WorldWideScience

Sample records for forests carbon cycle

  1. Trailblazing the Carbon Cycle of Tropical Forests from Puerto Rico

    Directory of Open Access Journals (Sweden)

    Sandra Brown

    2017-03-01

    Full Text Available We review the literature that led to clarifying the role of tropical forests in the global carbon cycle from a time when they were considered sources of atmospheric carbon to the time when they were found to be atmospheric carbon sinks. This literature originates from work conducted by US Forest Service scientists in Puerto Rico and their collaborators. It involves the classification of forests by life zones, estimation of carbon density by forest type, assessing carbon storage changes with ecological succession and land use/land cover type, describing the details of the carbon cycle of forests at stand and landscape levels, assessing global land cover by forest type and the complexity of land use change in tropical regions, and assessing the ecological fluxes and storages that contribute to net carbon accumulation in tropical forests. We also review recent work that couples field inventory data, remote sensing technology such as LIDAR, and GIS analysis in order to more accurately determine the role of tropical forests in the global carbon cycle and point out new avenues of carbon research that address the responses of tropical forests to environmental change.

  2. Feedback of global warming to soil carbon cycling in forest ecosystems

    International Nuclear Information System (INIS)

    Nakane, Kaneyuki

    1993-01-01

    Thus in this study the simulation of soil carbon cycling and dynamics of its storage in several types of mature forests developed from the cool-temperate to the tropics was carried out for quantitatively assessing carbon loss from the soil under several scenarios of global warming, based on the model of soil carbon cycling in forest ecosystems (Nakane et al. 1984, 1987 and Nakane 1992). (J.P.N.)

  3. Trailblazing the Carbon Cycle of Tropical Forests from Puerto Rico

    Science.gov (United States)

    Sandra Brown; Ariel Lugo

    2017-01-01

    We review the literature that led to clarifying the role of tropical forests in the global carbon cycle from a time when they were considered sources of atmospheric carbon to the time when they were found to be atmospheric carbon sinks. This literature originates from work conducted by US Forest Service scientists in Puerto Rico and their collaborators. It involves the...

  4. Temperature and rainfall interact to control carbon cycling in tropical forests.

    Science.gov (United States)

    Taylor, Philip G; Cleveland, Cory C; Wieder, William R; Sullivan, Benjamin W; Doughty, Christopher E; Dobrowski, Solomon Z; Townsend, Alan R

    2017-06-01

    Tropical forests dominate global terrestrial carbon (C) exchange, and recent droughts in the Amazon Basin have contributed to short-term declines in terrestrial carbon dioxide uptake and storage. However, the effects of longer-term climate variability on tropical forest carbon dynamics are still not well understood. We synthesised field data from more than 150 tropical forest sites to explore how climate regulates tropical forest aboveground net primary productivity (ANPP) and organic matter decomposition, and combined those data with two existing databases to explore climate - C relationships globally. While previous analyses have focused on the effects of either temperature or rainfall on ANPP, our results highlight the importance of interactions between temperature and rainfall on the C cycle. In cool forests (forests (> 20 °C) it consistently enhanced both ANPP and decomposition. At the global scale, our analysis showed an increase in ANPP with rainfall in relatively warm sites, inconsistent with declines in ANPP with rainfall reported previously. Overall, our results alter our understanding of climate - C cycle relationships, with high precipitation accelerating rates of C exchange with the atmosphere in the most productive biome on earth. © 2017 John Wiley & Sons Ltd/CNRS.

  5. Forests on the edge: Microenvironmental drivers of carbon cycle response to edge effects

    Science.gov (United States)

    Reinmann, A.; Hutyra, L.; Smith, I. A.; Thompson, J.

    2017-12-01

    Twenty percent of the world's forest is within 100 m of a forest edge, but much of our understanding of forest carbon (C) cycling comes from large, intact ecosystems, which creates an important mismatch between the landscapes we study and those we aim to characterize. The temperate broadleaf forest is the most heavily fragmented forest biome in the world and its growth and carbon storage responses to forest edge effects appear to be the opposite of those in the tropical and boreal regions. We used field measurements to quantify the drivers of temperate forest C cycling response to edge effects, characterizing vegetative growth, respiration, and forest structure. We find large gradients in air and soil temperature from the forest interior to edge (up to 4 and 10° C, respectively) and the magnitude of this gradient is inversely correlated to the size of the forest edge growth enhancement. Further, leaf area index increases with proximity to the forest edge. While we also find increases in soil respiration between the forest interior and edge, this flux is small relative to aboveground growth enhancement near the edge. These findings represent an important advancement in our understanding of forest C cycle response to edge effects and will greatly improve our capacity to constrain biogenic C fluxes in fragmented and heterogeneous landscapes.

  6. Recent trends, drivers, and projections of carbon cycle processes in forests and grasslands of North America

    Science.gov (United States)

    Domke, G. M.; Williams, C. A.; Birdsey, R.; Pendall, E.

    2017-12-01

    In North America forest and grassland ecosystems play a major role in the carbon cycle. Here we present the latest trends and projections of United States and North American carbon cycle processes, stocks, and flows in the context of interactions with global scale budgets and climate change impacts in managed and unmanaged grassland and forest ecosystems. We describe recent trends in natural and anthropogenic disturbances in these ecosystems as well as the carbon dynamics associated with land use and land cover change. We also highlight carbon management science and tools for informing decisions and opportunities for improving carbon measurements, observations, and projections in forests and grasslands.

  7. Land use change effects on forest carbon cycling throughout the southern United States

    Science.gov (United States)

    Peter B. Woodbury; Linda S. Heath; James E. Smith

    2006-01-01

    We modeled the effects of afforestation and deforestation on carbon cycling in forest floor and soil from 1900 to 2050 throughout 13 states in the southern United States. The model uses historical data on gross (two-way) transitions between forest, pasture, plowed agriculture, and urban lands along with equations describing changes in carbon over many decades for each...

  8. Effects of nutrient additions on ecosystem carbon cycle in a Puerto Rican tropical wet forest

    Science.gov (United States)

    YIQING LI; MING XU; XIAOMING ZOU

    2006-01-01

    Wet tropical forests play a critical role in global ecosystem carbon (C) cycle, but C allocation and the response of different C pools to nutrient addition in these forests remain poorly understood. We measured soil organic carbon (SOC), litterfall, root biomass, microbial biomass and soil physical and chemical properties in a wet tropical forest from May 1996 to July...

  9. High resolution analysis of tropical forest fragmentation and its impact on the global carbon cycle

    Science.gov (United States)

    Brinck, Katharina; Fischer, Rico; Groeneveld, Jürgen; Lehmann, Sebastian; Dantas de Paula, Mateus; Pütz, Sandro; Sexton, Joseph O.; Song, Danxia; Huth, Andreas

    2017-03-01

    Deforestation in the tropics is not only responsible for direct carbon emissions but also extends the forest edge wherein trees suffer increased mortality. Here we combine high-resolution (30 m) satellite maps of forest cover with estimates of the edge effect and show that 19% of the remaining area of tropical forests lies within 100 m of a forest edge. The tropics house around 50 million forest fragments and the length of the world's tropical forest edges sums to nearly 50 million km. Edge effects in tropical forests have caused an additional 10.3 Gt (2.1-14.4 Gt) of carbon emissions, which translates into 0.34 Gt per year and represents 31% of the currently estimated annual carbon releases due to tropical deforestation. Fragmentation substantially augments carbon emissions from tropical forests and must be taken into account when analysing the role of vegetation in the global carbon cycle.

  10. Monitoring, modelling and managing Canada's forest carbon cycle

    International Nuclear Information System (INIS)

    Kurz, W.

    2005-01-01

    This paper presents information concerning the management of carbon stocks both globally and in Canada, with reference to the fact that forests may contribute to carbon emissions problems. Global fossil carbon emissions statistics were provided, as well as data of forest area per capita in Canada and various countries. Details of forest management options and carbon accounting with reference to the Kyoto Protocol were reviewed. An explanation of forest management credits in national accounts was provided. An explanation of carbon sinks and carbon sources was also presented, along with details of stand level carbon dynamics. A model for calculating landscape level carbon stocks was presented, with reference to increasing and decreasing disturbances. A hypothetical landscape example was provided. It was concluded that age-class structure affect the amount of carbon stored in landscape; age-class structure also affect carbon dynamics; and responses reflect the change in disturbance regimes. An overview of international reporting requirements was presented. Canadian harvests equal 54,000 tonnes of carbon per year. It was recommended that managed forests could increase carbon in forests while also managing carbon harvests to meet society's needs. A chart presenting forest management details was presented, along with a hypothetical landscape example and a forecast for cumulative changes after 50 years, The benefits and challenges of forest management were reviewed as well as options regarding salvaging and deforestation avoidance. A carbon budget model was presented. It was concluded that forests in Canada could be used in a greenhouse gas management strategy. However, changes in disturbance may mean the difference between net source or net sink. Details of biomass were presented and multi-mode combustion facilities. The feasibility of biomass as a fuel source was discussed, with reference to hydrogen fuel. Gas composition profiles were provided, as well as details of

  11. A synthesis of the science on forests and carbon for U.S. Forests

    Science.gov (United States)

    Michael G. Ryan; Mark E. Harmon; Richard A. Birdsey; Christian P. Giardina; Linda S. Heath; Richard A. Houghton; Robert B. Jackson; Duncan C. McKinley; James F. Morrison; Brian C. Murray; Diane E. Pataki; Kenneth E. Skog

    2010-01-01

    Forests play an important role in the U.S. and global carbon cycle, and carbon sequestered by U.S. forest growth and harvested wood products currently offsets 12-19% of U.S. fossil fuel emissions. The cycle of forest growth, death, and regeneration and the use of wood removed from the forest complicate efforts to understand and measure forest carbon pools and flows....

  12. Soil mineralogy and microbes determine forest life history strategy and carbon cycling in humid tropical forests

    Science.gov (United States)

    Soong, J.; Verbruggen, E.; Peñuelas, J.; Janssens, I. A.; Grau, O.

    2017-12-01

    Tropical forests account for over one third of global terrestrial gross primary productivity and cycle more C than any other ecosystem on Earth. However, we still lack a mechanistic understanding of how such high productivity is maintained on the old, highly weathered and phosphorus depleted soils in the tropics. We hypothesized that heterogeneity in soil texture, mineralogy and microbial community composition may be the major drivers of differences in soil C storage and P limitation across tropical forests. We sampled 12 forest sites across a 200 km transect in the humid neo-tropics of French Guiana that varied in soil texture, precipitation and mineralogy. We found that soil texture was a major driver of soil carbon stocks and forest life history strategy, where sandy forests have lower soil C stocks, slower turnover and decomposition and a more closed nutrient cycle while clayey forests have higher soil C stocks, faster turnover and a more leaky nutrient cycle (using natural abundance stable isotope evidence). We found that although the presence of Al and Fe oxides in the clayey soils occludes soil organic matter and P, a greater abundance of arbuscular mycorrhizal fungi help forests to access occluded P in clayey soils fueling higher turnover and faster decomposition rates. Evidence from a laboratory incubation of tropical soils with nutrient additions further demonstrates the de-coupling of microbial P demands from C:N limitations providing further evidence for the need to examine microbial stoichiometry to explain C cycling in the P-limited tropics. We argue that microbial community composition and physiological demands, constrained within the limitations of soil mineralogical reactivity, largely controls nutrient and C cycling in tropical forest soils. Together our observational field study and laboratory incubation provide a unique dataset to shed light on the mineralogical and microbial controls on C and nutrient cycling in tropical soils. By integrating

  13. Similar below-ground carbon cycling dynamics but contrasting modes of nitrogen cycling between arbuscular mycorrhizal and ectomycorrhizal forests.

    Science.gov (United States)

    Lin, Guigang; McCormack, M Luke; Ma, Chengen; Guo, Dali

    2017-02-01

    Compared with ectomycorrhizal (ECM) forests, arbuscular mycorrhizal (AM) forests are hypothesized to have higher carbon (C) cycling rates and a more open nitrogen (N) cycle. To test this hypothesis, we synthesized 645 observations, including 22 variables related to below-ground C and N dynamics from 100 sites, where AM and ECM forests co-occurred at the same site. Leaf litter quality was lower in ECM than in AM trees, leading to greater forest floor C stocks in ECM forests. By contrast, AM forests had significantly higher mineral soil C concentrations, and this result was strongly mediated by plant traits and climate. No significant differences were found between AM and ECM forests in C fluxes and labile C concentrations. Furthermore, inorganic N concentrations, net N mineralization and nitrification rates were all higher in AM than in ECM forests, indicating 'mineral' N economy in AM but 'organic' N economy in ECM trees. AM and ECM forests show systematic differences in mineral vs organic N cycling, and thus mycorrhizal type may be useful in predicting how different tree species respond to multiple environmental change factors. By contrast, mycorrhizal type alone cannot reliably predict below-ground C dynamics without considering plant traits and climate. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  14. High resolution remote sensing for reducing uncertainties in urban forest carbon offset life cycle assessments.

    Science.gov (United States)

    Tigges, Jan; Lakes, Tobia

    2017-10-04

    Urban forests reduce greenhouse gas emissions by storing and sequestering considerable amounts of carbon. However, few studies have considered the local scale of urban forests to effectively evaluate their potential long-term carbon offset. The lack of precise, consistent and up-to-date forest details is challenging for long-term prognoses. Therefore, this review aims to identify uncertainties in urban forest carbon offset assessment and discuss the extent to which such uncertainties can be reduced by recent progress in high resolution remote sensing. We do this by performing an extensive literature review and a case study combining remote sensing and life cycle assessment of urban forest carbon offset in Berlin, Germany. Recent progress in high resolution remote sensing and methods is adequate for delivering more precise details on the urban tree canopy, individual tree metrics, species, and age structures compared to conventional land use/cover class approaches. These area-wide consistent details can update life cycle inventories for more precise future prognoses. Additional improvements in classification accuracy can be achieved by a higher number of features derived from remote sensing data of increasing resolution, but first studies on this subject indicated that a smart selection of features already provides sufficient data that avoids redundancies and enables more efficient data processing. Our case study from Berlin could use remotely sensed individual tree species as consistent inventory of a life cycle assessment. However, a lack of growth, mortality and planting data forced us to make assumptions, therefore creating uncertainty in the long-term prognoses. Regarding temporal changes and reliable long-term estimates, more attention is required to detect changes of gradual growth, pruning and abrupt changes in tree planting and mortality. As such, precise long-term urban ecological monitoring using high resolution remote sensing should be intensified

  15. Role of temperate zone forests in the world carbon cycle: problem definition and research needs

    Energy Technology Data Exchange (ETDEWEB)

    Armentano, T.V.; Hett, J. (eds.)

    1979-01-01

    The proceedings of a workshop on carbon uptake and losses from temperate zone forests are presented. The goals of the workshop were to analyze existing data on growth and utilization of the temperate zone forest carbon pool and to identify further research needs in relation to the role of temperate forests in the global carbon cycle. Total standing stock and growth recovery transients were examined for most of the temperate region over a period from pre-settlement times to the present, with emphasis on the last three decades. Because of data availability, certain regions and topics were covered more in detail than others. Forest inventory data from most of the commercial timberlands of the north temperate zone suggest these forests have functioned over the past several decades as an annual sink for about 10/sup 9/ metric tons of carbon. Thus, net growth of these forests has withdrawn carbon from the atmosphere at a rate equivalent, approximately, to 50% of the annual rise in atmospheric carbon. Various data inadequacies make this estimate probably no more precise than plus or minus half of the value. Analysis of growth and vegetation changes in New England and the southeastern United States shows that forest biomass has partly recovered since extensive clearing took place in the 18th and 19th centuries. This regrowth represents a net withdrawal of carbon (carbon sink) from the atmosphere in recent decades, although the difference in pool size between present and original forests means that, in the longer term, the two regions have functioned as carbon sources.

  16. Synthesis on the carbon budget and cycling in a Danish, temperate deciduous forest

    DEFF Research Database (Denmark)

    Wu, Jian; Larsen, Klaus Steenberg; van der Linden, Leon

    2013-01-01

    A synthesis of five years (2006–2010) of data on carbon cycling in a temperate deciduous forest, Sorø (Zealand, Denmark) was performed by combining all available data from eddy covariance, chamber, suction cups, and biometric measurements. The net ecosystem exchange of CO2 (NEE), soil respiration...... within the ecosystem. The results showed that this temperate deciduous forest was a moderate carbon sink (258±41gCm−2 yr−1) with both high rates of gross primary production (GPP, 1881±95gCm−2 yr−1) and ecosystem respiration (Re, 1624±197gCm−2 yr−1). Approximately 62% of the gross assimilated carbon......, tree growth, litter production and leaching of dissolved inorganic and organic carbon were independently estimated and used to calculate other unmeasured ecosystem carbon budget (ECB) components, based on mass balance equations. This provided a complete assessment of the carbon storage and allocation...

  17. Carbon allocation in forest ecosystems

    Science.gov (United States)

    Creighton M. Litton; James W. Raich; Michael G. Ryan

    2007-01-01

    Carbon allocation plays a critical role in forest ecosystem carbon cycling. We reviewed existing literature and compiled annual carbon budgets for forest ecosystems to test a series of hypotheses addressing the patterns, plasticity, and limits of three components of allocation: biomass, the amount of material present; flux, the flow of carbon to a component per unit...

  18. Understanding spatial heterogeneity in soil carbon and nitrogen cycling in regenerating tropical dry forests

    Science.gov (United States)

    Waring, B. G.; Powers, J. S.; Branco, S.; Adams, R.; Schilling, E.

    2015-12-01

    Tropical dry forests (TDFs) currently store significant amounts of carbon in their biomass and soils, but these highly seasonal ecosystems may be uniquely sensitive to altered climates. The ability to quantitatively predict C cycling in TDFs under global change is constrained by tremendous spatial heterogeneity in soil parent material, land-use history, and plant community composition. To explore this variation, we examined soil carbon and nitrogen dynamics in 18 permanent plots spanning orthogonal gradients of stand age and soil fertility. Soil C and N pools, microbial biomass, and microbial extracellular enzyme activities were most variable at small (m2) spatial scales. However, the ratio of organic vs. inorganic N cycling was consistently higher in forest stands dominated by slow-growing, evergreen trees that associate with ectomycorrhizal fungi. Similarly, although bulk litter stocks and turnover rates varied greatly among plots, litter decomposition tended to be slower in ectomycorrhizae-dominated stands. Soil N cycling tended to be more conservative in older plots, although the relationship between stand age and element cycling was weak. Our results emphasize that microscale processes, particularly interactions between mycorrhizal fungi and free-living decomposers, are important controls on ecosystem-scale element cycling.

  19. Mangrove forests: a potent nexus of coastal biogeochemical cycling

    Science.gov (United States)

    Barr, J. G.; Fuentes, J. D.; Shoemaker, B.; O'Halloran, T. L.; Lin, G., Sr.; Engel, V. C.

    2014-12-01

    Mangrove forests cover just 0.1% of the Earth's terrestrial surface, yet they provide a disproportionate source (~10 % globally) of terrestrially derived, refractory dissolved organic carbon to the oceans. Mangrove forests are biogeochemical reactors that convert biomass into dissolved organic and inorganic carbon at unusually high rates, and many studies recognize the value of mangrove ecosystems for the substantial amounts of soil carbon storage they produce. However, questions remain as to how mangrove forest ecosystem services should be valuated and quantified. Therefore, this study addresses several objectives. First, we demonstrate that seasonal and annual net ecosystem carbon exchange in three selected mangrove forests, derived from long-term eddy covariance measurements, represent key quantities in defining the magnitude of biogeochemical cycling and together with other information on carbon cycle parameters serves as a proxy to estimate ecosystem services. Second, we model ecosystem productivity across the mangrove forests of Everglades National Park and southern China by relating net ecosystem exchange values to remote sensing data. Finally, we develop a carbon budget for the mangrove forests in the Everglades National Park for the purposes of demonstrating that these forests and adjacent estuaries are sites of intense biogeochemical cycling. One conclusion from this study is that much of the carbon entering from the atmosphere as net ecosystem exchange (~1000 g C m-2 yr-1) is not retained in the net ecosystem carbon balance. Instead, a substantial fraction of the carbon entering the system as net ecosystem exchange is ultimately exported to the oceans or outgassed as reaction products within the adjacent estuary.

  20. Forest biomass, productivity and carbon cycling along a rainfall gradient in West Africa.

    Science.gov (United States)

    Moore, Sam; Adu-Bredu, Stephen; Duah-Gyamfi, Akwasi; Addo-Danso, Shalom D; Ibrahim, Forzia; Mbou, Armel T; de Grandcourt, Agnès; Valentini, Riccardo; Nicolini, Giacomo; Djagbletey, Gloria; Owusu-Afriyie, Kennedy; Gvozdevaite, Agne; Oliveras, Imma; Ruiz-Jaen, Maria C; Malhi, Yadvinder

    2018-02-01

    Net Primary Productivity (NPP) is one of the most important parameters in describing the functioning of any ecosystem and yet it arguably remains a poorly quantified and understood component of carbon cycling in tropical forests, especially outside of the Americas. We provide the first comprehensive analysis of NPP and its carbon allocation to woody, canopy and root growth components at contrasting lowland West African forests spanning a rainfall gradient. Using a standardized methodology to study evergreen (EF), semi-deciduous (SDF), dry forests (DF) and woody savanna (WS), we find that (i) climate is more closely related with above and belowground C stocks than with NPP (ii) total NPP is highest in the SDF site, then the EF followed by the DF and WS and that (iii) different forest types have distinct carbon allocation patterns whereby SDF allocate in excess of 50% to canopy production and the DF and WS sites allocate 40%-50% to woody production. Furthermore, we find that (iv) compared with canopy and root growth rates the woody growth rate of these forests is a poor proxy for their overall productivity and that (v) residence time is the primary driver in the productivity-allocation-turnover chain for the observed spatial differences in woody, leaf and root biomass across the rainfall gradient. Through a systematic assessment of forest productivity we demonstrate the importance of directly measuring the main components of above and belowground NPP and encourage the establishment of more permanent carbon intensive monitoring plots across the tropics. © 2017 John Wiley & Sons Ltd.

  1. Reviews and syntheses: Field data to benchmark the carbon cycle models for tropical forests

    Science.gov (United States)

    Clark, Deborah A.; Asao, Shinichi; Fisher, Rosie; Reed, Sasha; Reich, Peter B.; Ryan, Michael G.; Wood, Tana E.; Yang, Xiaojuan

    2017-10-01

    For more accurate projections of both the global carbon (C) cycle and the changing climate, a critical current need is to improve the representation of tropical forests in Earth system models. Tropical forests exchange more C, energy, and water with the atmosphere than any other class of land ecosystems. Further, tropical-forest C cycling is likely responding to the rapid global warming, intensifying water stress, and increasing atmospheric CO2 levels. Projections of the future C balance of the tropics vary widely among global models. A current effort of the modeling community, the ILAMB (International Land Model Benchmarking) project, is to compile robust observations that can be used to improve the accuracy and realism of the land models for all major biomes. Our goal with this paper is to identify field observations of tropical-forest ecosystem C stocks and fluxes, and of their long-term trends and climatic and CO2 sensitivities, that can serve this effort. We propose criteria for reference-level field data from this biome and present a set of documented examples from old-growth lowland tropical forests. We offer these as a starting point towards the goal of a regularly updated consensus set of benchmark field observations of C cycling in tropical forests.

  2. Carbon cycle dynamics within Oregon’s urban-suburban-forested-agricultural landscapes

    Energy Technology Data Exchange (ETDEWEB)

    Law, Beverly E. [Oregon State Univ., Corvallis, OR (United States); Still, Christopher Jason [Oregon State Univ., Corvallis, OR (United States); Schmidt, Andres [Oregon State Univ., Corvallis, OR (United States)

    2017-06-15

    Our overarching goal was to develop and utilize an observation-based analysis framework to assess interactions between climate and mosaics of land use, land cover and urbanization on regional carbon, water, and energy dynamics, and potential changes associated with land management and climate. Carbon, water and energy cycling was quantified for the range of current and potential land uses under present and future climates. The study region of Oregon has a strong climatic gradient from the coastal mesic forests (2500mm ppt) to the Willamette Valley, Cascade Mountains, and the Northern Great Basin semi-arid “cold desert” to the east (300 mm). The study was focused on the effects of (1) conversion of semi-arid sagebrush and Willamette Valley agricultural crops to bioenergy production; (2) afforestation of idle land and rangelands deemed suitable for forests or poplar crops under future climate conditions. We found that net ecosystem production (NEP), the net of ecosystem photosynthesis and respiration, was 10 times higher in the high biomass forests of the Coast Range compared with drier regions like sagebrush in the Northern Great Basin, which was nearly zero (Schmidt et al. 2016). The state total NEP averaged about 30 teragrams carbon (Tg C) per year for the years 2012 to 2014 using our model framework that we developed for predictions of current and future NEP, and compared well with our detailed inventory estimates (28 Tg C annual average for 2011-2015 for forests only; Law et al. 2017). Running our model framework until the year 2050, we found that climate alone only increased NEP by less than 1 Tg C per decade (~3%) using the current trajectory of carbon dioxide emissions, however, changes are expected to be more rapid in subsequent years. We evaluated the possibility of land use change from grass seed crops to poplar for bioenergy, which slightly increased NEP by 2050. The most important variable for carbon sequestration estimates (net carbon sources and

  3. Estimating forest carbon stocks in tropical dry forests of Zimbabwe ...

    African Journals Online (AJOL)

    Estimation and mapping of forest dendrometric characteristics such as carbon stocks using remote sensing techniques is fundamental for improved understanding of the role of forests in the carbon cycle and climate change. In this study, we tested whether and to what extent spectral transforms, i.e. vegetation indices ...

  4. Contributions of Ectomycorrhizal Fungal Mats to Forest Soil Carbon Cycles

    Science.gov (United States)

    Kluber, L. A.; Phillips, C. L.; Myrold, D. D.; Bond, B. J.

    2008-12-01

    Ectomycorrhizal (EM) fungi are a prominent and ubiquitous feature of forest soils, forming symbioses with most tree species, yet little is known about the magnitude of their impact on forest carbon cycles. A subset of EM fungi form dense, perennial aggregations of hyphae, which have elevated respiration rates compared with neighboring non-mat soils. These mats are a foci of EM activity and thereby a natural laboratory for examining how EM fungi impact forest soils. In order to constrain the contributions of EM fungi to forest soil respiration, we quantified the proportion of respiration derived from EM mat soils in an old-growth Douglas-fir stand in western Oregon. One dominant genus of mat-forming fungi, Piloderma, covered 56% of the soil surface area. Piloderma mats were monitored for respiration rates over 15 months and found to have on average 10% higher respiration than non-mat soil. At the stand level, this amounts to roughly 6% of soil respiration due to the presence of Piloderma mats. We calculate that these mats may constitute 27% of autotrophic respiration, based on respiration rates from trenched plots in a neighboring forest stand. Furthermore, enzyme activity and microbial community profiles in mat and non-mat soil provide evidence that specialized communities utilizing chitin contribute to this increased efflux. With 60% higher chitinase activity in mats, the breakdown of chitin is likely an important carbon flux while providing carbon and nitrogen to the microbial communities associated with mats. Quantitative PCR showed similar populations of fungi and bacteria in mat and non-mat soils; however, community analysis revealed distinct fungal and bacterial communities in the two soil types. The higher respiration associated with EM mats does not appear to be due only to a proliferation of EM fungi, but to a shift in overall community composition to organisms that efficiently utilize the unique resources available within the mat, including plant and

  5. Life cycle impacts of forest management and wood utilization on carbon mitigation : knowns and unknowns

    Science.gov (United States)

    Bruce Lippke; Elaine Oneil; Rob Harrison; Kenneth Skog; Leif Gustavsson; Roger Sathre

    2011-01-01

    This review on research on life cycle carbon accounting examines the complexities in accounting for carbon emissions given the many different ways that wood is used. Recent objectives to increase the use of renewable fuels have raised policy questions, with respect to the sustainability of managing our forests as well as the impacts of how best to use wood from our...

  6. Simulating the impacts of disturbances on forest carbon cycling in North America: processes, data, models, and challenges

    Science.gov (United States)

    Shuguang Liu; Ben Bond-Lamberty; Jeffrey A. Hicke; Rodrigo Vargas; Shuqing Zhao; Jing Chen; Steven L. Edburg; Yueming Hu; Jinxun Liu; A. David McGuire; Jingfeng Xiao; Robert Keane; Wenping Yuan; Jianwu Tang; Yiqi Luo; Christopher Potter; Jennifer Oeding

    2011-01-01

    Forest disturbances greatly alter the carbon cycle at various spatial and temporal scales. It is critical to understand disturbance regimes and their impacts to better quantify regional and global carbon dynamics. This review of the status and major challenges in representing the impacts of disturbances in modeling the carbon dynamics across North America revealed some...

  7. Society and the Carbon Cycle: A Social Science Perspective

    Science.gov (United States)

    Romero-Lankao, P.

    2017-12-01

    Societal activities, actions, and practices affect the carbon cycle and the climate of North America in complex ways. Carbon is a key component for the functioning of croplands, grasslands, forests. Carbon fuels our industry, transportation (vehicles and roadways), buildings, and other structures. Drawing on results from the SOCCR-2, this presentation uses a social science perspective to address three scientific questions. How do human actions and activities affect the carbon cycle? How human systems such as cities, agricultural field and forests are affected by changes in the carbon cycle? How is carbon management enabled and constraint by socio-political dynamics?

  8. Piecing together the fragments: Elucidating edge effects on forest carbon dynamics

    Science.gov (United States)

    Hutyra, L.; Smith, I. A.; Reinmann, A.; Marrs, J.; Thompson, J.

    2017-12-01

    Forest fragmentation is pervasive throughout the world's forests, impacting growing conditions and carbon dynamics through edge effects that produce gradients in microclimate, biogeochemistry, and stand structure. Despite the majority of the world's forests being biome, but current forest carbon accounting methods and ecosystem models largely do not include edge effects, highlighting an important gap in our understanding of the terrestrial carbon cycle. Characterizing the role of forest fragmentation in regional and global biogeochemical cycles necessitates advancing our understanding of how shifts in microenvironment at the forest edge interact with local prevailing drivers of global change and limitations to microbial activity and forest growth. This study synthesizes the literature related to edge effects and the carbon cycle, considering how fragmentation affects the growing conditions of the world's remaining forests based on risks and opportunities for forests near the edge.

  9. Hydrological effects on carbon cycles of Canada's forests and wetlands

    International Nuclear Information System (INIS)

    Ju, Weimin; Chen, Jing M.; Black, T. Andrew; Barr, Alan G.; Mccaughey, Harry; Roulet, Nigel T.

    2006-01-01

    The hydrological cycle has significant effects on the terrestrial carbon (C) balance through its controls on photosynthesis and C decomposition. A detailed representation of the water cycle in terrestrial C cycle models is essential for reliable estimates of C budgets. However, it is challenging to accurately describe the spatial and temporal variations of soil water, especially for regional and global applications. Vertical and horizontal movements of soil water should be included. To constrain the hydrology-related uncertainty in modelling the regional C balance, a three-dimensional hydrological module was incorporated into the Integrated Terrestrial Ecosystem Carbon-budget model (InTEC V3.0). We also added an explicit parameterization of wetlands. The inclusion of the hydrological module considerably improved the model's ability to simulate C content and balances in different ecosystems. Compared with measurements at five flux-tower sites, the model captured 85% and 82% of the variations in volumetric soil moisture content in the 0-10 cm and 10-30 cm depths during the growing season and 84% of the interannual variability in the measured C balance. The simulations showed that lateral subsurface water redistribution is a necessary mechanism for simulating water table depth for both poorly drained forest and peatland sites. Nationally, soil C content and their spatial variability are significantly related to drainage class. Poorly drained areas are important C sinks at the regional scale, however, their soil C content and balances are difficult to model and may have been inadequately represented in previous C cycle models. The InTEC V3.0 model predicted an annual net C uptake by Canada's forests and wetlands for the period 1901-1998 of 111.9 Tg C/yr, which is 41.4 Tg C/yr larger than our previous estimate (InTEC V2.0). The increase in the net C uptake occurred mainly in poorly drained regions and resulted from the inclusion of a separate wetland parameterization

  10. Assimilation of repeated woody biomass observations constrains decadal ecosystem carbon cycle uncertainty in aggrading forests

    Science.gov (United States)

    Smallman, T. L.; Exbrayat, J.-F.; Mencuccini, M.; Bloom, A. A.; Williams, M.

    2017-03-01

    Forest carbon sink strengths are governed by plant growth, mineralization of dead organic matter, and disturbance. Across landscapes, remote sensing can provide information about aboveground states of forests and this information can be linked to models to estimate carbon cycling in forests close to steady state. For aggrading forests this approach is more challenging and has not been demonstrated. Here we apply a Bayesian approach, linking a simple model to a range of data, to evaluate their information content, for two aggrading forests. We compare high information content analyses using local observations with retrievals using progressively sparser remotely sensed information (repeated, single, and no woody biomass observations). The net biome productivity of both forests is constrained to be a net sink with litter dynamics at one forest, while at the second forest total dead organic matter estimates are within observational uncertainty. The uncertainty of retrieved ecosystem traits in the repeated biomass analysis is reduced by up to 50% compared to analyses with less biomass information. This study quantifies the importance of repeated woody observations in constraining the dynamics of both wood and dead organic matter, highlighting the benefit of proposed remote sensing missions.

  11. Accounting for forest carbon pool dynamics in product carbon footprints: Challenges and opportunities

    International Nuclear Information System (INIS)

    Newell, Joshua P.; Vos, Robert O.

    2012-01-01

    Modification and loss of forests due to natural and anthropogenic disturbance contribute an estimated 20% of annual greenhouse gas (GHG) emissions worldwide. Although forest carbon pool modeling rarely suggests a ‘carbon neutral’ flux profile, the life cycle assessment community and associated product carbon footprint protocols have struggled to account for the GHG emissions associated with forestry, specifically, and land use generally. Principally, this is due to underdeveloped linkages between life cycle inventory (LCI) modeling for wood and forest carbon modeling for a full range of forest types and harvest practices, as well as a lack of transparency in globalized forest supply chains. In this paper, through a comparative study of U.S. and Chinese coated freesheet paper, we develop the initial foundations for a methodology that rescales IPCC methods from the national to the product level, with reference to the approaches in three international product carbon footprint protocols. Due to differences in geographic origin of the wood fiber, the results for two scenarios are highly divergent. This suggests that both wood LCI models and the protocols need further development to capture the range of spatial and temporal dimensions for supply chains (and the associated land use change and modification) for specific product systems. The paper concludes by outlining opportunities to measure and reduce uncertainty in accounting for net emissions of biogenic carbon from forestland, where timber is harvested for consumer products. - Highlights: ► Typical life cycle assessment practice for consumer products often excludes significant land use change emissions when estimating carbon footprints. ► The article provides a methodology to rescale IPCC guidelines for product-level carbon footprints. ► Life cycle inventories and product carbon footprint protocols need more comprehensive land use-related accounting. ► Interdisciplinary collaboration linking the LCA and

  12. Carbon-nitrogen interactions in forest ecosystems

    DEFF Research Database (Denmark)

    Gundersen, Per; Berg, Bjørn; Currie, W.S.

    This report is a summary of the main results from the EU project “Carbon – Nitrogen Interactions in Forest Ecosystems” (CNTER). Since carbon (C) and nitrogen (N) are bound together in organic matter we studied both the effect of N deposition on C cycling in forest ecosystems, and the effect of C ...

  13. Can we produce carbon and climate neutral forest bioenergy?

    OpenAIRE

    Repo, Anna; Tuovinen, Juha Pekka; Liski, Jari

    2015-01-01

    Harvesting branches, stumps and unmercantable tops, in addition to stem wood, decreases the carbon input to the soil and consequently reduces the forest carbon stock. We examine the changes in the forest carbon cycle that would compensate for this carbon loss over a rotation period and lead to carbon neutral forest residue bioenergy systems. In addition, we analyse the potential climate impact of these carbon neutral systems. In a boreal forest, the carbon loss was compensated for with a 10% ...

  14. Long-term variability and environmental control of the carbon cycle in an oak-dominated temperate forest

    Science.gov (United States)

    Jing Xie; Jiquan Chen; Ge Sun; Housen Chu; Asko Noormets; Zutao Ouyang; Ranjeet John; Shiqiang Wan; Wenbin Guan

    2014-01-01

    Our understanding of the long-term carbon (C) cycle of temperate deciduous forests and its sensitivity to climate variability is limited due to the large temporal dynamics of C fluxes. The goal of the study was to quantify the effects of environmental variables on the C balance in a 70-year-old mixed-oak woodland forest over a 7-year period in northwest Ohio, USA. The...

  15. Carbon Dioxide Effects Research and Assessment Program. The role of tropical forests on the world carbon cycle

    Energy Technology Data Exchange (ETDEWEB)

    Brown, S.; Lugo, A. E.; Liegel, B. [eds.

    1980-08-01

    Tropical forests constitute about half of the world's forest and are characterized by rapid rates of organic matter turnover and high storages of organic matter. Tropical forests are considered to be one of the most significant terrestrial elements in the equation that balances the carbon cycle of the world. As discussed in the paper by Tosi, tropical and subtropical latitudes are more complex in terms of climate and vegetation composition than temperate and boreal latitudes. The implications of the complexity of the tropics and the disregard of this complexity by many scientists is made evident in the paper by Brown and Lugo which shows that biomass estimates for tropical ecosystems have been overestimated by at least 100%. The paper by Brown shows that that rates of succession in the tropics are extremely rapid in terms of the ability of moist and wet forests to accumulate organic matter. Yet, in arid tropical Life Zones succession is slow. This leads to the idea that the question of whether tropical forests are sinks or sources of carbon must be analyzed in relation to Life Zones and to intensities of human activity in these Zones. The paper by Lugo presents conceptual models to illustrate this point and the paper by Tosi shows how land uses in the tropics also correspond to Life Zone characteristics. The ultimate significance of land use to the question of the carbon balance in a large region is addressed in the paper by Detwiler and Hall.

  16. Carbon footprint of forest and tree utilization technologies in life cycle approach

    Science.gov (United States)

    Polgár, András; Pécsinger, Judit

    2017-04-01

    In our research project a suitable method has been developed related the technological aspect of the environmental assessment of land use changes caused by climate change. We have prepared an eco-balance (environmental inventory) to the environmental effects classification in life-cycle approach in connection with the typical agricultural / forest and tree utilization technologies. The use of balances and environmental classification makes possible to compare land-use technologies and their environmental effects per common functional unit. In order to test our environmental analysis model, we carried out surveys in sample of forest stands. We set up an eco-balance of the working systems of intermediate cutting and final harvest in the stands of beech, oak, spruce, acacia, poplar and short rotation energy plantations (willow, poplar). We set up the life-cycle plan of the surveyed working systems by using the GaBi 6.0 Professional software and carried out midpoint and endpoint impact assessment. Out of the results, we applied the values of CML 2001 - Global Warming Potential (GWP 100 years) [kg CO2-Equiv.] and Eco-Indicator 99 - Human health, Climate Change [DALY]. On the basis of the values we set up a ranking of technology. By this, we received the environmental impact classification of the technologies based on carbon footprint. The working systems had the greatest impact on global warming (GWP 100 years) throughout their whole life cycle. This is explained by the amount of carbon dioxide releasing to the atmosphere resulting from the fuel of the technologies. Abiotic depletion (ADP foss) and marine aquatic ecotoxicity (MAETP) emerged also as significant impact categories. These impact categories can be explained by the share of input of fuel and lube. On the basis of the most significant environmental impact category (carbon footprint), we perform the relative life cycle contribution and ranking of each technologies. The technological life cycle stages examined

  17. Managing carbon sequestration and storage in northern hardwood forests

    Science.gov (United States)

    Eunice A. Padley; Deahn M. Donner; Karin S. Fassnacht; Ronald S. Zalesny; Bruce Birr; Karl J. Martin

    2011-01-01

    Carbon has an important role in sustainable forest management, contributing to functions that maintain site productivity, nutrient cycling, and soil physical properties. Forest management practices can alter ecosystem carbon allocation as well as the amount of total site carbon.

  18. A tree-ring perspective on the terrestrial carbon cycle

    International Nuclear Information System (INIS)

    Babst, F.; Alexander, M.R.; Szejner, P.; Trouet, V.; Alexander, M.R.; Moore, D.J.P.; Bouriaud, O.; Klesse, S.; Frank, D.; Roden, J.; Ciais, P.; Poulter, B.

    2014-01-01

    Tree-ring records can provide valuable information to advance our understanding of contemporary terrestrial carbon cycling and to reconstruct key metrics in the decades preceding monitoring data. The growing use of tree rings in carbon-cycle research is being facilitated by increasing recognition of reciprocal benefits among research communities. Yet, basic questions persist regarding what tree rings represent at the ecosystem level, how to optimally integrate them with other data streams, and what related challenges need to be overcome. It is also apparent that considerable unexplored potential exists for tree rings to refine assessments of terrestrial carbon cycling across a range of temporal and spatial domains. Here, we summarize recent advances and highlight promising paths of investigation with respect to (1) growth phenology, (2) forest productivity trends and variability, (3) CO 2 fertilization and water-use efficiency, (4) forest disturbances, and (5) comparisons between observational and computational forest productivity estimates. We encourage the integration of tree-ring data: with eddy-covariance measurements to investigate carbon allocation patterns and water-use efficiency; with remotely sensed observations to distinguish the timing of cambial growth and leaf phenology; and with forest inventories to develop continuous, annually resolved and long-term carbon budgets. In addition, we note the potential of tree-ring records and derivatives thereof to help evaluate the performance of earth system models regarding the simulated magnitude and dynamics of forest carbon uptake, and inform these models about growth responses to (non-)climatic drivers. Such efforts are expected to improve our understanding of forest carbon cycling and place current developments into a long-term perspective. (authors)

  19. Use of Landsat-based monitoring of forest change to sample and assess the role of disturbance and regrowth in the carbon cycle at continental scales

    Science.gov (United States)

    Warren B. Cohen; Sean P. Healey; Samuel Goward; Gretchen G. Moisen; Jeffrey G. Masek; Robert E. Kennedy; Scott L. Powell; Chengquan Huang; Nancy Thomas; Karen Schleeweis; Michael A. Wulder

    2007-01-01

    The exchange of carbon between forests and the atmosphere is a function of forest type, climate, and disturbance history, with previous studies illustrating that forests play a key role in the terrestrial carbon cycle. The North American Carbon Program (NACP) has supported the acquisition of biennial Landsat image time-series for sample locations throughout much of...

  20. Lianas reduce carbon accumulation and storage in tropical forests.

    Science.gov (United States)

    van der Heijden, Geertje M F; Powers, Jennifer S; Schnitzer, Stefan A

    2015-10-27

    Tropical forests store vast quantities of carbon, account for one-third of the carbon fixed by photosynthesis, and are a major sink in the global carbon cycle. Recent evidence suggests that competition between lianas (woody vines) and trees may reduce forest-wide carbon uptake; however, estimates of the impact of lianas on carbon dynamics of tropical forests are crucially lacking. Here we used a large-scale liana removal experiment and found that, at 3 y after liana removal, lianas reduced net above-ground carbon uptake (growth and recruitment minus mortality) by ∼76% per year, mostly by reducing tree growth. The loss of carbon uptake due to liana-induced mortality was four times greater in the control plots in which lianas were present, but high variation among plots prevented a significant difference among the treatments. Lianas altered how aboveground carbon was stored. In forests where lianas were present, the partitioning of forest aboveground net primary production was dominated by leaves (53.2%, compared with 39.2% in liana-free forests) at the expense of woody stems (from 28.9%, compared with 43.9%), resulting in a more rapid return of fixed carbon to the atmosphere. After 3 y of experimental liana removal, our results clearly demonstrate large differences in carbon cycling between forests with and without lianas. Combined with the recently reported increases in liana abundance, these results indicate that lianas are an important and increasing agent of change in the carbon dynamics of tropical forests.

  1. Old-growth forests can accumulate carbon in soils

    Science.gov (United States)

    Zhou, G.; Liu, S.; Li, Z.; Zhang, Dongxiao; Tang, X.; Zhou, C.; Yan, J.; Mo, J.

    2006-01-01

    Old-growth forests have traditionally been considered negligible as carbon sinks because carbon uptake has been thought to be balanced by respiration. We show that the top 20-centimeter soil layer in preserved old-growth forests in southern China accumulated atmospheric carbon at an unexpectedly high average rate of 0.61 megagrams of carbon hectare-1 year-1 from 1979 to 2003. This study suggests that the carbon cycle processes in the belowground system of these forests are changing in response to the changing environment. The result directly challenges the prevailing belief in ecosystem ecology regarding carbon budget in old-growth forests and supports the establishment of a new, nonequilibrium conceptual framework to study soil carbon dynamics.

  2. The relative contributions of forest growth and areal expansion to forest biomass carbon

    Science.gov (United States)

    P. Li; J. Zhu; H. Hu; Z. Guo; Y. Pan; R. Birdsey; J. Fang

    2016-01-01

    Forests play a leading role in regional and global terrestrial carbon (C) cycles. Changes in C sequestration within forests can be attributed to areal expansion (increase in forest area) and forest growth (increase in biomass density). Detailed assessment of the relative contributions of areal expansion and forest growth to C sinks is crucial to reveal the mechanisms...

  3. Benchmark carbon stocks from old-growth forests in northern New England, USA

    Science.gov (United States)

    Coeli M. Hoover; William B. Leak; Brian G. Keel

    2012-01-01

    Forests world-wide are recognized as important components of the global carbon cycle. Carbon sequestration has become a recognized forest management objective, but the full carbon storage potential of forests is not well understood. The premise of this study is that old-growth forests can be expected to provide a reasonable estimate of the upper limits of carbon...

  4. Forest carbon accounting methods and the consequences of forest bioenergy for national greenhouse gas emissions inventories

    International Nuclear Information System (INIS)

    McKechnie, Jon; Colombo, Steve; MacLean, Heather L.

    2014-01-01

    Highlights: • Forest carbon accounting influences the national GHG inventory impacts of bioenergy. • Current accounting rules may overlook forest carbon trade-offs of bioenergy. • Wood pellet trade risks creating an emissions burden for exporting countries. - Abstract: While bioenergy plays a key role in strategies for increasing renewable energy deployment, studies assessing greenhouse gas (GHG) emissions from forest bioenergy systems have identified a potential trade-off of the system with forest carbon stocks. Of particular importance to national GHG inventories is how trade-offs between forest carbon stocks and bioenergy production are accounted for within the Agriculture, Forestry and Other Land Use (AFOLU) sector under current and future international climate change mitigation agreements. Through a case study of electricity produced using wood pellets from harvested forest stands in Ontario, Canada, this study assesses the implications of forest carbon accounting approaches on net emissions attributable to pellets produced for domestic use or export. Particular emphasis is placed on the forest management reference level (FMRL) method, as it will be employed by most Annex I nations in the next Kyoto Protocol Commitment Period. While bioenergy production is found to reduce forest carbon sequestration, under the FMRL approach this trade-off may not be accounted for and thus not incur an accountable AFOLU-related emission, provided that total forest harvest remains at or below that defined under the FMRL baseline. In contrast, accounting for forest carbon trade-offs associated with harvest for bioenergy results in an increase in net GHG emissions (AFOLU and life cycle emissions) lasting 37 or 90 years (if displacing coal or natural gas combined cycle generation, respectively). AFOLU emissions calculated using the Gross-Net approach are dominated by legacy effects of past management and natural disturbance, indicating near-term net forest carbon increase but

  5. Estimating the carbon budget and maximizing future carbon uptake for a temperate forest region in the U.S.

    Science.gov (United States)

    2012-01-01

    Background Forests of the Midwest U.S. provide numerous ecosystem services. Two of these, carbon sequestration and wood production, are often portrayed as conflicting. Currently, carbon management and biofuel policies are being developed to reduce atmospheric CO2 and national dependence on foreign oil, and increase carbon storage in ecosystems. However, the biological and industrial forest carbon cycles are rarely studied in a whole-system structure. The forest system carbon balance is the difference between the biological (net ecosystem production) and industrial (net emissions from forest industry) forest carbon cycles, but to date this critical whole system analysis is lacking. This study presents a model of the forest system, uses it to compute the carbon balance, and outlines a methodology to maximize future carbon uptake in a managed forest region. Results We used a coupled forest ecosystem process and forest products life cycle inventory model for a regional temperate forest in the Midwestern U.S., and found the net system carbon balance for this 615,000 ha forest was positive (2.29 t C ha-1 yr-1). The industrial carbon budget was typically less than 10% of the biological system annually, and averaged averaged 0.082 t C ha-1 yr-1. Net C uptake over the next 100-years increased by 22% or 0.33 t C ha-1 yr-1 relative to the current harvest rate in the study region under the optized harvest regime. Conclusions The forest’s biological ecosystem current and future carbon uptake capacity is largely determined by forest harvest practices that occurred over a century ago, but we show an optimized harvesting strategy would increase future carbon sequestration, or wood production, by 20-30%, reduce long transportation chain emissions, and maintain many desirable stand structural attributes that are correlated to biodiversity. Our results for this forest region suggest that increasing harvest over the next 100 years increases the strength of

  6. Estimating the carbon budget and maximizing future carbon uptake for a temperate forest region in the U.S.

    Directory of Open Access Journals (Sweden)

    Peckham Scott D

    2012-06-01

    Full Text Available Abstract Background Forests of the Midwest U.S. provide numerous ecosystem services. Two of these, carbon sequestration and wood production, are often portrayed as conflicting. Currently, carbon management and biofuel policies are being developed to reduce atmospheric CO2 and national dependence on foreign oil, and increase carbon storage in ecosystems. However, the biological and industrial forest carbon cycles are rarely studied in a whole-system structure. The forest system carbon balance is the difference between the biological (net ecosystem production and industrial (net emissions from forest industry forest carbon cycles, but to date this critical whole system analysis is lacking. This study presents a model of the forest system, uses it to compute the carbon balance, and outlines a methodology to maximize future carbon uptake in a managed forest region. Results We used a coupled forest ecosystem process and forest products life cycle inventory model for a regional temperate forest in the Midwestern U.S., and found the net system carbon balance for this 615,000 ha forest was positive (2.29 t C ha-1 yr-1. The industrial carbon budget was typically less than 10% of the biological system annually, and averaged averaged 0.082 t C ha-1 yr-1. Net C uptake over the next 100-years increased by 22% or 0.33 t C ha-1 yr-1 relative to the current harvest rate in the study region under the optized harvest regime. Conclusions The forest’s biological ecosystem current and future carbon uptake capacity is largely determined by forest harvest practices that occurred over a century ago, but we show an optimized harvesting strategy would increase future carbon sequestration, or wood production, by 20-30%, reduce long transportation chain emissions, and maintain many desirable stand structural attributes that are correlated to biodiversity. Our results for this forest region suggest that increasing harvest over the next 100

  7. Differences in ecosystem carbon distribution and nutrient cycling linked to forest tree species composition in a mid-successional boreal forest

    Science.gov (United States)

    Melvin, April M.; Mack, Michelle C.; Johnstone, Jill F.; McGuire, A. David; Genet, Helene; Schuur, Edward A.G.

    2015-01-01

    In the boreal forest of Alaska, increased fire severity associated with climate change is expanding deciduous forest cover in areas previously dominated by black spruce (Picea mariana). Needle-leaf conifer and broad-leaf deciduous species are commonly associated with differences in tree growth, carbon (C) and nutrient cycling, and C accumulation in soils. Although this suggests that changes in tree species composition in Alaska could impact C and nutrient pools and fluxes, few studies have measured these linkages. We quantified C, nitrogen, phosphorus, and base cation pools and fluxes in three stands of black spruce and Alaska paper birch (Betula neoalaskana) that established following a single fire event in 1958. Paper birch consistently displayed characteristics of more rapid C and nutrient cycling, including greater aboveground net primary productivity, higher live foliage and litter nutrient concentrations, and larger ammonium and nitrate pools in the soil organic layer (SOL). Ecosystem C stocks (aboveground + SOL + 0–10 cm mineral soil) were similar for the two species; however, in black spruce, 78% of measured C was found in soil pools, primarily in the SOL, whereas aboveground biomass dominated ecosystem C pools in birch forest. Radiocarbon analysis indicated that approximately one-quarter of the black spruce SOL C accumulated prior to the 1958 fire, whereas no pre-fire C was observed in birch soils. Our findings suggest that tree species exert a strong influence over C and nutrient cycling in boreal forest and forest compositional shifts may have long-term implications for ecosystem C and nutrient dynamics.

  8. Long-term carbon loss in fragmented Neotropical forests.

    Science.gov (United States)

    Pütz, Sandro; Groeneveld, Jürgen; Henle, Klaus; Knogge, Christoph; Martensen, Alexandre Camargo; Metz, Markus; Metzger, Jean Paul; Ribeiro, Milton Cezar; de Paula, Mateus Dantas; Huth, Andreas

    2014-10-07

    Tropical forests play an important role in the global carbon cycle, as they store a large amount of carbon (C). Tropical forest deforestation has been identified as a major source of CO2 emissions, though biomass loss due to fragmentation--the creation of additional forest edges--has been largely overlooked as an additional CO2 source. Here, through the combination of remote sensing and knowledge on ecological processes, we present long-term carbon loss estimates due to fragmentation of Neotropical forests: within 10 years the Brazilian Atlantic Forest has lost 69 (±14) Tg C, and the Amazon 599 (±120) Tg C due to fragmentation alone. For all tropical forests, we estimate emissions up to 0.2 Pg C y(-1) or 9 to 24% of the annual global C loss due to deforestation. In conclusion, tropical forest fragmentation increases carbon loss and should be accounted for when attempting to understand the role of vegetation in the global carbon balance.

  9. Simulating carbon and water cycles of larch forests in East Asia by the BIOME-BGC model with AsiaFlux data

    Directory of Open Access Journals (Sweden)

    M. Ueyama

    2010-03-01

    Full Text Available Larch forests are widely distributed across many cool-temperate and boreal regions, and they are expected to play an important role in global carbon and water cycles. Model parameterizations for larch forests still contain large uncertainties owing to a lack of validation. In this study, a process-based terrestrial biosphere model, BIOME-BGC, was tested for larch forests at six AsiaFlux sites and used to identify important environmental factors that affect the carbon and water cycles at both temporal and spatial scales.

    The model simulation performed with the default deciduous conifer parameters produced results that had large differences from the observed net ecosystem exchange (NEE, gross primary productivity (GPP, ecosystem respiration (RE, and evapotranspiration (ET. Therefore, we adjusted several model parameters in order to reproduce the observed rates of carbon and water cycle processes. This model calibration, performed using the AsiaFlux data, substantially improved the model performance. The simulated annual GPP, RE, NEE, and ET from the calibrated model were highly consistent with observed values.

    The observed and simulated GPP and RE across the six sites were positively correlated with the annual mean air temperature and annual total precipitation. On the other hand, the simulated carbon budget was partly explained by the stand disturbance history in addition to the climate. The sensitivity study indicated that spring warming enhanced the carbon sink, whereas summer warming decreased it across the larch forests. The summer radiation was the most important factor that controlled the carbon fluxes in the temperate site, but the VPD and water conditions were the limiting factors in the boreal sites. One model parameter, the allocation ratio of carbon between belowground and aboveground, was site-specific, and it was negatively correlated with the annual climate of annual mean air temperature and total precipitation

  10. Simulating carbon and water cycles of larch forests in East Asia by the BIOME-BGC model with AsiaFlux data

    Science.gov (United States)

    Ueyama, M.; Ichii, K.; Hirata, R.; Takagi, K.; Asanuma, J.; Machimura, T.; Nakai, Y.; Ohta, T.; Saigusa, N.; Takahashi, Y.; Hirano, T.

    2010-03-01

    Larch forests are widely distributed across many cool-temperate and boreal regions, and they are expected to play an important role in global carbon and water cycles. Model parameterizations for larch forests still contain large uncertainties owing to a lack of validation. In this study, a process-based terrestrial biosphere model, BIOME-BGC, was tested for larch forests at six AsiaFlux sites and used to identify important environmental factors that affect the carbon and water cycles at both temporal and spatial scales. The model simulation performed with the default deciduous conifer parameters produced results that had large differences from the observed net ecosystem exchange (NEE), gross primary productivity (GPP), ecosystem respiration (RE), and evapotranspiration (ET). Therefore, we adjusted several model parameters in order to reproduce the observed rates of carbon and water cycle processes. This model calibration, performed using the AsiaFlux data, substantially improved the model performance. The simulated annual GPP, RE, NEE, and ET from the calibrated model were highly consistent with observed values. The observed and simulated GPP and RE across the six sites were positively correlated with the annual mean air temperature and annual total precipitation. On the other hand, the simulated carbon budget was partly explained by the stand disturbance history in addition to the climate. The sensitivity study indicated that spring warming enhanced the carbon sink, whereas summer warming decreased it across the larch forests. The summer radiation was the most important factor that controlled the carbon fluxes in the temperate site, but the VPD and water conditions were the limiting factors in the boreal sites. One model parameter, the allocation ratio of carbon between belowground and aboveground, was site-specific, and it was negatively correlated with the annual climate of annual mean air temperature and total precipitation. Although this study substantially

  11. [Simulation of carbon cycle in Qianyanzhou artificial masson pine forest ecosystem and sensitivity analysis of model parameters].

    Science.gov (United States)

    Wang, Yuan; Zhang, Na; Yu, Gui-rui

    2010-07-01

    By using modified carbon-water cycle model EPPML (ecosystem productivity process model for landscape), the carbon absorption and respiration in Qianyanzhou artificial masson pine forest ecosystem in 2003 and 2004 were simulated, and the sensitivity of the model parameters was analyzed. The results showed that EPPML could effectively simulate the carbon cycle process of this ecosystem. The simulated annual values and the seasonal variations of gross primary productivity (GPP), net ecosystem productivity (NEP), and ecosystem respiration (Re) not only fitted well with the measured data, but also reflected the major impacts of extreme weather on carbon flows. The artificial masson pine forest ecosystem in Qianyanzhou was a strong carbon sink in both 2003 and 2004. Due to the coupling of high temperature and severe drought in the growth season in 2003, the carbon absorption in 2003 was lower than that in 2004. The annual NEP in 2003 and 2004 was 481.8 and 516.6 g C x m(-2) x a(-1), respectively. The key climatic factors giving important impacts on the seasonal variations of carbon cycle were solar radiation during early growth season, drought during peak growth season, and precipitation during post-peak growth season. Autotrophic respiration (Ra) and net primary productivity (NPP) had the similar seasonal variations. Soil heterotrophic respiration (Rh) was mainly affected by soil temperature at yearly scale, and by soil water content at monthly scale. During wet growth season, the higher the soil water content, the lower the Rh was; during dry growth season, the higher the precipitation during the earlier two months, the higher the Rh was. The maximum RuBP carboxylation rate at 25 degrees C (Vm25), specific leaf area (SLA), maximum leaf nitrogen content (LNm), average leaf nitrogen content (LN), and conversion coefficient of biomass to carbon (C/B) had the greatest influence on annual NEP. Different carbon cycle process could have different responses to sensitive

  12. Forest soil carbon is threatened by intensive biomass harvesting.

    Science.gov (United States)

    Achat, David L; Fortin, Mathieu; Landmann, Guy; Ringeval, Bruno; Augusto, Laurent

    2015-11-04

    Forests play a key role in the carbon cycle as they store huge quantities of organic carbon, most of which is stored in soils, with a smaller part being held in vegetation. While the carbon storage capacity of forests is influenced by forestry, the long-term impacts of forest managers' decisions on soil organic carbon (SOC) remain unclear. Using a meta-analysis approach, we showed that conventional biomass harvests preserved the SOC of forests, unlike intensive harvests where logging residues were harvested to produce fuelwood. Conventional harvests caused a decrease in carbon storage in the forest floor, but when the whole soil profile was taken into account, we found that this loss in the forest floor was compensated by an accumulation of SOC in deeper soil layers. Conversely, we found that intensive harvests led to SOC losses in all layers of forest soils. We assessed the potential impact of intensive harvests on the carbon budget, focusing on managed European forests. Estimated carbon losses from forest soils suggested that intensive biomass harvests could constitute an important source of carbon transfer from forests to the atmosphere (142-497 Tg-C), partly neutralizing the role of a carbon sink played by forest soils.

  13. Criterion 5: Maintenance of forest contributions to global carbon cycles

    Science.gov (United States)

    Stephen R. Shifley; Francisco X. Aguilar; Nianfu Song; Susan I. Stewart; David J. Nowak; Dale D. Gormanson; W. Keith Moser; Sherri Wormstead; Eric J. Greenfield

    2012-01-01

    Northern forests cover more than 42 percent of the region and are enormous reservoirs of carbon. Through photosynthesis, live trees emit oxygen in exchange for carbon dioxide they pull from the atmosphere. As a tree grows it stores carbon in wood above and below ground, and sequestered carbon comprises about half of its dry weight. Dead trees and down logs are also...

  14. Reducing uncertainty for estimating forest carbon stocks and dynamics using integrated remote sensing, forest inventory and process-based modeling

    Science.gov (United States)

    Poulter, B.; Ciais, P.; Joetzjer, E.; Maignan, F.; Luyssaert, S.; Barichivich, J.

    2015-12-01

    Accurately estimating forest biomass and forest carbon dynamics requires new integrated remote sensing, forest inventory, and carbon cycle modeling approaches. Presently, there is an increasing and urgent need to reduce forest biomass uncertainty in order to meet the requirements of carbon mitigation treaties, such as Reducing Emissions from Deforestation and forest Degradation (REDD+). Here we describe a new parameterization and assimilation methodology used to estimate tropical forest biomass using the ORCHIDEE-CAN dynamic global vegetation model. ORCHIDEE-CAN simulates carbon uptake and allocation to individual trees using a mechanistic representation of photosynthesis, respiration and other first-order processes. The model is first parameterized using forest inventory data to constrain background mortality rates, i.e., self-thinning, and productivity. Satellite remote sensing data for forest structure, i.e., canopy height, is used to constrain simulated forest stand conditions using a look-up table approach to match canopy height distributions. The resulting forest biomass estimates are provided for spatial grids that match REDD+ project boundaries and aim to provide carbon estimates for the criteria described in the IPCC Good Practice Guidelines Tier 3 category. With the increasing availability of forest structure variables derived from high-resolution LIDAR, RADAR, and optical imagery, new methodologies and applications with process-based carbon cycle models are becoming more readily available to inform land management.

  15. Forest bioenergy or forest carbon? Assessing trade-offs in greenhouse gas mitigation with wood-based fuels.

    Science.gov (United States)

    McKechnie, Jon; Colombo, Steve; Chen, Jiaxin; Mabee, Warren; MacLean, Heather L

    2011-01-15

    The potential of forest-based bioenergy to reduce greenhouse gas (GHG) emissions when displacing fossil-based energy must be balanced with forest carbon implications related to biomass harvest. We integrate life cycle assessment (LCA) and forest carbon analysis to assess total GHG emissions of forest bioenergy over time. Application of the method to case studies of wood pellet and ethanol production from forest biomass reveals a substantial reduction in forest carbon due to bioenergy production. For all cases, harvest-related forest carbon reductions and associated GHG emissions initially exceed avoided fossil fuel-related emissions, temporarily increasing overall emissions. In the long term, electricity generation from pellets reduces overall emissions relative to coal, although forest carbon losses delay net GHG mitigation by 16-38 years, depending on biomass source (harvest residues/standing trees). Ethanol produced from standing trees increases overall emissions throughout 100 years of continuous production: ethanol from residues achieves reductions after a 74 year delay. Forest carbon more significantly affects bioenergy emissions when biomass is sourced from standing trees compared to residues and when less GHG-intensive fuels are displaced. In all cases, forest carbon dynamics are significant. Although study results are not generalizable to all forests, we suggest the integrated LCA/forest carbon approach be undertaken for bioenergy studies.

  16. Coupled nutrient cycling determines tropical forest trajectory under elevated CO2.

    Science.gov (United States)

    Bouskill, N.; Zhu, Q.; Riley, W. J.

    2017-12-01

    Tropical forests have a disproportionate capacity to affect Earth's climate relative to their areal extent. Despite covering just 12 % of land surface, tropical forests account for 35 % of global net primary productivity and are among the most significant of terrestrial carbon stores. As atmospheric CO2 concentrations increase over the next century, the capacity of tropical forests to assimilate and sequester anthropogenic CO2 depends on limitation by multiple factors, including the availability of soil nutrients. Phosphorus availability has been considered to be the primary factor limiting metabolic processes within tropical forests. However, recent evidence points towards strong spatial and temporal co-limitation of tropical forests by both nitrogen and phosphorus. Here, we use the Accelerated Climate Modeling for Energy (ACME) Land Model (ALMv1-ECA-CNP) to examine how nutrient cycles interact and affect the trajectory of the tropical forest carbon sink under, (i) external nutrient input, (ii) climate (iii) elevated CO2, and (iv) a combination of 1-3. ALMv1 includes recent theoretical advances in representing belowground competition between roots, microbes and minerals for N and P uptake, explicit interactions between the nitrogen and phosphorus cycles (e.g., phosphatase production and nitrogen fixation), the dynamic internal allocation of plant N and P resources, and the integration of global datasets of plant physiological traits. We report nutrient fertilization (N, P, N+P) predictions for four sites in the tropics (El Verde, Puerto Rico, Barro Colorado Island, Panama, Manaus, Brazil and the Osa Peninsula, Coast Rica) to short-term nutrient fertilization (N, P, N+P), and benchmarking of the model against a meta-analysis of forest fertilization experiments. Subsequent simulations focus on the interaction of the carbon, nitrogen, and phosphorus cycles across the tropics with a focus on the implications of coupled nutrient cycling and the fate of the tropical

  17. Different types of nitrogen deposition show variable effects on the soil carbon cycle process of temperate forests.

    Science.gov (United States)

    Du, Yuhan; Guo, Peng; Liu, Jianqiu; Wang, Chunyu; Yang, Ning; Jiao, Zhenxia

    2014-10-01

    Nitrogen (N) deposition significantly affects the soil carbon (C) cycle process of forests. However, the influence of different types of N on it still remained unclear. In this work, ammonium nitrate was selected as an inorganic N (IN) source, while urea and glycine were chosen as organic N (ON) sources. Different ratios of IN to ON (1 : 4, 2 : 3, 3 : 2, 4 : 1, and 5 : 0) were mixed with equal total amounts and then used to fertilize temperate forest soils for 2 years. Results showed that IN deposition inhibited soil C cycle processes, such as soil respiration, soil organic C decomposition, and enzymatic activities, and induced the accumulation of recalcitrant organic C. By contrast, ON deposition promoted these processes. Addition of ON also resulted in accelerated transformation of recalcitrant compounds into labile compounds and increased CO2 efflux. Meanwhile, greater ON deposition may convert C sequestration in forest soils into C source. These results indicated the importance of the IN to ON ratio in controlling the soil C cycle, which can consequently change the ecological effect of N deposition. © 2014 John Wiley & Sons Ltd.

