell, J.W., Jr.; Rogers, R.D.; Jastrow, J.D.; Wickliff, D.S.

    1992-01-01

    The Field Lysimeter Investigation: Low-Level Waste Data Base Development Program is obtaining informaiton on the performance of radioactive waste in a disposal environment. Waste forms fabricated using ion-exchange resins from EPICOR-II prefilters employed in the cleanup of the Three Mile Island (TMI) Nuclear Power Station are being tested to develop a low-level waste data base and to obtain information on survivability of waste forms in a disposal environment. In this paper, radionuclide releases from waste forms in the first six years of sampling are presented and discussed. Application of lysimeter data to use in performance assessment models is presented. Initial results from use of data in a performance assessment model are discussed

  8. Liquid Lead-Bismuth Materials Test Loop

    International Nuclear Information System (INIS)

    Tcharnotskaia, Valentina; Ammerman, Curtt; Darling, Timothy; King, Joe; Li, Ning; Shaw, Don; Snodgrass, Leon; Woloshun, Keith

    2002-01-01

    We designed and built the Liquid Lead-Bismuth Materials Test Loop (MTL) to study the materials behavior in a flow of molten lead-bismuth eutectic (LBE). In this paper we present a description of the loop with main components and their functions. Stress distribution in the piping due to sustained, occasional and expansion loads is shown. The loop is designed so that a difference of 100 deg. C can be attained between the coldest and the hottest parts at a nominal flow rate of 8.84 GPM. Liquid LBE flow can be activated by a mechanical sump pump or by natural convection. In order to maintain a self-healing protective film on the surface of the stainless steel pipe, a certain concentration of oxygen has to be maintained in the liquid metal. We developed oxygen sensors and an oxygen control system to be implemented in the loop. The loop is outfitted with a variety of instruments that are controlled from a computer based data acquisition system. Initial experiments include preconditioning the loop, filling it up with LBE, running at uniform temperature and tuning the oxygen control system. We will present some preliminary results and discuss plans for the future tests. (authors)

  9. Material Recovery and Waste Form Development FY 2014 Accomplishments Report

    Energy Technology Data Exchange (ETDEWEB)

    Braase, Lori [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-11-01

    Develop advanced nuclear fuel cycle separation and waste management technologies that improve current fuel cycle performance and enable a sustainable fuel cycle, with minimal processing, waste generation, and potential for material diversion.

  10. DIAGNOSTIC CHARACTERISTICS OF THE COMPUTER TESTS FORMED BY METHOD OF RESTORED FRAGMENTS

    Directory of Open Access Journals (Sweden)

    Oleksandr O. Petkov

    2013-03-01

    Full Text Available Definition of validity and reliability of tests which are formed by a method of restored fragments is considered in the article. The structure of the controlled theoretical material of limit field of knowledge, language expressions that describe the subject of control, and reliability of test, is analyzed. The technique of definition of the most important components of reliability of the considered tests is given: reliability of quantitative determination of coefficient of assimilation and technological reliability. Results of the lead pedagogical experiments have proved, that tests of the given class allow to make the control of mastering of a theoretical material over a level of reproduction in any field of knowledge with high reliability. It is shown, that validity tests with restored fragments basically caused by a degree of structurization and methodical study of a controllable material and can achieve beforehand set parameters, down to a level of absolute validity.

  11. Present status of Japan materials testing reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hori, Naohiko; Kaminaga, Masanori; Kusunoki, Tsuyoshi; Ishihara, Masahiro; Niimi, Motoji; Komori, Yoshihiro; Suzuki, Masahide; Kawamura, Hiroshi [Japan Atomic Energy Agency, Oarai Research and Development Center, Oarai, Ibaraki (Japan)

    2012-03-15

    The Japan Materials Testing Reactor (JMTR) in Japan Atomic Energy Agency (JAEA) is a light water cooled tank type reactor with first criticality in March 1968. Owing to the connection between the JMTR and hot laboratory by a canal, easy re-irradiation tests can be conducted with safe and quick transportation of irradiated samples. The JMTR has been applied to fuel/material irradiation examinations for LWRs, HTGR, fusion reactor and RI production. However, the JMTR operation was once stopped in August 2006, and check and review on the reoperation had been conducted by internal as well as external committees. As a result of the discussion, the JMTR reoperation was determined, and refurbishment works started from the beginning of JFY 2007. The refurbishment works have finished in March 2011 taking four years from JFY 2007. Unfortunately, at the end of the JFY 2010 on March 11, the Great-Eastern-Japan-Earthquake occurred, and functional tests before the JMTR restart, such as cooling system, reactor control system and so on, were delayed by the earthquake. Moreover, a detail inspection found some damages such as slight deformation of the truss structure at the roof of the JMTR reactor building. Consequently, the restart of the JMTR will be delayed from June to next October, 2012. Now, the safety evaluation after the earthquake disaster is being carried out aiming at the restart of the JMTR. The renewed JMTR will be started from JFY 2012 and operated for a period of about 20 years until around JFY 2030. The usability improvement of the JMTR, e.g. higher reactor availability, shortening turnaround time to get irradiation results, attractive irradiation cost, business confidence, is also discussed with users as the preparations for re-operation. (author)

  12. Present status of Japan materials testing reactor

    International Nuclear Information System (INIS)

    Hori, Naohiko; Kaminaga, Masanori; Kusunoki, Tsuyoshi; Ishihara, Masahiro; Niimi, Motoji; Komori, Yoshihiro; Suzuki, Masahide; Kawamura, Hiroshi

    2012-01-01

    The Japan Materials Testing Reactor (JMTR) in Japan Atomic Energy Agency (JAEA) is a light water cooled tank type reactor with first criticality in March 1968. Owing to the connection between the JMTR and hot laboratory by a canal, easy re-irradiation tests can be conducted with safe and quick transportation of irradiated samples. The JMTR has been applied to fuel/material irradiation examinations for LWRs, HTGR, fusion reactor and RI production. However, the JMTR operation was once stopped in August 2006, and check and review on the reoperation had been conducted by internal as well as external committees. As a result of the discussion, the JMTR reoperation was determined, and refurbishment works started from the beginning of JFY 2007. The refurbishment works have finished in March 2011 taking four years from JFY 2007. Unfortunately, at the end of the JFY 2010 on March 11, the Great-Eastern-Japan-Earthquake occurred, and functional tests before the JMTR restart, such as cooling system, reactor control system and so on, were delayed by the earthquake. Moreover, a detail inspection found some damages such as slight deformation of the truss structure at the roof of the JMTR reactor building. Consequently, the restart of the JMTR will be delayed from June to next October, 2012. Now, the safety evaluation after the earthquake disaster is being carried out aiming at the restart of the JMTR. The renewed JMTR will be started from JFY 2012 and operated for a period of about 20 years until around JFY 2030. The usability improvement of the JMTR, e.g. higher reactor availability, shortening turnaround time to get irradiation results, attractive irradiation cost, business confidence, is also discussed with users as the preparations for re-operation. (author)

  13. Performance testing of waste forms in a tuff environment

    International Nuclear Information System (INIS)

    Oversby, V.M.

    1983-11-01

    This paper describes experimental work conducted to establish the chemical composition of water which will have reacted with Topopah Spring Member tuff prior to contact with waste packages. The experimental program to determine the behavior of spent fuel and borosilicate glass in the presence of this water is then described. Preliminary results of experiments using spent fuel segments with defects in the Zircaloy cladding are presented. Some results from parametric testing of a borosilicate glass with tuff and 304L stainless steel are also discussed. Experiments conducted using Topopah Spring tuff and J-13 well water have been conducted to provide an estimate of the post-emplacement environment for waste packages in a repository at Yucca Mountain. The results show that emplacement of waste packages should cause only small changes in the water chemistry and rock mineralogy. The changes in environment should not have any detrimental effects on the performance of metal barriers or waste forms. The NNWSI waste form testing program has provided preliminary results related to the release rate of radionuclides from the waste package. Those results indicate that release rates from both spent fuel and borosilicate glass should be below 1 part in 10 5 per year. Future testing will be directed toward making release rate testing more closely relevant to site specific conditions. 17 references, 7 figures

  14. Smart polymeric materials in forms of fiber and film

    International Nuclear Information System (INIS)

    Sugo, Takanobu

    1998-01-01

    Chemical grafting: graft polymerization is a powerful technology to append novel functionality to base fibers, clothes, felts, films and others, while maintaining their original properties. As shown in Figure 1, while a gardener may use a pair of shears to cut the branch, to cut the molecular branch of a polymeric material, one can utilize the radiation energy. Effective utilization of the radiation energy can proceed to a novel reaction that is impossible for other conventional methods and develop a new material bearing outstanding functions. This technology is named radiation-induced graft polymerization (RIGP). In this article, the present research and development of novel functional polymeric materials by radiation-induced graft polymerization is described. The felt of intertwined fibers has been widely used as a filter to remove particles from air but not toxic gaseous compounds. However, by RIGP, one can transform the felt into a high functional filter that will absorb the toxic gaseous compounds while removing particles simultaneously. As a result, the RIGP technology, which is impossible by conventional technology, has enabled the development of a novel functional material that produce highly pure air. Commercialization of this filter for applications in a semiconductor manufacturing facility and as an air purifier is under process. Moreover, this filter can also be used to produce highly purified water by removing toxic heavy metals. Commercially available polyethylene films are also been transform into conductive separators by RIGP to increase the lifetime of a battery by more than five-fold. (J.P.N)

  15. Magnetic modification of diamagnetic agglomerate forming powder materials

    Czech Academy of Sciences Publication Activity Database

    Šafařík, Ivo; Baldíková, Eva; Pospíšková, K.; Šafaříková, Miroslava

    2016-01-01

    Roč. 29, December (2016), s. 169-171 ISSN 1674-2001 Institutional support: RVO:60077344 Keywords : magnetic modification * magnetic separation * powdered material * magnetic iron oxide * microwave assisted synthesis Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.621, year: 2016

  16. Developing the MAPLE materials test reactor concept

    International Nuclear Information System (INIS)

    Lee, A.G.; Lidstone, R.F.; Donnelly, J.V.

    1992-05-01

    MAPLE-MTR is a new multipurpose research facility being planned by AECL Research as a possible replacement for the 35-year-old NRU reactor. In developing the MAPLE-MTR concept, AECL is starting from the recent design and licensing experience with the MAPLE-X10 reactor. By starting from technology developed to support the MAPLE-X10 design and adapting it to produce a concept that satisfies the requirements of fuel channel materials testing and fuel irradiation programs, AECL expects to minimize the need for major advances in nuclear technology (e.g., fuel, heat transfer). Formulation of the MAPLE-MTR concept is at an early stage. This report describes the irradiation requirements of the research areas, how these needs are translated into design criteria for the project and elements of the preliminary design concept

  17. Decontamination tests on tritium-contaminated materials

    International Nuclear Information System (INIS)

    Boutot, P.; Schipfer, P.

    1967-01-01

    These tests are designed to try out various processes liable to be applied to the decontamination of a material contaminated with tritium. The samples are thin stainless- steel slabs contaminated in the laboratory with elements extracted from industrial installations. The measurement of the initial and residual activities is carried out using an open-window BERTHOLD counter. The best results are obtained by passing a current of pre-heated (300 deg. C) air containing water vapour. This process makes it possible to reach a decontamination factor of 99.5 per cent in 4 hours. In a vacuum, the operation has to be prolonged to 100 hours in order to obtain a decontamination factor of 99.2 per cent. Wet-chemical or electrolytic treatments are efficient but their use is limited by the inherent corrosion risks. A study of the reappearance of the contamination has made it possible to observe that this phenomenon occurs whatever the process used. (authors) [fr

  18. Materials Characterization Center workshop on leaching of radioactive waste forms. Summary report

    International Nuclear Information System (INIS)

    Ross, W.A.; Strachan, D.M.; Turcotte, R.P.; Westsik, J.H. Jr.

    1980-04-01

    At the first Materials Characterization Center (MCC) workshop, on the leaching of radioactive waste forms, there was general agreement that, after certain revisions, the proposed leach test plan set forth by the MCC can be expected to meet most of the nuclear waste community's waste form durability data requirements. The revisions give a clearer definition of the purposes of each test and the end uses of the data. As a result of the workshop, the format of the test program has been recast to clarify the purposes, limitations, and interrelationships of the individual tests. There was also a recognition that the leach test program must be based on an understanding of the mechanistic principles of leaching, and that further study is needed to ensure that the approved data from the MCC leach tests will be compatible with mechanistic research needs. It was agreed that another meeting of the participants in Working Groups 3 and 4, and perhaps some other experts, should be held as soon as possible to focus just on the definition of leach test requirements for mechanistic research. The MCC plans to hold this meeting in April 1980. Many of the tests that will lead to increased understanding of mechanisms will of necessity be long-term tests, sometimes lasting for several years. But the MCC also faces pressing needs to produce approved data that can be used for the comparison of waste forms in the relative near-term, i.e., in the next 1 to 3 yr. Therefore, it was decided to initiate a round-robin test of the MCC short-term static leach procedure as soon as practicable. The MCC has tentative plans for organization of the round robin in May 1980

  19. NNWSI waste form testing at Argonne National Laboratory

    International Nuclear Information System (INIS)

    Bates, J.K.; Gerding, T.J.; Abrajano, T.A. Jr.; Ebert, W.L.; Mazer, J.J.

    1988-11-01

    The Nevada Nuclear Waste Storage Investigation (NNWSI) Project is investigating the tuff beds of Yucca Mountain, Nevada, as a potential location for a high-level radioactive waste repository. As part of the waste package development portion of this project, experiments are being performed by the Chemical Technology Division of Argonne National Laboratory to study the behavior of the waste form under anticipated repository conditions. These experiments include the development and performance of a test to measure waste form behavior in unsaturated conditions and the performance of experiments designed to study the behavior of waste package components in an irradiated environment. Previous reports document developments in these areas through 1986. This report summarizes progress during the period January--June 1987, 19 refs., 17 figs., 20 tabs

  20. Alpha damage in non-reference waste form matrix materials

    International Nuclear Information System (INIS)

    Burnay, S.G.

    1987-05-01

    Although bitumen is the matrix material currently used for European α-bearing intermediate level waste streams, polymer and polymer-modified cement matrices could have advantages over bitumen for such wastes. Two organic matrix systems have been studied - an epoxide resin, and an epoxide modified cement. Alpha irradiations were carried out by incorporating 241 Am at approx. 0.9 Ci/l. Comparisons have been made with unirradiated material and with materials which had been γ-irradiated to the same dose as the α-irradiated samples. Measurements were made of dimensional changes, mechanical properties and the leaching behaviour of 241 Am and 137 Cs. A limited amount of swelling (< 3%) was observed in α-irradiated epoxide resin; none was observed in the epoxide modified cement. Gamma irradiation to 300 kGy has no significant effect on the mechanical properties of either system. However, alpha irradiation to the same dose produced significant changes in flexural strength, an increase for the polymer and a decrease for the polymer-cement. Leaching in these systems was found to be a diffusion-controlled process; alpha irradiation to approx. 250 kGy has little effect on the leaching behaviour of either system. (author)

  1. Test Report of Special Form Qualification Testing for the ORNL U ZipCan

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Oscar A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-09-01

    This test report describes the special form testing activities performed on the two ZiPCans. One prototype test unit was subjected to the tests stipulated by 10 CFR 71.75 (d)(1)(i), ISO 2919:1999(E) Class 4 impact test, along with the leak rate test specified in 49 CFR 173.469(a)(4)(i). The other test unit was subjected to a leak rate test as specified in 173.469(a)(4)(i) and a heat test as specified in 49 CFR 173.469 (b)(4). Each test unit was leak tested before and after these respective tests. The leak rate tests performed were helium back-pressure tests and bubble tests, as specified in ANSI N14.5-2014.The measured leak rates were converted to standard condition leak rates as specified in ASTM E 493. The determined standardized leak rates from the test and calculation for both test units met the requirements for special form certification.

  2. Dual phase magnetic material component and method of forming

    Science.gov (United States)

    Dial, Laura Cerully; DiDomizio, Richard; Johnson, Francis

    2017-04-25

    A magnetic component having intermixed first and second regions, and a method of preparing that magnetic component are disclosed. The first region includes a magnetic phase and the second region includes a non-magnetic phase. The method includes mechanically masking pre-selected sections of a surface portion of the component by using a nitrogen stop-off material and heat-treating the component in a nitrogen-rich atmosphere at a temperature greater than about 900.degree. C. Both the first and second regions are substantially free of carbon, or contain only limited amounts of carbon; and the second region includes greater than about 0.1 weight % of nitrogen.

  3. Microcapsulated rare earth - nickel hydride-forming materials

    International Nuclear Information System (INIS)

    Ishikawa, H.; Oguro, K.; Kato, A.; Suzuki, H.; Ishii, E.

    1985-01-01

    Fine particles of hydride-forming alloys such as LaNi/sub 5/ and MmNi/sub 4.5/Mn/sub 0.5/ (MM : mischmetal) were coated with metallic copper thin layer by chemical plating method. Hydrogen storage capacities of alloys were not appreciably affected by the plating treatment. The capsulated alloy powders were easily pressed into pellets. The pellets obtained had high thermal conductivity and porosity enough to permeate hydrogen, leading to fast reaction kinetics. These were able to withstand more than 5,000 repeated hydriding-dehydriding cycles without disintegrating

  4. Method of forming capsules containing a precise amount of material

    Science.gov (United States)

    Grossman, M.W.; George, W.A.; Maya, J.

    1986-06-24

    A method of forming a sealed capsule containing a submilligram quantity of mercury or the like, the capsule being constructed from a hollow glass tube, by placing a globule or droplet of the mercury in the tube. The tube is then evacuated and sealed and is subsequently heated so as to vaporize the mercury and fill the tube therewith. The tube is then separated into separate sealed capsules by heating spaced locations along the tube with a coiled heating wire means to cause collapse spaced locations there along and thus enable separation of the tube into said capsules. 7 figs.

  5. A Study of Deposition Coatings Formed by Electroformed Metallic Materials.

    Directory of Open Access Journals (Sweden)

    Shoji Hayashi

    Full Text Available Major joining methods of dental casting metal include brazing and laser welding. However, brazing cannot be applied for electroformed metals since heat treatment could affect the fit, and, therefore, laser welding is used for such metals. New methods of joining metals that do not impair the characteristics of electroformed metals should be developed. When new coating is performed on the surface of the base metal, surface treatment is usually performed before re-coating. The effect of surface treatment is clinically evaluated by peeling and flex tests. However, these testing methods are not ideal for deposition coating strength measurement of electroformed metals. There have been no studies on the deposition coating strength and methods to test electroformed metals. We developed a new deposition coating strength test for electroformed metals. The influence of the negative electrolytic method, which is one of the electrochemical surface treatments, on the strength of the deposition coating of electroformed metals was investigated, and the following conclusions were drawn: 1. This process makes it possible to remove residual deposits on the electrodeposited metal surface layer. 2. Cathode electrolysis is a simple and safe method that is capable of improving the surface treatment by adjustments to the current supply method and current intensity. 3. Electrochemical treatment can improve the deposition coating strength compared to the physical or chemical treatment methods. 4. Electro-deposition coating is an innovative technique for the deposition coating of electroformed metal.

  6. Testing weak form efficiency on the capital markets in Serbia

    Directory of Open Access Journals (Sweden)

    Kršikapa-Rašajski Jovana

    2016-01-01

    Full Text Available Weak-form efficient market hypothesis assumes that participants on the financial markets are not able to achieve above-average returns based on historical prices. In order to establish the presence of a weak-form market efficiency in the Serbian market, the analysis incorporates daily data of the two most prominent indices on the Belgrade Stock Exchange, BELEX 15 and BELEX LINE, since their inception until 31 December 2014. Results obtained by the analysis and testing indicate that the capital market in Serbia can not be considered sufficiently efficient, more precisely it indicates that postulates assumed by the weak-form market efficiency are not fully met. Taking into account that the capital market in Serbia is still underdeveloped, primarily because of the small volumes, turnover and types of securities which are traded on the market, as well as the fact that it is not sufficiently regulated and transparent, lack of investors is noticeable. Consequently, analysis presented in this paper indicates a weak sustainability of the efficient market hypothesis in Serbia.

  7. Compressive strength test for cemented waste forms: validation process

    International Nuclear Information System (INIS)

    Haucz, Maria Judite A.; Candido, Francisco Donizete; Seles, Sandro Rogerio

    2007-01-01

    In the Cementation Laboratory (LABCIM), of the Development Centre of the Nuclear Technology (CNEN/CDTN-MG), hazardous/radioactive wastes are incorporated in cement, to transform them into monolithic products, preventing or minimizing the contaminant release to the environment. The compressive strength test is important to evaluate the cemented product quality, in which it is determined the compression load necessary to rupture the cemented waste form. In LABCIM a specific procedure was developed to determine the compressive strength of cement waste forms based on the Brazilian Standard NBR 7215. The accreditation of this procedure is essential to assure reproductive and accurate results in the evaluation of these products. To achieve this goal the Laboratory personal implemented technical and administrative improvements in accordance with the NBR ISO/IEC 17025 standard 'General requirements for the competence of testing and calibration laboratories'. As the developed procedure was not a standard one the norm ISO/IEC 17025 requests its validation. There are some methodologies to do that. In this paper it is described the current status of the accreditation project, especially the validation process of the referred procedure and its results. (author)

  8. Validation of a Short Form of an Indecision Test: The Vocational Assessment Test

    Science.gov (United States)

    Picard, France; Frenette, Éric; Guay, Frédéric; Labrosse, Julie

    2015-01-01

    The purpose of this research was to validate the scores of a short form of a new instrument, "l'Épreuve de décision vocationnelle, forme scolaire" (EDV-9S; vocational assessment test), which measures six indecision-related problems (lack of self-knowledge, lack of readiness, lack of method in decision making, lack of information,…

  9. Testing and Prediction of Limits of Lubrication in Sheet Metal Forming

    DEFF Research Database (Denmark)

    Ceron, Ermanno; Bay, Niels

    2012-01-01

    Increasing focus on environmental issues in industrial production has urged a number of sheet metal forming companies to look for new tribo-systems, here meaning the combination of tool_material/workpiece_material/lubricant, in order to substitute hazardous lubricants such as chlorinated paraffin...... laboratory and production tests as well as numerical analyses in order to evaluate and compare performance of the new tribo-systems. A part is selected from industrial production and analyzed by this methodology in order to substitute the existing tribo-system with a new one....... oils. Testing of new tribo-systems under production conditions is, however, very costly. For preliminary testing it is more feasible to introduce laboratory tests. In this paper a new methodology for testing new tribo-systems is presented. The methodology describes a series of investigations combining...

  10. Phase Change Material Heat Exchanger Life Test

    Science.gov (United States)

    Lillibridge, Sean; Stephan, Ryan

    2009-01-01

    Low Lunar Orbit (LLO) poses unique thermal challenges for the orbiting space craft, particularly regarding the performance of the radiators. The IR environment of the space craft varies drastically from the light side to the dark side of the moon. The result is a situation where a radiator sized for the maximal heat load in the most adverse situation is subject to freezing on the dark side of the orbit. One solution to this problem is to implement Phase Change Material (PCM) Heat Exchangers. PCM Heat Exchangers act as a "thermal capacitor," storing thermal energy when there is too much being produced by the space craft to reject to space, and then feeding that energy back into the thermal loop when conditions are more favorable. Because they do not use an expendable resource, such as the feed water used by sublimators and evaporators, PCM Heat Exchangers are ideal for long duration LLO missions. In order to validate the performance of PCM Heat Exchangers, a life test is being conducted on four n-Pentadecane, carbon filament heat exchangers. Fluid loop performance, repeatability, and measurement of performance degradation over 2500 melt-freeze cycles will be performed.

  11. Autoclave Testing on Zirconium Alloy Materials

    International Nuclear Information System (INIS)

    Hoffmann, Petra-Britt; Sell, Hans-Juergen; Garzarolli, Friedrich

    2012-09-01

    The corrosion of Zirconium components like fuel rod claddings and spacer grids is limiting lifetime and duty of these components. In Pressurized and Boiling Water Reactors (PWR and BWR), different corrosion phenomena are of interest. Although in-pile experience is the final proof for a material development, significant experience was gained by autoclave tests, trying to simulate in-pile conditions but reducing time for return of experience by increased temperatures. For PWR application, the uniform corrosion is studied in water at up to 370 deg. C and in high pressure steam at 400 deg. C, and for BWR, the nodular corrosion is studied in high pressure steam at 500-520 deg. C. Particular attention has to be given to the corrosion media, because oxidative traces in the water can significantly affect the corrosion response. An extensive air removal is thus important for all corrosion tests. This links to the different water chemistry conditions that have been investigated as separate effects otherwise difficult to separate under in-pile conditions. Uniform corrosion in 350 deg. C water is usually a cyclic process with repeated rate transitions. In addition, at high exposure times an acceleration of corrosion can occur, e.g. for Zr-Sn alloys with a high Sn content. In 400 deg. C steam, corrosion rate decreases somewhat with increasing time. Uniform corrosion rate of Zr alloys depends on their Sn- and Fe+Cr contents as well as on their annealing parameters with a similar trend as in PWR and on their yield strength, however with an opposite trend compared to BWR conditions. Nodular corrosion of BWR alloys depends on the annealing parameter with a similar trend as in PWR and out-of-reactor also significantly on the Fe+Cr content. The hydrogen pickup fraction (HPUF) depends largely on details of the water chemistry and can particularly depend on autoclave degassing and probably also on autoclave contaminations. Thus any HPUF value from out-of- pile corrosion tests is only

  12. Machinable glass-ceramics forming as a restorative dental material.

    Science.gov (United States)

    Chaysuwan, Duangrudee; Sirinukunwattana, Krongkarn; Kanchanatawewat, Kanchana; Heness, Greg; Yamashita, Kimihiro

    2011-01-01

    MgO, SiO(2), Al(2)O(3), MgF(2), CaF(2), CaCO(3), SrCO(3), and P(2)O(5) were used to prepare glass-ceramics for restorative dental materials. Thermal properties, phases, microstructures and hardness were characterized by DTA, XRD, SEM and Vickers microhardness. Three-point bending strength and fracture toughness were applied by UTM according to ISO 6872: 1997(E). XRD showed that the glass crystallized at 892°C (second crystallization temperature+20°C) for 3 hrs consisted mainly of calcium-mica and fluorapatite crystalline phases. Average hardness (3.70 GPa) closely matched human enamel (3.20 GPa). The higher fracture toughness (2.04 MPa√m) combined with the hardness to give a lower brittleness index (1.81 µm(-1/2)) which indicates that they have exceptional machinability. Bending strength results (176.61 MPa) were analyzed by Weibull analysis to determine modulus value (m=17.80). Machinability of the calcium mica-fluorapatite glass-ceramic was demonstrated by fabricating with CAD/CAM.

  13. Engineer Research and Development Center's Materials Testing Center (MTC)

    Data.gov (United States)

    Federal Laboratory Consortium — The Engineer Research and Development Center's Materials Testing Center (MTC) is committed to quality testing and inspection services that are delivered on time and...

  14. Order of 25 March 1981 concerning the approval of special form radioactive materials in sealed sources

    International Nuclear Information System (INIS)

    1981-01-01

    This order determines the models of sealed sources which constitute special form radioactive materials within the meaning of the Order of 24 November 1977 concerning the characteristics of such materials. (NEA) [fr

  15. Testing and evaluation of solidified high-level waste forms

    International Nuclear Information System (INIS)

    De Batist Al, R.

    1983-01-01

    In addition to the preceding programme of the European Atomic Energy Community two new borosilicate glass compositions have been introduced. The chemical stability of these waste forms, in particular with respect to geological disposal conditions, is examined as well as effects of alpha-radiation and of devitrification. Leaching studies include theoretical and experimental investigations of the basic leaching mechanisms, the measurement of the leach rates of a number of critical radioisotopes and the influence on the leach rate of various parameters such as temperature, pressure pH and duration. Of particular interest is the simulation of repository conditions. Prelimimary results are described related to various mineral waters, granite and salt solutions. The surface layers generated on the waste forms during corrosion are investigated in detail using various experimental techniques such as scanning electron microscopy, X-ray analysis and alpha particle energy loss spectra measurements. The radiation stability was further tested by continuing investigations of the samples doped with 238 Pu in the course of the previous programme; density and leach rate variations were measured. Effects on the leach rate of devitrification resulting from various heat treatments of active glass samples were also investigated

  16. Proposed waste form performance criteria and testing methods for low-level mixed waste

    International Nuclear Information System (INIS)

    Franz, E.M.; Fuhrmann, M.; Bowerman, B.; Bates, S.; Peters, R.

    1994-08-01

    This document describes proposed waste form performance criteria and testing method that could be used as guidance in judging viability of a waste form as a physico-chemical barrier to releases of radionuclides and RCRA regulated hazardous components. It is assumed that release of contaminants by leaching is the single most important property by which the effectiveness of a waste form is judged. A two-tier regimen is proposed. The first tier includes a leach test required by the Environmental Protection Agency and a leach test designed to determine the net forward leach rate for a variety of materials. The second tier of tests are to determine if a set of stresses (i.e., radiation, freeze-thaw, wet-dry cycling) on the waste form adversely impact its ability to retain contaminants and remain physically intact. It is recommended that the first tier tests be performed first to determine acceptability. Only on passing the given specifications for the leach tests should other tests be performed. In the absence of site-specific performance assessments (PA), two generic modeling exercises are described which were used to calculate proposed acceptable leach rates

  17. Waste Acceptance Testing of Secondary Waste Forms: Cast Stone, Ceramicrete and DuraLith

    International Nuclear Information System (INIS)

    Mattigod, Shas V.; Westsik, Joseph H.; Chung, Chul-Woo; Lindberg, Michael J.; Parker, Kent E.

    2011-01-01

    all the waste forms had leachability indices better than the target LI > 9 for technetium; (2) Rhenium diffusivity: Cast Stone 2M specimens, when tested using EPA 1315 protocol, had leachability indices better than the target LI > 9 for technetium based on rhenium as a surrogate for technetium. All other waste forms tested by ANSI/ANS 16.1, ASTM C1308, and EPA 1315 test methods had leachability indices that were below the target LI > 9 for Tc based on rhenium release. These studies indicated that use of Re(VII) as a surrogate for 99Tc(VII) in low temperature secondary waste forms containing reductants will provide overestimated diffusivity values for 99Tc. Therefore, it is not appropriate to use Re as a surrogate 99Tc in future low temperature waste form studies. (3) Iodine diffusivity: ANSI/ANS 16.1, ASTM C1308, and EPA 1315 tests indicated that the three waste forms had leachability indices that were below the target LI > 11 for iodine. Therefore, it may be necessary to use a more effective sequestering material than silver zeolite used in two of the waste forms (Ceramicrete and DuraLith); (4) Sodium diffusivity: All the waste form specimens tested by the three leach methods (ANSI/ANS 16.1, ASTM C1308, and EPA 1315) exceeded the target LI value of 6; (5) All three leach methods (ANS 16.1, ASTM C1308 and EPA 1315) provided similar 99Tc diffusivity values for both short-time transient diffusivity effects as well as long-term (∼90 days) steady diffusivity from each of the three tested waste forms (Cast Stone 2M, Ceramicrete and DuraLith). Therefore, any one of the three methods can be used to determine the contaminant diffusivities from a selected waste form.

  18. Waste Acceptance Testing of Secondary Waste Forms: Cast Stone, Ceramicrete and DuraLith

    Energy Technology Data Exchange (ETDEWEB)

    Mattigod, Shas V.; Westsik, Joseph H.; Chung, Chul-Woo; Lindberg, Michael J.; Parker, Kent E.

    2011-08-12

    all the waste forms had leachability indices better than the target LI > 9 for technetium; (2) Rhenium diffusivity: Cast Stone 2M specimens, when tested using EPA 1315 protocol, had leachability indices better than the target LI > 9 for technetium based on rhenium as a surrogate for technetium. All other waste forms tested by ANSI/ANS 16.1, ASTM C1308, and EPA 1315 test methods had leachability indices that were below the target LI > 9 for Tc based on rhenium release. These studies indicated that use of Re(VII) as a surrogate for 99Tc(VII) in low temperature secondary waste forms containing reductants will provide overestimated diffusivity values for 99Tc. Therefore, it is not appropriate to use Re as a surrogate 99Tc in future low temperature waste form studies. (3) Iodine diffusivity: ANSI/ANS 16.1, ASTM C1308, and EPA 1315 tests indicated that the three waste forms had leachability indices that were below the target LI > 11 for iodine. Therefore, it may be necessary to use a more effective sequestering material than silver zeolite used in two of the waste forms (Ceramicrete and DuraLith); (4) Sodium diffusivity: All the waste form specimens tested by the three leach methods (ANSI/ANS 16.1, ASTM C1308, and EPA 1315) exceeded the target LI value of 6; (5) All three leach methods (ANS 16.1, ASTM C1308 and EPA 1315) provided similar 99Tc diffusivity values for both short-time transient diffusivity effects as well as long-term ({approx}90 days) steady diffusivity from each of the three tested waste forms (Cast Stone 2M, Ceramicrete and DuraLith). Therefore, any one of the three methods can be used to determine the contaminant diffusivities from a selected waste form.

  19. Inpile (in PWR) testing of cladding materials

    International Nuclear Information System (INIS)

    Hahn, R.; Jeong, Y. H.; Baek, B. J.; Kim, K. H.; Kim, S. J.; Choi, B. K.; Kim, J. M.

    1999-04-01

    As an introduction, the reasons to perform inpile tests are depicted. An overview over general inpile test procedure is given, and test details which are necessary for the development of new alloys for high burnup claddings, like sample geometries and measuring techniques for inpile corrosion testing, are described in detail. Tests for the creep and length change behavior of cladding tubes are described briefly. Finally, conclusions are drawn and literature citations for further test details are given. (author). 9 refs., 2 tabs., 17 figs

  20. Needs of in-situ materials testing under neutron irradiation

    International Nuclear Information System (INIS)

    Noda, K.; Hishinuma, A.; Kiuchi, K.

    1989-01-01

    Under neutron irradiation, the component atoms of materials are displaced as primary knock-on atoms, and the energy of the primary knock-on atoms is consumed by electron excitation and nuclear collision. Elementary irradiation defects accumulate to form damage structure including voids and bubbles. In situ test under neutron irradiation is necessary for investigating into the effect of irradiation on creep behavior, the electric properties of ceramics, transport phenomena and so on. The in situ test is also important to investigate into the phenomena related to the chemical reaction with environment during irradiation. Accelerator type high energy neutron sources are preferable to fission reactors. In this paper, the needs and the research items of in situ test under neutron irradiation using a D-Li stripping type high energy neutron source on metallic and ceramic materials are described. Creep behavior is one of the most important mechanical properties, and depends strongly on irradiation environment, also it is closely related to microstructure. Irradiation affects the electric conductibity of ceramics and also their creep behavior. In this way, in situ test is necessary. (K.I.)

  1. Design of online testing system of material radiation resistance

    International Nuclear Information System (INIS)

    Wan Junsheng; He Shengping; Gao Xinjun

    2014-01-01

    The capability of radiation resistance is important for some material used in some specifically engineering fields. It is the same principal applied in all existing test system that compares the performance parameter after radiation to evaluate material radiation resistance. A kind of new technique on test system of material radiation resistance is put forward in this paper. Experimentation shows that the online test system for material radiation resistance works well and has an extending application outlook. (authors)

  2. Test and evaluation of pressure vessel materials

    International Nuclear Information System (INIS)

    Choi, Sun Pil; Hong, Jun Hwa; Nho, Kye Hoe; Han, Dae June; Chi, Se Hwan

    1985-01-01

    We have prepared a method for analyzing the Charpy impact test data, which is deduced from ''the standard anelastic solid equation''. The theoretical expression for the absorbed energy is in a form of W=Wsub(U)+(Wsub(R)-Wsub(U))/ [1+(ωtau) 2 ] showing the Debye characteristics and where tau is given by the Arrhenius equation; tau=tau 0 exp(ΔH/ksub(B)T). Four measurable parameters, at the present stage, can characterize the dynamic hehavior of cracking (Charpy impact result). They are the upper shelf energy(Wsub(R), the lower shelf energy (Wsub(U)), the activation energy of crack (ΔH, and wtau(0) where w tau(0) are the resonance frequency of the specimen and the jumping pre-exponential factor of propagating crack respectively. However the states of R (relaxed) and U (un-relaxed) should be defined from reasonable physical conditions in the future and it is possible that Wsub(U) is small enough to be taken as zero. The effects of irradiation, alloying elements, and heat treatment on the impact results should be interpreted as changes in the above characteristic parameters. The present method has been applied for weld metal of SA 508-2 irradiated up to a fluence of 4x10 18 n/cm 2 , E>1.0Mev, resulting in about 29% decrease in Wsub(R), negligible change in Wsub(U), 5.6 times increase in ωtau 0 , and no change in ΔH. This seems to indicate that irradiation degrades an average value of YOUNG's modulus so that cracks propagate more easily and it does not effect on breaking the lattice bond. However much more systematic analyses should be necessary for correct judgment. It is concluded that the present method is quite adequate for analyzing the Charpy impact data even though plastic deformation in the specimen was not considered separately so that the method should be applied for various cases in order to evaluate the proper trend of effects of irradiation, alloying elements, and heat treatment on the Charpy impact results. (Author)

  3. Standard test method for static leaching of monolithic waste forms for disposal of radioactive waste

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This test method provides a measure of the chemical durability of a simulated or radioactive monolithic waste form, such as a glass, ceramic, cement (grout), or cermet, in a test solution at temperatures <100°C under low specimen surface- area-to-leachant volume (S/V) ratio conditions. 1.2 This test method can be used to characterize the dissolution or leaching behaviors of various simulated or radioactive waste forms in various leachants under the specific conditions of the test based on analysis of the test solution. Data from this test are used to calculate normalized elemental mass loss values from specimens exposed to aqueous solutions at temperatures <100°C. 1.3 The test is conducted under static conditions in a constant solution volume and at a constant temperature. The reactivity of the test specimen is determined from the amounts of components released and accumulated in the solution over the test duration. A wide range of test conditions can be used to study material behavior, includin...

  4. Testing and evaluation of solidified high-level waste forms

    International Nuclear Information System (INIS)

    Engelmann, C.

    1984-01-01

    The report describes research by several laboratories on the behaviour, in aqueous and salt environments, of borosilicate glass ceramics proposed for the solidification of nuclear wastes by the European Community. Results were obtained on inactive simulates, doped materials, and on borosilicate glass containing real radioactive waste. The influence of many important parameters were studied: leaching mode, nature of the leachant, pH, pressure, temperature, duration of the treatment, etc. The results of tests lasting for as little as a few hours or for as long as several hundred days, at temperatures up to 200 0 C or under pressures up to 200 bars, are presented. Numerous analytical techniques (ESCA, EMP, IRR, SEM, etc.) were used to determine the structure and the chemical composition of the altered layer developed by hydration at the glass surface. Information is also given on physical properties of the borosilicate glass: crystallization phase separation, alpha-irradiation stability, mechanical and thermal stability, etc. Finally, preliminary results on the structure and composition of hollandite ceramics are given

  5. Composite materials and bodies including silicon carbide and titanium diboride and methods of forming same

    Science.gov (United States)

    Lillo, Thomas M.; Chu, Henry S.; Harrison, William M.; Bailey, Derek

    2013-01-22

    Methods of forming composite materials include coating particles of titanium dioxide with a substance including boron (e.g., boron carbide) and a substance including carbon, and reacting the titanium dioxide with the substance including boron and the substance including carbon to form titanium diboride. The methods may be used to form ceramic composite bodies and materials, such as, for example, a ceramic composite body or material including silicon carbide and titanium diboride. Such bodies and materials may be used as armor bodies and armor materials. Such methods may include forming a green body and sintering the green body to a desirable final density. Green bodies formed in accordance with such methods may include particles comprising titanium dioxide and a coating at least partially covering exterior surfaces thereof, the coating comprising a substance including boron (e.g., boron carbide) and a substance including carbon.

