WorldWideScience

Sample records for form mixed-interdigitated gel

  1. Gel-forming reagents and uses thereof for preparing microarrays

    Science.gov (United States)

    Golova, Julia; Chernov, Boris; Perov, Alexander

    2010-11-09

    New gel-forming reagents including monomers and cross-linkers, which can be applied to gel-drop microarray manufacturing by using co-polymerization approaches are disclosed. Compositions for the preparation of co-polymerization mixtures with new gel-forming monomers and cross-linker reagents are described herein. New co-polymerization compositions and cross-linkers with variable length linker groups between unsaturated C.dbd.C bonds that participate in the formation of gel networks are disclosed.

  2. Rheology of the gel formed in the California Mastitis Test.

    Science.gov (United States)

    Verbeek, C Johan R; Xia, Stephen S; Whyte, David

    2008-11-01

    The California Mastitis Test has previously been adapted for use in an inline, cow-side sensor and relies on the fact that the viscosity of the gel formed during the test is proportional to the somatic cell concentration. In this paper, the use of capillary and rotational viscometry was compared in light of the expected rheology of the gel formed during the test. It was found that the gel is non-Newtonian, but the initial phase of viscosity increase was not due to shear dependence, but rather due to the gelation reaction. The maximum apparent viscosity of the gel was shear dependent while the time it took to reach the maximum was not truly shear dependent, but was rather dependent on the degree of mixing during gelation. This was confirmed by introducing a delay time prior to viscosity measurement, in both capillary and rotational viscometry. It was found that by mixing the reagent and infected milk, then delaying viscosity measurement for 30 s, shortened the time it took to reach maximum viscosity by more than 60 s. The maximum apparent viscosity, however, was unaffected. It was found that capillary viscometry worked well to correlate relative viscosity with somatic cell count, but that it was sensitive to the reagent concentration. It can therefore be deduced that the rheology of the gel is complicated not only by it being non-Newtonian, but also by the strong dependence on test conditions. These make designing a successful sensor much more challenging.

  3. Role and properties of the gel formed during nuclear glass alteration: importance of gel formation conditions

    Science.gov (United States)

    Gin, S.; Ribet, I.; Couillard, M.

    2001-09-01

    A French SON 68 nuclear glass sample was experimentally altered to assess the mechanisms limiting the glass alteration kinetics, especially during the transition phase between the initial rate r0 and the final rate under silicon saturation conditions. A glass specimen was altered at the initial rate for one week to form a silicon-depleted non-protective gel; the specimen was then leached under static conditions at a glass-surface-to-solution-volume ( S/ V) ratio of 500 m-1 and the alteration kinetics were compared with those of a pristine glass specimen altered under the same conditions. Unexpectedly, after static leaching the previously leached glass was 2.7 times as altered as the pristine specimen, and the steady-state silicon concentration was twice as high for the previously leached specimen. STEM characterization of the alteration films showed that the initial non-protective gel constituted a silicon pump with respect to the glass, and that the glass alteration kinetics were limited only when a fraction of the gel became saturated with silicon, and exhibited protective properties. This work also shows that silicon recondensation was uniform at micrometer scale: the silicon hydrolyzed at the reaction interface then diffused before recondensing over a length comparable to the gel thickness. In addition to these findings, this investigation suggests a reinterpretation of the effect of the S/ V ratio on the glass alteration kinetics and on the steady-state dissolved silicon concentration.

  4. Swelling/syneresis phenomena in gel-forming interpolymer complexes.

    Science.gov (United States)

    Bell, C L; Peppas, N A

    1996-01-01

    Grafted poly(methacrylic acid-g-ethylene glycol) (P(MAA-g-EG)) copolymers were synthesized and their pH sensitivity investigated as a function of copolymer composition and PEG graft molecular weight. Interpolymer complexation occurred by hydrogen bonding between carboxylic groups on poly(methacrylic acid) (PMAA) and ether groups on poly(ethylene glycol) (PEG). This complexation was sensitive to the surrounding environment as complexes formed at pH levels low enough to insure substantial protonation of PMAA acid groups. At high pH, the acid groups became neutralized and did not form complexes. P(MAA-g-EG) membranes showed pH-sensitivity due to complex formation and dissociation. Uncomplexed equilibrium swelling ratios were much higher than those of the complexed states and varied according to copolymer composition and PEG graft length. Mesh sizes in the two states were determined. Swelling under oscillatory pH conditions and constant ionic strength revealed the dynamic sensitivity of P(MAA-g-EG) membranes. Under changing pH conditions, network syneresis (complexation) occurred more rapidly than network expansion (decomplexation) because of the rates of diffusion of specific ions causing the responses. No distinct water fronts were observed. Instead, water transport was continuous through the gel. These gels show great promise for a number of biomedical applications where fast biomaterial response is necessary.

  5. Sol-gel processing to form doped sol-gel monoliths inside hollow core optical fiber and sol-gel core fiber devices made thereby

    Science.gov (United States)

    Shaw, Harry C. (Inventor); Ott, Melanie N. (Inventor); Manuel, Michele V. (Inventor)

    2002-01-01

    A process of fabricating a fiber device includes providing a hollow core fiber, and forming a sol-gel material inside the hollow core fiber. The hollow core fiber is preferably an optical fiber, and the sol-gel material is doped with a dopant. Devices made in this manner includes a wide variety of sensors.

  6. Glutenin Macropolymer: a Gel Formed by Glutenin Particles

    NARCIS (Netherlands)

    Don, C.; Lichtendonk, W.J.; Plijter, J.J.; Hamer, R.J.

    2003-01-01

    The quality of wheat-based foods and the processing properties of wheat flour dough are strongly related to the presence and properties of very large glutenin protein aggregates. These very large aggregates are insoluble in 1.5% (w/v) SDS and can be recovered after ultracentrifugation as a gel, the

  7. Glutenin macropolymer: A gel formed by glutenin particles

    NARCIS (Netherlands)

    Don, C.; Lichtendonk, W.; Plijter, J.J.; Hamer, R.J.

    2003-01-01

    The quality of wheat-based foods and the processing properties of wheat flour dough are strongly related to the presence and properties of very large glutenin protein aggregates. These very large aggregates are insoluble in 1.5% (w/v) SDS and can be recovered after ultracentrifugation as a gel, the

  8. Process of forming a sol-gel/metal hydride composite

    Science.gov (United States)

    Congdon, James W.

    2009-03-17

    An external gelation process is described which produces granules of metal hydride particles contained within a sol-gel matrix. The resulting granules are dimensionally stable and are useful for applications such as hydrogen separation and hydrogen purification. An additional coating technique for strengthening the granules is also provided.

  9. Antibiotic-containing hyaluronic acid gel as an antibacterial carrier: Usefulness of sponge and film-formed HA gel in deep infection.

    Science.gov (United States)

    Matsuno, Hiroaki; Yudoh, Kazuo; Hashimoto, Masamichi; Himeda, Yasukazu; Miyoshi, Teruzo; Yoshida, Kaoru; Kano, Syogo

    2006-03-01

    We have developed a novel bioabsorbable antibacterial carrier using hyaluronic acid (HA) gel for prevention and treatment of orthopedic infections. In this study, we investigated the in vivo antibacterial effects of two forms of this new material, an HA gel sponge and an HA gel film. A titanium cylinder was inserted into the intramedullary cavity of each rabbit femur, along with an HA gel sponge or HA gel film containing antibiotics. The HA gel sponge contained gentamycin, vancomycin, tobramycin, or minomycin. The HA gel film contained gentamycin or vancomycin. After 0, 7, and 14 days, the rabbit bone marrow was collected, and the antibacterial activity of the HA gel was determined by agar diffusion test. As a control, we used Septocoll, a commercially available antibacterial carrier. Both the HA gel sponge and HA gel film exhibited antibacterial activity. The present results indicate that HA gel containing antibiotics is a clinically useful bioabsorbable antibacterial carrier.

  10. Photochromic glass thin film formed by the sol-gel coating method

    Science.gov (United States)

    Nakazumi, Hiroyuki; Nagashiro, Rie; Matsumoto, Shinya; Isagawa, Kakuzoh

    1994-10-01

    The photochromic gel thin films using 1'-butyl-3',3'-dimethyl-6-nitro-spiro[2H-1- benzopyran-2,2'-indoline] (1) and 1'-butyl-spiro[2H-indole-2,3'- [3H]naphtho[2,1-b][1,4]oxazine] (2) dispersed in sol in the sol-gel processing were prepared and photochromic behaviors of these films were investigated. A good transparent coating layer on glass surface was formed in the range of ca. 6 - 10 wt% of 1 or 2 to alkoxysilane, and was colored by UV irradiation. The absorption band formed by UV-irradiation disappeared by thermal decay and also by Vis irradiation for 1. The thermal fading of the colored form to the spiro form 1 or 2 is dependent on a matrix of the gels, the colored forms in the film starting from methyltriethoxysilane (MTES), which is expected to include larger pores than in the film starting from tetraethoxysilane (TEOS) or silane oligomer, show faster thermal fading which roughly follows the first order kinetics. The colored form in the gel is stabilized, compared with that in solution or bulk gel, and it is suggested that there are some kinds of colored species in thin gel films containing spiropyran 1, which may be some aggregates, whereas only a colored species from spironaphthooxazine 2 is suggested. Photochromic behavior of 2 in sol was also examined.

  11. Method for preparing hydrous titanium oxide spherules and other gel forms thereof

    Science.gov (United States)

    Collins, J.L.

    1998-10-13

    The present invention are methods for preparing hydrous titanium oxide spherules, hydrous titanium oxide gels such as gel slabs, films, capillary and electrophoresis gels, titanium monohydrogen phosphate spherules, hydrous titanium oxide spherules having suspendible particles homogeneously embedded within to form a composite sorbent, titanium monohydrogen phosphate spherules having suspendible particles of at least one different sorbent homogeneously embedded within to form a composite sorbent having a desired crystallinity, titanium oxide spherules in the form of anatase, brookite or rutile, titanium oxide spherules having suspendible particles homogeneously embedded within to form a composite, hydrous titanium oxide fiber materials, titanium oxide fiber materials, hydrous titanium oxide fiber materials having suspendible particles homogeneously embedded within to form a composite, titanium oxide fiber materials having suspendible particles homogeneously embedded within to form a composite and spherules of barium titanate. These variations of hydrous titanium oxide spherules and gel forms prepared by the gel-sphere, internal gelation process offer more useful forms of inorganic ion exchangers, catalysts, getters and ceramics. 6 figs.

  12. Polyacrylamide gels with selective recognition of the tetrameric molecular form of human growth hormone

    Directory of Open Access Journals (Sweden)

    R. Kublickas

    2017-08-01

    Full Text Available Networks of polyacrylamide were studied for the possibility of imprinting of the oligomeric form of human growth hormone. The tetrameric molecular form of human growth hormone was molecularly imprinted for the first time. The results show that approximately 50–70% (w/w of the templates (depending on polymerization conditions could be extracted from the molecularly imprinted acrylamide polymers. The resulting ‘gel antibodies’ against this form of human growth hormone in the form of granules of polyacrylamide were compared with granules of non-imprinted polymer. The selectivity of the artificial gel antibodies was studied. Investigation of the binding to imprinted polymer of the template hormone, other molecular forms of the hormone and other proteins shows the selectivity of the developed artificial gel antibodies.

  13. Viscoelasticity measurement of gel formed at the liquid-liquid reactive interfaces

    Science.gov (United States)

    Ujiie, Tomohiro

    2012-11-01

    We have experimentally studied a reacting liquid flow with gel formation by using viscous fingering (VF) as a flow field. Here, two systems were employed. In one system, sodium polyacrylate (SPA) solution and ferric ion solution were used as the more and less viscous liquids, respectively. In another system, xthantan gum (XG) solution and the ferric ion solution were used as the more and less viscous liquids, respectively. We showed that influence of gel formation on VF were qualitatively different in these two systems. We consider that the difference in the two systems will be caused by the difference in the properties of the gels. Therefore, we have measured the rheological properties of the gels by means of a rheometer. In the present study, viscoelasticity measurement was performed by two methods. One is the method which uses Double Wall Ring sensor (TA instrument) and another is the method using parallel plate. In both viscoelasticity measurements, the behavior of the formed gel was qualitatively consistent. We have found that the gel in the SPA system shows viscoelastic fluid like behavior. Moreover, we have found that the gel in the XG system shows solid like behavior.

  14. Forming Reversible Gels with Triblock Polyelectrolytes: a Field-theoretic Study

    Science.gov (United States)

    Audus, Debra; Fredrickson, Glenn

    2011-03-01

    Recently, two research groups have formed reversible gels using triblock polyelectrolytes (Lemmers et al. 2010; Hunt et al., in preparation). This gel formation is driven by a phenomenon called complex coacervation, in which two oppositely charged homopolymers in solution phase separate into a polymer rich phase, known as a coacervate, and a solution phase. If instead, the polymers are triblocks with a neutral midblock and charged end blocks, under appropriate conditions they will microphase separate into micelles with cores of coacervated charged groups and coronas of neutral midblocks. These neutral midblocks act as bridges between the micelles, thereby creating a gel. One of the advantages of forming gels in this way is that the coacervate domains, and thus the gel, can be easily tuned by varying parameters such as pH, salt concentration and temperature. In order to understand the microstructures and solution sensitivity of these reversible gels, we have numerically simulated field-theoretic models of triblock polyelectrolyte mixtures in an implicit solvent. Because coacervation is driven by charge correlations, the usual mean-field assumption fails, and it is necessary to study the model beyond the level of SCFT.

  15. Comparative studies for ciprofloxacin hydrochloride pre-formed gels and thermally triggered (in situ) gels: in vitro and in vivo appraisal using a bacterial keratitis model in rabbits.

    Science.gov (United States)

    Abdelkader, Hamdy; Mansour, Heba F

    2015-06-01

    This article reports on comparative in vitro characterization and in vivo evaluation of pre-formed cellulose-based gels, methylcellulose (MC) and carboxymethylcellulose sodium (CMC) and in situ gel-forming Pluronic F127 (PL) for ocular delivery of ciprofloxacin hydrochloride (Cipro) by using a bacterial keratitis model and histological corneal examination. Drug-polymer interactions were studied employing thermal analysis. Further, different concentrations (1-3% w/w or 10-30% w/w) of gels depending on the nature of the polymer used were prepared, characterized for clarity, pH, rheology and in vitro release. Selected gel formulations were evaluated for ocular delivery to Staphylococcus aureus-infected rabbit corneas; and ocular toxicity through histological examination of the cornea. The results demonstrated no Cipro-polymers physicochemical interactions and pseudoplastic flow for all gels used at 35 °C. Both polymer concentrations and drug solubility in the gels are dominantly the rate-determining factors for in vitro drug release. The corneal healing rate for all gel-based formulations was significantly faster (p < 0.05) than that for Cipro solution-treated rabbits. PL-based gel induced significant swelling/edema of the corneal stroma, compared with MC- and CMC-based gels. In conclusion, cellulose-based polymers have superior ocular tolerability/dramatically less irritant; and superior efficacy with more convenient administration compared with PL and Cipro solution, respectively.

  16. The effects of bulking, viscous and gel-forming dietary fibres on satiation

    NARCIS (Netherlands)

    Wanders, A.J.; Jonathan, M.C.; Borne, van den J.J.G.C.; Mars, M.; Schols, H.A.; Feskens, E.J.M.; Graaf, de C.

    2013-01-01

    The objective was to determine the effects of dietary fibre with bulking, viscous and gel-forming properties on satiation, and to identify the underlying mechanisms. We conducted a randomised crossover study with 121 men and women. Subjects were healthy, non-restrained eaters, aged 18–50 years and w

  17. Novel injectable neutral solutions of chitosan form biodegradable gels in situ.

    Science.gov (United States)

    Chenite, A; Chaput, C; Wang, D; Combes, C; Buschmann, M D; Hoemann, C D; Leroux, J C; Atkinson, B L; Binette, F; Selmani, A

    2000-11-01

    A novel approach to provide, thermally sensitive neutral solutions based on chitosan/polyol salt combinations is described. These formulations possess a physiological pH and can be held liquid below room temperature for encapsulating living cells and therapeutic proteins; they form monolithic gels at body temperature. When injected in vivo the liquid formulations turn into gel implants in situ. This system was used successfully to deliver biologically active growth factors in vivo as well as an encapsulating matrix for living chondrocytes for tissue engineering applications. This study reports for the first time the use of polymer/polyol salt aqueous solutions as gelling systems, suggesting the discovery of a prototype for a new family of thermosetting gels highly compatible with biological compounds.

  18. Connecting nanoscale motion and rheology of gel-forming colloidal suspensions.

    Science.gov (United States)

    Guo, Hongyu; Ramakrishnan, S; Harden, James L; Leheny, Robert L

    2010-05-01

    We report a combined x-ray photon correlation spectroscopy and rheometry study of moderately concentrated suspensions of silica colloids that form a gel on cooling. During gel formation, the suspensions acquire a shear modulus that increases with time, while the thermal motion of the colloids becomes localized over an increasingly restricted range. The nanometer-scale localization length characterizing this motion obeys an exact relationship with the shear modulus predicted theoretically from mode coupling calculations [K. S. Schweizer and G. Yatsenko, J. Chem. Phys. 127, 164505 (2007)]. This scaling thus demonstrates a direct quantitative connection between the microscopic dynamics and macroscopic rheology. It further indicates the importance of local structure over longer-range correlations in dictating the dynamical and mechanical properties of such gels.

  19. Light-activated, in situ forming gel for sustained suprachoroidal delivery of bevacizumab.

    Science.gov (United States)

    Tyagi, Puneet; Barros, Matthew; Stansbury, Jeffrey W; Kompella, Uday B

    2013-08-05

    A light-activated polycaprolactone dimethacrylate (PCM) and hydroxyethyl methacrylate (HEMA) based gel network was developed to sustain the release of stable, active bevacizumab (an anti-VEGF antibody used to treat choroidal neovascularization) and used to assess sustained ex vivo delivery in rabbit eyes and in vivo delivery in rat eyes following in situ gel formation in the suprachoroidal space. PCM was synthesized from polycaprolactone diol (PCD) and evaluated using NMR spectroscopy. PCM was used to cross-link HEMA in the presence of 365 nm UV light and 2,2-dimethoxy-2-phenylacetophenone (DMPA) as a photoinitiator. Bevacizumab was entrapped in the gel using three different cross-linking durations of 3, 7, and 10 min. In vitro release of bevacizumab in PBS pH 7.4 at 37 °C during a 4 month study was quantified using a VEGF-binding based ELISA. The stability of released bevacizumab was monitored by size exclusion chromatography (SEC) and circular dichroism. Alexa Fluor 488 dye conjugated bevacizumab mixed with polymers was injected suprachoroidally in rabbit eyes to study the effect of different cross-linking durations on the spread of the dye conjugated bevacizumab. In vivo delivery was assessed in Sprague-Dawley (SD) rats by injecting Alexa Fluor 488 dye conjugated bevacizumab mixed with polymers followed by cross-linking for 10 min. Spread in the rabbit eyes and in vivo delivery in rat eyes was monitored noninvasively using a fundus camera and Fluorotron Master. The formation of PCM was confirmed by the disappearance of hydroxyl peak in NMR spectra. A cross-linking duration of 10 min resulted in a burst release of 21% of bevacizumab. Other cross-linking durations had ≥62% burst release. Bevacizumab release from 10 min cross-linked gel was sustained for ∼4 months. Release samples contained ≥96.1% of bevacizumab in the monomeric form as observed in SEC chromatograms. Circular dichroism confirmed that secondary β-sheet structure of bevacizumab was maintained

  20. Light activated, In situ Forming Gel for Sustained Suprachoroidal Delivery of Bevacizumab

    Science.gov (United States)

    Tyagi, Puneet; Barros, Matthew; Stansbury, Jeffrey W.; Kompella, Uday B.

    2014-01-01

    Purpose To develop a light activated polycaprolactone dimethacrylate and hydroxyethyl methacrylate based gel network that sustains the release of stable, active bevacizumab (an anti-VEGF antibody used to treat choroidal neovascularization) and to assess sustained ex vivo delivery in rabbit eyes and in vivo delivery in rat eyes following in situ gel formation in the suprachoroidal space. Methods Polycaprolactone dimethacrylate (PCM) was synthesized from polycaprolactone diol (PCD) and evaluated using NMR spectroscopy. PCM was used to cross-link hydroxyethyl methacrylate (HEMA) in the presence of 365 nm UV light and 2, 2-dimethoxy-2-phenylacetophenone (DMPA) as a photoinitiator. Bevacizumab was entrapped in the gel using 3 different cross-linking durations of 3, 7, and 10 minutes. In vitro release of bevacizumab in PBS pH 7.4 at 37°C during a 4 months study was quantified using a VEGF-binding based ELISA. Stability of released bevacizumab was monitored by size exclusion chromatography (SEC) and circular dichroism. Alexa Fluor® 488 dye conjugated bevacizumab mixed with polymers was injected suprachoroidally in rabbit eyes to study the effect of different cross-linking durations on the spread of the dye conjugated bevacizumab. In vivo delivery was assessed in Sprague Dawley (SD) rats by injecting Alexa Fluor® 488 dye conjugated bevacizumab mixed with polymers followed by cross-linking for 10 minutes. Spread in the rabbit eyes and in vivo delivery in rat eyes was monitored noninvasively using a fundus camera and Fluorotron Master™. Results Formation of PCM was confirmed by the disappearance of hydroxyl peak in NMR spectra. Cross-linking duration of 10 minutes resulted in a burst release of 21 % of bevacizumab. Other cross-linking durations had ≥ 62 % burst release. Bevacizumab release from 10 minute cross-linked gel was sustained for ∼ 4 months. Release samples contained ≥ 96.1 % of bevacizumab in the monomeric form as observed in SEC chromatograms. Circular

  1. Catanionic aggregates formed from drugs and lauric or capric acids enable prolonged release from gels.

    Science.gov (United States)

    Dew, Noel; Bramer, Tobias; Edsman, Katarina

    2008-07-15

    The aim of this study was to add to the range of charged surfactants that can be used to form catanionic aggregates with oppositely charged surface active drug substances; and to apply these aggregates to prolong drug release from gels. The surfactants used in this study, lauric and capric acids are of natural origin-unlike traditionally used, synthetic, surfactants. The mixtures of drug substances and oppositely charged surfactants were studied visually and with cryogenic transmission electron microscopy. Drug release from gels was studied with a modified USP paddle method. This study shows that lauric and capric acids are as, or even more, active in forming catanionic aggregates than traditionally used surfactants such as sodium dodecyl sulfate. It is shown that the length of the hydrophobic part of the surfactant plays an important role in the formation of pharmaceutically interesting catanionic aggregates. As seen in previous studies, using catanionic vesicles prolongs the drug release from gels and decreases the apparent diffusion coefficient by a factor of 10-50, compared to a gel containing only drug substance.

  2. Investigations on gel forming media for use in low gravity bioseparations research

    Science.gov (United States)

    Todd, Paul; Szlag, David C.; Plank, Lindsay D.; Delcourt, Scott G.; Kunze, M. Elaine; Kirkpatrick, Francis H.; Pike, Roland G.

    Microgravity research includes investigations designed to gain insight on methods of separating living cells. During a typical separation certain real-time measurements can be made by optical methods, but some materials must also be subjected to subsequent analyses, sometimes including cultivation of the separated cells. In the absence of on-orbit analytical or fraction collecting procedures, some means is required to ``capture'' cells after separation. The use of solutions that form gels was therefore investigated as a means of maintaining cells and/or macromolecules in the separated state after two types of simple ground-based experiments. Microgravity electrophoresis experiments were simulated by separating model cell types (rat, chicken, human and rabbit erythrocytes) in a vertical density gradient containing low-conductivity buffer, 1.7%-6.5% Ficoll, 6.8-5.0% sucrose, and 1% SeaPrep low-melting temperature agarose and demonstrating that, upon cooling, a gel formed in the column, and cells could be captured in the positions to which they had migrated. Two-phase extraction experiments were simulated by choosing two-polymer solutions in which phase separation occurs in normal saline at temperatures compatible with cell viability and in which one or both phases form a gel upon cooling. Suitable polymers included commercial agaroses (1-2%), maltodextrin (5-7%) and gelatin (5-20%).

  3. Networks of gel-forming triblock copolymer solutions: In situ SANS and rheological measurements

    DEFF Research Database (Denmark)

    Mortensen, K.; Almdal, K.; Kleppinger, R.

    1998-01-01

    -association of the PS-blocks do not only promote formation of highly inter-connected end-block domains, but within a narrow temperature range these domains furthermore constitute a network with body-centered cubic (BCC) microstructure. Upon large amplitude oscillating shear the polycrystalline soft gel can be aligned......Triblock copolymers in a solvent, selective for their middle blocks provide the basis for the formation of novel physical networks where cross-links are formed by self-assembled domains of the end-blocks. Triblock copolymers of poly(styrene)-poly(ethylene,butylene)-poly(styrene) (SEBS) dissolved...... in a mixture of aliphatic and alicyclic compounds constitute such a network system. Using a Rheometrics RSA-2 instrument modified for in situ measurements of small-angle neutron scattering and rheology provides a unique possibility far detailed understanding thermodynamics of such a gel. The self...

  4. Aqueous sulfomethylated melamine gel-forming compositions and methods of use

    Energy Technology Data Exchange (ETDEWEB)

    Meltz, C.N.; Guetzmacher, G.D.; Chang, P.W.

    1989-04-18

    A method is described for the selective modification of the permeability of the strata of a subterranean bydrocarbon-containing reservoir consisting of introducing into a well in, communication with the reservoir; an aqueous gel-forming composition, comprising a 1.0-60.0 weight percent sulfomethylated melamine polymer solution. The solution is prepared with a 1.0 molar equivalent of a malemine, reacted with 3.0-6.7 molar equivalents of formaldehyde or a 2-6 carbon atom containing dialdehyde; 0.25-1.25 molar equivalents of an alkali metal or ammonium salt of surfurous acid; and 0.01-1.5 molar equivalents of a gel-modifying agent.

  5. Designing Solvent Exchange-Induced In Situ Forming Gel from Aqueous Insoluble Polymers as Matrix Base for Periodontitis Treatment.

    Science.gov (United States)

    Srichan, Tharatree; Phaechamud, Thawatchai

    2017-01-01

    An in situ forming gel is a dosage form which is promised for site-specific therapy such as periodontal pocket of periodontitis treatment. Ethylcellulose, bleached shellac, and Eudragit RS were applied in this study as a polymeric matrix for in situ forming gel employing N-methyl pyrrolidone (NMP) as solvent. Solutions comprising ethylcellulose, bleached shellac, and Eudragit RS in NMP were evaluated for viscosity, rheology, and rate of water penetration. Ease of administration by injection was determined as the force required to expel polymeric solutions through a needle using texture analyzer. In vitro gel formation and in vitro gel degradation were conducted after injection into phosphate buffer solution pH 6.8. Ethylcellulose, bleached shellac, and Eudragit RS could form the in situ gel, in vitro. Gel viscosity and pH value depended on percentage amount of the polymer, whereas the water diffusion at early period likely relied on types of polymer. Furthermore, the solutions containing higher polymer concentration exhibited the lower degree of degradation. All the preparations were acceptable as injectable dosage forms because the applied force was lower than 50 N. All of them inhibited Staphylococcus aureus, Escherichia coli, Candida albicans, Streptococcus mutans, and Porphyrommonas gingivalis growth owing to antimicrobial activity of NMP which exhibited a potential use for periodontitis treatment. Moreover, the developed systems presented as the solvent exchange induced in situ forming gel and showed capability to be incorporated with the suitable antimicrobial active compounds for periodontitis treatment which should be further studied.

  6. The GM1 Ganglioside Forms GM1-Rich Gel Phase Microdomains within Lipid Rafts

    Directory of Open Access Journals (Sweden)

    Lucia Becucci

    2014-07-01

    Full Text Available Mercury-supported, self-assembled monolayers (SAMs of the sole dioleoylphosphatidylcholine (DOPC and of a raft-forming mixture of DOPC, cholesterol (Chol and palmitoylsphingomyelin (PSM of (59:26:15 mol% composition, were investigated by electrochemical impedance spectroscopy (EIS, both in the absence and in the presence of the monosialoganglioside GM1. The impedance spectra of these four SAMs were fitted by a series of parallel combinations of a resistance and a capacitance (RC meshes and displayed on plots of ωZ′ against −ωZ″, where Z′ and Z″ are the in-phase and quadrature components of the impedance and ω is the angular frequency. A comparison among these different impedance spectra points to the formation of GM1-rich gel phase microdomains within the lipid rafts of the DOPC/Chol/PSM mixture, thanks to the unique molecular-level smooth support provided by mercury, which allows EIS to detect the protruding gel phase microdomains by averaging them over a macroscopically large area.

  7. In situ gel-forming AP-57 peptide delivery system for cutaneous wound healing.

    Science.gov (United States)

    Li, Xiaoling; Fan, Rangrang; Tong, Aiping; Yang, Meijia; Deng, Jiaojiao; Zhou, Liangxue; Zhang, Xiaoning; Guo, Gang

    2015-11-10

    In situ gel-forming system as local drug delivery system in dermal traumas has generated a great interest. Accumulating evidence shows that antimicrobial peptides play pivotal roles in the process of wound healing. Here in this study, to explore the potential application of antimicrobial peptide in wound healing, biodegradable poly(L-lactic acid)-Pluronic L35-poly(L-lactic acid) (PLLA-L35-PLLA) was developed at first. Then based on this polymer, an injectable in situ gel-forming system composed of human antimicrobial peptides 57 (AP-57) loaded nanoparticles and thermosensitive hydrogel was prepared and applied for cutaneous wound healing. AP-57 peptides were enclosed with biocompatible nanoparticles (AP-57-NPs) with high drug loading and encapsulation efficiency. AP-57-NPs were further encapsulated in a thermosensitive hydrogel (AP-57-NPs-H) to facilitate its application in cutaneous wound repair. As a result, AP-57-NPs-H released AP-57 in an extended period and exhibited quite low cytotoxicity and high anti-oxidant activity in vitro. Moreover, AP-57-NPs-H was free-flowing liquid at room temperature, and can form non-flowing gel without any crosslink agent upon applied on the wounds. In vivo wound healing assay using full-thickness dermal defect model of SD rats indicated that AP-57-NPs-H could significantly promote wound healing. At day 14 after operation, AP-57-NPs-H treated group showed nearly complete wound closure of 96.78 ± 3.12%, whereas NS, NPs-H and AP-57-NPs group recovered by about 68.78 ± 4.93%, 81.96 ± 3.26% and 87.80 ± 4.62%, respectively. Histopathological examination suggested that AP-57-NPs-H could promote cutaneous wound healing through enhancing granulation tissue formation, increasing collagen deposition and promoting angiogenesis in the wound tissue. Therefore, AP-57-NPs-H might have potential application in wound healing.

  8. Mechanical properties of designed multicompartment gels formed by ABC graft copolymers.

    Science.gov (United States)

    Jiang, Tao; Wang, Liquan; Lin, Jiaping

    2013-10-01

    In the present work, we designed a multicompartment gel by taking advantage of the ABC graft copolymer with a solvophilic A backbone and solvophobic B and C grafts. The mechanical properties of such designed gels were investigated by a combination of dissipative particle dynamics simulation and a nonequilibrium deformation technique. The extensional moduli of multicompartment gels were found to be dependent on polymer concentration and architectural parameters of the graft copolymers (the sequence of graft arms and the position of the graft points). The graft copolymer solutions undergo a sol-gel transition as the polymer concentration increases. This leads to an abrupt increase in the extensional modulus. The studies also revealed that the multicompartment gels of graft copolymers exhibit higher extensional moduli than those of nonmulticompartment gels of graft copolymers and triblock copolymer gels. The position of graft points plays another important role in determining the extensional moduli of the multicompartment gels. The effects of graft positions on the gel modulus were found to be associated with the bridging fraction of graft copolymer chains. The results gained through the present work may provide useful guidance for designing high-performance gels.

  9. A Clostridium difficile-Specific, Gel-Forming Protein Required for Optimal Spore Germination

    Directory of Open Access Journals (Sweden)

    M. Lauren Donnelly

    2017-01-01

    Full Text Available Clostridium difficile is a Gram-positive spore-forming obligate anaerobe that is a leading cause of antibiotic-associated diarrhea worldwide. In order for C. difficile to initiate infection, its aerotolerant spore form must germinate in the gut of mammalian hosts. While almost all spore-forming organisms use transmembrane germinant receptors to trigger germination, C. difficile uses the pseudoprotease CspC to sense bile salt germinants. CspC activates the related subtilisin-like protease CspB, which then proteolytically activates the cortex hydrolase SleC. Activated SleC degrades the protective spore cortex layer, a step that is essential for germination to proceed. Since CspC incorporation into spores also depends on CspA, a related pseudoprotease domain, Csp family proteins play a critical role in germination. However, how Csps are incorporated into spores remains unknown. In this study, we demonstrate that incorporation of the CspC, CspB, and CspA germination regulators into spores depends on CD0311 (renamed GerG, a previously uncharacterized hypothetical protein. The reduced levels of Csps in gerG spores correlate with reduced responsiveness to bile salt germinants and increased germination heterogeneity in single-spore germination assays. Interestingly, asparagine-rich repeat sequences in GerG’s central region facilitate spontaneous gel formation in vitro even though they are dispensable for GerG-mediated control of germination. Since GerG is found exclusively in C. difficile, our results suggest that exploiting GerG function could represent a promising avenue for developing C. difficile-specific anti-infective therapies.

  10. A Clostridium difficile-Specific, Gel-Forming Protein Required for Optimal Spore Germination

    Science.gov (United States)

    Donnelly, M. Lauren; Li, William; Li, Yong-qing; Hinkel, Lauren; Setlow, Peter

    2017-01-01

    ABSTRACT Clostridium difficile is a Gram-positive spore-forming obligate anaerobe that is a leading cause of antibiotic-associated diarrhea worldwide. In order for C. difficile to initiate infection, its aerotolerant spore form must germinate in the gut of mammalian hosts. While almost all spore-forming organisms use transmembrane germinant receptors to trigger germination, C. difficile uses the pseudoprotease CspC to sense bile salt germinants. CspC activates the related subtilisin-like protease CspB, which then proteolytically activates the cortex hydrolase SleC. Activated SleC degrades the protective spore cortex layer, a step that is essential for germination to proceed. Since CspC incorporation into spores also depends on CspA, a related pseudoprotease domain, Csp family proteins play a critical role in germination. However, how Csps are incorporated into spores remains unknown. In this study, we demonstrate that incorporation of the CspC, CspB, and CspA germination regulators into spores depends on CD0311 (renamed GerG), a previously uncharacterized hypothetical protein. The reduced levels of Csps in gerG spores correlate with reduced responsiveness to bile salt germinants and increased germination heterogeneity in single-spore germination assays. Interestingly, asparagine-rich repeat sequences in GerG’s central region facilitate spontaneous gel formation in vitro even though they are dispensable for GerG-mediated control of germination. Since GerG is found exclusively in C. difficile, our results suggest that exploiting GerG function could represent a promising avenue for developing C. difficile-specific anti-infective therapies. PMID:28096487

  11. Intestinal epithelial organoids fuse to form self-organizing tubes in floating collagen gels.

    Science.gov (United States)

    Sachs, Norman; Tsukamoto, Yoshiyuki; Kujala, Pekka; Peters, Peter J; Clevers, Hans

    2017-03-15

    Multiple recent examples highlight how stem cells can self-organize in vitro to establish organoids that closely resemble their in vivo counterparts. Single Lgr5(+) mouse intestinal stem cells can be cultured under defined conditions forming ever-expanding epithelial organoids that retain cell polarization, cell type diversity and anatomical organization of the in vivo epithelium. Although exhibiting a remarkable level of self-organization, the so called 'mini-guts' have a closed cystic structure of microscopic size. Here, we describe a simple protocol to generate macroscopic intestinal tubes from small cystic organoids. Embedding proliferating organoids within a contracting floating collagen gel allows them to align and fuse to generate macroscopic hollow structures ('tubes') that are lined with a simple epithelium containing all major cell types (including functional stem cells) of the small intestine. Cells lining the central contiguous lumen closely resemble the epithelial cells on luminal villi in vivo, whereas buds that protrude from the main tube into the surrounding matrix closely resemble crypts. Thus, the remarkable self-organizing properties of Lgr5(+) stem cells extend beyond the level of the microscopic cystic organoid to the next, macroscopic, level of tube formation. © 2017. Published by The Company of Biologists Ltd.

  12. The role of temperature in forming sol-gel biocomposites containing polydopamine

    Science.gov (United States)

    Dyke, Jason Christopher; Hu, Huamin; Lee, Dong Joon; Ko, Ching-Chang; You, Wei

    2014-01-01

    To further improve the physical strength and biomedical applicability of bioceramicsbuilt on hydroxyapatite-gelatin (HAp-Gel) and siloxane sol-gel reactions, we incorporated mussel adhesive inspired polydopamine (PD) into our original composite based on HAp-Gel cross-linked with siloxane. Surprisingly, with the addition of PD, we observed that the processing conditions and temperatures play an important role in the structure and performance of these materials. A systematic study to investigate this temperature dependence behavior discloses that the rate of crosslinking of silane during the sol-gel process is significantly influenced by the temperature, whereas the polymerization of the dopamine only shows minor temperature dependence. With this discovery, we report an innovative thermal process for the design and application of these biocomposites. PMID:25485111

  13. A novel doxorubicin-loaded in situ forming gel based high concentration of phospholipid for intratumoral drug delivery.

    Science.gov (United States)

    Wu, Wenqi; Chen, Hui; Shan, Fengying; Zhou, Jing; Sun, Xun; Zhang, Ling; Gong, Tao

    2014-10-06

    The purpose of this study was to develop a safe and effective drug delivery system for local chemotherapy. A novel injectable in-situ-forming gel system was prepared using small molecule materials, including phospholipids, medium chain triglycerides (MCTs), and ethanol. Thus, this new sustained release system was named PME (first letter of phospholipids, MCT, and ethanol). PME has a well-defined molecule structure, a high degree of safety, and better biocompatible characteristics. It was in sol state with low viscosity in vitro and turned into a solid or semisolid gel in situ after injection. When loaded with doxorubicin (Dox), PME-D (doxorubicin-loaded PME) exhibited notably antitumor efficiency in S180 sarcoma tumors bearing mice after a single intratumoral injection. In vitro, PME-D had remarkable antiproliferative efficacies against MCF-7 breast cancer cells for over 5 days. Moreover, the initial burst effect can hardly be observed from PME system, which was different from many other in-situ-forming gels. The in vivo biodistribution study showed the high Dox concentration in tumors compared with other major organs after PME-D intratumoral administration. The strong signal in tumors was retained for more than 14 days after one single injection. The high concentration of Dox in tumor and long-term retention may explain the superior therapeutic efficacy and reduced side effects. The PME-D in-situ-forming gel system is a promising drug delivery system for local chemotherapy.

  14. Formation, Clearance and Mouthfeel Perception of Oral Coatings Formed by Emulsion-Filled Gels

    NARCIS (Netherlands)

    Camacho, Sara; Liu, Kun; Linden, Van Der Anoek; Stieger, Markus; De Velde, Van Fred

    2015-01-01

    Four emulsion-filled gelatin gels varying in fat content (5 and 15%) and type of emulsifier (whey protein isolate: fat droplets bound to matrix; Tween 20: fat droplets unbound to matrix) were studied. We investigated (1) the formation and clearance dynamics of fat deposition on the tongue using in

  15. Formation, Clearance and Mouthfeel Perception of Oral Coatings Formed by Emulsion-Filled Gels

    NARCIS (Netherlands)

    Camacho, Sara; Liu, Kun; Linden, Van Der Anoek; Stieger, Markus; De Velde, Van Fred

    2015-01-01

    Four emulsion-filled gelatin gels varying in fat content (5 and 15%) and type of emulsifier (whey protein isolate: fat droplets bound to matrix; Tween 20: fat droplets unbound to matrix) were studied. We investigated (1) the formation and clearance dynamics of fat deposition on the tongue using in v

  16. Dual-drug delivery system based on in situ gel-forming nanosuspension of forskolin to enhance antiglaucoma efficacy.

    Science.gov (United States)

    Gupta, Saurabh; Samanta, Malay K; Raichur, Ashok M

    2010-03-01

    The present study was designed to improve the bioavailability of forskolin by the influence of precorneal residence time and dissolution characteristics. Nanosizing is an advanced approach to overcome the issue of poor aqueous solubility of active pharmaceutical ingredients. Forskolin nanocrystals have been successfully manufactured and stabilized by poloxamer 407. These nanocrystals have been characterized in terms of particle size by scanning electron microscopy and dynamic light scattering. By formulating Noveon AA-1 polycarbophil/poloxamer 407 platforms, at specific concentrations, it was possible to obtain a pH and thermoreversible gel with a pH(gel)/T (gel) close to eye pH/temperature. The addition of forskolin nanocrystals did not alter the gelation properties of Noveon AA-1 polycarbophil/poloxamer 407 and nanocrystal properties of forskolin. The formulation was stable over a period of 6 months at room temperature. In vitro release experiments indicated that the optimized platform was able to prolong and control forskolin release for more than 5 h. The in vivo studies on dexamethasone-induced glaucomatous rabbits indicated that the intraocular pressure lowering efficacy for nanosuspension/hydrogel systems was 31% and lasted for 12 h, which is significantly better than the effect of traditional eye suspension (18%, 4-6 h). Hence, our investigations successfully prove that the pH and thermoreversible polymeric in situ gel-forming nanosuspension with ability of controlled drug release exhibits a greater potential for glaucoma therapy.

  17. Effect of primary particle morphology on the structure of gels formed in intense turbulent shear.

    Science.gov (United States)

    Arosio, Paolo; Xie, Delong; Wu, Hua; Braun, Leonie; Morbidelli, Massimo

    2010-05-04

    We study the effect of primary particle morphology on intense shear-induced gelation without adding electrolytes. The primary particles are composed of a rubbery core grafted with a polystyrene shell. Depending on the shell-to-core mass ratio, the core can be partially covered by the shell, leading to strawberry-like morphology. It is found that at a fixed core mass the fractal dimension of the clusters constructing the gel decreases (i.e., more open cluster structure) as the shell mass increases, until reaching a plateau. The SEM pictures of the gels reveal that the structure variations are due to the occurrence of partial coalescence among particles, which decreases as the shell mass increases. In the region where the fractal dimension reaches a plateau, the coalescence is negligible. The conversion of the primary particles to gels is incomplete and increases as the extent of coalescence decreases. This is related to the fact that the smaller the extent of coalescence, the larger the cluster size. Thus, because of its cubic dependence on the cluster size, the aggregation rate increases as the extent of coalescence decreases, leading to increased conversion. It is therefore evident that the key parameter controlling the gel structure and the particle conversion is the core surface coverage by the shell. To further verify this conclusion, we have carried out the shear-induced gelation of another set of particles with varying core mass. It is found that the only parameter that can well correlate the values of the fractal dimension and particle conversion from the two sets of particles is the core surface coverage.

  18. Effect of chitosan content on gel content of epoxized natural rubber grafted with chitosan in latex form.

    Science.gov (United States)

    Riyajan, Sa-Ad; Sukhlaaied, Wattana

    2013-04-01

    The epoxidized natural rubber (ENR) latex-g-chitosan (ENR-g-chitosan) was prepared in latex form using potassium persulphate as an initiator. Firstly, the reduction in molecular weight of chitosan was subjected to the addition of K2S2O8 at 70 °C for 15 min. The structure of the modified chitosan was characterized by ATR-FTIR. Secondarily, the influence of chitosan contents, reaction time, and temperature and K2S2O8 concentrations on the gel content of the modified ENR was investigated. The chemical structure of the ENR-g-chitosan was confirmed by (1)H-NMR and ATR-FTIR. The ether linkage of the ENR-g-chitosan was conformed at 1154 an 1089 cm(-1) by ATR-FTIR and 3.60 ppm by (1)H-NMR. The gel content of ENR-g-chitosan at 5% chitosan showed the highest value compared with other samples. But when chitosan increased from 5% to 10% or 20%, the gel content of ENR-g-chitosan dramatically decreased. The ENR-g-chitosan showed good thermal resistance due to incorporation of chitosan. The morphology of ENR-g-chitosan particle showed the core-shell structure observed by TEM. The optimum condition of grafting ENR with chitosan was found at 65°C for 3h of reaction time, ratio of ENR/chitosan at 9:1.

  19. Synthesis, characterization and evaluation of tinidazole-loaded mPEG-PDLLA (10/90) in situ gel forming system for periodontitis treatment.

    Science.gov (United States)

    Tian, Yu; Shen, Yan; Jv, Minli

    2016-10-01

    Traditional in situ gel forming systems are potential applications for parenteral administration but always accompanied with burst release. To overcome this limitation, the tinidazole (TNZ)-loaded in situ gel forming system using a diblock copolymer, monomethoxy poly(ethylene glycol)-block-poly(d,l-lactide) (mPEG-PDLLA), was designed. The formulation of the mPEG-PDLLA-based TNZ in situ gel forming system contained 5% (w/w) TNZ, 0.4% glycerol, 5 ml N-methyl pyrrolidone (NMP) and 35% (w/w) mPEG-PDLLA. The in situ gel forming system showed sustained TNZ release over 192 h with low burst effect (around 7% in the first 8 h) in the in vitro release study. Additionally, in vivo studies were performed on rabbits with ligature-induced periodontitis, and the concentration of TNZ in the gingival crevicular fluid (GCF) as well as the pharmacokinetic parameters was calculated and the pharmacological effect of TNZ-loaded in situ gel forming (mPEG-PDLLA)-based system was found effective. Finally, histological studies revealed that the gel was a safe formulation with low irritation. The desirable drug release kinetics combined with the excellent in vivo characteristics highlight the potential of the gel in the treatment of periodontitis. Therefore, these results confirmed that the TNZ-loaded in situ gel forming mPEG-PDLLA-based system could reduce burst release of TNZ and act as a sustained-release and injectable drug depot for periodontitis treatment.

  20. Formulation, development and evaluation of patient friendly dosage forms of metformin, Part-II: Oral soft gel

    Directory of Open Access Journals (Sweden)

    Mohapatra Ashutosh

    2008-01-01

    Full Text Available Dionvenience of administration and patient compliance are gaining significant importance in the design of dosage forms. Metformin hydrochloride is an orally administered antihyperglycemic agent, used in the management of non-insulin-dependant (type-2 diabetes mellitus. Difficulty in swallowing (dysphagia is common among all age groups, especially in elderly and pediatrics. Unfortunately, a high percentage of patients suffering from type-2 diabetes are elderly people showing dysphagia. Persons suffering from dysphagia may get choked when they consume liquid formulation, thus to alleviate such problem liquid formulation of high viscosity was prepared. Formulation of oral soft gel batches of metformin was carried out using hydrophilic polymer gellan gum at concentrations ranging from 0.2-0.4% w/v and sodium citrate at two different concentrations (0.3% and 0.5%. The prepared batches were evaluated for appearance, viscosity, pH, drug content, syneresis, in vitro drug release, and taste masking. The batch with 0.4% w/v gellan gum and 0.5% sodium citrate not only showed 85% drug release at 15 min, but all the desired organoleptic properties. The taste masking was carried out using nonnutritive sugar and flavors. The optimized batch showed substantial stability when subjected to short term stability study (0-8°C and Room temperature. The problem of dose measurement by patients was outweighed as oral medicated gels are to be packed in unit dose container.

  1. A supramolecular gel electrolyte formed from amide based co-gelator for quasi-solid-state dye-sensitized solar cell with boosted electron kinetic processes

    Science.gov (United States)

    Huo, Zhipeng; Wang, Lu; Tao, Li; Ding, Yong; Yi, Jinxin; Alsaedi, Ahmed; Hayat, Tasawar; Dai, Songyuan

    2017-08-01

    A supramolecular gel electrolyte (Tgel > 100 °C) is formed from N,N‧-1,8-octanediylbis-dodecanamide and iodoacetamide as two-component co-gelator, and introduced into the quasi-solid-state dye-sensitized solar cells (QS-DSSCs). The different morphologies of microscopic network between two-component and single-component gel electrolytes have influence on the diffusion of redox couple in gel electrolytes and further affect the electron kinetic processes in QS-DSSCs. Compared with the single-component gel electrolyte, the two-component gel electrolyte has less compact gel network and weaker steric hindrance effect, which provides more effective charge transport channel for the diffusion of I3/I- redox couple. Meanwhile, the sbnd NH2 groups of iodoacetamide molecules interact with Li+ and I3-, which also accelerate the transport of I3-/I- and decrease in the I3- concentration in the TiO2/electrolyte interface. As a result, nearly a 12% improvement in short-circuit photocurrent density (Jsc) and much higher open circuit potential (Voc) are found in the two-component gel electrolyte based QS-DSSC. Consequently, the QS-DSSC based on the supramolecular gel electrolyte obtains a 17% enhancement in the photoelectric conversion efficiency (7.32%) in comparison with the QS-DSSC based on the single-component gel electrolyte (6.24%). Furthermore, the degradations of these QS-DSSCs are negligible after one sun light soaking with UV cutoff filter at 50 °C for 1000 h.

  2. Stable thermosensitive in situ gel-forming systems based on the lyophilizate of chitosan/α,β-glycerophosphate salts.

    Science.gov (United States)

    Wu, Guanghao; Yuan, Yuan; He, Jintian; Li, Ying; Dai, Xiaojing; Zhao, Baohua

    2016-09-10

    In the present study, lyophilization was attempted to improve the long-term storage of CS/GP thermogelling systems for biopharmaceutical applications. After lyophilization, CS/α,β-GP lyophilizate could not be dissolved in water, but some metal salts, such as NaCl, CaCl2, and MgCl2 surprisingly facilitated its dissolution. X-ray powder diffraction analysis suggested that calcium ions might preferentially form salts with α,β-GP, inhibit the transfer of protons from CS to α,β-GP, and then inhibit the aggregation of CS molecules during lyophilization. Comparison of the freshly prepared CS/α,β-GP/salt solutions and the reconstituted solutions from lyophilizates showed that lyophilization clearly influenced the properties of reconstituted CS/α,β-GP/salt solutions such as gelation time, viscosity, and pH. Furthermore, the reconstituted CS/α,β-GP/CaCl2 solutions maintained thermogelling properties and formed hydrogels at 37°C within approximately 5min, but did not form hydrogels at 20°C and 4°C over 2 weeks. The model protein bovine serum albumin (BSA) was further incorporated into the CS/α,β-GP/CaCl2 system. In vitro release experiments showed the sustained release of BSA from CS/α,β-GP/CaCl2 hydrogels in a pH-sensitive manner, demonstrating that CS/α,β-GP/CaCl2 may be useful as an in situ gel-forming system.

  3. Efficacy and Tolerability of Fitostimoline in Two Different Forms (Soaked Gauzes and Cream) and Citrizan Gel in the Topical Treatment of Second-Degree Superficial Cutaneous Burns

    OpenAIRE

    Patrizia Martini; Carlo Mazzatenta; Giorgio Saponati

    2011-01-01

    A total of 227 patients (mean age 41.3 years, 52% females) with at least one second-degree superficial cutaneous burn of thermal origin of a smallest transverse diameter ≥20 mm and a largest transverse diameter ≤90 mm were randomised to receive the topical application of aqueous extract of Triticum vulgare (Fitostimoline) in two different forms (soaked gauzes and cream) or catalase of horse origin in form of gel (Citrizan Gel), given up to healing or to a maximum of 20 days. The rate of lesio...

  4. The gel-forming behaviour of dextran in the presence of KCl: a quantitative 13C and pulsed field gradient (PFG) NMR study.

    Science.gov (United States)

    Naji, L; Schiller, J; Kaufmann, J; Stallmach, F; Kärger, J; Arnold, K

    2003-05-01

    Although the gel forming ability of certain polysaccharides in the presence of ions is a well-known phenomenon, detailed physicochemical mechanisms of such processes are still unknown. In this investigation high resolution 13C NMR as well as 1H pulsed field gradient (PFG) NMR were used to investigate the mobility of dextran in the sol and in the gel state. Gel-formation of dextran can be easily induced by the addition of large amounts of potassium chloride. No major differences in the T(1) relaxation times of dextran in the sol and in the gel state could be observed. Accordingly, the analysis of the 13C NMR spectroscopic data did not provide any indication of an observable line-broadening upon gel-formation. However, a KCl concentration dependent decrease of signal intensity in comparison to an internal standard was detected. On the other hand, the PFG NMR studies clearly indicated a gradual diminution of the self-diffusion coefficient of the dextran with increasing molecular weight as well as in the presence of potassium chloride. These measurements revealed in agreement with spectroscopic data that at least one potassium ion per monomer subunit (i.e. one glycopyranose residue) is necessary for gel formation.

  5. Development of topical ophthalmic In Situ gel-forming estradiol delivery system intended for the prevention of age-related cataracts

    Science.gov (United States)

    Kotreka, Udaya K.; Davis, Vicki L.

    2017-01-01

    The goal of this study was to develop and characterize an ion-activated in situ gel-forming estradiol (E2) solution eye drops intended for the prevention of age-related cataracts. Accordingly, in situ gelling eye drops were made using gellan gum as an ion-activated gel-forming polymer, polysorbate-80 as drug solubilizing agent, mannitol as tonicity agent, and combination of potassium sorbate and edetate disodium dihydrate (EDTA) as preservatives. The formulations were tested for the following characteristics: pH, clarity, osmolality, antimicrobial efficacy, rheological behavior, and in vitro drug release. Stability of the formulation was also monitored for 6 months at multiple storage conditions per ICH Q1A (R2) guidelines. The solution eye drops resulted in an in-situ phase change to gel-state when mixed with simulated tear fluid (STF). The gel structure formation was confirmed by viscoelastic measurements. Drug release from the gel followed non-fickian mechanism with 80% of drug released in 8 hr. The formulations were found to be clear, isotonic with suitable pH and viscoelastic behavior and stable at accelerated and long-term storage conditions for 6 months. In vitro results suggest that the developed formulation is suitable for further investigation in animal models to elucidate the ability of estrogen to prevent and delay cataracts. PMID:28222100

  6. Gel-gel phase separation within milk sphingomyelin domains revealed at the nanoscale using atomic force microscopy.

    Science.gov (United States)

    Guyomarc'h, Fanny; Chen, Maohui; Et-Thakafy, Oumaima; Zou, Shan; Lopez, Christelle

    2017-05-01

    The milk sphingomyelin (MSM) is involved in the formation of ordered lipid domains in the biological milk fat globule membrane (MFGM), where it accounts for about 30%wt of the polar lipids. Moreover, MSM exhibits a large variety in saturated acyl chain lengths (from C16:0 to C24:0-SM) compared to other natural sphingomyelins, which may impact the packing of MSM molecular species in the gel phase domains and the topography of the MFGM. To investigate this, supported lipid bilayers of synthetic sphingomyelins or of MSM-containing mixtures, including a MFGM polar lipid extract, were imaged at temperatures below the Tm of MSM (i.e. gel phase) in hydrated conditions using atomic force microscopy. In all compositions containing MSM, the MSM-rich gel phase domains exhibited lower and upper height levels H, interpreted as two distinct gel phases with ∆H~0.5-1.1nm. Two (lower and upper) gel phases were also found for pure C24:0-SM bilayers or for bilayers of a C16:0-SM/C24:0-SM equimolar mixture, while C16:0-SM bilayers were uniformly flat and less thick than C24:0-SM bilayers. The upper gel phase of MSM-containing bilayers was interpreted as mixed interdigitated C24:0-SM molecules, while the lower gel phase was attributed both to fully interdigitated C24:0-SM molecules and non-interdigitated C16:0-SM molecules. These results show that the composition of natural sphingomyelins, inducing a mismatch between the d18:1 sphingosine and the acyl chains, is important in both the internal organization and the topography of biological membranes, especially that of the MFGM. This organization could be involved in specific biological functions, e.g. the insertion of proteins.

  7. Carbohydrate Intake in Form of Gel Is Associated With Increased Gastrointestinal Distress but Not With Performance Differences Compared With Liquid Carbohydrate Ingestion During Simulated Long-Distance Triathlon.

    Science.gov (United States)

    Sareban, Mahdi; Zügel, David; Koehler, Karsten; Hartveg, Paul; Zügel, Martina; Schumann, Uwe; Steinacker, Jürgen Michael; Treff, Gunnar

    2016-04-01

    The ingestion of exogenous carbohydrates (CHO) during prolonged endurance exercise, such as long-distance triathlon, is considered beneficial with regard to performance. However, little is known about whether this performance benefit differs among different forms of CHO administration. To this end, the purpose of our study was to determine the impact of CHO ingestion from a semisolid source (GEL) on measures of performance and gastrointestinal (GI) comfort compared with CHO ingestion from a liquid source (LIQ). Nine well-trained triathletes participated in this randomized crossover study. Each participant completed a 60-min swim, 180-min bike exercise, and a 60-min all-out run in a laboratory environment under 2 conditions, once while receiving 67.2 ± 7.2 g · h-1 (M ± SD) of CHO from GEL and once while receiving 67.8 ± 4.2 g · h-1 of CHO from LIQ. The amount of fluid provided was matched among conditions. Respiratory exchange ratio (RER), blood glucose, and lactate as well as GI discomfort were assessed at regular intervals during the experiment. The distance covered during the final all-out run was not significantly different among participants ingesting GEL (11.81 ± 1.38 km) and LIQ (11.91 ± 1.53 km; p = .89). RER, blood glucose, and lactate did not differ significantly at any time during the experiment. Seven participants reported GI discomfort with GEL, and no athlete reported GI discomfort with LIQ (p = .016). This study suggests that administration of GEL does not alter long-distance triathlon performance when compared with LIQ, but GEL seems to be associated with reduced GI tolerance. Athletes should consider this a potential disadvantage of GEL administration during long-distance triathlon.

  8. Efficacy and tolerability of fitostimoline in two different forms (soaked gauzes and cream) and citrizan gel in the topical treatment of second-degree superficial cutaneous burns.

    Science.gov (United States)

    Martini, Patrizia; Mazzatenta, Carlo; Saponati, Giorgio

    2011-01-01

    A total of 227 patients (mean age 41.3 years, 52% females) with at least one second-degree superficial cutaneous burn of thermal origin of a smallest transverse diameter ≥20 mm and a largest transverse diameter ≤90 mm were randomised to receive the topical application of aqueous extract of Triticum vulgare (Fitostimoline) in two different forms (soaked gauzes and cream) or catalase of horse origin in form of gel (Citrizan Gel), given up to healing or to a maximum of 20 days. The rate of lesion healing at end of study was significantly higher in patients treated with Fitostimoline (gauzes 97.3%, cream 91.5%) than in those receiving catalase (84.5%). The pooled Fitostimoline groups were also significantly more effective than catalase gel in reducing total symptoms score, pain at medication, pain at rest, and burning at end of study. Both formulations of Fitostimoline and catalase gel were well tolerated in terms of adverse effects in the site of application.

  9. Efficacy and Tolerability of Fitostimoline in Two Different Forms (Soaked Gauzes and Cream and Citrizan Gel in the Topical Treatment of Second-Degree Superficial Cutaneous Burns

    Directory of Open Access Journals (Sweden)

    Patrizia Martini

    2011-01-01

    Full Text Available A total of 227 patients (mean age 41.3 years, 52% females with at least one second-degree superficial cutaneous burn of thermal origin of a smallest transverse diameter ≥20 mm and a largest transverse diameter ≤90 mm were randomised to receive the topical application of aqueous extract of Triticum vulgare (Fitostimoline in two different forms (soaked gauzes and cream or catalase of horse origin in form of gel (Citrizan Gel, given up to healing or to a maximum of 20 days. The rate of lesion healing at end of study was significantly higher in patients treated with Fitostimoline (gauzes 97.3%, cream 91.5% than in those receiving catalase (84.5%. The pooled Fitostimoline groups were also significantly more effective than catalase gel in reducing total symptoms score, pain at medication, pain at rest, and burning at end of study. Both formulations of Fitostimoline and catalase gel were well tolerated in terms of adverse effects in the site of application.

  10. Multiple forms of phosphatase from human brain: isolation and partial characterization of affi-gel blue nonbinding phosphatase activities.

    Science.gov (United States)

    Cheng, L Y; Wang, J Z; Gong, C X; Pei, J J; Zaidi, T; Grundke-Iqbal, I; Iqbal, K

    2001-04-01

    Phosphatases extracted from a human brain were resolved into two main groups, namely affi-gel blue-binding phosphatases and affi-gel blue-nonbinding phosphatases. Affi-gel blue binding phosphatases were further separated into four different phosphatase activities, designated P1-P4, and described previously. In the present study we describe the affi-gel blue-nonbinding phosphatases which were separated into seven different phosphatase activities, designated P5-P11 by poly-(L-lysine)-agarose and aminohexyl Sepharose 4B chromatographies. These seven phosphatase activities were active toward nonprotein phosphoester. P7-P11 and to some extent P5 could also dephosphorylate a phosphoprotein. They displayed different enzyme kinetics. On the basis of activity peak, the apparent molecular mass as estimated by Sephadex G-200 column chromatography for P5 was 49 kDa; P6, 32 kDa; P7, 150 kDa; P8, 250 kDa; P9, 165 kDa; P10, 90 kDa and P11, 165 kDa. Immunoblot analysis indicated that P8-P11 may belong to PP2B family, whereas P7 may associate with PP2A. The phosphatases P7-P11 were found to be effective in the dephosphorylation of Alzheimer's disease abnormally hyperphosphorylated tau. The resulting dephosphorylated tau regained its activity in promoting the microtubule assembly, suggesting that P7-P11 might regulate the phosphorylation of tau protein in the brain.

  11. Multiple forms of phosphatase from human brain: isolation and partial characterization of affi-gel blue binding phosphatases.

    Science.gov (United States)

    Cheng, L Y; Wang, J Z; Gong, C X; Pei, J J; Zaidi, T; Grundke-Iqbal, I; Iqbal, K

    2000-01-01

    Implication of protein phosphatases in Alzheimer disease led us to a systemic investigation of the identification of these enzyme activities in human brain. Human brain phosphatases eluted from DEAE-Sephacel with 0.22 M NaCl were resolved into two main groups by affi-gel blue chromatography, namely affi-gel blue-binding phosphatases and affi-gel blue-nonbinding phosphatases. Affi-gel blue-binding phosphatases were further separated into four different phosphatases, designated P1, P2, P3, and P4 by calmodulin-Sepharose 4B and poly-(L-lysine)-agarose chromatographies. These four phosphatases exhibited activities towards nonprotein phosphoester and two of them, P1 and P4, could dephosphorylate phosphoproteins. The activities of the four phosphatases differed in pH optimum, divalent metal ion requirements, sensitivities to various inhibitors and substrate affinities. The apparent molecular masses as estimated by gel-filtration for P1, P2, P3, and P4 were 97, 45, 42, and 125 kDa, respectively. P1 is markedly similar to PP2B from bovine brain and rabbit skeletal muscle. P4 was labeled with anti-PP2A antibody and may represent a new subtype of PP2A. P1 and P4 were also effective in dephosphorylating Alzheimer disease abnormally hyperphosphorylated tau (AD P-tau). The resulting dephosphorylated AD P-tau had its activity restored in promoting assembly of microtubules in vitro. These results suggest that P1 and P4 might be involved in the regulation of phosphorylation of tau in human brain, especially in neurodegenerative conditions like Alzheimer's disease which are characterized by the abnormal hyperphosphorylation of this protein.

  12. Effect of forming technique BixSiyOz coatings obtained by sol- gel and supported on 316L stainless steel

    Science.gov (United States)

    Bautista Ruiz, J.; Olaya Flórez, J.; Aperador, W.

    2016-02-01

    BixSiyOz type coatings via sol-gel synthesized from bismuth nitrate pentahydrate, and tetraethyl orthosilicate as precursors; glacial acetic acid and 2-ethoxyethanol as solvents, and ethanolamine as complexing. The coatings were supported on AISI 316L stainless steel substrate through dip-coating and spin-coating techniques. The study showed that the spin-coating technique is efficient than dip-coating because it allows more dense and homogeneous films.

  13. The Pseudomonas syringae genome encodes a combined mannuronan C-5-epimerase and O-acetylhydrolase, which strongly enhances the predicted gel-forming properties of alginates.

    Science.gov (United States)

    Bjerkan, Tonje M; Bender, Carol L; Ertesvåg, Helga; Drabløs, Finn; Fakhr, Mohamed K; Preston, Lori A; Skjak-Braek, Gudmund; Valla, Svein

    2004-07-09

    Alginates are industrially important, linear copolymers of beta-d-mannuronic acid (M) and its C-5-epimer alpha-l-guluronic acid (G). The G residues originate from a postpolymerization reaction catalyzed by mannuronan C-5-epimerases (MEs), leading to extensive variability in M/G ratios and distribution patterns. Alginates containing long continuous stretches of G residues (G blocks) can form strong gels, a polymer type not found in alginate-producing bacteria belonging to the genus Pseudomonas. Here we show that the Pseudomonas syringae genome encodes a Ca(2+)-dependent ME (PsmE) that efficiently forms such G blocks in vitro. The deduced PsmE protein consists of 1610 amino acids and is a modular enzyme related to the previously characterized family of Azotobacter vinelandii ME (AlgE1-7). A- and R-like modules with sequence similarity to those in the AlgE enzymes are found in PsmE, and the A module of PsmE (PsmEA) was found to be sufficient for epimerization. Interestingly, an R module from AlgE4 stimulated Ps-mEA activity. PsmE contains two regions designated M and RTX, both presumably involved in the binding of Ca(2+). Bacterial alginates are partly acetylated, and such modified residues cannot be epimerized. Based on a detailed computer-assisted analysis and experimental studies another PsmE region, designated N, was found to encode an acetylhydrolase. By the combined action of N and A PsmE was capable of redesigning an extensively acetylated alginate low in G from a non gel-forming to a gel-forming state. Such a property has to our knowledge not been previously reported for an enzyme acting on a polysaccharide.

  14. Influences of acid on molecular forms of fluorescein and photoinduced electron transfer in fluorescein-dispersing sol-gel titania films.

    Science.gov (United States)

    Nishikiori, Hiromasa; Setiawan, Rudi Agus; Miyashita, Kyohei; Teshima, Katsuya; Fujii, Tsuneo

    2014-01-01

    Fluorescein-dispersing titania gel films were prepared by the acid-catalyzed sol-gel reaction using a titanium alkoxide solution containing fluorescein. The molecular forms of fluorescein in the films, depending on its acid-base equilibria, and the complex formation and photoinduced electron transfer process between the dye and titania surface were investigated by fluorescence and photoelectric measurements. The titanium species were coordinated to the carboxylate and phenolate-like groups of the fluorescein species. The quantum efficiencies of the fluorescence quenching and photoelectric conversion were higher upon excitation of the dianion species interacting with the titania, i.e. the dye-titania complex. This result indicated that the dianion form was the most favorable for formation of the dye-titania complex exhibiting the highest electron transfer efficiency. Using nitric acid as the catalyst, the titania surface bonded to the fluorescein instead of the adsorbed nitrate ion during the steam treatment. The dye-titania complex formation played an important role in the electron injection from the dye to the titania conduction band.

  15. In-situ forming gel-like depot of a polyaspartamide-polylactide copolymer for once a week administration of sulpiride.

    Science.gov (United States)

    Fiorica, Calogero; Palumbo, Fabio Salvatore; Pitarresi, Giovanna; Giorgi, Mario; Calascibetta, Filippo; Giammona, Gaetano

    2015-01-01

    An in-situ forming gel-like depot, prepared by using an appropriate polyaspartamide-polylactide graft copolymer, has been employed to release in a sustained way sulpiride. α,β-poly(N-2-hydroxyethyl)-D,L-aspartamide-g-polylactic acid (PHEA-g-PLA) has been used as a polymer component. Its physicochemical properties make possible to dissolve it in N-methyl-2-pyrrolidone, with the obtainment of a solution able to form a gel-like depot once injected into a physiological medium. Cell compatibility of PHEA-g-PLA depot has been investigated, using murine dermal fibroblasts as cell model. 3-(4,5-Dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt assay and fluorescence microscopy have been employed to evaluate cell viability and morphology after contact with PHEA-g-PLA depot. Pharmacokinetic parameters of sulpiride released from depot have been determined following subcutaneous administration to rabbits and compared with corresponding parameters following administration of free sulpiride solution. It has been demonstrated that the system does not affect significantly the viability of fibroblasts and is able to sustain the release of sulpiride until a week, with a burst effect dependent on the initial weight ratio polymer/drug. In-vivo release profiles and pharmacokinetic parameters suggest that PHEA-g-PLA depot could have interesting clinical applications for a once a week administration of poorly soluble drugs to humans or animals. © 2014 Royal Pharmaceutical Society.

  16. Sol-Gel Glasses

    Science.gov (United States)

    Mukherjee, S. P.

    1985-01-01

    Multicomponent homogeneous, ultrapure noncrystalline gels/gel derived glasses are promising batch materials for the containerless glass melting experiments in microgravity. Hence, ultrapure, homogeneous gel precursors could be used to: (1) investigate the effect of the container induced nucleation on the glass forming ability of marginally glass forming compositions; and (2) investigate the influence of gravity on the phase separation and coarsening behavior of gel derived glasses in the liquid-liquid immiscibility zone of the nonsilicate systems having a high density phase. The structure and crystallization behavior of gels in the SiO2-GeO2 as a function of gel chemistry and thermal treatment were investigated. As are the chemical principles involved in the distribution of a second network former in silica gel matrix being investigated. The procedures for synthesizing noncrystalline gels/gel-monoliths in the SiO2-GeO2, GeO2-PbO systems were developed. Preliminary investigations on the levitation and thermal treatment of germania silicate gel-monoliths in the Pressure Facility Acoustic Levitator were done.