  18. Integrating invasive grasses into carbon cycle projections: Cogongrass spread in southern pine forests

    Science.gov (United States)

    McCabe, T. D.; Flory, S. L.; Wiesner, S.; Dietze, M.

    2017-12-01

    Forested ecosystems are currently being disrupted by invasive species. One example is the invasive grass Imperata cylindrica (cogongrass), which is widespread in southeastern US pine forests. Pines forests dominate the forest cover of the southeast, and contribute to making the Southeast the United States' largest carbon sink. Cogongrass decreases the colonization of loblolly pine fine roots. If cogongrass continues to invade,this sink could be jeopardized. However, the effects of cogongrass invasion on carbon sequestration are largely unknown. We have projected the effects of elevated CO2 and changing climate on future cogongrass invasion. To test how pine stands are affected by cogongrass, cogongrass invasions were modeled using the Ecosystem Demography 2 (ED2) model, and parameterized using the Predictive Ecosystem Analyzer (PEcAn). ED2 takes into account local meteorological data, stand populations and succession, disturbance, and geochemical pools. PEcAn is a workflow that uses Bayesian sensitivity analyses and variance decomposition to quantify the uncertainty that each parameter contributes to overall model uncertainty. ED2 was run for four NEON and Ameriflux sites in the Southeast from the earliest available census of the site into 2010. These model results were compared to site measures to test for model accuracy and bias. To project the effect of elevated CO2 on cogongrass invasions, ED was run from 2006-2100 at four sites under four separate scenarios: 1) RPC4.5 CO2 and climate, 2) RPC4.5 climate only, with constant CO2 concentrations, 3) RPC4.5 Elevated CO2 only, with climate randomly selected from 2006-2026, 4) Present Day, made from randomly selected measures of CO2 and radiation from 2006-2026. Each scenario was run three times; once with cogongrass absent, once with a low cogongrass abundance, and once with a high cogongrass abundance. Model results suggest that many relevant parameters have high uncertainty due to lack of measurement. Further field

  19. The impact of lianas on the carbon cycle of tropical forests: a modeling study using the Ecosystem Demography model

    Science.gov (United States)

    di Porcia e Brugnera, M.; Longo, M.; Verbeek, H.

    2017-12-01

    Lianas are an important component of tropical forests, constituting up to 40% of the woody stems and about 35% of the woody species. Tropical forests have been experiencing large-scale structural changes, including an increase in liana abundance and biomass. This may eventually reduce the projected carbon sink of tropical forests. Despite their crucial role no single terrestrial ecosystem model has included lianas so far. Here, we present the very first implementation of lianas in the Ecosystem Demography model (ED2). ED2 is able to represent the competition for water and light between different vegetation types at the regional level. Our new implementation of ED2 is hence suitable to address important questions such as the impact of lianas on the tropical forest carbon balance. We validated the model against forest inventory and eddy covariance flux data at a dry seasonal site (Barro Colorado Island, Panama), and at a wet rainforest site (Paracou, French Guiana). The model was able to represent size structure and carbon accumulation rates. We also evaluated the impact of the unique allocation strategy of lianas on their competitive ability. Lianas invest only a small fraction of their carbon for structural tissues when compared to trees. As a result, lianas benefit from an extra amount of available carbon, however the trade-offs of low allocation on structural tissues are not yet well understood. We are currently investigating a number of hypotheses, including the possibility for lianas to have high turnover rates for leaves and fine roots, or to have high mortality rates due to the loss of structural support when trees die. As such our model allows us to get a better understanding of the role of lianas in the tropical forest carbon cycle.

  20. Potential increases in natural disturbance rates could offset forest management impacts on ecosystem carbon stocks.

    Science.gov (United States)

    John B. Bradford; Nicholas R. Jensen; Grant M. Domke; Anthony W. D' Amato

    2013-01-01

    Forested ecosystems contain the majority of the world’s terrestrial carbon, and forest management has implications for regional and global carbon cycling. Carbon stored in forests changes with stand age and is affected by natural disturbance and timber harvesting. We examined how harvesting and disturbance interact to influence forest carbon stocks over the Superior...

  1. [Effects of climate change on forest soil organic carbon storage: a review].

    Science.gov (United States)

    Zhou, Xiao-yu; Zhang, Cheng-yi; Guo, Guang-fen

    2010-07-01

    Forest soil organic carbon is an important component of global carbon cycle, and the changes of its accumulation and decomposition directly affect terrestrial ecosystem carbon storage and global carbon balance. Climate change would affect the photosynthesis of forest vegetation and the decomposition and transformation of forest soil organic carbon, and further, affect the storage and dynamics of organic carbon in forest soils. Temperature, precipitation, atmospheric CO2 concentration, and other climatic factors all have important influences on the forest soil organic carbon storage. Understanding the effects of climate change on this storage is helpful to the scientific management of forest carbon sink, and to the feasible options for climate change mitigation. This paper summarized the research progress about the distribution of organic carbon storage in forest soils, and the effects of elevated temperature, precipitation change, and elevated atmospheric CO2 concentration on this storage, with the further research subjects discussed.

  2. Calcium constrains plant control over forest ecosystem nitrogen cycling.

    Science.gov (United States)

    Groffman, Peter M; Fisk, Melany C

    2011-11-01

    Forest ecosystem nitrogen (N) cycling is a critical controller of the ability of forests to prevent the movement of reactive N to receiving waters and the atmosphere and to sequester elevated levels of atmospheric carbon dioxide (CO2). Here we show that calcium (Ca) constrains the ability of northern hardwood forest trees to control the availability and loss of nitrogen. We evaluated soil N-cycling response to Ca additions in the presence and absence of plants and observed that when plants were present, Ca additions "tightened" the ecosystem N cycle, with decreases in inorganic N levels, potential net N mineralization rates, microbial biomass N content, and denitrification potential. In the absence of plants, Ca additions induced marked increases in nitrification (the key process controlling ecosystem N losses) and inorganic N levels. The observed "tightening" of the N cycle when Ca was added in the presence of plants suggests that the capacity of forests to absorb elevated levels of atmospheric N and CO2 is fundamentally constrained by base cations, which have been depleted in many areas of the globe by acid rain and forest harvesting.

  3. A climate sensitive model of carbon transfer through atmosphere, vegetation and soil in managed forest ecosystems

    Science.gov (United States)

    Loustau, D.; Moreaux, V.; Bosc, A.; Trichet, P.; Kumari, J.; Rabemanantsoa, T.; Balesdent, J.; Jolivet, C.; Medlyn, B. E.; Cavaignac, S.; Nguyen-The, N.

    2012-12-01

    For predicting the future of the forest carbon cycle in forest ecosystems, it is necessary to account for both the climate and management impacts. Climate effects are significant not only at a short time scale but also at the temporal horizon of a forest life cycle e.g. through shift in atmospheric CO2 concentration, temperature and precipitation regimes induced by the enhanced greenhouse effect. Intensification of forest management concerns an increasing fraction of temperate and tropical forests and untouched forests represents only one third of the present forest area. Predicting tools are therefore needed to project climate and management impacts over the forest life cycle and understand the consequence of management on the forest ecosystem carbon cycle. This communication summarizes the structure, main components and properties of a carbon transfer model that describes the processes controlling the carbon cycle of managed forest ecosystems. The model, GO+, links three main components, (i) a module describing the vegetation-atmosphere mass and energy exchanges in 3D, (ii) a plant growth module and a (iii) soil carbon dynamics module in a consistent carbon scheme of transfer from atmosphere back into the atmosphere. It was calibrated and evaluated using observed data collected on coniferous and broadleaved forest stands. The model predicts the soil, water and energy balance of entire rotations of managed stands from the plantation to the final cut and according to a range of management alternatives. It accounts for the main soil and vegetation management operations such as soil preparation, understorey removal, thinnings and clearcutting. Including the available knowledge on the climatic sensitivity of biophysical and biogeochemical processes involved in atmospheric exchanges and carbon cycle of forest ecosystems, GO+ can produce long-term backward or forward simulations of forest carbon and water cycles under a range of climate and management scenarios. This

  4. Modelling carbon cycle of agro-forest ecosystems in Lombardy (Italy

    Directory of Open Access Journals (Sweden)

    Colombo R

    2009-09-01

    Full Text Available In this paper we present a methodology for the estimation of Gross Primary Production (GPP, Net Primary Production (NPP and Net Ecosystem Production (NEP for the main agricultural and forest ecosystems of the Lombardia Region (Italy. The MOD17 model was parameterized according to the different agro-forestry ecosystems and applied at regional scale by using satellite data with a spatial resolution of 250m. The high spatial resolution along with fine classification agro-forestry ecosystems has allowed to accurately analyze the carbon budget of an extremely fragmented and complex environment such as the Lombardia Region. Modeling results showed the role of the forests in the carbon budget at regional scale and represent important information layer for the spatial analysis and for inferring the inter-annual variability of carbon sequestration due to impacts of extreme events and recent climate change (e.g., drought, heat wave, flooding, fires.

  5. Effects of climate variability and functional changes on carbon cycling in a temperate deciduous forest

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jian

    2013-03-15

    Temperate forests are globally important carbon (C) stocks and sinks. A decadal (1997-2009) trend of increasing C uptake has been observed in an intensively studied temperate deciduous forest, Soroe (Zealand, Denmark). This gave the impetus to investigate the factors controlling the C cycling and the fundamental processes at work in this type of ecosystem. The major objectives of this study were to (1) evaluate to what extent and at what temporal scales, direct climatic variability and functional changes (e.g. changes in the structure or physiological properties) regulate the interannual variability (IAV) in the ecosystem C balance; (2) provide a synthesis of the ecosystem C budget at this site and (3) investigate whether terrestrial ecosystem models can dynamically simulate the trend of increasing C uptake. Data driven analysis, semi-empirical and process-based modelling experiments were performed in a series of studies in order to provide a complete assessment of the carbon storage and allocation within the ecosystem and clarify the mechanisms responsible for the observed variability and trend in the ecosystem C fluxes. Combining all independently estimated ecosystem carbon budget (ECB) datasets and other calculated ECB components based on mass balance equations, a synthesis of the carbon cycling was performed. The results showed that this temperature deciduous forest was moderately productive with both high rates of gross primary production and ecosystem respiration. Approximately 62% of the gross assimilated carbon was respired by the living plants, while 21% was contributed to the soil as litter production, the latter balancing the total heterotrophic respiration. The remaining 17% was either stored in the plants (mainly as aboveground biomass) or removed from the system as wood production. In general, the ECB component datasets were consistent after the cross-checking. This, together with their characterized uncertainties, can be used in model data fusion

  6. Climate seasonality limits leaf carbon assimilation and wood productivity in tropical forests

    NARCIS (Netherlands)

    Wagner, Fabien H.; Hérault, Bruno; Bonal, Damien; Stahl, Clément; Anderson, Liana O.; Baker, Timothy R.; Becker, Gabriel Sebastian; Beeckman, Hans; Boanerges Souza, Danilo; Botosso, Paulo Cesar; Bowman, David M.J.S.; Bräuning, Achim; Brede, Benjamin; Brown, Foster Irving; Camarero, Jesus Julio; Camargo, Plínio Barbosa; Cardoso, Fernanda C.G.; Carvalho, Fabrício Alvim; Castro, Wendeson; Chagas, Rubens Koloski; Chave, Jérome; Chidumayo, Emmanuel N.; Clark, Deborah A.; Costa, Flavia Regina Capellotto; Couralet, Camille; Silva Mauricio, Da Paulo Henrique; Dalitz, Helmut; Castro, De Vinicius Resende; Freitas Milani, De Jaçanan Eloisa; Oliveira, De Edilson Consuelo; Souza Arruda, De Luciano; Devineau, Jean-Louis; Drew, David M.; Dünisch, Oliver; Durigan, Giselda; Elifuraha, Elisha; Fedele, Marcio; Ferreira Fedele, Ligia; Figueiredo Filho, Afonso; Finger, César Augusto Guimarães; Franco, Augusto César; Freitas Júnior, João Lima; Galvão, Franklin; Gebrekirstos, Aster; Gliniars, Robert; Lima De Alencastro Graça, Paulo Maurício; Griffiths, Anthony D.; Grogan, James; Guan, Kaiyu; Homeier, Jürgen; Kanieski, Maria Raquel; Kho, Lip Khoon; Koenig, Jennifer; Kohler, Sintia Valerio; Krepkowski, Julia; Lemos-filho, José Pires; Lieberman, Diana; Lieberman, Milton Eugene; Lisi, Claudio Sergio; Longhi Santos, Tomaz; López Ayala, José Luis; Maeda, Eduardo Eijji; Malhi, Yadvinder; Maria, Vivian R.B.; Marques, Marcia C.M.; Marques, Renato; Maza Chamba, Hector; Mbwambo, Lawrence; Melgaço, Karina Liana Lisboa; Mendivelso, Hooz Angela; Murphy, Brett P.; O'Brien, Joseph J.; Oberbauer, Steven F.; Okada, Naoki; Pélissier, Raphaël; Prior, Lynda D.; Roig, Fidel Alejandro; Ross, Michael; Rossatto, Davi Rodrigo; Rossi, Vivien; Rowland, Lucy; Rutishauser, Ervan; Santana, Hellen; Schulze, Mark; Selhorst, Diogo; Silva, Williamar Rodrigues; Silveira, Marcos; Spannl, Susanne; Swaine, Michael D.; Toledo, José Julio; Toledo, Marcos Miranda; Toledo, Marisol; Toma, Takeshi; Tomazello Filho, Mario; Valdez Hernández, Juan Ignacio; Verbesselt, Jan; Vieira, Simone Aparecida; Vincent, Grégoire; Volkmer De Castilho, Carolina; Volland, Franziska; Worbes, Martin; Zanon, Magda Lea Bolzan; Aragão, Luiz E.O.C.

    2016-01-01

    The seasonal climate drivers of the carbon cycle in tropical forests remain poorly known, although these forests account for more carbon assimilation and storage than any other terrestrial ecosystem. Based on a unique combination of seasonal pan-tropical data sets from 89 experimental sites (68

  7. Effects of Litter and Nutrient Additions on Soil Carbon Cycling in a Tropical Forest

    Science.gov (United States)

    Cusack, D. F.; Halterman, S.; Turner, B. L.; Tanner, E.; Wright, S. J.

    2014-12-01

    Soil carbon (C) dynamics present one of the largest sources of uncertainty in global C cycle models, with tropical forest soils containing some of the largest terrestrial C stocks. Drastic changes in soil C storage and loss are likely to occur if global change alters plant net primary production (NPP) and/or nutrient availability in these ecosystems. We assessed the effects of litter removal and addition, as well as fertilization with nitrogen (N), phosphorus (P), and/or potassium (K), on soil C stocks in a tropical seasonal forest in Panama after ten and sixteen years, respectively. We used a density fractionation scheme to assess manipulation effects on rapidly and slowly cycling pools of C. Soil samples were collected in the wet and dry seasons from 0-5 cm and 5-10 cm depths in 15- 45x45 m plots with litter removal, 2x litter addition, and control (n=5), and from 32- 40x40 m fertilization plots with factorial additions of N, P, and K. We hypothesized that litter addition would increase all soil C fractions, but that the magnitude of the effect on rapidly-cycling C would be dampened by a fertilization effect. Results for the dry season show that the "free light" C fraction, or rapidly cycling soil C pool, was significantly different among the three litter treatments, comprising 5.1 ± 0.9 % of total soil mass in the litter addition plots, 2.7 ± 0.3 % in control plots, and 1.0 ± 0.1 % in litter removal plots at the 0-5cm depth (means ± one standard error, p < 0.05). Bulk soil C results are similar to observed changes in the rapidly cycling C pool for the litter addition and removal. Fertilization treatments on average diminished this C pool size relative to control plots, although there was substantial variability among fertilization treatments. In particular, addition of N and P together did not significantly alter rapidly cycling C pool sizes (4.1 ± 1.2 % of total soil mass) relative to controls (3.5 ± 0.4 %), whereas addition of P alone resulted in

  8. Water limitations on forest carbon cycling and conifer traits along a steep climatic gradient in the Cascade Mountains, Oregon

    Science.gov (United States)

    Berner, L. T.; Law, B. E.

    2015-11-01

    Severe droughts occurred in the western United States during recent decades, and continued human greenhouse gas emissions are expected to exacerbate warming and drying in this region. We investigated the role of water availability in shaping forest carbon cycling and morphological traits in the eastern Cascade Mountains, Oregon, focusing on the transition from low-elevation, dry western juniper (Juniperus occidentalis) woodlands to higher-elevation, wetter ponderosa pine (Pinus ponderosa) and grand fir (Abies grandis) forests. We examined 12 sites in mature forests that spanned a 1300 mm yr-1 gradient in mean growing-year climate moisture index (CMIgy ), computed annually (1964 to 2013) as monthly precipitation minus reference evapotranspiration and summed October to September. Maximum leaf area, annual aboveground productivity, and aboveground live tree biomass increased with CMIgy (r2 = 0.67-0.88, P gy (r2 = 0.53, P gy and extensive insect outbreak. Traits of stress-tolerant juniper included short stature, high wood density for cavitation resistance, and high investment in water transport relative to leaf area. Species occupying wetter areas invested more resources in height growth in response to competition for light relative to investment in hydraulic architecture. Consequently, maximum tree height, leaf area : sapwood area ratio, and stem wood density were all correlated with CMIgy . The tight coupling of forest carbon cycling and species traits with water availability suggests that warmer and drier conditions projected for the 21st century could have significant biogeochemical, ecological, and social consequences in the Pacific Northwest.

  9. Nitrogen Alters Fungal Communities in Boreal Forest Soil: Implications for Carbon Cycling

    Science.gov (United States)

    Allison, S. D.; Treseder, K. K.

    2005-12-01

    One potential effect of climate change in high latitude ecosystems is to increase soil nutrient availability. In particular, greater nitrogen availability could impact decomposer communities and lead to altered rates of soil carbon cycling. Since fungi are the primary decomposers in many high-latitude ecosystems, we used molecular techniques and field surveys to test whether fungal communities and abundances differed in response to nitrogen fertilization in a boreal forest ecosystem. We predicted that fungi that degrade recalcitrant carbon would decline under nitrogen fertilization, while fungi that degrade labile carbon would increase, leading to no net change in rates of soil carbon mineralization. The molecular data showed that basidiomycete fungi dominate the active fungal community in both fertilized and unfertilized soils. However, we found that fertilization reduced peak mushroom biomass by 79%, although most of the responsive fungi were ectomycorrhizal and therefore their capacity to degrade soil carbon is uncertain. Fertilization increased the activity of the cellulose-degrading enzyme beta-glucosidase by 78%, while protease activity declined by 39% and polyphenol oxidase, a lignin-degrading enzyme, did not respond. Rates of soil respiration did not change in response to fertilization. These results suggest that increased nitrogen availability does alter the composition of the fungal community, and its potential to degrade different carbon compounds. However, these differences do not affect the total flux of CO2 from the soil, even though the contribution to CO2 respiration from different carbon pools may vary with fertilization. We conclude that in the short term, increased nitrogen availability due to climate warming or nitrogen deposition is more likely to alter the turnover of individual carbon pools rather than total carbon fluxes from the soil. Future work should determine if changes in fungal community structure and associated differences in

  10. Trading forest carbon

    Science.gov (United States)

    The nature of carbon in forests is discussed from the perspective of carbon trading. Carbon inventories, specifically in the area of land use and forestry are reviewed for the Pacific Northwest. Carbon turnover in forests is discussed as it relates to carbon sequestration. Scient...

  11. The role of forest disturbance in global forest mortality and terrestrial carbon fluxes

    Science.gov (United States)

    Pugh, Thomas; Arneth, Almut; Smith, Benjamin; Poulter, Benjamin

    2017-04-01

    stocks is very large, illustrating the importance of further efforts to distinguish disturbance drivers at the global scale. Setting our knowledge of forest disturbance into the wider uncertainty in forest mortality processes generally, we offer a perspective for improving understanding of the role of disturbance in global forest carbon cycling.

  12. Carbon Budget and its Dynamics over Northern Eurasia Forest Ecosystems

    Science.gov (United States)

    Shvidenko, Anatoly; Schepaschenko, Dmitry; Kraxner, Florian; Maksyutov, Shamil

    2016-04-01

    The presentation contains an overview of recent findings and results of assessment of carbon cycling of forest ecosystems of Northern Eurasia. From a methodological point of view, there is a clear tendency in understanding a need of a Full and Verified Carbon Account (FCA), i.e. in reliable assessment of uncertainties for all modules and all stages of FCA. FCA is considered as a fuzzy (underspecified) system that supposes a system integration of major methods of carbon cycling study (land-ecosystem approach, LEA; process-based models; eddy covariance; and inverse modelling). Landscape-ecosystem approach 1) serves for accumulation of all relevant knowledge of landscape and ecosystems; 2) for strict systems designing the account, 3) contains all relevant spatially distributed empirical and semi-empirical data and models, and 4) is presented in form of an Integrated Land Information System (ILIS). The ILIS includes a hybrid land cover in a spatially and temporarily explicit way and corresponding attributive databases. The forest mask is provided by utilizing multi-sensor remote sensing data, geographically weighed regression and validation within GEO-wiki platform. By-pixel parametrization of forest cover is based on a special optimization algorithms using all available knowledge and information sources (data of forest inventory and different surveys, observations in situ, official statistics of forest management etc.). Major carbon fluxes within the LEA (NPP, HR, disturbances etc.) are estimated based on fusion of empirical data and aggregations with process-based elements by sets of regionally distributed models. Uncertainties within LEA are assessed for each module and at each step of the account. Within method results of LEA and corresponding uncertainties are harmonized and mutually constrained with independent outputs received by other methods based on the Bayesian approach. The above methodology have been applied to carbon account of Russian forests for 2000

  13. Differential controls on soil carbon density and mineralization among contrasting forest types in a temperate forest ecosystem

    Science.gov (United States)

    You, Ye-Ming; Wang, Juan; Sun, Xiao-Lu; Tang, Zuo-Xin; Zhou, Zhi-Yong; Sun, Osbert Jianxin

    2016-01-01

    Understanding the controls on soil carbon dynamics is crucial for modeling responses of ecosystem carbon balance to global change, yet few studies provide explicit knowledge on the direct and indirect effects of forest stands on soil carbon via microbial processes. We investigated tree species, soil, and site factors in relation to soil carbon density and mineralization in a temperate forest of central China. We found that soil microbial biomass and community structure, extracellular enzyme activities, and most of the site factors studied varied significantly across contrasting forest types, and that the associations between activities of soil extracellular enzymes and microbial community structure appeared to be weak and inconsistent across forest types, implicating complex mechanisms in the microbial regulation of soil carbon metabolism in relation to tree species. Overall, variations in soil carbon density and mineralization are predominantly accounted for by shared effects of tree species, soil, microclimate, and microbial traits rather than the individual effects of the four categories of factors. Our findings point to differential controls on soil carbon density and mineralization among contrasting forest types and highlight the challenge to incorporate microbial processes for constraining soil carbon dynamics in global carbon cycle models. PMID:26925871

  14. Tree species diversity mitigates disturbance impacts on the forest carbon cycle.

    Science.gov (United States)

    Silva Pedro, Mariana; Rammer, Werner; Seidl, Rupert

    2015-03-01

    Biodiversity fosters the functioning and stability of forest ecosystems and, consequently, the provision of crucial ecosystem services that support human well-being and quality of life. In particular, it has been suggested that tree species diversity buffers ecosystems against the impacts of disturbances, a relationship known as the "insurance hypothesis". Natural disturbances have increased across Europe in recent decades and climate change is expected to amplify the frequency and severity of disturbance events. In this context, mitigating disturbance impacts and increasing the resilience of forest ecosystems is of growing importance. We have tested how tree species diversity modulates the impact of disturbance on net primary production and the total carbon stored in living biomass for a temperate forest landscape in Central Europe. Using the simulation model iLand to study the effect of different disturbance regimes on landscapes with varying levels of tree species richness, we found that increasing diversity generally reduces the disturbance impact on carbon storage and uptake, but that this effect weakens or even reverses with successional development. Our simulations indicate a clear positive relationship between diversity and resilience, with more diverse systems experiencing lower disturbance-induced variability in their trajectories of ecosystem functioning. We found that positive effects of tree species diversity are mainly driven by an increase in functional diversity and a modulation of traits related to recolonization and resource usage. The results of our study suggest that increasing tree species diversity could mitigate the effects of intensifying disturbance regimes on ecosystem functioning and improve the robustness of forest carbon storage and the role of forests in climate change mitigation.

  15. Climate seasonality limits leaf carbon assimilation and wood productivity in tropical forests

    Science.gov (United States)

    Fabien H. Wagner; Bruno Herault; Damien Bonal; Clement Stahl; Liana O. Anderson; Timothy R. Baker; Gabriel Sebastian Becker; Hans Beeckman; Danilo Boanerges Souza; Paulo Cesar Botosso; David M. J. S. Bowman; Achim Brauning; Benjamin Brede; Foster Irving Brown; Jesus Julio Camarero; Plinio Barbosa Camargo; Fernanda C. G. Cardoso; Fabricio Alvim Carvalho; Wendeson Castro; Rubens Koloski Chagas; Jerome Chave; Emmanuel N. Chidumayo; Deborah A. Clark; Flavia Regina Capellotto Costa; Camille Couralet; Paulo Henrique da Silva Mauricio; Helmut Dalitz; Vinicius Resende de Castro; Jacanan Eloisa de Freitas Milani; Edilson Consuelo de Oliveira; Luciano de Souza Arruda; Jean-Louis Devineau; David M. Drew; Oliver Dunisch; Giselda Durigan; Elisha Elifuraha; Marcio Fedele; Ligia Ferreira Fedele; Afonso Figueiredo Filho; Cesar Augusto Guimaraes Finger; Augusto Cesar Franco; Joao Lima Freitas Junior; Franklin Galvao; Aster Gebrekirstos; Robert Gliniars; Paulo Mauricio Lima de Alencastro Graca; Anthony D. Griffiths; James Grogan; Kaiyu Guan; Jurgen Homeier; Maria Raquel Kanieski; Lip Khoon Kho; Jennifer Koenig; Sintia Valerio Kohler; Julia Krepkowski; Jose Pires Lemos-Filho; Diana Lieberman; Milton Eugene Lieberman; Claudio Sergio Lisi; Tomaz Longhi Santos; Jose Luis Lopez Ayala; Eduardo Eijji Maeda; Yadvinder Malhi; Vivian R. B. Maria; Marcia C. M. Marques; Renato Marques; Hector Maza Chamba; Lawrence Mbwambo; Karina Liana Lisboa Melgaco; Hooz Angela Mendivelso; Brett P. Murphy; Joseph O' Brien; Steven F. Oberbauer; Naoki Okada; Raphael Pelissier; Lynda D. Prior; Fidel Alejandro Roig; Michael Ross; Davi Rodrigo Rossatto; Vivien Rossi; Lucy Rowland; Ervan Rutishauser; Hellen Santana; Mark Schulze; Diogo Selhorst; Williamar Rodrigues Silva; Marcos Silveira; Susanne Spannl; Michael D. Swaine; Jose Julio Toledo; Marcos Miranda Toledo; Marisol Toledo; Takeshi Toma; Mario Tomazello Filho; Juan Ignacio Valdez Hernandez; Jan Verbesselt; Simone Aparecida Vieira; Gregoire Vincent; Carolina Volkmer de Castilho; Franziska Volland; Martin Worbes; Magda Lea Bolzan Zanon; Luiz E. O. C. Aragao

    2016-01-01

    The seasonal climate drivers of the carbon cycle in tropical forests remain poorly known, although these forests account for more carbon assimilation and storage than any other terrestrial ecosystem. Based on a unique combination of seasonal pan-tropical data sets from 89 experimental sites (68 include aboveground wood productivity measurements and 35 litter...

  16. Management impacts on forest floor and soil organic carbon in northern temperate forests of the US

    Science.gov (United States)

    Coeli M. Hoover

    2011-01-01

    The role of forests in the global carbon cycle has been the subject of a great deal of research recently, but the impact of management practices on forest soil dynamics at the stand level has received less attention. This study used six forest management experimental sites in five northern states of the US to investigate the effects of silvicultural treatments (light...

  17. Carbon Emission Reduction Potential through Sustainable Forest Management in Forest Concession of PT Salaki Summa Sejahtera, Province of West Sumatera

    Directory of Open Access Journals (Sweden)

    Iwan Hilwan

    2012-12-01

    Full Text Available A management unit (MU of a forest concession holder implementing the sustainable forest management (SFM principles, could be involved in reducing Emmission from Reforestation and Forest Degradation (REDD+ and carbon trading project. The fact the strategic in implementing the REDD+ and carbon trading in MU level is still lack of pilot project and methodology. Therefore, some scenarios must be developed and tested to find out the best potential of carbon credit in MU level. The objectives of the research were: to calculate carbon credit in some SFM scenarios, to analyze of carbon trading project feasibility, and to determine carbon stock recovery period of logged over area (LOA. The result revealed that carbon stock and carbon credit of LOA was affected by timber cutting intensity.  The 6th scenario with lowest annual allowable cutting (AAC obtained greater carbon credit and profit coming from timber harvesting income and carbon trading. In other hand, this scenario has shortest duration of carbon stock recovery period (27 years and shorter than its cutting cycle.  In this case, the MU has to recalculate and to decrease its AAC to have highest benefits from carbon trading in the same cutting cycle period.  It will provide double benefits from carbon trading, those are contribution in achieving the SFM purposes (production, ecology, social and climate change mitigation.Keywords: sustainable forest management, AAC, carbon stocks, recovery period, carbon trading

  18. Aspects of studies on carbon cycle at ground surface

    International Nuclear Information System (INIS)

    Yamazawa, Hiromi; Kawai, Shintaro; Moriizumi, Jun; Iida, Takao

    2008-01-01

    Radiocarbon released from nuclear facilities into the atmosphere is readily involved in a ground surface carbon cycle, which has very large spatial and temporal variability. Most of the recent studies on the carbon cycle at the ground surface are concerned with global warming, to which the ground surface plays a crucial role as a sink and/or source of atmospheric carbon dioxide. In these studies, carbon isotopes are used as tracers to quantitatively evaluate behavior of carbon. From a view point of environmental safety of nuclear facilities, radiocarbon released from a facility should be traced in a specific spatial and temporal situation because carbon cycle is driven by biological activities which are spatially and temporally heterogeneous. With this background, this paper discusses aspects of carbon cycle studies by exemplifying an experimental study on carbon cycle in a forest and a numerical study on soil organic carbon formation. The first example is a typical global warming-related observational study in which radiocarbon is used as a tracer to illustrate how carbon behaves in diurnal to seasonal time scales. The second example is on behavior of bomb carbon incorporated in soil organic matter in a long-term period of decades. The discussion will cover conceptual modelling of carbon cycle from different aspects and importance of specifying time scales of interest. (author)

  19. ForC: a global database of forest carbon stocks and fluxes.

    Science.gov (United States)

    Anderson-Teixeira, Kristina J; Wang, Maria M H; McGarvey, Jennifer C; Herrmann, Valentine; Tepley, Alan J; Bond-Lamberty, Ben; LeBauer, David S

    2018-06-01

    Forests play an influential role in the global carbon (C) cycle, storing roughly half of terrestrial C and annually exchanging with the atmosphere more than five times the carbon dioxide (CO 2 ) emitted by anthropogenic activities. Yet, scaling up from field-based measurements of forest C stocks and fluxes to understand global scale C cycling and its climate sensitivity remains an important challenge. Tens of thousands of forest C measurements have been made, but these data have yet to be integrated into a single database that makes them accessible for integrated analyses. Here we present an open-access global Forest Carbon database (ForC) containing previously published records of field-based measurements of ecosystem-level C stocks and annual fluxes, along with disturbance history and methodological information. ForC expands upon the previously published tropical portion of this database, TropForC (https://doi.org/10.5061/dryad.t516f), now including 17,367 records (previously 3,568) representing 2,731 plots (previously 845) in 826 geographically distinct areas. The database covers all forested biogeographic and climate zones, represents forest stands of all ages, and currently includes data collected between 1934 and 2015. We expect that ForC will prove useful for macroecological analyses of forest C cycling, for evaluation of model predictions or remote sensing products, for quantifying the contribution of forests to the global C cycle, and for supporting international efforts to inventory forest carbon and greenhouse gas exchange. A dynamic version of ForC is maintained at on GitHub (https://GitHub.com/forc-db), and we encourage the research community to collaborate in updating, correcting, expanding, and utilizing this database. ForC is an open access database, and we encourage use of the data for scientific research and education purposes. Data may not be used for commercial purposes without written permission of the database PI. Any publications using For

  20. Estimating national forest carbon stocks and dynamics: combining models and remotely sensed information

    Science.gov (United States)

    Smallman, Thomas Luke; Exbrayat, Jean-François; Bloom, Anthony; Williams, Mathew

    2017-04-01

    Forests are a critical component of the global carbon cycle, storing significant amounts of carbon, split between living biomass and dead organic matter. The carbon budget of forests is the most uncertain component of the global carbon cycle - it is currently impossible to quantify accurately the carbon source/sink strength of forest biomes due to their heterogeneity and complex dynamics. It has been a major challenge to generate robust carbon budgets across landscapes due to data scarcity. Models have been used for estimating carbon budgets, but outputs have lacked an assessment of uncertainty, making a robust assessment of their reliability and accuracy challenging. Here a Metropolis Hastings - Markov Chain Monte Carlo (MH-MCMC) data assimilation framework has been used to combine remotely sensed leaf area index (MODIS), biomass (where available) and deforestation estimates, in addition to forest planting information from the UK's national forest inventory, an estimate of soil carbon from the Harmonized World Database (HWSD) and plant trait information with a process model (DALEC) to produce a constrained analysis with a robust estimate of uncertainty of the UK forestry carbon budget between 2000 and 2010. Our analysis estimates the mean annual UK forest carbon sink at -3.9 MgC ha-1 yr-1 with a 95 % confidence interval between -4.0 and -3.1 MgC ha-1yr-1. The UK national forest inventory (NFI) estimates the mean UK forest carbon sink to be between -1.4 and -5.5 MgC ha-1 yr-1. The analysis estimate for total forest biomass stock in 2010 is estimated at 229 (177/232) TgC, while the NFI an estimated total forest biomass carbon stock of 216 TgC. Leaf carbon area (LCA) is a key plant trait which we are able to estimate using our analysis. Comparison of median estimates for (LCA) retrieved from the analysis and a UK land cover map show higher and lower values for LCA are estimated areas dominated by needle leaf and broad leaf forests forest respectively, consistent with

  1. Potential increases in natural disturbance rates could offset forest management impacts on ecosystem carbon stocks

    Science.gov (United States)

    Bradford, John B.; Jensen, Nicholas R.; Domke, Grant M.; D’Amato, Anthony W.

    2013-01-01

    Forested ecosystems contain the majority of the world’s terrestrial carbon, and forest management has implications for regional and global carbon cycling. Carbon stored in forests changes with stand age and is affected by natural disturbance and timber harvesting. We examined how harvesting and disturbance interact to influence forest carbon stocks over the Superior National Forest, in northern Minnesota. Forest inventory data from the USDA Forest Service, Forest Inventory and Analysis program were used to characterize current forest age structure and quantify the relationship between age and carbon stocks for eight forest types. Using these findings, we simulated the impact of alternative management scenarios and natural disturbance rates on forest-wide terrestrial carbon stocks over a 100-year horizon. Under low natural mortality, forest-wide total ecosystem carbon stocks increased when 0% or 40% of planned harvests were implemented; however, the majority of forest-wide carbon stocks decreased with greater harvest levels and elevated disturbance rates. Our results suggest that natural disturbance has the potential to exert stronger influence on forest carbon stocks than timber harvesting activities and that maintaining carbon stocks over the long-term may prove difficult if disturbance frequency increases in response to climate change.

  2. Tropical forest soil microbial communities couple iron and carbon biogeochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Dubinsky, E.A.; Silver, W.L.; Firestone, M.K.

    2009-10-15

    We report that iron-reducing bacteria are primary mediators of anaerobic carbon oxidation in upland tropical soils spanning a rainfall gradient (3500 - 5000 mm yr-1) in northeast Puerto Rico. The abundant rainfall and high net primary productivity of these tropical forests provide optimal soil habitat for iron-reducing and iron-oxidizing bacteria. Spatially and temporally dynamic redox conditions make iron-transforming microbial communities central to the belowground carbon cycle in these wet tropical forests. The exceedingly high abundance of iron-reducing bacteria (up to 1.2 x 10{sup 9} cells per gram soil) indicated that they possess extensive metabolic capacity to catalyze the reduction of iron minerals. In soils from the higher rainfall sites, measured rates of ferric iron reduction could account for up to 44 % of organic carbon oxidation. Iron reducers appeared to compete with methanogens when labile carbon availability was limited. We found large numbers of bacteria that oxidize reduced iron at sites with high rates of iron reduction and large numbers of iron-reducers. the coexistence of large populations of ironreducing and iron-oxidizing bacteria is evidence for rapid iron cycling between its reduced and oxidized states, and suggests that mutualistic interactions among these bacteria ultimately fuel organic carbon oxidation and inhibit CH4 production in these upland tropical forests.

  3. [Remote sensing estimation of urban forest carbon stocks based on QuickBird images].

    Science.gov (United States)

    Xu, Li-Hua; Zhang, Jie-Cun; Huang, Bo; Wang, Huan-Huan; Yue, Wen-Ze

    2014-10-01

    Urban forest is one of the positive factors that increase urban carbon sequestration, which makes great contribution to the global carbon cycle. Based on the high spatial resolution imagery of QuickBird in the study area within the ring road in Yiwu, Zhejiang, the forests in the area were divided into four types, i. e., park-forest, shelter-forest, company-forest and others. With the carbon stock from sample plot as dependent variable, at the significance level of 0.01, the stepwise linear regression method was used to select independent variables from 50 factors such as band grayscale values, vegetation index, texture information and so on. Finally, the remote sensing based forest carbon stock estimation models for the four types of forest were established. The estimation accuracies for all the models were around 70%, with the total carbon reserve of each forest type in the area being estimated as 3623. 80, 5245.78, 5284.84, 5343.65 t, respectively. From the carbon density map, it was found that the carbon reserves were mainly in the range of 25-35 t · hm(-2). In the future, urban forest planners could further improve the ability of forest carbon sequestration through afforestation and interplanting of trees and low shrubs.

  4. Improving SWAT for simulating water and carbon fluxes of forest ecosystems

    International Nuclear Information System (INIS)

    Yang, Qichun; Zhang, Xuesong

    2016-01-01

    As a widely used watershed model for assessing impacts of anthropogenic and natural disturbances on water quantity and quality, the Soil and Water Assessment Tool (SWAT) has not been extensively tested in simulating water and carbon fluxes of forest ecosystems. Here, we examine SWAT simulations of evapotranspiration (ET), net primary productivity (NPP), net ecosystem exchange (NEE), and plant biomass at ten AmeriFlux forest sites across the U.S. We identify unrealistic radiation use efficiency (Bio-E), large leaf to biomass fraction (Bio-LEAF), and missing phosphorus supply from parent material weathering as the primary causes for the inadequate performance of the default SWAT model in simulating forest dynamics. By further revising the relevant parameters and processes, SWAT's performance is substantially improved. Based on the comparison between the improved SWAT simulations and flux tower observations, we discuss future research directions for further enhancing model parameterization and representation of water and carbon cycling for forests. - Graphical abstract: Evaluating and improving SWAT simulations of water and carbon cycling over ten AmeriFlux sites across the United States. - Highlights: • The default forest parameterization in SWAT results in inadequate simulations of water and carbon. • Radiation use efficiency, leaf to biomass fraction, and parent material weathering processes are modified. • Revised SWAT provides improved simulations of evapotranspiration and net ecosystem exchange

  5. Improving SWAT for simulating water and carbon fluxes of forest ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Qichun [Joint Global Change Research Institute, Pacific Northwest National Lab, College Park, MD 20740 (United States); Zhang, Xuesong, E-mail: xuesong.zhang@pnnl.gov [Joint Global Change Research Institute, Pacific Northwest National Lab, College Park, MD 20740 (United States); Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI 48824 (United States)

    2016-11-01

    As a widely used watershed model for assessing impacts of anthropogenic and natural disturbances on water quantity and quality, the Soil and Water Assessment Tool (SWAT) has not been extensively tested in simulating water and carbon fluxes of forest ecosystems. Here, we examine SWAT simulations of evapotranspiration (ET), net primary productivity (NPP), net ecosystem exchange (NEE), and plant biomass at ten AmeriFlux forest sites across the U.S. We identify unrealistic radiation use efficiency (Bio-E), large leaf to biomass fraction (Bio-LEAF), and missing phosphorus supply from parent material weathering as the primary causes for the inadequate performance of the default SWAT model in simulating forest dynamics. By further revising the relevant parameters and processes, SWAT's performance is substantially improved. Based on the comparison between the improved SWAT simulations and flux tower observations, we discuss future research directions for further enhancing model parameterization and representation of water and carbon cycling for forests. - Graphical abstract: Evaluating and improving SWAT simulations of water and carbon cycling over ten AmeriFlux sites across the United States. - Highlights: • The default forest parameterization in SWAT results in inadequate simulations of water and carbon. • Radiation use efficiency, leaf to biomass fraction, and parent material weathering processes are modified. • Revised SWAT provides improved simulations of evapotranspiration and net ecosystem exchange.

  6. Forest management strategies for reducing carbon emissions, the French case

    Science.gov (United States)

    Valade, Aude; Luyssaert, Sebastiaan; Bellassen, Valentin; Vallet, Patrick; Martin, Manuel

    2015-04-01

    International agreements now recognize the role of forest in the mitigation of climate change through the levers of in-situ sequestration, storage in products and energy and product substitution. These three strategies of carbon management are often antagonistic and it is still not clear which strategy would have the most significant impact on atmospheric carbon concentrations. With a focus on France, this study compares several scenarios of forest management in terms of their effect on the overall carbon budget from trees to wood-products. We elaborated four scenarios of forest management that target different wood production objectives. One scenario is 'Business as usual' and reproduces the current forest management and wood production levels. Two scenarios target an increase in bioenergy wood production, with either long-term or short-term goals. One scenario aims at increasing the production of timber for construction. For this, an empirical regression model was developed building on the rich French inventory database. The model can project the current forest resource at a time horizon of 20 years for characteristic variables diameter, standing volume, above-ground biomass, stand age. A simplified life-cycle analysis provides a full carbon budget for each scenario from forest management to wood use and allows the identification of the scenario that most reduces carbon emissions.

  7. The role of old forests and big trees in forest carbon sequestration in the Pacific Northwest

    Science.gov (United States)

    Andrew N. Gray

    2015-01-01

    Forest ecosystems are an important component of the global carbon (C) cycle. Recent research has indicated that large trees in general, and old-growth forests in particular, sequester substantial amounts of C annually. C sequestration rates are thought to peak and decline with stand age but the timing and controls are not well-understood. The objectives of this study...

  8. Carbon tradeoffs of restoration and provision of endangered species habitat in a fire-maintained forest

    Science.gov (United States)

    Katherine L. Martin; Matthew D. Hurteau; Bruce A. Hungate; George W. Koch; Malcolm P. North

    2015-01-01

    Forests are a significant part of the global carbon cycle and are increasingly viewed as tools for mitigating climate change. Natural disturbances, such as fire, can reduce carbon storage. However, many forests and dependent species evolved with frequent fire as an integral ecosystem process. We used a landscape forest simulation model to evaluate the effects of...

  9. Mangroves among the most carbon-rich forests in the tropics

    Science.gov (United States)

    Donato, Daniel C.; Kauffman, J. Boone; Murdiyarso, Daniel; Kurnianto, Sofyan; Stidham, Melanie; Kanninen, Markku

    2011-05-01

    Mangrove forests occur along ocean coastlines throughout the tropics, and support numerous ecosystem services, including fisheries production and nutrient cycling. However, the areal extent of mangrove forests has declined by 30-50% over the past half century as a result of coastal development, aquaculture expansion and over-harvesting. Carbon emissions resulting from mangrove loss are uncertain, owing in part to a lack of broad-scale data on the amount of carbon stored in these ecosystems, particularly below ground. Here, we quantified whole-ecosystem carbon storage by measuring tree and dead wood biomass, soil carbon content, and soil depth in 25 mangrove forests across a broad area of the Indo-Pacific region--spanning 30° of latitude and 73° of longitude--where mangrove area and diversity are greatest. These data indicate that mangroves are among the most carbon-rich forests in the tropics, containing on average 1,023Mg carbon per hectare. Organic-rich soils ranged from 0.5m to more than 3m in depth and accounted for 49-98% of carbon storage in these systems. Combining our data with other published information, we estimate that mangrove deforestation generates emissions of 0.02-0.12Pg carbon per year--as much as around 10% of emissions from deforestation globally, despite accounting for just 0.7% of tropical forest area.

  10. Mangroves among the most carbon-rich forests in the tropics

    Science.gov (United States)

    Daniel. C. Donato; J. Boone Kauffman; Daniel Murdiyarso; Sofyan Kurnianto; Melanie Stidham; Markku Kanninen

    2011-01-01

    Mangrove forests occur along ocean coastlines throughout the tropics, and support numerous ecosystem services, including fisheries production and nutrient cycling. However, the areal extent of mangrove forests has declined by 30–50% over the past half century as a result of coastal development, aquaculture expansion and over-harvesting. Carbon emissions resulting from...

  11. Slow growth rates of Amazonian trees: Consequences for carbon cycling

    Science.gov (United States)

    Vieira, Simone; Trumbore, Susan; Camargo, Plinio B.; Selhorst, Diogo; Chambers, Jeffrey Q.; Higuchi, Niro; Martinelli, Luiz Antonio

    2005-01-01

    Quantifying age structure and tree growth rate of Amazonian forests is essential for understanding their role in the carbon cycle. Here, we use radiocarbon dating and direct measurement of diameter increment to document unexpectedly slow growth rates for trees from three locations spanning the Brazilian Amazon basin. Central Amazon trees, averaging only ≈1mm/year diameter increment, grow half as fast as those from areas with more seasonal rainfall to the east and west. Slow growth rates mean that trees can attain great ages; across our sites we estimate 17-50% of trees with diameter >10 cm have ages exceeding 300 years. Whereas a few emergent trees that make up a large portion of the biomass grow faster, small trees that are more abundant grow slowly and attain ages of hundreds of years. The mean age of carbon in living trees (60-110 years) is within the range of or slightly longer than the mean residence time calculated from C inventory divided by annual C allocation to wood growth (40-100 years). Faster C turnover is observed in stands with overall higher rates of diameter increment and a larger fraction of the biomass in large, fast-growing trees. As a consequence, forests can recover biomass relatively quickly after disturbance, whereas recovering species composition may take many centuries. Carbon cycle models that apply a single turnover time for carbon in forest biomass do not account for variations in life strategy and therefore may overestimate the carbon sequestration potential of Amazon forests. PMID:16339903

  12. Derivation of a northern-hemispheric biomass map for use in global carbon cycle models

    Science.gov (United States)

    Thurner, Martin; Beer, Christian; Santoro, Maurizio; Carvalhais, Nuno; Wutzler, Thomas; Schepaschenko, Dmitry; Shvidenko, Anatoly; Kompter, Elisabeth; Levick, Shaun; Schmullius, Christiane

    2013-04-01

    Quantifying the state and the change of the World's forests is crucial because of their ecological, social and economic value. Concerning their ecological importance, forests provide important feedbacks on the global carbon, energy and water cycles. In addition to their influence on albedo and evapotranspiration, they have the potential to sequester atmospheric carbon dioxide and thus to mitigate global warming. The current state and inter-annual variability of forest carbon stocks remain relatively unexplored, but remote sensing can serve to overcome this shortcoming. While for the tropics wall-to-wall estimates of above-ground biomass have been recently published, up to now there was a lack of similar products covering boreal and temperate forests. Recently, estimates of forest growing stock volume (GSV) were derived from ENVISAT ASAR C-band data for latitudes above 30° N. Utilizing a wood density and a biomass compartment database, a forest carbon density map covering North-America, Europe and Asia with 0.01° resolution could be derived out of this dataset. Allometric functions between stem, branches, root and foliage biomass were fitted and applied for different leaf types (broadleaf, needleleaf deciduous, needleleaf evergreen forest). Additionally, this method enabled uncertainty estimation of the resulting carbon density map. Intercomparisons with inventory-based biomass products in Russia, Europe and the USA proved the high accuracy of this approach at a regional scale (r2 = 0.70 - 0.90). Based on the final biomass map, the forest carbon stocks and densities (excluding understorey vegetation) for three biomes were estimated across three continents. While 40.7 ± 15.7 Gt of carbon were found to be stored in boreal forests, temperate broadleaf/mixed forests and temperate conifer forests contain 24.5 ± 9.4 Gt(C) and 14.5 ± 4.8 Gt(C), respectively. In terms of carbon density, most of the carbon per area is stored in temperate conifer (62.1 ± 20.7 Mg(C)/ha(Forest

  13. Carbon assimilation and transfer through kelp forests in the NE Atlantic is diminished under a warmer ocean climate.

    Science.gov (United States)

    Pessarrodona, Albert; Moore, Pippa J; Sayer, Martin D J; Smale, Dan A

    2018-06-03

    Global climate change is affecting carbon cycling by driving changes in primary productivity and rates of carbon fixation, release and storage within Earth's vegetated systems. There is, however, limited understanding of how carbon flow between donor and recipient habitats will respond to climatic changes. Macroalgal-dominated habitats, such as kelp forests, are gaining recognition as important carbon donors within coastal carbon cycles, yet rates of carbon assimilation and transfer through these habitats are poorly resolved. Here, we investigated the likely impacts of ocean warming on coastal carbon cycling by quantifying rates of carbon assimilation and transfer in Laminaria hyperborea kelp forests-one of the most extensive coastal vegetated habitat types in the NE Atlantic-along a latitudinal temperature gradient. Kelp forests within warm climatic regimes assimilated, on average, more than three times less carbon and donated less than half the amount of particulate carbon compared to those from cold regimes. These patterns were not related to variability in other environmental parameters. Across their wider geographical distribution, plants exhibited reduced sizes toward their warm-water equatorward range edge, further suggesting that carbon flow is reduced under warmer climates. Overall, we estimated that Laminaria hyperborea forests stored ~11.49 Tg C in living biomass and released particulate carbon at a rate of ~5.71 Tg C year -1 . This estimated flow of carbon was markedly higher than reported values for most other marine and terrestrial vegetated habitat types in Europe. Together, our observations suggest that continued warming will diminish the amount of carbon that is assimilated and transported through temperate kelp forests in NE Atlantic, with potential consequences for the coastal carbon cycle. Our findings underline the need to consider climate-driven changes in the capacity of ecosystems to fix and donate carbon when assessing the impacts of

  14. Effect of land use change on the carbon cycle in Amazon soils

    Science.gov (United States)

    Trumbore, Susan E.; Davidson, Eric A.

    1994-01-01

    The overall goal of this study was to provide a quantitative understanding of the cycling of carbon in the soils associated with deep-rooting Amazon forests. In particular, we wished to apply the understanding gained by answering two questions: (1) what changes will accompany the major land use change in this region, the conversion of forest to pasture? and (2) what is the role of carbon stored deeper than one meter in depth in these soils? To construct carbon budgets for pasture and forest soils we combined the following: measurements of carbon stocks in above-ground vegetation, root biomass, detritus, and soil organic matter; rates of carbon inputs to soil and detrital layers using litterfall collection and sequential coring to estimate fine root turnover; C-14 analyses of fractionated SOM and soil CO2 to estimate residence times; C-13 analyses to estimate C inputs to pasture soils from C-4 grasses; soil pCO2, volumetric water content, and radon gradients to estimate CO2 production as a function of soil depth; soil respiration to estimate total C outputs; and a model of soil C dynamics that defines SOM fractions cycling on annual, decadal, and millennial time scales.

  15. Geography of Global Forest Carbon Stocks & Dynamics

    Science.gov (United States)

    Saatchi, S. S.; Yu, Y.; Xu, L.; Yang, Y.; Fore, A.; Ganguly, S.; Nemani, R. R.; Zhang, G.; Lefsky, M. A.; Sun, G.; Woodall, C. W.; Naesset, E.; Seibt, U. H.

    2014-12-01

    Spatially explicit distribution of carbon stocks and dynamics in global forests can greatly reduce the uncertainty in the terrestrial portion of the global carbon cycle by improving estimates of emissions and uptakes from land use activities, and help with green house gas inventory at regional and national scales. Here, we produce the first global distribution of carbon stocks in living woody biomass at ~ 100 m (1-ha) resolution for circa 2005 from a combination of satellite observations and ground inventory data. The total carbon stored in live woody biomass is estimated to be 337 PgC with 258 PgC in aboveground and 79 PgC in roots, and partitioned globally in boreal (20%), tropical evergreen (50%), temperate (12%), and woodland savanna and shrublands (15%). We use a combination of satellite observations of tree height, remote sensing data on deforestation and degradation to quantify the dynamics of these forests at the biome level globally and provide geographical distribution of carbon storage dynamics in terms sinks and sources globally.

  16. Africa and the global carbon cycle

    Directory of Open Access Journals (Sweden)

    Denning A Scott

    2007-03-01

    Full Text Available Abstract The African continent has a large and growing role in the global carbon cycle, with potentially important climate change implications. However, the sparse observation network in and around the African continent means that Africa is one of the weakest links in our understanding of the global carbon cycle. Here, we combine data from regional and global inventories as well as forward and inverse model analyses to appraise what is known about Africa's continental-scale carbon dynamics. With low fossil emissions and productivity that largely compensates respiration, land conversion is Africa's primary net carbon release, much of it through burning of forests. Savanna fire emissions, though large, represent a short-term source that is offset by ensuing regrowth. While current data suggest a near zero decadal-scale carbon balance, interannual climate fluctuations (especially drought induce sizeable variability in net ecosystem productivity and savanna fire emissions such that Africa is a major source of interannual variability in global atmospheric CO2. Considering the continent's sizeable carbon stocks, their seemingly high vulnerability to anticipated climate and land use change, as well as growing populations and industrialization, Africa's carbon emissions and their interannual variability are likely to undergo substantial increases through the 21st century.

  17. Simultaneous reproduction of global carbon exchange and storage of terrestrial forest ecosystems

    Science.gov (United States)

    Kondo, M.; Ichii, K.

    2012-12-01

    Understanding the mechanism of the terrestrial carbon cycle is essential for assessing the impact of climate change. Quantification of both carbon exchange and storage is the key to the understanding, but it often associates with difficulties due to complex entanglement of environmental and physiological factors. Terrestrial ecosystem models have been the major tools to assess the terrestrial carbon budget for decades. Because of its strong association with climate change, carbon exchange has been more rigorously investigated by the terrestrial biosphere modeling community. Seeming success of model based assessment of carbon budge often accompanies with the ill effect, substantial misrepresentation of storage. In practice, a number of model based analyses have paid attention solely on terrestrial carbon fluxes and often neglected carbon storage such as forest biomass. Thus, resulting model parameters are inevitably oriented to carbon fluxes. This approach is insufficient to fully reduce uncertainties about future terrestrial carbon cycles and climate change because it does not take into account the role of biomass, which is equivalently important as carbon fluxes in the system of carbon cycle. To overcome this issue, a robust methodology for improving the global assessment of both carbon budget and storage is needed. One potentially effective approach to identify a suitable balance of carbon allocation proportions for each individual ecosystem. Carbon allocations can influence the plant growth by controlling the amount of investment acquired from photosynthesis, as well as carbon fluxes by controlling the carbon content of leaves and litter, both are active media for photosynthesis and decomposition. Considering those aspects, there may exist the suitable balance of allocation proportions enabling the simultaneous reproduction of carbon budget and storage. The present study explored the existence of such suitable balances of allocation proportions, and examines the

  18. Simulating the impacts of disturbances on forest carbon cycling in North America: Processes, data, models, and challenges

    Science.gov (United States)

    Liu, Shuguang; Bond-Lamberty, Ben; Hicke, Jeffrey A.; Vargas, Rodrigo; Zhao, Shuqing; Chen, Jing; Edburg, Steven L.; Hu, Yueming; Liu, Jinxun; McGuire, A. David; Xiao, Jingfeng; Keane, Robert; Yuan, Wenping; Tang, Jianwu; Luo, Yiqi; Potter, Christopher; Oeding, Jennifer

    2011-01-01

    Forest disturbances greatly alter the carbon cycle at various spatial and temporal scales. It is critical to understand disturbance regimes and their impacts to better quantify regional and global carbon dynamics. This review of the status and major challenges in representing the impacts of disturbances in modeling the carbon dynamics across North America revealed some major advances and challenges. First, significant advances have been made in representation, scaling, and characterization of disturbances that should be included in regional modeling efforts. Second, there is a need to develop effective and comprehensive process‐based procedures and algorithms to quantify the immediate and long‐term impacts of disturbances on ecosystem succession, soils, microclimate, and cycles of carbon, water, and nutrients. Third, our capability to simulate the occurrences and severity of disturbances is very limited. Fourth, scaling issues have rarely been addressed in continental scale model applications. It is not fully understood which finer scale processes and properties need to be scaled to coarser spatial and temporal scales. Fifth, there are inadequate databases on disturbances at the continental scale to support the quantification of their effects on the carbon balance in North America. Finally, procedures are needed to quantify the uncertainty of model inputs, model parameters, and model structures, and thus to estimate their impacts on overall model uncertainty. Working together, the scientific community interested in disturbance and its impacts can identify the most uncertain issues surrounding the role of disturbance in the North American carbon budget and develop working hypotheses to reduce the uncertainty

  19. Estimating Large Area Forest Carbon Stocks—A Pragmatic Design Based Strategy

    Directory of Open Access Journals (Sweden)

    Andrew Haywood

    2017-03-01

    Full Text Available Reducing uncertainty in forest carbon estimates at local and regional scales has become increasingly important due to the centrality of the terrestrial carbon cycle in issues of climate change. In Victoria, Australia, public natural forests extend over 7.2 M ha and constitute a significant and important carbon stock. Recently, a wide range of approaches to estimate carbon stocks within these forests have been developed and applied. However, there are a number of data and estimation limitations associated with these studies. In response, over the last five years, the State of Victoria has implemented a pragmatic plot-based design consisting of pre-stratified permanent observational units located on a state-wide grid. Using the ground sampling grid, we estimated aboveground and belowground carbon stocks (including soil to 0.3 m depth in both National Parks and State Forests, across a wide range of bioregions. Estimates of carbon stocks and associated uncertainty were conducted using simple design based estimators. We detected significantly more carbon in total aboveground and belowground components in State Forests (408.9 t ha−1, 95% confidence interval 388.8–428.9 t ha−1 than National Parks (267.6 t ha−1, 251.9–283.3 t ha−1. We were also able to estimate forest carbon stocks (and associated uncertainty for 21 strata that represent all of Victoria’s bioregions and public tenures. It is anticipated that the lessons learnt from this study may support the discussion on planning and implementing low cost large area forest carbon stock sampling in other jurisdictions.

  20. Forest management and carbon sequestration in the Mediterranean region: A review

    International Nuclear Information System (INIS)

    Ruiz-Peinado, R.; Bravo-Oviedo, A.; López-Senespleda, E.; Bravo, F.; Río, M. Del

    2017-01-01

    Aim of the study: To review and acknowledge the value of carbon sequestration by forest management in the Mediterranean area. Material and methods: We review the main effects of forest management by comparing the effects of silviculture systems (even-aged vs. uneven-aged stands, coppice systems, agroforestry systems), silvicultural options (thinning, rotation period, species composition), afforestation, harvesting, fire impact or effects of shrub layer on carbon sequestration in the Mediterranean area. Main results: We illustrate as forest management can clearly improve forest carbon sequestration amounts. We conclude that forest management is an effective way to maintain and enhance high carbon sequestration rates in order to cope with climate change and provision of ecosystem services. We also think that although much effort has been put into this topic research, there are still certain gaps that must be dealt with to increase our scientific knowledge and in turn transfer this knowledge to forest practitioners in order to achieve sustainable management aimed at mitigating climate change. Research highlights: It is important to underline the importance of forests in the carbon cycle as this role can be enhanced by forest managers through sustainable forest management. The effects of different management options or disturbances can be critical as regards mitigating climate change. Understanding the effects of forest management is even more important in the Mediterranean area, given that the current high climatic variability together with historical human exploitation and disturbance events make this area more vulnerable to the effects of climate change

  1. Forest management and carbon sequestration in the Mediterranean region: A review

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz-Peinado, R.; Bravo-Oviedo, A.; López-Senespleda, E.; Bravo, F.; Río, M. Del

    2017-11-01

    Aim of the study: To review and acknowledge the value of carbon sequestration by forest management in the Mediterranean area. Material and methods: We review the main effects of forest management by comparing the effects of silviculture systems (even-aged vs. uneven-aged stands, coppice systems, agroforestry systems), silvicultural options (thinning, rotation period, species composition), afforestation, harvesting, fire impact or effects of shrub layer on carbon sequestration in the Mediterranean area. Main results: We illustrate as forest management can clearly improve forest carbon sequestration amounts. We conclude that forest management is an effective way to maintain and enhance high carbon sequestration rates in order to cope with climate change and provision of ecosystem services. We also think that although much effort has been put into this topic research, there are still certain gaps that must be dealt with to increase our scientific knowledge and in turn transfer this knowledge to forest practitioners in order to achieve sustainable management aimed at mitigating climate change. Research highlights: It is important to underline the importance of forests in the carbon cycle as this role can be enhanced by forest managers through sustainable forest management. The effects of different management options or disturbances can be critical as regards mitigating climate change. Understanding the effects of forest management is even more important in the Mediterranean area, given that the current high climatic variability together with historical human exploitation and disturbance events make this area more vulnerable to the effects of climate change.

  2. Interactive effects of environmental change and management strategies on regional forest carbon emissions.

    Science.gov (United States)

    Hudiburg, Tara W; Luyssaert, Sebastiaan; Thornton, Peter E; Law, Beverly E

    2013-11-19

    Climate mitigation activities in forests need to be quantified in terms of the long-term effects on forest carbon stocks, accumulation, and emissions. The impacts of future environmental change and bioenergy harvests on regional forest carbon storage have not been quantified. We conducted a comprehensive modeling study and life-cycle assessment of the impacts of projected changes in climate, CO2 concentration, and N deposition, and region-wide forest management policies on regional forest carbon fluxes. By 2100, if current management strategies continue, then the warming and CO2 fertilization effect in the given projections result in a 32-68% increase in net carbon uptake, overshadowing increased carbon emissions from projected increases in fire activity and other forest disturbance factors. To test the response to new harvesting strategies, repeated thinnings were applied in areas susceptible to fire to reduce mortality, and two clear-cut rotations were applied in productive forests to provide biomass for wood products and bioenergy. The management strategies examined here lead to long-term increased carbon emissions over current harvesting practices, although semiarid regions contribute little to the increase. The harvest rates were unsustainable. This comprehensive approach could serve as a foundation for regional place-based assessments of management effects on future carbon sequestration by forests in other locations.

  3. Forest biomass carbon stocks and variation in Tibet's carbon-dense forests from 2001 to 2050.

    Science.gov (United States)

    Sun, Xiangyang; Wang, Genxu; Huang, Mei; Chang, Ruiying; Ran, Fei

    2016-10-05

    Tibet's forests, in contrast to China's other forests, are characterized by primary forests, high carbon (C) density and less anthropogenic disturbance, and they function as an important carbon pool in China. Using the biomass C density data from 413 forest inventory sites and a spatial forest age map, we developed an allometric equation for the forest biomass C density and forest age to assess the spatial biomass C stocks and variation in Tibet's forests from 2001 to 2050. The results indicated that the forest biomass C stock would increase from 831.1 Tg C in 2001 to 969.4 Tg C in 2050, with a net C gain of 3.6 Tg C yr -1 between 2001 and 2010 and a decrease of 1.9 Tg C yr -1 between 2040 and 2050. Carbon tends to allocate more in the roots of fir forests and less in the roots of spruce and pine forests with increasing stand age. The increase of the biomass carbon pool does not promote significant augmentation of the soil carbon pool. Our findings suggest that Tibet's mature forests will remain a persistent C sink until 2050. However, afforestation or reforestation, especially with the larger carbon sink potential forest types, such as fir and spruce, should be carried out to maintain the high C sink capacity.

  4. Detrital carbon pools in temperate forests: magnitude and potential for landscape-scale assessment

    Science.gov (United States)

    John Bradford; Peter Weishampel; Marie-Louise Smith; Randall Kolka; Richard A. Birdsey; Scott V. Ollinger; Michael G. Ryan

    2009-01-01

    Reliably estimating carbon storage and cycling in detrital biomass is an obstacle to carbon accounting. We examined carbon pools and fluxes in three small temperate forest landscapes to assess the magnitude of carbon stored in detrital biomass and determine whether detrital carbon storage is related to stand structural properties (leaf area, aboveground biomass,...

  5. Nonautonomous linear system of the terrestrial carbon cycle

    Science.gov (United States)

    Luo, Y.

    2012-12-01

    Carbon cycle has been studied by uses of observation through various networks, field and laboratory experiments, and simulation models. Much less has been done on theoretical thinking and analysis to understand fundament properties of carbon cycle and then guide observatory, experimental, and modeling research. This presentation is to explore what would be the theoretical properties of terrestrial carbon cycle and how those properties can be used to make observatory, experimental, and modeling research more effective. Thousands of published data sets from litter decomposition and soil incubation studies almost all indicate that decay processes of litter and soil organic carbon can be well described by first order differential equations with one or more pools. Carbon pool dynamics in plants and soil after disturbances (e.g., wildfire, clear-cut of forests, and plows of soil for cropping) and during natural recovery or ecosystem restoration also exhibit characteristics of first-order linear systems. Thus, numerous lines of empirical evidence indicate that the terrestrial carbon cycle can be adequately described as a nonautonomous linear system. The linearity reflects the nature of the carbon cycle that carbon, once fixed by photosynthesis, is linearly transferred among pools within an ecosystem. The linear carbon transfer, however, is modified by nonlinear functions of external forcing variables. In addition, photosynthetic carbon influx is also nonlinearly influenced by external variables. This nonautonomous linear system can be mathematically expressed by a first-order linear ordinary matrix equation. We have recently used this theoretical property of terrestrial carbon cycle to develop a semi-analytic solution of spinup. The new methods have been applied to five global land models, including NCAR's CLM and CABLE models and can computationally accelerate spinup by two orders of magnitude. We also use this theoretical property to develop an analytic framework to

  6. Carbon and nitrogen isotope variations in tree-rings as records of perturbations in regional carbon and nitrogen cycles.