  6. Corrosion tests with uranium- and plutonium-loaded ceramic waste forms

    International Nuclear Information System (INIS)

    Morss, L. R.; Johnson, S. G.; Ebert, W. L.; DiSanto, T.; Frank, S. M.; Holly, J. L.; Kropf, A. J.; Mertz, C. J.; O'Holleran, T. P.; Richmann, M. K.; Sinkler, W.; Tsai, Y.; Warren, A. R.; Noy, M.

    2003-01-01

    Tests were conducted with ceramic waste form (CWF) materials that contained small amounts of uranium and plutonium to study their release behavior as the CWF corroded. Materials made using the hot isostatic press (HIP) and pressureless consolidation (PC) methods were examined and tested. Four different materials were made using the HIP method with two salts having different U:Pu mole ratios and two zeolite reagents having different residual water contents. Tests with the four HIP U,Pu-loaded CWF materials were conducted at 90 and 120 C, at CWF-to-water mass ratios of 1:10 and 1:20, and for durations between 7 and 365 days. Materials made using two PC processing conditions were also tested. Tests with the two PC U,Pu-loaded CWF materials were conducted at 90 and 120 C, at a CWF-to-water mass ratio of 1:10, and for durations between 7 and 182 days. The releases of matrix elements, U, and Pu in tests conducted under different test conditions and with different materials are compared to evaluate the effects of composition and processing conditions on the release behavior of U and Pu and the chemical durabilities of the different materials. The distributions of released elements among the fractions that were dissolved, in colloidal form in the solution, and fixed to test vessel walls were measured and compared. Characterization of Pu-bearing colloidal particles recovered from the test solutions using solids analysis techniques are also reported. The principal findings from this study are: (1) The release of U and Pu is about 10X less than the release of Si and 50X less than the release of B under all test conditions. This implies that U and Pu are in a phase that is less soluble than the sodalite and binder glass matrix. (2) Almost all of the plutonium that is released from U,Pu-loaded CWF is present either as colloidal-sized particles in the size range between 5 and 100 nm in the test solution (about 15% of the total) or becomes fixed on stainless steel test vessel

  7. Cesium release from ceramic waste form materials in simulated canister corrosion product containing solutions

    Energy Technology Data Exchange (ETDEWEB)

    Vittorio, Luca; Drabarek, Elizabeth; Chronis, Harriet; Griffith, Christopher S

    2004-07-01

    It has previously been demonstrated that immobilization of Cs{sup +} and/or Sr{sup 2+} sorbed on hexagonal tungsten oxide bronze (HTB) adsorbent materials can be achieved by heating the materials in air at temperatures in the range 500 - 1300 deg C. Highly crystalline powdered HTB materials formed by heating at 800 deg C show leach characteristics comparable to Cs-containing hot-pressed hollandites in the pH range from 0 to 12. As a very harsh leaching test, and also to model in a basic manner, leaching in the presence of canister corrosion products in oxidising environments, leaching of the bronzoid phases has been undertaken in Fe(NO{sub 3}){sub 3} solutions of increasing concentration. This is done in comparison with Cs -hollandite materials in order to compare the leaching characteristics of these two materials under such conditions. Both the Cs-loaded bronze and hollandite materials leach severely in Fe(NO{sub 3}){sub 3} losing virtually all of the immobilized Cs in a period of four days at 150 deg C. Total release of Cs and conversion of hollandite to titanium and iron titanium oxides begins to be observed at relatively low concentrations and is virtually complete after four days reaction in 0.5 mol/L Fe(NO{sub 3}){sub 3}. In the case of the bronze, all of the Cs is also extracted but the HTB structure is preserved. The reaction presumably involves an ion-exchange mechanism and iron oxide with a spinel structure is also observed at high Fe concentrations. (authors)

  8. Cesium release from ceramic waste form materials in simulated canister corrosion product containing solutions

    International Nuclear Information System (INIS)

    Vittorio, Luca; Drabarek, Elizabeth; Chronis, Harriet; Griffith, Christopher S.

    2004-01-01

    It has previously been demonstrated that immobilization of Cs + and/or Sr 2+ sorbed on hexagonal tungsten oxide bronze (HTB) adsorbent materials can be achieved by heating the materials in air at temperatures in the range 500 - 1300 deg C. Highly crystalline powdered HTB materials formed by heating at 800 deg C show leach characteristics comparable to Cs-containing hot-pressed hollandites in the pH range from 0 to 12. As a very harsh leaching test, and also to model in a basic manner, leaching in the presence of canister corrosion products in oxidising environments, leaching of the bronzoid phases has been undertaken in Fe(NO 3 ) 3 solutions of increasing concentration. This is done in comparison with Cs -hollandite materials in order to compare the leaching characteristics of these two materials under such conditions. Both the Cs-loaded bronze and hollandite materials leach severely in Fe(NO 3 ) 3 losing virtually all of the immobilized Cs in a period of four days at 150 deg C. Total release of Cs and conversion of hollandite to titanium and iron titanium oxides begins to be observed at relatively low concentrations and is virtually complete after four days reaction in 0.5 mol/L Fe(NO 3 ) 3 . In the case of the bronze, all of the Cs is also extracted but the HTB structure is preserved. The reaction presumably involves an ion-exchange mechanism and iron oxide with a spinel structure is also observed at high Fe concentrations. (authors)

  9. Advanced Mechanical Testing of Sandwich Materials

    DEFF Research Database (Denmark)

    Hayman, Brian; Berggreen, Christian; Jenstrup, Claus

    2008-01-01

    An advanced digital optical system has been used to measure surface strains on sandwich face and core specimens tested in a project concerned with improved criteria for designing sandwich X-joints. The face sheet specimens were of glass reinforced polyester and were tested in tension. The core sp...

  10. TESTING ANTIMICROBIAL EFFICACY ON POROUS MATERIALS

    Science.gov (United States)

    The efficacy of antimicrobial treatments to eliminate or control biological growth in the indoor environment can easily be tested on nonporous surfaces. However, the testing of antimicrobial efficacy on porous surfaces, such as those found in the indoor environment [i.e., gypsum ...

  11. Reliability testing of the Danish version of the Kidney Disease Quality of Life Short Form

    DEFF Research Database (Denmark)

    Molsted, Stig; Heaf, James; Prescott, Lotte

    2005-01-01

    . MATERIAL AND METHODS: Translation into Danish and back-translation into English were performed. Pilot, field and internal consistency reliability tests were performed. RESULTS: Cronbach's alpha coefficients for the internal reliability test ranged from 0.77 to 0.93 for the eight generic scales. In a test......OBJECTIVE: The questionnaire Kidney Disease Quality of Life Short Form version 1.3 (KDQOL-SF) is valuable for assessing the health-related quality of life in patients treated with chronic dialysis. The aim of this study was to translate and test the reliability of the KDQOL-SF for use in Denmark...... involving all patients, two of the disease-specific scales had Cronbach's alpha coefficients of test of the scores...

  12. Testing and evaluation of solidified high-level waste forms. Joint annual progress report 1983

    International Nuclear Information System (INIS)

    Malow, G.

    1985-01-01

    A second joint programme of the European Atomic Community was started in 1981 under the indirect action programme (1980-84), Action No 5 'Testing and evaluation of the properties of various potential materials for immobilizing high activity waste'. The overall objective of the research is to test various European potential solidified high-level radioactive waste forms so as to predict their behaviour after disposal. The most important aspect is to produce data to calculate the activity release from the waste products under the attack of various aqueous solutions. The experiments were partly performed under waste repository relevant conditions and partly under simplified conditions for investigating basic activity release mechanisms. The topics of the programme were: (i) studies of basic leaching mechanisms; (ii) studies of hydrothermal leaching and surface attack of waste glasses; (iii) leach test carried out in contact with granite at low water flow rates; (iv) static leach tests with specimen surrounded by canister and backfill materials; (v) specific isotope leach tests in slowly flowing water; (vi) leach test of actinide spiked samples; (vii) leach tests of highly radioactive samples; (viii) leach tests of alpha radiation stability; (ix) studies of mechanical stability; (x) studies of mineral phases as model compounds and phase relations

  13. Aircraft Carrier Exposure Testing of Aircraft Materials

    National Research Council Canada - National Science Library

    Lee, Eui

    2004-01-01

    .... Test and control specimens were affixed on exposure racks and installed on aircraft carriers to compare adhesive bonding primers for aluminum and to determine the static property behavior of various...

  14. Cibachrome testing. [photographic processing and printing materials

    Science.gov (United States)

    Weinstein, M. S.

    1974-01-01

    The use of Cibachrome products as a solution to problems encountered when contact printing Kodak film type SO-397 onto Kodak Ektrachrome color reversal paper type 1993 is investigated. A roll of aerial imagery consisting of Kodak film types SO-397 and 2443 was contact printed onto Cibachrome and Kodak materials and compared in terms of color quality, resolution, cost, and compatibility with existing equipment and techniques. Objective measurements are given in terms of resolution and sensitometric response. Comparison prints and transparencies were viewed and ranked according to overall quality and aesthetic appeal. It is recommended that Cibachrome Print material be used in place of Kodak Ektachrome paper because it is more easily processed, the cost is equivalent, and it provides improved resolution, color quality, and image fade resistance.

  15. Material test data of SUS304 welded joints

    Energy Technology Data Exchange (ETDEWEB)

    Asayama, Tai [Japan Nuclear Cycle Development Inst., Oarai, Ibaraki (Japan). Oarai Engineering Center; Kawakami, Tomohiro [Nuclear Energy System Incorporation, Tokyo (Japan)

    1999-10-01

    This report summarizes the material test data of SUS304 welded joints. Numbers of the data are as follows: Tensile tests 71 (Post-irradiation: 39, Others: 32), Creep tests 77 (Post-irradiation: 20, Others: 57), Fatigue tests 50 (Post-irradiation: 0), Creep-fatigue tests 14 (Post-irradiation: 0). This report consists of the printouts from 'the structural material data processing system'. (author)

  16. Material testing in a linear theta pinch

    International Nuclear Information System (INIS)

    Alani, R.; Azodi, H.; Naraghi, M.; Safaii, B.; Torabi-Fard, A.

    1983-01-01

    The interaction of stainless steel 316 and Inconel 625 alloys has been investigated with a thermonuclear-like plasma, n = 10 16 cm -3 and Tsub(i) = 1 keV, generated in the Alvand I linear theta pinch. The average power flux is 10 7 W/cm 2 and the interaction time nearly one μs. A theoretical analysis based on the formation of an observed impurity layer near the material, has been used to determine the properties of the impurity layer and the extent of the damage on the material. Although arcing has been observed, the dominant damage mechanism has been assessed to be due to evaporation. Exposure to single shots has produced very heavily defective areas and even surface cracks on the SS 316 sample, but no cracks were observed on Inconel 625 after exposure to even 18 shots. On the basis of temperature rise and evaporation a comparison is made among materials exposed to plasmas of a theta pinch, shock tube, present generation tokamak and an anticipated tokamak reactor. (orig.)

  17. Development of an accelerated leach test(s) for low-level waste forms

    International Nuclear Information System (INIS)

    Dougherty, D.R.; Fuhrmann, M.; Colombo, P.

    1986-01-01

    An accelerated leach test(s) is being developed to predict long-term leaching behavior of low-level radioactive waste (LLW) forms in their disposal environments. As necessary background, a literature survey of reported leaching mechanisms, available mathematical models and factors that affect leaching of LLW forms has been compiled. Mechanisms which have been identified include diffusion, dissolution, ion exchange, corrosion and surface effects. A computerized data base of LLW leaching data and mathematical models is being developed. The data is being used for model evaluation by curve fitting and statistical analysis according to standard procedures of statistical quality control. Long-term leach tests on portland cement, bitumen and vinyl ester-styrene (VES) polymer waste forms are underway which are designed to identify and evaluate factors that accelerate leaching without changing the mechanisms. Initial results on the effect of temperature on leachability indicate that the leach rates of cement and VES waste forms increase with increasing temperature, whereas, the leach rate of bitumen is little affected

  18. Development of an accelerated leach test(s) for low-level waste forms

    International Nuclear Information System (INIS)

    Dougherty, D.R.; Fuhrmann, M.; Colombo, P.

    1985-01-01

    An accelerated leach test(s) is being developed to predict long-term leaching behavior of low-level radioactive waste (LLW) forms in their disposal environments. As necessary background, a literature survey of reported leaching mechanisms, available mathematical models and factors that affect leaching of LLW forms has been compiled. Mechanisms which have been identified include diffusion, dissolution, ion exchange, corrosion and surface effects. A computerized data base of LLW leaching data and mathematical models is being developed. The data is being used for model evaluation by curve fitting and statistical analysis according to standard procedures of statistical quality control. Long-term leach tests on portland cement, bitumen and vinyl ester-styrene (VES) polymer waste forms are underway which are designed to identify and evaluate factors that accelerate leaching without changing the mechanisms. Initial results on the effect of temperature on leachability indicate that the leach rates of cement and VES waste forms increase with increasing temperature, whereas, the leach rate of bitumen is little affected. 10 refs., 5 figs

  19. State-of-the-art review of materials properties of nuclear waste forms

    International Nuclear Information System (INIS)

    Mendel, J.E.; Nelson, R.D.; Turcotte, R.P.; Gray, W.J.; Merz, M.D.; Roberts, F.P.; Weber, W.J.; Westsik, J.H. Jr.; Clark, D.E.

    1981-04-01

    The Materials Characterization Center (MCC) was established at the Pacific Northwest Laboratory to assemble a standardized nuclear waste materials data base for use in research, systems and facility design, safety analyses, and waste management decisions. This centralized data base will be provided through the means of a Nuclear Waste Materials Handbook. The first issue of the Handbook will be published in the fall of 1981 in looseleaf format so that it can be updated as additional information becomes available. To ensure utmost reliability, all materials data appearing in the Handbook will be obtained by standard procedures defined in the Handbook and approved by an independent Materials Review Board (MRB) comprised of materials experts from Department of Energy laboratories and from universities and industry. In the interim before publication of the Handbook there is need for a report summarizing the existing materials data on nuclear waste forms. This review summarizes materials property data for the nuclear waste forms that are being developed for immobilization of high-level radioactive waste. It is intended to be a good representation of the knowledge concerning the properties of HLW forms as of March 1981. The table of contents lists the following topics: introduction which covers waste-form categories, and important waste-form materials properties; physical properties; mechanical properties; chemical durability; vaporization; radiation effects; and thermal phase stability

  20. Creep property testing of energy power plant component material

    International Nuclear Information System (INIS)

    Nitiswati, Sri; Histori; Triyadi, Ari; Haryanto, Mudi

    1999-01-01

    Creep testing of SA213 T12 boiler piping material from fossil plant, Suralaya has been done. The aim of the testing is to know the creep behaviour of SA213 T12 boiler piping material which has been used more than 10 yeas, what is the material still followed ideal creep curve (there are primary stage, secondary stage, and tertiary stage). This possibility could happened because the material which has been used more than 10 years usually will be through ageing process because corrosion. The testing was conducted in 520 0C, with variety load between 4% until 50% maximum allowable load based on strength of the material in 520 0C

  1. Recent developments in dynamic testing of materials

    Directory of Open Access Journals (Sweden)

    Seidt J.D.

    2012-08-01

    Full Text Available Three new testing configurations that have been developed since the last DYMAT conference in 2009 are presented. The first is high strain rate testing of Kevlar cloth and Kevlar yarn in a tensile Split Hopkinson Bar (SHB apparatus. The Kevlar cloth/yarn is attached to the bars by specially designed adaptors that keep the impedance constant. In addition to determining the specimen’s stress and strain from the recorded waves in the bars the deformations are also measured with Digital Image Correlation (DIC. The second testing configuration is a high strain rate shear test for sheet metal. The experiment is done by using a flat notched specimen in a tensile SHB apparatus. The shear strain is measured using DIC within the notch and on the boundary. The third development is a compression apparatus for testing at intermediate strain rates ranging from 20 s−1 to 200 s−1. The apparatus is a combination of a hydraulic actuator and a compression SHB. The stress in the specimen is determined from the stress wave in a very long transmitter bar and the strain and strain rate is determined by using DIC. The results show clean stress strain curves (no ringing.

  2. Disk-bend ductility tests for irradiated materials

    International Nuclear Information System (INIS)

    Klueh, R.L.; Braski, D.N.

    1984-01-01

    We modified the HEDL disk-bend test machine and are using it to qualitatively screen alloys that are susceptible to embrittlement caused by irradiation. Tests designed to understand the disk-bend test in relation to a uniaxial test are discussed. Selected results of tests of neutron-irradiated material are also presented

  3. Electrochemical Corrosion Testing of Neutron Absorber Materials

    International Nuclear Information System (INIS)

    Tedd Lister; Ron Mizia; Arnold Erickson; Tammy Trowbridge

    2007-01-01

    This report summarizes the results of crevice-corrosion tests for six alloys in solutions representative of ionic compositions inside the Yucca Mountain waste package should a breech occur. The alloys in these tests are Neutronit A978a (ingot metallurgy, hot rolled), Neutrosorb Plus 304B4 Grade Ab (powder metallurgy, hot rolled), Neutrosorb Plus 304B5 Grade Ab (powder metallurgy, hot rolled), Neutrosorb Plus 304B6 Grade Ab (powder metallurgy, hot rolled), Ni-Cr-Mo-Gd alloy2 (ingot metallurgy, hot rolled), and Alloy 22 (ingot metallurgy, hot rolled)

  4. Study on metal material corrosion behavior of packaging of cement solidified form

    International Nuclear Information System (INIS)

    He Zhouguo; Lin Meiqiong; Fan Xianhua

    1997-01-01

    The corrosion behavior of A3 carbon steel is studied by the specimens that are exposed to atmosphere, embedded in cement solidified form or immersed in corrosion liquid. The corrosion rate is determined by mass change of the specimens. In order to compare the corrosion resistant performance of various coatings, the specimens painted with various material such as epoxide resin, propionic acid resin, propane ether resin and Ti-white paint are tested. The results of the tests show that corrosion rate of A3 carbon steel is less than 10 -3 mm·a -1 in the atmosphere and the cement solidified from, less than 0.1 mm·a -1 in the corrosion liquids, and pH value in the corrosion liquids also affect the corrosion rate of A3 carbon steel. The corrosion resistant performance of Ti-white paint is better than that of other paints. So, A3 carbon steel as packaging material can meet the requirements during storage

  5. Test system for thermoelectric modules and materials

    Czech Academy of Sciences Publication Activity Database

    Hejtmánek, Jiří; Knížek, Karel; Švejda, V.; Horna, P.; Sikora, M.

    2014-01-01

    Roč. 43, č. 10 (2014), s. 3726-3732 ISSN 0361-5235 R&D Projects: GA ČR GA13-17538S Institutional support: RVO:68378271 Keywords : thermoelectric power module * automatic thermoelectric testing setup * heat flow measurement * power generation * heat recovery Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.798, year: 2014

  6. Active Waste Materials Corrosion and Decontamination Tests

    International Nuclear Information System (INIS)

    Danielson, M.J.; Elmore, M.R.; Pitman, S.G.

    2000-01-01

    Stainless steel alloys, 304L and 316L, were corrosion tested in representative radioactive samples of three actual Hanford tank waste solutions (Tanks AW-101, C-104, AN-107). Both the 304L and 316L exhibited good corrosion performance when immersed in boiling waste solutions. The maximum general corrosion rate was 0.015 mm/y (0.60 mils per year). Generally, the 304L had a slightly higher rate than the 316L. No localized attack was observed after 122 days of testing in the liquid phase, liquid/vapor phase, or vapor phase. Radioactive plate-out decontamination tests indicated that a 24-hour exposure to 1 und M HNO 3 could remove about 99% of the radioactive components in the metal film when exposed to the C-104 and AN-107 solutions. The decontamination results are less certain for the AW-101 solution, since the initial contamination readings exceeded the capacity of the meter used for this test

  7. Approved reference and testing materials for use in Nuclear Waste Management Research and Development Programs

    International Nuclear Information System (INIS)

    Mellinger, G.B.; Daniel, J.L.

    1984-12-01

    This document, addressed to members of the waste management research and development community summarizes reference and testing materials available from the Nuclear Waste Materials Characterization Center (MCC). These materials are furnished under the MCC's charter to distribute reference materials essential for quantitative evaluation of nuclear waste package materials under development in the US. Reference materials with known behavior in various standard waste management related tests are needed to ensure that individual testing programs are correctly performing those tests. Approved testing materials are provided to assist the projects in assembling materials data base of defensible accuracy and precision. This is the second issue of this publication. Eight new Approved Testing Materials are listed, and Spent Fuel is included as a separate section of Standard Materials because of its increasing importance as a potential repository storage form. A summary of current characterization information is provided for each material listed. Future issues will provide updates of the characterization status of the materials presented in this issue, and information about new standard materials as they are acquired. 7 references, 1 figure, 19 tables

  8. Cold crucible induction melter test for crystalline ceramic waste form fabrication: A feasibility assessment

    Energy Technology Data Exchange (ETDEWEB)

    Amoroso, Jake W., E-mail: jake.amoroso@srnl.doe.gov [Savannah River National Laboratory, Aiken, SC 29808 (United States); Marra, James; Dandeneau, Christopher S. [Savannah River National Laboratory, Aiken, SC 29808 (United States); Brinkman, Kyle; Xu, Yun [Clemson University, Clemson, SC 29634 (United States); Tang, Ming [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Maio, Vince [Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Webb, Samuel M. [Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94086 (United States); Chiu, Wilson K.S. [University of Connecticut, Storrs, Connecticut 06269-3139 (United States)

    2017-04-01

    The first scaled proof-of-principle cold crucible induction melter (CCIM) test to process a multiphase ceramic waste form from a simulated combined (Cs/Sr, lanthanide and transition metal fission products) commercial used nuclear fuel waste stream was recently conducted in the United States. X-ray diffraction, 2-D X-ray absorption near edge structure (XANES), electron microscopy, inductively coupled plasma-atomic emission spectroscopy (and inductively coupled plasma-mass spectroscopy for Cs), and product consistency tests were used to characterize the fabricated CCIM material. Characterization analyses confirmed that a crystalline ceramic with a desirable phase assemblage was produced from a melt using a CCIM. Primary hollandite, pyrochlore/zirconolite, and perovskite phases were identified in addition to minor phases rich in Fe, Al, or Cs. The material produced in the CCIM was chemically homogeneous and displayed a uniform phase assemblage with acceptable aqueous chemical durability.

  9. Nondestructive control of materials by ultrasonic tests

    International Nuclear Information System (INIS)

    Mercier, Noelle.

    1974-01-01

    A bibliographic study of nondestructive control methods of solids by ultrasonic tests, and of the ultrasonic emission of a transducer of finite dimension, is first presented. The principle of two of these methods is verified experimentally; they should permit the measurement of various physical parameters of solids, and the detection of local inhomogeneities. The first method calls upon the analysis of the ultrasonic signal (amplitude and phase), after it has crossed a constant thickness of a metallic specimen. This analysis reveals variations of attenuation and of ultrasonic propagation velocity within the specimen. A good spatial resolution is obtained by using 1mm-diameter probes. The second method leads, thanks to a test rig equipped with broad frequency band electrostatic transducers, to the knowledge of the attenuation law of the specimens as a function of frequency (present range: 5 to 15MHz); from this a classification of these specimens as regards their granulometry is deduced [fr

  10. New spark test device for material characterization

    CERN Document Server

    Kildemo, Morten

    2004-01-01

    An automated spark test system based on combining field emission and spark measurements, exploiting a discharging capacitor is investigated. In particular, the remaining charge on the capacitor is analytically solved assuming the field emitted current to follow the Fowler Nordheim expression. The latter allows for field emission measurements from pA to A currents, and spark detection by complete discharge of the capacitor. The measurement theory and experiments on Cu and W are discussed.

  11. High temperature tests for graphite materials

    OpenAIRE

    Zhmurikov, Evgenij

    2015-01-01

    This study was performed within the framework of the EURISOL for facilities SPIRAL-II (GANIL, France) and SPES (LNL, Italy), and aims to investigate the anticipated strength properties of fine-grained graphite at elevated temperatures. It appears that the major parameters that affect to the lifetime of a graphite target of this IP are the temperature and heating time. High temperature tests were conducted to simulate the heating under the influence of a beam of heavy particles by passing thro...

  12. Research on Al-alloy sheet forming formability during warm/hot sheet hydroforming based on elliptical warm bulging test

    Science.gov (United States)

    Cai, Gaoshen; Wu, Chuanyu; Gao, Zepu; Lang, Lihui; Alexandrov, Sergei

    2018-05-01

    An elliptical warm/hot sheet bulging test under different temperatures and pressure rates was carried out to predict Al-alloy sheet forming limit during warm/hot sheet hydroforming. Using relevant formulas of ultimate strain to calculate and dispose experimental data, forming limit curves (FLCS) in tension-tension state of strain (TTSS) area are obtained. Combining with the basic experimental data obtained by uniaxial tensile test under the equivalent condition with bulging test, complete forming limit diagrams (FLDS) of Al-alloy are established. Using a quadratic polynomial curve fitting method, material constants of fitting function are calculated and a prediction model equation for sheet metal forming limit is established, by which the corresponding forming limit curves in TTSS area can be obtained. The bulging test and fitting results indicated that the sheet metal FLCS obtained were very accurate. Also, the model equation can be used to instruct warm/hot sheet bulging test.

  13. Proposal of world network on material testing reactors

    International Nuclear Information System (INIS)

    Takemoto, Noriyuki; Izumo, Hironobu; Hori, Naohiko; Ishitsuka, Etsuo; Ishihara, Masahiro

    2011-01-01

    Establishment of an international cooperation system of worldwide testing reactor network (world network) is proposed in order to achieve efficient facility utilization and provide high quality irradiation data by role sharing of irradiation tests with materials testing reactors in the world. As for the first step, mutual understanding among materials testing reactors is thought to be necessary. From this point, an international symposium on materials testing reactors (ISMTR) was held to construct the world network from 2008, and a common understanding of world network has begun to be shared. (author)

  14. Material Considerations for Fused-Filament Fabrication of Solid Dosage Forms

    Directory of Open Access Journals (Sweden)

    Evert Fuenmayor

    2018-04-01

    Full Text Available Material choice is a fundamental consideration when it comes to designing a solid dosage form. The matrix material will ultimately determine the rate of drug release since the physical properties (solubility, viscosity, and more of the material control both fluid ingress and disintegration of the dosage form. The bulk properties (powder flow, concentration, and more of the material should also be considered since these properties will influence the ability of the material to be successfully manufactured. Furthermore, there is a limited number of approved materials for the production of solid dosage forms. The present study details the complications that can arise when adopting pharmaceutical grade polymers for fused-filament fabrication in the production of oral tablets. The paper also presents ways to overcome each issue. Fused-filament fabrication is a hot-melt extrusion-based 3D printing process. The paper describes the problems encountered in fused-filament fabrication with Kollidon® VA64, which is a material that has previously been utilized in direct compression and hot-melt extrusion processes. Formulation and melt-blending strategies were employed to increase the printability of the material. The paper defines for the first time the essential parameter profile required for successful 3D printing and lists several pre-screening tools that should be employed to guide future material formulation for the fused-filament fabrication of solid dosage forms.

  15. The Effects of Plastic Anisotropy in Warm and Hot Forming of Magnesium Sheet Materials

    Science.gov (United States)

    Taleff, Eric M.; Antoniswamy, Aravindha R.; Carpenter, Alexander J.; Yavuz, Emre

    Mg alloy sheet materials often exhibit plastic anisotropy at room temperature as a result of the limited slip systems available in the HCP lattice combined with a commonly strong basal texture. Less well studied is plastic anisotropy developed at the elevated temperatures associated with warm and hot forming. At these elevated temperatures, particularly above 200°C, the activation of additional slip systems significantly increases ductility. However, plastic anisotropy is also induced at elevated temperatures by a strong crystallographic texture, and it can require an accounting in material constitutive models to achieve accurate forming simulations. The type and degree of anisotropy under these conditions depend on both texture and deformation mechanism. The current understanding of plastic anisotropy in Mg AZ31B and ZEK100 sheet materials at elevated temperatures is reviewed in this article. The recent construction of material forming cases is also reviewed with strategies to account for plastic anisotropy in forming simulations.

  16. Testing protocols for evaluating monolithic waste forms containing mixed wastes

    International Nuclear Information System (INIS)

    Gilliam, T.M.; Sams, T.L.; Pitt, W.W.

    1986-01-01

    Test protocols have been presented which can be used as a guide in cement-based grout formulation development studies. Based on experience at ORNL, these six tests are generally sufficient to develop a grout product which will meet all applicable DOE, NRC, and EPA performance criteria. As such, these tests can be used to minimize the time required to tailor a grout to be compatible with both the waste stream and the process disposal scenario. 9 refs

  17. Modelling of ultrasonic nondestructive testing in anisotropic materials - Rectangular crack

    International Nuclear Information System (INIS)

    Bostroem, A.

    2001-12-01

    Nondestructive testing with ultrasound is a standard procedure in the nuclear power industry when searching for defects, in particular cracks. To develop and qualify testing procedures extensive experimental work on test blocks is usually required. This can take a lot of time and therefore be quite costly. A good mathematical model of the testing situation is therefore of great value as it can reduce the experimental work to a great extent. A good model can be very useful for parametric studies and as a pedagogical tool. A further use of a model is as a tool in the qualification of personnel. In anisotropic materials, e.g. austenitic welds, the propagation of ultrasound becomes much more complicated as compared to isotropic materials. Therefore, modelling is even more useful for anisotropic materials, and it in particular has a greater pedagogical value. The present project has been concerned with a further development of the anisotropic capabilities of the computer program UTDefect, which has so far only contained a strip-like crack as the single defect type for anisotropic materials. To be more specific, the scattering by a rectangular crack in an anisotropic component has been studied and the result is adapted to include transmitting and receiving ultrasonic probes. The component under study is assumed to be anisotropic with arbitrary anisotropy. On the other hand, it is assumed to be homogeneous, and this in particular excludes most welds, where it is seldom an adequate approximation to assume homogeneity. The anisotropy may be arbitrarily oriented and the same is true of the rectangular crack. The crack may also be located near a backside of the component. To solve the scattering problem for the crack an integral equation method is used. The probe model has been developed in an earlier project and to compute the signal response in the receiving probe an electromechanical reciprocity argument is employed. As a rectangle is a truly 3D scatterer the sizes of the

  18. Analysis of material flow in metal forming processes by using computer simulation and experiment with model material

    International Nuclear Information System (INIS)

    Kim, Heon Young; Kim, Dong Won

    1993-01-01

    The objective of the present study is to analyze material flow in the metal forming processes by using computer simulation and experiment with model material, plasticine. A UBET program is developed to analyze the bulk flow behaviour of various metal forming problems. The elemental strain-hardening effect is considered in an incremental manner and the element system is automatically regenerated at every deforming step in the program. The material flow behaviour in closed-die forging process with rib-web type cavity are analyzed by UBET and elastic-plastic finite element method, and verified by experiments with plasticine. There were good agreements between simulation and experiment. The effect of corner rounding on material flow behavior is investigated in the analysis of backward extrusion with square die. Flat punch indentation process is simulated by UBET, and the results are compared with that of elastic-plastic finite element method. (Author)

  19. Nuclear fuels for material test reactors

    International Nuclear Information System (INIS)

    Ramanathan, L.V.; Durazzo, M.; Freitas, C.T. de

    1982-01-01

    Experimental results related do the development of nuclear fuels for reactors cooled and moderated by water have been presented cylindrical and plate type fuels have been described in which the core consists of U compouns dispersed in an Al matrix and is clad with aluminium. Fabrication details involving rollmilling, swaging or hot pressing have been described. Corrosion and irradiation test results are also discussed. The performance of the different types of fuels indicates that it is possible to locally fabricate fuel plates with U 3 O 8 +Al cores (20% enriched U) for use in operating Brazilian research reactors. (Author) [pt

  20. The effect of using different sources of dry materials on waste-form grout properties

    International Nuclear Information System (INIS)

    Spence, R.D.; Gilliam, T.M.; McDaniel, E.W.

    1992-01-01

    A reference grout formulation had been developed for a liquid low-level radioactive waste using the following dry materials: ground limestone, ground granulated blast furnace slag, fly ash, and cement. The effect of varying the sources of these dry materials are tested. Two limestones, two fly ashes, two cements, and eight slags were tested. Varying the source of dry materials significantly affected the grout properties, but only the 28-d free-standing liquid varied outside of the preferred range. A statistical technique, Tukey's paired comparison, can be used to ascertain whether a given combination of dry materials resulted in grout properties significantly different from those of other combinations of dry materials

  1. Materials testing for molten carbonate fuel cells

    International Nuclear Information System (INIS)

    Di Mario, F.; Frangini, S.

    1995-01-01

    Unlike conventional generation systems fuel cells use an electrochemical reaction between a fossil fuel and an oxidant to produce electricity through a flame less combustion process. As a result, fuel cells offer interesting technical and operating advantages in terms of conversion efficiencies and environmental benefits due to very low pollutant emissions. Among the different kinds of fuel cells the molten carbonate fuel cells are currently being developed for building compact power generation plants to serve mainly in congested urban areas in virtue of their higher efficiency capabilities at either partial and full loads, good response to power peak loads, fuel flexibility, modularity and, potentially, cost-effectiveness. Starting from an analysis of the most important degradative aspects of the corrosion of the separator plate, the main purpose of this communication is to present the state of the technology in the field of corrosion control of the separator plate in order to extend the useful lifetime of the construction materials to the project goal of 40,000 hours

  2. State-of-the-art methods for testing materials outdoors

    Science.gov (United States)

    R. Sam Williams

    2004-01-01

    In recent years, computers, sensors, microelectronics, and communication technologies have made it possible to automate the way materials are tested in the field. It is now possible to purchase monitoring equipment to measure weather and materials properties. The measurement of materials response often requires innovative approaches and added expense, but the...

  3. Quality checking task force destructive testing of active waste forms

    International Nuclear Information System (INIS)

    James, J.M.; Smith, D.L.

    1987-03-01

    The implications of sampling and testing of full size active packages of intermediate level wastes are summarised in this report. Sampling operations are technically feasible but a major difficulty will be the disposal of secondary waste. A literature survey indicated that destructive testing of wasteforms is not carried out as a routine operation in Europe or the USA. (author)

  4. Flammability tests for regulation of building and construction materials

    Science.gov (United States)

    K. Sumathipala

    2006-01-01

    The regulation of building materials and products for flammability is critical to ensure the safety of occupants in buildings and other structures. The involvement of exposed building materials and products in fires resulting in the loss of human life often spurs an increase in regulation and new test methods to address the problem. Flammability tests range from those...

  5. Simulated Service and Stress Corrosion Cracking Testing for Friction Stir Welded Spun Formed Domes

    Science.gov (United States)

    Stewart, Thomas J.; Torres, Pablo D.; Caratus, Andrei A.; Curreri, Peter A.

    2010-01-01

    Simulated service testing (SST) development was required to help qualify a new 2195 aluminum lithium (Al-Li) alloy spin forming dome fabrication process for the National Aeronautics and Space Administration (NASA) Exploration Development Technology Program. The application for the technology is to produce high strength low weight tank components for NASA s next generation launch vehicles. Since plate material is not currently manufactured large enough to fabricate these domes, two plates are joined by means of friction stir welding. The plates are then pre-contour machined to near final thicknesses allowing for a thicker weld land and anticipating the level of stretch induced by the spin forming process. The welded plates are then placed in a spin forming tool and hot stretched using a trace method producing incremental contours. Finally the dome receives a room temperature contour stretch to final dimensions, heat treatment, quenching, and artificial aging to emulate a T-8 condition of temper. Stress corrosion cracking (SCC) tests were also performed by alternate immersion in a sodium chloride (NaCl) solution using the typical double beam assembly and with 4-point loaded specimens and use of bent-beam stress-corrosion test specimens under alternate immersion conditions. In addition, experiments were conducted to determine the threshold stress intensity factor for SCC (K(sub ISCC)) which to our knowledge has not been determined previously for Al-Li 2195 alloy. The successful simulated service and stress corrosion testing helped to provide confidence to continue to Ares 1 scale dome fabrication

  6. Nuclear material control and accountancy planning and performance testing

    International Nuclear Information System (INIS)

    Mike Enhinger; Dennis Wilkey; Rod Martin; Ken Byers; Brian Smith

    1999-01-01

    An overview of performance testing as used at U.S. Department of Energy facilities is provided. Performance tests are performed on specific aspects of the regulations or site policy. The key issues in establishing a performance testing program are: identifying what needs to be tested; determining how to test; establishing criteria to evaluate test results. The program elements of performance testing program consist of: planning; coordination; conduct; evaluation. A performance test may be conducted of personnel or equipment. The DOE orders for nuclear material control and accountancy are divided into three functional areas: program administration, material accounting, and material control. Examples performance tests may be conducted on program administration, accounting, measurement and measurement control, inventory, and containment [ru

  7. Material characterization and finite element simulations of aluminum alloy sheets during non-isothermal forming process

    Science.gov (United States)

    Zhang, Nan

    The utilization of more non-ferrous materials is one of the key factors to succeed out of the constantly increasing demand for lightweight vehicles in automotive sector. Aluminum-magnesium alloys have been identified as the most promising substitutions to the conventional steel without significant compromise in structural stiffness and strength. However, the conventional forming methods to deform the aluminum alloy sheets are either costly or insufficient in formability which limit the wide applications of aluminum alloy sheets. A recently proposed non-isothermal hot stamping approach, which is also referred as Hot Blank - Cold Die (HB-CD) stamping, aims at fitting the commercial grade aluminum alloy sheets, such as AA5XXX and AA7XXX, into high-volume and cost-effective production for automotive sector. In essence, HB-CD is a mutation of the conventional hot stamping approach for boron steel (22MnB5) which deforms the hot blank within the cold tool set. By elevating the operation temperature, the formability of aluminum alloy sheets can be significantly improved. Meanwhile, heating the blank only and deforming within the cold tool sets allow to reduce the energy and time consumed. This research work aims at conducting a comprehensive investigation of HB-CD with particular focuses on material characterization, constitutive modeling and coupled thermo-mechanical finite element simulations with validation. The material properties of AA5182-O, a popular commercial grade of aluminum alloy sheet in automotive sector, are obtained through isothermal tensile testing at temperatures from 25° to 300°, covering a quasi-static strain-rate range (0.001--0.1s-1). As the state-of-the-art non-contact strain measurement technique, digital image correlation (DIC) system is utilized to evaluate the stress-strain curves as well as to reveal the details of material deformation with full-field and multi-axis strain measurement. Material anisotropy is characterized by extracting the

  8. Material control test and evaluation system at the ICPP

    International Nuclear Information System (INIS)

    Johnson, C.E.

    1979-01-01

    The US DOE is evaluating process monitoring as part of a total nuclear material safeguards system. A monitoring system is being installed at the Idaho Chemical Processing Plant to test and evaluate material control and surveillance concepts in an operating nuclear fuel reprocessing plant. Process monitoring for nuclear material control complements conventional safeguards accountability and physical protection to assure adherence to approved safeguards procedures and verify containment of nuclear materials within the processing plant

  9. Molecular Environmental Science Using Synchrotron Radiation: Chemistry and Physics of Waste Form Materials. Final Report

    International Nuclear Information System (INIS)

    Lindle, Dennis W.