  17. Characterization of TiO{sub 2}-Al{sub 2}O{sub 3} composite fibers formed by electrospinning a sol-gel and polymer mixture

    Energy Technology Data Exchange (ETDEWEB)

    Lotus, A.F. [Department of Chemical and Biomolecular Engineering, University of Akron, 185 E Mill Street, Akron, OH 44325 (United States); Feaver, R.K. [Physics Department, John Carroll University, University Heights, OH 44118 (United States); Britton, L.A. [Department of Chemistry, University of Akron, Akron, OH 44325 (United States); Bender, E.T. [Department of Medical Physics, University of Wisconsin-Madison, Madison, WI 53705 (United States); Perhay, D.A. [Physics Department, John Carroll University, University Heights, OH 44118 (United States); Stojilovic, N. [Department of Physics and Astronomy, University of Wisconsin Oshkosh, Oshkosh, WI 54901 (United States); Ramsier, R.D. [Department of Chemistry, University of Akron, Akron, OH 44325 (United States); Department of Physics, University of Akron, Akron, OH 44325 (United States); Office of the Provost, University of Akron, Akron, OH 44325 (United States); Chase, G.G., E-mail: gchase@uakron.ed [Department of Chemical and Biomolecular Engineering, University of Akron, 185 E Mill Street, Akron, OH 44325 (United States)

    2010-02-25

    Composite fibers of TiO{sub 2}-Al{sub 2}O{sub 3} were prepared by electrospinning a sol-gel and polymer mixture to form template polymeric fibers followed by calcination. The resulting fibers were characterized using thermogravimetric analysis (TGA), X-ray diffraction (XRD), diffuse reflectance ultraviolet-visible (UV-vis) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray energy dispersive spectroscopy (XEDS), and X-ray photoelectron spectroscopy (XPS). Calcination at 973 K resulted in mixture of anatase (A) titania and gamma (gamma) alumina phases. We calculated a band gap energy of 3.3 eV and found the average diameter of the resulting fibers in the 150-400 nm range. Both XEDS and XPS reveal that fibers are predominantly made of titania.

  18. Rheology and structure of milk protein gels

    NARCIS (Netherlands)

    Vliet, van T.; Lakemond, C.M.M.; Visschers, R.W.

    2004-01-01

    Recent studies on gel formation and rheology of milk gels are reviewed. A distinction is made between gels formed by aggregated casein, gels of `pure` whey proteins and gels in which both casein and whey proteins contribute to their properties. For casein' whey protein mixtures, it has been shown th

  19. Rheology and structure of milk protein gels

    NARCIS (Netherlands)

    Vliet, van T.; Lakemond, C.M.M.; Visschers, R.W.

    2004-01-01

    Recent studies on gel formation and rheology of milk gels are reviewed. A distinction is made between gels formed by aggregated casein, gels of `pure` whey proteins and gels in which both casein and whey proteins contribute to their properties. For casein' whey protein mixtures, it has been shown

  20. Characterization of spelt (Triticum spelta L.) forms by gel electrophoretic analyses of seed storage proteins. I. The gliadins.

    Science.gov (United States)

    Harsch, S; Günther, T; Rozynek, B; Hesemann, C U; Kling, C I

    1997-01-01

    A comparison betweeen the electropherograms of the spelt and wheat cultivars showed specific differences in the gliadin band patterns which provided the possibility of a clear classification into spelt or wheat. A special nomenclature was developed to be able to improve the presentation of the gliadin band pattern of spelt, which is different from that of wheat. This nomenclature, however, has not yet been applied to other cereals. The gliadin band patterns were presented in a schematic form. As a parameter for comparison, idealized band patterns of both wheat and spelt were developed by comparing the proportions of the bands of all available types. When comparing the gliadin band patterns of the spelt cross-breeds with their corresponding parental generations, it was noted that the same parental bands were not always transmitted and that the cross-breeds showed differences in the intensity, mobility, occurrence, and the splitting of single bands. In general it can be said that the band pattern of the daughter generation - even in the examined F(5) and F(6) generations - is more similar to the band pattern of the mother than to that of the father, which proves a maternal effect.

  1. Excess Secretion of Gel-Forming Mucins and Associated Innate Defense Proteins with Defective Mucin Un-Packaging Underpin Gallbladder Mucocele Formation in Dogs.

    Science.gov (United States)

    Kesimer, Mehmet; Cullen, John; Cao, Rui; Radicioni, Giorgia; Mathews, Kyle G; Seiler, Gabriela; Gookin, Jody L

    2015-01-01

    Mucosal protection of the gallbladder is vital yet we know very little about the mechanisms involved. In domestic dogs, an emergent syndrome referred to as gallbladder mucocele formation is characterized by excessive secretion of abnormal mucus that results in obstruction and rupture of the gallbladder. The cause of gallbladder mucocele formation is unknown. In these first mechanistic studies of this disease, we investigated normal and mucocele-forming dog gallbladders to determine the source, identity, biophysical properties, and protein associates of the culprit mucins with aim to identify causes for abnormal mucus behavior. We established that mucocele formation involves an adoptive excess secretion of gel forming mucins with abnormal properties by the gallbladder epithelium. The mucus is characterized by a disproportionally significant increase in Muc5ac relative to Muc5b, defective mucin un-packaging, and mucin-interacting innate defense proteins that are capable of dramatically altering the physical and functional properties of mucus. These findings provide an explanation for abnormal mucus behavior and based on similarity to mucus observed in the airways of people with cystic fibrosis, suggest that abnormal mechanisms for maintenance of gallbladder epithelial hydration may be an instigating factor for mucocele formation in dogs.

  2. PREPARATION OF TITANIA SOL-GEL COATINGS CONTAINING SILVER IN VARIOUS FORMS AND MEASURING OF THEIR BACTERICIDAL EFFECTS AGAINST E. COLI

    Directory of Open Access Journals (Sweden)

    Diana Horkavcova

    2015-09-01

    Full Text Available The work describes titania coatings containing various forms of silver applied on a titanium substrate by a dip-coating sol-gel technique. Silver was added into the basic titania sol in form of colloid particles of Ag, crystals of AgNO3, particles of AgI, particles of Ag3PO4 and Ag3PO4 developed in situ (in the sol by reaction of AgNO3 with added calcium phosphate (brushite or monetite. Mechanically and chemically treated titanium substrates were dipped at a constant rate into individual types of sols. Subsequently, they were slowly fired. The fired coatings contained microcracks. All over the surface there were evenly distributed spherical nanoparticles of silver (Ag, AgNO3 or microcrystals of AgI and Ag3PO4. The prepared coatings were tested under static conditions for their bactericidal effects against gram-negative bacteria Escherichia coli (E. coli. The coated substrates were immersed into a suspension of E. coli in physiological solution for 24 and 4 hours. The basic titania coatings with no silver demonstrated no bactericidal properties. Very good bactericidal effect against E. coli in both types of bactericidal test showed the titania coatings with AgNO3, Ag3PO4 crystals and Ag3PO4 developed in situ.

  3. CONFORMANCE IMPROVEMENT USING GELS

    Energy Technology Data Exchange (ETDEWEB)

    Randall S. Seright

    2003-09-01

    This report describes work performed during the second year of the project, ''Conformance Improvement Using Gels.'' The project has two objectives. The first objective is to identify gel compositions and conditions that substantially reduce flow through fractures that allow direct channeling between wells, while leaving secondary fractures open so that high fluid injection and production rates can be maintained. The second objective is to optimize treatments in fractured production wells, where the gel must reduce permeability to water much more than that to oil. Pore-level images from X-ray computed microtomography were re-examined for Berea sandstone and porous polyethylene. This analysis suggests that oil penetration through gel-filled pores occurs by a gel-dehydration mechanism, rather than a gel-ripping mechanism. This finding helps to explain why aqueous gels can reduce permeability to water more than to oil. We analyzed a Cr(III)-acetate-HPAM gel treatment in a production well in the Arbuckle formation. The availability of accurate pressure data before, during, and after the treatment was critical for the analysis. After the gel treatment, water productivity was fairly constant at about 20% of the pre-treatment value. However, oil productivity was stimulated by a factor of 18 immediately after the treatment. During the six months after the treatment, oil productivity gradually decreased to approach the pre-treatment value. To explain this behavior, we proposed that the fracture area open to oil flow was increased substantially by the gel treatment, followed by a gradual closing of the fractures during subsequent production. For a conventional Cr(III)-acetate-HPAM gel, the delay between gelant preparation and injection into a fracture impacts the placement, leakoff, and permeability reduction behavior. Formulations placed as partially formed gels showed relatively low pressure gradients during placement, and yet substantially reduced the

  4. 凝胶离心成形制备YG1O硬质合金管%CENTRIFUGAL GEL FORMING FOR PREPARATION OF YG10 CEMENTED CARBIDE PIPE

    Institute of Scientific and Technical Information of China (English)

    石永亮; 郭志猛; 方哲成; 曾鲜

    2012-01-01

    Centrifugal gel forming was applied to the molding of YG10 composite powders. The effect of the solids loading on the rheological behavior of YG10 composite powders slurry was investigated. The effect of the initiator amount and pressure on polymerization rate was anlysized. Moreover, the effect of the rotationl speed on the green and sintered bodies was also investigated. The results show that,the YG10 composite powders have a good dispersibility in the HEM A gel system. Using oleic acid as dispersant, the slurry with good flowability and good stability and maximum solids loading of 50vol% can be obtained. The amout of initiator is 5 mmol/L (based on the volume of the premix). In the centrifugal gel forming process,pressure can accelerate the solidification of the slurry. The green body with high density,without residue pores,the strength of 28. 3 MPa and relative density of 57% was prepared by choosing the optimum rotate speed of 4 000 r/min and using our device. YG10 cemented carbide pipe was prepared by sintering at 1 420℃ for 1 h in vacuum. It has uniform shrinkage without deformation,and the microstructure has no segregation.%将凝胶离心成形工艺应用于YG10复合粉末的坯体成形,研究了固含量对YG10复合粉末浆料的流变性的影响,分析了凝胶离心成形过程中引发剂量和压力对聚合速率的影响,并研究了离心转速对坯体和烧结体性能的影响.结果表明:以油酸作分散剂,制备稳定且流动性好的浆料最佳固含量为50%(体积分数),引发剂的加入量为5 mmol/L(相对于预混液的体积),凝胶离心成形过程中压力能够加速浆料的固化,采用自行设计的离心成型机,选择最佳转速4000 r/min,制备出的坯体密度高、无残留气孔,相对密度57%,强度28.3 MPa.坯体经真空脱胶烧结1420℃保温1h制备出YG10硬质合金管,烧结体收缩均匀无变形,组织结构完整无偏析.

  5. Low-temperature, high-performance solution-processed metal oxide thin-film transistors formed by a ‘sol–gel on chip’ process.

    Science.gov (United States)

    Banger, K K; Yamashita, Y; Mori, K; Peterson, R L; Leedham, T; Rickard, J; Sirringhaus, H

    2011-01-01

    At present there is no ‘ideal’ thin-film transistor technology for demanding display applications, such as organic light-emitting diode displays, that allows combining the low-temperature, solution-processability offered by organic semiconductors with the high level of performance achievable with microcrystalline silicon1. N-type amorphous mixed metal oxide semiconductors, such as ternary oxides Mx1My2Oz, where M1 and M2 are metals such as In, Ga, Sn, or Zn, have recently gained momentum because of their high carrier mobility and stability2, 3 and good optical transparency, but they are mostly deposited by sputtering. So far no route is available for forming high-performance mixed oxide materials from solution at low process temperatures <250 °C. Ionic mixed metal oxides should in principle be ideal candidates for solution-processable materials because the conduction band states derived from metal s-orbitals are relatively insensitive to the presence of structural disorder and high charge carrier mobilities are achievable in amorphous structures2. Here we report the formation of amorphous metal oxide semiconducting thin-films using a ‘sol–gel on chip’ hydrolysis approach from soluble metal alkoxide precursors, which affords unprecedented high field-effect mobilities of 10 cm2 V−1 s−1, reproducible and stable turn-on voltages Von≈0 V and high operational stability at maximum process temperatures as low as 230 °C.

  6. A Gel Formulation Containing a New Recombinant Form of Manganese Superoxide Dismutase: A Clinical Experience Based on Compassionate Use-Safety of a Case Report

    Directory of Open Access Journals (Sweden)

    Lucia Grumetto

    2016-01-01

    Full Text Available Background. We report a case of bilateral posterior subcapsular cataracts (PSCs in a 24-year-old man with an allergic conjunctivitis history caused by a long-term therapy with glucocorticoids. Case Presentation. The patient showed a visual acuity of 9/10 for both eyes. He followed a therapy with ketotifen and bilastine for four years. During the last six months before our evaluation, he was treated with chloramphenicol and betamethasone, interrupted for onset of cataracts and increased intraocular pressure. We treated him with ophthalmic gel preparation containing a new recombinant form of manganese superoxide dismutase (rMnSOD at a concentration of 12.5 μg/mL, only for the right eye, while left eye was treated with standard protocol of Bendazac-lysine g 0.5. Conclusion. This case report shows the protective effects of rMnSOD versus PSC disease, probably due to the capacity of rMnSOD of countering free radical species.

  7. The influence of silver nanostructures formed in situ in silica sol-gel derived films on the rate of Förster resonance energy transfer.

    Science.gov (United States)

    Holmes-Smith, A Sheila; McDowell, Gary R; Toury, Marion; McLoskey, David; Hungerford, Graham

    2012-02-01

    The efficiency of Förster resonance energy transfer (FRET) can be enhanced in the presence of a metal. Herein, we demonstrate the increased efficiency for a novel model sensor system where FRET is shown to occur between Rhodamine 6G in the bulk sol-gel matrix and Texas Red, which is held a fixed distance away by covalent attachment onto a silane spacer. Silver colloids are formed using light to initiate the reduction of a silver salt, which can be achieved at controlled locations within the film. Both the fluorescence intensity and lifetime maps and analysis indicate that an enhanced FRET efficiency has been achieved in the presence of silver nanoparticles. An increase in efficiency of 1.2-1.5 times is demonstrated depending on the spacer used. The novelty of our approach lies in the method of silver-nanoparticle formation, which allows for the accurate positioning of the silver nanoparticles and hence selective fluorescence enhancement within a biocompatible host material. Our work gives a practical demonstration of metal-enhanced FRET and demonstrates the ability of such systems to be developed for molecular-recognition applications that could find use in lab-on-a-chip technologies. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Influence of synthesis conditions on microstructure and phase transformations of annealed Sr2FeMoO6-x nanopowders formed by the citrate-gel method.

    Science.gov (United States)

    Yarmolich, Marta; Kalanda, Nikolai; Demyanov, Sergey; Terryn, Herman; Ustarroz, Jon; Silibin, Maksim; Gorokh, Gennadii

    2016-01-01

    The sequence of phase transformations during Sr2FeMoO6-x crystallization by the citrate-gel method was studied for powders synthesized with initial reagent solutions with pH values of 4, 6 and 9. Scanning electron microscopy revealed that the as-produced and annealed powders had the largest Sr2FeMoO6-x agglomerates with diameters in the range of 0.7-1.2 µm. The average grain size of the powders in the dispersion grows from 250 to 550 nm with increasing pH value. The X-ray diffraction analysis of the powders annealed at different temperatures between 770 and 1270 K showed that the composition of the initially formed Sr2FeMoO6-x changes and the molybdenum content increases with further heating. This leads to a change in the Sr2FeMoO6-x crystal lattice parameters and a contraction of the cell volume. An optimized synthesis procedure based on an initial solution of pH 4 allowed a single-phase Sr2FeMoO6-x compound to be obtained with a grain size in the range of 50-120 nm and a superstructural ordering of iron and molybdenum cations of 88%.

  9. Microphase Separation and Gelation of Methylcellulose in the Presence of Gallic Acid and NaCl as an In Situ Gel-Forming Drug Delivery System.

    Science.gov (United States)

    Sangfai, Tanatchaporn; Tantishaiyakul, Vimon; Hirun, Namon; Li, Lin

    2016-05-11

    Novel hydrogels of methylcellulose (MC) with gallic acid (GA) and NaCl were developed for an in situ gel-forming delivery system. Plain MC and GA/NaCl/MC were characterized using micro-differential scanning calorimetry (micro-DSC), rheological and turbidity methods. The gelation temperatures of MC were reduced to body temperature with adding GA/NaCl. GA and NaCl caused slightly different effects on the gelation/degelation temperatures during heating/cooling, respectively, based on the different sensitivities of these three techniques. The gelation mechanism was investigated by UV spectrophotometry, and the hydrophobic interaction between the aromatic ring of GA and MC was verified. The NaCl/MC hydrogel had smaller micropores than GA/MC and MC, indicating a greater cross-linked density. Doxycycline (DX) was loaded into the systems and demonstrated a synergistic effect of DX/GA. Both GA and DX exhibited a sustained release. The hydrogel of GA/4NaCl/MC could be potentially used for the in situ delivery of DX for deep wound healing.

  10. Exploring the potential of gastro retentive dosage form in delivery of ellagic acid and aloe vera gel powder for treatment of gastric ulcers.

    Science.gov (United States)

    Ranade, Arati N; Ranpise, Nisharani S; Ramesh, C

    2014-01-01

    Approach of novel drug delivery system (NDDS) overcomes the limitations of conventional dosage forms. However, this concept is still not practiced to a large extent in delivery of herbal drugs in Ayurveda. Thus, the potential of herbal drugs has not been explored to its fullest. Hence, there is a growing need to amalgamate the concept of NDDS in delivery of herbal constituents. The present investigation is designed to deliver and retain two herbal constituents in stomach for better action against Helicobacter pylori induced gastric ulcers. The objective was to develop a bilayer floating tablet of ellagic acid and Aloe vera gel powder through rational combination of excipients to give the lowest possible lag time with maximum drug release in the period of 4 h. Formulation F9 containing 100 mg of HPMC K15M, 27 mg of crospovidone, 80 mg of mannitol and effervescent agents in the ratio 1:2 gave 92% drug release and desired floating properties. In vivo studies showed that combination of ellagic acid and Aloe vera gave 75 % ulcer inhibition in comparison to 57% ulcer inhibition in the group which was administered with ellagic acid alone. This suggests the use of bilayer floating tablet in gastric ulcer treatment.

  11. Frictional characteristics of nano-scale mesoporous SiO2 thin film formed by sol-gel and self-assembly method.

    Science.gov (United States)

    Lee, Gyu-Sun; Shin, Yun-Ha; Kim, Ji-Man; Kim, Tae-Sung; Lee, Young-Ze

    2009-12-01

    The pores on the surface function as an outlet for wear particles and enhance the storage of lubricants, which improves lubrication effectiveness. Mesoporous SiO2 thin films were formed by the sol-gel and self-assembly methods to have a porous structure. One of the important issues in the manufacturing of the films involves the control of the porous structure to ensure proper mechanical properties. Mesoporous materials were manufactured with two surfactants, Pluronid Polyol (F127) and Cetyltrimethylammonium Bromide (CTABr). The pores were then exposed on the surface by chemical mechanical polishing (CMP) and plasma-etching. Ball-on-disk tests with mesoporous SiO2 thin films on glass specimens were conducted. The results show that the friction coefficient and wear volume of a specimen with F127, which has a 8 nm pore size, are far lower than those of CTABr, which has a 3 nm pore size at both the dry condition and at boundary lubricated condition. This proves a significant dependency of friction and wear on pore size of mesoporous SiO2 thin films.

  12. GelTouch

    DEFF Research Database (Denmark)

    Miruchna, Viktor; Walter, Robert; Lindlbauer, David

    2015-01-01

    We present GelTouch, a gel-based layer that can selectively transition between soft and stiff to provide tactile multi-touch feedback. It is flexible, transparent when not activated, and contains no mechanical, electromagnetic, or hydraulic components, resulting in a compact form factor (a 2mm thin...... touchscreen layer for our prototype). The activated areas can be morphed freely and continuously, without being limited to fixed, predefined shapes. GelTouch consists of a poly(N-isopropylacrylamide) gel layer which alters its viscoelasticity when activated by applying heat (>32 C). We present three different...... a tablet with 6x4 tactile areas, enabling a tactile numpad, slider, and thumbstick. We show that the gel is up to 25 times stiffer when activated and that users detect tactile features reliably (94.8%)....

  13. 凝胶离心成型制备316L-TiC复合材料%Centrifugal gel forming of 316L - TiC composites

    Institute of Scientific and Technical Information of China (English)

    石永亮; 郭志猛; 方哲成; 曾鲜

    2012-01-01

    将凝胶离心成型工艺应用于316L-TiC复合粉末的坯体成型,研究了固含量对316L-TiC复合粉末浆料流变性的影响以及引发剂的加入量对粉末浆料固化时间的影响,分析了凝胶离心成型工艺中离心转速与316L-TiC坯体的密度和强度的关系。结果表明:以油酸作分散剂,制备稳定且流动性好的浆料的最佳固含量为55%(体积分数);引发剂的加入量为0.7%(占预混液的质量分数),采用自行设计的离心成型机,选择最佳转速3000r/min,制备出的坯体密度高、无残留气孔,相对密度64.3%,强度26.3MPa。坯体经真空脱胶1380℃烧结保温1h制备出316L-TiC合金管,烧结体收缩均匀无变形,TiC颗粒呈均匀分布。%Centrifugal gel forming was applied to the molding of 316L-TiC composite powders. The effect of the solids loading on the rheological behavior of 316L -TiC composite powders slurry was investigated, and the effect of the amount of initiator on the solidification time was also studied. Moreover, the relationship between the rotation speed and the density and strength of green body by centrifugal gel forming was analyzed. The results show that, using oleic acid as dispersion, slurry with good flowability and good stability has been prepared, at which a maximum solids volume fraction of 55 % and the amount of initiator of 0.7%(mass fraction in the premix) can be obtained. Using the device made by ourselves and choosing the optimum rotation speed 3000 r/rain, the green body with high density and no residue stomatal has been prepared, while the relative density and strength is 64.3% and 26.3 MPa, respectively. 316L - TiC alloy pipe is achieved by sintered at 1380 ℃ for 1 h in vacuum, which has a uniform shrinkage without deformation and the homogeneous distribution of the TiC particles.

  14. Blue-emitting photoluminescence of rod-like and needle-like ZnO nanostructures formed by hot-water treatment of sol–gel derived coatings

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Wai Kian, E-mail: tanwaikian@cie.ignite.tut.ac.jp [Center for International Education, Toyohashi University of Technology, Aichi, Toyohashi 441-8580 (Japan); Kawamura, Go; Muto, Hiroyuki [Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Aichi, Toyohashi 441-8580 (Japan); Abdul Razak, Khairunisak; Lockman, Zainovia [School of Materials and Mineral Resources, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal, Pulau Pinang 14300 Malaysia (Malaysia); Matsuda, Atsunori, E-mail: matsuda@tut.ee.ac.jp [Center for International Education, Toyohashi University of Technology, Aichi, Toyohashi 441-8580 (Japan); Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Aichi, Toyohashi 441-8580 (Japan)

    2015-02-15

    The morphological evolution of the zinc oxide (ZnO) nanostructures generated by hot-water treatment (HWT) of sol–gel derived coatings as a function of temperature from 30 to 90 °C was investigated. With increasing HWT temperature, the ZnO crystals evolved from nanoparticles to rod-like and needle-like nanostructures. High-resolution transmission electron microscope observations of rod-like and needle-like nanostructures generated at 60 and 90 °C indicated single crystal ZnO wurtzite structure was obtained. All the hot-water treated samples exhibited blue emission at approximately 440 nm in room temperature. The intensity of blue emission increased with higher HWT temperatures. The unique photoluminescence emission characteristic remained even after heat-treatment at 400 °C for 1 h. As the emission peak obtained in our work is approximately 440 nm (2.82 eV), the emission peak is corresponding to the electron transition from the interstitial Zn to the top of valence band. This facile formation of blue-emitting ZnO nanostructures at low-temperature can be utilized on substrate with low thermal stability for optoelectronic applications such as light emitting devices and biological fluorescence labeling. - Highlights: • Facile and novel formation of ZnO nanostructures by low temperature hot-water treatment. • No catalyst or inhibitor is used. • Evolution of ZnO nanostructures formation as a function of temperature is reported. • Dominant blue emissions are observed from the as-formed and annealed ZnO films. • Ultraviolet and visible emissions are observed for hot-water treated films.

  15. Remaining Sites Verification Package for the 100-F-44:4, Discovery Pipeline in Silica Gel Pit, Waste Site Reclassification Form 2008-030

    Energy Technology Data Exchange (ETDEWEB)

    J. M. Capron

    2008-09-23

    The 100-F-44:4, Discovery Pipeline in Silica Gel Pit subsite is located in the 100-FR-1 Operable Unit of the Hanford Site, near the location of the former 110-F Gas Storage Tanks structure. The 100-F-44:4 subsite is a steel pipe discovered October 17, 2004, during trenching to locate the 118-F-4 Silica Gel Pit. Based on visual inspection and confirmatory investigation sampling data, the 100-F-44:4 subsite is a piece of non-hazardous electrical conduit debris. The 100-F-44:4 subsite supports unrestricted future use of shallow zone soil and is protective of groundwater and the Columbia River. No residual contamination exists within the deep zone. Therefore, no deep zone institutional controls are required.

  16. CONFORMANCE IMPROVEMENT USING GELS

    Energy Technology Data Exchange (ETDEWEB)

    Randall S. Seright

    2004-09-30

    , (3) using partially formed gels, (4) using combinations of high and low molecular weight (Mw) polymers, (5) using secondary crosslinking reactions, (6) injecting un-hydrated polymer particles, and (7) incorporating particulates. All of these methods showed promise in some aspects, but required performance improvements in other aspects. All materials investigated to date showed significant performance variations with fracture width. High pressure gradients and limited distance of penetration are common problems in tight fractures. Gravity segregation and low resistance to breaching are common problems in wide fractures. These will be key issues to address in future work. Although gels can exhibit disproportionate permeability reduction in fractures, the levels of permeability reduction for oil flow are too high to allow practical exploitation in most circumstances. In contrast, disproportionate permeability reduction provided by gels that form in porous rock (adjacent to the fractures) has considerable potential in fractured systems.

  17. Nanocrystal/sol-gel nanocomposites

    Science.gov (United States)

    Petruska, Melissa A.; Klimov, Victor L.

    2007-06-05

    The present invention is directed to solid composites including colloidal nanocrystals within a sol-gel host or matrix and to processes of forming such solid composites. The present invention is further directed to alcohol soluble colloidal nanocrystals useful in formation of sol-gel based solid composites.

  18. Gel polymer electrolytes for batteries

    Science.gov (United States)

    Balsara, Nitash Pervez; Eitouni, Hany Basam; Gur, Ilan; Singh, Mohit; Hudson, William

    2014-11-18

    Nanostructured gel polymer electrolytes that have both high ionic conductivity and high mechanical strength are disclosed. The electrolytes have at least two domains--one domain contains an ionically-conductive gel polymer and the other domain contains a rigid polymer that provides structure for the electrolyte. The domains are formed by block copolymers. The first block provides a polymer matrix that may or may not be conductive on by itself, but that can soak up a liquid electrolyte, thereby making a gel. An exemplary nanostructured gel polymer electrolyte has an ionic conductivity of at least 1.times.10.sup.-4 S cm.sup.-1 at 25.degree. C.

  19. Rapid, simple and stability-indicating determination of polyhexamethylene biguanide in liquid and gel-like dosage forms by liquid chromatography with diode-array detection

    Institute of Scientific and Technical Information of China (English)

    Markus Küsters; Sören Beyer; Stephan Kutscher; Harald Schlesinger; Michael Gerhartz

    2013-01-01

    A rapid and simple method for the determination of polyhexamethylene biguanide (polyhexanide, PHMB) in liquid and gel-like pharmaceutical formulations by means of high performance liquid chromatography coupled to diode-array detection (HPLC-DAD) was developed. Best separation was achieved using a cyanopropyl bonded phase (Agilent Zorbax Eclipse XDB-CN column 4.6 mm75 mm with particle size of 3.5 mm) as well as gradient elution consisting of acetonitrile/deionized water at a flow rate of 1.0 mL/min. The optimized and applied chromatographic conditions permitted separation of polyhexanide from interacting matrix with subsequent detection at a wavelength of 235 nm with good sensitivity. The method validation was carried out with regard to the guidelines for analytical procedures demanded by the International Conference on Harmonisation (ICH). Mean recoveries of 102% and 101% for gel-like as well as liquid preparations were obtained. Suitable repeatability as well as intermediate precision could be achieved with limits of detection r0.004 mg/mL for both formulations, equivalent to r0.004% PHMB concerning sample preparation. Determination of PHMB was accomplished without tedious sample preparation. Interacting matrix could be eliminated by the chromatographic procedure with excellent performance of system suitability. All analytical requirements were fulfilled permitting a reliable and precise determination of PHMB in pharmaceuticals. Furthermore, the developed method was applied to stability testing of pharmaceutical preparations containing PHMB.

  20. 21 CFR 520.1452 - Moxidectin gel.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Moxidectin gel. 520.1452 Section 520.1452 Food and..., FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1452 Moxidectin gel. (a) Specifications. Each milliliter of gel contains 20 milligrams (2 percent) moxidectin. (b) Sponsor. See No....

  1. Yield stress determination of a physical gel

    DEFF Research Database (Denmark)

    Hvidt, Søren

    2013-01-01

    Pluronic F127 solutions form gels in water with high elastic moduli. Pluronic gels can, however, only withstand small deformations and stresses. Different steady shear and oscillatory methods traditionally used to determine yield stress values are compared. The results show that the yield stresses...... values of these gels depend on test type and measurement time, and no absolute yield stress value can be determined for these physical gels....

  2. Fabricating porous materials using interpenetrating inorganic-organic composite gels

    Science.gov (United States)

    Seo, Dong-Kyun; Volosin, Alex

    2016-06-14

    Porous materials are fabricated using interpenetrating inorganic-organic composite gels. A mixture or precursor solution including an inorganic gel precursor, an organic polymer gel precursor, and a solvent is treated to form an inorganic wet gel including the organic polymer gel precursor and the solvent. The inorganic wet gel is then treated to form a composite wet gel including an organic polymer network in the body of the inorganic wet gel, producing an interpenetrating inorganic-organic composite gel. The composite wet gel is dried to form a composite material including the organic polymer network and an inorganic network component. The composite material can be treated further to form a porous composite material, a porous polymer or polymer composite, a porous metal oxide, and other porous materials.

  3. Mechanical Failure in Colloidal Gels

    Science.gov (United States)

    Kodger, Thomas Edward

    When colloidal particles in a dispersion are made attractive, they aggregate into fractal clusters which grow to form a space-spanning network, or gel, even at low volume fractions. These gels are crucial to the rheological behavior of many personal care, food products and dispersion-based paints. The mechanical stability of these products relies on the stability of the colloidal gel network which acts as a scaffold to provide these products with desired mechanical properties and to prevent gravitational sedimentation of the dispersed components. Understanding the mechanical stability of such colloidal gels is thus of crucial importance to predict and control the properties of many soft solids. Once a colloidal gel forms, the heterogeneous structure bonded through weak physical interactions, is immediately subject to body forces, such as gravity, surface forces, such as adhesion to a container walls and shear forces; the interplay of these forces acting on the gel determines its stability. Even in the absence of external stresses, colloidal gels undergo internal rearrangements within the network that may cause the network structure to evolve gradually, in processes known as aging or coarsening or fail catastrophically, in a mechanical instability known as syneresis. Studying gel stability in the laboratory requires model colloidal system which may be tuned to eliminate these body or endogenous forces systematically. Using existing chemistry, I developed several systems to study delayed yielding by eliminating gravitational stresses through density matching and cyclic heating to induce attraction; and to study syneresis by eliminating adhesion to the container walls, altering the contact forces between colloids, and again, inducing gelation through heating. These results elucidate the varied yet concomitant mechanisms by which colloidal gels may locally or globally yield, but then reform due to the nature of the physical, or non-covalent, interactions which form

  4. Thermoresponsive Gels

    Directory of Open Access Journals (Sweden)

    M. Joan Taylor

    2017-01-01

    Full Text Available Thermoresponsive gelling materials constructed from natural and synthetic polymers can be used to provide triggered action and therefore customised products such as drug delivery and regenerative medicine types as well as for other industries. Some materials give Arrhenius-type viscosity changes based on coil to globule transitions. Others produce more counterintuitive responses to temperature change because of agglomeration induced by enthalpic or entropic drivers. Extensive covalent crosslinking superimposes complexity of response and the upper and lower critical solution temperatures can translate to critical volume temperatures for these swellable but insoluble gels. Their structure and volume response confer advantages for actuation though they lack robustness. Dynamic covalent bonding has created an intermediate category where shape moulding and self-healing variants are useful for several platforms. Developing synthesis methodology—for example, Reversible Addition Fragmentation chain Transfer (RAFT and Atomic Transfer Radical Polymerisation (ATRP—provides an almost infinite range of materials that can be used for many of these gelling systems. For those that self-assemble into micelle systems that can gel, the upper and lower critical solution temperatures (UCST and LCST are analogous to those for simpler dispersible polymers. However, the tuned hydrophobic-hydrophilic balance plus the introduction of additional pH-sensitivity and, for instance, thermochromic response, open the potential for coupled mechanisms to create complex drug targeting effects at the cellular level.

  5. Metal-silica sol-gel materials

    Science.gov (United States)

    Stiegman, Albert E. (Inventor)

    2002-01-01

    The present invention relates to a single phase metal-silica sol-gel glass formed by the co-condensation of a transition metal with silicon atoms where the metal atoms are uniformly distributed within the sol-gel glass as individual metal centers. Any transition metal may be used in the sol-gel glasses. The present invention also relates to sensor materials where the sensor material is formed using the single phase metal-silica sol-gel glasses. The sensor materials may be in the form of a thin film or may be attached to an optical fiber. The present invention also relates to a method of sensing chemicals using the chemical sensors by monitoring the chromatic change of the metal-silica sol-gel glass when the chemical binds to the sensor. The present invention also relates to oxidation catalysts where a metal-silica sol-gel glass catalyzes the reaction. The present invention also relates to a method of performing oxidation reactions using the metal-silica sol-gel glasses. The present invention also relates to organopolymer metal-silica sol-gel composites where the pores of the metal-silica sol-gel glasses are filled with an organic polymer polymerized by the sol-gel glass.

  6. Gel fire suppressants for controlling underground heating

    Institute of Scientific and Technical Information of China (English)

    HU Sheng-gen; XUE Sheng

    2011-01-01

    One of the major safety issues in coal mining is heatings and the resultant spontaneous combustion in underground coal mines.CSIRO researchers have developed a number of polymer gels suitable for controlling heatings in coal mines.These gels were developed to meet strict selection criteria including easy preparation,no or low toxicity,controllable gelation time,adaptable to mine water chemistry,adjustable viscosity,relatively long gel life,thermally and chemically stable and low cost.The HPAM-Aluminum Citrate gel system was identified to be the most favourable gel system for fire suppression in underground coal mines.These gels can be applied to the areas undergoing coal heating or gas leakage at a controllable gelation time and impermeable gel barriers can be formed in the areas to block ingress of air.

  7. The Sol-Gel Process

    OpenAIRE

    Khalid Suliman Aboodh

    2015-01-01

    Abstract An increasingly important application of liquid jets is the disintegration of the jet to form droplets of liquid containing nuclear fuel. These droplets are then dried and sintered to form ceramic micro spheres for use in fuel elements in nuclear reactors. The total operations required to form the droplets convert them to solids and fire them to ceramic bodies comprise what are known as Sol-Gel processes Reference 13.

  8. 维生素D2脂质体凝胶剂的体外透皮扩散%Diffusion of liposomal vitamin D2 gel dosage form through rat skin in vitro

    Institute of Scientific and Technical Information of China (English)

    齐宪荣; 王培玉; 唐干益; 米谷芳芝; 永井恒司

    2001-01-01

    目的:本文探讨了包封于脂质体中的维生素D2体外透皮扩散能力的变化。方法:将维生素D2包封于脂质体中,并进一步制备成羧甲基纤维素钠的凝胶剂,与未包封于脂质体中的维生素D2的羧甲基纤维素钠凝胶剂比较,进行了大鼠离体皮肤的扩散实验,比较不同类型的脂质体对维生素D2透皮的影响。结果:维生素D2在游离状态下,不易进入皮肤层。维生素D2脂质体可使维生素D2在皮肤层中滞留,而且多室脂质体凝胶剂比单室脂质体凝胶剂在皮肤层中维生素D2的滞留量多。结论:脂质体作为维生素D2皮肤局部给药的载体,能够提高对皮肤的穿透力。%OBJECTIVE To investigate the changes of liposomal vitamin D2 inpermeability through the rat skin in vitro. METHODS The rat skin diffusion of liposomal vitamin D2 in carboxymethylcellulose-sodium gel dosage form through was compared with non-liposomal vitamin D2 in the gel dosage form in vitro. RESULTS The permeability of non-liposomal vitamin D2 through the rat skin was poor.When vitamin D2 entrapped in liposomes, the permeability of vitamin D2 through skin increased and deposited in skin. The multilamellar vesicles detained a higher amount of vitamin D2 than the unilamillar vesicles in skin. The amount of vitamin D2 in the receiver cell did not increase significantly.CONCLUSIONS Liposomes can be used as a carrier of vitamin D2 in topical application that increase the permeability through the rat skin.

  9. Cd(II) Speciation in alginate gels

    NARCIS (Netherlands)

    Davis, T.A.; Kalis, E.J.J.; Pinheiro, J.P.; Town, R.M.; Leeuwen, van H.P.

    2008-01-01

    Polysaccharides, such as those occurring in cell walls and biofilms, play an important role in metal speciation in natural aqueous systems. This work describes the speciation of Cd(II) in alginate gels chosen as a model system for biogels. The gels are formed by bridging calcium ions at junction zon

  10. Buckling Instability in Liquid Crystalline Physical Gels

    OpenAIRE

    Verduzco, Rafael; Meng, Guangnan; Kornfield, Julia A; Meyer, Robert B.

    2006-01-01

    In a nematic gel we observe a low-energy buckling deformation arising from soft and semisoft elastic modes. We prepare the self-assembled gel by dissolving a coil–side-group liquid-crystalline polymer–coil copolymer in a nematic liquid crystal. The gel has long network strands and a precisely tailored structure, making it ideal for studying nematic rubber elasticity. Under polarized optical microscopy we observe a striped texture that forms when gels uniformly aligned at 35 °C are cooled to r...

  11. Surface grafted chitosan gels. Part II. Gel formation and characterization.

    Science.gov (United States)

    Liu, Chao; Thormann, Esben; Claesson, Per M; Tyrode, Eric

    2014-07-29

    Responsive biomaterial hydrogels attract significant attention due to their biocompatibility and degradability. In order to make chitosan based gels, we first graft one layer of chitosan to silica, and then build a chitosan/poly(acrylic acid) multilayer using the layer-by-layer approach. After cross-linking the chitosan present in the polyelectrolyte multilayer, poly(acrylic acid) is partly removed by exposing the multilayer structure to a concentrated carbonate buffer solution at a high pH, leaving a surface-grafted cross-linked gel. Chemical cross-linking enhances the gel stability against detachment and decomposition. The chemical reaction between gluteraldehyde, the cross-linking agent, and chitosan was followed in situ using total internal reflection Raman (TIRR) spectroscopy, which provided a molecular insight into the complex reaction mechanism, as well as the means to quantify the cross-linking density. The amount of poly(acrylic acid) trapped inside the surface grafted films was found to decrease with decreasing cross-linking density, as confirmed in situ using TIRR, and ex situ by Fourier transform infrared (FTIR) measurements on dried films. The responsiveness of the chitosan-based gels with respect to pH changes was probed by quartz crystal microbalance with dissipation (QCM-D) and TIRR. Highly cross-linked gels show a small and fully reversible behavior when the solution pH is switched between pH 2.7 and 5.7. In contrast, low cross-linked gels are more responsive to pH changes, but the response is fully reversible only after the first exposure to the acidic solution, once an internal restructuring of the gel has taken place. Two distinct pKa's for both chitosan and poly(acrylic acid), were determined for the cross-linked structure using TIRR. They are associated with populations of chargeable groups displaying either a bulk like dissociation behavior or forming ionic complexes inside the hydrogel film.

  12. Influence of synthesis conditions on microstructure and phase transformations of annealed Sr2FeMoO6−x nanopowders formed by the citrate–gel method

    Directory of Open Access Journals (Sweden)

    Marta Yarmolich

    2016-08-01

    Full Text Available The sequence of phase transformations during Sr2FeMoO6−x crystallization by the citrate–gel method was studied for powders synthesized with initial reagent solutions with pH values of 4, 6 and 9. Scanning electron microscopy revealed that the as-produced and annealed powders had the largest Sr2FeMoO6−x agglomerates with diameters in the range of 0.7–1.2 µm. The average grain size of the powders in the dispersion grows from 250 to 550 nm with increasing pH value. The X-ray diffraction analysis of the powders annealed at different temperatures between 770 and 1270 K showed that the composition of the initially formed Sr2FeMoO6−x changes and the molybdenum content increases with further heating. This leads to a change in the Sr2FeMoO6−x crystal lattice parameters and a contraction of the cell volume. An optimized synthesis procedure based on an initial solution of pH 4 allowed a single-phase Sr2FeMoO6−x compound to be obtained with a grain size in the range of 50–120 nm and a superstructural ordering of iron and molybdenum cations of 88%.

  13. Influence of synthesis conditions on microstructure and phase transformations of annealed Sr2FeMoO6−x nanopowders formed by the citrate–gel method

    Science.gov (United States)

    Yarmolich, Marta; Kalanda, Nikolai; Demyanov, Sergey; Terryn, Herman; Ustarroz, Jon; Silibin, Maksim

    2016-01-01

    Summary The sequence of phase transformations during Sr2FeMoO6−x crystallization by the citrate–gel method was studied for powders synthesized with initial reagent solutions with pH values of 4, 6 and 9. Scanning electron microscopy revealed that the as-produced and annealed powders had the largest Sr2FeMoO6−x agglomerates with diameters in the range of 0.7–1.2 µm. The average grain size of the powders in the dispersion grows from 250 to 550 nm with increasing pH value. The X-ray diffraction analysis of the powders annealed at different temperatures between 770 and 1270 K showed that the composition of the initially formed Sr2FeMoO6−x changes and the molybdenum content increases with further heating. This leads to a change in the Sr2FeMoO6−x crystal lattice parameters and a contraction of the cell volume. An optimized synthesis procedure based on an initial solution of pH 4 allowed a single-phase Sr2FeMoO6−x compound to be obtained with a grain size in the range of 50–120 nm and a superstructural ordering of iron and molybdenum cations of 88%. PMID:27826494

  14. Sol-gel derived sorbents

    Science.gov (United States)

    Sigman, Michael E.; Dindal, Amy B.

    2003-11-11

    Described is a method for producing copolymerized sol-gel derived sorbent particles for the production of copolymerized sol-gel derived sorbent material. The method for producing copolymerized sol-gel derived sorbent particles comprises adding a basic solution to an aqueous metal alkoxide mixture for a pH.ltoreq.8 to hydrolyze the metal alkoxides. Then, allowing the mixture to react at room temperature for a precalculated period of time for the mixture to undergo an increased in viscosity to obtain a desired pore size and surface area. The copolymerized mixture is then added to an immiscible, nonpolar solvent that has been heated to a sufficient temperature wherein the copolymerized mixture forms a solid upon the addition. The solid is recovered from the mixture, and is ready for use in an active sampling trap or activated for use in a passive sampling trap.

  15. Testosterone Nasal Gel

    Science.gov (United States)

    Testosterone nasal gel is used to treat symptoms of low testosterone in men who have hypogonadism (a condition in which the ... does not produce enough natural testosterone). Testosterone nasal gel is used only for men with low testosterone ...

  16. Multiple-phase behavior and memory effect of polymer gel

    CERN Document Server

    Annaka, M; Nakahira, T; Sugiyama, M; Hara, K; Matsuura, T

    2002-01-01

    A poly(4-acrylamidosalicylic acid) gel (PASA gel) exhibits multiple phases as characterized by distinct degrees of swelling; the gel can take one of four different swelling values, but none of the intermediate values. The gel has remarkable memory: the phase behavior of the gel depends on whether the gel has experienced the most swollen phase or the most collapsed phase in the immediate past. The information is stored and reversibly erased in the form of a macroscopic phase transition behavior. The structure factors corresponding to these four phases were obtained by SANS, which indicated the presence of characteristic structures depending on pH and temperature, particularly in the shrunken state. (orig.)

  17. 21 CFR 520.1720d - Phenylbutazone gel.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Phenylbutazone gel. 520.1720d Section 520.1720d... DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1720d Phenylbutazone gel. (a) Specifications. Each 30 grams of gel contains 4 grams of phenylbutazone. (b) Sponsor. See No. 061623 in §...

  18. Halogen-bonding-triggered supramolecular gel formation.

    Science.gov (United States)

    Meazza, Lorenzo; Foster, Jonathan A; Fucke, Katharina; Metrangolo, Pierangelo; Resnati, Giuseppe; Steed, Jonathan W

    2013-01-01

    Supramolecular gels are topical soft materials involving the reversible formation of fibrous aggregates using non-covalent interactions. There is significant interest in controlling the properties of such materials by the formation of multicomponent systems, which exhibit non-additive properties emerging from interaction of the components. The use of hydrogen bonding to assemble supramolecular gels in organic solvents is well established. In contrast, the use of halogen bonding to trigger supramolecular gel formation in a two-component gel ('co-gel') is essentially unexplored, and forms the basis for this study. Here, we show that halogen bonding between a pyridyl substituent in a bis(pyridyl urea) and 1,4-diiodotetrafluorobenzene brings about gelation, even in polar media such as aqueous methanol and aqueous dimethylsulfoxide. This demonstrates that halogen bonding is sufficiently strong to interfere with competing gel-inhibitory interactions and create a 'tipping point' in gel assembly. Using this concept, we have prepared a halogen bond donor bis(urea) gelator that forms co-gels with halogen bond acceptors.

  19. Highly Elastic and Self-Healing Composite Colloidal Gels.

    Science.gov (United States)

    Diba, Mani; Wang, Huanan; Kodger, Thomas E; Parsa, Shima; Leeuwenburgh, Sander C G

    2017-03-01

    Composite colloidal gels are formed by the pH-induced electrostatic assembly of silica and gelatin nanoparticles. These injectable and moldable colloidal gels are able to withstand substantial compressive and tensile loads, and exhibit a remarkable self-healing efficiency. This study provides new, critical insight into the structural and mechanical properties of composite colloidal gels and opens up new avenues for practical application of colloidal gels.

  20. Transport Phenomena in Gel

    Directory of Open Access Journals (Sweden)

    Masayuki Tokita

    2016-05-01

    Full Text Available Gel becomes an important class of soft materials since it can be seen in a wide variety of the chemical and the biological systems. The unique properties of gel arise from the structure, namely, the three-dimensional polymer network that is swollen by a huge amount of solvent. Despite the small volume fraction of the polymer network, which is usually only a few percent or less, gel shows the typical properties that belong to solids such as the elasticity. Gel is, therefore, regarded as a dilute solid because its elasticity is much smaller than that of typical solids. Because of the diluted structure, small molecules can pass along the open space of the polymer network. In addition to the viscous resistance of gel fluid, however, the substance experiences resistance due to the polymer network of gel during the transport process. It is, therefore, of importance to study the diffusion of the small molecules in gel as well as the flow of gel fluid itself through the polymer network of gel. It may be natural to assume that the effects of the resistance due to the polymer network of gel depends strongly on the network structure. Therefore, detailed study on the transport processes in and through gel may open a new insight into the relationship between the structure and the transport properties of gel. The two typical transport processes in and through gel, that is, the diffusion of small molecules due to the thermal fluctuations and the flow of gel fluid that is caused by the mechanical pressure gradient will be reviewed.

  1. Controlling the Morphology of Carbon Gels

    Directory of Open Access Journals (Sweden)

    S. R. Mukai

    2012-12-01

    Full Text Available Carbon gels are unique porous carbons, which aretypically obtained through the carbonization ofresorcinol-formaldehyde gels. This material ispractically an aggregate of nanometer-sized carbonparticles. Nanopores, mostly in the size range ofmesopores, exist between the particles. Smallerpores, micropores being the majority, also exist withinthe particles. Therefore, this material has ahierarchical pore system in which short microporesare directly connected to mesopores.The precursor of carbon gels can be obtained throughsol-gel transition. Therefore there is a high possibilitythat the morphology of the resulting carbon can beeasily controlled using various molding methods.We have actually challenged the controlling of themorphology of carbon gels, and have succeeded inobtaining them in the form of disks, microspheresand microhoneycombs. Details of such carbon gelswill be reported.

  2. Physicochemical behaviour of chitin gels.

    Science.gov (United States)

    Vachoud, L; Zydowicz, N; Domard, A

    2000-06-30

    Syneresis of chitin gels formed in the course of N-acetylation of chitosan in hydroalcoholic media has been studied. A critical cross-linking density related to a critical acetylation degree for which the gel undergoes weak syneresis and swells in water was shown (degree of acetylation (DA) 88%). Above this value, the weight loss during syneresis increases with DA. Conversely, syneresis decreases on increasing the polymer concentration, but disappears at a macroscopic level for a polymer concentration close to the critical concentration of entanglement in the initial solution. An increase in temperature favours the formation of hydrophobic interactions and new inter- and intramolecular hydrogen bondings. Due to the weak polyelectrolyte character of chitin, the weight of the gel depends on the pH and ionic strength of the media. Swelling-deswelling experiments show that the swelling of the gel is not fully reversible in relation with the formation of new cross-links during the depletion of the network. Our results reveals that the balance between segment-segment and segment-solvent interactions as well as the molecular mobility play the major role.

  3. Determination of Fluconazole In Situ Forming Eye Gel by HPLC%高效液相色谱法测定氟康唑眼用即型凝胶的含量

    Institute of Scientific and Technical Information of China (English)

    谢爱丽; 吴明钗

    2013-01-01

    Objective To establish a HPLC method for measuring the content of fluconazole in Situ Forming Eye Gel and simultaneously determining the content of fluconazole and chlorhexidine in this preparation.Methods The ODS-C18 chromatographic column was used with triethylamine buffer-methanol as the mobile phase,the flow rate was 1.0 mL/min and the detection wavelength was 260 nm.Results The linear ranges of fluconazole and chlorhexidine were 100-600 μg/mL(r =0.999 9,n =6) and 10-60 μg/mL (r =0.999 7,n =6) respectively; the average recovery rates were 102.78% and 101.52%,RSD 1.45% and 2.70% respectively.Conclusion The method is simple to operate and highly sensitive with good reproducibility and can be used for the content determination of this preparation.%目的 建立测定氟康唑眼用即型凝胶含量的高效液相色谱法,同时测定制剂中氟康唑、氯己定的含量.方法 采用ODS-C18色谱柱,以三乙胺缓冲液-甲醇为流动相,流速为1.0 mL/min,检测波长为260 nm.结果 氟康唑、氯己定质量浓度线性范围分别为100 ~ 600 μg/mL (r=0.999 9,n=6)和10 ~ 60 μg/mL(r=0.999 7,n=6),平均回收率分别为102.78%和101.52%,RSD分别为1.45%和2.70%.结论 所用方法操作简便、灵敏度高,重现性好,可用于该制剂的含量测定.

  4. 3D gel printing for soft-matter systems innovation

    Science.gov (United States)

    Furukawa, Hidemitsu; Kawakami, Masaru; Gong, Jin; Makino, Masato; Kabir, M. Hasnat; Saito, Azusa

    2015-04-01

    In the past decade, several high-strength gels have been developed, especially from Japan. These gels are expected to use as a kind of new engineering materials in the fields of industry and medical as substitutes to polyester fibers, which are materials of artificial blood vessels. We consider if various gel materials including such high-strength gels are 3D-printable, many new soft and wet systems will be developed since the most intricate shape gels can be printed regardless of the quite softness and brittleness of gels. Recently we have tried to develop an optical 3D gel printer to realize the free-form formation of gel materials. We named this apparatus Easy Realizer of Soft and Wet Industrial Materials (SWIM-ER). The SWIM-ER will be applied to print bespoke artificial organs, including artificial blood vessels, which will be possibly used for both surgery trainings and actual surgery. The SWIM-ER can print one of the world strongest gels, called Double-Network (DN) gels, by using UV irradiation through an optical fiber. Now we also are developing another type of 3D gel printer for foods, named E-Chef. We believe these new 3D gel printers will broaden the applications of soft-matter gels.

  5. Pulse Field Gel Electrophoresis.

    Science.gov (United States)

    Sharma-Kuinkel, Batu K; Rude, Thomas H; Fowler, Vance G

    2016-01-01

    Pulse Field Gel Electrophoresis (PFGE) is a powerful genotyping technique used for the separation of large DNA molecules (entire genomic DNA) after digesting it with unique restriction enzymes and applying to a gel matrix under the electric field that periodically changes direction. PFGE is a variation of agarose gel electrophoresis that permits analysis of bacterial DNA fragments over an order of magnitude larger than that with conventional restriction enzyme analysis. It provides a good representation of the entire bacterial chromosome in a single gel with a highly reproducible restriction profile, providing clearly distinct and well-resolved DNA fragments.

  6. A HYBRID POLYMER GEL AND ITS STATIC NONERGODICIT

    Institute of Scientific and Technical Information of China (English)

    Yue Zhao; Chi Wu

    2002-01-01

    We used a thermally reversible hybrid gel made of billions of physically jam-packed swollen thermally sensitive poly(N-isopropyl-acrylamide) chemical microgels. Laser light scattering study on a series of such hybrid gels formed at different gelling rates and temperatures revealed that the position-dependence of the scattering speckle pattern (static nonergodicity) came from large voids formed during the sol-gel transition. With a proper preparation, such a nonergodicity could be completely removed, indicating that the static nonergodicity generally observed in a gel is not intrinsic, but comes from the clustering "island" structure formed during the gelation process.

  7. Method for preparing hydrous zirconium oxide gels and spherules

    Science.gov (United States)

    Collins, Jack L.

    2003-08-05

    Methods for preparing hydrous zirconium oxide spherules, hydrous zirconium oxide gels such as gel slabs, films, capillary and electrophoresis gels, zirconium monohydrogen phosphate spherules, hydrous zirconium oxide spherules having suspendable particles homogeneously embedded within to form a composite sorbent, zirconium monohydrogen phosphate spherules having suspendable particles of at least one different sorbent homogeneously embedded within to form a composite sorbent having a desired crystallinity, zirconium oxide spherules having suspendable particles homogeneously embedded within to form a composite, hydrous zirconium oxide fiber materials, zirconium oxide fiber materials, hydrous zirconium oxide fiber materials having suspendable particles homogeneously embedded within to form a composite, zirconium oxide fiber materials having suspendable particles homogeneously embedded within to form a composite and spherules of barium zirconate. The hydrous zirconium oxide spherules and gel forms prepared by the gel-sphere, internal gelation process are useful as inorganic ion exchangers, catalysts, getters and ceramics.

  8. Triethylphosphite as a network forming agent enhances in-vitro biocompatibility and corrosion protection of hybrid organic-inorganic sol-gel coatings for Ti6Al4V alloys

    OpenAIRE

    El Hadad, AAG; Barranco, V.; Jiménez-Morales, A; Hickman, G; Galván, J.; Perry, CC

    2014-01-01

    In Press, Accepted Manuscript The biocompatibility and life of metallic implants can be enhanced through improving the biocompatibility and corrosion protection characteristics of the coatings used with these materials. In this study, triethylphosphite (TEP) was used to introduce phosphorus into organic-inorganic hybrid silica based sol-gel coatings prepared using gamma-methacryloxypropyltrimethoxysilane and tetramethylorthosilicate. Addition of TEP dramatically increased the rate of inter...

  9. Buckling Instability in Liquid Crystalline Physical Gels

    Science.gov (United States)

    Verduzco, Rafael; Meng, Guangnan; Kornfield, Julia A.; Meyer, Robert B.

    2006-04-01

    In a nematic gel we observe a low-energy buckling deformation arising from soft and semisoft elastic modes. We prepare the self-assembled gel by dissolving a coil side-group liquid-crystalline polymer coil copolymer in a nematic liquid crystal. The gel has long network strands and a precisely tailored structure, making it ideal for studying nematic rubber elasticity. Under polarized optical microscopy we observe a striped texture that forms when gels uniformly aligned at 35 °C are cooled to room temperature. We model the instability using the molecular theory of nematic rubber elasticity, and the theory correctly captures the change in pitch length with sample thickness and polymer concentration. This buckling instability is a clear example of a low-energy deformation that arises in materials where polymer network strains are coupled to the director orientation.

  10. K-Basin gel formation studies

    Energy Technology Data Exchange (ETDEWEB)

    Beck, M.A.

    1998-07-23

    A key part of the proposed waste treatment for K Basin sludge is the elimination of reactive uranium metal by dissolution in nitric acid (Fkirnent, 1998). It has been found (Delegard, 1998a) that upon nitric acid dissolution of the sludge, a gel sometimes forms. Gels are known to sometimes impair solid/liquid separation and/or material transfer. The purpose of the work reported here is to determine the cause(s) of the gel formation and to determine operating parameters for the sludge dissolution that avoid formation of gel. This work and related work were planned in (Fkunent, 1998), (Jewett, 1998) and (Beck, 1998a). This report describes the results of the tests in (Beck, 1998a) with non-radioactive surrogates.

  11. Elastocapillary Deformations and Fracture of Soft Gels

    Science.gov (United States)

    Daniels, Karen; Grzelka, Marion; Bostwick, Joshua

    When a droplet is placed on the surface of a soft gel, the surface deforms by an amount proportional to the elastocapillary length calculated from the ratio of surface tension and elastic modulus. For sufficiently large deformations, the gel can fracture due to the forces generated under the liquid-gel contact line. We observe that a starburst of channel fractures forms at the surface of the gel, driven by fluid propagating away from the central droplet. To understand the initiation of these cracks, we model the substrate as an incompressible, linear-elastic solid and quantify the elastic response. This provides quantitative agreement with experimental measurements of the number of fracture arms as a function of material properties and geometric parameters. In addition, we find that the initiation process is thermally-activated, with delay time that decreases as a function of the elastocapillary length.

  12. Triple-transforming gel prepared by β-cyclodextrin,diphenylamine and lithium chloride in N,N-dimethylacetamide

    Institute of Scientific and Technical Information of China (English)

    Yuan Yuan Li; Wen Jing Zhao; Hua Cheng Zhang; Tao Sun; Wei An; Fei Fei Xin; Ai You Hao

    2010-01-01

    This paper describes a triple-transforming gel system(gel-sol-gel')for the first time,which is a thermo-responsive and multicomponent organogel prepared by β-cyclodextrin(β-CD),diphenylamine(DPA)and lithium chloride(LiCl)in N,N-dimethylacetamide(DMAC)in a suitable proportion based on the supramolecular interactions.In the triple-transforming gel system,a gel(gel A)could be formed by β-CD,DPA and LiCl in DMAC at room temperature based on stirring,then the gel could transform into a clear solution based on heating,and then the other gel(gel B)can be formed at a relatively high temperature(Tgel,the gelation temperature by heating).The two gel states in the triple-transforming gel system have different microstructures.This gel system was characterized by OM,SEM,IR and rheology.

  13. Supramolecular Gel-Templated In Situ Synthesis and Assembly of CdS Quantum Dots Gels

    Science.gov (United States)

    Zhu, Lili; He, Jie; Wang, Xiaoliang; Li, Dawei; He, Haibing; Ren, Lianbing; Jiang, Biwang; Wang, Yong; Teng, Chao; Xue, Gi; Tao, Huchun

    2017-01-01

    Although many studies have attempted to develop strategies for spontaneously organizing nanoparticles (NPs) into three-dimensional (3D) geometries, it remains a fascinating challenge. In this study, a method for in situ synthesis and self-assembly of a CdS quantum dots (QDs) gel using a Cd supramolecular gel as a scaffold was demonstrated. During the QDs formation process, the Cd ions that constituted the Cd gels served as the precursors of the CdS QDs, and the oleic acid (OA) that ligated with the Cd in the supramolecular gels was capped on the surface of the CdS QDs in the form of carboxylate. The OA-stabilized CdS QDs were in situ synthesized in the entangled self-assembled fibrillar networks (SAFIN) of the Cd gels through reactions between the gelator and H2S. As a result, the QDs exactly replicated the framework of the SAFIN in the CdS QD gels instead of simply assembling along the SAFIN of the supramolecular gels. Moreover, the CdS QDs showed extraordinary sensitivity in the fluorescence detection of IO4 - anions. The facile one-step method developed here is a new approach to assembling nanostructured materials into 3D architectures and has general implications for the design of low molecular mass gelators to bring desired functionality to the developed supramolecular gels.

  14. Alkali cold gelation of whey proteins. Part I: sol-gel-sol(-gel) transitions.

    Science.gov (United States)

    Mercadé-Prieto, Ruben; Gunasekaran, Sundaram

    2009-05-19

    The cold gelation of preheated whey protein isolate (WPI) solutions at alkaline conditions (pH>10) has been studied to better understand the effect of NaOH in the formation and destruction of whey protein aggregates and gels. Oscillatory rheology has been used to follow the gelation process, resulting in novel and different gelation profiles with the gelation pH. At low alkaline pH, typical sol-gel transitions are observed, as in many other biopolymers. At pH>11.5, the system gels quickly, after approximately 300 s, followed by a slow degelation step that transforms the gel to a viscous solution. Finally, there is a second gelation step. This results in a surprising sol-gel-sol-gel transition in time at constant gelation conditions. At very high pH (>12.5), the degelation step is very severe, and the second gelation step is not observed, resulting in a sol-gel-sol transition. The first quick gelation step is related to the quick swelling of the WPI aggregates in alkali, as observed from light scattering, which enables the formation of new noncovalent interactions to form a gel network. These interactions are argued to be destroyed in the subsequent degelation step. Disulfide cross-linking is observed only in the second gelation step, not in the first step.

  15. Hexagonal phase based gel-emulsion (O/H1 gel-emulsion): formation and rheology.

    Science.gov (United States)

    Alam, Mohammad Mydul; Aramaki, Kenji

    2008-11-04

    The formation, stability, and rheological behavior of a hexagonal phase based gel-emulsion (O/H1 gel-emulsion) have been studied in water/C12EO8/hydrocarbon oil systems. A partial phase behavior study indicates that the oil nature has no effect on the phase sequences in the ternary phase diagram of water/C12EO8/oil systems but the domain size of the phases or the oil solubilization capacity considerably changes with oil nature. Excess oil is in equilibrium with the hexagonal phase (H1) in the ternary phase diagram in the H1+O region. The O/H1 gel-emulsion was prepared (formation) and kept at 25 degrees C to check stability. It has been found that the formation and stability of the O/H1 gel-emulsion depends on the oil nature. After 2 min observation (formation), the results show that short chain linear hydrocarbon oils (heptane, octane) are more apt to form a O/H1 gel-emulsion compared to long chain linear hydrocarbon oils (tetradecane, hexadecane), though the stability is not good enough in either system, that is, oil separates within 24 h. Nevertheless, the formation and stability of the O/H1 gel-emulsion is appreciably increased in squalane and liquid paraffin. It is surmised that the high transition temperature of the H1+O phase and the presence of a bicontinuous cubic phase (V1) might hamper the formation of a gel-emulsion. It has been pointed out that the solubilization of oil in the H1 phase could be related to emulsion stability. On the other hand, the oil nature has little or no effect on the formation and stability of a cubic phase based gel-emulsion (O/I1 gel-emulsion). From rheological measurements, it has found that the rheogram of the O/H1 gel-emulsion indicates gel-type structure and shows shear thinning behavior similar to the case of the O/I1 gel-emulsion. Rheological data infer that the O/I1 gel-emulsion is more viscous than the O/H1 gel-emulsion at room temperature but the O/H1 gel-emulsion shows consistency at elevated temperature.

  16. Mechanically induced gel formation

    NARCIS (Netherlands)

    van Herpt, Jochem T.; Stuart, Marc C. A.; Browne, Wesley R.; Feringa, Ben L.

    2013-01-01

    Mechanical triggering of gelation of an organic solution by a carbazole-based bisurea organogelator is described. Both the duration of the mechanical stimulation and the gelator concentration control the gelation process and the characteristics of the gel obtained.

  17. Conformance Improvement Using Gels

    Energy Technology Data Exchange (ETDEWEB)

    Seright, Randall S.; Schrader, Richard; II Hagstrom, John; Wang, Ying; Al-Dahfeeri, Abdullah; Gary, Raven; Marin; Amaury; Lindquist, Brent

    2002-09-26

    This research project had two objectives. The first objective was to identify gel compositions and conditions that substantially reduce flow through fractures that allow direct channeling between wells, while leaving secondary fractures open so that high fluid injection and production rates can be maintained. The second objective was to optimize treatments in fractured production wells, where the gel must reduce permeability to water much more than that to oil.

  18. Crystallization from Gels

    Science.gov (United States)

    Narayana Kalkura, S.; Natarajan, Subramanian

    Among the various crystallization techniques, crystallization in gels has found wide applications in the fields of biomineralization and macromolecular crystallization in addition to crystallizing materials having nonlinear optical, ferroelectric, ferromagnetic, and other properties. Furthermore, by using this method it is possible to grow single crystals with very high perfection that are difficult to grow by other techniques. The gel method of crystallization provides an ideal technique to study crystal deposition diseases, which could lead to better understanding of their etiology. This chapter focuses on crystallization in gels of compounds that are responsible for crystal deposition diseases. The introduction is followed by a description of the various gels used, the mechanism of gelling, and the fascinating phenomenon of Liesegang ring formation, along with various gel growth techniques. The importance and scope of study on crystal deposition diseases and the need for crystal growth experiments using gel media are stressed. The various crystal deposition diseases, viz. (1) urolithiasis, (2) gout or arthritis, (3) cholelithiasis and atherosclerosis, and (4) pancreatitis and details regarding the constituents of the crystal deposits responsible for the pathological mineralization are discussed. Brief accounts of the theories of the formation of urinary stones and gallstones and the role of trace elements in urinary stone formation are also given. The crystallization in gels of (1) the urinary stone constituents, viz. calcium oxalate, calcium phosphates, uric acid, cystine, etc., (2) the constituents of the gallstones, viz. cholesterol, calcium carbonate, etc., (3) the major constituent of the pancreatic calculi, viz., calcium carbonate, and (4) cholic acid, a steroidal hormone are presented. The effect of various organic and inorganic ions, trace elements, and extracts from cereals, herbs, and fruits on the crystallization of major urinary stone and gallstone

  19. Preparation of chitosan gel

    Directory of Open Access Journals (Sweden)

    Lagerge S.

    2012-06-01

    Full Text Available Aerogel conditioning of the chitosan makes it possible to prepare porous solids of significant specific surface. The increase in the chitosan concentration or the degree of acetylation decreases the specific surface of the synthesized chitosan gel. Whereas drying with supercritical CO2 more effectively makes it possible to preserve the volume of the spheres of gel and to have a more significant specific surface in comparison with evaporative drying.

  20. Combined rheological and ultrasonic study of alginate and pectin gels near the sol-gel transition.

    Science.gov (United States)

    Audebrand, Michel; Kolb, Max; Axelos, Monique A V

    2006-10-01

    The sol-gel transition of biopolymer mixtures has been investigated by rheological and ultrasonic measurements. A scaling analysis of the data was performed for both types of measurements. A gel time was determined from rheology for the pure pectin samples, and the data could be fitted to a universal scaling form near the transition point. Its critical exponents are in good agreement with the predictions of scalar percolation theory. In addition, the ultrasonic signal of the pectin samples close to the transition was analyzed in terms of a high-frequency scaling approach for the attenuation and the velocity. For the alginate samples and the mixtures, for which the gel point cannot be determined reliably from rheology, the ultrasonic measurements were analyzed using the same scaling form as for the pectin sample, thus providing a method for estimating the gel point, even in the absence of rheological data.

  1. 凝胶注模固化及真空干燥优化ZTA牙科陶瓷的性能%Optimizing of curing and vacuum drying on dental zirconia-toughened alumina ceramics formed by gel-casting

    Institute of Scientific and Technical Information of China (English)

    杨征宇; 麻健丰; 童亦萍; 金琼; 杜若茜; 王思钱

    2012-01-01

    Objective: To investigate the effects of process parameters in curing polymerization and vacuum drying process of gelcast zirconia-toughened alumina (ZTA) ceramics, and the gel-casting route was optimized for dental all-ceramic restoration applications. Methods: The ZTA composite gel system was prepared by gelcasting. ①Samples were prepared respectively under different polymerizing temperature. Change of relative surface hardness on solidifying course was measured. The strength and shrinkage of ceramic green bodies were tested before and after sintering. ②0n the basis of previous studies, all the samples were dried under different allocation of temperature and vacuum degree. Their relative moisture content at each time point was characterized, and ceramic performance was estimated by means of three-point bending strength, linear shrinkage rate while sintered. Results: ①The temperature area between 40 ℃ to 70 ℃ could improve the gel reaction rate, while ceramic performance degraded at the temperature of 80 ℃ . ②Vacuum with warming environment could shorten gel ceramic drying time vastly,however,unbalanced proportion of temperature and vacuum degree may lead to tremendous damage of ceramics. Conclusion: ZTA gel system requires only 20 min for fully curing reaction at 50~60 ℃. In condition of 70~80 ℃ heating and 0.08~0.09 MPa of vacuum degree, wet ceramic matrix were completely dried within 2.5 h. Furthermore, the specimen showed a unbroken surface, with little defect and deformation in structure. This technological process has the promising for dental all-ceramic applications and may merit further research.%目的:研究影响氧化锆增韧氧化铝(ZTA)牙科陶瓷性能的凝胶注模成型固化反应过程和真空干燥条件,探索优化可应用于全瓷牙冠制备的工艺.方法:采用凝胶注模成型制备ZTA:①在不同固化温度下分别制备样品,检测各组试样在固化过程中表面相对硬度变化;烧结各组试

  2. Cavitation of a Physically Associating Gel

    Science.gov (United States)

    Mishra, Satish; Kundu, Santanu

    Self-assembly of block copolymers in selective solvents form ordered structures such as micelles, vesicles, and physically crosslinked gels due to difference in their interaction with solvents. These gels have wide range of applications in tissue engineering, food science and biomedical field due to their tunable properties and responsiveness with changing environmental conditions. Pressurization of a defect inside a physically associating gel can lead to elastic instability (cavitation) leading to failure of the gel. The failure behavior involves dissociation of physical networks. A thermoreversible, physically associating gel with different volume fractions of a triblock copolymer, poly (methyl methacrylate)-poly (n-butyl acrylate)-poly (methyl methacrylate) [PMMA-PnBA-PMMA] in 2-ethyl 1-hexanol, a midblock selective solvent, is considered here. Mechanical properties were investigated using shear rheology and cavitation experiments. The experimental data is fitted with a constitutive model that captures the stiffening behavior followed by softening behavior of a physical gel. Finite element analysis has been performed on cavitation rheology geometry to capture the failure behavior and to calculate energy release rate during cavitation experiments.