    Science.gov (United States)

    Bukata, Andrew R; Kyser, T Kurtis

    2007-02-15

    Increasing anthropogenic pollution from urban centers and fossil fuel combustion can impact the carbon and nitrogen cycles in forests. To assess the impact of twentieth century anthropogenic pollution on forested system carbon and nitrogen cycles, variations in the carbon and nitrogen isotopic compositions of tree-rings were measured. Individual annual growth rings in trees from six sites across Ontario and one in New Brunswick, Canada were used to develop site chronologies of tree-ring delta 15N and delta 13C values. Tree-ring 615N values were approximately 0.5% per hundred higher and correlated with contemporaneous foliar samples from the same tree, but not with delta 15N values of soil samples. Temporal trends in carbon and nitrogen isotopic compositions of these tree-rings are consistent with increasing anthropogenic influence on both the carbon and nitrogen cycles since 1945. Tree-ring delta 13C values and delta 15N values are correlated at both remote and urban-proximal sites, with delta 15N values decreasing since 1945 and converging on 1% per hundred at urban-proximal sites and decreasing but not converging on a single delta 15N value in remote sites. These results indicate that temporal trends in tree-ring nitrogen and carbon isotopic compositions record the regional extent of pollution.

  7. Variation of biomass and carbon pools with forest type in temperate forests of Kashmir Himalaya, India.

    Science.gov (United States)

    Dar, Javid Ahmad; Sundarapandian, Somaiah

    2015-02-01

    An accurate characterization of tree, understory, deadwood, floor litter, and soil organic carbon (SOC) pools in temperate forest ecosystems is important to estimate their contribution to global carbon (C) stocks. However, this information on temperate forests of the Himalayas is lacking and fragmented. In this study, we measured C stocks of tree (aboveground and belowground biomass), understory (shrubs and herbaceous), deadwood (standing and fallen trees and stumps), floor litter, and soil from 111 plots of 50 m × 50 m each, in seven forest types: Populus deltoides (PD), Juglans regia (JR), Cedrus deodara (CD), Pinus wallichiana (PW), mixed coniferous (MC), Abies pindrow (AP), and Betula utilis (BU) in temperate forests of Kashmir Himalaya, India. The main objective of the present study is to quantify the ecosystem C pool in these seven forest types. The results showed that the tree biomass ranged from 100.8 Mg ha(-1) in BU forest to 294.8 Mg ha(-1) for the AP forest. The understory biomass ranged from 0.16 Mg ha(-1) in PD forest to 2.36 Mg ha(-1) in PW forest. Deadwood biomass ranged from 1.5 Mg ha(-1) in PD forest to 14.9 Mg ha(-1) for the AP forest, whereas forest floor litter ranged from 2.5 Mg ha(-1) in BU and JR forests to 3.1 Mg ha(-1) in MC forest. The total ecosystem carbon stocks varied from 112.5 to 205.7 Mg C ha(-1) across all the forest types. The C stocks of tree, understory, deadwood, litter, and soil ranged from 45.4 to 135.6, 0.08 to 1.18, 0.7 to 6.8, 1.1 to 1.4, and 39.1-91.4 Mg ha(-1), respectively, which accounted for 61.3, 0.2, 1.4, 0.8, and 36.3 % of the total carbon stock. BU forest accounted 65 % from soil C and 35 % from biomass, whereas PD forest contributed only 26 % from soil C and 74 % from biomass. Of the total C stock in the 0-30-cm soil, about 55 % was stored in the upper 0-10 cm. Soil C stocks in BU forest were significantly higher than those in other forests. The variability of C pools of different ecosystem components is

  8. Changes in the Carbon Cycle of Amazon Ecosystems During the 2010 Drought

    Science.gov (United States)

    Potter, Christophera; Klooster, Steven; Hiatt, Cyrus; Genovese, Vanessa; Castilla-Rubino, Juan Carlos

    2011-01-01

    Satellite remote sensing was combined with the NASA-CASA carbon cycle simulation model to evaluate the impact of the 2010 drought (July through September) throughout tropical South America. Results indicated that net primary production (NPP) in Amazon forest areas declined by an average of 7% in 2010 compared to 2008. This represented a loss of vegetation CO2 uptake and potential Amazon rainforest growth of nearly 0.5 Pg C in 2010. The largest overall decline in ecosystem carbon gains by land cover type was predicted for closed broadleaf forest areas of the Amazon River basin, including a large fraction of regularly flooded forest areas. Model results support the hypothesis that soil and dead wood carbon decomposition fluxes of CO2 to the atmosphere were elevated during the drought period of 2010 in periodically flooded forest areas, compared to forests outside the main river floodplains.

  9. Changes in the carbon cycle of Amazon ecosystems during the 2010 drought

    International Nuclear Information System (INIS)

    Potter, Christopher; Klooster, Steven; Hiatt, Cyrus; Genovese, Vanessa; Castilla-Rubio, Juan Carlos

    2011-01-01

    Satellite remote sensing was combined with the NASA-CASA (Carnegie Ames Stanford Approach) carbon cycle simulation model to evaluate the impact of the 2010 drought (July through September) throughout tropical South America. Results indicated that net primary production in Amazon forest areas declined by an average of 7% in 2010 compared to 2008. This represented a loss of vegetation CO 2 uptake and potential Amazon rainforest growth of nearly 0.5 Pg C in 2010. The largest overall decline in ecosystem carbon gains by land cover type was predicted for closed broadleaf forest areas of the Amazon river basin, including a large fraction of regularly flooded forest areas. Model results support the hypothesis that soil and dead wood carbon decomposition fluxes of CO 2 to the atmosphere were elevated during the drought period of 2010 in periodically flooded forest areas, compared to those for forests outside the main river floodplains.

  10. Manganese Driven Carbon Oxidation along Oxic-Anoxic Interfaces in Forest Soils

    Science.gov (United States)

    Jones, M. E.; Keiluweit, M.

    2017-12-01

    Soils are the largest and most dynamic terrestrial carbon pool, storing a total of 3000 Pg of C - more than the atmosphere and biosphere combined. Because microbial oxidation determines the proportion of carbon that is either stored in the soil or emitted as climate active CO2, its rate directly impacts the global carbon cycle. Recently, a strong correlation between oxidation rates and manganese (Mn) content has been observed in forest soils globally, leading researchers conclude that Mn "is the single main factor governing" the oxidation of plant-derived particulate organic carbon (POC). Many soils are characterized by steep oxygen gradients, forming oxic-anoxic transitions that enable rapid redox cycling of Mn. Oxic-anoxic interfaces have been shown to promote fungal Mn oxidation and the formation of ligand-stabilized Mn(III), which ranks second only to superoxide as the most powerful oxidizing agent in the environment. Here we examined fungal Mn(III) formation along redox gradients in forest soils and their impact on POC oxidation rates. In both field and laboratory settings, oxic-anoxic transition zones showed the greatest Mn(III) concentrations, along with enhanced fungal growth, oxidative potential, production of soluble oxidation products, and CO2 production. Additional electrochemical and X-ray (micro)spectroscopic analyses indicated that oxic-anoxic interfaces represent ideal niches for fungal Mn(III) formation, owing to the ready supply of Mn(II), ligands and O2. Combined, our results suggest that POC oxidation relies on fungal Mn cycling across oxic-anoxic interfaces to produce Mn(III) based oxidants. Because predicted changes in the frequency and timing of precipitation dramatically alter soil moisture regimes in forest soils, understanding the mechanistic link between Mn cycling and carbon oxidation along oxic-anoxic interfaces is becoming increasingly important.

  11. Long-term soil warming and Carbon Cycle Feedbacks to the Climate System

    Energy Technology Data Exchange (ETDEWEB)

    Melillo, Jerry M.

    2014-04-30

    The primary objective of the proposed research was to quantify and explain the effects of a sustained in situ 5oC soil temperature increase on net carbon (C) storage in a northeastern deciduous forest ecosystem. The research was done at an established soil warming experiment at the Harvard Forest in central Massachusetts – Barre Woods site established in 2001. In the field, a series of plant and soil measurements were made to quantify changes in C storage in the ecosystem and to provide insights into the possible relationships between C-storage changes and nitrogen (N) cycling changes in the warmed plots. Field measurements included: 1) annual woody increment; 2) litterfall; 3) carbon dioxide (CO2) efflux from the soil surface; 4) root biomass and respiration; 5) microbial biomass; and 6) net N mineralization and net nitrification rates. This research was designed to increase our understanding of how global warming will affect the capacity of temperate forest ecosystems to store C. The work explored how soil warming changes the interactions between the C and N cycles, and how these changes affect land-atmosphere feedbacks. This core research question framed the project – What are the effects of a sustained in situ 5oC soil temperature increase on net carbon (C) storage in a northeastern deciduous forest ecosystem? A second critical question was addressed in this research – What are the effects of a sustained in situ 5{degrees}C soil temperature increase on nitrogen (N) cycling in a northeastern deciduous forest ecosystem?

  12. Effects of multiple interacting disturbances and salvage logging on forest carbon stocks

    Science.gov (United States)

    Bradford, J.B.; Fraver, S.; Milo, A.M.; D'Amato, A.W.; Palik, B.; Shinneman, D.J.

    2012-01-01

    Climate change is anticipated to increase the frequency of disturbances, potentially impacting carbon stocks in terrestrial ecosystems. However, little is known about the implications of either multiple disturbances or post-disturbance forest management activities on ecosystem carbon stocks. This study quantified how forest carbon stocks responded to stand-replacing blowdown and wildfire, both individually and in combination with and without post-disturbance salvage operations, in a sub-boreal jack pine ecosystem. Individually, blowdown or fire caused similar decreases in live carbon and total ecosystem carbon. However, whereas blowdown increased carbon in down woody material and forest floor, fire increased carbon in standing snags, a difference that may have consequences for long-term carbon cycling patterns. Fire after the blowdown caused substantial additional reduction in ecosystem carbon stocks, suggesting that potential increases in multiple disturbance events may represent a challenge for sustaining ecosystem carbon stocks. Salvage logging, as examined here, decreased carbon stored in snags and down woody material but had no significant effect on total ecosystem carbon stocks.

  13. Forests and water cycle

    Directory of Open Access Journals (Sweden)

    Iovino F

    2009-06-01

    Full Text Available Based on a comprehensive literature analysis, a review on factors that control water cycle and water use in Mediterranean forest ecosystems is presented, including environmental variables and silvicultural treatments. This important issue is considered in the perspective of sustainable forest management of Mediterranean forests, with special regard to crucial environmental hazards such as forest fires and desertification risks related to climate change.

  14. Forest management and carbon sequestration in the Mediterranean region: A review

    Directory of Open Access Journals (Sweden)

    Ricardo Ruiz-Peinado

    2017-10-01

    Full Text Available Aim of the study: To review and acknowledge the value of carbon sequestration by forest management in the Mediterranean area. Material and methods: We review the main effects of forest management by comparing the effects of silvicultural systems (even-aged vs. uneven-aged stands, coppice systems, agroforestry systems, silvicultural options (thinning, rotation period, species composition, afforestation, harvesting, fire impact or effects of shrub layer on carbon sequestration in the Mediterranean area. Main results: We illustrate as forest management can clearly improve forest carbon sequestration amounts. We conclude that forest management is an effective way to maintain and enhance high carbon sequestration rates in order to cope with climate change and provision of ecosystem services. We also think that although much effort has been put into this topic research, there are still certain gaps that must be dealt with to increase our scientific knowledge and in turn transfer this knowledge to forest practitioners in order to achieve sustainable management aimed at mitigating climate change. Research highlights: It is important to underline the importance of forests in the carbon cycle as this role can be enhanced by forest managers through sustainable forest management. The effects of different management options or disturbances can be critical as regards mitigating climate change. Understanding the effects of forest management is even more important in the Mediterranean area, given that the current high climatic variability together with historical human exploitation and disturbance events make this area more vulnerable to the effects of climate change

  15. RISING ATMOSPHERIC CO2 AND CARBON SEQUESTRATION IN FORESTS

    Science.gov (United States)

    Rising CO2 concentrations in the Earth's atmosphere could alter Earth's climate system, but it is thought that higher concentrations may improve plant growth by way of the fertilization effect. Forests, an important part of the Earth's carbon cycle, are postulated to sequester a...

  16. Re-evaluation of forest biomass carbon stocks and lessons from the world's most carbon-dense forests.

    Science.gov (United States)

    Keith, Heather; Mackey, Brendan G; Lindenmayer, David B

    2009-07-14

    From analysis of published global site biomass data (n = 136) from primary forests, we discovered (i) the world's highest known total biomass carbon density (living plus dead) of 1,867 tonnes carbon per ha (average value from 13 sites) occurs in Australian temperate moist Eucalyptus regnans forests, and (ii) average values of the global site biomass data were higher for sampled temperate moist forests (n = 44) than for sampled tropical (n = 36) and boreal (n = 52) forests (n is number of sites per forest biome). Spatially averaged Intergovernmental Panel on Climate Change biome default values are lower than our average site values for temperate moist forests, because the temperate biome contains a diversity of forest ecosystem types that support a range of mature carbon stocks or have a long land-use history with reduced carbon stocks. We describe a framework for identifying forests important for carbon storage based on the factors that account for high biomass carbon densities, including (i) relatively cool temperatures and moderately high precipitation producing rates of fast growth but slow decomposition, and (ii) older forests that are often multiaged and multilayered and have experienced minimal human disturbance. Our results are relevant to negotiations under the United Nations Framework Convention on Climate Change regarding forest conservation, management, and restoration. Conserving forests with large stocks of biomass from deforestation and degradation avoids significant carbon emissions to the atmosphere, irrespective of the source country, and should be among allowable mitigation activities. Similarly, management that allows restoration of a forest's carbon sequestration potential also should be recognized.

  17. Re-evaluation of forest biomass carbon stocks and lessons from the world's most carbon-dense forests

    Science.gov (United States)

    Keith, Heather; Mackey, Brendan G.; Lindenmayer, David B.

    2009-01-01

    From analysis of published global site biomass data (n = 136) from primary forests, we discovered (i) the world's highest known total biomass carbon density (living plus dead) of 1,867 tonnes carbon per ha (average value from 13 sites) occurs in Australian temperate moist Eucalyptus regnans forests, and (ii) average values of the global site biomass data were higher for sampled temperate moist forests (n = 44) than for sampled tropical (n = 36) and boreal (n = 52) forests (n is number of sites per forest biome). Spatially averaged Intergovernmental Panel on Climate Change biome default values are lower than our average site values for temperate moist forests, because the temperate biome contains a diversity of forest ecosystem types that support a range of mature carbon stocks or have a long land-use history with reduced carbon stocks. We describe a framework for identifying forests important for carbon storage based on the factors that account for high biomass carbon densities, including (i) relatively cool temperatures and moderately high precipitation producing rates of fast growth but slow decomposition, and (ii) older forests that are often multiaged and multilayered and have experienced minimal human disturbance. Our results are relevant to negotiations under the United Nations Framework Convention on Climate Change regarding forest conservation, management, and restoration. Conserving forests with large stocks of biomass from deforestation and degradation avoids significant carbon emissions to the atmosphere, irrespective of the source country, and should be among allowable mitigation activities. Similarly, management that allows restoration of a forest's carbon sequestration potential also should be recognized. PMID:19553199

  18. Forest biomass carbon stocks and variation in Tibet’s carbon-dense forests from 2001 to 2050

    Science.gov (United States)

    Sun, Xiangyang; Wang, Genxu; Huang, Mei; Chang, Ruiying; Ran, Fei

    2016-01-01

    Tibet’s forests, in contrast to China’s other forests, are characterized by primary forests, high carbon (C) density and less anthropogenic disturbance, and they function as an important carbon pool in China. Using the biomass C density data from 413 forest inventory sites and a spatial forest age map, we developed an allometric equation for the forest biomass C density and forest age to assess the spatial biomass C stocks and variation in Tibet’s forests from 2001 to 2050. The results indicated that the forest biomass C stock would increase from 831.1 Tg C in 2001 to 969.4 Tg C in 2050, with a net C gain of 3.6 Tg C yr−1 between 2001 and 2010 and a decrease of 1.9 Tg C yr−1 between 2040 and 2050. Carbon tends to allocate more in the roots of fir forests and less in the roots of spruce and pine forests with increasing stand age. The increase of the biomass carbon pool does not promote significant augmentation of the soil carbon pool. Our findings suggest that Tibet’s mature forests will remain a persistent C sink until 2050. However, afforestation or reforestation, especially with the larger carbon sink potential forest types, such as fir and spruce, should be carried out to maintain the high C sink capacity. PMID:27703215

  19. US forest carbon calculation tool: forest-land carbon stocks and net annual stock change

    Science.gov (United States)

    James E. Smith; Linda S. Heath; Michael C. Nichols

    2007-01-01

    The Carbon Calculation Tool 4.0, CCTv40.exe, is a computer application that reads publicly available forest inventory data collected by the U.S. Forest Service's Forest Inventory and Analysis Program (FIA) and generates state-level annualized estimates of carbon stocks on forest land based on FORCARB2 estimators. Estimates can be recalculated as...

  20. Securing tropical forest carbon

    DEFF Research Database (Denmark)

    Scharlemann, Jörn P. W.; Kapos, Valerie; Campbell, Alison

    2010-01-01

    Forest loss and degradation in the tropics contribute 6-17% of all greenhouse gas emissions. Protected areas cover 217.2 million ha (19.6%) of the world's humid tropical forests and contain c. 70.3 petagrams of carbon (Pg C) in biomass and soil to 1 m depth. Between 2000 and 2005, we estimate...... that 1.75 million ha of forest were lost from protected areas in humid tropical forests, causing the emission of 0.25-0.33 Pg C. Protected areas lost about half as much carbon as the same area of unprotected forest. We estimate that the reduction of these carbon emissions from ongoing deforestation...... in protected sites in humid tropical forests could be valued at USD 6,200-7,400 million depending on the land use after clearance. This is >1.5 times the estimated spending on protected area management in these regions. Improving management of protected areas to retain forest cover better may be an important...

  1. Changes in the carbon cycle of Amazon ecosystems during the 2010 drought

    Energy Technology Data Exchange (ETDEWEB)

    Potter, Christopher [NASA Ames Research Center, Moffett Field, CA (United States); Klooster, Steven; Hiatt, Cyrus; Genovese, Vanessa [California State University Monterey Bay, Seaside, CA (United States); Castilla-Rubio, Juan Carlos, E-mail: chris.potter@nasa.gov [Planetary Skin Institute, Silicon Valley, CA (United States)

    2011-07-15

    Satellite remote sensing was combined with the NASA-CASA (Carnegie Ames Stanford Approach) carbon cycle simulation model to evaluate the impact of the 2010 drought (July through September) throughout tropical South America. Results indicated that net primary production in Amazon forest areas declined by an average of 7% in 2010 compared to 2008. This represented a loss of vegetation CO{sub 2} uptake and potential Amazon rainforest growth of nearly 0.5 Pg C in 2010. The largest overall decline in ecosystem carbon gains by land cover type was predicted for closed broadleaf forest areas of the Amazon river basin, including a large fraction of regularly flooded forest areas. Model results support the hypothesis that soil and dead wood carbon decomposition fluxes of CO{sub 2} to the atmosphere were elevated during the drought period of 2010 in periodically flooded forest areas, compared to those for forests outside the main river floodplains.

  2. The carbon fluxes in different successional stages: modelling the dynamics of tropical montane forests in South Ecuador

    Directory of Open Access Journals (Sweden)

    Sebastian Paulick

    2017-05-01

    Full Text Available Background Tropical forests play an important role in the global carbon (C cycle. However, tropical montane forests have been studied less than tropical lowland forests, and their role in carbon storage is not well understood. Montane forests are highly endangered due to logging, land-use and climate change. Our objective was to analyse how the carbon balance changes during forest succession. Methods In this study, we used a method to estimate local carbon balances that combined forest inventory data with process-based forest models. We utilised such a forest model to study the carbon balance of a tropical montane forest in South Ecuador, comparing two topographical slope positions (ravines and lower slopes vs upper slopes and ridges. Results The simulation results showed that the forest acts as a carbon sink with a maximum net ecosystem exchange (NEE of 9.3 Mg C∙(ha∙yr−1 during its early successional stage (0–100 years. In the late successional stage, the simulated NEE fluctuated around zero and had a variation of 0.77 Mg C∙(ha∙yr –1. The simulated variability of the NEE was within the range of the field data. We discovered several forest attributes (e.g., basal area or the relative amount of pioneer trees that can serve as predictors for NEE for young forest stands (0–100 years but not for those in the late successional stage (500–1,000 years. In case of young forest stands these correlations are high, especially between stand basal area and NEE. Conclusion In this study, we used an Ecuadorian study site as an example of how to successfully link a forest model with forest inventory data, for estimating stem-diameter distributions, biomass and aboveground net primary productivity. To conclude, this study shows that process-based forest models can be used to investigate the carbon balance of tropical montane forests. With this model it is possible to find hidden relationships between forest attributes and forest carbon fluxes

  3. Carbon in Amazon forests: unexpected seasonal fluxes and disturbance-induced losses.

    Science.gov (United States)

    S. R. Saleska; S. D. Miller; D. M. Matross; M. L. Goulden; S. C. Wofsy; H. R. da Rocha; P. B. de Camargo; P. Crill; B. C. Daube; H. C. de Freitas; L. Hutyra; M. Keller; V. Kirchhoff; M. Menton; J. W. Munger; H. E. Pyle; A. H. Rice; H. Silva

    2003-01-01

    The net ecosystem exchange of carbon dioxide was measured by eddy covariance methods for 3 years in two old-growth forest sites near Santarém, Brazil. Carbon was lost in the wet season and gained in the dry season, which was opposite to the seasonal cycles of both tree growth and model predictions. The 3-year average carbon loss was 1.3 (confidence...

  4. Carbon storage in Ontario's forests, 2000-2100

    International Nuclear Information System (INIS)

    Colombo, S.J.; Chen, J.; Ter-Mikaelian, M.T.

    2007-01-01

    One of the greatest challenges facing modern society is rapid climate change resulting from greenhouse gases emissions to the atmosphere, primarily in the form of carbon dioxide from the burning of fossil fuels. The effects of climate change on natural environments will inevitably affect people as well, if left unchanged. In addition to many other societal benefits, forests store large amounts of carbon. As a result, it is necessary to understand how forest management and natural processes affect forest carbon storage. Such information can be utilized to manage forests so that they function as carbon sinks and help reduce greenhouse gas concentrations in the atmosphere. This report employed data about Ontario's forest structure and information from the forest management planning process and past harvests to describe carbon in forests and wood products today and through to the end of this century. The paper described the methods used for the study which included modification of the United States national forest carbon model, FORCARB2, to predict Ontario's forest carbon budgets in order to make carbon projections congruent with forest management plans. The modified forest carbon model, which is called FORCARB-ON, predicts carbon in live trees, understory vegetation, forest floor, standing and down dead wood, and soil. Ontario's managed forests are projected to increase carbon storage by 433 million tonnes from 2000 to 2100. The largest forest sink will be in wood products, accounting for 364 million tonnes of carbon storage over the century. 22 refs., 1 tab., 3 figs

  5. Increased forest ecosystem carbon and nitrogen storage from nitrogen rich bedrock.

    Science.gov (United States)

    Morford, Scott L; Houlton, Benjamin Z; Dahlgren, Randy A

    2011-08-31

    Nitrogen (N) limits the productivity of many ecosystems worldwide, thereby restricting the ability of terrestrial ecosystems to offset the effects of rising atmospheric CO(2) emissions naturally. Understanding input pathways of bioavailable N is therefore paramount for predicting carbon (C) storage on land, particularly in temperate and boreal forests. Paradigms of nutrient cycling and limitation posit that new N enters terrestrial ecosystems solely from the atmosphere. Here we show that bedrock comprises a hitherto overlooked source of ecologically available N to forests. We report that the N content of soils and forest foliage on N-rich metasedimentary rocks (350-950 mg N kg(-1)) is elevated by more than 50% compared with similar temperate forest sites underlain by N-poor igneous parent material (30-70 mg N kg(-1)). Natural abundance N isotopes attribute this difference to rock-derived N: (15)N/(14)N values for rock, soils and plants are indistinguishable in sites underlain by N-rich lithology, in marked contrast to sites on N-poor substrates. Furthermore, forests associated with N-rich parent material contain on average 42% more carbon in above-ground tree biomass and 60% more carbon in the upper 30 cm of the soil than similar sites underlain by N-poor rocks. Our results raise the possibility that bedrock N input may represent an important and overlooked component of ecosystem N and C cycling elsewhere.

  6. Rapid tree carbon stock recovery in managed Amazonian forests.

    Science.gov (United States)

    Rutishauser, Ervan; Hérault, Bruno; Baraloto, Christopher; Blanc, Lilian; Descroix, Laurent; Sotta, Eleneide Doff; Ferreira, Joice; Kanashiro, Milton; Mazzei, Lucas; d'Oliveira, Marcus V N; de Oliveira, Luis C; Peña-Claros, Marielos; Putz, Francis E; Ruschel, Ademir R; Rodney, Ken; Roopsind, Anand; Shenkin, Alexander; da Silva, Katia E; de Souza, Cintia R; Toledo, Marisol; Vidal, Edson; West, Thales A P; Wortel, Verginia; Sist, Plinio

    2015-09-21

    While around 20% of the Amazonian forest has been cleared for pastures and agriculture, one fourth of the remaining forest is dedicated to wood production. Most of these production forests have been or will be selectively harvested for commercial timber, but recent studies show that even soon after logging, harvested stands retain much of their tree-biomass carbon and biodiversity. Comparing species richness of various animal taxa among logged and unlogged forests across the tropics, Burivalova et al. found that despite some variability among taxa, biodiversity loss was generally explained by logging intensity (the number of trees extracted). Here, we use a network of 79 permanent sample plots (376 ha total) located at 10 sites across the Amazon Basin to assess the main drivers of time-to-recovery of post-logging tree carbon (Table S1). Recovery time is of direct relevance to policies governing management practices (i.e., allowable volumes cut and cutting cycle lengths), and indirectly to forest-based climate change mitigation interventions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. An observational study of the carbon-sink strength of East Asian subtropical evergreen forests

    International Nuclear Information System (INIS)

    Tan Zhenghong; Zhang Yiping; Zhang Yongjiang; Song Qinhai; Cao Kunfang; Schaefer, D A; Liu Yuhong; Liang Naishen; Hsia, Yue-Joe; Zhou Guoyi; Li Yuelin; Yan Junhua; Juang, Jehn-Yih; Chu Housen; Yu Guirui; Sun Xiaomin

    2012-01-01

    Relatively little is known about the effects of regional warming on the carbon cycle of subtropical evergreen forest ecosystems, which are characterized by year-round growing season and cold winters. We investigated the carbon balance in three typical East Asia subtropical evergreen forests, using eddy flux, soil respiration and leaf-level measurements. Subtropical evergreen forests maintain continuous, high rates of photosynthetic activity, even during winter cold periods. Warm summers enhance photosynthetic rates in a limited way, because overall ecosystem productivity is primarily restrained by radiation levels during the warm period. Conversely, warm climates significantly enhance the respiratory carbon efflux. The finding of lower sensitivity of photosynthesis relative to that of respiration suggests that increased temperature will weaken the carbon-sink strength of East Asia subtropical evergreen forests. (letter)

  8. Toward an integrated monitoring framework to assess the effects of tropical forest degradation and recovery on carbon stocks and biodiversity.

    Science.gov (United States)

    Bustamante, Mercedes M C; Roitman, Iris; Aide, T Mitchell; Alencar, Ane; Anderson, Liana O; Aragão, Luiz; Asner, Gregory P; Barlow, Jos; Berenguer, Erika; Chambers, Jeffrey; Costa, Marcos H; Fanin, Thierry; Ferreira, Laerte G; Ferreira, Joice; Keller, Michael; Magnusson, William E; Morales-Barquero, Lucia; Morton, Douglas; Ometto, Jean P H B; Palace, Michael; Peres, Carlos A; Silvério, Divino; Trumbore, Susan; Vieira, Ima C G

    2016-01-01

    Tropical forests harbor a significant portion of global biodiversity and are a critical component of the climate system. Reducing deforestation and forest degradation contributes to global climate-change mitigation efforts, yet emissions and removals from forest dynamics are still poorly quantified. We reviewed the main challenges to estimate changes in carbon stocks and biodiversity due to degradation and recovery of tropical forests, focusing on three main areas: (1) the combination of field surveys and remote sensing; (2) evaluation of biodiversity and carbon values under a unified strategy; and (3) research efforts needed to understand and quantify forest degradation and recovery. The improvement of models and estimates of changes of forest carbon can foster process-oriented monitoring of forest dynamics, including different variables and using spatially explicit algorithms that account for regional and local differences, such as variation in climate, soil, nutrient content, topography, biodiversity, disturbance history, recovery pathways, and socioeconomic factors. Generating the data for these models requires affordable large-scale remote-sensing tools associated with a robust network of field plots that can generate spatially explicit information on a range of variables through time. By combining ecosystem models, multiscale remote sensing, and networks of field plots, we will be able to evaluate forest degradation and recovery and their interactions with biodiversity and carbon cycling. Improving monitoring strategies will allow a better understanding of the role of forest dynamics in climate-change mitigation, adaptation, and carbon cycle feedbacks, thereby reducing uncertainties in models of the key processes in the carbon cycle, including their impacts on biodiversity, which are fundamental to support forest governance policies, such as Reducing Emissions from Deforestation and Forest Degradation. © 2015 John Wiley & Sons Ltd.

  9. Estimated carbon emission from recent rapid forest loss in Southeast Asia

    Science.gov (United States)

    Chen, A.; Zeng, Z.; Peng, L.; Fei, S.

    2017-12-01

    Driven by agricultural expansion, industrial logging, oil palm and rubber plantations, and urbanization, Southeast Asia (SEA) is one of the hotspots for tropical deforestation over recent decades. The extent of the tropical SEA deforestation rate, as well as its impacts on carbon cycle and biodiversity, however, is still highly uncertain. In relevant work using high resolution global maps of the 21st-century forest cover, we find tropical SEA lost 22 million hectares, or 9%, of forest area during 2000-2014, a much higher deforestation rate than previously reported. Here we further conduct research investigating carbon emissions from tropical deforestation in SEA with satellite data of forest cover, a global tropical forest biomass map, and Earth system models. Preliminary results suggest that deforestation in SEA causes about 2.8 Tg C emissions to the atmosphere during the same period, also higher than that of previous studies. Meanwhile, carbon emission from deforestation shows high variations across different countries, topography and between the insular and maritime SEA. Indonesia and Malaysia tops in both total carbon loss and loss from per unit land area. Our results indicates that previous studies have underestimated the carbon loss due to deforestation in SEA. And until further effective forest conservation measures can be adopted, tropical SEA will continue playing a role of atmospheric carbon source in the coming decades.

  10. Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models

    Science.gov (United States)

    W. R. L. Anderegg; C. Schwalm; F. Biondi; J. J. Camarero; G. Koch; M. Litvak; K. Ogle; J. D. Shaw; E. Shevliakova; A. P. Williams; A. Wolf; E. Ziaco; S. Pacala

    2015-01-01

    The impacts of climate extremes on terrestrial ecosystems are poorly understood but important for predicting carbon cycle feedbacks to climate change. Coupled climate-carbon cycle models typically assume that vegetation recovery from extreme drought is immediate and complete, which conflicts with the understanding of basic plant physiology. We examined the recovery of...

  11. A "high severity" spruce beetle outbreak in Wyoming causes moderate-severity carbon cycle perturbations

    Science.gov (United States)

    Berryman, E.; Frank, J. M.; Speckman, H. N.; Bradford, J. B.; Ryan, M. G.; Massman, W. J.; Hawbaker, T. J.

    2017-12-01

    Bark beetle outbreaks in Western North American forests are often considered a high-severity disturbance from a carbon (C) cycling perspective, but field measurements that quantify impacts on C dynamics are very limited. Often, factors out of the researcher's control complicate the separation of beetle impacts from other drivers of C cycling variability and restrict statistical inference. Fortuitously, we had four years of pre-spruce beetle outbreak C cycle measurements in a subalpine forest in southeastern Wyoming (Glacier Lakes Ecosystem Experiments Site, or GLEES) and sustained intermittent monitoring for nearly a decade after the outbreak. Here, we synthesize published and unpublished pre- and post-outbreak measurements of key C cycle stocks and fluxes at GLEES. Multiple lines of evidence, including chamber measurements, eddy covariance measurements, and tracking of soil and forest floor C pools over time, point to the GLEES outbreak as a moderate-severity disturbance for C loss to the atmosphere, despite 70% to 80% of overstory tree death. Reductions in NEE were short-lived and the forest quickly returned to a carbon-neutral state, likely driven by an uptick in understory growth. Effect of mortality on the C cycle was asymmetrical, with a 50% reduction in net carbon uptake (NEE) two years into the outbreak, yet no measureable change in either ecosystem or growing season soil respiration. A small pulse in soil respiration occurred but was only detectable during the winter and amounted to < 10% of NEE. Possible reasons for the lack of measureable respiration response are discussed with emphasis on lessons learned for monitoring and modeling future outbreaks. We suggest a comprehensive assessment and definition of "moderate-severity" disturbances for Western forests and suggest that all tree mortality events may not be high-severity when it comes to C fluxes.

  12. Carbon sequestration, optimum forest rotation and their environmental impact

    International Nuclear Information System (INIS)

    Kula, Erhun; Gunalay, Yavuz

    2012-01-01

    Due to their large biomass forests assume an important role in the global carbon cycle by moderating the greenhouse effect of atmospheric pollution. The Kyoto Protocol recognises this contribution by allocating carbon credits to countries which are able to create new forest areas. Sequestrated carbon provides an environmental benefit thus must be taken into account in cost–benefit analysis of afforestation projects. Furthermore, like timber output carbon credits are now tradable assets in the carbon exchange. By using British data, this paper looks at the issue of identifying optimum felling age by considering carbon sequestration benefits simultaneously with timber yields. The results of this analysis show that the inclusion of carbon benefits prolongs the optimum cutting age by requiring trees to stand longer in order to soak up more CO 2 . Consequently this finding must be considered in any carbon accounting calculations. - Highlights: ► Carbon sequestration in forestry is an environmental benefit. ► It moderates the problem of global warming. ► It prolongs the gestation period in harvesting. ► This paper uses British data in less favoured districts for growing Sitka spruce species.

  13. Carbon sequestration, optimum forest rotation and their environmental impact

    Energy Technology Data Exchange (ETDEWEB)

    Kula, Erhun, E-mail: erhun.kula@bahcesehir.edu.tr [Department of Economics, Bahcesehir University, Besiktas, Istanbul (Turkey); Gunalay, Yavuz, E-mail: yavuz.gunalay@bahcesehir.edu.tr [Department of Business Studies, Bahcesehir University, Besiktas, Istanbul (Turkey)

    2012-11-15

    Due to their large biomass forests assume an important role in the global carbon cycle by moderating the greenhouse effect of atmospheric pollution. The Kyoto Protocol recognises this contribution by allocating carbon credits to countries which are able to create new forest areas. Sequestrated carbon provides an environmental benefit thus must be taken into account in cost-benefit analysis of afforestation projects. Furthermore, like timber output carbon credits are now tradable assets in the carbon exchange. By using British data, this paper looks at the issue of identifying optimum felling age by considering carbon sequestration benefits simultaneously with timber yields. The results of this analysis show that the inclusion of carbon benefits prolongs the optimum cutting age by requiring trees to stand longer in order to soak up more CO{sub 2}. Consequently this finding must be considered in any carbon accounting calculations. - Highlights: Black-Right-Pointing-Pointer Carbon sequestration in forestry is an environmental benefit. Black-Right-Pointing-Pointer It moderates the problem of global warming. Black-Right-Pointing-Pointer It prolongs the gestation period in harvesting. Black-Right-Pointing-Pointer This paper uses British data in less favoured districts for growing Sitka spruce species.

  14. Potential of forest management to reduce French carbon emissions - regional modelling of the French forest carbon balance from the forest to the wood.

    Science.gov (United States)

    Valade, A.; Luyssaert, S.; Bellassen, V.; Vallet, P.

    2015-12-01

    In France the low levels of forest harvest (40 Mm3 per year over a volume increment of 89Mm3) is frequently cited to push for a more intensive management of the forest that would help reducing CO2 emissions. This reasoning overlooks the medium-to-long-term effects on the carbon uptake at the national scale that result from changes in the forest's structure and delayed emissions from products decay and bioenergy burning, both determinant for the overall C fluxes between the biosphere and the atmosphere. To address the impacts of an increase in harvest removal on biosphere-atmosphere carbon fluxes at national scale, we build a consistent regional modeling framework to integrate the forest-carbon system from photosynthesis to wood uses. We aim at bridging the gap between regional ecosystem modeling and land managers' considerations, to assess the synergistic and antagonistic effects of management strategies over C-based forest services: C-sequestration, energy and material provision, fossil fuel substitution. For this, we built on inventory data to develop a spatial forest growth simulator and design a novel method for diagnosing the current level of management based on stand characteristics (density, quadratic mean diameter or exploitability). The growth and harvest simulated are then processed with a life cycle analysis to account for wood transformation and uses. Three scenarii describe increases in biomass removals either driven by energy production target (set based on national prospective with a lock on minimum harvest diameters) or by changes in management practices (shorter or longer rotations, management of currently unmanaged forests) to be compared with business as usual simulations. Our management levels' diagnostics quantifies undermanagement at national scale and evidences the large weight of ownership-based undermanagement with an average of 26% of the national forest (between 10% and 40% per species) and thus represents a huge potential wood resource

  15. Measuring and modeling carbon balance in mountainous Northern Rocky mixed conifer forests

    Science.gov (United States)

    Hudiburg, T. W.; Berardi, D.; Stenzel, J.

    2016-12-01

    Drought and wildfire caused by changing precipitation patterns, increased temperatures, increased fuel loads, and decades of fire suppression are reducing forest carbon uptake from local to continental scales. This trend is especially widespread in Idaho and the intermountain west and has important implications for climate change and forest management options. Given the key role of forests in climate regulation, understanding forest response to drought and the feedbacks to the atmosphere is a key research and policy-relevant priority globally. As temperature, fire, and precipitation regimes continue to change and there is increased risk of forest mortality, measurements and modeling at temporal and spatial scales that are conducive to understanding the impacts and underlying mechanisms of carbon and nutrient cycling become critically important. Until recently, sub-daily measurements of ecosystem carbon balance have been limited in remote, mountainous terrain (e.g Northern Rocky mountain forests). Here, we combine new measurement technology and state-of-the-art ecosystem modeling to determine the impact of drought on the total carbon balance of a mature, mixed-conifer forest in Northern Idaho. Our findings indicate that drought had no impact on aboveground NPP, despite early growing season reductions in soil moisture and fine root biomass compared to non-drought years in the past. Modeled estimates of net ecosystem production (NEP) suggest that a simultaneous reduction in heterotrophic respiration increased the carbon sink for this forest. This has important implications for forest management, such as thinning where the objectives are to increase forest resilience to fire and drought, but may decrease NEP.

  16. Land use strategies to mitigate climate change in carbon dense temperate forests

    Science.gov (United States)

    Hudiburg, Tara W.; Berner, Logan T.; Kent, Jeffrey J.; Buotte, Polly C.; Harmon, Mark E.

    2018-01-01

    Strategies to mitigate carbon dioxide emissions through forestry activities have been proposed, but ecosystem process-based integration of climate change, enhanced CO2, disturbance from fire, and management actions at regional scales are extremely limited. Here, we examine the relative merits of afforestation, reforestation, management changes, and harvest residue bioenergy use in the Pacific Northwest. This region represents some of the highest carbon density forests in the world, which can store carbon in trees for 800 y or more. Oregon’s net ecosystem carbon balance (NECB) was equivalent to 72% of total emissions in 2011–2015. By 2100, simulations show increased net carbon uptake with little change in wildfires. Reforestation, afforestation, lengthened harvest cycles on private lands, and restricting harvest on public lands increase NECB 56% by 2100, with the latter two actions contributing the most. Resultant cobenefits included water availability and biodiversity, primarily from increased forest area, age, and species diversity. Converting 127,000 ha of irrigated grass crops to native forests could decrease irrigation demand by 233 billion m3⋅y−1. Utilizing harvest residues for bioenergy production instead of leaving them in forests to decompose increased emissions in the short-term (50 y), reducing mitigation effectiveness. Increasing forest carbon on public lands reduced emissions compared with storage in wood products because the residence time is more than twice that of wood products. Hence, temperate forests with high carbon densities and lower vulnerability to mortality have substantial potential for reducing forest sector emissions. Our analysis framework provides a template for assessments in other temperate regions. PMID:29555758

  17. Markedly divergent estimates of Amazon forest carbon density from ground plots and satellites

    NARCIS (Netherlands)

    Mitchard, Edward T. A.; Feldpausch, Ted R.; Brienen, Roel J. W.; Lopez-Gonzalez, Gabriela; Monteagudo, Abel; Baker, Timothy R.; Lewis, Simon L.; Lloyd, Jon; Quesada, Carlos A.; Gloor, Manuel; ter Steege, Hans|info:eu-repo/dai/nl/075217120; Meir, Patrick; Alvarez, Esteban; Araujo-Murakami, Alejandro; Aragao, Luiz E. O. C.; Arroyo, Luzmila; Aymard, Gerardo; Banki, Olaf; Bonal, Damien; Brown, Sandra; Brown, Foster I.; Ceron, Carlos E.; Chama Moscoso, Victor; Chave, Jerome; Comiskey, James A.; Cornejo, Fernando; Corrales Medina, Massiel; Da Costa, Lola; Costa, Flavia R. C.; Di Fiore, Anthony; Domingues, Tomas F.; Erwin, Terry L.; Frederickson, Todd; Higuchi, Niro; Honorio Coronado, Euridice N.; Levis, Carolina; Killeen, Tim J.; Laurance, William F.; Magnusson, William E.; Marimon, Beatriz S.; Marimon Junior, Ben Hur; Mendoza Polo, Irina; Mishra, Piyush; Nascimento, Marcelo T.; Neill, David; Nunez Vargas, Mario P.; Palacios, Walter A.; Parada, Alexander; Pardo Molina, Guido; Pena-Claros, Marielos; Pitman, Nigel; Peres, Carlos A.; Prieto, Adriana; Poorter, Lourens; Ramirez-Angulo, Hirma; Restrepo Correa, Zorayda; Roopsind, Anand; Roucoux, Katherine H.; Rudas, Agustin; Salomao, Rafael P.; Schietti, Juliana; Silveira, Marcos; de Souza, Priscila F.; Steininger, Marc K.; Stropp, Juliana; Terborgh, John; Thomas, Raquel; Toledo, Marisol; Torres-Lezama, Armando; van Andel, Tinde R.|info:eu-repo/dai/nl/205284868; van der Heijden, Geertje M. F.; Vieira, Ima C. G.; Vieira, Simone; Vilanova-Torre, Emilio; Vos, Vincent A.; Wang, Ophelia; Zartman, Charles E.; Malhi, Yadvinder; Phillips, Oliver L.; Cruz, A.P.; Cuenca, W.P.; Espejo, J.E.; Ferreira, L.; Germaine, A.; Penuela, M.C.; Silva, N.; Valenzuela Gamarra, L.

    Aim The accurate mapping of forest carbon stocks is essential for understanding the global carbon cycle, for assessing emissions from deforestation, and for rational land-use planning. Remote sensing (RS) is currently the key tool for this purpose, but RS does not estimate vegetation biomass

  18. The influence of climate changes on carbon cycle in the russian forests. Data inventory and long-scale model prognoses

    Energy Technology Data Exchange (ETDEWEB)

    Kokorin, A.O.; Nazarov, I.M.; Lelakin, A.L. [Inst. Global Climate and Ecology, Moscow (Russian Federation)

    1995-12-31

    The growing up climate changes arise the question about reaction of forests. Forests cover 770 Mha in Russia and are giant carbon reservoir. Climate changes cause disbalance in carbon budget that give additional CO{sub 2} exchange between forests and the atmosphere. The aim of the work is estimation of these fluxes. This problem is directly connected with an GHG inventory, vulnerability and mitigation assessment, which are necessary for future Russian Reports to UN FCCC. The work includes the following steps: (1) Collection of literature data as well as processing of the experimental data on influence of climate changes on forests, (2) Calculation of carbon budget as base for calculations of CO{sub 2} fluxes, (3) Developing of new version of CCBF (Carbon and Climate in Boreal Forests) model, (4) Model estimations of current and future CO{sub 2} fluxes caused by climate changes, forest cuttings, fires and reforestation

  19. The influence of climate changes on carbon cycle in the russian forests. Data inventory and long-scale model prognoses

    Energy Technology Data Exchange (ETDEWEB)

    Kokorin, A O; Nazarov, I M; Lelakin, A L [Inst. Global Climate and Ecology, Moscow (Russian Federation)

    1996-12-31

    The growing up climate changes arise the question about reaction of forests. Forests cover 770 Mha in Russia and are giant carbon reservoir. Climate changes cause disbalance in carbon budget that give additional CO{sub 2} exchange between forests and the atmosphere. The aim of the work is estimation of these fluxes. This problem is directly connected with an GHG inventory, vulnerability and mitigation assessment, which are necessary for future Russian Reports to UN FCCC. The work includes the following steps: (1) Collection of literature data as well as processing of the experimental data on influence of climate changes on forests, (2) Calculation of carbon budget as base for calculations of CO{sub 2} fluxes, (3) Developing of new version of CCBF (Carbon and Climate in Boreal Forests) model, (4) Model estimations of current and future CO{sub 2} fluxes caused by climate changes, forest cuttings, fires and reforestation

  20. Capacity of US Forests to Maintain Existing Carbon Sequestration will be affected by Changes in Forest Disturbances and to a greater extent, the Economic and Societal Influences on Forest Management and Land Use

    Science.gov (United States)

    Joyce, L. A.; Running, S. W.; Breshears, D. D.; Dale, V.; Malmsheimer, R. W.; Sampson, N.; Sohngen, B.; Woodall, C. W.

    2012-12-01

    -growing planting stock and shorter rotations, and weed, disease, and insect control, and increasing the interval between harvests or decreasing harvest intensity. Economic drivers will affect future carbon cycle of forests such as shifts in forest age class structure in response to markets, land-use changes such as urbanization, and forest type changes. Future changes in forestland objectives include the potential for bioenergy based on forestland resources, which is as large as 504 million acres of timberland and 91 million acres of other forest land out of the 751 million acres of U.S. forestland. Implications of forest product use for bioenergy depend on the context of specific locations such as feedstock type and prior management, land conditions, transport and storage logistics, conversion processes used to produce energy, distribution and use. Markets for energy from biomass appear to be ready to grow in response to energy pricing, policy and demand, although recent increases in the supply of natural gas have reduced urgency for new biomass projects. Beyond use in the forest industry and some residences, biopower is not a large-scale enterprise in the United States. Societal choices about forest policy will also affect the carbon cycles on public and private forestland.

  1. A model of forest floor carbon mass for United States forest types

    Science.gov (United States)

    James E. Smith; Linda S. Heath

    2002-01-01

    Includes a large set of published values of forest floor mass and develop large-scale estimates of carbon mass according to region and forest type. Estimates of average forest floor carbon mass per hectare of forest applied to a 1997 summary forest inventory, sum to 4.5 Gt carbon stored in forests of the 48 contiguous United States.

  2. Forests and carbon storage

    Science.gov (United States)

    Michael G. Ryan

    2008-01-01

    Forests store much carbon and their growth can be a carbon sink if disturbance or harvesting has killed or removed trees or if trees that can now regrow are planted where they did not historically occur. Forests and long-lived wood products currently offset 310 million metric tons of U.S. fossil fuel emissions of carbon--20 percent of the total (Pacala et al. 2007)....

  3. Increased topsoil carbon stock across China's forests.

    Science.gov (United States)

    Yang, Yuanhe; Li, Pin; Ding, Jinzhi; Zhao, Xia; Ma, Wenhong; Ji, Chengjun; Fang, Jingyun

    2014-08-01

    Biomass carbon accumulation in forest ecosystems is a widespread phenomenon at both regional and global scales. However, as coupled carbon-climate models predicted, a positive feedback could be triggered if accelerated soil carbon decomposition offsets enhanced vegetation growth under a warming climate. It is thus crucial to reveal whether and how soil carbon stock in forest ecosystems has changed over recent decades. However, large-scale changes in soil carbon stock across forest ecosystems have not yet been carefully examined at both regional and global scales, which have been widely perceived as a big bottleneck in untangling carbon-climate feedback. Using newly developed database and sophisticated data mining approach, here we evaluated temporal changes in topsoil carbon stock across major forest ecosystem in China and analysed potential drivers in soil carbon dynamics over broad geographical scale. Our results indicated that topsoil carbon stock increased significantly within all of five major forest types during the period of 1980s-2000s, with an overall rate of 20.0 g C m(-2) yr(-1) (95% confidence interval, 14.1-25.5). The magnitude of soil carbon accumulation across coniferous forests and coniferous/broadleaved mixed forests exhibited meaningful increases with both mean annual temperature and precipitation. Moreover, soil carbon dynamics across these forest ecosystems were positively associated with clay content, with a larger amount of SOC accumulation occurring in fine-textured soils. In contrast, changes in soil carbon stock across broadleaved forests were insensitive to either climatic or edaphic variables. Overall, these results suggest that soil carbon accumulation does not counteract vegetation carbon sequestration across China's forest ecosystems. The combination of soil carbon accumulation and vegetation carbon sequestration triggers a negative feedback to climate warming, rather than a positive feedback predicted by coupled carbon-climate models

  4. Hurricane impacts on US forest carbon sequestration

    Science.gov (United States)

    Steven G. McNulty

    2002-01-01

    Recent focus has been given to US forests as a sink for increases in atmospheric carbon dioxide. Current estimates of US Forest carbon sequestration average approximately 20 Tg (i.e. 1012 g) year. However, predictions of forest carbon sequestration often do not include the influence of hurricanes on forest carbon storage. Intense hurricanes...

  5. Current and potential carbon stocks in Moso bamboo forests in China.

    Science.gov (United States)

    Li, Pingheng; Zhou, Guomo; Du, Huaqiang; Lu, Dengsheng; Mo, Lufeng; Xu, Xiaojun; Shi, Yongjun; Zhou, Yufeng

    2015-06-01

    Bamboo forests provide important ecosystem services and play an important role in terrestrial carbon cycling. Of the approximately 500 bamboo species in China, Moso bamboo (Phyllostachys pubescens) is the most important one in terms of distribution, timber value, and other economic values. In this study, we estimated current and potential carbon stocks in China's Moso bamboo forests and in their products. The results showed that Moso bamboo forests in China stored about 611.15 ± 142.31 Tg C, 75% of which was in the top 60 cm soil, 22% in the biomass of Moso bamboos, and 3% in the ground layer (i.e., bamboo litter, shrub, and herb layers). Moso bamboo products store 10.19 ± 2.54 Tg C per year. The potential carbon stocks reach 1331.4 ± 325.1 Tg C, while the potential C stored in products is 29.22 ± 7.31 Tg C a(-1). Our results indicate that Moso bamboo forests and products play a critical role in C sequestration. The information gained in this study will facilitate policy decisions concerning carbon sequestration and management of Moso bamboo forests in China. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. The Role of Eucalyptus Globulus Forest and Products in Carbon Sequestration

    International Nuclear Information System (INIS)

    Arroja, L.; Dias, A.C.; Capela, I.

    2006-01-01

    This study is a contribution to the ongoing debate about the selection of the approach for carbon accounting in wood products to be used, in the future, in the national greenhouse gas inventories under the UNFCCC (United Nations Framework Convention on Climate Change). Two accounting approaches are used in this analysis: the stock-change approach and the atmospheric-flow approach. They are applied to the Portuguese Eucalyptus globulus forest sector. To achieve this objective, the fluxes of wood removed from the forest are tracked through its life cycle, which includes products manufacture (mainly pulp and paper), use and final disposal (landfilling, incineration and composting). This study develops a framework to the estimation of carbon sequestration in the forest of E. globulus, a fast growing species, more specifically, in the calculation of the conversion factors such as bark and foliage percentages and densities, used to convert wood volumes into total biomass. A mass balance approach based on real data from mills is also proposed, in order to assess carbon emissions from wood processing. The results show that E. globulus forest sector was a carbon sink, but the magnitude of the carbon sequestration differs substantially depending on the accounting approach used. The contribution of the forest ecosystem was smaller than the aggregated contribution of wood products in use and in landfills (including industrial waste), which reinforces the role that wood products play in national carbon budgets

  7. Final Technical Report. Supporting carbon cycle and earth systems modeling with measurements and analysis from the Howland AmeriFlux Site

    Energy Technology Data Exchange (ETDEWEB)

    Hollinger, David [USDA Forest Service, Washington, DC (United States); Davidson, E. [Woods Hole Research Center, Falmouth, MA (United States); Dail, D. B. [Univ. of Maine, Orono, ME (United States); Richardson, A. [Harvard Univ., Cambridge, MA (United States)

    2016-01-11

    This report provides and overview of the work carried out and lists the products produced under the terms of agreement SC0005578 with the USDA Forest Service. This relates to scientific investigation of the carbon cycle at the Howland Forest AmeriFlux site located in central Maine, USDA. The overall goal of this work was to understand the various (and interacting) impacts of a changing climate on carbon cycling at the Howland AmeriFlux site, representative of an important component of the North American boreal forest.

  8. Forests and wood consumption on the carbon balance. Carbon emission reduction by use of wood products

    International Nuclear Information System (INIS)

    Sikkema, R.; Nabuurs, G.J.

    1995-01-01

    Until now studies on the greenhouse effect paid much attention to carbon fixation by forests, while the entire CO2 cycle of forests and forest products remained underexposed. Utilization of wood products instead of energy-intensive materials (plastics/steel) and fossil fuels (coal) proves to play an important role as well. The effect of utilization is even greater than that of fixation. In all, additional forests together with the multiple use of trees can contribute substantially to the reduction of CO2 emissions. The contribution can run from 5.3 ton CO2/ha/yr for a mixed forest of oak/beech to 18.9 ton CO2/ha/yr for energy plantations (poplar). 2 figs., 3 tabs

  9. Soil, environmental, and watershed measurements in support of carbon cycling studies in northwestern Mississippi

    Science.gov (United States)

    Huntington, T.G.; Harden, J.W.; Dabney, S.M.; Marion, D.A.; Alonso, C.; Sharpe, J.M.; Fries, T.L.

    1998-01-01

    Measurements including soil respiration, soil moisture, soil temperature, and carbon export in suspended sediments from small watersheds were recorded at several field sites in northwestern Mississippi in support of hillslope process studies associated with the U.S. Geological Survey's Mississippi Basin Carbon Project (MBCP). These measurements were made to provide information about carbon cycling in agricultural and forest ecosystems to understand the potential role of erosion and deposition in the sequestration of soil organic carbon in upland soils. The question of whether soil erosion and burial constitutes an important net sink of atmospheric carbon dioxide is one hypothesis that the MBCP is evaluating to better understand carbon cycling and climate change. This report contains discussion of methods used and presents data for the period December 1996 through March 1998. Included in the report are ancillary data provided by the U.S. Department of Agriculture (USDA) ARS National Sedimentation Laboratory and U.S. Forest Service (USFS) Center for Bottomland Hardwoods Research on rainfall, runoff, sediment yield, forest biomass and grain yield. Together with the data collected by the USGS these data permit the construction of carbon budgets and the calibration of models of soil organic matter dynamics and sediment transport and deposition. The U.S. Geological Survey (USGS) has established cooperative agreements with the USDA and USFS to facilitate collaborative research at research sites in northwestern Mississippi.

  10. Carbon Consequences of Forest Disturbance and Recovery Across the Conterminous United States

    Science.gov (United States)

    Williams, Christopher A.; Collatz, G. James; Masek, Jeffrey; Goward, Samuel N.

    2012-01-01

    Forests of North America are thought to constitute a significant long term sink for atmospheric carbon. The United States Forest Service Forest Inventory and Analysis (FIA) program has developed a large data base of stock changes derived from consecutive estimates of growing stock volume in the US. These data reveal a large and relatively stable increase in forest carbon stocks over the last two decades or more. The mechanisms underlying this national increase in forest stocks may include recovery of forests from past disturbances, net increases in forest area, and growth enhancement driven by climate or fertilization by CO2 and Nitrogen. Here we estimate the forest recovery component of the observed stock changes using FIA data on the age structure of US forests and carbon stocks as a function of age. The latter are used to parameterize forest disturbance and recovery processes in a carbon cycle model. We then apply resulting disturbance/recovery dynamics to landscapes and regions based on the forest age distributions. The analysis centers on 28 representative climate settings spread about forested regions of the conterminous US. We estimate carbon fluxes for each region and propagate uncertainties in calibration data through to the predicted fluxes. The largest recovery-driven carbon sinks are found in the South central, Pacific Northwest, and Pacific Southwest regions, with spatially averaged net ecosystem productivity (NEP) of about 100 g C / square m / a driven by forest age structure. Carbon sinks from recovery in the Northeast and Northern Lake States remain moderate to large owing to the legacy of historical clearing and relatively low modern disturbance rates from harvest and fire. At the continental scale, we find a conterminous U.S. forest NEP of only 0.16 Pg C/a from age structure in 2005, or only 0.047 Pg C/a of forest stock change after accounting for fire emissions and harvest transfers. Recent estimates of NEP derived from inventory stock change

  11. Degraded tropical rain forests possess valuable carbon storage opportunities in a complex, forested landscape.

    Science.gov (United States)

    Alamgir, Mohammed; Campbell, Mason J; Turton, Stephen M; Pert, Petina L; Edwards, Will; Laurance, William F

    2016-07-20

    Tropical forests are major contributors to the terrestrial global carbon pool, but this pool is being reduced via deforestation and forest degradation. Relatively few studies have assessed carbon storage in degraded tropical forests. We sampled 37,000 m(2) of intact rainforest, degraded rainforest and sclerophyll forest across the greater Wet Tropics bioregion of northeast Australia. We compared aboveground biomass and carbon storage of the three forest types, and the effects of forest structural attributes and environmental factors that influence carbon storage. Some degraded forests were found to store much less aboveground carbon than intact rainforests, whereas others sites had similar carbon storage to primary forest. Sclerophyll forests had lower carbon storage, comparable to the most heavily degraded rainforests. Our findings indicate that under certain situations, degraded forest may store as much carbon as intact rainforests. Strategic rehabilitation of degraded forests could enhance regional carbon storage and have positive benefits for tropical biodiversity.

  12. Environmental change and the carbon balance of Amazonian forests

    International Nuclear Information System (INIS)

    Aragao, Luiz E.O.C.; Poulter, Benjamin

    2014-01-01

    Extreme climatic events and land-use change are known to influence strongly the current carbon cycle of Amazonia, and have the potential to cause significant global climate impacts. This review intends to evaluate the effects of both climate and anthropogenic perturbations on the carbon balance of the Brazilian Amazon and to understand how they interact with each other. By analysing the outputs of the Intergovernmental Panel for Climate Change (IPCC) Assessment Report 4 (AR4) model ensemble, we demonstrate that Amazonian temperatures and water stress are both likely to increase over the 21. Century. Curbing deforestation in the Brazilian Amazon by 62% in 2010 relative to the 1990's mean decreased the Brazilian Amazon's deforestation contribution to global land use carbon emissions from 17% in the 1990's and early 2000's to 9% by 2010. Carbon sources in Amazonia are likely to be dominated by climatic impacts allied with forest fires (48.3% relative contribution) during extreme droughts. The current net carbon sink (net biome productivity, NBP) of +0.16 (ranging from +0.11 to +0.21) PgCyear-1 in the Brazilian Amazon, equivalent to 13.3% of global carbon emissions from land-use change for 2008, can be negated or reversed during drought years [NBP=-0.06 (-0.31 to +0.01) PgCyear -1 ]. Therefore, reducing forest fires, in addition to reducing deforestation, would be an important measure for minimizing future emissions. Conversely, doubling the current area of secondary forests and avoiding additional removal of primary forests would help the Amazonian gross forest sink to offset approximately 42% of global land-use change emissions. We conclude that a few strategic environmental policy measures are likely to strengthen the Amazonian net carbon sink with global implications. Moreover, these actions could increase the resilience of the net carbon sink to future increases in drought frequency. (authors)

  13. Environmental change and the carbon balance of Amazonian forests.

    Science.gov (United States)

    Aragão, Luiz E O C; Poulter, Benjamin; Barlow, Jos B; Anderson, Liana O; Malhi, Yadvinder; Saatchi, Sassan; Phillips, Oliver L; Gloor, Emanuel

    2014-11-01

    Extreme climatic events and land-use change are known to influence strongly the current carbon cycle of Amazonia, and have the potential to cause significant global climate impacts. This review intends to evaluate the effects of both climate and anthropogenic perturbations on the carbon balance of the Brazilian Amazon and to understand how they interact with each other. By analysing the outputs of the Intergovernmental Panel for Climate Change (IPCC) Assessment Report 4 (AR4) model ensemble, we demonstrate that Amazonian temperatures and water stress are both likely to increase over the 21st Century. Curbing deforestation in the Brazilian Amazon by 62% in 2010 relative to the 1990s mean decreased the Brazilian Amazon's deforestation contribution to global land use carbon emissions from 17% in the 1990s and early 2000s to 9% by 2010. Carbon sources in Amazonia are likely to be dominated by climatic impacts allied with forest fires (48.3% relative contribution) during extreme droughts. The current net carbon sink (net biome productivity, NBP) of +0.16 (ranging from +0.11 to +0.21) Pg C year(-1) in the Brazilian Amazon, equivalent to 13.3% of global carbon emissions from land-use change for 2008, can be negated or reversed during drought years [NBP = -0.06 (-0.31 to +0.01) Pg C year(-1) ]. Therefore, reducing forest fires, in addition to reducing deforestation, would be an important measure for minimizing future emissions. Conversely, doubling the current area of secondary forests and avoiding additional removal of primary forests would help the Amazonian gross forest sink to offset approximately 42% of global land-use change emissions. We conclude that a few strategic environmental policy measures are likely to strengthen the Amazonian net carbon sink with global implications. Moreover, these actions could increase the resilience of the net carbon sink to future increases in drought frequency. © 2014 The Authors. Biological Reviews © 2014 Cambridge Philosophical

  14. Bioenergy production systems and biochar application in forests: potential for renewable energy, soil enhancement, and carbon sequestration

    Science.gov (United States)

    Kristin McElligott; Debbie Dumroese; Mark Coleman

    2011-01-01

    Bioenergy production from forest biomass offers a unique solution to reduce wildfire hazard fuel while producing a useful source of renewable energy. However, biomass removals raise concerns about reducing soil carbon and altering forest site productivity. Biochar additions have been suggested as a way to mitigate soil carbon loss and cycle nutrients back into forestry...

  15. Effects of Deforestation and Forest Degradation on Forest Carbon Stocks in Collaborative Forests, Nepal

    Directory of Open Access Journals (Sweden)

    Ram Asheshwar MANDAL

    2012-12-01

    Full Text Available There are some key drivers that favor deforestation and forest degradation. Consequently, levels of carbon stock are affected in different parts of same forest types. But the problem lies in exploring the extent of the effects on level of carbon stocking. This paper highlights the variations in levels of carbon stocks in three different collaborative forests of same forest type i.e. tropical sal (Shorea robusta forest in Mahottari district of the central Terai in Nepal. Three collaborative forests namely Gadhanta-Bardibas Collaborative Forest (CFM, Tuteshwarnath CFM and Banke- Maraha CFM were selected for research site. Interview and workshops were organized with the key informants that include staffs, members and representatives of CFMs to collect the socio-economic data and stratified random sampling was applied to collect the bio-physical data to calculate the carbon stocks. Analysis was carried out using statistical tools. It was found five major drivers namely grazing, fire, logging, growth of invasive species and encroachment. It was found highest carbon 269.36 ton per ha in Gadhanta- Bardibash CFM. The findings showed that the levels of carbon stocks in the three studied CFMs are different depending on how the drivers of deforestation and forest degradation influence over them.

  16. Land use strategies to mitigate climate change in carbon dense temperate forests.

    Science.gov (United States)

    Law, Beverly E; Hudiburg, Tara W; Berner, Logan T; Kent, Jeffrey J; Buotte, Polly C; Harmon, Mark E

    2018-04-03

    Strategies to mitigate carbon dioxide emissions through forestry activities have been proposed, but ecosystem process-based integration of climate change, enhanced CO 2 , disturbance from fire, and management actions at regional scales are extremely limited. Here, we examine the relative merits of afforestation, reforestation, management changes, and harvest residue bioenergy use in the Pacific Northwest. This region represents some of the highest carbon density forests in the world, which can store carbon in trees for 800 y or more. Oregon's net ecosystem carbon balance (NECB) was equivalent to 72% of total emissions in 2011-2015. By 2100, simulations show increased net carbon uptake with little change in wildfires. Reforestation, afforestation, lengthened harvest cycles on private lands, and restricting harvest on public lands increase NECB 56% by 2100, with the latter two actions contributing the most. Resultant cobenefits included water availability and biodiversity, primarily from increased forest area, age, and species diversity. Converting 127,000 ha of irrigated grass crops to native forests could decrease irrigation demand by 233 billion m 3 ⋅y -1 Utilizing harvest residues for bioenergy production instead of leaving them in forests to decompose increased emissions in the short-term (50 y), reducing mitigation effectiveness. Increasing forest carbon on public lands reduced emissions compared with storage in wood products because the residence time is more than twice that of wood products. Hence, temperate forests with high carbon densities and lower vulnerability to mortality have substantial potential for reducing forest sector emissions. Our analysis framework provides a template for assessments in other temperate regions. Copyright © 2018 the Author(s). Published by PNAS.

  17. Policy Considerations for Using Forests to Mitigate Carbon Dioxide Emissions

    Directory of Open Access Journals (Sweden)

    Sandra Brown

    2001-01-01

    Full Text Available A recent article in Nature, “Soil Fertility Limits Carbon Sequestration by Forest Ecosystems in a CO2-Enriched Atmosphere” by Oren and colleagues[1], has been widely reported on, and often misinterpreted, by the press. The article dampens enthusiasm for accelerated forest growth due to CO2 fertilization and puts in question the fringe theory that the world’s forests can provide an automatic mitigation feedback. We agree that these results increase our understanding of the global carbon cycle. At the same time, their relevance in the context of the international climate change negotiations is much more complicated than portrayed by newspapers such as the New York Times (“Role of Trees in Curbing Greenhouse Gases is Challenged”, May 24, 2001 and the Christian Science Monitor (“Trees No Savior for Global Warming”, May 25, 2001.