    2011-01-01

    Production of defense-related nuclear materials has generated large volumes of complex chemical wastes containing a mixture of radionuclides. The disposition of these wastes requires conversion of the liquid and solid-phase components into durable, solid forms suitable for long-term immobilization. Specially formulated glass compositions and ceramics such as pyrochlores and apatites are the main candidates for these wastes. An important consideration linked to the durability of waste-form materials is the local structure around the waste components. Equally important is the local structure of constituents of the glass and ceramic host matrix. Knowledge of the structure in the waste-form host matrices is essential, prior to and subsequent to waste incorporation, to evaluate and develop improved waste-form compositions based on scientific considerations. This project used the soft-x-ray synchrotron-radiation-based technique of near-edge x-ray-absorption fine structure (NEXAFS) as a unique method for investigating oxidation states and structures of low-Z elemental constituents forming the backbones of glass and ceramic host matrices for waste-form materials. In addition, light metal ions in ceramic hosts, such as titanium, are also ideal for investigation by NEXAFS in the soft-x-ray region. Thus, one of the main objectives was to understand outstanding issues in waste-form science via NEXAFS investigations and to translate this understanding into better waste-form materials, followed by eventual capability to investigate 'real' waste-form materials by the same methodology. We conducted several detailed structural investigations of both pyrochlore ceramic and borosilicate-glass materials during the project and developed improved capabilities at Beamline 6.3.1 of the Advanced Light Source (ALS) to perform the studies.

  10. Computer Simulation of Material Flow in Warm-forming Bimetallic Components

    Science.gov (United States)

    Kong, T. F.; Chan, L. C.; Lee, T. C.

    2007-05-01

    Bimetallic components take advantage of two different metals or alloys so that their applicable performance, weight and cost can be optimized. However, since each material has its own flow properties and mechanical behaviour, heterogeneous material flows will occur during the bimetal forming process. Those controls of process parameters are relatively more complicated than forming single metals. Most previous studies in bimetal forming have focused mainly on cold forming, and less relevant information about the warm forming has been provided. Indeed, changes of temperature and heat transfer between two materials are the significant factors which can highly influence the success of the process. Therefore, this paper presents a study of the material flow in warm-forming bimetallic components using finite-element (FE) simulation in order to determine the suitable process parameters for attaining the complete die filling. A watch-case-like component made of stainless steel (AISI-316L) and aluminium alloy (AL-6063) was used as the example. The warm-forming processes were simulated with the punch speeds V of 40, 80, and 120 mm/s and the initial temperatures of the stainless steel TiSS of 625, 675, 725, 775, 825, 875, 925, 975, and 1025 °C. The results showed that the AL-6063 flowed faster than the AISI-316L and so the incomplete die filling was only found in the AISI-316L region. A higher TiSS was recommended to avoid incomplete die filling. The reduction of V is also suggested because this can save the forming energy and prevent the damage of tooling. Eventually, with the experimental verification, the results from the simulation were in agreement with those of the experiments. On the basis of the results of this study, engineers can gain a better understanding of the material flow in warm-forming bimetallic components, and be able to determine more efficiently the punch speed and initial material temperature for the process.

  11. Molecular Environmental Science Using Synchrotron Radiation: Chemistry and Physics of Waste Form Materials

    Energy Technology Data Exchange (ETDEWEB)

    Lindle, Dennis W.

    2011-04-21

    Production of defense-related nuclear materials has generated large volumes of complex chemical wastes containing a mixture of radionuclides. The disposition of these wastes requires conversion of the liquid and solid-phase components into durable, solid forms suitable for long-term immobilization. Specially formulated glass compositions and ceramics such as pyrochlores and apatites are the main candidates for these wastes. An important consideration linked to the durability of waste-form materials is the local structure around the waste components. Equally important is the local structure of constituents of the glass and ceramic host matrix. Knowledge of the structure in the waste-form host matrices is essential, prior to and subsequent to waste incorporation, to evaluate and develop improved waste-form compositions based on scientific considerations. This project used the soft-x-ray synchrotron-radiation-based technique of near-edge x-ray-absorption fine structure (NEXAFS) as a unique method for investigating oxidation states and structures of low-Z elemental constituents forming the backbones of glass and ceramic host matrices for waste-form materials. In addition, light metal ions in ceramic hosts, such as titanium, are also ideal for investigation by NEXAFS in the soft-x-ray region. Thus, one of the main objectives was to understand outstanding issues in waste-form science via NEXAFS investigations and to translate this understanding into better waste-form materials, followed by eventual capability to investigate “real” waste-form materials by the same methodology. We conducted several detailed structural investigations of both pyrochlore ceramic and borosilicate-glass materials during the project and developed improved capabilities at Beamline 6.3.1 of the Advanced Light Source (ALS) to perform the studies.

  12. Leach testing of waste forms: interrelationship of ISO and MCC type tests

    International Nuclear Information System (INIS)

    Oversby, V.M.

    1982-01-01

    Leach testing experiments were conducted on SYNROC-D material to examine the parameters which affect leaching results and to measure the activation energy for leaching of elements from SYNROC-D. Measured leach rates were found to be controlled by precipitation of insoluble phases for those tests where the sample surface area to volume of leachant (SA/V) multiplied by leaching time (t) exceeded 0.3 cm -1 d for leach tests at 90 0 C. In these cases the apparent activation energy for leaching was approximately 10 kcal/mole based on Na and Si data. For leach tests at 90 0 C with (Sa/V)(t) less than 0.2 cm -1 d, the activation energy for Na and Si dissolution was 18.5 kcal/mole for sample S29 and 14.5 kcal/mole for sample LSO4. The effect of sample geometry was investigated by leaching a series of crushed samples of different grain size. The results support the view that geometric surface area should be used in leach rate calculations rather than gas adsorption BET surface area. Comparison of results on S29 leaching of crushed samples and monoliths show that data from MCC-1 and ISO type leach tests may be directly compared when the data are examined at constant (SA/V)(t). 5 figures, 13 tables

  13. Preparation of working calibration and test materials: uranyl nitrate solution

    International Nuclear Information System (INIS)

    Yamamura, S.S.; Spraktes, F.W.; Baldwin, J.M.; Hand, R.L.; Lash, R.P.

    1977-05-01

    Reliable working calibration and test materials (WCTMs) are essential to a meaningful analytical measurements quality assurance program. This report describes recommended methods for the preparation of uranyl nitrate solution WCTMs for testing analytical methods, for calibrating methods, and for testing personnel. Uranyl nitrate solution WCTMs can be synthesized from characterized starting materials or prepared from typical plant materials by thorough characterization with reference to primary or secondary reference calibration and test materials (PRCTMs or SRCTMs). Recommended starting materials are described along with detailed procedures for (a) preparing several widely-used types of uranyl nitrate solution WCTMs, (b) packaging the WCTMs, (c) analyzing the WCTMs to establish the reference values or to confirm the synthesis, and (d) statistically evaluating the analytical data to assign reference values and to assess the accuracy of the WCTMs

  14. Nuclear Materials Management for the Nevada Test Site (NTS)

    International Nuclear Information System (INIS)

    Jesse C. Schreiber

    2007-01-01

    The Nevada Test Site (NTS) has transitioned from its historical role of weapons testing to a broader role that is focused on being a solution to multiple National Nuclear Security Administration (NNSA) challenges and opportunities with nuclear materials for the nation. NTS is supporting other NNSA sites challenged with safe nuclear materials storage and disposition. NNSA, with site involvement, is currently transforming the nuclear stockpile and supporting infrastructure to meet the 2030 vision. Efforts are under way to make the production complex smaller, more consolidated, and more modern. With respect to the nuclear material stockpile, the NNSA sites are currently reducing the complex nuclear material inventory through dispositioning and consolidating nuclear material. This includes moving material from other sites to NTS. State-of-the-art nuclear material management and control practices at NTS are essential for NTS to ensure that these new activities are accomplished in a safe, secure, efficient, and environmentally responsible manner. NTS is aggressively addressing this challenge

  15. Acquisition of material properties in production for sheet metal forming processes

    International Nuclear Information System (INIS)

    Heingärtner, Jörg; Hora, Pavel; Neumann, Anja; Hortig, Dirk; Rencki, Yasar

    2013-01-01

    In past work a measurement system for the in-line acquisition of material properties was developed at IVP. This system is based on the non-destructive eddy-current principle. Using this system, a 100% control of material properties of the processed material is possible. The system can be used for ferromagnetic materials like standard steels as well as paramagnetic materials like Aluminum and stainless steel. Used as an in-line measurement system, it can be configured as a stand-alone system to control material properties and sort out inapplicable material or as part of a control system of the forming process. In both cases, the acquired data can be used as input data for numerical simulations, e.g. stochastic simulations based on real world data

  16. Assessment of the quality of test results from selected civil engineering material testing laboratories in Tanzania

    CSIR Research Space (South Africa)

    Mbawala, SJ

    2017-12-01

    Full Text Available Civil and geotechnical engineering material testing laboratories are expected to produce accurate and reliable test results. However, the ability of laboratories to produce accurate and reliable test results depends on many factors, among others...

  17. Standard Guide for Testing Polymer Matrix Composite Materials

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 This guide summarizes the application of ASTM standard test methods (and other supporting standards) to continuous-fiber reinforced polymer matrix composite materials. The most commonly used or most applicable ASTM standards are included, emphasizing use of standards of Committee D30 on Composite Materials. 1.2 This guide does not cover all possible standards that could apply to polymer matrix composites and restricts discussion to the documented scope. Commonly used but non-standard industry extensions of test method scopes, such as application of static test methods to fatigue testing, are not discussed. A more complete summary of general composite testing standards, including non-ASTM test methods, is included in the Composite Materials Handbook (MIL-HDBK-17). Additional specific recommendations for testing textile (fabric, braided) composites are contained in Guide D6856. 1.3 This guide does not specify a system of measurement; the systems specified within each of the referenced standards shall appl...

  18. Standard test method for galling resistance of material couples

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This test method covers a laboratory test that ranks the galling resistance of material couples using a quantitative measure. Bare metals, alloys, nonmetallic materials, coatings, and surface modified materials may be evaluated by this test method. 1.2 This test method is not designed for evaluating the galling resistance of material couples sliding under lubricated conditions, because galling usually will not occur under lubricated sliding conditions using this test method. 1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  19. The specification and testing of radioactive sources designated as ''special form'' under the IAEA transport regulations

    International Nuclear Information System (INIS)

    Aston, D.; Bodimeade, A.H.; Hall, E.G.; Taylor, C.B.G.

    1982-01-01

    The object of this study is to remove some of the uncertainties associated with the application of the IAEA Regulations insofar as they apply to Special Form materials. The first part of this project involved a comparison of the ISO and IAEA Regulations. An analysis of the physical tests has been carried out. The second and most important part of the project involved an assessment of the leakage tests used to evaluate the capsules after each of the physical tests. The work has defined and confirmed by experiment the relationship between the IAEA and ISO impact and percussion tests. The practical application of the tests particularly with regard to specimen orientation will be aided by the data now available. The work has established the sensitivities of the primary volumetric leak test methods and practical procedures are outlined. Volumetric leak test methods, with sentivities approximately 10 - 5 mbar l/s, are considered to be more reliable in detecting leakage paths in capsules than methods using solid leachable or non-leachable radioactive contents. The work reported should assist in the updating and clarification and harmonisation of IAEA Safety Series Nos 6 and 37 and ISO 4919 and ISO TR 4826

  20. Qualification test of packages for transporting radioactive materials and wastes

    International Nuclear Information System (INIS)

    Oliveira Santos, P. de; Miaw, S.T.W.

    1990-01-01

    Since 1979 the Waste Treatment Division of Nuclear Tecnology Development Center has been developed and tested packagings for transporting radioactive materials and wastes. The Division has designed facilities for testing Type A packages in accordance with the adopted regulations. The Division has tested several packages for universities, research centers, industries, INB, FURNAS, etc. (author) [pt

  1. Test plan for the irradiation of nonmetallic materials.

    Energy Technology Data Exchange (ETDEWEB)

    Brush, Laurence H.; Farnum, Cathy Ottinger; Gelbard, Fred; Dahl, M.; Joslyn, C. C.; Venetz, T. J.

    2013-03-01

    A comprehensive test program to evaluate nonmetallic materials use in the Hanford Tank Farms is described in detail. This test program determines the effects of simultaneous multiple stressors at reasonable conditions on in-service configuration components by engineering performance testing.

  2. Test plan for the irradiation of nonmetallic materials.

    Energy Technology Data Exchange (ETDEWEB)

    Brush, Laurence H.; Farnum, Cathy Ottinger; Dahl, M.; Joslyn, C. C.; Venetz, T. J.

    2013-05-01

    A comprehensive test program to evaluate nonmetallic materials use in the Hanford tank farms is described in detail. This test program determines the effects of simultaneous multiple stressors at reasonable conditions on in-service configuration components by engineering performance testing.

  3. An overview of high thermal conductive hot press forming die material development

    Directory of Open Access Journals (Sweden)

    A.R. Zulhishamuddin

    2015-12-01

    Full Text Available Most of the automotive industries are using high strength steel components, which are produced via hot press forming process. This process requires die material with high thermal conductivity that increases cooling rate during simultaneous quenching and forming stage. Due to the benefit of high quenching rate, thermal conductive die materials were produced by adding carbide former elements. This paper presents an overview of the modification of alloying elements in tool steel for high thermal conductivity properties by transition metal elements addition. Different types of manufacturing processes involved in producing high thermal conductive materials were discussed. Methods reported were powder metallurgy hot press, direct metal deposition, selective laser melting, direct metal laser sintering and spray forming. Elements likes manganese, nickel, molybdenum, tungsten and chromium were proven to increase thermal conductivity properties. Thermal conductivity properties resulted from carbide network presence in the steel microstructure. To develop feasible and low cost hot press forming die material, casting of Fe-based alloy with carbide former composition can be an option. Current thermal conductivity properties of hot press forming die material range between 25 and 66 W/m.K. The wide range of thermal conductivity varies the mechanical properties of the resulting components and lifetime of HPF dies.

  4. Potential countersample materials for in vitro simulation wear testing.

    Science.gov (United States)

    Shortall, Adrian C; Hu, Xiao Q; Marquis, Peter M

    2002-05-01

    Any laboratory investigation of the wear resistance of dental materials needs to consider oral conditions so that in vitro wear results can be correlated with in vivo findings. The choice of the countersample is a critical factor in establishing the pattern of tribological wear and in achieving an efficient in vitro wear testing system. This research investigated the wear behavior and surface characteristics associated with three candidate countersample materials used for in vitro wear testing in order to identify a possible suitable substitute for human dental enamel. Three candidate materials, stainless steel, steatite and dental porcelain were evaluated and compared to human enamel. A variety of factors including hardness, wear surface evolution and frictional coefficients were considered, relative to the tribology of the in vivo situation. The results suggested that the dental porcelain investigated bore the closest similarity to human enamel of the materials investigated. Assessment of potential countersample materials should be based on the essential tribological simulation supported by investigations of mechanical, chemical and structural properties. The selected dental porcelain had the best simulating ability among the three selected countersample materials and this class of material may be considered as a possible countersample material for in vitro wear test purposes. Further studies are required, employing a wider range of dental ceramics, in order to optimise the choice of countersample material for standardized in vitro wear testing.

  5. Electrofracturing test system and method of determining material characteristics of electrofractured material samples

    Science.gov (United States)

    Bauer, Stephen J.; Glover, Steven F.; Pfeifle, Tom; Su, Jiann-Cherng; Williamson, Kenneth Martin; Broome, Scott Thomas; Gardner, William Payton

    2017-08-01

    A device for electrofracturing a material sample and analyzing the material sample is disclosed. The device simulates an in situ electrofracturing environment so as to obtain electrofractured material characteristics representative of field applications while allowing permeability testing of the fractured sample under in situ conditions.

  6. INFLUENCE OF HIGH-ENERGY FORMING ON THE BEHAVIOR OF MATERIALS (EINFLUSS DER HOCHENERGIEUMFORMUNG AUF DAS WERKSTOFFVERHALTEN),

    Science.gov (United States)

    MATERIAL FORMING, METALS), (*METALS, MECHANICAL PROPERTIES), EXPLOSIVE FORMING, ELECTROFORMING, HYDROFORMING (MECHANICAL), IRON, STEEL, NICKEL, NIOBIUM, TENSILE PROPERTIES, TANTALUM, DEFORMATION, EAST GERMANY.

  7. Physical and chemical test results of electrostatic safe flooring materials

    Science.gov (United States)

    Gompf, R. H.

    1988-01-01

    This test program was initiated because a need existed at the Kennedy Space Center (KSC) to have this information readily available to the engineer who must make the choice of which electrostatic safe floor to use in a specific application. The information, however, should be of value throughout both the government and private industry in the selection of a floor covering material. Included are the test results of 18 floor covering materials which by test evaluation at KSC are considered electrostatically safe. Tests were done and/or the data compiled in the following areas: electrostatics, flammability, hypergolic compatibility, outgassing, floor type, material thickness, and available colors. Each section contains the test method used to gather the data and the test results.

  8. Round-Robin Test of Paraffin Phase-Change Material

    Science.gov (United States)

    Vidi, S.; Mehling, H.; Hemberger, F.; Haussmann, Th.; Laube, A.

    2015-11-01

    A round-robin test between three institutes was performed on a paraffin phase-change material (PCM) in the context of the German quality association for phase-change materials. The aim of the quality association is to define quality and test specifications for PCMs and to award certificates for successfully tested materials. To ensure the reproducibility and comparability of the measurements performed at different institutes using different measuring methods, a round-robin test was performed. The sample was unknown. The four methods used by the three participating institutes in the round-robin test were differential scanning calorimetry, Calvet calorimetry and three-layer calorimetry. Additionally, T-history measurements were made. The aim of the measurements was the determination of the enthalpy as a function of temperature. The results achieved following defined test specifications are in excellent agreement.

  9. Standard Test Method for Testing Nonmetallic Seal Materials by Immersion in a Simulated Geothermal Test Fluid

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1985-01-01

    1.1 This test method covers a procedure for a laboratory test for performing an initial evaluation (screening) of nonmetallic seal materials by immersion in a simulated geothermal test fluid. 1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific precautionary statements, see Section 6 and 11.7.

  10. Choose of standard materials in the method of β-testing new materials' mass thickness

    International Nuclear Information System (INIS)

    Chen Zhong

    2007-01-01

    To make sure of the standard mass thickness in beta radials testing mass thickness, this paper calculate using M. C. method and get the result of the relations between the beta radials' transmission rate of different energies and mass thickness in different materials. This result prove that in method of beta test mass thickness choosing materials whose elements are close as standard materials are viable. (authors)

  11. Special Nuclear Material Portal Monitoring at the Nevada Test Site

    International Nuclear Information System (INIS)

    DeAnn Long; Michael Murphy

    2008-01-01

    Prior to April 2007, acceptance and performance testing of the various Special Nuclear Material (SNM) monitoring devices at the Nevada Test Site (NTS) was performed by the Radiological Health Instrumentation department. Calibration and performance testing on the PM-700 personnel portal monitor was performed, but there was no test program for the VM-250 vehicle portal monitor. The handheld SNM monitors, the TSA model 470B, were being calibrated annually, but there was no performance test program. In April of 2007, the Material Control and Accountability Manager volunteered to take over performance testing of all SNM portal monitors at NTS in order to strengthen the program and meet U.S. Department of Energy Order requirements. This paper will discuss the following activities associated with developing a performance testing program: changing the culture, learning the systems, developing and implementing procedures, troubleshooting and repair, validating the process, physical control of equipment, acquisition of new systems, and implementing the performance test program

  12. Data package for the Turkey Point material interaction test capsules

    International Nuclear Information System (INIS)

    Krogness, J.C.; Davis, R.B.

    1980-02-01

    Objective of the test is to obtain interaction information on candidate package storage materials and geologies under prototypic temperatures in gamma and low-level neutron fields. This document provides a fabrication record of the experiment

  13. Nuclear technology in materials testing and radiation protection

    International Nuclear Information System (INIS)

    Neider, R.

    1975-01-01

    A report of the 1974 activities of the laboratories for physical and measuring technical fundamentals, radiation effects and radiation protection, application of radionuclides and testing of radioactive materials of the Bundesanstalt fuer Materialpruefung (BAM) is given. (RW/LH) [de

  14. Dredged Material Testing and Evaluation for Ocean Disposal

    Science.gov (United States)

    Evaluation and testing of dredged material proposed for ocean dumping is conducted to help protect human health and the marine environment. National guidance is provided by the Green Book. Regional Implementation Manuals are provided.

  15. Material characterization of Inconel 718 from free bulging test at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Joon Tae; Yoon, Jong Hoon; Lee, Ho Sung [Korea Aerospace Research Institute, Daejeon (Korea, Republic of); Youn, Sung Kie [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2012-07-15

    Macroscopic superplastic behavior of metallic or non metallic materials is usually represented by the strain rate sensitivity, and it can be determined by tensile tests in uniaxial stress state and bulging tests in multi axial stress state, which is the actual hot forming process. And macroscopic behavior of Non SPF grade materials could be described in a similar way as that of superplastic materials, including strain hardening, cavity and so on. In this study, the material characterization of non SPF grade Inconel 718 has been carried out to determine the material parameters for flow stress throughout free bulging test under constant temperature. The measured height of bulged plate during the test was used for estimation of strain rate sensitivity, strain hardening index and cavity volume fraction with the help of numerical analysis. The bulged height obtained from the simulation showed good agreement with the experimental findings. The effects of strain hardening and cavity volume fraction factor for flow stress were also compared.

  16. Off-line testing of multifunctional surfaces for metal forming applications

    DEFF Research Database (Denmark)

    Godi, A.; Grønbæk, J.; De Chiffre, L.

    2015-01-01

    In this paper, Bending-Under-Tension, an off-line test method simulating deep-drawing, is chosen for investigating the effectiveness of multifunctional (MUFU) surfaces in metal forming operations. Four different MUFU surfaces, characterized by a plateau bearing area and grooves for lubricant...... retention, are manufactured, together with two polished references. During the tests, surface texture is the only variable. The results show how MUFU surfaces perform better than the polished references, which produce severe galling, while MUFU surfaces with low bearing area display no clear evidence...... of galling. Metal-to-metal contact occurs anyway, but the strip material is pulverized and deposited onto the tool instead of cold-welding to it. The pockets create a discontinuity on the texture hindering pick-up propagation....

  17. Progress and Strategies for Testing of Materials for Solar Panels

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, Sarah

    2017-04-25

    Accelerated testing is key to confident launch of a new product. However, for new products like solar panels, the best approach is not always clear. The challenge for materials manufacturers is that test times can be long. Also, small-coupon testing may not predict the behavior in the full-size module, but testing of the full-size module is too expensive. As a result, solar panel test standards like IEC 61215 are useful, but are not sufficient. Material manufacturers have needed to define their own test protocols. This presentation will review some historical data (e.g., data show that manufacturers are making great progress toward reducing encapsulant discoloration) and describe advances in material testing (for example, new techniques are being demonstrated on how to more quantitatively assess adhesion, detect tendency for delamination, and understand how encapsulant properties affect other properties like cracking of cells). The International PV Quality Assurance Task Force has been researching climate-specific weathering tests toward the goal of defining international standards that would simplify qualification and quality assurance testing for materials. The status of these tests and the strategies for how to organize these standards to best meet the needs of the industry will be discussed.

  18. Using Virtual Testing for Characterization of Composite Materials

    Science.gov (United States)

    Harrington, Joseph

    Composite materials are finally providing uses hitherto reserved for metals in structural systems applications -- airframes and engine containment systems, wraps for repair and rehabilitation, and ballistic/blast mitigation systems. They have high strength-to-weight ratios, are durable and resistant to environmental effects, have high impact strength, and can be manufactured in a variety of shapes. Generalized constitutive models are being developed to accurately model composite systems so they can be used in implicit and explicit finite element analysis. These models require extensive characterization of the composite material as input. The particular constitutive model of interest for this research is a three-dimensional orthotropic elasto-plastic composite material model that requires a total of 12 experimental stress-strain curves, yield stresses, and Young's Modulus and Poisson's ratio in the material directions as input. Sometimes it is not possible to carry out reliable experimental tests needed to characterize the composite material. One solution is using virtual testing to fill the gaps in available experimental data. A Virtual Testing Software System (VTSS) has been developed to address the need for a less restrictive method to characterize a three-dimensional orthotropic composite material. The system takes in the material properties of the constituents and completes all 12 of the necessary characterization tests using finite element (FE) models. Verification and validation test cases demonstrate the capabilities of the VTSS.

  19. FMIT test cell diagnostics: a unique materials challenge

    International Nuclear Information System (INIS)

    Cannon, C.P.; Fuller, J.L.

    1981-08-01

    Basic materials problems are discussed in instrumenting the FMIT test cell, which are applicable to fusion devices in general. Recent data on ceramic-to-metal seals, mineral insulated instrument cables, thermocouples, and optical components are reviewed. The data makes it clear that it would be a mistake to assume that materials and instruments will behave in the FMIT test cell environment as they do in more familiar fission reactors and low power accelerators

  20. Medical Physics: Forming and testing solutions to clinical problems.

    Science.gov (United States)

    Tsapaki, Virginia; Bayford, Richard

    2015-11-01

    According to the European Federation of Organizations for Medical Physics (EFOMP) policy statement No. 13, "The rapid advance in the use of highly sophisticated equipment and procedures in the medical field increasingly depends on information and communication technology. In spite of the fact that the safety and quality of such technology is vigorously tested before it is placed on the market, it often turns out that the safety and quality is not sufficient when used under hospital working conditions. To improve safety and quality for patient and users, additional safeguards and related monitoring, as well as measures to enhance quality, are required. Furthermore a large number of accidents and incidents happen every year in hospitals and as a consequence a number of patients die or are injured. Medical Physicists are well positioned to contribute towards preventing these kinds of events". The newest developments related to this increasingly important medical speciality were presented during the 8th European Conference of Medical Physics 2014 which was held in Athens, 11-13 September 2014 and hosted by the Hellenic Association of Medical Physicists (HAMP) in collaboration with the EFOMP and are summarized in this issue. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  1. Accelerated irradiation test of gundremmingen reactor vessel trepan material

    International Nuclear Information System (INIS)

    Hawthorne, J.R.

    1992-08-01

    Initial mechanical properties tests of beltline trepanned from the decommissioned KRB-A pressure vessel and archive material irradiated in the UBR test reactor revealed a major anomaly in relative radiation embrittlement sensitivity. Poor correspondence of material behavior in test vs. power reactor environments was observed for the weak test orientation (ASTL C-L) whereas correspondence was good for the strong orientation (ASTM C-L). To resolve the anomaly directly, Charpy-V specimens from a low (essentially-nil) fluence region of the vessel were irradiated together with archive material at 279 degrees C in the UBR test reactor. Properties tests before UBR irradiation revealed a significant difference in 41-J transition temperature and upper shelf energy level between the materials. However, the materials exhibited essentially the same radiation embrittlement sensitivity (both orientations), proving that the anomaly is not due to a basic difference in material irradiation resistances. Possible causes of the original anomaly and the significance to NRC Regulatory Guide 1.99 are discussed

  2. Accelerated irradiation test of Gundremmingen reactor vessel trepan material

    Energy Technology Data Exchange (ETDEWEB)

    Hawthorne, J.R. [Materials Engineering Associates, Inc., Lanham, MD (United States)

    1992-08-01

    Initial mechanical properties tests of beltline trepanned from the decommissioned KRB-A pressure vessel and archive material irradiated in the UBR test reactor revealed a major anomaly in relative radiation embrittlement sensitivity. Poor correspondence of material behavior in test vs. power reactor environments was observed for the weak test orientation (ASTL C-L) whereas correspondence was good for the strong orientation (ASTM C-L). To resolve the anomaly directly, Charpy-V specimens from a low (essentially-nil) fluence region of the vessel were irradiated together with archive material at 279{degrees}C in the UBR test reactor. Properties tests before UBR irradiation revealed a significant difference in 41-J transition temperature and upper shelf energy level between the materials. However, the materials exhibited essentially the same radiation embrittlement sensitivity (both orientations), proving that the anomaly is not due to a basic difference in material irradiation resistances. Possible causes of the original anomaly and the significance to NRC Regulatory Guide 1.99 are discussed.

  3. Capsule development and utilization for material irradiation tests

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Young Hwan; Kim, B. G.; Joo, K. N. [and others

    2000-05-01

    The development program of advanced nuclear structural and fuel materials includes the in-pile tests using the instrumented capsule at HANARO. The tests were performed in the in-core test holes of CT, IR 1 and 2 and OR 4 and 5 of HANARO. Extensive efforts have also been made to establish design and manufacturing technology for the instrumented capsule and its related system, which should be compatible with the HANARO's characteristics. Since the first instrumented capsule(97M-01K) had been designed and successfully fabricated, five tests were done to support the users and provided the economic benefits to user by generating the essential in-pile information on the performance and structural integrity of materials. This paper describes the present status and future plans of these R and D activities for the development of the instrumented capsule including in-situ material property measurement capsules and nuclear fuel test capsules.

  4. Capsule development and utilization for material irradiation tests

    International Nuclear Information System (INIS)

    Kang, Young Hwan; Kim, B. G.; Joo, K. N.

    2000-05-01

    The development program of advanced nuclear structural and fuel materials includes the in-pile tests using the instrumented capsule at HANARO. The tests were performed in the in-core test holes of CT, IR 1 and 2 and OR 4 and 5 of HANARO. Extensive efforts have also been made to establish design and manufacturing technology for the instrumented capsule and its related system, which should be compatible with the HANARO's characteristics. Since the first instrumented capsule(97M-01K) had been designed and successfully fabricated, five tests were done to support the users and provided the economic benefits to user by generating the essential in-pile information on the performance and structural integrity of materials. This paper describes the present status and future plans of these R and D activities for the development of the instrumented capsule including in-situ material property measurement capsules and nuclear fuel test capsules

  5. Capsule development and utilization for material irradiation tests

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Young Hwan; Kim, B G; Joo, K N [and others

    2000-05-01

    The development program of advanced nuclear structural and fuel materials includes the in-pile tests using the instrumented capsule at HANARO. The tests were performed in the in-core test holes of CT, IR 1 and 2 and OR 4 and 5 of HANARO. Extensive efforts have also been made to establish design and manufacturing technology for the instrumented capsule and its related system, which should be compatible with the HANARO's characteristics. Since the first instrumented capsule(97M-01K) had been designed and successfully fabricated, five tests were done to support the users and provided the economic benefits to user by generating the essential in-pile information on the performance and structural integrity of materials. This paper describes the present status and future plans of these R and D activities for the development of the instrumented capsule including in-situ material property measurement capsules and nuclear fuel test capsules.

  6. Forgeability test of extruded Mg–Sn–Al–Zn alloys under warm forming conditions

    International Nuclear Information System (INIS)

    Yoon, Jonghun; Park, Sunghyuk

    2014-01-01

    Highlights: • We compared forgeability of new developed TAZ alloys with conventional AZ alloys. • Forgeability was evaluated with a T-shape forging under hot forming condition. • TAZ alloys show the best performance in forgeability under hot forging condition. • Microstructures of the forged part were investigated with EBSD experiments. • YS and UTS of forged part with TAZ alloy are enhanced compared with AZ alloy. - Abstract: Magnesium (Mg) alloys have been thoroughly researched to replace steel or aluminum parts in automotives for reducing weight without sacrificing their strength. The widespread use of Mg alloys has been limited by its insufficient formability, which results from a lack of active slip systems at room temperature. It leads to a hot forming process for Mg alloys to enhance the formability and plastic workability. In addition, forged or formed parts of Mg alloys should have the reliable initial yield and ultimate tensile strength after hot working processes since its material properties should be compatible with other parts thereby guaranteeing structural safety against external load and crash. In this research, an optimal warm forming condition for applying extruded Mg–Sn–Al–Zn (TAZ) Mg alloys into automotive parts is proposed based on T-shape forging tests and the feasibility of forged parts is evaluated by measuring the initial yield strength and investigating the grain size in orientation imaging microscopy (OIM) maps

  7. Remote-handling demonstration tests for the Fusion Materials Irradiation Test (FMIT) Facility

    International Nuclear Information System (INIS)

    Shen, E.J.; Hussey, M.W.; Kelly, V.P.; Yount, J.A.

    1982-01-01

    The mission of the Fusion Materials Irradiation Test (FMIT) Facility is to create a fusion-like environment for fusion materials development. Crucial to the success of FMIT is the development and testing of remote handling systems required to handle materials specimens and maintenance of the facility. The use of full scale mock-ups for demonstration tests provides the means for proving these systems

  8. Testing of materials and scale models for impact limiters

    International Nuclear Information System (INIS)

    Maji, A.K.; Satpathi, D.; Schryer, H.L.

    1991-01-01

    Aluminum Honeycomb and Polyurethane foam specimens were tested to obtain experimental data on the material's behavior under different loading conditions. This paper reports the dynamic tests conducted on the materials and on the design and testing of scale models made out of these open-quotes Impact Limiters,close quotes as they are used in the design of transportation casks. Dynamic tests were conducted on a modified Charpy Impact machine with associated instrumentation, and compared with static test results. A scale model testing setup was designed and used for preliminary tests on models being used by current designers of transportation casks. The paper presents preliminary results of the program. Additional information will be available and reported at the time of presentation of the paper

  9. The concept verification testing of materials science payloads

    Science.gov (United States)

    Griner, C. S.; Johnston, M. H.; Whitaker, A.

    1976-01-01

    The concept Verification Testing (CVT) project at the Marshall Space Flight Center, Alabama, is a developmental activity that supports Shuttle Payload Projects such as Spacelab. It provides an operational 1-g environment for testing NASA and other agency experiment and support systems concepts that may be used in shuttle. A dedicated Materials Science Payload was tested in the General Purpose Laboratory to assess the requirements of a space processing payload on a Spacelab type facility. Physical and functional integration of the experiments into the facility was studied, and the impact of the experiments on the facility (and vice versa) was evaluated. A follow-up test designated CVT Test IVA was also held. The purpose of this test was to repeat Test IV experiments with a crew composed of selected and trained scientists. These personnel were not required to have prior knowledge of the materials science disciplines, but were required to have a basic knowledge of science and the scientific method.

  10. Proceedings of the international symposium on materials testing reactors

    International Nuclear Information System (INIS)

    Ishihara, Masahiro; Kawamura, Hiroshi

    2009-01-01

    This report is the Proceedings of the International Symposium on Materials Testing Reactors hosted by Japan Atomic Energy Agency (JAEA). The symposium was held on July 16 to 17, 2008, at the Oarai Research and Development Center of JAEA. This symposium was also held for the 40th anniversary ceremony of Japan Materials Testing Reactor (JMTR) from achieving its first criticality. The objective of the symposium is to exchange the information on current status, future plan and so on among each testing reactors for the purpose of mutual understanding. There were 138 participants from Argentina, Belgium, France, Indonesia, Kazakhstan, Korea, the Russian Federation, Sweden, the United State, Vietnam and Japan. The symposium was divided into four technical sessions and three topical sessions. Technical sessions addressed the general topics of 'status and future plan of materials testing reactors', 'material development for research and testing reactors', irradiation technology (including PIE technology)' and 'utilization with materials testing reactors', and 21 presentations were made. Also the topical sessions addressed 'establishment of strategic partnership', 'management on re-operation work at reactor trouble' and 'basic technology for neutron irradiation tests in MTRs', and panel discussion was made. The 21 of the presented papers are indexed individually. (J.P.N.)

  11. Springback study in aluminum alloys based on the Demeri Benchmark Test : influence of material model

    International Nuclear Information System (INIS)

    Greze, R.; Laurent, H.; Manach, P. Y.

    2007-01-01

    Springback is a serious problem in sheet metal forming. Its origin lies in the elastic recovery of materials after a deep drawing operation. Springback modifies the final shape of the part when removed from the die after forming. This study deals with Springback in an Al5754-O aluminum alloy. An experimental test similar to the Demeri Benchmark Test has been developed. The experimentally measured Springback is compared to predicted Springback simulation using Abaqus software. Several material models are analyzed, all models using isotropic hardening of Voce type and plasticity criteria such as Von Mises and Hill48's yield criterion

  12. The effect of using different sources of dry materials on waste-form grout properties

    International Nuclear Information System (INIS)

    Spence, R.D.; Gilliam, T.M.; McDaniel, E.W.

    1992-01-01

    A reference grout formulation had been developed for a liquid low-level radioactive waste using the following dry materials: ground limestone, ground granulated blast furnace slag, fly ash, and cement. The effect of varying the sources of these dry materials was tested. Two limestones, two fly ashes, two cements, and eight slags were tested. Varying the source of dry materials significantly affected the grout properties, but only the 28-d free-standing liquid varied outside of the preferred range. A statistical technique, Tukey's paired comparison, can be used to ascertain whether a given combination of dry materials resulted in grout properties significantly different from those of other combinations of dry materials. (author)

  13. Differentiating pedogenesis from diagenesis in early terrestrial paleoweathering surfaces formed on granitic composition parent materials

    Science.gov (United States)

    Driese, S.G.; Medaris, L.G.; Ren, M.; Runkel, Anthony C.; Langford, R.P.

    2007-01-01

    Unconformable surfaces separating Precambrian crystalline basement and overlying Proterozoic to Cambrian sedimentary rocks provide an exceptional opportunity to examine the role of primitive soil ecosystems in weathering and resultant formation of saprolite (weathered rock retaining rock structure) and regolith (weathered rock without rock structure), but many appear to have been affected by burial diagenesis and hydrothermal fluid flow, leading some researchers to discount their suitability for such studies. We examine one modern weathering profile (Cecil series), four Cambrian paleoweathering profiles from the North American craton (Squaw Creek, Franklin Mountains, Core SQ-8, and Core 4), one Neoproterozoic profile (Sheigra), and one late Paleoproterozoic profile (Baraboo), to test the hypothesis that these paleoweathering profiles do provide evidence of primitive terrestrial weathering despite their diagenetic and hydrothermal overprinting, especially additions of potassium. We employ an integrated approach using (1) detailed thin-section investigations to identify characteristic pedogenic features associated with saprolitization and formation of well-drained regoliths, (2) electron microprobe analysis to identify specific weathered and new mineral phases, and (3) geochemical mass balance techniques to characterize volume changes during weathering and elemental gains and losses of major and minor elements relative to the inferred parent materials. There is strong pedogenic evidence of paleoweathering, such as clay illuviation, sepic-plasmic fabrics, redoximorphic features, and dissolution and alteration of feldspars and mafic minerals to kaolinite, gibbsite, and Fe oxides, as well as geochemical evidence, such as whole-rock losses of Na, Ca, Mg, Si, Sr, Fe, and Mn greater than in modern profiles. Evidence of diagenesis includes net additions of K, Ba, and Rb determined through geochemical mass balance, K-feldspar overgrowths in overlying sandstone sections, and

  14. Laser-accelerated particle beams for stress testing of materials.

    Science.gov (United States)

    Barberio, M; Scisciò, M; Vallières, S; Cardelli, F; Chen, S N; Famulari, G; Gangolf, T; Revet, G; Schiavi, A; Senzacqua, M; Antici, P

    2018-01-25

    Laser-driven particle acceleration, obtained by irradiation of a solid target using an ultra-intense (I > 10 18  W/cm 2 ) short-pulse (duration testing materials and are particularly suited for identifying materials to be used in harsh conditions. We show that these laser-generated protons can produce, in a very short time scale, a strong mechanical and thermal damage, that, given the short irradiation time, does not allow for recovery of the material. We confirm this by analyzing changes in the mechanical, optical, electrical, and morphological properties of five materials of interest to be used in harsh conditions.

  15. Investigation of waste form materials suitable for immobilizing actinide elements in high-level waste

    International Nuclear Information System (INIS)

    Hayakawa, Issei; Kamizono, Hiroshi

    1992-07-01

    The microstructure of waste form materials suitable for immobilizing actinide elements can be classified into the following two categories. (1) Actinide elements are immobilized in an crystallized matrix after the formation of solid solution or compounds. (2) Actinide elements are immobilized in a durable material by encapsulation. Based on crystal chemistry, durability data, phase diagrams, compositions of natural minerals, eleven oxide compounds and one non-oxide compound are pointed out to be new candidates included in category (1). The other survey on material compositions, manufacturing conditions and feasibility shows that SiC, glassy carbon, ZrO 2 , Ti-O-Si-C ceramics are preferable matrix materials included in category (2). Polymers and fine powders are suitable as starting materials for the encapsulation of actinide elements because of their excellent sinterability. (author) 50 refs

  16. Organic lining materials test in flue gas ducts

    International Nuclear Information System (INIS)

    Raveh, R.; Sfez, D.; Johannsson, L.