  3. Study of nuclear glasses alteration gel and synthesis of some model gels; Etude du gel d`alteration des verres nucleaires et synthese de gels modeles

    Energy Technology Data Exchange (ETDEWEB)

    Ricol, S.

    1995-10-05

    This work deals with the general problem of alteration of the reference nuclear glass R7T7. Attention is paid particularly to the altered layer formed at the glass surface during alteration process. In opposition to previous works, related essentially to glass dissolution kinetics based on chemical analyses of lixiviated elements, this thesis deals with alteration problems through structural studies of the reference glass and derived gel. This approach allows the determination of mechanisms for the gel formation and a better understanding of the behaviour of glasses towards lixiviation. Both approaches appeared complementary. Based on several spectroscopic techniques, this work showed the particular role of cations such as calcium, zirconium and iron. Studies of silica-based synthetic gels showed the synergic effect of formers cation and of one highly coordinated cation. The variation of the wavenumber related to Si-O-Si asymmetric stretching vibration can be correlated to O/Si ratio for ternary systems Si/Na/Zr. On the contrary, the Si losses of the materials depend on the number of non-bridging oxygen atoms. In the perspective of long-term behaviour, the alteration gel presents better characteristics than initial glass. It is therefore a highly stable material in static conditions. In the same way, synthetic gels are materials with very low solubilities (much lower than the alteration gel) and could be used as confining matrices. (authors). refs., 71 figs., 37 tabs.

  4. Forming foam structures with carbon foam substrates

    Science.gov (United States)

    Landingham, Richard L.; Satcher, Jr., Joe H.; Coronado, Paul R.; Baumann, Theodore F.

    2012-11-06

    The invention provides foams of desired cell sizes formed from metal or ceramic materials that coat the surfaces of carbon foams which are subsequently removed. For example, metal is located over a sol-gel foam monolith. The metal is melted to produce a metal/sol-gel composition. The sol-gel foam monolith is removed, leaving a metal foam.

  5. Creation of Functional Organic Gels Based on Oligothiophenes

    Institute of Scientific and Technical Information of China (English)

    Liu Ping; Zhao Qi-zhong; Hu Jian-hua; Zhou Xiao-ping; Deng Wen-ji; Xu Yun-hua

    2004-01-01

    Polymer gels have received a great deal of attention not only from scientific interest but also for their practical applications. Recently, low molecular-weight organic gels have also been receiving growing attention. However, their have been few studies of low molecular-weight organic gels in contrast to extensive studies of polymer gels.In order to develop a novel class of low-molecular-weight organic gels and to gain an insight into the relationship between molecular structures of gel-forming compounds and gel-forming properties, a novel family of low molecular-weight organic compounds containing oligothiophene,N,N'-distearyl-5,5"-(2,2':5',2"-terthiophe-ne)dicarboxamide(DNC183T),N,N'-dialkyl-5,5"-(3,3"-dioctyl-2,2':5',2"-terthiophene)dicarboxamide(DNCnDOc3T, n = 5, 8, 16, 18)and N,N'-distearyl-5,5'"-( 3,3'"-dioctyl- 2,2':5',2 ":5",2'"-quaterthiophene)dicarboxamide(DNC1sDOc4T), were designed and synthesized. Whereas DNC183T did not form gels with organic solvents, DNCnDOc3T(n = 8, 16, 18) and DNC18DOc4T were found to form gels with certain organic solvents. These are the first examples of low molecular-weight organic gels containing an oligothiophene moiety. It is of intest to note that while DNC8DOc3T forms opaque gels with alcohols,e.g. ethanol and isopropanol, DNC16DOc3T, DNC18DOc3T and DNC18DOc4Tform transparent gels with hydrocarbon solvents such as heptane, octane, undecane, and others. It is shown that the intermolecular hydrogen bonding and intermolecular interactions between the long alkyl chain in the N-alkylcarboxamide group as well as the incorporation of an alkyl group at the β-position of the thiophene ring play an important role for the formation of gels. The optical micrographs of gels and the SEM images of xerogels showed three-dimensional networks of fibrous bundle structures.DNC18DOc4T gels was found to exhibit a reversible clear color change on electrochemical oxidation and reduction. Thus, low molecular-weight organic gels function as a new

  6. Design of Autonomous Gel Actuators

    Directory of Open Access Journals (Sweden)

    Shuji Hashimoto

    2011-01-01

    Full Text Available In this paper, we introduce autonomous gel actuators driven by chemical energy. The polymer gels prepared here have cyclic chemical reaction networks. With a cyclic reaction, the polymer gels generate periodical motion. The periodic motion of the gel is produced by the chemical energy of the oscillatory Belouzov-Zhabotinsky (BZ reaction. We have succeeded in making synthetic polymer gel move autonomously like a living organism. This experimental fact represents the great possibility of the chemical robot.

  7. Fibril Formation from Pea Protein and Sesequent Gel Formation

    NARCIS (Netherlands)

    Munialo, C.D.; Martin, A.H.; Linden, van der E.; Jongh, de H.H.J.

    2014-01-01

    The objective of this study was to characterize fibrillar aggregates made using pea proteins, to assemble formed fibrils into protein-based gels, and to study the rheological behavior of these gels. Micrometer-long fibrillar aggregates were observed after pea protein solutions had been heated for 20

  8. Fibril Formation from Pea Protein and Subsequent Gel Formation

    NARCIS (Netherlands)

    Munialo, XC.D.; Martin, A.H.; Linden, E. van der; Jongh, H.H.J de

    2014-01-01

    The objective of this study was to characterize fibrillar aggregates made using pea proteins, to assemble formed fibrils into protein-based gels, and to study the rheological behavior of these gels. Micrometer-long fibrillar aggregates were observed after pea protein solutions had been heated for 20

  9. Deformation and fracture behavior of simulated particle gels

    NARCIS (Netherlands)

    Rzepiela, A.A.

    2003-01-01

    In this PhD project rheological properties of model particle gels are investigated using Brownian Dynamics (BD) simulations. Particle gels are systems of colloidal particles that form weakly bonded percolating networks interpenetrated by a suspending fluid. They are characterized as s

  10. Highly Elastic and Self-Healing Composite Colloidal Gels.

    NARCIS (Netherlands)

    Diba, M.; Wang, H.; Kodger, T.E.; Parsa, S.; Leeuwenburgh, S.C.G.

    2017-01-01

    Composite colloidal gels are formed by the pH-induced electrostatic assembly of silica and gelatin nanoparticles. These injectable and moldable colloidal gels are able to withstand substantial compressive and tensile loads, and exhibit a remarkable self-healing efficiency. This study provides new,

  11. Gel electrolytes and electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Fleischmann, Sven; Bunte, Christine; Mikhaylik, Yuriy V.; Viner, Veronika G.

    2017-09-05

    Gel electrolytes, especially gel electrolytes for electrochemical cells, are generally described. In some embodiments, the gel electrolyte layers comprise components a) to c). Component a) may be at least one layer of at least one polymer comprising polymerized units of: a1) at least one monomer containing an ethylenically unsaturated unit and an amido group and a2) at least one crosslinker. Component b) may be at least one conducting salt and component c) may be at least one solvent. Electrodes may comprise the components a), d) and e), wherein component a) may be at least one layer of at least one polymer as described herein. Component d) may be at least one electroactive layer and component e) may be at least one ceramic layer. Furthermore, electrochemical cells comprising component a) which may be at least one layer of at least one polymer as described herein, are also provided.

  12. Active Polymer Gel Actuators

    Directory of Open Access Journals (Sweden)

    Shuji Hashimoto

    2010-01-01

    Full Text Available Many kinds of stimuli-responsive polymer and gels have been developed and applied to biomimetic actuators or artificial muscles. Electroactive polymers that change shape when stimulated electrically seem to be particularly promising. In all cases, however, the mechanical motion is driven by external stimuli, for example, reversing the direction of electric field. On the other hand, many living organisms can generate an autonomous motion without external driving stimuli like self-beating of heart muscles. Here we show a novel biomimetic gel actuator that can walk spontaneously with a wormlike motion without switching of external stimuli. The self-oscillating motion is produced by dissipating chemical energy of oscillating reaction. Although the gel is completely composed of synthetic polymer, it shows autonomous motion as if it were alive.

  13. Utilizing ATRP to Design Self-Regenerating Polymer Gels

    Science.gov (United States)

    Yong, Xin; Averick, Saadyah; Kuksenok, Olga; Matyjaszewski, Krzysztof; Balazs, Anna

    2014-03-01

    Using newly developed computational approaches, we design a gel system capable of re-growth after a substantial section of the material was cut away. Atom transfer radical polymerization (ATRP) is utilized to form gels with preserved ``living'' chain ends and residual unreacted cross-linking groups. When this ``living'' gel is cut, these active species are exposed to a solution containing monomer, crosslinker, initiator and catalyst. A ``repairing'' polymerization occurs from both the new initiators introduced in the outer solution and the reactive chain ends present at the cut site. This new polymerization results in a covalent linkage between the initial living gel and the new gel prepared in the outer solution, and the connection is promoted by the presence of residual cross-linking groups. By measuring the diffusion of the outer solution into the cut gel and characterizing the width and strength of the interface between the initial and new gels, we identify the optimum parameters that yield a strong interface between the gel layers. Our simulations results are in good agreement with our experimental studies. This strategy not only regenerates ``injured'' gels, but also offers a novel means to engineer multi-layered composite gels.

  14. Different Applications of Rheological Techniques in Studies of Physical Gels

    DEFF Research Database (Denmark)

    Hvidt, Søren

    . Rheological techniques are used extensively in studies of physical gels and gelation. In the lecture some of the common techniques used in studies of gels will be addressed. Small amplitude oscillatory measurements are the most common type of measurement performed, and such measurements allow a determination......Physical gels are of both great scientific and practical interest. The cytoplasm of cells, which consists of a complex physical gel of protein filaments, is important for most of the cellular processes including cell division and cell motility. Nature has developed this complex system......-forming biopolymers. Physical gels are also used in the paint industry to minimize sedimentation. Delayed and controlled drug release is of importance in the pharmaceutical industry, and one way to obtain this control is to hide active components in physical gels. Two excellent reviews cover many aspects...

  15. Different Applications of Rheological Techniques in Studies of Physical Gels

    DEFF Research Database (Denmark)

    Hvidt, Søren

    -forming biopolymers. Physical gels are also used in the paint industry to minimize sedimentation. Delayed and controlled drug release is of importance in the pharmaceutical industry, and one way to obtain this control is to hide active components in physical gels. Two excellent reviews cover many aspects...... of the elastic storage modulus, G’, and loss modulus, G”, as a function of e.g. frequency, temperature, or time. Two other techniques, which can be very useful for studies of gels, are creep and relaxation measurements. These techniques, which allow determinations of the compliance and the relaxation modulus...... importance in many applications. When a gel is deformed with increasing strain or strain amplitudes most gels eventually rupture. The yield stress denotes the maximum stress gels can withstand. Different ways of determining yield stress will be illustrated. Oscillatory measurements only allow determinations...

  16. Aging and nonlinear rheology of thermoreversible colloidal gels

    Science.gov (United States)

    Wagner, Norman; Gordon, Melissa; Kloxin, Christopher

    Colloidal dispersions are found in a wide variety of consumer products such as paint, food and pharmaceuticals. We investigate gel formation and aging in a thermoreverible gel consisting of octadecyl-coated silica nanoparticles suspended in n-tetradecane. In this system, the octadecyl brush can undergo a phase change allowing the attractions between particles to be tuned by temperature (1,2). By probing the system with steady shear and large amplitude oscillatory shear, we have studied the effect of thermal history and shear history on gel formation and gel mechanical properties during aging. Gels were formed by approaching a common temperature from above and below to determine a reference state from which creep tests were conducted. Creep ringing was observed as expected for the viscoelastic gel. The rheological aging is interpreted in terms of the gel microstructure formed with differing thermal and shear histories to determine how processing affects structure. Recently proposed scaling laws for the rheology and structure under flow are explored within the context of gel aging (3). Through rheological and microstructural measurements, we will further the understanding of gel formation and aging in this model system which may be applied to processing conditions in an industrial setting.

  17. Comparative fluorescence two-dimensional gel electrophoresis using a gel strip sandwich assembly for the simultaneous on-gel generation of a reference protein spot grid.

    Science.gov (United States)

    Ackermann, Doreen; Wang, Weiqun; Streipert, Benjamin; Geib, Birgit; Grün, Lothar; König, Simone

    2012-05-01

    The comparison of proteins separated on 2DE is difficult due to gel-to-gel variability. Here, a method named comparative fluorescence gel electrophoresis (CoFGE) is presented, which allows the generation of an artificial protein grid in parallel to the separation of an analytical sample on the same gel. Different fluorescent stains are used to distinguish sample and marker on the gel. The technology combines elements of 1DE and 2DE. Special gel combs with V-shaped wells are placed in a stacking gel above the pI strip. Proteins separated on the pI strip are electrophoresed at the same time as marker proteins (commercially available purified protein of different molecular weight) placed in V-wells. In that way, grids providing approximately 100 nodes as landmarks for the determination of protein spot coordinates are generated. Data analysis is possible with commercial 2DE software capable of warping. The method improves comparability of 2DE protein gels, because they are generated in combination with regular in-gel anchor points formed by protein standards. This was shown here for two comparative experiments with three gels each using Escherichia coli lysate. For a set of 47 well-defined samples spots, the deviation of the coordinates was improved from 7% to less than 1% applying warping using the marker grid. Conclusively, as long as the same protein markers, the same size of pI-strips and the same technology are used, gel matching is reproducibly possible. This is an important advancement for projects involving comparison of 2DE-gels produced over several years and in different laboratories. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Hybrid sol-gel optical materials

    Science.gov (United States)

    Zeigler, John M.

    1992-01-01

    Hybrid sol-gel materials comprise silicate sols cross-linked with linear polysilane, polygermane, or poly(silane-germane). The sol-gel materials are useful as optical identifiers in tagging and verification applications and, in a different aspect, as stable, visible light transparent non-linear optical materials. Methyl or phenyl silicones, polyaryl sulfides, polyaryl ethers, and rubbery polysilanes may be used in addition to the linear polysilane. The linear polymers cross-link with the sol to form a matrix having high optical transparency, resistance to thermooxidative aging, adherence to a variety of substrates, brittleness, and a resistance to cracking during thermal cycling.

  19. Sol-gel process for the manufacture of high power switches

    Science.gov (United States)

    Landingham, Richard L.; Satcher, Jr, Joe; Reibold, Robert

    2016-09-27

    According to one embodiment, a photoconductive semiconductor switch includes a structure of nanopowder of a high band gap material, where the nanopowder is optically transparent, and where the nanopowder has a physical characteristic of formation from a sol-gel process. According to another embodiment, a method includes mixing a sol-gel precursor compound, a hydroxy benzene and an aldehyde in a solvent thereby creating a mixture, causing the mixture to gel thereby forming a wet gel, drying the wet gel to form a nanopowder, and applying a thermal treatment to form a SiC nanopowder.

  20. gonarthrosis; therapy; Karmolis gel.

    Directory of Open Access Journals (Sweden)

    B. V. Zavodovsky

    2014-01-01

    Full Text Available Objective: to evaluate the efficacy, tolerance, and safety of Carmolis topical gel in patients with gonarthrosis. Subjects and methods. The investigation enrolled 60 patients with knee osteoarthrosis (OA who were divided into two groups: 1 40 patients received Carmolis topical gel in addition to nonsteroidal anti-inflammatory drugs (NSAIDs; 2 20 patients took NSAIDS only (a control group. The treatment duration was 2 weeks. In both groups, therapeutic effectiveness was evaluated from changes in the WOMAC index, pain intensity at rest and during movement by the visual analog scale (VAS. The disease activity was also assessed by a physician and a patient (a Likert scale, local swelling and hyperthermia of the affected joint, the efficiency of treatment, and daily needs for NSAIDs were deter- mined. Results. The performed treatment in both patent groups showed positive clinical changes. Combination therapy involving Carmolis gel displayed greater reductions in WOMAC pain and resting and movement pain than in the con- trol group (as assessed by VAS. On completion of the investigation, considerable improvement was, in the physicians' opinion, noted in 38 (95% patients using Carmolis, which coincided with self-evaluations of the patients. During Carmolis application, the starting dose of NSAIDs could be reduced in 18 (45% patients. Adverse reactions occurred infrequently and required no therapy discontinuation. Conclusion. Carmolis topical gel is effective in relieving clinical symptoms in patients with gonarthrosis, well tolerated, and safe, which can recommend its use in the combination treatment of knee OA.

  1. Calcium Impact on Milk Gels Formation

    DEFF Research Database (Denmark)

    Koutina, Glykeria

    to be formed. In addition the low amount of micellar calcium caused a more compact gel structure with many protein aggregates. The results of this study highlighted the importance of calcium for the formation of acid, calcium and rennet gels. The content and the interactions of calcium with proteins during...... salts. The perturbation of calcium equilibria by these factors will affect the final properties of acid, calcium and rennet milk gels. By decreasing the pH from 6.0 to 5.2 (acid gels), the calcium equilibrium was significantly affected by temperature (4, 20, 30, 40 oC), and different combinations...... of temperature and pH may result in different final structure properties in dairy products such as cheese. A significant amount of calcium remained in the micelles between pH 4.8 and 4.6, this can contribute to the final strength of acid milk gels, such as in yogurt or in cream cheeses. After the gelation point...

  2. Comparative Two-Dimensional Fluorescence Gel Electrophoresis.

    Science.gov (United States)

    Ackermann, Doreen; König, Simone

    2018-01-01

    Two-dimensional comparative fluorescence gel electrophoresis (CoFGE) uses an internal standard to increase the reproducibility of coordinate assignment for protein spots visualized on 2D polyacrylamide gels. This is particularly important for samples, which need to be compared without the availability of replicates and thus cannot be studied using differential gel electrophoresis (DIGE). CoFGE corrects for gel-to-gel variability by co-running with the sample proteome a standardized marker grid of 80-100 nodes, which is formed by a set of purified proteins. Differentiation of reference and analyte is possible by the use of two fluorescent dyes. Variations in the y-dimension (molecular weight) are corrected by the marker grid. For the optional control of the x-dimension (pI), azo dyes can be used. Experiments are possible in both vertical and horizontal (h) electrophoresis devices, but hCoFGE is much easier to perform. For data analysis, commercial software capable of warping can be adapted.

  3. Unusual reversible elastomeric gels from Nostoc commune.

    Science.gov (United States)

    Rodriguez, Sol; Gonzales, Karen N; Romero, Eduardo G; Troncoso, Omar P; Torres, Fernando G

    2017-04-01

    Nostoc commune cyanobacteria grow in extreme conditions of desiccation and nutrient-poor soils. Their colonies form spherical gelatinous bodies are composed of a variety of polysaccharides that allow them to store water and nutrients. In this paper, we study this type of biological gel that shows characteristics of both chemical and physical gels. The structure of this gel was assessed by means of scanning electron microscopy, plate-plate rheometry, Fourier transform infrared spectroscopy and absorption/desorption tests. The storage modulus of this gel was found to be frequency independent, as is usual for chemical gels. The stress sweeps showed a reversible stress softening behaviour that was explained in terms of the physical nature of the interactions of this network. The high density of physical crosslinks probably allows this physical network to behave as a highly elastomeric chemical network, limiting the relaxation of individual chains. On the other hand, reversibility is associated with the physical nature of its bonds. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Self-Pumping Active Gel

    Science.gov (United States)

    Wu, Kun-Ta; Hishamunda, Jean Bernard; Fraden, Seth; Dogic, Zvonimir

    Isotropic active gels are the network which is consist of cross-linked building blocks and the structure of which changes randomly and isotropically with time. Dogic et. al. show that pairs of anti-parallel microtubules form extensile bundles, which merge, extend, and buckle. In an unconfined system, the dynamics of these bundles causes spontaneous turbulent-like flow driven by motion of microscopic molecular motors. We found that confining these active gels in a millimeter sized toroids causes a transition into a new dynamical state characterized by circulation currents persisting for hours until ATP is depleted. We show how toroid dimensions impact the properties of self-organized circular currents, how directions of circulation can be designed by engineering ratchet-shaped boundaries, and how circulations of connected toroids can be either synchronized or antisynchronized. Furthermore, we demonstrate that the flow rate in the circulation is independent of curvature and length of flow path. The flow rate persists for centimeters without decay, disregarding conventional pipe flow resistance. Such findings pave the path to self-pumping pipe transport and performing physical work with biological system.

  5. A Biophysical Analysis of the Ocr Protein Gel

    OpenAIRE

    Higham, Richard G

    2007-01-01

    Ocr is unusual among proteins in its ability to form a transparent gel at high ammonium sulphate concentrations. This transition was investigated using a combination of spectroscopic, microscopic and rheological techniques. It occurs sharply at a concentration of 3.2M ammonium sulphate and is not observed with other types of salt. Rheological measurements showed that rather than precipitating under such conditions, ocr forms a weak viscoelastic gel. Far UV circular dichroism sp...

  6. 水溶性酚醛树脂-水玻璃互穿网络结构耐温堵剂的合成与性能评价%Synthesis and performance evaluation of high temperature plugging agent with IPN gel formed with water soluble phenol-formaldehyde resin and sodium silicate

    Institute of Scientific and Technical Information of China (English)

    罗懿

    2016-01-01

    以水溶性酚醛树脂、水玻璃和抑水剂为材料,基于溶胶‐凝胶技术合成出一种互穿网络结构的有机‐无机凝胶体系。互穿网络凝胶体系的交联时间随水溶性酚醛树脂浓度增大而缩短,交联强度则增强。当体系中水玻璃质量分数为0~3%时,交联时间随浓度增大而延长,交联强度随浓度增大而增强。水溶性酚醛树脂‐水玻璃互穿网络结构致密且匀称,满足深部封堵的要求,可作为耐温堵剂使用。%In this paper ,an interpenetrating network (IPN ) organic‐inorganic gel system was prepared by water soluble phenol‐formaldehyde resin ,sodium silicate and water‐resistant agent based on sol‐gel technology .The gelation time of IPN gel system shortens with the concentration increase of water soluble phenol‐formaldehyde resin ,while gelation strength increase .When the concentration of sodium silicate is 0 ~ 3% , the gelation time lengthens and the gelation strength enhances with concentration increase .The interpenetrating network structure formed by water soluble phenolic‐resin and sodium silicate is dense and symmetrical .The system can be used as a high temperature plugging agent and satisfied the deep sealing condition .

  7. Structure and rheological properties of acid-induced egg white protein gels

    NARCIS (Netherlands)

    Weijers, M.; Velde, van de F.; Stijnman, A.; Pijpekamp, van de A.; Visschers, R.W.

    2006-01-01

    This study compares the rheological properties of acid-induced gels prepared of industrial spray-dried egg white proteins (EWP) with the acid-induced gels prepared of ovalbumin (OA) and whey protein isolate (WPI). Also we aimed to form transparent gels of EWP by means of the cold-gelation process. W

  8. Active Polymer Gel Actuators

    OpenAIRE

    Shuji Hashimoto; Ryo Yoshida; Yusuke Hara; Shingo Maeda

    2010-01-01

    Many kinds of stimuli-responsive polymer and gels have been developed and applied to biomimetic actuators or artificial muscles. Electroactive polymers that change shape when stimulated electrically seem to be particularly promising. In all cases, however, the mechanical motion is driven by external stimuli, for example, reversing the direction of electric field. On the other hand, many living organisms can generate an autonomous motion without external driving stimuli like self-beating of he...

  9. Effects of two cryoprotectant on gel forming and cryoprotective properties of tilapia surimi%两种抗冻剂对罗非鱼鱼糜的凝胶性及抗冻性的影响

    Institute of Scientific and Technical Information of China (English)

    米顺利; 石君连; 王双龙; 艾芳芳; 陆桂梅; 雷晓婷; 白洋

    2012-01-01

    In order to investigate the effect of cryoprotectant on the freezing preservation of frozen tilapia surimi, goods cryoprotectant(sucrose/sorbitol) and trehalose were added in the tilapia surmi before being frozen. In this artice, the protein freezing denaturation of tilapia surimi during the freezing and frozen process was primary discussed by using gel strength, salt-solubility of myofibrillar protein and Ca^2+-ATPase activity as parameters. The results showed that the additive of trehalose compared with goods cryprotectant more effective with preventing the protein freeze denaturation in tilapia surimi during the frozen storage and improve the quality of its products.%以凝胶性能、盐溶性蛋白含量及肌原纤维蛋白Ca^2+-ATPase活性的变化为指标,研究了商业抗冻剂(蔗糖/山梨醇)和海藻糖在罗非鱼鱼糜冻藏过程中对蛋白质变性的影响。结果表明,冷藏20周后,添加8%商业抗冻剂和8%海藻糖组鱼糜的破断强度分别比对照高出39.14%和601.11%,凹陷强度分别比对照高出34.14%和39.85%,凝胶强度分别比对照高出36.03%和41.05%,盐溶性蛋白含量分别比对照高出30.00%和38.86%,肌原纤维蛋白Ca^2+-ATPase活性分别为下降了67.12%和57.89%,而对照的肌原纤维蛋白Ca2^+-ATPase没有活性。结论:添加8%海藻糖比8%商业抗冻剂更能有效抑制罗非鱼鱼糜在冻藏过程中的蛋白质变性,减缓凝胶强度的降低,提高鱼糜制品的质量。

  10. Teaching Form as Form

    DEFF Research Database (Denmark)

    Keiding, Tina Bering

    2012-01-01

    understanding of form per se, or, to use an expression from this text, of form as form. This challenge can be reduced to one question: how can design teaching support students in achieving not only the ability to recognize and describe different form-related concepts in existing design (i.e. analytical...... means that form serves both as the connective value and as the concept for reflection. In other words, form is observed as form, not anything else. The didactical challenge of teaching form as form is accentuated by students’ everyday-based pre-orientation towards function at the expense of form....... In general, students enter design education as far more skilled observers with regards to function than form. They are, in other words, predisposed to observe objects asking ‘what is?’, rather than ‘how is?’. This habit has not only cognitive implications. It is closely intertwined with a rudimentary...

  11. Teaching Form as Form

    DEFF Research Database (Denmark)

    Keiding, Tina Bering

    2012-01-01

    understanding of form per se, or, to use an expression from this text, of form as form. This challenge can be reduced to one question: how can design teaching support students in achieving not only the ability to recognize and describe different form-related concepts in existing design (i.e. analytical...... means that form serves both as the connective value and as the concept for reflection. In other words, form is observed as form, not anything else. The didactical challenge of teaching form as form is accentuated by students’ everyday-based pre-orientation towards function at the expense of form...... vocabulary of form. Even in cases in which teaching uses terms and phrases from everyday life (for instance, ‘intersection’), the meaning of the word cannot necessarily be transmitted directly from an ordinary vocabulary into a design context. And it is clearly a common issue for the contributions...

  12. Coupling of gelation and glass transition in a biphasic colloidal mixture--from gel-to-defective gel-toglass

    Science.gov (United States)

    Cheng, He; Jia, Di; Han, Charles

    The state transition from gel to glass is studied in a biphasic mixture of polystyrene core/poly (N-isopropylacrylamide) shell (CS) microgels and sulfonated polystyrene (PSS) particles. At 35 °C, the interaction between CS is due to short-range Van der Waals attraction while that between PSS is from long-range electrostatic repulsion. During variation of the relative ratio of the two species at a fixed apparent total volume fraction, the mixture exhibits a gel-to-defective gel-to-glass transition. When small amounts of PSS are introduced into the CS gel network, some of them are kinetically trapped, causing a change in its fractal structure, and act as defects to weaken the macroscopic gel strength. An increase of PSS content in the mixture promotes the switch from gel to defective gel, e . g . , the typical two-step yielding gel merges into one-step yielding. This phenomenon is an indication that inter-cluster bond breakage coincides with intra-cluster bond fracture. As the relative volume fraction of PSS exceeds a critical threshold, the gel network can no longer be formed; hence, the mixture exhibits characteristics of glass. A state diagram of the biphasic mixture is constructed, and the landscape of the different transitions will be described in future studies The financial support from the National Basic Research Program of China (973 Program, 2012CB821500) is gratefully acknowledged.

  13. Making MgO/SiO2 Glasses By The Sol-Gel Process

    Science.gov (United States)

    Bansal, Narottam P.

    1989-01-01

    Silicon dioxide glasses containing 15 mole percent magnesium oxide prepared by sol-gel process. Not made by conventional melting because ingredients immiscible liquids. Synthesis of MgO/SiO2 glass starts with mixing of magnesium nitrate hexahydrate with silicon tetraethoxide, both in alcohol. Water added, and transparent gel forms. Subsequent processing converts gel into glass. Besides producing glasses of new composition at lower processing temperatures, sol-gel method leads to improved homogeneity and higher purity.

  14. Structure Analysis of Jungle-Gym-Type Gels by Brownian Dynamics Simulation

    Science.gov (United States)

    Ohta, Noriyoshi; Ono, Kohki; Takasu, Masako; Furukawa, Hidemitsu

    2008-02-01

    We investigated the structure and the formation process of two kinds of gels by Brownian dynamics simulation. The effect of flexibility of main chain oligomer was studied. From our results, hard gel with rigid main chain forms more homogeneous network structure than soft gel with flexible main chain. In soft gel, many small loops are formed, and clusters tend to shrink. This heterogeneous network structure may be caused by microgels. In the low density case, soft gel shows more heterogeneity than the high density case.

  15. The Chemistry and Applications of π-Gels

    Science.gov (United States)

    Ghosh, Samrat; Praveen, Vakayil K.; Ajayaghosh, Ayyappanpillai

    2016-07-01

    π-Gels are a promising class of functional soft materials formed out of short π-conjugated molecules. By utilizing the chemistry of noncovalent interactions, researchers have created a wide range of π-gels that are composed of supramolecular polymers. During the last two decades, supramolecular gel chemistry has been pursued with the hope of developing new materials for applications in, for example, organic electronics, energy harvesting, sensing, and imaging. The high expectations for π-gels were centered mainly around their electronic properties, such as tunable emission, energy transfer, electron transfer, charge transport, and electrical conductivity; such properties are amenable to modulation through size and shape control of molecular assemblies. Although a large number of exciting publications have appeared, a major technological breakthrough is yet to be realized. In this review, we analyze the recent advancements in the area of functional π-gels and their scope in future applications.

  16. Viscoelastic nature of Au nanoparticle–PDMS nanocomposite gels

    Indian Academy of Sciences (India)

    Ritu Gupta; Hima K Nagamanasa; Rajesh Ganapathy; Giridhar U Kulkarni

    2015-08-01

    A stable gel of Au nanoparticles in polydimethylsiloxane (PDMS) nanocomposite is prepared by employing the curing agent of PDMS elastomer as a reducing agent for the formation of Au nanoparticles by an in-situ process. The viscoelastic nature of these gels is very sensitive to the Au nanoparticle loading and the synthetic temperature conditions. Even a very low Au content of 0.09 wt% is sufficient enough to bring in the transition from sponge state to gel state at room temperature. Higher synthetic temperature also forms sponge formation. Infrared and ultraviolet–visible spectroscopy measurements have provided insight into PDMS crosslinking and nanoparticle formation, respectively. The optimization of the gel properties can have direct influence on the processability of Au nanoparticle–PDMS nanocomposite gels, with interesting implications in electronic, optical and microfluidic devices.

  17. Elasto-hydrodynamic network analysis of colloidal gels

    Science.gov (United States)

    Swan, James; Varga, Zsigmond

    Colloidal gels formed at low particle volume fractions result from a competition between two rate processes: aggregation of colloids and compaction of pre-gel aggregates. Recent work has shown that the former process is highly sensitive to the nature of the hydrodynamic interactions between suspended colloids. This same sensitivity to hydrodynamic flows within the gel leads to pronounced differences in the spectrum of relaxation times and response to deformation of the gel. This talk explores those differences and their consequences through computational simulations and the framework of elasto-hydrodynamic network analysis. We demonstrate a significant impact of hydrodynamic interactions between gelled colloids on macroscopic gel dynamics and rheology as well as the effect of hydrodynamic screening in gelled materials.

  18. Gel Fabrication of Molybdenum “Beads”

    Energy Technology Data Exchange (ETDEWEB)

    Lowden, Richard Andrew [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division; Armstrong, Beth L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division; Cooley, Kevin M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division

    2016-11-01

    Spherical molybdenum particles or “beads” of various diameters are of interest as feedstock materials for the additive manufacture of targets and assemblies used in the production of 99Mo medical isotopes using accelerator technology. Small metallic beads or ball bearings are typically fabricated from wire; however, small molybdenum spheres cannot readily be produced in this manner. Sol-gel processes are often employed to produce small dense microspheres of metal oxides across a broad diameter range that in the case of molybdenum could be reduced and sintered to produce metallic spheres. These Sol-gel type processes were examined for forming molybdenum oxide beads; however, the molybdenum trioxide was chemically incompatible with commonly used gelation materials. As an alternative, an aqueous alginate process being assessed for the fabrication of oxide spheres for catalyst applications was employed to form molybdenum trioxide beads that were successfully reduced and sintered to produce small molybdenum spheres.

  19. Gel-eletroforese no diagnóstico da varíola Gel-electrophoresis in the smallpox diagnosis

    Directory of Open Access Journals (Sweden)

    Julio A. Mesquita

    1972-01-01

    Full Text Available O emprego de gel-eletroforese no diagnóstico da varíola, demonstrou ser ao menos trinta vezes (30X mais sensível que o teste de agar-gel, nas condições descritas (tabela I. Doze (12 espécimes, cujos testes convencionais de inoculação em ovos embrionados e de agar-gel resultaram positivos, foram testados em suas diluições originais congeladas por mais de um ano, sendo seis deles revelados por gel-eletroforese enquanto nenhum o foi por agar-gel (tabela II. Trinta e três (33 amostras isoladas no laboratório, foram testadas com material colhido de membrana cório-alantóica da primeira inoculação para o diagnóstico, conservado em glicerina 50%, resultando 15 positivas em gel-eletroforese e apenas 3 em agar-gel (tabela II. Os últimos 60 espécimes recebidos para diagnóstico, através a Campanha de Erradicação da Varíola, também resultaram negativos em gel-eletroforese, que não mostrou falsos-positivos nas condições descritas.The test of gel-electrophoresis applied to the pox virus group showed to be at least thirth times (30X more sensitive than agar-gel test on the described conditions (Table I. Twelve specimens, which were positives form Smallpox in the conventional tests of egg inoculation and agar-gel difusion test, have been screened in their original dilutions frozen for more than 1 year and six of them were still detectable by gel-eletrophoresis, while by agar-gel test any of them was positive (Table II. Thirty three Smallpox isolates have been tested with material from first egg inoculation (chorioallantoic membranes which have been stored in glycerin 50%, at - 15ºC. Fifteen of them were still positive by gel-electrophoresis and only 3 by agar-gel (Table II. The last 60 specimens received for diagnosis from Smallpox Erradication Campaign (CEV, were negatives by both tests. The gel-electrophoresis, did not show false-positives on described conditions.

  20. Factors influencing alginate gel biocompatibility.

    Science.gov (United States)

    Tam, Susan K; Dusseault, Julie; Bilodeau, Stéphanie; Langlois, Geneviève; Hallé, Jean-Pierre; Yahia, L'Hocine

    2011-07-01

    Alginate remains the most popular polymer used for cell encapsulation, yet its biocompatibility is inconsistent. Two commercially available alginates were compared, one with 71% guluronate (HiG), and the other with 44% (IntG). Both alginates were purified, and their purities were verified. After 2 days in the peritoneal cavity of C57BL/6J mice, barium (Ba)-gel and calcium (Ca)-gel beads of IntG alginate were clean, while host cells were adhered to beads of HiG alginate. IntG gel beads, however, showed fragmentation in vivo while HiG gel beads stayed firm. The physicochemical properties of the sodium alginates and their gels were thoroughly characterized. The intrinsic viscosity of IntG alginate was 2.5-fold higher than that of HiG alginate, suggesting a greater molecular mass. X-ray photoelectron spectroscopy indicated that both alginates were similar in elemental composition, including low levels of counterions in all gels. The wettabilities of the alginates and gels were also identical, as measured by contact angles of water on dry films. Ba-gel beads of HiG alginate resisted swelling and degradation when immersed in water, much more than the other gel beads. These results suggest that the main factors contributing to the biocompatibility of gels of purified alginate are the mannuronate/guluronate content and/or intrinsic viscosity.

  1. Method for preparing hydrous iron oxide gels and spherules

    Science.gov (United States)

    Collins, Jack L.; Lauf, Robert J.; Anderson, Kimberly K.

    2003-07-29

    The present invention is directed to methods for preparing hydrous iron oxide spherules, hydrous iron oxide gels such as gel slabs, films, capillary and electrophoresis gels, iron monohydrogen phosphate spherules, hydrous iron oxide spherules having suspendable particles homogeneously embedded within to form composite sorbents and catalysts, iron monohydrogen phosphate spherules having suspendable particles of at least one different sorbent homogeneously embedded within to form a composite sorbent, iron oxide spherules having suspendable particles homogeneously embedded within to form a composite of hydrous iron oxide fiber materials, iron oxide fiber materials, hydrous iron oxide fiber materials having suspendable particles homogeneously embedded within to form a composite, iron oxide fiber materials having suspendable particles homogeneously embedded within to form a composite, dielectric spherules of barium, strontium, and lead ferrites and mixtures thereof, and composite catalytic spherules of barium or strontium ferrite embedded with oxides of Mg, Zn, Pb, Ce and mixtures thereof. These variations of hydrous iron oxide spherules and gel forms prepared by the gel-sphere, internal gelation process offer more useful forms of inorganic ion exchangers, catalysts, getters, dielectrics, and ceramics.

  2. The Influence of Microgravity on Silica Sol-Gel Formation

    Science.gov (United States)

    Sibille, L.; Smith, D. D.; Cronise, R.; Hunt, A. J.; Wolfe, D. B.; Snow, L. A.; Oldenberg, S.; Halas, N.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    We discuss space-flight experiments involving the growth of silica particles and gels. The effect of microgravity on the growth of silica particles via the sol-gel route is profound. In four different recipes spanning a large range of the parameter space that typically produces silica nanoparticles in unit-gravity, low-density gel structures were instead formed in microgravity. The particles that did form were generally smaller and more polydisperse than those grown on the ground. These observations suggest that microgravity reduces the particle growth rate, allowing unincorporated species to form aggregates and ultimately gel. Hence microgravity favors the formation of more rarefied structures, providing a bias towards diffusion-limited cluster-cluster aggregation. These results further suggest that in unit gravity, fluid flows and sedimentation can significantly perturb sol-gel substructures prior to gelation and these deleterious perturbations may be "frozen" into the resulting microstructure. Hence, sol-gel pores may be expected to be smaller, more uniform, and less rough when formed in microgravity.

  3. Formation and properties of gels based on lipo-plexes.

    Science.gov (United States)

    Pucci, Carlotta; Tardani, Franco; La Mesa, Camillo

    2014-06-12

    Aqueous systems containing sodium taurodeoxycholate and, eventually, soybean lecithin were investigated. Depending on the relative amounts of two such species, molecular, micellar, vesicular, liquid crystalline, and solid phases were formed. In the presence of bovine serum albumin, micellar and vesicular systems form lipo-plexes. The latter self-organize into gels, depending on composition and thermal treatments. According to scanning electron microscopy, vesicle-based gels obtained from lipo-plexes form sponge-like entities, whereas micelle-based ones self-arrange in fibrous organizations. Gels are characterized by a significant viscoelasticity in a wide temperature and frequency range. Rheological data were interpreted by assuming strict relations between the system response and the self-organization of the lipo-plexes into gels. It was inferred that differences in the gel properties depend on the different self-assembly modes of the aggregates formed by the mentioned lipo-plexes. Use of the above systems in biomedical applications, mostly in the preparation of matrices requiring the use of smart and biocompatible gels, is suggested.

  4. Cation Tuning toward the Inference of the Gelation Behavior of Supramolecular Gels

    Science.gov (United States)

    Xue, Peng; Wu, Huiqiong; Wang, Xiaojuan; He, Ting; Shen, Rujuan; Yue, Fan; Wang, Jide; Zhang, Yi

    2016-01-01

    We serendipitously discovered that the tripeptide Asp–Phe–Phe trifluoroacetic acid salt (hereafter abbreviated as β-AspFF) formed a reversible thermotropic gel in chloroform solution (at temperatures higher than the boiling point of chloroform), and a stable gel in toluene solution (at equal to or lower than the room temperature). Experimental results indicate that doping metal ions into β-AspFF toluene gels can trigger morphological variations in the gel skeleton, thereby increasing gel volume and inducing the collapse of organogels. Investigation on the cation-tuned gelation behavior of β-AspFF can be used to elucidate heating-induced gel collapse (of normal gel) or reverse thermotropic gelation as well as select carbamide and acetamide as activators of β-AspFF gels in chloroform solution at room temperature. PMID:27138527

  5. Cation Tuning toward the Inference of the Gelation Behavior of Supramolecular Gels

    Science.gov (United States)

    Xue, Peng; Wu, Huiqiong; Wang, Xiaojuan; He, Ting; Shen, Rujuan; Yue, Fan; Wang, Jide; Zhang, Yi

    2016-05-01

    We serendipitously discovered that the tripeptide Asp–Phe–Phe trifluoroacetic acid salt (hereafter abbreviated as β-AspFF) formed a reversible thermotropic gel in chloroform solution (at temperatures higher than the boiling point of chloroform), and a stable gel in toluene solution (at equal to or lower than the room temperature). Experimental results indicate that doping metal ions into β-AspFF toluene gels can trigger morphological variations in the gel skeleton, thereby increasing gel volume and inducing the collapse of organogels. Investigation on the cation-tuned gelation behavior of β-AspFF can be used to elucidate heating-induced gel collapse (of normal gel) or reverse thermotropic gelation as well as select carbamide and acetamide as activators of β-AspFF gels in chloroform solution at room temperature.

  6. Thermally reversible xyloglucan gels as vehicles for nasal drug delivery.

    Science.gov (United States)

    Mahajan, Hitendra S; Tyagi, Vinod; Lohiya, Gopal; Nerkar, Pankaj

    2012-01-01

    The aim of this study was to investigate the potential application of thermosensitive gels formed by a xyloglucan polysaccharide derived from tamarind seed for nasal drug delivery. Xyloglucan that had been partially degraded by β-galactosidase to eliminate 45% of galactose residues formed gels at concentrations of 2.5% w/w at gelation temperatures decreasing over the range 27-28°C. The in vitro release of ondansetron hydrochloride from the enzyme-degraded xyloglucan gels followed higuchi kinetics over a period of 5 h at 34°C by anomalous transport mechanism. The ex vivo permeation of ondansetron hydrochloride from the gels was sustained. Histological examination of nasal mucosa following a single administration of the gels showed no evidence of mucosal damage. Finally, the bioavailability study in rabbits revealed that the absolute bioavailability of ondansetron hydrochloride was significantly increased from 28.64% in the case of the oral drug solution to 52.79% in the case of the nasal in situ gel. The results of this study suggest the potential of the enzyme-degraded xyloglucan gels as vehicles for nasal delivery of drugs.

  7. Mechanism of Concentration Dependence of Water Diffusivity in Polyacrylate Gels

    Science.gov (United States)

    Mani, Sriramvignesh; Khabaz, Fardin; Khare, Rajesh

    Membrane based separation processes offer an energy efficient alternative to traditional distillation based separation processes. In this work, we focus on the molecular mechanisms underlying the process of separation of dilute ethanol-water mixture using polyacrylate gels as pervaporation membranes. The diffusivities of the components in swollen gels exhibit concentration dependence. We have used molecular dynamics (MD) simulations to study the correlation between the dynamics of solvent (water and ethanol) molecules, polymer dynamics and solvent structure in the swollen gel systems as a function of solvent concentration. Three different polyacrylate gels were studied: (1) poly n-butyl acrylate (PBA), (2) copolymer of butyl acrylate and 2-hydroxyethyl acrylate P(BA50-HEA50), and (3) poly 2-hydroxyethyl acrylate (PHEA). Simulation results show that solvent concentration has a significant effect on local structure of the solvent molecules and chain dynamics; these factors (local structure and chain dynamics), in turn, affect the diffusivity of these molecules. At low concentration, solvent molecules are well dispersed in the gel matrix and form hydrogen bonds with the polymer. Solvent mobility is correlated with polymer mobility in this configuration and consequently water and ethanol molecules exhibit slower dynamics, this effect is especially significant in PHEA gel. At high solvent concentration, water molecules form large clusters in the system accompanied by enhancement in mobility of both the gel network and the solvent molecules.

  8. Sol-gel synthesis of hydroxyapatite; Sintese de hidroxiapatita via sol-gel

    Energy Technology Data Exchange (ETDEWEB)

    Zupanski, M.D.; Lucena, M.P.P.; Bergmann, C.P., E-mail: michelledunin@yahoo.com.b [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil)

    2010-07-01

    Hydroxyapatite (HAp) has been established as the calcium phosphate based compound with most applications in the biological field. Among the numerous techniques for synthesis of HAp, the sol-gel processing route affords great control over purity and formed phases using low processing temperatures. In addition, the sol-gel approach offers an option for homogeneous HAp coating on metal substrates, as well as the ability to generate nanocrystalline powders. In this work, the sol-gel synthesis of HAp was investigated employing triethyl phosphate and calcium nitrate tetrahydrate as phosphorous and calcium precursors, respectively. The aging effect on phase composition and powder morphology of the final product was studied in terms of temperature and aging time. The powders were studied by using X-ray diffraction, Fourier transform infrared spectroscopy, particle size distribution by laser diffraction and scanning electron microscopy. (author)

  9. THE PROPERTIES OF CARRAGEENAN GELS

    Directory of Open Access Journals (Sweden)

    Grubnik I.M., Gladukh Ye.V., Chernyaev S.V.

    2012-04-01

    Full Text Available The article presents the results of studies on the functional properties of carrageenan, depending on the concentration of sodium chloride and xanthan in gels. It is established that the main factors in the syneresis of carrageenan gels are its concentration, the presence of ions and gums in solution. If using sodium chloride there is a change in the structure of mesh of the resulting gel, which leads to an increase in syneresis.

  10. Gel phase formation in dilute triblock copolyelectrolyte complexes

    Science.gov (United States)

    Srivastava, Samanvaya; Andreev, Marat; Levi, Adam E.; Goldfeld, David J.; Mao, Jun; Heller, William T.; Prabhu, Vivek M.; de Pablo, Juan J.; Tirrell, Matthew V.

    2017-02-01

    Assembly of oppositely charged triblock copolyelectrolytes into phase-separated gels at low polymer concentrations (formation of a dilute phase of individual micelles is prevented in polyelectrolyte complexation-driven assembly of triblock copolyelectrolytes. Gel phases form and phase separate almost instantaneously on solvation of the copolymers. Furthermore, molecular models of self-assembly demonstrate the presence of oligo-chain aggregates in early stages of copolyelectrolyte assembly, at experimentally unobservable polymer concentrations. Our discoveries contribute to the fundamental understanding of the structure and pathways of complexation-driven assemblies, and raise intriguing prospects for gel formation at extraordinarily low concentrations, with applications in tissue engineering, agriculture, water purification and theranostics.

  11. Hierarchically Structured Monolithic ZSM-5 through Macroporous Silica Gel Zeolitization

    Institute of Scientific and Technical Information of China (English)

    Lei Qian; Zhao Tianbo; Li Fengyan; Zong Baoning; Tong Yangchuan

    2006-01-01

    The hierarchically structured ZSM-5 monolith was prepared through transforming the skeletons of the macroporous silica gel into ZSM-5 by the steam-assisted conversion method. The morphology and monolithic shapes of macroporous silica gel were well preserved. The hierarchically structured ZSM-5 monolith exhibited the hierarchical porosity, with mesopores and macropores existing inside the macroporous silica gel, and micropores formed by the ZSM-5. The products have been characterized properly by using the XRD, SEM and N2 adsorption-desorption methods.

  12. Superabsorbing gel for actinide, lanthanide, and fission product decontamination

    Science.gov (United States)

    Kaminski, Michael D.; Mertz, Carol J.

    2016-06-07

    The present invention provides an aqueous gel composition for removing actinide ions, lanthanide ions, fission product ions, or a combination thereof from a porous surface contaminated therewith. The composition comprises a polymer mixture comprising a gel forming cross-linked polymer and a linear polymer. The linear polymer is present at a concentration that is less than the concentration of the cross-linked polymer. The polymer mixture is at least about 95% hydrated with an aqueous solution comprising about 0.1 to about 3 percent by weight (wt %) of a multi-dentate organic acid chelating agent, and about 0.02 to about 0.6 molar (M) carbonate salt, to form a gel. When applied to a porous surface contaminated with actinide ions, lanthanide ions, and/or other fission product ions, the aqueous gel absorbs contaminating ions from the surface.

  13. Production of continuous mullite fiber via sol-gel processing

    Science.gov (United States)

    Tucker, Dennis S.; Sparks, J. Scott; Esker, David C.

    1990-01-01

    The development of a continuous ceramic fiber which could be used in rocket engine and rocket boosters applications was investigated at the Marshall Space Flight Center. Methods of ceramic fiber production such as melt spinning, chemical vapor deposition, and precursor polymeric fiber decomposition are discussed and compared with sol-gel processing. The production of ceramics via the sol-gel method consists of two steps, hydrolysis and polycondensation, to form the preceramic, followed by consolidation into the glass or ceramic structure. The advantages of the sol-gel method include better homogeneity and purity, lower preparation temperature, and the ability to form unique compositions. The disadvantages are the high cost of raw materials, large shrinkage during drying and firing which can lead to cracks, and long processing times. Preparation procedures for aluminosilicate sol-gel and for continuous mullite fibers are described.

  14. Agarose gel electrophoresis and polyacrylamide gel electrophoresis for visualization of simple sequence repeats.

    Science.gov (United States)

    Anderson, James; Wright, Drew; Meksem, Khalid

    2013-01-01

    In the modern age of genetic research there is a constant search for ways to improve the efficiency of plant selection. The most recent technology that can result in a highly efficient means of selection and still be done at a low cost is through plant selection directed by simple sequence repeats (SSRs or microsatellites). The molecular markers are used to select for certain desirable plant traits without relying on ambiguous phenotypic data. The best way to detect these is the use of gel electrophoresis. Gel electrophoresis is a common technique in laboratory settings which is used to separate deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) by size. Loading DNA and RNA onto gels allows for visualization of the size of fragments through the separation of DNA and RNA fragments. This is achieved through the use of the charge in the particles. As the fragments separate, they form into distinct bands at set sizes. We describe the ability to visualize SSRs on slab gels of agarose and polyacrylamide gel electrophoresis.

  15. Solvent-induced lysozyme gels: rheology, fractal analysis, and sol-gel kinetics.

    Science.gov (United States)

    da Silva, Marcelo A; Arêas, Elizabeth P G

    2005-09-15

    In this work, the gelation kinetics and fractal character of lysozyme gel matrices developed in tetramethylurea (TMU)-water media were investigated. Gelation times were determined from the temporal crossover point between the storage, G', and loss, G'', moduli, as a function of the binary solvent composition and of protein concentration. The inverse dependence of the upper limit of the linear viscoelastic region (gamma0) on protein concentration indicate that the lysozyme gels belong to the "strong link" kind, a gel category where interparticle links are stronger than intraparticle ones. Lysozyme gel fractal dimensions (Df) were determined from the analysis of rheological data according to a scaling theory by Shih et al. [Phys. Rev. A 42 (1990) 4772-4779] and were found to be compatible with a diffusion-limited cluster-aggregation kinetics (DLCA) for lysozyme gels formed at the TMU mass fraction in the binary organic-aqueous solvent, wTMU=0.9, and with a reaction-limited cluster aggregation kinetics (RLCA) for wTMU in the 0.6< or =wTMU< or =0.8 range.

  16. Hyper alginate gel microbead formation by molecular diffusion at the hydrogel/droplet interface.

    Science.gov (United States)

    Hirama, Hirotada; Kambe, Taisuke; Aketagawa, Kyouhei; Ota, Taku; Moriguchi, Hiroyuki; Torii, Toru

    2013-01-15

    We report a simple method for forming monodispersed, uniformly shaped gel microbeads with precisely controlled sizes. The basis of our method is the placement of monodispersed sodium alginate droplets, formed by a microfluidic device, on an agarose slab gel containing a high-osmotic-pressure gelation agent (CaCl(2) aq.): (1) the droplets are cross-linked (gelated) due to the diffusion of the gelation agent from the agarose slab gel to the sodium alginate droplets and (2) the droplets simultaneously shrink to a fraction of their original size (gel. We verified the mass transfer mechanism between the droplet and the agarose slab gel. This method circumvents the limitations of gel microbead formation, such as the need to prepare microchannels of various sizes, microchannel clogging, and the deformation of the produced gel microbeads.

  17. The effect of curdlan on the rheological properties of restructured ribbonfish (Trichiurus spp.) meat gel.

    Science.gov (United States)

    Wu, Chunhua; Yuan, Chunhong; Chen, Shiguo; Liu, Donghong; Ye, Xingqian; Hu, Yaqin

    2015-07-15

    The influence of curdlan at different levels, as well as the method of addition, on the viscoelastic characteristics of ribbonfish meat gel was investigated. From a small amplitude oscillatory shear analysis (SAOA), a variety of viscoelastic parameters were established and identified to measure the intensity of the interactions between curdlan and protein in the fish meat gel network structure. The results of water holding capacity, texture, sensory property and microstructure analyses were strongly in agreement with the rheology data, suggesting that SAOA might be an appropriate method for the industrial assessment of the quality of fish meat gel. Additionally, the recombination mechanism of the complex system formed by the fish protein and curdlan was also clarified. Compared with the irreversible curdlan gel samples, the addition of reversible curdlan gel to the fish meat gel formed a much denser cross-linked interpenetrating structure, which led to a more stable and ordered three-dimensional gel complex.

  18. A Review on Polymers Used In In-Situ Gel Drug Delivery Systems

    OpenAIRE

    Shaikh RG; Shah SV; Patel KN; Patel BA; Patel PA

    2012-01-01

    In situ gel drug delivery systems are used in sol form before administration in the body, but onceadministered, undergo gelation in situ, to form a gel. The formation of gel depends on factors liketemperature modulation, pH change, presence of ions and ultraviolet irradiation, electrical sensitivity,enzyme sensitive from which drug get released in a sustained and controlled manner. Typically, aqueoussolutions of hydrogels used in biomedical applications are liquid at ambient temperature and g...

  19. Synthetic and Biopolymer Gels - Similarities and Difference.

    Science.gov (United States)

    Horkay, Ferenc

    2006-03-01

    Ion exchange plays a central role in a variety of physiological processes, such as nerve excitation, muscle contraction and cell locomotion. Hydrogels can be used as model systems for identifying fundamental chemical and physical interactions that govern structure formation, phase transition, etc. in biopolymer systems. Polyelectrolyte gels are particularly well-suited to study ion-polymer interactions because their structure and physical-chemical properties (charge density, crosslink density, etc) can be carefully controlled. They are sensitive to different external stimuli such as temperature, ionic composition and pH. Surprisingly few investigations have been made on polyelectrolyte gels in salt solutions containing both monovalent and multivalent cations. We have developed an experimental approach that combines small angle neutron scattering and osmotic swelling pressure measurements. The osmotic pressure exerted on a macroscopic scale is a consequence of changes occurring at a molecular level. The intensity of the neutron scattering signal, which provides structural information as a function of spatial resolution, is directly related to the osmotic pressure. We have found a striking similarity in the scattering and osmotic behavior of polyacrylic acid gels and DNA gels swollen in nearly physiological salt solutions. Addition of calcium ions to both systems causes a sudden volume change. This volume transition, which occurs when the majority of the sodium counterions are replaced by calcium ions, is reversible. Such reversibility implies that the calcium ions are not strongly bound by the polyanion, but are free to move along the polymer chain, which allows these ions to form temporary bridges between negative charges on adjacent chains. Mechanical measurements reveal that the elastic modulus is practically unchanged in the calcium-containing gels, i.e., ion bridging is qualitatively different from covalent crosslinks.

  20. Primary hepatocyte culture in collagen gel mixture and collagen sandwich

    Institute of Scientific and Technical Information of China (English)

    Ying-Jie Wang; Hong-Ling Liu; Hai-Tao Guo; Hong-Wei Wen; Jun Liu

    2004-01-01

    AIM: To explore the methods of hepatocytes culture in a collagen gel mixture or between double layers of collagen sandwich configuration and to examine the functional and cytomorphological characteristics of cultured hepatocytes.METHODS: A two-step collagenase perfusion technique was used to isolate the hepatocytes from Wistar rats or newborn Chinese experimental piglets. The isolated hepatocytes were cultured in a collagen gel mixture or between double layers of collagen sandwich configuration respectively. The former was that rat hepatocytes were mixed with type I rat tail collagen solution till gelled, and the medium was added onto the gel. The latter was that swine hepatocytes were seeded on a plate precoated with collagen gel for 24 h, then another layer of collagen gel was overlaid, resulting in a sandwich configuration. The cytomorphological characteristics, albumin secretion, and LDH-release of the hepatocytes cultured in these two models were examined.RESULTS: Freshly isolated rat hepatocytes were successfully mixed and fixed in collagen gel, and cultured in the gel condition. During the culture period, the urea synthesized and secreted by rat hepatocytes was detected throughout the period. Likewise, newborn experimental piglet hepatocytes were successfully fixed between the double layers of collagen gel, forming a sandwich configuration.Within a week of culture, the albumin secreted by swine hepatocytes was detected by SDS/PAGE analysis. The typical cytomorphological characteristics of the hepatocytes cultured by the above two culture models were found under a phasecontrast microscope. There was little LDH-release during the culture period.CONCLUSION: Both collagen gel mixture and double layers of collagen sandwich configuration can provide cultural conditions much closer to in vivoenvironment, and are helpful for maintaining specific hepatic fiJnctions and cytomorphological characteristics. A collagen gel mixture culture may be more eligible for the

  1. Exploitation of the Sol-Gel Route in Processing Ceramics and Composites

    Science.gov (United States)

    1985-05-01

    zircon gel can be made into vermicular aggregates of zircon particles while the diphasic gel yields equant isolated particles. Ultra-fine corundum and...phase gel aggregated into vermicular morphological entities (Fig. 6A) and shows crystals on the order of -75nm (Fig. 6B) whereas the zircon formed...450C/100l Pa/4 hrs Zircon -- Single phase gel 500C/lOOMPa/12 his Zircon Single phase gel 600OC/IOOMPa/12 hrs Zircon Vermicular aggregates (-75rm

  2. Mechanical properties of self-assembled Fmoc-diphenylalanine molecular gels.

    Science.gov (United States)

    Dudukovic, Nikola A; Zukoski, Charles F

    2014-04-22

    We explore the phase diagram and mechanical properties of molecular gels produced from mixing water with a dimethyl sulfoxide (DMSO) solution of the aromatic dipeptide derivative fluorenylmethoxycarbonyl-diphenylalanine (Fmoc-FF). Highly soluble in DMSO, Fmoc-FF assembles into fibrous networks that form gels upon addition of water. At high water concentrations, rigid gels can be formed at Fmoc-FF concentrations as low as 0.01 wt %. The conditions are established defining the Fmoc-FF and water concentrations at which gels are formed. Below the gel boundary, the solutions are clear and colorless and have long-term stability. Above the gel boundary, gels are formed with increasing rapidity with increasing water or Fmoc-FF concentrations. A systematic characterization of the effect of Fmoc-FF and water concentrations on the mechanical properties of the gels is presented, demonstrating that the elastic behavior of the gels follows a specific, robust scaling with Fmoc-FF volume fraction. Furthermore, we characterize the kinetics of gelation and demonstrate that these gels are reversible in the sense that they can be disrupted mechanically and rebuild strength over time.

  3. A novel smart supramolecular organic gelator exhibiting dual-channel responsive sensing behaviours towards fluoride ion via gel-gel states.

    Science.gov (United States)

    Mehdi, Hassan; Pang, Hongchang; Gong, Weitao; Dhinakaran, Manivannan Kalavathi; Wajahat, Ali; Kuang, Xiaojun; Ning, Guiling

    2016-07-07

    A novel smart supramolecular organic gelator G-16 containing anion and metal-coordination ability has been designed and synthesized. It shows excellent and robust gelation capability as a strong blue fluorescent supramolecular organic gel OG in DMF. Addition of Zn(2+) produced Zn(2+)-coordinated supramolecular metallogel OG-Zn. Organic gel OG and organometallic gel OG-Zn exhibited efficient and different sensing behaviors towards fluoride ion due to the variation in self-assembling nature. Supramolecular metallogel OG-Zn displayed specific selectivity for fluoride ion and formed OG-Zn-F with dramatic color change from blue to blue green in solution and gel to gel states. Furthermore after directly addition of fluoride into OG produced fluoride containing organic gel OG-F with drastically modulation in color from blue to greenish yellow fluorescence via strong aggregation-induced emission (AIE) property. A number of experiments were conducted such as FTIR, (1)H NMR, and UV/Vis spectroscopies, XRD, SEM and rheology. These results revealed that the driving forces involved in self-assembly of OG, OG-Zn, OG-Zn-F and OG-F were hydrogen bonding, metal coordination, π-π interactions, and van der Waal forces. In contrast to the most anion responsive gels, particularly fluoride ion responsive gels showed gel-sol state transition on stimulation by anions, the gel state of OG and OG-Zn did not show any gel-to-sol transition during the whole F(-) response process.

  4. Ballistic penetration of Perma-Gel

    Science.gov (United States)

    Ryckman, Raymond Albert; Powell, David Arthur; Lew, Adrian

    2012-03-01

    In this study a number of experiments were performed by taking high-speed footage of the firing spherical steel bullets at different speeds into Perma-Gel, a new synthetic thermoplastic material touted to exhibit similar properties to ordnance ballistic gelatin. We found that the gel undergoes very large and recoverable elastic deformations, which could strongly affect the dynamics of the temporary cavity formed behind the projectile. As with ordnance ballistic gelatin, the diameter of the temporary cavity can be many times the diameter of the projectile, in contrast with that of the permanent cavity which is several times smaller.We also observed that the closure of the cavity chokes the air inside, which could affect its dynamics in noticeable ways. Finally, one of the experiments suggest that the precise model of material failure may not be important to determine the dynamics of the temporary cavity.

  5. Sucrose release from polysaccharide gels.

    Science.gov (United States)

    Nishinari, Katsuyoshi; Fang, Yapeng

    2016-05-18

    Sucrose release from polysaccharide gels has been studied extensively because it is expected to be useful in understanding flavour release from solid foods and to find a new processing method which produces more palatable and healthier foods. We provide an overview of the release of sucrose and other sugars from gels of agar and related polysaccharides. The addition of sucrose to agar solutions leads to the increase in transparency of the resulting gels and the decrease in syneresis, which is attributed to the decrease in mesh size in gels. The syneresis occurring in the quiescent condition and fluid release induced by compression is discussed. The relationship between the sugar release and the structural, rheological and thermal properties of gels is also discussed. Finally, the future research direction is proposed.

  6. Electrochemical Light-Emitting Gel

    Directory of Open Access Journals (Sweden)

    Nobuyuki Itoh

    2010-06-01

    Full Text Available Light-emitting gel, a gel state electroluminescence material, is reported. It is composed of a ruthenium complex as the emitter, an ionic liquid as the electrolyte, and oxide nanoparticles as the gelation filler. Emitted light was produced via electrogenerated chemiluminescence. The light-emitting gel operated at low voltage when an alternating current was passed through it, regardless of its structure, which is quite thick. The luminescence property of the gel is strongly affected by nanoparticle materials. TiO2 nanoparticles were a better gelation filler than silica or ZnO was, with respect to luminescence stability, thus indicating a catalytic effect. It is demonstrated that the light-emitting gel device, with quite a simple fabrication process, flashes with the application of voltage.

  7. Western Blot of Stained Proteins from Dried Polyacrylamide Gels

    Science.gov (United States)

    Gruber, Claudia; Stan-Lotter, Helga

    1996-01-01

    Western blotting of proteins is customarily performed following their separation on polyacrylamide gels, either prior to staining (1) or, as recently reported, following staining (2). We describe here Western blotting with stained gels, which had been dried and some of which had been stored for years. This procedure permits immunological analysis of proteins, to which antisera may have become available only later, or where the application of newly developed sensitive detection methods is desired. Once rehydration of the gels is achieved, proteins can be-transferred to blotting membranes by any appropriate protocol. Proteins stained with Coomassie Blue have to be detected with a non-chromogenic method, such as the film-based enhanced chemiluminescence (ECL)2) procedure (3). Silver stained proteins, which transfer in the colorless form, may be visualized by any detection method, although, because of the usually very low amounts of proteins, detection by ECL is preferable. Blotting of stained proteins from rehydrated gels is as rapid and as quantitative as from freshly prepared gels, in contrast to blotting from wet stained gels, which requires extensive washing and results in low transfer efficiency (2). Together with a photographic record of the gel pattern, unambiguous identification of immunoreactive proteins from complex mixtures is possible. Some further applications of this work are discussed.

  8. Nonlinear viscoelasticity and generalized failure criterion for biopolymer gels

    Science.gov (United States)

    Divoux, Thibaut; Keshavarz, Bavand; Manneville, Sébastien; McKinley, Gareth

    2016-11-01

    Biopolymer gels display a multiscale microstructure that is responsible for their solid-like properties. Upon external deformation, these soft viscoelastic solids exhibit a generic nonlinear mechanical response characterized by pronounced stress- or strain-stiffening prior to irreversible damage and failure, most often through macroscopic fractures. Here we show on a model acid-induced protein gel that the nonlinear viscoelastic properties of the gel can be described in terms of a 'damping function' which predicts the gel mechanical response quantitatively up to the onset of macroscopic failure. Using a nonlinear integral constitutive equation built upon the experimentally-measured damping function in conjunction with power-law linear viscoelastic response, we derive the form of the stress growth in the gel following the start up of steady shear. We also couple the shear stress response with Bailey's durability criteria for brittle solids in order to predict the critical values of the stress σc and strain γc for failure of the gel, and how they scale with the applied shear rate. This provides a generalized failure criterion for biopolymer gels in a range of different deformation histories. This work was funded by the MIT-France seed fund and by the CNRS PICS-USA scheme (#36939). BK acknowledges financial support from Axalta Coating Systems.

  9. Fibril formation from pea protein and subsequent gel formation.

    Science.gov (United States)

    Munialo, Claire Darizu; Martin, Anneke H; van der Linden, Erik; de Jongh, Harmen H J

    2014-03-19

    The objective of this study was to characterize fibrillar aggregates made using pea proteins, to assemble formed fibrils into protein-based gels, and to study the rheological behavior of these gels. Micrometer-long fibrillar aggregates were observed after pea protein solutions had been heated for 20 h at pH 2.0. Following heating of pea proteins, it was observed that all of the proteins were hydrolyzed into peptides and that 50% of these peptides were assembled into fibrils. Changes on a structural level in pea proteins were studied using circular dichroism, transmission electron microscopy, and particle size analysis. During the fibril assembly process, an increase in aggregate size was observed, which coincided with an increase in thioflavin T binding, indicating the presence of β-sheet aggregates. Fibrils made using pea proteins were more branched and curly. Gel formation of preformed fibrils was induced by slow acidification from pH 7.0 to a final pH of around pH 5.0. The ability of pea protein-based fibrillar gels to fracture during an amplitude sweep was comparable to those of soy protein and whey protein-based fibrillar gels, although gels prepared from fibrils made using pea protein and soy protein were weaker than those of whey protein. The findings show that fibrils can be prepared from pea protein, which can be incorporated into protein-based fibrillar gels.

  10. Development of mucoadhesive sprayable gellan gum fluid gels.

    Science.gov (United States)

    Mahdi, Mohammed H; Conway, Barbara R; Smith, Alan M

    2015-07-05

    The nasal mucosa provides a potentially good route for local and systemic drug delivery. However, the protective feature of the nasal cavity make intranasal delivery challenging. The application of mucoadhesive polymers in nasal drug delivery systems enhances the retention of the dosage form in the nasal cavity. Several groups have investigated using low acyl gellan as a drug delivery vehicle but only limited research however, has been performed on high acyl gellan for this purpose, despite its properties being more conducive to mucoadhesion. High acyl gellan produces highly elastic gels below 60°C which make it difficult to spray using a mechanical spray device. Therefore, in this study we have tried to address this problem by making fluid gels by introducing a shear force during gelation of the gellan polymer. These fluid gel systems contain gelled micro-particles suspended in a solution of un-gelled polymer. These systems can therefore behave as pourable viscoelastic fluids. In this study we have investigated the rheological behavior and mucoadhesion of fluid gels of two different types of gellan (high and low acyl) and fluid gels prepared from blends of high and low acyl gellan at a 50:50 ratio. The results demonstrated that by preparing fluid gels of high acyl gellan, the rheological properties were sufficient to spray through a standard nasal spray device. Moreover fluid gels also significantly enhance both high acyl and low acyl gellan mucoadhesion properties.