  18. Terrestrial carbon losses from mountaintop coal mining offset regional forest carbon sequestration in the 21st century

    International Nuclear Information System (INIS)

    Elliott Campbell, J; Fox, James F; Acton, Peter M

    2012-01-01

    Studies that quantify the spatial and temporal variability of carbon sources and sinks provide process-level information for the prediction of future levels of atmospheric carbon dioxide as well as verification of current emission agreements. Assessments of carbon sources and sinks for North America that compare top-down atmospheric constraints with bottom-up inventories find particularly large carbon sinks in the southeastern US. However, this southeastern US sink may be impacted by extreme land-use disturbance events due to mountaintop coal mining (MCM). Here we apply ecosystem modeling and field experiment data to quantify the potential impact of future mountaintop coal mining on the carbon budget of the southern Appalachian forest region. For projections based on historical mining rates, grassland reclamation, and the continued regrowth of un-mined forests, we find that the southern Appalachian forests switch from a net carbon sink to a net carbon source by year 2025–33 with a 30%–35% loss in terrestrial carbon stocks relative to a scenario with no future mining by the year 2100. Alternatively, scenarios of forest sequestration due to the effect of CO 2 fertilization result in a 15%–24% loss in terrestrial carbon stocks by the year 2100 for mining scenarios relative to scenarios with no future mining. These results suggest that while power plant stack emissions are the dominant life-cycle stage in coal-fired electricity, accounting for mountaintop coal mining in bottom-up inventories may be a critical component of regional carbon budgets. (letter)

  19. Contributions of secondary forest and nitrogen dynamics to terrestrial carbon uptake

    Directory of Open Access Journals (Sweden)

    X. Yang

    2010-10-01

    Full Text Available We use a terrestrial carbon-nitrogen cycle component of the Integrated Science Assessment Model (ISAM to investigate the impacts of nitrogen dynamics on regrowing secondary forests over the 20th century. We further examine what the impacts of nitrogen deposition and land use change history are on terrestrial carbon uptake since preindustrial time. Our results suggest that global total net land use emissions for the 1990s associated with changes in cropland, pastureland, and wood harvest are 1.22 GtC/yr. Without considering the secondary forest regrowth, the estimated net global total land use emissions are 1.58 GtC/yr or about 0.36 GtC/yr higher than if secondary forest regrowth is considered. Results also show that without considering the nitrogen dynamics and deposition, the estimated global total secondary forest sink for the 1990s is 0.90 GtC/yr or about 0.54 GtC/yr higher than estimates that include the impacts of nitrogen dynamics and deposition. Nitrogen deposition alone is responsible for about 0.13 GtC/yr of the total secondary forest sink. While nitrogen is not a limiting nutrient in the intact primary forests in tropical regions, our study suggests that nitrogen becomes a limiting nutrient for regrowing secondary forests of the tropical regions, in particular Latin America and Tropical Africa. This is because land use change activities, especially wood harvest, removes large amounts of nitrogen from the system when slash is burnt or wood is removed for harvest. However, our model results show that carbon uptake is enhanced in the tropical secondary forests of the Indian region. We argue that this may be due to enhanced nitrogen mineralization and increased nitrogen availability following land use change in the Indian tropical forest ecosystems. Results also demonstrate that there is a significant amount of carbon accumulating in the Northern Hemisphere where most land use changes and forest regrowth has occurred in recent decades

  20. Restoring forest structure and process stabilizes forest carbon in wildfire-prone southwestern ponderosa pine forests.

    Science.gov (United States)

    Hurteau, Matthew D; Liang, Shuang; Martin, Katherine L; North, Malcolm P; Koch, George W; Hungate, Bruce A

    2016-03-01

    Changing climate and a legacy of fire-exclusion have increased the probability of high-severity wildfire, leading to an increased risk of forest carbon loss in ponderosa pine forests in the southwestern USA. Efforts to reduce high-severity fire risk through forest thinning and prescribed burning require both the removal and emission of carbon from these forests, and any potential carbon benefits from treatment may depend on the occurrence of wildfire. We sought to determine how forest treatments alter the effects of stochastic wildfire events on the forest carbon balance. We modeled three treatments (control, thin-only, and thin and burn) with and without the occurrence of wildfire. We evaluated how two different probabilities of wildfire occurrence, 1% and 2% per year, might alter the carbon balance of treatments. In the absence of wildfire, we found that thinning and burning treatments initially reduced total ecosystem carbon (TEC) and increased net ecosystem carbon balance (NECB). In the presence of wildfire, the thin and burn treatment TEC surpassed that of the control in year 40 at 2%/yr wildfire probability, and in year 51 at 1%/yr wildfire probability. NECB in the presence of wildfire showed a similar response to the no-wildfire scenarios: both thin-only and thin and burn treatments increased the C sink. Treatments increased TEC by reducing both mean wildfire severity and its variability. While the carbon balance of treatments may differ in more productive forest types, the carbon balance benefits from restoring forest structure and fire in southwestern ponderosa pine forests are clear.

  1. Carbon Stocks of Fine Woody Debris in Coppice Oak Forests at Different Development Stages

    Directory of Open Access Journals (Sweden)

    Ender Makineci

    2017-06-01

    Full Text Available Dead woody debris is a significant component of the carbon cycle in forest ecosystems. This study was conducted in coppice-originated oak forests to determine carbon stocks of dead woody debris in addition to carbon stocks of different ecosystem compartments from the same area and forests which were formerly elucidated. Weight and carbon stocks of woody debris were determined with recent samplings and compared among development stages (diameter at breast height (DBH, D1.3m, namely small-diameter forests (SDF = 0–8 cm, medium diameter forests (MDF = 8–20 cm, and large-diameter forests (LDF = 20–36 cm. Total woody debris was collected in samplings; as bilateral diameters of all woody debris parts were less than 10 cm, all woody parts were in the “fine woody debris (FWD” class. The carbon concentrations of FWD were about 48% for all stages. Mass (0.78–4.92 Mg·ha−1 and carbon stocks (0.38–2.39 Mg·ha−1 of FWD were significantly (p > 0.05 different among development stages. FWD carbon stocks were observed to have significant correlation with D1.3m, age, basal area, and carbon stocks of aboveground biomass (Spearman rank correlation coefficients; 0.757, 0.735, 0.709, and 0.694, respectively. The most important effects on carbon budgets of fine woody debris were determined to be coppice management and intensive utilization. Also, national forestry management, treatments of traditional former coppice, and conversion to high forest were emphasized as having substantial effects.

  2. Effects of fuel and forest conservation on future levels of atmospheric carbon dioxide.

    Science.gov (United States)

    Walker, J C; Kasting, J F

    1992-01-01

    We develop a numerical simulation of the global biogeochemical cycles of carbon that works over time scales extending from years to millions of years. The ocean is represented by warm and cold shallow water reservoirs, a thermocline reservoir, and deep Atlantic, Indian, and Pacific reservoirs. The atmosphere is characterized by a single carbon reservoir and the global biota by a single biomass reservoir. The simulation includes the rock cycle, distinguishing between shelf carbonate and pelagic carbonate precipitation, with distinct lysocline depths in the three deep ocean reservoirs. Dissolution of pelagic carbonates in response to decrease in lysocline depth is included. The simulation is tuned to reproduce the observed radiocarbon record resulting from atomic weapon testing. It is tuned also to reproduce the distribution of dissolved phosphate and total dissolved carbon between the ocean reservoirs as well as the carbon isotope ratios for both 13C and 14C in ocean and atmosphere. The simulation reproduces reasonably well the historical record of carbon dioxide partial pressure as well as the atmospheric isotope ratios for 13C and 14C over the last 200 yr as these have changed in response to fossil fuel burning and land use changes, principally forest clearance. The agreements between observation and calculation involves the assumption of a carbon dioxide fertilization effect in which the rate of production of biomass increases with increasing carbon dioxide partial pressure. At present the fertilization effect of increased carbon dioxide outweighs the effects of forest clearance, so the biota comprises an overall sink of atmospheric carbon dioxide sufficiently large to bring the budget approximately into balance. This simulation is used to examine the future evolution of carbon dioxide and its sensitivity to assumptions about the rate of fossil fuel burning and of forest clearance. Over times extending up to thousands of years, the results are insensitive to the

  3. Water-carbon Links in a Tropical Forest: How Interbasin Groundwater Flow Affects Carbon Fluxes and Ecosystem Carbon Budgets

    Energy Technology Data Exchange (ETDEWEB)

    Genereux, David [North Carolina State Univ., Raleigh, NC (United States); Osburn, Christopher [North Carolina State Univ., Raleigh, NC (United States); Oberbauer, Steven [Florida Intl Univ., Miami, FL (United States); Oviedo Vargas, Diana [North Carolina State Univ., Raleigh, NC (United States); Dierick, Diego [Florida Intl Univ., Miami, FL (United States)

    2017-03-27

    This report covers the outcomes from a quantitative, interdisciplinary field investigation of how carbon fluxes and budgets in a lowland tropical rainforest are affected by the discharge of old regional groundwater into streams, springs, and wetlands in the forest. The work was carried out in a lowland rainforest of Costa Rica, at La Selva Biological Station. The research shows that discharge of regional groundwater high in dissolved carbon dioxide represents a significant input of carbon to the rainforest "from below", an input that is on average larger than the carbon input "from above" from the atmosphere. A stream receiving discharge of regional groundwater had greatly elevated emissions of carbon dioxide (but not methane) to the overlying air, and elevated downstream export of carbon from its watershed with stream flow. The emission of deep geological carbon dioxide from stream water elevates the carbon dioxide concentrations in air above the streams. Carbon-14 tracing revealed the presence of geological carbon in the leaves and stems of some riparian plants near streams that receive inputs of regional groundwater. Also, discharge of regional groundwater is responsible for input of dissolved organic matter with distinctive chemistry to rainforest streams and wetlands. The discharge of regional groundwater in lowland surface waters has a major impact on the carbon cycle in this and likely other tropical and non-tropical forests.

  4. Hotspots of the European forests carbon cycle

    NARCIS (Netherlands)

    Nabuurs, G.J.; Thürig, E.; Heidema, N.; Armolaitis, K.; Biber, P.; Cieciala, E.; Kaufmann, E.; Mäkipää, R.; Nilsen, P.; Petritsch, R.; Pristova, T.; Rock, J.; Schelhaas, M.J.; Sievanen, R.; Somogyi, Z.; Vallet, P.

    2008-01-01

    This paper is the outcome of a group discussion held at the Savonlinna meeting `Management of forest ecosystems and its impact on the GHG budget¿. The aim of this break-out group discussion was to `Characterize forest management impacts on the GHG budget of forest ecosystems in different European

  5. Limited carbon storage in soil and litter of experimental forest plots under increased atmospheric CO2

    International Nuclear Information System (INIS)

    Schlesinger, W.H.; Lichter, J.

    2001-01-01

    The current rise in atmospheric CO 2 concentration is thought to be mitigated in part by carbon sequestration within forest ecosystems, where carbon can be stored in vegetation or soils. The storage of carbon in soils is determined by the fraction that is sequestered in persistent organic materials, such as humus. In experimental forest plots of loblolly pine (Pinus taeda) exposed to high CO 2 concentrations, nearly half of the carbon uptake is allocated to short-lived tissues, largely foliage. These tissues fall to the ground and decompose, normally contributing only a small portion of their carbon content to refractory soil humic materials. Such findings call into question the role of soils as long-term carbon sinks, and show the need for a better understanding of carbon cycling in forest soils. Here we report a significant accumulation of carbon in the litter layer of experimental forest plots after three years of growth at increased CO 2 concentrations (565 μ l 1 ). But fast turnover times of organic carbon in the litter layer (of about three years) appear to constrain the potential size of this carbon sink. Given the observation that carbon accumulation in the deeper mineral soil layers was absent, we suggest that significant, long-term net carbon sequestration in forest soils is unlikely. (author)

  6. Forest Carbon-Storage as a Peacebuilding Strategy

    DEFF Research Database (Denmark)

    Nunez, Augusto Carlos Castro

    explaining farmers’ propensity to adopt forest carbon conservation practices in situations of armed-conflicts. Meanwhile, data at the municipal-scale was used to: (1) investigate potential geographic overlaps between peacebuilding and forest carbon storage and peace building programs at national and regional......Many of the armed-conflicts in tropical regions occur in areas with high forest-cover. Generally, these areas are known for their physical potential to implement programs for forest carbon storage. Despite this important correlation, it remains uncertain what links, if any, exist between forest...... carbon biomass and armed conflicts. With this in mind, the present dissertation utilizes household-level surveys and data at the municipal-scale to assess potential for the integration of forest-carbon storage and peacebuilding efforts. Specifically, household surveys were used to identify factors...

  7. Improving SWAT for simulating water and carbon fluxes of forest ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Qichun; Zhang, Xuesong

    2016-11-01

    As a widely used watershed model for assessing impacts of anthropogenic and natural disturbances on water quantity and quality, the Soil and Water Assessment Tool (SWAT) has not been extensively tested in simulating water and carbon fluxes of forest ecosystems. Here, we examine SWAT simulations of evapotranspiration (ET), net primary productivity (NPP), net ecosystem exchange (NEE), and plant biomass at ten AmeriFlux forest sites across the U.S. We identify unrealistic radiation use efficiency (Bio_E), large leaf to biomass fraction (Bio_LEAF), and missing phosphorus supply from parent material weathering as the primary causes for the inadequate performance of the default SWAT model in simulating forest dynamics. By further revising the relevant parameters and processes, SWAT’s performance is substantially improved. Based on the comparison between the improved SWAT simulations and flux tower observations, we discuss future research directions for further enhancing model parameterization and representation of water and carbon cycling for forests.

  8. Warmer temperatures reduce net carbon uptake, but not water use, in a mature southern Appalachian forest

    Science.gov (United States)

    Increasing air temperature is expected to extend growing season length in temperate, broadleaf forests, leading to potential increases in evapotranspiration and net carbon uptake. However, other key processes affecting water and carbon cycles are also highly temperature-dependent...

  9. Incorporating Ecosystem Experiments and Observations into Process Models of Forest Carbon and Water Cycles: Challenges and Solutions

    Science.gov (United States)

    Ward, E. J.; Thomas, R. Q.; Sun, G.; McNulty, S. G.; Domec, J. C.; Noormets, A.; King, J. S.

    2015-12-01

    Numerous studies, both experimental and observational, have been conducted over the past two decades in an attempt to understand how water and carbon cycling in terrestrial ecosystems may respond to changes in climatic conditions. These studies have produced a wealth of detailed data on key processes driving these cycles. In parallel, sophisticated models of these processes have been formulated to answer a variety of questions relevant to natural resource management. Recent advances in data assimilation techniques offer exciting new possibilities to combine this wealth of ecosystem data with process models of ecosystem function to improve prediction and quantify associated uncertainty. Using forests of the southeastern United States as our focus, we will specify how fine-scale physiological (e.g. half-hourly sap flux) can be scaled up with quantified error for use in models of stand growth and hydrology. This approach represents an opportunity to leverage current and past research from experiments including throughfall displacement × fertilization (PINEMAP), irrigation × fertilization (SETRES), elevated CO­2­ (Duke and ORNL FACE) and a variety of observational studies in both conifer and hardwood forests throughout the region, using a common platform for data assimilation and prediction. As part of this discussion, we will address variation in dominant species, stand structure, site age, management practices, soils and climate that represent both challenges to the development of a common analytical approach and opportunities to address questions of interest to policy makers and natural resource managers.

  10. Dissolved Organic Carbon Cycling and Transformation Dynamics in A Northern Forested Peatland

    Science.gov (United States)

    Tfaily, M. M.; Lin, X.; Chanton, P. R.; Steinweg, J.; Esson, K.; Kostka, J. E.; Cooper, W. T.; Schadt, C. W.; Hanson, P. J.; Chanton, J.

    2013-12-01

    Peatlands sequester one-third of all soil carbon and currently act as major sinks of atmospheric carbon dioxide. The ability to predict or simulate the fate of stored carbon in response to climatic disruption remains hampered by our limited understanding of the controls of carbon turnover and the composition and functioning of peatland microbial communities. A combination of advanced analytical chemistry and microbiology approaches revealed that organic matter reactivity and microbial community dynamics were closely coupled in an extensive field dataset compiled at the S1 bog site established for the SPRUCE program, Marcell Experimental Forest (MEF). The molecular composition and decomposition pathways of dissolved organic carbon (DOC) were contrasted using parallel factor (PARAFAC)-modeled excitation emission fluorescence spectroscopy (EEMS) and FT-ICR MS. The specific UV absorbance (SUVA) at 254 nm was calculated as an indicator of aromaticity. Fluorescence intensity ratios (BIX and FI) were used to infer the relative contributions from solid phase decomposition and microbial production. Distributions of bulk DOC, its stable (δ13C) and radioactive (Δ14C) isotopic composition were also utilized to infer information on its dynamics and transformation processes. Strong vertical stratification was observed in organic matter composition, the distribution of mineralization products (CO2, CH4), respiration rates, and decomposition pathways, whereas smaller variations were observed between sites. A decline in the aromaticity of pore water DOC was accompanied by an increase in microbially-produced DOC. Solid phase peat, on the other hand, became more humified and highly aromatic with depth. These observations were consistent with radiocarbon data that showed that the radiocarbon signatures of microbial respiration products in peat porewaters more closely resemble those of DOC rather than solid peat, indicating that carbon from recent photosynthesis is fueling the

  11. How to estimate carbon sequestration on small forest tracts estimate carbon sequestration on small forest tracts

    Science.gov (United States)

    Coeli M. Hoover; Richard A. Birdsey; Linda S. Heath; Susan L. Stout

    2000-01-01

    International climate change agreements may allow carbon stored as a result of afforestation and reforestation to be used to offset CO2 emissions. Monitoring the carbon sequestered or released through forest management activities thus becomes important. Estimating forest carbon storage is feasible even for nonindustrial private forestland (NIPF)...

  12. From leaf longevity to canopy seasonality: a carbon optimality phenology model for tropical evergreen forests

    Science.gov (United States)

    Xu, X.; Medvigy, D.; Wu, J.; Wright, S. J.; Kitajima, K.; Pacala, S. W.

    2016-12-01

    Tropical evergreen forests play a key role in the global carbon, water and energy cycles. Despite apparent evergreenness, this biome shows strong seasonality in leaf litter and photosynthesis. Recent studies have suggested that this seasonality is not directly related to environmental variability but is dominated by seasonal changes of leaf development and senescence. Meanwhile, current terrestrial biosphere models (TBMs) can not capture this pattern because leaf life cycle is highly underrepresented. One challenge to model this leaf life cycle is the remarkable diversity in leaf longevity, ranging from several weeks to multiple years. Ecologists have proposed models where leaf longevity is regarded as a strategy to optimize carbon gain. However previous optimality models can not be readily integrated into TBMs because (i) there are still large biases in predicted leaf longevity and (ii) it is never tested whether the carbon optimality model can capture the observed seasonality in leaf demography and canopy photosynthesis. In this study, we develop a new carbon optimality model for leaf demography. The novelty of our approach is two-fold. First, we incorporate a mechanistic photosynthesis model that can better estimate leaf carbon gain. Second, we consider the interspecific variations in leaf senescence rate, which strongly influence the modelled optimal carbon gain. We test our model with a leaf trait database for Panamanian evergreen forests. Then, we apply the model at seasonal scale and compare simulated seasonality of leaf litter and canopy photosynthesis with in-situ observations from several Amazonian forest sites. We find that (i) compared with original optimality model, the regression slope between observed and predicted leaf longevity increases from 0.15 to 1.04 in our new model and (ii) that our new model can capture the observed seasonal variations of leaf demography and canopy photosynthesis. Our results suggest that the phenology in tropical evergreen

  13. Human impacts on soil carbon dynamics of deep-rooted Amazonian forests

    Science.gov (United States)

    Nepstad, Daniel C.; Stone, Thomas A.; Davidson, Eric A.

    1994-01-01

    Deforestation and logging degrade more forest in eastern and southern Amazonia than in any other region of the world. This forest alteration affects regional hydrology and the global carbon cycle, but our current understanding of these effects is limited by incomplete knowledge of tropical forest ecosystems. It is widely agreed that roots are concentrated near the soil surface in moist tropical forests, but this generalization incorrectly implies that deep roots are unimportant in water and C budgets. Our results indicate that half of the closed-canopy forests of Brazilian Amazonic occur where rainfall is highly seasonal, and these forests rely on deeply penetrating roots to extract soil water. Pasture vegetation extracts less water from deep soil than the forest it replaces, thus increasing rates of drainage and decreasing rates of evapotranspiration. Deep roots are also a source of modern carbon deep in the soil. The soils of the eastern Amazon contain more carbon below 1 m depth than is present in above-ground biomass. As much as 25 percent of this deep soil C could have annual to decadal turnover times and may be lost to the atmosphere following deforestation. We compared the importance of deep roots in a mature, evergreen forest with an adjacent man-made pasture, the most common type of vegetation on deforested land in Amazonia. The study site is near the town of Paragominas, in the Brazilian state of Para, with a seasonal rainfall pattern and deeply-weathered, kaolinitic soils that are typical for large portions of Amazonia. Root distribution, soil water extraction, and soil carbon dynamics were studied using deep auger holes and shafts in each ecosystem, and the phenology and water status of the leaf canopies were measured. We estimated the geographical distribution of deeply-rooting forests using satellite imagery, rainfall data, and field measurements.

  14. Perspective of Chinese Forest Carbon Absorption Trade Based on Low-Carbon Economy

    OpenAIRE

    Wang, Ming-gang

    2011-01-01

    The paper analyzes the basis of forest carbon trade including me feasibility of carbon absorption trade, main body, platform and standard. The purposes of capital of carbon absorption trade is introduced. Caron absorption trade capital can be used to resettle ecological migrants, absorb employment, build forest and increase fund, increase local income, enhance forest science and technology development and launch environmental proportion. The perspective of developing forest carbon absorption ...

  15. Carbon stocks and flux in French forests

    International Nuclear Information System (INIS)

    Dupouey, Jean-Luc; Pignard, Gerome; Badeau, Vincent; Thimonier, A.; Dhote, Jean-Francois; Nepveu, G.; Berges, L.; Augusto, L.; Belkacem, S.; Nys, C.

    2000-01-01

    Forests contain most of the carbon stored in the earth's biomass (81 %) and could play a role in CO 2 mitigation to a certain extent. We estimate French forest carbon stocks in biomass to be 860 MtC on 14.5 million hectares of forests, and 1,140 MtC in forest soils. Total carbon in the 14.5 million hectares of French forests is estimated at 2,000 MtC. Average annual flux for the 1979/91 period is 10.5 MtC/y, i.e. 10 % of national fossil fuel emissions. The main causes of this net carbon uptake are the rapid increase of forest area, increasing productivity due to environmental changes, ageing or, in some localized areas, more intensive silviculture practices. These carbon sinks are not offset by the harvesting level which remains low on average (61 % of the annual volume growth). Forestry carbon mitigation options applicable in France are discussed. The need for global economic and ecological budgets (including carbon stocks, soil fertility and biodiversity) of the possible alternatives is stressed. (authors)

  16. Final Technical Report Interannual Variations in the Rate of Carbon Storage by a Mid-Latitude Forest

    Energy Technology Data Exchange (ETDEWEB)

    Wofsy, Steven; Munger, J W

    2012-07-31

    The time series of Net Ecosystem Exchange (NEE) of carbon by an entire forest ecosystem on time scales from hourly to decadal was measured by eddy-covariance supplemented with plot-level measurements of biomass and tree demography. The results demonstrate the response of forest carbon fluxes and long-term budgets to climatic factors and to successional change. The data from this project have been extensively used worldwide by the carbon cycle science community in support of model development and validation of remote sensing observations.

  17. Simulated impacts of insect defoliation on forest carbon dynamics

    International Nuclear Information System (INIS)

    Medvigy, D; Clark, K L; Skowronski, N S; Schäfer, K V R

    2012-01-01

    Many temperate and boreal forests are subject to insect epidemics. In the eastern US, over 41 million meters squared of tree basal area are thought to be at risk of gypsy moth defoliation. However, the decadal-to-century scale implications of defoliation events for ecosystem carbon dynamics are not well understood. In this study, the effects of defoliation intensity, periodicity and spatial pattern on the carbon cycle are investigated in a set of idealized model simulations. A mechanistic terrestrial biosphere model, ecosystem demography model 2, is driven with observations from a xeric oak–pine forest located in the New Jersey Pine Barrens. Simulations indicate that net ecosystem productivity (equal to photosynthesis minus respiration) decreases linearly with increasing defoliation intensity. However, because of interactions between defoliation and drought effects, aboveground biomass exhibits a nonlinear decrease with increasing defoliation intensity. The ecosystem responds strongly with both reduced productivity and biomass loss when defoliation periodicity varies from 5 to 15 yr, but exhibits a relatively weak response when defoliation periodicity varies from 15 to 60 yr. Simulations of spatially heterogeneous defoliation resulted in markedly smaller carbon stocks than simulations with spatially homogeneous defoliation. These results show that gypsy moth defoliation has a large effect on oak–pine forest biomass dynamics, functioning and its capacity to act as a carbon sink. (letter)

  18. A tale of two "forests": random forest machine learning AIDS tropical forest carbon mapping.

    Science.gov (United States)

    Mascaro, Joseph; Asner, Gregory P; Knapp, David E; Kennedy-Bowdoin, Ty; Martin, Roberta E; Anderson, Christopher; Higgins, Mark; Chadwick, K Dana

    2014-01-01

    Accurate and spatially-explicit maps of tropical forest carbon stocks are needed to implement carbon offset mechanisms such as REDD+ (Reduced Deforestation and Degradation Plus). The Random Forest machine learning algorithm may aid carbon mapping applications using remotely-sensed data. However, Random Forest has never been compared to traditional and potentially more reliable techniques such as regionally stratified sampling and upscaling, and it has rarely been employed with spatial data. Here, we evaluated the performance of Random Forest in upscaling airborne LiDAR (Light Detection and Ranging)-based carbon estimates compared to the stratification approach over a 16-million hectare focal area of the Western Amazon. We considered two runs of Random Forest, both with and without spatial contextual modeling by including--in the latter case--x, and y position directly in the model. In each case, we set aside 8 million hectares (i.e., half of the focal area) for validation; this rigorous test of Random Forest went above and beyond the internal validation normally compiled by the algorithm (i.e., called "out-of-bag"), which proved insufficient for this spatial application. In this heterogeneous region of Northern Peru, the model with spatial context was the best preforming run of Random Forest, and explained 59% of LiDAR-based carbon estimates within the validation area, compared to 37% for stratification or 43% by Random Forest without spatial context. With the 60% improvement in explained variation, RMSE against validation LiDAR samples improved from 33 to 26 Mg C ha(-1) when using Random Forest with spatial context. Our results suggest that spatial context should be considered when using Random Forest, and that doing so may result in substantially improved carbon stock modeling for purposes of climate change mitigation.

  19. A tale of two "forests": random forest machine learning AIDS tropical forest carbon mapping.

    Directory of Open Access Journals (Sweden)

    Joseph Mascaro

    Full Text Available Accurate and spatially-explicit maps of tropical forest carbon stocks are needed to implement carbon offset mechanisms such as REDD+ (Reduced Deforestation and Degradation Plus. The Random Forest machine learning algorithm may aid carbon mapping applications using remotely-sensed data. However, Random Forest has never been compared to traditional and potentially more reliable techniques such as regionally stratified sampling and upscaling, and it has rarely been employed with spatial data. Here, we evaluated the performance of Random Forest in upscaling airborne LiDAR (Light Detection and Ranging-based carbon estimates compared to the stratification approach over a 16-million hectare focal area of the Western Amazon. We considered two runs of Random Forest, both with and without spatial contextual modeling by including--in the latter case--x, and y position directly in the model. In each case, we set aside 8 million hectares (i.e., half of the focal area for validation; this rigorous test of Random Forest went above and beyond the internal validation normally compiled by the algorithm (i.e., called "out-of-bag", which proved insufficient for this spatial application. In this heterogeneous region of Northern Peru, the model with spatial context was the best preforming run of Random Forest, and explained 59% of LiDAR-based carbon estimates within the validation area, compared to 37% for stratification or 43% by Random Forest without spatial context. With the 60% improvement in explained variation, RMSE against validation LiDAR samples improved from 33 to 26 Mg C ha(-1 when using Random Forest with spatial context. Our results suggest that spatial context should be considered when using Random Forest, and that doing so may result in substantially improved carbon stock modeling for purposes of climate change mitigation.

  20. Carbon stocks in urban forest remnants: Atlanta and Baltimore as case studies. Chapter 5.

    Science.gov (United States)

    Ian D. Yesilonis; Richard V. Pouyat

    2012-01-01

    Urban environments influence carbon (C) and nitrogen (N) cycles of forest ecosystems by altering plant biomass, litter mass and chemistry, passive and active pools of C and N, and the occurrence and activity of decomposer organisms. It is difficult to determine the net effect of C storage due to the number of environmental factors exerting stress on urban forests....

  1. The Lifestyle Carbon Dividend: Assessment of the Carbon Sequestration Potential of Grasslands and Pasturelands Reverted to Native Forests

    Science.gov (United States)

    Rao, S.; Jain, A. K.; Shu, S.

    2015-12-01

    What is the potential of a global transition to a vegan lifestyle to sequester carbon and mitigate climate change? To answer this question, we use an Earth System Model (ESM), the Integrated Science Assessment Model (ISAM). ISAM is a fully coupled biogeochemistry (carbon and nitrogen cycles) and biogeophysics (hydrology and thermal energy) ESM, which calculates carbon sources and sinks due to land cover and land use change activities, such as reforestation and afforestation. We calculate the carbon sequestration potential of grasslands and pasturelands that can be reverted to native forests as 265 GtC on 1.96E+7 km2 of land area, just 41% of the total area of such lands on Earth. The grasslands and pasturelands are assumed to revert back to native forests which existed prior to any human intervention and these include tropical, temperate and boreal forests. The results are validated with above ground regrowth measurements. Since this carbon sequestration potential is greater than the 240 GtC of that has been added to the atmosphere since the industrial era began, it shows that such global lifestyle transitions have tremendous potential to mitigate and even reverse climate change.

  2. Reducing the uncertainty of parameters controlling seasonal carbon and water fluxes in Chinese forests and its implication for simulated climate sensitivities

    Science.gov (United States)

    Li, Yue; Yang, Hui; Wang, Tao; MacBean, Natasha; Bacour, Cédric; Ciais, Philippe; Zhang, Yiping; Zhou, Guangsheng; Piao, Shilong

    2017-08-01

    Reducing parameter uncertainty of process-based terrestrial ecosystem models (TEMs) is one of the primary targets for accurately estimating carbon budgets and predicting ecosystem responses to climate change. However, parameters in TEMs are rarely constrained by observations from Chinese forest ecosystems, which are important carbon sink over the northern hemispheric land. In this study, eddy covariance data from six forest sites in China are used to optimize parameters of the ORganizing Carbon and Hydrology In Dynamics EcosystEms TEM. The model-data assimilation through parameter optimization largely reduces the prior model errors and improves the simulated seasonal cycle and summer diurnal cycle of net ecosystem exchange, latent heat fluxes, and gross primary production and ecosystem respiration. Climate change experiments based on the optimized model are deployed to indicate that forest net primary production (NPP) is suppressed in response to warming in the southern China but stimulated in the northeastern China. Altered precipitation has an asymmetric impact on forest NPP at sites in water-limited regions, with the optimization-induced reduction in response of NPP to precipitation decline being as large as 61% at a deciduous broadleaf forest site. We find that seasonal optimization alters forest carbon cycle responses to environmental change, with the parameter optimization consistently reducing the simulated positive response of heterotrophic respiration to warming. Evaluations from independent observations suggest that improving model structure still matters most for long-term carbon stock and its changes, in particular, nutrient- and age-related changes of photosynthetic rates, carbon allocation, and tree mortality.

  3. ESTIMATION OF CARBON SEQUESTRATION BY RUSSIAN FORESTS: GEOSPATIAL ISSUE

    Directory of Open Access Journals (Sweden)

    N. V. Malysheva

    2017-01-01

    Full Text Available Сategories of carbon sequestration assessment for Russian forests are identified by GIS toolkit. Those are uniform by bioclimatic and site-specific conditions strata corresponding to modern version of bioclimatic forest district division. Stratification of forests at early stage substantially reduces the ambiguity of the evaluation because phytomass conversion sequestration capacity and expansion factor dependent on site-specific condition for calculating of forest carbon sink are absolutely necessary. Forest management units were linked to strata. Biomass conversion and expansion factor for forest carbon sink assessment linked to the strata were recalculated for forest management units. All operations were carried out with GIS analytical toolkit due to accessible functionalities. Units for forest carbon storage inventory and forest carbon balance calculation were localized. Production capacity parameters and forest carbon sequestration capacity have been visualized on maps complied by ArcGIS. Based on spatially-explicit information, we have found out that the greatest annual rates of forest’s carbon accumulation in Russian forests fall into mixed coniferous-deciduous forests of European-Ural part of Russia to Kaliningrad, Smolensk and Briansk Regions, coniferous-deciduous forests close to the boundary of Khabarovsk Region and Primorskij Kray in the Far East, as well as separate forest management units of Kabardino-Balkariya NorthCaucasian mountain area. The geospatial visualization of carbon sequestration by Russian forests and carbon balance assessment has been given.

  4. Carbon accumulation in European forests

    NARCIS (Netherlands)

    Ciais, P.; Schelhaas, M.J.; Zaehle, S.; Piao, S.L.; Cescatti, A.; Liski, J.; Luyssaert, S.; Le-Maire, G.; Schulze, E.D.; Bouriaud, O.; Freibauer, A.; Valentini, R.; Nabuurs, G.J.

    2008-01-01

    European forests are intensively exploited for wood products, yet they also form a sink for carbon. European forest inventories, available for the past 50 years, can be combined with timber harvest statistics to assess changes in this carbon sink. Analysis of these data sets between 1950 and 2000

  5. Boreal forests and atmosphere - Biosphere exchange of carbon dioxide

    Science.gov (United States)

    D'Arrigo, Rosanne; Jacoby, Gordon C.; Fung, Inez Y.

    1987-01-01

    Two approaches to investigating the role of boreal forests in the global carbon cycle are presented. First, a tracer support model which incorporates the normalized-difference vegetation index obtained from advanced, very high resolution radiometer radiances was used to simulate the annual cycle of CO2 in the atmosphere. Results indicate that the seasonal growth of the combined boreal forests of North America and Eurasia accounts for about 50 percent of the mean seasonal CO2 amplitude recorded at Pt. Barrow, Alaska and about 30 percent of the more globally representative CO2 signal at Mauna Loa, Hawaii. Second, tree-ring width data from four boreal treeline sites in northern Canada were positively correlated with Pt. Barrow CO2 drawdown for the period 1971-1982. These results suggest that large-scale changes in the growth of boreal forests may be contributing to the observed increasing trend in CO2 amplitude. They further suggest that tree-ring data may be applicable as indices for CO2 uptake and remote sensing estimates of photosynthetic activity.

  6. Forest managment options for sequestering carbon in Mexico

    International Nuclear Information System (INIS)

    Masera, O.R.; Bellon, M.R.; Segura, G.

    1995-01-01

    This paper identifies and examines economic response options to avoid carbon emissions and increase carbon sequestration in Mexican forests. A ''Policy'' scenario covering the years 2000, 2010 and 2030 and a ''Technical Potential'' scenario (year 2030) are developed to examine the potential carbon sequestration and costs of each response option. Benefit-cost analyses for three case studies, including management of a pulpwood plantation, a native temperate forest and a native tropical evergreen forest are presented and discussed. The study suggests that a large potential for reducing carbon emissions and increasing carbon sequestration exists in Mexican forests. However, the achievement of this potential will require important reforms to the current institutional setting of the forest sector. The management of native temperate and tropical forests offers the most promising alternatives for carbon sequestration. The cost effectiveness of commercial plantations critically depends on very high site productivity. Restoration of degraded forest lands; particularly through the establishment of energy plantations, also shows a large carbon sequestration potential. (Author)

  7. Estimating Forest Carbon Stock in Alpine and Arctic Ecotones of the Urals

    Directory of Open Access Journals (Sweden)

    V. A. Usoltsev

    2014-10-01

    assessing the income part of the carbon cycle in forests of alpine and arctic tree communities of the Ural region, as well as when validating the results of simulation experiments on evaluation of the carbon depositing capacity of forests.

  8. Human impacts on soil carbon dynamics of deep-rooted Amazonian forests and effect of land use change on the carbon cycle in Amazon soils

    Science.gov (United States)

    Nepstad, Daniel; Stone, Thomas; Davidson, Eric; Trumbore, Susan E.

    1992-01-01

    The main objective of these NASA-funded projects is to improve our understanding of land-use impacts on soil carbon dynamics in the Amazon Basin. Soil contains approximately one half of tropical forest carbon stocks, yet the fate of this carbon following forest impoverishment is poorly studied. Our mechanistics approach draws on numerous techniques for measuring soil carbon outputs, inputs, and turnover time in the soils of adjacent forest and pasture ecosystems at our research site in Paragominas, state of Para, Brazil. We are scaling up from this site-specific work by analyzing Basin-wide patterns in rooting depth and rainfall seasonality, the two factors that we believe should explain much of the variation in tropical soil carbons dynamics. In this report, we summarize ongoing measurements at our Paragominas study site, progress in employing new field data to understand soil C dynamics, and some surprising results from our regional, scale-up work.

  9. Carbon pools and fluxes in small temperate forest landscapes: Variability and implications for sampling design

    Science.gov (United States)

    John B. Bradford; Peter Weishampel; Marie-Louise Smith; Randall Kolka; Richard A. Birdsey; Scott V. Ollinger; Michael G. Ryan

    2010-01-01

    Assessing forest carbon storage and cycling over large areas is a growing challenge that is complicated by the inherent heterogeneity of forest systems. Field measurements must be conducted and analyzed appropriately to generate precise estimates at scales large enough for mapping or comparison with remote sensing data. In this study we examined...

  10. High carbon dioxide uptake by subtropical forest ecosystems in the East Asian monsoon region

    Science.gov (United States)

    Yu, Guirui; Chen, Zhi; Piao, Shilong; Peng, Changhui; Ciais, Philippe; Wang, Qiufeng; Li, Xuanran; Zhu, Xianjin

    2014-01-01

    Temperate- and high-latitude forests have been shown to contribute a carbon sink in the Northern Hemisphere, but fewer studies have addressed the carbon balance of the subtropical forests. In the present study, we integrated eddy covariance observations established in the 1990s and 2000s to show that East Asian monsoon subtropical forests between 20°N and 40°N represent an average net ecosystem productivity (NEP) of 362 ± 39 g C m−2 yr−1 (mean ± 1 SE). This average forest NEP value is higher than that of Asian tropical and temperate forests and is also higher than that of forests at the same latitudes in Europe–Africa and North America. East Asian monsoon subtropical forests have comparable NEP to that of subtropical forests of the southeastern United States and intensively managed Western European forests. The total NEP of East Asian monsoon subtropical forests was estimated to be 0.72 ± 0.08 Pg C yr−1, which accounts for 8% of the global forest NEP. This result indicates that the role of subtropical forests in the current global carbon cycle cannot be ignored and that the regional distributions of the Northern Hemisphere's terrestrial carbon sinks are needed to be reevaluated. The young stand ages and high nitrogen deposition, coupled with sufficient and synchronous water and heat availability, may be the primary reasons for the high NEP of this region, and further studies are needed to quantify the contribution of each underlying factor. PMID:24639529

  11. Soil carbon storage following road removal and timber harvesting in redwood forests

    Science.gov (United States)

    Seney, Joseph; Madej, Mary Ann

    2015-01-01

    Soil carbon storage plays a key role in the global carbon cycle and is important for sustaining forest productivity. Removal of unpaved forest roads has the potential for increasing carbon storage in soils on forested terrain as treated sites revegetate and soil properties improve on the previously compacted road surfaces. We compared soil organic carbon (SOC) content at several depths on treated roads to SOC in adjacent second-growth forests and old-growth redwood forests in California, determined whether SOC in the upper 50 cm of soil varies with the type of road treatment, and assessed the relative importance of site-scale and landscape-scale variables in predicting SOC accumulation in treated road prisms and second-growth redwood forests. Soils were sampled at 5, 20, and 50 cm depths on roads treated by two methods (decommissioning and full recontouring), and in adjacent second-growth and old-growth forests in north coastal California. Road treatments spanned a period of 32 years, and covered a range of geomorphic and vegetative conditions. SOC decreased with depth at all sites. Treated roads on convex sites exhibited higher SOC than on concave sites, and north aspect sites had higher SOC than south aspect sites. SOC at 5, 20, and 50 cm depths did not differ significantly between decommissioned roads (treated 18–32 years previous) and fully recontoured roads (treated 2–12 years previous). Nevertheless, stepwise multiple regression models project higher SOC developing on fully recontoured roads in the next few decades. The best predictors for SOC on treated roads and in second-growth forest incorporated aspect, vegetation type, soil depth, lithology, distance from the ocean, years since road treatment (for the road model) and years since harvest (for the forest model). The road model explained 48% of the variation in SOC in the upper 50 cm of mineral soils and the forest model, 54%

  12. A Tale of Two Forests: Simulating Contrasting Lodgepole Pine and Spruce Forest Water and Carbon Fluxes Following Mortality from Bark Beetles

    Science.gov (United States)

    Ewers, B. E.; Peckham, S. D.; Mackay, D. S.; Pendall, E.; Frank, J. M.; Massman, W. J.; Reed, D. E.; Borkhuu, B.

    2014-12-01

    In recent decades, bark beetle infestation in western North America has reached epidemic levels. The resulting widespread forest mortality may have profound effects on present and future water and carbon cycling with potential negative consequences to a region that relies on water from montane and subalpine watersheds. We simulated stand-level ecosystem fluxes of water and carbon at two bark beetle-attacked conifer forests in southeast Wyoming, USA. The lower elevation site dominated by lodgepole pine (Pinus contorta) was attacked by mountain pine beetle (Dendroctonus ponderosae) during 2008-2010. The high elevation Engelmann spruce (Picea engelmannii) dominated site was attacked by the spruce beetle (Dendroctonus rufipennis) during roughly the same time period. Both beetle infestations resulted in >60% canopy mortality in the footprint of eddy covariance towers located at each site. However, carbon and water fluxes responses to mortality depended on the forest type. Using data collected at the sites, we scaled simulated plant hydraulic conductivity by either percent canopy mortality or loss of live tree basal area during infestation. We also simulated a case of no beetle attack. At the lodgepole site, the no-beetle model best fit the data and showed no significant change in growing season carbon flux and a 15% decrease in evapotranspiration (ET). However, at the spruce site, the simulation that tracked canopy loss agreed best with observations: carbon flux decreased by 72% and ET decreased by 31%. In the lodgepole stand, simulated soil water content agreed with spatially distributed measurements that were weighted to reflect overall mortality in the tower footprint. Although these two forest ecosystems are only 20 km apart, separated by less than 300m in elevation, and have been impacted by similar mortality agents, the associated changes in carbon and water cycling are significantly different. Beetle effects on hydrologic cycling were greatest at high elevation

  13. Biomass and carbon attributes of downed woody materials in forests of the United States

    Science.gov (United States)

    C.W. Woodall; B.F. Walters; S.N. Oswalt; G.M. Domke; C. Toney; A.N. Gray

    2013-01-01

    Due to burgeoning interest in the biomass/carbon attributes of forest downed and dead woody materials (DWMs) attributable to its fundamental role in the carbon cycle, stand structure/diversity, bioenergy resources, and fuel loadings, the U.S. Department of Agriculture has conducted a nationwide field-based inventory of DWM. Using the national DWM inventory, attributes...

  14. Life Cycle Analysis of Carbon Flow and Carbon Footprint of Harvested Wood Products of Larix principis-rupprechtii in China

    Directory of Open Access Journals (Sweden)

    Fei Lun

    2016-03-01

    Full Text Available Larix principis-rupprechtii is a native tree species in North China with a large distribution; and its harvested timbers can be used for producing wood products. This study focused on estimating and comparing carbon flows and carbon footprints of different harvested wood products (HWPs from Larix principis-ruppechtii based on the life cycle analysis (from seedling cultivation to HWP final disposal. Based on our interviews and surveys, the system boundary in this study was divided into three processes: the forestry process, the manufacturing process, and the use and disposal process. By tracking carbon flows of HWPs along the entire life cycle, we found that, for one forest rotation period, a total of 26.81 tC/ha sequestered carbon was transferred into these HWPs, 66.2% of which were still stored in the HWP when the rotation period had ended; however, the HWP carbon storage decreased to 0.25 tC/ha (only 0.9% left in the 100th year after forest plantation. The manufacturing process contributed more than 90% of the total HWP carbon footprint, but it was still smaller than the HWP carbon storage. In terms of the carbon storage and the carbon footprint, construction products had the largest net positive carbon balance compared to furniture and panel products. In addition, HWP are known to have a positive impact on global carbon mitigation because they can store parts of the sequestered carbon for a certain period of time and they have a substitution effect on carbon mitigation. Furthermore, there still exist great opportunities for carbon mitigation from HWPs through the use of cleaner energy and increasing the utilization efficiency of wood fuel.

  15. A framework for assessing global change risks to forest carbon stocks in the United States

    Science.gov (United States)

    Christopher W. Woodall; Grant M. Domke; Karin L. Riley; Christopher M. Oswalt; Susan J. Crocker; Gary W. Yohe

    2013-01-01

    Among terrestrial environments, forests are not only the largest long-term sink of atmospheric carbon (C), but are also susceptible to global change themselves, with potential consequences including alterations of C cycles and potential C emission. To inform global change risk assessment of forest C across large spatial/temporal scales, this study constructed and...

  16. Forest carbon trading : legal, policy, ecological and aboriginal issues

    International Nuclear Information System (INIS)

    Elgie, S.

    2005-01-01

    Canada's forest ecosystems store 88 billion tonnes of carbon, with trees alone storing 13 billion tonnes, twice the global annual carbon emissions. Carbon trading could affect forest management. Certain types of forest carbon project will offer cost-effective carbon sequestration options. This paper addresses current concerns about forest carbon trading such as phony carbon gains, biodiversity impact and increased fossil fuel emissions. Statistics were presented with information on global carbon stocks. The Kyoto Protocol requires that Canada must count all changes in forest carbon stocks resulting from afforestation, reforestation or deforestation, and that Canada has the option of counting carbon stock changes from forest management. The decision must be made by 2006, and considerations are whether to present projected net source or sink, or whether to count current commercially managed areas or all timber productive areas. An outline of federal constitutional authority power regarding Kyoto was presented, including limits and risks of trade and treaty powers. The economics of forest carbon were outlined with reference to increasing forest carbon storage. A two-pronged approach was advised, with avoided logging and plantation and intensive management securing carbon and timber benefits. Examples of pre-Kyoto pilots were presented, including the SaskPower project, the Little Red River Cree project and the Labrador Innu project. The disadvantages of offset trading were presented. It was concluded that forest carbon markets are part of a larger vision for sustainable development in Canada's north, especially for aboriginal peoples, and may indicate a growing market for ecological services. Constitutional limits to federal power to regulate carbon trading are not insurmountable, but require care. Ownerships of forest carbon rights raises important policy and legal issues, including aboriginal right, efficiency and equity. An estimated cost of forest carbon projects

  17. Biomass and carbon pools of disturbed riparian forests

    Science.gov (United States)

    Laura A. B. Giese; W. M. Aust; Randall K. Kolka; Carl C. Trettin

    2003-01-01

    Quantification of carbon pools as affected by forest age/development can facilitate riparian restoration and increase awareness of the potential for forests to sequester global carbon. Riparian forest biomass and carbon pools were quantified for four riparian forests representing different seral stages in the South Carolina Upper Coastal Plain. Three of the riparian...

  18. An Assessment of Carbon Storage in China’s Arboreal Forests

    Directory of Open Access Journals (Sweden)

    Weiwei Shao

    2017-04-01

    Full Text Available In the years 2009–2013, China carried out its eighth national survey of forest resources. Based on the survey data, this paper used a biomass conversion function method to evaluate the carbon stores and carbon density of China’s arboreal forests. The results showed that: (1 By age group, the largest portion of carbon stores in China’s arboreal forests are in middle-aged forests. Over-mature forests have the least carbon storage; (2 By origin, natural forests of all age groups have higher carbon storage and carbon density than man-made forest plantations. The carbon density of natural forests and forest plantations increases gradually with the age of the trees; (3 By type (dominant tree species, the 18 most abundant types of arboreal forest in China account for approximately 94% of the nation’s total arboreal forest biomass and carbon storage. Among these, broadleaf mixed and Quercus spp. form the two largest portions. Taxus spp. forests, while comprising a very small portion of China’s forested area, have very high carbon density; (4 By region, the overall arboreal forest carbon storage is highest in the southwest part of China, and lowest in the northwest. However, because of differences in land use and forest coverage ratios, regions with arboreal forests of high carbon density are not necessarily the same regions that have high overall carbon storage; (5 By province, Heilongjiang, Yunnan, Tibet, Sichuan, Inner Mongolia, and Jilin have rather high carbon storage. The arboreal forests in Tibet, Jilin, Xinjiang, Sichuan, Yunnan, and Hainan have a rather high carbon density. This paper’s evaluation of carbon storage in China’s arboreal forests is a valuable reference for interpreting the role and function of Chinese ecosystems in coping with global climate change.

  19. The Kane Experimental Forest carbon inventory: Carbon reporting with FVS

    Science.gov (United States)

    Coeli Hoover

    2008-01-01

    As the number of state and regional climate change agreements grows, so does the need to assess the carbon implications of planned forest management actions. At the operational level, producing detailed stock estimates for the primary carbon pools becomes time-consuming and cumbersome. Carbon reporting functionality has been fully integrated within the Forest...

  20. A carbon cycle science update since IPCC AR-4.

    Science.gov (United States)

    Dolman, A J; van der Werf, G R; van der Molen, M K; Ganssen, G; Erisman, J-W; Strengers, B

    2010-01-01

    We review important advances in our understanding of the global carbon cycle since the publication of the IPCC AR4. We conclude that: the anthropogenic emissions of CO2 due to fossil fuel burning have increased up through 2008 at a rate near to the high end of the IPCC emission scenarios; there are contradictory analyses whether an increase in atmospheric fraction, that might indicate a declining sink strength of ocean and/or land, exists; methane emissions are increasing, possibly through enhanced natural emission from northern wetland, methane emissions from dry plants are negligible; old-growth forest take up more carbon than expected from ecological equilibrium reasoning; tropical forest also take up more carbon than previously thought, however, for the global budget to balance, this would imply a smaller uptake in the northern forest; the exchange fluxes between the atmosphere and ocean are increasingly better understood and bottom up and observation-based top down estimates are getting closer to each other; the North Atlantic and Southern ocean take up less CO2, but it is unclear whether this is part of the 'natural' decadal scale variability; large-scale fires and droughts, for instance in Amazonia, but also at Northern latitudes, have lead to significant decreases in carbon uptake on annual timescales; the extra uptake of CO2 stimulated by increased N-deposition is, from a greenhouse gas forcing perspective, counterbalanced by the related additional N2O emissions; the amount of carbon stored in permafrost areas appears much (two times) larger than previously thought; preservation of existing marine ecosystems could require a CO2 stabilization as low as 450 ppm; Dynamic Vegetation Models show a wide divergence for future carbon trajectories, uncertainty in the process description, lack of understanding of the CO2 fertilization effect and nitrogen-carbon interaction are major uncertainties.

  1. Effects of nitrogen additions on above- and belowground carbon dynamics in two tropical forests

    Science.gov (United States)

    Daniela F. Cusack; Whendee L. Silver; Margaret S. Torn; William H. McDowell

    2011-01-01

    Anthropogenic nitrogen (N) deposition is increasing rapidly in tropical regions, adding N to ecosystems that often have high background N availability. Tropical forests play an important role in the global carbon (C) cycle, yet the effects of N deposition on C cycling in these ecosystems are poorly understood. We used a field N-fertilization experiment in lower and...

  2. Degradation in carbon stocks near tropical forest edges.

    Science.gov (United States)

    Chaplin-Kramer, Rebecca; Ramler, Ivan; Sharp, Richard; Haddad, Nick M; Gerber, James S; West, Paul C; Mandle, Lisa; Engstrom, Peder; Baccini, Alessandro; Sim, Sarah; Mueller, Carina; King, Henry

    2015-12-18

    Carbon stock estimates based on land cover type are critical for informing climate change assessment and landscape management, but field and theoretical evidence indicates that forest fragmentation reduces the amount of carbon stored at forest edges. Here, using remotely sensed pantropical biomass and land cover data sets, we estimate that biomass within the first 500 m of the forest edge is on average 25% lower than in forest interiors and that reductions of 10% extend to 1.5 km from the forest edge. These findings suggest that IPCC Tier 1 methods overestimate carbon stocks in tropical forests by nearly 10%. Proper accounting for degradation at forest edges will inform better landscape and forest management and policies, as well as the assessment of carbon stocks at landscape and national levels.

  3. Simulating forest productivity along a neotropical elevational transect: temperature variation and carbon use efficiency

    Science.gov (United States)

    Marthews, T.; Malhi, Y.; Girardin, C.; Silva-Espejo, J.; Aragão, L.; Metcalfe, D.; Rapp, J.; Mercado, L.; Fisher, R.; Galbraith, D.; Fisher, J.; Salinas-Revilla, N.; Friend, A.; Restrepo-Coupe, N.; Williams, R.

    2012-04-01

    A better understanding of the mechanisms controlling the magnitude and sign of carbon components in tropical forest ecosystems is important for reliable estimation of this important regional component of the global carbon cycle. We used the JULES vegetation model to simulate all components of the carbon balance at six sites along an Andes-Amazon transect across Peru and Brazil and compared the results to published field measurements. In the upper montane zone the model predicted a vegetation dieback, indicating a need for better parameterisation of cloud forest vegetation. In the lower montane and lowland zones simulated ecosystem productivity and respiration were predicted with reasonable accuracy, although not always within the error bounds of the observations. Model-predicted carbon use efficiency in this transect surprisingly did not increase with elevation, but remained close to the 'temperate' value 0.5. This may be explained by elevational changes in the balance between growth and maintenance respiration within the forest canopy, as controlled by both temperature- and pressure-mediated processes.

  4. THE DISTRIBUTION OF ORGANIC CARBON IN MAJOR COMPONENTS OF FORESTS LOCATED IN FIVE LIFE ZONES OF VENEZUELA

    Science.gov (United States)

    One of the major uncertainties concerning the role of tropical forests in the global carbon cycle is the lack of adequate data on the carbon content of all their components. The goal of this study was to contribute to filling this data gap by estimating the quantity of carbon in ...

  5. Quality of urban forest carbon credits

    Science.gov (United States)

    Neelam C. Poudyala; Jacek P. Siry; J.M. Bowker

    2011-01-01

    While the urban forest is considered an eligible source of carbon offset credits, little is known about its market potential and the quality aspects of the credits. As credit suppliers increase in number and credit buyers become more interested in purchasing carbon credits, it is unclear whether and how urban forest carbon credits can perform relative to the other...

  6. [Characteristics of carbon storage of Inner Mongolia forests: a review].

    Science.gov (United States)

    Yang, Hao; Hu, Zhong-Min; Zhang, Lei-Ming; Li, Sheng-Gong

    2014-11-01

    Forests in Inner Mongolia account for an important part of the forests in China in terms of their large area and high living standing volume. This study reported carbon storage, carbon density, carbon sequestration rate and carbon sequestration potential of forest ecosystems in Inner Mongolia using the biomass carbon data from the related literature. Through analyzing the data of forest inventory and the generalized allometric equations between volume and biomass, previous studies had reported that biomass carbon storage of the forests in Inner Mongolia was about 920 Tg C, which was 12 percent of the national forest carbon storage, the annual average growth rate was about 1.4%, and the average of carbon density was about 43 t · hm(-2). Carbon storage and carbon density showed an increasing trend over time. Coniferous and broad-leaved mixed forest, Pinus sylvestris var. mongolica forest and Betula platyphylla forest had higher carbon sequestration capacities. Carbon storage was reduced due to human activities such as thinning and clear cutting. There were few studies on carbon storage of the forests in Inner Mongolia with focus on the soil, showing that the soil car- bon density increased with the stand age. Study on the carbon sequestration potential of forest ecosystems was still less. Further study was required to examine dynamics of carbon storage in forest ecosystems in Inner Mongolia, i. e., to assess carbon storage in the forest soils together with biomass carbon storage, to compute biomass carbon content of species organs as 45% in the allometric equations, to build more species-specific and site-specific allometric equations including root biomass for different dominant species, and to take into account the effects of climate change on carbon sequestration rate and carbon sequestration potential.

  7. Experimental Evidence that Hemlock Mortality Enhances Carbon Stabilization in Southern Appalachian Forest Soils

    Science.gov (United States)

    Fraterrigo, J.; Ream, K.; Knoepp, J.

    2017-12-01

    Forest insects and pathogens (FIPs) can cause uncertain changes in forest carbon balance, potentially influencing global atmospheric carbon dioxide (CO2) concentrations. We quantified the effects of hemlock (Tsuga canadensis L. Carr.) mortality on soil carbon fluxes and pools for a decade following either girdling or natural infestation by hemlock woolly adelgid (HWA; Adelges tsugae) to improve mechanistic understanding of soil carbon cycling response to FIPs. Although soil respiration (Rsoil) was similar among reference plots and plots with hemlock mortality, both girdled and HWA-infested plots had greater activities of β-glucosidase, a cellulose-hydrolyzing extracellular enzyme, and decreased O-horizon mass and fine root biomass from 2005 to 2013. During this period, total mineral soil carbon accumulated at a higher rate in disturbed plots than in reference plots in both the surface (0-10 cm) and subsurface (10-30 cm); increases were predominantly in the mineral-associated fraction of the soil organic matter. In contrast, particulate organic matter carbon accrued slowly in surface soils and declined in the subsurface of girdled plots. δ13C values of this fraction demonstrate that particulate organic matter carbon in the surface soil has become more microbially processed over time, suggesting enhanced decomposition of organic matter in this pool. Together, these findings indicate that hemlock mortality and subsequent forest regrowth has led to enhanced soil carbon stabilization in southern Appalachian forests through the translocation of carbon from detritus and particulate soil organic matter pools to the mineral-associated organic matter pool. These findings have implications for ecosystem management and modeling, demonstrating that forests may tolerate moderate disturbance without diminishing soil carbon storage when there is a compensatory growth response by non-host trees.

  8. Drought during canopy development has lasting effect on annual carbon balance in a deciduous temperate forest

    Science.gov (United States)

    Asko Noormets; Steve G. McNulty; Jared L. DeForest; Ge Sun; Qinglin Li; Jiquan Chen

    2008-01-01

    Climate change projections predict an intensifying hydrologic cycle and an increasing frequency of droughts, yet quantitative understanding of the effects on ecosystem carbon exchange remains limitedHere, the effect of contrasting precipitation and soil moisture dynamics were evaluated on forest carbon exchange using 2 yr of...

  9. [Variation of forest vegetation carbon storage and carbon sequestration rate in Liaoning Province, Northeast China].

    Science.gov (United States)

    Zhen, Wei; Huang, Mei; Zhai, Yin-Li; Chen, Ke; Gong, Ya-Zhen

    2014-05-01

    The forest vegetation carbon stock and carbon sequestration rate in Liaoning Province, Northeast China, were predicted by using Canadian carbon balance model (CBM-CFS3) combining with the forest resource data. The future spatio-temporal distribution and trends of vegetation carbon storage, carbon density and carbon sequestration rate were projected, based on the two scenarios, i. e. with or without afforestation. The result suggested that the total forest vegetation carbon storage and carbon density in Liaoning Province in 2005 were 133.94 Tg and 25.08 t x hm(-2), respectively. The vegetation carbon storage in Quercus was the biggest, while in Robinia pseudoacacia was the least. Both Larix olgensis and broad-leaved forests had higher vegetation carbon densities than others, and the vegetation carbon densities of Pinus tabuliformis, Quercus and Robinia pseudoacacia were close to each other. The spatial distribution of forest vegetation carbon density in Liaoning Province showed a decrease trend from east to west. In the eastern forest area, the future increase of vegetation carbon density would be smaller than those in the northern forest area, because most of the forests in the former part were matured or over matured, while most of the forests in the later part were young. Under the scenario of no afforestation, the future increment of total forest vegetation carbon stock in Liaoning Province would increase gradually, and the total carbon sequestration rate would decrease, while they would both increase significantly under the afforestation scenario. Therefore, afforestation plays an important role in increasing vegetation carbon storage, carbon density and carbon sequestration rate.

  10. Carbon accounting of forest bioenergy: from model calibrations to policy options (Invited)

    Science.gov (United States)

    Lamers, P.

    2013-12-01

    Programs to stimulate biomass use for the production of heating/cooling and electricity have been implemented in many countries as part of their greenhouse gas emission reduction strategies. Critiques claim however that the use of forest biomass, e.g. as a replacement of hard-coal in large-scale power plants or mineral oil fuelled residential heating boilers, countervails carbon saving and thus also climate change mitigation strategies, at least in the short-term, as forest biomass combustion releases previously stored biogenic carbon back into the atmosphere. While there seems general agreement that carbon emitted from bioenergy combustion was and will again be sequestered from the atmosphere given a sustainable biomass management system, there is inherent concern that carbon release and sequestration rates may not be in temporal balance with each other and eventually jeopardize mid-century carbon/temperature/climate targets. So far, biomass carbon accounting systems (including those that are part of regulatory standards) have not incorporated this potential temporal imbalance or ';carbon debt'. The potential carbon debt caused by wood harvest and the resulting time spans needed to reach pre-harvest carbon levels (payback) or those of a reference case (parity) have become important parameters for climate and bioenergy policy developments. The present range of analyses however varies in assumptions, regional scopes, and conclusions. Policy makers are confronted with this portfolio while needing to address the temporal carbon aspect in current regulations. In order to define policies for our carbon constrained world, it is critical to better understand the dimensions and regional differences of these carbon cycles. This paper/presentation discusses to what extent and under which circumstances (i.e. bioenergy systems) a temporal forest carbon imbalance could jeopardize future temperature and eventually climate targets. It further reviews the current state of

  11. Carbon exchanges and their responses to temperature and precipitation in forest ecosystems in Yunnan, Southwest China.

    Science.gov (United States)

    Fei, Xuehai; Song, Qinghai; Zhang, Yiping; Liu, Yuntong; Sha, Liqing; Yu, Guirui; Zhang, Leiming; Duan, Changqun; Deng, Yun; Wu, Chuansheng; Lu, Zhiyun; Luo, Kang; Chen, Aiguo; Xu, Kun; Liu, Weiwei; Huang, Hua; Jin, Yanqiang; Zhou, Ruiwu; Li, Jing; Lin, Youxing; Zhou, Liguo; Fu, Yane; Bai, Xiaolong; Tang, Xianhui; Gao, Jinbo; Zhou, Wenjun; Grace, John

    2018-03-01

    Forest ecosystems play an increasingly important role in the global carbon cycle. However, knowledge on carbon exchanges, their spatio-temporal patterns, and the extent of the key controls that affect carbon fluxes is lacking. In this study, we employed 29-site-years of eddy covariance data to observe the state, spatio-temporal variations and climate sensitivity of carbon fluxes (gross primary productivity (GPP), ecosystem respiration (R eco ), and net ecosystem carbon exchange (NEE)) in four representative forest ecosystems in Yunnan. We found that 1) all four forest ecosystems were carbon sinks (the average NEE was -3.40tCha -1 yr -1 ); 2) contrasting seasonality of the NEE among the ecosystems with a carbon sink mainly during the wet season in the Yuanjiang savanna ecosystem (YJ) but during the dry season in the Xishuangbanna tropical rainforest ecosystem (XSBN), besides an equivalent NEE uptake was observed during the wet/dry season in the Ailaoshan subtropical evergreen broad-leaved forest ecosystem (ALS) and Lijiang subalpine coniferous forest ecosystem (LJ); 3) as the GPP increased, the net ecosystem production (NEP) first increased and then decreased when the GPP>17.5tCha -1 yr -1 ; 4) the precipitation determines the carbon sinks in the savanna ecosystem (e.g., YJ), while temperature did so in the tropical forest ecosystem (e.g., XSBN); 5) overall, under the circumstances of warming and decreased precipitation, the carbon sink might decrease in the YJ but maybe increase in the ALS and LJ, while future strength of the sink in the XSBN is somewhat uncertain. However, based on the redundancy analysis, the temperature and precipitation combined together explained 39.7%, 32.2%, 25.3%, and 29.6% of the variations in the NEE in the YJ, XSBN, ALS and LJ, respectively, which indicates that considerable changes in the NEE could not be explained by variations in the temperature and precipitation. Therefore, the effects of other factors (e.g., CO 2 concentration, N

  12. Dynamic and inertial controls on forest carbon-water relations

    Science.gov (United States)

    Maxwell, T.; Silva, L.; Horwath, W. R.

    2017-12-01

    This study fuses theory, empirical measurements, and statistical models to evaluate multiple processes controlling coupled carbon-water cycles in forest ecosystems. A series of latitudinal and altitudinal transects across the California Sierra Nevada was used to study the effects of climatic and edaphic gradients on intrinsic water-use efficiency (iWUE) - CO2 fixed per unit of water lost via transpiration - of nine dominant trees species. Transfer functions were determined between leaf, litter, and soil organic matter stable isotope ratios of carbon, oxygen, and nitrogen, revealing causal links between the physiological performance of tree species and stand-level estimations of productivity and water balance. Our results show that species iWUE is governed both by leaf traits (24% of the variation) and edaphic properties, such as parent material and soil development (3% and 12% of the variation, respectively). We show that soil properties combined with isotopic indicators can be used to explain constraints over iWUE by regulating water and nutrient availability across elevation gradients. Based on observed compositional shifts likely driven by changing climates in the region, encroachment of broad leaf trees could lead to an 80% increase in water loss via transpiration for each unit of CO2 fixed in Sierra mixed conifer zones. A combination of field-based, laboratory, and remote sensed data provide a useful framework for differentiating the effect of multiple controls of carbon and water cycles in temperate forest ecosystems.