    1998-01-01

    Corrosion protection solutions are being widely used in electric power plants equipped with Flue Gas Desulfurization (FGD) systems. Organic lining materials are one of many solutions available on the market for corrosion protection. This market segment is found in a continuous development in order to fulfill the severe demands of these materials. The main goal of this test is to obtain information about the high temperature resistance of the materials as occurs when the FGD system is by-passed. Aster initial investigation of this market segment only a few lining materials were found compatible according to their manufacturer data. Seven of these materials were installed in the outlet flue gas duct of the Israeli power station M.D. B. This power station is not equipped with a FGD system, thus it gives a real simulation of the environmental conditions into which the lining material is subjected when the FGD system is by-passed. The materials installation was observed carefully and performed by representatives from the manufacturers in order to avoid material failure due to a non-adequate application. The power station was shut down and the lining materials were inspected three and a half months after the lining materials were applied. The inspection results were good and besides changes in the lining color, most materials did not show any damages. During that time the flue gas temperature at the duct was 134?C except some temperature fluctuations

  17. An Approach to the Flammability Testing of Aerospace Materials

    Science.gov (United States)

    Hirsch, David B.

    2012-01-01

    Presentation reviews: (1) Current approach to evaluation of spacecraft materials flammability (2) The need for and the approach to alternative routes (3) Examples of applications of the approach recommended a) Crew Module splash down b) Crew Module depressurization c) Applicability of NASA's flammability test data to other sample configurations d) Applicability of NASA's ground flammability test data to spacecraft environments

  18. Nondestructive testing technology for measurement coatings thickness on material

    International Nuclear Information System (INIS)

    Yang Mingtai; Wu Lunqiang; Zhang Lianping

    2008-01-01

    The principle, applicability range, advantage and disadvantage of electromagnetic, eddy current method, β backscatter method and XRF methods for nondestructive testing coating thickness of material have been reviewed. The relevant apparatus and manufacturers have been summarized. And the application and developmental direction of manufacturers for nondestructive testing coatings thickness has been foreshowed. (authors)

  19. Test plan for buried waste containment system materials

    International Nuclear Information System (INIS)

    Weidner, J.; Shaw, P.

    1997-03-01

    The objectives of the FY 1997 barrier material work at the Idaho National Engineering and Environmental Laboratory are to (1) select a waste barrier material and verify that it is compatible with the Buried Waste Containment System Process, and (2) determine if, and how, the Buried Waste Containment System emplacement process affects the material properties and performance (on proof of principle scale). This test plan describes a set of measurements and procedures used to validate a waste barrier material for the Buried Waste Containment System. A latex modified proprietary cement manufactured by CTS Cement Manufacturing Company will be tested. Emplacement properties required for the Buried Waste Containment System process are: slump between 8 and 10 in., set time between 15 and 30 minutes, compressive strength at set of 20 psi minimum, and set temperature less than 100 degrees C. Durability properties include resistance to degradation from carbonate, sulfate, and waste-site soil leachates. A set of baseline barrier material properties will be determined to provide a data base for comparison with the barrier materials when tested in the field. The measurements include permeability, petrographic analysis to determine separation and/or segregation of mix components, and a set of mechanical properties. The measurements will be repeated on specimens from the field test material. The data will be used to determine if the Buried Waste Containment System equipment changes the material. The emplacement properties will be determined using standard laboratory procedures and instruments. Durability of the barrier material will be evaluated by determining the effect of carbonate, sulfate, and waste-site soil leachates on the compressive strength of the barrier material. The baseline properties will be determined using standard ASTM procedures. 9 refs., 1 fig., 2 tabs

  20. Development, simulation and testing of structural materials for DEMO

    International Nuclear Information System (INIS)

    Laesser, R.; Baluc, N.; Boutard, J.-L.; Diegele, E.; Gasparotto, M.; Riccardi, B.; Dudarev, S.; Moeslang, A.; Pippan, R.; Schaaf, B. van der

    2006-01-01

    In DEMO the structural and functional materials of the in-vessel components will be exposed to a very intense flux of fusion neutrons with energies up to 14 MeV creating displacement cascades and gaseous transmutation products. Point defects and transmutations will induce new microstructures leading to changes in mechanical and physical properties such as hardening, swelling, loss of fracture toughness and creep strength. The kinetics of microstructural evolution depends on time, temperature and defect production rates. The structural materials to be used in DEMO should have very special properties: high radiation resistance up to the dose of 100 dpa, low residual activation, high creep strength and good compatibility with the cooling media in as wide a temperature operational window as possible for the achievement of high thermal efficiency. The most promising materials are: Reduced Activation Ferritic Martensitic (RAFM) steels (Eurofer and F82H), Oxide Dispersion Strengthened (ODS) RAFM and RAF steels, SiC fibres reinforced SiC matrix composites (SiCf/SiC), tungsten (W) and W-alloys. Each of these materials has its advantages and drawbacks and will be best used under certain conditions. Presently the best studied group of materials are the RAFM steels. They require the smallest extrapolation for use in DEMO but also offer the lowest upper temperature limit of operation (550 o C) and thus the lowest thermal efficiency. The other materials foreseen for more advanced breeder blanket and divertor concepts require intense fundamental R(and)D and testing before their acceptance, whereas the so-called Test Blanket Modules (TBMs) will be constructed using RAFM steel and tested in ITER. Validation of the DEMO structural materials will be done in IFMIF, the International Fusion Materials Irradiation Facility, which will produce neutron damage and transmutation products very similar to those characterising a fusion device and will allow accelerated testing with damage rates

  1. Lubricant Film Breakdown and Material Pick-Up in Sheet Forming of Advanced High Strength Steels and Stainless Steels when Using Environmental Friendly Lubricants

    DEFF Research Database (Denmark)

    Ceron, Ermanno; Olsson, M.; Bay, Niels

    2014-01-01

    chemically with the tool and workpiece material forming thin films, which adhere strongly to the surfaces and reduce the tendency to metal-metal contact and material pick-up. Production tests of new, environmentally benign tribo-systems are, however, costly and laboratory tests are preferred as a preliminary...... the tribological performance, i.e. tendency to material pick-up and galling, of the evaluated tribo-systems. Moreover the SEM analysis shows that different workpiece materials result in different types of material pick-up....

  2. Investigation of contact allergy to dental materials by patch testing

    Directory of Open Access Journals (Sweden)

    Reena Rai

    2014-01-01

    Full Text Available Background: Dental products are widely used by patients and dental personnel alike and may cause problems for both. Dental materials could cause contact allergy with varying manifestations such as burning, pain, stomatitis, cheilitis, ulcers, lichenoid reactions localized to the oral mucosa in patients, and hand dermatitis in dental personnel. Patch testing with the dental series comprising commonly used materials can be used to detect contact allergies to dental materials. Aim: This study aimed to identify contact allergy among patients who have oral mucosal lesions after dental treatment and among dental personnel who came in contact with these materials. Materials and Methods: Twenty patients who had undergone dental procedures with symptoms of oral lichen planus, oral stomatitis, burning mouth, and recurrent aphthosis, were included in the study. Dental personnel with history of hand dermatitis were also included in the study. Patch testing was performed using Chemotechnique Dental Series and results interpreted as recommended by the International Contact Dermatitis Research Group (ICDRG. Results: Out of 13 patients who had undergone dental treatment/with oral symptoms, six patients with stomatitis, lichenoid lesions, and oral ulcers showed positive patch tests to a variety of dental materials, seven patients with ulcers had negative patch tests, seven dental personnel with hand dermatitis showed multiple allergies to various dental materials, and most had multiple positivities. Conclusion: The patch test is a useful, simple, noninvasive method to detect contact allergies among patients and among dental personnel dealing with these products. Long term studies are necessary to establish the relevance of these positive patch tests by eliminating the allergic substances, identifying clinical improvement, and substituting with nonallergenic materials.

  3. Investigation of Resistance to Mechanical Effect of Braille Formed on Different Materials

    Directory of Open Access Journals (Sweden)

    Ingrida VENYTĖ

    2014-06-01

    Full Text Available Qualitative analysis of stresses emerged in paperboard during Braille embossing, using specialized polarimetric equipment, was carried out. Resistance to mechanical effect of Braille dot surfaces, formed with different printing types on different materials (paper, paperboard, polymer, textile, Al foil was investigated. It was determined that Braille dot height change after period mechanical effect is different.

  4. Modeling of hydrogen storage in hydride-forming materials : statistical thermodynamics

    NARCIS (Netherlands)

    Ledovskikh, A.; Danilov, D.; Rey, W.J.J.; Notten, P.H.L.

    2006-01-01

    A new lattice gas model has been developed, describing the hydrogen storage in hydride-forming materials. This model is based on the mean-field theory and Bragg-Williams approximation. To describe first-order phase transitions and two-phase coexistence regions, a binary alloy approach has been

  5. Effect of Bottoming on Material Property during Sheet Forming Process through Finite Element Method

    Science.gov (United States)

    Akinlabi, Stephen A.; Fatoba, Olawale S.; Mashinini, Peter M.; Akinlabi, Esther T.

    2018-03-01

    Metal forming is one of the conventional manufacturing processes of immense relevance till date even though modern manufacturing processes have evolved over the years. It is a known fact that material tends to return or spring back to its original form during forming or bending. The phenomena have been well managed through its application in various manufacturing processes by compensating for the spring back through overbending and bottoming. Overbending is bending the material beyond the desired shape to allow the material to spring back to the expected shape. Bottoming, on the other hand, is a process of undergoing plastic deformation at the point of bending. This study reports on the finite element analysis of the effect of bottoming on the material property during the sheet forming process with the aim of optimising the process. The result of the analysis revealed that the generated plastic strains are in the order between 1.750e00-1 at the peak of the bending and 3.604e00-2, which was at the early stage of the bending.

  6. MM99.70 - MODELS FOR FRICTION AND MATERIAL STRESS STRAIN HARDENING IN COLD FORMING

    DEFF Research Database (Denmark)

    Eriksen, Morten

    1999-01-01

    and tool temperature for four different combination of basic material, conversion layer and lubricant. Furthermore flow stress curves for aluminium, steel and stainless steel are given at varying slug temperatures in the range which can be reached in cold forming (25-200C).The documentation is divided...

  7. An advanced material model for aluminum sheet forming at elevated temperatures

    NARCIS (Netherlands)

    Kurukuri, S.; Miroux, Alexis; Ghosh, Manojit; van den Boogaard, Antonius H.; Oñate, E.; Owen, D.R.J; Suárez, B.

    2009-01-01

    A physically-based material model according to Nes is used to simulate the warm forming of Al-Mg-Si sheet. This model incorporates the influence of the temperature and strain rate on the flow stress and on the hardening rate based on storage and dynamic recovery of dislocations. The effect of size

  8. Reprint of: Improved cytotoxicity testing of magnesium materials

    International Nuclear Information System (INIS)

    Fischer, Janine; Pröfrock, Daniel; Hort, Norbert; Willumeit, Regine; Feyerabend, Frank

    2011-01-01

    Metallic magnesium (Mg) and its alloys are highly suitable for medical applications as biocompatible and biodegradable implant materials. Magnesium has mechanical properties similar to bone, stimulates bone regeneration, is an essential non-toxic element for the human body and degrades completely within the body environment. In consequence, magnesium is a promising candidate as implant material for orthopaedic applications. Protocols using the guideline of current ISO standards should be carefully evaluated when applying them for the characterization of the cytotoxic potential of degradable magnesium materials. For as-cast material we recommend using 10 times more extraction medium than recommended by the ISO standards to obtain reasonable results for reliable cytotoxicity rankings of degradable materials in vitro. In addition primary isolated human osteoblasts or mesenchymal stem cells should be used to test magnesium materials.

  9. Reprint of: Improved cytotoxicity testing of magnesium materials

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Janine [Helmholtz-Zentrum Geesthacht, Institute of Materials Research, Department for Structural Research on Macromolecules, Max-Planck Str. 1, D - 21502 Geesthacht (Germany); Proefrock, Daniel [Helmholtz-Zentrum Geesthacht, Institute for Coastal Research, Department for Marine Bioanalytical Chemistry, Max-Planck Str. 1, D - 21502 Geesthacht (Germany); Hort, Norbert [Helmholtz-Zentrum Geesthacht, Institute of Materials Research, Department for Magnesium Processing, Max-Planck Str. 1, D - 21502 Geesthacht (Germany); Willumeit, Regine; Feyerabend, Frank [Helmholtz-Zentrum Geesthacht, Institute of Materials Research, Department for Structural Research on Macromolecules, Max-Planck Str. 1, D - 21502 Geesthacht (Germany)

    2011-12-15

    Metallic magnesium (Mg) and its alloys are highly suitable for medical applications as biocompatible and biodegradable implant materials. Magnesium has mechanical properties similar to bone, stimulates bone regeneration, is an essential non-toxic element for the human body and degrades completely within the body environment. In consequence, magnesium is a promising candidate as implant material for orthopaedic applications. Protocols using the guideline of current ISO standards should be carefully evaluated when applying them for the characterization of the cytotoxic potential of degradable magnesium materials. For as-cast material we recommend using 10 times more extraction medium than recommended by the ISO standards to obtain reasonable results for reliable cytotoxicity rankings of degradable materials in vitro. In addition primary isolated human osteoblasts or mesenchymal stem cells should be used to test magnesium materials.

  10. Growing and testing mycelium bricks as building insulation materials

    Science.gov (United States)

    Xing, Yangang; Brewer, Matthew; El-Gharabawy, Hoda; Griffith, Gareth; Jones, Phil

    2018-02-01

    In order to improve energy performance of buildings, insulation materials (such as mineral glass and rock wools, or fossil fuel-based plastic foams) are being used in increasing quantities, which may lead to potential problem with materials depletions and landfill disposal. One sustainable solution suggested is the use of bio-based, biodegradable materials. A number of attempts have been made to develop biomaterials, such as sheep wood, hemcrete or recycled papers. In this paper, a novel type of bio insulation materials - mycelium is examined. The aim is to produce mycelium materials that could be used as insulations. The bio-based material was required to have properties that matched existing alternatives, such as expanded polystyrene, in terms of physical and mechanical characteristics but with an enhanced level of biodegradability. The testing data showed mycelium bricks exhibited good thermal performance. Future work is planned to improve growing process and thermal performance of the mycelium bricks.

  11. Atomistic Simulations of Small-scale Materials Tests of Nuclear Materials

    International Nuclear Information System (INIS)

    Shin, Chan Sun; Jin, Hyung Ha; Kwon, Jun Hyun

    2012-01-01

    Degradation of materials properties under neutron irradiation is one of the key issues affecting the lifetime of nuclear reactors. Evaluating the property changes of materials due to irradiations and understanding the role of microstructural changes on mechanical properties are required for ensuring reliable and safe operation of a nuclear reactor. However, high dose of neuron irradiation capabilities are rather limited and it is difficult to discriminate various factors affecting the property changes of materials. Ion beam irradiation can be used to investigate radiation damage to materials in a controlled way, but has the main limitation of small penetration depth in the length scale of micro meters. Over the past decade, the interest in the investigations of size-dependent mechanical properties has promoted the development of various small-scale materials tests, e.g. nanoindentation and micro/nano-pillar compression tests. Small-scale materials tests can address the issue of the limitation of small penetration depth of ion irradiation. In this paper, we present small-scale materials tests (experiments and simulation) which are applied to study the size and irradiation effects on mechanical properties. We have performed molecular dynamics simulations of nanoindentation and nanopillar compression tests. These atomistic simulations are expected to significantly contribute to the investigation of the fundamental deformation mechanism of small scale irradiated materials

  12. Strip specimen tests for pipeline materials and girth welds

    Energy Technology Data Exchange (ETDEWEB)

    Mohr, William C. [Edison Welding Institute (EWI), Columbus, Ohio (United States)

    2009-07-01

    Strip specimen testing of pipeline materials has been widely applied as a method of getting data relevant to the performance of pipelines under axial direction loading. Comparisons of strip specimen against smaller standard tests (round tensile bar, fracture toughness specimens, polished round bars) and against full-scale or large-scale testing will be explored. Data from early-generation pipe welds from the 1920's to the 1940's to the most recent materials for offshore reeled pipe will be used for examples. Strip samples can provide full thickness information to take account of varying material properties or imperfection distribution through the thickness. Strip samples can also accommodate measurement of effects of the original surface finish or weld surface shape. Strip samples have more design flexibility than standard tests, but must be designed to limit stress concentrations and effects of local bending. (author)

  13. Piezoelectric materials involved in road traffic applications test system

    International Nuclear Information System (INIS)

    Vazquez Rodriguez, M.; Jimenez Martinez, F.; Frutos, J. de

    2011-01-01

    The test bench system described in this paper performs experiments on piezoelectric materials used in road traffic applications, covering a range between 14 and 170 km/h, which is considered enough for testing under standard traffic conditions. A software has been developed to control the three phase induction motor driver and to acquire all the measurement data of the piezoelectric materials. The mass over each systems axis can be selected, with a limit of 60 kg over each wheel. The test bench is used to simulate the real behaviour of buried piezoelectric cables in road traffic applications for both light and heavy vehicles. This new test bed system is a powerful research tool and can be applied to determine the optimal installation and configuration of the piezoelectric cable sensors and opens a new field of research: the study of energy harvesting techniques based on piezoelectric materials. (Author) 10 refs.

  14. Elevated Temperature Testing and Modeling of Advanced Toughened Ceramic Materials

    Science.gov (United States)

    Keith, Theo G.

    2005-01-01

    The purpose of this report is to provide a final report for the period of 12/1/03 through 11/30/04 for NASA Cooperative Agreement NCC3-776, entitled "Elevated Temperature Testing and Modeling of Advanced Toughened Ceramic Materials." During this final period, major efforts were focused on both the determination of mechanical properties of advanced ceramic materials and the development of mechanical test methodologies under several different programs of the NASA-Glenn. The important research activities made during this period are: 1. Mechanical properties evaluation of two gas-turbine grade silicon nitrides. 2) Mechanical testing for fuel-cell seal materials. 3) Mechanical properties evaluation of thermal barrier coatings and CFCCs and 4) Foreign object damage (FOD) testing.

  15. Characterization of material parameters for high speed forming and cutting via experiment and inverse simulation

    Science.gov (United States)

    Scheffler, Christian; Psyk, Verena; Linnemann, Maik; Tulke, Marc; Brosius, Alexander; Landgrebe, Dirk

    2018-05-01

    High speed velocity effects in production technology provide a broad range of technological and economic advantages [1, 2]. However, exploiting them necessitates the knowledge of strain rate dependent material behavior in process modelling. In general, high speed material data characterization features several difficulties and requires sophisticated approaches in order to provide reliable material data. This paper proposes two innovative concepts with electromagnetic and pneumatic drive and an approach for material characterization in terms of strain rate dependent flow curves and parameters of failure or damage models. The test setups have been designed for investigations of strain rates up to 105 s-1. In principle, knowledge about the temporary courses and local distributions of stress and strain in the specimen is essential for identifying material characteristics, but short process times, fast changes of the measurement values, small specimen size and frequently limited accessibility of the specimen during the test hinder directly measuring these parameters at high-velocity testing. Therefore, auxiliary test parameters, which are easier to measure, are recorded and used as input data for an inverse numerical simulation that provides the desired material characteristics, e.g. the Johnson-Cook parameters, as a result. These parameters are a force equivalent strain signal on a measurement body and the displacement of the upper specimen edge.

  16. A Cryogenic RF Material Testing Facility at SLAC

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Jiquan; Martin, David; Tantawi, Sami; Yoneda, Charles; /SLAC

    2012-06-22

    The authors have developed an X-band SRF testing system using a high-Q copper cavity with an interchangeable flat bottom for the testing of different materials. By measuring the Q of the cavity, the system is capable to characterize the quenching magnetic field of the superconducting samples at different power level and temperature, as well as the surface resistivity. This paper presents the most recent development of the system and testing results.

  17. Thermal testing transport packages for radioactive materials: Reality vs regulation

    International Nuclear Information System (INIS)

    Hovingh, J.; Carlson, R.W.

    1994-03-01

    The principle objective of this paper is to provide information that will help describe the physical thermal tests performed to demonstrate compliance with the hypothetical accident conditions specified in 10 CFR 71.73. Physical testing should be applied to packages that cannot be modeled by analysis to adequately predict their response to hypothetical accident conditions. These tests should be used when chemical decomposition or material changes occur during an accident that would be difficult to analytically predict or model

  18. Solution exchange corrosion testing with the glass-zeolite ceramic waste form in demineralized water at 900C

    International Nuclear Information System (INIS)

    Simpson, L. J.

    1998-01-01

    A ceramic waste form of glass-bonded zeolite is being developed for the long-term disposition of fission products and transuranic elements in wastes from the U.S. Department of Energy's spent nuclear fuel conditioning activities. Solution exchange corrosion tests were performed on the ceramic waste form and its potential base constituents of glass, zeolite 5A, and sodalite as part of an effort to qualify the ceramic waste form for acceptance into the Civilian Radioactive Waste Management System. Solution exchange tests were performed at 90 C by replacing 80 to 90% of the leachate with fresh demineralized water after set time intervals. The results from these tests provide information about corrosion mechanisms and the ability of the ceramic waste form and its constituent materials to retain waste components. The results from solution exchange tests indicate that radionuclides will be preferentially retained in the zeolites without the glass matrix and in the ceramic waste form, with respect to cations like Li, K, and Na. Release results have been compared for simulated waste from candidate ceramic waste forms with zeolite 5A and its constituent materials to determine the corrosion behavior of each component

  19. K-α emission form medium and high-Z materials irradiated by femtosecond laser pulses

    International Nuclear Information System (INIS)

    Limpouch, J.; Klimo, O.; Zhavoronkov, N.; Andreev, A.A.

    2006-01-01

    Complete test of publication follows. Fast electrons are created at the target surface during the interaction of high intensity ultra short laser pulses with solids. Fast electrons penetrate deep into the target where they generate K-α and Bremsstrahlung radiation. Generated high brightness K-α pulses offer the prospect of creating a cheap and compact X-ray source, posing a promising alternative to synchrotron radiation, e.g. in medical application and in material science. With an increase in laser intensity, efficient X-ray emission in the multi-keV range with pulse duration shorter than few picoseconds is expected. This short incoherent but monochromatic X-ray emission synchronized with laser pulses may be used for time-resolved measurements. Acceleration of fast electrons, their transport and K-α photon generation and emission from the target surface in both forward and backward directions are studied here numerically. The results are compared to recent experiments studying K-α emission from the front and rear surface of copper foil targets of various thicknesses and for various parameters of the laser plasma interaction. One-dimensional PIC simulations coupled with 3D time-resolved Monte Carlo simulations show that account of ionization processes and of density profile formed by laser ASE emission is essential for reliable explanation of experimental data. While sub-relativistic intensities are optimum for laser energy transformation into K-α emission for medium-Z targets, relativistic laser intensities have to be used for hard X-ray generation in high-Z materials. The cross-section for K-α shell ionization of high-Z elements by electrons increases or remains approximately constant within a factor of two at relativistic electron energies up to electron energies in the 100-MeV range. Moreover, the splitting ratio of K-α photon emission to Auger electron emission is favorable for high-Z materials, and thus efficient K-α emission is possible. In our

  20. New JMTR irradiation test plan on fuels and materials

    International Nuclear Information System (INIS)

    Nakamura, Takehiko; Nishiyama, Yutaka; Chimi, Yasuhiro; Sasajima, Hideo; Ogiyanagi, Jin; Nakamura, Jinichi; Suzuki, Masahide; Kawamura, Hiroshi

    2009-01-01

    In order to maintain and enhance safety of light water reactors (LWRs) in long-term and up-graded operations, proper understanding of irradiation behavior of fuels and materials is essentially important. Japanese government and the Japan Atomic Energy Agency (JAEA) have decided to refurbish the Japan Materials Testing Reactor (JMTR) and to install new tests rigs, in order to play an active role for solving irradiation related issues on plant aging and high-duty uses of the current LWRs and on development of next-generation reactors. New tests on fuel integrity under simulated abnormal transients and high-duty irradiation conditions are planned in the JMTR. Power ramp tests of newdesign fuel rods will also be performed in the first stage of the program, which is expected to start in year 2011 after refurbishment of the JMTR. Combination of the JMTR tests with simulated reactivity initiated accident tests in the Nuclear Safety Research Reactor (NSRR) and loss of coolant accident tests in hot laboratories would serve as the integrated fuel safety research on the high performance fuels at extended burnups, covering from the normal to the accident conditions, including abnormal transients. For the materials irradiation, fracture toughness of reactor vessel steels and stress corrosion cracking behavior of stainless steels are being studied in addition to basic irradiation behavior of nuclear materials such as hafnium. The irradiation studies would contribute not only to solve the current problems but also to identify possible seeds of troubles and to make proactive responses. (author)

  1. Standard Test Method for Contamination Outgassing Characteristics of Spacecraft Materials

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This test method covers a technique for generating data to characterize the kinetics of the release of outgassing products from materials. This technique will determine both the total mass flux evolved by a material when exposed to a vacuum environment and the deposition of this flux on surfaces held at various specified temperatures. 1.2 This test method describes the test apparatus and related operating procedures for evaluating the total mass flux that is evolved from a material being subjected to temperatures that are between 298 and 398 K. Pressures external to the sample effusion cell are less than 7 × 10−3 Pa (5 × 10−5 torr). Deposition rates are measured during material outgassing tests. A test procedure for collecting data and a test method for processing and presenting the collected data are included. 1.3 This test method can be used to produce the data necessary to support mathematical models used for the prediction of molecular contaminant generation, migration, and deposition. 1.4 Al...

  2. Ultraviolet Testing of Space Suit Materials for Mars

    Science.gov (United States)

    Larson, Kristine; Fries, Marc

    2017-01-01

    Human missions to Mars may require radical changes in the approach to extra-vehicular (EVA) suit design. A major challenge is the balance of building a suit robust enough to complete multiple EVAs under intense ultraviolet (UV) light exposure without losing mechanical strength or compromising the suit's mobility. To study how the materials degrade on Mars in-situ, the Jet Propulsion Laboratory (JPL) invited the Advanced Space Suit team at NASA's Johnson Space Center (JSC) to place space suit materials on the Scanning Habitable Environments with Raman & Luminescence for Organics and Chemicals (SHERLOC) instrument's calibration target of the Mars 2020 rover. In order to select materials for the rover and understand the effects from Mars equivalent UV exposure, JSC conducted ground testing on both current and new space suit materials when exposed to 2500 hours of Mars mission equivalent UV. To complete this testing, JSC partnered with NASA's Marshall Space Flight Center to utilize their UV vacuum chambers. Materials tested were Orthofabric, polycarbonate, Teflon, Dacron, Vectran, spectra, bladder, nGimat coated Teflon, and nGimat coated Orthofabric. All samples were measured for mass, tensile strength, and chemical composition before and after radiation. Mass loss was insignificant (less than 0.5%) among the materials. Most materials loss tensile strength after radiation and became more brittle with a loss of elongation. Changes in chemical composition were seen in all radiated materials through Spectral Analysis. Results from this testing helped select the materials that will fly on the Mars 2020 rover. In addition, JSC can use this data to create a correlation to the chemical changes after radiation-which is what the rover will send back while on Mars-to the mechanical changes, such as tensile strength.

  3. Development and testing of a glass waste form for the immobilization of plutonium

    International Nuclear Information System (INIS)

    Chamberlain, D.B.; Hanchar, J.M.; Emery, J.W.; Hoh, J.C.; Wolf, S.F.; Finch, R.J.; Bates, J.K.; Ellison, A.J.G.; Dingwell, D.B.

    1996-01-01

    The United States has declared about 50 metric tons of weapons-grade Pu surplus to national security needs. The President has directed that this Pu be placed in a form that provides a high degree of proliferation resistance in which the surplus Pu is both unattractive and inaccessible for use by others [I]. Three alternatives are being evaluated for the disposal 2048 of this material: (1) use of the Pu as a fuel source for commercial reactors; (2) immobilization, where Pu is fixed in a glass or ceramic matrix that also contains or is surrounded by highly radioactive material; and (3) deep bore hole, where Pu is emplaced at depths of several kilometers. The immobilization alternative is being directed by the staff at Lawrence Livermore National Laboratory (LLNL). The staff at ANL are assisting by developing a glass for the immobilization of Pu and in the corrosion testing of glass and ceramic material prepared both at ANL and at other DOE laboratories. As part of this program, we have developed an ATS glass into which 5-7 wt percent Pu has been dissolved. The ATS glass was engineered to accommodate high Pu loading and to be durable under conditions likely to accelerate glass reactions in the geological environment during long-term storage

  4. Radioactive material package testing capabilities at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Uncapher, W.L.; Hohnstreiter, G.F.

    1995-01-01

    Evaluation and certification of radioactive and hazardous material transport packages can be accomplished by subjecting these packages to normal transport and hypothetical accident test conditions. The regulations allow package designers to certify packages using analysis, testing, or a combination of analysis and testing. Testing can be used to substantiate assumptions used in analytical models and to demonstrate package structural and thermal response. Regulatory test conditions include impact, puncture, crush, penetration, water spray, immersion, and thermal environments. Testing facilities are used to simulate the required test conditions and provide measurement response data. Over the past four decades, comprehensive testing facilities have been developed at Sandia National Laboratories to perform a broad range of verification and certification tests on hazardous and radioactive material packages or component sections. Sandia's facilities provide an experience base that has been established during the development and certification of many package designs. These unique facilities, along with innovative instrumentation data collection capabilities and techniques, simulate a broad range of testing environments. In certain package designs, package testing can be an economical alternative to complex analysis to resolve regulatory questions or concerns

  5. Study on polyethylene glycol/epoxy resin composite as a form-stable phase change material

    International Nuclear Information System (INIS)

    Fang Yutang; Kang Huiying; Wang Weilong; Liu Hong; Gao Xuenong

    2010-01-01

    Form-stable polyethylene glycol (PEG)/epoxy resin (EP) composite as a novel phase change material (PCM) was prepared using casting molding method. In this new material, PEG acts as the latent heat storage material and EP polymer serves as the supporting material, which provides structural strength and prevents the leakage of the melted PEG. The structure and morphology of the novel composite were observed using Fourier transformation infrared spectroscope (FTIR) and scanning electronic microscope (SEM). The thermo-mechanical property and transition behavior were characterized by polarizing optical microscope (POM), static thermo-mechanical analysis (TMA) and differential scanning calorimeter (DSC). The experimental results show that, as a result of the physical tangled function of the epoxy resin carrier to the PEG segment, the composite macroscopically presents the solid-solid phase change characteristic.

  6. Finite element analysis and optimization of process parameters during stamp forming of composite materials

    International Nuclear Information System (INIS)

    Venkatesan, S; Kalyanasundaram, S

    2010-01-01

    In the manufacture of parts for high performance structures using composite materials, the quality and robustness of the parts is of utmost importance. The quality of the produced parts depends largely on the process parameters and manufacturing methodologies. This study presents the use of a temperature dependant orthotropic material for a coupled structural-thermal analysis of the stamp forming process. The study investigated the effects of process parameters such as pre-heat temperature, blank holder force and process time on the formability of composite materials. Temperature was found to be the dominant factor governing the formability of the composite material while higher blank holder forces were deemed to be important for achieving high quality of the parts manufactured. Finally, an optimum set of parameters was used to compare the simulations with experimental results using an optical strain measurement system.

  7. Method of forming a continuous polymeric skin on a cellular foam material

    Science.gov (United States)

    Duchane, David V.; Barthell, Barry L.

    1985-01-01

    Hydrophobic cellular material is coated with a thin hydrophilic polymer skin which stretches tightly over the outer surface of the foam but which does not fill the cells of the foam, thus resulting in a polymer-coated foam structure having a smoothness which was not possible in the prior art. In particular, when the hydrophobic cellular material is a specially chosen hydrophobic polymer foam and is formed into arbitrarily chosen shapes prior to the coating with hydrophilic polymer, inertial confinement fusion (ICF) targets of arbitrary shapes can be produced by subsequently coating the shapes with metal or with any other suitable material. New articles of manufacture are produced, including improved ICF targets, improved integrated circuits, and improved solar reflectors and solar collectors. In the coating method, the cell size of the hydrophobic cellular material, the viscosity of the polymer solution used to coat, and the surface tensin of the polymer solution used to coat are all very important to the coating.

  8. Long-term leach testing of solidified radioactive waste forms (International Standard Publication ISO 6961:1982)

    International Nuclear Information System (INIS)

    Stefanik, J.

    2001-01-01

    Processes are developed for the immobilization of radionuclides by solidification of radioactive wastes. The resulting solidification products are characterized by strong resistance to leaching aimed at low release rates of the radionuclides to the environment. To measure this resistance to leaching of the solidified materials: glass, glass-ceramics, bitumen, cement, concrete, plastics, a long-term leach test is presented. The long-term leach test is aimed at: a) the comparison of different kinds or compositions of solidified waste forms; b) the intercomparison between leach test results from different laboratories on one product; c) the intercomparison between leach test results on products from different processes

  9. Indirect Versus Direct Heating of Sheet Materials: Superplastic Forming and Diffusion Bonding Using Lasers

    Science.gov (United States)

    Jocelyn, Alan; Kar, Aravinda; Fanourakis, Alexander; Flower, Terence; Ackerman, Mike; Keevil, Allen; Way, Jerome

    2010-06-01

    Many from within manufacturing industry consider superplastic forming (SPF) to be ‘high tech’, but it is often criticized as too complicated, expensive, slow and, in general, an unstable process when compared to other methods of manipulating sheet materials. Perhaps, the fundamental cause of this negative perception of SPF, and also of diffusion bonding (DB), is the fact that the current process of SPF/DB relies on indirect sources of heating to produce the conditions necessary for the material to be formed. Thus, heat is usually derived from the electrically heated platens of hydraulic presses, to a lesser extent from within furnaces and, sometimes, from heaters imbedded in ceramic moulds. Recent evaluations of these isothermal methods suggest they are slow, thermally inefficient and inappropriate for the process. In contrast, direct heating of only the material to be formed by modern, electrically efficient, lasers could transform SPF/DB into the first choice of designers in aerospace, automotive, marine, medical, architecture and leisure industries. Furthermore, ‘variable temperature’ direct heating which, in theory, is possible with a laser beam(s) may provide a means to control material thickness distribution, a goal of enormous importance as fuel efficient, lightweight structures for transportation systems are universally sought. This paper compares, and contrasts, the two systems and suggests how a change to laser heating might be achieved.

  10. Directory of national competent authorities' approval certificates for package design, special form material and shipment of radioactive material. 2003 ed

    International Nuclear Information System (INIS)

    2003-10-01

    This is the fourteenth annual report being published by the Secretariat of the International Atomic Energy Agency since implementing its database on package approval certificates (PACKTRAM) at the recommendation of the Transport Safety Standards Committee (TRANSSC). It supersedes IAEA-TECDOC-1302 'Directory of National Competent Authorities' Approval Certificates for Package Design, Special Form Material and Shipment of Radioactive Material, 2002 Edition'. Through the database, the Secretariat collects administrative and technical information provided by the issuing competent authority about package approval certificates. Such data are used mainly by national competent authorities and port and customs officials to assist in regulating radioactive material movements in their country, and also by manufacturers and shippers of radioactive material. The database carries information on extant certificates and those that expired within the last complete calendar year. The PACKTRAM database only contains information that has been provided to the IAEA. The data are not complete nor guaranteed to be accurate. If detailed information is required, the original package approval certificates must be consulted. If information is required about package approval certificates that are not contained in the database, the issuing competent authority must be consulted

  11. Directory of national competent authorities' approval certificates for package design, special form material and shipment of radioactive material. 2003 ed

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-10-01

    This is the fourteenth annual report being published by the Secretariat of the International Atomic Energy Agency since implementing its database on package approval certificates (PACKTRAM) at the recommendation of the Transport Safety Standards Committee (TRANSSC). It supersedes IAEA-TECDOC-1302 'Directory of National Competent Authorities' Approval Certificates for Package Design, Special Form Material and Shipment of Radioactive Material, 2002 Edition'. Through the database, the Secretariat collects administrative and technical information provided by the issuing competent authority about package approval certificates. Such data are used mainly by national competent authorities and port and customs officials to assist in regulating radioactive material movements in their country, and also by manufacturers and shippers of radioactive material. The database carries information on extant certificates and those that expired within the last complete calendar year. The PACKTRAM database only contains information that has been provided to the IAEA. The data are not complete nor guaranteed to be accurate. If detailed information is required, the original package approval certificates must be consulted. If information is required about package approval certificates that are not contained in the database, the issuing competent authority must be consulted.

  12. Application of titanates, niobates, and tantalates to neutralized defense waste decontamination: materials properties, physical forms, and regeneration techniques. Final report

    International Nuclear Information System (INIS)

    Dosch, R.G.

    1981-01-01

    A study of the application of sodium titanate (ST) to the decontamination of neutralized defense waste has been completed. The work was directed at Sr removal from dissolved salt cake, simulated in this work with a 6.0 N NaNO 3 - 0.6 N NaOH solution. Three physical forms of the titanates were developed including powder, pellets, and titanate-loaded resin beads and all were found to be superior to conventional organic ion exchange in this application. When spent, the titanate materials can be calcined to an oxide from which is a stable waste form in itself or can be added directly to a glass melter to become part of a vitrified waste form. Radiation stability of titanate powder and resin forms was assessed in tests in which these materials were exposed to 60 Co radiation. The strontium exchange capacity of the powder remained constant through a dose of 3 x 10 7 rads and retained 50% capacity after a dose of 2 x 10 9 rads. The primary mechanism involved in loss of capacity was believed to be heating associated with the irradiation. The resin forms were unchanged through a dose of 5 x 10 8 rads and retained 30% capacity after a dose of 2 x 10 9 rads. The latter dose resulted in visible degradation of the resin matrix. Anion exchange resins loaded with sodium niobate and sodium tantalate were also prepared by similar methods and evaluated for this application. These materials had Sr sorption properties comparable to the titanate material; however, they would have to provide a significant improvement to justify their higher cost

  13. Erosion tests of materials by energetic particle beams

    Energy Technology Data Exchange (ETDEWEB)

    Schechter, D.E.; Tsai, C.C.; Sluss, F.; Becraft, W.R.; Hoffman, D.J.

    1985-01-01

    The internal components of magnetic fusion devices must withstand erosion from and high heat flux of energetic plasma particles. The selection of materials for the construction of these components is important to minimize contamination of the plasma. In order to study various materials' comparative resistance to erosion by energetic particles and their ability to withstand high heat flux, water-cooled copper swirl tubes coated or armored with various materials were subjected to bombardment by hydrogen and helium particle beams. Materials tested were graphite, titanium carbide (TiC), chromium, nickel, copper, silver, gold, and aluminum. Details of the experimental arrangement and methods of application or attachment of the materials to the copper swirl tubes are presented. Results including survivability and mass losses are discussed.

  14. Capsule Development and Utilization for Material Irradiation Tests

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bong Goo; Kang, Y. H.; Cho, M. S. (and others)

    2007-06-15

    The essential technology for an irradiation test of materials and nuclear fuel has been successively developed and utilized to meet the user's requirements in Phase I(July 21, 1997 to March 31, 2000). It enables irradiation tests to be performed for a non-fissile material under a temperature control(300{+-}10 .deg. C) in a He gas environment, and most of the irradiation tests for the internal and external users are able to be conducted effectively. The basic technology was established to irradiate a nuclear fuel, and a creep capsule was also developed to measure the creep property of a material during an irradiation test in HANARO in Phase II(April 1, 2000 to March 31, 2003). The development of a specific purpose capsule, essential technology for a re-irradiation of a nuclear fuel, advanced technology for an irradiation of materials and a nuclear fuel were performed in Phase III(April 1, 2003 to February 28, 2007). Therefore, the technology for an irradiation test was established to support the irradiation of materials and a nuclear fuel which is required for the National Nuclear R and D Programs. In addition, an improvement of the existing capsule design and fabrication technology, and the development of an instrumented capsule for a nuclear fuel and a specific purpose will be able to satisfy the user's requirements. In order to support the irradiation test of materials and a nuclear fuel for developing the next generation nuclear system, it is also necessary to continuously improve the design and fabrication technology of the existing capsule and the irradiation technology.