  11. Determination of benzalkonium chloride concentration in tobramycin in-situ forming eye gel by high performance liquid chromatography%高效液相色谱法测定妥布霉素眼用即用型凝胶中苯扎氯铵的含量

    Institute of Scientific and Technical Information of China (English)

    刘修树; 汤国平

    2012-01-01

    目的:建立高效液相色谱(HPLC)法测定妥布霉素眼用即用型凝胶中苯扎氯铵的含量.方法:HPLC法色谱柱为Kromasil C18(250.0 mm×4.6 mm,5 μm),0.07 mol/L乙酸铵溶液(含1%三乙胺,冰乙酸调节pH值至5.0)-乙腈(70:30)为流动相;检测波长215 nm,柱温35 ℃,流速0.8 ml/min.结果:苯扎氯铵在16.22~81.10 μg/ml范围内呈良好的线性关系(r=0.999 8,n=5),回归方程为Y ∧=6 091.9X+10 114,平均回收率为99.85%,RSD为1.07%.结论:该法简便、灵敏、准确、重复性好,可用于妥布霉素眼用即用型凝胶中的苯扎氯铵的含量控制.%Objective: To establish a high performance liquid chromatography ( HPLC ) method for the determination of benzalkonium chloride in tobramycin in-situ forming eye gel. Methods:HPLC,the chromatographic column was Kromasil C18(250. 0 mm ×4. 6 mm, 5 (j,m) ,the mobile phase 0.07 mol/L ammonium acetate solution(including 1% triethylamine,adjusting with glacial acetic acid to pH 5. 0) -acetonitrile(70: 30). The detection wavelength 215 nm,the column temperature 35 ℃ ,the flow rate was 0. 8 ml/min. Results: The calibration curve was linear in the range of 16. 22 —81. 10 μg/ml for benzalkonium chloride ( r = 0. 999 8, n = 5 ) , the regression equation was Y =6 091. 9X + 10 114,the average recovery was 99. 85% ,RSD was 1. 07%. Conclusions: The method is convenient, sensitive and accurate with a good repeatability for the determination of benzalkonium chloride in tobramycin in-situ forming eye gel.

  12. Agarose gel electrophoresis for the separation of DNA fragments.

    Science.gov (United States)

    Lee, Pei Yun; Costumbrado, John; Hsu, Chih-Yuan; Kim, Yong Hoon

    2012-04-20

    Agarose gel electrophoresis is the most effective way of separating DNA fragments of varying sizes ranging from 100 bp to 25 kb(1). Agarose is isolated from the seaweed genera Gelidium and Gracilaria, and consists of repeated agarobiose (L- and D-galactose) subunits(2). During gelation, agarose polymers associate non-covalently and form a network of bundles whose pore sizes determine a gel's molecular sieving properties. The use of agarose gel electrophoresis revolutionized the separation of DNA. Prior to the adoption of agarose gels, DNA was primarily separated using sucrose density gradient centrifugation, which only provided an approximation of size. To separate DNA using agarose gel electrophoresis, the DNA is loaded into pre-cast wells in the gel and a current applied. The phosphate backbone of the DNA (and RNA) molecule is negatively charged, therefore when placed in an electric field, DNA fragments will migrate to the positively charged anode. Because DNA has a uniform mass/charge ratio, DNA molecules are separated by size within an agarose gel in a pattern such that the distance traveled is inversely proportional to the log of its molecular weight(3). The leading model for DNA movement through an agarose gel is "biased reptation", whereby the leading edge moves forward and pulls the rest of the molecule along(4). The rate of migration of a DNA molecule through a gel is determined by the following: 1) size of DNA molecule; 2) agarose concentration; 3) DNA conformation(5); 4) voltage applied, 5) presence of ethidium bromide, 6) type of agarose and 7) electrophoresis buffer. After separation, the DNA molecules can be visualized under uv light after staining with an appropriate dye. By following this protocol, students should be able to: Understand the mechanism by which DNA fragments are separated within a gel matrix Understand how conformation of the DNA molecule will determine its mobility through a gel matrix Identify an agarose solution of appropriate

  13. Ionogel Electrolytes through Sol-Gel Processing

    Science.gov (United States)

    Horowitz, Ariel I.

    Electrical energy needs have intensified due to the ubiquity of personal electronics, the decarbonization of energy services through electrification, and the use of intermittent renewable energy sources. Despite developments in mechanical and thermal methods, electrochemical technologies are the most convenient and effective means of storing electrical energy. These technologies include both electrochemical cells, commonly called batteries, and electrochemical double-layer capacitors, or "supercapacitors", which store energy electrostatically. Both device types require an ion-conducting electrolyte. Current devices use solutions of complex salts in organic solvents, leading to both toxicity and flammability concerns. These drawbacks can be avoided by replacing conventional electrolytes with room-temperature molten salts, known as ionic liquids (ILs). ILs are non-volatile, non-flammable, and offer high conductivity and good electrochemical stability. Device mass can be reduced by combining ILs with a solid scaffold material to form an "ionogel," further improving performance metrics. In this work, sol-gel chemistry is explored as a means of forming ionogel electrolytes. Sol-gel chemistry is a solution-based, industrially-relevant, well-studied technique by which solids such as silica can be formed in situ. Previous works used a simple acid-catalyzed sol-gel reaction to create brittle, glassy ionogels. Here, both the range of products that can be accomplished through sol-gel processing and the understanding of interactions between ILs and the sol-gel reaction network are greatly expanded. This work introduces novel ionogel materials, including soft and compliant silica-supported ionogels and PDMS-supported ionogels. The impacts of the reactive formulation, IL identity, and casting time are detailed. It is demonstrated that variations in formulation can lead to rapid gelation and open pore structures in the silica scaffold or slow gelation and more dense silica

  14. sol-gel

    Directory of Open Access Journals (Sweden)

    Humberto A. Monreal

    2005-01-01

    Full Text Available En este trabajo sintetizamos nanocilindros de dióxido de titanio de 30 a 400 nm por medio de ADN del plásmido pBR322 de 4,362 pares de bases y el uso de isopropóxido de titanio como precursor por medio del proceso sol-gel. Los geles resultantes fueron calcinados y los polvos caracterizados por medio de Microscopio Electrónico de Barrido (MEB, Espectroscopía de Energía Dispersiva, Microscopio Electrónico de Transmisión (MET y Difracción de Rayos X. Los resultados muestran que la síntesis in vitro de nanorods en presencia de ADN, puede ser activada. Muchas otras moléculas sintéticas pueden producirse por medio del uso de sistemas orgánicos, es así como reportamos la síntesis de híbridos hechos de ácidos nucleicos en materiales inorgánicos que pueden tener diversas aplicaciones en sistemas catalíticos, biomateriales y materiales nanoestructurados.

  15. The Synthesis of a Novel Cellulose Physical Gel

    Directory of Open Access Journals (Sweden)

    Jiufang Duan

    2014-01-01

    Full Text Available Cellulose possessing β-cyclodextrin (β-CD was used as a host molecule and cellulose possessing ferrocene (Fc as a guest polymer. Infrared spectra, differential scanning calorimetry (DSC, ultraviolet spectroscopy (UV, and contact angle analysis were used to characterise the material structure and the inclusion behaviour. The results showed that the β-CD-cellulose and the Fc-cellulose can form inclusion complexes. Moreover, ferrocene oxidation, and reduction of state can be adjusted by sodium hypochlorite (NaClO as an oxidant and glutathione (GSH as a reductant. In this study, a physical gel based on β-CD-cellulose/Fc-cellulose was formed under mild conditions in which autonomous healing between cut surfaces occurred after 24 hours. The physical gel can be controlled in the sol-gel transition. The compressive strength of the Fc-cellulose/β-CD-cellulose gel increased with increased cellulose concentration. The host-guest interaction between the side chains of cellulose could strengthen the gel. The cellulose physical gel may eventually be used as a stimulus-responsive, healing material in biomedical applications.

  16. Formation and rupture of Ca2+induced pectin biopolymer gels

    Science.gov (United States)

    Basak, Rajib; Bandyopadhyay, Ranjini

    When calcium salts are added to an aqueous solution of polysaccharide pectin, ionic cross-links form between pectin chains, giving rise to a gel network in dilute solution. In this work, dynamic light scattering (DLS) is employed to study the microscopic dynamics of the fractal aggregates (flocs) that constitute the gels, while rheological measurements are performed to study the process of gel rupture. As calcium salt concentration is increased, DLS experiments reveal that the polydispersities of the flocs increase simultaneously with the characteristic relaxation times of the gel network. Above a critical salt concentration, the flocs become interlinked to form a reaction-limited fractal gel network. Rheological studies demonstrate that the limits of the linear rheological response and the critical stresses required to rupture these networks both decrease with increase in salt concentration. These features indicate that the ion-mediated pectin gels studied here lie in a `strong link' regime that is characterised by inter-floc links that are stronger than intra-floc links. A scaling analysis of the experimental data presented here demonstrates that the elasticities of the individual fractal flocs exhibit power-law dependences on the added salt concentration. We conclude that when pectin and salt concentrations are both increased, the number of fractal flocs of pectin increases simultaneously with the density of crosslinks, giving rise to very large values of the bulk elastic modulus.

  17. Investigations of rheological properties of diclofenac sodium gel preparation

    Directory of Open Access Journals (Sweden)

    Firuza Maksudova

    2013-04-01

    Full Text Available It is well-known that the majority of non-steroidal anti-inflammatory drugs (NSAIDs are ulcerogenic. Gel or ointment preparations of NSAIDs are free from this side-effect, which is a prerequisite for the increase of aforementioned forms of NSAIDs. A major quality indicator of gels and ointments are rheological properties. Along with determining the quality of preparation, they influence manufacturing, expiration date and terms of storage. This article demonstrates the results of investigation of rheological indices of 3% gel preparation of diclofenac sodium such as plasticity, structural viscosity, and thixotropy. Obtained results confirm that the developed gel preparation has thixotropy, plasticity and is classified as a Bingham system.

  18. Gel-extrusion: A new continuous forming technique

    Energy Technology Data Exchange (ETDEWEB)

    Millan, A.J. [Department of Materials, IUT Federico Rivero Palacios, Caracas (Venezuela); Santacruz, I.; Sanchez-Herencia, A.J.; Nieto, M.I.; Moreno, R. [Instituto de Ceramica y Vidrio, CSIC, Camino de Valdelatas s/n, E-28048, Cantoblanco, Madrid (Spain)

    2002-12-01

    In recent years a variety of direct shaping methods has been developed for the near-net shaping of ceramic powders. The main aim in developing these methods is to provide a simple route for manufacturing bulk complex-shaped bodies with increased green resistance in order to reduce or avoid final machining, which is the most expensive step in the fabrication process. This communication reports a novel processing route for the continuous manufacture of ceramic and/or metal hollow or solid bodies based on the extrusion of aqueous suspensions that contain a small amount (<1 wt.-%) of a gelling additive that gelates on passing through a refrigerated die. (Abstract Copyright [2002], Wiley Periodicals, Inc.)

  19. Surface grafted chitosan gels. Part II. Gel formation and characterization

    DEFF Research Database (Denmark)

    Liu, Chao; Thormann, Esben; Claesson, Per M.

    2014-01-01

    Responsive biomaterial hydrogels attract significant attention due to their biocompatibility and degradability. In order to make chitosan based gels, we first graft one layer of chitosan to silica, and then build a chitosan/poly(acrylic acid) multilayer using the layer-by-layer approach. After...... cross-linking the chitosan present in the polyelectrolyte multilayer, poly(acrylic acid) is partly removed by exposing the multilayer structure to a concentrated carbonate buffer solution at a high pH, leaving a surface-grafted cross-linked gel. Chemical cross-linking enhances the gel stability against......-linking density. The amount of poly(acrylic acid) trapped inside the surface grafted films was found to decrease with decreasing cross-linking density, as confirmed in situ using TIRR, and ex situ by Fourier transform infrared (FTIR) measurements on dried films. The responsiveness of the chitosan-based gels...

  20. Mullite Precursor Gels and as Binder in Corundum-mullite Refractory

    Institute of Scientific and Technical Information of China (English)

    WU Xingrong; LI Liaosha; DONG Yuanchi

    2004-01-01

    Boehmite sol is synthesized via sol-gel process using als,then adding silica sol into boehmite sol to prepare mullite precursor gels. XRD studies are performed to characterize the gels.it is found that the gel can be transformed into mullite when calcined at 1100℃ and completed at 1300℃.Corundum-mullite firebricks with different additions of the mullite precursor gel are made by mixing,semi-dry pressing and then sintering at 1520℃.Apparent porosity,bulk density,flexural strength and thermal shock resistance are measured.Results show that the mullite gel can improve densification and strength of corundum-mullite firebricks,especially enhance the thermal shock resistance.SEM micrographs show that the gel added can be formed into needlelike and elongated mullite in the matrix,whose micromorphology can enhance the strength and thermal shock resistance of the samples.

  1. Directed percolation identified as equilibrium pre-transition towards non-equilibrium arrested gel states

    Science.gov (United States)

    Laurati, Marco; Capellmann, Ronja; Kohl, Matthias; Egelhaaf, Stefan; Schmiedeberg, Michael

    The macroscopic properties of gels arise from their slow dynamics and load bearing network structure, which are exploited by nature and in numerous industrial products. However, a link between these structural and dynamical properties has remained elusive. Here we present confocal microscopy exper- iments and simulations of gel-forming colloid-polymer mixtures with competing interactions. They reveal that gel formation is preceded by continuous and directed percolation. Both transitions lead to system spanning networks, but only directed percolation results in extremely slow dynamics, ageing and a shrinking of the gel that resembles syneresis. Therefore, dynamical arrest in gels is found to be linked to a structural transition, namely directed percolation, which is quantitatively associated with the mean number of bonded neighbours. Directed percolation is a universality class of transitions out of equilibrium, our study hence connects gel formation to a well-developed theoretical framework which now can be exploited to achieve a detailed understanding of arrested gels.

  2. Directed percolation identified as equilibrium pre-transition towards non-equilibrium arrested gel states

    Science.gov (United States)

    Kohl, M.; Capellmann, R. F.; Laurati, M.; Egelhaaf, S. U.; Schmiedeberg, M.

    2016-06-01

    The macroscopic properties of gels arise from their slow dynamics and load-bearing network structure, which are exploited by nature and in numerous industrial products. However, a link between these structural and dynamical properties has remained elusive. Here we present confocal microscopy experiments and simulations of gel-forming colloid-polymer mixtures. They reveal that gel formation is preceded by continuous and directed percolation. Both transitions lead to system-spanning networks, but only directed percolation results in extremely slow dynamics, ageing and a shrinking of the gel that resembles synaeresis. Therefore, dynamical arrest in gels is found to be linked to a structural transition, namely directed percolation, which is quantitatively associated with the mean number of bonded neighbours. Directed percolation denotes a universality class of transitions. Our study hence connects gel formation to a well-developed theoretical framework, which now can be exploited to achieve a detailed understanding of arrested gels.

  3. Collaborative form(s)

    DEFF Research Database (Denmark)

    Gunn, Wendy

    Gunn asks us to consider beauty as collaborative forms of action generated by moving between design by means of anthropology and anthropology by means of design. Specifically, she gives focus to play-like reflexions on practices of designing energy products, systems and infrastructure. Design...

  4. Sol-gel method for encapsulating molecules

    Science.gov (United States)

    Brinker, C. Jeffrey; Ashley, Carol S.; Bhatia, Rimple; Singh, Anup K.

    2002-01-01

    A method for encapsulating organic molecules, and in particular, biomolecules using sol-gel chemistry. A silica sol is prepared from an aqueous alkali metal silicate solution, such as a mixture of silicon dioxide and sodium or potassium oxide in water. The pH is adjusted to a suitably low value to stabilize the sol by minimizing the rate of siloxane condensation, thereby allowing storage stability of the sol prior to gelation. The organic molecules, generally in solution, is then added with the organic molecules being encapsulated in the sol matrix. After aging, either a thin film can be prepared or a gel can be formed with the encapsulated molecules. Depending upon the acid used, pH, and other processing conditions, the gelation time can be from one minute up to several days. In the method of the present invention, no alcohols are generated as by-products during the sol-gel and encapsulation steps. The organic molecules can be added at any desired pH value, where the pH value is generally chosen to achieve the desired reactivity of the organic molecules. The method of the present invention thereby presents a sufficiently mild encapsulation method to retain a significant portion of the activity of the biomolecules, compared with the activity of the biomolecules in free solution.

  5. An MRI phantom using carrageenan gel

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Hirokazu; Kuroda, Masahiro; Yoshimura, Koichi; Kawasaki, Shoji; Yamamoto, Naotake; Tanaka, Akio; Hiraki, Yoshio [Okayama Univ. (Japan). School of Medicine; Uchida, Nobue; Sugimura, Kazuro

    2000-12-01

    We have developed a new solid type carrageenan gel phantom. The ingredients of the new gel are carrageenan, manganese chloride, sodium chloride, sodium azide, and water. The gel phantom has sufficient strength to form a torso without the use of a reinforcing agent. A phantom of a desired shape can be created by pouring a hot solution of carrageenan into a mold. The phantom can then be cut easily with a knife and trimmed into the desired shape. The recommended concentrations of the ingredients are; 5 wt% carrageenan, 0.2 mM MnCl{sub 2}, 0.19 wt% NaCl, 0.1 wt% NaN{sub 3}, with the remainder being water. T{sub 2} and T{sub 1} of this phantom at 1.5 T are 84.9 ms and 429 ms respectively. The conductivity and relative dielectric constant at 63.8 MHz are 0.769 S/m and 81.4 respectively. (author)

  6. Performance enhancement of phosphoric acid fuel cell using phosphosilicate gel based electrolyte

    Institute of Scientific and Technical Information of China (English)

    Kajari Kargupta; Swati Saha; Dipali Banerjee; Mrinal Seal; Saibal Ganguly

    2012-01-01

    Replacement of phosphoric acid electrolyte by phosphosilicate gel based electrolytes is proposed for performance enhancement of phosphoric acid fuel cell (PAFG).Phosphosilicate gel in paste form and in powder form is synthesized from tetraethoxysilane and orthophosphoric acid using sol-gel method for two different P/Si ratio of 5 and 1.5 respectively.Replacement of phosphoric acid electrolyte by phosphosilicate gel paste enhances the peak power generation of the fuel cell by 133% at 120 ℃ cell temperature; increases the voltage generation in the ohmic regime and extends the maximum possible load current.Polyinyl alcohol (PVA) is used to bind the phosphosilicate gel powder and to form the hybrid crosslinked gel polymer electrolyte membrane.Soaking the membrane with phosphoric acid solution,instead of that with water improves the proton conductivity of the membrane,enhances the voltage and power generation by the fuel cell and extends the maximum possible operating temperature.At lower operating temperature of 70 ℃,peak power produced by phosphosilicate gel polymer electrolyte membrane fuel cell ( PGMFC ) is increased by 40% compared to that generated by phosphoric acid fuel cell ( PAFC ).However,the performance of composite membrane diminishes as the cell temperature increases.Thus phosphosilicate gel in paste form is found to be a good alternative of phosphoric acid electrolyte at medium operating temperature range while phosphosilicate gel-PVA composite offers performance enhancement at low operating temperatures.

  7. Fluoride Rinses, Gels and Foams

    DEFF Research Database (Denmark)

    Twetman, Svante; Keller, Mette K

    2016-01-01

    AIM: The aim of this conference paper was to systematically review the quality of evidence and summarize the findings of clinical trials published after 2002 using fluoride mouth rinses, fluoride gels or foams for the prevention of dental caries. METHODS: Relevant papers were selected after...... (6 on fluoride mouth rinse, 10 on fluoride gel and 3 on fluoride foam); 6 had a low risk of bias while 2 had a moderate risk. All fluoride measures appeared to be beneficial in preventing crown caries and reversing root caries, but the quality of evidence was graded as low for fluoride mouth rinse......, moderate for fluoride gel and very low for acidulated fluoride foam. No conclusions could be drawn on the cost-effectiveness. CONCLUSIONS: This review, covering the recent decade, has further substantiated the evidence for a caries-preventive effect of fluoride mouth rinse, fluoride gel and foam...

  8. Colloidal gels: Clay goes patchy

    Science.gov (United States)

    Kegel, Willem K.; Lekkerkerker, Henk N. W.

    2011-01-01

    Empty liquids and equilibrium gels have so far been only theoretical possibilities, predicted for colloids with patchy interactions. But evidence of both has now been found in Laponite, a widely studied clay.

  9. Physicochemical and structural properties of glycerin gel prepared using glycyrrhizic acid diethyl ester.

    Science.gov (United States)

    Koga, Kenjiro; Kimura, Toshiyuki; Sakai, Kenichi; Kushida, Hiroshi; Yoshikawa, Nobuji

    2014-01-01

    Glycyrrhizic acid diethyl ester (GZ-DE) was developed as a prodrug of glycyrrhizic acid (GZ), a hepatitis therapeutic drug. We fortuitously found that GZ-DE gels with glycerin selectively while searching for a safe solvent with which to dissolve GZ-DE. Based on this gelation, the aim of this study was to investigate the preparation of the gel and study the rheology, physicochemical and structural properties of the glycerin gel by differential scanning calorimeter (DSC), capillary electrophoresis (CEP), nuclear magnetic resonance (NMR), and small angle X-ray scattering (SAXS). The glycerin gel was prepared by the addition of at least 2.0% w/w GZ-DE. This gel did not flow at room temperature. After mixing glycerin and GZ-DE, a gel was formed after 2 days at 25°C or 3 h at 60°C. Glycerin gel containing 2.4% w/w GZ-DE provided the following results: 1) The glycerin gel exhibited creep at a constant stress of less than 10 Pa, but it is a fragile gel, showing Newtonian flow at 10 Pa stress. 2) Dynamic viscoelastic measurements showed that the elastic modulus (G') exceeds the viscous modulus (G''), indicating that glycerin gel has solid-like properties. 3) DSC showed a significant difference between the glass transition temperature of glycerin and glycerin gel. 4) CEP did not reveal a new compound in the glycerin gel. 5) NMR confirmed that glycerin gel is a physical gel. 6) SAXS measurements revealed that the glycerin gel has an oval-shaped basic frame (119 nm long and 65 nm wide).

  10. Silica reinforced triblock copolymer gels

    DEFF Research Database (Denmark)

    Theunissen, E.; Overbergh, N.; Reynaers, H.

    2004-01-01

    The effect of silica and polymer coated silica particles as reinforcing agents on the structural and mechanical properties of polystyrene-poly(ethylene/butylene)-polystyrene (PS-PEB-PS) triblock gel has been investigated. Different types of chemically modified silica have been compared in order...... a viscoclastic rubber to a plastic fluid and from a plastic fluid to a viscoelastic liquid are shifted to more elevated temperatures when silica is added to the triblock copolymer gel. (C) 2004 Elsevier Ltd. All rights reserved....

  11. alpha-Casein improves the gel properties of dried egg white.

    Science.gov (United States)

    Matsudomi, Naotoshi; Kanda, Yuka; Moriwaki, Hiromi

    2003-11-19

    The effects of addition of alpha-casein (alpha-CN) to dried egg white (DEW) were investigated by measuring transparency, hardness, and water-holding capacity (WHC) of the heat-induced gels. A DEW concentration of 8% (w/w) was required for formation of a self-supporting gel following heating at 80 degrees C for 20 min at pH 7. Solutions of alpha-CN, even up to a protein concentration of 12% (w/w), did not gel under the same conditions. The addition of alpha-CN (0.5-4%) to 8% DEW caused the increase in gel hardness gels, as compared with DEW gels alone at a total amount of protein concentrations, and the mixed gels became transparent with the increase of added alpha-CN concentrations. The 10% mixed protein solutions of alpha-CN (3-6%) and DEW (4-7%) formed transparent gels, although each protein did not gel individually at their protein concentrations. Mixture with 2:8 mixing ratio of alpha-CN to DEW at a total protein concentration of 10% showed synergistic effects in improving DEW gel properties above pH 7 and below 25 mM NaCl. The improvements (hardness, transparency, and WHC) of DEW gel by alpha-CN seem to be caused mainly by the inhibition of alpha-CN against heat coagulation of DEW protein.

  12. Development, characterization and application of in situ gel systems for intranasal delivery of tacrine.

    Science.gov (United States)

    Qian, Shuai; Wong, Yin Cheong; Zuo, Zhong

    2014-07-01

    The present study aimed to develop an in situ gel formulation for intranasal delivery of tacrine (THA), an anti-Alzheimer's drug. Thermosensitive polymer Pluronic F-127 was used to prepare THA in situ gels. Sol-gel transition temperature (Tsol-gel), rheological properties, in vitro release, and in vivo nasal mucociliary transport time were optimized. The pharmacokinetics and brain dispositions of in situ gel were compared with that from THA oral solution in rats. The in situ gel demonstrated a liquid state with Newtonian fluid behavior under 20 °C, while it exhibited as non-flowing gel with pseudoplastic fluid behavior beyond its Tsol-gel of 28.5 °C. Based on nasal mucociliary transport time, the in situ gel significantly prolonged its retention in nasal cavity compared to solution form. Moreover, the in situ gel achieved 2-3 fold higher peak plasma concentration (Cmax) and area under the curve (AUC) of THA in plasma and brain tissue, but lowered Cmax and AUC of the THA metabolites compared to that of oral solution. The enhanced nasal residence time, improved bioavailability, increased brain uptake of parent drug and decreased exposure of metabolites suggested that the in situ gel could be an effective intranasal formulation for THA.

  13. Structural Formation Studies of UV-Catalyzed Gels and Aerogels byLight Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, Arlon J.; Ayers, Michael R.

    1998-04-01

    The skeletal structure of aerogel is determined before, during, and after the gel is formed. Supercritical drying of aerogel largely preserves the pore structure that is determined near the time of gelation. To better understand these gel formation mechanisms we carried out measurements of the time evolution of light scattering in a series of gels prepared without conventional acid or base catalysis. Instead, ultraviolet light was used to catalyze the formation of silica gels made from the hydrolysis of tetraethylorthosilicate and partly prehydrolyzed tetraethylorthosilicate in ethanol. Time evolution of light scattering provides information regarding the rate and geometrical nature of the assembly of the primary silica particles formed in the sol. UV-catalyzed gels show volumetric growth typical of acid-catalyzed gels, except when UV exposure is discontinued at the gel point, where gels then show linear chain formation typical of base-catalyzed gels. Long term UV exposure leads to coarsening of the pore network, a decrease in the clarity of the aerogel, and an increase in the surface area of the aerogel. Additionally, UV exposure up to the gel point leads to increased crystallinity in the final aerogel.

  14. Effects of DS-modified agarose gels on neurite extension in 3D scaffold through mechanisms other than changing the pore radius of the gels.

    Science.gov (United States)

    Peng, Jin; Pan, Qian; Zhang, Wei; Yang, Hao; Zhou, Xue; Jiang, Hua

    2014-07-01

    Dermatan sulfate is widely distributed as glycosaminoglycan side chains of proteoglycans, which are the main components of glial scar and inhibit neurite regeneration after nerve injury. However its role in the inhibiting process is not clear. Understanding neurite extension in three-dimensional scaffolds is critical for neural tissue engineering. This study used agarose gels modified with dermatan sulfate as the three-dimensional culture scaffold. We explored structure-function relationship between the three-dimensional scaffold and neurite extension and examined the role of dermatan sulfate on neurite extension in the three-dimensional scaffold. A range of agarose concentrations was used to generate varied gel physical structures and the corresponding neurite extension of embryonic day (E9) chick dorsal root ganglia was examined. We measured gel stiffness and gel pore size to determine whether dermatan sulfate changed the gels' conformation. As gel concentration increased, neurite length and gel pore size decreased, and gel stiffness increased. At 1.00 and 1.25% (wt/vol) concentrations, dermatan sulfates both immobilized with agarose gels and dissolved in culture medium inhibit neurite extension. While at 1.50 and 1.75% (wt/vol) concentrations, only immobilized dermatan sulfate worked. Immobilized dermatan sulfate could modify molecular shape of agarose gels, decrease gel pore size statistically, but did not influence gel stiffness. We have proved that the decrease of gel pore size is insufficient to inhibit neurite extension. These results indicate that dermatan sulfate inhibits neurite extension not through forming a mechanical barrier. Maybe its interaction with neuron membrane is the key factor in neurite extension.

  15. Quantifying platelet gel coagulation using Sonoclot and Thrombelastograph hemostasis analyzer.

    Science.gov (United States)

    Cassidy, Lynsay K; Finney, Angela S; Ellis, William Cory; Spiwak, Allison J; Riley, Jeffrey B

    2005-03-01

    Little in vitro research exists discussing platelet gel composition and the resulting strength and degradation characteristics using point-of-care technologies. There must be a quantifiable way of determining the structural integrity of the resulting formed platelet gel thrombus. The Thrombelastograph Hemostasis Analyzer (TEG) and Sonoclot measure the elasticity of a clot as it forms and subsequently degrades naturally. The objective of this study was to determine the application of TEG and Sonoclot technologies as point-of-care devices for technicians using platelet gel therapy. The collected bovine blood was anticoagulated with CPD and processed using a previously published plasma sequestration protocol, using normal saline as a wash solution. The resulting platelet-rich plasma was stored in a sequestration bag in a water bath to maintain the blood temperature at 37 degrees C. Sequestered bovine platelet-rich plasma was made into platelet gel using three different thrombin concentrations. A total of 30 experiments were performed on the platelet gel product using both the TEG and the Sonoclot. We discovered that 6 of the Sonoclot tests and 15 of the TEG tests were valid. None of the TEG clot signatures and nine of the Sonoclot signatures were discovered to be invalid. A chi2 test was performed on the resultant data. The value of the chi2 test was calculated to be 12.86, which translated into a p value of less than 0.001. Despite the vast use and growing popularity of platelet gels, a method in which to quantify platelet gels has yet to be reported. There remains a possibility that gels formed with different concentrations of components may prove useful in different areas of surgery or their uses may expand to a broader spectrum of medicine. However, technology to quantify platelet gels must first be standardized. On the basis of the data collected in this study, it was determined that the TEG and the Sonoclot are not equally capable of analyzing platelet gel clots

  16. Comparative Skeletal Muscle Proteomics Using Two-Dimensional Gel Electrophoresis.

    Science.gov (United States)

    Murphy, Sandra; Dowling, Paul; Ohlendieck, Kay

    2016-09-09

    The pioneering work by Patrick H. O'Farrell established two-dimensional gel electrophoresis as one of the most important high-resolution protein separation techniques of modern biochemistry (Journal of Biological Chemistry1975, 250, 4007-4021). The application of two-dimensional gel electrophoresis has played a key role in the systematic identification and detailed characterization of the protein constituents of skeletal muscles. Protein changes during myogenesis, muscle maturation, fibre type specification, physiological muscle adaptations and natural muscle aging were studied in depth by the original O'Farrell method or slightly modified gel electrophoretic techniques. Over the last 40 years, the combined usage of isoelectric focusing in the first dimension and sodium dodecyl sulfate polyacrylamide slab gel electrophoresis in the second dimension has been successfully employed in several hundred published studies on gel-based skeletal muscle biochemistry. This review focuses on normal and physiologically challenged skeletal muscle tissues and outlines key findings from mass spectrometry-based muscle proteomics, which was instrumental in the identification of several thousand individual protein isoforms following gel electrophoretic separation. These muscle-associated protein species belong to the diverse group of regulatory and contractile proteins of the acto-myosin apparatus that forms the sarcomere, cytoskeletal proteins, metabolic enzymes and transporters, signaling proteins, ion-handling proteins, molecular chaperones and extracellular matrix proteins.

  17. Comparative Skeletal Muscle Proteomics Using Two-Dimensional Gel Electrophoresis

    Directory of Open Access Journals (Sweden)

    Sandra Murphy

    2016-09-01

    Full Text Available The pioneering work by Patrick H. O’Farrell established two-dimensional gel electrophoresis as one of the most important high-resolution protein separation techniques of modern biochemistry (Journal of Biological Chemistry 1975, 250, 4007–4021. The application of two-dimensional gel electrophoresis has played a key role in the systematic identification and detailed characterization of the protein constituents of skeletal muscles. Protein changes during myogenesis, muscle maturation, fibre type specification, physiological muscle adaptations and natural muscle aging were studied in depth by the original O’Farrell method or slightly modified gel electrophoretic techniques. Over the last 40 years, the combined usage of isoelectric focusing in the first dimension and sodium dodecyl sulfate polyacrylamide slab gel electrophoresis in the second dimension has been successfully employed in several hundred published studies on gel-based skeletal muscle biochemistry. This review focuses on normal and physiologically challenged skeletal muscle tissues and outlines key findings from mass spectrometry-based muscle proteomics, which was instrumental in the identification of several thousand individual protein isoforms following gel electrophoretic separation. These muscle-associated protein species belong to the diverse group of regulatory and contractile proteins of the acto-myosin apparatus that forms the sarcomere, cytoskeletal proteins, metabolic enzymes and transporters, signaling proteins, ion-handling proteins, molecular chaperones and extracellular matrix proteins.

  18. Crystal growth of proteins, nucleic acids, and viruses in gels.

    Science.gov (United States)

    Lorber, Bernard; Sauter, Claude; Théobald-Dietrich, Anne; Moreno, Abel; Schellenberger, Pascale; Robert, Marie-Claire; Capelle, Bernard; Sanglier, Sarah; Potier, Noëlle; Giegé, Richard

    2009-11-01

    Medium-sized single crystals with perfect habits and no defect producing intense and well-resolved diffraction patterns are the dream of every protein crystallographer. Crystals of biological macromolecules possessing these characteristics can be prepared within a medium in which mass transport is restricted to diffusion. Chemical gels (like polysiloxane) and physical gels (such as agarose) provide such an environment and are therefore suitable for the crystallisation of biological macromolecules. Instructions for the preparation of each type of gel are given to urge crystal growers to apply diffusive media for enhancing crystallographic quality of their crystals. Examples of quality enhancement achieved with silica and agarose gels are given. Results obtained with other substances forming gel-like media (such as lipidic phases and cellulose derivatives) are presented. Finally, the use of gels in combination with capillary tubes for counter-diffusion experiments is discussed. Methods and techniques implemented with proteins can also be applied to nucleic acids and nucleoprotein assemblies such as viruses.

  19. Gel phase formation in dilute triblock copolyelectrolyte complexes

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Samanvaya; Andreev, Marat; Levi, Adam E.; Goldfeld, David J.; Mao, Jun; Heller, William T.; Prabhu, Vivek M.; de Pablo, Juan J.; Tirrell, Matthew V.

    2017-02-23

    Assembly of oppositely charged triblock copolyelectrolytes into phase-separated gels at low polymer concentrations (<1% by mass) has been observed in scattering experiments and molecular dynamics simulations. Here we show that in contrast to uncharged, amphiphilic block copolymers that form discrete micelles at low concentrations and enter a phase of strongly interacting micelles in a gradual manner with increasing concentration, the formation of a dilute phase of individual micelles is prevented in polyelectrolyte complexation-driven assembly of triblock copolyelectrolytes. Gel phases form and phase separate almost instantaneously on solvation of the copolymers. Furthermore, molecular models of self-assembly demonstrate the presence of oligo-chain aggregates in early stages of copolyelectrolyte assembly, at experimentally unobservable polymer concentrations. Our discoveries contribute to the fundamental understanding of the structure and pathways of complexation-driven assemblies, and raise intriguing prospects for gel formation at extraordinarily low concentrations, with applications in tissue engineering, agriculture, water purification and theranostics.

  20. Behaviour of a solvent trapped in a physical molecular gel

    Science.gov (United States)

    Morfin, I.; Spagnoli, S.; Rambaud, C.; Longeville, S.; Plazanet, M.

    2016-03-01

    Physical gels formed by amphiphilic molecules, namely in this study Methyl-4,6-O-benzylidene-? -D-mannopyranoside, can be form either in polar and protic liquid-like water or in organic apolar solvent such as toluene. The solvent, that influences the supramolecular organization of the gelators, plays an important role in the stability and formation of the gel phase. Gelator-solvent interactions govern not only the assembly but also the solvent diffusion in the material. We present here measurements of neutron scattering (Time of Flight and Neutron Spin Echo) characterizing this microscopic behaviour. In addition, we show that transient grating spectroscopy provides valuable information through the characterization of the longitudinal acoustic wave propagating in the system. Opposite effects on the speed of sound in the gels are observed for the two solvents investigated, being relevant of the interactions between the gelators and the surrounding liquid.

  1. А new factor effecting gel strength of pectin polysaccharides

    Directory of Open Access Journals (Sweden)

    S. E. Kholov

    2016-01-01

    Full Text Available Pectin polysaccharides obtained from various raw materials have a different component composition and form gels with water, sugar and acid or calcium. In this study, an experimental approach the gelation properties of different pectin samples, varied from different sources, using new methods of hydrolysis and purification. Samples were obtained by hydrolysis of accelerated extraction of pectin and purified by diaultrfiltration, have a high gel strength. The highest gel strength have been found in series of high methoxyl (HM- pectin samples of apple, peach, orange and low methoxyl (LM- pectin samples of commercial citrus pectin and apple pectin obtained by new method. It is shown that in addition to the basic parameters (the content of galacturonic acid, degree of esterification, molecular weight and hidrodinamic radius macromolecule to affect gel strength pectins aggregation of macromolecules, which is determined by the z-average molecular weight. There were observed a clear pattern of the influence of the molecular weight on hydrodynamic parameters for both HM- and LM- pectin samples on the gel strength. It were shown that a high values of molecular weight, intrinsic viscosity, and radius of gyration of pectin samples can significantly increase gel strength, while the value of Mz oppositely influenced the gel strength. As a result, a systematic analysis of this parameter and its relationship to the average molecular weight found that indeed the ratio Mz/Mw for pectin’s is an crucial to assess the quality of pectin at the study of gel strength for pectin polysaccharides.

  2. Electrochemical and spectroscopic characterization of surface sol-gel processes.

    Science.gov (United States)

    Chen, Xiaohong; Wilson, George S

    2004-09-28

    (3-Mercaptopropyl)trimethoxysilane (MTS) forms a unique film on a platinum substrate by self-assembly and sol-gel cross-linking. The gelating and drying states of the self-assembled MTS sol-gel films were probed by use of electrochemical and spectroscopic methods. The thiol moiety was the only active group within the sol-gel network. Gold nanoparticles were employed to detect the availability of the thiol group and their interaction further indicated the physicochemical states of the sol-gel inner structure. It was found that the thiol groups in the open porous MTS aerogel matrix were accessible to the gold nanoparticles while thiol groups in the compact MTS xerogel network were not accessible to the gold nanoparticles. The characteristics of the sol-gel matrix change with time because of its own irreversible gelating and drying process. The present work provides direct evidence of gold nanoparticle binding with thiol groups within the sol-gel structures and explains the different permeability of "aerogel" and "xerogel" films of MTS on the basis of electrochemical and spectroscopic results. Two endogenous species, hydrogen peroxide and ascorbic acid, were used to test the permeability of the self-assembled sol-gel film in different states. The MTS xerogel film on the platinum electrode was extremely selective against ascorbic acid while maintaining high sensitivity to hydrogen peroxide in contrast to the relatively high permeability of ascorbic acid in the MTS aerogel film. This study showed the potential of the MTS sol-gel film as a nanoporous material in biosensor development.

  3. [Microchips based on three dimensional gel cells: history and perspective].

    Science.gov (United States)

    Kolchinskiĭ, A M; Griadunov, D A; Lysov, Iu P; Mikhaĭlovich, V M; Nasedkina, T V; Turygin, A Iu; Rubina, A Iu; Barskiĭ, V E; Zasedatelev, A S

    2004-01-01

    The review describes the history of creation and development of the microchip technology and its role in the human genome project in Russia. The emphasis is placed on the three-dimensional gel-based microchips developed at the Center of Biological Microchips headed by A.D. Mirzabekov since 1988. The gel-based chips of the last generation, IMAGE chips (Immobilized Micro Array of Gel Elements), have a number of advantages over the previous versions. The microchips are manufactured by photo-initiated copolymerization of gel components and immobilized molecules (DNA, proteins, and ligands). This ensures an even distribution of the immobilized probe throughout the microchip gel element with a high yield (about 50% for oligonucleotides). The use of methacrylamide as a main component of the polymerization mixture resulted in a substantial increase of gel porosity without affecting its mechanical strength and stability, which allowed one to work with the DNA fragments of up to 500 nt in length, as well as with rather large protein molecules. At present, the gel-based microchips are widely applied to address different problems. The generic microchips containing a complete set of possible hexanucleotides are used to reveal the DNA motifs binding with different proteins and to study the DNA-protein interactions. The oligonucleotide microchips are a cheap and reliable tool of diagnostics designed for mass application. Biochips have been developed for identification of the tuberculosis pathogen and its antibiotic-resistant forms; for diagnostics of orthopoxviruses, including the smallpox virus; for diagnostics of the anthrax pathogen; and for identification of chromosomal rearrangements in leukemia patients. The protein microchips can be adapted for further use in proteomics. Bacterial and yeast cells were also immobilized in the gel, maintaining their viability, which open a wide potential for creation biosensors on the basis of microchips.

  4. A novel fibrin gel derived from hyaluronic acid-grafted fibrinogen

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Chiung L; Chen, Hui W; Wang, Tzu C; Wang, Yng J, E-mail: wang@ym.edu.tw [Institute of Biomedical Engineering, National Yang Ming University, No. 155, Sec. 2, Li-Nung St., Shih-Pai, Taipei, Taiwan 112 (China)

    2011-04-15

    Fibrinogen is a major plasma protein that forms a three-dimensional fibrin gel upon being activated by thrombin. In this study, we report the synthesis and potential applications of hybrid molecules composed of fibrinogen coupled to the reducing ends of short-chain hyaluronic acids (sHAs) by reductive amination. The grafting of sHAs to fibrinogen was verified by analyzing particle size, zeta potential and gel-electrophoretic mobility of the hybrid molecules. The sHA-fibrinogen hybrid molecules with graft ratios (sHA/fibrinogen) of up to 6.5 retained the ability to form gels in response to thrombin activation. The sHA-fibrin gels were transparent in appearance and exhibited high water content, which were characteristics distinct from those of gels formed by mixtures of sHAs and fibrinogen. The potential applications of the sHA-fibrin gels were evaluated. The sHA-fibrinogen gel with a graft ratio of 3.6 (S3.6F) was examined for its ability to encapsulate and support the differentiation of ATDC5 chondrocyte-like cells. Compared with the fibrinogen-formed gel, cells cultured in the S3.6F gel exhibited increased lacunae formation; moreover, the abundance of cartilaginous extracellular matrix molecules and the expression of chondrocyte marker genes, such as aggrecan, collagen II and Sox9, were also significantly increased. Our data suggest that the three-dimensional gel formed by the sHA-fibrinogen hybrid is a better support than the fibrin gel for chondrogenesis induction.

  5. Platelet gel for healing cutaneous chronic wounds.

    Science.gov (United States)

    Crovetti, Giovanni; Martinelli, Giovanna; Issi, Marwan; Barone, Marilde; Guizzardi, Marco; Campanati, Barbara; Moroni, Marco; Carabelli, Angelo

    2004-04-01

    Wound healing is a specific host immune response for restoration of tissue integrity. Experimental studies demonstrated an alteration of growth factors activity due to their reduced synthesis, increased degradation and inactivation. In wound healing platelets play an essential role since they are rich of alpha-granules growth factors (platelet derived growth factor--PDGF; transforming growth factor-beta--TGF-beta; vascular endothelial growth factor--VEGF). Topical use of platelet gel (PG), hemocomponent obtained from mix of activated platelets and cryoprecipitate, gives the exogenous and in situ adding of growth factors (GF). The hemocomponents are of autologous or homologous origin. We performed a technique based on: multicomponent apheretic procedure to obtain plasma rich platelet and cryoprecipitate; manual processing in an open system, in sterile environment, for gel activation. Every step of the gel synthesis was checked by a quality control programme. The therapeutic protocol consists of the once-weekly application of PG. Progressive reduction of the wound size, granulation tissue forming, wound bed detersion, regression and absence of infective processes were considered for evaluating clinical response to hemotherapy. 24 patients were enrolled. They had single or multiple cutaneous ulcers with different ethiopathogenesis. Only 3 patients could perform autologous withdrawal; in the others homologous hemocomponent were used, always considering suitability and traceability criteria for transfusional use of blood. Complete response was observed in 9 patients, 2 were subjected to cutaneous graft, 4 stopped treatment, 9 had partial response and are still receiving the treatment. In each case granulation tissue forming increased following to the first PG applications, while complete re-epithelization was obtained later. Pain was reduced in every treated patient. Topical haemotherapy with PG may be considered as an adjuvant treatment of a multidisciplinary process

  6. Thixotropic gel for vadose zone remediation

    Science.gov (United States)

    Riha, Brian D.

    2012-07-03

    A thixotropic gel suitable for use in subsurface bioremediation is provided along with a process of using the gel. The thixotropic gel provides a non-migrating injectable substrate that can provide below ground barrier properties. In addition, the gel components provide for a favorable environment in which certain contaminants are preferentially sequestered in the gel and subsequently remediated by either indigenous or introduced microorganisms.

  7. Thixotropic gel for vadose zone remediation

    Science.gov (United States)

    Rhia, Brian D.

    2011-03-01

    A thixotropic gel suitable for use in subsurface bioremediation is provided along with a process of using the gel. The thixotropic gel provides a non-migrating injectable substrate that can provide below ground barrier properties. In addition, the gel components provide for a favorable environment in which certain contaminants are preferentially sequestered in the gel and subsequently remediated by either indigenous or introduced microorganisms.

  8. Thixotropic gel for vadose zone remediation

    Energy Technology Data Exchange (ETDEWEB)

    Riha, Brian D.; Looney, Brian B.

    2015-10-27

    A thixotropic gel suitable for use in subsurface bioremediation is provided along with a process of using the gel. The thixotropic gel provides a non-migrating injectable substrate that can provide below ground barrier properties. In addition, the gel components provide for a favorable environment in which certain contaminants are preferentially sequestered in the gel and subsequently remediated by either indigenous or introduced microorganisms.

  9. Modification of gel architecture and TBE/TAE buffer composition to minimize heating during agarose gel electrophoresis.

    Science.gov (United States)

    Sanderson, Brian A; Araki, Naoko; Lilley, Jennifer L; Guerrero, Gilberto; Lewis, L Kevin

    2014-06-01

    Agarose gel electrophoresis of DNA and RNA is routinely performed using buffers containing either Tris, acetate, and EDTA (TAE) or Tris, borate, and EDTA (TBE). Gels are run at a low, constant voltage (∼10 V/cm) to minimize current and asymmetric heating effects, which can induce band artifacts and poor resolution. In this study, alterations of gel structure and conductive media composition were analyzed to identify factors causing higher electrical currents during horizontal slab gel electrophoresis. Current was reduced when thinner gels and smaller chamber buffer volumes were used, but was not influenced by agarose concentration or the presence of ethidium bromide. Current was strongly dependent on the amount and type of EDTA used and on the concentrations of the major acid-base components of each buffer. Interestingly, resolution and the mobilities of circular versus linear plasmid DNAs were also affected by the chemical form and amount of EDTA. With appropriate modifications to gel structure and buffer constituents, electrophoresis could be performed at high voltages (20-25 V/cm), reducing run times by up to 3-fold. The most striking improvements were observed with small DNAs and RNAs (10-100 bp): high voltages and short run times produced sharper bands and higher resolution. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Sol-gel based oxidation catalyst and coating system using same

    Science.gov (United States)

    Watkins, Anthony N. (Inventor); Leighty, Bradley D. (Inventor); Oglesby, Donald M. (Inventor); Patry, JoAnne L. (Inventor); Schryer, Jacqueline L. (Inventor)

    2010-01-01

    An oxidation catalyst system is formed by particles of an oxidation catalyst dispersed in a porous sol-gel binder. The oxidation catalyst system can be applied by brush or spray painting while the sol-gel binder is in its sol state.

  11. Gel formation in suspensions of oppositely charged colloids: mechanism and relation the equilibrium phase diagram

    NARCIS (Netherlands)

    Sanz, E.; Leunissen, M.E.; Fortini, A.; van Blaaderen, A.; Dijkstra, M.

    2008-01-01

    We study gel formation in a mixture of equally-sized oppositely charged colloids both experimentally and by means of computer simulations. Both the experiments and the simulations show that the mechanism by which a gel is formed from a dilute, homogeneous suspension is an interrupted gas-liquid phas

  12. Effect of fat hardness on large deformation rheology of emulsion-filled gels

    NARCIS (Netherlands)

    Oliver, L.; Scholten, E.; Aken, van G.A.

    2015-01-01

    The aim of this work was to investigate the impact on the texture properties of emulsion-filled gels when saturated solid fat is replaced by unsaturated liquid oil. Whey protein aggregate, gelatin and micellar casein, were chosen to form different types of gel matrices and the fat hardness was varie

  13. Mango butter emulsion gels as cocoa butter equivalents: physical, thermal, and mechanical analyses.

    Science.gov (United States)

    Sagiri, Sai S; Sharma, Vijeta; Basak, Piyali; Pal, Kunal

    2014-11-26

    The search for cocoa butter equivalents in food and pharmaceutical industries has been gaining importance. In the present study, mango butter was explored as cocoa butter equivalent. Aqueous gelatin solution (20% w/w) containing cocoa butter and mango butter water-in-oil (fat) type emulsion gels were prepared by hot emulsification method. XRD and DSC melting profiles suggested the presence of unstable polymorphic forms (α and β') of fats in the emulsion gels. The crystal size and solid fat content analyses suggested that the presence of aqueous phase might have hindered the transformation of unstable polymorphic forms to stable polymorphic form (β) in the emulsion gels. Fat crystals in the emulsion gels were formed by instantaneous nucleation via either uni- or bidimensional growth (Avrami analysis). The viscoelastic nature of the emulsion gels was evaluated by modified Peleg's analysis (stress relaxation study). Results inferred that the physical, thermal, and mechanical properties of mango butter emulsion gels are comparable to those of cocoa butter emulsion gels. On the basis of preliminary studies, it was suggested that the mango butter emulsion gels may have potential to be used as cocoa butter equivalents.

  14. The increase in pH during aging of porous sol-gel silica spheres

    NARCIS (Netherlands)

    Titulaer, M.K.; Kegel, W.K.; Jansen, J.B.H.; Geus, John W.

    1994-01-01

    The increase in pH in the hydrothermal fluid is studied after hydrothermal aging of porous silica gel spheres of 1–3 mm diameter. The porous silica spheres are formed by the sol-gel process from a supersaturated silica solution. The increase of the pH of the hydrothermal solution affects the silica

  15. Process for fabricating doped zinc oxide microsphere gel

    Science.gov (United States)

    Arnold, Jr., Wesley D.; Bond, Walter D.; Lauf, Robert J.

    1991-01-01

    A new composition and method of making same for a doped zinc oxide microsphere and articles made therefrom for use in an electrical surge arrestor which has increased solid content, uniform grain size and is in the form of a gel.

  16. Copolymers For Capillary Gel Electrophoresis

    Science.gov (United States)

    Liu, Changsheng; Li, Qingbo

    2005-08-09

    This invention relates to an electrophoresis separation medium having a gel matrix of at least one random, linear copolymer comprising a primary comonomer and at least one secondary comonomer, wherein the comonomers are randomly distributed along the copolymer chain. The primary comonomer is an acrylamide or an acrylamide derivative that provides the primary physical, chemical, and sieving properties of the gel matrix. The at least one secondary comonomer imparts an inherent physical, chemical, or sieving property to the copolymer chain. The primary and secondary comonomers are present in a ratio sufficient to induce desired properties that optimize electrophoresis performance. The invention also relates to a method of separating a mixture of biological molecules using this gel matrix, a method of preparing the novel electrophoresis separation medium, and a capillary tube filled with the electrophoresis separation medium.

  17. Glycidol-modified gels for molecular-sieve chromatography. Surface hydrophilization and pore size reduction.

    Science.gov (United States)

    Eriksson, K O

    1987-11-01

    Divinyl sulfone-crosslinked agarose gels were made hydrophilic by coupling glycidol to the agarose chains. The concentration of glycidol in the reaction mixture determines the pore size of the gels (the glycidol molecules probably form polymers, the degree of polymerization increasing with the glycidol concentration). Gels prepared with moderate glycidol concentrations are still porous enough to be used for separation of proteins and peptides. Gels with a high degree of glycidol polymerization are suited for desalting of low-molecular-weight compounds, for instance peptides.

  18. Rheology of κ/ι-hybrid carrageenan from Mastocarpus stellatus: Critical parameters for the gel formation.

    Science.gov (United States)

    Torres, M D; Chenlo, F; Moreira, R

    2016-05-01

    The sol-gel diagrams of kappa/iota-hybrid carrageenan (KI) extracted from Mastocarpus stellatus powders with two different average particle sizes of the seaweed powders (117.0 μm and 77.5 μm) prior to the biopolymer extraction, are reported for the first time, together with rheological properties of obtained KI gels. Extraction yields for KI isolated from algae and average molecular weight of KI, determined by gel permeation chromatography, decreased with increasing the particle size of the powder. Rheological results indicated that tested samples exhibited stable and weak gel properties, except those prepared at 1.5% KI in 1.0 mol/L NaCl where stronger gels were found. Aqueous KI extracts with larger molecular weight led to stronger gels and also formed gels at lower biopolymer concentration in NaCl above 0.15 mol/L. All gels reached stability after 20 min of maturation. The data sets showed a strong temperature dependency. Gel setting temperatures significantly depended on the KI and NaCl content, whereas gel melting temperatures (68.0 ± 0.7 °C) were independent of both salt concentrations.

  19. Supplementation of fibrin gels with sodium chloride enhances physical properties and ensuing osteogenic response.

    Science.gov (United States)

    Davis, H E; Miller, S L; Case, E M; Leach, J K

    2011-02-01

    Modifying the relative concentrations of fibrinogen and thrombin can control the physical properties of fibrin gels, while the viability of associated cells has been linked to the gel's final network structure. It was hypothesized that increasing the gel ionic strength during fabrication through supplementation with sodium chloride (NaCl) would provide an improved approach for tailoring the physical properties of fibrin gels and maintaining the viability and osteogenic potential of entrapped cells. Fibrin gels were formed by mixing fibrinogen, thrombin and calcium chloride with varying masses of NaCl (0-4.40% w/v), and the osteogenic potential of entrapped human mesenchymal stem cells (MSC) was examined over 14 days. Physical properties including gelation time, compressive modulus and fiber diameter were dependent upon NaCl content, with gels containing 2.60% NaCl possessing compressive moduli threefold higher than gels without NaCl. Alkaline phosphatase activity was highest for MSC entrapped in gels containing 2.15-2.60% NaCl after 14 days, and all gels exhibited increased calcium incorporation over the culture period. These data confirm that varying the salt concentration of the pre-gel solution can modulate the material properties of fibrin constructs without additional fibrinogen or thrombin, thereby offering a new approach for generating improved cell transplantation vehicles for use in bone tissue regeneration.

  20. Sol-gel synthesis and XPS study of vanadium-hydroquinone oxide bronze films

    Energy Technology Data Exchange (ETDEWEB)

    Bondarenka, V. [Semiconductor Physics Institute, A. Gostauto 11, 01108 Vilnius (Lithuania); Vilnius Pedagogical University, Studentu 39, 08106 Vilnius (Lithuania); Tvardauskas, H.; Grebinskij, S.; Senulis, M.; Pasiskevicius, A. [Semiconductor Physics Institute, A. Gostauto 11, 01108 Vilnius (Lithuania); Volkov, V.; Zakharova, G. [Institute of Solid State Chemistry, Pervomaiskaia 91, 620219 Yekaterinburg (Russian Federation)

    2009-12-15

    A vanadium - hydroquinone oxide bronze has been synthesized by using a sol gel technology. The V{sub 2}O{sub 5} powder, hydrogen peroxide, and hydroquinone C{sub 6}H{sub 4}(OH){sub 2} were used as the starting materials to produce the bronze. At first the vanadium gel was made by the dissolving of vanadium pentoxide powder in hydrogen peroxide at 273 K. Then the solution was heated up to 350 K for the dissociation of peroxide complexes. An aqueous solution of hydroquinone was mixed with the formed gel in molar ratio 0.33:1. In this way the V{sub 2}O{sub 5{+-}}{sub {delta}}.nH{sub 2}O/HQ (HQ-hydroquinone) gel was synthesized. These gels are applied on the Ni pad and dried in an air (wet gel synthesis) or heated up to 580 K in air for 1 h for the water removal from gel (bronze production). The wet gel, as well as a bronze, was investigated by means of XPS method. Analysis of V-O region of XPS spectra shows that vanadium in both cases (wet gel and bronze) is in stable V{sup 5+} state. Oxygen in wet gel can be associated with V ions, hydroxide group and water. In bronze oxygen is connected with V and hydrogen (hydroxide). (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. {sup 99}Mo/{sup 99m}Tc generators performances prepared from zirconium molybdate gels

    Energy Technology Data Exchange (ETDEWEB)

    Monroy-Guzman, Fabiola; Diaz-Archundia, Laura Veronica; Hernandez-Cortes, Sabino [Instituto Nacional de Investigaciones Nucleares, Estado de Mexico (Mexico)]. E-mail: fmg@nuclear.inin.mx

    2008-07-01

    {sup 99m}Tc may be produced from {sup 99}Mo/{sup 99m}Tc zirconium molybdate gel generators. These gels are part of the generator matrix and their chemical and physical characteristics directly influence the generator performances. In this work zirconium molybdate gels were synthesized under different preparation conditions and characterized by TGA, IR and INAA. Our goal was to investigate and correlate generator performance with the physical-chemical properties of the gel. The two factors studied were the molybdate solution pH and the preparation conditions of the zirconyl salt solutions. Several polymolybdate and zirconium species can be formed in solution which can inhibit or favor the zirconium molybdate gel formation or the insoluble polymolybdate-rich and zirconium oxy-hydroxide phases. The {sup 99}Mo/{sup 99m}Tc gel generator performance is directly correlated with gel structures. More regular network gels present lower generator performances compared to gels with more flexible random framework. The physico-chemical properties of the gels as well as their behavior as technetium-99m generators are presented and discussed. (author)

  2. Preparation of ferromagnetic binary alloy fine fibers byorganic gel-thermal reduction process

    Institute of Scientific and Technical Information of China (English)

    SHEN Xiang-qian; CAO Kai; ZHOU Jian-xin

    2006-01-01

    Ferromagnetic metal fibers with a high aspect ratio (length/diameter) are attractive for use as high performance electromagnetic interference shielding materials. Ferromagnetic binary alloy fine fibers of iron-nickel, iron-cobalt and cobalt-nickel were prepared by the organic gel-thermal reduction process from the raw materials of critic acid and metal salts. These alloy fibers synthesized were featured with a diameter of about 1 μm and a length as long as 1 m. The structure, thermal decomposition process and morphologies of the gel precursors and fibers derived from thermal reduction of the gel precursors were characterized by FTIR, XRD, TG/DSC and SEM. The gel spinnability largely depends on the molecular structure of metal- carboxylates formed during the gel formation. The gel consisting of linear-type structural molecules shows good spinnability.

  3. Preparation of ferromagnetic metal fine fibers by organic gel-thermal reduction process

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The organic gel-thermal reduction process was used for the preparation of ferromagnetic metal Ni, Co and Fe fine fibers from the raw materials of citric acid, lactic acid and metal salts. The structure, thermal decomposition process and morphologies of the gel precursors and fibers derived from thermal reduction of these gel precursors were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, thermo-gravimetric/differential scanning calorimetry and scanning electron microscopy. The results show that spinnability of gel largely depends on molecular structure of metal-carboxylate complex that is a linear-type structure formed in the gel. As a result, the gels exhibit a good spinnability. Metal Ni, Co and Fe fine fibers are featured with diameters of around 1 urn and a high aspect ratio up to 1×106.

  4. In Situ Formation of Steroidal Supramolecular Gels Designed for Drug Release

    Directory of Open Access Journals (Sweden)

    Hana Bunzen

    2013-03-01

    Full Text Available In this work, a steroidal gelator containing an imine bond was synthesized, and its gelation behavior as well as a sensitivity of its gels towards acids was investigated. It was shown that the gels were acid-responsive, and that the gelator molecules could be prepared either by a conventional synthesis or directly in situ during the gel forming process. The gels prepared by both methods were studied and it was found that they had very similar macro- and microscopic properties. Furthermore, the possibility to use the gels as carriers for aromatic drugs such as 5-chloro-8-hydroxyquinoline, pyrazinecarboxamide, and antipyrine was investigated and the prepared two-component gels were studied with regard to their potential applications in drug delivery, particularly in a pH-controlled drug release.

  5. Rheology of Emulsion-Filled Gels Applied to the Development of Food Materials

    Directory of Open Access Journals (Sweden)

    Ivana M. Geremias-Andrade

    2016-08-01

    Full Text Available Emulsion-filled gels are classified as soft solid materials and are complex colloids formed by matrices of polymeric gels into which emulsion droplets are incorporated. Several structural aspects of these gels have been studied in the past few years, including their applications in food, which is the focus of this review. Knowledge of the rheological behavior of emulsion-filled gels is extremely important because it can measure interferences promoted by droplets or particle inclusion on the textural properties of the gelled systems. Dynamic oscillatory tests, more specifically, small amplitude oscillatory shear, creep-recovery tests, and large deformation experiments, are discussed in this review as techniques present in the literature to characterize rheological behavior of emulsion-filled gels. Moreover, the correlation of mechanical properties with sensory aspects of emulsion-filled gels appearing in recent studies is discussed, demonstrating the applicability of these parameters in understanding mastication processes.

  6. Hybrid gels assembled from Fmoc-amino acid and graphene oxide with controllable properties.

    Science.gov (United States)

    Xing, Pengyao; Chu, Xiaoxiao; Li, Shangyang; Ma, Mingfang; Hao, Aiyou

    2014-08-04

    A supramolecular gel is obtained from the self-assembly of an ultralow-molecular-weight gelator (N-fluorenyl-9-methoxycarbonyl glutamic acid) in good and poor solvents. The gelators can self-assemble into a lamellar structure, which can further form twisted fibers and nanotubes in the gel phase. Rheological studies show that the gels are robust and rigid, and are able to rapidly self-recover to a gel after being destroyed by shear force. Fluorescence experiments reveal the aggregation-induced emission effects of the gel system; the fluorescence intensity is significantly enhanced by gel formation. Graphene oxide (GO) is introduced into the system efficiently to give a hybrid material, and the interaction between gelators-GO sheets is studied. Rheological and fluorescent studies imply that the mechanical properties and the fluorescent emission of the hybrid materials can be fine-tuned by controlling the addition of GO.

  7. Rheological Properties of Konjac Glucomannan/SiO_2 /Organic-Borate Gels

    Institute of Scientific and Technical Information of China (English)

    WU Lili; ZHANG Chaocan; GUO Jinming; GAO Shanjun

    2009-01-01

    A series of thermoreversible konjac glucomannan gels crosslinked by organic bo-rate were prepared.Required amount of hydrophilic SiO_2 was added into the konjac glucomannan solutions before the crosslinking reaction.The gel network was formed through the crosslinking reac-tion between borate ions dissociated from organic borate and the cis-diol hydroxyl groups on the mannose units of polysaccharide chains.The rheological properties of the complex gels were studied by dynamic viscoelastic measurement.The gelation kinetics of the complex gels was studied and the critical gelation points of the gels were exactly determined by the Winter-Chambon criterion.The ef-fects of temperature and composite ratio on the shear storage modulus(G'),the loss modulus(G") and the sol-gel transition points were investigated.

  8. Vesicles and vesicle gels - structure and dynamics of formation

    CERN Document Server

    Gradzielski, M

    2003-01-01

    Vesicles constitute an interesting morphology formed by self-aggregating amphiphilic molecules. They exhibit a rich structural variety and are of interest both from a fundamental point of view (for studying closed bilayer systems) and from a practical point of view (whenever one is interested in the encapsulation of active molecules). In many circumstances vesicular structures have to be formed by external forces, but of great interest are amphiphilic systems, where they form spontaneously. Here the question arises of whether this means that they are also thermodynamically stable structures, which at least in some systems appears to be the case. If such vesicles are well defined in size, it is possible to pack them densely and thereby form vesicle gels that possess highly elastic properties even for relatively low volume fractions of amphiphile. Conditions for the formation and the microstructure of such vesicle gels have been studied in some detail for the case of unilamellar vesicles. Another important and ...

  9. The characterisation of a genipin-gelatin gel dosimeter

    Energy Technology Data Exchange (ETDEWEB)

    Davies, J B; Bosi, S; Baldock, C, E-mail: jbd@ansto.gov.a

    2010-11-01

    Genipin cross links gelatin to slowly form a blue colour that bleaches upon irradiation. Spectrophotometric measurements of the absorbance change following irradiation to doses up to 100 Gy gives a linear dose response for certain concentrations of the gel ingredients; genipin, gelatin and sulphuric acid. Dose sensitivity increases with increasing concentrations of sulphuric acid and genipin and is also strongly dependent on the time allowed for the genipin-gelatin cross linking reaction (referred to here as blending) to take place. The optimum formulation of this gel was found for genipin concentration between 0.3 - 0.5 mM and blending time of at least 4 h.

  10. Screening effect on nanostructure of charged gel

    DEFF Research Database (Denmark)

    Sugiyama, M; Annaka, M; Hino, M

    2004-01-01

    Charge screening effects on nanostructures of N-isopropylacrylamide-sodium acrylate (NIPA-SA) and -acrylic acid (NIPA-AAc) gels are investigated with small-angle neutron scattering. The NIPA-SA and NIPA-AAc gels with low water content exhibit microphase separations with different dimensions....... The dehydrated NIPA-SA gel also makes the microphase separation but the dehydrated NIPA-AAc gel does not. These results indicate that ionic circumstance around charged bases strongly affects the nanostructures both of the dehydrated gel and the gel with low water content. (C) 2004 Elsevier B. V. All rights...

  11. Fluoride Rinses, Gels and Foams

    DEFF Research Database (Denmark)

    Twetman, Svante; Keller, Mette K

    2016-01-01

    AIM: The aim of this conference paper was to systematically review the quality of evidence and summarize the findings of clinical trials published after 2002 using fluoride mouth rinses, fluoride gels or foams for the prevention of dental caries. METHODS: Relevant papers were selected after an el...... brushing with fluoride toothpaste....

  12. Nonlinear elasticity of alginate gels

    Science.gov (United States)

    Hashemnejad, Seyed Meysam; Kundu, Santanu

    Alginate is a naturally occurring anionic polysaccharide extracted from brown algae. Because of biocompatibility, low toxicity, and simple gelation process, alginate gels are used in biomedical and food applications. Here, we report the rheological behavior of ionically crosslinked alginate gels, which are obtained by in situ gelation of alginates with calcium salts, in between two parallel plates of a rheometer. Strain stiffening behavior was captured using large amplitude oscillatory shear (LAOS) experiments. In addition, negative normal stress was observed for these gels, which has not been reported earlier for any polysaccharide networks. The magnitude of negative normal stress increases with applied strain and can exceed that of the shear stress at large strain. Rheological results fitted with a constitutive model that considers both stretching and bending of chains indicate that nonlinearity is likely related to the stretching of the chains between the crosslink junctions. The results provide an improved understanding of the deformation mechanism of ionically crosslinked alginate gel and the results will be important in developing synthetic extracellular matrix (ECM) from these materials.

  13. Rheological and structural properties of differently acidified and renneted milk gels.

    Science.gov (United States)

    Liu, X T; Zhang, H; Wang, F; Luo, J; Guo, H Y; Ren, F Z

    2014-01-01

    In this study we assessed the rheological and structural properties of differently acidified and renneted milk gels by controlling pH value and renneting extent. Skim milk were exactly renneted to 4 extents (20, 35, 55, and 74%) and then direct acidified to the desired pH (4.8, 5.0, 5.2, 5.5, 5.8, and 6.2), respectively. Rheological properties were assessed by dynamic rheological measurements, structural properties were studied by spontaneous whey separation and confocal laser scanning micrograph, and protein interactions were studied by dissociation test. Results showed that minimally renneted milk samples (20 and 35%) formed weak gels with low storage modulus, and the acidification range within which gels could form was narrow (pH ≤ 5.2). Highly renneted milk samples formed more gels with high storage modulus. The results of this study revealed that acidification determined the structural properties of highly renneted milk gels. As pH increased from 5.0 to 6.2, highly renneted milk gels had lower loss tangent, decreased spontaneous syneresis, and smaller pores. For both the low and high rennetings, divalent calcium bonds contributed less at low pH than at high pH. In conclusion, renneting increased the pH range suitable for gel formation; acidification determined the spontaneous syneresis and microstructure of highly renneted milk gels.

  14. Gel Electrophoresis, Gel Chromatography and Sedimentation Analysis of Histones and Protamines in the Presence of Nonionic Surfactants

    OpenAIRE

    Hamana, Koei

    1982-01-01

    Histones and protamines behaved as a monomeric form in 0.9M acetic acid. When gel electrophoresis was carried out in 0.9M acetic acid, the mobilities of calf H2A, H2B, H3 and H4 histones were decreased proportionaly to the helix content of the histones but the mobilities of calf H1 histone and fish protamines were not decreased by the addition of 6mM nonionic surfactant into the gel. Degree of the decreasing on the mobilities of four histones was also proportional to the molecular weight of t...

  15. Stabilization of polymer gels against divalent ion-induced syneresis

    Energy Technology Data Exchange (ETDEWEB)

    Albonico, Paola; Lockhart, Thomas P. [Eniricerche SpA, San Donato, Milan (Italy)

    1997-07-15

    Polymer solutions and polymer gels are unstable to extended ageing in divalent cation-rich brines at elevated temperature. This paper shows that low-molecular-weight compounds that complex strongly with Ca{sup 2+} and Mg{sup 2+} are capable of neutralizing their destabilizing influence on polymer solubility and of inhibiting the syneresis of crosslinked acrylamide polymer gels in hard brines. The solubility of the inhibitor-divalent ion complexes formed in hard brine at elevated temperature have also been examined. The results obtained offer the possibility to extend significantly the upper temperature limit for the use of polyacrylamides and acrylamide copolymers in brines in both polymer flooding and polymer gel treatments

  16. Antimicrobial efficacy of an indigenously prepared caries removing gel.

    Science.gov (United States)

    Subramaniam, Priya; Gilhotra, K

    2011-01-01

    The aim of this study was to assess the anti-microbial efficacy of an indigenously prepared caries removing gel, in primary molars. Twenty teeth with broad occlusal cavitated lesions that fulfilled the clinical and radiographic criteria formed the study group. These teeth were subjected to chemomechanical method of caries removal, using an indigenously prepared caries removing gel. Prior to and following caries removal, the dentin samples were analyzed for total viable count and lactobacilli count. The percentage of reduction in the total viable count was 92.4% and in the lactobacilli count it was 94.1%, which was statistically highly significant. Removal of carious tissue with a caries removing gel, a natural plant extract, proved to be efficient, easy to perform, and comfortable for the patient.