  13. Carbon stocks and changes on Pacific Northwest national forests and the role of disturbance, management, and growth

    Science.gov (United States)

    Andrew N. Gray; Thomas R. Whittier

    2014-01-01

    The National Forest System (NFS) of the United States plays an important role in the carbon cycle because these lands make up a large proportion of the forested land in the country and commonly store more wood per unit area than other forest ownerships. In addition to sustaining natural resources, these lands are managed for multiple objectives that do not always align...

  14. Correlation analysis between forest carbon stock and spectral vegetation indices in Xuan Lien Nature Reserve, Thanh Hoa, Viet Nam

    Science.gov (United States)

    Dung Nguyen, The; Kappas, Martin

    2017-04-01

    In the last several years, the interest in forest biomass and carbon stock estimation has increased due to its importance for forest management, modelling carbon cycle, and other ecosystem services. However, no estimates of biomass and carbon stocks of deferent forest cover types exist throughout in the Xuan Lien Nature Reserve, Thanh Hoa, Viet Nam. This study investigates the relationship between above ground carbon stock and different vegetation indices and to identify the most likely vegetation index that best correlate with forest carbon stock. The terrestrial inventory data come from 380 sample plots that were randomly sampled. Individual tree parameters such as DBH and tree height were collected to calculate the above ground volume, biomass and carbon for different forest types. The SPOT6 2013 satellite data was used in the study to obtain five vegetation indices NDVI, RDVI, MSR, RVI, and EVI. The relationships between the forest carbon stock and vegetation indices were investigated using a multiple linear regression analysis. R-square, RMSE values and cross-validation were used to measure the strength and validate the performance of the models. The methodology presented here demonstrates the possibility of estimating forest volume, biomass and carbon stock. It can also be further improved by addressing more spectral bands data and/or elevation.

  15. Trading forest carbon - OSU

    Science.gov (United States)

    Issues associate with trading carbon sequestered in forests are discussed. Scientific uncertainties associated with carbon measurement are discussed with respect to proposed accounting procedures. Major issues include: (1) Establishing baselines. (2) Determining additivity from f...

  16. Tropical forest carbon assessment: integrating satellite and airborne mapping approaches

    International Nuclear Information System (INIS)

    Asner, Gregory P

    2009-01-01

    Large-scale carbon mapping is needed to support the UNFCCC program to reduce deforestation and forest degradation (REDD). Managers of forested land can potentially increase their carbon credits via detailed monitoring of forest cover, loss and gain (hectares), and periodic estimates of changes in forest carbon density (tons ha -1 ). Satellites provide an opportunity to monitor changes in forest carbon caused by deforestation and degradation, but only after initial carbon densities have been assessed. New airborne approaches, especially light detection and ranging (LiDAR), provide a means to estimate forest carbon density over large areas, which greatly assists in the development of practical baselines. Here I present an integrated satellite-airborne mapping approach that supports high-resolution carbon stock assessment and monitoring in tropical forest regions. The approach yields a spatially resolved, regional state-of-the-forest carbon baseline, followed by high-resolution monitoring of forest cover and disturbance to estimate carbon emissions. Rapid advances and decreasing costs in the satellite and airborne mapping sectors are already making high-resolution carbon stock and emissions assessments viable anywhere in the world.

  17. Forest carbon management in the United States: 1600-2100

    Science.gov (United States)

    Richard A. Birdsey; Kurt Pregitzer; Alan Lucier

    2006-01-01

    This paper reviews the effects of past forest management on carbon stocks in the United States, and the challenges for managing forest carbon resources in the 21st century. Forests in the United States were in approximate carbon balance with the atmosphere from 1600-1800. Utilization and land clearing caused a large pulse of forest carbon emissions during the 19th...

  18. Forest and wood products role in carbon sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Sampson, R.N.

    1997-12-31

    An evaluation of the use of U.S. forests and forest products for carbon emission mitigation is presented. The current role of forests in carbon sequestration is described in terms of regional differences and forest management techniques. The potential for increasing carbon storage by converting marginal crop and pasture land, increasing timberland growth, reducing wildfire losses, and changing timber harvest methods is examined. Post-harvest carbon flows, environmental impacts of wood products, biomass energy crops, and increased use of energy-conserving trees are reviewed for their potential in reducing or offsetting carbon emissions. It is estimated that these techniques could offset 20 to 40 percent of the carbon emitted annually in the U.S. 39 refs., 5 tabs.

  19. Carbon budgets and carbon sequestration potential of Indian forests

    NARCIS (Netherlands)

    Kaul, M.

    2010-01-01

    Keywords: Carbon uptake, Forest biomass, Bioenergy, Land use change, Indian forests, Deforestation, Afforestation, Rotation length, Trees outside forests.

    Global climate change is a widespread and growing concern that has led to extensive international discussions and negotiations.

  20. Carbon uptake by mature Amazon forests has mitigated Amazon nations' carbon emissions.

    Science.gov (United States)

    Phillips, Oliver L; Brienen, Roel J W

    2017-12-01

    Several independent lines of evidence suggest that Amazon forests have provided a significant carbon sink service, and also that the Amazon carbon sink in intact, mature forests may now be threatened as a result of different processes. There has however been no work done to quantify non-land-use-change forest carbon fluxes on a national basis within Amazonia, or to place these national fluxes and their possible changes in the context of the major anthropogenic carbon fluxes in the region. Here we present a first attempt to interpret results from ground-based monitoring of mature forest carbon fluxes in a biogeographically, politically, and temporally differentiated way. Specifically, using results from a large long-term network of forest plots, we estimate the Amazon biomass carbon balance over the last three decades for the different regions and nine nations of Amazonia, and evaluate the magnitude and trajectory of these differentiated balances in relation to major national anthropogenic carbon emissions. The sink of carbon into mature forests has been remarkably geographically ubiquitous across Amazonia, being substantial and persistent in each of the five biogeographic regions within Amazonia. Between 1980 and 2010, it has more than mitigated the fossil fuel emissions of every single national economy, except that of Venezuela. For most nations (Bolivia, Colombia, Ecuador, French Guiana, Guyana, Peru, Suriname) the sink has probably additionally mitigated all anthropogenic carbon emissions due to Amazon deforestation and other land use change. While the sink has weakened in some regions since 2000, our analysis suggests that Amazon nations which are able to conserve large areas of natural and semi-natural landscape still contribute globally-significant carbon sequestration. Mature forests across all of Amazonia have contributed significantly to mitigating climate change for decades. Yet Amazon nations have not directly benefited from providing this global scale

  1. Carbon debt - Lost in the forest?

    DEFF Research Database (Denmark)

    Bentsen, Niclas Scott

    2014-01-01

    The concept of ‘carbon debt’ and carbon payback time with reference to bioenergy and biofuels was probably launched by anarticle in Science in 2008. The concept is increasingly seen as an indicator of the sustainability of bioenergy supply chains.Particularly for forest bioenergy supply chains...... the time lapse between harvest and regrowth may be a signifi cant factor for themodeled carbon debt. A meta-analysis of more than 250 model scenarios was conducted to evaluate the factors and assumptionsdetermining carbon debts and payback time of forest bioenergy supply chains. Factors such as spatial...... and temporal scale, biome,origin of the wood resource, which fossil fuels are displaced, forest history, baseline scenario, accounting principle, and databackground were included in the analysis. This paper discusses the evolution of the carbon debt concept, how different factorsand assumptions infl uence...

  2. An ecosystem carbon database for Canadian forests

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, C.H.; Bhatti, J.S.; Sabourin, K.J.

    2005-07-01

    The forest ecosystem carbon database (FECD) is a compilation of data from more than 700 plots from different forest ecosystems in Canada. It includes more than 60 variables for site, stand and soil characteristics. It is intended for large-scale modelers and analysts working with the carbon budget and dynamics of forest ecosystems, particularly those interested in the response of forest carbon stocks and fluxes to changes in climate and site characteristics. The database includes totals for organic and mineral soil horizons for each plot along with total soil carbon content, tree biomass carbon content by component and total ecosystem carbon content. It is complete for site description information, soil chemistry, stand-level estimates of live tree biomass and carbon components and their totals. Soil carbon content by horizon was also included. The compilation targeted data collected at single points in space, where above ground and below ground carbon levels were measured simultaneously. It was noted that one of the important information gaps lies in the fact that no data was available for the natural disturbance or management histories of the stands where the plots were located. Estimates did not include detrital carbon or root biomass, which can influence the estimates for total ecosystem carbon in some forest types. The preliminary analysis reveals that ecozones can be grouped according to low and high average total biomass carbon content. The groups correlate to ecozones with low and high average total ecosystem carbon. Mineral soil carbon within each group contributes the highest proportion of carbon to the average total ecosystem carbon. It is correlated with a gradient in ecozone climate from cold and dry to warm and wet. 42 refs., 13 tabs., 16 figs.

  3. Changes in Nitrogen Cycling during Tropical Forest Secondary Succession on Abandoned Pastures

    Science.gov (United States)

    Mirza, S.; Rivera, R. J.; Marin-Spiotta, E.

    2017-12-01

    Nitrogen (N) plays two important roles in Earth's climate. As a plant nutrient, the availability of N affects plant growth and the uptake of carbon (C) from the atmosphere into plant biomass. The accumulation of C in long-lived biomass and in soils contributes to reducing the amount of CO2 in the atmosphere. Secondly, excess N can lead to the production of N2O, which is a more potent greenhouse than CO2. Humans have altered the cycling of N in terrestrial ecosystems, affecting their potential to sequester C and help mitigate climate change. Land-use change, specifically deforestation and reforestation, can affect N availability for plant growth and N2O production. Long-term agricultural use can deplete nitrogen sources, even in tropical soils where N is not expected to limit productivity. Secondary succession and reforestation can allow for the recovery of N stocks and fluxes, with implications for C cycling and N2O emissions. N limitation in pastures and early successional forests increases the demand for N-fixing tree species, but previous research has shown that there is a greater abundance of N-fixing species in older forests (Batterman et. al 2013). Successional trends in N mineralization and denitrification vary across studies, with some showing greater rates in agricultural soils or in mature forest soils, compared to early successional sites. Here we examine changes in N-fixing species, above and belowground N pools, and N cycling rates in secondary forests on former pastures on Oxisols in the wet tropical forest life zone of Puerto Rico. The availability of a long-term well-replicated chronosequence provides us with the opportunity to study decadal trends in N processes during forest recovery after agricultural abandonment.

  4. Effectiveness of management interventions on forest carbon stock in planted forests in Nepal.

    Science.gov (United States)

    Dangal, Shambhu Prasad; Das, Abhoy Kumar; Paudel, Shyam Krishna

    2017-07-01

    Nepal has successfully established more than 370,000 ha of plantations, mostly with Pinus patula, in the last three and a half decades. However, intensive management of these planted forests is very limited. Despite the fact that the Kyoto Convention in 1997 recognized the role of plantations for forest-carbon sequestration, there is still limited knowledge on the effects of management practices and stand density on carbon-sequestration of popular plantation species (i.e. Pinus patula) in Nepal. We carried out case studies in four community forests planted between 1976 and 1990 to assess the impacts of management on forest carbon stocks. The study found that the average carbon stock in the pine plantations was 217 Mg C ha -1 , and was lower in forests with intensively managed plantations (214.3 Mg C ha -1 ) than in traditionally managed plantations (219 Mg C ha -1 ). However, it was the reverse in case of soil carbon, which was higher (78.65 Mg C ha -1 ) in the forests with intensive management. Though stand density was positively correlated with carbon stock, the proportionate increment in carbon stock was lower with increasing stand density, as carbon stock increased by less than 25% with a doubling of stand density (300-600). The total carbon stock was higher in plantations aged between 25 and 30 years compared to those aged between 30 and 35 years. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Modelling interactions of carbon dioxide, forests, and climate

    International Nuclear Information System (INIS)

    Luxmoore, R.J.; Baldocchi, D.D.

    1994-01-01

    Atmospheric carbon dioxide is rising and forests and climate is changing exclamation point This combination of fact and premise may be evaluated at a range of temporal and spatial scales with the aid of computer simulators describing the interrelationships between forest vegetation, litter and soil characteristics, and appropriate meteorological variables. Some insights on the effects of climate on the transfers of carbon and the converse effect of carbon transfer on climate are discussed as a basis for assessing the significance of feedbacks between vegetation and climate under conditions of rising atmospheric carbon dioxide. Three main classes of forest models are reviewed. These are physiologically-based models, forest succession simulators based on the JABOWA model, and ecosystem-carbon budget models that use compartment transfer rates with empirically estimated coefficients. Some regression modeling approaches are also outlined. Energy budget models applied to forests and grasslands are also reviewed. This review presents examples of forest models; a comprehensive discussion of all available models is not undertaken

  6. Nitrogen deposition may enhance soil carbon storage via change of soil respiration dynamic during a spring freeze-thaw cycle period.

    Science.gov (United States)

    Yan, Guoyong; Xing, Yajuan; Xu, Lijian; Wang, Jianyu; Meng, Wei; Wang, Qinggui; Yu, Jinghua; Zhang, Zhi; Wang, Zhidong; Jiang, Siling; Liu, Boqi; Han, Shijie

    2016-06-30

    As crucial terrestrial ecosystems, temperate forests play an important role in global soil carbon dioxide flux, and this process can be sensitive to atmospheric nitrogen deposition. It is often reported that the nitrogen addition induces a change in soil carbon dioxide emission in growing season. However, the important effects of interactions between nitrogen deposition and the freeze-thaw-cycle have never been investigated. Here we show nitrogen deposition delays spikes of soil respiration and weaken soil respiration. We found the nitrogen addition, time and nitrogen addition×time exerted the negative impact on the soil respiration of spring freeze-thaw periods due to delay of spikes and inhibition of soil respiration (p nitrogen), 39% (medium-nitrogen) and 36% (high-nitrogen) compared with the control. And the decrease values of soil respiration under medium- and high-nitrogen treatments during spring freeze-thaw-cycle period in temperate forest would be approximately equivalent to 1% of global annual C emissions. Therefore, we show interactions between nitrogen deposition and freeze-thaw-cycle in temperate forest ecosystems are important to predict global carbon emissions and sequestrations. We anticipate our finding to be a starting point for more sophisticated prediction of soil respirations in temperate forests ecosystems.

  7. Toward a Mexican eddy covariance network for carbon cycle science

    Science.gov (United States)

    Vargas, Rodrigo; Yépez, Enrico A.

    2011-09-01

    First Annual MexFlux Principal Investigators Meeting; Hermosillo, Sonora, Mexico, 4-8 May 2011; The carbon cycle science community has organized a global network, called FLUXNET, to measure the exchange of energy, water, and carbon dioxide (CO2) between the ecosystems and the atmosphere using the eddy covariance technique. This network has provided unprecedented information for carbon cycle science and global climate change but is mostly represented by study sites in the United States and Europe. Thus, there is an important gap in measurements and understanding of ecosystem dynamics in other regions of the world that are seeing a rapid change in land use. Researchers met under the sponsorship of Red Temática de Ecosistemas and Consejo Nacional de Ciencia y Tecnologia (CONACYT) to discuss strategies to establish a Mexican eddy covariance network (MexFlux) by identifying researchers, study sites, and scientific goals. During the meeting, attendees noted that 10 study sites have been established in Mexico with more than 30 combined years of information. Study sites span from new sites installed during 2011 to others with 9 to 6 years of measurements. Sites with the longest span measurements are located in Baja California Sur (established by Walter Oechel in 2002) and Sonora (established by Christopher Watts in 2005); both are semiarid ecosystems. MexFlux sites represent a variety of ecosystem types, including Mediterranean and sarcocaulescent shrublands in Baja California; oak woodland, subtropical shrubland, tropical dry forest, and a grassland in Sonora; tropical dry forests in Jalisco and Yucatan; a managed grassland in San Luis Potosi; and a managed pine forest in Hidalgo. Sites are maintained with an individual researcher's funds from Mexican government agencies (e.g., CONACYT) and international collaborations, but no coordinated funding exists for a long-term program.

  8. Carbon and nitrogen distribution in oak-hickory forests distributed along a productivity gradient

    Energy Technology Data Exchange (ETDEWEB)

    Reber, R.T.; Kaczmarek, D.J.; Pope, P.E.; Rodkey, K.S. [Purdue Univ., West Lafayette, IN (United States)

    1993-12-31

    Biomass, carbon and nitrogen pools were determined for oak-hickory forests of varying productivity. Little information of this type is available for the central hardwood region. Six oak-hickory dominated forests were chosen to represent a range in potential site productivity as influenced by soil type, amount of recyclable nutrients and available water. Biomass, carbon and nitrogen storage were determined for the following components: above ground standing biomass, fine root biomass, forest floor organic layers and litterfall. As site sequestered at each site was dependent more on the amount of living biomass at each site Litterfall, to some extent, increased with increasing site productivity. As potential site productivity decreased, total fine root biomass increased. The data suggest that as site quality decreased fine root production and turnover may become as important in nutrient cycling as annual litterfall.

  9. Invasive alien pests threaten the carbon stored in Europe's forests.

    Science.gov (United States)

    Seidl, Rupert; Klonner, Günther; Rammer, Werner; Essl, Franz; Moreno, Adam; Neumann, Mathias; Dullinger, Stefan

    2018-04-24

    Forests mitigate climate change by sequestering large amounts of carbon (C). However, forest C storage is not permanent, and large pulses of tree mortality can thwart climate mitigation efforts. Forest pests are increasingly redistributed around the globe. Yet, the potential future impact of invasive alien pests on the forest C cycle remains uncertain. Here we show that large parts of Europe could be invaded by five detrimental alien pests already under current climate. Climate change increases the potential range of alien pests particularly in Northern and Eastern Europe. We estimate the live C at risk from a potential future invasion as 1027 Tg C (10% of the European total), with a C recovery time of 34 years. We show that the impact of introduced pests could be as severe as the current natural disturbance regime in Europe, calling for increased efforts to halt the introduction and spread of invasive alien species.

  10. Evaluation of forest structure, biomass and carbon sequestration in subtropical pristine forests of SW China.

    Science.gov (United States)

    Nizami, Syed Moazzam; Yiping, Zhang; Zheng, Zheng; Zhiyun, Lu; Guoping, Yang; Liqing, Sha

    2017-03-01

    Very old natural forests comprising the species of Fagaceae (Lithocarpus xylocarpus, Castanopsis wattii, Lithocarpus hancei) have been prevailing since years in the Ailaoshan Mountain Nature Reserve (AMNR) SW China. Within these forest trees, density is quite variable. We studied the forest structure, stand dynamics and carbon density at two different sites to know the main factors which drives carbon sequestration process in old forests by considering the following questions: How much is the carbon density in these forest trees of different DBH (diameter at breast height)? How much carbon potential possessed by dominant species of these forests? How vegetation carbon is distributed in these forests? Which species shows high carbon sequestration? What are the physiochemical properties of soil in these forests? Five-year (2005-2010) tree growth data from permanently established plots in the AMNR was analysed for species composition, density, stem diameter (DBH), height and carbon (C) density both in aboveground and belowground vegetation biomass. Our study indicated that among two comparative sites, overall 54 species of 16 different families were present. The stem density, height, C density and soil properties varied significantly with time among the sites showing uneven distribution across the forests. Among the dominant species, L. xylocarpus represents 30% of the total carbon on site 1 while C. wattii represents 50% of the total carbon on site 2. The average C density ranged from 176.35 to 243.97 t C ha -1 . The study emphasized that there is generous degree to expand the carbon stocking in this AMNR through scientific management gearing towards conservation of old trees and planting of potentially high carbon sequestering species on good site quality areas.

  11. Effects of rapid urban sprawl on urban forest carbon stocks: integrating remotely sensed, GIS and forest inventory data.

    Science.gov (United States)

    Ren, Yin; Yan, Jing; Wei, Xiaohua; Wang, Yajun; Yang, Yusheng; Hua, Lizhong; Xiong, Yongzhu; Niu, Xiang; Song, Xiaodong

    2012-12-30

    Research on the effects of urban sprawl on carbon stocks within urban forests can help support policy for sustainable urban design. This is particularly important given climate change and environmental deterioration as a result of rapid urbanization. The purpose of this study was to quantify the effects of urban sprawl on dynamics of forest carbon stock and density in Xiamen, a typical city experiencing rapid urbanization in China. Forest resource inventory data collected from 32,898 patches in 4 years (1972, 1988, 1996 and 2006), together with remotely sensed data (from 1988, 1996 and 2006), were used to investigate vegetation carbon densities and stocks in Xiamen, China. We classified the forests into four groups: (1) forest patches connected to construction land; (2) forest patches connected to farmland; (3) forest patches connected to both construction land and farmland and (4) close forest patches. Carbon stocks and densities of four different types of forest patches during different urbanization periods in three zones (urban core, suburb and exurb) were compared to assess the impact of human disturbance on forest carbon. In the urban core, the carbon stock and carbon density in all four forest patch types declined over the study period. In the suburbs, different urbanization processes influenced forest carbon density and carbon stock in all four forest patch types. Urban sprawl negatively affected the surrounding forests. In the exurbs, the carbon stock and carbon density in all four forest patch types tended to increase over the study period. The results revealed that human disturbance played the dominant role in influencing the carbon stock and density of forest patches close to the locations of human activities. In forest patches far away from the locations of human activities, natural forest regrowth was the dominant factor affecting carbon stock and density. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Stand age and climate drive forest carbon balance recovery

    Science.gov (United States)

    Besnard, Simon; Carvalhais, Nuno; Clevers, Jan; Herold, Martin; Jung, Martin; Reichstein, Markus

    2016-04-01

    Forests play an essential role in the terrestrial carbon (C) cycle, especially in the C exchanges between the terrestrial biosphere and the atmosphere. Ecological disturbances and forest management are drivers of forest dynamics and strongly impact the forest C budget. However, there is a lack of knowledge on the exogenous and endogenous factors driving forest C recovery. Our analysis includes 68 forest sites in different climate zones to determine the relative influence of stand age and climate conditions on the forest carbon balance recovery. In this study, we only included forest regrowth after clear-cut stand replacement (e.g. harvest, fire), and afforestation/reforestation processes. We synthesized net ecosystem production (NEP), gross primary production (GPP), ecosystem respiration (Re), the photosynthetic respiratory ratio (GPP to Re ratio), the ecosystem carbon use efficiency (CUE), that is NEP to GPP ratio, and CUEclimax, where GPP is derived from the climate conditions. We implemented a non-linear regression analysis in order to identify the best model representing the C flux patterns with stand age. Furthermore, we showed that each C flux have a non-linear relationship with stand age, annual precipitation (P) and mean annual temperature (MAT), therefore, we proposed to use non-linear transformations of the covariates for C fluxes'estimates. Non-linear stand age and climate models were, therefore, used to establish multiple linear regressions for C flux predictions and for determining the contribution of stand age and climate in forest carbon recovery. Our findings depicted that a coupled stand age-climate model explained 33% (44%, average site), 62% (76%, average site), 56% (71%, average site), 41% (59%, average site), 50% (65%, average site) and 36% (50%, average site) of the variance of annual NEP, GPP, Re, photosynthetic respiratory ratio, CUE and CUEclimax across sites, respectively. In addition, we showed that gross fluxes (e.g. GPP and Re) are

  13. Natural disturbance impacts on Canada's forest carbon budget

    International Nuclear Information System (INIS)

    Kurz, W.

    2004-01-01

    Wildfire and insect outbreaks are major determinants of forest dynamics in Canada, transferring carbon within the ecosystem, releasing carbon into the atmosphere and influencing post-disturbance carbon dynamics. This paper discusses the impacts of global climate change on natural disturbances. Higher temperatures and drier conditions are likely to increase burned areas in Canada and will also increase the impacts of insects, allowing for an expanded range and stressing their host species. Long-term changes in disturbance regimes have already affected Canada's forest age-class structure. Statistics of lower disturbance periods and carbon production were compared with periods of higher disturbance. Scenario analyses were conducted for the period of 1996 to 2032, assuming that annual insect and fire disturbance rates in timber-productive forests were 20 per cent higher and carbon production 20 per cent lower than base scenarios using average disturbance rates. It was concluded that these conditions could cause carbon stocks in Canada's forests to decline. The future carbon balance of Canada's forests will be affected by the rate of natural and human-induced disturbances. 4 refs

  14. Major changes in forest carbon and nitrogen cycling caused by declining sulphur deposition

    Czech Academy of Sciences Publication Activity Database

    Oulehle, F.; Evans, C. D.; Hofmeister, J.; Krejci, R.; Tahovská, K.; Persson, T.; Cudlín, Pavel; Hruška, J.

    2011-01-01

    Roč. 17, č. 10 (2011), 3115–3129 ISSN 1354-1013 R&D Projects: GA MŠk OC10022 Institutional research plan: CEZ:AV0Z60870520 Keywords : acidification * carbon * deposition * DOC * forest floor * leaching * nitrogen * nitrogen saturation * soil * sulphur Subject RIV: DD - Geochemistry Impact factor: 6.862, year: 2011 http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2486.2011.02468.x/pdf

  15. The Contemporary Carbon Cycle

    Science.gov (United States)

    Houghton, R. A.

    2003-12-01

    The global carbon cycle refers to the exchanges of carbon within and between four major reservoirs: the atmosphere, the oceans, land, and fossil fuels. Carbon may be transferred from one reservoir to another in seconds (e.g., the fixation of atmospheric CO2 into sugar through photosynthesis) or over millennia (e.g., the accumulation of fossil carbon (coal, oil, gas) through deposition and diagenesis of organic matter). This chapter emphasizes the exchanges that are important over years to decades and includes those occurring over the scale of months to a few centuries. The focus will be on the years 1980-2000 but our considerations will broadly include the years ˜1850-2100. Chapter 8.09, deals with longer-term processes that involve rates of carbon exchange that are small on an annual timescale (weathering, vulcanism, sedimentation, and diagenesis).The carbon cycle is important for at least three reasons. First, carbon forms the structure of all life on the planet, making up ˜50% of the dry weight of living things. Second, the cycling of carbon approximates the flows of energy around the Earth, the metabolism of natural, human, and industrial systems. Plants transform radiant energy into chemical energy in the form of sugars, starches, and other forms of organic matter; this energy, whether in living organisms or dead organic matter, supports food chains in natural ecosystems as well as human ecosystems, not the least of which are industrial societies habituated (addicted?) to fossil forms of energy for heating, transportation, and generation of electricity. The increased use of fossil fuels has led to a third reason for interest in the carbon cycle. Carbon, in the form of carbon dioxide (CO2) and methane (CH4), forms two of the most important greenhouse gases. These gases contribute to a natural greenhouse effect that has kept the planet warm enough to evolve and support life (without the greenhouse effect the Earth's average temperature would be -33

  16. Nitrogen cycling models and their application to forest harvesting

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.W.; Dale, V.H.

    1986-01-01

    The characterization of forest nitrogen- (N-) cycling processes by several N-cycling models (FORCYTE, NITCOMP, FORTNITE, and LINKAGES) is briefly reviewed and evaluated against current knowledge of N cycling in forests. Some important processes (e.g., translocation within trees, N dynamics in decaying leaf litter) appear to be well characterized, whereas others (e.g., N mineralization from soil organic matter, N fixation, N dynamics in decaying wood, nitrification, and nitrate leaching) are poorly characterized, primarily because of a lack of knowledge rather than an oversight by model developers. It is remarkable how well the forest models do work in the absence of data on some key processes. For those systems in which the poorly understood processes could cause major changes in N availability or productivity, the accuracy of model predictions should be examined. However, the development of N-cycling models represents a major step beyond the much simpler, classic conceptual models of forest nutrient cycling developed by early investigators. The new generation of computer models will surely improve as research reveals how key nutrient-cycling processes operate.

  17. Diversity and carbon storage across the tropical forest biome

    Science.gov (United States)

    Sullivan, Martin J. P.; Talbot, Joey; Lewis, Simon L.; Phillips, Oliver L.; Qie, Lan; Begne, Serge K.; Chave, Jerôme; Cuni-Sanchez, Aida; Hubau, Wannes; Lopez-Gonzalez, Gabriela; Miles, Lera; Monteagudo-Mendoza, Abel; Sonké, Bonaventure; Sunderland, Terry; Ter Steege, Hans; White, Lee J. T.; Affum-Baffoe, Kofi; Aiba, Shin-Ichiro; de Almeida, Everton Cristo; de Oliveira, Edmar Almeida; Alvarez-Loayza, Patricia; Dávila, Esteban Álvarez; Andrade, Ana; Aragão, Luiz E. O. C.; Ashton, Peter; Aymard C., Gerardo A.; Baker, Timothy R.; Balinga, Michael; Banin, Lindsay F.; Baraloto, Christopher; Bastin, Jean-Francois; Berry, Nicholas; Bogaert, Jan; Bonal, Damien; Bongers, Frans; Brienen, Roel; Camargo, José Luís C.; Cerón, Carlos; Moscoso, Victor Chama; Chezeaux, Eric; Clark, Connie J.; Pacheco, Álvaro Cogollo; Comiskey, James A.; Valverde, Fernando Cornejo; Coronado, Eurídice N. Honorio; Dargie, Greta; Davies, Stuart J.; de Canniere, Charles; Djuikouo K., Marie Noel; Doucet, Jean-Louis; Erwin, Terry L.; Espejo, Javier Silva; Ewango, Corneille E. N.; Fauset, Sophie; Feldpausch, Ted R.; Herrera, Rafael; Gilpin, Martin; Gloor, Emanuel; Hall, Jefferson S.; Harris, David J.; Hart, Terese B.; Kartawinata, Kuswata; Kho, Lip Khoon; Kitayama, Kanehiro; Laurance, Susan G. W.; Laurance, William F.; Leal, Miguel E.; Lovejoy, Thomas; Lovett, Jon C.; Lukasu, Faustin Mpanya; Makana, Jean-Remy; Malhi, Yadvinder; Maracahipes, Leandro; Marimon, Beatriz S.; Junior, Ben Hur Marimon; Marshall, Andrew R.; Morandi, Paulo S.; Mukendi, John Tshibamba; Mukinzi, Jaques; Nilus, Reuben; Vargas, Percy Núñez; Camacho, Nadir C. Pallqui; Pardo, Guido; Peña-Claros, Marielos; Pétronelli, Pascal; Pickavance, Georgia C.; Poulsen, Axel Dalberg; Poulsen, John R.; Primack, Richard B.; Priyadi, Hari; Quesada, Carlos A.; Reitsma, Jan; Réjou-Méchain, Maxime; Restrepo, Zorayda; Rutishauser, Ervan; Salim, Kamariah Abu; Salomão, Rafael P.; Samsoedin, Ismayadi; Sheil, Douglas; Sierra, Rodrigo; Silveira, Marcos; Slik, J. W. Ferry; Steel, Lisa; Taedoumg, Hermann; Tan, Sylvester; Terborgh, John W.; Thomas, Sean C.; Toledo, Marisol; Umunay, Peter M.; Gamarra, Luis Valenzuela; Vieira, Ima Célia Guimarães; Vos, Vincent A.; Wang, Ophelia; Willcock, Simon; Zemagho, Lise

    2017-01-01

    Tropical forests are global centres of biodiversity and carbon storage. Many tropical countries aspire to protect forest to fulfil biodiversity and climate mitigation policy targets, but the conservation strategies needed to achieve these two functions depend critically on the tropical forest tree diversity-carbon storage relationship. Assessing this relationship is challenging due to the scarcity of inventories where carbon stocks in aboveground biomass and species identifications have been simultaneously and robustly quantified. Here, we compile a unique pan-tropical dataset of 360 plots located in structurally intact old-growth closed-canopy forest, surveyed using standardised methods, allowing a multi-scale evaluation of diversity-carbon relationships in tropical forests. Diversity-carbon relationships among all plots at 1 ha scale across the tropics are absent, and within continents are either weak (Asia) or absent (Amazonia, Africa). A weak positive relationship is detectable within 1 ha plots, indicating that diversity effects in tropical forests may be scale dependent. The absence of clear diversity-carbon relationships at scales relevant to conservation planning means that carbon-centred conservation strategies will inevitably miss many high diversity ecosystems. As tropical forests can have any combination of tree diversity and carbon stocks both require explicit consideration when optimising policies to manage tropical carbon and biodiversity.

  18. Diversity and carbon storage across the tropical forest biome.

    Science.gov (United States)

    Sullivan, Martin J P; Talbot, Joey; Lewis, Simon L; Phillips, Oliver L; Qie, Lan; Begne, Serge K; Chave, Jerôme; Cuni-Sanchez, Aida; Hubau, Wannes; Lopez-Gonzalez, Gabriela; Miles, Lera; Monteagudo-Mendoza, Abel; Sonké, Bonaventure; Sunderland, Terry; Ter Steege, Hans; White, Lee J T; Affum-Baffoe, Kofi; Aiba, Shin-Ichiro; de Almeida, Everton Cristo; de Oliveira, Edmar Almeida; Alvarez-Loayza, Patricia; Dávila, Esteban Álvarez; Andrade, Ana; Aragão, Luiz E O C; Ashton, Peter; Aymard C, Gerardo A; Baker, Timothy R; Balinga, Michael; Banin, Lindsay F; Baraloto, Christopher; Bastin, Jean-Francois; Berry, Nicholas; Bogaert, Jan; Bonal, Damien; Bongers, Frans; Brienen, Roel; Camargo, José Luís C; Cerón, Carlos; Moscoso, Victor Chama; Chezeaux, Eric; Clark, Connie J; Pacheco, Álvaro Cogollo; Comiskey, James A; Valverde, Fernando Cornejo; Coronado, Eurídice N Honorio; Dargie, Greta; Davies, Stuart J; De Canniere, Charles; Djuikouo K, Marie Noel; Doucet, Jean-Louis; Erwin, Terry L; Espejo, Javier Silva; Ewango, Corneille E N; Fauset, Sophie; Feldpausch, Ted R; Herrera, Rafael; Gilpin, Martin; Gloor, Emanuel; Hall, Jefferson S; Harris, David J; Hart, Terese B; Kartawinata, Kuswata; Kho, Lip Khoon; Kitayama, Kanehiro; Laurance, Susan G W; Laurance, William F; Leal, Miguel E; Lovejoy, Thomas; Lovett, Jon C; Lukasu, Faustin Mpanya; Makana, Jean-Remy; Malhi, Yadvinder; Maracahipes, Leandro; Marimon, Beatriz S; Junior, Ben Hur Marimon; Marshall, Andrew R; Morandi, Paulo S; Mukendi, John Tshibamba; Mukinzi, Jaques; Nilus, Reuben; Vargas, Percy Núñez; Camacho, Nadir C Pallqui; Pardo, Guido; Peña-Claros, Marielos; Pétronelli, Pascal; Pickavance, Georgia C; Poulsen, Axel Dalberg; Poulsen, John R; Primack, Richard B; Priyadi, Hari; Quesada, Carlos A; Reitsma, Jan; Réjou-Méchain, Maxime; Restrepo, Zorayda; Rutishauser, Ervan; Salim, Kamariah Abu; Salomão, Rafael P; Samsoedin, Ismayadi; Sheil, Douglas; Sierra, Rodrigo; Silveira, Marcos; Slik, J W Ferry; Steel, Lisa; Taedoumg, Hermann; Tan, Sylvester; Terborgh, John W; Thomas, Sean C; Toledo, Marisol; Umunay, Peter M; Gamarra, Luis Valenzuela; Vieira, Ima Célia Guimarães; Vos, Vincent A; Wang, Ophelia; Willcock, Simon; Zemagho, Lise

    2017-01-17

    Tropical forests are global centres of biodiversity and carbon storage. Many tropical countries aspire to protect forest to fulfil biodiversity and climate mitigation policy targets, but the conservation strategies needed to achieve these two functions depend critically on the tropical forest tree diversity-carbon storage relationship. Assessing this relationship is challenging due to the scarcity of inventories where carbon stocks in aboveground biomass and species identifications have been simultaneously and robustly quantified. Here, we compile a unique pan-tropical dataset of 360 plots located in structurally intact old-growth closed-canopy forest, surveyed using standardised methods, allowing a multi-scale evaluation of diversity-carbon relationships in tropical forests. Diversity-carbon relationships among all plots at 1 ha scale across the tropics are absent, and within continents are either weak (Asia) or absent (Amazonia, Africa). A weak positive relationship is detectable within 1 ha plots, indicating that diversity effects in tropical forests may be scale dependent. The absence of clear diversity-carbon relationships at scales relevant to conservation planning means that carbon-centred conservation strategies will inevitably miss many high diversity ecosystems. As tropical forests can have any combination of tree diversity and carbon stocks both require explicit consideration when optimising policies to manage tropical carbon and biodiversity.

  19. Carbonate-silicate cycle models of the long-term carbon cycle, carbonate accumulation in the oceans, and climate

    International Nuclear Information System (INIS)

    Caldeira, K.G.

    1991-01-01

    Several models of the long-term carbon cycle, incorporating models of the carbonate-silicate cycle, were developed and utilized to investigate issues relating to global climate and the causes and consequences of changes in calcium carbonate accumulation in the oceans. Model results indicate that the marked mid-Cretaceous (120 Ma) global warming could be explained by increased rates of release of carbon dioxide from subduction-zone metamorphism and mid-ocean-ridges, in conjunction with paleogeographic factors. Since the mid-Cretaceous, the primary setting for calcium carbonate accumulation in the oceans has shifted from shallow-water to deep-water environments. Model results suggest that this shift could have major consequences for the carbonate-silicate cycle and climate, and lead to significant increases in the flux of metamorphic carbon dioxide to the atmosphere. Increases in pelagic carbonate productivity, and decreases in tropical shallow-water area available for neritic carbonate accumulation, have both been proposed as the primary cause of this shift. Two lines of evidence developed here (one involving a statistical analysis of Tertiary carbonate-accumulation and oxygen-isotope data, and another based on modeling the carbonate-silicate cycle and ocean chemistry) suggest that a decrease in tropical shallow-water area was more important than increased pelagic productivity in explaining this shift. Model investigations of changes in ocean chemistry at the Cretaceous/Tertiary (K/T) boundary (66 Ma) indicate that variations in deep-water carbonate productivity may affect shallow-water carbonate accumulation rates through a mechanism involving surface-water carbonate-ion concentration. In the aftermath of the K/T boundary event, deep-water carbonate production and accumulation were significantly reduced as a result of the extinction of calcareous plankton

  20. Ewing Symposium in Honor of Taro Takahashi: The controversial aspects of the contemporary [carbon] cycle

    Energy Technology Data Exchange (ETDEWEB)

    Broecker, Wallace Smith

    2001-12-31

    This Ewing Symposium in honor of Taro Takahashi's work on the carbon cycle was held at Lamont-Doherty Earth Observatory, Palisades, New York, on October 26-27, 2000. A program and set of abstracts are appended to this report. A summary of the meeting (included in this report) will be published in Global Biogeochemical Cycles. The theme of the symposium was the magnitude and cause of excess carbon storage on the north temperate continents. Disagreement exists on the relative roles of forest regrowth and fertilization by excess fixed nitrogen and carbon dioxide, as well as the distribution of this storage. Phenomena playing important roles include pre-anthropogenic gradients in carbon dioxide, the so-called rectification effect, uptake and release of carbon dioxide by the ocean, soil nitrogen dynamics, atmospheric carbon-13 gradients, and the role of fire.

  1. Variability of carbon and water fluxes following climate extremes over a tropical forest in southwestern Amazonia.

    Directory of Open Access Journals (Sweden)

    Marcelo Zeri

    Full Text Available The carbon and water cycles for a southwestern Amazonian forest site were investigated using the longest time series of fluxes of CO2 and water vapor ever reported for this site. The period from 2004 to 2010 included two severe droughts (2005 and 2010 and a flooding year (2009. The effects of such climate extremes were detected in annual sums of fluxes as well as in other components of the carbon and water cycles, such as gross primary production and water use efficiency. Gap-filling and flux-partitioning were applied in order to fill gaps due to missing data, and errors analysis made it possible to infer the uncertainty on the carbon balance. Overall, the site was found to have a net carbon uptake of ≈5 t C ha(-1 year(-1, but the effects of the drought of 2005 were still noticed in 2006, when the climate disturbance caused the site to become a net source of carbon to the atmosphere. Different regions of the Amazon forest might respond differently to climate extremes due to differences in dry season length, annual precipitation, species compositions, albedo and soil type. Longer time series of fluxes measured over several locations are required to better characterize the effects of climate anomalies on the carbon and water balances for the whole Amazon region. Such valuable datasets can also be used to calibrate biogeochemical models and infer on future scenarios of the Amazon forest carbon balance under the influence of climate change.

  2. Carbon storage and emissions offset potential in an African dry forest, the Arabuko-Sokoke Forest, Kenya.

    Science.gov (United States)

    Glenday, Julia

    2008-07-01

    Concerns about rapid tropical deforestation, and its contribution to rising atmospheric concentrations of greenhouse gases, increase the importance of monitoring terrestrial carbon storage in changing landscapes. Emerging markets for carbon emission offsets may offer developing nations needed incentives for reforestation, rehabilitation, and avoided deforestation. However, relatively little empirical data exists regarding carbon storage in African tropical forests, particularly for those in arid or semi-arid regions. Kenya's 416 km(2) Arabuko-Sokoke Forest (ASF) is the largest remaining fragment of East African coastal dry forest and is considered a global biodiversity hotspot (Myers et al. 2000), but has been significantly altered by past commercial logging and ongoing extraction. Forest carbon storage for ASF was estimated using allometric equations for tree biomass, destructive techniques for litter and herbaceous vegetation biomass, and spectroscopy for soils. Satellite imagery was used to assess land cover changes from 1992 to 2004. Forest and thicket types (Cynometra webberi dominated, Brachystegia spiciformis dominated, and mixed species forest) had carbon densities ranging from 58 to 94 Mg C/ha. The ASF area supported a 2.8-3.0 Tg C carbon stock. Although total forested area in ASF did not change over the analyzed time period, ongoing disturbances, quantified by the basal area of cut tree stumps per sample plot, correlated with decreased carbon densities. Madunguni Forest, an adjoining forest patch, lost 86% of its forest cover and at least 76% of its terrestrial carbon stock in the time period. Improved management of wood harvesting in ASF and rehabilitation of Madunguni Forest could substantially increase terrestrial carbon sequestration in the region.

  3. Rapid forest recovery of carbon and water fluxes after a tropical firestorm

    Science.gov (United States)

    Brando, P. M.; Silverio, D. V.; Migliavacca, M.; Santos, C.; Kolle, O.; Balch, J.; Maracahipes, L.; Bustamante, M.; Coe, M. T.; Trumbore, S.

    2017-12-01

    Forest disturbances interact synergistically and drive potentially large and persistent degradation of ecosystem services in the tropics. Here we analyze multi-year measurements of carbon (C) and water (evapotranspiration; ET) fluxes in forests recovering from 7 years of prescribed fires. Located in southeast Amazonia, the experimental forest consisted of three 50-ha plots burned annually, triennially, or not at all between 2004-2010. During the subsequent seven-year recovery period from 2011 to present, tree survivorship and biomass sharply declined, with aboveground C stocks decreasing by 70-94% along forest edges. While vegetation regrowth in the forest understory triggered partial canopy closure, light-demanding grasses covered roughly the same area in 2015 that they did in 2012. However, the spatial distribution of grasses drastically changed, while C4 grass species replaced C3 ones. Surprisingly, the observed alterations in forest structure and dynamics rendered minor or no changes in total C fluxes and ET, probably because plants in the burned forest increased light- and reduced ecosystem water-use efficiency. Hence, delayed post-fire mortality of large trees can reduce forest C stocks and create opportunities for the establishment of invasive grasses, Yet, post-fire vegetation growth can rapidly restore C uptake and ET by optimizing resources use. These results show that tropical forests can rapidly recover the capacity to cycle water and carbon following disturbances, but also that a full recovery of biomass and vegetation dominance may take many years or decades.

  4. Regional carbon cycle responses to 25 years of variation in climate and disturbance in the US Pacific Northwest

    Science.gov (United States)

    David P. Turner; William D. Ritts; Robert E. Kennedy; Andrew N. Gray; Zhiqiang Yang

    2016-01-01

    Variation in climate, disturbance regime, and forest management strongly influence terrestrial carbon sources and sinks. Spatially distributed, process-based, carbon cycle simulation models provide a means to integrate information on these various influences to estimate carbon pools and flux over large domains. Here we apply the Biome-BGC model over the four-state...

  5. The global carbon cycle

    International Nuclear Information System (INIS)

    Maier-Reimer, E.

    1991-01-01

    Basic concepts of the global carbon cycle on earth are described; by careful analyses of isotopic ratios, emission history and oceanic ventilation rates are derived, which provide crucial tests for constraining and calibrating models. Effects of deforestation, fertilizing, fossil fuel burning, soil erosion, etc. are quantified and compared, and the oceanic carbon process is evaluated. Oceanic and terrestrial biosphere modifications are discussed and a carbon cycle model is proposed

  6. Whole-system carbon balance for a regional temperate forest in Northern Wisconsin, USA

    Science.gov (United States)

    Peckham, S. D.; Gower, S. T.

    2010-12-01

    The whole-system (biological + industrial) carbon (C) balance was estimated for the Chequamegon-Nicolet National Forest (CNNF), a temperate forest covering 600,000 ha in Northern Wisconsin, USA. The biological system was modeled using a spatially-explicit version of the ecosystem process model Biome-BGC. The industrial system was modeled using life cycle inventory (LCI) models for wood and paper products. Biome-BGC was used to estimate net primary production, net ecosystem production (NEP), and timber harvest (H) over the entire CNNF. The industrial carbon budget (Ci) was estimated by applying LCI models of CO2 emissions resulting from timber harvest and production of specific wood and paper products in the CNNF region. In 2009, simulated NEP of the CNNF averaged 3.0 tC/ha and H averaged 0.1 tC/ha. Despite model uncertainty, the CNNF region is likely a carbon sink (NEP - Ci > 0), even when CO2 emissions from timber harvest and production of wood and paper products are included in the calculation of the entire forest system C budget.

  7. Regional carbon dioxide implications of forest bioenergy production

    NARCIS (Netherlands)

    Hudiburg, Tara W.; Law, Beverly E.; Wirth, Christian; Luyssaert, Sebastiaan

    2011-01-01

    Strategies for reducing carbon dioxide emissions include substitution of fossil fuel with bioenergy from forests, where carbon emitted is expected to be recaptured in the growth of new biomass to achieve zero net emissions, and forest thinning to reduce wildfire emissions. Here, we use forest

  8. The Net Carbon Flux due to Deforestation and Forest Re-Growth in the Brazilian Amazon: Analysis using a Process-Based Model

    Science.gov (United States)

    Hirsch, A. I.; Little, W. S.; Houghton, R. A.; Scott, N. A.; White, J. D.

    2004-01-01

    We developed a process-based model of forest growth, carbon cycling, and land cover dynamics named CARLUC (for CARbon and Land Use Change) to estimate the size of terrestrial carbon pools in terra firme (non-flooded) forests across the Brazilian Legal Amazon and the net flux of carbon resulting from forest disturbance and forest recovery from disturbance. Our goal in building the model was to construct a relatively simple ecosystem model that would respond to soil and climatic heterogeneity that allows us to study of the impact of Amazonian deforestation, selective logging, and accidental fire on the global carbon cycle. This paper focuses on the net flux caused by deforestation and forest re-growth over the period from 1970-1998. We calculate that the net flux to the atmosphere during this period reached a maximum of approx. 0.35 PgC/yr (1PgC = 1 x 10(exp I5) gC) in 1990, with a cumulative release of approx. 7 PgC from 1970- 1998. The net flux is higher than predicted by an earlier study by a total of 1 PgC over the period 1989-1 998 mainly because CARLUC predicts relatively high mature forest carbon storage compared to the datasets used in the earlier study. Incorporating the dynamics of litter and soil carbon pools into the model increases the cumulative net flux by approx. 1 PgC from 1970-1998, while different assumptions about land cover dynamics only caused small changes. The uncertainty of the net flux, calculated with a Monte-Carlo approach, is roughly 35% of the mean value (1 SD).

  9. Relationships between net primary productivity and forest stand age in U.S. forests

    Science.gov (United States)

    Liming He; Jing M. Chen; Yude Pan; Richard Birdsey; Jens. Kattge

    2012-01-01

    Net primary productivity (NPP) is a key flux in the terrestrial ecosystem carbon balance, as it summarizes the autotrophic input into the system. Forest NPP varies predictably with stand age, and quantitative information on the NPP-age relationship for different regions and forest types is therefore fundamentally important for forest carbon cycle modeling. We used four...

  10. Future forest carbon accounting challenges: the question of regionalization

    Science.gov (United States)

    Michael C. Nichols

    2015-01-01

    Forest carbon accounting techniques are changing. This year, a new accounting system is making its debut with the production of forest carbon data for EPA’s National Greenhouse Gas Inventory. The Forest Service’s annualized inventory system is being more fully integrated into estimates of forest carbon at the national and state levels both for the present and the...

  11. Simulating forest productivity and surface-atmosphere carbon exchange in the BOREAS study region

    Energy Technology Data Exchange (ETDEWEB)

    Kimball, J.S.; Thornton, P.E.; White, M.A.; Running, S.W. [Montana Univ., Missoula, MT (United States). School of Forestry

    1997-12-31

    Studies have shown that the boreal forest region is in danger of experiencing significant warming and drying in response to increases in atmospheric CO{sub 2} concentration and other greenhouse gases. Since the boreal forest region contains 16-24 per cent of the world`s soil carbon, warming in this region could result in a rapid, large-scale displacement and redistribution of boreal forest, enhanced release of CO{sub 2} to the atmosphere, and an intensification of global warming. A study was conducted in which a process-based, general ecosystem model (BIOME-BGC) was used to simulate daily gross primary production, maintenance and heterotrophic respiration, net primary production and net ecosystem carbon exchange of boreal aspen, jack pine and black spruce. The objective was to integrate point measurements across multiple spatial and temporal scales using process level models of the boreal forest water, energy and biogeochemical cycles. Climate characteristics that control simulated carbon fluxes were also studied. Results showed that trees with large daily evapotranspiration rates and those situated on sandy soils with low water holding capacities were especially vulnerable to increased temperature and drought conditions. Trees subject to frequent water stress during the growing season, particularly older trees that exhibit low photosynthetic and high respiration rates, were on the margin between being annual net sources or sinks for atmospheric carbon. 71 refs., 3 tabs., 5 figs.

  12. Deadwood biomass: an underestimated carbon stock in degraded tropical forests?

    Science.gov (United States)

    Pfeifer, Marion; Lefebvre, Veronique; Turner, Edgar; Cusack, Jeremy; Khoo, MinSheng; Chey, Vun K.; Peni, Maria; Ewers, Robert M.

    2015-04-01

    Despite a large increase in the area of selectively logged tropical forest worldwide, the carbon stored in deadwood across a tropical forest degradation gradient at the landscape scale remains poorly documented. Many carbon stock studies have either focused exclusively on live standing biomass or have been carried out in primary forests that are unaffected by logging, despite the fact that coarse woody debris (deadwood with ≥10 cm diameter) can contain significant portions of a forest’s carbon stock. We used a field-based assessment to quantify how the relative contribution of deadwood to total above-ground carbon stock changes across a disturbance gradient, from unlogged old-growth forest to severely degraded twice-logged forest, to oil palm plantation. We measured in 193 vegetation plots (25 × 25 m), equating to a survey area of >12 ha of tropical humid forest located within the Stability of Altered Forest Ecosystems Project area, in Sabah, Malaysia. Our results indicate that significant amounts of carbon are stored in deadwood across forest stands. Live tree carbon storage decreased exponentially with increasing forest degradation 7-10 years after logging while deadwood accounted for >50% of above-ground carbon stocks in salvage-logged forest stands, more than twice the proportion commonly assumed in the literature. This carbon will be released as decomposition proceeds. Given the high rates of deforestation and degradation presently occurring in Southeast Asia, our findings have important implications for the calculation of current carbon stocks and sources as a result of human-modification of tropical forests. Assuming similar patterns are prevalent throughout the tropics, our data may indicate a significant global challenge to calculating global carbon fluxes, as selectively-logged forests now represent more than one third of all standing tropical humid forests worldwide.

  13. Cross-continental comparison of the functional composition and carbon allocation of two altitudinal forest transects in Ecuador and Rwanda.

    Science.gov (United States)

    Verbeeck, Hans; Bauters, Marijn; Bruneel, Stijn; Demol, Miro; Taveirne, Cys; Van Der Heyden, Dries; Kearsley, Elizabeth; Cizungu, Landry; Boeckx, Pascal

    2017-04-01

    Tropical forests are key actors in the global carbon cycle. Predicting future responses of these forests to global change is challenging, but important for global climate models. However, our current understanding of such responses is limited, due to the complexity of forest ecosystems and the slow dynamics that inherently form these systems. Our understanding of ecosystem ecology and functioning could greatly benefit from experimental setups including strong environmental gradients in the tropics, as found on altitudinal transects. We setup two such transects in both South-America and Central Africa, focussing on shifts in carbon allocation, forest structure, nutrient cycling and functional composition. The Ecuadorian transect has 16 plots (40 by 40 m) and ranges from 400 to 3000 m.a.s.l., and the Rwandan transect has 20 plots (40 by 40 m) from 1500 to 3000 m.a.s.l. All plots were inventoried and canopy, litter and soil were extensively sampled. By a cross-continental comparison of both transects, we will gain insight in how different or alike both tropical forests biomes are in their responses, and how universal the observed altitudinal adaption mechanisms are. This could provide us with vital information of the ecological responses of both biomes to future global change scenarios. Additionally, comparison of nutrient shifts and trait-based functional composition allows us to compare the biogeochemical cycles of African and South-American tropical forests.

  14. Assessing the Impacts of forest degradation on water, energy, and carbon budgets in Amazon forest using the Functionally Assembled Terrestrial Ecosystem Simulator

    Science.gov (United States)

    Huang, M.; Xu, Y.; Longo, M.; Keller, M.; Knox, R. G.; Koven, C.; Fisher, R.

    2017-12-01

    Tropical forest degradation from logging, fire, and fragmentation not only alters carbon stocks and carbon fluxes, but also impacts physical land-surface properties such as albedo and roughness length. Such impacts are poorly quantified to date due to difficulties in accessing and maintaining observational infrastructures, and the lack of proper modeling tools for capturing the interactions among biophysical properties, ecosystem demography, and biogeochemical cycling in tropical forests. As a first step to address these limitations, we implemented a selective logging module into the Functional Assembled Terrestrial Ecosystem Simulator (FATES) and parameterized the model to reproduce the selective logging experiment at the Tapajos National Forest in Brazil. The model was spun up until it reached the steady state, and simulations with and without logging were compared with the eddy covariance flux towers located at the logged and intact sites. The sensitivity of simulated water, energy, and carbon fluxes to key plant functional traits (e.g. Vcmax and leaf longevity) were quantified by perturbing their values within their documented ranges. Our results suggest that the model can reproduce water and carbon fluxes in intact forests, although sensible heat fluxes were overestimated. The effects of logging intensity and techniques on fluxes were assessed by specifying different disturbance parameters in the models (e.g., size-dependent mortality rates associated with timber harvest, collateral damage, and mechanical damage for infrastructure construction). The model projections suggest that even though the degraded forests rapidly recover water and energy fluxes compared with old-growth forests, the recovery times for carbon stocks, forest structure and composition are much longer. In addition, the simulated recovery trajectories are highly dependent on choices of values for functional traits. Our study highlights the advantages of an Earth system modeling approach

  15. Cycling of radiocesium in forest ecosystems

    International Nuclear Information System (INIS)

    Myttenaere, C.; Sombre, L.; Thiry, Y.; De brouwer, S.; Ronneau, C.

    1993-01-01

    The behaviour of 137 Cs in forest ecosystems following an atmospheric contamination presents certain peculiarities which make these ecosystems an important compartment to consider in the framework of the protection of man and populations. Among these properties, the very high filtering capacity of the forest cover and the increased deposition velocities justify a higher contamination level of the forest green surfaces after an atmospheric release. In these conditions the forest management thus requires a good understanding of the cycle of the deposited radiocesium. To a certain extent comparing the behaviour of K that may be analogous to Cs may help the radioecologist in its understanding of the 137 Cs behaviour. Such a conclusion may also be drawn for other radionuclides and we surely have to regret that the mineral nutrition principles are often ignored in radioecology. The results of the observations in field and controlled conditions which are described in this paper are in favor of a good analogy between these two elements as soon as they are cycling in the plant

  16. The effect of climate variability on the carbon cycle of a Mediterranean forest

    Science.gov (United States)

    Manca, G.; Tirone, G.; Matteucci, G.; Tonon, G.; Cherubini, P.; Goded Ballarin, I.; Duerr, M.; Matteucci, M.; Seufert, G.

    2009-04-01

    Measurements of Net Ecosystem Exchange (NEE) of carbon dioxide have operated since 1999 in the Mediterranean forest ecosystem (Pinus pinaster, L.) located in San Rossore (Pisa - Italy). Using night time values of NEE it is possible to estimate the Ecosystem Respiration (Reco) and the Gross Ecosystem Productivity (GEP), i.e. the photosynthetic uptake of CO2 without respiratory losses. The analysis of such fluxes shows that on annual base San Rossore is a CO2 sink. This ecosystem experiences a strong reduction of carbon uptake during summer when the rainfall is low and the air temperature is high. In such condition trees close stomata in order to avoid alteration of the leaf water status. This is the typical behaviour of the drought avoiding species. The reduction of the carbon uptake is due mainly to a reduction of photosynthesis whereas the ecosystem respiration undergoes a lower decrease. The summer 2003 is an extreme example of this pattern. The long time series collected in San Rossore allows to test the reaction of the forest to a wet summer (summer 2002), when the rainfall was 506 mm (300 mm more than the summer average 1999-2007), and the effect of high temperature in winter (January 2007). During summer 2002 both GEP and Reco were higher than the average but the GEP experienced the higher increase. The high temperature in January 2007 (3 °C higher than the average 1999-2007), was responsible for the huge increase of the ecosystem respiration not balanced by the little increase of GEP.

  17. The Hamburg oceanic carbon cycle circulation model. Cycle 1

    International Nuclear Information System (INIS)

    Maier-Reimer, E.; Heinze, C.

    1992-02-01

    The carbon cycle model calculates the prognostic fields of oceanic geochemical carbon cycle tracers making use of a 'frozen' velocity field provided by a run of the LSG oceanic circulation model (see the corresponding manual, LSG=Large Scale Geostrophic). The carbon cycle model includes a crude approximation of interactions between sediment and bottom layer water. A simple (meridionally diffusive) one layer atmosphere model allows to calculate the CO 2 airborne fraction resulting from the oceanic biogeochemical interactions. (orig.)

  18. Monitoring and estimating tropical forest carbon stocks: making REDD a reality

    International Nuclear Information System (INIS)

    Gibbs, Holly K; Brown, Sandra; Niles, John O; Foley, Jonathan A

    2007-01-01

    Reducing carbon emissions from deforestation and degradation in developing countries is of central importance in efforts to combat climate change. Key scientific challenges must be addressed to prevent any policy roadblocks. Foremost among the challenges is quantifying nations' carbon emissions from deforestation and forest degradation, which requires information on forest clearing and carbon storage. Here we review a range of methods available to estimate national-level forest carbon stocks in developing countries. While there are no practical methods to directly measure all forest carbon stocks across a country, both ground-based and remote-sensing measurements of forest attributes can be converted into estimates of national carbon stocks using allometric relationships. Here we synthesize, map and update prominent forest biomass carbon databases to create the first complete set of national-level forest carbon stock estimates. These forest carbon estimates expand on the default values recommended by the Intergovernmental Panel on Climate Change's National Greenhouse Gas Inventory Guidelines and provide a range of globally consistent estimates

  19. Rising Mean Annual Temperature Increases Carbon Flux and Alters Partitioning, but Does Not Change Ecosystem Carbon Storage in Hawaiian Tropical Montane Wet Forest

    Science.gov (United States)

    Litton, C. M.; Giardina, C. P.; Selmants, P.

    2014-12-01

    Terrestrial ecosystem carbon (C) storage exceeds that in the atmosphere by a factor of four, and represents a dynamic balance among C input, allocation, and loss. This balance is likely being altered by climate change, but the response of terrestrial C cycling to warming remains poorly quantified, particularly in tropical forests which play a disproportionately large role in the global C cycle. Over the past five years, we have quantified above- and belowground C pools and fluxes in nine permanent plots spanning a 5.2°C mean annual temperature (MAT) gradient (13-18.2°C) in Hawaiian tropical montane wet forest. This elevation gradient is unique in that substrate type and age, soil type, soil water balance, canopy vegetation, and disturbance history are constant, allowing us to isolate the impact of long-term, whole ecosystem warming on C input, allocation, loss and storage. Across the gradient, soil respiration, litterfall, litter decomposition, total belowground C flux, aboveground net primary productivity, and estimates of gross primary production (GPP) all increase linearly and positively with MAT. Carbon partitioning is dynamic, shifting from below- to aboveground with warming, likely in response to a warming-induced increase in the cycling and availability of soil nutrients. In contrast to observed patterns in C flux, live biomass C, soil C, and total ecosystem C pools remained remarkably constant with MAT. There was also no difference in soil bacterial taxon richness, phylogenetic diversity, or community composition with MAT. Taken together these results indicate that in tropical montane wet forests, increased temperatures in the absence of water limitation or disturbance will accelerate C cycling, will not alter ecosystem C storage, and will shift the products of photosynthesis from below- to aboveground. These results agree with an increasing number of studies, and collectively provide a unique insight into anticipated warming-induced changes in tropical

  20. Winter Insulation By Snow Accumulation in a Subarctic Treeline Ecosystem Increases Summer Carbon Cycling Rates

    Science.gov (United States)

    Parker, T.; Subke, J. A.; Wookey, P. A.

    2014-12-01

    The effect of snow accumulation on soil carbon and nutrient cycling is attracting substantial attention from researchers. We know that deeper snow accumulation caused by high stature vegetation increases winter microbial activity and therefore carbon and nitrogen flux rates. However, until now the effect of snow accumulation, by buffering winter soil temperature, on subsequent summer soil processes, has scarcely been considered. We carried out an experiment at an alpine treeline in subarctic Sweden in which soil monoliths, contained within PVC collars, were transplanted between forest (deep winter snow) and tundra heath (shallow winter snow). We measured soil CO2efflux over two growing seasons and quantified soil microbial biomass after the second winter. We showed that respiration rates of transplanted forest soil were significantly reduced compared with control collars (remaining in the forest) as a consequence of colder, but more variable, winter temperatures. We hypothesised that microbial biomass would be reduced in transplanted forests soils but found there was no difference compared to control. We therefore further hypothesised that the similarly sized microbial pool in the control is assembled differently to the transplant. We believe that the warmer winters in forests foster more active consortia of decomposer microbes as a result of different abiotic selection pressures. Using an ecosystem scale experimental approach, we have identified a mechanism that influences summer carbon cycling rates based solely on the amount of snow that accumulates the previous winter. We conclude that modification of snow depth as a consequence of changes in vegetation structure is an important mechanism influencing soil C stocks in ecosystems where snow persists for a major fraction of the year.

  1. Carbon density and distribution of six Chinese temperate forests

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Quantifying forest carbon(C) storage and distribution is important for forest C cycling studies and terrestrial ecosystem modeling.Forest inventory and allometric approaches were used to measure C density and allocation in six representative temperate forests of similar stand age(42-59 years old) and growing under the same climate in northeastern China.The forests were an aspen-birch forest,a hardwood forest,a Korean pine plantation,a Dahurian larch plantation,a mixed deciduous forest,and a Mongolian oak forest.There were no significant differences in the C densities of ecosystem components(except for detritus) although the six forests had varying vegetation compositions and site conditions.However,the differences were significant when the C pools were normalized against stand basal area.The total ecosystem C density varied from 186.9 tC hm-2 to 349.2 tC hm-2 across the forests.The C densities of vegetation,detritus,and soil ranged from 86.3-122.7 tC hm-2,6.5-10.5 tC hm-2,and 93.7-220.1 tC hm-2,respectively,which accounted for 39.7% ± 7.1%(mean ± SD),3.3% ± 1.1%,and 57.0% ± 7.9% of the total C densities,respectively.The overstory C pool accounted for > 99% of the total vegetation C pool.The foliage biomass,small root(diameter < 5mm) biomass,root-shoot ratio,and small root to foliage biomass ratio varied from 2.08-4.72 tC hm-2,0.95-3.24 tC hm-2,22.0%-28.3%,and 34.5%-122.2%,respectively.The Korean pine plantation had the lowest foliage production efficiency(total biomass/foliage biomass:22.6 g g-1) among the six forests,while the Dahurian larch plantation had the highest small root production efficiency(total biomass/small root biomass:124.7 g g-1).The small root C density decreased with soil depth for all forests except for the Mongolian oak forest,in which the small roots tended to be vertically distributed downwards.The C density of coarse woody debris was significantly less in the two plantations than in the four naturally regenerated forests.The variability

  2. Effects of experimental fuel additions on fire intensity and severity: unexpected carbon resilience of a neotropical forest.

    Science.gov (United States)

    Brando, Paulo M; Oliveria-Santos, Claudinei; Rocha, Wanderley; Cury, Roberta; Coe, Michael T

    2016-07-01

    Global changes and associated droughts, heat waves, logging activities, and forest fragmentation may intensify fires in Amazonia by altering forest microclimate and fuel dynamics. To isolate the effects of fuel loads on fire behavior and fire-induced changes in forest carbon cycling, we manipulated fine fuel loads in a fire experiment located in southeast Amazonia. We predicted that a 50% increase in fine fuel loads would disproportionally increase fire intensity and severity (i.e., tree mortality and losses in carbon stocks) due to multiplicative effects of fine fuel loads on the rate of fire spread, fuel consumption, and burned area. The experiment followed a fully replicated randomized block design (N = 6) comprised of unburned control plots and burned plots that were treated with and without fine fuel additions. The fuel addition treatment significantly increased burned area (+22%) and consequently canopy openness (+10%), fine fuel combustion (+5%), and mortality of individuals ≥5 cm in diameter at breast height (dbh; +37%). Surprisingly, we observed nonsignificant effects of the fuel addition treatment on fireline intensity, and no significant differences among the three treatments for (i) mortality of large trees (≥30 cm dbh), (ii) aboveground forest carbon stocks, and (iii) soil respiration. It was also surprising that postfire tree growth and wood increment were higher in the burned plots treated with fuels than in the unburned control. These results suggest that (i) fine fuel load accumulation increases the likelihood of larger understory fires and (ii) single, low-intensity fires weakly influence carbon cycling of this primary neotropical forest, although delayed postfire mortality of large trees may lower carbon stocks over the long term. Overall, our findings indicate that increased fine fuel loads alone are unlikely to create threshold conditions for high-intensity, catastrophic fires during nondrought years. © 2016 John Wiley & Sons Ltd.