  15. Capsule Development and Utilization for Material Irradiation Tests

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bong Goo; Kang, Y H; Cho, M S [and others

    2007-06-15

    The essential technology for an irradiation test of materials and nuclear fuel has been successively developed and utilized to meet the user's requirements in Phase I(July 21, 1997 to March 31, 2000). It enables irradiation tests to be performed for a non-fissile material under a temperature control(300{+-}10 .deg. C) in a He gas environment, and most of the irradiation tests for the internal and external users are able to be conducted effectively. The basic technology was established to irradiate a nuclear fuel, and a creep capsule was also developed to measure the creep property of a material during an irradiation test in HANARO in Phase II(April 1, 2000 to March 31, 2003). The development of a specific purpose capsule, essential technology for a re-irradiation of a nuclear fuel, advanced technology for an irradiation of materials and a nuclear fuel were performed in Phase III(April 1, 2003 to February 28, 2007). Therefore, the technology for an irradiation test was established to support the irradiation of materials and a nuclear fuel which is required for the National Nuclear R and D Programs. In addition, an improvement of the existing capsule design and fabrication technology, and the development of an instrumented capsule for a nuclear fuel and a specific purpose will be able to satisfy the user's requirements. In order to support the irradiation test of materials and a nuclear fuel for developing the next generation nuclear system, it is also necessary to continuously improve the design and fabrication technology of the existing capsule and the irradiation technology.

  16. Study of a chromia-forming alloy behavior as interconnect material for High Temperature Vapor Electrolysis

    International Nuclear Information System (INIS)

    Guillou, S.

    2011-01-01

    In High Temperature Vapor Electrolysis (HTVE) system, the materials chosen for the inter-connectors should have a good corrosion behaviour in air and in H 2 -H 2 O mixtures at 800 C, and keep a high electronic conductivity over long durations as well. In this context, the first goal of this study was to evaluate a commercial ferritic alloy (the K41X alloy) as interconnect for HTVE application. Oxidation tests in furnace and in microbalance have therefore been carried out in order to determine oxidation kinetics. Meanwhile, the Area Specific Resistance (ASR) was evaluated by Contact Resistance measurements performed at 800 C. The second objective was to improve our comprehension of chromia-forming alloys oxidation mechanism, in particular in H 2 /H 2 O mixtures. For that purpose, some specific tests have been conducted: tracer experiments, coupled with the characterization of the oxide scale by PEC (Photo-Electro-Chemistry). This approach has also been applied to the study of a LaCrO 3 perovskite oxide coating on the K41X alloy. This phase is indeed of high interest for HTVE applications due to its high conductivity properties. This latter study leads to further understanding on the role of lanthanum as reactive element, which effect is still under discussion in literature.In both media at 800 C, the scale is composed of a Cr 2 O 3 /(Mn,Cr) 3 O 4 duplex scale, covered in the case of H 2 -H 2 O mixture by a thin scale made of Mn 2 TiO 4 spinel. In air, the growth mechanism is found to be cationic, in agreement with literature. The LaCrO 3 coating does not modify the direction of scale growth but lowers the growth kinetics during the first hundreds hours. Moreover, with the coating, the scale adherence is favored and the conductivity appears to be slightly higher. In the H 2 -H 2 O mixture, the growth mechanism is found to be anionic. The LaCrO 3 coating diminishes the oxidation kinetics. Although the scale thickness is about the same in both media, the ASR parameter

  17. Reference Material Kydex(registered trademark)-100 Test Data Message for Flammability Testing

    Science.gov (United States)

    Engel, Carl D.; Richardson, Erin; Davis, Eddie

    2003-01-01

    The Marshall Space Flight Center (MSFC) Materials and Processes Technical Information System (MAPTIS) database contains, as an engineering resource, a large amount of material test data carefully obtained and recorded over a number of years. Flammability test data obtained using Test 1 of NASA-STD-6001 is a significant component of this database. NASA-STD-6001 recommends that Kydex 100 be used as a reference material for testing certification and for comparison between test facilities in the round-robin certification testing that occurs every 2 years. As a result of these regular activities, a large volume of test data is recorded within the MAPTIS database. The activity described in this technical report was undertaken to mine the database, recover flammability (Test 1) Kydex 100 data, and review the lessons learned from analysis of these data.

  18. Alternative Forms of the Rey Auditory Verbal Learning Test: A Review

    Directory of Open Access Journals (Sweden)

    Keith A. Hawkins

    2004-01-01

    Full Text Available Practice effects in memory testing complicate the interpretation of score changes over repeated testings, particularly in clinical applications. Consequently, several alternative forms of the Auditory Verbal Learning Test (AVLT have been developed. Studies of these typically indicate that the forms examined are equivalent. However, the implication that the forms in the literature are interchangeable must be tempered by several caveats. Few studies of equivalence have been undertaken; most are restricted to the comparison of single pairs of forms, and the pairings vary across studies. These limitations are exacerbated by the minimal overlapping across studies in variables reported, or in the analyses of equivalence undertaken. The data generated by these studies are nonetheless valuable, as significant practice effects result from serial use of the same form. The available data on alternative AVLT forms are summarized, and recommendations regarding form development and the determination of form equivalence are offered.

  19. NNWSI Phase II materials interaction test procedure and preliminary results

    International Nuclear Information System (INIS)

    Bates, J.K.; Gerding, T.J.

    1985-01-01

    The Nevada Nuclear Waste Storage Investigations (NNWSI) project is investigating the volcanic tuff beds of Yucca Mountain, Nevada, as a potential location for a high-level radioactive waste repository. This report describes a test method (Phase II) that has been developed to measure the release of radionuclides from the waste package under simulated repository conditions, and provides information on materials interactions that may occur in the repository. The results of 13 weeks of testing using the method are presented, and an analog test is described that investigates the relationship between the test method and expected repository conditions. 9 references, 10 figures, 11 tables

  20. Colorimetric determination of a paracetamole in raw material and in pharmaceutical dosage forms

    International Nuclear Information System (INIS)

    Usifoh, C.O; Adelusi, S.A.; Adebambo, R.F.

    2002-01-01

    A rapid, accurate and simple method is proposed for the determination of p-acetaminophen (paracetamole) in raw material, tablets and syrups. The method is based on measuring the intensity of the yellow color that developed when acute acetaminophen is allowed to react with p-dimethylaminobenzaldehyde in 2M HCl after heating. The color which absorbs in the visible region of gamma 450 nm is stable for several hours and the intensity is directly proportional to the concentration of the drug, that is, Beer lambert law is obeyed. The method can be used to analyse paracetamole in raw material and in pharmaceutical dosage forms. (author)

  1. Testing of SRS and RFETS Nylon Bag Material

    International Nuclear Information System (INIS)

    Laurinat, J.E.

    1998-01-01

    This report compares the effects of radiation and heating on nylon bagout materials used at the Savannah River Site (SRS) and the Rocky Flats Environmental Technology Site (RFETS). Recently, to simplify the processing of sand, slag, and crucible (SS and C), FB-Line has replaced the low-density polyethylene (LDPE) and polyvinyl chloride (PVC) bags normally used to package cans of plutonium-bearing material with nylon bags. LDPE and PVC are not soluble in the nitric acid dissolver solution used in F-Canyon, so cans bagged using these materials had to be repackaged before they were added to the dissolver. Because nylon dissolves in nitric acid, cans bagged in nylon can be charged to the F-Canyon dissolvers without repackaging, thereby reducing handling requirements and personnel exposure. As part of a program to process RFETS SS and C at SRS, RFETS has also begun to use a nylon bagout material. The RFETS bag materials is made from a copolymer of nylon 6 and nylon 6.9, while the SRS material is made from a nylon 6 monomer. In addition, the SRS nylon has an anti-static agent added. The RFETS nylon is slightly softer than the SRS nylon, but does not appear to be as resistant to flex cracks initiated by contact with sharp corners of the inner can containing the SS and C.2 FB-Line Operations has asked for measurement of the effects of radiation and heating on these materials. Specifically, they have requested a comparison of the material properties of the plastics before and after irradiation, a measurement of the amount of outgassing when the plastics are heated, and a calculation of the amount of radiolytic gas generation. Testing was performed on samples taken from material that is currently used in FB-Line (color coded orange) and at RFETS. The requested tests are the same tests previously performed on the original and replacement nylon and LDPE bag materials.3,4,5. To evaluate the effect of irradiation on material properties, tensile stresses and elongations to break

  2. Standard test methods for rockwell hardness of metallic materials

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 These test methods cover the determination of the Rockwell hardness and the Rockwell superficial hardness of metallic materials by the Rockwell indentation hardness principle. This standard provides the requirements for Rockwell hardness machines and the procedures for performing Rockwell hardness tests. 1.2 This standard includes additional requirements in annexes: Verification of Rockwell Hardness Testing Machines Annex A1 Rockwell Hardness Standardizing Machines Annex A2 Standardization of Rockwell Indenters Annex A3 Standardization of Rockwell Hardness Test Blocks Annex A4 Guidelines for Determining the Minimum Thickness of a Test Piece Annex A5 Hardness Value Corrections When Testing on Convex Cylindrical Surfaces Annex A6 1.3 This standard includes nonmandatory information in appendixes which relates to the Rockwell hardness test. List of ASTM Standards Giving Hardness Values Corresponding to Tensile Strength Appendix X1 Examples of Procedures for Determining Rockwell Hardness Uncertainty Appendix X...

  3. Standard test methods for rockwell hardness of metallic materials

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 These test methods cover the determination of the Rockwell hardness and the Rockwell superficial hardness of metallic materials by the Rockwell indentation hardness principle. This standard provides the requirements for Rockwell hardness machines and the procedures for performing Rockwell hardness tests. 1.2 This standard includes additional requirements in annexes: Verification of Rockwell Hardness Testing Machines Annex A1 Rockwell Hardness Standardizing Machines Annex A2 Standardization of Rockwell Indenters Annex A3 Standardization of Rockwell Hardness Test Blocks Annex A4 Guidelines for Determining the Minimum Thickness of a Test Piece Annex A5 Hardness Value Corrections When Testing on Convex Cylindrical Surfaces Annex A6 1.3 This standard includes nonmandatory information in appendixes which relates to the Rockwell hardness test. List of ASTM Standards Giving Hardness Values Corresponding to Tensile Strength Appendix X1 Examples of Procedures for Determining Rockwell Hardness Uncertainty Appendix X...

  4. Characterization and durability testing of a glass-bonded ceramic waste form

    International Nuclear Information System (INIS)

    Johnson, S. G.

    1998-01-01

    Argonne National Laboratory is developing a glass bonded ceramic waste form for encapsulating the fission products and transuranics from the conditioning of metallic reactor fuel. This waste form is currently being scaled to the multi-kilogram size for encapsulation of actual high level waste. This paper will present characterization and durability testing of the ceramic waste form. An emphasis on results from application of glass durability tests such as the Product Consistency Test and characterization methods such as X-ray diffraction and scanning electron microscopy. The information presented is based on a suite of tests utilized for assessing product quality during scale-up and parametric testing

  5. LOCA simulation in the NRU reactor: materials test-1

    International Nuclear Information System (INIS)

    Russcher, G.E.; Marshall, R.K.; Hesson, G.M.; Wildung, N.J.; Rausch, W.N.

    1981-10-01

    A simulated loss-of-coolant accident was performed with a full-length test bundle of pressurized water reactor fuel rods. This second experiment of the program produced peak fuel cladding temperatures of 1148K (1607 0 F) and resulted in six ruptured fuel rods. Test data and initial results from the experiment are presented here in the form of photographs and graphical summaries. These results are also compared with the preceding prototypic thermal-hydraulic test results and with computer model test predictions

  6. Leaching characteristics of the metal waste form from the electrometallurgical treatment process: Product consistency testing

    International Nuclear Information System (INIS)

    Johnson, S. G.; Keiser, D. D.; Frank, S. M.; DiSanto, T.; Noy, M.

    1999-01-01

    Argonne National Laboratory is developing an electrometallurgical treatment for spent fuel from the experimental breeder reactor II. A product of this treatment process is a metal waste form that incorporates the stainless steel cladding hulls, zirconium from the fuel and the fission products that are noble to the process, i.e., Tc, Ru, Nb, Pd, Rh, Ag. The nominal composition of this waste form is stainless steel/15 wt% zirconium/1--4 wt% noble metal fission products/1--2 wt % U. Leaching results are presented from several tests and sample types: (1) 2 week monolithic immersion tests on actual metal waste forms produced from irradiated cladding hulls, (2) long term (>2 years) pulsed flow tests on samples containing technetium and uranium and (3) crushed sample immersion tests on cold simulated metal waste form samples. The test results will be compared and their relevance for waste form product consistency testing discussed

  7. Numerical regulation of a test facility of materials for PWR

    International Nuclear Information System (INIS)

    Zauq, M.H.

    1982-02-01

    The installation aims at testing materials used in nuclear power plants; tests consists in simulations of a design basis accident (failure of a primary circuit of a PWR type reactor) for a qualification of these materials. A description of the test installation, of the thermodynamic control, and of the control system is presented. The organisation of the software is then given: description of the sequence chaining monitor, operation, list and function of the programs. The analog information processing is also presented (data transmission). A real-time microcomputer and clock are used for this work. The microprocessor is the 6800 of MOTOROLA. The microcomputer used has been built around the MC 6800; its structure is described. The data acquisition include an analog data acquisition system and a numerical data acquisition system. Laboratory and on-site tests are finally presented [fr

  8. Scoping Future Policy Dynamics in Raw Materials Through Scenarios Testing

    Science.gov (United States)

    Correia, Vitor; Keane, Christopher; Sturm, Flavius; Schimpf, Sven; Bodo, Balazs

    2017-04-01

    The International Raw Materials Observatory (INTRAW) project is working towards a sustainable future for the European Union in access to raw materials, from an availability, economical, and environmental framework. One of the major exercises for the INTRAW project is the evaluation of potential future scenarios for 2050 to frame economic, research, and environmental policy towards a sustainable raw materials supply. The INTRAW consortium developed three possible future scenarios that encompass defined regimes of political, economic, and technological norms. The first scenario, "Unlimited Trade," reflects a world in which free trade continues to dominate the global political and economic environment, with expectations of a growing demand for raw materials from widely distributed global growth. The "National Walls" scenario reflects a world where nationalism and economic protectionism begins to dominate, leading to stagnating economic growth and uneven dynamics in raw materials supply and demand. The final scenario, "Sustainability Alliance," examines the dynamics of a global political and economic climate that is focused on environmental and economic sustainability, leading towards increasingly towards a circular raw materials economy. These scenarios were reviewed, tested, and provided simulations of impacts with members of the Consortium and a panel of global experts on international raw materials issues which led to expected end conditions for 2050. Given the current uncertainty in global politics, these scenarios are informative to identifying likely opportunities and crises. The details of these simulations and expected responses to the research demand, technology investments, and economic components of raw materials system will be discussed.

  9. Radiolysis in cement-based materials ; application to radioactive waste-forms

    International Nuclear Information System (INIS)

    Bouniol, P.

    2014-01-01

    Cement-based materials appear to be an original environment with respect to radiolysis, due to their intrinsic complexity (porous, multiphasic and evolutional medium) or their very specific physico-chemical conditions (hyper-alkaline medium with pH ≥ 13, high content in calcium) or by the fact of numerous couplings existing between different phenomenologies. At the level of a radioactive cemented wasteform, a high degree of complexity is reached, in particular if the system communicates with the atmosphere (open system allowing regulation of the pressures but also the admission of O 2 , strong reactive with regards to radiolysis). Then, the radiolysis description exceeds widely the only one aspect of the decomposition of alkaline water under irradiation and makes necessary a global phenomenological approach. In this context, some 'outlying' phenomena, highly coupled with radiation chemistry, have to be taken into account because they contribute to deeply modify the net result of the radiolysis: radioactive decay of multiple αβγ emitters with filiation, phase changes (for example H 2 aq → H 2 gas) within the pores, gas transport by convection (Darcy law) and by diffusion (Fick law), precipitation/dissolution of solid phases, effect of the ionic strength and the temperature, disturbances connected to the presence of some solutes with redox potentialities (iron, sulphur). The integration work carried out on the previous points leads to an operational model (DOREMI) allowing the estimate of H 2 amounts produced by radiolysis in different cemented radioactive waste-forms. As the final expression of the model, numerical simulations constitute a relevant tool of expertise and prospecting, contributing to accompany the thought on radiolysis in cement matrices in general and in cemented waste-forms in particular. Starting from different examples, simulations can be so used in order to test some hypotheses or illustrate the greatest influence of gas transport, dose

  10. Impact Testing of Orbiter Thermal Protection System Materials

    Science.gov (United States)

    Kerr, Justin

    2006-01-01

    This viewgraph presentation reviews the impact testing of the materials used in designing the shuttle orbiter thermal protection system (TPS). Pursuant to the Columbia Accident Investigation Board recommendations a testing program of the TPS system was instituted. This involved using various types of impactors in different sizes shot from various sizes and strengths guns to impact the TPS tiles and the Leading Edge Structural Subsystem (LESS). The observed damage is shown, and the resultant lessons learned are reviewed.

  11. New facilities in Japan materials testing reactor for irradiation test of fusion reactor components

    International Nuclear Information System (INIS)

    Kawamura, H.; Sagawa, H.; Ishitsuka, E.; Sakamoto, N.; Niiho, T.

    1996-01-01

    The testing and evaluation of fusion reactor components, i.e. blanket, plasma facing components (divertor, etc.) and vacuum vessel with neutron irradiation is required for the design of fusion reactor components. Therefore, four new test facilities were developed in the Japan Materials Testing Reactor: an in-pile functional testing facility, a neutron multiplication test facility, an electron beam facility, and a re-weldability facility. The paper describes these facilities

  12. Materials for Pharmaceutical Dosage Forms: Molecular Pharmaceutics and Controlled Release Drug Delivery Aspects

    Directory of Open Access Journals (Sweden)

    Patrick P. DeLuca

    2010-09-01

    Full Text Available Controlled release delivery is available for many routes of administration and offers many advantages (as microparticles and nanoparticles over immediate release delivery. These advantages include reduced dosing frequency, better therapeutic control, fewer side effects, and, consequently, these dosage forms are well accepted by patients. Advances in polymer material science, particle engineering design, manufacture, and nanotechnology have led the way to the introduction of several marketed controlled release products and several more are in pre-clinical and clinical development.

  13. Advanced Gas Cooled Reactor Materials Program. Reducing helium impurity depletion in HTGR materials testing

    International Nuclear Information System (INIS)

    Baldwin, D.H.

    1984-08-01

    Moisture depletion in HTGR materials testing rigs has been empirically studied in the GE High Temperature Reactor Materials Testing Laboratory (HTRMTL). Tests have shown that increased helium flow rates and reduction in reactive (oxidizable) surface area are effective means of reducing depletion. Further, a portion of the depletion has been shown to be due to the presence of free C released by the dissociation of CH 4 . This depletion component can be reduced by reducing the helium residence time (increasing the helium flow rate) or by reducing the CH 4 concentration in the test gas. Equipment modifications to reduce depletion have been developed, tested, and in most cases implemented in the HTRMTL to date. These include increasing the Helium Loop No. 1 pumping capacity, conversion of metallic retorts and radiation shields to alumina, isolation of thermocouple probes from the test gas by alumina thermowells, and substitution of non-reactive Mo-TZM for reactive metallic structural components

  14. Capsule Development and Utilization for Material Irradiation Tests

    International Nuclear Information System (INIS)

    Kang, Young Hwan; Kim, B. G.; Joo, K. N.

    2003-05-01

    The objective of this project was to establish basic capsule irradiation technology using the multi-purpose research reactor [HANARO] to eventually support national R and D projects of advanced fuel and materials related to domestic nuclear power plants and next generation reactors. There are several national nuclear projects in KAERI, which require several irradiation tests to investigate in-pile behavior of nuclear reactor fuel and materials for the R and D of several types of fuels such as advanced PWR and DUPIC fuels and for the R and D of structural materials such as RPV(reactor pressure vessel) steel, Inconel, zirconium alloy, and stainless steel. At the moment, internal and external researchers in institutes, industries and universities are interested in investigating the irradiation characteristics of materials using the irradiation facilities of HANARO. For these kinds of material irradiation tests, it is important to develop various capsules using our own techniques. The development of capsules requires several leading-edge technologies and our own experiences related to design and fabrication. In the second phase from April 1,2000 to March 31, 2003, the utilization technologies were developed using various sensors for the measurements of temperature, pressure and displacement, and instrumented capsule technologies for the required fuel irradiation tests were developed. In addition, the improvement of the existing capsule technologies and the development of an in-situ measurable creep capsule for specific purposes were done to meet the various requirements of users

  15. Influence of corn flour as pore forming agent on porous ceramic material based mullite: Morphology and mechanical properties

    Directory of Open Access Journals (Sweden)

    Ayala-Landeros J.G.

    2016-01-01

    Full Text Available Porous material was processed by the mixing, molding and pressing the ceramic material, afterward burnout and sintering; through the forming porous, using corn flour at different concentration (10, 15 and 20 wt.% as a pore forming agent; in order to determinate the influence of porous on the mechanical, morphological and structural properties. The effect of the volume fraction of corn flour in the mullite matrix, at various sintering temperature from 1100, 1200, 1300 and 1500°C were tested by Diffraction X ray, showing changes in crystalline phases of mullite (3Al2O3-2SiO2, as result of sintered temperatures. Presence of talcum powder in formula, also cause the formation of the cordierite and cristobalite crystalline phases, giving stability and adhesion to the structure of ceramic material. When sintering at temperatures between 1300 to 1500°C, and it was used the concentration of corn flour 15-20 wt.% as forming agent porous, it was found the better mechanical properties. The scanning electron microscopy analysis shows the presence of open porosity and anisotropy.

  16. Test Methods for Measuring Material Properties of Composite Materials in all Three Material Axes

    Science.gov (United States)

    2012-01-24

    eccentricities in the test setup. Therefore, the research team purchased a special test fixture for performing out-of-plane tension testing in which the...coated wheels as shown in Figure 6. The 15.2 cm long by 2.54 cm thick blocks were separated into five pieces, each with a length of 2.67 cm using the...composite plate. Figure 6. Blocks reduced to a thickness of 2.54 cm using surface grinder and custom electro plated diamond coated wheels Figure 7

  17. Directory of national competent authorities' approval certificates for package design, special form material and shipment of radioactive material. 1992 ed

    International Nuclear Information System (INIS)

    1992-08-01

    Being in a unique position to facilitate information exchange, the Secretariat of the International Atomic Energy Agency was requested by its Standing Advisory Group on the Safe Transport of Radioactive Material (SAGSTRAM) to collate package approval data and publish periodical reports thereon. A database was implemented on the mainframe computer in the mid-1980s but this was soon adapted for use on a personal computer. A fully menu-driven system programme was designed that allows both contributing Member States and the Secretariat more flexibility in data processing and reporting. Complete documentation is available in the form of a user guide. The cut-off date used for this report is 31 August 1992. This report supersedes IAEA-TECDOC-617 ''Directory of National Competent Authorities' Approval Certificates for Package Design, Special Form Material and Shipment of Radioactive Material, 1991 Edition''. The information contained in this report is given in six tables. In each of these, information is presented in alphabetical order based on the certificate number. The certificate number is identical with the competent authority identification mark. It is composed of the issuing Member State's international vehicle registration identification (VRI) code, followed by a slash, then a unique number specific to a particular design or shipment that is assigned by the competent authority, another slash and finally a code identifying the type of package involved. ''-85'' is appended to those certificates that were approved on the basis of the 1985 Edition of Safety Series No. 6. Tables 1 to 4 present administrative data including issue and expiry dates, package identification, package serial numbers, modes for which the package/shipment is approved and the edition of Safety Series No. 6 on which the approval has been based. The technical information on package mass, authorized contents, and detailed and general description of the package are contained in Table 5. Table 6

  18. System Studies for the ADTF: Target and Materials Test Station

    International Nuclear Information System (INIS)

    Cappiello, M.; Pitcher, E.; Pasamehmetoglu, K.

    2002-01-01

    To meet the objectives of the Advanced Accelerator Applications (AAA) program, the Accelerator-Driven Test Facility (ADTF) provides a world-class accelerator-driven test facility to: - Provide the capability to assess technology options for the transmutation of spent nuclear fuel and waste through a proof-of-performance. - Provide a user facility that allows testing of advanced nuclear technologies and applications, material science and research, experimental physics, and conventional nuclear engineering science applications. - Provide the capability, through upgrades or additions to the ADTF accelerator, to produce tritium for defense purposes, if required. - Provide the capability, through upgrades or additions, to produce radioisotopes for medical and commercial purposes. These missions are diverse and demand a facility with significant flexibility. In order to meet them, it is envisioned that we construct two target stations: the Target and Materials Test (TMT) station and the Subcritical Multiplier (SCM) test station. The two test stations share common hot-cell facilities for post-irradiation examination. It is expected the TMT will come online first, closely followed by the SCM. The TMT will provide the capability to: - Irradiate small samples of proposed ATW (accelerator-driven transmutation of waste) fuels and materials at prototypic flux, temperature, and coolant conditions (requires intense source of neutrons). - Perform transient testing. - Test liquid (lead-bismuth) and solid spallation targets with water, sodium, or helium coolant. - Test generation-IV fuels for advance nuclear systems (requires high-intensity thermal flux). - Irradiate fission product transmutation targets. - Test advanced fuel and coolant combinations, including helium, water, sodium, and lead-bismuth. - Produce isotopes for commercial and medical applications. - Perform neutron physics experiments. The SCM will provide the capability to: - Irradiate large samples of proposed ATW

  19. Standard Test Methods for Constituent Content of Composite Materials

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 These test methods determine the constituent content of composite materials by one of two approaches. Method I physically removes the matrix by digestion or ignition by one of seven procedures, leaving the reinforcement essentially unaffected and thus allowing calculation of reinforcement or matrix content (by weight or volume) as well as percent void volume. Method II, applicable only to laminate materials of known fiber areal weight, calculates reinforcement or matrix content (by weight or volume), and the cured ply thickness, based on the measured thickness of the laminate. Method II is not applicable to the measurement of void volume. 1.1.1 These test methods are primarily intended for two-part composite material systems. However, special provisions can be made to extend these test methods to filled material systems with more than two constituents, though not all test results can be determined in every case. 1.1.2 The procedures contained within have been designed to be particularly effective for ce...

  20. Fusion materials irradiation test facility: description and status

    International Nuclear Information System (INIS)

    Trego, A.L.; Parker, E.F.; Hagan, J.W.

    1982-01-01

    The Fusion Materials Irradiation Test (FMIT) Facility will generate a high-flux, high-energy neutron source that will provide a fusion-like radiation environment for fusion reactor materials development. The neutrons will be produced in a nuclear stripping reaction by impinging a 35 MeV beam of deuterons from an Alvarez-type linear accelerator on a flowing lithium target. The target will be located in a test cell which will provide an irradiation volume of over 750l within which 10 cm 3 will have an average neutron flux of greater than 1.4 x 10 15 n/cm 2 -s and 500 cm 3 an average flux of greater than 2.2 by 10 14 n/cm 2- s with an expected availability factor greater than 65%. The projected fluence within the 10 cm 3 high flux region of FMIT will effect damage upon the materials test specimens to 30 dpa (displacements per atom) for each 90 day irradiation period. This irradiation flux volume will be at least 500 times larger than that of any other facility with comparable neutron energy and will fully meet the fusion materials damage research objective of 100 dpa within three years for the first round of tests

  1. 44 years of testing radioactive materials packages at ORNL

    Energy Technology Data Exchange (ETDEWEB)

    Shappert, L.B.; Ludwig, S.B. [Oak Ridge National Lab., Oak Ridge, TN (United States)

    2004-07-01

    This paper briefly reviews the package testing at the Oak Ridge National Laboratory (ORNL) since 1960 and then examines the trends in the testing activities that occurred during the same period. Radioactive material shipments have been made from ORNL since the 1940s. The first fully operating reactor built at the ORNL site was patterned after the graphite pile constructed by Enrico Fermi under Stagg Field in Chicago. After serving as a test bed for future reactors, it became useful as a producer of radioactive isotopes. The Isotopes Division was established at ORNL to furnish radioactive materials used in the medical community. Often these shipments have been transported by aircraft worldwide due to the short half-lives of many of the materials. This paper touches briefly on the lighter and smaller radioisotope packages that were being shipped from ORNL in large numbers and then deals with the testing of packages designed to handle large radioactive sources, such as spent fuel, and other fissile materials.

  2. 44 years of testing radioactive materials packages at ORNL

    International Nuclear Information System (INIS)

    Shappert, L.B.; Ludwig, S.B.

    2004-01-01

    This paper briefly reviews the package testing at the Oak Ridge National Laboratory (ORNL) since 1960 and then examines the trends in the testing activities that occurred during the same period. Radioactive material shipments have been made from ORNL since the 1940s. The first fully operating reactor built at the ORNL site was patterned after the graphite pile constructed by Enrico Fermi under Stagg Field in Chicago. After serving as a test bed for future reactors, it became useful as a producer of radioactive isotopes. The Isotopes Division was established at ORNL to furnish radioactive materials used in the medical community. Often these shipments have been transported by aircraft worldwide due to the short half-lives of many of the materials. This paper touches briefly on the lighter and smaller radioisotope packages that were being shipped from ORNL in large numbers and then deals with the testing of packages designed to handle large radioactive sources, such as spent fuel, and other fissile materials

  3. Introduction to non-destructive testing of materials: part II

    International Nuclear Information System (INIS)

    Ahmed, M.; Ahmed, B.

    2001-01-01

    Ultrasonic waves are mechanical vibrations that require a medium, which functions as carrier. Ultrasonics are widely used in non-destructive testing of materials in which high frequency sound waves are introduced into the material being inspected. If the frequency of sound waves in within the range 10 to 20,000 Hz, the sound is audible, i.e. the range of hearing, above 20,000 Hz, the sound waves are referred to as Ultrasound or Ultrasonics. Sound waves do not cause any permanent change in material although its transient presence is very noticeable. An energy transport through a sound wave is possible only when constituent particles are connected to each other by elastic forces. Liquids and Gases are also suitable media for the transmission of sound. In vacuum no matter exists and thus no sound transmission is possible. At the end of this article advantages and limitations of ultrasonic testing are also given. (A.B.)

  4. Multilayer Pressure Vessel Materials Testing and Analysis. Phase 1

    Science.gov (United States)

    Cardinal, Joseph W.; Popelar, Carl F.; Page, Richard A.

    2014-01-01

    To provide NASA a comprehensive suite of materials strength, fracture toughness and crack growth rate test results for use in remaining life calculations for aging multilayer pressure vessels, Southwest Research Institute (R) (SwRI) was contracted in two phases to obtain relevant material property data from a representative vessel. This report describes Phase 1 of this effort which includes a preliminary material property assessment as well as a fractographic, fracture mechanics and fatigue crack growth analyses of an induced flaw in the outer shell of a representative multilayer vessel that was subjected to cyclic pressure test. SwRI performed this Phase 1 effort under contract to the Digital Wave Corporation in support of their contract to Jacobs ATOM for the NASA Ames Research Center.

  5. Process for forming a homogeneous oxide solid phase of catalytically active material

    Science.gov (United States)

    Perry, Dale L.; Russo, Richard E.; Mao, Xianglei

    1995-01-01

    A process is disclosed for forming a homogeneous oxide solid phase reaction product of catalytically active material comprising one or more alkali metals, one or more alkaline earth metals, and one or more Group VIII transition metals. The process comprises reacting together one or more alkali metal oxides and/or salts, one or more alkaline earth metal oxides and/or salts, one or more Group VIII transition metal oxides and/or salts, capable of forming a catalytically active reaction product, in the optional presence of an additional source of oxygen, using a laser beam to ablate from a target such metal compound reactants in the form of a vapor in a deposition chamber, resulting in the deposition, on a heated substrate in the chamber, of the desired oxide phase reaction product. The resulting product may be formed in variable, but reproducible, stoichiometric ratios. The homogeneous oxide solid phase product is useful as a catalyst, and can be produced in many physical forms, including thin films, particulate forms, coatings on catalyst support structures, and coatings on structures used in reaction apparatus in which the reaction product of the invention will serve as a catalyst.

  6. Improvements in or relating to the production of metal-containing material in particulate form

    International Nuclear Information System (INIS)

    Woodhead, J.L.; Scott, K.T.B.; Ball, P.W.

    1977-01-01

    The process described refers mainly to production of the material in the form of very small spheres. It comprises forming a metal compound-containing gel precipitate by mixing a solution or sol of the metal compound with a soluble organic polymer and contacting the mixture with a precipitating reagent to precipitate the metal as an insoluble compound bound with the polymer. The precipitate is then subjected in the liquid phase to a breaking down and dispersing process to produce an intermediate product suitable for spray drying, and the intermediate product is spray dried to form the particulate product. The breaking down and dispersing process may be performed by means of a colloid mill or vibratory stirrer. Examples of application of the process are described. (U.K.)

  7. Multilayer Pressure Vessel Materials Testing and Analysis Phase 2

    Science.gov (United States)

    Popelar, Carl F.; Cardinal, Joseph W.

    2014-01-01

    To provide NASA with a suite of materials strength, fracture toughness and crack growth rate test results for use in remaining life calculations for the vessels described above, Southwest Research Institute® (SwRI®) was contracted in two phases to obtain relevant material property data from a representative vessel. An initial characterization of the strength, fracture and fatigue crack growth properties was performed in Phase 1. Based on the results and recommendations of Phase 1, a more extensive material property characterization effort was developed in this Phase 2 effort. This Phase 2 characterization included additional strength, fracture and fatigue crack growth of the multilayer vessel and head materials. In addition, some more limited characterization of the welds and heat affected zones (HAZs) were performed. This report

  8. Fabrication and characterization of MCC [Materials Characterization Center] approved testing material---ATM-2, ATM-3, and ATM-4 glasses

    International Nuclear Information System (INIS)

    Wald, J.W.

    1988-03-01

    Materials Characterization Center glasses ATM-2, ATM-3, and ATM-4 are designed to simulate high-level waste glasses that are likely to result from the reprocessing of commercial nuclear reactor fuels. The three Approved Testing Materials (ATMs) are borosilicate glasses based upon the MCC-76-68 glass composition. One radioisotope was added to form each ATM. The radioisotopes added to form ATM-2, ATM-3, and ATM-4 were 241 Am, 237 Np, and 239 Pu, respectively. Each of the ATM lots was produced in a nominal lot size of 450 g from feed stock melted in a nitrogen-atmosphere glove box at 1200/degree/C in a platinum crucible. Each ATM was then cast into bars. Analyzed compositions of these glasses are listed. The nonradioactive elements were analyzed by inductively coupled argon plasma atomic emission spectroscopy (ICP), and the radioisotope analyses were done by alpha energy analysis. Results are discussed. 7 refs., 3 figs., 5 tabs

  9. Installation for fatigue testing of materials at cryogenic temperatures

    International Nuclear Information System (INIS)

    Abushenkov, I.D.; Chernetskij, V.K.; Il'ichev, V.Ya.

    1986-01-01

    A new installation for mechanical fatigue tests of structural material samples is described, in which the possibility to conduct tests in the range of lower temperatures (4.2-300 K) is ensured. The installation permits to carry out fatigue tests using the method of axial loading of annular (up to 6 mm in diameter) and plane (up to 12 mm wide) samples during symmetric, asymmetric and pulsing loading cycles. It is shown that the installation suggested has quite extended operation possibilities and, coincidentally, it is characterized by design simplicity, compactness, comparatively low metal consumption and maintenance convenience

  10. Use of a radionuclid to label material for radioactive tests

    International Nuclear Information System (INIS)

    Saklad, E.L.; Layne, W.W.

    1977-01-01

    In order to increase the stability of a test substance labelled with a radiotracer 99 Tcsup(m) the serum albumin portion of human serum albumin, of stannous macroaggregate-forming albumin and of the albumin-bloodpool are defatted. This is achieved by charcoal treatment or the acid precipitation method. (DG) [de

  11. Comparison of the release of constituents from granular materials under batch and column testing.

    Science.gov (United States)

    Lopez Meza, Sarynna; Garrabrants, Andrew C; van der Sloot, Hans; Kosson, David S

    2008-01-01

    Column leaching testing can be considered a better basis for assessing field impact data than any other available batch test method and thus provides a fundamental basis from which to estimate constituent release under a variety of field conditions. However, column testing is time-intensive compared to the more simplified batch testing, and may not always be a viable option when making decisions for material reuse. Batch tests are used most frequently as a simple tool for compliance or quality control reasons. Therefore, it is important to compare the release that occurs under batch and column testing, and establish conservative interpretation protocols for extrapolation from batch data when column data are not available. Five different materials (concrete, construction debris, aluminum recycling residue, coal fly ash and bottom ash) were evaluated via batch and column testing, including different column flow regimes (continuously saturated and intermittent unsaturated flow). Constituent release data from batch and column tests were compared. Results showed no significant difference between the column flow regimes when constituent release data from batch and column tests were compared. In most cases batch and column testing agreed when presented in the form of cumulative release. For arsenic in carbonated materials, however, batch testing underestimates the column constituent release for most LS ratios and also on a cumulative basis. For cases when As is a constituent of concern, column testing may be required.

  12. Standardization of waste acceptance test methods by the Materials Characterization Center

    International Nuclear Information System (INIS)

    Slate, S.C.

    1985-01-01

    This paper describes the role of standardized test methods in demonstrating the acceptability of high-level waste (HLW) forms for disposal. Key waste acceptance tests are standardized by the Materials Characterization Center (MCC), which the US Department of Energy (DOE) has established as the central agency in the United States for the standardization of test methods for nuclear waste materials. This paper describes the basic three-step process that is used to show that waste is acceptable for disposal and discusses how standardized tests are used in this process. Several of the key test methods and their areas of application are described. Finally, future plans are discussed for using standardized tests to show waste acceptance. 9 refs., 1 tab

  13. Materials Compatibility Testing in RSRM ODC: Free Cleaner Selection

    Science.gov (United States)

    Keen, Jill M.; Sagers, Neil W.; McCool, Alex (Technical Monitor)

    2001-01-01

    Government regulations have mandated production phase-outs of a number of solvents, including 1,1,1-trichloroethane, an ozone-depleting chemical (ODC). This solvent was used extensively in the production of the Reusable Solid Rocket Motors (RSRMs) for the Space Shuttle. Many tests have been performed to identify replacement cleaners. One major area of concern in the selection of a new cleaner has been compatibility. Some specific areas considered included cleaner compatibility with non-metallic surfaces, painted surfaces, support materials such as gloves and wipers as well as corrosive properties of the cleaners on the alloys used on these motors. The intent of this paper is to summarize the test logic, methodology, and results acquired from testing the many cleaner and material combinations.

  14. [Alternate form of the test de aprendizaje verbal España-Complutense (TAVEC)].

    Science.gov (United States)

    Nieto, Antonieta; Hernández-Rodríguez, Edith; Hernández-Torres, Atteneri; Velasco Rodríguez-Solís, Pedro; Hess-Medler, Stephany; Machado-Fernández, Alejandra; Molina-Rodríguez, Yaiza; Barroso, José

    2014-05-01

    Parallel forms of neuropsychological tests are scarce. Practice effects associated to repeated testing with the same test confound the interpretation of observed changes in serial assessments. Practice effects are especially likely with memory testing. To develop an alternate form to the test de aprendizaje verbal España-Complutense (TAVEC), one of the most common memory tests used for Spanish speaking population. Participants in the normative study were 110 undergraduates. Participants in the study of the alternate vs original forms were 70 neurologically normal volunteers ranged in age from 18 to 89 years. Forms were administered in counterbalanced order, with a test-retest interval of 15-20 days. Multivariate analyses showed that none of the effects for form, order of administration or session achieved significance. Interactions also failed to reach significance. Aforementioned results were observed in the total sample and the different age groups: young adults (18-29 years), middle-age (30-59 years) and older (60-89 years). Correlational analyses supported the validity and internal consistence of the alternate form. Results indicate the equivalence between the original TAVEC and the form elaborated in this study. This alternate form may be used in serial assessment of learning and memory deterioration.