  17. Neutron Scattering on Impurity Nanoclusters in Gel Samples

    Directory of Open Access Journals (Sweden)

    V. B. Efimov

    2015-01-01

    Full Text Available Results of recent SANS experiments with impurity-helium gel (IHG samples in He-II are presented. We estimate the mean size of the impurity nanoparticles that form the frame of the IHG samples and discuss the possibility to use IHG samples for the production of ultracold neutrons (UCNs in He-II cooled to the temperature of a few mK, as well as the reflection of UCNs at any temperature. Our results indicate that the most promising materials for these purposes might be the heavy water gel samples with the mean sizes of D2O clusters of d~8 nm and the heavy alcohol gel samples with the mean sizes of clusters of d~15 nm.

  18. Rheology and Relaxation Timescales of ABA Triblock Polymer Gels

    Science.gov (United States)

    Peters, Andrew; Lodge, Timothy

    When dissolved in a midblock selective solvent, ABA polymers form gels composed of aggregated end block micelles bridged by the midblocks. While much effort has been devoted to the study of the structure of these systems, the dynamics of these systems has received less attention. We examine the underlying mechanism of shear relaxation of ABA triblock polymer gels, especially as a function of chain length, composition, and concentration. Recent work using time-resolved small-angle neutron scattering of polystyrene (PS)-block-poly(ethylene-alt-propylene) (PEP) in squalane has elucidated many aspects of the dynamics of diblock chain exchange. By using rheology to study bulk relaxation phenomena of the triblock equivalent, PS-PEP-PS, we apply the knowledge gained from the chain exchange studies to bridge the gap between the molecular and macroscopic relaxation phenomena in PS-PEP-PS triblock gels.

  19. Antimicrobial efficacy of an indigenously prepared caries removing gel

    Directory of Open Access Journals (Sweden)

    Priya Subramaniam

    2011-01-01

    Full Text Available Objective: The aim of this study was to assess the anti-microbial efficacy of an indigenously prepared caries removing gel, in primary molars. Materials and Methods: Twenty teeth with broad occlusal cavitated lesions that fulfilled the clinical and radiographic criteria formed the study group. These teeth were subjected to chemomechanical method of caries removal, using an indigenously prepared caries removing gel. Prior to and following caries removal, the dentin samples were analyzed for total viable count and lactobacilli count. Results: The percentage of reduction in the total viable count was 92.4% and in the lactobacilli count it was 94.1%, which was statistically highly significant. Conclusion: Removal of carious tissue with a caries removing gel, a natural plant extract, proved to be efficient, easy to perform, and comfortable for the patient.

  20. Study on the Controlled Gel Formation and Photochromic Properties of a New Cholesterol-bridge-naphthopyran Dyad

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Lin; Wang, Guang; Liu, Longbo; Wang, Ai Xia [Northeast Normal Univ., Jilin (China)

    2014-05-15

    A cholesterol-bridge-naphthopyran dyad (NP-MCB) was designed and synthesized. NP-MCB can readily self-assemble into gels under ultrasound-radiation in several organic solvents and the formed gels easily transfer to solution by heat. This reversible process can be repeated many times. Scanning Electron Microscopy results showed that the morphologies of all formed xerogels in different solvents have fibrillar microstructure. The gels formation was due to energy and pressure afforded by the ultrasonic process, resulting in formation of molecular hydrogen bonding and molecular aggregation. NP-MCB displayed the normal photochromism both in solution and gel states. The kinetic results confirm that the colored merocyanine in gels show a slower fading speed than that in solution due to the compact aggregation of NP-MCB molecules in gels. The xerogel film formed in polar gelling solvent had large surface wettability than that in nonpolar gelling solvent.

  1. Reversible Sol-Gel Transitions in Aqueous Solutions of N-Isopropylacrylamide Ionic Copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Krzyminski, Karol J.; Jasionowski, Marek; Gutowska, Anna

    2008-04-01

    Ionic copolymers of N-isopropylacrylamide (NIPA) exhibiting sol-gel transitions in aqueous solutions were investigated. The studies were aimed at understanding of the structure-property relationship in design of injectable, in situ forming gels for potential biomedical applications in delivery of therapeutics and tissue engineering. Aqueous solutions of NIPA ionic copolymers were found to flow freely at ambient temperatures and formed soft gels with controlled syneresis above 32°C, the lower critical solution temperature of NIPA. The sol-gel transitions and temperature dependent properties of the resulting gels were analyzed using dynamic rheometry, UV and IR spectrometry, and were found to be controlled by the molecular weight and composition of copolymers, ionization state of comonomers, and composition of aqueous solvent.

  2. Thermal relaxation and mechanical relaxation of rice gel

    Institute of Scientific and Technical Information of China (English)

    丁玉琴; 赵思明; 熊善柏

    2008-01-01

    Rice gel was prepared by simulating the production processes of Chinese local rice noodles,and the properties of thermal relaxation and mechanical relaxation during gelatinization were studied by differential scanning calorimetry(DSC) measurement and dynamic rheometer.The results show that during gelatinization,the molecular chains of rice starch undergo the thermal relaxation and mechanical relaxation.During the first heating and high temperature holding processes,the starch crystallites in the rice slurry melt,and the polymer chains stretch and interact,then viscoelastic gel forms.The cooling and low temperatures holding processes result in reinforced networks and decrease the viscoelasticity of the gel.During the second heating,the remaining starch crystallites further melt,the network is reinforced,and the viscoelasticity increases.The viscoelasticity,the molecular conformation and texture of the gel are adjusted by changing the temperature,and finally construct the gel with the textural characteristics of Chinese local rice noodle.

  3. Transient, nonlinear rheology of reversible colloidal gels by dynamic simulation

    Science.gov (United States)

    Landrum, Benjamin; Russel, William; Zia, Roseanna

    2014-11-01

    We study the nonlinear rheology of reversible colloidal gels via dynamic simulation as they undergo age- and flow-induced structural evolution, with a view toward understanding and predicting transient behaviors such as multi-step and delayed yield. The gel is formed from 750,000 Brownian spheres interacting via hard-sphere repulsion and O(kT) short-range attraction, where thermal fluctuations are strong enough to allow continued structural rearrangement in the absence of flow. During startup of imposed strain rate, the transition to steady state is characterized by one or more ``overshoots'' in the stress which suggest initial yield, formation of a stronger gel, and subsequent yield of the new gel. When subjected to step-shear stress, the microstructure undergoes limited creep, followed by viscous flow. This macroscopic ``delayed flow'' is consistent with previously proposed models of competition between breakage and formation of particle bonds among static load-bearing structures. Our findings suggest, however, that the load-bearing structures evolve, and that the gel's resistance to delayed failure depends upon this structural evolution and reinforcement. We put forth a micro-mechanical model of stress gradient-driven particle transport that captures this macroscopic behavior.

  4. Kefiran-alginate gel microspheres for oral delivery of ciprofloxacin.

    Science.gov (United States)

    Blandón, Lina M; Islan, German A; Castro, Guillermo R; Noseda, Miguel D; Thomaz-Soccol, Vanete; Soccol, Carlos R

    2016-09-01

    Ciprofloxacin is a broad-spectrum antibiotic associated with gastric and intestinal side effects after extended oral administration. Alginate is a biopolymer commonly employed in gel synthesis by ionotropic gelation, but unstable in the presence of biological metal-chelating compounds and/or under dried conditions. Kefiran is a microbial biopolymer able to form gels with the advantage of displaying antimicrobial activity. In the present study, kefiran-alginate gel microspheres were developed to encapsulate ciprofloxacin for antimicrobial controlled release and enhanced bactericidal effect against common pathogens. Scanning electron microscopy (SEM) analysis of the hybrid gel microspheres showed a spherical structure with a smoother surface compared to alginate gel matrices. In vitro release of ciprofloxacin from kefiran-alginate microspheres was less than 3.0% and 5.0% at pH 1.2 (stomach), and 5.0% and 25.0% at pH 7.4 (intestine) in 3 and 21h, respectively. Fourier transform infrared spectroscopy (FTIR) of ciprofloxacin-kefiran showed the displacement of typical bands of ciprofloxacin and kefiran, suggesting a cooperative interaction by hydrogen bridges between both molecules. Additionally, the thermal analysis of ciprofloxacin-kefiran showed a protective effect of the biopolymer against ciprofloxacin degradation at high temperatures. Finally, antimicrobial assays of Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Salmonella typhymurium, and Staphylococcus aureus demonstrated the synergic effect between ciprofloxacin and kefiran against the tested microorganisms. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Study on the rheological properties and volatile release of cold-set emulsion-filled protein gels.

    Science.gov (United States)

    Mao, Like; Roos, Yrjö H; Miao, Song

    2014-11-26

    Emulsion-filled protein gels (EFP gels) were prepared through a cold-set gelation process, and they were used to deliver volatile compounds. An increase in the whey protein isolate (WPI) content from 4 to 6% w/w did not show significant effect on the gelation time, whereas an increase in the oil content from 5 to 20% w/w resulted in an earlier onset of gelation. Gels with a higher WPI content had a higher storage modulus and water-holding capacity (WHC), and they presented a higher force and strain at breaking, indicating that a more compact gel network was formed. An increase in the oil content contributed to gels with a higher storage modulus and force at breaking; however, this increase did not affect the WHC of the gels, and gels with a higher oil content became more brittle, resulting in a decreased strain at breaking. GC headspace analysis showed that volatiles released at lower rates and had lower air-gel partition coefficients in EFP gels than those in ungelled counterparts. Gels with a higher WPI content had lower release rates and partition coefficients of the volatiles. A change in the oil content significantly modified the partition of volatiles at equilibrium, but it produced a minor effect on the release rate of the volatiles. The findings indicated that EFP gels could be potentially used to modulate volatile release by varying the rheological properties of the gel.

  6. Injectable biocompatible and biodegradable pH-responsive hollow particle gels containing poly(acrylic acid): the effect of copolymer composition on gel properties.

    Science.gov (United States)

    Halacheva, Silvia S; Adlam, Daman J; Hendow, Eseelle K; Freemont, Tony J; Hoyland, Judith; Saunders, Brian R

    2014-05-12

    The potential of various pH-responsive alkyl (meth)acrylate ester- and (meth)acrylic acid-based copolymers, including poly(methyl methacrylate-co-acrylic acid) (PMMA-AA) and poly(n-butyl acrylate-co-methacrylic acid) (PBA-MAA), to form pH-sensitive biocompatible and biodegradable hollow particle gel scaffolds for use in non-load-bearing soft tissue regeneration have been explored. The optimal copolymer design criteria for preparation of these materials have been established. Physical gels which are both pH- and redox-sensitive were formed only from PMMA-AA copolymers. MMA is the optimal hydrophobic monomer, whereas the use of various COOH-containing monomers, e.g., MAA and AA, will always induce a pH-triggered physical gelation. The PMMA-AA gels were prepared at physiological pH range from concentrated dispersions of swollen, hollow, polymer-based particles cross-linked with either cystamine (CYS) or 3,3'-dithiodipropionic acid dihydrazide (DTP). A linear relationship between particle swelling ratios, gel elasticity, and ductility was observed. The PMMA-AA gels with lower AA contents feature lower swelling ratios, mechanical strengths, and ductilities. Increasing the swelling ratio (e.g., through increasing AA content) decreased the intraparticle elasticity; however, intershell contact and gel elasticity were found to increase. The mechanical properties and performance of the gels were tuneable upon varying the copolymers' compositions and the structure of the cross-linker. Compared to PMMA-AA/CYS, the PMMA-AA/DTP gels were more elastic and ductile. The biodegradability and cytotoxicity of the new hollow particle gels were tested for the first time and related to their composition, mechanical properties, and morphology. The new PMMA-AA/CYS and PMMA-AA/DTP gels have shown good biocompatibility, biodegradability, strength, and interconnected porosity and therefore have good potential as a tissue repair agent.

  7. Hybrid Materials of Polymer Gels with Surfactants

    Institute of Scientific and Technical Information of China (English)

    Hu Yan; Kaoru Tsujii

    2005-01-01

    @@ 1 Introduction Polymer gels have been extensively studied[1~17] since the discovery of volume phase-transition of a gel by Tanaka[1~5]. As a unique soft material, gels attract much attention and are tried to be applied for drug-delivery systgems[6], actuators or chemo-mechanical devices[7~9] and so on. In particular, controlled-release of small molecules from a gel is now a subject of special interest[10].

  8. Study of Fricke gel dosimeter response for different gel quality

    Science.gov (United States)

    Cavinato, C. C.; Campos, L. L.

    2010-11-01

    The Fricke xylenol gel (FXG) dosimeter has been studied for application in radiotherapy because it is capable of to measure the spatial distribution of radiation doses. The dosimetry is based on the oxidation of ferrous (Fe2+) to ferric (Fe3+) ions radiation induced, related to the radiation dose. The gel material usually employed is the 300 Bloom gelatin, which is imported and very expensive in Brazil. Aiming to analyze the viability of to use a locally produced and low cost gel material, in this work the spectrophotometric responses of FXG solutions prepared using 270 Bloom gelatin commercially available and 300 Bloom gelatin imported were compared. The absorption spectra of solutions prepared with 5% by weight 270 and 300 Bloom gelatins non-irradiated and irradiated with 60Co gamma radiation in the dose range between 0.5 and 100 Gy were analysed, the dose-response curves were evaluated and the useful dose range was established. The obtained results indicate that the FXG solution prepared with 270 Bloom gelatin presents good performance, similar to that presented by the FXG solution prepared with 300 Bloom gelatin and its use can be recommended owing to the low cost and the availability in local market.

  9. 21 CFR 866.4900 - Support gel.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Support gel. 866.4900 Section 866.4900 Food and... IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunology Laboratory Equipment and Reagents § 866.4900 Support gel. (a) Identification. A support gel for clinical use is a device that consists of an agar or agarose preparation...

  10. Small-angle X-ray scattering and rheological characterization of alginate gels. 3. Alginic acid gels.

    Science.gov (United States)

    Draget, Kurt Ingar; Stokke, Bjørn T; Yuguchi, Yoshiaki; Urakawa, Hiroshi; Kajiwara, Kanji

    2003-01-01

    Alginic acid gels were studied by small-angle X-ray scattering and rheology to elucidate the influence of alginate chemical composition and molecular weight on the gel elasticity and molecular structure. The alginic acid gels were prepared by homogeneous pH reduction throughout the sample. Three alginates with different chemical composition and sequence, and two to three different molecular weights of each sample were examined. Three alginate samples with fractions of guluronic acid residues of 0.39 (LoG), 0.50 (InG), and 0.68 (HiG), covering the range of commercially available alginates, were employed. The excess scattering intensity I of the alginic acid gels was about 1 order of magnitude larger and exhibited a stronger curvature toward low q compared to ionically cross-linked alginate. The I(q) were decomposed into two components by assuming that the alginic acid gel is composed of aggregated multiple junctions and single chains. Time-resolved experiments showed a large increase in the average size of aggregates and their weight fraction within the first 2 h after onset of gelling, which also coincides with the most pronounced rheological changes. At equilibrium, little or no effect of molecular weight was observed, whereas at comparable molecular weights, an increased scattering intensity with increasing content of guluronic acid residues was recorded, probably because of a larger apparent molecular mass of domains. The results suggest a quasi-ordered junction zone is formed in the initial stage, followed by subsequent assembling of such zones, forming domains in the order of 50 A. The average length of the initial junction zones, being governed by the relative fraction of stabilizing G-blocks and destabilizing alternating (MG) blocks, determines the density of the final random aggregates. Hence, high-G alginates give alginic acid gels of a higher aggregate density compared to domains composed of loosely packed shorter junction zones in InG or LoG system.

  11. FORMULATION AND EVALUATION OF FLOATING IN SITU GEL BASED GASTRO RETENTIVE DRUG DELIVERY OF CIMETIDINE

    Directory of Open Access Journals (Sweden)

    Bhargav D. Jayswal

    2012-05-01

    Full Text Available The present investigation deals with the formulation and evaluation of sodium alginate and pectin basedIn situ gel of Cimetidine. Sodium alginate and pectin were used as a polymer and CaCO3 was used as across-linking agent. In-situ forming polymeric formulations drug delivery systems is in sol form beforeadministration in the body, but once administered, undergoes gelation in-situ to form a gel. Theformulation of gel depends upon factors like temperature modulation, pH changes, presence of ions andultra-violet irradiation, from which drug gets released in sustained and controlled manner. The objectiveof this study was to develop a novel in- situ gel system for sustained drug delivery using naturalbiodegradable polymers. The system utilizes polymers that exhibit sol-to-gel phase transition due tochange in specific physico-chemical parameters. In-situ gel was formed at a biological pH. In vitrorelease studies were conducted in simulated gastric fluid and cumulative amount of drug release wasanalyzed by spectrophotometry. From designed set of experiments, it was evident that formulationcontaining 1.2% of sodium alginate and 1.5% of pectin control the release of drug for longer duration.The in-situ gel exhibited the expected, viscosity, drug content, pH, in vitro gelling capacity, in vitrofloating ability, water uptake ability and sustained drug release.The drug release from the in situ gelsfollows the fickian diffusion type of release.

  12. Interplay of thermal and covalent gelation of silanized hydroxypropyl methyl cellulose gels.

    Science.gov (United States)

    Allahbash, Shahin; Nicolai, Taco; Chassenieux, Christophe; Tassin, Jean-Francois; Benyahia, Lazhar; Weiss, Pierre; Rethore, Gildas

    2015-01-22

    Silanized hydroxypropyl methyl cellulose (Si-HPMC) is a biocompatible polysaccharide that forms a covalently crosslinked hydrogel at all temperatures due to silanol condensation. Unmodified HPMC forms reversible turbid physical gels when heated above 55°C. The interaction between thermal gelation and covalent crosslinking of Si-HPMC was investigated with rheology, turbidity and microscopy. Thermal gelation of the HPMC backbone was found to reinforce Si-HPMC gels at room temperature. However, simultaneous thermal and covalent crosslinking at higher temperatures led to weaker turbid gels at room temperature. The effect of the pH and the addition of orthophosphate on the elastic modulus and the gelation kinetics was investigated.

  13. Entrapment of Probiotics in Water Extractable Arabinoxylan Gels: Rheological and Microstructural Characterization

    Directory of Open Access Journals (Sweden)

    Adriana Morales-Ortega

    2014-03-01

    Full Text Available Due to their porous structure, aqueous environment and dietary fiber nature arabinoxylan (AX gels could have potential applications for colon-specific therapeutic molecule delivery. In addition, prebiotic and health related effects of AX have been previously demonstrated. It has been also reported that cross-linked AX can be degraded by bacteria from the intestinal microbiota. However, AX gels have not been abundantly studied as carrier systems and there is no information available concerning their capability to entrap cells. In this regard, probiotic bacteria such as Bifidobacterium longum have been the focus of intense research activity lately. The objective of this research was to investigate the entrapment of probiotic B. longum in AX gels. AX solution at 2% (w/v containing B. longum (1 × 107 CFU/cm formed gels induced by laccase as cross-linking agent. The entrapment of B. longum decreased gel elasticity from 31 to 23 Pa, probably by affecting the physical interactions taking place between WEAX chains. Images of AX gels containing B. longum viewed under a scanning electron microscope show the gel network with the bacterial cells entrapped inside. The microstructure of these gels resembles that of an imperfect honeycomb. The results suggest that AX gels can be potential candidates for the entrapment of probiotics.

  14. Characterization of spreadability of nonaqueous ethylcellulose gel matrices using dynamic contact angle.

    Science.gov (United States)

    Chow, Keat Theng; Chan, Lai Wah; Heng, Paul W S

    2008-08-01

    This study reports the characterization of spreadability of nonaqueous ethylcellulose (EC) gel matrices intended for topical drug delivery using a newly developed method based on dynamic contact angle. EC solutions were prepared using three grades of EC and propylene glycol dicaprylate/dicaprate. Dynamic contact angles of sessile drops of EC solutions on silicone elastomer were measured using a dynamic contact angle analyzer equipped with axisymmetric drop shape analysis-profile. Roughness of silicone elastomer, viscosity of EC solutions and compressibility of semisolid EC gels were determined by the atomic force microscope, cone-and-plate rheometer and tensile tester, respectively. The silicone elastomer employed as a substrate was demonstrated to have similar hydrophilic/lipophilic properties as the human skin. Spreadability of EC solutions was dependent on EC concentration, polymeric chain length and polydispersity. EC gel spreadability was governed by viscosity and the extent of gel-substrate interaction. From the apparent contact angle values, most EC gel formulations tested were found to be moderately spreadable. Linear correlation observed between spreading parameter and compressibility of EC gel verified the applicability of dynamic contact angle to characterize EC gel spreadability. Thus, the feasibility of employing dynamic contact angle as an alternative technique to measure gel spreadability was demonstrated. The spreadability demonstrated by EC gel would facilitate application on the skin indicating its potential usefulness as a topical dosage form.

  15. Permeability of gels is set by the impulse applied on the gel

    NARCIS (Netherlands)

    Urbonaite, V.; Jongh, de H.H.J.; Linden, van der E.; Pouvreau, L.A.M.

    2015-01-01

    To better understand sensory perception of foods, water exudation studies on protein-based gels are of a high importance. It was aimed to study the interplay of gel coarseness and gel stiffness on water holding (WH) and water flow kinetics from the gel once force is applied onto the material. Ovalbu

  16. 蛋白酶活性检定及其在特定基质1D与2D凝胶中的特性:一种生物样品中分离、鉴定新的活性型蛋白酶的方法%Protease activity assay and characterization in substrate-specific 1D and 2D gels: A powerful method to separate and identify novel proteases in active form in biological samples

    Institute of Scientific and Technical Information of China (English)

    Zhao Zhenjun; Russell Pamela J

    2003-01-01

    @@ The emergence of bacterial pathogen resistance to common antibiotics strongly supports the necessity to develop alternative mechanisms for combating drug-resistant forms of these infective organisms. Currently, few pharmaceutical companies have attempted to investigate the possibility of interrupting metabolic pathways other than those that are known to be involved in cell wall biosynthesis. Bacterial proteases have been showed to play an important role during infection and their inhibitors can retard the growth, proliferation and invasion of bacterial pathogens. To separate and identify these proteases, we have developed a specific, sensitive assay in SDS-polyacrylamide gels after 2D electrophoresis. This method allows simultaneous determination of protease cleavage specificity, molecular weight, isoelectric point, and if necessary, amino acid sequencing.

  17. Flow of oil and water through elastic polymer gels; Ecoulement de petrole et d'eau a travers des gels de polymere elastiques

    Energy Technology Data Exchange (ETDEWEB)

    Al-Sharji, H.H.; Grattoni, C.A.; Zimmerman, R.W. [T.H. Huxley School of Environment, Earth Sciences and Engineering, Imperial College of Science, Technology and Medecine, London (United Kingdom); Dawe, R.A. [West Indies Univ., Dept. of Chemical Engineering, Mona (Jamaica)

    2001-07-01

    High water production is one of the major problems faced by the petroleum industry. One method of controlling water production is to inject polymer gels into the near-wellbore formation. Unfortunately, polymer gel injections are not always successful, in part because the exact mechanisms by which they reduce water permeability more than oil permeability (i.e., Disproportionate Permeability Reduction. DPR) are not understood. We have conducted a series of experiments on flow of water and oil through bulk polymer gels and through polymer- filled micro-models to elucidate the fundamental mechanisms involved in DPR. Flow experiments of oil and water through weak polyacrylamide-based gels have been per,formed to obtain the gel permeabilities under different test conditions. Oil and water permeabilities through the gel were each found to vary with flow rate according to a power-law, but with different pre-factors and exponents. The micro-scale flow experiments were conducted in transparent glass models to visualize clearly the flow events. Our observations enabled us to discount many previously-proposed explanations, and identify the fact that the oil and water can travel through the same pore channels, but in ways that differ, particularly at the pore scale. Water flows through the gel matrix as if flowing by diffusive flow through a porous medium, whereas the oil pushes its way In the form of immiscible drops or filaments. This difference in flow regime gives rise to the measured disproportionate permeability reduction. (authors)

  18. Modelling of erosion of bentonite gel by gel/sol flow

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, Luis; Neretnieks, Ivars; Longcheng Liu (Chemical Engineering and Technology, School of Chemical Science and Engineering, Royal Institute of Technology, Stockholm (Sweden))

    2010-11-15

    order of a metre per year the gel may penetrate several metres into the fracture when steady state is reached. The simulations were made with only sodium as counterion. Most simulations had sodium concentrations below the critical coagulation concentration, CCC. In the compacted bentonite at the fracture mouth it was 10 mM and 0.1 mM in the approaching water. At these concentrations the gel is expansive and can turn into a sol releasing colloidal particles. The low ion concentration has a strong impact on the fluid viscosity, which increases with decreasing ionic strength. At the same time, however the repulsion forces between the smectite particles increase causing a quicker expansion. Simulations with higher sodium concentrations had a marginal influence on the erosion rate. For the highest water flow rates the smectite loss could be up to 0.3 kg per year for one canister. This is more than one order of magnitude larger than what could be reached by smectite particle diffusion alone if fluid flow was neglected. In experiments in downward facing slits (fractures) it has been found that bentonite releases gel agglomerates much faster than expected. These are released and sediment also under conditions where it is expected that the smectite particles should have separated into individual smectite sheets, which would not noticeably be influenced by gravity. The reasons for this behaviour are not understood. In the modelling it is assumed that there are no other larger non-smectite particles that would be left behind to gradually build up a bed of particles that could act as filter, slowing down or even straining further smectite penetration into the fracture. The modelling results could therefore be highly pessimistic because bentonites contain tens of percent of accessory minerals that do not form colloids and the presence of which may cause the expansion to be slowed down by friction against the fracture walls

  19. A hybrid thermo-sensitive chitosan gel for sustained release of Meloxicam.

    Science.gov (United States)

    Wang, Ye; Chen, Minyan; Li, Xiang; Huang, Yongzhuo; Liang, Wenquan

    2008-01-01

    The purpose of this work was to develop a multi-phase gel system for sustained release drug delivery. A thermo-sensitive hydrogel composed of chitosan and glycerol was prepared, and then an o/w emulsion was introduced to the thermo-sensitive gel in order to modulate the gelation behavior. Meloxicam was chosen as a model drug in this study and its release profile was investigated. This study revealed that the factors such as pH, chitosan molecular mass and glycerol concentration could significantly influence the gel formation. Chitosan with a molecular mass of 950 kDa and glycerol proportion ranging from 30 to 60% can form a pH-dependent thermo-sensitive gel system. Both the chitosan-glycerol gel and chitosan-glycerol-emulsion gel systems were applied in delivering drugs. The drug release from the two gels was both in Higuchi mode. Higuchi moduli were 3.04 x 10(-3) mg x h((1/2)) in the chitosan-glycerol-emulsion gel and 1.28 mg x h((1/2)) in the chitosan- glycerol gel. The former was significantly slower in sustained release. The in vivo investigation on the chitosan-glycerol gel indicated that the gel may be useful in sustained drug release in situ. Thermosensitive hydrogels composed of chitosan and glycerol were well formed and could act as a sustained release drug carrier in the work, it showed that this hybrid thermo-sensitive hydrogel system may be a promising sustained release drug carrier.

  20. Gluten gel and film properties in the presence of cysteine and sodium alginate.

    Science.gov (United States)

    Yuno-Ohta, Naoko; Yamada, Mariko; Inomata, Masako; Konagai, Hiromi; Kataoka, Tomomi

    2009-08-01

    Wheat flour has an ability of forming dough by mixing with water, which exhibits a rheological property required for making bread. The major protein is gluten, which is a valuable protein material for food industry. In this study, gluten protein gels and films were formed with cysteine and sodium alginate. Adding cysteine improved gel and film properties (stress relaxation behavior, bending strength). The gel containing 0.01 M cysteine had a longer relaxation time and was more rigid than the gel without cysteine. Although adding sodium alginate to the gluten suspension containing cysteine improved the water-holding ability and homogeneity of the gel network, the film from this gel was more brittle than the gluten film with cysteine alone. Microstructural observations of the gels and films with scanning electron microscopy suggested that water evaporation was more heterogeneous from the gel containing sodium alginate than from the gel with cysteine alone. Fourier transform-infrared (FT-IR) analysis during film formation suggested that the presence of cysteine encourages interaction between gluten molecules and results in intermolecular beta-sheet formation in earlier stages than in the no additive condition. FT-IR results also suggested that the combined effect of sodium alginate and cysteine on the protein secondary structure was remarkably different from that of cysteine alone. Our results suggest that addition of a suitable amount of cysteine (0.01 M) and heat treatment to 80 degrees C during gluten gel and film formation induces a homogenous network in the gel and film by regulating disulfide-sulfide interactions.

  1. Thermodynamic analysis of sol-gel transition of gelatin in terms of water activity in various solutions.

    Science.gov (United States)

    Miyawaki, Osato; Omote, Chiaki; Matsuhira, Keiko

    2015-12-01

    Sol-gel transition of gelatin was analyzed as a multisite stoichiometric reaction of a gelatin molecule with water and solute molecules. The equilibrium sol-gel transition temperature, Tt , was estimated from the average of gelation and melting temperature measured by differential scanning calorimetry. From Tt and the melting enthalpy, ΔHsol , the equilibrium sol-to-gel ratio was estimated by the van't Hoff equation. The reciprocal form of the Wyman-Tanford equation, which describes the sol-to-gel ratio as a function of water activity, was successfully applied to obtain a good linear relationship. From this analysis, the role of water activity on the sol-gel transition of gelatin was clearly explained and the contributions of hydration and solute binding to gelatin molecules were separately discussed in sol-gel transition. The general solution for the free energy for gel-stabilization in various solutions was obtained as a simple function of solute concentration.

  2. Fluoride Rinses, Gels and Foams

    DEFF Research Database (Denmark)

    Twetman, Svante; Keller, Mette K

    2016-01-01

    AIM: The aim of this conference paper was to systematically review the quality of evidence and summarize the findings of clinical trials published after 2002 using fluoride mouth rinses, fluoride gels or foams for the prevention of dental caries. METHODS: Relevant papers were selected after...... an electronic search for literature published in English between 2003 and 2014. The included papers were assessed for their risk of bias and the results were narratively synthesized due to study heterogeneity. The quality of evidence was expressed according to GRADE. RESULTS: A total of 19 papers were included...... (6 on fluoride mouth rinse, 10 on fluoride gel and 3 on fluoride foam); 6 had a low risk of bias while 2 had a moderate risk. All fluoride measures appeared to be beneficial in preventing crown caries and reversing root caries, but the quality of evidence was graded as low for fluoride mouth rinse...

  3. Gel dosimetry for conformal radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Gambarini, G. [Department of Physics of the University and INFN, Milan (Italy)]. e-mail: grazia.gambarini@mi.infn.it

    2005-07-01

    With the continuum development of conformal radio therapies, aimed at delivering high dose to tumor tissue and low dose to the healthy tissue around, the necessities has appeared of suitable improvement of dosimetry techniques giving the possibility of obtaining dose images to be compared with diagnostic images. Also if wide software has been developed for calculating dose distributions in the fields of various radiotherapy units, experimental verifications are necessary, in particular in the case of complex geometries in conformal radiotherapy. Gel dosimetry is a promising method for imaging the absorbed dose in tissue-equivalent phantoms, with the possibility of 3D reconstruction of the spatial dose distribution, with milli metric resolution. Optical imaging of gel dosimeters, based on visible light absorbance analysis, has shown to be a reliable technique for achieving dose distributions. (Author)

  4. Stable Lithium Deposition Generated from Ceramic-Cross-Linked Gel Polymer Electrolytes for Lithium Anode.

    Science.gov (United States)

    Tsao, Chih-Hao; Hsiao, Yang-Hung; Hsu, Chun-Han; Kuo, Ping-Lin

    2016-06-22

    In this work, a composite gel electrolyte comprising ceramic cross-linker and poly(ethylene oxide) (PEO) matrix is shown to have superior resistance to lithium dendrite growth and be applicable to gel polymer lithium batteries. In contrast to pristine gel electrolyte, these nanocomposite gel electrolytes show good compatibility with liquid electrolytes, wider electrochemical window, and a superior rate and cycling performance. These silica cross-linkers allow the PEO to form the lithium ion pathway and reduce anion mobility. Therefore, the gel not only features lower polarization and interfacial resistance, but also suppresses electrolyte decomposition and lithium corrosion. Further, these nanocomposite gel electrolytes increase the lithium transference number to 0.5, and exhibit superior electrochemical stability up to 5.0 V. Moreover, the lithium cells feature long-term stability and a Coulombic efficiency that can reach 97% after 100 cycles. The SEM image of the lithium metal surface after the cycling test shows that the composite gel electrolyte with 20% silica cross-linker forms a uniform passivation layer on the lithium surface. Accordingly, these features allow this gel polymer electrolyte with ceramic cross-linker to function as a high-performance lithium-ionic conductor and reliable separator for lithium metal batteries.

  5. Sol-gel derived ceramics

    OpenAIRE

    1990-01-01

    The synthesis of ceramic raw materials has become an important factor in ceramic technologies. The increasing demands to the performance of ceramic compounds has caused increased activities for the preparation of tailor-made raw materials. Amongst a variety of new syntheses like flame pyrolysis, reactive spray drying, plasma or laser assisted techniques, the sol-gel process plays an important and increasing role. The process describes the building up of an inorganic (in general an oxide) netw...

  6. The gel electrophoresis markup language (GelML) from the Proteomics Standards Initiative.

    Science.gov (United States)

    Gibson, Frank; Hoogland, Christine; Martinez-Bartolomé, Salvador; Medina-Aunon, J Alberto; Albar, Juan Pablo; Babnigg, Gyorgy; Wipat, Anil; Hermjakob, Henning; Almeida, Jonas S; Stanislaus, Romesh; Paton, Norman W; Jones, Andrew R

    2010-09-01

    The Human Proteome Organisation's Proteomics Standards Initiative has developed the GelML (gel electrophoresis markup language) data exchange format for representing gel electrophoresis experiments performed in proteomics investigations. The format closely follows the reporting guidelines for gel electrophoresis, which are part of the Minimum Information About a Proteomics Experiment (MIAPE) set of modules. GelML supports the capture of metadata (such as experimental protocols) and data (such as gel images) resulting from gel electrophoresis so that laboratories can be compliant with the MIAPE Gel Electrophoresis guidelines, while allowing such data sets to be exchanged or downloaded from public repositories. The format is sufficiently flexible to capture data from a broad range of experimental processes, and complements other PSI formats for MS data and the results of protein and peptide identifications to capture entire gel-based proteome workflows. GelML has resulted from the open standardisation process of PSI consisting of both public consultation and anonymous review of the specifications.

  7. Consolidation of Inorganic Precipitated Silica Gel

    Directory of Open Access Journals (Sweden)

    Matthias Kind

    2011-08-01

    Full Text Available Colloidal gels are possible intermediates in the generation of highly porous particle systems. In the production process the gels are fragmented after their formation. These gel fragments compact to particles whose application-technological properties are determined by their size and porosity. In the case of precipitated silica gels, this consolidation process depends on temperature and pH, among other parameters. It is shown that these dependencies can be characterized by oedometer measurements. Originally, the oedometer test (one-dimensional compression test stemmed from soil mechanics. It has proven to be an interesting novel examination method for gels. Quantitative data of the time-dependent shrinkage of gel samples can be obtained. The consolidation of the gels shows a characteristic dependence on the above parameters.

  8. Structure and kinetics of chemically cross-linked protein gels from small-angle X-ray scattering

    CERN Document Server

    Kaieda, Shuji; Halle, Bertil

    2014-01-01

    Glutaraldehyde (GA) reacts with amino groups in proteins, forming intermolecular cross-links that, at sufficiently high protein concentration, can transform a protein solution into a gel. Although GA has been used as a cross-linking reagent for decades, neither the cross-linking chemistry nor the microstructure of the resulting protein gel have been clearly established. Here we use small-angle X-ray scattering (SAXS) to characterise the microstructure and structural kinetics of gels formed by cross-linking of pancreatic trypsin inhibitor, myoglobin or intestinal fatty acid-binding protein. By comparing the scattering from gels and dilute solutions, we extract the structure factor and the pair correlation function of the gel. The protein gels are spatially heterogeneous, with dense clusters linked by sparse networks. Within the clusters, adjacent protein molecules are almost in contact, but the protein concentration in the cluster is much lower than in a crystal. At the $\\sim$ 1 nm SAXS resolution, the native ...

  9. Molecular receptors in metal oxide sol-gel materials prepared via molecular imprinting

    Science.gov (United States)

    Sasaki, Darryl Y.; Brinker, C. Jeffrey; Ashley, Carol S.; Daitch, Charles E.; Shea, Kenneth J.; Rush, Daniel J.

    2000-01-01

    A method is provided for molecularly imprinting the surface of a sol-gel material, by forming a solution comprised of a sol-gel material, a solvent, an imprinting molecule, and a functionalizing siloxane monomer of the form Si(OR).sub.3-n X.sub.n, wherein n is an integer between zero and three and X is a functional group capable of reacting with the imprinting molecule, evaporating the solvent, and removing the imprinting molecule to form the molecularly imprinted metal oxide sol-gel material. The use of metal oxide sol-gels allows the material porosity, pore size, density, surface area, hardness, electrostatic charge, polarity, optical density, and surface hydrophobicity to be tailored and be employed as sensors and in catalytic and separations operations.

  10. Synthesis of nanocrystalline TiO2 by tartarate gel method

    Indian Academy of Sciences (India)

    S R Dhage; S P Gaikwad; V Ravi

    2004-12-01

    A gel was formed when a mixture of TiOCl2 and tartaric acid was heated on a water bath. Ultrafine powders of TiO2 in the anatase phase were formed, when the gel was decomposed at 623 K and the mole ratio of tartaric acid to titanium was 2. The anatase phase was converted into rutile phase on annealing at higher temperatures, > 773 K. When initial ratio of titanium to tartaric acid was < 2, the decomposition of gel leads to the formation of mixed phases of rutile and anatase. However, pure rutile phase was not formed by the decomposition of gel for any ratio of tartaric acid and titanium. These powders were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and surface area measurements. The average particle size obtained for anatase phase was 3 nm whereas it was 30 nm for rutile phase. Raman scattering experiments were also performed to confirm both anatase and rutile phases.

  11. Optical Sensors for Biomolecules Using Nanoporous Sol-Gel Materials

    Science.gov (United States)

    Fang, Jonathan; Zhou, Jing C.; Lan, Esther H.; Dunn, Bruce; Gillman, Patricia L.; Smith, Scott M.

    2004-01-01

    An important consideration for space missions to Mars is the ability to detect biosignatures. Solid-state sensing elements for optical detection of biological entities are possible using sol-gel based biologically active materials. We have used these materials as optical sensing elements in a variety of bioassays, including immunoassays and enzyme assays. By immobilizing an appropriate biomolecule in the sol-gel sensing element, we have successfully detected analytes such as amino acids and hormones. In the case of the amino acid glutamate, the enzyme glutamate dehydrogenase was the immobilized molecule, whereas in the case of the hormone cortisol, an anti-cortisol antibody was immobilized in the sensing element. In this previous work with immobilized enzymes and antibodies, excellent sensitivity and specificity were demonstrated in a variety of formats including bulk materials, thin films and fibers. We believe that the sol-gel approach is an attractive platform for bioastronautics sensing applications because of the ability to detect a wide range of entities such as amino acids, fatty acids, hopanes, porphyrins, etc. The sol-gel approach produces an optically transparent 3D silica matrix that forms around the biomolecule of interest, thus stabilizing its structure and functionality while allowing for optical detection. This encapsulation process protects the biomolecule and leads to a more "rugged" sensor. The nanoporous structure of the sol-gel matrix allows diffusion of small target molecules but keeps larger, biomolecules immobilized in the pores. We are currently developing these biologically active sol-gel materials into small portable devices for on-orbit cortisol detection

  12. Responsive Hydrogels and Ion Gels by Self-Assembly of ABA and ABC Triblock Polymers

    Science.gov (United States)

    Lodge, Timothy

    2014-03-01

    Gels - polymeric networks swollen with a substantial amount of solvent - represent a fascinating class of soft materials, with wide-ranging applications in fields as diverse as biomedicine, pharmaceutics, personal care products, foods, sensors, actuators, flexible electronics, oil recovery, and adhesives. Physical gels are held together by non-covalent interactions, which may be as specific as hydrogen bonds, or as general as solvophobic association of insoluble blocks. Among the attractive features of physical gels are reversibility, stimuli-responsiveness, and tunability of macroscopic properties. In this talk two classes of physical gels will be highlighted. In one, the ability of ABC block terpolymers to form novel structures will be demonstrated, where blocks A and C are mutually immiscible and solvophobic, while B is solvophilic. In particular, the formation of gels by sequential association (first A, then C) leads to a remarkably sharp gelation transition, at a relatively low polymer concentration, compared to analogous gels formed from ABA systems. In the second class, gels formed by self-assembly of a variety of ABA systems in ionic liquids will be described, and in particular how gelation can be controlled through factors such as block chemistry, temperature, choice of ionic liquid, and application of light.

  13. Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels.

    Science.gov (United States)

    Yue, Kan; Trujillo-de Santiago, Grissel; Alvarez, Mario Moisés; Tamayol, Ali; Annabi, Nasim; Khademhosseini, Ali

    2015-12-01

    Gelatin methacryloyl (GelMA) hydrogels have been widely used for various biomedical applications due to their suitable biological properties and tunable physical characteristics. GelMA hydrogels closely resemble some essential properties of native extracellular matrix (ECM) due to the presence of cell-attaching and matrix metalloproteinase responsive peptide motifs, which allow cells to proliferate and spread in GelMA-based scaffolds. GelMA is also versatile from a processing perspective. It crosslinks when exposed to light irradiation to form hydrogels with tunable mechanical properties. It can also be microfabricated using different methodologies including micromolding, photomasking, bioprinting, self-assembly, and microfluidic techniques to generate constructs with controlled architectures. Hybrid hydrogel systems can also be formed by mixing GelMA with nanoparticles such as carbon nanotubes and graphene oxide, and other polymers to form networks with desired combined properties and characteristics for specific biological applications. Recent research has demonstrated the proficiency of GelMA-based hydrogels in a wide range of tissue engineering applications including engineering of bone, cartilage, cardiac, and vascular tissues, among others. Other applications of GelMA hydrogels, besides tissue engineering, include fundamental cell research, cell signaling, drug and gene delivery, and bio-sensing.

  14. Mechanical Response of Single Filamin A (ABP-280) Molecules and Its Role in the Actin/Filamin A Gel

    Science.gov (United States)

    Sano, Ryoko; Furuike, Shou; Ito, Tadanao; Ohashi, Kazuyo; Yamazaki, Masahito

    2004-04-01

    Actin/filamin A gel plays important roles in mechanical response of cells. We found a force (50 to 220 pN)-induced unfolding of single filamin A molecules using AFM, and have proposed a hypothesis on the role of single filamin A in the novel property of viscoelasticity of actin/filamin A gel. We also investigated structure and its dynamics of actin/filamin A gel formed in a giant liposome using fluorescence microscopy.

  15. Injectable, thermo-reversible and complex coacervate combination gels for protein drug delivery.

    Science.gov (United States)

    Jin, Kwang-Mi; Kim, Yong-Hee

    2008-05-01

    Injectable and thermo-reversible physical combination gels were formed in aqueous solution by preparing complex coacervate with two oppositely charged biomacromolecules that composed of negatively charged chondroitin 6-sulfate and positively charged high molecular weight gelatin type A and co-formulating with a negative, thermo-sensitive polysaccharide, methylcellulose containing a salting-out salt, ammonium sulfate. The combination of complex coacervation and a thermo-reversible gel demonstrated synergistic effects on the complex coacervate formation the release rates of model proteins and in situ gel depot formation. Gels indicated sustained release patterns of the protein over 25 days with minimal initial bursts. Optimized novel in situ gel depot systems containing dual advantages of complex coacervation and temperature responsiveness demonstrated a potential for efficient protein drug delivery in terms of high protein loading, sustained protein release, ease of administration, an aqueous environment without toxic organic solvents, and a simple fabrication method.

  16. Cavity-containing supramolecular gels as a crystallization tool for hydrophobic pharmaceuticals.

    Science.gov (United States)

    Kaufmann, Lena; Kennedy, Stuart R; Jones, Christopher D; Steed, Jonathan W

    2016-08-01

    We present two approaches to low-molecular-weight supramolecular gels bearing hydrophobic cavities based on calixarene-containing building blocks. Gels are formed by a calixarene based tetrahydrazide gelator or a co-gel of a calixarene diammonium salt and a bis-crown ether. The calixarene hydrophobic cavity enables the complexation of hydrophobic drug molecules in a generic fashion thus providing an anchor site on the surface of the gel fibre to initiate drug crystal nucleation and growth. This technique potentially represents a route to growth of hard-to-nucleate polymorphic modifications. The co-gel comprising two components holding together by non-covalent ammonium-crown ether interaction can be easily switched back to the sol state by adding competitive binding cations.

  17. PEMANFAATAN LIMBAH SEKAM PADI MENJADI SILIKA GEL

    Directory of Open Access Journals (Sweden)

    Prima Astuti Handayani

    2014-12-01

    Full Text Available Sekam padi merupakan salah satu sumber penghasil silika terbesar, berpotensi sebagai bahan pembuatan silika gel. Abu sekam padi mengandung silika sebanyak 87%-97% berat kering. Sintesis silika gel dari abu sekam padi dilakukan dengan mereaksikan abu sekam padi menggunakan larutan NaOH 1N pada suhu 800C selama 1 jam dan dilanjutkan dengan penambahan larutan asam hingga pH=7. Gel yang dihasilkan selanjutnya didiamkan selama 18 jam kemudian dikeringkan pada suhu dikeringkan menggunakan oven pada suhu 800C hingga beratnya konstan. Hasil percobaan diperoleh bahwa silika gel dengan penambahan CH3COOH menghasilkan yield yang lebih besar dibandingkan penambahan HCl. Berdasarkan analisis FT-IR silika gel yang diperoleh memiliki gugus Si-O-Si dan gugus Si-OH. Silika gel dengan penambahan HCl memiliki surface area sebesar 65,558 m2/g, total pore volume 0,1935 cc/g, dan average pore size sebesar 59,0196 Å. Sedangkan silika gel dengan penambahan CH3COOH memiliki surface area sebesar 9,685 m2/g, total pore volume 0,02118 cc/g, dan average pore size sebesar 43,7357Å. Silika gel dengan penambahanCH3COOH memiliki kemampuan menyerap kelembaban udara yang lebih baik dibanding silika gel dengan penambahan HCl. Rice hull ash (RHA is one of the biggest source of silica, potential for sintesis silica gel. RHA contains silica as many as 87 % -97 %. Synthesis of silica gel from rice hull ash was done by reaction using NaOH solution at temperature 800C for 1 hour and followed by the addition of an acid solution until pH=7. The gel were rested with time aging 18 hour, and then dried using oven at temperature 800C until constant weigh. The results obtained that the silica gel with the addition of CH3COOH produce higher yields than the addition of HCl. Based on FT-IR analysis, silica gel has a group of silanol (Si-`OH and siloxan (Si-O-Si group. Silica gel with the addition of HCl has a surface area 65,558 m2/g, a total pore volume 0,1935 cc/g, and average pore size 59

  18. AN INSIGHT TO OPHTHALMIC IN-SITU GEL: AN OVERVIEW

    Directory of Open Access Journals (Sweden)

    Thakur Reeta Rani

    2012-03-01

    Full Text Available Ocular drug delivery has been a major challenging and interesting field for the pharmaceutical scientists due to unique anatomy and physiology of the eye. The major problem encountered in ocular drug delivery is the rapid loss of the drug through lachrymal drainage which results in poor bioavailability and therapeutic response of the drug. There are some static (different layers of the eye i.e. cornea, sclera, retina and dynamic (blood aqueous and blood retinal barrier barriers which also affect the bioavailability of the drug. In-situ gels are the liquid preparations which upon instillation undergoes the phase transition in cul-de sac in the eyes to form a viscous gel and this occurs due to environmental changes in the eye ( due to change in pH, change in temperature and ion-induced. This review is to specify the different phase transition process and polymers used in forming in-situ gelling system.

  19. [Induced abortion using prostaglandin E2 and F2alpha gel].

    Science.gov (United States)

    Lippert, T H; Modly, T

    1974-01-01

    In this study of 20 patients in the 13th-17th week of pregnancy abortion was induced with intrauterine, extraamniotic application of prostaglandins (PG) E2 or F2 in gel form. The gel composition was as follows: 4% tylose MH 300, 2% glycerine, 1% chlorhexidine digluconate, 83% sterile distilled water and 10% PG stock solution. Both PGE2 and PGF2 gels were used. Final concentration was 2.5 mg E2 or 2.5 mg F2 per g of gel. Gel was applied via transcervical, extraamniotic polyethylene catheter every 2-3 hours. Results: PGE2-gel was used in 14 cases. After 3-4 applications both fetus and placenta were expelled. Average dose used was 4.6 mg E2/patient. First contractions started in 30 minutes; induction to expulsion time was 11 hours 35 minutes. F2-gel given to 6 patients resulted in expulsion of the fetus in all cases but placenta needed removal by curettage in 4 patients. Average dose per patient was 17.7 mg of F2; first contractions in 30 minutes, average expulsion time 17 hours 38 minutes. With both PGs there were painful contractions which were controlled with a combination of pentazocine and Valium. PGE2 caused vomiting in 5 patients. No increased bleeding or postabortion infection occurred. Follow-up curettage was done in all patients to ensure removal of all tissues. Overall evaluation of the PG-gels was considered good. PG stability in gel form is good; during 8 months of preservation in sterile aluminum tubes at -25 degrees Celsius no decline in clinical effectiveness was noted. The gel application is less expensive than the slow-injection pump method.

  20. Formulation and evaluation of in situ gels containing clotrimazole for oral candidiasis

    Directory of Open Access Journals (Sweden)

    Harish N

    2009-01-01

    Full Text Available Gel dosage forms are successfully used as drug delivery systems to control drug release and protect the medicaments from a hostile environment. The main objective is to formulate and evaluate in situ oral topical gels of clotrimazole based on the concept of pH triggered and ion activated systems. The system utilizes polymers that exhibit sol-to-gel phase transition due to change in specific physico-chemical parameters. A pH triggered system consisting of carbopol 934P (0.2-1.4% w/v and ion triggered system using gellan gum (0.1-0.75% w/v along with hydroxylpropylmethylcelluose E50LV was used to prolong the release of clotrimazole (0.1% w/v. Formulations were evaluated for gelling capacity, viscosity, gel strength, bioadhesive force, spreadability, microbiological studies and in vitro release. The use of carbopol as in situ gel forming system was substantiated by the property to transform into stiff gels when the pH was raised, whereas in gellan gum this transformation occurred in the presence of monovalent/divalent cations. Effect of calcium carbonate and other process parameters optimized and found that increase in calcium ions produced stronger gels. The drug content, clarity, and pH of the formulation were found to be satisfactory. The viscosity was found to be in the range 5 to 85 centipoise for the sol, whereas for the gels it was up to 16000 centipoise. The formulation showed pseudoplastic flow with thixotrophy. The maximum gel strength (using texture analyzer and bioadhesion was found to be up to 6.5 g and 4 g, respectively. The optimized formulations were able to release the drug up to 6 h. The formulation containing gellan gum showed better sustained release compared to carbopol based gels.

  1. Sol-gel electrochromic device

    OpenAIRE

    1994-01-01

    All solid state electrochromic devices have potential applications in architectural and automotive fields to regulate the transmission and reflection of radiant energy. We present the optical and electrochemical characteristics of two solid state windows having the configuration glass/ITO/TiO2-CeO2/TiO2/TiO2-CeO2/ITO/glass and glass/ITO/WOa/TiO2/TiO2-CeO2/ITO/glass where the three internal layers have been prepared by sol gel methods. The preparation of the individual sols and some physical p...

  2. Motility initiation in active gels

    CERN Document Server

    Recho, Pierre; Truskinovsky, Lev

    2015-01-01

    Motility initiation in crawling cells requires a symmetry breaking mechanism which transforms a symmetric state into a polarized state. Experiments on keratocytes suggest that polarization is triggered by increased contractility of motor proteins. In this paper we argue that contraction can be responsible not only for the symmetry breaking transition but also for the incipient translocation of the segment of an active gel mimicking the crawling cell. Our model suggests that when the contractility increases sufficiently far beyond the motility initiation threshold, the cell can stop and re-symmetrizes. The proposed theory reproduces the motility initiation pattern in fish keratocytes and the behavior of keratocytes prior to cell division.

  3. Gelation mechanism of cellulose nanofibre gels: A colloids and interfacial perspective.

    Science.gov (United States)

    Mendoza, Llyza; Batchelor, Warren; Tabor, Rico F; Garnier, Gil

    2017-09-01

    Nanocellulose gels form a new category of sustainable soft materials of industrial interest for a wide range of applications. There is a need to map the rheological properties and understand the mechanism which provides the colloidal stability and gelation of these nanofibre suspensions. TEMPO (2,2,6,6,-tetramethylpiperidine-1-oxyl)-oxidised cellulose nanofibre gels were investigated at different fibre concentrations, pH and ionic strength. Dynamic and cyclic rheological studies was performed to quantify gel behaviour and properties. Gels were produced at different pH and salt contents to map and understand colloidal stability of the nanocellulose gel. Rheology indicates gelation asa transitionary state starting at a fibre concentration of 0.1wt.%. The colloidal stability of the nanocellulose gel network is controlled by pH and salt, whereas fibre concentration mainly dictates the dynamic rheological properties. Decreasing pH and adding salt destabilises the gel network by eluting bound water which is correlated with the decrease in electrostatic repulsion between fibres. The gelation and colloidal stability of these nanocellulose gels is driven by electrostatic forces and the entanglement ability of the fibrous system to overlap. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  4. A novel in situ gel formulation of ranitidine for oral sustained delivery.

    Science.gov (United States)

    Xu, Haoping; Shi, Min; Liu, Ying; Jiang, Jinling; Ma, Tao

    2014-02-01

    The main purpose of this study was to develop a novel, in situ gel system for sustained delivery of ranitidine hydrochloride. Ranitidine in situ gels at 0.2%, 0.5%, and 1.0% gellan gum concentration (w/v) were prepared, respectively, and characterized in terms of preparation, viscosity and in vitro release. The viscosity of the gellan gum formulations in solution increased with increasing concentrations of gellan gum. In vitro study showed that the release of ranitidine from these gels was characterized by an initial phase of high release (burst effect) and translated to the second phase of moderate release. Single photon emission computing tomography technique was used to evaluate the stomach residence time of gel containing (99m)Tc tracer. The animal experiment suggested in situ gel had feasibility of forming gels in stomach and sustained the ranitidine release from the gels over the period of at least 8 h. In conclusion, the in situ gel system is a promising approach for the oral delivery of ranitidine for the therapeutic effects improvement.

  5. Studies of matrix vesicle-induced mineralization in a gelatin gel

    Science.gov (United States)

    Boskey, A. L.; Boyan, B. D.; Doty, S. B.; Feliciano, A.; Greer, K.; Weiland, D.; Swain, L. D.; Schwartz, Z.

    1992-01-01

    Matrix vesicles isolated from fourth-passage cultures of chondrocytes were tested for their ability to induce hydroxyapatite formation in a gelatin gel in order to gain insight into the function of matrix vesicles in in situ mineralization. These matrix vesicles did not appear to be hydroxyapatite nucleators per se since the extent of mineral accumulation in the gel diffusion system was not altered by the presence of matrix vesicles alone, and in the vesicle containing gels, mineral crystals were formed whether associated with vesicles or not. In gels with these matrix vesicles and beta-glycerophosphate, despite the presence of alkaline phosphatase activity, there was no increase in mineral deposition. This suggested that in the gel system these culture-derived vesicles did not increase local phosphate concentrations. However, when known inhibitors of mineral crystal formation and growth (proteoglycan aggregates [4 mg/ml], or ATP [1 mM], or both proteoglycan and ATP) were included in the gel, more mineral was deposited in gels with the vesicles than in comparable gels without vesicles, indicating that enzymes within these vesicles were functioning to remove the inhibition. These data support the suggestion that one function of the extracellular matrix vesicles is to transport enzymes for matrix modification.

  6. Condensed cellular seeded collagen gel as an improved biomaterial for tissue engineering of articular cartilage.

    Science.gov (United States)

    Mueller-Rath, Ralf; Gavénis, Karsten; Andereya, Stefan; Mumme, Torsten; Albrand, Monique; Stoffel, Marcus; Weichert, Dieter; Schneider, Ulrich

    2010-01-01

    Three-dimensional autologous chondrocyte implantation based on collagen gel as matrix scaffold has become a clinically applied treatment for focal defects of articular cartilage. However, the low biomechanical properties of collagen gel makes intraoperative handling difficult and creates the risk of early damages to the vulnerable implant. The aim of the study was to create a stabilized form of collagen gel and to evaluate its biomechanical and biochemical properties.Collagen type-I gel was seeded with human articular chondrocytes. 20 samples were subject to condensation which was achieved mechanically by compression and filtration. Control samples were left uncondensed. From both types of gels 10 samples were used for initial biomechanical evaluation by means of unconfined compression and 10 samples were cultivated under standard conditions in vitro. Following cultivation the samples were evaluated by conventional histology and immunohistochemistry. The proliferation rate was calculated and matrix gene expression was quantified by real-time PCR.The biomechanical tests revealed a higher force carrying capacity of the condensed specimens. Strain rate dependency and relaxation was seen in both types of collagen gel representing viscoelastic material properties. Cells embedded within the condensed collagen gel were able to produce extracellular matrix proteins and showed proliferation.Condensed collagen gel represents a mechanically improved type of biomaterial which is suitable for three-dimensional autologous chondrocyte implantation.

  7. Development of a biodegradable iron oxide nanoparticle gel for tumor bed therapy

    Science.gov (United States)

    Cunkelman, B. P.; Chen, E. Y.; Petryk, A. A.; Tate, J. A.; Thappa, S. G.; Collier, R. J.; Hoopes, P. J.

    2013-02-01

    Treatments of the post-operative surgical bed have proven appealing as the majority of cancer recurrence following tumor resection occurs at the tumor margin. A novel, biodegradable pullulan-based gel infused with magnetic iron oxide nanoparticles (IONP) is presented here for surgical bed administration followed by hyperthermia therapy via alternating magnetic field (AMF) activation. Pullulan is a water soluble, film-forming starch polymer that degrades at the postoperative wound site to deliver the IONP payload, targeting the remaining cancer cells. Different gel formulations containing various % wt of pullulan were tested for IONP elution. Elution levels and amount of gel degradation were measured by immersing the gel in de-ionized water for one hour then measuring particle concentrations in the supernatant and the mass of the remaining gel formulation. The most promising gel formulations will be tested in a murine model of surgical bed resection to assess in vivo gel dissolution, IONP cell uptake kinetics via histology and TEM analysis, and heating capability of the gel with AMF exposure.

  8. NASAL IN SITU GEL: A NOVEL DRUG DELIVERY SYSTEM

    Directory of Open Access Journals (Sweden)

    Dhrupesh panchal

    2012-06-01

    Full Text Available Over the past few decades, advances in the in situ gel technologies have spurred development in manymedical and biomedical applications including controlled drug delivery. Many novel in situ gel baseddelivery matrices have been designed and fabricated to fulfill the ever increasing needs of thepharmaceutical and medical fields. In situ gelling systems are liquid at room temperature but undergogelation when in contact with body fluids or change in pH. In situ gel forming drug delivery is a type ofmucoadhesive drug delivery system. The formation of gel depends on factors like temperaturemodulation, pH change, presence of ions and ultraviolet irradiation from which the drug gets released ina sustained and controlled manner. Nasal delivery is a promising drug delivery option where commondrug administrations such as intravenous, intramuscular or oral are inapplicable. Recently, it has beenshown that many drugs have better bioavailability by nasal route than the oral route. This has beenattributed to rich vasculature and a highly permeable structure of the nasal mucosa coupled withavoidance of hepatic first-pass elimination, gut wall metabolism and/or destruction in thegastrointestinal tract. The physiology of the nose presents obstacles but offers a promising route for noninvasivesystemic delivery of numerous therapies and debatably drug delivery route to the brain. Thusthis review focuses on nasal drug delivery, various aspects of nasal anatomy and physiology, nasal drugabsorption mechanisms, various nasal drug delivery systems and their applications in drug delivery.

  9. Microporous silica gels from alkylsilicate-water two phase hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Chu, L.; Tejedor-Tejedor, M.I.; Anderson, M.A. [Univ. of Wisconsin, Madison, WI (United States). Water Chemistry Program

    1994-12-31

    Microporous silica gels have been synthesized through a nano-particulate sol-gel route. These gels have uniformly distributed and extremely small pores(< 15 {angstrom} in diameter). Hydrolysis and condensation reactions leading to these gels were carried out in an alkyl silicate-water (ammonia) two phase system. These reactions took place at the alkyl silicate droplet-water interfacial boundary. No alcohol was added. A clear, stable and uniformly distributed colloidal silica suspension having an average particle size less than 6 nm was prepared by this method. Fast hydrolysis, slow condensation and low solubility all contribute to a high supersaturation level and result in the formation of small particles. This process is consistent with classic nucleation theory. When the particles are produced under acidic rather than under basic reaction conditions, smaller particles are formed due to the slower condensation rate and lower solubility of these silica particles in acidic conditions. At the same pH, alkylsilicates having smaller alkyl groups react faster with water leading to smaller primary particles. Homogeneous nucleation conditions are achieved when the water/alkylsilicate ratio is high.

  10. Aqueous gel formation from sodium salts of cellobiose lipids.

    Science.gov (United States)

    Imura, Tomohiro; Yamamoto, Shuhei; Yamashita, Chikako; Taira, Toshiaki; Minamikawa, Hiroyuki; Morita, Tomotake; Kitamoto, Dai

    2014-01-01

    Cellobiose lipids (CLs) are asymmetric bolaform biosurfactants, which are produced by Cryptococcus humicola JCM 10251 and have fungicidal activity. In this study, the sodium salts of CLs (CLNa) were prepared to improve aqueous solubility of the CLs, and their surface and gelation properties in aqueous solutions were examined by surface tension, rheology, and freeze-fracture transmission electron microscopy (FF-TEM) measurements. The surface tension measurements revealed that the CLNa have high surface activity: CMC1 and γCMC1 are 0.1 mg/mL and 34.7 mN/m, respectively. It was also found that the CLNa form giant micelles above their CMC, whose average size is 116.6 ± 31.9 nm. Unlike conventional surfactants, the surface tension reduced further with an increase in concentration and the aqueous solution became viscous at the minimum gelation concentration (MGC: 5.0 mg/mL). In rheological studies, the obtained gels proved to be rather soft and their sol-gel temperature was found to be approximately 50℃. FF-TEM observation of the gels showed 3D supramolecular structures with an entangled fibrous network. Since the present CLNa aqueous gels have a degree of fungicidal activity, they could be useful for novel multifunctional soft materials applicable to the food and cosmetic industries.

  11. Sol-gel based alumina powders with catalytic applications

    Science.gov (United States)

    Crişan, Maria; Zaharescu, Maria; Kumari, Valluri Durga; Subrahmanyam, Machiraju; Crişan, Dorel; Drăgan, Nicolae; Răileanu, Mălina; Jitianu, Mihaela; Rusu, Adriana; Sadanandam, Gullapelli; Krishna Reddy, Jakkidi

    2011-10-01

    The sol-gel process provides a new approach to the preparation of oxide materials and offers many advantages for making catalysts. Since homogeneous mixing can be achieved at the molecular scale, the chemical reactivity of the oxide surface can be greatly enhanced; thus powders with high surface area and optimized pore size distribution can be obtained at low temperatures. In the present work NiO/Al 2O 3 sol-gel catalysts were obtained by simultaneous gelation of aluminium isopropoxide and nickel nitrate. A comparative study with pure sol-gel alumina was also realized. By physical-structural studies the changes induced by the introduction of the Ni precursor, before and after aluminium alkoxide hydrolysis were highlighted. The introduction of Ni at the beginning of the reaction favors γ-Al 2O 3 crystallization. When Ni is added at the end of reaction, it delays the alumina crystallization and induces the disorder of the lattice. The obtained Ni doped sol-gel derived alumina has been used as catalyst in the finished form for glycerol reforming to generate H 2 for fuel cell applications. Some evaluation results of Ni-doped alumina combined with TiO 2 in photocatalytic glycerol reforming reaction have been included.

  12. MUCOADHESIVE GEL WITH IMMOBILIZED LYSOZYME: PREPARATION AND PROPERTIES

    Directory of Open Access Journals (Sweden)

    Dekina S. S.

    2015-08-01

    Full Text Available The study of non-covalent immobilized lysozyme, as well as physico-chemical and biochemical properties of obtained mucoadhesive gel was the aim of the research. Lysozyme activity was determined by bacteriolytic method (Micrococcus lysodeikticus cells acetone powder was a substrate. Lysozyme immobilization was conducted by the method of entrapment in gel. Enzyme carrier interaction was studied by viscometric, spectrophotometric and spectrofluorimetric methods. Mucoadhesive gel with immobilized lysozyme, possessing antiinflammatory and antimicrobial activities, was prepared. Due to immobilization, protein-polymer complex with the original enzymatic activity was formed. The product is characterized by high mucoadhesive properties, quantitative retaining of protein and bacteriolytic activity, prolonged release of the enzyme, improved biochemical characteristics (extended pH-activity profile, stability in acidic medium and during storage for 2 years, and it is perspective for further studies. The proposed method for lysozyme immobilization in the carboxymethyl cellulose sodium salt gel allows to obtain a stable, highly efficient product, with high adhesive properties for attachment to the mucous membranes, that is promising for use in biomedicine.

  13. Active Gel Model of Amoeboid Cell Motility

    CERN Document Server

    Callan-Jones, A C

    2013-01-01

    We develop a model of amoeboid cell motility based on active gel theory. Modeling the motile apparatus of a eukaryotic cell as a confined layer of finite length of poroelastic active gel permeated by a solvent, we first show that, due to active stress and gel turnover, an initially static and homogeneous layer can undergo a contractile-type instability to a polarized moving state in which the rear is enriched in gel polymer. This agrees qualitatively with motile cells containing an actomyosin-rich uropod at their rear. We find that the gel layer settles into a steadily moving, inhomogeneous state at long times, sustained by a balance between contractility and filament turnover. In addition, our model predicts an optimal value of the gel-susbstrate adhesion leading to maximum layer speed, in agreement with cell motility assays. The model may be relevant to motility of cells translocating in complex, confining environments that can be mimicked experimentally by cell migration through microchannels.

  14. Gel trapping of dense colloids.

    Science.gov (United States)

    Laxton, Peter B; Berg, John C

    2005-05-01

    Phase density differences in sols, foams, or emulsions often lead to sedimentation or creaming, causing problems for materials where spatial uniformity over extended periods of time is essential. The problem may be addressed through the use of rheology modifiers in the continuous phase. Weak polymer gels have found use for this purpose in the food industry where they appear to be capable of trapping dispersoid particles in a three-dimensional matrix while displaying water-like viscosities at low shear. Attempts to predict sedimentation stability in terms of particle properties (size, shape, density difference) and gel yield stress have led to qualitative success for suspensions of large particles. The effect of particle size, however, in particular the case in which colloidal dimensions are approached, has not been investigated. The present work seeks to determine useful stability criteria for colloidal dispersions in terms of readily accessible viscoelastic descriptors. Results are reported for systems consisting of 12 microm poly(methyl methacrylate) (PMMA) spheres dispersed in aqueous gellan gum. Monovalent salt concentration is varied to control rheological properties, and sedimentation/centrifugation experiments are performed to determine dispersion stability. Necessary conditions for stability consist of a minimum yield stress together with a value of tan delta less than unity.

  15. Characteristics of polyacrylamide gel with THPC and Turnbull Blue gel dosimeters evaluated using optical tomography

    Science.gov (United States)

    Pilařová (Vávrů), Kateřina; Kozubíková, Petra; Šolc, Jaroslav; Spěváček, Václav

    2014-11-01

    The purpose of this study was to compare characteristics of radiochromic gel - Turnbull Blue gel (TB gel) with polymer gel - polyacrylamide gel and tetrakis hydroxymethyl phosphonium chloride (PAGAT) using optical tomography. Both types of gels were examined in terms of dose sensitivity, dose response linearity and background value of spectrophotometric absorbance. The calibration curve was obtained for 60Co irradiation performed on Gammacell 220 at predefined gamma dose levels between 0 and 140 Gy for TBG and 0-15 Gy for PAGAT. To measure relative dose distributions from stereotactic irradiation, dosimeters were irradiated on Leksell Gamma Knife Perfexion. The cylindrical glass housings filled with gel were attached to the stereotactic frame. They were exposed with single shot and 16 mm collimator by 65 Gy to a 50% prescription isodose for TB gel and 4 Gy to a 50% prescription isodose for PAGAT. Evaluations of dosimeters were performed on an UV-vis Spectrophotometer Helios β and an optical cone beam homemade tomography scanner with a 16-bit astronomy CCD camera with a set of color filters. The advantages and potential disadvantages for both types of gel dosimeters were summarized. Dose distribution in central slice and measured profiles of 16 mm shot shows excellent correspondence with treatment planning system Leksell GammaPlan® for both PAGAT and Turnbull Blue gels. Gel dosimeters are suitable for steep dose gradient verification. An optical tomography evaluation method is successful. Dose response characteristics of TB gel and PAGAT gel are presented.