  3. Carbon stock and carbon turnover in boreal and temperate forests - Integration of remote sensing data and global vegetation models

    Science.gov (United States)

    Thurner, Martin; Beer, Christian; Carvalhais, Nuno; Forkel, Matthias; Tito Rademacher, Tim; Santoro, Maurizio; Tum, Markus; Schmullius, Christiane

    2016-04-01

    Long-term vegetation dynamics are one of the key uncertainties of the carbon cycle. There are large differences in simulated vegetation carbon stocks and fluxes including productivity, respiration and carbon turnover between global vegetation models. Especially the implementation of climate-related mortality processes, for instance drought, fire, frost or insect effects, is often lacking or insufficient in current models and their importance at global scale is highly uncertain. These shortcomings have been due to the lack of spatially extensive information on vegetation carbon stocks, which cannot be provided by inventory data alone. Instead, we recently have been able to estimate northern boreal and temperate forest carbon stocks based on radar remote sensing data. Our spatially explicit product (0.01° resolution) shows strong agreement to inventory-based estimates at a regional scale and allows for a spatial evaluation of carbon stocks and dynamics simulated by global vegetation models. By combining this state-of-the-art biomass product and NPP datasets originating from remote sensing, we are able to study the relation between carbon turnover rate and a set of climate indices in northern boreal and temperate forests along spatial gradients. We observe an increasing turnover rate with colder winter temperatures and longer winters in boreal forests, suggesting frost damage and the trade-off between frost adaptation and growth being important mortality processes in this ecosystem. In contrast, turnover rate increases with climatic conditions favouring drought and insect outbreaks in temperate forests. Investigated global vegetation models from the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP), including HYBRID4, JeDi, JULES, LPJml, ORCHIDEE, SDGVM, and VISIT, are able to reproduce observation-based spatial climate - turnover rate relationships only to a limited extent. While most of the models compare relatively well in terms of NPP, simulated

  4. [Regional and global estimates of carbon stocks and carbon sequestration capacity in forest ecosystems: A review].

    Science.gov (United States)

    Liu, Wei-wei; Wang, Xiao-ke; Lu, Fei; Ouyang, Zhi-yun

    2015-09-01

    As a dominant part of terrestrial ecosystems, forest ecosystem plays an important role in absorbing atmospheric CO2 and global climate change mitigation. From the aspects of zonal climate and geographical distribution, the present carbon stocks and carbon sequestration capacity of forest ecosystem were comprehensively examined based on the review of the latest literatures. The influences of land use change on forest carbon sequestration were analyzed, and factors that leading to the uncertainty of carbon sequestration assessment in forest ecosystem were also discussed. It was estimated that the current forest carbon stock was in the range of 652 to 927 Pg C and the carbon sequestration capacity was approximately 4.02 Pg C · a(-1). In terms of zonal climate, the carbon stock and carbon sequestration capacity of tropical forest were the maximum, about 471 Pg C and 1.02-1.3 Pg C · a(-1) respectively; then the carbon stock of boreal forest was about 272 Pg C, while its carbon sequestration capacity was the minimum, approximately 0.5 Pg C · a(-1); for temperate forest, the carbon stock was minimal, around 113 to 159 Pg C and its carbon sequestration capacity was 0.8 Pg C · a(-1). From the aspect of geographical distribution, the carbon stock of forest ecosystem in South America was the largest (187.7-290 Pg C), then followed by European (162.6 Pg C), North America (106.7 Pg C), Africa (98.2 Pg C) and Asia (74.5 Pg C), and Oceania (21.7 Pg C). In addition, carbon sequestration capacity of regional forest ecosystem was summed up as listed below: Tropical South America forest was the maximum (1276 Tg C · a(-1)), then were Tropical Africa (753 Tg C · a(-1)), North America (248 Tg C · a(-1)) and European (239 Tg C · a(-1)), and East Asia (98.8-136.5 Tg C · a(-1)) was minimum. To further reduce the uncertainty in the estimations of the carbon stock and carbon sequestration capacity of forest ecosystem, comprehensive application of long-term observation, inventories

  5. A significant carbon sink in temperate forests in Beijing: based on 20-year field measurements in three stands.

    Science.gov (United States)

    Zhu, JianXiao; Hu, XueYang; Yao, Hui; Liu, GuoHua; Ji, ChenJun; Fang, JingYun

    2015-11-01

    Numerous efforts have been made to characterize forest carbon (C) cycles and stocks in various ecosystems. However, long-term observation on each component of the forest C cycle is still lacking. We measured C stocks and fluxes in three permanent temperate forest plots (birch, oak and pine forest) during 2011–2014, and calculated the changes of the components of the C cycle related to the measurements during 1992–1994 at Mt. Dongling, Beijing, China. Forest net primary production in birch, oak, and pine plots was 5.32, 4.53, and 6.73 Mg C ha-1 a-1, respectively. Corresponding net ecosystem production was 0.12, 0.43, and 3.53 Mg C ha-1 a-1. The C stocks and fluxes in 2011–2014 were significantly larger than those in 1992–1994 in which the biomass C densities in birch, oak, and pine plots increased from 50.0, 37.7, and 54.0 Mg C ha-1 in 1994 to 101.5, 77.3, and 110.9 Mg C ha-1 in 2014; soil organic C densities increased from 207.0, 239.1, and 231.7 Mg C ha-1 to 214.8, 241.7, and 238.4 Mg C ha-1; and soil heterotrophic respiration increased from 2.78, 3.49, and 1.81 Mg C ha-1 a-1 to 5.20, 4.10, and 3.20 Mg C ha-1 a-1. These results suggest that the mountainous temperate forest ecosystems in Beijing have served as a carbon sink in the last two decades. These observations of C stocks and fluxes provided field-based data for a long-term study of C cycling in temperate forest ecosystems.

  6. Leveraging 35 years of Pinus taeda research in the southeastern US to constrain forest carbon cycle predictions: regional data assimilation using ecosystem experiments

    Science.gov (United States)

    Quinn Thomas, R.; Brooks, Evan B.; Jersild, Annika L.; Ward, Eric J.; Wynne, Randolph H.; Albaugh, Timothy J.; Dinon-Aldridge, Heather; Burkhart, Harold E.; Domec, Jean-Christophe; Fox, Thomas R.; Gonzalez-Benecke, Carlos A.; Martin, Timothy A.; Noormets, Asko; Sampson, David A.; Teskey, Robert O.

    2017-07-01

    Predicting how forest carbon cycling will change in response to climate change and management depends on the collective knowledge from measurements across environmental gradients, ecosystem manipulations of global change factors, and mathematical models. Formally integrating these sources of knowledge through data assimilation, or model-data fusion, allows the use of past observations to constrain model parameters and estimate prediction uncertainty. Data assimilation (DA) focused on the regional scale has the opportunity to integrate data from both environmental gradients and experimental studies to constrain model parameters. Here, we introduce a hierarchical Bayesian DA approach (Data Assimilation to Predict Productivity for Ecosystems and Regions, DAPPER) that uses observations of carbon stocks, carbon fluxes, water fluxes, and vegetation dynamics from loblolly pine plantation ecosystems across the southeastern US to constrain parameters in a modified version of the Physiological Principles Predicting Growth (3-PG) forest growth model. The observations included major experiments that manipulated atmospheric carbon dioxide (CO2) concentration, water, and nutrients, along with nonexperimental surveys that spanned environmental gradients across an 8.6 × 105 km2 region. We optimized regionally representative posterior distributions for model parameters, which dependably predicted data from plots withheld from the data assimilation. While the mean bias in predictions of nutrient fertilization experiments, irrigation experiments, and CO2 enrichment experiments was low, future work needs to focus modifications to model structures that decrease the bias in predictions of drought experiments. Predictions of how growth responded to elevated CO2 strongly depended on whether ecosystem experiments were assimilated and whether the assimilated field plots in the CO2 study were allowed to have different mortality parameters than the other field plots in the region. We present

  7. Biomass carbon stocks in China's forests between 2000 and 2050: a prediction based on forest biomass-age relationships.

    Science.gov (United States)

    Xu, Bing; Guo, ZhaoDi; Piao, ShiLong; Fang, JingYun

    2010-07-01

    China's forests are characterized by young forest age, low carbon density and a large area of planted forests, and thus have high potential to act as carbon sinks in the future. Using China's national forest inventory data during 1994-1998 and 1999-2003, and direct field measurements, we investigated the relationships between forest biomass density and forest age for 36 major forest types. Statistical approaches and the predicted future forest area from the national forestry development plan were applied to estimate the potential of forest biomass carbon storage in China during 2000-2050. Under an assumption of continuous natural forest growth, China's existing forest biomass carbon (C) stock would increase from 5.86 Pg C (1 Pg=10(15) g) in 1999-2003 to 10.23 Pg C in 2050, resulting in a total increase of 4.37 Pg C. Newly planted forests through afforestation and reforestation will sequestrate an additional 2.86 Pg C in biomass. Overall, China's forests will potentially act as a carbon sink for 7.23 Pg C during the period 2000-2050, with an average carbon sink of 0.14 Pg C yr(-1). This suggests that China's forests will be a significant carbon sink in the next 50 years.

  8. Forest carbon calculators: a review for managers, policymakers, and educators

    Science.gov (United States)

    Harold S.J. Zald; Thomas A. Spies; Mark E. Harmon; Mark J. Twery

    2016-01-01

    Forests play a critical role sequestering atmospheric carbon dioxide, partially offsetting greenhouse gas emissions, and thereby mitigating climate change. Forest management, natural disturbances, and the fate of carbon in wood products strongly influence carbon sequestration and emissions in the forest sector. Government policies, carbon offset and trading programs,...

  9. Black carbon content in a ponderosa pine forest of eastern Oregon with varying seasons and intervals of prescribed burns

    Science.gov (United States)

    Matosziuk, L.; Hatten, J. A.

    2016-12-01

    Soil carbon represents a significant component of the global carbon cycle. While fire-based disturbance of forest ecosystems acts as a carbon source, the increased temperatures can initiate molecular changes to forest biomass that convert fast cycling organic carbon into more stable forms such as black carbon (BC), a product of incomplete combustion that contains highly-condensed aromatic structures and very low hydrogen and oxygen content. Such forms of carbon can remain in the soil for hundred to thousands of years, effectively creating a long-term carbon sink. The goal of this project is to understand how specific characteristics of prescribed burns, specifically the season of burn and the interval between burns, affect the formation, structure, and retention of these slowly degrading forms of carbon in the soil. Both O-horizon (forest floor) and mineral soil (0-15 cm cores) samples were collected from a season and interval of burn study in Malheur National Forest. The study area is divided into six replicate units, each of which is sub-divided into four treatment areas and a control. Beginning in 1997, each treatment area was subjected to: i) spring burns at five-year intervals, ii) fall burns at five-year intervals, iii) spring burns at 15-year intervals, or iv) fall burns at 15-year intervals. The bulk density, pH, and C/N content of each soil were measured to assess the effect of the burn treatments on the soil. Additionally, the amount and molecular structure of BC in each sample was quantified using the distribution of specific molecular markers (benzene polycarboxylic acids or BPCAs) that are present in the soil following acid digestion.

  10. Direct carbon emissions from Canadian forest fires, 1959-1999

    International Nuclear Information System (INIS)

    Amiro, B. D.; Todd, J. B.; Flannigan, M. D.; Hirsch, K. G.; Wotton, B. M.; Logan, K. A.; Stocks, B. J.; Mason, J. A.; Martell, D. L.

    2001-01-01

    Fire is recognised as driving most of the boreal forest carbon balance in North America, therefore fires not only impact on carbon sequestration by forests, but emit greenhouse gases that have the potential to affect the environment. In this paper direct emissions of carbon from Canadian forest fires were estimated for all of Canada and for each ecozone for the period 1959 to 1999. Estimates were based on large fires ; fuel consumption for each fire was calculated using the Canadian Forest Fire Behaviour Prediction System. There were about 11,400 forest fires, averaging 2 x 10 6 hectare per year during this period. Boreal and taiga areas experienced the greatest area burned, releasing most of the carbon. The mean area-weighted fuel consumption for all fires was 2.6 kg of dry fuel per m 2 (1.3 kg carbon per m 2 ) varying from 1.8 kg to 3.9 kg per m 2 among ecozones. The mean annual direct carbon emission was estimated at 27 + or - 6 Tg carbon per year, or about 18 per cent of current carbon dioxide emissions from the Canadian energy sector, on average. This excludes post-fire effects, which cause an additional loss of carbon; changes to the forest also affect the strength of the forest carbon sink. Fire emissions have shown an increase over the past two decades and are likely to remain high due to anticipated changes in fire weather resulting from climate warming. 48 refs., 3 tabs., 6 figs

  11. Carbon stocks and potential carbon storage in the mangrove forests of China.

    Science.gov (United States)

    Liu, Hongxiao; Ren, Hai; Hui, Dafeng; Wang, Wenqing; Liao, Baowen; Cao, Qingxian

    2014-01-15

    Mangrove forests provide important ecosystem services, and play important roles in terrestrial and oceanic carbon (C) cycling. Although the C stocks or storage in terrestrial ecosystems in China have been frequently assessed, the C stocks in mangrove forests have often been overlooked. In this study, we estimated the C stocks and the potential C stocks in China's mangrove forests by combining our own field data with data from the National Mangrove Resource Inventory Report and from other published literature. The results indicate that mangrove forests in China store about 6.91 ± 0.57 Tg C, of which 81.74% is in the top 1 m soil, 18.12% in the biomass of mangrove trees, and 0.08% in the ground layer (i.e. mangrove litter and seedlings). The potential C stocks are as high as 28.81 ± 4.16 Tg C. On average, mangrove forests in China contain 355.25 ± 82.19 Mg C ha(-1), which is consistent with the global average of mangrove C density at similar latitudes, but higher than the average C density in terrestrial forests in China. Our results suggest that C storage in mangroves can be increased by selecting high C-density species for afforestation and stand improvement, and even more by increasing the mangrove area. The information gained in this study will facilitate policy decisions concerning the restoration of mangrove forests in China. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Utilizing Forest Inventory and Analysis Data, Remote Sensing, and Ecosystem Models for National Forest System Carbon Assessments

    Science.gov (United States)

    Alexa J. Dugan; Richard A. Birdsey; Sean P. Healey; Christopher Woodall; Fangmin Zhang; Jing M. Chen; Alexander Hernandez; James B. McCarter

    2015-01-01

    Forested lands, representing the largest terrestrial carbon sink in the United States, offset 16% of total U.S. carbon dioxide emissions through carbon sequestration. Meanwhile, this carbon sink is threatened by deforestation, climate change and natural disturbances. As a result, U.S. Forest Service policies require that National Forests assess baseline carbon stocks...

  13. Impact of exotic earthworms on organic carbon sorption on mineral surfaces and soil carbon inventories in a northern hardwood forest

    Science.gov (United States)

    Amy Lyttle; Kyungsoo Yoo; Cindy Hale; Anthony Aufdenkampe; Stephen D. Sebestyen; Kathryn Resner; Alex. Blum

    2015-01-01

    Exotic earthworms are invading forests in North America where native earthworms have been absent since the last glaciation. These earthworms bioturbate soils and may enhance physical interactions between minerals and organic matter (OM), thus affecting mineral sorption of carbon (C) which may affect C cycling. We quantitatively show how OM-mineral sorption and soil C...

  14. Altitudinal variation of soil organic carbon stocks in temperate forests of Kashmir Himalayas, India.

    Science.gov (United States)

    Ahmad Dar, Javid; Somaiah, Sundarapandian

    2015-02-01

    Soil organic carbon stocks were measured at three depths (0-10, 10-20, and 20-30 cm) in seven altitudes dominated by different forest types viz. Populus deltoides, 1550-1800 m; Juglans regia, 1800-2000 m; Cedrus deodara, 2050-2300 m; Pinus wallichiana, 2000-2300 m; mixed type, 2200-2400 m; Abies pindrow, 2300-2800 m; and Betula utilis, 2800-3200 m in temperate mountains of Kashmir Himalayas. The mean range of soil organic carbon (SOC) stocks varied from 39.07 to 91.39 Mg C ha(-1) in J. regia and B. utilis forests at 0-30 cm depth, respectively. Among the forest types, the lowest mean range of SOC at three depths (0-10, 10-20, and 20-30 cm) was observed in J. regia (18.55, 11.31, and 8.91 Mg C ha(-1), respectively) forest type, and the highest was observed in B. utilis (54.10, 21.68, and 15.60 Mg C ha(-1), respectively) forest type. SOC stocks showed significantly (R (2) = 0.67, P = 0.001) an increasing trend with increase in altitude. On average, the percentages of SOC at 0-10-, 10-20-, and 20-30-cm depths were 53.2, 26.5, and 20.3 %, respectively. Bulk density increased significantly with increase in soil depth and decreased with increase in altitude. Our results suggest that SOC stocks in temperate forests of Kashmir Himalaya vary greatly with forest type and altitude. The present study reveals that SOC stocks increased with increase in altitude at high mountainous regions. Climate change in these high mountainous regions will alter the carbon sequestration potential, which would affect the global carbon cycle.

  15. The new forest carbon accounting framework for the United States

    Science.gov (United States)

    Domke, G. M.; Woodall, C. W.; Coulston, J.; Wear, D. N.; Healey, S. P.; Walters, B. F.

    2015-12-01

    The forest carbon accounting system used in recent National Greenhouse Gas Inventories (NGHGI) was developed more than a decade ago when the USDA Forest Service, Forest Inventory and Analysis annual inventory system was in its infancy and contemporary questions regarding the terrestrial sink (e.g., attribution) did not exist. The time has come to develop a new framework that can quickly address new questions, enables forest carbon analytics, and uses all the inventory information (e.g., disturbances and land use change) while having the flexibility to engage a wider breadth of stakeholders and partner agencies. The Forest Carbon Accounting Framework (FCAF) is comprised of a forest dynamics module and a land use dynamics module. Together these modules produce data-driven estimates of carbon stocks and stock changes in forest ecosystems that are sensitive to carbon sequestration, forest aging, and disturbance effects as well as carbon stock transfers associated with afforestation and deforestation. The new accounting system was used in the 2016 NGHGI report and research is currently underway to incorporate emerging non-live tree carbon pool data, remotely sensed information, and auxiliary data (e.g., climate information) into the FCAF.

  16. Managing carbon sinks by changing rotation length in European forests

    International Nuclear Information System (INIS)

    Kaipainen, Terhi; Liski, Jari; Pussinen, Ari; Karjalainen, Timo

    2004-01-01

    Elongation of rotation length is a forest management activity countries may choose to apply under Article 3.4 of the Kyoto Protocol to help them meet their commitments for reduction of greenhouse gas emissions. We used the CO2FIX model to analyze how the carbon stocks of trees, soil and wood products depend on rotation length in different European forests. Results predicted that the carbon stock of trees increased in each forest when rotation length was increased, but the carbon stock of soil decreased slightly in German and Finnish Scots pine forests; the carbon stock of wood products also decreased slightly in cases other than the Sitka spruce forest in UK. To estimate the efficiency of increasing rotation length as an Article 3.4 activity, we looked at changes in the carbon stock of trees resulting from a 20-year increase in current rotation lengths. To achieve the largest eligible carbon sink mentioned in Article 3.4 of the Kyoto Protocol, the rotation lengths need to be increased on areas varying from 0.3 to 5.1 Mha depending on the forest. This would in some forests cause 1-6% declines in harvesting possibilities. The possible decreases in the carbon stock of soil indicate that reporting the changes in the carbon stocks of forests under Article 3.4 may require measuring soil carbon

  17. Old-growth forests as global carbon sinks

    NARCIS (Netherlands)

    Luyssaert, S; Schulze, E.D.; Börner, A.

    2008-01-01

    Old- growth forests remove carbon dioxide from the atmosphere(1,2) at rates that vary with climate and nitrogen deposition(3). The sequestered carbon dioxide is stored in live woody tissues and slowly decomposing organic matter in litter and soil(4). Old- growth forests therefore serve as a global

  18. [Greenhouse gas emissions, carbon leakage and net carbon sequestration from afforestation and forest management: A review.

    Science.gov (United States)

    Liu, Bo Jie; Lu, Fei; Wang, Xiao Ke; Liu, Wei Wei

    2017-02-01

    Forests play an important role in climate change mitigation and concentration of CO 2 reduction in the atmosphere. Forest management, especially afforestation and forest protection, could increase carbon stock of forests significantly. Carbon sequestration rate of afforestation ranges from 0.04 to 7.52 t C·hm -2 ·a -1 , while that of forest protection is 0.33-5.20 t C·hm -2 ·a -1 . At the same time, greenhouse gas (GHG) is generated within management boundary due to the production and transportation of the materials consumed in relevant activities of afforestation and forest management. In addition, carbon leakage is also generated outside boundary from activity shifting, market effects and change of environments induced by forest management. In this review, we summarized the definition of emission sources of GHG, monitoring methods, quantity and rate of greenhouse gas emissions within boundary of afforestation and forest management. In addition, types, monitoring methods and quantity of carbon leakage outside boundary of forest management were also analyzed. Based on the reviewed results of carbon sequestration, we introduced greenhouse gas emissions within boundary and carbon leakage, net carbon sequestration as well as the countervailing effects of greenhouse gas emissions and carbon leakage to carbon sequestration. Greenhouse gas emissions within management boundary counteract 0.01%-19.3% of carbon sequestration, and such counteraction could increase to as high as 95% considering carbon leakage. Afforestation and forest management have substantial net carbon sequestration benefits, when only taking direct greenhouse gas emissions within boundary and measurable carbon leakage from activity shifting into consideration. Compared with soil carbon sequestration measures in croplands, afforestation and forest management is more advantageous in net carbon sequestration and has better prospects for application in terms of net mitigation potential. Along with the

  19. Modelling nutrient cycling in forest ecosystems; Modellering av naeringssyklus i skogoekosystemer

    Energy Technology Data Exchange (ETDEWEB)

    Kvindesland, Sheila H.S.B.

    1997-12-31

    Acid deposition`s threat to fresh water and forest environments became an issue in the late 1960s. Acid deposition and forest nutrient cycling then began to be researched in greater co-operation. This thesis studies nutrient cycling processes in Norway spruce forests, emphasizing the effects on soil chemical properties, soil solution chemistry and streamwater chemistry. It investigates the effects of different aged stands on nutrient cycling and sets up nutrient budgets of the base cations and nitrogen at two sites in Norway. It also selects, documents, calibrates, tests and improves nutrient cycling models for use in Norwegian forests. 84 refs., 44 figs., 46 tabs.

  20. Carbon carry capacity and carbon sequestration potential in China based on an integrated analysis of mature forest biomass.

    Science.gov (United States)

    Liu, YingChun; Yu, GuiRui; Wang, QiuFeng; Zhang, YangJian; Xu, ZeHong

    2014-12-01

    Forests play an important role in acting as a carbon sink of terrestrial ecosystem. Although global forests have huge carbon carrying capacity (CCC) and carbon sequestration potential (CSP), there were few quantification reports on Chinese forests. We collected and compiled a forest biomass dataset of China, a total of 5841 sites, based on forest inventory and literature search results. From the dataset we extracted 338 sites with forests aged over 80 years, a threshold for defining mature forest, to establish the mature forest biomass dataset. After analyzing the spatial pattern of the carbon density of Chinese mature forests and its controlling factors, we used carbon density of mature forests as the reference level, and conservatively estimated the CCC of the forests in China by interpolation methods of Regression Kriging, Inverse Distance Weighted and Partial Thin Plate Smoothing Spline. Combining with the sixth National Forest Resources Inventory, we also estimated the forest CSP. The results revealed positive relationships between carbon density of mature forests and temperature, precipitation and stand age, and the horizontal and elevational patterns of carbon density of mature forests can be well predicted by temperature and precipitation. The total CCC and CSP of the existing forests are 19.87 and 13.86 Pg C, respectively. Subtropical forests would have more CCC and CSP than other biomes. Consequently, relying on forests to uptake carbon by decreasing disturbance on forests would be an alternative approach for mitigating greenhouse gas concentration effects besides afforestation and reforestation.

  1. Integrating a process-based ecosystem model with Landsat imagery to assess impacts of forest disturbance on terrestrial carbon dynamics: Case studies in Alabama and Mississippi

    Science.gov (United States)

    Forest ecosystems in the southern United States are dramatically altered by three major 26 disturbances: timber harvesting, hurricane, and permanent land conversion. Understanding and quantifying effects of disturbance on forest carbon, nitrogen, and water cycles is critical for sustainable forest m...

  2. Carbon cycle makeover

    DEFF Research Database (Denmark)

    Canfield, Donald Eugene; Kump, Lee R.

    2013-01-01

    remaining in sediments after respiration leave a residual of oxygen in the atmosphere. The source of oxygen to the atmosphere represented by organic matter burial is balanced by oxygen sinks associated with rock weathering and chemical reaction with volcanic gases. This is the long-term carbon and oxygen...... geochemical cycle. But Earth is an old planet, and oxygen levels have changed through time (2). On page 540 of this issue, Schrag et al. (3) challenge the most commonly used geochemical approach to assess long-term changes in the coupled oxygen and carbon cycles....

  3. High-resolution forest carbon stocks and emissions in the Amazon.

    Science.gov (United States)

    Asner, Gregory P; Powell, George V N; Mascaro, Joseph; Knapp, David E; Clark, John K; Jacobson, James; Kennedy-Bowdoin, Ty; Balaji, Aravindh; Paez-Acosta, Guayana; Victoria, Eloy; Secada, Laura; Valqui, Michael; Hughes, R Flint

    2010-09-21

    Efforts to mitigate climate change through the Reduced Emissions from Deforestation and Degradation (REDD) depend on mapping and monitoring of tropical forest carbon stocks and emissions over large geographic areas. With a new integrated use of satellite imaging, airborne light detection and ranging, and field plots, we mapped aboveground carbon stocks and emissions at 0.1-ha resolution over 4.3 million ha of the Peruvian Amazon, an area twice that of all forests in Costa Rica, to reveal the determinants of forest carbon density and to demonstrate the feasibility of mapping carbon emissions for REDD. We discovered previously unknown variation in carbon storage at multiple scales based on geologic substrate and forest type. From 1999 to 2009, emissions from land use totaled 1.1% of the standing carbon throughout the region. Forest degradation, such as from selective logging, increased regional carbon emissions by 47% over deforestation alone, and secondary regrowth provided an 18% offset against total gross emissions. Very high-resolution monitoring reduces uncertainty in carbon emissions for REDD programs while uncovering fundamental environmental controls on forest carbon storage and their interactions with land-use change.

  4. The carbon budget of coarse woody debris in a temperate broad-leafed secondary forest in Japan

    International Nuclear Information System (INIS)

    Jomura, M.; Dannoura, M.; Kanazawa, Y.; Kominami, Y.; Miyama, T.; Goto, Y.; Tamai, K.

    2007-01-01

    We evaluated the carbon budget of coarse woody debris (CWD) in a temperate broad-leafed secondary forest. On the basis of a field survey conducted in 2003, the mass of CWD was estimated at 9.30 tC/ha, with snags amounting to 60% of the total mass. Mean annual CWD input mass was estimated to be 0.61 tC/ha/yr by monitoring tree mortality in the forest from 1999 to 2004. We evaluated the CWD decomposition rate as the CO 2 evolution rate from CWD by measuring CO 2 emissions from 91 CWD samples (RCWD) with a closed dynamic chamber and infrared gas analysis system. The relationships between RCWD and temperature in the chamber, water content of the CWD, and other CWD characteristics were determined. By scaling the measured RCWD to the ecosystem, we estimated that the annual RCWD in the forest in 2003 was 0.50 tC/ha/yr or 10%-16% of the total heterotrophic respiration. Therefore, 0.11 tC/ha/yr or 7% of the forest net ecosystem production was sequestered by CWD. In a young forest, in which CWD input and decomposition are not balanced, the CWD carbon budget needs to be quantified for accurate evaluation of the forest carbon cycle and NEP

  5. Implication of Forest-Savanna Dynamics on Biomass and Carbon Stock: Effectiveness of an Amazonian Ecological Station

    Science.gov (United States)

    Couto-Santos, F. R.; Luizao, F. J.

    2014-12-01

    The forests-savanna advancement/retraction process seems to play an important role in the global carbon cycle and in the climate-vegetation balance maintenance in the Amazon. To contribute with long term carbon dynamics and assess effectiveness of a protected area in reduce carbon emissions in Brazilian Amazon transitional areas, variations in forest-savanna mosaics biomass and carbon stock within Maraca Ecological Station (MES), Roraima/Brazil, and its outskirts non-protected areas were compared. Composite surface soil samples and indirect methods based on regression models were used to estimate aboveground tree biomass accumulation and assess vegetation and soil carbon stock along eleven 0.6 ha transects perpendicular to the forest-savanna limits. Aboveground biomass and carbon accumulation were influenced by vegetation structure, showing higher values within protected area, with great contribution of trees above 40 cm in diameter. In the savanna environments of protected areas, a higher tree density and carbon stock up to 30 m from the border confirmed a forest encroachment. This pointed that MES acts as carbon sink, even under variations in soil fertility gradient, with a potential increase of the total carbon stock from 9 to 150 Mg C ha-1. Under 20 years of fire and disturbance management, the results indicated the effectiveness of this protected area to reduce carbon emissions and mitigate greenhouse and climate change effects in a forest-savanna transitional area in Brazilian Northern Amazon. The contribution of this study in understanding rates and reasons for biomass and carbon variation, under different management strategies, should be considered the first approximation to assist policies of reducing emissions from deforestation and forest degradation (REDD) from underresearched Amazonian ecotone; despite further efforts in this direction are still needed. FINANCIAL SUPPORT: Boticário Group Foundation (Fundação Grupo Boticário); National Council for

  6. Carbon pool densities and a first estimate of the total carbon pool in the Mongolian forest-steppe.

    Science.gov (United States)

    Dulamsuren, Choimaa; Klinge, Michael; Degener, Jan; Khishigjargal, Mookhor; Chenlemuge, Tselmeg; Bat-Enerel, Banzragch; Yeruult, Yolk; Saindovdon, Davaadorj; Ganbaatar, Kherlenchimeg; Tsogtbaatar, Jamsran; Leuschner, Christoph; Hauck, Markus

    2016-02-01

    The boreal forest biome represents one of the most important terrestrial carbon stores, which gave reason to intensive research on carbon stock densities. However, such an analysis does not yet exist for the southernmost Eurosiberian boreal forests in Inner Asia. Most of these forests are located in the Mongolian forest-steppe, which is largely dominated by Larix sibirica. We quantified the carbon stock density and total carbon pool of Mongolia's boreal forests and adjacent grasslands and draw conclusions on possible future change. Mean aboveground carbon stock density in the interior of L. sibirica forests was 66 Mg C ha(-1) , which is in the upper range of values reported from boreal forests and probably due to the comparably long growing season. The density of soil organic carbon (SOC, 108 Mg C ha(-1) ) and total belowground carbon density (149 Mg C ha(-1) ) are at the lower end of the range known from boreal forests, which might be the result of higher soil temperatures and a thinner permafrost layer than in the central and northern boreal forest belt. Land use effects are especially relevant at forest edges, where mean carbon stock density was 188 Mg C ha(-1) , compared with 215 Mg C ha(-1) in the forest interior. Carbon stock density in grasslands was 144 Mg C ha(-1) . Analysis of satellite imagery of the highly fragmented forest area in the forest-steppe zone showed that Mongolia's total boreal forest area is currently 73 818 km(2) , and 22% of this area refers to forest edges (defined as the first 30 m from the edge). The total forest carbon pool of Mongolia was estimated at ~ 1.5-1.7 Pg C, a value which is likely to decrease in future with increasing deforestation and fire frequency, and global warming. © 2015 John Wiley & Sons Ltd.

  7. Environmental change impacts on the C- and N-cycle of European forests: a model comparison study

    Directory of Open Access Journals (Sweden)

    D. R. Cameron

    2013-03-01

    Full Text Available Forests are important components of the greenhouse gas balance of Europe. There is considerable uncertainty about how predicted changes to climate and nitrogen deposition will perturb the carbon and nitrogen cycles of European forests and thereby alter forest growth, carbon sequestration and N2O emission. The present study aimed to quantify the carbon and nitrogen balance, including the exchange of greenhouse gases, of European forests over the period 2010–2030, with a particular emphasis on the spatial variability of change. The analysis was carried out for two tree species: European beech and Scots pine. For this purpose, four different dynamic models were used: BASFOR, DailyDayCent, INTEGRATOR and Landscape-DNDC. These models span a range from semi-empirical to complex mechanistic. Comparison of these models allowed assessment of the extent to which model predictions depended on differences in model inputs and structure. We found a European average carbon sink of 0.160 ± 0.020 kgC m−2 yr−1 (pine and 0.138 ± 0.062 kgC m−2 yr−1 (beech and N2O source of 0.285 ± 0.125 kgN ha−1 yr−1 (pine and 0.575 ± 0.105 kgN ha−1 yr−1 (beech. The European average greenhouse gas potential of the carbon sink was 18 (pine and 8 (beech times that of the N2O source. Carbon sequestration was larger in the trees than in the soil. Carbon sequestration and forest growth were largest in central Europe and lowest in northern Sweden and Finland, N. Poland and S. Spain. No single driver was found to dominate change across Europe. Forests were found to be most sensitive to change in environmental drivers where the drivers were limiting growth, where changes were particularly large or where changes acted in concert. The models disagreed as to which environmental changes were most significant for the geographical variation in forest growth and as to which tree species showed the largest rate of carbon sequestration. Pine and beech forests were found to

  8. Carbon emissions from deforestation and forest fragmentation in the Brazilian Amazon

    Science.gov (United States)

    Numata, Izaya; Cochrane, Mark A.; Souza, Carlos M., Jr.; Sales, Marcio H.

    2011-10-01

    Forest-fragmentation-related edge effects are one of the major causes of forest degradation in Amazonia and their spatio-temporal dynamics are highly influenced by annual deforestation patterns. Rapid biomass collapse due to edge effects in forest fragments has been reported in the Brazilian Amazon; however the collective impacts of this process on Amazonian carbon fluxes are poorly understood. We estimated biomass loss and carbon emissions from deforestation and forest fragmentation related to edge effects on the basis of the INPE (Brazilian National Space Research Institute) PRODES deforestation data and forest biomass volume data. The areas and ages of edge forests were calculated annually and the corresponding biomass loss and carbon emissions from these forest edges were estimated using published rates of biomass decay and decomposition corresponding to the areas and ages of edge forests. Our analysis estimated carbon fluxes from deforestation (4195 Tg C) and edge forest (126-221 Tg C) for 2001-10 in the Brazilian Amazon. The impacts of varying rates of deforestation on regional forest fragmentation and carbon fluxes were also investigated, with the focus on two periods: 2001-5 (high deforestation rates) and 2006-10 (low deforestation rates). Edge-released carbon accounted for 2.6-4.5% of deforestation-related carbon emissions. However, the relative importance of carbon emissions from forest fragmentation increased from 1.7-3.0% to 3.3-5.6% of the respective deforestation emissions between the two contrasting deforestation rates. Edge-related carbon fluxes are of increasing importance for basin-wide carbon accounting, especially as regards ongoing reducing emissions from deforestation and forest degradation (REDD) efforts in Brazilian Amazonia.

  9. Carbon emissions from deforestation and forest fragmentation in the Brazilian Amazon

    International Nuclear Information System (INIS)

    Numata, Izaya; Cochrane, Mark A; Souza, Carlos M Jr; Sales, Marcio H

    2011-01-01

    Forest-fragmentation-related edge effects are one of the major causes of forest degradation in Amazonia and their spatio-temporal dynamics are highly influenced by annual deforestation patterns. Rapid biomass collapse due to edge effects in forest fragments has been reported in the Brazilian Amazon; however the collective impacts of this process on Amazonian carbon fluxes are poorly understood. We estimated biomass loss and carbon emissions from deforestation and forest fragmentation related to edge effects on the basis of the INPE (Brazilian National Space Research Institute) PRODES deforestation data and forest biomass volume data. The areas and ages of edge forests were calculated annually and the corresponding biomass loss and carbon emissions from these forest edges were estimated using published rates of biomass decay and decomposition corresponding to the areas and ages of edge forests. Our analysis estimated carbon fluxes from deforestation (4195 Tg C) and edge forest (126-221 Tg C) for 2001-10 in the Brazilian Amazon. The impacts of varying rates of deforestation on regional forest fragmentation and carbon fluxes were also investigated, with the focus on two periods: 2001-5 (high deforestation rates) and 2006-10 (low deforestation rates). Edge-released carbon accounted for 2.6-4.5% of deforestation-related carbon emissions. However, the relative importance of carbon emissions from forest fragmentation increased from 1.7-3.0% to 3.3-5.6% of the respective deforestation emissions between the two contrasting deforestation rates. Edge-related carbon fluxes are of increasing importance for basin-wide carbon accounting, especially as regards ongoing reducing emissions from deforestation and forest degradation (REDD) efforts in Brazilian Amazonia.

  10. Monitoring coniferous forest biomass change using a Landsat trajectory-based approach

    Science.gov (United States)

    Magdalena Main-Knorn; Warren B. Cohen; Robert E. Kennedy; Wojciech Grodzki; Dirk Pflugmacher; Patrick Griffiths; Patrick Hostert

    2013-01-01

    Forest biomass is a major store of carbon and thus plays an important role in the regional and global carbon cycle. Accurate forest carbon sequestration assessment requires estimation of both forest biomass and forest biomass dynamics over time. Forest dynamics are characterized by disturbances and recovery, key processes affecting site productivity and the forest...

  11. Forest carbon sink: A potential forest investment

    Science.gov (United States)

    Zheng, Chaocheng; Zhang, Yi; Cheng, Dongxiang

    2017-01-01

    A major problem being confronted to our human society currently is that the global temperature is undoubtedly considered to be rising significantly year by year due to abundant human factors releasing carbon dioxide to around atmosphere. The problem of increasing atmospheric carbon dioxide can be addressed in a number of ways. One of these is forestry and forest management. Hence, this paper investigates a number of current issues related to mitigating the global warming problem from the point of forestry view previous to discussion on ongoing real-world activities utilizing forestry specifically to sequester carbon.

  12. Participatory Forest Carbon Assessment and REDD+: Learning from Tanzania

    Directory of Open Access Journals (Sweden)

    Kusaga Mukama

    2012-01-01

    Full Text Available Research initiatives and practical experiences have demonstrated that forest-related data collected by local communities can play an essential role in the development of national REDD+ programs and its' measurement, reporting, verification (MRV systems. In Tanzania, the national REDD+ Strategy aims to reward local communities participating in forest management under Participatory Forest Management (PFM. Accessing carbon finances requires among other things, accurate measurements of carbon stock changes through conventional forest inventories, something which is rarely done in PFM forests due to its high cost and limited resources. The main objective of this paper is to discuss experiences of Participatory Forest Carbon Assessment (PFCA in Tanzania. The study revealed that villagers who participated in PFCA were able to perform most steps for carbon assessment in the field. A key challenge in future is how to finance PFCA and ensure the technical capacity at local level.

  13. Site productivity and forest carbon stocks in the United States: Analysis and implications for forest offset project planning

    Science.gov (United States)

    Coeli M. Hoover; James E. Smith

    2012-01-01

    The documented role of United States forests in sequestering carbon, the relatively low cost of forest-based mitigation, and the many co-benefits of increasing forest carbon stocks all contribute to the ongoing trend in the establishment of forest-based carbon offset projects. We present a broad analysis of forest inventory data using site quality indicators to provide...

  14. [Carbon sequestration status of forest ecosystems in Ningxia Hui Autonomous Region].

    Science.gov (United States)

    Gao, Yang; Jin, Jing-Wei; Cheng, Ji-Min; Su, Ji-Shuai; Zhu, Ren-Bin; Ma, Zheng-Rui; Liu, Wei

    2014-03-01

    Based on the data of Ningxia Hui Autonomous Region forest resources inventory, field investigation and laboratory analysis, this paper studied the carbon sequestration status of forest ecosystems in Ningxia region, estimated the carbon density and storage of forest ecosystems, and analyzed their spatial distribution characteristics. The results showed that the biomass of each forest vegetation component was in the order of arbor layer (46.64 Mg x hm(-2)) > litterfall layer (7.34 Mg x hm(-2)) > fine root layer (6.67 Mg x hm(-2)) > shrub-grass layer (0.73 Mg x hm(-2)). Spruce (115.43 Mg x hm(-2)) and Pinus tabuliformis (94.55 Mg x hm(-2)) had higher vegetation biomasses per unit area than other tree species. Over-mature forest had the highest arbor carbon density among the forests with different ages. However, the young forest had the highest arbor carbon storage (1.90 Tg C) due to its widest planted area. Overall, the average carbon density of forest ecosystems in Ningxia region was 265.74 Mg C x hm(-2), and the carbon storage was 43.54 Tg C. Carbon density and storage of vegetation were 27.24 Mg C x hm(-2) and 4.46 Tg C, respectively. Carbon storage in the soil was 8.76 times of that in the vegetation. In the southern part of Ningxia region, the forest carbon storage was higher than in the northern part, where the low C storage was mainly related to the small forest area and young forest age structure. With the improvement of forest age structure and the further implementation of forestry ecoengineering, the forest ecosystems in Ningxia region would achieve a huge carbon sequestration potential.

  15. High rates of carbon storage in old deciduous forests: Emerging mechanisms from the Forest Accelerated Succession ExperimenT (FASET)

    Science.gov (United States)

    Gough, C. M.; Nave, L. E.; Hardiman, B. S.; Bohrer, G.; Halperin, A.; Maurer, K.; Le Moine, J.; Nadelhoffer, K.; Vogel, C. S.; Curtis, P.; University Of Michigan Biological Station Forest Ecosystem Study (Umbs-Fest) Team

    2010-12-01

    Deciduous forests of the eastern US are broadly approaching an ecological threshold in which early successional dominant trees are senescing and giving way to later successional species, with unknown consequences for regional carbon (C) cycling. Though recent research demonstrates that forests may accumulate C for centuries, the mechanisms behind sustained rates of C storage in old, particularly deciduous, forests have not been identified. In a regionally representative forest at the University of Michigan Biological Station, we are combining observational and experimental C cycling studies to forecast how forest C storage responds to climate variation, disturbance, and succession. The Forest Accelerated Succession ExperimenT (FASET), in which >6,700 aspen and birch trees (~35 % LAI) were stem girdled within a 39 ha area, is testing the hypothesis that forest production will increase rather than decline with age, due to increases in nitrogen (N) availability, N allocation to the canopy, and the concurrent development of a more biologically and structurally complex canopy. Results thus far support our hypothesis that aging forests in the region may sustain high rates of C storage through shifts in N cycling and increased canopy complexity. Girdling-induced mortality of early successional species reduced soil respiration, accelerated fine root turnover, and prompted the redistribution of N from the foliage of early to later successional species. Nitrogen redistribution increased leaf area index (LAI) production by later successional species, offsetting declines in LAI from senescing early successional species. High rates of net primary production (NPP) were sustained in stands comprising a diverse assemblage of early and later successional species because later successional species, when already present in the canopy, rapidly compensated for declining growth of early successional species. Canopy structural complexity, which increased with forest age, was positively

  16. Modeling Soil Carbon Dynamics in Northern Forests: Effects of Spatial and Temporal Aggregation of Climatic Input Data.

    Science.gov (United States)

    Dalsgaard, Lise; Astrup, Rasmus; Antón-Fernández, Clara; Borgen, Signe Kynding; Breidenbach, Johannes; Lange, Holger; Lehtonen, Aleksi; Liski, Jari

    2016-01-01

    Boreal forests contain 30% of the global forest carbon with the majority residing in soils. While challenging to quantify, soil carbon changes comprise a significant, and potentially increasing, part of the terrestrial carbon cycle. Thus, their estimation is important when designing forest-based climate change mitigation strategies and soil carbon change estimates are required for the reporting of greenhouse gas emissions. Organic matter decomposition varies with climate in complex nonlinear ways, rendering data aggregation nontrivial. Here, we explored the effects of temporal and spatial aggregation of climatic and litter input data on regional estimates of soil organic carbon stocks and changes for upland forests. We used the soil carbon and decomposition model Yasso07 with input from the Norwegian National Forest Inventory (11275 plots, 1960-2012). Estimates were produced at three spatial and three temporal scales. Results showed that a national level average soil carbon stock estimate varied by 10% depending on the applied spatial and temporal scale of aggregation. Higher stocks were found when applying plot-level input compared to country-level input and when long-term climate was used as compared to annual or 5-year mean values. A national level estimate for soil carbon change was similar across spatial scales, but was considerably (60-70%) lower when applying annual or 5-year mean climate compared to long-term mean climate reflecting the recent climatic changes in Norway. This was particularly evident for the forest-dominated districts in the southeastern and central parts of Norway and in the far north. We concluded that the sensitivity of model estimates to spatial aggregation will depend on the region of interest. Further, that using long-term climate averages during periods with strong climatic trends results in large differences in soil carbon estimates. The largest differences in this study were observed in central and northern regions with strongly

  17. Increase of carbon cycle feedback with climate sensitivity: results from a coupled climate and carbon cycle model

    International Nuclear Information System (INIS)

    Govindasamy, B.; Thompson, S.; Mirin, A.; Wickett, M.; Caldeira, K.; Delire, C.

    2005-01-01

    Coupled climate and carbon cycle modelling studies have shown that the feedback between global warming and the carbon cycle, in particular the terrestrial carbon cycle, could accelerate climate change and result in greater warming. In this paper we investigate the sensitivity of this feedback for year 2100 global warming in the range of 0 to 8 K. Differing climate sensitivities to increased CO 2 content are imposed on the carbon cycle models for the same emissions. Emissions from the SRES A2 scenario are used. We use a fully coupled climate and carbon cycle model, the INtegrated Climate and CArbon model (INCCA), the NCAR/DOE Parallel Climate Model coupled to the IBIS terrestrial biosphere model and a modified OCMIP ocean biogeochemistry model. In our integrated model, for scenarios with year 2100 global warming increasing from 0 to 8 K, land uptake decreases from 47% to 29% of total CO 2 emissions. Due to competing effects, ocean uptake (16%) shows almost no change at all. Atmospheric CO 2 concentration increases are 48% higher in the run with 8 K global climate warming than in the case with no warming. Our results indicate that carbon cycle amplification of climate warming will be greater if there is higher climate sensitivity to increased atmospheric CO 2 content; the carbon cycle feedback factor increases from 1.13 to 1.48 when global warming increases from 3.2 to 8 K

  18. The TERRA-PNW Dataset: A New Source for Standardized Plant Trait, Forest Carbon Cycling, and Soil Properties Measurements from the Pacific Northwest US, 2000-2014.

    Science.gov (United States)

    Berner, L. T.; Law, B. E.

    2015-12-01

    Plant traits include physiological, morphological, and biogeochemical characteristics that in combination determine a species sensitivity to environmental conditions. Standardized, co-located, and geo-referenced species- and plot-level measurements are needed to address variation in species sensitivity to climate change impacts and for ecosystem process model development, parameterization and testing. We present a new database of plant trait, forest carbon cycling, and soil property measurements derived from multiple TERRA-PNW projects in the Pacific Northwest US, spanning 2000-2014. The database includes measurements from over 200 forest plots across Oregon and northern California, where the data were explicitly collected for scaling and modeling regional terrestrial carbon processes with models such as Biome-BGC and the Community Land Model. Some of the data are co-located at AmeriFlux sites in the region. The database currently contains leaf trait measurements (specific leaf area, leaf longevity, leaf carbon and nitrogen) from over 1,200 branch samples and 30 species, as well as plot-level biomass and productivity components, and soil carbon and nitrogen. Standardized protocols were used across projects, as summarized in an FAO protocols document. The database continues to expand and will include agricultural crops. The database will be hosted by the Oak Ridge National Laboratory (ORLN) Distributed Active Archive Center (DAAC). We hope that other regional databases will become publicly available to help enable Earth System Modeling to simulate species-level sensitivity to climate at regional to global scales.

  19. Carbon storage in forests and peatlands of Russia

    Science.gov (United States)

    V.A. Alexeyev; R.A. Birdsey; [Editors

    1998-01-01

    Contains information about carbon storage in the vegetation, soils, and peatlands of Russia. Estimates of carbon storage in forests are derived from statistical data from the 1988 national forest inventory of Russia and from other sources. Methods are presented for converting data on timber stock into phytomass of tree stands, and for estimating carbon storage in...

  20. Forest fuel and carbon balances

    International Nuclear Information System (INIS)

    Lundborg, A.

    1994-10-01

    Forest fuel, i.e., branches and tops that remain after felling, are not considered to give a net surplus of carbon dioxide to the atmosphere. In order to, if possible, verify this theory a survey was made of the literature concerning different carbon flows related to forest fuel. Branches and needles that are not utilised as fuel nonetheless eventually become decomposed to carbon dioxide. Branches and stem wood are broken down in occasional cases to 60-80% already within 5-6 years but the decomposition rate varies strongly. A small amount of existing data suggest that branches and stems are broken down almost completely within 60-70 years, and earlier in some cases. Lignin is the component in needles and wood that is the most resistant to decomposition. Decomposition is favoured by optimal temperature and moisture, ground contact and ground animals. Material that is mulched during soil preparation is decomposed considerably faster than material that lies on the soil surface. Felling residues that are left on the soil are a large momentary addition to the soil's reserves of organic material but after a number of years the difference in soil organic material is small between places where fuel has been removed and places where felling residues have been left. High nitrogen deposition, fire control and effective forestry are factors that contribute to the increases in the reserves of soil organic material. It appears to be a good approximation to consider the forest fuel as being a neutral fuel as regards carbon dioxide in a longer perspective. In comparison with other biofuels and fossil fuels, forest fuel appears, together with Salix, to be the fuel that results in very little extra discharge of carbon dioxide or other greenhouse gases during its production, transport and processing. 70 refs, 5 figs, tabs

  1. The production of phytolith-occluded carbon in China's forests: implications to biogeochemical carbon sequestration.

    Science.gov (United States)

    Song, Zhaoliang; Liu, Hongyan; Li, Beilei; Yang, Xiaomin

    2013-09-01

    The persistent terrestrial carbon sink regulates long-term climate change, but its size, location, and mechanisms remain uncertain. One of the most promising terrestrial biogeochemical carbon sequestration mechanisms is the occlusion of carbon within phytoliths, the silicified features that deposit within plant tissues. Using phytolith content-biogenic silica content transfer function obtained from our investigation, in combination with published silica content and aboveground net primary productivity (ANPP) data of leaf litter and herb layer in China's forests, we estimated the production of phytolith-occluded carbon (PhytOC) in China's forests. The present annual phytolith carbon sink in China's forests is 1.7 ± 0.4 Tg CO2  yr(-1) , 30% of which is contributed by bamboo because the production flux of PhytOC through tree leaf litter for bamboo is 3-80 times higher than that of other forest types. As a result of national and international bamboo afforestation and reforestation, the potential of phytolith carbon sink for China's forests and world's bamboo can reach 6.8 ± 1.5 and 27.0 ± 6.1 Tg CO2  yr(-1) , respectively. Forest management practices such as bamboo afforestation and reforestation may significantly enhance the long-term terrestrial carbon sink and contribute to mitigation of global climate warming. © 2013 John Wiley & Sons Ltd.

  2. Contingent feasibility for forest carbon credit: evidence from South Korean firms.

    Science.gov (United States)

    Roh, TaeWoo; Koo, Ja-Choon; Cho, Dong-Sung; Youn, Yeo-Chang

    2014-11-01

    Under the Kyoto Protocol, a global governmental response to climate change, protocol signatories make an effort to cut their greenhouse gas emissions. South Korea is not included in the list of Annex I countries; yet, South Korea is the seventh highest emitter of CO2. The South Korean government has enacted various institutional policies to encourage greenhouse gas reductions. While previous studies have focused on the guidance that reflects the stance of suppliers in the carbon market, this study focuses on South Korean firms' actual demand for forest carbon credits. By applying the contingent valuation method, we estimated domestic firms' willingness to pay for forest carbon credits. We then applied a rank-ordered logistic regression to confirm whether the rank of forest carbon credits, as compared to any other carbon credit, is influenced by a firm's characteristics. The results showed that Korean firms are willing to pay 5.45 USD/tCO2 and 7.77 USD/tCO2 for forest carbon credits in domestic and overseas forest carbon projects, respectively. Therefore, the introduction of forest carbon credits in the Korean carbon market seems reasonable. Analysis of the priority rankings of forest carbon credits, however, demonstrated that forestry projects were least likely to be ranked by firms as their first priority. Although relative preferences for forest carbon credits were influenced by individual firms' characteristics such as prior experience of environmental CSR related activities and whether the firm established an emissions reduction plan, the impact of perceived behavior control, whether the firm was included in the emissions target management scheme on forest carbon credits was negligible. Therefore, forest carbon credits are not a feasible solution without strong government support or institutional instruments. The results of this study are expected to provide policy makers with realistic approaches to formulate climatic change-related policies. Copyright © 2014

  3. [Carbon storage of forest stands in Shandong Province estimated by forestry inventory data].

    Science.gov (United States)

    Li, Shi-Mei; Yang, Chuan-Qiang; Wang, Hong-Nian; Ge, Li-Qiang

    2014-08-01

    Based on the 7th forestry inventory data of Shandong Province, this paper estimated the carbon storage and carbon density of forest stands, and analyzed their distribution characteristics according to dominant tree species, age groups and forest category using the volume-derived biomass method and average-biomass method. In 2007, the total carbon storage of the forest stands was 25. 27 Tg, of which the coniferous forests, mixed conifer broad-leaved forests, and broad-leaved forests accounted for 8.6%, 2.0% and 89.4%, respectively. The carbon storage of forest age groups followed the sequence of young forests > middle-aged forests > mature forests > near-mature forests > over-mature forests. The carbon storage of young forests and middle-aged forests accounted for 69.3% of the total carbon storage. Timber forest, non-timber product forest and protection forests accounted for 37.1%, 36.3% and 24.8% of the total carbon storage, respectively. The average carbon density of forest stands in Shandong Province was 10.59 t x hm(-2), which was lower than the national average level. This phenomenon was attributed to the imperfect structure of forest types and age groups, i. e., the notably higher percentage of timber forests and non-timber product forest and the excessively higher percentage of young forests and middle-aged forest than mature forests.

  4. Contribution of forest floor fractions to carbon storage and ...

    African Journals Online (AJOL)

    Forest floor carbon stocks, which include different components of litter, hemic and sapric materials, have not been empirically quantified in tropical montane forest, although they influence soil carbon (C) pools. To date, the contribution of arbuscular mycorrhizae in C sequestration potentials in tropical montane forests have ...

  5. Carbon stocks and dynamics at different successional stages in an Afromontane tropical forest

    Science.gov (United States)

    Nyirambangutse, Brigitte; Zibera, Etienne; Uwizeye, Félicien K.; Nsabimana, Donat; Bizuru, Elias; Pleijel, Håkan; Uddling, Johan; Wallin, Göran

    2017-03-01

    As a result of different types of disturbance, forests are a mixture of stands at different stages of ecological succession. Successional stage is likely to influence forest productivity and carbon storage, linking the degree of forest disturbance to the global carbon cycle and climate. Although tropical montane forests are an important part of tropical forest ecosystems (ca. 8 %, elevation > 1000 m a.s.l.), there are still significant knowledge gaps regarding the carbon dynamics and stocks of these forests, and how these differ between early (ES) and late successional (LS) stages. This study examines the carbon (C) stock, relative growth rate (RGR) and net primary production (NPP) of ES and LS forest stands in an Afromontane tropical rainforest using data from inventories of quantitatively important ecosystem compartments in fifteen 0.5 ha plots in Nyungwe National Park in Rwanda. The total C stock was 35 % larger in LS compared to ES plots due to significantly larger above-ground biomass (AGB; 185 and 76 Mg C ha-1 in LS and ES plots), while the soil and root C stock (down to 45 cm depth in the mineral soil) did not significantly differ between the two successional stages (178 and 204 Mg C ha-1 in LS and ES plots). The main reasons for the difference in AGB were that ES trees had significantly lower stature and wood density compared to LS trees. However, ES and LS stands had similar total NPP (canopy, wood and roots of all plots ˜ 9.4 Mg C ha-1) due to counterbalancing effects of differences in AGB (higher in LS stands) and RGR (higher in ES stands). The AGB in the LS plots was considerably higher than the average value reported for old-growth tropical montane forest of south-east Asia and Central and South America at similar elevations and temperatures, and of the same magnitude as in tropical lowland forest of these regions. The results of this study highlight the importance of accounting for disturbance regimes and differences in wood density and allometry of

  6. Forest inventory-based estimation of carbon stocks and flux in California forests in 1990.

    Science.gov (United States)

    Jeremy S. Fried; Xiaoping. Zhou

    2008-01-01

    Estimates of forest carbon stores and flux for California circa 1990 were modeled from forest inventory data in support of California’s legislatively mandated greenhouse gas inventory. Reliable estimates of live-tree carbon stores and flux on timberlands outside of national forest could be calculated from periodic inventory data collected in the 1980s and 1990s;...

  7. Black silicon maskless templates for carbon nanotube forests

    DEFF Research Database (Denmark)

    Wierzbicki, Rafal; Schmidt, Michael Stenbæk; Boisen, Anja

    2013-01-01

    allows maskless definition of carbon nanotube forests with control of their density, nanotube diameter and height. Four nanograss reactive ion etching recipes are investigated and their wafer-to-wafer repeatability, wafer uniformity, and density control is discussed. Evaluation of carbon nanotube forests...

  8. Forest science and technology to reduce atmospheric greenhouse gases - an overview, with emphasis on carbon in Canada's forests

    International Nuclear Information System (INIS)

    Savidge, R.A.

    2001-01-01

    The forest as a CO 2 sink comprises, in addition to mature and immature trees, C accumulated in understorey plants, animals, forest soils, peat bogs and wetlands. Estimates of how much carbon (C) is entering and leaving a forest ecosystem cannot be obtained merely by estimating gaseous CO 2 fluxes. The C cycle also involves direct transfer of CO 2 to soil in rain and snow, non-photosynthetic or 'dark' fixation of CO 2 by myriad soil and aquatic micro-organisms, roots, fungi and animals, and loss of C in forms other than CO 2 via air, groundwater flow and runoff. The complexity of the carbon cycle challenges us to develop reliably accurate means of inventorying C accumulation in trees. In productive forests the C of wood can be determined by estimating tree merchantable volume and, by density conversion, mass of dry wood. Percentage C in dry wood varies by species and type of wood, but otherwise C of wood can be readily calculated. The C present in foliage, branches, bark and roots can, as a first approximation, be assumed to be equivalent to that in the merchantable boles. National Forestry Database statistics and our elemental analysis data on total carbon in wood were used to determine how much C is present in and being removed annually from Canadian forests. In 1998 Canada extracted 45 million tonnes of C of wood from 0.5% of its more than 244 million hectares (ha) of productive forest area. That annual harvest contained less than 0.001% of the 6400 gigatonnes of C of wood existing in boles of merchantable trees. However, harvesting over the last three centuries has reduced C content m productive forests to well below 50% of their pre-1700 sink capacity. To refill the sink, it is proposed that a ceiling of 50 million tonnes C of wood be set as the annual allowable cut. Mean temperature increases of as much as 8 o C have been forecast for Canada over the next 100 years. The impact of those increases on tree growth and survival will depend not so much on changes

  9. Importance of vegetation dynamics for future terrestrial carbon cycling

    International Nuclear Information System (INIS)

    Ahlström, Anders; Smith, Benjamin; Xia, Jianyang; Luo, Yiqi; Arneth, Almut

    2015-01-01

    Terrestrial ecosystems currently sequester about one third of anthropogenic CO 2 emissions each year, an important ecosystem service that dampens climate change. The future fate of this net uptake of CO 2 by land based ecosystems is highly uncertain. Most ecosystem models used to predict the future terrestrial carbon cycle share a common architecture, whereby carbon that enters the system as net primary production (NPP) is distributed to plant compartments, transferred to litter and soil through vegetation turnover and then re-emitted to the atmosphere in conjunction with soil decomposition. However, while all models represent the processes of NPP and soil decomposition, they vary greatly in their representations of vegetation turnover and the associated processes governing mortality, disturbance and biome shifts. Here we used a detailed second generation dynamic global vegetation model with advanced representation of vegetation growth and mortality, and the associated turnover. We apply an emulator that describes the carbon flows and pools exactly as in simulations with the full model. The emulator simulates ecosystem dynamics in response to 13 different climate or Earth system model simulations from the Coupled Model Intercomparison Project Phase 5 ensemble under RCP8.5 radiative forcing. By exchanging carbon cycle processes between these 13 simulations we quantified the relative roles of three main driving processes of the carbon cycle; (I) NPP, (II) vegetation dynamics and turnover and (III) soil decomposition, in terms of their contribution to future carbon (C) uptake uncertainties among the ensemble of climate change scenarios. We found that NPP, vegetation turnover (including structural shifts, wild fires and mortality) and soil decomposition rates explained 49%, 17% and 33%, respectively, of uncertainties in modelled global C-uptake. Uncertainty due to vegetation turnover was further partitioned into stand-clearing disturbances (16%), wild fires (0%), stand

  10. Methods for calculating forest ecosystem and harvested carbon with standard estimates for forest types of the United States

    Science.gov (United States)

    James E. Smith; Linda S. Heath; Kenneth E. Skog; Richard A. Birdsey

    2006-01-01

    This study presents techniques for calculating average net annual additions to carbon in forests and in forest products. Forest ecosystem carbon yield tables, representing stand-level merchantable volume and carbon pools as a function of stand age, were developed for 51 forest types within 10 regions of the United States. Separate tables were developed for...

  11. Forest disturbance and North American carbon flux

    Science.gov (United States)

    S. N. Goward; J. G. Masek; W. Cohen; G. Moisen; G. J. Collatz; S. Healey; R. A. Houghton; C. Huang; R. Kennedy; B. Law; S. Powell; D. Turner; M. A. Wulder

    2008-01-01

    North America's forests are thought to be a significant sink for atmospheric carbon. Currently, the rate of sequestration by forests on the continent has been estimated at 0.23 petagrams of carbon per year, though the uncertainty about this estimate is nearly 50%. This offsets about 13% of the fossil fuel emissions from the continent [Pacala et al., 2007]. However...

  12. The economic implications of carbon cycle uncertainty

    International Nuclear Information System (INIS)

    Smith, Steven J.; Edmonds, James A.

    2006-01-01

    This paper examines the implications of uncertainty in the carbon cycle for the cost of stabilizing carbon dioxide concentrations. Using a state of the art integrated assessment model, we find that uncertainty in our understanding of the carbon cycle has significant implications for the costs of a climate stabilization policy, with cost differences denominated in trillions of dollars. Uncertainty in the carbon cycle is equivalent to a change in concentration target of up to 100 ppmv. The impact of carbon cycle uncertainties are smaller than those for climate sensitivity, and broadly comparable to the effect of uncertainty in technology availability

  13. Leveraging 35 years of Pinus taeda research in the southeastern US to constrain forest carbon cycle predictions: regional data assimilation using ecosystem experiments

    Directory of Open Access Journals (Sweden)

    R. Q. Thomas

    2017-07-01

    Full Text Available Predicting how forest carbon cycling will change in response to climate change and management depends on the collective knowledge from measurements across environmental gradients, ecosystem manipulations of global change factors, and mathematical models. Formally integrating these sources of knowledge through data assimilation, or model–data fusion, allows the use of past observations to constrain model parameters and estimate prediction uncertainty. Data assimilation (DA focused on the regional scale has the opportunity to integrate data from both environmental gradients and experimental studies to constrain model parameters. Here, we introduce a hierarchical Bayesian DA approach (Data Assimilation to Predict Productivity for Ecosystems and Regions, DAPPER that uses observations of carbon stocks, carbon fluxes, water fluxes, and vegetation dynamics from loblolly pine plantation ecosystems across the southeastern US to constrain parameters in a modified version of the Physiological Principles Predicting Growth (3-PG forest growth model. The observations included major experiments that manipulated atmospheric carbon dioxide (CO2 concentration, water, and nutrients, along with nonexperimental surveys that spanned environmental gradients across an 8.6  ×  105 km2 region. We optimized regionally representative posterior distributions for model parameters, which dependably predicted data from plots withheld from the data assimilation. While the mean bias in predictions of nutrient fertilization experiments, irrigation experiments, and CO2 enrichment experiments was low, future work needs to focus modifications to model structures that decrease the bias in predictions of drought experiments. Predictions of how growth responded to elevated CO2 strongly depended on whether ecosystem experiments were assimilated and whether the assimilated field plots in the CO2 study were allowed to have different mortality parameters than the other field

  14. Carbonizing forest governance: analyzing the consequences of REDD+ for multilevel forest governance

    NARCIS (Netherlands)

    Vijge, M.J.

    2016-01-01

    Carbonizing forest governance:

    Analyzing the consequences of REDD+ for multilevel forest governance

    Marjanneke J. Vijge

    Despite the fifty years of global action to combat deforestation and forest degradation, the world is still

  15. How to estimate forest carbon for large areas from inventory data

    Science.gov (United States)

    James E. Smith; Linda S. Heath; Peter B. Woodbury

    2004-01-01

    Carbon sequestration through forest growth provides a low-cost approach for meeting state and national goals to reduce net accumulations of atmospheric carbon dioxide. Total forest ecosystem carbon stocks include "pools" in live trees, standing dead trees, understory vegetation, down dead wood, forest floor, and soil. Determining the level of carbon stocks in...

  16. [Effects of selective cutting on the carbon density and net primary productivity of a mixed broadleaved-Korean pine forest in Northeast China].