  15. Two micro fatigue test methods for irradiated materials

    International Nuclear Information System (INIS)

    Nunomura, Shigetomo; Noguchi, Shinji; Okamura, Yuichi; Kumai, Shinji

    1993-01-01

    This paper demonstrates two miniature fatigue test methods in response to the requirements of the fusion reactor wall materials development program. It is known that the fatigue strength evaluated by the axial loading test is independent of the specimen size, while that evaluated by the bend test or torsion test is dependent upon the size of specimen. The new type of gripping system for the axial, tension-tension, fatigue testing of TEM disk-size specimens that has been developed is described in this paper. An alignment tool assists in gripping the miniature specimen. The miniature tension-tension fatigue test method seems to provide reliable S-N curves for SUS304 and SUS316L stainless steels. An indentation method has also been developed to determine fatigue properties. A hard steel ball or ceramic ball was used for cyclically loading the specimen, and an S-N curve was subsequently obtained. The merit of this method is primarily simple handling. S-N curves obtained from four materials by this indentation method compared well with those obtained from the rotary bend fatigue test employing a standard-size specimen

  16. Special Nuclear Material Portal Monitoring at the Nevada Test Site

    International Nuclear Information System (INIS)

    Mike Murphy

    2008-01-01

    In the past, acceptance and performance testing of the various Special Nuclear Material (SNM) monitoring devices at the Nevada Test Site has been performed by the Radiological Health Instrumentation Department. Calibration and performance tests on the PM-700 personnel portal monitor were performed but there was no test program for the VM-250 vehicle portal monitor because it had never been put into service. The handheld SNM monitors, the TSA model 470B, were being calibrated annually, but there was no program in place to test them quarterly. In April of 2007, the Material Control and Accountability (MC and A) Manager at the time decided that the program needed to be strengthened and MC and A took over performance testing of all SNM portal monitoring equipment. This paper will discuss the following activities associated with creating a performance testing program: changing the culture, learning the systems, writing procedures, troubleshooting/repairing, validating the process, control of equipment, acquisition of new systems, and running the program

  17. Chairside CAD/CAM materials. Part 2: Flexural strength testing.

    Science.gov (United States)

    Wendler, Michael; Belli, Renan; Petschelt, Anselm; Mevec, Daniel; Harrer, Walter; Lube, Tanja; Danzer, Robert; Lohbauer, Ulrich

    2017-01-01

    Strength is one of the preferred parameters used in dentistry for determining clinical indication of dental restoratives. However, small dimensions of CAD/CAM blocks limit reliable measurements with standardized uniaxial bending tests. The objective of this study was to introduce the ball-on-three-ball (B3B) biaxial strength test for dental for small CAD/CAM block in the context of the size effect on strength predicted by the Weibull theory. Eight representative chairside CAD/CAM materials ranging from polycrystalline zirconia (e.max ZirCAD, Ivoclar-Vivadent), reinforced glasses (Vitablocs Mark II, VITA; Empress CAD, Ivoclar-Vivadent) and glass-ceramics (e.max CAD, Ivoclar-Vivadent; Suprinity, VITA; Celtra Duo, Dentsply) to hybrid materials (Enamic, VITA; Lava Ultimate, 3M ESPE) have been selected. Specimens were prepared with highly polished surfaces in rectangular plate (12×12×1.2mm 3 ) or round disc (Ø=12mm, thickness=1.2mm) geometries. Specimens were tested using the B3B assembly and the biaxial strength was determined using calculations derived from finite element analyses of the respective stress fields. Size effects on strength were determined based on results from 4-point-bending specimens. A good agreement was found between the biaxial strength results for the different geometries (plates vs. discs) using the B3B test. Strength values ranged from 110.9MPa (Vitablocs Mark II) to 1303.21MPa (e.max ZirCAD). The strength dependency on specimen size was demonstrated through the calculated effective volume/surface. The B3B test has shown to be a reliable and simple method for determining the biaxial strength restorative materials supplied as small CAD/CAM blocks. A flexible solution was made available for the B3B test in the rectangular plate geometry. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  18. Mechanical Testing of Carbon Based Woven Thermal Protection Materials

    Science.gov (United States)

    Pham, John; Agrawal, Parul; Arnold, James O.; Peterson, Keith; Venkatapathy, Ethiraj

    2013-01-01

    Three Dimensional Woven thermal protection system (TPS) materials are one of the enabling technologies for mechanically deployable hypersonic decelerator systems. These materials have been shown capable of serving a dual purpose as TPS and as structural load bearing members during entry and descent operations. In order to ensure successful structural performance, it is important to characterize the mechanical properties of these materials prior to and post exposure to entry-like heating conditions. This research focuses on the changes in load bearing capacity of woven TPS materials after being subjected to arcjet simulations of entry heating. Preliminary testing of arcjet tested materials [1] has shown a mechanical degradation. However, their residual strength is significantly more than the requirements for a mission to Venus [2]. A systematic investigation at the macro and microstructural scales is reported here to explore the potential causes of this degradation. The effects of heating on the sizing (an epoxy resin coating used to reduce friction and wear during fiber handling) are discussed as one of the possible causes for the decrease in mechanical properties. This investigation also provides valuable guidelines for margin policies for future mechanically deployable entry systems.

  19. Brittle fracture tests at low temperature for transport cask materials

    International Nuclear Information System (INIS)

    Kosaki, Akio; Ito, Chihiro; Arai, Taku; Saegusa, Toshiari

    1993-01-01

    The IAEA Regulations for the Safe Transport of Radioactive Material were revised in 1985, and brittle fracture assessment at low temperature for transport packages are now required. This report discusses the applicability of the actual method for brittle fracture assessment of type-B transport cask materials used in JAPAN. The necessity of brittle fracture assessment at low temperature was estimated for each material of type-B transport casks used in Japan and the applicability was investigated. Dynamic fracture toughness values, K Id (J Id ), and RT NDT values of Low-Mn Carbon Steels, that are SA 350 Gr.LF1 Modify and SA 516 Gr.70 material which used in type-B transport cask body, were also obtained to check whether or not an easier and conventional test method, that prescribed in ASME CODE SECTION III, can be substituted for the dynamic fracture test method. And for bolt materials, which include 1.8Ni-0.8Cr-0.3Mo Carbon Steel and type 630 H Stainless Steel, toughness data were obtained for reference. (J.P.N.)

  20. GPR Laboratory Tests For Railways Materials Dielectric Properties Assessment

    Directory of Open Access Journals (Sweden)

    Francesca De Chiara

    2014-10-01

    Full Text Available In railways Ground Penetrating Radar (GPR studies, the evaluation of materials dielectric properties is critical as they are sensitive to water content, to petrographic type of aggregates and to fouling condition of the ballast. Under the load traffic, maintenance actions and climatic effects, ballast condition change due to aggregate breakdown and to subgrade soils pumping, mainly on existing lines with no sub ballast layer. The main purpose of this study was to validate, under controlled conditions, the dielectric values of materials used in Portuguese railways, in order to improve the GPR interpretation using commercial software and consequently the management maintenance planning. Different materials were tested and a broad range of in situ conditions were simulated in laboratory, in physical models. GPR tests were performed with five antennas with frequencies between 400 and 1800 MHz. The variation of the dielectric properties was measured, and the range of values that can be obtained for different material condition was defined. Additionally, in situ GPR measurements and test pits were performed for validation of the dielectric constant of clean ballast. The results obtained are analyzed and the main conclusions are presented herein.

  1. EFAM GTP 02 - the GKSS test procedure for determining the fracture behaviour of materials

    International Nuclear Information System (INIS)

    Schwalbe, K.H.; Heerens, J.; Zerbst, U.; Kocak, M.

    2002-01-01

    This document describes a unified fracture mechanics test method in procedural form for quasi-static testing of materials. It is based on the ESIS Procedures P1 and P2 and introduces additional features, such as middle cracked tension specimens, shallow cracks, the δ 5 crack tip opening displacement, the crack tip opening angle, the rate of dissipated energy, testing of weldments, and guidance for statistical treatment of scatter. Special validity criteria are given for tests on specimens with low constraint. This document represents an updated version of EFAM GTP 94. (orig.) [de

  2. Design of a high-flux test assembly for the Fusion Materials Irradiation Test Facility

    International Nuclear Information System (INIS)

    Opperman, E.K.; Vogel, M.A.

    1982-01-01

    The Fusion Material Test Facility (FMIT) will provide a high flux fusion-like neutron environment in which a variety of structural and non-structural materials irradiations can be conducted. The FMIT experiments, called test assemblies, that are subjected to the highest neutron flux magnitudes and associated heating rates will require forced convection liquid metal cooling systems to remove the neutron deposited power and maintain test specimens at uniform temperatures. A brief description of the FMIT facility and experimental areas is given with emphasis on the design, capabilities and handling of the high flux test assembly

  3. Finite element analysis of ion transport in solid state nuclear waste form materials

    Science.gov (United States)

    Rabbi, F.; Brinkman, K.; Amoroso, J.; Reifsnider, K.

    2017-09-01

    Release of nuclear species from spent fuel ceramic waste form storage depends on the individual constituent properties as well as their internal morphology, heterogeneity and boundary conditions. Predicting the release rate is essential for designing a ceramic waste form, which is capable of effectively storing the spent fuel without contaminating the surrounding environment for a longer period of time. To predict the release rate, in the present work a conformal finite element model is developed based on the Nernst Planck Equation. The equation describes charged species transport through different media by convection, diffusion, or migration. And the transport can be driven by chemical/electrical potentials or velocity fields. The model calculates species flux in the waste form with different diffusion coefficient for each species in each constituent phase. In the work reported, a 2D approach is taken to investigate the contributions of different basic parameters in a waste form design, i.e., volume fraction, phase dispersion, phase surface area variation, phase diffusion co-efficient, boundary concentration etc. The analytical approach with preliminary results is discussed. The method is postulated to be a foundation for conformal analysis based design of heterogeneous waste form materials.

  4. Radiation damage calculations for the APT materials test program

    International Nuclear Information System (INIS)

    Corzine, R.K.; Wechsler, M.S.; Dudziak, D.J.; Ferguson, P.D.; James, M.R.

    1999-01-01

    A materials irradiation was performed at the Los Alamos Neutron Science Center (LANSCE) in the fall of 1996 and spring of 1997 in support of the Accelerator Production of Tritium (APT) program. Testing of the irradiated materials is underway. In the proposed APT design, materials in the target and blanket are to be exposed to protons and neutrons over a wide range of energies. The irradiation and testing program was undertaken to enlarge the very limited direct knowledge presently available of the effects of medium-energy protons (∼1 GeV) on the properties of engineering materials. APT candidate materials were placed in or near the LANSCE accelerator 800-MeV, 1-mA proton beam and received roughly the same proton current density in the center of the beam as would be the case for the APT facility. As a result, the proton fluences achieved in the irradiation were expected to approach the APT prototypic full-power-year values. To predict accurately the performance of materials in APT, radiation damage parameters for the materials experiment must be determined. By modeling the experiment, calculations for atomic displacement, helium and hydrogen cross sections and for proton and neutron fluences were done for representative samples in the 17A, 18A, and 18C areas. The LAHET code system (LCS) was used to model the irradiation program, LAHET 2.82 within LCS transports protons > 1 MeV, and neutrons >20 MeV. A modified version of MCNP for use in LCS, HMCNP 4A, was employed to tally neutrons of energies <20 MeV

  5. Material testing facilities and programs for plasma-facing component testing

    Science.gov (United States)

    Linsmeier, Ch.; Unterberg, B.; Coenen, J. W.; Doerner, R. P.; Greuner, H.; Kreter, A.; Linke, J.; Maier, H.

    2017-09-01

    Component development for operation in a large-scale fusion device requires thorough testing and qualification for the intended operational conditions. In particular environments are necessary which are comparable to the real operation conditions, allowing at the same time for in situ/in vacuo diagnostics and flexible operation, even beyond design limits during the testing. Various electron and neutral particle devices provide the capabilities for high heat load tests, suited for material samples and components from lab-scale dimensions up to full-size parts, containing toxic materials like beryllium, and being activated by neutron irradiation. To simulate the conditions specific to a fusion plasma both at the first wall and in the divertor of fusion devices, linear plasma devices allow for a test of erosion and hydrogen isotope recycling behavior under well-defined and controlled conditions. Finally, the complex conditions in a fusion device (including the effects caused by magnetic fields) are exploited for component and material tests by exposing test mock-ups or material samples to a fusion plasma by manipulator systems. They allow for easy exchange of test pieces in a tokamak or stellarator device, without opening the vessel. Such a chain of test devices and qualification procedures is required for the development of plasma-facing components which then can be successfully operated in future fusion power devices. The various available as well as newly planned devices and test stands, together with their specific capabilities, are presented in this manuscript. Results from experimental programs on test facilities illustrate their significance for the qualification of plasma-facing materials and components. An extended set of references provides access to the current status of material and component testing capabilities in the international fusion programs.

  6. Directory of national competent authorities' approval certificates for package design, special form material and shipment of radioactive material. 2002 ed

    International Nuclear Information System (INIS)

    2002-08-01

    The current edition of the transport Regulations was published in 1996 and is more commonly referred to as 'ST-1'. Earlier Editions were known as Safety Series No. 6. The latest English reprint (2000) is now identified as TS-R-1 (ST-1, Revised). The transport Regulations elaborate requirements for the design, fabrication and maintenance of packaging as well as those for preparation, consigning, handling, carriage, storage in transit and receipt of the packages at final destination. Approval issued in the form of certificates is required for the design or shipment of packages. This report supersedes IAEA-TECDOC-1237 Directory of National Competent Authorities' Approval Certificates for Package Design, Special Form Material and Shipment of Radioactive Material, 2001 Edition. It is distributed worldwide to the IAEA Member States' competent authorities for transport, and other entities who have requested copies. Electronic copies of the main data file are provided to registered users of the PACKTRAM database. The information contained in this report is given in six tables. In each of these, information is presented in alphabetical order based on the certificate number. Tables 1 to 4 present administrative data including issue and expiry dates, package identification, package serial numbers, modes for which the package/shipment is approved and the edition of the IAEA Transport Safety Regulations on which the approval has been based. The technical information on package mass, authorized contents, and detailed and general description of the package are contained in Table 5. Table 6 shows the certificates reported to the Secretariat by each participating Member State

  7. Directory of national competent authorities' approval certificates for package design, special form material and shipment of radioactive material. 2001 edition

    International Nuclear Information System (INIS)

    2001-08-01

    The current edition of the transport Regulations was published in 1996 and is more commonly referred to as 'ST-1'. Earlier Editions were known as Safety Series No. 6. The latest English reprint (2000) is now identified as TS-R-1 (ST-1, Revised). The transport Regulations elaborate requirements for the design, fabrication and maintenance of packaging as well as those for preparation, consigning, handling, carriage, storage in transit and receipt of the packages at final destination. Approval issued in the form of certificates is required for the design or shipment of packages. This report supersedes IAEA-TECDOC-1171 D irectory of National Competent Authorities' Approval Certificates for Package Design, Special Form Material and Shipment of Radioactive Material, 2000 Edition . It is distributed worldwide to the IAEA Member States' competent authorities for transport, and other entities who have requested copies. Electronic copies of the main data file are provided to registered users of the PACKTRAM database. The information contained in this report is given in six tables. In each of these, information is presented in alphabetical order based on the certificate number. Tables 1 to 4 present administrative data including issue and expiry dates, package identification, package serial numbers, modes for which the package/shipment is approved and the edition of the IAEA Transport Safety Regulations on which the approval has been based. The technical information on package mass, authorized contents, and detailed and general description of the package are contained in Table 5. Table 6 shows the certificates reported to the Secretariat by each participating Member State

  8. Design of a materials testing experiment for the INTOR

    International Nuclear Information System (INIS)

    Vogel, M.A.; Opperman, E.K.

    1981-01-01

    The United States, Japan, USSR and the European community are jointly participating in the design of an International Tokamak Reactor called INTOR. In support of the US contribution to the INTOR design, the features of an experiment for bulk neutron irradiation damage studies were developed. It is anticipated that materials testing will be an important part of the programmatic mission of INTOR and consequently the requirements for materials testing in INTOR must be identified early in the reactor design to insure compatibility. The design features of the experiment, called a Channel Test, are given in this paper. The major components of the channel test are the water cooled heat sink (channel module) and the specimen capsule. The temperature within each of the 153 specimen capsules is predetermined by engineering the thermal barrier between the specimen capsule and heat sink. Individual capsules can be independently accessed and are designed to operate at a predetermined temperature within the range of 50 to 700 0 C. The total irradiation volume within a single channel test is 45 liters. Features of the channel test that result in experimental versatility and simplified remote access and handling are discussed

  9. Small Punch Test Techniques for Irradiated Materials in Hot Cell

    International Nuclear Information System (INIS)

    Kim, Do Sik; Ahn, S. B.; Oh, W. H.; Yoo, B. O.; Choo, Y. S.

    2006-06-01

    Detailed procedures of the small punch test including the apparatus, the definition of small punch-related parameters, and the interpretation of results were presented. The testing machine should have a capability of the compressive loading and unloading at a given deflection level. The small punch specimen holder consists of an upper and lower die and clamping screws. The clamped specimen is deformed by using ball or spherical head punch. Two type of specimens with a circular and a square shape were used. The irradiated small punch specimen is made from the undamaged portion of the broken CVN bars or prepared by the irradiation of the specimen fabricated from the fresh materials. The heating and cooling devices should have the capability of the temperature control within ±2 .deg. C for the target value during the test. Based on the load-deflection data obtained from the small punch test. the empirical correlation between the small punch related parameters and a tensile properties such as 0.2% yield strength and ultimate tensile strength, fracture toughness, ductile-brittle transition temperature and creep properties determined from the standard test method is established and used to evaluate the mechanical properties of an irradiated materials. In addition, from the quantitative fractographic assessment of small punch test specimens, the relationship between the small punch energy and the quantity of ductile crack growth is obtained. Analytical formulations demonstrated good agreement with experimental load-deflection curves

  10. Quantitative model of super-Arrhenian behavior in glass forming materials

    Science.gov (United States)

    Caruthers, J. M.; Medvedev, G. A.

    2018-05-01

    The key feature of glass forming liquids is the super-Arrhenian temperature dependence of the mobility, where the mobility can increase by ten orders of magnitude or more as the temperature is decreased if crystallization does not intervene. A fundamental description of the super-Arrhenian behavior has been developed; specifically, the logarithm of the relaxation time is a linear function of 1 /U¯x , where U¯x is the independently determined excess molar internal energy and B is a material constant. This one-parameter mobility model quantitatively describes data for 21 glass forming materials, which are all the materials where there are sufficient experimental data for analysis. The effect of pressure on the loga mobility is also described using the same U¯x(T ,p ) function determined from the difference between the liquid and crystalline internal energies. It is also shown that B is well correlated with the heat of fusion. The prediction of the B /U¯x model is compared to the Adam and Gibbs 1 /T S¯x model, where the B /U¯x model is significantly better in unifying the full complement of mobility data. The implications of the B /U¯x model for the development of a fundamental description of glass are discussed.

  11. Comparative parametric numerical simulations of materials used as liners in the explosively formed projectiles (EFPs)

    International Nuclear Information System (INIS)

    Hussain, G.; Sanaullah, K.

    2009-01-01

    A conventional shaped charge comprises a conical metal liner projecting a hyper velocity jet of metal that is able to penetrate to great depths into steel armour. However, misalignment problems exist in tandem with jet break up and spewing particles that greatly diminish its penetration power. An EFP, on the other hand, has a liner in the shape of a geometrical recess. The force of the blast molds the liner into a number of configurations, depending on the geometry and the explosive detonation characteristics. This paper presents comparative parametric numerical simulations of materials used as liners in the explosively formed projectiles EFPs. Numerical simulations are carried out using AUTODYN 2D hydrocode to study effects of liner's materials on the shape, velocity, traveled distance, time, pressure, internal energy, temperature, yield stress, divergence or stability, density, compression, and length to diameter (L/D) ratio of EFPs. These parameters are estimated at the instants of maximum as well as at stable velocities. The parametric study reveals that aluminum has maximum velocity in shortest time among the liner materials. From this reason, it was concluded effective standoff was greater for aluminum than more denser metals. Maximum velocity and traveled distance of Tantalum EFP is found to be minimum which may be due to low thermal softening exponent and larger hardening exponent. The simulated yield stress and pressure developed in the Fe EFP reaches at maximum. The L/D ratio for Copper is found to be maximum which supports maximum penetration. From the stability point of view, 1006 MS is found to be the most reliable liner material due to minimum divergence. Generally all liner materials have similar effects of all parameters like pressure, internal energy, temperature, yield stress, divergence or stability, density, compression at the instants of maximum as well as at stable velocities except L/D ratio of EFPs. At the instant of maximum velocity, L

  12. Benchmark test of MORSE-DD code using double-differential form cross sections

    International Nuclear Information System (INIS)

    Nakagawa, Masayuki; Mori, Takamasa; Ishiguro, Yukio

    1985-02-01

    The multi-group double-differential form cross sections (DDX) and the three dimensional Monte Carlo code MORSE-DD devised to utilize the DDX, which were developed for the fusion neutronics analysis, have been validated through many benchmark tests. All the problems tested have a 14 MeV neutron source. To compare the calculated results with the measured values, the following experiments were adopted as the benchmark problems; leakage neutron spectra from spheres composed of nine kinds of materials measured at LLNL, neutron angular spectra from the Li 2 O slab measured at FNS in JAERI, tritium production rate (TPR) in the graphite-reflected Li 2 O sphere measured at FNS and the TPR in the metallic Li sphere measured at KfK. In addition in order to test an accuracy of the calculation method in detail, spectra of neutrons scattered from a small sample and various reaction rates in a Li 2 O cylinder were compared between the present method and the continuous energy Monte Carlo method. The nuclear data files used are mainly ENDF/B4 and partly JENDL-3PR1. The tests were carried out through a comparison with the measured values and also with the results obtained from the conventional Legendre expansion method and the continuous energy Monte Carlo method. It is found that the results by the present method are more accurate than those by the conventional one and agree well with those by the continuous energy Monte Carlo calculations. Discrepancies due to the nuclear data are also discussed. (author)

  13. The work of art as a manifestation of form: Formalistic materialism in the theory of art

    Directory of Open Access Journals (Sweden)

    Popović Radovan

    2015-01-01

    Full Text Available The basic purpose of this paper is to point out and theoretically illuminate the key moments of transformation and re-constitution of the art theory during the first half of XIX century, taking as its point of departure the role and influence of Organicism as a philosophico-reflexive basis, gnoseological postulate and methodological pattern. Sedlmayr's attempt at foundation of a comparative morphology of architectural styles, taking into account the three constitutive building elements as analytical tools of study of concrete-historical manifestations of style: material structure (building materials, technique and intended usability, is a matter of particular attention of the following analysis. Regarding Viollet-le-Duc, the stress is on the interpretation of his conception of architectural form as the application of logically founded general laws of statics and construction, with a special emphasis on his thesis of logical and purposely-rational correspondence of the outer form and the functional structure of the interior. Finally, an attempt is made at the clarification of the revival of Viollet-le-Duc's explanatory pattern within the dynamic and subjectivistic conceptual transformations of form in Fiedler's, von Hildebrandt's and Focillon's theoretical conceptions.

  14. TESTING OF GAS REACTOR MATERIALS AND FUEL IN THE ADVANCED TEST REACTOR

    International Nuclear Information System (INIS)

    Grover, S.B.

    2004-01-01

    The Advanced Test Reactor (ATR) has long been involved in testing gas reactor materials, and has developed facilities well suited for providing the right conditions and environment for gas reactor tests. This paper discusses the different types of irradiation hardware that have been utilized in past ATR irradiation tests of gas reactor materials. The new Gas Test Loop facility currently being developed for the ATR is discussed and the different approaches being considered in the design of the facility. The different options for an irradiation experiment such as active versus passive temperature control, neutron spectrum tailoring, and different types of lead experiment sweep gas monitors are also discussed. The paper is then concluded with examples of different past and present gas reactor material and fuel irradiations

  15. Testing of Gas Reactor Materials and Fuel in the Advanced Test Reactor

    International Nuclear Information System (INIS)

    S. Blaine Grover

    2004-01-01

    The Advanced Test Reactor (ATR) has long been involved in testing gas reactor materials, and has developed facilities well suited for providing the right conditions and environment for gas reactor tests. This paper discusses the different types of irradiation hardware that have been utilized in past ATR irradiation tests of gas reactor materials. The new Gas Test Loop facility currently being developed for the ATR is discussed and the different approaches being considered in the design of the facility. The different options for an irradiation experiment such as active versus passive temperature control, neutron spectrum tailoring, and different types of lead experiment sweep gas monitors are also discussed. The paper is then concluded with examples of different past and present gas reactor material and fuel irradiations

  16. Direct testing of scale effects in metal forming friction and lubrication

    DEFF Research Database (Denmark)

    Nielsen, Peter Søe; Calaon, Matteo; Paldan, Nikolas Aulin

    2010-01-01

    Downscaling of metal forming operations from macro to micro scale implies significant changes caused by size effects, among these the friction increase, which has been reported by researchers using indirect test methods such as ring-compression test and double-cup-extrusion test. In the present w...

  17. Creating IRT-Based Parallel Test Forms Using the Genetic Algorithm Method

    Science.gov (United States)

    Sun, Koun-Tem; Chen, Yu-Jen; Tsai, Shu-Yen; Cheng, Chien-Fen

    2008-01-01

    In educational measurement, the construction of parallel test forms is often a combinatorial optimization problem that involves the time-consuming selection of items to construct tests having approximately the same test information functions (TIFs) and constraints. This article proposes a novel method, genetic algorithm (GA), to construct parallel…

  18. Testing the Granger noncausality hypothesis in stationary nonlinear models of unknown functional form

    DEFF Research Database (Denmark)

    Péguin-Feissolle, Anne; Strikholm, Birgit; Teräsvirta, Timo

    In this paper we propose a general method for testing the Granger noncausality hypothesis in stationary nonlinear models of unknown functional form. These tests are based on a Taylor expansion of the nonlinear model around a given point in the sample space. We study the performance of our tests b...

  19. Conditions for forming composite carbon nanotube-diamond like carbon material that retain the good properties of both materials

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Wei, E-mail: wei.ren@helsinki.fi; Avchaciov, Konstantin; Nordlund, Kai [Department of Physics, University of Helsinki, P.O. Box 43, FIN-00014 Helsinki (Finland); Iyer, Ajai; Koskinen, Jari [Department of Materials Science and Engineering, School of Chemical Technology, Aalto University, P.O. Box 16200, 00076 Espoo (Finland); Kaskela, Antti; Kauppinen, Esko I. [NanoMaterials Group, Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, 00076 Aalto (Finland)

    2015-11-21

    Carbon nanotubes are of wide interest due to their excellent properties such as tensile strength and electrical and thermal conductivity, but are not, when placed alone on a substrate, well resistant to mechanical wear. Diamond-like carbon (DLC), on the other hand, is widely used in applications due to its very good wear resistance. Combining the two materials could provide a very durable pure carbon nanomaterial enabling to benefit from the best properties of both carbon allotropes. However, the synthesis of high-quality diamond-like carbon uses energetic plasmas, which can damage the nanotubes. From previous works it is neither clear whether the quality of the tubes remains good after DLC deposition, nor whether the DLC above the tubes retains the high sp{sup 3} bonding fraction. In this work, we use experiments and classical molecular dynamics simulations to study the mechanisms of DLC formation on various carbon nanotube compositions. The results show that high-sp{sup 3}-content DLC can be formed provided the deposition conditions allow for sidewards pressure to form from a substrate close beneath the tubes. Under optimal DLC formation energies of around 40–70 eV, the top two nanotube atom layers are fully destroyed by the plasma deposition, but layers below this can retain their structural integrity.

  20. Fusion Materials Irradiation Test Facility: a facility for fusion-materials qualification

    International Nuclear Information System (INIS)

    Trego, A.L.; Hagan, J.W.; Opperman, E.K.; Burke, R.J.

    1983-01-01

    The Fusion Materials Irradiation Test Facility will provide a unique testing environment for irradiation of structural and special purpose materials in support of fusion power systems. The neutron source will be produced by a deuteron-lithium stripping reaction to generate high energy neutrons to ensure damage similar to that of a deuterium-tritium neutron spectrum. The facility design is now ready for the start of construction and much of the supporting lithium system research has been completed. Major testing of key low energy end components of the accelerator is about to commence. The facility, its testing role, and the status and major aspects of its design and supporting system development are described

  1. Ionizing radiation thickness meters for materials in the form of sheets, coatings or laminates

    International Nuclear Information System (INIS)

    1979-04-01

    The draft standard deals with definitions and test methods for all measuring instruments used in connection with ionizing radiation, either for continuous operation or for discontinuous control measurements of plane materials or coating. It applies to systems where the signal relates directly to the measured value as well as to systems where the signal refers to the deviation from a given rated value. (orig./RW) [de

  2. Full scale tests of moisture buffer capacity of wall materials

    DEFF Research Database (Denmark)

    Mortensen, Lone Hedegaard; Rode, Carsten; Peuhkuri, Ruut Hannele

    2005-01-01

    that are harmful such as growth of house dust mites, surface condensation and mould growth. Therefore a series of experiments has been carried out in a full scale test facility to determine the moisture buffer effect of interior walls of cellular concrete and plaster board constructions. For the cellular concrete......Moisture buffer capacity of hygroscopic materials can be used to moderate peaks in the relative humidity (RH) of indoor air as well as moisture content variations in building materials and furnishing. This can help to ensure healthier indoor environments by preventing many processes...... of the changes of moisture content in specimens of the wall composites exposed to the same environment. It was found that the finishes had a big impact on the buffer performance of the underlying materials. Even though the untreated cellular concrete had a very high buffer capacity, the effect was strongly...

  3. Database on gas migration tests through bentonite buffer material

    International Nuclear Information System (INIS)

    Tanai, Kenji

    2009-02-01

    Carbon steel is a candidate material for an overpack for geological disposal of high-level radioactive waste in Japan. The corrosion of the carbon steel overpack in aqueous solution under anoxic conditions will cause the generation of hydrogen gas, which may affect hydrological and mechanical properties of the bentonite buffer. To evaluate such an effect of gas generation, it is necessary to develop a model of gas migration through bentonite buffer material taking account of data obtained from experiments. The gas migration experiments under both unsaturated and saturated conditions have been carried out to clarify the fundamental characteristics of bentonite for gas migration. This report compiles the experimental data obtained from gas migration tests for buffer material which has been conducted by JAEA until December, 2007. A CD-ROM is attached as an appendix. (author)

  4. Standard Test Method for Solar Photometric Transmittance of Sheet Materials Using Sunlight

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1996-01-01

    1.1 This test method covers the measurement of solar photometric transmittance of materials in sheet form. Solar photometric transmittance is measured using a photometer (illuminance meter) in an enclosure with the sun and sky as the source of radiation. The enclosure and method of test is specified in Test Method E 1175 (or Test Method E 1084). 1.2 The purpose of this test method is to specify a photometric sensor to be used with the procedure for measuring the solar photometric transmittance of sheet materials containing inhomogeneities in their optical properties. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  5. Determination of friction in sheet metal forming by means of simulative tribo-tests

    DEFF Research Database (Denmark)

    Ceron, Ermanno; Bay, Niels

    2013-01-01

    operations a coefficient of friction μ is often determined by calibration of the simulation results with experimental observations of material flow and/or measured load. In case of modeling of new stamping operations μ is typically selected based on former experience. These procedures are, however......, not appropriate when introducing new tribo-systems (lubricant, workpiece material, tool material or tool coating). In order to determine friction under the very varied conditions in sheet stamping simulative testing may be applied, e.g., Plane-Strip-Testing (PST), Draw-Bead-Testing (DBT) and Bending......-Under- Tension testing (BUT) but these tests should be analyzed and carefully tuned with the production process in question to ensure useful results. The present paper illustrates how the BUT test combined with classical analytical modeling may lead to very large errors in estimation of the coefficient...

  6. Single Point Incremental Forming to increase material knowledge and production flexibility

    International Nuclear Information System (INIS)

    Habraken, A.M.

    2016-01-01

    Nowadays, manufactured pieces can be divided into two groups: mass production and production of low volume number of parts. Within the second group (prototyping or small batch production), an emerging solution relies on Incremental Sheet Forming or ISF. ISF refers to processes where the plastic deformation occurs by repeated contact with a relatively small tool. More specifically, many publications over the past decade investigate Single Point Incremental Forming (SPIF) where the final shape is determined only by the tool movement. This manufacturing process is characterized by the forming of sheets by means of a CNC controlled generic tool stylus, with the sheets clamped by means of a non-workpiece-specific clamping system and in absence of a partial or a full die. The advantage is no tooling requirements and often enhanced formability, however it poses a challenge in term of process control and accuracy assurance. Note that the most commonly used materials in incremental forming are aluminum and steel alloys however other alloys are also used especially for medical industry applications, such as cobalt and chromium alloys, stainless steel and titanium alloys. Some scientists have applied incremental forming on PVC plates and other on sandwich panels composed of propylene with mild steel and aluminum metallic foams with aluminum sheet metal. Micro incremental forming of thin foils has also been developed. Starting from the scattering of the results of Finite Element (FE) simulations, when one tries to predict the tool force (see SPIF benchmark of 2014 Numisheet conference), we will see how SPIF and even micro SPIF (process applied on thin metallic sheet with a few grains within the thickness) allow investigating the material behavior. This lecture will focus on the identification of constitutive laws, on the SPIF forming mechanisms and formability as well as the failure mechanism. Different hypotheses have been proposed to explain SPIF formability, they will be

  7. Single Point Incremental Forming to increase material knowledge and production flexibility

    Science.gov (United States)

    Habraken, A. M.

    2016-08-01

    Nowadays, manufactured pieces can be divided into two groups: mass production and production of low volume number of parts. Within the second group (prototyping or small batch production), an emerging solution relies on Incremental Sheet Forming or ISF. ISF refers to processes where the plastic deformation occurs by repeated contact with a relatively small tool. More specifically, many publications over the past decade investigate Single Point Incremental Forming (SPIF) where the final shape is determined only by the tool movement. This manufacturing process is characterized by the forming of sheets by means of a CNC controlled generic tool stylus, with the sheets clamped by means of a non-workpiece-specific clamping system and in absence of a partial or a full die. The advantage is no tooling requirements and often enhanced formability, however it poses a challenge in term of process control and accuracy assurance. Note that the most commonly used materials in incremental forming are aluminum and steel alloys however other alloys are also used especially for medical industry applications, such as cobalt and chromium alloys, stainless steel and titanium alloys. Some scientists have applied incremental forming on PVC plates and other on sandwich panels composed of propylene with mild steel and aluminum metallic foams with aluminum sheet metal. Micro incremental forming of thin foils has also been developed. Starting from the scattering of the results of Finite Element (FE) simulations, when one tries to predict the tool force (see SPIF benchmark of 2014 Numisheet conference), we will see how SPIF and even micro SPIF (process applied on thin metallic sheet with a few grains within the thickness) allow investigating the material behavior. This lecture will focus on the identification of constitutive laws, on the SPIF forming mechanisms and formability as well as the failure mechanism. Different hypotheses have been proposed to explain SPIF formability, they will be

  8. Performance and Test Results of Harshaw Pelletised LiF:Mg,Ti TLD Material

    International Nuclear Information System (INIS)

    Velbeck, K.J.; Zhang, L.; Green, R.; Tomlins, P.

    1999-01-01

    BICRON NE has recently introduced a pelletised version of their popular TLD-100, 600 and 700 lithium fluoride based thermoluminescence dosemeters (TLDs). These materials can be used unmounted or in card and ring formats. Applications include whole-body, environmental, medical, and extremity monitoring. The former manufacturing process included purifying, growing doped LiF, grinding, blending, pressing, slicing, and dicing. The new process eliminates the last four steps, replacing them with a pelletising process. This process transforms the material directly from a powder to its final form. This new process provides the benefits of better batch uniformity and excellent dimensional consistency. The testing is described that was performed for the purpose of accepting the pelletised material as a directly interchangeable substitute for the same material produced by the former process. Tests performed include reproducibility, batch homogeneity, linearity, detection threshold, and light sensitivity. (author)

  9. Material control and accounting self-test program design

    International Nuclear Information System (INIS)

    Eggers, R.F.; Wilson, R.L.; Byers, K.R.

    1981-01-01

    This paper describes a controversial but potentially beneficial MCandA strategy that has not been widely attempted in the past, called Self-Test. In this strategy a processor of Strategic Special Nuclear Material (SSNM) devises a program of internally administered tests to determine if the MCandA system performs in a reliable, expedient manner in the face of a simulated loss or compromise. Self-Test procedures would include, for example, the actual removal of SSNM from process equipment in order to determine whether the MCandA system will detect the simulated theft. Self-Test programs have several potential problems. However, an approach with the potential for solving many of these problems has been devised and is discussed

  10. Material control system design: Test Bed Nitrate Storage Area (TBNSA)

    International Nuclear Information System (INIS)

    Clark, G.A.; Da Roza, R.A.; Dunn, D.R.; Sacks, I.J.; Harrison, W.; Huebel, J.G.; Ross, W.N.; Salisbury, J.D.; Sanborn, R.H.; Weissenberger, S.

    1978-05-01

    This report provides an example of a hypothetical Special Nuclear Material (SNM) Safeguard Material Control and Accounting (MC and A) System which will be used as a subject for the demonstration of the Lawrence Livermore Laboratory MC and A System Evaluation Methodology in January 1978. This methodology is to become a tool in the NRC evaluation of license applicant submittals for Nuclear Fuel Cycle facilities. The starting point for this test bed design was the Allied-General Nuclear Services--Barnwell Nuclear Fuel Plant Reprocessing plant as described in the Final Safety Analysis Report (FSAR), of August 1975. The test bed design effort was limited to providing an SNM safeguard system for the plutonium nitrate storage area of this facility

  11. EMERIS: an advanced information system for a materials testing reactor

    International Nuclear Information System (INIS)

    Adorjan, F.; Buerger, L.; Lux, I.; Mesko, L.; Szabo, K.; Vegh, J.; Ivanov, V.V.; Mozhaev, A.A.; Yakovlev, V.V.

    1990-06-01

    The basic features of the Materials Testing Reactor of IAE, Moscow (MR) Information System (EMERIS) are outlined. The purpose of the system is to support reactor and experimental test loop operators by a flexible, fully computerized and user-friendly tool for the aquisition, analysis, archivation and presentation of data obtained during operation of the experimental facility. High availability of EMERIS services is ensured by redundant hardware and software components, and by automatic configuration procedure. A novel software feature of the system is the automatic Disturbance Analysis package, which is aimed to discover primary causes of irregularities occurred in the technology. (author) 2 refs.; 2 figs

  12. Testing of irradiated and annealed 15H2MFA materials

    International Nuclear Information System (INIS)

    Gillemot, F.; Uri, G.

    1994-01-01

    A set of surveillance samples made from 15H2MFA material has been studied in the laboratory of AEKI. Miniature notched tensile specimens were cut from some remnants of irradiated and broke surveillance charpy remnants. The Absorbed Specific Fracture Energy (ASFE) was measured on the specimens. A cutting machine and testing technique were elaborated for the measurements. The second part of the Charpy remnants was annealed at 460 deg. C and 490 deg. C for 6-8 hours. The specimens were tested similarity and the results were compared. (author). 5 refs, 9 figs

  13. Simultaneous sound velocity and thickness measurement by the ultrasonic pitch-catch method for corrosion-layer-forming polymeric materials.