  16. Protein Beverage vs. Protein Gel on Appetite Control and Subsequent Food Intake in Healthy Adults

    Directory of Open Access Journals (Sweden)

    Sha Zhang

    2015-10-01

    Full Text Available The objective of this study was to compare the effects of food form and physicochemical properties of protein snacks on appetite and subsequent food intake in healthy adults. Twelve healthy subjects received a standardized breakfast and then 2.5 h post-breakfast consumed the following snacks, in randomized order: 0 kcal water (CON or 96 kcal whey protein snacks as beverages with a pH of either 3.0 (Bev-3.0 or 7.0 (Bev-7.0 or gels as acid (Gel-Acid or heated (Gel-Heated. In-vitro study showed that Bev-3.0 was more resistant to digestion than Bev-7.0, while Gel-Acid and Gel-Heated had similar digestion pattern. Appetite questionnaires were completed every 20 min until an ad libitum lunch was provided. Post-snack hunger, desire to eat, and prospective food consumption were lower following the beverages and gels vs. CON (all, p < 0.05, and post-snack fullness was greater following the snacks (except for the Bev-3.0 vs. CON (all, p < 0.05. Gel-Heated treatment led to lower prospective food consumption vs. Bev-3.0; however, no other differences were detected. Although all snacks reduced energy intake vs. CON, no differences were observed among treatments. This study suggested that whey protein in either liquid or solid form improves appetite, but the physicochemical property of protein has a minimal effect.

  17. Gel time of calcium acrylate grouting material

    Institute of Scientific and Technical Information of China (English)

    韩同春

    2004-01-01

    Calcium acrylate is a polymerized grout, and can polymerize in an aqueous solution. The polymerizationreaction utilizes ammonium persulfate as a catalyst and sodium thiosulfate as the activator. Based on the theory of reactionkinetics, this study on the relation between gel time and concentration of activator and catalyst showed that gel time ofcalcium acrylate is inversely proportional to activator and catalyst concentration. A formula of gel time is proposed, and anexample is provided to verify the proposed formula.

  18. Gel time of calcium acrylate grouting material

    Institute of Scientific and Technical Information of China (English)

    韩同春

    2004-01-01

    Calcium acrylate is a polymerized grout, and can polymerize in an aqueous solution. The polymerization reaction utilizes ammonium persulfate as a catalyst and sodium thiosulfate as the activator. Based on the theory of reaction kinetics, this study on the relation between gel time and concentration of activator and catalyst showed that gel time of calcium acrylate is inversely proportional to activator and catalyst concentration. A formula of gel time is proposed, and an example is provided to verify the proposed formula.

  19. Stabilized aqueous gels and uses thereof

    Energy Technology Data Exchange (ETDEWEB)

    Swanson, B.L.

    1978-08-29

    New improved aqueous gels, and methods of using same in contacting subterranean formations, are provided. The gels are prepared by gelling an aqueous brine having incorporated therein a water-soluble cellulose ether such as a carboxymethylcellulose (CMC), and are rendered more stable to decomposition by incorporating a sulfoalkylated tannin stabilizing agent, such as a sulfomethylated quebracho (SMQ), in the gel during the preparation thereof.

  20. Competitive sorption and diffusion of chromate and sulphate in a flow system with goethite in gel beads

    NARCIS (Netherlands)

    Beinum, van G.W.; Meeussen, J.C.L.; Riemsdijk, van W.H.

    2006-01-01

    Column experiments and model simulations were employed to evaluate the processes involved in multicomponent solute transport in a system with heterogeneous flow. Column experiments were performed with goethite embedded in polyacrylamide gel beads. The gel forms an immobile water region that can be a

  1. Advances in the application of food emulsifier α-gel phases: Saturated monoglycerides, polyglycerol fatty acid esters, and their derivatives.

    Science.gov (United States)

    Wang, Fan C; Marangoni, Alejandro G

    2016-12-01

    Emulsifiers form complex structures in colloidal systems. One of these structures, the α-gel phase, has drawn much research interest. α-gel phases are formed by emulsifiers that are stable in the α-crystalline structure in the presence of water. The α-gel phase has shown superior functionality in a variety of applications because it has a water-rich lamellar structure. Even though studies on emulsifier α-gel phases emerged over half a century ago, there is still a knowledge gap on fundamental properties of α-gel phases formed by a variety of emulsifiers. This article summarizes recent studies on the physical and chemical properties of α-gel phases formed by several food emulsifiers, specifically saturated monoglycerides, polyglycerol monoester and diesters of fatty acid, and sodium stearoyl lactylate. Recent research has advanced the understanding of factors affecting the stability and foamability of the α-gel phases. Current and potential applications of α-gel phases in baked food products and in personal care products are also reviewed here.

  2. Living Additive Manufacturing: Transformation of Parent Gels into Diversely Functionalized Daughter Gels Made Possible by Visible Light Photoredox Catalysis.

    Science.gov (United States)

    Chen, Mao; Gu, Yuwei; Singh, Awaneesh; Zhong, Mingjiang; Jordan, Alex M; Biswas, Santidan; Korley, LaShanda T J; Balazs, Anna C; Johnson, Jeremiah A

    2017-02-22

    Light-initiated additive manufacturing techniques typically rely on layer-by-layer addition or continuous extraction of polymers formed via nonliving, free radical polymerization methods that render the final materials "dead" toward further monomer insertion; the polymer chains within the materials cannot be reactivated to induce chain extension. An alternative "living additive manufacturing" strategy would involve the use of photocontrolled living radical polymerization to spatiotemporally insert monomers into dormant "parent" materials to generate more complex and diversely functionalized "daughter" materials. Here, we demonstrate a proof-of-concept study of living additive manufacturing using end-linked polymer gels embedded with trithiocarbonate iniferters that can be activated by photoinduced single-electron transfer from an organic photoredox catalyst in solution. This system enables the synthesis of a wide range of chemically and mechanically differentiated daughter gels from a single type of parent gel via light-controlled modification of the parent's average composition, strand length, and/or cross-linking density. Daughter gels that are softer than their parent, stiffer than their parent, larger but with the same modulus as their parent, thermally responsive, polarity responsive, healable, and weldable are all realized.

  3. Tailoring of alginate gel properties with mannuronan C-5 epimerases : Correlations between structural and physical properties

    OpenAIRE

    Berg, Johan Robert

    2013-01-01

    Alginates unique ability to form gels with divalent ions is one of the major properties for its use in food, pharmaceutics and medicine. The physical properties of ionic crosslinked alginate gels are highly connected to the composition of the alginate. By using unique mannuronan C-5 epimerases, the alginate structure can be tailored to a high extent. Previous work has shown that alginates with G-blocks interspaced with MG-blocks give Ca- gels that are compact (have high syneresis) and very st...

  4. Host Tissue Interaction, Fate, and Risks of Degradable and Nondegradable Gel Fillers

    DEFF Research Database (Denmark)

    Christensen, Lise

    2009-01-01

    -bindings to the polymer in order to obtain a more dense molecular structure, which will prolong degradation and filling effect of the gel. Other gel fillers contain particles of organic (poly-lactic acid) or inorganic (calcium hydroxylapatite) material, which have been used in human tissue for other purposes (degradable...... instead steroids or large doses of NSAIDs) the bacteria form a biofilm, which gives rise to a low-grade chronic infection that is resistant to antibiotics. Complications following particulated gels and silicone oil are not known, but bacteria in a biofilm and/or endotoxins released...

  5. Rheology of gastric mucin exhibits a pH-dependent sol-gel transition.

    Science.gov (United States)

    Celli, Jonathan P; Turner, Bradley S; Afdhal, Nezam H; Ewoldt, Randy H; McKinley, Gareth H; Bansil, Rama; Erramilli, Shyamsunder

    2007-05-01

    Gastric mucin, a high molecular weight glycoprotein, is responsible for providing the gel-forming properties and protective function of the gastric mucus layer. Bulk rheology measurements in the linear viscoelastic regime show that gastric mucin undergoes a pH-dependent sol-gel transition from a viscoelastic solution at neutral pH to a soft viscoelastic gel in acidic conditions, with the transition occurring near pH 4. In addition to pH-dependent gelation behavior in this system, further rheological studies under nonlinear deformations reveal shear thinning and an apparent yield stress in this material which are also highly influenced by pH.

  6. Conducting polymer electrodes for gel electrophoresis.

    Science.gov (United States)

    Bengtsson, Katarina; Nilsson, Sara; Robinson, Nathaniel D

    2014-01-01

    In nearly all cases, electrophoresis in gels is driven via the electrolysis of water at the electrodes, where the process consumes water and produces electrochemical by-products. We have previously demonstrated that π-conjugated polymers such as poly(3,4-ethylenedioxythiophene) (PEDOT) can be placed between traditional metal electrodes and an electrolyte to mitigate electrolysis in liquid (capillary electroosmosis/electrophoresis) systems. In this report, we extend our previous result to gel electrophoresis, and show that electrodes containing PEDOT can be used with a commercial polyacrylamide gel electrophoresis system with minimal impact to the resulting gel image or the ionic transport measured during a separation.

  7. Food gels: gelling process and new applications.

    Science.gov (United States)

    Banerjee, Soumya; Bhattacharya, Suvendu

    2012-01-01

    Food gels are viscoelastic substances and several gelled products are manufactured throughout the world. The gelling agents in foods are usually polysaccharides and proteins. In food gels, the polymer molecules are not cross-linked by covalent bonds with the exception of disulphide bonds in some protein gels. Instead, the molecules are held together by a combination of weak inter-molecular forces like hydrogen bonds, electrostatic forces, Van der Waals forces, and hydrophobic interactions. Polysaccharides including hydrocolloids are strongly hydrated in aqueous medium but they tend to have less ordered structures. The mechanism of gelation depends on the nature of the gelling agent(s) and on the conditions of gel formation like the temperature, the presence of ions, the pH, and the concentration of gelling agents, etc. Characterization of gels can be performed in several ways of which rheological measurements are frequently practiced. Multi-component or mixed gel system is an important area of interest in which two or more gelling components are simultaneously used to achieve certain specific structural and functional characteristics. We here discuss about the different gels and gelling agents, the characterization of gels, and the mechanism of gelation with an emphasis on mixed or multi-component gels that would have significant commercial applications.

  8. Conducting polymer electrodes for gel electrophoresis.

    Directory of Open Access Journals (Sweden)

    Katarina Bengtsson

    Full Text Available In nearly all cases, electrophoresis in gels is driven via the electrolysis of water at the electrodes, where the process consumes water and produces electrochemical by-products. We have previously demonstrated that π-conjugated polymers such as poly(3,4-ethylenedioxythiophene (PEDOT can be placed between traditional metal electrodes and an electrolyte to mitigate electrolysis in liquid (capillary electroosmosis/electrophoresis systems. In this report, we extend our previous result to gel electrophoresis, and show that electrodes containing PEDOT can be used with a commercial polyacrylamide gel electrophoresis system with minimal impact to the resulting gel image or the ionic transport measured during a separation.

  9. Gel dosimeters as useful dose and thermal-fluence detectors in Boron Neutron Capture Therapy (BNCT)

    Energy Technology Data Exchange (ETDEWEB)

    Gambarini, G.; Valente, M. [Department of Physics of the University and INFN, Via Celoria 16, I-20133 Milan (Italy); Moss, R.L.; Daquino, G.G.; Nievaart, V.A. [Joint Research Centre, Institute for Energy, P.O. Box 2, NL-1755ZG Petten, The Netherlands (Netherlands); Mariani, M.; Vanossi, E. [Department of Nuclear Engineering of Polytechnic, CESNEF, Via Ponzio, 34/3 - I-20133 Milan (Italy); Carrara, M. [Medical Physics Department, National Cancer Institute, Via Venezian 1, I-20131, Milan (Italy)

    2006-07-01

    The dosimetry method based on Fricke-Xylenol-Orange-infused gels in form of layers has shown noticeable potentiality for in-phantom or in-free-beam dose and thermal flux profiling and imaging in the high fluxes of thermal or epithermal neutrons utilised for boron neutron capture therapy (BNCT). Gel-dosimeters in form of layers give the possibility not only of obtaining spatial dose distributions but also of achieving measurements of each dose contribution in neutron fields. The discrimination of the various dose components is achieved by means of pixel-to-pixel manipulations of pairs of images obtained with gel-dosimeters having different isotopic composition. It is possible to place large dosimeters, detecting in such a way large dose images, because the layer geometry of dosimeters avoids sensitive variation of neutron transport due to the gel isotopic composition. Some results obtained after the last improvements of the method are reported. (Author)

  10. Metal Fe, Ni and Fe-Ni Fine Fibers Derived from the Organic Gel-Thermal Reduction Process

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The organic gel-thermal reduction process was successfully used for the preparation of magnetic metal Ni, Fe, Fe-Ni fine fibers from raw materials of citric acid or lactic acid and metal salts. Ni,Fe and Fe-Ni fine fibers synthesized were featured with diameters of around 1 μm and lengths of as long as 2 m for Ni fibers, 0.5 m for iron fibers, 1 m for Fe-Ni fibers. The structure, thermal decomposition process and morphologies of the gel precursors and fibers derived from thermal reduction of these gel precursors were characterized by FTIR, XRD,TG/DSC and SEM, respectively. The gel spinnability largely depends on molecular structures of metal-carboxylate complexes formed in the gel. It is reasoned that these gels consist of linear-type structural molecules [(C6H6O7)Ni]n or [(C6H5O7)2Ni3] for the nickel citrate gel, [(C3H5O3)3Fe] for the ferric lactate gel, [(C6H5O7)5(NiFe)3] for the iron-nickel citrate gel respectively and the gels obtain showed a good spinning performance.

  11. Stacking gels: A method for maximising output for pulsed-field gel electrophoresis

    Directory of Open Access Journals (Sweden)

    Heng See

    2009-01-01

    Full Text Available Pulsed field gel electrophoresis (PFGE, the gold standard of molecular typing methods, has a major disadvantage of an unusually long electrophoretic time. From the original protocol of 6 days, it was modified to 3 days and subsequently to a single day. We describe the procedure of stacking five to six gels one on top of another in order to increase and maximize the output in a shorter time without compromising the resolution and reproducibility. All the variables that affect pulsed field gels during electrophoresis were taken into consideration. We firstly optimized the parameters to be used and secondly determined whether stacking of five to six gels had any effect on the molecular separation during electrophoresis in comparison with a single gel run. DNA preparation, restriction, electrophoresis, staining and gel documentation was carried out based on previously published methods. Gels were analysed using BioNumerics and dice coefficient and unweighted pair group methods were used to generate dendrograms based on 1.5% tolerance values. Identical band profiles and band resolution-separation were seen in the PFGE patterns with single gel and multiple stacking gels. Cluster analysis further strengthened the fact that results from stacking gels were reproducible and comparable with a single gel run. This method of stacking gels saves time and maximizes the output at the same time. The run time for a single gel was about 28 hours, but with six stacked gels the run time was 54 hours compared with 28 x 6 = 168 hours if they were run separately as single gels thus saving time of 67.86%. Beside the big factor of saving time, stacking gels save resources (electricity, reagents, water, chemicals and working time by increasing the sample throughput in a shorter time without compromising on quality of data. But optimization of working parameters is vital depending on the PFGE system used.

  12. Ultrapure glass optical waveguide: Development in microgravity by the sol gel process

    Science.gov (United States)

    Mukherjee, S. P.; Debsikdar, J. C.; Beam, T.

    1983-01-01

    The sol-gel process for the preparation of homogeneous gels in three binary oxide systems was investigated. The glass forming ability of certain compositions in the selected oxide systems (SiO-GeO2, GeO2-PbO, and SiO2-TiO2) were studied based on their potential importance in the design of optical waveguide at longer wavelengths.

  13. Preparation of ultrafine LiTaO3 powders by citrate gel method

    Indian Academy of Sciences (India)

    S C Navale; V Samuel; V Ravi

    2005-08-01

    A gel was formed when a aqueous solution of Li(NO3), TaF5 and citric acid in stoichiometric ratio was heated in a water bath. This gel on decomposition at 700°C produced fine crystallites of ternary oxide, LiTaO3 (LT). The phase contents and lattice parameters were studied by powder X-ray diffraction (XRD). Particle size and morphology were studied by transmission electron spectroscopy (TEM).

  14. End-Crosslinking Gelation of Poly(amide acid) Gels studied with Scanning Microscopic Light Scattering

    OpenAIRE

    Furukawa, Hidemitsu; Kobayashi, Mizuha; Miyashita, Yoshiharu; HORIE, Kazuyuki

    2006-01-01

    Network formation in the gelation process of end-crosslinked poly(amide acid) gels, which are the precursor of end-crosslinked polyimide gels, was studied by scanning dynamic light scattering. The gelation process is essentially non-reversible due to the formation of covalent bonds. The molecular structure formed in the gelation process is controlled by varying the equivalence ratio of end-crosslinker to oligomer during the preparation. It was found that a couple of relaxation modes are obser...

  15. Ion activated in situ gel system for ophthalmic delivery of moxifloxacin hydrochloride

    OpenAIRE

    Mali, Mahesh N.; Ashok A. Hajare

    2010-01-01

    Rapid precorneal elimination of drug is a major limitation of conventional ophthalmic formulations. An ion activated in situ gel forming systems of an antibacterial agent moxifloxacin hydrochloride for instillation as drops into eye undergoing a sol to gel transition in the cul-de-sac was formulated. Sodium alginate was used as the gelling agent in combination with hydroxypropylmethyl cellulose. Formulations were evaluated for gelling capacity, pH, in vitro release, rheological study, Draize ...

  16. Calcium Binding Restores Gel Formation of Succinylated Gelatin and Reduces Brittleness with Preservation of the Elastically Stored Energy.

    Science.gov (United States)

    Baigts Allende, Diana; de Jongh, Harmen H J

    2015-08-12

    To better tailor gelatins for textural characteristics in (food) gels, their interactions are destabilized by introduction of electrostatic repulsions and creation of affinity sites for calcium to "lock" intermolecular interactions. For that purpose gelatins with various degrees of succinylation are obtained. Extensive succinylation hampers helix formation and gel strength is slightly reduced. At high degrees of succinylation the helix propensity, gelling/melting temperatures, concomitant transition enthalpy, and gel strength become calcium-sensitive, and relatively low calcium concentrations largely restore these properties. Although succinylation has a major impact on the brittleness of the gels formed and the addition of calcium makes the material less brittle compared to nonmodified gelatin, the modification has no impact on the energy balance in the gel, where all energy applied is elastically stored in the material. This is explained by the unaffected stress relaxation by the network and high water-holding capacity related to the small mesh sizes in the gels.

  17. Clinical utility of transdermal delivery of oxybutynin gel via a metered-dose pump in the management of overactive bladder

    Directory of Open Access Journals (Sweden)

    Wagg A

    2012-11-01

    Full Text Available Adrian WaggDepartment of Medicine, University of Alberta, Edmonton, Alberta, CanadaAbstract: Oxybutynin is an efficacious treatment for overactive bladder, but its clinical utility is hampered by relative intolerability due to its side effect profile. Over the last few years, various attempts to enhance the tolerability of oxybutynin by varying the drug delivery mechanism have been introduced and have included extended release, rectal suppository, transdermal patch, and gel formulations. The recent introduction of a transdermal oxybutynin gel in a sachet form has been complemented by the administration of gel in a metered dose pump. This paper reviews the available evidence for transdermal oxybutynin gel and, where it exists, for the pump-based gel. The clinical utility of the pump-based gel is discussed.Keywords: urgency incontinence, overactive bladder, oxybutynin, transdermal

  18. Gel nanostructure in alkali-activated binders based on slag and fly ash, and effects of accelerated carbonation

    Energy Technology Data Exchange (ETDEWEB)

    Bernal, Susan A., E-mail: s.bernal@sheffield.ac.uk [Department of Chemical and Biomolecular Engineering, The University of Melbourne, Victoria 3010 (Australia); Department of Materials Science and Engineering, The University of Sheffield, Sheffield S1 3JD (United Kingdom); Provis, John L., E-mail: j.provis@sheffield.ac.uk [Department of Chemical and Biomolecular Engineering, The University of Melbourne, Victoria 3010 (Australia); Department of Materials Science and Engineering, The University of Sheffield, Sheffield S1 3JD (United Kingdom); Walkley, Brant; San Nicolas, Rackel [Department of Chemical and Biomolecular Engineering, The University of Melbourne, Victoria 3010 (Australia); Gehman, John D. [School of Chemistry and Bio21 Institute, The University of Melbourne, Victoria 3010 (Australia); Brice, David G.; Kilcullen, Adam R. [Department of Chemical and Biomolecular Engineering, The University of Melbourne, Victoria 3010 (Australia); Zeobond Pty Ltd, P.O. Box 23450, Docklands, Victoria 8012 (Australia); Duxson, Peter [Zeobond Pty Ltd, P.O. Box 23450, Docklands, Victoria 8012 (Australia); Deventer, Jannie S.J. van [Department of Chemical and Biomolecular Engineering, The University of Melbourne, Victoria 3010 (Australia); Zeobond Pty Ltd, P.O. Box 23450, Docklands, Victoria 8012 (Australia)

    2013-11-15

    Binders formed through alkali-activation of slags and fly ashes, including ‘fly ash geopolymers’, provide appealing properties as binders for low-emissions concrete production. However, the changes in pH and pore solution chemistry induced during accelerated carbonation testing provide unrealistically low predictions of in-service carbonation resistance. The aluminosilicate gel remaining in an alkali-activated slag system after accelerated carbonation is highly polymerised, consistent with a decalcification mechanism, while fly ash-based binders mainly carbonate through precipitation of alkali salts (bicarbonates at elevated CO{sub 2} concentrations, or carbonates under natural exposure) from the pore solution, with little change in the binder gel identifiable by nuclear magnetic resonance spectroscopy. In activated fly ash/slag blends, two distinct gels (C–A–S–H and N–A–S–H) are formed; under accelerated carbonation, the N–A–S–H gel behaves comparably to fly ash-based systems, while the C–A–S–H gel is decalcified similarly to alkali-activated slag. This provides new scope for durability optimisation, and for developing appropriate testing methodologies. -- Highlights: •C-A-S-H gel in alkali-activated slag decalcifies during accelerated carbonation. •Alkali-activated fly ash gel changes much less under CO{sub 2} exposure. •Blended slag-fly ash binder contains two coexisting gel types. •These two gels respond differently to carbonation. •Understanding of carbonation mechanisms is essential in developing test methods.

  19. Mayenite Synthesized Using the Citrate Sol-Gel Method

    Energy Technology Data Exchange (ETDEWEB)

    Ude, Sabina N [ORNL; Rawn, Claudia J [ORNL; Meisner, Roberta A [University of Tennessee (UTK) and Oak Ridge National Laboratory (ORNL); Kirkham, Melanie J [ORNL; Jones, Gregory L. [University of Tennessee, Knoxville (UTK); Payzant, E Andrew [ORNL

    2014-01-01

    A citrate sol-gel method has been used to synthesize mayenite (Ca12Al14O33). X-ray powder diffraction data show that the samples synthesized using the citrate sol-gel method contained CaAl2O4 and CaCO3 along with mayenite when fired ex-situ in air at 800 C but were single phase when fired at 900 C and above. Using high temperature x-ray diffraction, data collected in-situ in air at temperatures of 600 C and below showed only amorphous content; however, data collected at higher temperatures indicated the first phase to crystallize is CaCO3. High temperature x-ray diffraction data collected in 4% H2/96% N2 does not show the presence of CaCO3, and Ca12Al14O33 starts to form around 850 C. In comparison, x-ray powder diffraction data collected ex-situ on samples synthesized using traditional solid-state synthesis shows that single phase was not reached until samples were fired at 1350 C. DTA/TGA data collected either in a nitrogen environment or air on samples synthesized using the citrate gel method suggest the complete decomposition of metastable phases and the formation of mayenite at 900 C, although the phase evolution is very different depending on the environment. Brunauer-Emmett-Teller (BET) measurements showed a slightly higher surface area of 7.4 0.1 m2/g in the citrate gel synthesized samples compared to solid-state synthesized sample with a surface area of 1.61 0.02 m2/g. SEM images show a larger particle size for samples synthesized using the solid-state method compared to those synthesized using the citrate gel method.

  20. High internal phase emulsion gels (HIPE-gels) created through assembly of natural oil bodies

    NARCIS (Netherlands)

    Nikiforidis, C.V.; Scholten, E.

    2015-01-01

    A natural emulsion was used to create a high internal phase emulsion (HIPE) gel with elastic properties, indicated by shear elastic moduli between 102 and 105 Pa. The elasticity of the gel network was provided from a 2D-gel network of proteins which were naturally adsorbed at the interface of an oil

  1. Categorization of rheological scaling models for particle gels applied to casein gels

    NARCIS (Netherlands)

    Mellema, M.; Opheusden, van J.H.J.; Vliet, van T.

    2002-01-01

    Rennet-induced casein gels made from skim milk were studied rheologically. A scaling model or framework for describing the rheological behavior of gels is discussed and used for classification of the structure of casein gels. There are two main parameters in the model that describe the number of def

  2. Viscoelastic Properties of Vitreous Gel

    Science.gov (United States)

    Pirouz Kavehpour, H.; Sharif-Kashani, Pooria

    2010-11-01

    We studied the rheological properties of porcine vitreous humor using a stressed-control shear rheometer. All experiments were performed in a closed environment at body temperature to mimic in-vivo conditions. We modeled the creep deformation using a two-element retardation spectrum model. By associating each element of the model to an individual biopolymeric system in the vitreous gel, a separate response to the applied stress was obtained from each component. The short time scale was associated with the collagen structure, while the longer time scale was related to the microfibrilis and hyaluronan network. We were able to distinguish the role of each main component from the overall rheological properties. Knowledge of this correlation enables us to relate the physical properties of vitreous to its pathology, as well as optimize surgical procedures such as vitrectomy.

  3. Chitosan: Gels and Interfacial Properties

    Directory of Open Access Journals (Sweden)

    Julie Nilsen-Nygaard

    2015-03-01

    Full Text Available Chitosan is a unique biopolymer in the respect that it is abundant, cationic, low-toxic, non-immunogenic and biodegradable. The relative occurrence of the two monomeric building units (N-acetyl-glucosamine and d-glucosamine is crucial to whether chitosan is predominantly an ampholyte or predominantly a polyelectrolyte at acidic pH-values. The chemical composition is not only crucial to its surface activity properties, but also to whether and why chitosan can undergo a sol–gel transition. This review gives an overview of chitosan hydrogels and their biomedical applications, e.g., in tissue engineering and drug delivery, as well as the chitosan’s surface activity and its role in emulsion formation, stabilization and destabilization. Previously unpublished original data where chitosan acts as an emulsifier and flocculant are presented and discussed, showing that highly-acetylated chitosans can act both as an emulsifier and as a flocculant.

  4. Improved mechanical and electronic properties of co-assembled folic acid gel with aniline and polyaniline.

    Science.gov (United States)

    Chakraborty, Priyadarshi; Bairi, Partha; Roy, Bappaditya; Nandi, Arun K

    2014-03-12

    Co-assembled folic acid (F) gel with aniline (ANI) (ANI:F = 1:2, w/w) is produced at 2% (w/v) concentration in water/DMSO (1:1, v/v) mixture. The gel is rigid and on polymerization of the gel pieces in aqueous ammonium persulfate solution co-assembled folic acid - polyaniline (F-PANI) gel is formed. Both the co-assembled F-ANI and F-PANI gels have fibrillar network morphology, the fiber diameter and its degree of branching increase significantly from those of F gel. WAXS pattern indicates co-assembled structure with the F fiber at the core and ANI/PANI at its outer surface and the co-assembly is occurring in both F-ANI and F-PANI systems through noncovalent interaction of H-bonding and π stacking processes between the components. FTIR and UV-vis spectra characterize the doped PANI formation and the MALDI mass spectrometry indicates the degree of polymerization of polyaniline in the range 24-653. The rheological experiments support the signature of gel formation in the co-assembled state and the storage (G') and loss (G″) modulii increase in the order F gelPANI gel, showing the highest increase in G' ≈ 1100% for the F-PANI gel. The stress at break, elasticity, and stiffness also increase in the same order. The dc-conductivity of F-ANI and F-PANI xerogels is 2 and 7 orders higher than that of F xerogel. Besides, the current (I)-voltage (V) curves indicate that the F-xerogel is insulator, but F-ANI xerogel is semiconductor showing both electronic memory and rectification; on the other hand, the F-PANI xerogel exhibits a negative differential resistance (NDR) property with a NDR ratio of 3.0.

  5. Smart viscoelastic and self-healing characteristics of graphene nano-gels

    Science.gov (United States)

    Dhar, Purbarun; Katiyar, Ajay; Maganti, Lakshmi Sirisha

    2016-12-01

    Readily synthesizable nano-graphene and poly ethylene glycol based stable gels have been synthesized employing an easy refluxing method, and exhaustive rheological and viscoelastic characterizations have been performed to understand the nature of such complex gel systems. The gels exhibit shear thinning response with pronounced yield stress values which is indicative of a microstructure, where the graphene nanoflakes intercalate (possible due to the refluxing) with the polymer chains and form a pseudo spring damper network. Experimentations on the thixotropic behavior of the gels indicate that the presence of the G nanoflakes leads to immensely augmented structural stability capable of withstanding severe impact shears. Further information about the localized interactions of the G nanoflakes with the polymer chains is revealed from the amplitude and frequency sweep analyses in both linear and non-linear viscoelastic regimes. Massively enhanced cross over amplitude values are recorded and several smart effects such as enhanced elastic behavior at increasing forcing frequencies are registered. Structural resonance induced disruption of the elastic behavior is observed for the gels for a given range of frequency and the proposition of resonance has been justified mathematically. It is observed that, post this resonance bandwidth, the gels are able to self-heal and regain their original elastic behavior back without any external intervention. More detailed information on the viscoelastic nature of the gels has been obtained from creep and recovery compliance tests and justifications for the spring damper microstructure has been obtained. Smart features such as enhanced stress relaxation behavior with increasing strain have been observed and the same explained, based on the proposed microstructure. The viscoelastic response of the gels has been mathematically modeled and it has been revealed that such complex gels can be accommodated as modified Burger's viscoelastic

  6. Formulasi dan Uji Stabilitas Fisik Sediaan Gel Ekstrak Daun Ketepeng Cina (Cassia alata L.

    Directory of Open Access Journals (Sweden)

    Nutrsia Aquariushinta Sayuti

    2015-08-01

    Full Text Available Cassia alata L. leaf contains flavonoids which have anti-inflammatory, anti-allergy, antioxidants and antifungal effects. The traditional application of it requires long preparation time so we need a formulation with more practical and durable storage is needed. Gel formulation was chosen because it is easy to dry, forming an easy to wash film layer and give a sense of cold on the skin. Gel components affect the stability of the gel. Physical stability is analyzed to ensure that the formulated gel’s quality, safety and benefits meet the specifications and survive during storage. This study aimed to create a gel formula and analysed its physical stability test of Cassia alata L. leaf extract gel. Research design adopted in this study was an experimental laboratory. Optimum gel formula determined by variations in the concentration of sodium carboxymethyl celulose (CMC-Na. Gel that meet the criteria of homogeneity, consistency, pH and spreadibility was set as the optimum formula. Physical stability of optimum formula was analyzed by organoleptic, homogeneity   test, pH test, viscosity test and spredability test. Gel that meets the acceptance criteria are Cassia alata L. leaf extract gel with CMC-Na concentration of 3% those determined as the optimum formula. Stability analysis of optimum formula didn’t show any changes in pH, color, smell and taste, although it changes of the shape, viscosity and spreadibility were found. The optimum  formula  gel obtained by the concentration of CMC-Na 3%. results were less stable during the 8 weeks of storage at a temperature of 40°C.

  7. Evaluation of interactive effects on the ionic conduction properties of polymer gel electrolytes.

    Science.gov (United States)

    Saito, Yuria; Okano, Miki; Kubota, Keigo; Sakai, Tetsuo; Fujioka, Junji; Kawakami, Tomohiro

    2012-08-23

    Ionic mobility of electrolyte materials is essentially determined by the nanoscale interactions, the ion-ion interactions and ion-solvent interactions. We quantitatively evaluated the interactive situation of the lithium polymer gel electrolytes through the measurements of ionic conductivity and diffusion coefficients of the mobile species of the lithium polymer electrolytes. The interactive force between the cation and anion in the gel depended on the mixing ratio of the binary solvent, ethylene carbonate plus dimethyl carbonate (EC/DMC). The gel with the solvent (3:7 EC:DMC) showed minimal cation-anion interaction, which is the cause of the highest ionic mobility compared with those of the other gels with different solvents. This suggests that the cation-anion interaction does not simply depend on the dielectric constant of the solvent but is associated with the solvation condition of the lithium. In the case of the gel with the 3:7 EC/DMC solvent, most of the EC species strongly coordinate to a lithium ion, forming the stable solvated lithium, Li(EC)(3)(+), and there are no residual EC species for exchange with them. As a result, the solvating EC species would be a barrier that restricts the anion attack to the lithium leading to the smallest cation-anion interaction. On the other hand, interaction between the cation and polar sites, hydroxyl and oxygen groups of ether of the polyvinyl butyral (PVB) and polyethylene oxide (PEO) polymer, respectively, in the gels was another dominant factor responsible for cation mobility. It increased with increasing polar site concentration per lithium. In case of the PVB gels, cation-anion interaction increased with an increasing polymer fraction of the gel contrary to the independent feature of PEO gels with the change of the polymer fraction. This indicates that the cation-anion interaction is associated with the polymer structure of the gel characterized by the kind and configuration of polar groups, molecular weight, and

  8. Dynamic viscoelastic properties of collagen gels in the presence and absence of collagen fibrils

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Hideki; Shimizu, Kousuke; Hara, Masayuki, E-mail: hara@b.s.osakafu-u.ac.jp

    2012-10-01

    We measured the dynamic viscoelasticities of collagen gels prepared and modified by four different methods: i) collagen gels cross-linked by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) after their preparation, ii) collagen gels cross-linked simultaneously with their preparation, iii) collagen gels irradiated with gamma rays after their preparation, and iv) collagen gels directly formed from an acidic collagen solution by gamma-cross-linking. Dynamic viscoelasticities of all samples were measured using a rheometer before and after heating for 30 min at 80 Degree-Sign C. The collagen gels sequentially cross-linked by 125 mM EDC after preparation and then heated exhibited mechanically strong properties (storage modulus G Prime , 7010 Pa; loss modulus G Double-Prime , 288 Pa; Young's modulus E, 0.012 in the rapidly-increasing phase and 0.095 in the moderately-increasing phase; tensile strain, 5.29; tensile stress {sigma}, 0.053). We generally conclude that the G Prime value decreases when gels without fibrils are heated. On the other hand, well cross-linked collagen gels with thick fibrils, such as gels sequentially cross-linked with 125 mM EDC after preparation or gamma-cross-linked conventional gels irradiated at 40 kGy, exhibit a distinct increase in G Prime value after heating. Those gels also have thick, twisted, or fused fibrils of collagen. Highlights: Black-Right-Pointing-Pointer Dynamic viscoelasticities of collagen gels prepared and modified by various methods. Black-Right-Pointing-Pointer Chemical cross-linking with EDC and gamma-cross-linking were used. Black-Right-Pointing-Pointer Dynamic viscoelasticities of those samples were measured before and after the heating. Black-Right-Pointing-Pointer The gels sequentially cross-linked with 125 mM EDC exhibit a distinct increase in G' value after heating. Black-Right-Pointing-Pointer Those gels also have thick, twisted, or fused fibrils of collagen.

  9. α-Gel formation by amino acid-based gemini surfactants.

    Science.gov (United States)

    Sakai, Kenichi; Ohno, Kiyomi; Nomura, Kazuyuki; Endo, Takeshi; Sakamoto, Kazutami; Sakai, Hideki; Abe, Masahiko

    2014-07-08

    Ternary mixtures being composed of surfactant, long-chain alcohol, and water sometimes form a highly viscous lamellar gel with a hexagonal packing arrangement of their crystalline hydrocarbon chains. This molecular assembly is called "α-crystalline phase" or "α-gel". In this study, we have characterized α-gels formed by the ternary mixtures of amino acid-based gemini surfactants, 1-hexadecanol (C16OH), and water. The surfactants used in this study were synthesized by reacting dodecanoylglutamic acid anhydride with alkyl diamines and abbreviated as 12-GsG-12 (s: the spacer chain length of 2, 5, and 8 methylene units). An amino acid-based monomeric surfactant, dodecanoylglutamic acid (12-Glu), was also used for comparison. At a fixed water concentration the melting point of the α-gel increased with increasing C16OH concentration, and then attained a saturation level at the critical mole ratio of 12-GsG-12/C16OH = 1/2 under the normalization by the number of hydrocarbon chains of the surfactants. This indicates that, to obtain the saturated α-gel, a lesser amount of C16OH is required for the gemini surfactants than for the monomeric one (the critical mole ratio of 12-Glu/C16OH = 1/3). Small- and wide-angle X-ray scattering measurements demonstrated an increase in the long-range d-spacing of the saturated α-gels in the order 12-Glu gels at a given water concentration. This is caused by the decreased amount of excess water being present outside the α-gel structure (or the increased amount of water incorporated between the surfactant-alcohol bilayers). To the best of our knowledge, this is the first report focusing on the formation of α-gel in gemini surfactant systems.

  10. Narrative form

    CERN Document Server

    Keen, Suzanne

    2015-01-01

    This revised and expanded handbook concisely introduces narrative form to advanced students of fiction and creative writing, with refreshed references and new discussions of cognitive approaches to narrative, nonfiction, and narrative emotions.

  11. Magnetization of microorganism cells by sol-gel method

    Institute of Scientific and Technical Information of China (English)

    CHEN Bo; ZHAN TianZhuo; LIAN ZhiYang; ZHANG DeYuan

    2008-01-01

    Microorganism cells could be used as templates during fabrication of magnetic or conductive microstructures in different standard shapes.In this paper,feasibility of magnetizing microorganism cells by sol-gel method,which is to coat cells of Spirulina (a type of natural micro-helical microorganism) with the ferrite (a kind of magnetic material),was discussed and investigated.Then the cell form,compo-nents and the phase structure were observed and analyzed using various tools including optical microscopy,scanning electron microscopy (SEM),energy dis-persive X-ray detector (EDX),transmission electron microscopy (TEM),and X-ray diffraction analysis (XRD).Results showed that spirulina cells could be coated with ferrite after the sol-gel process,with the shape of natural helixes well kept,that the components of different sampling points on the surface layer were consistent and the thickness of layer was uniform,and that the type of the surface ferrite layer formed was cubic Fe304.It was also observed that there were nano-parUcles yielded in the cells and certain deposit on the walls between cells.The kinetics of the cell magnetization technology by sol-gel was also discussed.

  12. Magnetization of microorganism cells by sol-gel method

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Microorganism cells could be used as templates during fabrication of magnetic or conductive microstructures in different standard shapes. In this paper, feasibility of magnetizing microorganism cells by sol-gel method, which is to coat cells of Spirulina (a type of natural micro-helical microorganism) with the ferrite (a kind of magnetic material), was discussed and investigated. Then the cell form, components and the phase structure were observed and analyzed using various tools including optical microscopy, scanning electron microscopy (SEM), energy dispersive X-ray detector (EDX), transmission electron microscopy (TEM), and X-ray diffraction analysis (XRD). Results showed that spirulina cells could be coated with ferrite after the sol-gel process, with the shape of natural helixes well kept, that the components of different sampling points on the surface layer were consistent and the thickness of layer was uniform, and that the type of the surface ferrite layer formed was cubic Fe3O4. It was also observed that there were nano-particles yielded in the cells and certain deposit on the walls between cells. The kinetics of the cell magnetization technology by sol-gel was also discussed.

  13. Enzymatically crosslinked carboxymethyl-chitosan/gelatin/nano-hydroxyapatite injectable gels for in situ bone tissue engineering application

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Debasish; Bhunia, Bibhas; Banerjee, Indranil [Department of Biotechnology, Indian Institute of Technology Kharagpur (India); Datta, Pallab; Dhara, Santanu [School of Medical Science and Technology, Indian Institute of Technology Kharagpur (India); Maiti, Tapas K., E-mail: maititapask@gmail.com [Department of Biotechnology, Indian Institute of Technology Kharagpur (India)

    2011-10-10

    Present study reports synthesis and characterization of an enzymatically crosslinked injectable gel (iGel) suitable for cell based bone tissue engineering application. The gel comprises of carboxymethyl-chitosan (CMC)/gelatin/nano-hydroxyapatite (nHAp) susceptible to tyrosinase/p-cresol mediated in situ gelling at physiological temperature. Study revealed that a combination of tyrosinase (60U) and p-cresol (2 mM) as crosslinking agents yield rigid gels at physiological temperature when applied to CMC/gelatin within 35 min in presence or absence of nHAp. Rheological study in conjugation with FT-IR analysis showed that an increase in CMC concentration in the gel leads to higher degree of crosslinking and higher strength. Scanning electron microscopy showed that pore sizes of iGels increased with higher gelatin concentration. In vitro study of osteoblast cell proliferation and differentiation showed that, although all iGels are supportive towards the growth of primary osteoblast cells, GC1:1 supported cellular differentiation to the maximum. Application of iGels in mice revealed that stability of the in situ formed gels depends on the degree of crosslinking and CMC concentration. In conclusion, the iGels may be used in treating irregular small bone defects with minimal clinical invasion as well as for bone cell delivery. - Research Highlights: {yields} Enzymatically crosslinked injectable gel made up of CM-chitosan (C)/gelatin (G)/nHAp. {yields} Tyrosinase/p-cresol used for crosslinking and in situ gelling of polymers at 37deg. C. {yields} 60U tyrosinase and 2mM p-cresol is needed for gelation in 35 min. {yields} Higher GC ratio manifests lower crosslinking and gel strength but higher porosity. {yields} GC1:1 shows maximum in vivo gel stability and in vitro osteoblast differentiation.

  14. Using Greener Gels to Explore Rheology

    Science.gov (United States)

    Garrett, Brendan; Matharu, Avtar S.; Hurst, Glenn A.

    2017-01-01

    A laboratory experiment was developed to investigate the rheological properties of a green calcium-cross-linked alginate gel as an alternative to the traditional borax-cross-linked poly(vinyl alcohol) gel. As borax is suspected of damaging fertility and the unborn child, a safe, green alternative is necessary. The rheological properties of a…

  15. Recrystallization of amylopectin in concentrated starch gels

    NARCIS (Netherlands)

    Keetels, CJAM; Oostergetel, GT; vanVliet, T

    1996-01-01

    The relation between the recrystallization of amylopectin and the increase in stiffness of starch gels during storage was studied by various techniques. From transmission electron microscopy it was concluded that the size of the crystalline domains in retrograded 30% w/w potato starch gels was about

  16. Serum release boosts sweetness intensity in gels

    NARCIS (Netherlands)

    Sala, G.; Stieger, M.A.; Velde, van de F.

    2010-01-01

    This paper describes the effect of serum release on sweetness intensity in mixed whey protein isolate/gellan gum gels. The impact of gellan gum and sugar concentration on microstructure, permeability, serum release and large deformation properties of the gels was determined. With increasing gellan

  17. Stiffening in gels containing whey protein isolate

    NARCIS (Netherlands)

    Purwanti, N.; Veen, van der E.; Goot, van der A.J.; Boom, R.M.

    2013-01-01

    Gels made only from whey protein isolate (WPI) stiffened over the first few days of storage, after which the textural properties remained nearly constant. However, protein gels containing WPI microparticles, at the same total protein content, stiffened over a longer period than those without micropa

  18. Responsive molecular gels. : Surface Chemistry and Colloids

    NARCIS (Netherlands)

    de Jong, Jaap J. D.; Feringa, Bernard; van Esch, Jan

    2006-01-01

    A review discusses the chemo-responsive gels and physico-responsive gels. Phys. low mol. mass responsive gelators are interesting mols. with many potential applications in areas such as catalysis, sensor and sepn. technol., drug delivery, and biomedicine. In a relatively short period, a wide variety

  19. Flow of colloidal suspensions and gels

    Science.gov (United States)

    Zia, Roseanna

    Our recent studies of yield of colloidal gels under shear show that yield in such gels occurs in distinct stages. Under fixed stress, yield follows a finite delay period of slow solid-like creep. Post yield, the gel fluidizes and may undergo long-time viscous flow or, in some cases, may re-solidify. Under imposed strain rate, the transition from equilibrium to long-time flow is characterized by one or more stress overshoots, signifying a yield process here as well. These rheological changes are accompanied by evolution in morphology and dynamics of the gel network. Similar regimes have been observed in gels subjected to gravitational forcing; the gel initially supports its own weight, or perhaps undergoes slow, weak compaction. This may be followed by a sudden transition to rapid compaction or sedimentation. Various models have been put forth to explain these behaviors based on structural evolution, but this detail is difficult to observe in experiment. Here we examine the detailed microstructural evolution and rheology of reversible colloidal gels as they deform under gravity, identifying the critical buoyant force at which yield occurs, the role played by ongoing gel coarsening, and similarities and differences compared to yield under shear. We gratefully acknowledge the support of the NSF XSEDE Computational Resource, the NSF Early CAREER Program, and the Office of Naval Research Young Investigator Program.

  20. Responsive molecular gels. : Surface Chemistry and Colloids

    NARCIS (Netherlands)

    de Jong, Jaap J. D.; Feringa, Bernard; van Esch, Jan

    2006-01-01

    A review discusses the chemo-responsive gels and physico-responsive gels. Phys. low mol. mass responsive gelators are interesting mols. with many potential applications in areas such as catalysis, sensor and sepn. technol., drug delivery, and biomedicine. In a relatively short period, a wide variety

  1. [Marrow mesenchymal stem cell transplantation with sodium alginate gel for repair of spinal cord injury in mice].

    Science.gov (United States)

    Shi, Chen-yue; Ruan, Ling-qin; Feng, Yi-hui; Fang, Jia-lin; Song, Chen-jiao; Yuan, Zhang-gen; Ding, Yue-min

    2011-07-01

    To investigate the effects of sodium alginate gels on marrow mesenchymal stem cell transplantation for repair of spinal cord injury (SCI) in mice. In the present study, effects of different sterilization methods and concentrations of sodium alginate gels were examined. Marrow mesenchymal stem cells (mMSCs) were isolated from mice and cultured. Cells were cultured with sodium alginate gels and MTT assay was applied to determine the cell viability. Mice spinal cord injury was induced by spinal cord transection. mMSCs were transplanted into the cavity of injured spinal cord with sodium alginate gels. The effects of sodium alginate gel were assessed by BMS scales and immunofluorescence staining for NF-200. Compared with liquid form, solid form sodium alginate gel prepared with high pressure vapor sterilization had a better effect on cell viability. SCI mice treated with 10 % sodium alginate gel and mMSCs achieved higher score in BMS scale as well as higher expression of NF-200 compared with the untreated SCI group. Sodium alginate gel prepared with solid form sterilization induces mMSCs proliferation and thus can be used as the carrier of stem cell in treatment of SCI.

  2. Mechanical and Swelling Properties of Poly (vinyl alcohol and Hyaluronic Acid Gels used in Biomaterial Systems - a Comparative Study

    Directory of Open Access Journals (Sweden)

    Jagadeeshwar Kodavaty

    2014-05-01

    Full Text Available There is an increasing demand for designing controlled drug delivery systems with materials which are morebiocompatible, economical and materials which can be processed easily. Poly (vinyl alcohol (PVA and hyaluronicacid (HA are promising polymers for applications in drug delivery. PVA forms gel based on the acetal bridges when cross linked with glutaraldehyde (GA. On the other hand, HA a natural polymer, forms gel with divinyl sulfone(DVS as a crosslinker. PVA and HA blends upon crosslinking PVA with GA or HA with DVS, in the presence ofthe other polymer, form gels that are more adaptable to the drug delivery systems. In this work, the mechanicalproperties and swelling behaviour of PVAHA gels were characterized. The effect of composition on viscoelasticmoduli and degree of swelling was determined. The storage modulus (G″ of various gels made of PVA, HA andPVAHA blends were measured using rheology and compared with the values available in the literature. Swellingproperties were measured and compared among various PVA and HA gels. Collagen is added to PVA solution andthe rheological properties were measured in the gel state. Based on the values of storage modulus, gels of variouscompositions of PVA, HA and collagen might be selected as potential biomaterials for drug delivery system dependingon careful understanding the type of application.Defence Science Journal, Vol. 64, No. 3, May 2014, pp. 222-229, DOI:http://dx.doi.org /10.14429/dsj.64.7320

  3. Cluster structure and dynamics in gels and glasses

    CERN Document Server

    Pastore, Raffaele; Fierro, Anallisa; Ciamarra, Massimo Pica; Coniglio, Antonio

    2016-01-01

    The dynamical arrest of gels is the consequence of a well defined structural phase transition, leading to the formation of a spanning cluster of bonded particles. The dynamical glass transition, instead, is not accompanied by any clear structural signature. Nevertheless, both transitions are characterized by the emergence of dynamical heterogeneities. Reviewing recent results from numerical simulations, we discuss the behavior of dynamical heterogeneities in different systems and show that a clear connection with the structure exists in the case of gels. The emerging picture may be also relevant for the more elusive case of glasses. We show, as an example, that the relaxation process of a simple glass-forming model can be related to a reverse percolation transition and discuss further perspective in this direction.

  4. Field-Theoretic Studies of Nanostructured Triblock Polyelectrolyte Gels

    Science.gov (United States)

    Audus, Debra; Fredrickson, Glenn

    2012-02-01

    Recently, experimentalists have developed nanostructured, reversible gels formed from triblock polyelectrolytes (Hunt et al. 2011, Lemmers et al. 2010, 2011). These gels have fascinating and tunable properties that reflect a heterogeneous morphology with domains on the order of tens of nanometers. The complex coacervate domains, aggregated oppositely charged end-blocks, are embedded in a continuous aqueous matrix and are bridged by uncharged, hydrophilic polymer mid-blocks. We report on simulation studies that employ statistical field theory models of triblock polyelectrolytes, and we explore the equilibrium self-assembly of these remarkable systems. As the charge complexation responsible for the formation of coacervate domains is driven by electrostatic correlations, we have found it necessary to pursue full ``field-theoretic simulations'' of the models, as opposed to the familiar self-consistent field theory approach. Our investigations have focused on morphological trends with mid- and end-block lengths, polymer concentration, salt concentration and charge density.

  5. Gels of sodium alginate‒chitosan interpolyelectrolyte complexes

    Science.gov (United States)

    Brovko, O. S.; Palamarchuk, I. A.; Val'chuk, N. A.; Chukhchin, D. G.; Bogolitsyn, K. G.; Boitsova, T. A.

    2017-08-01

    Aspects of the formation of gels of interpolyelectrolyte complexes (IPECs) based on sodium alginate (NaAlg) and chitosan are studied. The effect the conditions of synthesis and complex composition have on the morphological structure and functional properties of these complexes is examined. It is established that complexation in this system proceeds according to a mechanism of electrostatic interaction between the oppositely charged carboxylic groups of the L-hyaluronic acid pyranose cycles of NaAlg proximal polymer chains and chitosan's amino groups, along with a multitude of hydrogen bonds and dispersion forces. We show that the mechanism of IPEC formation is strongly influenced by the conformational state of a lyophilizing component that is present in the system in excess. The inner surfaces of cryogels based on NaAlg‒chitosan IPECs is found to be strongly influenced by the degree of conversion between the parental polyelectrolytes. The most developed mesoporous structure is obtained when a denser gel forms in the system.

  6. Study of gel formation by ionizing radiation in polypropylene

    Science.gov (United States)

    Oliani, W. L.; Parra, D. F.; Fermino, D. M.; Riella, H. G.; Lima, L. F. C. P.; Lugao, A. B.

    2013-03-01

    The objective of this work is to study the formation of microgel in pristine PP and modified PP. The modified PP in pellets was synthesized by gamma irradiation of pristine PP under a crosslinking atmosphere of acetylene in different doses of 5, 12.5 and 20 kGy, followed by thermal treatment for radical recombination and annihilation of the remaining radicals. The gel content of the modified polypropylenes was determined by extraction in boiling xylene for period of 12 h at 138 °C. The gel formed of pristine PP and modified (i.e., irradiated) was characterized using optical microscopy (OM), scanning electron microscopy (SEM), Fourier transformed infrared spectroscopy (FTIR) and X-ray diffraction (XDR). The PP morphological study indicated the microgel formation with increase of spherulitic concentration with dose.

  7. Gas storage in "dry water" and "dry gel" clathrates.

    Science.gov (United States)

    Carter, Benjamin O; Wang, Weixing; Adams, Dave J; Cooper, Andrew I

    2010-03-02

    "Dry water" (DW) is a free-flowing powder prepared by mixing water, hydrophobic silica particles, and air at high speeds. We demonstrated recently that DW can be used to dramatically enhance methane uptake rates in methane gas hydrate (MGH). Here, we expand on our initial work, demonstrating that DW can be used to increase the kinetics of formation of gas clathrates for gases other than methane, such as CO(2) and Kr. We also show that the stability of the system toward coalescence can be increased via the inclusion of a gelling agent to form a "dry gel", thus dramatically improving the recyclability of the material. For example, the addition of gellan gum allows effective reuse over at least eight clathration cycles without the need for reblending. DW and its "dry gel" modification may represent a potential platform for recyclable gas storage or gas separation on a practicable time scale in a static, unmixed system.

  8. Sol-gel multicapillary columns for gas-solid chromatography.

    Science.gov (United States)

    Sidelnikov, Vladimir N; Patrushev, Yuri V; Belov, Yuri P

    2006-01-06

    In this work, we report the method for the preparation of multicapillary columns (MCCs) for gas-solid chromatography. The porous layer adsorbent is formed on capillary walls by the hydrolysis of aluminum alkoxide in the presence of polypropylene glycol (PPG) and HCl. Porosity and selectivity of the adsorbent depend on reaction conditions and the concentration of PPG. Sol-gel MCCs are well suited for high-speed chromatographic analysis of light hydrocarbons by gas-solid chromatography. Nine-component mixtures of C1-C4 hydrocarbons are separated within 8-12 s. The efficiency of 25-30 cm long alumina sol-gel MCCs consisting of approximately 1400 capillaries of 40 microm diameter is up to 2500-3000 theoretical plates.

  9. Cluster structure and dynamics in gels and glasses

    Science.gov (United States)

    Pastore, R.; de Candia, A.; Fierro, A.; Pica Ciamarra, M.; Coniglio, A.

    2016-07-01

    The dynamical arrest of gels is the consequence of a well defined structural phase transition, leading to the formation of a spanning cluster of bonded particles. The glass transition, instead, is not accompanied by any clear structural signature. Nevertheless, both transitions are characterized by the emergence of dynamical heterogeneities. Reviewing recent results from numerical simulations, we discuss the behavior of dynamical heterogeneities in different systems and show that a clear connection with the structure exists in the case of gels. The emerging picture may also be relevant for the more elusive case of glasses. We show, as an example, that the relaxation process of a simple glass-forming model can be related to a reverse percolation transition and discuss further perspective in this direction.

  10. Catalytic control over supramolecular gel formation.

    Science.gov (United States)

    Boekhoven, Job; Poolman, Jos M; Maity, Chandan; Li, Feng; van der Mee, Lars; Minkenberg, Christophe B; Mendes, Eduardo; van Esch, Jan H; Eelkema, Rienk

    2013-05-01

    Low-molecular-weight gels show great potential for application in fields ranging from the petrochemical industry to healthcare and tissue engineering. These supramolecular gels are often metastable materials, which implies that their properties are, at least partially, kinetically controlled. Here we show how the mechanical properties and structure of these materials can be controlled directly by catalytic action. We show how in situ catalysis of the formation of gelator molecules can be used to accelerate the formation of supramolecular hydrogels, which drastically enhances their resulting mechanical properties. Using acid or nucleophilic aniline catalysis, it is possible to make supramolecular hydrogels with tunable gel-strength in a matter of minutes, under ambient conditions, starting from simple soluble building blocks. By changing the rate of formation of the gelator molecules using a catalyst, the overall rate of gelation and the resulting gel morphology are affected, which provides access to metastable gel states with improved mechanical strength and appearance despite an identical gelator composition.

  11. On shear rheology of gel propellants

    Energy Technology Data Exchange (ETDEWEB)

    Rahimi, Shai; Peretz, Arie [RAFAEL, MANOR Propulsion and Explosive Systems Division, Haifa (Israel); Natan, Benveniste [Faculty of Aerospace Engineering, Technion - Israel Institute of Technology, Haifa (Israel)

    2007-04-15

    Selected fuel, oxidizer and simulant gels were prepared and rheologically characterized using a rotational rheometer. For fuel gelation both organic and inorganic gellants were utilized, whereas oxidizers and simulants were gelled with addition of silica and polysaccharides, respectively. The generalized Herschel-Bulkley constitutive model was found to most adequately represent the gels studied. Hydrazine-based fuels, gelled with polysaccharides, were characterized as shear-thinning pseudoplastic fluids with low shear yield stress, whereas inhibited red-fuming nitric acid (IRFNA) and hydrogen peroxide oxidizers, gelled with silica, were characterized as yield thixotropic fluids with significant shear yield stress. Creep tests were conducted on two rheological types of gels with different gellant content and the results were fitted by Burgers-Kelvin viscoelastic constitutive model. The effect of temperature on the rheological properties of gel propellant simulants was also investigated. A general rheological classification of gel propellants and simulants is proposed. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  12. Influence of colloidal calcium phosphate level on the microstructure and rheological properties of rennet-induced skim milk gels

    DEFF Research Database (Denmark)

    Koutina, Glykeria; Knudsen, Jes Christian; Andersen, Ulf

    2015-01-01

    lactose, to obtain varying levels of micellar calcium and phosphorus but constant value of pH, serum and free calcium, and serum phosphorus. Bovine chymosin was added to the skim milk samples after dialysis and microstructural and rheological properties during gel formation were recorded at 30°C. Samples...... of rennet gel formation. The protein network of rennet gels after dialysis was more compact with many aggregates as demineralization decreased. The small protein particles are able to increase the potential connection points among proteins, support particle fusion and cause a compact structure....... after dialysis needed approximately 30min after the addition of chymosin to form rennet gels. In addition, low micellar calcium and phosphorus values were both found to correlate with slightly less time for the gels to be formed. This information highlights the importance of CCP in the primary phase...

  13. Internal structure analysis of particle-double network gels used in a gel organ replica

    Science.gov (United States)

    Abe, Mei; Arai, Masanori; Saito, Azusa; Sakai, Kazuyuki; Kawakami, Masaru; Furukawa, Hidemitsu

    2016-04-01

    In recent years, the fabrication of patient organ replicas using 3D printers has been attracting a great deal of attention in medical fields. However, the cost of these organ replicas is very high as it is necessary to employ very expensive 3D printers and printing materials. Here we present a new gel organ replica, of human kidney, fabricated with a conventional molding technique, using a particle-double network hydrogel (P-DN gel). The replica is transparent and has the feel of a real kidney. It is expected that gel organ replicas produced this way will be a useful tool for the education of trainee surgeons and clinical ultrasonography technologists. In addition to developing a gel organ replica, the internal structure of the P-DN gel used is also discussed. Because the P-DN gel has a complex structure comprised of two different types of network, it has not been possible to investigate them internally in detail. Gels have an inhomogeneous network structure. If it is able to get a more uniform structure, it is considered that this would lead to higher strength in the gel. In the present study we investigate the structure of P-DN gel, using the gel organ replica. We investigated the internal structure of P-DN gel using Scanning Microscopic Light Scattering (SMILS), a non-contacting and non-destructive.

  14. Electrophoresis of DNA in agarose gels, polyacrylamide gels and in free solution

    Science.gov (United States)

    Stellwagen, Nancy C.

    2009-01-01

    This review describes the electrophoresis of curved and normal DNA molecules in agarose gels, polyacrylamide gels and in free solution. These studies were undertaken to clarify why curved DNA molecules migrate anomalously slowly in polyacrylamide gels but not in agarose gels. Two milestone papers are cited, in which Ferguson plots were used to estimate the effective pore size of agarose and polyacrylamide gels. Subsequent studies on the effect of the electric field on agarose and polyacrylamide gel matrices, DNA interactions with the two gel matrices, and the effect of curvature on the free solution mobility of DNA are also described. The combined results suggest that the anomalously slow mobilities observed for curved DNA molecules in polyacrylamide gels are due primarily to preferential interactions of curved DNAs with the polyacrylamide gel matrix; the restrictive pore size of the matrix is of lesser importance. In free solution, DNA mobilities increase with increasing molecular mass until leveling off at a plateau value of (3.17 ± 0.01) × 10-4 cm2/Vs in 40 mM Tris-acetate-EDTA buffer at 20°C. Curved DNA molecules migrate anomalously slowly in free solution as well as in polyacrylamide gels, explaining why the Ferguson plots of curved and normal DNAs containing the same number of base pairs extrapolate to different mobilities at zero gel concentration. PMID:19517510

  15. Gelatin increases the coarseness of whey protein gels and impairs water exudation from the mixed gel at low temperatures

    NARCIS (Netherlands)

    Martin, A.H.; Bakhuizen, E.; Ersch, C.; Urbonaite, V.; Jongh, H.H.J. de; Pouvreau, L.

    2016-01-01

    To understand the origin of water holding of mixed protein gels, a study was performed on water exudation from mixed whey protein (WP)-gelatin gels upon applied pressure. Mixed gels were prepared with varying WP and gelatin concentration and gelatin type to obtain gels with a wide range of gel

  16. Sol-gel composite material characteristics caused by different dielectric constant sol-gel phases

    Science.gov (United States)

    Kimoto, Keisuke; Matsumoto, Makoto; Kaneko, Tsukasa; Kobayashi, Makiko

    2016-07-01

    Ultrasonic transducers prepared by a sol-gel composite method have been investigated in the field of nondestructive testing (NDT). Sol-gel composite materials could be ideal piezoelectric materials for ultrasonic transducer applications in the NDT field, and a new sol-gel composite with desirable characteristics has been developed. Three kinds of sol-gel composite materials composed of different dielectric constant sol-gel phases, Pb(Zr,Ti)O3 (PZT), Bi4Ti3O12 (BiT), and BaTiO3 (BT), and the same piezoelectric powder phase, PbTiO3 (PT), were fabricated and their properties were compared quantitatively. As a result, the PT/BT, sol-gel composite with the highest dielectric constant sol-gel phase showed the highest d 33 and signal strength. In addition, only PT/BT was successfully poled by room-temperature corona poling with reasonable signal strength.

  17. Atividades das enzimas peroxidase (POD e polifenoloxidase (PPO nas uvas das cultivares benitaka e rubi e em seus sucos e geléias Effect of peroxidase (POD and polyphenoloxidase enzymes (PPO on Benitaka and Rubi grape cultivars and on products processed in the form of juice and jelly

    Directory of Open Access Journals (Sweden)

    Andreia Andrade de Freitas

    2008-03-01

    Full Text Available A peroxidase e a polifenoloxidase estão relacionadas com o escurecimento de frutas, por isso o controle das atividades destas enzimas é de grande importância para a tecnologia de alimentos. Neste trabalho estudaram-se as atividades dessas enzimas nas uvas frescas das cultivares Benitaka e Rubi, bem como as suas termoestabilidades e as suas atividades enzimáticas residuais no suco e nas geléias (extra e light. Foi também avaliada a qualidade microbiológica dos produtos elaborados. As atividades da enzima POD, tanto da fração solúvel quanto da ionicamente ligada, foram semelhantes nas uvas das duas variedades, Benitaka e Rubi. A atividade da enzima polifenoloxidase foi maior na variedade Rubi. As operações de cocção e pasteurização foram mais eficientes para baixar as atividades enzimáticas residuais da POD e PPO quando aplicadas às geléias de uva, em comparação com o suco. Embora não foram suficientes para a total inativação enzimática, essas operações reduziram-nas consideravelmente, e foram eficientes para garantir seguridade microbiológica dos produtos, geléias e suco.Peroxidase (POD and polyphenoloxidase (PPO are oxidative enzymes related to the darkening process suffered by fruits. Thus, the control of the effects of these enzymes, in the preservation of fruit, in order to minimize the darkening process is considered of great importance for food processing technology. The present study investigated the effects of POD and PPO on fresh grapes from Benitaka and Rubi cultivars, as well as the thermal stability and the residual enzymatic activities in the processing of juice and jelly (extra and light. Moreover, the microbiological quality of the processed products was evaluated. It was observed that, the effect of the POD enzyme, from the soluble fraction, as well as from the ionically bound fraction, was similar in both varieties of grapes, Benitaka and Rubi. But the effect of the PPO enzyme was higher in the Rubi

  18. Safety and efficacy of testosterone gel in the treatment of male hypogonadism

    Directory of Open Access Journals (Sweden)

    Kishore M Lakshman

    2009-10-01

    Full Text Available Kishore M Lakshman, Shehzad BasariaSection of Endocrinology, Diabetes, and Nutrition. Boston University School of Medicine, Boston Medical Center, Boston, MA, USAAbstract: Transdermal testosterone gels were first introduced in the US in 2000. Since then, they have emerged as a favorable mode of testosterone substitution. Serum testosterone levels reach a steady-state in the first 24 hours of application and remain in the normal range for the duration of the application. This pharmacokinetic profile is comparable to that of testosterone patch but superior to injectable testosterone esters that are associated with peaks and troughs with each dose. Testosterone gels are as efficacious as patches and injectable forms in their effects on sexual function and mood. Anticipated increases in prostate-specific antigen with testosterone therapy are not significantly different with testosterone gels, and the risk of polycythemia is lower than injectable modalities. Application site reactions, a major drawback of testosterone patches, occur less frequently with testosterone gels. However, inter-personal transfer is a concern if appropriate precautions are not taken. Superior tolerability and dose flexibility make testosterone gel highly desirable over other modalities of testosterone replacement. Androgel and Testim, the two currently available testosterone gel products in the US, have certain brandspecific properties that clinicians may consider prior to prescribing.Keywords: testosterone gel, Androgel, Testim, hypogonadism

  19. Gelatinization and freeze-concentration effects on recrystallization in corn and potato starch gels.

    Science.gov (United States)

    Ronda, Felicidad; Roos, Yrjö H

    2008-04-07

    Freeze-concentration of starch gels was controlled by temperature and gelatinization with glucose and lactose. The aim of the study was to evaluate the effects of freezing temperature and gel composition on starch recrystallization behaviour of corn and potato starch gels (water content 70%, w/w) in water or glucose or lactose (10%, w/w) solutions. Starch gels were obtained by heating in differential scanning calorimetry (DSC). Samples of starch gels were frozen at -10 degrees C, -20 degrees C and -30 degrees C for 24h and, after thawing, stored at +2 degrees C for 0, 1, 2, 4 and 8 days. The extent of starch recrystallization was taken from the enthalpy of melting of the recrystallized starch by DSC. Freezing temperatures, glucose, lactose and the origin of the starch affected the recrystallization behaviour greatly. The recrystallization of amorphous starch during storage was enhanced by freeze-concentration of gels at temperatures above T'(m). Molecular mobility was enhanced by unfrozen water and consequently molecular rearrangements for nucleation could take place. Further storage at a higher temperature enhanced the growth and the maturation of crystals. In particular, glucose decreased the T'(m) of the gels and consequently lower freezing temperatures were needed to reduce enhanced recrystallization during storage. Freeze-concentration temperatures also showed a significant effect on the size and the perfection of crystals formed in starch recrystallization.

  20. SEM studies of the structure of the gels prepared from untreated and radiation modified potato starch

    Science.gov (United States)

    Cieśla, Krystyna; Sartowska, Bożena; Królak, Edward

    2015-01-01

    Potato starch was irradiated with a 60Co gamma rays using doses of 5, 10, 20 and 30 kGy. Gels containing ca. 9.1% of starch were prepared by heating the starch suspensions in the heating chamber stabilized at 100 °C. Four procedures were applied for preparation of the samples in regard to SEM studies and the ability to observe the radiation effect by SEM was assessed for each method. Differences were observed between the SEM images recorded for the non-irradiated samples prepared using all the methods, and those irradiated. Images of the non-irradiated gels indicate generally a honey-comb structure, while smooth areas but with oriented fractures has appeared after irradiation. Modification of gel structure corresponds to the applied dose. The results were related to the process of gel formation (as observed by means of the hot stage microscope) to decrease in swelling power of the irradiated starch and to decreased viscosity of the resulting gels. It can be concluded that the differences in structural properties of gels shown by SEM result probably due to the better homogenization of the gels formed after radiation induced degradation.

  1. Three dimensional gel dosimetry by use of nuclear magnetic resonance imaging (MRI)

    Energy Technology Data Exchange (ETDEWEB)

    De Deene, Y.; De Wagter, C.; Van Duyse, B.; Achten, E.; De Neve, W. [Ghent Rijksuniversiteit (Belgium). Kliniek voor Radiotherapie en Kerngeneeskunde; De Poorter, J. [Ghent Univ. (Belgium). Dept. of Magnetic Resonance

    1995-12-01

    As co-monomers are found to polymerize by radiation, they are eligible for constructing a three dimensional dosimeter. Another kind of three dimensional dosimeter, based on the radiation sensitivity of the ferrous ions in a Fricke solution, was tested in a previous study. However, a major problem that occurs in this kind of gel dosimeters is the diffusion of the ferric and ferrous ions. The co-monomer gels are more stable. The degree of polymerisation is visualized with a clinical MRI system. Acrylamide and N,N-methylene-bis-acrylamide are dissolved in a gel composed of gelatin and water. By irradiation the co-monomers are polymerized to polyacrylamide. The gel is casted in humanoid forms. As such, a simulation of the irradiation of the patient can be performed. Magnetic resonance relaxivity images of the irradiated gel display the irradiation dose. The images of the gel are fused with the radiological images of the patient. Quantitation of the dose response of the co-monomer gel is obtained through calibration by test tubes.