    Science.gov (United States)

    Liu, Qi; Cai, Hui-Ying; Jin, Guang-Ze

    2013-10-01

    To accurately quantify forest carbon density and net primary productivity (NPP) is of great significance in estimating the role of forest ecosystems in global carbon cycle. By using the forest inventory and allometry approaches, this paper measured the carbon density and NPP of the virgin broadleaved-Korean pine (Pinus koraiensis) forest and of the broadleaved-Korean pine forest after 34 years selective-cutting (the cutting intensity was 30%, and the cutting trees were in large diameter class). The total carbon density of the virgin and selective-cutting broadleaved-Korean pine forests was (397.95 +/- 93.82) and (355.61 +/- 59.37) t C x hm(-2), respectively. In the virgin forest, the carbon density of the vegetation, debris, and soil accounted for 31.0%, 3.1%, and 65.9% of the total carbon pool, respectively; in the selective-cutting forest, the corresponding values were 31.7%, 2.9%, and 65.4%, respectively. No significant differences were observed in the total carbon density and the carbon density of each component between the two forests. The total NPP of the virgin and selective-cutting forests was (36.27 +/- 0.36) and (6.35 +/- 0.70) t C x hm(-2) x a(-1), among which, the NPP of overstory, understory, and fine roots in virgin forest and selective-cutting forest accounted for 60.3%, 2.0%, and 37.7%, and 66.1%, 2.0%, and 31.2%, respectively. No significant differences were observed in the total NPP and the contribution rate of each component between the two forests. However, the ratios of the needle and broadleaf NPPs of the virgin and selective-cutting forests were 47.24:52.76 and 20.48:79.52, respectively, with a significant difference. The results indicated that the carbon density and NPP of the broadleaved-Korean pine forest after 34 years selective-cutting recovered to the levels of the virgin broadleaved-Korean pine forest.

  17. Modelling the soil carbon cycle of pine ecosystems

    International Nuclear Information System (INIS)

    Nakane, K.

    1994-01-01

    Soil carbon cycling rates and carbon budgets were calculated for stands of four pine species. Pinus sylvestris (at Jaedraaas, Sweden), P. densiflora (Hiroshima, Japan), P. elliottii (Florida, USA) and P. radiata (Canberra, Australia), using a simulation model driven by daily observations of mean air temperature and precipitation. Inputs to soil carbon through litterfall differ considerably among the four pine forests, but the accumulation of the A 0 layer and humus in mineral soil is less variable. Decomposition of the A 0 layer and humus is fastest for P. densiflora and slowest for P. sylvestris stands with P. radiata and P. elliottii intermediate. The decomposition rate is lower for the P. elliottii stand than for P. densiflora in spite of its higher temperatures and slightly higher precipitation. Seasonal changes in simulated soil carbon are observed only for the A 0 layer at the P. densiflora site. Simulated soil respiration rates vary seasonally in three stands (P. sylvestris, P. densiflora and P. radiata). In simulations for pine trees planted on bare soil, all soil organic matter fractions except the humus in mineral soil recover to half their asymptotic values within 30 to 40 years of planting for P. sylvestris and P. densiflora, compared with 10 to 20 years for P. radiata and P. elliottii. The simulated recovery of soil carbon following clear-cutting is fastest for the P. elliottii stand and slowest for P. sylvestris. Management of P. elliottii and P. radiata stands on 40-years rotations is sustainable because carbon removed through harvest is restored in the interval between successive clear-cuts. However p. densiflora and P. sylvestris stands may be unable to maintain soil carbon under such a short rotation. High growth rates of P. elliottii and p. radiata stands in spite of relatively poor soil conditions and slow carbon cycling may be related to the physiological responses of species to environmental conditions. (Abstract Truncated)

  18. MODELLING THE CARBON STOCKS ESTIMATION OF THE TROPICAL LOWLAND DIPTEROCARP FOREST USING LIDAR AND REMOTELY SENSED DATA

    Directory of Open Access Journals (Sweden)

    N. A. M. Zaki

    2016-06-01

    Full Text Available Tropical forest embraces a large stock of carbon in the global carbon cycle and contributes to the enormous amount of above and below ground biomass. The carbon kept in the aboveground living biomass of trees is typically the largest pool and the most directly impacted by the anthropogenic factor such as deforestation and forest degradation. However, fewer studies had been proposed to model the carbon for tropical rain forest and the quantification still remain uncertainties. A multiple linear regression (MLR is one of the methods to define the relationship between the field inventory measurements and the statistical extracted from the remotely sensed data which is LiDAR and WorldView-3 imagery (WV-3. This paper highlight the model development from fusion of multispectral WV-3 with the LIDAR metrics to model the carbon estimation of the tropical lowland Dipterocarp forest of the study area. The result shown the over segmentation and under segmentation value for this output is 0.19 and 0.11 respectively, thus D-value for the classification is 0.19 which is 81%. Overall, this study produce a significant correlation coefficient (r between Crown projection area (CPA and Carbon stocks (CS; height from LiDAR (H_LDR and Carbon stocks (CS; and Crown projection area (CPA and height from LiDAR (H_LDR were shown 0.671, 0.709 and 0.549 respectively. The CPA of the segmentation found to be representative spatially with higher correlation of relationship between diameter at the breast height (DBH and carbon stocks which is Pearson Correlation p = 0.000 (p Dipterocarp forest.

  19. Restoring degraded tropical forests for carbon and biodiversity

    International Nuclear Information System (INIS)

    Budiharta, Sugeng; Meijaard, Erik; Wilson, Kerrie A; Erskine, Peter D; Rondinini, Carlo; Pacifici, Michela

    2014-01-01

    The extensive deforestation and degradation of tropical forests is a significant contributor to the loss of biodiversity and to global warming. Restoration could potentially mitigate the impacts of deforestation, yet knowledge on how to efficiently allocate funding for restoration is still in its infancy. We systematically prioritize investments in restoration in the tropical landscape of East Kalimantan, Indonesia, and through this application demonstrate the capacity to account for a diverse suite of restoration techniques and forests of varying condition. To achieve this we develop a map of forest degradation for the region, characterized on the basis of aboveground biomass and differentiated by broad forest types. We estimate the costs of restoration as well as the benefits in terms of carbon sequestration and improving the suitability of habitat for threatened mammals through time. When the objective is solely to enhance carbon stocks, then restoration of highly degraded lowland forest is the most cost-effective activity. However, if the objective is to improve the habitat of threatened species, multiple forest types should be restored and this reduces the accumulated carbon by up to 24%. Our analysis framework provides a transparent method for prioritizing where and how restoration should occur in heterogeneous landscapes in order to maximize the benefits for carbon and biodiversity. (letter)

  20. Restoring degraded tropical forests for carbon and biodiversity

    Science.gov (United States)

    Budiharta, Sugeng; Meijaard, Erik; Erskine, Peter D.; Rondinini, Carlo; Pacifici, Michela; Wilson, Kerrie A.

    2014-11-01

    The extensive deforestation and degradation of tropical forests is a significant contributor to the loss of biodiversity and to global warming. Restoration could potentially mitigate the impacts of deforestation, yet knowledge on how to efficiently allocate funding for restoration is still in its infancy. We systematically prioritize investments in restoration in the tropical landscape of East Kalimantan, Indonesia, and through this application demonstrate the capacity to account for a diverse suite of restoration techniques and forests of varying condition. To achieve this we develop a map of forest degradation for the region, characterized on the basis of aboveground biomass and differentiated by broad forest types. We estimate the costs of restoration as well as the benefits in terms of carbon sequestration and improving the suitability of habitat for threatened mammals through time. When the objective is solely to enhance carbon stocks, then restoration of highly degraded lowland forest is the most cost-effective activity. However, if the objective is to improve the habitat of threatened species, multiple forest types should be restored and this reduces the accumulated carbon by up to 24%. Our analysis framework provides a transparent method for prioritizing where and how restoration should occur in heterogeneous landscapes in order to maximize the benefits for carbon and biodiversity.

  1. Aspects of the carbon cycle in terrestrial ecosystems of Northeastern Smaaland

    Energy Technology Data Exchange (ETDEWEB)

    Tagesson, Torbern [Lund Univ., Geobiosphere Science Centre (Sweden). Physical Geography and Ecosystems Analysis

    2006-02-15

    Boreal and temperate ecosystems of the northern hemisphere are important for the future development of global climate. In this study, the carbon cycle has been studied in a pine forest, a meadow, a spruce forest and two deciduous forests in the Simpevarp investigation area in southern Sweden (57 deg 5 min N, 34 deg 55 min E). Ground respiration and ground Gross Primary Production (GPP) has been measured three times during spring 2004 with the closed chamber technique. Soil temperature, soil moisture and Photosynthetically Active Radiation (PAR) were also measured. An exponential regression with ground respiration against soil temperature was used to extrapolate respiration over spring 2004. A logarithmic regression with ground GPP against PAR was used to extrapolate GPP in meadow over spring 2004. Ground respiration is affected by soil temperature in all ecosystems but pine, but still it only explains a small part of the variation in respiration and this indicates that other abiotic factors also have an influence. Soil moisture affects respiration in spruce and one of the deciduous ecosystems. A comparison between measured and extrapolated ground respiration indicated that soil temperature could be used to extrapolate ground respiration. PAR is the main factor influencing GPP in all ecosystems but pine, still it could not be used to extrapolate GPP in meadow since too few measurements were done and they were from different periods of spring. Soil moisture did not have any significant effect on GPP. A Dynamic Global Vegetation Model, a DGVM called LPJ-GUESS, was downscaled to the Simpevarp investigation area. The downscaled DGVM was evaluated against measured respiration and soil organic acids for all five ecosystems. In meadow, it was evaluated against Net Primary Production, NPP. For the forest ecosystems, it was evaluated against tree layer carbon pools. The evaluation indicated that the DGVM is reasonably well downscaled to the Simpevarp investigation area and

  2. Aspects of the carbon cycle in terrestrial ecosystems of Northeastern Smaaland

    International Nuclear Information System (INIS)

    Tagesson, Torbern

    2006-02-01

    Boreal and temperate ecosystems of the northern hemisphere are important for the future development of global climate. In this study, the carbon cycle has been studied in a pine forest, a meadow, a spruce forest and two deciduous forests in the Simpevarp investigation area in southern Sweden (57 deg 5 min N, 34 deg 55 min E). Ground respiration and ground Gross Primary Production (GPP) has been measured three times during spring 2004 with the closed chamber technique. Soil temperature, soil moisture and Photosynthetically Active Radiation (PAR) were also measured. An exponential regression with ground respiration against soil temperature was used to extrapolate respiration over spring 2004. A logarithmic regression with ground GPP against PAR was used to extrapolate GPP in meadow over spring 2004. Ground respiration is affected by soil temperature in all ecosystems but pine, but still it only explains a small part of the variation in respiration and this indicates that other abiotic factors also have an influence. Soil moisture affects respiration in spruce and one of the deciduous ecosystems. A comparison between measured and extrapolated ground respiration indicated that soil temperature could be used to extrapolate ground respiration. PAR is the main factor influencing GPP in all ecosystems but pine, still it could not be used to extrapolate GPP in meadow since too few measurements were done and they were from different periods of spring. Soil moisture did not have any significant effect on GPP. A Dynamic Global Vegetation Model, a DGVM called LPJ-GUESS, was downscaled to the Simpevarp investigation area. The downscaled DGVM was evaluated against measured respiration and soil organic acids for all five ecosystems. In meadow, it was evaluated against Net Primary Production, NPP. For the forest ecosystems, it was evaluated against tree layer carbon pools. The evaluation indicated that the DGVM is reasonably well downscaled to the Simpevarp investigation area and

  3. Modeling carbon and nitrogen biogeochemistry in forest ecosystems

    Science.gov (United States)

    Changsheng Li; Carl Trettin; Ge Sun; Steve McNulty; Klaus Butterbach-Bahl

    2005-01-01

    A forest biogeochemical model, Forest-DNDC, was developed to quantify carbon sequestration in and trace gas emissions from forest ecosystems. Forest-DNDC was constructed by integrating two existing moels, PnET and DNDC, with several new features including nitrification, forest litter layer, soil freezing and thawing etc, PnET is a forest physiological model predicting...

  4. Uncertainties in mapping forest carbon in urban ecosystems.

    Science.gov (United States)

    Chen, Gang; Ozelkan, Emre; Singh, Kunwar K; Zhou, Jun; Brown, Marilyn R; Meentemeyer, Ross K

    2017-02-01

    Spatially explicit urban forest carbon estimation provides a baseline map for understanding the variation in forest vertical structure, informing sustainable forest management and urban planning. While high-resolution remote sensing has proven promising for carbon mapping in highly fragmented urban landscapes, data cost and availability are the major obstacle prohibiting accurate, consistent, and repeated measurement of forest carbon pools in cities. This study aims to evaluate the uncertainties of forest carbon estimation in response to the combined impacts of remote sensing data resolution and neighborhood spatial patterns in Charlotte, North Carolina. The remote sensing data for carbon mapping were resampled to a range of resolutions, i.e., LiDAR point cloud density - 5.8, 4.6, 2.3, and 1.2 pt s/m 2 , aerial optical NAIP (National Agricultural Imagery Program) imagery - 1, 5, 10, and 20 m. Urban spatial patterns were extracted to represent area, shape complexity, dispersion/interspersion, diversity, and connectivity of landscape patches across the residential neighborhoods with built-up densities from low, medium-low, medium-high, to high. Through statistical analyses, we found that changing remote sensing data resolution introduced noticeable uncertainties (variation) in forest carbon estimation at the neighborhood level. Higher uncertainties were caused by the change of LiDAR point density (causing 8.7-11.0% of variation) than changing NAIP image resolution (causing 6.2-8.6% of variation). For both LiDAR and NAIP, urban neighborhoods with a higher degree of anthropogenic disturbance unveiled a higher level of uncertainty in carbon mapping. However, LiDAR-based results were more likely to be affected by landscape patch connectivity, and the NAIP-based estimation was found to be significantly influenced by the complexity of patch shape. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. [Measurement model of carbon emission from forest fire: a review].

    Science.gov (United States)

    Hu, Hai-Qing; Wei, Shu-Jing; Jin, Sen; Sun, Long

    2012-05-01

    Forest fire is the main disturbance factor for forest ecosystem, and an important pathway of the decrease of vegetation- and soil carbon storage. Large amount of carbonaceous gases in forest fire can release into atmosphere, giving remarkable impacts on the atmospheric carbon balance and global climate change. To scientifically and effectively measure the carbonaceous gases emission from forest fire is of importance in understanding the significance of forest fire in the carbon balance and climate change. This paper reviewed the research progress in the measurement model of carbon emission from forest fire, which covered three critical issues, i. e., measurement methods of forest fire-induced total carbon emission and carbonaceous gases emission, affecting factors and measurement parameters of measurement model, and cause analysis of the uncertainty in the measurement of the carbon emissions. Three path selections to improve the quantitative measurement of the carbon emissions were proposed, i. e., using high resolution remote sensing data and improving algorithm and estimation accuracy of burned area in combining with effective fuel measurement model to improve the accuracy of the estimated fuel load, using high resolution remote sensing images combined with indoor controlled environment experiments, field measurements, and field ground surveys to determine the combustion efficiency, and combining indoor controlled environment experiments with field air sampling to determine the emission factors and emission ratio.

  6. Tropical forest carbon balance in a warmer world: a critical review spanning microbial- to ecosystem-scale processes

    Science.gov (United States)

    Wood, Tana E.; Cavaleri, Molly A.; Reed, Sasha C.

    2012-01-01

    Tropical forests play a major role in regulating global carbon (C) fluxes and stocks, and even small changes to C cycling in this productive biome could dramatically affect atmospheric carbon dioxide (CO2) concentrations. Temperature is expected to increase over all land surfaces in the future, yet we have a surprisingly poor understanding of how tropical forests will respond to this significant climatic change. Here we present a contemporary synthesis of the existing data and what they suggest about how tropical forests will respond to increasing temperatures. Our goals were to: (i) determine whether there is enough evidence to support the conclusion that increased temperature will affect tropical forest C balance; (ii) if there is sufficient evidence, determine what direction this effect will take; and, (iii) establish what steps should to be taken to resolve the uncertainties surrounding tropical forest responses to increasing temperatures. We approach these questions from a mass-balance perspective and therefore focus primarily on the effects of temperature on inputs and outputs of C, spanning microbial- to ecosystem-scale responses. We found that, while there is the strong potential for temperature to affect processes related to C cycling and storage in tropical forests, a notable lack of data combined with the physical, biological and chemical diversity of the forests themselves make it difficult to resolve this issue with certainty. We suggest a variety of experimental approaches that could help elucidate how tropical forests will respond to warming, including large-scale in situ manipulation experiments, longer term field experiments, the incorporation of a range of scales in the investigation of warming effects (both spatial and temporal), as well as the inclusion of a diversity of tropical forest sites. Finally, we highlight areas of tropical forest research where notably few data are available, including temperature effects on: nutrient cycling

  7. Carbon Storage of Forest Vegetation in China and its Relationship with Climatic Factors

    International Nuclear Information System (INIS)

    Zhao, M.; Zhou, Guang-Sheng

    2006-01-01

    Estimates of forest vegetation carbon storage in China varied due to different methods used in the assessments. In this paper, we estimated the forest vegetation carbon storage from the Fourth Forest Inventory Data (FFID) in China using a modified volume-derived method. Results showed that total carbon storage and mean carbon density of forest vegetation in China were 3.8 Pg C (about 1.1% of the global vegetation carbon stock) and 41.32 Mg/ha, respectively. In addition, based on linear multiple regression equation and factor analysis method, we analyzed contributions of biotic and abiotic factors (including mean forest age, mean annual temperature, annual precipitation, and altitude) to forest carbon storage. Our results indicated that forest vegetation carbon storage was more sensitive to changes of mean annual temperature than other factors, suggesting that global warming would seriously affect the forest carbon storage

  8. ANALYSIS OF URBAN FOREST CARBON SEQUESTRATION CAPACITY: A CASE STUDY OF ZENGDU, SUIZHOU

    Directory of Open Access Journals (Sweden)

    X. Yu

    2017-09-01

    Full Text Available Carbon-fixing and oxygen-releasing is an important content of forest ecosystem serving in city. Analysis of forest ecosystem carbon sequestration capacity can provide scientific reference for urban forest management strategies. Taking Zengdu of Suizhou as an example, CITYGREEN model was applied to calculate the carbon sequestration benefits of urban forest ecosystem in this paper. And the carbon sequestration potential of urban forest ecosystem following the returning of farmland to forest land is also evaluated. The results show that forest area, percent tree cover, and the structure of forest land were the major factors reflecting regional carbon sequestration capacity.

  9. Effects of climate, CO2 concentration, nitrogen deposition, and stand age changes on the carbon budget of China's forests

    Science.gov (United States)

    Zhang, C.; Ju, W.; Zhang, F.; Mao, D.; Wang, X.

    2017-12-01

    Forests play an irreplaceable role in the Earth's terrestrial carbon budget which retard the atmospheric CO2 buildup. Understanding the factors controlling forest carbon budget is critical for reducing uncertainties in projections of future climate. The relative importance of climate, atmospheric CO2 concentration, nitrogen deposition, and stand age changes on carbon budget, however, remains unclear for China's forests. In this study, we quantify individual contribution of these drivers to the trends of forest carbon budget in China from 1901 to 2012 by integrating national datasets, the updated Integrated Terrestrial Ecosystem Carbon Cycle (InTEC) model and factorial simulations. Results showed that the average carbon sink in China's forests from 1982 to 2012 was 186.9 Tg C yr-1 with 68% (127.6 Tg C yr-1) of the sink in living biomass because of the integrated effects of climate, atmospheric CO2 concentration, nitrogen deposition, and stand age factors. Compared with the simulation of all factors combined, the estimated carbon sink during 1901-2012 would be reduced by 41.8 Tg C yr-1 if climate change, atmospheric CO2 concentration and nitrogen deposition factors were omitted, and reduced by 25.0 Tg C yr-1 if stand age factor was omitted. In most decades, these factors increased forest carbon sinks with the largest of 101.3, 62.9, and 44.0 Tg C yr-1 from 2000 to 2012 contributed by stand age, CO2 concentration and nitrogen deposition, respectively. During 1901-2012, climate change, CO2 concentration, nitrogen deposition and stand age contributed -13.3, 21.4, 15.4 and 25.0 Tg C yr-1 to the averaged carbon sink of China's forests, respectively. Our study also showed diverse regional patterns of forest carbon budget related to the importance of driving factors. Stand age effect was the largest in most regions, but the effects of CO2 concentration and nitrogen deposition were dominant in southern China.

  10. Forest carbon emissions from cropland expansion in the Brazilian Cerrado biome

    Science.gov (United States)

    Noojipady, Praveen; Morton, C. Douglas; Macedo, N. Marcia; Victoria, C. Daniel; Huang, Chengquan; Gibbs, K. Holly; Edson Bolfe, L.

    2017-02-01

    Land use, land use change, and forestry accounted for two-thirds of Brazil’s greenhouse gas emissions profile in 2005. Amazon deforestation has declined by more than 80% over the past decade, yet Brazil’s forests extend beyond the Amazon biome. Rapid expansion of cropland in the neighboring Cerrado biome has the potential to undermine climate mitigation efforts if emissions from dry forest and woodland conversion negate some of the benefits of avoided Amazon deforestation. Here, we used satellite data on cropland expansion, forest cover, and vegetation carbon stocks to estimate annual gross forest carbon emissions from cropland expansion in the Cerrado biome. Nearly half of the Cerrado met Brazil’s definition of forest cover in 2000 (≥0.5 ha with ≥10% canopy cover). In areas of established crop production, conversion of both forest and non-forest Cerrado formations for cropland declined during 2003-2013. However, forest carbon emissions from cropland expansion increased over the past decade in Matopiba, a new frontier of agricultural production that includes portions of Maranhão, Tocantins, Piauí, and Bahia states. Gross carbon emissions from cropland expansion in the Cerrado averaged 16.28 Tg C yr-1 between 2003 and 2013, with forest-to-cropland conversion accounting for 29% of emissions. The fraction of forest carbon emissions from Matopiba was much higher; between 2010-2013, large-scale cropland conversion in Matopiba contributed 45% of total Cerrado forest carbon emissions. Carbon emissions from Cerrado-to-cropland transitions offset 5%-7% of the avoided emissions from reduced Amazon deforestation rates during 2011-2013. Comprehensive national estimates of forest carbon fluxes, including all biomes, are critical to detect cross-biome leakage within countries and achieve climate mitigation targets to reduce emissions from land use, land use change, and forestry.

  11. Radiocarbon and stable carbon isotope compositions of chemically fractionated soil organic matter in a temperate-zone forest

    International Nuclear Information System (INIS)

    Koarashi, Jun; Iida, Takao; Asano, Tomohiro

    2005-01-01

    To better understand the role of soil organic matter in terrestrial carbon cycle, carbon isotope compositions in soil samples from a temperate-zone forest were measured for bulk, acid-insoluble and base-insoluble organic matter fractions separated by a chemical fractionation method. The measurements also made it possible to estimate indirectly radiocarbon ( 14 C) abundances of acid- and base-soluble organic matter fractions, through a mass balance of carbon among the fractions. The depth profiles of 14 C abundances showed that (1) bomb-derived 14 C has penetrated the first 16 cm mineral soil at least; (2) Δ 14 C values of acid-soluble organic matter fraction are considerably higher than those of other fractions; and (3) a significant amount of the bomb-derived 14 C has been preserved as the base-soluble organic matter around litter-mineral soil boundary. In contrast, no or little bomb-derived 14 C was observed for the base-insoluble fraction in all sampling depths, indicating that this recalcitrant fraction, accounting for approximately 15% of total carbon in this temperate-zone forest soil, plays a role as a long-term sink in the carbon cycle. These results suggest that bulk soil organic matter cannot provide a representative indicator as a source or a sink of carbon in soil, particularly on annual to decadal timescales

  12. Framing REDD+ in India: Carbonizing and centralizing Indian forest governance?

    International Nuclear Information System (INIS)

    Vijge, Marjanneke J.; Gupta, Aarti

    2014-01-01

    Highlights: • We analyze whether India's REDD+ strategy induces carbonization and centralization. • REDD+ in India is framed as an opportunity for synergistic, decentralized governance. • Yet national safeguards are not as strong as asserted. • Controversial issues have so far been side-lined in India's REDD+ strategy. • Without investments, synergistic and decentralized REDD+ governance remains unlikely. - Abstract: This article analyzes the interaction of newly articulated climate governance goals with long-standing forest policies and practices in India. We focus on India's REDD+ (reducing emissions from deforestation and forest degradation and related forest activities) strategy, with a particular focus on the Green India Mission (GIM). The GIM calls for a doubling of the area for afforestation and reforestation in India in the next decade as a dominant climate mitigation strategy. We analyze how the GIM policy document frames carbon versus non-carbon benefits to be derived from forest-related activities; and how the GIM envisages division of authority (between national, regional and local levels) in its implementation. We are interested in assessing (a) whether the GIM promotes a “carbonization” of Indian forest governance, i.e. an increased focus on forest carbon at the expense of other ecosystem services; and (b) whether it promotes an increased centralization of forest governance in India through retaining or transferring authority and control over forest resources to national and state-level authorities, at the expense of local communities. We argue that the GIM frames the climate-forest interaction as an opportunity to synergistically enhance both carbon and non-carbon benefits to be derived from forests; while simultaneously promoting further decentralization of Indian forest governance. However, based on past experiences and developments to date, we conclude that without significant investments in community-based carbon and biodiversity

  13. Modelling the Carbon Stocks Estimation of the Tropical Lowland Dipterocarp Forest Using LIDAR and Remotely Sensed Data

    Science.gov (United States)

    Zaki, N. A. M.; Latif, Z. A.; Suratman, M. N.; Zainal, M. Z.

    2016-06-01

    Tropical forest embraces a large stock of carbon in the global carbon cycle and contributes to the enormous amount of above and below ground biomass. The carbon kept in the aboveground living biomass of trees is typically the largest pool and the most directly impacted by the anthropogenic factor such as deforestation and forest degradation. However, fewer studies had been proposed to model the carbon for tropical rain forest and the quantification still remain uncertainties. A multiple linear regression (MLR) is one of the methods to define the relationship between the field inventory measurements and the statistical extracted from the remotely sensed data which is LiDAR and WorldView-3 imagery (WV-3). This paper highlight the model development from fusion of multispectral WV-3 with the LIDAR metrics to model the carbon estimation of the tropical lowland Dipterocarp forest of the study area. The result shown the over segmentation and under segmentation value for this output is 0.19 and 0.11 respectively, thus D-value for the classification is 0.19 which is 81%. Overall, this study produce a significant correlation coefficient (r) between Crown projection area (CPA) and Carbon stocks (CS); height from LiDAR (H_LDR) and Carbon stocks (CS); and Crown projection area (CPA) and height from LiDAR (H_LDR) were shown 0.671, 0.709 and 0.549 respectively. The CPA of the segmentation found to be representative spatially with higher correlation of relationship between diameter at the breast height (DBH) and carbon stocks which is Pearson Correlation p = 0.000 (p using multiple linear regression method. The study concluded that the integration of WV-3 imagery with the CHM raster based LiDAR were useful in order to quantify the AGB and carbon stocks for a larger sample area of the Lowland Dipterocarp forest.

  14. Carbon Cycle Extremes in the 22nd and 23rd Century and Attribution to Climate Drivers

    Science.gov (United States)

    Sharma, B.; Hoffman, F. M.; Kumar, J.; Ganguly, A. R.

    2017-12-01

    Terrestrial ecosystems are affected by climate extremes such as droughts and heatwaves which have a potential to modify carbon budgets. Previous studies have found the impact of negative extremes in gross primary production (GPP) and net ecosystem production (NEP) to be diminishing towards the end of the 21st century relative to the overall increase in global carbon uptake. A few studies have estimated that the land use changes (e.g. from forest to croplands) would cause more cumulative carbon loss between 1850 and 2300 than due to climate change caused by anthropogenic forcing over the same interval. However, not many studies have looked at the impact of carbon cycle extremes beyond 21st century especially under with and without LULCC scenarios. This study aims to analyze spatiotemporal extreme events in GPP and NEP using the model CESM1-BGC and understand the climate drivers they can be attributed to. Using the Community Earth System Model (CESM1-BGC), we investigated the impact of climate extremes on the terrestrial ecosystem using simulations forced by Representative Concentration Pathway 8.5 with and without land-use and land-cover change (LULCC). To capture non-linear feedbacks in the global carbon cycle, both these simulations were extended to the year 2300. It is important to understand the impacts of climate extremes on the carbon cycle for quantifying carbon-cycle climate feedback and estimating future atmospheric CO2 levels and temperature increases. The results of this study would help improve our understanding of carbon cycle extremes and inform future mitigation policy.

  15. Unravelling property relations around forest carbon

    NARCIS (Netherlands)

    Mahanty, S.; Dressler, W.H.; Milne, S.; Filer, C.

    2013-01-01

    Market-based interventions to Reduce Emissions from Deforestation and Forest Degradation (REDD+) enable the carbon stored in land and forests to be traded as a new and intangible form of property. Using examples from Cambodia, the Philippines and Papua New Guinea, we examine the property

  16. Disturbance and the Carbon Balance of US Forests: A Quantitative Review of Impacts from Harvests, Fires, Insects, and Droughts

    Science.gov (United States)

    Williams, Christopher A.; Gu, Huan; MacLean, Richard; Masek, Jeffrey G.; Collatz, G. James

    2016-01-01

    Disturbances are a major determinant of forest carbon stocks and uptake. They generally reduce land carbon stocks but also initiate a regrowth legacy that contributes substantially to the contemporary rate of carbon stock increase in US forestlands. As managers and policy makers increasingly look to forests for climate protection and mitigation, and because of increasing concern about changes in disturbance intensity and frequency, there is a need for synthesis and integration of current understanding about the role of disturbances and other processes in governing forest carbon cycle dynamics, and the likely future of this and other sinks for atmospheric carbon. This paper aims to address that need by providing a quantitative review of the distribution, extent and carbon impacts of the major disturbances active in the US. We also review recent trends in disturbances, climate, and other global environmental changes and consider their individual and collective contributions to the US carbon budget now and in the likely future. Lastly, we identify some key challenges and opportunities for future research needed to improve current understanding, advance predictive capabilities, and inform forest management in the face of these pressures. Harvest is found to be the most extensive disturbance both in terms of area and carbon impacts, followed by fire, windthrow and bark beetles, and lastly droughts. Collectively these lead to the gross loss of about 200 Tg C y(exp -1) in live biomass annually across the conterminous US. At the same time, the net change in forest carbon stocks is positive (190 Tg C y(exp -1)), indicating not only forest resilience but also an apparently large response to growth enhancements such as fertilization by CO2 and nitrogen. Uncertainty about disturbance legacies, disturbance interactions, likely trends, and global change factors make the future of the US forest carbon sink unclear. While there is scope for management to enhance carbon sinks in US

  17. Carbon dioxide flux measurements from a coastal Douglas-fir forest floor

    International Nuclear Information System (INIS)

    Drewitt, G.B.

    2002-01-01

    This thesis examined the process that affects the exchange of carbon between the soil and the atmosphere with particular attention to the large amounts of carbon stored in soils in the form of decaying organic matter. This forest floor measuring study was conducted in 2000 at a micro-meteorological tower flux site in a coastal temperature Douglas-fir forest. The measuring study involved half hourly measurements of both carbon dioxide and below-ground carbon dioxide storage. Measurements were taken at 6 locations between April and December to include a large portion of the growing season. Eddy covariance (EC) measurements of carbon dioxide flux above the forest floor over a two month period in the summer and the autumn were compared with forest floor measurements. Below-ground carbon dioxide mixing ratios of soil air were measured at 6 depths between 0.02 to 1 m using gas diffusion probes and a syringe sampling method. Maximum carbon dioxide fluxes measured by the soil chambers varied by a factor of 3 and a high spatial variability in soil carbon dioxide flux was noted. Forest floor carbon dioxide fluxes measured by each of the chambers indicated different sensitivities to soil temperature. Hysteresis in the flux temperature relationship over the year was evident. Reliable below-canopy EC measurements of the forest floor carbon dioxide flux were difficult to obtain because of the every low wind speeds below the forest canopy. The amount of carbon dioxde present in the soil increased rapidly with depth near the surface but less rapidly deeper in the soil. It was suggested that approximately half of the carbon dioxide produced below-ground comes from between the soil surface and the first 0.15 m of depth. Carbon dioxide fluxes from the floor of a Douglas-fir forest were found to be large compared to other, less productive ecosystems

  18. Using forest carbon credits to offset emissions in the downstream business

    NARCIS (Netherlands)

    Hein, Lars

    2017-01-01

    A forthcoming report by Concawe, entitled Using Forest Carbon Credits to Offset Emissions in the Downstream Business, investigated whether, and how, forest carbon credits can be used to offset emissions from the European refining and road transport sectors. Forest carbon plays a major role in the

  19. Nitrogen Oxide Fluxes and Nitrogen Cycling during Postagricultural Succession and Forest Fertilization in the Humid Tropics.

    Science.gov (United States)

    Heather Erickson; Michael Keller; Eric Davidson

    2001-01-01

    The effects of changes in tropical land use on soil emissions of nitrous oxide (N2O) and nitric oxide (NO) are not well understood. We examined emissions of N2O and NO and their relationships to land use and forest composition, litterfall, soil nitrogen (N) pools and turnover, soil moisture, and patterns of carbon (C) cycling in a lower montane, subtropical wet region...

  20. Assessing fire impacts on the carbon stability of fire-tolerant forests.

    Science.gov (United States)

    Bennett, Lauren T; Bruce, Matthew J; Machunter, Josephine; Kohout, Michele; Krishnaraj, Saravanan Jangammanaidu; Aponte, Cristina

    2017-12-01

    The carbon stability of fire-tolerant forests is often assumed but less frequently assessed, limiting the potential to anticipate threats to forest carbon posed by predicted increases in forest fire activity. Assessing the carbon stability of fire-tolerant forests requires multi-indicator approaches that recognize the myriad ways that fires influence the carbon balance, including combustion, deposition of pyrogenic material, and tree death, post-fire decomposition, recruitment, and growth. Five years after a large-scale wildfire in southeastern Australia, we assessed the impacts of low- and high-severity wildfire, with and without prescribed fire (≤10 yr before), on carbon stocks in multiple pools, and on carbon stability indicators (carbon stock percentages in live trees and in small trees, and carbon stocks in char and fuels) in fire-tolerant eucalypt forests. Relative to unburned forest, high-severity wildfire decreased short-term (five-year) carbon stability by significantly decreasing live tree carbon stocks and percentage stocks in live standing trees (reflecting elevated tree mortality), by increasing the percentage of live tree carbon in small trees (those vulnerable to the next fire), and by potentially increasing the probability of another fire through increased elevated fine fuel loads. In contrast, low-severity wildfire enhanced carbon stability by having negligible effects on aboveground stocks and indicators, and by significantly increasing carbon stocks in char and, in particular, soils, indicating pyrogenic carbon accumulation. Overall, recent preceding prescribed fire did not markedly influence wildfire effects on short-term carbon stability at stand scales. Despite wide confidence intervals around mean stock differences, indicating uncertainty about the magnitude of fire effects in these natural forests, our assessment highlights the need for active management of carbon assets in fire-tolerant eucalypt forests under contemporary fire regimes

  1. Biomass Carbon Content in Schima- Castanopsis Forest of Midhills of Nepal: A Case Study from Jaisikuna Community Forest, Kaski

    Directory of Open Access Journals (Sweden)

    Sushma Tripathi

    2018-01-01

    Full Text Available Community forests of Nepal’s midhills have high potentiality to sequester carbon. This paper tries to analyze the biomass carbon stock in Schima-Castanopsis forest of Jaisikuna community forests of Kaski district, Nepal. Forest area was divided into two blocks and 18 sample plots (9 in each block which were laid randomly. Diameter at Breast Height (DBH and height of trees (DBH≥5cm were measured using the DBH tape and clinometer. Leaf litter, herbs, grasses and seedlings were collected from 1*1m2 plot and fresh weight was taken. For calculating carbon biomass is multiplied by default value 0.47. The AGTB carbon content of Chilaune, Katus and other species were found 19.56 t/ha, 18.66 t/ha and 3.59 t/ha respectively. The AGTB of Chilaune dominated, Katus dominated and whole forest was found 43.78 t/ha, 39.83 t/ha and 41.81 t/ha respectively. Carbon content at leaf litter, herbs, grasses and seedlings was found 2.73 t/ha. Below ground biomass carbon at whole forest was found 6.27 t/ha. Total biomass and carbon of the forest was found 108.09 t/ha and 50.80 t/ha respectively. Difference in biomass and carbon content at Chilaune dominated block and Katus dominated block was found insignificant. This study record very low biomass carbon content than average of Nepal's forest but this variation in carbon stock is not necessarily due to dominant species present in the forest. Carbon estimation at forest of different elevation, aspect and location are recommended for further research. International Journal of EnvironmentVolume-6, Issue-4, Sep-Nov 2017, page: 72-84

  2. Quantifying above- and belowground biomass carbon loss with forest conversion in tropical lowlands of Sumatra (Indonesia).

    Science.gov (United States)

    Kotowska, Martyna M; Leuschner, Christoph; Triadiati, Triadiati; Meriem, Selis; Hertel, Dietrich

    2015-10-01

    Natural forests in South-East Asia have been extensively converted into other land-use systems in the past decades and still show high deforestation rates. Historically, lowland forests have been converted into rubber forests, but more recently, the dominant conversion is into oil palm plantations. While it is expected that the large-scale conversion has strong effects on the carbon cycle, detailed studies quantifying carbon pools and total net primary production (NPPtotal ) in above- and belowground tree biomass in land-use systems replacing rainforest (incl. oil palm plantations) are rare so far. We measured above- and belowground carbon pools in tree biomass together with NPPtotal in natural old-growth forests, 'jungle rubber' agroforests under natural tree cover, and rubber and oil palm monocultures in Sumatra. In total, 32 stands (eight plot replicates per land-use system) were studied in two different regions. Total tree biomass in the natural forest (mean: 384 Mg ha(-1) ) was more than two times higher than in jungle rubber stands (147 Mg ha(-1) ) and >four times higher than in monoculture rubber and oil palm plantations (78 and 50 Mg ha(-1) ). NPPtotal was higher in the natural forest (24 Mg ha(-1)  yr(-1) ) than in the rubber systems (20 and 15 Mg ha(-1)  yr(-1) ), but was highest in the oil palm system (33 Mg ha(-1)  yr(-1) ) due to very high fruit production (15-20 Mg ha(-1)  yr(-1) ). NPPtotal was dominated in all systems by aboveground production, but belowground productivity was significantly higher in the natural forest and jungle rubber than in plantations. We conclude that conversion of natural lowland forest into different agricultural systems leads to a strong reduction not only in the biomass carbon pool (up to 166 Mg C ha(-1) ) but also in carbon sequestration as carbon residence time (i.e. biomass-C:NPP-C) was 3-10 times higher in the natural forest than in rubber and oil palm plantations. © 2015 John Wiley & Sons Ltd.

  3. The paper of the forests like retainers of carbon, an experience in the south of Mexico

    International Nuclear Information System (INIS)

    De Jong, Ben H; Soto Pinto, Lorena; Montoya Gomez, Guillermo; Nelson, Kristen; Taylor John; Tipper, Richard

    1999-01-01

    The forests play an important paper in the global cycle of the carbon. At the moment, the deforestation is responsible for approximately 1.8GtC (gigatons of carbon), 20% of the global annual emissions of carbonic gas caused by the human activity. However, it is calculated that the reforestation could retain from 50 to 150 GtC along next 50 years. Concepts related with the retention of carbon are discussed. The necessity is commented of carrying out the regulation of an international market in retention of carbon with the purpose of being able to maintain acceptable norms in the reforestation projects that are executed under this program

  4. The nuclear fuel cycle versus the carbon cycle

    International Nuclear Information System (INIS)

    Ewing, R.C.

    2005-01-01

    Nuclear power provides approximately 17% of the world's electricity, which is equivalent to a reduction in carbon emissions of ∼0.5 gigatonnes (Gt) of C/yr. This is a modest reduction as compared with global emissions of carbon, ∼7 Gt C/yr. Most analyses suggest that in order to have a significant and timely impact on carbon emissions, carbon-free sources, such as nuclear power, would have to expand total production of energy by factors of three to ten by 2050. A three-fold increase in nuclear power capacity would result in a projected reduction in carbon emissions of 1 to 2 Gt C/yr, depending on the type of carbon-based energy source that is displaced. This three-fold increase utilizing present nuclear technologies would result in 25,000 metric tonnes (t) of spent nuclear fuel (SNF) per year, containing over 200 t of plutonium. This is compared to a present global inventory of approximately 280,000 t of SNF and >1,700 t of Pu. A nuclear weapon can be fashioned from as little as 5 kg of 239 Pu. However, there is considerable technological flexibility in the nuclear fuel cycle. There are three types of nuclear fuel cycles that might be utilized for the increased production of energy: open, closed, or a symbiotic combination of different types of reactor (such as, thermal and fast neutron reactors). The neutron energy spectrum has a significant effect on the fission product yield, and the consumption of long-lived actinides, by fission, is best achieved by fast neutrons. Within each cycle, the volume and composition of the high-level nuclear waste and fissile material depend on the type of nuclear fuel, the amount of burn-up, the extent of radionuclide separation during reprocessing, and the types of materials used to immobilize different radionuclides. As an example, a 232 Th-based fuel cycle can be used to breed fissile 233 U with minimum production of Pu. In this paper, I will contrast the production of excess carbon in the form of CO 2 from fossil fuels with

  5. Carbon stocks in tree biomass and soils of German forests

    Directory of Open Access Journals (Sweden)

    Wellbrock Nicole

    2017-06-01

    Full Text Available Close to one third of Germany is forested. Forests are able to store significant quantities of carbon (C in the biomass and in the soil. Coordinated by the Thünen Institute, the German National Forest Inventory (NFI and the National Forest Soil Inventory (NFSI have generated data to estimate the carbon storage capacity of forests. The second NFI started in 2002 and had been repeated in 2012. The reporting time for the NFSI was 1990 to 2006. Living forest biomass, deadwood, litter and soils up to a depth of 90 cm have stored 2500 t of carbon within the reporting time. Over all 224 t C ha-1 in aboveground and belowground biomass, deadwood and soil are stored in forests. Specifically, 46% stored in above-ground and below-ground biomass, 1% in dead wood and 53% in the organic layer together with soil up to 90 cm. Carbon stocks in mineral soils up to 30 cm mineral soil increase about 0.4 t C ha-1 yr-1 stocks between the inventories while the carbon pool in the organic layers declined slightly. In the living biomass carbon stocks increased about 1.0 t C ha-1 yr-1. In Germany, approximately 58 mill. tonnes of CO2 were sequestered in 2012 (NIR 2017.

  6. Strong carbon sink of monsoon tropical seasonal forest in Southern Vietnam

    Science.gov (United States)

    Deshcherevskaya, Olga; Anichkin, Alexandr; Avilov, Vitaly; Duy Dinh, Ba; Luu Do, Phong; Huan Tran, Cong; Kurbatova, Julia

    2014-05-01

    -1, from carbon source to the strong sink. Storage total for all the year was near-zero, but in our case including of storage resulted in gap-filling regression changes with corresponding change in total carbon balance. Probably the only way for proper net carbon balance evaluation for NCT site is chamber-measurements of night respiration of different ecosystem components, as used at Pasoh EC station, Malaysia. Ciais P., Piao S.L., Cadule P., Friedlingstein P., & Chedin A. Variability and recent trends in the African carbon balance. Biogeosciences Discussions, 5(4), 2008. Pp. 3497-3532. Clark D.A. Sources or sinks? The responses of tropical forests to current and future climate and atmospheric composition. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 359(1443), 2004. Pp. 477-491. Gifford, R. M. (1994). The global carbon cycle: a viewpoint on the missing sink. Functional Plant Biology, 21(1), 1-15. Kosugi Y., Takanashi S., Tani M., Ohkubo S., Matsuo N., Itoh M., Noguchi S. & Nik A.R. Effect of inter-annual climate variability on evapotranspiration and canopy CO2 exchange of a tropical rainforest in Peninsular Malaysia. Journal of forest research, 17(3), 2012. Pp. 227-240. Malhi, Y. (2010). The carbon balance of tropical forest regions, 1990-2005. Current Opinion in Environmental Sustainability, 2(4), 237-244. Saigusa, N., Yamamoto, S., Hirata, R., Ohtani, Y., Ide, R., Asanuma, J., ... & Wang, H. (2008). Temporal and spatial variations in the seasonal patterns of CO2 flux in boreal, temperate, and tropical forests in East Asia. Agricultural and forest meteorology, 148(5), 700-713.

  7. Measuring the effect of fuel treatments on forest carbon using landscape risk analysis

    Directory of Open Access Journals (Sweden)

    A. A. Ager

    2010-12-01

    Full Text Available Wildfire simulation modelling was used to examine whether fuel reduction treatments can potentially reduce future wildfire emissions and provide carbon benefits. In contrast to previous reports, the current study modelled landscape scale effects of fuel treatments on fire spread and intensity, and used a probabilistic framework to quantify wildfire effects on carbon pools to account for stochastic wildfire occurrence. The study area was a 68 474 ha watershed located on the Fremont-Winema National Forest in southeastern Oregon, USA. Fuel reduction treatments were simulated on 10% of the watershed (19% of federal forestland. We simulated 30 000 wildfires with random ignition locations under both treated and untreated landscapes to estimate the change in burn probability by flame length class resulting from the treatments. Carbon loss functions were then calculated with the Forest Vegetation Simulator for each stand in the study area to quantify change in carbon as a function of flame length. We then calculated the expected change in carbon from a random ignition and wildfire as the sum of the product of the carbon loss and the burn probabilities by flame length class. The expected carbon difference between the non-treatment and treatment scenarios was then calculated to quantify the effect of fuel treatments. Overall, the results show that the carbon loss from implementing fuel reduction treatments exceeded the expected carbon benefit associated with lowered burn probabilities and reduced fire severity on the treated landscape. Thus, fuel management activities resulted in an expected net loss of carbon immediately after treatment. However, the findings represent a point in time estimate (wildfire immediately after treatments, and a temporal analysis with a probabilistic framework used here is needed to model carbon dynamics over the life cycle of the fuel treatments. Of particular importance is the long-term balance between emissions from the

  8. Measuring the effect of fuel treatments on forest carbon using landscape risk analysis

    Science.gov (United States)

    Ager, A. A.; Finney, M. A.; McMahan, A.; Cathcart, J.

    2010-12-01

    Wildfire simulation modelling was used to examine whether fuel reduction treatments can potentially reduce future wildfire emissions and provide carbon benefits. In contrast to previous reports, the current study modelled landscape scale effects of fuel treatments on fire spread and intensity, and used a probabilistic framework to quantify wildfire effects on carbon pools to account for stochastic wildfire occurrence. The study area was a 68 474 ha watershed located on the Fremont-Winema National Forest in southeastern Oregon, USA. Fuel reduction treatments were simulated on 10% of the watershed (19% of federal forestland). We simulated 30 000 wildfires with random ignition locations under both treated and untreated landscapes to estimate the change in burn probability by flame length class resulting from the treatments. Carbon loss functions were then calculated with the Forest Vegetation Simulator for each stand in the study area to quantify change in carbon as a function of flame length. We then calculated the expected change in carbon from a random ignition and wildfire as the sum of the product of the carbon loss and the burn probabilities by flame length class. The expected carbon difference between the non-treatment and treatment scenarios was then calculated to quantify the effect of fuel treatments. Overall, the results show that the carbon loss from implementing fuel reduction treatments exceeded the expected carbon benefit associated with lowered burn probabilities and reduced fire severity on the treated landscape. Thus, fuel management activities resulted in an expected net loss of carbon immediately after treatment. However, the findings represent a point in time estimate (wildfire immediately after treatments), and a temporal analysis with a probabilistic framework used here is needed to model carbon dynamics over the life cycle of the fuel treatments. Of particular importance is the long-term balance between emissions from the decay of dead trees

  9. Effects of nitrogen additions on above- and belowground carbon dynamics in two tropical forests

    Energy Technology Data Exchange (ETDEWEB)

    Cusack, D.; Silver, W.L.; Torn, M.S.; McDowell, W.H.

    2011-04-15

    Anthropogenic nitrogen (N) deposition is increasing rapidly in tropical regions, adding N to ecosystems that often have high background N availability. Tropical forests play an important role in the global carbon (C) cycle, yet the effects of N deposition on C cycling in these ecosystems are poorly understood. We used a field N-fertilization experiment in lower and upper elevation tropical rain forests in Puerto Rico to explore the responses of above- and belowground C pools to N addition. As expected, tree stem growth and litterfall productivity did not respond to N fertilization in either of these Nrich forests, indicating a lack of N limitation to net primary productivity (NPP). In contrast, soil C concentrations increased significantly with N fertilization in both forests, leading to larger C stocks in fertilized plots. However, different soil C pools responded to N fertilization differently. Labile (low density) soil C fractions and live fine roots declined with fertilization, while mineral-associated soil C increased in both forests. Decreased soil CO2 fluxes in fertilized plots were correlated with smaller labile soil C pools in the lower elevation forest (R2 = 0.65, p\\0.05), and with lower live fine root biomass in the upper elevation forest (R2 = 0.90, p\\0.05). Our results indicate that soil C storage is sensitive to N deposition in tropical forests, even where plant productivity is not N-limited. The mineral-associated soil C pool has the potential to respond relatively quickly to N additions, and can drive increases in bulk soil C stocks in tropical forests.

  10. [Contribution of tropical upland forests to carbon storage in Colombia].

    Science.gov (United States)

    Yepes, Adriana; Herrera, Johana; Phillips, Juan; Galindo, Gustavo; Granados, Edwin; Duque, Alvaro; Barbosa, Adriana; Olarte, Claudia; Cardona, María

    2015-03-01

    The tropical montane forests in the Colombian Andean region are located above 1500 m, and have been heavily deforested. Despite the general presumption that productivity and hence carbon stocks in these ecosystems are low, studies in this regard are scarce. This study aimed to (i) to estimate Above Ground Biomass (AGB) in forests located in the South of the Colombian Andean region, (ii) to identify the carbon storage potential of tropical montane forests dominated by the black oak Colombobalanus excelsa and to identify the relationship between AGB and altitude, and (iii) to analyze the role of tropical mountain forests in conservation mechanisms such as Payment for Environmental Services (PES) and Reducing Emissions from Deforestation and Degradation (REDD+). Twenty six 0.25 ha plots were randomly distributed in the forests and all trees with D > or =10 cm were measured. The results provided important elements for understanding the role of tropical montane forests as carbon sinks. The information produced can be used in subnational initiatives, which seek to mitigate or reduce the effects of deforestation through management or conservation of these ecosystems, like REDD+ or PES. The AGB and carbon stocks results obtained were similar to those reported for lowland tropical forests. These could be explained by the dominance and abundance of C. excelsa, which accounted for over 81% of AGB/carbon. The error associated with the estimates of AGB/carbon was 10.58%. We found a negative and significant relationship between AGB and altitude, but the higher AGB values were in middle altitudes (approximatly = 700-1800 m), where the environmental conditions could be favorable to their growth. The carbon storage potential of these forests was higher. However, if the historical rate of the deforestation in the study area continues, the gross emissions of CO2e to the atmosphere could turn these forests in to an important emissions source. Nowadays, it is clear that tropical

  11. Changes in carbon pool and stand structure of a native subtropical mangrove forest after inter-planting with exotic species Sonneratia apetala.

    Science.gov (United States)

    Lu, Weizhi; Yang, Shengchang; Chen, Luzhen; Wang, Wenqing; Du, Xiaona; Wang, Canmou; Ma, Yan; Lin, Guangxuan; Lin, Guanghui

    2014-01-01

    In this study, we compared stand structure, biomass and soil carbon pools, and litterfall production between a mixed mangrove forest consisting of Aegiceras corniculatum inter-planted with the exotic Sonneratia apetala and a native monospecific forest dominated by A. corniculatum in the intertidal area of Zhanjiang, Guangdong Province, southeast China. The goal of this study was to test the hypothesis that inter-planting fast growing exotic mangrove S. apetala into subtropical native mangrove forests will significantly increase C sequestration. Although the tree heights and basal diameters of S. apetala were significantly higher than those of A. corniculatum, the density of the 12-year-old S. apetala trees in the mixed forest was much smaller than that of A. corniculatum in the monospecific forest. In contrast to several previous studies on S. apetala forests planted directly on mangrove-free mudflats, the mixed mangrove forest showed no significant difference in either standing biomass or soil carbon pools from the native monospecific mangrove forest (p = 0.294 and 0.073, respectively) twelve years after inter-planting with S. apetala. Moreover, carbon cycling was likely speeded up after inter-planting S. apetala due to higher litterfall input and lower C/N ratio. Thus, inter-planting fast-growing S. apetala into native mangrove forest is not an effective way to increase carbon sequestration in this subtropical mangrove forest. Given that exotic plant species may exert negative impact on native mangrove species and related epifauna, this fast-growing mangrove species is not suitable for mangrove plantation projects aiming mainly at enhancing carbon sequestration.

  12. Uncovering the Minor Contribution of Land-Cover Change in Upland Forests to the Net Carbon Footprint of a Boreal Hydroelectric Reservoir.

    Science.gov (United States)

    Dessureault, Pierre-Luc; Boucher, Jean-François; Tremblay, Pascal; Bouchard, Sylvie; Villeneuve, Claude

    2015-07-01

    Hydropower in boreal conditions is generally considered the energy source emitting the least greenhouse gas per kilowatt-hour during its life cycle. The purpose of this study was to assess the relative contribution of the land-use change on the modification of the carbon sinks and sources following the flooding of upland forested territories to create the Eastmain-1 hydroelectric reservoir in Quebec's boreal forest using Carbon Budget Model of the Canadian Forest Sector. Results suggest a carbon sink loss after 100 yr of 300,000 ± 100,000 Mg CO equivalents (COe). A wildfire sensitivity analysis revealed that the ecosystem would have acted as a carbon sink as long as carbon flux estimate resulted in emissions of 4 ± 2 g COe kWh as a contribution to the carbon footprint calculation, one-eighth what was obtained in a recent study that used less precise and less sensitive estimates. Consequently, this study significantly reduces the reported net carbon footprint of this reservoir and reveals how negligible the relative contribution of the land-use change in upland forests to the total net carbon footprint of a hydroelectric reservoir in the boreal zone can be. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  13. Impact of the Mountain Pine Beetle on the Forest Carbon Cycle in British Columbia from 1999 TO 2008 (Invited)

    Science.gov (United States)

    Chen, J. M.; Czurylowicz, P.; Mo, G.; Black, T. A.

    2013-12-01

    The unprecedented mountain pine beetle (Dendroctonus ponderosae) (MPB) outbreak in British Columbia starting in 1998 affected about 50% of the lodgepole pine (Pinus contorta var. latifolia) forests occupying about 50% of the land area of the province. The impact of this outbreak on the C cycle is assessed in this study. Annual leaf area index (LAI) maps of the affected area from 1999 to 2008 were produced using SPOT VEGETATION data, and net ecosystem production (NEP) was modeled using inputs of LAI, land cover, soil texture and daily meteorological data with the Boreal Ecosystem Productivity Simulator (BEPS). Both LAI and NEP were validated using field measurements. LAI was found to decrease on average by 20% compared to pre-outbreak conditions, while NEP decreased on average by 90%. Annual NEP values ranged from 2.4 to -8.0 Tg C between 1999 and 2008, with the ecosystem changing from a carbon sink to a carbon source in 2000. The annual average NEP was -2.9 Tg C over the 10 years, resulting in a total loss of carbon of 29 Tg C to the atmosphere. The inter-annual variability of both LAI and NEP was characterized by substantial initial decreases followed by steady increases from 2006 to 2008 with NEP returning to near carbon neutrality in 2008 (-1.8 Pg C/y). The impact of this MPB outbreak appears to be less dramatic than previously anticipated. The apparent fast recovery of LAI and NEP after MPB attacks is examined under the framework of ecosystem resilience which was manifested in the form of secondary overstory and understory growth and increased production of non-attacked host trees.

  14. Size and frequency of natural forest disturbances and the Amazon forest carbon balance

    Science.gov (United States)

    F.D.B. Espirito-Santo; M. Gloor; M. Keller; Y. Malhi; S. Saatchi; B. Nelson; R.C. Oliveira Junior; C. Pereira; J. Lloyd; S. Frolking; M. Palace; Y.E. Shimabukuro; V. Duarte; A. Monteagudo Mendoza; G. Lopez-Gonzalez; T.R. Baker; T.R. Feldpausch; R.J.W. Brienen; G.P. Asner; D.S. Boyd; O.L. Phillips

    2014-01-01

    Forest inventory studies in the Amazon indicate a large terrestrial carbon sink. However, field plots may fail to represent forest mortality processes at landscape-scales of tropical forests. Here we characterize the frequency distribution of disturbance events in natural forests from 0.01 ha to 2,651 ha size throughout Amazonia using a novel...

  15. Carbon and nitrogen cycling in southwestern ponderosa fine forests

    Science.gov (United States)

    Stephen C. Hart; Paul C. Selmants; Sarah I. Boyle; Steven T. Overby

    2007-01-01

    Ponderosa pine forests of the southwestern United States were historically characterized by relatively open, parklike stands with a bunchgrass-dominated understory. This forest structure was maintained by frequent, low-intensity surface fires. Heavy livestock grazing, fire suppression, and favorable weather conditions following Euro-American settlement in the late 19th...

  16. Forest management techniques for carbon dioxide storage

    Energy Technology Data Exchange (ETDEWEB)

    Fujimori, Takao [Forestry and Forest Products Research Inst., Tsukuba, Ibaraki (Japan)

    1993-12-31

    In the global ecosystem concerning carbon dioxide content in the atmosphere, the forest ecosystem plays an important role. In effect, the ratio of forest biomass to total terrestrial biomass is about 90%, and the ratio of carbon stored in the forest biomass to that in the atmosphere is two thirds. When soils and detritus of forests are added, there is more C stored in forests than in the atmosphere, about 1.3 times or more. Thus, forests can be regarded as the great holder of C on earth. If the area of forest land on the earth is constantly maintained and forests are in the climax stage, the uptake of C and the release of C by and from the forests will balance. In this case, forests are neither sinks nor sources of CO{sub 2} although they store a large amount of C. However, when forests are deforested, they become a source of C; through human activities, forests have become a source of C. According to a report by the IPCC, 1.6{+-}1.2 PgC is annually added to the atmosphere by deforestation. According to the FAO (1992), the area of land deforested annually in the tropics from 1981 to 1990 was 16.9 x 10{sup 6} ha. This value is nearly half the area of Japanese land. The most important thing for the CO{sub 2} environment concerning forests is therefore how to reduce deforestation and to successfully implement a forestation or reforestation.

  17. Estimating Carbon Dynamics in an Intact Lowland Mixed Dipterocarp Forest Using a Forest Carbon Model

    Directory of Open Access Journals (Sweden)

    Jongyeol Lee

    2017-04-01

    Full Text Available Intact dipterocarp forests in Asia act as crucial carbon (C reservoirs, and it is therefore important to investigate the C dynamics in these forests. We estimated C dynamics, together with net ecosystem production (NEP, in an intact tropical dipterocarp forest of Brunei Darussalam. Fifty-four simulation units (plots; 20 m × 20 m were established and initial C stocks were determined via direct field measurement. The C dynamics were annually simulated with a regression model and the Forest Biomass and Dead organic matter Carbon (FBDC model. The initial C stock (Mg C·ha−1 of biomass, litter, dead wood and mineral soil were 213.1 ± 104.8, 2.0 ± 0.8, 31.3 ± 38.8, and 80.7 ± 15.5, respectively. Their annual changes (Mg C·ha−1·year−1 were 3.2 ± 1.1, 0.2 ± 0.2, −3.7 ± 6.1, and −0.3 ± 1.1, respectively. NEP was −0.6 ± 6.1 Mg C·ha−1·year−1, showing large heterogeneity among the plots. The initial C stocks of biomass and dead wood, biomass turnover rates and dead wood decay rates were elucidated as dominant factors determining NEP in a sensitivity analysis. Accordingly, investigation on those input data can constrain an uncertainty in determining NEP in the intact tropical forests.

  18. Historical forest baselines reveal potential for continued carbon sequestration

    Science.gov (United States)

    Rhemtulla, Jeanine M.; Mladenoff, David J.; Clayton, Murray K.

    2009-01-01

    One-third of net CO2 emissions to the atmosphere since 1850 are the result of land-use change, primarily from the clearing of forests for timber and agriculture, but quantifying these changes is complicated by the lack of historical data on both former ecosystem conditions and the extent and spatial configuration of subsequent land use. Using fine-resolution historical survey records, we reconstruct pre-EuroAmerican settlement (1850s) forest carbon in the state of Wisconsin, examine changes in carbon after logging and agricultural conversion, and assess the potential for future sequestration through forest recovery. Results suggest that total above-ground live forest carbon (AGC) fell from 434 TgC before settlement to 120 TgC at the peak of agricultural clearing in the 1930s and has since recovered to approximately 276 TgC. The spatial distribution of AGC, however, has shifted significantly. Former savanna ecosystems in the south now store more AGC because of fire suppression and forest ingrowth, despite the fact that most of the region remains in agriculture, whereas northern forests still store much less carbon than before settlement. Across the state, continued sequestration in existing forests has the potential to contribute an additional 69 TgC. Reforestation of agricultural lands, in particular, the formerly high C-density forests in the north-central region that are now agricultural lands less optimal than those in the south, could contribute 150 TgC. Restoring historical carbon stocks across the landscape will therefore require reassessing overall land-use choices, but a range of options can be ranked and considered under changing needs for ecosystem services. PMID:19369213

  19. An assessment of forest landowner interest in selling forest carbon credits in the Lake States, USA

    Science.gov (United States)

    Kristell A. Miller; Stephanie A. Snyder; Michael A. Kilgore

    2012-01-01

    The nation's family forest lands can be an important contributor to carbon sequestration efforts. Yet very little is known about how family forest landowners view programs that enable them to sell carbon credits generated from the growth of their forest and the compensation that would be required to encourage a meaningful level of participation. To address this...

  20. The decadal state of the terrestrial carbon cycle

    NARCIS (Netherlands)

    Velde, van der I.R.; Bloom, J.; Exbrayat, J.; Feng, L.; Williams, M.

    2016-01-01

    The terrestrial carbon cycle is currently the least constrained component of the global carbon budget. Large uncertainties stem from a poor understanding of plant carbon allocation, stocks, residence times, and carbon use efficiency. Imposing observational constraints on the terrestrial carbon cycle

  1. Short and long-term carbon balance of bioenergy electricity production fueled by forest treatments

    OpenAIRE

    Kelsey, Katharine C; Barnes, Kallie L; Ryan, Michael G; Neff, Jason C

    2014-01-01

    Background Forests store large amounts of carbon in forest biomass, and this carbon can be released to the atmosphere following forest disturbance or management. In the western US, forest fuel reduction treatments designed to reduce the risk of high severity wildfire can change forest carbon balance by removing carbon in the form of biomass, and by altering future potential wildfire behavior in the treated stand. Forest treatment carbon balance is further affected by the fate of this biomass ...

  2. Carbon sequestration in managed temperate coniferous forests under climate change

    Science.gov (United States)

    Dymond, Caren C.; Beukema, Sarah; Nitschke, Craig R.; Coates, K. David; Scheller, Robert M.

    2016-03-01

    Management of temperate forests has the potential to increase carbon sinks and mitigate climate change. However, those opportunities may be confounded by negative climate change impacts. We therefore need a better understanding of climate change alterations to temperate forest carbon dynamics before developing mitigation strategies. The purpose of this project was to investigate the interactions of species composition, fire, management, and climate change in the Copper-Pine Creek valley, a temperate coniferous forest with a wide range of growing conditions. To do so, we used the LANDIS-II modelling framework including the new Forest Carbon Succession extension to simulate forest ecosystems under four different productivity scenarios, with and without climate change effects, until 2050. Significantly, the new extension allowed us to calculate the net sector productivity, a carbon accounting metric that integrates aboveground and belowground carbon dynamics, disturbances, and the eventual fate of forest products. The model output was validated against literature values. The results implied that the species optimum growing conditions relative to current and future conditions strongly influenced future carbon dynamics. Warmer growing conditions led to increased carbon sinks and storage in the colder and wetter ecoregions but not necessarily in the others. Climate change impacts varied among species and site conditions, and this indicates that both of these components need to be taken into account when considering climate change mitigation activities and adaptive management. The introduction of a new carbon indicator, net sector productivity, promises to be useful in assessing management effectiveness and mitigation activities.

  3. Ecuador's mangrove forest carbon stocks: a spatiotemporal analysis of living carbon holdings and their depletion since the advent of commercial aquaculture.

    Science.gov (United States)

    Hamilton, Stuart E; Lovette, John

    2015-01-01

    In this paper we estimate the living carbon lost from Ecuador's mangrove forests since the advent of export-focused shrimp aquaculture. We use remote sensing techniques to delineate the extent of mangroves and aquaculture at approximately decadal periods since the arrival of aquaculture in each Ecuadorian estuary. We then spatiotemporally calculate the carbon values of the mangrove forests and estimate the amount of carbon lost due to direct displacement by aquaculture. Additionally, we calculate the new carbon stocks generated due to mangrove reforestation or afforestation. This research introduces time and LUCC (land use / land cover change) into the tropical forest carbon literature and examines forest carbon loss at a higher spatiotemporal resolution than in many earlier analyses. We find that 80 percent, or 7,014,517 t of the living carbon lost in Ecuadorian mangrove forests can be attributed to direct displacement of mangrove forests by shrimp aquaculture. We also find that IPCC (Intergovernmental Panel on Climate Change) compliant carbon grids within Ecuador's estuaries overestimate living carbon levels in estuaries where substantial LUCC has occurred. By approaching the mangrove forest carbon loss question from a LUCC perspective, these findings allow for tropical nations and other intervention agents to prioritize and target a limited set of land transitions that likely drive the majority of carbon losses. This singular cause of transition has implications for programs that attempt to offset or limit future forest carbon losses and place value on forest carbon or other forest good and services.

  4. Forests and ozone: productivity, carbon storage, and feedbacks.

    Science.gov (United States)

    Wang, Bin; Shugart, Herman H; Shuman, Jacquelyn K; Lerdau, Manuel T

    2016-02-22

    Tropospheric ozone is a serious air-pollutant, with large impacts on plant function. This study demonstrates that tropospheric ozone, although it damages plant metabolism, does not necessarily reduce ecosystem processes such as productivity or carbon sequestration because of diversity change and compensatory processes at the community scale ameliorate negative impacts at the individual level. This study assesses the impact of ozone on forest composition and ecosystem dynamics with an individual-based gap model that includes basic physiology as well as species-specific metabolic properties. Elevated tropospheric ozone leads to no reduction of forest productivity and carbon stock and to increased isoprene emissions, which result from enhanced dominance by isoprene-emitting species (which tolerate ozone stress better than non-emitters). This study suggests that tropospheric ozone may not diminish forest carbon sequestration capacity. This study also suggests that, because of the often positive relationship between isoprene emission and ozone formation, there is a positive feedback loop between forest communities and ozone, which further aggravates ozone pollution.

  5. Evaluation of Terrestrial Carbon Cycle with the Land Use Harmonization Dataset

    Science.gov (United States)

    Sasai, T.; Nemani, R. R.