    Science.gov (United States)

    Kusano, Masahiro; Takizawa, Shota; Sakai, Tetsuya; Arao, Yoshihiko; Kubouchi, Masatoshi

    2018-01-01

    Since thermosetting resins have excellent resistance to chemicals, fiber reinforced plastics composed of such resins and reinforcement fibers are widely used as construction materials for equipment in chemical plants. Such equipment is usually used for several decades under severe corrosive conditions so that failure due to degradation may result. One of the degradation behaviors in thermosetting resins under chemical solutions is "corrosion-layer-forming" degradation. In this type of degradation, surface resins in contact with a solution corrode, and some of them remain asa corrosion layer on the pristine part. It is difficult to precisely measure the thickness of the pristine part of such degradation type materials by conventional pulse-echo ultrasonic testing, because the sound velocity depends on the degree of corrosion of the polymeric material. In addition, the ultrasonic reflection interface between the pristine part and the corrosion layer is obscure. Thus, we propose a pitch-catch method using a pair of normal and angle probes to measure four parameters: the thicknesses of the pristine part and the corrosion layer, and their respective sound velocities. The validity of the proposed method was confirmed by measuring a two-layer sample and a sample including corroded parts. The results demonstrate that the pitch-catch method can successfully measure the four parameters and evaluate the residual thickness of the pristine part in the corrosion-layer-forming sample. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Fracture Toughness Round Robin Test International in pressure tube materials

    International Nuclear Information System (INIS)

    Villagarcia, M.P.; Liendo, M.F.

    1993-01-01

    Part of the pressure tubes surveillance program of CANDU type reactors is to determine the fracture toughness using a special fracture specimen and test procedure. Atomic Energy of Canada Limited decided to hold a Round Robin Test International and 9 laboratories participated worldwide in which several pressure tube materials were selected: Zircaloy-2, Zr-2.5%Nb cold worked and Zr-2.5%Nb heat treated. The small specimens used held back the thickness and curvature of the tube. J-R curves at room temperature were obtained and the crack extension values were determined by electrical potential drop techniques. These values were compared with results generated from other laboratories and a bid scatter was founded. It could be due to slight variations in the test method or inhomogeneity of the materials and a statistical study must be done to see if there is any pattern. The next step for the Round Robin Test would be to make some modifications in the test method in order to reduce the scatter. (Author)

  15. Radioactive wear tests of four cylinder liner materials

    International Nuclear Information System (INIS)

    Sylte, G.

    1976-01-01

    An investigation on the wear properties of various liner materials, financed by a research grant from NTNF (Royal Norwegian Council for Scientific and Industrial Research), is reported. The investigation was carried out by the Division of Internal Combustion Engines, Trondheim, Univ.,Norway, on a two-stroke, turbocharged, medium speed diesel engine (Wichmann 2ACAT, 280 by 420 mm). Thin pearlitic cast iron inserts of various compositions were pressed into the upper part of a specially machined cylinder liner. These inserts were activated in a nuclear reactor, and tracer techniques employed to measure the wear rate. Gas oil was used as a fuel throughout all tests. The insert technique employed, and the handling methods devised, were satisfactory. This part of the project must be characterised as being very successful. Originally, six different liner materials were specified, but due to misunderstandings duplications resulted in only four different materials finally being received at the laboratory. The engine tests disclosed that the wear rates of all four materials were low under laboratory conditions, and therefore difficult to measure accurately. Nevertheless, the wear properties of the inserts clearly fell into two distinct classes, which may be termed good and excellent. The relative values inside each group are, however, more uncertain due to the cumulative effects of errors, instrument drift, measurement statistics, etc. (Auth.)

  16. Experimental Verification of an Instrument to Test Flooring Materials

    Science.gov (United States)

    Philip, Rony; Löfgren, Hans, Dr

    2018-02-01

    The focus of this work is to validate the fluid model with different flooring materials and the measurements of an instrument to test flooring materials and its force attenuating capabilities using mathematical models to describe the signature and coefficients of the floor. The main contribution of the present work focus on the development of a mathematical fluid model for floors. The aim of the thesis was to analyze, compare different floor materials and to study the linear dynamics of falling impacts on floors. The impact of the hammer during a fall is captured by an accelerometer and response is collected using a picoscope. The collected data was analyzed using matlab least square method which is coded as per the fluid model. The finding from this thesis showed that the fluid model works with more elastic model but it doesn’t work for rigid materials like wood. The importance of parameters like velocity, mass, energy loss and other coefficients of floor which influences the model during the impact of falling on floors were identified and a standardized testing method was set.

  17. Effects of die quench forming on sheet thinning and 3-point bend testing of AA7075-T6

    Science.gov (United States)

    Kim, Samuel; Omer, Kaab; Rahmaan, Taamjeed; Butcher, Clifford; Worswick, Michael

    2017-10-01

    Lab-scaled AA7075 aluminum side impact beams were manufactured using the die quenching technique in which the sheet was solutionized and then quenched in-die during forming to a super saturated solid state. Sheet thinning measurements were taken at various locations throughout the length of the part and the effect of lubricant on surface scoring and material pick-up on the die was evaluated. The as-formed beams were subjected to a T6 aging treatment and then tested in three-point bending. Simulations were performed of the forming and mechanical testing experiments using the LS-DYNA finite element code. The thinning and mechanical response was predicted well.

  18. Molecular environmental science using synchrotron radiation: Chemistry and physics of waste form materials

    International Nuclear Information System (INIS)

    Lindle, Dennis W.; Shuh, David K.

    2005-01-01

    Production of defense-related nuclear materials has generated large volumes of complex chemical wastes containing a mixture of radionuclides. The disposition of these wastes requires conversion of the liquid and solid-phase components into durable, solid forms suitable for long-term immobilization [1]. Specially formulated glass compositions, many of which have been derived from glass developed for commercial purposes, and ceramics such as pyrochlores and apatites, will be the main recipients for these wastes. The performance characteristics of waste-form glasses and ceramics are largely determined by the loading capacity for the waste constituents (radioactive and non-radioactive) and the resultant chemical and radiation resistance of the waste-form package to leaching (durability). There are unique opportunities for the use of near-edge soft-x-ray absorption fine structure (NEXAFS) spectroscopy to investigate speciation of low-Z elements forming the backbone of waste-form glasses and ceramics. Although nuclear magnetic resonance (NMR) is the primary technique employed to obtain speciation information from low-Z elements in waste forms, NMR is incompatible with the metallic impurities contained in real waste and is thus limited to studies of idealized model systems. In contrast, NEXAFS can yield element-specific speciation information from glass constituents without sensitivity to paramagnetic species. Development and use of NEXAFS for eventual studies of real waste glasses has significant implications, especially for the low-Z elements comprising glass matrices [5-7]. The NEXAFS measurements were performed at Beamline 6.3.1, an entrance-slitless bend-magnet beamline operating from 200 eV to 2000 eV with a Hettrick-Underwood varied-line-space (VLS) grating monochromator, of the Advanced Light Source (ALS) at LBNL. Complete characterization and optimization of this beamline was conducted to enable high-performance measurements

  19. Molecular environmental science using synchrotron radiation:Chemistry and physics of waste form materials

    Energy Technology Data Exchange (ETDEWEB)

    Lindle, Dennis W.; Shuh, David K.

    2005-02-28

    Production of defense-related nuclear materials has generated large volumes of complex chemical wastes containing a mixture of radionuclides. The disposition of these wastes requires conversion of the liquid and solid-phase components into durable, solid forms suitable for long-term immobilization [1]. Specially formulated glass compositions, many of which have been derived from glass developed for commercial purposes, and ceramics such as pyrochlores and apatites, will be the main recipients for these wastes. The performance characteristics of waste-form glasses and ceramics are largely determined by the loading capacity for the waste constituents (radioactive and non-radioactive) and the resultant chemical and radiation resistance of the waste-form package to leaching (durability). There are unique opportunities for the use of near-edge soft-x-ray absorption fine structure (NEXAFS) spectroscopy to investigate speciation of low-Z elements forming the backbone of waste-form glasses and ceramics. Although nuclear magnetic resonance (NMR) is the primary technique employed to obtain speciation information from low-Z elements in waste forms, NMR is incompatible with the metallic impurities contained in real waste and is thus limited to studies of idealized model systems. In contrast, NEXAFS can yield element-specific speciation information from glass constituents without sensitivity to paramagnetic species. Development and use of NEXAFS for eventual studies of real waste glasses has significant implications, especially for the low-Z elements comprising glass matrices [5-7]. The NEXAFS measurements were performed at Beamline 6.3.1, an entrance-slitless bend-magnet beamline operating from 200 eV to 2000 eV with a Hettrick-Underwood varied-line-space (VLS) grating monochromator, of the Advanced Light Source (ALS) at LBNL. Complete characterization and optimization of this beamline was conducted to enable high-performance measurements.

  20. Influence of inductive heating on microstructure and material properties in roll forming processes

    Science.gov (United States)

    Guk, Anna; Kunke, Andreas; Kräusel, Verena; Landgrebe, Dirk

    2017-10-01

    The increasing demand for sheet metal parts and profiles with enhanced mechanical properties by using high and ultra-high-strength (UHS) steels for the automotive industry must be covered by increasing flexibility of tools and machines. This can be achieved by applying innovative technologies such as roll forming with integrated inductive heating. This process is similar to indirect press hardening and can be used for the production of hardened profiles and profiles with graded properties in longitudinal and traverse direction. The advantage is that the production of hardened components takes place in a continuous process and the integration of heating and quenching units in the profiling system increases flexibility, accompanied by shortening of the entire process chain and minimizing the springback risk. The features of the mentioned process consists of the combination of inhomogeneous strain distribution over the stripe width by roll forming and inhomogeneity of microstructure by accelerated inductive heating to austenitizing temperature. Therefore, these two features have a direct influence on the mechanical properties of the material during forming and hardening. The aim of this work is the investigation of the influence of heating rates on microstructure evolution and mechanical properties to determine the process window. The results showed that heating rate should be set at 110 K/s for economic integration of inductive heating into the roll forming process.

  1. Composite Material Testing Data Reduction to Adjust for the Systematic 6-DOF Testing Machine Aberrations

    Science.gov (United States)

    Athanasios lliopoulos; John G. Michopoulos; John G. C. Hermanson

    2012-01-01

    This paper describes a data reduction methodology for eliminating the systematic aberrations introduced by the unwanted behavior of a multiaxial testing machine, into the massive amounts of experimental data collected from testing of composite material coupons. The machine in reference is a custom made 6-DoF system called NRL66.3 and developed at the NAval...

  2. Development of a Short Form of the Boston Naming Test for Individuals with Aphasia

    Science.gov (United States)

    del Toro, Christina M.; Bislick, Lauren P.; Comer, Matthew; Velozo, Craig; Romero, Sergio; Rothi, Leslie J. Gonzalez; Kendall, Diane L.

    2011-01-01

    Purpose: The purpose of this study was to develop a short form of the Boston Naming Test (BNT; Kaplan, Goodglass, & Weintraub, 2001) for individuals with aphasia and compare it with 2 existing short forms originally analyzed with responses from people with dementia and neurologically healthy adults. Method: Development of the new BNT-Aphasia Short…

  3. Effluent Management Facility Evaporator Bottom-Waste Streams Formulation and Waste Form Qualification Testing

    Energy Technology Data Exchange (ETDEWEB)

    Saslow, Sarah A.; Um, Wooyong; Russell, Renee L.

    2017-08-02

    This report describes the results from grout formulation and cementitious waste form qualification testing performed by Pacific Northwest National Laboratory (PNNL) for Washington River Protection Solutions, LLC (WRPS). These results are part of a screening test that investigates three grout formulations proposed for wide-range treatment of different waste stream compositions expected for the Hanford Effluent Management Facility (EMF) evaporator bottom waste. This work supports the technical development need for alternative disposition paths for the EMF evaporator bottom wastes and future direct feed low-activity waste (DFLAW) operations at the Hanford Site. High-priority activities included simulant production, grout formulation, and cementitious waste form qualification testing. The work contained within this report relates to waste form development and testing, and does not directly support the 2017 Integrated Disposal Facility (IDF) performance assessment (PA). However, this work contains valuable information for use in PA maintenance past FY 2017 and future waste form development efforts. The provided results and data should be used by (1) cementitious waste form scientists to further the understanding of cementitious leach behavior of contaminants of concern (COCs), (2) decision makers interested in off-site waste form disposal, and (3) the U.S. Department of Energy, their Hanford Site contractors and stakeholders as they assess the IDF PA program at the Hanford Site. The results reported help fill existing data gaps, support final selection of a cementitious waste form for the EMF evaporator bottom waste, and improve the technical defensibility of long-term waste form risk estimates.

  4. Small punch test evaluation methods for material characterisation

    Energy Technology Data Exchange (ETDEWEB)

    Janča, Adam, E-mail: adam.janca@fjfi.cvut.cz; Siegl, Jan, E-mail: jan.siegl@fjfi.cvut.cz; Haušild, Petr, E-mail: petr.hausild@fjfi.cvut.cz

    2016-12-01

    The Small Punch Test (SPT) is one of the most widespread mechanical testing methods using miniaturized specimens. The paper presented deals with the time independent SPT, in which a flat specimen is bent by means of a (hemi)spherical punch moving at a constant velocity. The main goal is to relate the measured data to deformation processes taking place during specimen loading. Understanding of such relations is crucial for characterizing a material using any non-standardized experimental procedure. Using enhanced instrumentation, not only traditional load-displacement or load-deflection curves could be obtained, but also specimen thinning could be continuously measured and evaluated. Five alloys having a broad range of mechanical properties were tested. The results obtained were evaluated using both traditional and newly proposed methods and they were correlated with results of the conventional tensile test. The methods proposed seem to lead to a universal correlation between SPT results and tensile characteristics. - Highlights: • The newly proposed methodology significantly improved results of SPT. • Plastic deformation starts inside the specimen from the very beginning of loading. • Specimen thinning = punch displacement−specimen deflection. • Material response to loading is well illustrated by the novel load-thinning curve.

  5. Relationship of soil potassium forms with maize potassium contents in soils derived from different parent materials

    Directory of Open Access Journals (Sweden)

    Rashid Mehmood Butt

    2017-06-01

    Full Text Available Understanding of soil potassium (K dynamics is essential for sustainable crop production. Bioavailability of K depends on forms and distribution within the soil profile. The objectives of this research were to determine which soil K forms control the maize (Zea mays K contents and compare the extracting capability of sodium tetraphenylborate (NaTPB with ammonium acetate (NH4OAc method. Nine soils representing three different parent materials, i.e. loess, sandstone and shale were sampled at three surface genetic horizons. Within each parent material, three soils at varying level of development were selected. Besides basic soil parameters, K was fractioned into water soluble K, exchangeable K, non-exchangeable K, and NaTPB-extracted K. The maize was sown in pots having 2 kg soil from each genetic horizon. Crop was harvested at seven weeks and plant was analysed for K contents. Results show that NaTPB-extracted K gave best correlation as compared to NH4OAc method. This conveys that a non-exchangeable K portion that becomes available to plants can be better estimated by NaTPB method than NH4OAc extraction.

  6. Testing Systems and Results for Advanced Nuclear Fuel Materials

    International Nuclear Information System (INIS)

    Rooyen, I.J. van; Griffith, G.W.; Garnier, J.E.

    2012-01-01

    Light Water Reactor Sustainability (LWRS) Program Advanced LWR Nuclear Fuel Development (ALFD) Pathway. Development and testing of high performance fuel cladding identified as high priority to support: enhancement of fuel performance, reliability, and reactor safety. One of the technologies being examined is an advanced fuel cladding made from ceramic matrix composites (CMC) utilizing silicon carbide (SiC) as a structural material supplementing a commercial Zircaloy-4 (Zr-4) tube. A series of out-of-pile tests to fully characterize the SiC CMC hybrid design to produce baseline data. The planned tests are intended to either produce quantitative data or to demonstrate the properties required to achieve two initial performance conditions relative to standard zircaloybased cladding: decreased hydrogen uptake (corrosion) and decreased fretting of the cladding tube under normal operating and postulated accident conditions. These two failure mechanisms account for approximately 70% of all in-pile failures of LWR commercial fuel assemblies

  7. Honeycomb technology materials, design, manufacturing, applications and testing

    CERN Document Server

    Bitzer, Tom

    1997-01-01

    Honeycomb Technology is a guide to honeycomb cores and honeycomb sandwich panels, from the manufacturing methods by which they are produced, to the different types of design, applications for usage and methods of testing the materials. It explains the different types of honeycomb cores available and provides tabulated data of their properties. The author has been involved in the testing and design of honeycomb cores and sandwich panels for nearly 30 years. Honeycomb Technology reflects this by emphasizing a `hands-on' approach and discusses procedures for designing sandwich panels, explaining the necessary equations. Also included is a section on how to design honeycomb energy absorbers and one full chapter discussing honeycomb core and sandwich panel testing. Honeycomb Technology will be of interest to engineers in the aircraft, aerospace and building industries. It will also be of great use to engineering students interested in basic sandwich panel design.

  8. The design, construction and testing of packaging[Radioactive materials

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1976-07-01

    Essentially uniform regulations, based on the IAEA Regulations for the Safe Transport of Radioactive Materials, have been adopted on a world-wide basis with the aim of ensuring safety in the transport of radioactive and fissile substances by road, rail, sea and air. The application of these regulations over a period of almost 20 years has resulted in practically complete safety in the sense that there has been no evidence of death or injury that could be attributed to the special properties of the material even when consignments were involved in serious accidents. In the regulations, reliance is placed, to the greatest extent possible, on the packaging to provide adequate shielding and containment of the contents under both normal transport and accident conditions. The Agency organized an international seminar in 1971 to consider the performance tests that have to be applied to packaging to demonstrate compliance with the regulatory requirements. The general conclusion was that the testing programme specified in the regulations was adequate for the near future, but that further consideration should be given to assessing the risks presented by the increasing volume of transport. The second international seminar, which is the subject of this report, dealt with all aspects of the design, construction and testing of packaging for the transport both of relatively small quantities of radioactive substances, which are being used to an ever increasing extent for medical and research purposes, and of the much larger quantities arising in various stages of the nuclear fuel cycle. The programme covered the general requirements for packaging; risk assessment for the transport of various radioactive and fissile substances, including plutonium; specific features of the design and construction of packaging; quality assurance; damage simulation tests, including calculational methods and scale-model testing; tests for the retention of shielding and containment after damage; and the

  9. Small ring testing of a creep resistant material

    International Nuclear Information System (INIS)

    Hyde, C.J.; Hyde, T.H.; Sun, W.; Nardone, S.; De Bruycker, E.

    2013-01-01

    Many components in conventional and nuclear power plant, aero-engines, chemical plant etc., operate at temperatures which are high enough for creep to occur. These include steam pipes, pipe branches, gas and steam turbine blades, etc. The manufacture of such components may also require welds to be part of them. In most cases, only nominal operating conditions (i.e. pressure, temperatures, system load, etc.) are known and hence precise life predictions for these components are not possible. Also, the proportion of life consumed will vary from position to position within a component. Hence, non-destructive techniques are adopted to assist in making decisions on whether to repair, continue operating or replace certain components. One such approach is to test a small sample removed from the component to make small creep test specimens which can be tested to give information on the remaining creep life of the component. When such a small sample cannot be removed from the operating component, e.g. in the case of small components, the component can be taken out of operation in order to make small creep test specimens, the results from which can then be used to assist with making decisions regarding similar or future components. This paper presents a small creep test specimen which can be used for the testing of particularly strong and creep resistant materials, such as nickel-based superalloys

  10. Simulation Research on Adaptive Control of a Six-degree-of-freedom Material-testing Machine

    Directory of Open Access Journals (Sweden)

    Dan Wang

    2014-02-01

    Full Text Available This paper presents an adaptive controller equipped with a stiffness estimation method for a novel material-testing machine, in order to alleviate the performance depression caused by the stiffness variance of the tested specimen. The dynamic model of the proposed machine is built using the Kane method, and kinematic model is established with a closed-form solution. The stiffness estimation method is developed based on the recursive least-squares method and the proposed stiffness equivalent matrix. Control performances of the adaptive controller are simulated in detail. The simulation results illustrate that the proposed controller can greatly improve the control performance of the target material-testing machine by online stiffness estimation and adaptive parameter tuning, especially in low-cycle fatigue (LCF and high-cycle fatigue (HCF tests.

  11. Development of form stable Poly(methyl methacrylate) (PMMA) coated thermal phase change material for solar water heater applications

    Science.gov (United States)

    Munusamy, Y.; Shanmugam, S.; Shi-Ying, Kee

    2018-04-01

    Phase change material (PCM) is one of the most popular and widely used thermal energy storage material in solar water heater because it able to absorb and release a large amount of latent heat during a phase change process over a narrow temperature range. However the practical application of PCM is limited by two major issues; 1) leakage which leads to material loss and corrosion of tank and 2) large volume change during phase change process which cause pressure build up in the tank. In this work, form-stable PCM was prepared by coating myristic acid with Poly(methyl methacrylate) (PMMA) to prevent leakage of PCM. PMMA was mixed with different weight percentage (0.1, 0.2, 0.3, 0.4 and 0.5 wt%) of dicumyl peroxide (DCP). The purpose of adding DCP to PMMA is to crosslink the polymer and to increase the mechanical strength of PMMA to hold the myristic acid content inside the coating during the phase change process. Leakage test results showed that PMMA mixed with 0.1% DCP exhibit 0% leakage. This result is further supported by Field Emission Scanning Electron Microscopy (FESEM) images and Fourier transform infrared spectroscopy (FTIR) analysis results, where a compact and uniform coating without cracks were formed for PCM coated with PMMA with 0.1% DCP. Differential scanning calorimetry (DSC) results shows that the melting point of form-stable PCM is 55°C, freezing point is 50°C, the latent heat of melting and freezing is 67.59 J/g.

  12. Testing of ceramic filter materials at the PCFB test facility; Keraamisten suodinmateriaalien testaus PCFB-koelaitoksessa

    Energy Technology Data Exchange (ETDEWEB)

    Kuivalainen, R; Eriksson, T; Lehtonen, P; Tiensuu, J [Foster Wheeler Energia Oy, Karhula (Finland)

    1997-10-01

    Pressurized Circulating Fluidized Bed (PCFB) combustion technology has been developed in Karhula, Finland since 1986. In 1989, a 10 MW PCFB test facility was constructed. The test facility has been used for performance testing with different coal types through the years 1990-1994 for obtaining data for design and commercialization of the high-efficiency low-emission PCFB combustion technology. The main objective of the project Y53 was to evaluate advanced candle filter materials for the Hot Gas Clean-up Unit (HGCU) to be used in a commercial PCFB Demonstration Project. To achieve this goal, the selected candle materials were exposed to actual high temperature, high pressure coal combustion flue gases for a period of 1000-1500 h during the PCFB test runs. The test runs were carried out in three test segments in Foster Wheeler`s PCFB test facility at the Karhula R and D Center. An extensive inspection and sampling program was carried out after the second test segment. Selected sample candles were analyzed by the filter supplier and the preliminary results were encouraging. The material strength had decreased only within expected range. Slight elongation of the silicon carbide candles was observed, but at this phase the elongation can not be addressed to creep, unlike in the candles tested in 1993-94. The third and last test segment was completed successfully in October 1996. The filter system was inspected and several sample candles were selected for material characterization. The results will be available in February - March 1997. (orig.)

  13. Waste package materials testing for a salt repository: 1983 status summary report

    International Nuclear Information System (INIS)

    Moak, D.P.

    1986-09-01

    The United States plans to safely dispose of nuclear waste in deep, stable geologic formations. As part of these plans, the US Department of Energy is sponsoring research on the designing and testing of waste packages and waste package materials. This fiscal year 1983 status report summarizes recent results of waste package materials testing in a salt environment. The results from these tests will be used by waste package designers and performance assessment experts. Release characteristics data are available on two waste forms (spent fuel and waste-containing glass) that were exposed to leaching tests at various radiation levels, temperatures, pH, glass surface area to solution volume ratios, and brine solutions simulating expected salt repository conditions. Candidate materials tested for corrosion resistance and other properties include iron alloys; TI-CODE 12, the most promising titanium alloy for containment; and nickel alloys. In component interaction testing, synergistic effects have not ruled out any candidate material. 21 refs., 37 figs., 15 tabs

  14. Reliability of wind turbine blades: An overview of materials testing

    DEFF Research Database (Denmark)

    Holmes, John W.; Sørensen, Bent F.; Brøndsted, Povl

    2007-01-01

    an understanding of how damage develops in composite structures, composite materials and adhesives. Designing reliable wind turbine blades also requires the further development of laboratory scale and full scale test methods to evaluate the structural response and durability of new materials under various loading......The structural reliability of wind turbine components can have a profound impact on both the profitability and reputation of a wind turbine manufacturer or supplier of wind turbine components. The issue of reliability is of critical concern when large wind farm co-operatives are considered......, and when wind turbines are located in remote regions where the cost of inspections and repairs can be very high. From a structural viewpoint, wind turbine blades are subjected to very complex loading histories with coupled deformation modes. The long-term reliability of wind turbine blades requires...

  15. Digital Radiography of a Drop Tested 9975 Radioactive Materials Packaging

    International Nuclear Information System (INIS)

    Blanton, P.S.

    2001-01-01

    This paper discusses the use of radiography as a tool for evaluating damage to radioactive material packaging subjected to regulatory accident conditions. The Code of Federal Regulations, 10 CFR 71, presents the performance based requirements that must be used in the development (design, fabrication and testing) of a radioactive material packaging. The use of various non-destructive examination techniques in the fabrication of packages is common. One such technique is the use of conventional radiography in the examination of welds. Radiography is conventional in the sense that images are caught one at a time on film stock. Most recently, digital radiography has been used to characterize internal damage to a package subjected to the 30-foot hypothetical accident conditions (HAC) drop. Digital radiography allows for real time evaluation of the item being inspected. This paper presents a summary discussion of the digital radiographic technique and an example of radiographic results of a 9975 package following the HAC 30-foot drop

  16. Testing the Weak Form Efficiency in Pakistan’s Equity, Badla and Money Markets

    OpenAIRE

    Rashid, Abdul; Husain, Fazal

    2009-01-01

    The paper test the weak form market efficient hypothesis for Pakistan’s equity, badla and money markets with an aim to investigate which one of them is most efficient in the weak form sense. The analysis provides evidence, under the assumption of heteroscedasticity, that the KSE is weak-form efficient over the full-length sample period. Nevertheless, the analysis reports that over the same period the other two markets viz. badla and money are not weak form efficient. The badla market was effi...

  17. Predicting the occurrence of iron chlorosis in grapevine with tests based on soil iron forms

    Directory of Open Access Journals (Sweden)

    Isabel Díaz de la Torre

    2010-06-01

    Significance and impact of study: This study has shown the limited usefulness of tests based on the contents and reactivity of the soil carbonate to predict the occurrence of Fe chlorosis in grapevine; tests capable of estimating the contents of the labile soil Fe forms constitute the best alternative.

  18. Standard test method for accelerated leach test for diffusive releases from solidified waste and a computer program to model diffusive, fractional leaching from cylindrical waste forms

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This test method provides procedures for measuring the leach rates of elements from a solidified matrix material, determining if the releases are controlled by mass diffusion, computing values of diffusion constants based on models, and verifying projected long-term diffusive releases. This test method is applicable to any material that does not degrade or deform during the test. 1.1.1 If mass diffusion is the dominant step in the leaching mechanism, then the results of this test can be used to calculate diffusion coefficients using mathematical diffusion models. A computer program developed for that purpose is available as a companion to this test method (Note 1). 1.1.2 It should be verified that leaching is controlled by diffusion by a means other than analysis of the leach test solution data. Analysis of concentration profiles of species of interest near the surface of the solid waste form after the test is recommended for this purpose. 1.1.3 Potential effects of partitioning on the test results can...

  19. Testing capabilities of Los Alamos National Laboratory for irradiated materials

    International Nuclear Information System (INIS)

    Maloy, S.A.; James, M.R.; Sommer, W.F.

    1999-01-01

    Spallation neutron sources expose materials to high energy (>100 MeV) proton and neutron spectra. Although numerous studies have investigated the effects of radiation damage in a lower energy neutron flux from fission or fusion reactors on the mechanical properties of materials, very little work has been performed on the effects that exposure to a spallation neutron spectrum has on the mechanical properties of materials. These effects can be significantly different than those observed in a fission or fusion reactor spectrum because exposure to high energy protons and neutrons produces more He and H along with the atomic displacement damage. Los Alamos National Laboratory has unique facilities to study the effects of spallation radiation damage on the mechanical properties of materials. The Los Alamos Neutron Science Center (LANSCE) has a pulsed linear accelerator which operates at 800 MeV and 1 mA. The Los Alamos Spallation Radiation Effect Facility (LASREF) located at the end of this accelerator is designed to allow the irradiation of components in a proton beam while water cooling these components and measuring their temperature. After irradiation, specimens can be investigated at hot cells located at the Chemical Metallurgy Research Building. Wing 9 of this facility contains 16 hot cells set up in two groups of eight, each having a corridor in the center to allow easy transfer of radioactive shipments into and out of the hot cells. These corridors have been used to prepare specimens for shipment to collaborating laboratories such as PNNL, ORNL, BNL, and the Paul Scherrer Institute to perform specialized testing at their hot cells. The LANL hot cells contain capabilities for opening radioactive components and testing their mechanical properties as well as preparing specimens from irradiated components

  20. IFMIF [International Fusion Materials Irradiation Facility], an accelerator-based neutron source for fusion components irradiation testing: Materials testing capabilities

    International Nuclear Information System (INIS)

    Mann, F.M.

    1988-08-01

    The International Fusion Materials Irradiation Facility (IFMIF) is proposed as an advanced accelerator-based neutron source for high-flux irradiation testing of large-sized fusion reactor components. The facility would require only small extensions to existing accelerator and target technology originally developed for the Fusion Materials Irradiation Test (FMIT) facility. At the extended facility, neutrons would be produced by a 0.1-A beam of 35-MeV deuterons incident upon a liquid lithium target. The volume available for high-flux (>10/sup 15/ n/cm/sup 2/-s) testing in IFMITF would be over a liter, a factor of about three larger than in the FMIT facility. This is because the effective beam current of 35-MeV deuterons on target can be increased by a factor of ten to 1A or more. Such an increase can be accomplished by funneling beams of deuterium ions from the radio-frequency quadruple into a linear accelerator and by taking advantage of recent developments in accelerator technology. Multiple beams and large total current allow great variety in available testing. For example, multiple simultaneous experiments, and great flexibility in tailoring spatial distributions of flux and spectra can be achieved. 5 refs., 2 figs., 1 tab

  1. Chalcogenide Glass Radiation Sensor; Materials Development, Design and Device Testing

    Energy Technology Data Exchange (ETDEWEB)

    Mitkova, Maria; Butt, Darryl; Kozicki, Michael; Barnaby, Hugo

    2013-04-30

    studied the effect of x-rays and γ-rays, on thin film chalcogenide glasses and applied them in conjunction with film incorporating a silver source in a new type of radiation sensor for which we have an US patent application [3]. In this report, we give data about our studies regarding our designed radiation sensor along with the testing and performance at various radiation doses. These studies have been preceded by materials characterization research related to the compositional and structural characteristics of the active materials used in the radiation sensor design. During the work on the project, we collected a large volume of material since every experiment was repeated many times to verify the results. We conducted a comprehensive material research, analysis and discussion with the aim to understand the nature of the occurring effects, design different structures to harness these effects, generated models to aid in the understanding the effects, built different device structures and collected data to quantify device performance. These various aspects of our investigation have been detailed in previous quarterly reports. In this report, we present our main results and emphasize on the results pertaining to the core project goals materials development, sensor design and testing and with an emphasis on classifying the appropriate material and design for the optimal application. The report has three main parts: (i) Presentation of the main data; (ii) Bulleted summary of the most important results; (iii) List of the patent, journal publications, conference proceedings and conferences participation, occurring as a result of working on the project.

  2. Standard test method for splitting tensile strength for brittle nuclear waste forms

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1989-01-01

    1.1 This test method is used to measure the static splitting tensile strength of cylindrical specimens of brittle nuclear waste forms. It provides splitting tensile-strength data that can be used to compare the strength of waste forms when tests are done on one size of specimen. 1.2 The test method is applicable to glass, ceramic, and concrete waste forms that are sufficiently homogeneous (Note 1) but not to coated-particle, metal-matrix, bituminous, or plastic waste forms, or concretes with large-scale heterogeneities. Cementitious waste forms with heterogeneities >1 to 2 mm and 5 mm can be tested using this procedure provided the specimen size is increased from the reference size of 12.7 mm diameter by 6 mm length, to 51 mm diameter by 100 mm length, as recommended in Test Method C 496 and Practice C 192. Note 1—Generally, the specimen structural or microstructural heterogeneities must be less than about one-tenth the diameter of the specimen. 1.3 This test method can be used as a quality control chec...

  3. Lap-joint testing of precoated steel materials

    Directory of Open Access Journals (Sweden)

    Chico, B.

    2003-12-01

    Full Text Available In industry, particularly in the building construction, lap-joint technology for precoated steel sheet materials has undergone rapid development. However, standars for lap-joint testing are lacking. This work analyses the behaviour of four precoated steel materials commonly used in the building industry: 55 % Al-Zn and hot dip galvanized, painted and unpainted. Two-year atmospheric exposure tests have been carried out in Madrid and Avilés (Spain, complemented by accelerated weathering tests in climatic cabinets. The latter have consisted of two salt fog/humidity/drying cycles: VDA cycle 621-415 and the "CENIM cycle", which has been designed to adequately simulate the behaviour of materials in this type of joints.

    En la industria en general y, particularmente, en la industria de la construcción, las tecnologías sobre uniones solapadas han experimentado un rápido desarrollo. Sin embargo, no son abundantes los ensayos para este tipo de uniones. Este trabajo analiza el comportamiento de cuatro materiales de acero pre-recubierto comúnmente usados en la industria de la construcción: 55 % Al-Zn y galvanizado por inmersión en caliente, con recubrimiento orgánico y sin él. Se han realizado ensayos de exposición natural durante dos años en las atmósferas de Madrid y Avilés (España, complementados con ensayos de envejecimiento acelerado en cámaras climáticas. En estos últimos se han ensayado dos ciclos de proyección niebla salina/humedad/secado: ciclo VDA 621-415 y un ciclo desarrollado en el CENIM diseñado.

  4. Research process of nondestructive testing pitting corrosion in metal material

    Directory of Open Access Journals (Sweden)

    Bo ZHANG

    2017-12-01

    Full Text Available Pitting corrosion directly affects the usability and service life of metal material, so the effective nondestructive testing and evaluation on pitting corrosion is of great significance for fatigue life prediction because of data supporting. The features of pitting corrosion are elaborated, and the relation between the pitting corrosion parameters and fatigue performance is pointed out. Through introducing the fundamental principles of pitting corrosion including mainly magnetic flux leakage inspection, pulsed eddy current and guided waves, the research status of nondestructive testing technology for pitting corrosion is summarized, and the key steps of nondestructive testing technologies are compared and analyzed from the theoretical model, signal processing to industrial applications. Based on the analysis of the signal processing specificity of different nondestructive testing technologies in detecting pitting corrosion, the visualization combined with image processing and signal analysis are indicated as the critical problems of accurate extraction of pitting defect information and quantitative characterization for pitting corrosion. The study on non-contact nondestructive testing technologies is important for improving the detection precision and its application in industries.

  5. Einstein's Materialism and Modern Tests of Quantum Mechanics

    Science.gov (United States)

    Vigier, J. P.

    After a presentation of Einstein's and Bohr's antagonistic point of view on the interpretation of Quantum Mechanics an illustration of their conflicting positions in the particular case of Young's double slit experiment is presented. It is then shown that in their most recent form (i. e. time dependent neutron interferometry) these experiments suggest (if one accepts absolute energymomentum conservation in all individual microprocesses) that Einstein was right in the Bohr-Einstein controversy.Translated AbstractEinsteins Materialismus und heutige Tests der QuantenmechanikNach einer Darstellung von Einsteins und Bohrs antagonistischen Standpunkten in der Interpretation der Quantenmechanik werden ihre widersprüchlichen Positionen im speziellen Fall des Youngschen Doppelspaltexperiments dargestellt. Es wird dann gezeigt, daß diese Experimente in ihrer neuesten Form (d. h. zeitabhängige Neutroneninterferometrie) Einstein in der Bohr-Einsteinkontroverse recht gaben (wenn man absolute Energie-Impulserhaltung bei allen individuellen Mikroprozessen annimmt).

  6. Laboratory Testing of Waste Isolation Pilot Plant Surrogate Waste Materials

    Science.gov (United States)

    Broome, S.; Bronowski, D.; Pfeifle, T.; Herrick, C. G.

    2011-12-01

    The Waste Isolation Pilot Plant (WIPP) is a U.S. Department of Energy geological repository for the permanent disposal of defense-related transuranic (TRU) waste. The waste is emplaced in rooms excavated in the bedded Salado salt formation at a depth of 655 m below the ground surface. After emplacement of the waste, the repository will be sealed and decommissioned. WIPP Performance Assessment modeling of the underground material response requires a full and accurate understanding of coupled mechanical, hydrological, and geochemical processes and how they evolve with time. This study was part of a broader test program focused on room closure, specifically the compaction behavior of waste and the constitutive relations to model this behavior. The goal of this study was to develop an improved waste constitutive model. The model parameters are developed based on a well designed set of test data. The constitutive model will then be used to realistically model evolution of the underground and to better understand the impacts on repository performance. The present study results are focused on laboratory testing of surrogate waste materials. The surrogate wastes correspond to a conservative estimate of the degraded containers and TRU waste materials after the 10,000 year regulatory period. Testing consists of hydrostatic, uniaxial, and triaxial tests performed on surrogate waste recipes that were previously developed by Hansen et al. (1997). These recipes can be divided into materials that simulate 50% and 100% degraded waste by weight. The percent degradation indicates the anticipated amount of iron corrosion, as well as the decomposition of cellulosics, plastics, and rubbers. Axial, lateral, and volumetric strain and axial and lateral stress measurements were made. Two unique testing techniques were developed during the course of the experimental program. The first involves the use of dilatometry to measure sample volumetric strain under a hydrostatic condition. Bulk

  7. Shield design for the Fusion Materials Irradiation Test facility

    International Nuclear Information System (INIS)

    Carter, L.L.; Mann, F.M.; Morford, R.J.; Wilcox, A.D.; Johnson, D.L.; Huang, S.T.

    1983-03-01

    The shield design for the Fusion Materials Irradiation Test facility is based upon one-, two- and three-dimensional transport calculations with experimental measurements utilized to refine the nuclear data including the neutron cross sections from 20 to 50 MeV and the gamma ray and neutron source terms. The high energy neutrons and deuterons produce activation products from the numerous reactions that are kinematically allowed. The analyses for both beam-on and beam-off (from the activation products) conditions have required extensive nuclear data libraries and the utilization of Monte Carlo, discrete ordinates, point kernel and auxiliary computer codes

  8. Proposed waste form performance criteria and testing methods for low-level mixed waste

    International Nuclear Information System (INIS)

    Franz, E.M.; Fuhrmann, M.; Bowerman, B.

    1995-01-01

    Proposed waste form performance criteria and testing methods were developed as guidance in judging the suitability of solidified waste as a physico-chemical barrier to releases of radionuclides and RCRA regulated hazardous components. The criteria follow from the assumption that release of contaminants by leaching is the single most important property for judging the effectiveness of a waste form. A two-tier regimen is proposed. The first tier consists of a leach test designed to determine the net, forward leach rate of the solidified waste and a leach test required by the Environmental Protection Agency (EPA). The second tier of tests is to determine if a set of stresses (i.e., radiation, freeze-thaw, wet-dry cycling) on the waste form adversely impacts its ability to retain contaminants and remain physically intact. In the absence of site-specific performance assessments (PA), two generic modeling exercises are described which were used to calculate proposed acceptable leachates

  9. Test facilities for radioactive material transport packages (AEA Technology, Winfrith, UK)

    International Nuclear Information System (INIS)

    Burgess, M.H.