  2. Low molecular weight heparin gels, based on nanoparticles, for topical delivery.

    Science.gov (United States)

    Loira-Pastoriza, C; Sapin-Minet, A; Diab, R; Grossiord, J L; Maincent, P

    2012-04-15

    A commercial suspension of nanoparticles (Eudragit RS 30D) was used to manufacture a gel for topical application. Gels were prepared by mixing a polycationic polymer (Eudragit(®) RS 30D) and a low molecular weight heparin (LMWH), an antithrombotic agent. Gels formed spontaneously at a ratio of 1:1 as a result of electrostatic interactions between the polyanionic drug and the polycationic polymer. Different types of heparin were used: Bemiparin, Enoxaparin (Lovenox), Nadroparin (Fraxiparin) and Tinzaparin (Innohep). Several LMWH concentrations were tested. Rheological measurements were performed to investigate the gel behavior. Gel formation was confirmed by dynamic rheological measurements as the elastic modulus (G') was higher than the viscous one (G″). The amount of heparin incorporated into the gel matrix was determined. A maximum of incorporation (100%) was reached using a heparin solution of 600 IU/mL. The release kinetics of LMWH from the gel were also studied. Regardless of the LMWH used in the formulation, a biphasic release profile was observed. Accordingly, a burst effect was observed. Afterwards, the release rate became steady. The penetration of the LMWH through the dermal barrier was also investigated. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. In-phantom dosimetry for BNCT with Fricke and normoxic-polymer gels

    Science.gov (United States)

    Gambarini, G.; Agosteo, S.; Carrara, M.; Gay, S.; Mariani, M.; Pirola, L.; Vanossi, E.

    2006-05-01

    Measurements of in-phantom dose distributions and images are important for Boron Neutron Capture Therapy treatment planning. The method for spatial determination of absorbed doses in thermal or epithermal neutron fields, based on Fricke-xylenol-orange-infused gel dosimeters in form of layers, has revealed to be very reliable, as gel layer dosimeters give the possibility of obtaining spatial dose distributions and measurements of each dose contribution in neutron fields, by means of a properly studied procedure. Quite recently, BNCT has been applied to treat liver metastases; in this work the results of in-phantom dosimetry for explanted liver in BNCT treatments are described. Moreover, polyacrylamide gel (PAG) dosimeters in which a polymerization process appears as a consequence of absorbed dose, have been recently tested, because of their characteristic absence of diffusion. In fact, due to the diffusion of ferric ions, Fricke-gel dosimeters require prompt analysis after exposure to avoid spatial information loss. In this work the preliminary results of a study about the reliability of polymer gel in BNCT dosimetry are also discussed. Gel layers have been irradiated in a phantom exposed in the thermal column of the TRIGA MARK II reactor (Pavia). The results obtained with the two kinds of gel dosimeter have been compared.

  4. Particle stability in dilute fermented dairy drinks: formation of fluid gel and impact on rheological properties.

    Science.gov (United States)

    Kiani, H; Mousavi, M E; Mousavi, Z E

    2010-12-01

    Fluid gels are known to be very shear-thinning materials with yield stress. In this study, the rheological properties of gellan and gellan-pectin fluid gels in fermented dairy drinks were evaluated using viscometric measurements. Both gellan- and gellan-pectin-containing solutions showed the rheological properties of fluid gels resulting in stabilization of particles; but no evidence of a fluid gel was observed for those with pectin alone and those with no hydrocolloid content. Unlike pectin, gellan gum was capable of creating significant values of yield stress and accordingly stabilized colloidal particles and extrinsic added solid particles in the fermented dairy drink. However, pectin improved the stability in combination with gellan. The origin of fluid gel formation was assumed to be both permanent interactions occurring between gellan and proteins, forming hairy particle gels and transient interactions between the particle gels. The significance of yield stress values for particle stability was demonstrated and two methods, including a noteworthy infinite apparent viscosity method and a conventional Bingham approach, were employed to calculate the values of yield stress. Both the methods showed a good application potential due to their simplicity, reasonable results and also wide availability of the instrument applied.

  5. Optimasi Kombinasi Karbopol 940 dan HPMC Terhadap Sifat Fisik Gel Ekstrak dan Fraksi Metanol Daun Kesum (Polygonum minus Huds. dengan metode Simplex Lattice Design

    Directory of Open Access Journals (Sweden)

    Rafika Sari

    2016-08-01

    Full Text Available Indonesia especially west Kalimantan well known by its biodiversity. one of the potential resource is Kesum leaves. Kesum leaves are potential as antibacterial effect, so it can be formulated into pharmaceutical dosage form, especially gel. This research aimed to know the best comparison between Carbopol 940 and Hydroxypropyl methylcellulose (HPMC gel base affecting the physical stability of methanol extract and fraction of kesum leaves gel by Simplex Lattice Design (SLD method. Gels were prepared into three variation base such as gel A (100% Carbopol - 0% HPMC; gel B (0% Carbopol - 100% HPMC; and gel C (50% Carbopol – 50% HPMC. According to SLD method, the optimum combination obtained among the basis were 100% Carbopol - 0% HPMC for Kesum leaves methanol extract gel and 10% Carbopol – 90% HPMC for Kesum leaves methanol fraction gel. Gel that was formulated were tested their physical stability, including adhesive ability, spreadability and pH. The results were analyzed using One sample t- test and was known there was no difference of the physical stability between Kesum leaves methanol extract gel and Kesum leaves methanol fraction gel.

  6. Fri form

    DEFF Research Database (Denmark)

    Jensen, Henrik

    2006-01-01

    Dette Kompendiun er lavet i forbindelse med en workshop i møbeldesign. En række af form-Z's værktøjer til konstruktion af dobbeltkrumme flader gennemgås. Kompendiet kan bruges til selvstudie.......Dette Kompendiun er lavet i forbindelse med en workshop i møbeldesign. En række af form-Z's værktøjer til konstruktion af dobbeltkrumme flader gennemgås. Kompendiet kan bruges til selvstudie....

  7. Electrokinetics of nanoparticle gel-electrophoresis.

    Science.gov (United States)

    Hill, Reghan J

    2016-09-28

    Gel-electrophoresis has been demonstrated in recent decades to successfully sort a great variety of nanoparticles according to their size, charge, surface chemistry, and corona architecture. However, quantitative theoretical interpetations have been limited by the number and complexity of factors that influence particle migration. Theoretical models have been fragmented and incomplete with respect to their counterparts for free-solution electrophoresis. This paper unifies electrokinetic models that address complex nanoparticle corona architectures, corona and gel charge regulation (e.g., by the local pH), multi-component electrolytes, and non-linear electrostatics and relaxation effects. By comprehensively addressing the electrokinetic aspects of the more general gel-electrophoresis problem, in which short-ranged steric interactions are significant, a stage is set to better focus on the physicochemical and steric factors. In this manner, it is envisioned that noparticle gel-electrophoresis may eventually be advanced from a nanoparticle-characterization tool to one that explicitly probes the short-ranged interactions of nanoparticles with soft networks, such as synthetic gels and biological tissues. In this paper, calculations are undertaken that identify a generalized Hückel limit for nanoparticles in low-conductivity gels, and a new Smoluchowski limit for polyelectrolyte-coated particles in high-conductivity gels that is independent of the gel permeability. Also of fundamental interest is a finite, albeit small, electrophoretic mobility for uncharged particles in charged gels. Electrophoretic mobilities and drag coefficients (with electroviscous effects) for nanoparticles bearing non-uniform coronas show that relaxation effects are typically weak for the small nanoparticles (radius ≈3-10 nm) to which gel-electrophoresis has customarily been applied, but are profound for the larger nanoparticles (radius ≳ 40 nm in low conductivity gels) to which passivated gel

  8. Automorphic Forms

    DEFF Research Database (Denmark)

    von Essen, Flemming Brændgaard

    systems. For automorphic forms wrt. Hecke triangle groups and Fuchsian groups with no elliptic elements and genus 0, we show that some logarithms of multiplier systems can be interpreted as a linking number. Finally we show a "twisted" version of the prime geodesics theorem, and logarithms of multiplier...

  9. Cosmic Forms

    CERN Document Server

    Kleman, Maurice

    2011-01-01

    The continuous 1D defects of an isotropic homogeneous material in an Euclidean 3D space are classified by a construction method, the Volterra process (VP). We employ the same method to classify the continuous 2D defects (which we call \\textit{cosmic forms}) of a vacuum in a 4D maximally symmetric spacetime. These defects fall into three different classes: i)- $m$-forms, akin to 3D space disclinations, related to ordinary rotations and analogous to Kibble's global cosmic strings (except that being continuous any deficit angle is allowed); ii)- $t$-forms, related to Lorentz boosts (hyperbolic rotations); iii)- $r$-forms, never been considered so far, related to null rotations. A detailed account of their metrics is presented. Their inner structure in many cases appears as a non-singular \\textit{core} separated from the outer part by a timelike hypersurface with distributional curvature and/or torsion, yielding new types of geometrical interactions with cosmic dislocations and other cosmic disclinations. Whereas...

  10. Novel two-component gels of cetylpyridinium chloride and the bola-amphiphile 6-amino caproic acid: phase evolution and mechanism of gel formation.

    Science.gov (United States)

    Ramakanth, Illa; Patnaik, Archita

    2012-03-08

    A two-component gel resulting from the amphiphilic cationic surfactant cetylpyridinium chloride (CPC) in the presence of a structure-forming bola-amphiphilic additive 6-aminocaproic acid (6-ACA) was realized and investigated. At a critical 6 wt % of 1:1 CPC:6-ACA, the yellow colored gel resulted from a 3:1 v/v CHCl(3):H(2)O critical binary solvent composition. The mixed amphiphilic system formed a 1:1 complex with a binding constant ~0.83 × 10(4) M(-1). Phase evolution and mechanism of gelation in the mixed CPC:6-ACA system was unraveled upon investigating the gel microstructure, based on spectroscopic, microscopic, and small-angle X-ray scattering (SAXS) investigations. The gel assembled as a lamellar organization, maintaining a loosely interdigitated bilayer structure of CPC and 6-ACA molecules through predominant charge transfer, H-bonding, and hydrophobic and intercomplex interactions. The SAXS pattern indicated a semicrystalline form to be the stable phase with alternating crystalline and amorphous layers; a novel mode of gelation with a widely disparate semicrystalline form of the lamellar gel was thus indicated, where the lamellar structure was deduced from the interplanar spacings. A transition from low viscosity reverse micellar solution to a yellow rigid gel upon aging was thus comprehended. The mixed amphiphile in varying polarity organic solvents in the presence of water indicated the nonconducive nature of gelation in very highly polar solvents, methanol, and DMF or, in very low polarity solvents, such as, cyclohexane and carbon tetrachloride.

  11. Sol-Gel Manufactured Energetic Materials

    Science.gov (United States)

    Simpson, Randall L.; Lee, Ronald S.; Tillotson, Thomas M.; Hrubesh, Lawrence W.; Swansiger, Rosalind W.; Fox, Glenn A.

    2005-05-17

    Sol-gel chemistry is used for the preparation of energetic materials (explosives, propellants and pyrotechnics) with improved homogeneity, and/or which can be cast to near-net shape, and/or made into precision molding powders. The sol-gel method is a synthetic chemical process where reactive monomers are mixed into a solution, polymerization occurs leading to a highly cross-linked three dimensional solid network resulting in a gel. The energetic materials can be incorporated during the formation of the solution or during the gel stage of the process. The composition, pore, and primary particle sizes, gel time, surface areas, and density may be tailored and controlled by the solution chemistry. The gel is then dried using supercritical extraction to produce a highly porous low density aerogel or by controlled slow evaporation to produce a xerogel. Applying stress during the extraction phase can result in high density materials. Thus, the sol-gel method can be used for precision detonator explosive manufacturing as well as producing precision explosives, propellants, and pyrotechnics, along with high power composite energetic materials.

  12. Crystallization of lactose from carbopol gels.

    Science.gov (United States)

    Zeng, X M; Martin, G P; Marriott, C; Pritchard, J

    2000-07-01

    To crystallize lactose under static conditions with a view to preparing crystals of well-defined morphology. et-Lactose monohydrate was crystallized from neutralized Carbopol 934 gels. When the majority of crystals had grown to maturity, the gels were acidified using diluted hydrochloric acid and the crystals were harvested by filtration or centrifugation and washed with ethanol-water mixtures. Crystals prepared from the gel had a consistently narrower size distribution than control crystals, prepared from solution under constant stirring. If crystallization was effected in the gel without sedimentation of the crystals, then the resultant crystals had smooth surfaces without visually detectable surface roughness or asperities viewed by optical microscopy. The crystals from Carbopol gels also exhibited the uniform shape of an elongated tomahawk regardless of the crystallization conditions, in contrast to crystallization under constant stirring, where the crystal shape of lactose changed with crystallization conditions especially as a function of the initial concentration of lactose. All batches of lactose crystals prepared from Carbopol gels existed as alpha-lactose monohydrate, which showed better flowability than the controls of a similar particle size. Crystallization from Carbopol gel produces lactose crystals of uniform size, regular shape, smooth surface, and improved flowability.

  13. Protein Beverage vs. Protein Gel on Appetite Control and Subsequent Food Intake in Healthy Adults.

    Science.gov (United States)

    Zhang, Sha; Leidy, Heather J; Vardhanabhuti, Bongkosh

    2015-10-21

    The objective of this study was to compare the effects of food form and physicochemical properties of protein snacks on appetite and subsequent food intake in healthy adults. Twelve healthy subjects received a standardized breakfast and then 2.5 h post-breakfast consumed the following snacks, in randomized order: 0 kcal water (CON) or 96 kcal whey protein snacks as beverages with a pH of either 3.0 (Bev-3.0) or 7.0 (Bev-7.0) or gels as acid (Gel-Acid) or heated (Gel-Heated). In-vitro study showed that Bev-3.0 was more resistant to digestion than Bev-7.0, while Gel-Acid and Gel-Heated had similar digestion pattern. Appetite questionnaires were completed every 20 min until an ad libitum lunch was provided. Post-snack hunger, desire to eat, and prospective food consumption were lower following the beverages and gels vs. CON (all, p intake vs. CON, no differences were observed among treatments. This study suggested that whey protein in either liquid or solid form improves appetite, but the physicochemical property of protein has a minimal effect.

  14. Attenuated total reflectance fourier transform infrared analysis of fly ash geopolymer gel aging.

    Science.gov (United States)

    Rees, Catherine A; Provis, John L; Lukey, Grant C; van Deventer, Jannie S J

    2007-07-17

    Structural changes in fly ash geopolymers activated with different sodium hydroxide and silicate concentrations are investigated using attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy over a period of 200 days. A strong correlation is found between the concentration of silicate monomer in the activating solution and the position of the main Si-O-T stretching band in the FTIR spectrum, which gives an indication of the relative changes in the gel Si/Al ratio. The FTIR spectra of geopolymer samples with activating solution concentrations of up to 1.2 M SiO2 indicate that an Al-rich gel forms before the final gel composition is reached. The time required for the system to reach a steady gel composition depends on the silicate activating solution concentration and speciation. Geopolymers activated with solutions containing predominantly high-order silicate species rapidly reach a steady gel composition without first forming an Al-rich gel. A minimum silicate monomer concentration of approximately 0.6 M is required to shift the geopolymer synthesis mechanism from hydroxide activation to silicate activation. Silicate speciation in the activating solutions also affects zeolite formation and geopolymer microstructures, with a more homogeneous microstructure and less zeolite formation observed at a higher SiO2 content.

  15. Development and characterization of in-situ gel for ophthalmic formulation containing ciprofloxacin hydrochloride.

    Science.gov (United States)

    Makwana, S B; Patel, V A; Parmar, S J

    2016-01-01

    In situ gels are systems which are applied as solutions or suspensions and are capable of undergoing rapid sol-to-gel transformation triggered by external stimulus such as temperature, pH etc. on instillation. The aim of the present study was to formulate and evaluate pH responsive in-situ gel for ophthalmic delivery. Ciprofloxacin hydrochloride is popularly used as a broad spectrum antibiotic in the treatment of corneal ulcers of ocular infections. However, rapid dilution on instillation, wash out, poor retention of drug concentration delimit the therapeutic benefits of the drug when used in form of conventional eye drops. Sodium alginate, an ophthalmic gel forming mucoadhesive polymer was chosen as polymer which undergoes instantaneous gel formation due to formation of calcium alginate by virtue of its interaction with divalent cation (Ca(+2)) present in lachrymal fluid. Hydroxy Propyl Methyl Cellulose (HPMC K4M and E5 0LV) was further incorporated as a viscosity enhancer in order to achieve the desired consistency so as to facilitate sustained drug release. The developed formulations were evaluated for clarity, pH measurement, gelling capacity, drug content, rheological study, and in vitro drug release. Thus, in situ gel based systems containing gums can be a valuable approach for ophthalmic drug delivery when compared to conventional systems.

  16. Preparation and characterisation of mucoadhesive nasal gel of venlafaxine hydrochloride for treatment of anxiety disorders

    Directory of Open Access Journals (Sweden)

    Shyamoshree Basu

    2012-01-01

    Full Text Available The aim of the present study is to prepare and evaluate mucoadhesive nasal gels of venlafaxine hydrochloride. Mucoadhesive nasal gels were prepared using polymers like carbopol 934 and sodium alginate and characterized in terms of viscosity, texture profile analysis, ex vivo drug permeation profiles and histopathological studies. The results show that values of viscosity, hardness and adhesiveness increase while those of cohesiveness decrease with corresponding increase in concentration of the polymers. Ex vivo drug permeation profiles showed that formulation containing 5% sodium alginate provided a better controlled release of the drug than the other formulations over a period of 12 h. Histopathological studies assured that gels containing different polymers did not produce any significant change in the nasal mucosae of goat even after 12 h permeation study. Mucoadhesive nasal gel of venlafaxine hydrochloride is a novel dosage form which delivers the drug directly into systemic circulation and provides controlled release of the drug.

  17. Ionic conductivity of polymer gels deriving from alkali metal ionic liquids and negatively charged polyelectrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Ogihara, Wataru; Yoshizawa, Masahiro; Ohno Hiroyuki [Tokyo University of Agriculture and Technology (Japan). Dept. of Biotechnology; Sun, Jiazeng; Forsyth, M. [Monash University, Clayton (Australia). School of Materials Engineering; MacFarlane, D.R. [Monash University, Clayton (Australia). School of Chemistry

    2004-04-30

    We have prepared polymer gel electrolytes with alkali metal ionic liquids (AMILs) that inherently contain alkali metal ions. The AMIL consisted of sulfate anion, imidazolium cation, and alkali metal cation. AMILs were mixed directly with poly(3-sulfopropyl acrylate) lithium salt or poly(2-acrylamido-2-methylpropanesulfonic acid) lithium salt to form polymer gels. The ionic conductivity of these gels decreased with increasing polymer fraction, as in general ionic liquid/polymer mixed systems. At low polymer concentrations, these gels displayed excellent ionic conductivity of 10{sup -4} to 10{sup -3} S cm{sup -1} at room temperature. Gelation was found to cause little change in the {sup 7}Li diffusion coefficient of the ionic liquid, as measured by pulse-field-gradient NMR. These data strongly suggest that the lithium cation migrates in successive pathways provided by the ionic liquids. (author)

  18. Smart viscoelastic and self-healing characteristics of graphene nano-gels

    CERN Document Server

    Dhar, Purbarun; Maganti, Lakshmi Sirisha

    2016-01-01

    Readily synthesizable nano-graphene and poly ethylene glycol based stable gels have been synthesized employing an easy refluxing method and exhaustive rheological and viscoelastic characterizations have been performed to understand the nature of such complex gel systems. The gels exhibit shear thinning response with pronounced yield stress values which is indicative of a microstructure where the graphene nanoflakes intercalate with the polymer chains and form a pseudo spring damper network. Experimentations on the thixotropic behavior of the gels indicate that the presence of the G nanoflakes leads to immensely augmented structural stability capable of withstanding severe impact shears. Further information about the localized interactions of the G nanoflakes with the polymer chains is revealed from the amplitude and frequency sweep analyses in both linear and nonlinear viscoelastic regimes. Massively enhanced cross over amplitude values are recorded and several smart effects such as enhanced elastic behavior ...

  19. Characterzation and separation of Al13 species using gel-filtration chromatography

    Institute of Scientific and Technical Information of China (English)

    CHU; Yongbao; GAO; Baoyu; YUE; Qinyan; WANG; Yan

    2006-01-01

    A polyaluminum chloride (PAC) sample was prepared using a slow alkaline titration method. The Bio-Gel P-100 gel column chromatographic technique was used to separate and characterize the various forms of aluminum present in the prepared PAC solution. The effluents from a gel column were monitored using online chemical method: Al-Ferron timed complexation spectrophotometry and by 27Al nuclear magnetic resonance (NMR) spectroscopy. Effects of different experimental conditions such as eluent flow rate, ionic strength and pH on separation of Al13 were investigated. Experimental results indicated that molecule size exclusion was not the only parameter affecting the column chromatographic separation efficiency of Al13 but molecule charge as well. Reducing the eluent flow rate, increasing the ionic strength and suitable pH resulted in increase in the separation efficiency. Experimental results clearly indicated that by varying the experimental conditions, it is possible to produce pure Al13 species using a gel column chromatographic technique.

  20. Time-varied magnetic field enhances transport of magnetic nanoparticles in viscous gel.

    Science.gov (United States)

    MacDonald, Cristin; Friedman, Gary; Alamia, John; Barbee, Kenneth; Polyak, Boris

    2010-01-01

    The potential of magnetic nanoparticles (MNPs) to deliver various forms of therapy has not been fully realized, in part due to difficulties in transporting the carriers through soft tissue to different target sites. The aim of this study was to demonstrate that transport of MNPs through a viscous gel can be controlled by a combined AC (time-varying) magnetic field and static field gradient. MNP velocity and transport efficiency were measured in a viscous gel at various settings of magnetic field and magnetite loadings. Combined application of an AC magnetic field with the static field gradient resulted in a nearly 30-fold increase in MNP transport efficiency in viscous gel for 30% (w/w) magnetite-loaded particles as compared with static field conditions. The 'oscillating' effect of an AC magnetic field greatly improves the ability to transport MNPs within soft media by decreasing the effective viscosity of the gel.

  1. Rheology of reconstituted silk fibroin protein gels: the epitome of extreme mechanics.

    Science.gov (United States)

    Tabatabai, A Pasha; Kaplan, David L; Blair, Daniel L

    2015-01-28

    In nature, silk fibroin proteins assemble into hierarchical structures with dramatic mechanical properties. With the hope of creating new classes of on demand silk-based biomaterials, Bombyx mori silk is reconstituted back into stable aqueous solutions that can be reassembled into functionalized materials; one strategy for reassembly is electrogelation. Electrogels (e-gels) are particularly versatile and can be produced using electrolysis with small DC electric fields. We characterize the linear and nonlinear rheological behavior of e-gels to provide fundamental insights into these distinct protein-based materials. We observe that e-gels form robust biopolymer networks that exhibit distinctive strain hardening and are recoverable from strains as large as γ=27, i.e. 2700%. We propose a simple microscopic model that is consistent with local restructuring of single proteins within the e-gel network.

  2. Sol-gel transition of charged fibrils composed of a model amphiphilic peptide.

    Science.gov (United States)

    Owczarz, Marta; Bolisetty, Sreenath; Mezzenga, Raffaele; Arosio, Paolo

    2015-01-01

    We characterized the sol-gel transition of positively charged fibrils composed of the model amphiphilic peptide RADARADARADARADA (RADA 16-I) using a combination of microscopy, light scattering, microrheology and rheology techniques, and we investigated the dependence of the hydrogel formation on fibril concentration and ionic strength. The peptide is initially present as a dispersion of short rigid fibrils with average length of about 100 nm. During incubation, the fibrils aggregate irreversibly into longer fibrils and fibrillar aggregates. At peptide concentrations in the range 3-6.5 g/L, the fibrillar aggregates form a weak gel network which can be destroyed upon dilution. Percolation occurs without the formation of a nematic phase at a critical peptide concentration which decreases with increasing ionic strength. The gel structure can be well described in the frame of the fractal gel theory considering the network as a collection of fibrillar aggregates characterized by self-similar structure with a fractal dimension of 1.34.

  3. [A study on the formation of apatite crystallized with gel method].

    Science.gov (United States)

    Endo, T; Amano, N; Yoshida, M; Murakami, H; Kosuge, N; Ohmi, Y; Kameda, A

    1989-10-01

    About apatite produced with a silicahydro gel method using calcium nitrate (group I) or calcium chloride (group II) and a gelatin gel method by use of calcium nitrate (group III) or calcium chloride (group IV), the formative volume as well as the formative condition of a periodic-layered precipitate (Liesegang ring), the pH measurement, calculation of Ca/P ratio, an estimation of the chlorine ion, morphological observation with a scanning electron microscope, qualitative analyses by X-ray diffraction (identification, crystallite size, lattice imperfections, lattice constants) and the composition analysis by infrared absorption spectroscopy were carried out to elucidate the formation of apatite using the gel method. The result showed that there were no distinct differences between group I-II and group III-IV, and it is suggested that it is possible to form satisfact fluorapatite with a gel method using calcium chloride as well as calcium nitrate.

  4. Patterning of Nanocrystalline Cellulose Gel Phase by Electrodissolution of a Metallic Electrode

    Science.gov (United States)

    Daignan, Jean-Michel; Chen, Ran; Mahmoud, Khaled A.; Ma, Yuan; Hill, Ian G.; Kreplak, Laurent

    2014-01-01

    At high concentration or in the presence of electrolytes and organic solvents, solutions of cellulose nanocrystals (CNCs) can form gels exhibiting optical properties similar to the ones of liquid crystal phases. In an attempt to pattern such a gel phase, we have studied the electrodissolution of a metallic electrode in a water suspension of carboxylated CNCs (cCNCs). Depending on the metal used, the electrodissolution process was observed at a different positive potential. In the case of copper the minimum potential at which we could observe optically the growth of the gel phase was 200 mV. The growth rate was current limited indicating that the process was controlled by the electrodissolution of the copper electrode. This hypothesis was confirmed by using circular and square copper patterns as positive electrodes. In both cases, the consumption of the electrode material was observed optically and correlated with the growth of the gel phase. PMID:24897116

  5. FLUORESCENCE STUDIES ON MORPHOLOGICAL CHANGE OF ST/DVB CROSSLINKED GELS DURING CHLOROMETHYLATION

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The morphological change of St/DVB crosslinked gels during chloromethylation wasstudied by fluorescence spectroscopy using St/DVB crosslinked and hypercrosslinked gels as controlsamples. It has been found that with increase of chlorine content, the excimer emission band (~325nm)approaches to vanish, while the intensity of multi-ring aggregate emission band (~420nm) quicklyreaches a maximum, and then decreases sharply accompanied by appearance ofa new broad bandcentred at ca 488nm which roughly coincides with the typical emission band of hypercrossllinkedSt/DVB gels. Mearwhile, the result of IR measurement suggests that methylene bridge between phenylrings forms and increases with chloromethylation process. These results are explained in terms ofaside reaction of post-crosslinking, which densifies the loosely crosslinked networks and undoes thedensely entangled microgel nuclei. As a result, the morphology of the crosslinked gels becom es morehomogeneous with chloromethylation.

  6. Nanoengineering of a Supramolecular Gel by Copolymer Incorporation: Enhancement of Gelation Rate, Mechanical Property, Fluorescence, and Conductivity.

    Science.gov (United States)

    Chakraborty, Priyadarshi; Das, Sujoy; Mondal, Sanjoy; Bairi, Partha; Nandi, Arun K

    2016-02-23

    In the quest to engineer the nanofibrillar morphology of folic acid (F) gel, poly(4-vinylpyridine-co-styrene) (PVPS) is judiciously integrated as a polymeric additive because of its potential to form H-bonding and π-stacking with F. The hybrid gels are designated as F-PVPSx gels, where x denotes the amount of PVPS (mg) added in 2 mL of F gel (0.3%, w/v). The assistance of PVPS in the gelation of F is manifested from the drop in critical gelation concentration and increased fiber diameter and branching of F-PVPSx gels compared to that of F gel. PVPS induces a magnificent improvement of mechanical properties: a 500 times increase of storage modulus and ∼62 times increase of yield stress in the F-PVPS5 gel compared to the F gel. The complex modulus also increases with increasing PVPS concentration with a maximum in F-PVPS5 gel. Creep recovery experiments suggest PVPS induced elasticity in the otherwise viscous F gel. The fluorescence intensity of F-PVPSx gels at first increases with increasing PVPS concentration showing maxima at F-PVPS5 gel and then slowly decreases. Gelation is monitored by time-dependent fluorescence spectroscopy, and it is observed that F and F-PVPSx gels exhibit perfectly opposite trend; the former shows a sigmoidal decrease in fluorescence intensity during gelation, but the latter shows a sigmoidal increase. The gelation rate constants calculated from Avrami treatment on the time-dependent fluorescence data manifest that PVPS effectively enhances the gelation rate showing a maximum for F-PVPS5 gel. The hybrid gel exhibit 5 orders increase of dc conductivity than that of F-gel showing semiconducting nature in the current-voltage plot. The Nyquist plot in impedance spectra of F-PVPS5 xerogel exhibit a depressed semicircle with a spike at lower frequency region, and the equivalent circuit represents a complex combination of resistance-capacitance circuits attributed to the hybrid morphology of the gel fibers.

  7. Incorporation of mesoporous silica particles in gelatine gels: effect of particle type and surface modification on physical properties.

    Science.gov (United States)

    Pérez-Esteve, Édgar; Oliver, Laura; García, Laura; Nieuwland, Maaike; de Jongh, Harmen H J; Martínez-Máñez, Ramón; Barat, José Manuel

    2014-06-17

    The aim of this work was to investigate the impact of mesoporous silica particles (MSPs) on the physicochemical properties of filled protein gels. We have studied the effect of the addition of different mesoporous silica particles, either bare or functionalized with amines or carboxylates, on the physical properties of gelatine gels (5% w/v). Textural properties of the filled gels were investigated by uniaxial compression, while optical properties were investigated by turbidity. The MSPs were characterized with the objective of correlating particle features with their impact on the corresponding filled-gel properties. The addition of MSPs (both with and without functionalization) increased the stiffness of the gelatine gels. Furthermore, functionalized MSPs showed a remarkable increase in the strength of the gels and a slight reduction in the brittleness of the gels, in contrast with nonfunctionalized MSPs which showed no effect on these two properties. The turbidity of the gels was also affected by the addition of all tested MSPs, showing that the particles that formed smaller aggregates resulted in a higher contribution to turbidity. MSPs are promising candidates for the development of functional food containing smart delivery systems, also being able to modulate the functionality of protein gels.

  8. Extreme Variation of Nutritional Composition and Osmolality of Commercially Available Carbohydrate Energy Gels.

    Science.gov (United States)

    Zhang, Xuguang; O'Kennedy, Niamh; Morton, James P

    2015-10-01

    The provision of exogenous carbohydrate (CHO) in the form of energy gels is regularly practiced among endurance and team sport athletes. However, in those instances where athletes ingest suboptimal fluid intake, consuming gels during exercise may lead to gastrointestinal (GI) problems when the nutritional composition of the gel is not aligned with promoting gastric emptying. Accordingly, the aim of the current study was to quantify the degree of diversity in nutritional composition of commercially available CHO gels intended for use in the global sports nutrition market. We surveyed 31 product ranges (incorporating 51 flavor variants) from 23 brands (Accelerade, CNP, High5, GU, Hammer, Maxim, Clif, USN, Mule, Multipower, Nectar, Carb- Boom, Power Bar, Lucozade, Shotz, TORQ, Dextro, Kinetica, SiS, Zipvit, Maxifuel, Gatorade and Squeezy). Gels differed markedly in serving size (50 ± 22 g: 29-120), energy density (2.34 ± 0.7 kcal/g: 0.83-3.40), energy content (105 ± 24 kcal: 78-204), CHO content (26 ± 6 g: 18-51) and free sugar content (9.3 ± 7.0 g: 0.6-26.8). Most notably, gels displayed extreme variation in osmolality (4424 ± 2883 mmol/kg: 303-10,135) thereby having obvious implications for both GI discomfort and the total fluid intake likely required to optimize CHO delivery and oxidation. The large diversity of nutritional composition of commercially available CHO gels illustrate that not all gels should be considered the same. Sports nutrition practitioners should therefore consider the aforementioned variables to make better-informed decisions regarding which gel product best suits the athlete's specific fueling and hydration requirements.

  9. Some Thoughts on The Definition of a Gel

    Science.gov (United States)

    Nishinari, Katsuyoshi

    To avoid the confusion of the concept of a gel frequently encountered in daily markets of food, cosmetics, and other industrial products, the definition of a gel is revisited. Recent proposals of the definition of a gel are overviewed, and classifications of various gels from different points of view are described. Discussion is mainly focused on the gel-sol transition and the difference between the structured liquid and the gel, and the classification of gels by temperature dependence of elastic modulus. Finally, the definition of a gel is proposed as a working hypothesis from rheological and structural view points.

  10. Pulsed field gel electrophoresis a practical guide

    CERN Document Server

    Birren, Bruce

    1993-01-01

    Pulsed Field Gel Electrophoresis: A Practical Guide is the first laboratory manual to describe the theory and practice of this technique. Based on the authors' experience developing pulsed field gel instruments and teaching procedures, this book provides everything a researcher or student needs to know in order to understand and carry out pulsed field gel experiments. Clear, well-tested protocols assume only that users have a basic familiarity with molecular biology. Thorough coverage of useful data, theory, and applications ensures that this book is also a lasting resource for more adv

  11. Applications of sol gel ceramic coatings

    Energy Technology Data Exchange (ETDEWEB)

    Barrow, D. [Datec Coating Corp., Kingston, Ont. (Canada)

    1996-12-31

    The sol gel method is a chemical technique in which polycrystalline ceramic films are fabricated from a solution of organometallic precursors. The technique is attractive for many industrial applications because it is a simple (films are processed in air), flexible (can be used to coat complex geometries) and cost effective (does not require expensive equipment) process. In addition, dense, high quality coatings can be achieved at much lower temperatures than is generally required for sintering bulk ceramics. In this paper the conventional sol gel method and the new datec process are reviewed and potential applications of sol gel coatings in automotive, aerospace, petrochemical, nuclear and electronic industries are discussed. (orig.)

  12. Muscular Contraction Mimiced by Magnetic Gels

    Science.gov (United States)

    Zrínyi, Miklós; Szabó, Dénes

    The ability of magnetic-field-sensitive gels to undergo a quick controllable change of shape can be used to create an artificially designed system possessing sensor- and actuator functions internally in the gel itself. The peculiar magneto-elastic properties may be used to create a wide range of motion and to control the shape change and movement, that are smooth and gentle similar to that observed in muscle. Magnetic field sensitive gels provide attractive means of actuation as artificial muscle for biomechanics and biomimetic applications.

  13. A novel polymer gel for the delivery of local therapies to intracranial tumors: In vivo safety evaluation.

    Science.gov (United States)

    Gerber, David E; Gallia, Gary L; Tyler, Betty M; Eberhart, Charles G; Royer, Gar; Grossman, Stuart A

    2011-12-01

    The treatment of intracranial malignancies is limited by the ability of systemically administered therapies to cross the blood-brain barrier. Royer resorbable matrix, or R-Gel, is a dextran polymer administered in liquid form via needle injection. Within minutes of preparation, the polymer forms a gel and subsequently solidifies, thereby conforming to the dimensions of the injection cavity. R-Gel can accommodate a wide variety of therapeutic agents that may provide new options for local treatment delivery. This preclinical study evaluates the neurotoxicity of R-Gel implanted in the rat brain. Fifteen rats underwent intracranial administration of R-Gel (N = 9) or saline (N = 6) were monitored for systemic and neurotoxicity, and sacrificed at pre-determined time points. Animals that received the R-Gel injection demonstrated no behavioral changes or weight loss. Histopathologic analysis revealed an inflammatory response in both groups on day 3 and day 7 after implantation, which resolved by day 42. These results suggest that intracranial R-Gel is well tolerated. Therapeutic studies of chemotherapy-complexed R-Gel are underway. Copyright © 2011 Wiley Periodicals, Inc.

  14. Heat-induced whey protein gels: protein-protein interactions and functional properties.

    Science.gov (United States)

    Havea, Palatasa; Watkinson, Philip; Kuhn-Sherlock, Barbara

    2009-02-25

    Heat-induced gelation (80 degrees C for 30 min or 85 degrees C for 60 min) of whey protein concentrate (WPC) solutions was studied using small deformation dynamic rheology, small and large deformation compression, and polyacrylamide gel electrophoresis (PAGE). The WPC solutions (15% w/w, pH 6.9) were prepared by dispersing WPC powder in water (control), 1% (w/w) sodium dodecyl sulfate (SDS) solution, and N-ethylmaleimide (NEM) solution at a protein/NEM molar ratio of 1:1 or in 10 mM dithiothreitol (DTT) solution. PAGE analyses showed that the heat treatment of control solutions contained both disulfide and non-covalent linkages between denatured protein molecules. Only disulfide linkages were formed in heated SDS-WPC solutions, whereas only non-covalent linkages were formed in DTT-WPC and NEM-WPC solutions during heating. In heated NEM-WPC solutions, the pre-existing disulfide linkages remained unaltered. Small deformation rheology measurements showed that the storage modulus (G') values, compared with those of the control WPC gels (approximately 14000 Pa), were 3 times less for the SDS-WPC gels (approximately 4000 Pa), double for the NEM-WPC gels (approximately 24000 Pa), and even higher for the DTT-WPC gels (approximately 30000 Pa). Compression tests suggested that the rubberiness (fracture strain) of the WPC gels increased as the degree of disulfide linkages within the gels increased, whereas the stiffness (modulus) of the gels increased as the degree of non-covalent associations among the denatured protein molecules increased.

  15. A topping gel for the treatment of nuclear contaminated small items

    Energy Technology Data Exchange (ETDEWEB)

    Castellani, Romain [CEA, DEN, (DTCD/SPDE/LCFI) Marcoule, F-30207 Bagnols-sur-Cèze (France); Poulesquen, Arnaud, E-mail: arnaud.poulesquen@cea.fr [CEA, DEN, (DTCD/SPDE/LCFI) Marcoule, F-30207 Bagnols-sur-Cèze (France); Goettmann, Frédéric [CEA, DEN, (DTCD/SPDE/LCFI) Marcoule, F-30207 Bagnols-sur-Cèze (France); Marchal, Philippe; Choplin, Lionel [GEMICO-LRGP (UPR CNRS 3349)/ENSIC, F-54001 Nancy Cedex (France)

    2014-10-15

    Graphical abstract: - Highlights: • This article is an introduction towards an alternative method for small items decontamination. • Mechanisms underlying its use are explained. • Temperature dependent rheological behavior is investigated. • Drying and decontamination efficiency are characterized. - Abstract: Nuclear decontamination is a key aspect of the decommissioning of facilities, can today be carried out using gelled reagents sprayed over contaminated surfaces (tens of square meters) and allows easy radionuclide retrieval. Wide ranges of formulations have been developed in our laboratory to treat several materials. The gels are formulated by adding colloidal silica particles to a reactive solution; they dry and form solid residues that are easily collected and directly conditioned. Dissemination hazards are reduced and no liquid effluent is generated or released. In order to adapt the process to the decontamination of small items, an original method involving a topping gel has been developed. A polysaccharide, carrageenan, is added to a conventional gel (silica particles + reactive solution) and by varying the temperature an abrupt sol–gel transition (around 45–50 °C) is observed. At high temperature, the low viscosity of the gel allows it to coat small parts easily, and simply removing them from the warm bath congeals the topping gel. Its decontaminating action takes place. The gel then dries and can be collected. A tradeoff has been found between the mineral mass fraction and the amount of carrageenan, and a formulation is proposed. Results on {sup 60}Co contaminated black steel plates show that the decontamination factor is fully comparable to a conventional gel. Finally, drying kinetic measurements show that easily recoverable flakes are formed due to water evaporation.

  16. Bifurcation of a Swelling Gel with a Mechanical Load and Geometric Constraint

    Institute of Scientific and Technical Information of China (English)

    XUE Feng; YONG Hua-Dong; ZHOU You-He

    2011-01-01

    We present an analysis of the bifurcation phenomenon of a gel in contact with a solvent. When a Mooney-Rivlin form-free energy function is introduced, an asymmetric swelling may appear for a gel swelling under uniaxial constraint or subjected to equal dead loads, which results in an interesting pitchfork bifurcation phenomenon. We present an analytical investigation of this problem based on the classical theory of continuum mechanics. The bifurcation points are obtained for different values of the chemical potential of the solvent molecules. The results demonstrate that the free swelling of the gel under uniaxial constraint will not result in the bifurcation unless further mechanical loads are applied.%We present an analysis of the bifurcation phenomenon of a gel in contact with a solvent.When a Mooney-Rivlin form-free energy function is introduced,an asymmetric swelling may appear for a gel swelling under uniaxial constraint or subjected to equal dead loads,which results in an interesting pitchfork bifurcation phenomenon.We present an analytical investigation of this problem based on the classical theory of continuum mechanics.The bifurcation points are obtained for different values of the chemical potential of the solvent molecules.The results demonstrate that the free swelling of the gel under uniaxial constraint will not result in the bifurcation unless further mechanical loads are applied.Since gels commonly exist in our daily life and engineering society,they have aroused the great interest of a large number of researchers and have been intensely studied over the past few decades.[1-7] Most possible technical and biological applications include medical devices,[8] tissue engineering[9] and actuators responsive to physiological cues.[10,11] Many mechanical models[12-14] have been reported to develop a rigorous description of gels from either an experimental or a theoretical viewpoint.

  17. Functional Nanofibers and Colloidal Gels: Key Elements to Enhance Functionality

    Science.gov (United States)

    Vogel, Nancy Amanda

    material so that prolonged release can be readily achieved from highly water soluble nanofibers. The final research theme focuses on gaining a fundamental understanding of a new class of materials, nanodiamond, so that a desired microstructure can be achieved via functionalization or manipulating processing parameters. In particular, we utilize both steady and dynamic rheology techniques to systematically investigate systems of nanodiamonds dispersed in model nonpolar (mineral oil) and polar (glycerol) media. In both cases, selfsupporting colloidal gels form at relatively low nanodiamond content; however, the gel behavior is highly dependent on the type of media used. Nanodiamonds dispersed in mineral oil exhibit characteristic colloidal gel behavior, with a rheological response that is independent of both frequency and time. However, nanodiamonds dispersed in glycerol exhibit a time dependent response, with the strength of the colloidal gels increasing several orders of magnitude. We attribute these rheological differences to changes in solvent complexity, where new particle-solvent and particle-particle interactions have the potential to delay optimal gel formation. In addition to colloidal gel formation, we use large oscillatory strains to probe the effect of processing parameters on microstructure disruption and recovery. The results indicate that the formation and rearrangement of the nanodiamond microstructures are concentration dependent for both media types; however, the recovery after breakdown is different for each system. Recovery of the nanodiamond/mineral oil gels is incomplete, with the strength of the recovered gel being significantly reduced. In contrast, the original strength of the nanodiamond/glycerol gels is recoverable as the system restructures with time. The practical implications of these results are significant as it suggest that shear history and solvent polarity play a dominant role in nanodiamond processing.

  18. [Magistral prepared lidocaine-gel for topical aplication on skin].

    Science.gov (United States)

    Sklenár, Zbynĕk; Horácková, Katerína; Bakhouche, Hana; Slanar, Ondrej

    2012-08-01

    Due to a limited availability of industrially manufactured products containing local anesthetics for skin application and an increased demand for lidocaine-containing gel applicable prior to a product containing capsaicin for neuropathic pain treatment, it is necessary to prepare a topical semi-solid preparation containing the local anesthetic in pharmacies. Our aim was to create a mixed system of a hydrophilic gel with the emulsified drug, using excipients to decrease the lidocaine melting point, thereby creating a eutectic mixture with a high concentration of lidocaine in the oil phase. Based on bibliographic data, thymol creating a binary eutectic system containing lidocaine has been chosen. After addition of other excipients, an emulsion system was prepared and the drug was stabilized in the oil phase by a mixed nonionic emulsifier and carbomera. For the optimal anesthetic effects, the pH value should be adjusted; trometamol has been chosen as a suitable basic reacting excipient. Based on the addition of different amounts of trometamol, pH values of individual emulgels have been measured and the final composition of lidocaine emulgel has been created. A recipe for a 5 % lidocaine emulgel with the pH value of 9.1 has been created, based on the gel-forming substance carbomera with an emulsion of the oil phase containing a eutectic mixture of lidocaine and thymol, with an addition of ethanol and propylenglycol, stabilized by a mixed nonionic emulsifier. The advantage is the absence of other local anesthetics.

  19. Maize Arabinoxylan Gels as Protein Delivery Matrices

    Directory of Open Access Journals (Sweden)

    Ana Luisa Martínez-López

    2009-04-01

    Full Text Available The laccase induced gelation of maize bran arabinoxylans at 2.5% (w/v in the presence of insulin or β-lactoglobulin at 0.1% (w/v was investigated. Insulin and β-lacto-globulin did not modify either the gel elasticity (9 Pa or the cross-links content (0.03 and 0.015 mg di- and triferulic acids/mg arabinoxylan, respectively. The protein release capability of the gel was also investigated. The rate of protein release from gels was dependent on the protein molecular weight. The apparent diffusion coefficient was 0.99 × 10-7 and 0.79 × 10-7 cm2/s for insulin (5 kDa and β-lactoglobulin (18 kDa, respectively. The results suggest that maize bran arabinoxylan gels can be potential candidates for the controlled release of proteins.

  20. Evaluation of wheat by polyacrylamide gel electrophoresis

    African Journals Online (AJOL)

    PRECIOUS

    2010-01-11

    Jan 11, 2010 ... SDS-PAGE gels cluster analysis was performed to check the ... It is concluded that SDS-PAGE analysis of wheat endosperm protein is useful for evaluation of ..... Comparison of phenotypic and molecular marker-based.

  1. Porosity Governs Normal Stresses in Polymer Gels.

    Science.gov (United States)

    de Cagny, Henri C G; Vos, Bart E; Vahabi, Mahsa; Kurniawan, Nicholas A; Doi, Masao; Koenderink, Gijsje H; MacKintosh, F C; Bonn, Daniel

    2016-11-18

    When sheared, most elastic solids including metals, rubbers, and polymer gels dilate perpendicularly to the shear plane. This behavior, known as the Poynting effect, is characterized by a positive normal stress. Surprisingly, fibrous biopolymer gels exhibit a negative normal stress under shear. Here we show that this anomalous behavior originates from the open-network structure of biopolymer gels. Using fibrin networks with a controllable pore size as a model system, we show that the normal-stress response to an applied shear is positive at short times, but decreases to negative values with a characteristic time scale set by pore size. Using a two-fluid model, we develop a quantitative theory that unifies the opposite behaviors encountered in synthetic and biopolymer gels.

  2. Sol-gel deposited electrochromic coatings

    Energy Technology Data Exchange (ETDEWEB)

    Ozer, N.; Lampert, C.M.

    1995-06-01

    Electrochromic devices have increasing application in display devices, switchable mirrors and smart windows. A variety of vacuum deposition technologies have been used to make electrochromic devices. The sol- gel process offers an alternative approach to the synthesis of optical quality and low cost electrochromic device layers. This study summarizes the developments in sol-gel deposited electrochromic films. The sol-gel process involves the formation of oxide networks upon hydrolysis-condensation of alkoxide precursors. In this study we cover the sol-gel deposited oxides of WO[sub 3], V[sub 2]O[sub 5], TiO[sub 2], Nb[sub 2]O[sub 5], and NiO[sub x].

  3. Sol-gel antireflective coating on plastics

    Science.gov (United States)

    Ashley, Carol S.; Reed, Scott T.

    1990-01-01

    An antireflection film made from a reliquified sol-gel hydrolyzation, condensation polymeric reaction product of a silicon, alkoxides and/or metal alkoxides, or mixtures thereof. The film is particularly useful for coating plastics.

  4. Formation of Anisotropic Block Copolymer Gels

    Science.gov (United States)

    Liaw, Chya Yan; Shull, Kenneth; Henderson, Kevin; Joester, Derk

    2011-03-01

    Anisotropic, fibrillar gels are important in a variety of processes. Biomineralization is one example, where the mineralization process often occurs within a matrix of collagen or chitin fibers that trap the mineral precursors and direct the mineralization process. We wish to replicate this type of behavior within block copolymer gels. Particularly, we are interested in employing gels composed of cylindrical micelles, which are anisotropic and closely mimic biological fibers. Micelle geometry is controlled in our system by manipulating the ratio of molecular weights of the two blocks and by controlling the detailed thermal processing history of the copolymer solutions. Small-Angle X-ray Scattering and Dynamic Light Scattering are used to determine the temperature dependence of the gel formation process. Initial experiments are based on a thermally-reversible alcohol-soluble system, that can be subsequently converted to a water soluble system by hydrolysis of a poly(t-butyl methacrylate) block to a poly (methacrylic acid) block. MRSEC.

  5. Sample collection system for gel electrophoresis

    Science.gov (United States)

    Olivares, Jose A.; Stark, Peter C.; Dunbar, John M.; Hill, Karen K.; Kuske, Cheryl R.; Roybal, Gustavo

    2004-09-21

    An automatic sample collection system for use with an electrophoretic slab gel system is presented. The collection system can be used with a slab gel have one or more lanes. A detector is used to detect particle bands on the slab gel within a detection zone. Such detectors may use a laser to excite fluorescently labeled particles. The fluorescent light emitted from the excited particles is transmitted to low-level light detection electronics. Upon the detection of a particle of interest within the detection zone, a syringe pump is activated, sending a stream of buffer solution across the lane of the slab gel. The buffer solution collects the sample of interest and carries it through a collection port into a sample collection vial.

  6. Preparation of ZnO crystal by sol-gel method

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A new method to prepare ZnO crystal was put forward. The preparation process was studied and the mechanism of this method was also discussed. The results show that the sol particles will aggregate when being dehydrated and will form into hard compact gel body through the hard agglomeration between particles. This dry gel is a hard compact agglomeration composed of the first sol particles. At high sintering temperature, the small compacted particles will easily grow up and form a fine ZnO crystal.

  7. Fabrication of SWNT/silica composites by the sol-gel process.

    Science.gov (United States)

    Babooram, Keshwaree; Narain, Ravin

    2009-01-01

    Single-walled carbon nanotubes (SWNTs) have successfully been incorporated into a silica matrix using the sol-gel process. The SWNTs were first functionalized with 3-aminopropyltriethoxysilane (APTES) through an amide linkage formed between the carboxylic acid groups already present on their surface and the amino group on APTES. The silane moieties were then used to form silica with and without the presence of tetramethylorthosilicate (TMOS) in a sol-gel reaction. The addition of TMOS was found to influence the molecular arrangement of the SWNT in the silica matrix and also to retard the degradation of the silica-SWNT composite.

  8. Physical properties of polymeric gels; Kobunshi gel no kiso denki tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Tajitsu, Y. [Yamagata University, Yamagata (Japan). Faculty of Engineering; Chiba, A. [Waseda University, Tokyo (Japan). School of Science and Engineering

    1998-03-31

    This paper explains the following matters on properties of polymeric gels: the percolation theory on sol-gel transfer (incorporating fractal geometry) has become endorsed experimentally; in addition, the large relaxation phenomenon seen in dielectric spectra of carrageenan gel at temperatures lower than the gelation point suggests that a domain of very long needle shape has grown; analysis of dielectric relaxation spectra of sodium acrylate gel (a kind of polymeric electrolyte gel) reveals a result which suggests that its dielectric relaxation mechanism is the same as that of a polymeric electrolyte interlocking system; a polymeric gel membrane (which retains aqueous electrolyte solution) made by dissolving LiBF4 into a mixed solution of propylene carbonate and dimethoxyethane is known to show ion electric conductivity value close to that of aqueous electrolyte solution (in the order of 10 {sup -3} S/cm). 27 refs., 6 figs.

  9. Flexible polyester cellulose paper supercapacitor with a gel electrolyte.

    Science.gov (United States)

    Karthika, Prasannan; Rajalakshmi, Natarajan; Dhathathreyan, Kaveripatnam S

    2013-11-11

    A low-cost polyester cellulose paper has been used as a substrate for a flexible supercapacitor device that contains aqueous carbon nanotube ink as the electrodes and a polyvinyl alcohol (PVA)-based gel as the electrolyte. Gel electrolytes have attracted much interest due to their solvent-holding capacity and good film-forming capability. The electrodes are characterized for their conductivity and morphology. Because of its high conductivity, the conductive paper is studied in supercapacitor applications as active electrodes and as separators after coating with polyvinylidene fluoride. Carbon nanotubes deposited on porous paper are more accessible to ions in the electrolyte than those on flat substrates, which results in higher power density. A simple fabrication process is achieved and paper supercapacitors are tested for their performance in both aqueous and PVA gel electrolytes by using galvanostatic and cyclic voltammetry methods. A high specific capacitance of 270 F g(-1) and an energy density value of 37 W h kg(-1) are achieved for devices with PVA gel electrolytes. Furthermore, this device can maintain excellent specific capacitance even under high currents. This is also confirmed by another counter experiment with aqueous sulfuric acid as the electrolyte. The cycle life, one of the most critical parameters in supercapacitor operations, is found to be excellent (6000 cycles) and less than 0.5 % capacitance loss is observed. Moreover, the supercapacitor device is flexible and even after twisting does not show any cracks or evidence of breakage, and shows almost the same specific capacitance of 267 F g(-1) and energy density of 37 W h kg(-1) . This work suggests that a paper substrate can be a highly scalable and low-cost solution for high-performance supercapacitors.

  10. Rheological Characterization of Ethanolamine Gel Propellants

    Science.gov (United States)

    V. S Jyoti, Botchu; Baek, Seung Wook

    2016-07-01

    Ethanolamine is considered to be an environmentally friendly propellant system because it has low toxicity and is noncarcinogenic in nature. In this article, efforts are made to formulate and prepare ethanolamine gel systems, using pure agarose and hybrids of paired gelling agents (agarose + polyvinylpyrrolidine (PVP), agarose + SiO2, and PVP + SiO2), that exhibit a measurable yield stress, thixotropic behavior under shear rate ranges of 1-1,000 s-1 and a viscoelastic nature. To achieve these goals, multiple rheological experiments (including flow and dynamic studies) are performed. In this article, results are presented from experiments measuring the apparent viscosity, yield stress, thixotropy, dynamic strain, frequency sweep, and tan δ behaviors, as well as the effects of the test temperature, in the gel systems. The results show that the formulated ethanolamine gels are thixotropic in nature with yield stress between 30 and 60 Pa. The apparent viscosity of the gel decreases as the test temperature increases, and the apparent activation energy is the lowest for the ethanolamine-(PVP + SiO2) gel system. The dynamic rheology study shows that the type of gellant, choice of hybrid gelling materials and their concentration, applied frequencies, and strain all vitally affect the viscoelastic properties of the ethanolamine gel systems. In the frequency sweep experiment, the ethanolamine gels to which agarose, agarose + PVP, and agarose + SiO2 were added behave like linear frequency-dependent viscoelastic liquids, whereas the ethanolamine gel to which PVP + SiO2 was added behaves like a nearly frequency-independent viscoelastic solid. The variation in the tan δ of these gelled propellants as a function of frequency is also discussed.

  11. Using Greener Gels To Explore Rheology

    OpenAIRE

    Matharu, Avtar Singh; Hurst, Glenn; Garrett, Brendan

    2017-01-01

    A laboratory experiment was developed to investigate the rheological properties of a green calcium-cross-linked alginate gel as an alternative to the traditional borax-cross-linked poly(vinyl alcohol) gel. As borax is suspected of damaging fertility and the unborn child, a safe, green alternative is necessary. The rheological properties of a sodium alginate solution were examined as a function of temperature using capillary viscometry. Gelation and degelation processes were followed using rot...

  12. Gel and gel-free approaches for the quantitative characterisation of complex protein mixtures

    CSIR Research Space (South Africa)

    Buthelezi, S

    2012-10-01

    Full Text Available -dimensional gel electrophoresis (2DE gels), solution phase isoelectric focusing (IEF), offline strong cation exchange (SCX) chromatography and offline high pH reverse phase (RP) chromatography. All fractions collected from the solution-based methods were... which fractionation method between 2DE gels, solution phase IEF, SCX-RP and RP-RP results in the highest number of protein identities RESULTS When the number of protein identities in the different fractionation techniques was compared (Figure 2...

  13. Tridimensional dosimetry using MAGIC gel with formaldehyde; Dosimetria tridimensional usando gel MAGIC com formaldeido

    Energy Technology Data Exchange (ETDEWEB)

    Pavoni, Juliana F.; Baffa, Oswaldo [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Faculdade de Filosofia, Ciencias e Letras. Dept. de Fisica e Matematica], e-mail: baffa@ffclrp.usp.br; Pike, Tina L.; Snow, Jessica; DeWerd, Larry A. [University of Wisconsin, Madison, WI (United States). Dept. of Physics. Medical Radiation Research Center

    2010-03-15

    This paper presents the application of MAGIC gel with formaldehyde (MAGIC-f) in the tri dimensional dose distribution measurement of an IMRT planning. A high similarity was found between the dose distributions measured by the gel dosimeter and the dose distributions expected by the treatment planning system (TPS) in all of the irradiated volume, this was proved by the direct overlapping of these isodoses. These results show that MAGIC-f gel is feasible for tridimensional dose distribution measurements. (author)

  14. Pengaruh Natrium Hialuronat terhadap Penetrasi Kofein Sebagai Antiselulit dalam Sediaan Hidrogel, Hidroalkoholik Gel, dan Emulsi Gel

    Directory of Open Access Journals (Sweden)

    Joshita Djajadisastra

    2014-04-01

    Full Text Available Anticellulite topical gel preparation with caffeine as an active ingredient needs a penetration enhancer to reach subcutaneous layer. Sodium hyaluronate (NaHA, the sodium salt of hyaluronic acid, is a hydrophilic polysaccharide derivative polymer. It has an ability to enhance percutaneous penetration by loosening the dense of the compact substance of stratum corneum. The aim of this research was to observe the effects of NaHA on caffeine penetration as an anticellulite active agent in three types of gel preparation: hydrogel, hydroalcoholic gel, and gel emulsion. Each gel type contained caffeine 1,5% and was varied into three formulas. Formula 1 contained HPMC 2% as gel basis; formula 2 contained HPMC 2% and NaHA 0,5% as gel basis; formula 3 contained NaHA 2% as gel basis. Caffeine penetration properties were analyzed by Franz diffusion cell in vitro test using rat skin as membrane. Percent caffeine penetration of hydrogel formula 1, 2, 3 were 9,41 ± 0,01%; 11,74 ± 0,13%; 16,32 ± 0,03%, respectively. Percent caffeine penetration of hydroalcoholic gel formula 1, 2, 3 were 19,54 ± 0,02%; 22,99 ± 0,23%; 7,42 ± 0,08%, respectively. Percent caffeine penetration of gel emulsion formula 1, 2, 3 were 10,47 ± 0,19%; 13,41 ± 0,12%; 18,42 ± 0,06%, respectively. The result showed that NaHA enhanced the caffeine percutaneous penetration properties in various gel preparations, except hidroalkoholic gel formula 3.

  15. Structure, stability, and formation pathways of colloidal gels in systems with short-range attraction and long-range repulsion.

    Science.gov (United States)

    van Schooneveld, Matti M; de Villeneuve, Volkert W A; Dullens, Roel P A; Aarts, Dirk G A L; Leunissen, Mirjam E; Kegel, Willem K

    2009-04-09

    We study colloidal gels formed upon centrifugation of dilute suspensions of spherical colloids (radius 446 nm) that interact through a long-range electrostatic repulsion (Debye length approximately 850 nm) and a short-range depletion attraction (approximately 12.5 nm), by means of confocal scanning laser microscopy (CSLM). In these systems, at low colloid densities, colloidal clusters are stable. Upon increasing the density by centrifugation, at different stages of cluster formation, we show that colloidal gels are formed that significantly differ in structure. While significant single-particle displacements do not occur on the hour time scale, the different gels slowly evolve within several weeks to a similar structure that is at least stable for over a year. Furthermore, while reference systems without long-range repulsion collapse into dense glassy states, the repulsive colloidal gels are able to support external stress in the form of a centrifugal field of at least 9g.

  16. Actuation and ion transportation of polyelectrolyte gels

    Science.gov (United States)

    Hong, Wei; Wang, Xiao

    2010-04-01

    Consisting of charged network swollen with ionic solution, polyelectrolyte gels are known for their salient characters including ion exchange and stimuli responsiveness. The active properties of polyelectrolyte gels are mostly due to the migration of solvent molecules and solute ions, and their interactions with the fixed charges on the network. In this paper, we extend the recently developed nonlinear field theory of polyelectrolyte gels by assuming that the kinetic process is limited by the rate of the transportation of mobile species. To study the coupled mechanical deformation, ion migration, and electric field, we further specialize the model to the case of a laterally constrained gel sheet. By solving the field equations in two limiting cases: the equilibrium state and the steady state, we calculate the mechanical responses of the gel to the applied electric field, and study the dependency on various parameters. The results recover the behavior observed in experiments in which polyelectrolyte gels are used as actuators, such as the ionic polymer metal composite. In addition, the model reveals the mechanism of the selectivity in ion transportation. Although by assuming specific material laws, the reduced system resembles those in most existing models in the literature, the theory can be easily generalized by using more realistic free-energy functions and kinetic laws. The adaptability of the theory makes it suitable for studying many similar material systems and phenomena.

  17. Treatment of osteochondral injuries with platelet gel

    Directory of Open Access Journals (Sweden)

    Marcus Vinicius Danieli

    2014-12-01

    Full Text Available OBJECTIVES: Treatments for injured articular cartilage have not advanced to the point that efficient regeneration is possible. However, there has been an increase in the use of platelet-rich plasma for the treatment of several orthopedic disorders, including chondral injuries. Our hypothesis is that the treatment of chondral injuries with platelet gel results in higher-quality repair tissue after 180 days compared with chondral injuries not treated with gel. METHODS: A controlled experimental laboratory study was performed on 30 male rabbits to evaluate osteochondral injury repair after treatment with or without platelet gel. Osteochondral injuries were surgically induced in both knees of each rabbit at the medial femoral condyle. The left knee injury was filled with the platelet gel, and the right knee was not treated. Microscopic analysis of both knee samples was performed after 180 days using a histological grading scale. RESULTS: The only histological evaluation criterion that was not significantly different between treatments was metachromasia. The group that was treated with platelet gel exhibited superior results in all other criteria (cell morphology, surface regularity, chondral thickness and repair tissue integration and in the total score. CONCLUSION: The repair tissue was histologically superior after 180 days in the study group treated with platelet gel compared with the group of untreated injuries.

  18. Actuator device utilizing a conductive polymer gel

    Science.gov (United States)

    Chinn, Douglas A.; Irvin, David J.

    2004-02-03

    A valve actuator based on a conductive polymer gel is disclosed. A nonconductive housing is provided having two separate chambers separated by a porous frit. The conductive polymer is held in one chamber and an electrolyte solution, used as a source of charged ions, is held in the second chamber. The ends of the housing a sealed with a flexible elastomer. The polymer gel is further provide with electrodes with which to apply an electrical potential across the gel in order to initiate an oxidation reaction which in turn drives anions across the porous frit and into the polymer gel, swelling the volume of the gel and simultaneously contracting the volume of the electrolyte solution. Because the two end chambers are sealed the flexible elastomer expands or contracts with the chamber volume change. By manipulating the potential across the gel the motion of the elastomer can be controlled to act as a "gate" to open or close a fluid channel and thereby control flow through that channel.

  19. Diffusion from gel in brain: modelisation and identification.

    Science.gov (United States)

    Bellagoun, A; Meulemans, A; Cherruault, Y

    1992-03-01

    A mathematical model is proposed for describing the mechanism of diffusion from gel (Tissucol) into the extracellular space. After diffusion of the antibiotic in one dimension, the gradient concentration was determined with microvoltametric electrodes. These microelectrodes measure the free diffusible form of electroactive antibiotics in the extracellular brain space. The aim of this study was to find simultaneously the coefficient of diffusion and extraction of some antibiotics (in our case the Fotemustin) using the Alienor Algorithm. These coefficients are useful for predicting the concentration gradient into abscesses, fibrin, etc.

  20. Photoelectrochemical properties of sol–gel obtained titanium oxide

    Directory of Open Access Journals (Sweden)

    VLADIMIR V. PANIC

    2008-12-01

    Full Text Available The photoelectrochemical properties of a sol–gel prepared titanium oxide coating applied onto a Ti substrate were investigated. The oxide coating was formed from an inorganic sol thermally treated in air at 350 °C. The coating consisted of agglomerates of narrow size distribution around 100 nm. The photoelectrochemical characteristics were evaluated by investigating the changes in the open circuit potential, current transients and impedance characteristics of a Ti/TiO2 electrode upon illumination by UV light in H2SO4 solution and in the oxidation of benzyl alcohol. The electrode was found to be active for photoelectrochemical reactions in the investigated solutions.

  1. Wound-induced vascular occlusions in Vitis vinifera (Vitaceae): Tyloses in summer and gels in winter1.

    Science.gov (United States)

    Sun, Qiang; Rost, Thomas L; Matthews, Mark A

    2008-12-01

    Vascular occlusion in xylem conduits is a common response to environmental stresses, and plant species are recognized as primarily tylose-forming or gel-forming. These stresses occur throughout the year, but there is little information on the wound responses throughout the year and in growing and dormant tissues. Wound-induced vascular occlusions were evaluated by type (tylose or gel), temporal progress, and spatial distribution for grape stems pruned in four seasons through an entire year. Tyloses were formed predominantly in summer and gels in winter. Cytohistological analyses indicated that wound-induced gels were pectin-rich. Both gel formation and tylose development were complete within 7 d and 10 mm from the cut regardless of the season of the wounding. Most vessels were affected by wounding, but a higher fraction of vessels developed occlusions in summer and autumn (over 80%) than in winter and spring (about 60%). The study is the first to show a single species is capable of producing primarily either tyloses or gels and that the type of wound-induced occlusion is dependent upon the season in which wounding occurs. Winter conditions limit the wound response to reversible gel formation that may contribute to refilling of embolized vessels in the spring.

  2. Saturated Monoglyceride Polymorphism and Gel Formation of Biodiesel Blends

    Energy Technology Data Exchange (ETDEWEB)

    Chupka, Gina; Fouts, Lisa; McCormick, Robert

    2015-11-13

    Crystallization or gel formation of normal paraffins in diesel fuel under cold weather conditions leading to fuel filter clogging is a common problem. Cold weather operability of biodiesel (B100) and blends with diesel fuel presents additional complexity because of the presence of saturated monoglycerides (SMGs) and other relatively polar species. Currently, the cloud point measurement (a measure of when the first component crystallizes out of solution) is used to define the lowest temperature at which the fuel can be used without causing cold weather issues. While filter plugging issues have declined, there still remain intermittent unexpected problems above the cloud point for biodiesel blends. Development of a fundamental understanding of how minor components in biodiesel crystallize, gel, and transform is needed in order to prevent these unexpected issues. We have found that SMGs, a low level impurity present in B100 from the production process, can crystallize out of solution and undergo a solvent-mediated polymorphic phase transformation to a more stable, less soluble form. This causes them to persist at temperatures above the cloud point once they have some out of solution. Additionally, we have found that SMGs can cause other more soluble, lower melting point minor components in the B100 to co-crystallize and come out of solution. Monoolein, another minor component from the production process is an unsaturated monoglyceride with a much lower melting point and higher solubility than SMGs. It is able to form a co-crystal with the SMGs and is found together with the SMGs on plugged filters we have analyzed in our laboratory. An observation of isolated crystals in the lab led us to believe that the SMGs may also be forming a gel-like network with components of the B100 and diesel fuel. During filtration experiments, we have noted that in some cases a solid layer of crystals forms and blocks the filter completely, while in other cases this does not occur

  3. Preparation of continuous alumina gel fibres by aqueous sol–gel process

    Indian Academy of Sciences (India)

    Hongbin Tan; Xiaoling Ma; Mingxing Fu

    2013-02-01

    Continuous alumina gel fibres were prepared by sol–gel method. The spinning sol was prepared by mixing aluminum nitrate, lactic acid and polyvinylpyrrolidone with a mass ratio of 10:3:1.5. Thermogravimetry–differential scanning calorimetry (TG–DSC), Fourier transform infrared (FTIR) spectra, X-ray diffraction (XRD), and scanning electron microscopy (SEM) were used to characterize the properties of the gel and ceramic fibres. The Al2O3 fibres with a uniform diameter can be obtained by sintering gel fibres at 1200 °C.

  4. The Gel Electrophoresis Markup Language (GelML) from the Proteomics Standards Initiative

    Science.gov (United States)

    Gibson, Frank; Hoogland, Christine; Martinez-Bartolomé, Salvador; Medina-Aunon, J. Alberto; Albar, Juan Pablo; Babnigg, Gyorgy; Wipat, Anil; Hermjakob, Henning; Almeida, Jonas S; Stanislaus, Romesh; Paton, Norman W; Jones, Andrew R

    2011-01-01

    The Human Proteome Organisation’s Proteomics Standards Initiative (HUPO-PSI) has developed the GelML data exchange format for representing gel electrophoresis experiments performed in proteomics investigations. The format closely follows the reporting guidelines for gel electrophoresis, which are part of the Minimum Information About a Proteomics Experiment (MIAPE) set of modules. GelML supports the capture of metadata (such as experimental protocols) and data (such as gel images) resulting from gel electrophoresis so that laboratories can be compliant with the MIAPE Gel Electrophoresis guidelines, while allowing such data sets to be exchanged or downloaded from public repositories. The format is sufficiently flexible to capture data from a broad range of experimental processes, and complements other PSI formats for mass spectrometry data and the results of protein and peptide identifications to capture entire gel-based proteome workflows. GelML has resulted from the open standardisation process of PSI consisting of both public consultation and anonymous review of the specifications. PMID:20677327

  5. Polymer sol-gel composite inverse opal structures.

    Science.gov (United States)

    Zhang, Xiaoran; Blanchard, G J

    2015-03-25

    We report on the formation of composite inverse opal structures where the matrix used to form the inverse opal contains both silica, formed using sol-gel chemistry, and poly(ethylene glycol), PEG. We find that the morphology of the inverse opal structure depends on both the amount of PEG incorporated into the matrix and its molecular weight. The extent of organization in the inverse opal structure, which is characterized by scanning electron microscopy and optical reflectance data, is mediated by the chemical bonding interactions between the silica and PEG constituents in the hybrid matrix. Both polymer chain terminus Si-O-C bonding and hydrogen bonding between the polymer backbone oxygens and silanol functionalities can contribute, with the polymer mediating the extent to which Si-O-Si bonds can form within the silica regions of the matrix due to hydrogen-bonding interactions.