    1991-01-01

    Transport packages for radioactive materials are tested to demonstrate compliance with national and international regulations. The involvement of AEA Technology is traced from the establishment of the early IAEA Regulations. Transport package design, testing, assessment and approval requires a wide variety of skills and facilities. The comprehensive capability of AEA Technology in these areas is described with references to practical experience in the form of a short bibliography. The facilities described include drop-test cranes and targets (up to 700te); air guns for impacts up to sonic velocities; pool fires, furnaces and rigs for thermal tests including heat dissipation on prototype flasks; shielding facilities and instruments; criticality simulations and leak test instruments. These are illustrated with photographs demonstrating the comprehensive nature of package testing services supplied to customers. (author)

  10. Production integrated nondestructive testing of composite materials and material compounds - an overview

    Science.gov (United States)

    Straß, B.; Conrad, C.; Wolter, B.

    2017-03-01

    Composite materials and material compounds are of increasing importance, because of the steadily rising relevance of resource saving lightweight constructions. Quality assurance with appropriate Nondestructive Testing (NDT) methods is a key aspect for reliable and efficient production. Quality changes have to be detected already in the manufacturing flow in order to take adequate corrective actions. For materials and compounds the classical NDT methods for defectoscopy, like X-ray and Ultrasound (US) are still predominant. Nevertheless, meanwhile fast, contactless NDT methods, like air-borne ultrasound, dynamic thermography and special Eddy-Current techniques are available in order to detect cracks, voids, pores and delaminations but also for characterizing fiber content, distribution and alignment. In Metal-Matrix Composites US back-scattering can be used for this purpose. US run-time measurements allow the detection of thermal stresses at the metal-matrix interface. Another important area is the necessity for NDT in joining. To achieve an optimum material utilization and product safety as well as the best possible production efficiency, there is a need for NDT methods for in-line inspection of the joint quality while joining or immediately afterwards. For this purpose EMAT (Electromagnetic Acoustic Transducer) technique or Acoustic Emission testing can be used.

  11. Materials Science Research Rack-1 Fire Suppressant Distribution Test Report

    Science.gov (United States)

    Wieland, P. O.

    2002-01-01

    Fire suppressant distribution testing was performed on the Materials Science Research Rack-1 (MSRR-1), a furnace facility payload that will be installed in the U.S. Lab module of the International Space Station. Unlike racks that were tested previously, the MSRR-1 uses the Active Rack Isolation System (ARIS) to reduce vibration on experiments, so the effects of ARIS on fire suppressant distribution were unknown. Two tests were performed to map the distribution of CO2 fire suppressant throughout a mockup of the MSRR-1 designed to have the same component volumes and flowpath restrictions as the flight rack. For the first test, the average maximum CO2 concentration for the rack was 60 percent, achieved within 45 s of discharge initiation, meeting the requirement to reach 50 percent throughout the rack within 1 min. For the second test, one of the experiment mockups was removed to provide a worst-case configuration, and the average maximum CO2 concentration for the rack was 58 percent. Comparing the results of this testing with results from previous testing leads to several general conclusions that can be used to evaluate future racks. The MSRR-1 will meet the requirements for fire suppressant distribution. Primary factors that affect the ability to meet the CO2 distribution requirements are the free air volume in the rack and the total area and distribution of openings in the rack shell. The length of the suppressant flowpath and degree of tortuousness has little correlation with CO2 concentration. The total area of holes in the rack shell could be significantly increased. The free air volume could be significantly increased. To ensure the highest maximum CO2 concentration, the PFE nozzle should be inserted to the stop on the nozzle.

  12. Scoping corrosion tests on candidate waste package basket materials for the Yucca Mountain project

    International Nuclear Information System (INIS)

    Konynenburg, R.A. van; Curtis, P.G.; Summers, T.S.E.

    1998-03-01

    A scoping corrosion test was performed on candidate waste package basket materials. The corrosion medium was a pH-buffered solution of chemical species expected to be produced by radiolysis. The test was conducted at 90 C for 96 hours. Samples included aluminum-, copper-, stainless steel- and zirconium-based metallic materials and several ceramics, incorporating neutron-absorbing elements. Sample weight losses and solution chemical changes were measured. Both corrosion of the host materials and dissolution of the neutron-absorbing elements were studied. The ceramics and the zirconium-based materials underwent only minor corrosion. The stainless steel-based materials performed well except for a welded sample. The aluminum- and copper-based materials exhibited the highest corrosion rates. Boron dissolution depends on its chemical form. Boron oxide and many metal borides dissolve readily in acidic solutions while high-chromium borides and boron carbide, though thermodynamically unstable, exhibit little dissolution in short times. The results of solution chemical analyses were consistent with this. Gadolinium did not dissolve significantly from monazite, and hafnium showed little dissolution from a variety of host materials, in keeping with its low solubility

  13. Testing of reactor fuel materials using nuclear techniques

    International Nuclear Information System (INIS)

    Khouri, M.T.F.C.

    1978-01-01

    The tests presented here apply to: the quantitative determination of uranium in the core of fuel element plates by the detection of the number of neutrons produced in photo induced reactions in uranium; the determination of 235 U proportion in uranium dioxide samples, in the form of uranyl nitrate, by the technique of the detection of tracks produced by fission fragments and in pellet samples by passive gamma spectrometry and the checking of uranium homogenization distribution in fuel plates and uranium dioxide pellets. (Author) [pt

  14. Preparation and thermal energy storage properties of paraffin/calcined diatomite composites as form-stable phase change materials

    International Nuclear Information System (INIS)

    Sun, Zhiming; Zhang, Yuzhong; Zheng, Shuilin; Park, Yuri; Frost, Ray L.

    2013-01-01

    Highlights: ► Composite phase change material (PCM) was prepared by blending composite paraffin and calcined diatomite. ► The optimum mixed proportion was obtained through differential scanning calorimetry. ► Thermal energy storage properties of the composite PCMs were determined by DSC. ► Thermal cycling test showed that the prepared PCMs are thermally reliable and chemically stable. - Abstract: A composite paraffin-based phase change material (PCM) was prepared by blending composite paraffin and calcined diatomite through the fusion adsorption method. In this study, raw diatomite was purified by thermal treatment in order to improve the adsorption capacity of diatomite, which acted as a carrier material to prepare shape-stabilized PCMs. Two forms of paraffin (paraffin waxes and liquid paraffin) with different melting points were blended together by the fusion method, and the optimum mixed proportion with a suitable phase-transition temperature was obtained through differential scanning calorimetry (DSC) analysis. Then the prepared composite paraffin was adsorbed in calcined diatomite. The prepared paraffin/calcined diatomite composites were characterized by the scanning electron microscope (SEM) and Fourier transformation infrared (FT-IR) analysis techniques. Thermal energy storage properties of the composite PCMs were determined by DSC method. DSC results showed that there was an optimum adsorption ratio between composite paraffin and calcined diatomite and the phase-transition temperature and the latent heat of the composite PCMs were 33.04 °C and 89.54 J/g, respectively. Thermal cycling test of composite PCMs showed that the prepared material is thermally reliable and chemically stable. The obtained paraffin/calcined diatomite composites have proper latent heat and melting temperatures, and show practical significance and good potential application value

  15. Preparation and thermal energy storage properties of paraffin/calcined diatomite composites as form-stable phase change materials

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Zhiming [School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083 (China); Chemistry Discipline, Faculty of Science and Technology, Queensland University of Technology, 2 George Street, GPO Box 2434, Brisbane, Queensland 4001 (Australia); Zhang, Yuzhong [School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083 (China); Zheng, Shuilin, E-mail: shuilinzh@yahoo.com.cn [School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083 (China); Park, Yuri [Chemistry Discipline, Faculty of Science and Technology, Queensland University of Technology, 2 George Street, GPO Box 2434, Brisbane, Queensland 4001 (Australia); Frost, Ray L., E-mail: r.frost@qut.edu.au [Chemistry Discipline, Faculty of Science and Technology, Queensland University of Technology, 2 George Street, GPO Box 2434, Brisbane, Queensland 4001 (Australia)

    2013-04-20

    Highlights: ► Composite phase change material (PCM) was prepared by blending composite paraffin and calcined diatomite. ► The optimum mixed proportion was obtained through differential scanning calorimetry. ► Thermal energy storage properties of the composite PCMs were determined by DSC. ► Thermal cycling test showed that the prepared PCMs are thermally reliable and chemically stable. - Abstract: A composite paraffin-based phase change material (PCM) was prepared by blending composite paraffin and calcined diatomite through the fusion adsorption method. In this study, raw diatomite was purified by thermal treatment in order to improve the adsorption capacity of diatomite, which acted as a carrier material to prepare shape-stabilized PCMs. Two forms of paraffin (paraffin waxes and liquid paraffin) with different melting points were blended together by the fusion method, and the optimum mixed proportion with a suitable phase-transition temperature was obtained through differential scanning calorimetry (DSC) analysis. Then the prepared composite paraffin was adsorbed in calcined diatomite. The prepared paraffin/calcined diatomite composites were characterized by the scanning electron microscope (SEM) and Fourier transformation infrared (FT-IR) analysis techniques. Thermal energy storage properties of the composite PCMs were determined by DSC method. DSC results showed that there was an optimum adsorption ratio between composite paraffin and calcined diatomite and the phase-transition temperature and the latent heat of the composite PCMs were 33.04 °C and 89.54 J/g, respectively. Thermal cycling test of composite PCMs showed that the prepared material is thermally reliable and chemically stable. The obtained paraffin/calcined diatomite composites have proper latent heat and melting temperatures, and show practical significance and good potential application value.

  16. Standard Guide for Testing Materials for Aerospace Plastic Transparent Enclosures

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This guide is intended to summarize the standard test methods available on individual and composite materials utilized in fabrication of aerospace plastic transparent enclosures. As such, it is intended to specifically include transparent thermoplastics, transparent elastomers, and reinforced plastics, whether thermoplastic or thermosetting. 1.2 This guide is intended as an aid in the search for test methods pertinent to Aerospace Plastic Transparent Enclosures. It should be understood that all methods listed may not apply to all enclosures. 1.3 The standards included refer to the properties or aspects listed in Table 1. The properties or aspects are listed in alphabetical order and the descriptions used are intended to facilitate the search. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limi...

  17. Proposed rf system for the fusion materials irradiation test facility

    International Nuclear Information System (INIS)

    Fazio, M.V.; Johnson, H.P.; Hoffert, W.J.; Boyd, T.J.

    1979-01-01

    Preliminary rf system design for the accelerator portion of the Fusion Materials Irradiation Test (FMIT) Facility is in progress. The 35-MeV, 100-mA, cw deuteron beam will require 6.3 MW rf power at 80 MHz. Initial testing indicates the EIMAC 8973 tetrode is the most suitable final amplifier tube for each of a series of 15 amplifier chains operating at 0.5-MW output. To satisfy the beam dynamics requirements for particle acceleration and to minimize beam spill, each amplifier output must be controlled to +-1 0 in phase and the field amplitude in the tanks must be held within a 1% tolerance. These tolerances put stringent demands on the rf phase and amplitude control system

  18. Removal of the Materials Test Reactor overhead working reservoir

    International Nuclear Information System (INIS)

    Lunis, B.C.

    1975-10-01

    Salient features of the removal of an excessed contaminated facility, the Materials Test Reactor (MTR) overhead working reservoir (OWR) from the Test Reactor Area to the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory are described. The 125-ton OWR was an overhead 160,000-gallon-capacity tank approximately 193 feet high which supplied cooling water to the MTR. Radiation at ground level beneath the tank was 5 mR/hr and approximately 600 mR/hr at the exterior surface of the tank. Sources ranging from 3 R/hr to in excess of 500 R/hr exist within the tank. The tank interior is contaminated with uranium, plutonium, and miscellaneous fission products. The OWR was lowered to ground level with the use of explosive cutters. Dismantling, decontamination, and disposal were performed by Aerojet Nuclear Company maintenance forces

  19. Microstructural Characterization of Reaction-Formed Silicon Carbide Ceramics. Materials Characterization

    Science.gov (United States)

    Singh, M.; Leonhardt, T. A.

    1995-01-01

    Microstructural characterization of two reaction-formed silicon carbide ceramics has been carried out by interference layering, plasma etching, and microscopy. These specimens contained free silicon and niobium disilicide as minor phases with silicon carbide as the major phase. In conventionally prepared samples, the niobium disilicide cannot be distinguished from silicon in optical micrographs. After interference layering, all phases are clearly distinguishable. Back scattered electron (BSE) imaging and energy dispersive spectrometry (EDS) confirmed the results obtained by interference layering. Plasma etching with CF4 plus 4% O2 selectively attacks silicon in these specimens. It is demonstrated that interference layering and plasma etching are very useful techniques in the phase identification and microstructural characterization of multiphase ceramic materials.

  20. Radiation Field Forming for Industrial Electron Accelerators Using Rare-Earth Magnetic Materials

    Science.gov (United States)

    Ermakov, A. N.; Khankin, V. V.; Shvedunov, N. V.; Shvedunov, V. I.; Yurov, D. S.

    2016-09-01

    The article describes the radiation field forming system for industrial electron accelerators, which would have uniform distribution of linear charge density at the surface of an item being irradiated perpendicular to the direction of its motion. Its main element is non-linear quadrupole lens made with the use of rare-earth magnetic materials. The proposed system has a number of advantages over traditional beam scanning systems that use electromagnets, including easier product irradiation planning, lower instantaneous local dose rate, smaller size, lower cost. Provided are the calculation results for a 10 MeV industrial electron accelerator, as well as measurement results for current distribution in the prototype build based on calculations.

  1. Soil washing treatability testing for rad-waste material

    International Nuclear Information System (INIS)

    Leis, K.S.; Lear, P.R.

    1997-01-01

    Soil washing treatability testing was successfully completed on soil contaminated with Ra-226 and Th-232. The objective of the soil washing study was to determine if the radiologically contaminated fraction of the soil could be separated from the bulk of the soil material. The cleanup criteria was 38 microm) fraction was allowed to settle and was washed to separate it from the highly contaminated fine (< 38 microm) fraction. The clean coarse fraction comprised 85.7% of the total solids and had less than 15 pCi/g of Ra-226 and Th-232. This material was to be disposed at a RCRA Subtitle D disposal facility. The suspended fines were flocculated and dewatered to minimize the amount of highly contaminated material produced by the soil washing. The dewatered fines would require disposal at a low-level radiological disposal facility. Mass balance calculations were made to determine production rates and chemical and equipment requirements for the full-scale soil washing treatment

  2. Versatile equipment for mechanical testing of active materials

    International Nuclear Information System (INIS)

    Bertsch, Johannes; Heimgartner, Peter

    2005-01-01

    At the Paul Scherrer Institute (PSI) 3 different project groups presently perform aging research on active materials. The research fields are fusion, high neutron flux targets and LWR relevant components. Up to now mechanical testing has been performed with small, low dose rate samples behind local shielding, not appropriate for highly activated material. To overcome this situation, a cell concept for active mechanical testing was elaborated and has been erected in PSI's Hotlab. It consists of 4 shielded cells. 3 connected cells are versatile and independently operable for highly beta/gamma active samples. One cell is an alpha/beta/gamma-box which will be realized in a second phase. This paper presents the versatility especially of the beta/gamma-cells: The different user groups perform experiments in these cells, whereas different machines can be placed into the cells. As consequence of the need of heavily shielded cell doors, a special strengthening and levelling of the floor has been required. In all cells the relevant media are installed. Besides the performance of the cells, the project progress as the difficulties and their solutions are described. (Author)

  3. Characterization of spent fuel approved testing material: ATM-106

    International Nuclear Information System (INIS)

    Guenther, R.J.; Blahnik, D.E.; Campbell, T.K.; Jenquin, U.P.; Mendel, J.E.; Thornhill, C.K.

    1988-10-01

    The characterization data obtained to date are described for Approved Testing Material (ATM)-106 spent fuel from Assembly BT03 of pressurized-water reactor Calvert Cliffs No. 1. This report is one in a series being prepared by the Materials Characterization Center at Pacific Northwest Laboratory on spent fuel ATMs. The ATMs are receiving extensive examinations to provide a source of well- characterized spent fuel for testing in the US Department of Energy Office of Civilian Radioactive Waste Management (OCWRM) program. ATM-106 consists of 20 full-length irradiated fuel rods with rod-average burnups of about 3700 GJ/kgM (43 MWd/kgM) and expected fission gas release of /approximately/10%. Characterization data include (1) as-fabricated fuel design, irradiation history, and subsequent storage and handling; (2) isotopic gamma scans; (3) fission gas analyses; (4) ceramography of the fuel and metallography of the cladding; (5) calculated nuclide inventories and radioactivities in the fuel and cladding; and (6) radiochemical analyses of the fuel and cladding. Additional analyses of the fuel rod are being conducted and will be included in planned revisions of this report. 12 refs., 110 figs., 81 tabs

  4. Materials development for ITER shielding and test blanket in China

    Energy Technology Data Exchange (ETDEWEB)

    Chen, J.M., E-mail: Chenjm@swip.ac.cn [Southwestern Institute of Physics, P.O. Box 432, Chengdu 610041 (China); Wu, J.H.; Liu, X.; Wang, P.H. [Southwestern Institute of Physics, P.O. Box 432, Chengdu 610041 (China); Wang, Z.H.; Li, Z.N. [Ningxia Orient Non-ferrous Metals Group Co. Ltd., P.O. Box 105, Shizuishan (China); Wang, X.S.; Zhang, P.C. [China Academy of Engineering Physics, P.O. Box 919-71, Mianyang 621900 (China); Zhang, N.M.; Fu, H.Y.; Liu, D.H. [Southwestern Institute of Physics, P.O. Box 432, Chengdu 610041 (China)

    2011-10-01

    China is a member of the ITER program and is developing her own materials for its shielding and test blanket modules. The materials include vacuum-hot-pressing (VHP) Be, CuCrZr alloy, 316L(N) and China low activation ferritic/martensitic (CLF-1) steels. Joining technologies including Be/Cu hot isostatic pressing (HIP) and electron beam (EB) weldability of 316L(N) were investigated. Chinese VHP-Be showed good properties, with BeO content and ductility that satisfy the ITER requirements. Be/Cu mock-ups were fabricated for Be qualification tests at simulated ITER vertical displacement event (VDE) and heat flux cycling conditions. Fine microstructure and good mechanical strength of the CuCrZr alloy were achieved by a pre-forging treatment, while the weldability of 316L(N) by EB was demonstrated for welding depths varying from 5 to 80 mm. Fine microstructure, high strength, and good ductility were achieved in CLF-1 steel by an optimized normalizing, tempering and aging procedure.

  5. Characterization of spent fuel approved testing material---ATM-105

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, R.J.; Blahnik, D.E.; Campbell, T.K.; Jenquin, U.P.; Mendel, J.E.; Thomas, L.E.; Thornhill, C.K.

    1991-12-01

    The characterization data obtained to data are described for Approved Testing Material 105 (ATM-105), which is spent fuel from Bundles CZ346 and CZ348 of the Cooper Nuclear Power Plant, a boiling-water reactor. This report is one in a series being prepared by the Materials Characterization Center at Pacific Northwest Laboratory (PNL) on spent fuel ATMs. The ATMs are receiving extensive examinations to provide a source of well-characterized spent fuel for testing in the US Department of Energy Office of Civilian Radioactive Waste Management (OCRWM) Program. ATM-105 consists of 88 full-length irradiated fuel rods with rod-average burnups of about 2400 GJ/kgM (28 MWd/kgM) and expected fission gas release of about 1%. Characterization data include (1) descriptions of as-fabricated fuel design, irradiation history, and subsequent storage and handling; (2) isotopic gamma scans; (3) fission gas analyses; (4) ceramography of the fuel and metallography of the cladding; (5) special fuel studies involving analytical transmission electron microscopy (AEM); (6) calculated nuclide inventories and radioactivities in the fuel and cladding; and (7) radiochemical analyses of the fuel and cladding. Additional analyses of the fuel are being conducted and will be included in planned revisions of this report.

  6. Radiochemical analyses of several spent fuel Approved Testing Materials

    International Nuclear Information System (INIS)

    Guenther, R.J.; Blahnik, D.E.; Wildung, N.J.

    1994-09-01

    Radiochemical characterization data are described for UO 2 and UO 2 plus 3 wt% Gd 2 O 3 commercial spent nuclear fuel taken from a series of Approved Testing Materials (ATMs). These full-length nuclear fuel rods include MLA091 of ATM-103, MKP070 of ATM-104, NBD095 and NBD131 of ATM-106, and ADN0206 of ATM-108. ATMs 103, 104, and 106 were all irradiated in the Calvert Cliffs Nuclear Power Plant (Reactor No.1), a pressurized-water reactor that used fuel fabricated by Combustion Engineering. ATM-108 was part of the same fuel bundle designed as ATM-105 and came from boiling-water reactor fuel fabricated by General Electric and irradiated in the Cooper Nuclear Power Plant. Rod average burnups and expected fission gas releases ranged from 2,400 to 3,700 GJ/kgM. (25 to 40 Mwd/kgM) and from less than 1% to greater than 10%, respectively, depending on the specific ATM. The radiochemical analyses included uranium and plutonium isotopes in the fuel, selected fission products in the fuel, fuel burnup, cesium and iodine on the inner surfaces of the cladding, 14 C in the fuel and cladding, and analyses of the gases released to the rod plenum. Supporting examinations such as fuel rod design and material descriptions, power histories, and gamma scans used for sectioning diagrams are also included. These ATMs were examined as part of the Materials Characterization Center Program conducted at Pacific Northwest Laboratory provide a source of well-characterized spent fuel for testing in support of the US Department of Energy Office of Civilian Radioactive Waste Management Program

  7. MINERALIZATION OF RADIOACTIVE WASTES BY FLUIDIZED BED STEAM REFORMING (FBSR): COMPARISONS TO VITREOUS WASTE FORMS, AND PERTINENT DURABILITY TESTING

    International Nuclear Information System (INIS)

    Jantzen, C.

    2008-01-01

    The Savannah River National Laboratory (SRNL) was requested to generate a document for the Washington State Department of Ecology and the U.S. Environmental Protection Agency that would cover the following topics: (1) A description of the mineral structures produced by Fluidized Bed Steam Reforming (FBSR) of Hanford type Low Activity Waste (LAW including LAWR which is LAW melter recycle waste) waste, especially the cage structured minerals and how they are formed. (2) How the cage structured minerals contain some contaminants, while others become part of the mineral structure (Note that all contaminants become part of the mineral structure and this will be described in the subsequent sections of this report). (3) Possible contaminant release mechanisms from the mineral structures. (4) Appropriate analyses to evaluate these release mechanisms. (5) Why the appropriate analyses are comparable to the existing Hanford glass dataset. In order to discuss the mineral structures and how they bond contaminants a brief description of the structures of both mineral (ceramic) and vitreous waste forms will be given to show their similarities. By demonstrating the similarities of mineral and vitreous waste forms on atomic level, the contaminant release mechanisms of the crystalline (mineral) and amorphous (glass) waste forms can be compared. This will then logically lead to the discussion of why many of the analyses used to evaluate vitreous waste forms and glass-ceramics (also known as glass composite materials) are appropriate for determining the release mechanisms of LAW/LAWR mineral waste forms and how the durability data on LAW/LAWR mineral waste forms relate to the durability data for LAW/LAWR glasses. The text will discuss the LAW mineral waste form made by FBSR. The nanoscale mechanism by which the minerals form will be also be described in the text. The appropriate analyses to evaluate contaminant release mechanisms will be discussed, as will the FBSR test results to

  8. Integration Strategy for Free-form Lithium Ion Battery: Material, Design to System level Applications

    KAUST Repository

    Kutbee, Arwa T.

    2017-10-31

    Power supply in any electronic system is a crucial necessity. Especially so in fully compliant personalized advanced healthcare electronic self-powered systems where we envision seamless integration of sensors and actuators with data management components in a single freeform platform to augment the quality of our healthcare, smart living and sustainable future. However, the status-quo energy storage (battery) options require packaging to protect the indwelling toxic materials against harsh physiological environment and vice versa, compromising its mechanical flexibility, conformability and wearability at the highest electrochemical performance. Therefore, clean and safe energy storage solutions for wearable and implantable electronics are needed to replace the commercially used unsafe lithium-ion batteries. This dissertation discusses a highly manufacturable integration strategy for a free-form lithium-ion battery towards a genuine mechanically compliant wearable system. We sequentially start with the optimization process for the preparation of all solid-state material comprising a ‘’Lithium-free’’ lithium-ion microbattery with a focus on thin film texture optimization of the cathode material. State of the art complementary metal oxide semiconductor technology was used for the thin film based battery. Additionally, this thesis reports successful development of a transfer-less scheme for a flexible battery with small footprint and free form factor in a high yield production process. The reliable process for the flexible lithium-ion battery achieves an enhanced energy density by three orders of magnitude compared to the available rigid ones. Interconnection and bonding procedures of the developed batteries are discussed for a reliable back end of line process flexible, stretchable and stackable modules. Special attention is paid to the advanced bonding, handling and packaging strategies of flexible batteries towards system-level applications. Finally, this

  9. Standard Test Method for Solar Transmittance (Terrestrial) of Sheet Materials Using Sunlight

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1986-01-01

    1.1 This test method covers the measurement of solar transmittance (terrestrial) of materials in sheet form by using a pyranometer, an enclosure, and the sun as the energy source. 1.2 This test method also allows measurement of solar transmittance at angles other than normal incidence. 1.3 This test method is applicable to sheet materials that are transparent, translucent, textured, or patterned. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  10. Long-term water absorption tests for frost insulation materials taking into account frost attack

    Directory of Open Access Journals (Sweden)

    Toni A. Pakkala

    2014-01-01

    Full Text Available Water absorption of several different frost insulation materials was tested for four years. The test took into account both immersion and frost attack to materials. On the basis of the research the water absorption on XPS specimens is significantly minor compared to EPS specimens that were studied. The most significant result was that freezing of test specimens did not affect on water absorption of XPS specimens but had a major effect on water absorption of EPS specimens. With frozen EPS specimen the absorption continued increasing even after 48 months of immersion. Presumably the reason for such a behaviour is that the pore structure of EPS is not able to resist the tension caused by freezing water and therefore cracks are formed. Thus, more water absorbs inside the EPS through the cracks and it causes cracking deeper in the specimen which is why absorption increases after every freezing period.

  11. Quality Assurance Protocol for AFCI Advanced Structural Materials Testing

    Energy Technology Data Exchange (ETDEWEB)

    Busby, Jeremy T [ORNL

    2009-05-01

    The objective of this letter is to inform you of recent progress on the development of advanced structural materials in support of advanced fast reactors and AFCI. As you know, the alloy development effort has been initiated in recent months with the procurement of adequate quantities of the NF616 and HT-UPS alloys. As the test alloys become available in the coming days, mechanical testing, evaluation of optimizing treatments, and screening of environmental effects will be possible at a larger scale. It is therefore important to establish proper quality assurance protocols for this testing effort in a timely manner to ensure high technical quality throughout testing. A properly implemented quality assurance effort will also enable preliminary data taken in this effort to be qualified as NQA-1 during any subsequent licensing discussions for an advanced design or actual prototype. The objective of this report is to describe the quality assurance protocols that will be used for this effort. An essential first step in evaluating quality protocols is assessing the end use of the data. Currently, the advanced structural materials effort is part of a long-range, basic research and development effort and not, as yet, involved in licensing discussions for a specific reactor design. After consultation with Mark Vance (an ORNL QA expert) and based on the recently-issued AFCI QA requirements, the application of NQA-1 quality requirements will follow the guidance provided in Part IV, Subpart 4.2 of the NQA-1 standard (Guidance on Graded Application of QA for Nuclear-Related Research and Development). This guidance mandates the application of sound scientific methodology and a robust peer review process in all phases, allowing for the data to be qualified for use even if the programmatic mission changes to include licensing discussions of a specific design or prototype. ORNL has previously implemented a QA program dedicated to GNEP activities and based on an appropriately graded

  12. Quality Assurance Protocol for AFCI Advanced Structural Materials Testing

    International Nuclear Information System (INIS)

    Busby, Jeremy T.

    2009-01-01

    The objective of this letter is to inform you of recent progress on the development of advanced structural materials in support of advanced fast reactors and AFCI. As you know, the alloy development effort has been initiated in recent months with the procurement of adequate quantities of the NF616 and HT-UPS alloys. As the test alloys become available in the coming days, mechanical testing, evaluation of optimizing treatments, and screening of environmental effects will be possible at a larger scale. It is therefore important to establish proper quality assurance protocols for this testing effort in a timely manner to ensure high technical quality throughout testing. A properly implemented quality assurance effort will also enable preliminary data taken in this effort to be qualified as NQA-1 during any subsequent licensing discussions for an advanced design or actual prototype. The objective of this report is to describe the quality assurance protocols that will be used for this effort. An essential first step in evaluating quality protocols is assessing the end use of the data. Currently, the advanced structural materials effort is part of a long-range, basic research and development effort and not, as yet, involved in licensing discussions for a specific reactor design. After consultation with Mark Vance (an ORNL QA expert) and based on the recently-issued AFCI QA requirements, the application of NQA-1 quality requirements will follow the guidance provided in Part IV, Subpart 4.2 of the NQA-1 standard (Guidance on Graded Application of QA for Nuclear-Related Research and Development). This guidance mandates the application of sound scientific methodology and a robust peer review process in all phases, allowing for the data to be qualified for use even if the programmatic mission changes to include licensing discussions of a specific design or prototype. ORNL has previously implemented a QA program dedicated to GNEP activities and based on an appropriately graded

  13. Development of aircraft brake materials. [evaluation of metal and ceramic materials in sliding tests simulation of aircraft braking

    Science.gov (United States)

    Ho, T. L.; Peterson, M. B.

    1974-01-01

    The requirements of brake materials were outlined and a survey made to select materials to meet the needs of high temperature brakes. A number of metals and ceramic materials were selected and evaluated in sliding tests which simulated aircraft braking. Nickel, molybdenum tungsten, Zr02, high temperature cements and carbons were tested. Additives were then incorporated into these materials to optimize their wear or strength behavior with particular emphasis on nickel and molybdenum base materials and a high temperature potassium silicate cement. Optimum materials were developed which improved wear behavior over conventional brake materials in the simulated test. The best materials are a nickel, aluminum oxide, lead tungstate composition containing graphite or molybdenum disulphite; a molybdenum base material containing LPA100 (an intermetallic compound of cobalt, molybdenum, and silicon); and a carbon material (P5).

  14. 1000–ton testing machine for cyclic fatigue tests of materials at liquid nitrogen temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Khitruk, A. A.; Klimchenko, Yu. A.; Kovalchuk, O. A.; Marushin, E. L.; Mednikov, A. A.; Nasluzov, S. N.; Privalova, E. K.; Rodin, I. Yu.; Stepanov, D. B.; Sukhanova, M. V. [The D.V. Efremov Scientific Research Institute of Electrophysical Apparatus (NIIEFA), 3 Doroga na Metallostroy, Metallostroy, Saint Petersburg 196641 (Russian Federation)

    2014-01-29

    One of the main tasks of superconductive magnets R and D is to determine the mechanical and fatigue properties of structural materials and the critical design elements in the cryogenic temperature range. This paper describes a new facility built based on the industrial 1000-ton (10 MN) testing machine Schenk PC10.0S. Special equipment was developed to provide the mechanical and cyclic tensile fatigue tests of large-scale samples at the liquid nitrogen temperature and in a given load range. The main feature of the developed testing machine is the cryostat, in which the device converting a standard compression force of the testing machine to the tensile force affected at the test object is placed. The control system provides the remote control of the test and obtaining, processing and presentation of test data. As an example of the testing machine operation the test program and test results of the cyclic tensile fatigue tests of fullscale helium inlet sample of the PF1 coil ITER are presented.

  15. 1000–ton testing machine for cyclic fatigue tests of materials at liquid nitrogen temperatures

    International Nuclear Information System (INIS)

    Khitruk, A. A.; Klimchenko, Yu. A.; Kovalchuk, O. A.; Marushin, E. L.; Mednikov, A. A.; Nasluzov, S. N.; Privalova, E. K.; Rodin, I. Yu.; Stepanov, D. B.; Sukhanova, M. V.

    2014-01-01

    One of the main tasks of superconductive magnets R and D is to determine the mechanical and fatigue properties of structural materials and the critical design elements in the cryogenic temperature range. This paper describes a new facility built based on the industrial 1000-ton (10 MN) testing machine Schenk PC10.0S. Special equipment was developed to provide the mechanical and cyclic tensile fatigue tests of large-scale samples at the liquid nitrogen temperature and in a given load range. The main feature of the developed testing machine is the cryostat, in which the device converting a standard compression force of the testing machine to the tensile force affected at the test object is placed. The control system provides the remote control of the test and obtaining, processing and presentation of test data. As an example of the testing machine operation the test program and test results of the cyclic tensile fatigue tests of fullscale helium inlet sample of the PF1 coil ITER are presented

  16. Forming limit diagram of aluminum AA6063 tubes at high temperatures by bulge tests

    International Nuclear Information System (INIS)

    Hashemi, Seyed Jalal; Naeini, Hassan Moslemi; Liaghat, Gholamhossein; Tafti, Rooholla Azizi; Rahmani, Farzad

    2014-01-01

    A free bulge test and ductile fracture criteria were used to obtain the forming limit diagrams (FLD) of aluminum alloy AA6063 tubes at high temperatures. Ductile fracture criteria were calibrated using the results of uniaxial tension tests at various elevated temperatures and different strain rates through adjusting the Zener-Holloman parameter. High temperature free bulge test of tubes was simulated in finite element software Abaqus, and tube bursting was predicted using ductile fracture criteria under different loading paths. FLDs which were obtained from finite element simulation were compared to experimental results to select the most accurate criterion for prediction of forming limit diagram. According to the results, all studied ductile fracture criteria predict similarly when forming condition is close to the uniaxial tension, while Ayada criterion predicts the FLD at 473 K and 573 K very well.

  17. Forming limit diagram of aluminum AA6063 tubes at high temperatures by bulge tests

    Energy Technology Data Exchange (ETDEWEB)

    Hashemi, Seyed Jalal; Naeini, Hassan Moslemi; Liaghat, Gholamhossein [Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Tafti, Rooholla Azizi [Yazd University, Yazd (Iran, Islamic Republic of); Rahmani, Farzad [Kar Higher Education Institute, Qazvin (Iran, Islamic Republic of)

    2014-11-15

    A free bulge test and ductile fracture criteria were used to obtain the forming limit diagrams (FLD) of aluminum alloy AA6063 tubes at high temperatures. Ductile fracture criteria were calibrated using the results of uniaxial tension tests at various elevated temperatures and different strain rates through adjusting the Zener-Holloman parameter. High temperature free bulge test of tubes was simulated in finite element software Abaqus, and tube bursting was predicted using ductile fracture criteria under different loading paths. FLDs which were obtained from finite element simulation were compared to experimental results to select the most accurate criterion for prediction of forming limit diagram. According to the results, all studied ductile fracture criteria predict similarly when forming condition is close to the uniaxial tension, while Ayada criterion predicts the FLD at 473 K and 573 K very well.

  18. In-Drift Accumulation of Fissile Material From Waste Packages Containing Plutonium Disposition Waste Forms

    International Nuclear Information System (INIS)

    H.W. Stockman; S. LeStrange

    2000-01-01

    The objective of this calculation is to provide estimates of the amount of fissile material flowing out of the waste package (source term) and the accumulation of fissile elements (U and Pu) in a crushed-tuff invert. These calculations provide input for the analysis of repository impacts of the Pu-ceramic waste forms. In particular, the source term results are used as input to the far-field accumulation calculation reported in Ref. 51, and the in-drift accumulation results are used as inputs for the criticality calculations reported in Ref. 2. The results are also summarized and interpreted in Ref. 52. The scope of this calculation is the waste package (WP) Viability Assessment (VA) design, which consists of an outer corrosion-allowance material (CAM) and an inner corrosion-resistant material (CRM). This design is used in this calculation in order to be consistent with earlier Pu-ceramic degradation calculations (Ref. 15). The impact of the new Enhanced Design Alternative-I1 (EDA-11) design on the results will be addressed in a subsequent report. The design of the invert (a leveling foundation, which creates a level surface of the drift floor and supports the WP mounting structure) is consistent with the EDA-I1 design. The invert will be composed of crushed stone and a steel support structure (Ref. 17). The scope of this calculation is also defined by the nominal degradation scenario, which involves the breach of the WP (Section 10.5.1.2, Ref. 48), followed by the influx of water. Water in the WP may, in time, gradually leach the fissile components and neutron absorbers out of the ceramic waste forms. Thus, the water in the WP may become laden with dissolved actinides (e.g., Pu and U), and may eventually overflow or leak from the WP. Once the water leaves the WP, it may encounter the invert, in which the actinides may reprecipitate. Several factors could induce reprecipitation; these factors include: the high surface area of the crushed stone, and the presence of

  19. In-Drift Accumulation of Fissile Material From Waste Packages Containing Plutonium Disposition Waste Form

    Energy Technology Data Exchange (ETDEWEB)

    H.W> Stockman; S. LeStrange

    2000-09-28

    The objective of this calculation is to provide estimates of the amount of fissile material flowing out of the waste package (source term) and the accumulation of fissile elements (U and Pu) in a crushed-tuff invert. These calculations provide input for the analysis of repository impacts of the Pu-ceramic waste forms. In particular, the source term results are used as input to the far-field accumulation calculation reported in Ref. 51, and the in-drift accumulation results are used as inputs for the criticality calculations reported in Ref. 2. The results are also summarized and interpreted in Ref. 52. The scope of this calculation is the waste package (WP) Viability Assessment (VA) design, which consists of an outer corrosion-allowance material (CAM) and an inner corrosion-resistant material (CRM). This design is used in this calculation in order to be consistent with earlier Pu-ceramic degradation calculations (Ref. 15). The impact of the new Enhanced Design Alternative-I1 (EDA-11) design on the results will be addressed in a subsequent report. The design of the invert (a leveling foundation, which creates a level surface of the drift floor and supports the WP mounting structure) is consistent with the EDA-I1 design. The invert will be composed of crushed stone and a steel support structure (Ref. 17). The scope of this calculation is also defined by the nominal degradation scenario, which involves the breach of the WP (Section 10.5.1.2, Ref. 48), followed by the influx of water. Water in the WP may, in time, gradually leach the fissile components and neutron absorbers out of the ceramic waste forms. Thus, the water in the WP may become laden with dissolved actinides (e.g., Pu and U), and may eventually overflow or leak from the WP. Once the water leaves the WP, it may encounter the invert, in which the actinides may reprecipitate. Several factors could induce reprecipitation; these factors include: the high surface area of the crushed stone, and the presence of

  20. PWR Users Group 10 CFR 61 Waste Form Requirements Compliance Test Program

    International Nuclear Information System (INIS)

    Rosenlof, R.C.

    1985-01-01

    In January of 1984, a PWR Users Group was formed to initiate a 10 CFR 61 Waste Form Requirements Compliance Test Program on a shared cost basis. The original Radwaste Solidification Systems sold by ATCOR ENGINEERED SYSTEMS, INC. to the utilities were required to produce a free-standing monolith with no free water. None of the other requirements of 10 CFR 61 had to be met. Current regulations, however, have substantially expanded the scope of the waste form acceptance criteria. These new criteria required that generators of radioactive waste demonstrate the ability to produce waste forms which meet certain chemical and physical requirements. This paper will present the test program used and the results obtained to insure 10 CFR 61 compliance of the three (3) typical waste streams generated by the ATCOR PWR Users Group's plants. The primary objective of the PWR Users Group was not to maximize waste loading within the masonry cement solidification media, but to insure that the users Radwaste Solidification System is capable of producing waste forms which meet the waste form criteria of 10 CFR 61. A description of the laboratory small sample certification program and the actual full scale pilot plant verification approach used is included in this paper. Also included is a discussion of the development of a Process Control Program to ensure the reproducibility of the test results with actual waste