  6. Tetrapeptide-coumarin conjugate 3D networks based on hydrogen-bonded charge transfer complexes: gel formation and dye release.

    Science.gov (United States)

    Guo, Zongxia; Gong, Ruiying; Jiang, Yi; Wan, Xiaobo

    2015-08-14

    Oligopeptide-based derivatives are important synthons for bio-based functional materials. In this article, a Gly-(L-Val)-Gly-(L-Val)-coumarin (GVGV-Cou) conjugate was synthesized, which forms 3D networks in ethanol. The gel nanostructures were characterized by UV-vis spectroscopy, FT-IR spectroscopy, X-ray diffraction (XRD), SEM and TEM. It is suggested that the formation of charge transfer (CT) complexes between the coumarin moieties is the main driving force for the gel formation. The capability of the gel to encapsulate and release dyes was explored. Both Congo Red (CR) and Methylene Blue (MB) can be trapped in the CT gel matrix and released over time. The present gel might be used as a functional soft material for guest encapsulation and release.

  7. THE EFFECT OF FORMULA TO PHYSICAL PROPERTIES OF WOUND HEALING GEL OF ETHANOLIC EXTRACT OF BINAHONG ( ANREDERA CORDIFOLIA (TEN STEENIS

    Directory of Open Access Journals (Sweden)

    S.H. Yuliani*, A. Fudholi , S. Pramono and Marchaban

    2012-11-01

    Full Text Available Binahong (Anredera cordifolia (Ten Steenis has been used as wound healing in traditional Indonesian medicine and it is relevant to develop dosage forms of binahong using formulation technology approach. The aim of this research was to find out wound healing gel formula of ethanolic extract of binahong. The factorial design method 3 factors and 2 levels were employed to achieve this study. Three factors used in this study were Carbopol, Na-CMC and Ca-alginate with low and high level for each factor. The wound healing gel of ethanolic extract of binahong was evaluated for their physical properties i.e viscosity, spreadability, extrudability and bioadhesive properties. The results of this research were carbopol and Ca-alginate affecting physical properties of wound healing gel of ethanolic extract of binahong. Na-CMC affected physical properties of the gel except bioadhesive properties. Carbopol provided the greatest contribution to viscosity, spreadability, extrudability and bioadhesive properties of the gel.

  8. Increasing the activity and enantioselectivity of lipases by sol-gel immobilization: further advancements of practical interest.

    Science.gov (United States)

    Tielmann, Patrick; Kierkels, Hans; Zonta, Albin; Ilie, Adriana; Reetz, Manfred T

    2014-06-21

    The entrapment of lipases in hydrophobic silicate matrices formed by sol-gel mediated hydrolysis of RSi(OCH3)3/Si(OCH3)4 as originally reported in 1996 has been improved over the years by a number of modifications. In the production of second-generation sol-gel lipase immobilizates, a variety of additives during the sol-gel process leads to increased activity and enhanced stereoselectivity in esterifying kinetic resolution. Recent advances in this type of lipase immobilization are reviewed here, in addition to new results regarding the sol-gel entrapment of the lipase from Burkholderia cepacia. It constitutes an excellent heterogeneous biocatalyst in the acylating kinetic resolution of two synthetically and industrially important chiral alcohols, rac-sulcatol and rac-trans-2-methoxycyclohexanol. The observation that the catalyst can be used 10 times in recycling experiments without losing its significant activity or enantioselectivity demonstrates the practical viability of the sol-gel approach.

  9. Uncertainty in 3D gel dosimetry

    Science.gov (United States)

    De Deene, Yves; Jirasek, Andrew

    2015-01-01

    Three-dimensional (3D) gel dosimetry has a unique role to play in safeguarding conformal radiotherapy treatments as the technique can cover the full treatment chain and provides the radiation oncologist with the integrated dose distribution in 3D. It can also be applied to benchmark new treatment strategies such as image guided and tracking radiotherapy techniques. A major obstacle that has hindered the wider dissemination of gel dosimetry in radiotherapy centres is a lack of confidence in the reliability of the measured dose distribution. Uncertainties in 3D dosimeters are attributed to both dosimeter properties and scanning performance. In polymer gel dosimetry with MRI readout, discrepancies in dose response of large polymer gel dosimeters versus small calibration phantoms have been reported which can lead to significant inaccuracies in the dose maps. The sources of error in polymer gel dosimetry with MRI readout are well understood and it has been demonstrated that with a carefully designed scanning protocol, the overall uncertainty in absolute dose that can currently be obtained falls within 5% on an individual voxel basis, for a minimum voxel size of 5 mm3. However, several research groups have chosen to use polymer gel dosimetry in a relative manner by normalizing the dose distribution towards an internal reference dose within the gel dosimeter phantom. 3D dosimetry with optical scanning has also been mostly applied in a relative way, although in principle absolute calibration is possible. As the optical absorption in 3D dosimeters is less dependent on temperature it can be expected that the achievable accuracy is higher with optical CT. The precision in optical scanning of 3D dosimeters depends to a large extend on the performance of the detector. 3D dosimetry with X-ray CT readout is a low contrast imaging modality for polymer gel dosimetry. Sources of error in x-ray CT polymer gel dosimetry (XCT) are currently under investigation and include inherent

  10. 21 CFR 524.660b - Dimethyl sulfoxide gel.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Dimethyl sulfoxide gel. 524.660b Section 524.660b... Dimethyl sulfoxide gel. (a) Specifications. Dimethyl sulfoxide gel, veterinary contains 90 percent dimethyl sulfoxide in an aqueous gel. (b) Sponsor. See No. 000856 in § 510.600(c) of this chapter. (c) Conditions...

  11. Separation of Pneumcoccal Capsular Polysaccharide BY Gel Extraction

    Institute of Scientific and Technical Information of China (English)

    Xu Xiaoping; Huang Xinghua; Li Zhongqin; Chen Jiebo

    2004-01-01

    Separation of pneumcoccal capsular polysaccharide by gel was investigated in this paper. The gels used here were poly(acrylamide-co-sodium methacrylate)gels and prepared by free radical polymerization in aqueous solution. The experimental results indicated that gel extraction is a potential method to separate pneumcoccal capsular polysaccharide from its dilute solution.

  12. Preparation and characterization of lidocaine rice gel for oral application.

    Science.gov (United States)

    Okonogi, Siriporn; Kaewpinta, Adchareeya; Yotsawimonwat, Songwut; Khongkhunthian, Sakornrat

    2015-12-01

    The objective of the present study was to prepare buccal anesthetic gels using rice as gelling agent. Rice grains of four rice varieties, Jasmine (JM), Saohai (SH), Homnil (HN), and Doisket (DS) were chemically modified. Buccal rice gels, containing lidocaine hydrochloride as local anesthetic drug were formulated using the respective modified rice varieties. The gels were evaluated for outer appearance, pH, color, gel strength, foaming property, adhesion, in vitro drug release and in vivo efficacy. It was found that the developed rice gels possessed good texture. Rice varieties showed influence on gel strength, color, turbidity, adhesive property, release property, and anesthetic efficacy. JM gel showed the lowest turbidity with light transmission of 86.76 ± 1.18% whereas SH gel showed the highest gel strength of 208.78 ± 10.42 g/cm(2). Lidocaine hydrochloride can cause a decrease in pH and adhesive property but an increase in turbidity of the gels. In vitro drug release profile within 60 min of lidocaine SH gel and lidocaine HN gel showed that lidocaine could be better released from SH gel. Evaluation of in vivo anesthetic efficacy in 100 normal volunteers indicates that both lidocaine rice gels have high efficacy but different levels. Lidocaine SH gel possesses faster onset of duration and longer duration of action than lidocaine HN gel.

  13. LABORATORY-SCALE PRODUCTION OF ADU GELS BY EXTERNAL GELATION FOR AN INTERMEDIATE HTGR NUCLEAR

    Directory of Open Access Journals (Sweden)

    S Simbolon

    2015-03-01

    Full Text Available LABORATORY-SCALE PRODUCTION OF ADU GELS BY EXTERNAL GELATION FOR AN INTERMEDIATE HTGR NUCLEAR. The The aim of this research is to produce thousands of microsphere ADU (Ammonium Diuranate gels by using external gelation for an intermediate HTGR (High Temperature Gas-cooled Reactor nuclear fuel in laboratory-scale. Microsphere ADU gels were based on sol-solution which was made from a homogeneous mixture of ADUN (Acid Deficient Uranyl Nitrate which was containing uranyl ion in high concentration, a water soluble organic compound PVA (Polyvinyl Alcohol and THFA (Tetrahydrofurfuryl Alcohol. The simple unified home made laboratory experimental machine was developed to replace test tube experiment method which was once used due to a tiny amount of microsphere ADU gels produced. It consists of four main parts: tank filled sol-solution connecting to peristaltic pump and vibrating nozzle, preliminary gelation and gelation column. The machine has successfully converted 150 mL sol-solution into thousands of drops which produced 120 - 130 drops in each minute in steady state in ammonia gas free sector. Preliminary gelation reaction was carried out in ammonia gas sector where drops react with ammonia gas in a bat an eye followed by gelation reaction in column containing ammonia solution 7 M. In ageing process, ADU gels were collected and submerged into a vessel containing ammonia solution which was shaken for 1 hour in a shaker device. Isopropyl alcohol (90% solution was used to wash ADU gels and a digital camera was used to measured spherical form of ADU gels. Diameters in spherical spheroid form were found between 1.8 mm until 2.2 mm. The spherical purity of ADU gels were 10% - 20% others were oblate, prolate spheroid and microsphere which have hugetiny of dimples on the surface.   PRODUKSI GEL ADU SKALA LABORATORIUM DENGAN MENGGUNAKAN GELASI EKSTERNAL UNTUK BAHAN BAKAR ANTARA HTGR. Penelitian ini bertujuan untuk membuat ribuan gel bulat ADU (Ammonium

  14. Stability of poly(vinylidene fluoride-co-hexafluoropropylene)-based composite gel electrolytes with functionalized silicas

    Energy Technology Data Exchange (ETDEWEB)

    Walkowiak, Mariusz [Central Laboratory of Batteries and Cells, Forteczna 12 St., 61-362 Poznan (Poland); Zalewska, Aldona [Warsaw University of Technology, Department of Chemistry, Noakowskiego 3 St., 00-664 Warsaw (Poland); Jesionowski, Teofil [Poznan University of Technology, Institute of Chemical Technology and Engineering, Marii Sklodowskiej-Curie 2 Sq., 60-965 Poznan (Poland); Pokora, Monika [Central Laboratory of Batteries and Cells, Forteczna 12 St., 61-362 Poznan (Poland); Poznan University of Technology, Institute of Chemical Technology and Engineering, Marii Sklodowskiej-Curie 2 Sq., 60-965 Poznan (Poland)

    2007-11-15

    Various aspects of stability of composite polymer gel electrolytes based on poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF/HFP) polymeric matrix and functionalized precipitated silicas have been studied. The silica fillers have been surface modified with methacryloxy or vinyl groups by partially replacing silanol groups, so that bi-functional (hydrophilic/hydrophobic) character of the inorganic fillers was created. Compatibility of the gel electrolytes with lithium electrode has been examined by means of EIS technique. Electrochemical stability window has been studied with the application of cyclic voltammetry technique with fast sweeping rate. Passive layer formation on graphite electrode has been investigated for all the gel electrolytes by means of cyclic voltammetry with slow scan rate and galvanostatic charging/discharging technique. It has been shown that stability of the interface between lithium and gel electrolyte is significantly improved when bi-functional silicas are used as fillers. The phenomenon has been ascribed to more effective scavenging of trace impurities as well as to better shielding of the electrode surfaces. Cyclic voltammetry on platinum has revealed excessive electrochemical redox processes upon prolonged cycling for all the gel electrolytes. It has been demonstrated that stable passive layers are formed on graphite electrodes upon electrochemical reduction in the presence of the studied composite polymer gel electrolytes. (author)

  15. Investigation on a Sol-gel Coating Containing Inhibitors on 2024-T3 Aluminum Alloy

    Institute of Scientific and Technical Information of China (English)

    SHI Hong-wei; LIU Fu-chun; HAN En-hou; SUN Ming-cheng

    2006-01-01

    For a long time, chromate incorporated conversion coatings have been drawn special attention in corrosion protection of aircraft-used aluminum alloys. However,ever-increasing environmental pressures requires that non-chromate conversion coatings be developed because of the detrimental carcinogenic effects of the chromate compounds. In recent years, the sol-gel coatings doped with inhibitors were developed to replace chromate conversion coatings, and showed real promise. A sol-gel coating was prepared and its anti-corrosion behavior was investigated using the potentiodynamic scanning (PDS) and the electrochemical impedance spectroscopy (EIS). It is found that the sol-gel coating obtained by the hydrolysis and condensation of 3-glycidoxypropyltrimethoxysilane (GPTMS) and tetramethoxysilane (TMOS) is prone to form defects if cured at the room temperature, whereas if cured at a higher temperature (100 ℃), these flaws can be avoided. Furthermore, it can be seen that addition of anti-foam agents and surfactants will reduce the faults if cured at the room temperature. Effects of the corrosion inhibitors, CeCl3 and mercaptobenzothiazole (MBT), in the sol-gel coatings on 2024-T3 aluminum alloy were also investigated. Results show that the corrosion resistance of the sol-gel coatings containing CeCl3 proves to be better than that of the pure and MBT added sol-gel coatings by the electrochemical methods.

  16. Preparation and antioxidant capacity of element selenium nanoparticles sol-gel compounds.

    Science.gov (United States)

    Bai, Yan; Qin, Biyin; Zhou, Yanhui; Wang, Yudong; Wang, Zi; Zheng, Wenjie

    2011-06-01

    This paper reported the preparation and antioxidant capacities of element selenium nanoparticles (nanoSe(0))-ascorbic acid (Vc) sol and nanSe(0)/Vc/selenocystine (SeCys) sol-gel compounds. NanoSe(0)-Vc sol was prepared by reduction of selenious dioxide (SeO2) with Vc. In the nanoSe(0)-Vc sol, highly concentrated Vc was also used as a modifier to modulate the diameter of Se(0) nanoparticles in the liquid phase. Then excellent nanoSe(0) sol-gel compounds were obtained by adding SeCys into the nanoSe(0)-Vc sol. The structure of the nanoSe(0)/Vc/SeCys sol-gel compounds was defined, which was constructed via C-Se, Se-H and O=C-Se valences and by interaction between SeCys and Vc via peptide bonds, esterification and dehydration. The antioxidant capacities of the nanoSe(0)-Vc sol and the nanoSe(0)Vc/SeCys sol-gel compounds were estimated by oxygen radical absorption capacity (ORAC) assay. The nanoSe(0)/Vc/SeCys sol-gel compounds possessed a strong antioxidant capacity due to forming the perfect three-dimensional (3D) frameworks structure. The results suggested that the nanoSe(0)-Vc sol and the nanoSe(0)Vc/SeCys sol-gel compounds might be potential medicine, especially antioxidant.

  17. Application properties of oral gels as media for administration of minitablets and pellets to paediatric patients.

    Science.gov (United States)

    Kluk, Anna; Sznitowska, Malgorzata

    2014-01-02

    Modern solid multiparticulate drug forms (minitablets, pellets, granules) can provide the possibility of precise dosing or modified drug release or taste masking for medicines used in children. However, these solid particles require an adequate medium to ease swallowing. The aim of the research was to design a universal semisolid dispersing medium for administration of minitablets and pellets. High viscosity sodium carmellose and carbomer were considered as gelling agents. The hydrogels were prepared with sucrose, glycerol, and potassium sorbate or parabens. Preliminary studies were undertaken to estimate the application properties of the gels under conditions where a medicine is administered to a child. Besides standard tests (viscosity, sedimentation) the following measurements were conducted: gel ductility, mass of the gel removed from a spoon under shaking, ability of the gels to disperse solid particles, and disintegration of minitablets in the gels. The oral hydrogels prepared either with 1.0% and 1.5% carmellose or 0.25% and 0.5% (w/w) carbomer were suitable for dispersing and delivery of minitablets or pellets. Not only viscosity but also ductility was an essential criterion in selecting the best vehicle. The in vivo perceptibility test for pellets and minitablets did not confirm that gels are more advantageous than syrups.

  18. Preparation and characterization of bioadhesive controlled-release gels of cidofovir for vaginal delivery.

    Science.gov (United States)

    Tuğcu-Demiröz, Fatmanur; Acartürk, Füsun; Özkul, Aykut

    2015-01-01

    The aim of this study was to develop mucoadhesive and thermosensitive gels for vaginal delivery that would be able to provide a controlled release of the model drug, cidofovir. The study also monitored the drug's potential antiviral properties. Cidofovir was put into the form of a vaginal gel, using mucoadhesive and thermosensitive polymers such as chitosan, Carbopol 974P, HPMC, and poloxamer 407. The physicopharmaceutical properties and stability of the vaginal gel formulations were evaluated. The gel formulation which was prepared with HPMC K100M exhibited the highest viscosity, as well as maximum adhesiveness, cohesiveness, and mucoadhesion values. The results of antiviral activity studies, which used the bovine herpes virus type 1 virus infection in vitro model using Vero cells, demonstrated the antiherpetic effect of the cidofovir gel containing HPMC K100M, at least under in vitro conditions. The study found that a mucoadhesive vaginal gel containing cidofovir can be a promising and innovative alternative therapeutic system for the treatment of genital herpes simplex virus and human papilloma virus induced infections in women.

  19. Gelation mechanism of resorcinol-formaldehyde gels investigated by dynamic light scattering.

    Science.gov (United States)

    Taylor, Stewart J; Haw, Mark D; Sefcik, Jan; Fletcher, Ashleigh J

    2014-09-02

    Xerogels and porous materials for specific applications such as catalyst supports, CO2 capture, pollutant adsorption, and selective membrane design require fine control of pore structure, which in turn requires improved understanding of the chemistry and physics of growth, aggregation, and gelation processes governing nanostructure formation in these materials. We used time-resolved dynamic light scattering to study the formation of resorcinol-formaldehyde gels through a sol-gel process in the presence of Group I metal carbonates. We showed that an underlying nanoscale phase transition (independent of carbonate concentration or metal type) controls the size of primary clusters during the preaggregation phase; while the amount of carbonate determines the number concentration of clusters and, hence, the size to which clusters grow before filling space to form the gel. This novel physical insight, based on a close relationship between cluster size at the onset of gelation and average pore size in the final xerogel results in a well-defined master curve, directly linking final gel properties to process conditions, facilitating the rational design of porous gels with properties specifically tuned for particular applications. Interestingly, although results for lithium, sodium, and potassium carbonate fall on the same master curve, cesium carbonate gels have significantly larger average pore size and cluster size at gelation, providing an extended range of tunable pore size for further adsorption applications.

  20. Preparation, characterization, and in vitro gastrointestinal digestibility of oil-in-water emulsion-agar gels.

    Science.gov (United States)

    Wang, Zheng; Neves, Marcos A; Kobayashi, Isao; Uemura, Kunihiko; Nakajima, Mitsutoshi

    2013-01-01

    Soybean oil-in-water (O/W) emulsion-agar gel samples were prepared and their digestibility evaluated by using an in vitro gastrointestinal digestion model. Emulsion-agar sols were obtained by mixing the prepared O/W emulsions with a 1.5 wt % agar solution at 60 °C, and their subsequent cooling at 5 °C for 1 h formed emulsion-agar gels. Their gel strength values increased with increasing degree of polymerization of the emulsifiers, and the relative gel strength increased in the case of droplets with an average diameter smaller than 700 nm. Flocculation and coalescence of the released emulsion droplets depended strongly on the emulsifier type; however, the emulsifier type hardly affected the ζ-potential of emulsion droplets released from the emulsion-agar gels during in vitro digestion. The total FFA content released from each emulsion towards the end of the digestion period was nearly twice that released from the emulsion-agar gel, indicating that gelation of the O/W emulsion may have delayed lipid hydrolysis.

  1. Chemical interactions and gel properties of black carp actomyosin affected by MTGase and their relationships.

    Science.gov (United States)

    Jia, Dan; Huang, Qilin; Xiong, Shanbai

    2016-04-01

    Partial least squares regression (PLSR) was applied to evaluate and correlate chemical interactions (-NH2 content, S-S bonds, four non-covalent interactions) with gel properties (dynamic rheological properties and cooking loss (CL)) of black carp actomyosin affected by microbial transglutaminase (MTGase) at suwari and kamaboko stages. The G' and CL were significantly enhanced by MTGase and their values in kamaboko gels were higher than those in suwari gels at the same MTGase concentration. The γ-carboxyamide and amino cross-links, catalyzed by MTGase, were constructed at suwari stage and contributed to the network formation, while disulfide bonds were formed not only in suwari gels but also in kamaboko gels, further enhancing the gel network. PLSR analysis revealed that 86.6-90.3% of the variation of G' and 91.8-94.4% of the variation of CL were best explained by chemical interactions. G' mainly depended on covalent cross-links and gave positive correlation. CL was positively correlated with covalent cross-links, but negatively related to non-covalent bonds, indicating that covalent bonds promoted water extrusion, whereas non-covalent bonds were beneficial for water-holding.

  2. A novel in situ gel for sustained drug delivery and targeting.

    Science.gov (United States)

    Ganguly, Sudipta; Dash, Alekha K

    2004-05-19

    The objective of this study was to develop a novel chitosan-glyceryl monooleate (GMO) in situ gel system for sustained drug delivery and targeting. The delivery system consisted of 3% (w/v) chitosan and 3% (w/v) GMO in 0.33M citric acid. In situ gel was formed at a biological pH. In vitro release studies were conducted in Sorensen's phosphate buffer (pH 7.4) and drugs were analyzed either by HPLC or spectrophotometry. Characterization of the gel included the effect of cross-linker, determination of diffusion coefficient and water uptake by thermogravimetric analysis (TGA). Mucoadhesive property of the gel was evaluated in vitro using an EZ-Tester. Incorporation of a cross-linker (glutaraldehyde) retarded the rate and extent of drug release. The in vitro release can further be sustained by replacing the free drug with drug-encapsulated microspheres. Drug release from the gel followed a matrix diffusion controlled mechanism. Inclusion of GMO enhanced the mucoadhesive property of chitosan by three- to sevenfold. This novel in situ gel system can be useful in the sustained delivery of drugs via oral as well as parenteral routes.

  3. Effect of high-pressure homogenisation on rheological properties of rennet-induced skim milk and standardised milk gels.

    Science.gov (United States)

    Lodaite, Kristina; Chevalier, François; Armaforte, Emanuele; Kelly, Alan L

    2009-08-01

    The effects of high-pressure homogenisation (HPH) in the pressure range 100-300 MPa on the gel formation and rheological properties of rennet-induced skim milk (0.08%, fat, w/w) and standardised milk (3.60% fat, w/w) gels at pH 6.60 were studied. The average casein micelle size in skim milk was significantly reduced and the gel formation time decreased when skim milk was subjected to the pressures of 200 and 300 MPa. The storage modulus of rennet-induced skim milk gels at 2700 s after rennet addition was higher for samples homogenised at higher pressures, which contained smaller casein particles. HPH had little effect on the large deformation properties of rennet-induced skim milk gels. The gel formation time of renneted standardised milk was significantly reduced as a result of HPH, while the storage modulus of rennet-induced milk gels 2700 s after rennet addition increased with increasing homogenising pressure. The apparent fracture stress was slightly higher for standardised milk gels formed from HPH-treated milk, whereas the apparent strain at fracture was lower, than that of unhomogenised milk. In conclusion, HPH treatment influenced gel formation processes of skim milk and its small-deformation rheological properties, mainly through modification of casein micelles. HPH also significantly affected the gel formation process of standardised milk gels and its rheological properties as a result of an increase in volume fraction of aggregating particles, while the particle size was of lesser importance.

  4. Visual Recognition of Aliphatic and Aromatic Amines Using a Fluorescent Gel: Application of a Sonication-Triggered Organogel.

    Science.gov (United States)

    Pang, Xuelei; Yu, Xudong; Lan, Haichuang; Ge, Xiaoting; Li, Yajuan; Zhen, Xiaoli; Yi, Tao

    2015-06-24

    A naphthalimide-based fluorescent gelator (N1) containing an alkenyl group has been designed and characterized. This material is able to gelate alcohols via a precipitate-to-gel transformation when triggered with ultrasound for less than 2 min (S-gel). The gelation process in n-propanol was studied by means of absorption, fluorescence, and IR spectra, scanning electron microscopy (SEM) images, and X-ray diffraction patterns. The fluorescence intensity of N1 decreased during the gelation process in a linear relationship with the sonication time. The S-gel of N1 could be used to sense aliphatic and aromatic amines by measuring the change in the signal output. For example, the addition of propylamine to the S-gel of N1 resulted in a dramatic enhancement of the fluorescence intensity, accompanied by a gel-to-sol transition. On the contrary, when the S-gel of N1 was treated with aromatic amines such as aniline, fluorescence was quenched and there was no gel collapse. The sensing mechanisms were studied by (1)H NMR, small-angle X-ray scattering, SEM and spectroscopic experiments. It is proposed that isomerization of the alkenyl group of N1 from the trans to cis form occurs when the S-gel is treated with propylamine, resulting in a gel-sol transition. However, the aromatic aniline molecules prefer to insert into the gel networks of N1 via hydrogen-bonding and charge-transfer interactions, maintaining the gel state. As potential applications, testing strips of N1 were prepared to detect aniline.

  5. Regulation gel formation, hierarchical structures and surface wettability via isomeride effect in supramolecular organogel system.

    Science.gov (United States)

    Cao, Xinhua; Ding, Qianqian; Gao, Aiping; Lv, Haiting; Zhao, Na; Liu, Dan

    2017-05-15

    A new serial of gelators with two cholesteryl groups based on o-phenylenediamine, m-phenylenediamine and p-phenylenediamine were synthesized, and their organogelation ability was evaluated. We found that G-o could form gels in DMF, DMSO and ethyl acetate, G-m and G-p could only gel DMF and 1,4-dioxane. The organogels were thoroughly characterized using various microscopic techniques including field-emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), UV-Vis spectrum, FT-IR spectrum and contact angle. The gelation ability, morphology, self-assembly mode and materials surface wettability all could be tuned via isomeride effect in self-assembly system. Interestingly, superhydrophobic surface was formed via the self-assembly of compound G-p in 1,4-dioxane and exhibited very high adsorption capacity for water. This gel system provided new method for modulation self-assembly process in supramolecular field.

  6. Strain-enhanced stress relaxation impacts nonlinear elasticity in collagen gels.

    Science.gov (United States)

    Nam, Sungmin; Hu, Kenneth H; Butte, Manish J; Chaudhuri, Ovijit

    2016-05-17

    The extracellular matrix (ECM) is a complex assembly of structural proteins that provides physical support and biochemical signaling to cells in tissues. The mechanical properties of the ECM have been found to play a key role in regulating cell behaviors such as differentiation and malignancy. Gels formed from ECM protein biopolymers such as collagen or fibrin are commonly used for 3D cell culture models of tissue. One of the most striking features of these gels is that they exhibit nonlinear elasticity, undergoing strain stiffening. However, these gels are also viscoelastic and exhibit stress relaxation, with the resistance of the gel to a deformation relaxing over time. Recent studies have suggested that cells sense and respond to both nonlinear elasticity and viscoelasticity of ECM, yet little is known about the connection between nonlinear elasticity and viscoelasticity. Here, we report that, as strain is increased, not only do biopolymer gels stiffen but they also exhibit faster stress relaxation, reducing the timescale over which elastic energy is dissipated. This effect is not universal to all biological gels and is mediated through weak cross-links. Mechanistically, computational modeling and atomic force microscopy (AFM) indicate that strain-enhanced stress relaxation of collagen gels arises from force-dependent unbinding of weak bonds between collagen fibers. The broader effect of strain-enhanced stress relaxation is to rapidly diminish strain stiffening over time. These results reveal the interplay between nonlinear elasticity and viscoelasticity in collagen gels, and highlight the complexity of the ECM mechanics that are likely sensed through cellular mechanotransduction.

  7. Assessment of Anti HSV-1 Activity of Aloe Vera Gel Extract: an In Vitro Study

    Science.gov (United States)

    Rezazadeh, Fahimeh; Moshaverinia, Maryam; Motamedifar, Mohammad; Alyaseri, Montazer

    2016-01-01

    Statement of the Problem Herpes simplex virus (HSV) infection is one of the most common and debilitating oral diseases; yet, there is no standard topical treatment to control it. The extract of Aloe vera leaves has been previously reported to have anti-inflammatory, antibacterial, and also antiviral effects. There is no data on anti-Herpes simplex virus type 1 (HSV-1) activity of Aloe vera gel. Purpose This study aimed to evaluate the anti-HSV-1 activity of Aloe vera gel in Vero cell line. Materials and Method In this study, gel extraction and cytotoxicity of various increasing concentrations of Aloe vera gel (0.2, 0.5, 1, 2, and 5%) was evaluated in Dulbecco’s Modified Eagle Medium (DMEM) containing 2% fetal bovine serum (FBS). Having been washed with phosphate buffered saline, 50 plaque-forming units (PFU) of HSV-1 was added to each well. After 1 hour of incubation at 37°C, cell monolayers in 24 well plates were exposed to different increasing concentrations of Aloe vera gel. The anti-HSV-1 activity of Aloe vera gel in different concentrations was assessed by plaque reduction assays. Data were analyzed by using One-way ANOVA. Results The cytotoxicity assay showed that Aloe vera in prearranged concentrations was cell-compatible. The inhibitory effect of various concentrations of Aloe vera was observed one hour after the Vero cell was infected with HSV-1. However, there was no significant difference between two serial concentrations (p> 0.05). One-way ANOVA also revealed no significant difference between the groups. The findings indicated a dose-dependent antiviral effect of Aloe vera. Conclusion The findings showed significant inhibitory effect of 0.2-5% Aloe vera gel on HSV-1 growth in Vero cell line. Therefore, this gel could be a useful topical treatment for oral HSV-1 infections without any significant toxicity. PMID:26966709

  8. Assessment of Anti HSV-1 Activity of Aloe Vera Gel Extract: an In Vitro Study.

    Science.gov (United States)

    Rezazadeh, Fahimeh; Moshaverinia, Maryam; Motamedifar, Mohammad; Alyaseri, Montazer

    2016-03-01

    Herpes simplex virus (HSV) infection is one of the most common and debilitating oral diseases; yet, there is no standard topical treatment to control it. The extract of Aloe vera leaves has been previously reported to have anti-inflammatory, antibacterial, and also antiviral effects. There is no data on anti-Herpes simplex virus type 1 (HSV-1) activity of Aloe vera gel. This study aimed to evaluate the anti-HSV-1 activity of Aloe vera gel in Vero cell line. In this study, gel extraction and cytotoxicity of various increasing concentrations of Aloe vera gel (0.2, 0.5, 1, 2, and 5%) was evaluated in Dulbecco's Modified Eagle Medium (DMEM) containing 2% fetal bovine serum (FBS). Having been washed with phosphate buffered saline, 50 plaque-forming units (PFU) of HSV-1 was added to each well. After 1 hour of incubation at 37°C, cell monolayers in 24 well plates were exposed to different increasing concentrations of Aloe vera gel. The anti-HSV-1 activity of Aloe vera gel in different concentrations was assessed by plaque reduction assays. Data were analyzed by using One-way ANOVA. The cytotoxicity assay showed that Aloe vera in prearranged concentrations was cell-compatible. The inhibitory effect of various concentrations of Aloe vera was observed one hour after the Vero cell was infected with HSV-1. However, there was no significant difference between two serial concentrations (p> 0.05). One-way ANOVA also revealed no significant difference between the groups. The findings indicated a dose-dependent antiviral effect of Aloe vera. The findings showed significant inhibitory effect of 0.2-5% Aloe vera gel on HSV-1 growth in Vero cell line. Therefore, this gel could be a useful topical treatment for oral HSV-1 infections without any significant toxicity.

  9. [Preliminary investigation on the formation mechanism of CCL4-water-cetyl trimethyl ammonium bromide (CTAB) gel].

    Science.gov (United States)

    Sun, Yan; Chen, Jing; He, An-qi; Huang, Kun; Yu, Lei; Liu, Cui-ge; Wei, Yong-ju; Zhai, Yan-jun; Xu, Yi-zhuang; Wu, Jin-guang

    2010-10-01

    Gels are gaining extensive interest owing to their versatile applications in fields such as drug delivery, tissue engineering, cosmetics, templated materials and food industry. Surfactants have an ability to self-assemble into a variety of supramolecular aggregate structures and morphologies. Of particular interest in resent years are surfactant-based gels, one special class of materials due to surfactant assemblies resulting in viscoelastic solid-like rheological behaviors. Up to now, there is only limited understanding on the mechanism of gel formation, especially on the interaction among water, organic solvents and surfactant during thegel formation. In this study we prepare a Low-molecule-gel that is composed of cetyl trimethyl ammonium bromide (CTAB), water and carbon tetrachloride. Based on the experimental result of XRD and titration, the authors find that CTAB in gel are more than in saturated CTAB solution but CTAB is not solide in gel. CTAB is not solvented in CCl4. The solubility of CTAB in saturated CTAB solution is limited. So the authors suppose that CTAB is a synergistically solubilized by water and CCl4 in the gel. In addition, both NMR and FTIR spectroscopic results demonstrate that CTAB cations form a quasi-ordered structure in the gel.

  10. Time-resolved and spatially-resolved infrared spectroscopic observation of seeded nucleation controlling geopolymer gel formation.

    Science.gov (United States)

    Hajimohammadi, Ailar; Provis, John L; van Deventer, Jannie S J

    2011-05-15

    The effect of seeded nucleation on the formation and structural evolution of one-part ("just add water") geopolymer gels is investigated. Gel-forming systems are seeded with each of three different oxide nanoparticles, and seeding is shown to have an important role in controlling the silica release rate from the solid geothermal silica precursor, and in the development of physical properties of the gels. Nucleation accelerates the chemical changes taking place during geopolymer formation. The nature of the seeds affects the structure of the growing gel by affecting the extent of phase separation, identified by the presence of a distinct silica-rich gel in addition to the main, more alumina-rich gel phase. Synchrotron radiation-based infrared microscopy (SR-FTIR) shows the effect of nucleation on the heterogeneous nanostructure and microstructure of geopolymer gels, and is combined with data obtained by time-resolved FTIR analysis to provide a more holistic view of the reaction processes at a level of detail that has not previously been available. While spatially averaged (ATR-FTIR) infrared results show similar spectra for seeded and unseeded samples which have been cured for more than 3 weeks, SR-FTIR results show marked differences in gel structure as a result of seeding.

  11. Electrochemical and In Vitro Behavior of Nanostructure Sol-Gel Coated 316L Stainless Steel Incorporated with Rosemary Extract

    Science.gov (United States)

    Motalebi, Abolfazl; Nasr-Esfahani, Mojtaba

    2013-06-01

    The corrosion resistance of AISI 316L stainless steel for biomedical applications, was significantly enhanced by means of hybrid organic-inorganic sol-gel thin films deposited by spin-coating. Thin films of less than 100 nm with different hybrid characters were obtained by incorporating rosemary extract as green corrosion inhibitor. The morphology, composition, and adhesion of hybrid sol-gel coatings have been examined by SEM, EDX, and pull-off test, respectively. Addition of high additive concentrations (0.1%) did not disorganize the sol-gel network. Direct pull-off test recorded a mean coating-substrate bonding strength larger than 21.2 MPa for the hybrid sol-gel coating. The effect of rosemary extract, with various added concentrations from 0.012 to 0.1%, on the anticorrosion properties of sol-gel films have been characterized by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization tests in simulated body fluid (SBF) solution and has been compared to the bare metal. Rosemary extract additions (0.05%) have significantly increased the corrosion protection of the sol-gel thin film to higher than 90%. The in vitro bioactivity of prepared films indicates that hydroxyapatite nuclei can form and grow on the surface of the doped sol-gel thin films. The present study shows that due to their excellent anticorrosion properties, bioactivity and bonding strength to substrate, doped sol-gel thin films are practical hybrid films in biomedical applications.

  12. SAXS and ATR-FTIR studies on EBT-TSX mixtures in their sol-gel phases.

    Science.gov (United States)

    Hirun, Namon; Rugmai, Supagorn; Sangfai, Tanatchaporn; Tantishaiyakul, Vimon

    2012-11-01

    Our previous study demonstrated that mixtures of tamarind seed xyloglucan (TSX) with appropriate concentrations of eriochrome black T (EBT) produced a gel that could be of benefit for medical use. Here, the sol-gel systems of various fresh and aged mixtures were further investigated using rheological measurements. The nanostructural changes of EBT-TSX sol-gel phases were analyzed using SAXS. The interactions between EBT and TSX in the sol and gel states were examined using ATR-FTIR. SAXS data analysis demonstrated that the mixture containing lower concentration of EBT formed rod-like structures and that with higher concentrations of EBT produced flat particles. The sizes of the TSX structures from the aged mixtures in the gel stage were larger than those from the same mixtures in the sol state. ATR-FTIR spectral changes revealed that the azo and sulfonic acid groups of EBT interacted with the TSX, and the characteristic spectrum of the sulfonic acid group of EBT could discriminate between the sol and gel state of the EBT-TSX systems. The interactions between EBT and TSX may cause conformational changes to TSX and facilitate the sol-gel transition or formation of a gel.

  13. Interaction between hepatocytes and collagen gel in hollow fibers

    OpenAIRE

    Dai, Jing; ZHANG Guo-liang; Meng, Qin

    2009-01-01

    Gel entrapment culture of primary mammalian cells within collagen gel is one important configuration for construction of bioartificial organ as well as in vitro model for predicting drug situation in vivo. Gel contraction in entrapment culture, resulting from cell-mediated reorganization of the extracellular matrix, was commonly used to estimate cell viability. However, the exact influence of gel contraction on cell activities has rarely been addressed. This paper investigated the gel contrac...

  14. Tidal Forms

    Science.gov (United States)

    Bolla Pittaluga, M.; Seminara, G.; Tambroni, N.

    2003-04-01

    We give an overview of some recent investigations on the mechanics of the processes whereby forms develop in tidal environments. The viewpoint taken here is mechanistic. Some of the questions which deserve an answer may be summarised as follows: i) do tidal channels tend to some altimetric long term equilibrium? ii) why are they typically convergent and weakly meandering? iii) how is such equilibrium affected by the hydrodynamics and morphodynamics of tidal inlets? iv) what is the hydrodynamic and morphodynamic role played by tidal flats adjacent to the channels? Some of the above questions have received a considerable attention in the last few years. Schuttelaars and de Swart (1996), Lanzoni and Seminara (2002) and, more recently, Bolla Pittaluga (2003) have investigated the first problem. In particular, the latter two contributions have shown that a straight tidal channel connected to a tidal sea at one end and closed at the other end tends to reach a long term equilibrium profile, which is slightly concave seaward and convex landward where a beach forms. The equilibrium profile is strongly sensitive to the harmonic content of the tidal forcing as well as to the value of sediment concentration established by the coastal hydrodynamics in the far field of the inlet region. Less important are the effect of channel convergence and the role of settling lag in the transport of suspended load. Insufficient attention has been devoted to the understanding of what mechanisms control channel convergence and meandering, though some similarities and differences between tidal and fluvial channels have emerged from some recent works. In particular, free bars form in tidal channels due to an instability mechanism essentially similar to that occurring under steady conditions though the oscillatory character of the flow field makes the bar pattern non migrating (Seminara and Tubino, 2001). Similarly, forced bars in curved tidal channels are driven by the development of

  15. Optimal processing for gel electrophoresis images: Applying Monte Carlo Tree Search in GelApp.

    Science.gov (United States)

    Nguyen, Phi-Vu; Ghezal, Ali; Hsueh, Ya-Chih; Boudier, Thomas; Gan, Samuel Ken-En; Lee, Hwee Kuan

    2016-08-01

    In biomedical research, gel band size estimation in electrophoresis analysis is a routine process. To facilitate and automate this process, numerous software have been released, notably the GelApp mobile app. However, the band detection accuracy is limited due to a band detection algorithm that cannot adapt to the variations in input images. To address this, we used the Monte Carlo Tree Search with Upper Confidence Bound (MCTS-UCB) method to efficiently search for optimal image processing pipelines for the band detection task, thereby improving the segmentation algorithm. Incorporating this into GelApp, we report a significant enhancement of gel band detection accuracy by 55.9 ± 2.0% for protein polyacrylamide gels, and 35.9 ± 2.5% for DNA SYBR green agarose gels. This implementation is a proof-of-concept in demonstrating MCTS-UCB as a strategy to optimize general image segmentation. The improved version of GelApp-GelApp 2.0-is freely available on both Google Play Store (for Android platform), and Apple App Store (for iOS platform). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Evolution of gel structure during thermal processing of Na-geopolymer gels.

    Science.gov (United States)

    Duxson, Peter; Lukey, Grant C; van Deventer, Jannie S J

    2006-10-10

    The present work examines how the gel structure and phase composition of Na-geopolymers derived from metakaolin with varied Si/Al ratio evolve with exposure to temperatures up to 1000 degrees C. Gels were thermally treated and characterized using quantitative XRD, DTA, and FTIR to elucidate the changes in gel structure, phase composition, and porosity at each stage of heating. It is found that the phase stability, defined by the amount and onset temperature of crystallization, is improved at higher Si/Al ratios. Two different mechanisms of densification have been isolated by FTIR, related to viscous flow and collapse of the highly distributed pore network in the gel. Gels with low Si/Al ratio only experience viscous flow that correlates with low thermal shrinkage. Gels at a higher Si/Al ratio, which have a homogeneous microstructure composed of a highly distributed porosity, undergo both densification processes corresponding to a large extent of thermal shrinkage during densification. This work elucidates the intimate relationship between gel microstructure, chemistry, and thermal evolution of Na-geopolymer gels.

  17. Design of electro-active polymer gels as actuator materials

    Science.gov (United States)

    Popovic, Suzana

    Smart materials, alternatively called active or adaptive, differ from passive materials in their sensing and activation capability. These materials can sense changes in environment such as: electric field, magnetic field, UV light, pH, temperature. They are capable of responding in numerous ways. Some change their stiffness properties (electro-rheological fluids), other deform (piezos, shape memory alloys, electrostrictive materials) or change optic properties (electrochromic polymers). Polymer gels are one of such materials which can change the shape, volume and even optical properties upon different applied stimuli. Due to their low stiffness property they are capable of having up to 100% of strain in a short time, order of seconds. Their motion resembles the one of biosystems, and they are often seen as possible artificial muscle materials. Despite their delicate nature, appropriate design can make them being used as actuator materials which can form controllable surfaces and mechanical switches. In this study several different groups of polymer gel material were investigated: (a) acrylamide based gels are sensitive to pH and electric field and respond in volume change, (b) polyacrylonitrile (PAN) gel is sensitive to pH and electric field and responds in axial strain and bending, (c) polyvinylalcohol (PVA) gel is sensitive to electric field and responds in axial strain and bending and (d) perfluorinated sulfonic acid membrane, Nafion RTM, is sensitive to electric field and responds in bending. Electro-mechanical and chemo-mechanical behavior of these materials is a function of a variety of phenomena: polymer structure, affinity of polymer to the solvent, charge distribution within material, type of solvent, elasticity of polymer matrix, etc. Modeling of this behavior is a task aimed to identify what is driving mechanism for activation and express it in a quantitative way in terms of deformation of material. In this work behavior of the most promising material as

  18. Effect of acidulated phosphate fluoride gel application time on enamel demineralization of deciduous and permanent teeth.

    Science.gov (United States)

    Calvo, A F B; Tabchoury, C P M; Del Bel Cury, A A; Tenuta, L M A; da Silva, W J; Cury, J A

    2012-01-01

    Although the effect of acidulated phosphate fluoride gel (APF gel) on caries reduction in permanent teeth is based on evidence, the relevance of the clinical application time is still under debate. Also, the effect of 4- versus 1-min application has not been evaluated in deciduous enamel. In a blind, crossover, in situ study of 14 days, 16 adult volunteers wore palatal appliances containing slabs of human permanent and deciduous enamel. At the beginning of each phase, the slabs were submitted to one of the following treatments: no APF application (negative control); APF gel (1.23% F) application for 1 or 4 min. Biofilm accumulation on the slab surface was allowed and the slabs were subjected eight times a day to 20% sucrose, simulating a high cariogenic challenge condition. On the 15th day of each phase, fluoride retained as CaF(2) and fluorapatite (FAp) was determined on the enamel of the slabs and demineralization was assessed by cross-sectional microhardness. Fluoride as CaF(2) and FAp, formed by APF gel application on the enamel slabs not subjected to the cariogenic challenge, was also determined. APF gel reduced demineralization in both enamel types (p 0.05). CaF(2) and FAp formed and retained on deciduous and permanent enamel was significantly higher in APF gel groups (p 0.05). The findings suggest that 1 min of APF gel application provides a similar effect on inhibition of demineralization as 4 min, for both permanent and deciduous enamel. Copyright © 2012 S. Karger AG, Basel.

  19. Formulation and evaluation of Thiocolchicoside Topical Gel by using different method

    Directory of Open Access Journals (Sweden)

    Ramesh Amarsing Rathod

    2016-03-01

    Full Text Available Thiocolchicoside used for the effective treatment of muscle spasm, cramps, musculoskeletal and neuromuscular disorders. It is available in market in the form of capsules and injection. The major problem associated with thiocolchicoside is it's bioavailability which is very low i.e. 25-30% only so in order to minimize drug loss due to first pass metabolism, and overcome problem associated with low bioavailability of drug there is a need to formulate semisolid preparation in the form of gel so we try to formulate and evaluate thiocolchicoside gel using different polymer and comparative study of their drug release.In vitro release of thiocolchicoside gel from three different polymers i.e. carbapol, HPMC, and Na CMC to an aqueous receptor phase through goat skin was monitored spectrophotometrically at a wavelength of 259nm. This study was conducted to develop gel formulation of thiocolchicoside using three types of gelling agent i.e. carbopol, HPMC, Na CMC. Effect of penetration enhancer (propylene glycol on the release has been studied.   The gels were evaluated for physical appearance, rheological behaviour, drug release, and stability. Drug release from all gelling agent through goat skin was evaluated using keshary-chien diffusion cell.All gels show acceptable physical properties concerning colour, homogenity, consistancy spredability and pH value. Among all gel formulation carbapol  showed superior drug release then followed by Na CMC and HPMC. Drug release decreased with increased in the polymer concentration. Drug release was not linearly proportional with the conc. of penetration enhancer or co-solvent stability studies showed that the physical appearance, rheological properties and drug release remained unchanged upon storage for two month at ambient condition.

  20. DNA DAMAGE QUANTITATION BY ALKALINE GEL ELECTROPHORESIS.

    Energy Technology Data Exchange (ETDEWEB)

    SUTHERLAND,B.M.; BENNETT,P.V.; SUTHERLAND, J.C.

    2004-03-24

    Physical and chemical agents in the environment, those used in clinical applications, or encountered during recreational exposures to sunlight, induce damages in DNA. Understanding the biological impact of these agents requires quantitation of the levels of such damages in laboratory test systems as well as in field or clinical samples. Alkaline gel electrophoresis provides a sensitive (down to {approx} a few lesions/5Mb), rapid method of direct quantitation of a wide variety of DNA damages in nanogram quantities of non-radioactive DNAs from laboratory, field, or clinical specimens, including higher plants and animals. This method stems from velocity sedimentation studies of DNA populations, and from the simple methods of agarose gel electrophoresis. Our laboratories have developed quantitative agarose gel methods, analytical descriptions of DNA migration during electrophoresis on agarose gels (1-6), and electronic imaging for accurate determinations of DNA mass (7-9). Although all these components improve sensitivity and throughput of large numbers of samples (7,8,10), a simple version using only standard molecular biology equipment allows routine analysis of DNA damages at moderate frequencies. We present here a description of the methods, as well as a brief description of the underlying principles, required for a simplified approach to quantitation of DNA damages by alkaline gel electrophoresis.

  1. Polymethacrylate microparticles gel for topical drug delivery.

    Science.gov (United States)

    Labouta, Hagar Ibrahim; El-Khordagui, Labiba K

    2010-10-01

    Evaluating the potentials of particulate delivery systems in topical drug delivery. Polymethacrylate microparticles (MPs) incorporating verapamil hydrochloride (VRP) as a model hydrophilic drug with potential topical clinical uses, using Eudragit RS100 and Eudragit L100 were prepared for the formulation of a composite topical gel. The effect of initial drug loading, polymer composition, particularly the proportion of Eudragit L100 as an interacting polymer component and the HLB of the dispersing agent on MPs characteristics was investigated. A test MPs formulation was incorporated in gel and evaluated for drug release and human skin permeation. MPs showed high % incorporation efficiency and % yield. Composition of the hybrid polymer matrix was a main determinant of MPs characteristics, particularly drug release. Factors known to influence drug release such as MPs size and high drug solubility were outweighed by strong VRP-Eudragit L100 interaction. The developed MPs gel showed controlled VRP release and reduced skin retention compared to a free drug gel. Topical drug delivery and skin retention could be modulated using particulate delivery systems. From a practical standpoint, the VRP gel developed may offer advantage in a range of dermatological conditions, in response to the growing off-label topical use of VRP.

  2. Enhancing the performance of dye-sensitized solar cells by incorporating nanosilicate platelets in gel electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Yi-Hsuan; Chen, Jian-Ging; Wang, Chun-Chieh [Department of Chemical Engineering, National Taiwan University, Taipei 10617 (China); Chiu, Chih-Wei [Department of Chemical Engineering, National Chung Hsing University, Taichung 40227 (China); Lin, Jiang-Jen [Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617 (China); Lin, King-Fu [Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617 (China); Department of Materials Science and Engineering, National Taiwan University, Taipei 10617 (China); Ho, Kuo-Chuan [Department of Chemical Engineering, National Taiwan University, Taipei 10617 (China); Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617 (China)

    2009-10-15

    Two kinds of gel-type dye-sensitized solar cells (DSSCs), composed of two types of electrolytes, were constructed and the respective cell performance was evaluated in this study. One electrolyte, TEOS-Triton X-100 gel, was based on a hybrid organic/inorganic gel electrolyte made by the sol-gel method and the other was based on poly(vinyidene fluoride-co-hexafluoro propylene) (PVDF-HFP) copolymer. TEOS-Triton X-100 gel was based on the reticulate structure of silica, formed by hydrolysis, and condensation of tetraethoxysilane (TEOS), while its organic subphase was a mixture of surfactant (Triton X-100) and ionic liquid electrolytes. Both DSSC gel-type electrolytes were composed of iodine, 1-propy-3-methyl-imidazolium iodide, and 3-methoxypropionitrile to create the redox couple of I{sub 3}{sup -}/I{sup -}. Based on the results obtained from the I-V characteristics, it was found that the optimal iodine concentrations for the TEOS-Triton X-100 gel electrolyte and PVDF-HFP gel electrolyte are 0.05 M and 0.1 M, respectively. Although the increase in the iodine concentration could enhance the short-circuit current density (J{sub SC}), a further increase in the iodine concentration would reduce the J{sub SC} due to increased dark current. Therefore, the concentration of I{sub 2} is a significant factor in determining the performance of DSSCs. In order to enhance cell performance, the addition of nanosilicate platelets (NSPs) in the above-mentioned gel electrolytes was investigated. By incorporating NSP-Triton X-100 into the electrolytes, the J{sub SC} of the cells increased due to the decrease of diffusion resistance, while the open circuit voltage (V{sub OC}) remained almost the same. As the loading of the NSP-Triton X-100 in the TEOS-Triton X-100 gel electrolyte increased to 0.5 wt%, the J{sub SC} and the conversion efficiency increased from 8.5 to 12 mA/cm{sup 2} and from 3.6% to 4.7%, respectively. However, the J{sub SC} decreased as the loading of NSP-Triton X-100

  3. Enhancing the performance of dye-sensitized solar cells by incorporating nanosilicate platelets in gel electrolyte

    KAUST Repository

    Lai, Yi-Hsuan

    2009-10-01

    Two kinds of gel-type dye-sensitized solar cells (DSSCs), composed of two types of electrolytes, were constructed and the respective cell performance was evaluated in this study. One electrolyte, TEOS-Triton X-100 gel, was based on a hybrid organic/inorganic gel electrolyte made by the sol-gel method and the other was based on poly(vinyidene fluoride-co-hexafluoro propylene) (PVDF-HFP) copolymer. TEOS-Triton X-100 gel was based on the reticulate structure of silica, formed by hydrolysis, and condensation of tetraethoxysilane (TEOS), while its organic subphase was a mixture of surfactant (Triton X-100) and ionic liquid electrolytes. Both DSSC gel-type electrolytes were composed of iodine, 1-propy-3-methyl-imidazolium iodide, and 3-methoxypropionitrile to create the redox couple of I3 -/I-. Based on the results obtained from the I-V characteristics, it was found that the optimal iodine concentrations for the TEOS-Triton X-100 gel electrolyte and PVDF-HFP gel electrolyte are 0.05 M and 0.1 M, respectively. Although the increase in the iodine concentration could enhance the short-circuit current density (JSC), a further increase in the iodine concentration would reduce the JSC due to increased dark current. Therefore, the concentration of I2 is a significant factor in determining the performance of DSSCs. In order to enhance cell performance, the addition of nanosilicate platelets (NSPs) in the above-mentioned gel electrolytes was investigated. By incorporating NSP-Triton X-100 into the electrolytes, the JSC of the cells increased due to the decrease of diffusion resistance, while the open circuit voltage (VOC) remained almost the same. As the loading of the NSP-Triton X-100 in the TEOS-Triton X-100 gel electrolyte increased to 0.5 wt%, the JSC and the conversion efficiency increased from 8.5 to 12 mA/cm2 and from 3.6% to 4.7%, respectively. However, the JSC decreased as the loading of NSP-Triton X-100 exceeded 0.5 wt%. At higher NSP-Triton X-100 loading, NSPs acted as

  4. New polymer gel dosimeters consisting of less toxic monomers with radiation-crosslinked gel matrix

    Science.gov (United States)

    Hiroki, A.; Yamashita, S.; Sato, Y.; Nagasawa, N.; Taguchi, M.

    2013-06-01

    New polymer gel dosimeters consisting of less toxic methacrylate-type monomers such as 2-hydroxymethyl methacrylate (HEMA) and polyethylene glycol 400 dimethacrylate (9G) with hydroxypropyl cellulose (HPC) gel were prepared. The HPC gels were obtained by using a radiation-induced crosslinking technique to be applied in a matrix instead of a gelatin, which is conventionally used in earlier dosimeters, for the polymer gel dosimeters. The prepared polymer gel dosimeters showed cloudiness by exposing to 60Co γ-ray, in which the cloudiness increased with the dose up to 10 Gy. At the same dose, the increase in the cloudiness appeared with increasing concentration of 9G. As a result of the absorbance measurement, it was found that the dose response depended on the composition ratio between HEMA and 9G.

  5. Simultaneous immunoblotting analysis with activity gel electrophoresis and 2-D gel electrophoresis.

    Science.gov (United States)

    Lee, Der-Yen; Chang, Geen-Dong

    2015-01-01

    Diffusion blotting method can couple immunoblotting analysis with another biochemical technique in a single polyacrylamide gel, however, with lower transfer efficiency as compared to the conventional electroblotting method. Thus, with diffusion blotting, protein blots can be obtained from an SDS polyacrylamide gel for zymography assay, from a native polyacrylamide gel for electrophoretic mobility shift assay (EMSA) or from a 2-D polyacrylamide gel for large-scale screening and identification of a protein marker. Thereafter, a particular signal in zymography, electrophoretic mobility shift assay, and 2-dimensional gel can be confirmed or identified by simultaneous immunoblotting analysis with a corresponding antiserum. These advantages make diffusion blotting desirable when partial loss of transfer efficiency can be tolerated or be compensated by a more sensitive immunodetection reaction using enhanced chemiluminescence detection.

  6. Novel chitosan derivative for temperature and ultrasound dual-sensitive liposomal microbubble gel.

    Science.gov (United States)

    Chen, Daquan; Yu, Hongyun; Mu, Hongjie; Wei, Junhua; Song, Zhenkun; Shi, Hong; Liang, Rongcai; Sun, Kaoxiang; Liu, Wanhui

    2013-04-15

    In this study, a novel liposome-loaded microbubble gel based on N-cholesteryl hemisuccinate-O-sulfate chitosan (NCHOSC) was designed. The structure of the NCHOSC was characterized by FTIR and (1)H NMR. The liposomal microbubble gel based on NCHOSC with a high encapsulation efficiency of curcumin was formed and improved the solubility of curcumin. The diameter of most liposomal microbubble was about 950 nm. The temperature-sensitive CS/GP gel could be formulated at room temperature and would form a gel at body temperature. Simultaneously, the ultrasound-sensitive induced release of curcumin was 85% applying ultrasound. The results of cytotoxicity assay indicated that encapsulated curcumin in Cur-LM or Cur-LM-G was less toxic. The anti-tumor efficacy in vivo suggested that Cur-LM-G by ultrasound suppressed tumor growth most efficiently. These findings have shed some light on the potential NCHOSC material used to liposome-loaded microbubble gel for temperature and ultrasound dual-sensitive drug delivery.

  7. Homogeneous percolation versus arrested phase separation in attractively-driven nanoemulsion colloidal gels.

    Science.gov (United States)

    Helgeson, Matthew E; Gao, Yongxiang; Moran, Shannon E; Lee, Jinkee; Godfrin, Michael; Tripathi, Anubhav; Bose, Arijit; Doyle, Patrick S

    2014-05-01

    We elucidate mechanisms for colloidal gelation of attractive nanoemulsions depending on the volume fraction (ϕ) of the colloid. Combining detailed neutron scattering, cryo-transmission electron microscopy and rheological measurements, we demonstrate that gelation proceeds by either of two distinct pathways. For ϕ sufficiently lower than 0.23, gels exhibit homogeneous fractal microstructure, with a broad gel transition resulting from the formation and subsequent percolation of droplet-droplet clusters. In these cases, the gel point measured by rheology corresponds precisely to arrest of the fractal microstructure, and the nonlinear rheology of the gel is characterized by a single yielding process. By contrast, gelation for ϕ sufficiently higher than 0.23 is characterized by an abrupt transition from dispersed droplets to dense clusters with significant long-range correlations well-described by a model for phase separation. The latter phenomenon manifests itself as micron-scale "pores" within the droplet network, and the nonlinear rheology is characterized by a broad yielding transition. Our studies reinforce the similarity of nanoemulsions to solid particulates, and identify important qualitative differences between the microstructure and viscoelastic properties of colloidal gels formed by homogeneous percolation and those formed by phase separation.

  8. Gel formation in systems composed of drug containing catanionic vesicles and oppositely charged hydrophobically modified polymer.

    Science.gov (United States)

    Dew, Noel; Edwards, Katarina; Edsman, Katarina

    2009-05-01

    The aim of this study was to explore if mixtures of drug containing catanionic vesicles and polymers give rise to gel formation, and if so, if drug release from these gels could be prolonged. Catanionic vesicles formed from the drug substances alprenolol or tetracaine, and the oppositely charged surfactant sodium dodecyl sulphate were mixed with polymers. Three polymers with different properties were employed: one bearing hydrophobic modifications, one positively charged and one positively charged polymer bearing hydrophobic modifications. The structure of the vesicles before and after addition of polymer was investigated by using cryo-TEM. Gel formation was confirmed by using rheological measurements. Drug release was studied using a modified USP paddle method. Gels were observed to form only in the case when catanionic vesicles, most likely with a net negative charge, were mixed with positively charged polymer bearing lipophilic modifications. The release of drug substance from these systems, where the vesicles are not trapped within the gel but constitute a founding part of it, could be significantly prolonged. The drug release rate was found to depend on vesicle concentration to a higher extent than on polymer concentration.

  9. Sol-gel derived ceramic electrolyte films on porous substrates

    Energy Technology Data Exchange (ETDEWEB)

    Kueper, Timothy Walter [Univ. of California, Berkeley, CA (United States)

    1992-05-01

    A process for the deposition of sol-gel derived thin films on porous substrates has been developed; such films should be useful for solid oxide fuel cells and related applications. Yttria-stabilized zirconia films have been formed from metal alkoxide starting solutions. Dense films have been deposited on metal substrates and ceramic substrates, both dense and porous, through dip-coating and spin-coating techniques, followed by a heat treatment in air. X-ray diffraction has been used to determine the crystalline phases formed and the extent of reactions with various substrates which may be encountered in gas/gas devices. Surface coatings have been successfully applied to porous substrates through the control of substrate pore size and deposition parameters. Wetting of the substrate pores by the coating solution is discussed, and conditions are defined for which films can be deposited over the pores without filling the interiors of the pores. Shrinkage cracking was encountered in films thicker than a critical value, which depended on the sol-gel process parameters and on the substrate characteristics. Local discontinuities were also observed in films which were thinner than a critical value which depended on the substrate pore size. A theoretical discussion of cracking mechanisms is presented for both types of cracking, and the conditions necessary for successful thin formation are defined. The applicability of these film gas/gas devices is discussed.

  10. USE OF TRANSDERMAL GEL OF SILDENAFIL CITRATE IN SEXUAL DYSFUNCTION

    Directory of Open Access Journals (Sweden)

    Harshid Patel , Amit Maniyar and Hiren Patel*

    2012-11-01

    Full Text Available Premature Ejaculation (PE is one of the most common forms of Sexual Dysfunction and is thought to affect up to 30 % of men. This is the most frequently encountered sexual complaint of men and couples. The physical problem associated with premature ejaculation can be simply described as “over-sensitivity” of the penis. Psychological causes of PE are often associated with “performance anxiety” – anxiety relating to sexual intercourse. The most common treatment today is the oral treatment with phosphodiesterase -5 (PDE-5 inhibitors. There are currently three different inhibitors available Sildenafil, Vardenafil, and Tadalafil. Sildenafil citrate is a drug of choice used in the treatment of premature ejaculation disorder. It was licensed for use in the United States in 1998; Sildenafil has shown in studies that it improves ED in men regardless of disease etiology, severity of disease, or even age. Transdermal gel has gained more and more importance because the gel based formulations are better percutaneously absorbed than creams and ointment bases. Transdermal drug delivery systems are defined as self-contained, discrete dosage forms which, when applied to the intact skin, deliver the drug, through the skin, at a controlled rate to the systemic circulation. Present Status - A review by Barry in 2001 showed, the transdermal route has vied with oral treatment as the most successful innovative research area in drug delivery.

  11. Sol-gel derived ceramic electrolyte films on porous substrates

    Energy Technology Data Exchange (ETDEWEB)

    Kueper, T.W.

    1992-05-01

    A process for the deposition of sol-gel derived thin films on porous substrates has been developed; such films should be useful for solid oxide fuel cells and related applications. Yttria-stabilized zirconia films have been formed from metal alkoxide starting solutions. Dense films have been deposited on metal substrates and ceramic substrates, both dense and porous, through dip-coating and spin-coating techniques, followed by a heat treatment in air. X-ray diffraction has been used to determine the crystalline phases formed and the extent of reactions with various substrates which may be encountered in gas/gas devices. Surface coatings have been successfully applied to porous substrates through the control of substrate pore size and deposition parameters. Wetting of the substrate pores by the coating solution is discussed, and conditions are defined for which films can be deposited over the pores without filling the interiors of the pores. Shrinkage cracking was encountered in films thicker than a critical value, which depended on the sol-gel process parameters and on the substrate characteristics. Local discontinuities were also observed in films which were thinner than a critical value which depended on the substrate pore size. A theoretical discussion of cracking mechanisms is presented for both types of cracking, and the conditions necessary for successful thin formation are defined. The applicability of these film gas/gas devices is discussed.

  12. Viscoelastic Characterization of Gels at Metal-Protein Interfaces

    Science.gov (United States)

    Martin, Elizabeth; Shull, Kenneth

    2015-03-01

    The interfacial gelation of proteins at metallic surfaces was investigated with an electrochemical quartz crystal microbalance (QCM). When Cr electrodes were corroded in proteinaceous solutions, it was found that gels will form at the Cr surfaces if molybdate ions are also present in the solution. A similar film will form on Cr when the proteins are replaced with a poly(allylamine) polyelectrolyte, suggesting that the gelation is due to a cross-linking reaction between the protein amine groups and the molybdate ions. Further, a method was developed to characterize the viscoelastic properties of thin polymeric films in liquid media using the QCM as a high frequency rheometer. By measuring the frequency and dissipation at multiple harmonics of the resonant frequency, the viscoelastic phase angle, density --modulus product, and mass per unit area of a film can be determined. The method was applied to characterize the protein films, demonstrating that they have a phase angle near 80° and a density --modulus product of ~107 Pa-g/cm3. Data imply that the gels are comprised of a weak proteinaceous network and exhibit similar mechanical properties as solutions containing 50 wt% protein. This project was funded by NSF Grant CMMI-1200529.

  13. Changes in the myosin secondary structure and shrimp surimi gel strength induced by dense phase carbon dioxide.

    Science.gov (United States)

    Guo, Minghui; Liu, Shucheng; Ismail, Marliya; Farid, Mohammed M; Ji, Hongwu; Mao, Weijie; Gao, Jing; Li, Chengyong

    2017-07-15

    Dense phase carbon dioxide (DPCD) could induce protein conformation changes. Myosin and shrimp surimi from Litopenaeus vannamei were treated with DPCD at 5-25MPa and 40-60°C for 20min. Myosin secondary structure was investigated by circular dichroism and shrimp surimi gel strength was determined using textural analysis to develop correlations between them. DPCD had a greater effect on secondary structure and gel strength than heating. With increasing pressure and temperature, the α-helix content of DPCD-treated myosin decreased, while the β-sheet, β-turn and random coil contents increased, and the shrimp surimi gel strength increased. The α-helix content was negatively correlated with gel strength, while the β-sheet, β-turn and random coil contents were positively correlated with gel strength. Therefore, when DPCD induced myosin to form a gel, the α-helix of myosin was unfolded and gradually converted to a β-sheet. Such transformations led to protein-protein interactions and cross-linking, which formed a three-dimensional network to enhance the gel strength.

  14. Molecular Weight and Branching Distribution Modeling in Radical Polymerization with Transfer to Polymer and Scission Under Gel Conditions and Allowing for Multiradicals

    NARCIS (Netherlands)

    Yaghini, N.; Iedema, P.

    2014-01-01

    A population balance model for the prediction of molecular weight distribution (MWD) in a continuous stirred tank reactor (CSTR) has been developed accounting for multiradicals and gel formation in the framework of Galerkin-FEM. In the absence of recombination, gel does not form, but accounting for

  15. Intravaginal prostaglandin E2 for cervical ripening and induction of labour. A comparison of gel and tablets.

    Science.gov (United States)

    Davey, D A; Dommisse, J; MacNab, M

    1980-09-27

    Prostaglandin E2 (PGE2) 4,5 mg in the form of either 0,5 mg oral tablets or tylose gel, was inserted intravaginally to induce labour in 11 pairs of patients with an unripe cervix. Labour commenced spontaneously in 68% of the patients and there was no difference in efficacy or complications between the tablets and the gel. PGE2 in tylose gel was originally introduced as the optimal preparation, but is not readily available. PGE2 oral tablets, inserted vaginally, although not ideal, are available and are as effective. The use of intravaginal PGE2 for induction of labour is a significant advance in obstetric practice.

  16. Fractal aggregation in relation to formation and properties of particle gels.

    NARCIS (Netherlands)

    Bremer, L.G.B.

    1992-01-01

    The purpose of this study is to gain insight into the conditions determining whether small particles in a liquid are able to jointly occupy the total volume thus forming a gel network. In order to build a network the colloidal particles have to be 'sticky', unstable. In the unassociated state the pa

  17. RHEOLOGICAL MODIFICATION OF EPOXY RESINS WITH NANO SILICA PREPARED BY THE SOL-GEL PROCESS

    Institute of Scientific and Technical Information of China (English)

    Xia Wang; Jiang Li; Cheng-fen Long; Yun-zhao Yu

    1999-01-01

    Nano silica-modified epoxy resins were synthesized by the sol-gel process. The materials have the morphological structure of nano particales dispersed in the epoxy matrix. The dispersed phase formed a physical network in the resin and thus influenced the rheological behavior greatly. However, the nano silica did not show a significant influence on the mechanical properties of the cured resins.

  18. Sol-gel deposition of buffer layers on biaxially textured metal substances

    Science.gov (United States)

    Shoup, Shara S.; Paranthamam, Mariappan; Beach, David B.; Kroeger, Donald M.; Goyal, Amit

    2000-01-01

    A method is disclosed for forming a biaxially textured buffer layer on a biaxially oriented metal substrate by using a sol-gel coating technique followed by pyrolyzing/annealing in a reducing atmosphere. This method is advantageous for providing substrates for depositing electronically active materials thereon.

  19. Synthesis of azobenzene-containing liquid crystalline gelator for use in liquid crystal gels

    Institute of Scientific and Technical Information of China (English)

    Guang Wang; Xiao Liang Zhao; Yue Zhao

    2008-01-01

    A liquid crystalline gelator containing the azobenzene chromophore was synthesized for the first time; it was used to form self-assembled network in nematic liquid crystals resulting in liquid crystal gels with distinct features.? 2008 Guang Wang. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.

  20. Sol-gel coating of inorganic nanostructures with resorcinol-formaldehyde resin.

    Science.gov (United States)

    Li, Na; Zhang, Qiao; Liu, Jian; Joo, Jibong; Lee, Austin; Gan, Yang; Yin, Yadong

    2013-06-07

    A general sol-gel process has been developed to form a coating of resorcinol-formaldehyde (RF) resin on inorganic nanostructures of various compositions and morphologies. The RF shell can be conveniently converted into carbon through high temperature carbonization under an inert atmosphere.