    2017-12-01

    CO2 emission by land use and land use change (LULUC) has still had a large uncertainty (±50%). We need to more accurately reveal a role of each LULUC process on terrestrial carbon cycle, and to develop more complicated land cover change model, leading to improve our understanding of the mechanism of global warming. The existing biosphere model studies do not necessarily have enough major LULUC process in the model description (e.g., clear cutting and residual soil carbon). The issue has the potential for causing an underestimation of the effect of LULUC on the global carbon exchange. In this study, the terrestrial biosphere model was modified with several LULUC processes according to the land use harmonization data set. The global mean LULUC emission from the year 1850 to 2000 was 137.2 (PgC 151year-1), and we found the noticeable trend in tropical region. As with the case of primary production in the existing studies, our results emphasized the role of tropical forest on wood productization and residual soil organic carbon by cutting. Global mean NEP was decreased by LULUC. NEP is largely affected by decreasing leaf biomass (photosynthesis) by deforestation process and increasing plant growth rate by regrowth process. We suggested that the model description related to deforestation, residual soil decomposition, wood productization and plant regrowth is important to develop a biosphere model for estimating long-term global carbon cycle.

  6. Forest carbon benefits, costs and leakage effects of carbon reserve scenarios in the United States

    Science.gov (United States)

    Prakash Nepal; Peter J. Ince; Kenneth E. Skog; Sun J. Chang

    2013-01-01

    This study evaluated the potential effectiveness of future carbon reserve scenarios, where U.S. forest landowners would hypothetically be paid to sequester carbon on their timberland and forego timber harvests for 100 years. Scenarios featured direct payments to landowners of $0 (baseline), $5, $10, or $15 per metric ton of additional forest carbon sequestered on the...

  7. Forest Carbon Offsets Revisited: Shedding Light on Darkwoods

    NARCIS (Netherlands)

    Kooten, van G.C.; Bogle, T.; Vries, de F.P.

    2015-01-01

    This paper investigates the viability of carbon offset credits created through forest conservation and preservation. A detailed forest management model based on a case study of a forest estate in southeastern British Columbia, owned by The Nature Conservancy of Canada (NCC) is used to demonstrate

  8. Short and long-term carbon balance of bioenergy electricity production fueled by forest treatments

    Science.gov (United States)

    Katherine C. Kelsey; Kallie L. Barnes; Michael G. Ryan; Jason C. Neff

    2014-01-01

    Forests store large amounts of carbon in forest biomass, and this carbon can be released to the atmosphere following forest disturbance or management. In the western US, forest fuel reduction treatments designed to reduce the risk of high severity wildfire can change forest carbon balance by removing carbon in the form of biomass, and by altering future potential...

  9. Carbon dynamics in lakes of the boreal forest under a changing climate

    Energy Technology Data Exchange (ETDEWEB)

    Benoy, G.; Wrona, F. [Environment Canada, Saskatoon, SK (Canada). National Water Research Inst.; Cash, K. [Environment Canada, Saskatoon, SK (Canada). Prairie and Northern Wildlife Research Centre; McCauley, E. [Calgary Univ., AB (Canada). Dept. of Biology

    2007-09-15

    This article reviewed factors influencing lake ecosystem carbon dynamics in boreal forest regions and identified research areas needed to accurately forecast the impacts of climate change on carbon pools and flux rates. The review suggested that carbon pools in profundal and littoral sediments across the boreal forest should be identified. Climate change experiments should be conducted to quantify ecosystem carbon dynamics as well as changes in aquatic food web structures. Whole system experiments are also needed to examine the hydrologic and bio-geochemical conditions in which allochthonous carbon is integrated into food webs in potentially drier climates. Results also indicated the need for a watershed-scale assessment of carbon budgets for lakes in transitional zones between boreal forests, prairies, parklands, forests, and tundra. It was concluded that studies are also needed to investigate the integration of lacustrine carbon pools and flux rates on carbon budgets at both the local watershed and boreal forest biome scale. 113 refs., 3 figs.

  10. The cost of carbon abatement through community forest management in Nepal Himalaya

    Energy Technology Data Exchange (ETDEWEB)

    Karky, Bhaskar Singh [Economic Analysis Division, International Centre for Integrated Mountain Development, GPO Box 3226, Kathmandu (Nepal); Skutsch, Margaret [Centro de Investigaciones en Geographia Ambiental, Universidad Nacional Autonoma de Mexico, Morelia (Mexico); University of Twente, PO Box 217 7500 AE Enschede (Netherlands)

    2010-01-15

    This paper estimates the economic returns to carbon abatement through biological sequestration in community managed forest under future REDD policy, and compares these for three possible management scenarios. For the estimation, the research relies on forest inventory data together with other socio-economic and resources use data collected from forest users in three sites of Nepal Himalaya. The paper estimates the incremental carbon from forest enhancement on a yearly basis over a five-year period using the value of 1 and 5 per tCO{sub 2} for conservative analysis. The results based on the three sites indicate that community forest management may be one of the least cost ways to abate carbon with a break-even price under Scenario 2 which ranges from 0.55 to 3.70 per tCO{sub 2}. However, bringing community forests into the carbon market may entail high opportunity costs as forests provide numerous non-monetary benefits to the local population, who regard these as the main incentive for conservation and management. An important finding of the research is that if forest resources use by local communities is not permitted, then carbon trading will not be attractive to them as revenue from carbon will not cover the cost foregone by not harvesting forest resources. (author)

  11. Edge effects resulting from forest fragmentation enhance carbon uptake and its vulnerability to climate change in temperate broadleaf forests

    Science.gov (United States)

    Reinmann, A.; Hutyra, L.

    2016-12-01

    Forest fragmentation resulting from land use and land cover change is a ubiquitous, ongoing global phenomenon with profound impacts on the growing conditions of the world's remaining forest. However, our understanding of forest carbon dynamics and their response to climate largely comes from unfragmented forest systems, which presents an important mismatch between the landscapes we study and those we aim to characterize. The temperate broadleaf forest makes a large contribution to the global terrestrial carbon sink, but is also the most heavily fragmented forest biome in the world. We use field measurements and geospatial analyses to characterize carbon dynamics in temperate broadleaf forest fragments. We show that forest growth and biomass increase by 89 ± 17% and 64 ± 12%, respectively, from the forest interior to edge. These ecosystem edge enhancements are not currently captured by models or approaches to quantifying regional C balance, but across southern New England, USA it increases carbon uptake and storage by 12.5 ± 2.9% and 9.6 ± 1.4%, respectively. However, we also find that forest growth near the edge declines three times faster than in the interior in response to heat stress during the growing season. Using climate projections, we show that future heat stress could reduce the forest edge growth enhancement by one-third by the end of the century. These findings contrast studies of edge effects in the world's other major forest biomes and indicate that the strength of the temperate broadleaf forest carbon sink and its capacity to mitigate anthropogenic carbon emissions may be stronger, but also more sensitive to climate change than previous estimates suggest.

  12. Carbon in down woody materials of eastern U.S. forests

    Science.gov (United States)

    David C. Chojnacky; Robert A. Mickler; Linda S. Heath

    2003-01-01

    To better manage global carbon storage and other ecosystem processes, there is a need for accessible carbon data on components of down woody materials (DWM) in forests. We examined the feasibility of linking available data on DWM to the U.S. Department of Agriculture (USDA) Forest Inventory Analysis (FIA) database, which covers the nation's forest lands. We...

  13. Effects of climate extremes on the terrestrial carbon cycle: concepts, processes and potential future impacts

    Science.gov (United States)

    Frank, Dorothea; Reichstein, Markus; Bahn, Michael; Thonicke, Kirsten; Frank, David; Mahecha, Miguel D; Smith, Pete; van der Velde, Marijn; Vicca, Sara; Babst, Flurin; Beer, Christian; Buchmann, Nina; Canadell, Josep G; Ciais, Philippe; Cramer, Wolfgang; Ibrom, Andreas; Miglietta, Franco; Poulter, Ben; Rammig, Anja; Seneviratne, Sonia I; Walz, Ariane; Wattenbach, Martin; Zavala, Miguel A; Zscheischler, Jakob

    2015-01-01

    Extreme droughts, heat waves, frosts, precipitation, wind storms and other climate extremes may impact the structure, composition and functioning of terrestrial ecosystems, and thus carbon cycling and its feedbacks to the climate system. Yet, the interconnected avenues through which climate extremes drive ecological and physiological processes and alter the carbon balance are poorly understood. Here, we review the literature on carbon cycle relevant responses of ecosystems to extreme climatic events. Given that impacts of climate extremes are considered disturbances, we assume the respective general disturbance-induced mechanisms and processes to also operate in an extreme context. The paucity of well-defined studies currently renders a quantitative meta-analysis impossible, but permits us to develop a deductive framework for identifying the main mechanisms (and coupling thereof) through which climate extremes may act on the carbon cycle. We find that ecosystem responses can exceed the duration of the climate impacts via lagged effects on the carbon cycle. The expected regional impacts of future climate extremes will depend on changes in the probability and severity of their occurrence, on the compound effects and timing of different climate extremes, and on the vulnerability of each land-cover type modulated by management. Although processes and sensitivities differ among biomes, based on expert opinion, we expect forests to exhibit the largest net effect of extremes due to their large carbon pools and fluxes, potentially large indirect and lagged impacts, and long recovery time to regain previous stocks. At the global scale, we presume that droughts have the strongest and most widespread effects on terrestrial carbon cycling. Comparing impacts of climate extremes identified via remote sensing vs. ground-based observational case studies reveals that many regions in the (sub-)tropics are understudied. Hence, regional investigations are needed to allow a global

  14. Soil charcoal as long-term pyrogenic carbon storage in Amazonian seasonal forests.

    Science.gov (United States)

    Turcios, Maryory M; Jaramillo, Margarita M A; do Vale, José F; Fearnside, Philip M; Barbosa, Reinaldo Imbrozio

    2016-01-01

    Forest fires (paleo + modern) have caused charcoal particles to accumulate in the soil vertical profile in Amazonia. This forest compartment is a long-term carbon reservoir with an important role in global carbon balance. Estimates of stocks remain uncertain in forests that have not been altered by deforestation but that have been impacted by understory fires and selective logging. We estimated the stock of pyrogenic carbon derived from charcoal accumulated in the soil profile of seasonal forest fragments impacted by fire and selective logging in the northern portion of Brazilian Amazonia. Sixty-nine soil cores to 1-m depth were collected in 12 forest fragments of different sizes. Charcoal stocks averaged 3.45 ± 2.17 Mg ha(-1) (2.24 ± 1.41 Mg C ha(-1) ). Pyrogenic carbon was not directly related to the size of the forest fragments. This carbon is equivalent to 1.40% (0.25% to 4.04%) of the carbon stocked in aboveground live tree biomass in these fragments. The vertical distribution of pyrogenic carbon indicates an exponential model, where the 0-30 cm depth range has 60% of the total stored. The total area of Brazil's Amazonian seasonal forests and ecotones not altered by deforestation implies 65-286 Tg of pyrogenic carbon accumulated along the soil vertical profile. This is 1.2-2.3 times the total amount of residual pyrogenic carbon formed by biomass burning worldwide in 1 year. Our analysis suggests that the accumulated charcoal in the soil vertical profile in Amazonian forests is a substantial pyrogenic carbon pool that needs to be considered in global carbon models. © 2015 John Wiley & Sons Ltd.

  15. Forest response and recovery following disturbance in upland forests of the Atlantic Coastal Plain.

    Science.gov (United States)

    Schäfer, Karina V R; Renninger, Heidi J; Carlo, Nicholas J; Vanderklein, Dirk W

    2014-01-01

    Carbon and water cycling of forests contribute significantly to the Earth's overall biogeochemical cycling and may be affected by disturbance and climate change. As a larger body of research becomes available about leaf-level, ecosystem and regional scale effects of disturbances on forest ecosystems, a more mechanistic understanding is developing which can improve modeling efforts. Here, we summarize some of the major effects of physical and biogenic disturbances, such as drought, prescribed fire, and insect defoliation, on leaf and ecosystem-scale physiological responses as well as impacts on carbon and water cycling in an Atlantic Coastal Plain upland oak/pine and upland pine forest. During drought, stomatal conductance and canopy stomatal conductance were reduced, however, defoliation increased conductance on both leaf-level and canopy scale. Furthermore, after prescribed fire, leaf-level stomatal conductance was unchanged for pines but decreased for oaks, while canopy stomatal conductance decreased temporarily, but then rebounded the following growing season, thus exhibiting transient responses. This study suggests that forest response to disturbance varies from the leaf to ecosystem level as well as species level and thus, these differential responses interplay to determine the fate of forest structure and functioning post disturbance.

  16. Climate Impacts on Soil Carbon Processes along an Elevation Gradient in the Tropical Luquillo Experimental Forest

    Directory of Open Access Journals (Sweden)

    Dingfang Chen

    2017-03-01

    Full Text Available Tropical forests play an important role in regulating the global climate and the carbon cycle. With the changing temperature and moisture along the elevation gradient, the Luquillo Experimental Forest in Northeastern Puerto Rico provides a natural approach to understand tropical forest ecosystems under climate change. In this study, we conducted a soil translocation experiment along an elevation gradient with decreasing temperature but increasing moisture to study the impacts of climate change on soil organic carbon (SOC and soil respiration. As the results showed, both soil carbon and the respiration rate were impacted by microclimate changes. The soils translocated from low elevation to high elevation showed an increased respiration rate with decreased SOC content at the end of the experiment, which indicated that the increased soil moisture and altered soil microbes might affect respiration rates. The soils translocated from high elevation to low elevation also showed an increased respiration rate with reduced SOC at the end of the experiment, indicating that increased temperature at low elevation enhanced decomposition rates. Temperature and initial soil source quality impacted soil respiration significantly. With the predicted warming climate in the Caribbean, these tropical soils at high elevations are at risk of releasing sequestered carbon into the atmosphere.

  17. Changing global carbon cycle

    International Nuclear Information System (INIS)

    Canadell, Pep

    2007-01-01

    Full text: The increase in atmospheric carbon dioxide (C02) is the single largest human perturbation on the earth's radiative balance contributing to climate change. Its rate of change reflects the balance between anthropogenic carbon emissions and the dynamics of a number of terrestrial and ocean processes that remove or emit C02. It is the long term evolution of this balance that will determine to large extent the speed and magnitude of the human induced climate change and the mitigation requirements to stabilise atmospheric C02 concentrations at any given level. In this talk, we show new trends in global carbon sources and sinks, with particularly focus on major shifts occurring since 2000 when the growth rate of atmospheric C02 has reached its highest level on record. The acceleration in the C02 growth results from the combination of several changes in properties of the carbon cycle, including: acceleration of anthropogenic carbon emissions; increased carbon intensity of the global economy, and decreased efficiency of natural carbon sinks. We discuss in more detail some of the possible causes of the reduced efficiency of natural carbon sinks on land and oceans, such as the decreased net sink in the Southern Ocean and on terrestrial mid-latitudes due to world-wide occurrence of drought. All these changes reported here characterise a carbon cycle that is generating stronger than expected climate forcing, and sooner than expected

  18. Accounting for Forest Harvest and Wildfire in a Spatially-distributed Carbon Cycle Process Model

    Science.gov (United States)

    Turner, D. P.; Ritts, W.; Kennedy, R. E.; Yang, Z.; Law, B. E.

    2009-12-01

    Forests are subject to natural disturbances in the form of wildfire, as well as management-related disturbances in the form of timber harvest. These disturbance events have strong impacts on local and regional carbon budgets, but quantifying the associated carbon fluxes remains challenging. The ORCA Project aims to quantify regional net ecosystem production (NEP) and net biome production (NBP) in Oregon, California, and Washington, and we have adopted an integrated approach based on Landsat imagery and ecosystem modeling. To account for stand-level carbon fluxes, the Biome-BGC model has been adapted to simulate multiple severities of fire and harvest. New variables include snags, direct fire emissions, and harvest removals. New parameters include fire-intensity-specific combustion factors for each carbon pool (based on field measurements) and proportional removal rates for harvest events. To quantify regional fluxes, the model is applied in a spatially-distributed mode over the domain of interest, with disturbance history derived from a time series of Landsat images. In stand-level simulations, the post disturbance transition from negative (source) to positive (sink) NEP is delayed approximately a decade in the case of high severity fire compared to harvest. Simulated direct pyrogenic emissions range from 11 to 25 % of total non-soil ecosystem carbon. In spatial mode application over Oregon and California, the sum of annual pyrogenic emissions and harvest removals was generally less that half of total NEP, resulting in significant carbon sequestration on the land base. Spatially and temporally explicit simulation of disturbance-related carbon fluxes will contribute to our ability to evaluate effects of management on regional carbon flux, and in our ability to assess potential biospheric feedbacks to climate change mediated by changing disturbance regimes.

  19. Spatially explicit analysis of field inventories for national forest carbon monitoring

    Directory of Open Access Journals (Sweden)

    David C. Marvin

    2016-06-01

    Full Text Available Abstract Background Tropical forests provide a crucial carbon sink for a sizable portion of annual global CO2 emissions. Policies that incentivize tropical forest conservation by monetizing forest carbon ultimately depend on accurate estimates of national carbon stocks, which are often based on field inventory sampling. As an exercise to understand the limitations of field inventory sampling, we tested whether two common field-plot sampling approaches could accurately estimate carbon stocks across approximately 76 million ha of Perúvian forests. A 1-ha resolution LiDAR-based map of carbon stocks was used as a model of the country’s carbon geography. Results Both field inventory sampling approaches worked well in estimating total national carbon stocks, almost always falling within 10 % of the model national total. However, the sampling approaches were unable to produce accurate spatially-explicit estimates of the carbon geography of Perú, with estimates falling within 10 % of the model carbon geography across no more than 44 % of the country. We did not find any associations between carbon stock errors from the field plot estimates and six different environmental variables. Conclusions Field inventory plot sampling does not provide accurate carbon geography for a tropical country with wide ranging environmental gradients such as Perú. The lack of association between estimated carbon errors and environmental variables suggests field inventory sampling results from other nations would not differ from those reported here. Tropical forest nations should understand the risks associated with primarily field-based sampling approaches, and consider alternatives leading to more effective forest conservation and climate change mitigation.

  20. Idaho forest carbon projections from 2017 to 2117 under forest disturbance and climate change scenarios

    Science.gov (United States)

    Hudak, A. T.; Crookston, N.; Kennedy, R. E.; Domke, G. M.; Fekety, P.; Falkowski, M. J.

    2017-12-01

    Commercial off-the-shelf lidar collections associated with tree measures in field plots allow aboveground biomass (AGB) estimation with high confidence. Predictive models developed from such datasets are used operationally to map AGB across lidar project areas. We use a random selection of these pixel-level AGB predictions as training for predicting AGB annually across Idaho and western Montana, primarily from Landsat time series imagery processed through LandTrendr. At both the landscape and regional scales, Random Forests is used for predictive AGB modeling. To project future carbon dynamics, we use Climate-FVS (Forest Vegetation Simulator), the tree growth engine used by foresters to inform forest planning decisions, under either constant or changing climate scenarios. Disturbance data compiled from LandTrendr (Kennedy et al. 2010) using TimeSync (Cohen et al. 2010) in forested lands of Idaho (n=509) and western Montana (n=288) are used to generate probabilities of disturbance (harvest, fire, or insect) by land ownership class (public, private) as well as the magnitude of disturbance. Our verification approach is to aggregate the regional, annual AGB predictions at the county level and compare them to annual county-level AGB summarized independently from systematic, field-based, annual inventories conducted by the US Forest Inventory and Analysis (FIA) Program nationally. This analysis shows that when federal lands are disturbed the magnitude is generally high and when other lands are disturbed the magnitudes are more moderate. The probability of disturbance in corporate lands is higher than in other lands but the magnitudes are generally lower. This is consistent with the much higher prevalence of fire and insects occurring on federal lands, and greater harvest activity on private lands. We found large forest carbon losses in drier southern Idaho, only partially offset by carbon gains in wetter northern Idaho, due to anticipated climate change. Public and

  1. ROE Carbon Storage - Forest Biomass

    Data.gov (United States)

    U.S. Environmental Protection Agency — This polygon dataset depicts the density of forest biomass in counties across the United States, in terms of metric tons of carbon per square mile of land area....

  2. A large-scale field assessment of carbon stocks in human-modified tropical forests.

    Science.gov (United States)

    Berenguer, Erika; Ferreira, Joice; Gardner, Toby Alan; Aragão, Luiz Eduardo Oliveira Cruz; De Camargo, Plínio Barbosa; Cerri, Carlos Eduardo; Durigan, Mariana; Cosme De Oliveira Junior, Raimundo; Vieira, Ima Célia Guimarães; Barlow, Jos

    2014-12-01

    Tropical rainforests store enormous amounts of carbon, the protection of which represents a vital component of efforts to mitigate global climate change. Currently, tropical forest conservation, science, policies, and climate mitigation actions focus predominantly on reducing carbon emissions from deforestation alone. However, every year vast areas of the humid tropics are disturbed by selective logging, understory fires, and habitat fragmentation. There is an urgent need to understand the effect of such disturbances on carbon stocks, and how stocks in disturbed forests compare to those found in undisturbed primary forests as well as in regenerating secondary forests. Here, we present the results of the largest field study to date on the impacts of human disturbances on above and belowground carbon stocks in tropical forests. Live vegetation, the largest carbon pool, was extremely sensitive to disturbance: forests that experienced both selective logging and understory fires stored, on average, 40% less aboveground carbon than undisturbed forests and were structurally similar to secondary forests. Edge effects also played an important role in explaining variability in aboveground carbon stocks of disturbed forests. Results indicate a potential rapid recovery of the dead wood and litter carbon pools, while soil stocks (0-30 cm) appeared to be resistant to the effects of logging and fire. Carbon loss and subsequent emissions due to human disturbances remain largely unaccounted for in greenhouse gas inventories, but by comparing our estimates of depleted carbon stocks in disturbed forests with Brazilian government assessments of the total forest area annually disturbed in the Amazon, we show that these emissions could represent up to 40% of the carbon loss from deforestation in the region. We conclude that conservation programs aiming to ensure the long-term permanence of forest carbon stocks, such as REDD+, will remain limited in their success unless they effectively

  3. Intact tropical forests, new evidence they uptake carbon actively

    Directory of Open Access Journals (Sweden)

    2009-03-01

    Full Text Available According to a paper recently published on Nature, tropical forests play as active carbon sink, absorbing 1.3·109 tons of carbon per year on a global scale. Functional interpretation is not clear yet, but a point is quite easy to realize: tropical forests accumulate and contain more carbon than any other vegetation cover and, if their disruption goes on at current rates, these ecosystems could revert to be a “carbon bomb”, releasing huge amount of CO2 to the atmosphere.

  4. Forest transitions in Eastern Europe and their effects on carbon budgets

    DEFF Research Database (Denmark)

    Kuemmerle, Tobias; Kaplan, Jed O.; Prishchepov, Alexander

    2015-01-01

    Forests often rebound from deforestation following industrialization and urbanization, but for many regions our understanding of where and when forest transitions happened, and how they affected carbon budgets remains poor. One such region is Eastern Europe, where political and socio......-economic conditions changed drastically over the last three centuries, but forest trends have not yet been analyzed in detail. We present a new assessment of historical forest change in the European part of the former Soviet Union and the legacies of these changes on contemporary carbon stocks. To reconstruct forest...... carbon stock dynamics. Our results revealed that forest transitions in Eastern Europe occurred predominantly in the early 20th century, substantially later than in Western Europe. We also found marked geographic variation in forest transitions, with some areas characterized by relatively stable...

  5. Short and long-term carbon balance of bioenergy electricity production fueled by forest treatments.

    Science.gov (United States)

    Kelsey, Katharine C; Barnes, Kallie L; Ryan, Michael G; Neff, Jason C

    2014-01-01

    Forests store large amounts of carbon in forest biomass, and this carbon can be released to the atmosphere following forest disturbance or management. In the western US, forest fuel reduction treatments designed to reduce the risk of high severity wildfire can change forest carbon balance by removing carbon in the form of biomass, and by altering future potential wildfire behavior in the treated stand. Forest treatment carbon balance is further affected by the fate of this biomass removed from the forest, and the occurrence and intensity of a future wildfire in this stand. In this study we investigate the carbon balance of a forest treatment with varying fates of harvested biomass, including use for bioenergy electricity production, and under varying scenarios of future disturbance and regeneration. Bioenergy is a carbon intensive energy source; in our study we find that carbon emissions from bioenergy electricity production are nearly twice that of coal for the same amount of electricity. However, some emissions from bioenergy electricity production are offset by avoided fossil fuel electricity emissions. The carbon benefit achieved by using harvested biomass for bioenergy electricity production may be increased through avoided pyrogenic emissions if the forest treatment can effectively reduce severity. Forest treatments with the use of harvested biomass for electricity generation can reduce carbon emissions to the atmosphere by offsetting fossil fuel electricity generation emissions, and potentially by avoided pyrogenic emissions due to reduced intensity and severity of a future wildfire in the treated stand. However, changes in future wildfire and regeneration regimes may affect forest carbon balance and these climate-induced changes may influence forest carbon balance as much, or more, than bioenergy production.

  6. Spatial distribution of carbon sources and sinks in Canada's forests

    International Nuclear Information System (INIS)

    Chen, Jing M.; Weimin, Ju; Liu, Jane; Cihlar, Josef; Chen, Wenjun

    2003-01-01

    Annual spatial distributions of carbon sources and sinks in Canada's forests at 1 km resolution are computed for the period from 1901 to 1998 using ecosystem models that integrate remote sensing images, gridded climate, soils and forest inventory data. GIS-based fire scar maps for most regions of Canada are used to develop a remote sensing algorithm for mapping and dating forest burned areas in the 25 yr prior to 1998. These mapped and dated burned areas are used in combination with inventory data to produce a complete image of forest stand age in 1998. Empirical NPP age relationships were used to simulate the annual variations of forest growth and carbon balance in 1 km pixels, each treated as a homogeneous forest stand. Annual CO 2 flux data from four sites were used for model validation. Averaged over the period 1990-1998, the carbon source and sink map for Canada's forests show the following features: (i) large spatial variations corresponding to the patchiness of recent fire scars and productive forests and (ii) a general south-to-north gradient of decreasing carbon sink strength and increasing source strength. This gradient results mostly from differential effects of temperature increase on growing season length, nutrient mineralization and heterotrophic respiration at different latitudes as well as from uneven nitrogen deposition. The results from the present study are compared with those of two previous studies. The comparison suggests that the overall positive effects of non-disturbance factors (climate, CO 2 and nitrogen) outweighed the effects of increased disturbances in the last two decades, making Canada's forests a carbon sink in the 1980s and 1990s. Comparisons of the modeled results with tower-based eddy covariance measurements of net ecosystem exchange at four forest stands indicate that the sink values from the present study may be underestimated

  7. Consequences of climate change for biogeochemical cycling in forests of northeastern North America

    Science.gov (United States)

    John L. Campbell; Lindsey E. Rustad; Elizabeth W. Boyer; Sheila F. Christopher; Charles T. Driscoll; Ivan .J. Fernandez; Peter M. Groffman; Daniel Houle; Jana Kiekbusch; Alison H. Magill; Myron J. Mitchell; Scott V. Ollinger

    2009-01-01

    A critical component of assessing the impacts of climate change on forest ecosystems involves understanding associated changes in biogeochemical cycling of elements. Evidence from research on northeastern North American forests shows that direct effects of climate change will evoke changes in biogeochemical cycling by altering plant physiology forest productivity, and...

  8. Relationships between net primary productivity and stand age for several forest types and their influence on China's carbon balance.

    Science.gov (United States)

    Wang, Shaoqiang; Zhou, Lei; Chen, Jingming; Ju, Weimin; Feng, Xianfeng; Wu, Weixing

    2011-06-01

    Affected by natural and anthropogenic disturbances such as forest fires, insect-induced mortality and harvesting, forest stand age plays an important role in determining the distribution of carbon pools and fluxes in a variety of forest ecosystems. An improved understanding of the relationship between net primary productivity (NPP) and stand age (i.e., age-related increase and decline in forest productivity) is essential for the simulation and prediction of the global carbon cycle at annual, decadal, centurial, or even longer temporal scales. In this paper, we developed functions describing the relationship between national mean NPP and stand age using stand age information derived from forest inventory data and NPP simulated by the BEPS (Boreal Ecosystem Productivity Simulator) model in 2001. Due to differences in ecobiophysical characteristics of different forest types, NPP-age equations were developed for five typical forest ecosystems in China (deciduous needleleaf forest (DNF), evergreen needleleaf forest in tropic and subtropical zones (ENF-S), deciduous broadleaf forest (DBF), evergreen broadleaf forest (EBF), and mixed broadleaf forest (MBF)). For DNF, ENF-S, EBF, and MBF, changes in NPP with age were well fitted with a common non-linear function, with R(2) values equal to 0.90, 0.75, 0.66, and 0.67, respectively. In contrast, a second order polynomial was best suitable for simulating the change of NPP for DBF, with an R(2) value of 0.79. The timing and magnitude of the maximum NPP varied with forest types. DNF, EBF, and MBF reached the peak NPP at the age of 54, 40, and 32 years, respectively, while the NPP of ENF-S maximizes at the age of 13 years. The highest NPP of DBF appeared at 122 years. NPP was generally lower in older stands with the exception of DBF, and this particular finding runs counter to the paradigm of age-related decline in forest growth. Evaluation based on measurements of NPP and stand age at the plot-level demonstrates the reliability

  9. [Simulating of carbon fluxes in bamboo forest ecosystem using BEPS model based on the LAI assimilated with Dual Ensemble Kalman Filter].

    Science.gov (United States)

    Li, Xue Jian; Mao, Fang Jie; Du, Hua Qiang; Zhou, Guo Mo; Xu, Xiao Jun; Li, Ping Heng; Liu, Yu Li; Cui, Lu

    2016-12-01

    LAI is one of the most important observation data in the research of carbon cycle of forest ecosystem, and it is also an important parameter to drive process-based ecosystem model. The Moso bamboo forest (MBF) and Lei bamboo forest (LBF) were selected as the study targets. Firstly, the MODIS LAI time series data during 2014-2015 was assimilated with Dual Ensemble Kalman Filter method. Secondly, the high quality assimilated MBF LAI and LBF LAI were used as input dataset to drive BEPS model for simulating the gross primary productivity (GPP), net ecosystem exchange (NEE) and total ecosystem respiration (TER) of the two types of bamboo forest ecosystem, respectively. The modeled carbon fluxes were evaluated by the observed carbon fluxes data, and the effects of different quality LAI inputs on carbon cycle simulation were also studied. The LAI assimilated using Dual Ensemble Kalman Filter of MBF and LBF were significantly correlated with the observed LAI, with high R 2 of 0.81 and 0.91 respectively, and lower RMSE and absolute bias, which represented the great improvement of the accuracy of MODIS LAI products. With the driving of assimilated LAI, the modeled GPP, NEE, and TER were also highly correlated with the flux observation data, with the R 2 of 0.66, 0.47, and 0.64 for MBF, respectively, and 0.66, 0.45, and 0.73 for LBF, respectively. The accuracy of carbon fluxes modeled with assimilated LAI was higher than that acquired by the locally adjusted cubic-spline capping method, in which, the accuracy of mo-deled NEE for MBF and LBF increased by 11.2% and 11.8% at the most degrees, respectively.

  10. The fate of the tropical forest. Carbon or cattle?

    International Nuclear Information System (INIS)

    Coomes, Oliver T.; Grimard, Franque; Potvin, Catherin; Sima, Philip

    2008-01-01

    Small-scale afforestation/reforestation projects under the Clean Development Mechanism (CDM) of the Kyoto Protocol will sequester atmospheric carbon and facilitate carbon trading but they face significant implementation challenges among the rural poor households and communities that are meant to adopt and benefit from them. Avoiding deforestation - a controversial carbon reduction option now under climate policy discussion - shows promise though for both forest conservation and poverty alleviation among indigenous forest peoples. (author)

  11. Spatio-temporal change in forest cover and carbon storage considering actual and potential forest cover in South Korea.

    Science.gov (United States)

    Nam, Kijun; Lee, Woo-Kyun; Kim, Moonil; Kwak, Doo-Ahn; Byun, Woo-Hyuk; Yu, Hangnan; Kwak, Hanbin; Kwon, Taesung; Sung, Joohan; Chung, Dong-Jun; Lee, Seung-Ho

    2015-07-01

    This study analyzes change in carbon storage by applying forest growth models and final cutting age to actual and potential forest cover for six major tree species in South Korea. Using National Forest Inventory data, the growth models were developed to estimate mean diameter at breast height, tree height, and number of trees for Pinus densiflora, Pinus koraiensis, Pinus rigida, Larix kaempferi, Castanea crenata and Quercus spp. stands. We assumed that actual forest cover in a forest type map will change into potential forest covers according to the Hydrological and Thermal Analogy Groups model. When actual forest cover reaches the final cutting age, forest volume and carbon storage are estimated by changed forest cover and its growth model. Forest volume between 2010 and 2110 would increase from 126.73 to 157.33 m(3) hm(-2). Our results also show that forest cover, volume, and carbon storage could abruptly change by 2060. This is attributed to the fact that most forests are presumed to reach final cutting age. To avoid such dramatic change, a regeneration and yield control scheme should be prepared and implemented in a way that ensures balance in forest practice and yield.

  12. Coupling between the continental carbon and water cycles

    Science.gov (United States)

    Gentine, P.; Lemordant, L. A.; Green, J. K.

    2017-12-01

    The continental carbon adn water cycles are fundamentally coupled through leaf gas exchange at the stomata level. IN this presnetation we will emphasize the importance of this coupling for the future of the water cycle (runoff, evaporation, soil moisture) and in turn the implications for the carbon cycle and the capacity of continents to act as a carbon dioxyde sink in the future. Opprtunites from coupled carbon-water monitoring platforms will be then emphasized.

  13. The contribution of China's Grain to Green Programto carbon and water cycles

    Science.gov (United States)

    Yuan, W.

    2017-12-01

    The Chinese government started implementation of the Grain for Green Project (GGP) in 1999, aiming to convert cropland to forestland to mitigate soil erosion problems in areas across the country. Although the project has generated substantial environmental benefits, such as erosion reduction, carbon sequestration and water quality improvements, the magnitude of these benefits has not yet been well quantified due to the lack of location specific data describing the afforestation efforts. Remote sensing is well suited to detect afforestation locations, a prerequisite for estimating the impacts of the project on carbon and water cycles. In this study, we first examined the practicability of using the Moderate Resolution Imaging Spectroradiometer (MODIS) land cover product to detect afforestation locations; however, the results showed that the MODIS product failed to distinguish the afforestation areas of GGP. Then, we used a normalized difference vegetation index (NDVI) time series analysis approach for detecting afforestation locations, applying statistical data to determine the NDVI threshold of converted croplands. The technique provided the necessary information for location of afforestation implemented under GGP, explaining 85% of conversion from cropland to forestlands across all provinces. Second, we estimated the changes in carbon fluxes and stocks caused by forests converted from croplands under the GGP using a process-based ecosystem model (i.e., IBIS). Our results showed that the converted areas from croplands to forests under the GGP program could sequester 110.45 Tg C by 2020, and 524.36 Tg C by the end of this century. The sequestration capacity showed substantial spatial variations with large sequestration in southern China. The economic benefits of carbon sequestration from the GGP were also estimated according to the current carbon price. The estimated economic benefits ranged from 8.84 to 44.20 billion from 2000 through 2100, which may exceed the

  14. The Second State of the Carbon Cycle Report: A Scientific Basis for Policy and Management Decisions

    Science.gov (United States)

    Birdsey, R.; Mayes, M. A.; Reed, S.; Najjar, R.; Romero-Lankao, P.

    2017-12-01

    The second "State of the Carbon Cycle of North America Report" (SOCCR-2) includes an overview of the North American carbon budget and future projections, the consequences of changes to the carbon budget, details of the carbon budget in major terrestrial and aquatic ecosystems (including coastal ocean waters), information about anthropogenic drivers, and implications for policy and carbon management. SOCCR-2 includes new focus areas such as soil carbon, arctic and boreal ecosystems, tribal lands, and greater emphasis on aquatic systems and the role of societal drivers and decision making on the carbon cycle. In addition, methane is considered to a greater extent than before. SOCCR-2 will contribute to the next U.S. National Climate Assessment, as well as providing information to support science-based management decisions and policies that include climate change mitigation and adaptation in Canada, the United States, and Mexico. Although the Report is still in the review process, preliminary findings indicate that North America is a net emitter of carbon dioxide and methane to the atmosphere, and that natural sinks offset about 25% of emitted carbon dioxide. Combustion of fossil fuels represents the largest source of emissions, but show a decreasing trend over the last decade and a lower share (20%) of the global total compared with the previous decade. Forests, soils, grasslands, and coastal oceans comprise the largest carbon sinks, while emissions from inland waters are a significant source of carbon dioxide. The Report also documents the lateral transfers of carbon among terrestrial ecosystems and from terrestrial to near-coastal ecosystems, to complete the carbon cycle accounting. Further, the Report explores the consequences of rising atmospheric carbon dioxide on terrestrial and oceanic systems, and the capacity of these systems to continue to act as carbon sinks based on the drivers of future carbon cycle changes, including carbon-climate feedbacks

  15. Carbon markets - an opportunity for the world's forests?

    International Nuclear Information System (INIS)

    Chenost, Clement

    2012-01-01

    Forests cover 30% of the land surface and contain more than half of the carbon stored in terrestrial ecosystems. Carbon credits can be used to compensate the environmental service provided by forests. The sale of carbon credits could be a lever to steer investment. Demand for credits in the forestry sector remains relatively small. However, negotiations directed at a post-Kyoto agreement may create a context that is more favourable to forestry projects by reinstating the question of including forests at the core of the global fight against climate change. (authors)

  16. Global sensitivity analysis of DRAINMOD-FOREST, an integrated forest ecosystem model

    Science.gov (United States)

    Shiying Tian; Mohamed A. Youssef; Devendra M. Amatya; Eric D. Vance

    2014-01-01

    Global sensitivity analysis is a useful tool to understand process-based ecosystem models by identifying key parameters and processes controlling model predictions. This study reported a comprehensive global sensitivity analysis for DRAINMOD-FOREST, an integrated model for simulating water, carbon (C), and nitrogen (N) cycles and plant growth in lowland forests. The...

  17. Carbon Sequestered, Carbon Displaced and the Kyoto Context

    International Nuclear Information System (INIS)

    Marland, G.; Schlamadinger, B.

    1999-01-01

    The integrated system that embraces forest management, forest products, and land-use change impacts the global carbon cycle - and hence the net emission of the greenhouse gas carbon dioxide - in four fundamental ways. Carbon is stored in living and dead biomass, carbon is stored in wood products and landfills, forest products substitute in the market place for products made from other materials, and forest harvests can be used wholly or partially to displace fossil fuels in the energy sector. Implementation of the Kyoto Protocol to the United Nations Framework Convention on Climate Change would result in the creation of international markets for carbon dioxide emissions credits, but the current Kyoto text does not treat all carbon identically. We have developed a carbon accounting model, GORCAM, to examine a variety of scenarios for land management and the production of forest products. In this paper we explore, for two simple scenarios of forest management, the carbon flows that occur and how these might be accounted for under the Kyoto text. The Kyoto protocol raises questions about what activities can result in emissions credits, which carbon reservoirs will be counted, who will receive the credits, and how much credit will be available? The Kyoto Protocol would sometimes give credits for carbon sequestered, but it would always give credits when fossil-fuel carbon dioxide emissions are displaced

  18. Carbon stock of oil palm plantations and tropical forests in Malaysia

    DEFF Research Database (Denmark)

    Kho, Lip Khoon; Jepsen, Martin Rudbeck

    2015-01-01

    cultivation (fallow forests) and 3) oil palm plantations. The forest ecosystems are classified by successional stage and edaphic conditions and represent samples along a forest succession continuum spanning pioneer species in shifting cultivation fallows to climax vegetation in old-growth forests. Total......In Malaysia, the main land change process is the establishment of oil palm plantations on logged-over forests and areas used for shifting cultivation, which is the traditional farming system. While standing carbon stocks of old-growth forest have been the focus of many studies, this is less...... the case for Malaysian fallow systems and oil palm plantations. Here, we collate and analyse Malaysian datasets on total carbon stocks for both above- and below-ground biomass. We review the current knowledge on standing carbon stocks of 1) different forest ecosystems, 2) areas subject to shifting...

  19. Forest biomass carbon sinks in East Asia, with special reference to the relative contributions of forest expansion and forest growth.

    Science.gov (United States)

    Fang, Jingyun; Guo, Zhaodi; Hu, Huifeng; Kato, Tomomichi; Muraoka, Hiroyuki; Son, Yowhan

    2014-06-01

    Forests play an important role in regional and global carbon (C) cycles. With extensive afforestation and reforestation efforts over the last several decades, forests in East Asia have largely expanded, but the dynamics of their C stocks have not been fully assessed. We estimated biomass C stocks of the forests in all five East Asian countries (China, Japan, North Korea, South Korea, and Mongolia) between the 1970s and the 2000s, using the biomass expansion factor method and forest inventory data. Forest area and biomass C density in the whole region increased from 179.78 × 10(6) ha and 38.6 Mg C ha(-1) in the 1970s to 196.65 × 10(6) ha and 45.5 Mg C ha(-1) in the 2000s, respectively. The C stock increased from 6.9 Pg C to 8.9 Pg C, with an averaged sequestration rate of 66.9 Tg C yr(-1). Among the five countries, China and Japan were two major contributors to the total region's forest C sink, with respective contributions of 71.1% and 32.9%. In China, the areal expansion of forest land was a larger contributor to C sinks than increased biomass density for all forests (60.0% vs. 40.0%) and for planted forests (58.1% vs. 41.9%), while the latter contributed more than the former for natural forests (87.0% vs. 13.0%). In Japan, increased biomass density dominated the C sink for all (101.5%), planted (91.1%), and natural (123.8%) forests. Forests in South Korea also acted as a C sink, contributing 9.4% of the total region's sink because of increased forest growth (98.6%). Compared to these countries, the reduction in forest land in both North Korea and Mongolia caused a C loss at an average rate of 9.0 Tg C yr(-1), equal to 13.4% of the total region's C sink. Over the last four decades, the biomass C sequestration by East Asia's forests offset 5.8% of its contemporary fossil-fuel CO2 emissions. © 2014 John Wiley & Sons Ltd.

  20. The sustainability of carbon sinks in forests. Studying the sensitivity of forest carbon sinks in the Netherlands, Europe and the Amazon to climate and management

    International Nuclear Information System (INIS)

    Kruijt, B.; Kramer, K.; Van den Wyngaert, I.; Groen, R.; Elbers, J.A.; Jans, W.W.P.

    2003-01-01

    The aim of this study was to assess the sustainability of carbon sinks in managed or unmanaged forests of Europe and the Amazon. First, the functioning and seasonal variability of the carbon sink strength in forest ecosystems was analysed in relation to climate variability. For this, existing global data sets of ecosystem fluxes measured by eddy correlation were analysed. A simple, comprehensive empirical model was derived to represent these flux variabilities. Also, new soil respiration measurements were initiated in the Netherlands and Amazonia and their usefulness to understand the uptake- and emission components of carbon exchange was analysed. Then, two long-term forest dynamics models were parameterised (FORSPACE and CENTURY) for Dutch Pinus and Fagus forests, to study the development of forest carbon stocks over a century under different management and climate scenarios. Finally, using the empirical model as well as the long-term models, scenario predictions were made. It turns out that uptake rates are expected to decrease in a climate with higher temperatures, but that storage capacity for carbon can be expected to be slightly enhanced, especially if also the management intensity is carefully tuned down

  1. Designing a carbon market that protects forests in developing countries.

    Science.gov (United States)

    Niesten, Eduard; Frumhoff, Peter C; Manion, Michelle; Hardner, Jared J

    2002-08-15

    Firmly incorporated into the Kyoto Protocol, market mechanisms offer an innovative and cost-effective means of controlling atmospheric concentrations of greenhouse gases. However, as with markets for many other goods and services, a carbon market may generate negative environmental externalities. Possible interpretations and application of Kyoto provisions under COP-6bis and COP-7 raise concerns that rules governing forestry with respect to the Kyoto carbon market may increase pressure on native forests and their biodiversity in developing countries. In this paper, we assess the following two specific concerns with Kyoto provisions for forestry measures. First, whether, under the Clean Development Mechanism (CDM), by restricting allowable forestry measures to afforestation and reforestation, and explicitly excluding protection of threatened native forests, the Kyoto Protocol will enhance incentives for degradation and clearing of forests in developing countries; second, whether carbon crediting for forest management in Annex I (industrialized) regions under Article 3.4 creates a dynamic that can encourage displacement of timber harvests from Annex I countries to developing nations. Given current timber extraction patterns in developing regions, additional harvest pressure would certainly entail a considerable cost in terms of biodiversity loss. In both cases, we find that the concerns about deleterious impacts to forests and biodiversity are justified, although the scale of such impacts is difficult to predict. Both to ensure reliable progress in managing carbon concentrations and to avoid unintended consequences with respect to forest biodiversity, the further development of the Kyoto carbon market must explicitly correct these perverse incentives. We recommend several steps that climate policymakers can take to ensure that conservation and restoration of biodiversity-rich natural forests in developing countries are rewarded rather than penalized. To correct

  2. Developing Cost-Effective Field Assessments of Carbon Stocks in Human-Modified Tropical Forests.

    Science.gov (United States)

    Berenguer, Erika; Gardner, Toby A; Ferreira, Joice; Aragão, Luiz E O C; Camargo, Plínio B; Cerri, Carlos E; Durigan, Mariana; Oliveira Junior, Raimundo C; Vieira, Ima C G; Barlow, Jos

    2015-01-01

    Across the tropics, there is a growing financial investment in activities that aim to reduce emissions from deforestation and forest degradation, such as REDD+. However, most tropical countries lack on-the-ground capacity to conduct reliable and replicable assessments of forest carbon stocks, undermining their ability to secure long-term carbon finance for forest conservation programs. Clear guidance on how to reduce the monetary and time costs of field assessments of forest carbon can help tropical countries to overcome this capacity gap. Here we provide such guidance for cost-effective one-off field assessments of forest carbon stocks. We sampled a total of eight components from four different carbon pools (i.e. aboveground, dead wood, litter and soil) in 224 study plots distributed across two regions of eastern Amazon. For each component we estimated survey costs, contribution to total forest carbon stocks and sensitivity to disturbance. Sampling costs varied thirty-one-fold between the most expensive component, soil, and the least, leaf litter. Large live stems (≥10 cm DBH), which represented only 15% of the overall sampling costs, was by far the most important component to be assessed, as it stores the largest amount of carbon and is highly sensitive to disturbance. If large stems are not taxonomically identified, costs can be reduced by a further 51%, while incurring an error in aboveground carbon estimates of only 5% in primary forests, but 31% in secondary forests. For rapid assessments, necessary to help prioritize locations for carbon- conservation activities, sampling of stems ≥20cm DBH without taxonomic identification can predict with confidence (R2 = 0.85) whether an area is relatively carbon-rich or carbon-poor-an approach that is 74% cheaper than sampling and identifying all the stems ≥10cm DBH. We use these results to evaluate the reliability of forest carbon stock estimates provided by the IPCC and FAO when applied to human-modified forests

  3. Developing Cost-Effective Field Assessments of Carbon Stocks in Human-Modified Tropical Forests.

    Directory of Open Access Journals (Sweden)

    Erika Berenguer

    Full Text Available Across the tropics, there is a growing financial investment in activities that aim to reduce emissions from deforestation and forest degradation, such as REDD+. However, most tropical countries lack on-the-ground capacity to conduct reliable and replicable assessments of forest carbon stocks, undermining their ability to secure long-term carbon finance for forest conservation programs. Clear guidance on how to reduce the monetary and time costs of field assessments of forest carbon can help tropical countries to overcome this capacity gap. Here we provide such guidance for cost-effective one-off field assessments of forest carbon stocks. We sampled a total of eight components from four different carbon pools (i.e. aboveground, dead wood, litter and soil in 224 study plots distributed across two regions of eastern Amazon. For each component we estimated survey costs, contribution to total forest carbon stocks and sensitivity to disturbance. Sampling costs varied thirty-one-fold between the most expensive component, soil, and the least, leaf litter. Large live stems (≥10 cm DBH, which represented only 15% of the overall sampling costs, was by far the most important component to be assessed, as it stores the largest amount of carbon and is highly sensitive to disturbance. If large stems are not taxonomically identified, costs can be reduced by a further 51%, while incurring an error in aboveground carbon estimates of only 5% in primary forests, but 31% in secondary forests. For rapid assessments, necessary to help prioritize locations for carbon- conservation activities, sampling of stems ≥20cm DBH without taxonomic identification can predict with confidence (R2 = 0.85 whether an area is relatively carbon-rich or carbon-poor-an approach that is 74% cheaper than sampling and identifying all the stems ≥10cm DBH. We use these results to evaluate the reliability of forest carbon stock estimates provided by the IPCC and FAO when applied to human

  4. Organic carbon efflux from a deciduous forest catchment in Korea

    Directory of Open Access Journals (Sweden)

    S. J. Kim

    2010-04-01

    Full Text Available Soil infiltration and surface discharge of precipitation are critical processes that affect the efflux of Dissolved Organic Carbon (DOC and Particulate Organic Carbon (POC in forested catchments. Concentrations of DOC and POC can be very high in the soil surface in most forest ecosystems and their efflux may not be negligible particularly under the monsoon climate. In East Asia, however, there are little data available to evaluate the role of such processes in forest carbon budget. In this paper, we address two basic questions: (1 how does stream discharge respond to storm events in a forest catchment? and (2 how much DOC and POC are exported from the catchment particularly during the summer monsoon period? To answer these questions, we collected hydrological data (e.g., precipitation, soil moisture, runoff discharge, groundwater level and conducted hydrochemical analyses (including DOC, POC, and six tracers in a deciduous forest catchment in Gwangneung National Arboretum in west-central Korea. Based on the end-member mixing analysis of the six storm events during the summer monsoon in 2005, the surface discharge was estimated as 30 to 80% of the total runoff discharge. The stream discharge responded to precipitation within 12 h during these storm events. The annual efflux of DOC and POC from the catchment was estimated as 0.04 and 0.05 t C ha−1 yr−1, respectively. Approximately 70% of the annual organic carbon efflux occurred during the summer monsoon period. Overall, the annual efflux of organic carbon was estimated to be about 10% of the Net Ecosystem carbon Exchange (NEE obtained by eddy covariance measurement at the same site. Considering the current trends of increasing intensity and amount of summer rainfall and the large interannual variability in NEE, ignoring the organic carbon efflux from forest catchments would result in an inaccurate estimation of the carbon sink strength of forest ecosystems in the monsoon

  5. Carbon in boreal coniferous forest soil

    Energy Technology Data Exchange (ETDEWEB)

    Westman, C J; Ilvesniemi, H; Liski, J; Mecke, M [Helsinki Univ. (Finland). Dept. of Forest Ecology; Fritze, H; Helmisaari, H S; Pietikaeinen, J; Smolander, A [Finnish Forest Research Inst., Vantaa (Finland)

    1997-12-31

    The working hypothesis of the research was that the soil of boreal forests is a large carbon store and the amount of C is still increasing in young soils, like in the forest soils of Finland, which makes these soils important sinks for atmospheric CO{sub 2}. Since the processes defining the soil C balance, primary production of plants and decomposition, are dependent on environmental factors and site properties, it was assumed that the organic carbon pool in the soil is also dependent on the same factors. The soil C store is therefore likely to change in response to climatic warming. The aim of this research was to estimate the C balance of forest soil in Finland and predict changes in the balance in response to changes in climatic conditions. To achieve the aim (1) intensive empirical experimentation on the density of C in different pools in the soil and on fluxes between the pools was done was done, (2) the effect of site fertility and climate on the amount and properties of organic C in forest soil was investigated and (3) dynamic modelling for investigating dynamics of the soil C storage was used

  6. Carbon in boreal coniferous forest soil

    Energy Technology Data Exchange (ETDEWEB)

    Westman, C.J.; Ilvesniemi, H.; Liski, J.; Mecke, M. [Helsinki Univ. (Finland). Dept. of Forest Ecology; Fritze, H.; Helmisaari, H.S.; Pietikaeinen, J.; Smolander, A. [Finnish Forest Research Inst., Vantaa (Finland)

    1996-12-31

    The working hypothesis of the research was that the soil of boreal forests is a large carbon store and the amount of C is still increasing in young soils, like in the forest soils of Finland, which makes these soils important sinks for atmospheric CO{sub 2}. Since the processes defining the soil C balance, primary production of plants and decomposition, are dependent on environmental factors and site properties, it was assumed that the organic carbon pool in the soil is also dependent on the same factors. The soil C store is therefore likely to change in response to climatic warming. The aim of this research was to estimate the C balance of forest soil in Finland and predict changes in the balance in response to changes in climatic conditions. To achieve the aim (1) intensive empirical experimentation on the density of C in different pools in the soil and on fluxes between the pools was done was done, (2) the effect of site fertility and climate on the amount and properties of organic C in forest soil was investigated and (3) dynamic modelling for investigating dynamics of the soil C storage was used

  7. The role of boreal forests and forestry in the global carbon budget : a synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Fyles, I.H.; Shaw, C.H.; Apps, M.J.; Karjalainen, T.; Stocks, B.J.; Running, S.W.; Kurz, W.A.; Weyerhaeuser, G.Jr.; Jarvis, P.G.

    2002-10-01

    This paper provides a synthesis of all papers presented at the conference on the role of boreal forests in the global carbon budget. The scientific community is recognizing the critical links between boreal forest ecosystems, carbon dynamics and global climate change. This paper addresses the five main topics discussed at the conference including: (1) carbon stocks and fluxes, (2) the effects of natural disturbances on carbon dynamics, (3) effects of management practices on carbon dynamics, (4) afforestation and carbon sequestration, and (5) effects of climate change and elevated carbon dioxide concentration on carbon dynamics. Large-scale model simulations suggest that increased global temperatures will result in increased net ecosystem productivity (NEP). Several model simulations also indicate that net primary productivity (NPP) will increase. While most forest stands are currently carbon sinks, disturbances such as fire, insects and tree harvesting make forests susceptible to becoming a source of carbon. In contrast, some studies suggest that climate change will cause shifting vegetation patterns, increased soil carbon and higher forest productivity that may result in higher sequestration of carbon in the boreal forest. 84 refs.

  8. Forest transitions in Eastern Europe and their effects on carbon budgets.

    Science.gov (United States)

    Kuemmerle, Tobias; Kaplan, Jed O; Prishchepov, Alexander V; Rylsky, Ilya; Chaskovskyy, Oleh; Tikunov, Vladimir S; Müller, Daniel

    2015-08-01

    Forests often rebound from deforestation following industrialization and urbanization, but for many regions our understanding of where and when forest transitions happened, and how they affected carbon budgets remains poor. One such region is Eastern Europe, where political and socio-economic conditions changed drastically over the last three centuries, but forest trends have not yet been analyzed in detail. We present a new assessment of historical forest change in the European part of the former Soviet Union and the legacies of these changes on contemporary carbon stocks. To reconstruct forest area, we homogenized statistics at the provincial level for ad 1700-2010 to identify forest transition years and forest trends. We contrast our reconstruction with the KK11 and HYDE 3.1 land change scenarios, and use all three datasets to drive the LPJ dynamic global vegetation model to calculate carbon stock dynamics. Our results revealed that forest transitions in Eastern Europe occurred predominantly in the early 20th century, substantially later than in Western Europe. We also found marked geographic variation in forest transitions, with some areas characterized by relatively stable or continuously declining forest area. Our data suggest extensive deforestation in European Russia already prior to ad 1700, and even greater deforestation in the 18th and 19th centuries than in the KK11 and HYDE scenarios. Based on our reconstruction, cumulative carbon emissions from deforestation were greater before 1700 (60 Pg C) than thereafter (29 Pg C). Summed over our entire study area, forest transitions led to a modest uptake in carbon over recent decades, with our dataset showing the smallest effect (forests of the region, a trend that may be amplified through ongoing land abandonment, climate change, and CO2 fertilization. © 2015 John Wiley & Sons Ltd.

  9. Automated Monitoring of Carbon Fluxes in a Northern Rocky Mountain Forest Indicates Above-Average Net Primary Productivity During the 2015 Western U.S. Drought

    Science.gov (United States)

    Stenzel, J.; Hudiburg, T. W.

    2016-12-01

    As global temperatures rise in the 21st century, "hotter" droughts will become more intense and persistent, particularly in areas which already experience seasonal drought. Because forests represent a large and persistent terrestrial carbon sink which has previously offset a significant proportion of anthropogenic carbon emissions, forest carbon cycle responses to drought have become a prominent research concern. However, robust mechanistic modeling of carbon balance responses to projected drought effects requires improved observation-driven representations of carbon cycle processes; many such component processes are rarely monitored in complex terrain, are modeled or unrepresented quantities at eddy covariance sites, or are monitored at course temporal scales that are not conducive to elucidating process responses at process time scales. In the present study, we demonstrate the use of newly available and affordable automated dendrometers for the estimation of intra-seasonal Net Primary Productivity (NPP) in a Northern Rocky Mountain conifer forest which is impacted by seasonal drought. Results from our pilot study suggest that NPP was restricted by mid-summer moisture deficit under the extraordinary 2015 Western U.S. drought, with greater than 90% off stand growth occurring prior to August. Examination of growth on an inter-annual scale, however, suggests that the study site experienced above-average NPP during this exceptionally hot year. Taken together, these findings indicate that intensifying mid-summer drought in regional forests has affected the timing but has not diminished the magnitude of this carbon flux. By employing automated instrumentation for the intra-annual assessment of NPP, we reveal that annual NPP in regional forests is largely determined before mid-summer and is therefore surprisingly resilient to intensities of seasonal drought that exceed normal conditions of the 20th century.

  10. Gross changes in forest area shape the future carbon balance of tropical forests

    Science.gov (United States)

    Li, Wei; Ciais, Philippe; Yue, Chao; Gasser, Thomas; Peng, Shushi; Bastos, Ana

    2018-01-01

    Bookkeeping models are used to estimate land-use and land-cover change (LULCC) carbon fluxes (ELULCC). The uncertainty of bookkeeping models partly arises from data used to define response curves (usually from local data) and their representativeness for application to large regions. Here, we compare biomass recovery curves derived from a recent synthesis of secondary forest plots in Latin America by Poorter et al. (2016) with the curves used previously in bookkeeping models from Houghton (1999) and Hansis et al. (2015). We find that the two latter models overestimate the long-term (100 years) vegetation carbon density of secondary forest by about 25 %. We also use idealized LULCC scenarios combined with these three different response curves to demonstrate the importance of considering gross forest area changes instead of net forest area changes for estimating regional ELULCC. In the illustrative case of a net gain in forest area composed of a large gross loss and a large gross gain occurring during a single year, the initial gross loss has an important legacy effect on ELULCC so that the system can be a net source of CO2 to the atmosphere long after the initial forest area change. We show the existence of critical values of the ratio of gross area change over net area change (γAnetAgross), above which cumulative ELULCC is a net CO2 source rather than a sink for a given time horizon after the initial perturbation. These theoretical critical ratio values derived from simulations of a bookkeeping model are compared with observations from the 30 m resolution Landsat Thematic Mapper data of gross and net forest area change in the Amazon. This allows us to diagnose areas in which current forest gains with a large land turnover will still result in LULCC carbon emissions in 20, 50 and 100 years.

  11. Ecuador’s Mangrove Forest Carbon Stocks: A Spatiotemporal Analysis of Living Carbon Holdings and Their Depletion since the Advent of Commercial Aquaculture

    Science.gov (United States)

    2015-01-01

    In this paper we estimate the living carbon lost from Ecuador’s mangrove forests since the advent of export-focused shrimp aquaculture. We use remote sensing techniques to delineate the extent of mangroves and aquaculture at approximately decadal periods since the arrival of aquaculture in each Ecuadorian estuary. We then spatiotemporally calculate the carbon values of the mangrove forests and estimate the amount of carbon lost due to direct displacement by aquaculture. Additionally, we calculate the new carbon stocks generated due to mangrove reforestation or afforestation. This research introduces time and LUCC (land use / land cover change) into the tropical forest carbon literature and examines forest carbon loss at a higher spatiotemporal resolution than in many earlier analyses. We find that 80 percent, or 7,014,517 t of the living carbon lost in Ecuadorian mangrove forests can be attributed to direct displacement of mangrove forests by shrimp aquaculture. We also find that IPCC (Intergovernmental Panel on Climate Change) compliant carbon grids within Ecuador’s estuaries overestimate living carbon levels in estuaries where substantial LUCC has occurred. By approaching the mangrove forest carbon loss question from a LUCC perspective, these findings allow for tropical nations and other intervention agents to prioritize and target a limited set of land transitions that likely drive the majority of carbon losses. This singular cause of transition has implications for programs that attempt to offset or limit future forest carbon losses and place value on forest carbon or other forest good and services. PMID:25738286

  12. Carbon cycle

    Energy Technology Data Exchange (ETDEWEB)

    Jaeger, J; Halbritter, G; Neumann-Hauf, G

    1982-05-01

    This report contains a review of literature on the subjects of the carbon cycle, the increase of the atmospheric CO/sub 2/ concentration and the possible impacts of an increased CO/sub 2/ concentration on the climate. In addition to this survey, the report discusses the questions that are still open and the resulting research needs. During the last twenty years a continual increase of the atmospheric carbon dioxide concentration by about 1-2 ppm per years has been observed. In 1958 the concentration was 315 ppm and this increased to 336 ppm in 1978. A rough estimate shows that the increase of the atmospheric carbon dioxide concentration is about half of the amount of carbon dioxide added to the atmosphere by the combustion of fossil fuels. Two possible sinks for the CO/sub 2/ released into the atmosphere are known: the ocean and the biota. The role of the biota is, however, unclear, since it can act both as a sink and as a source. Most models of the carbon cycle are one-dimensional and cannot be used for accurate predictions. Calculations with climate models have shown that an increased atmospheric CO/sub 2/ concentration leads to a warming of the earth's surface and lower atmosphere. Calculations show that a doubling of the atmospheric CO/sub 2/-concentration would lead to a net heating of the lower atmosphere and earth's surface by a global average of about 4 W m/sup -2/. Greater uncertainties arise in estimating the change in surface temperature resulting from this change in heating rate. It is estimated that the global average annual surface temperature would change between 1.5 and 4.5 K. There are, however, latitudinal and seasonal variations of the impact of increased CO/sub 2/ concentration. Other meteorological variables (e.g. precipitation, wind speed etc.) would also be changed. It appears that the impacts of the other products of fossil fuel combustion are unlikely to counteract the impacts of CO/sub 2/ on the climate.

  13. Tree age, disturbance history, and carbon stocks and fluxes in subalpine Rocky Mountain forests

    Science.gov (United States)

    J.B. Bradford; R.A. Birdsey; L.A. Joyce; M.G. Ryan

    2008-01-01

    Forest carbon stocks and fluxes vary with forest age, and relationships with forest age are often used to estimate fluxes for regional or national carbon inventories. Two methods are commonly used to estimate forest age: observed tree age or time since a known disturbance. To clarify the relationships between tree age, time since disturbance and forest carbon storage...

  14. Estimating diesel fuel consumption and carbon dioxide emissions from forest road construction

    Science.gov (United States)

    Dan Loeffler; Greg Jones; Nikolaus Vonessen; Sean Healey; Woodam Chung

    2009-01-01

    Forest access road construction is a necessary component of many on-the-ground forest vegetation treatment projects. However, the fuel energy requirements and associated carbon dioxide emissions from forest road construction are unknown. We present a method for estimating diesel fuel consumed and related carbon dioxide emissions from constructing forest roads using...

  15. Photosynthesis and carbon isotope discrimination in boreal forest ecosystems: A comparison of functional characteristics in plants from three mature forest types

    Science.gov (United States)

    Flanagan, Lawrence B.; Brooks, J. Renee; Ehleringer, James R.

    1997-12-01

    In this paper we compare measurements of photosynthesis and carbon isotope discrimination characteristics among plants from three mature boreal forest types (Black spruce, Jack pine, and aspen) in order to help explain variation in ecosystem-level gas exchange processes. Measurements were made at the southern study area (SSA) and northern study area (NSA) of the boreal forest in central Canada as part of the Boreal Ecosystem-Atmosphere Study (BOREAS). In both the NSA and the SSA there were significant differences in photosynthesis among the major tree species, with aspen having the highest CO2 assimilation rates and spruce the lowest. Within a species, photosynthetic rates in the SSA were approximately twice those measured in the NSA, and this was correlated with similar variations in stomatal conductance. Calculations of the ratio of leaf intercellular to ambient CO2 concentration (ci/ca) from leaf carbon isotope discrimination (Δ) values indicated a relatively low degree of stomatal limitation of photosynthesis, despite the low absolute values of stomatal conductance in these boreal tree species. Within each ecosystem, leaf Δ values were strongly correlated with life-form groups (trees, shrubs, forbs, and mosses), and these differences are maintained between years. Although we observed significant variation in the 13C content of tree rings at the old Jack pine site in the NSA during the past decade (indicating interannual variation in the degree of stomatal limitation), changes in summer precipitation and temperature accounted for only 44% of the isotopic variance. We scaled leaf-level processes to the ecosystem level through analyses of well-mixed canopy air. On average, all three forest types had similar ecosystem-level Δ values (average value ± standard deviation, 19.1‰±0.5‰), calculated from measurements of change in the concentration and carbon isotope ratio of atmospheric CO2 during a diurnal cycle within a forest canopy. However, there were

  16. Trade-offs and synergies between carbon storage and livelihood benefits from forest commons.

    Science.gov (United States)

    Chhatre, Ashwini; Agrawal, Arun

    2009-10-20

    Forests provide multiple benefits at local to global scales. These include the global public good of carbon sequestration and local and national level contributions to livelihoods for more than half a billion users. Forest commons are a particularly important class of forests generating these multiple benefits. Institutional arrangements to govern forest commons are believed to substantially influence carbon storage and livelihood contributions, especially when they incorporate local knowledge and decentralized decision making. However, hypothesized relationships between institutional factors and multiple benefits have never been tested on data from multiple countries. By using original data on 80 forest commons in 10 countries across Asia, Africa, and Latin America, we show that larger forest size and greater rule-making autonomy at the local level are associated with high carbon storage and livelihood benefits; differences in ownership of forest commons are associated with trade-offs between livelihood benefits and carbon storage. We argue that local communities restrict their consumption of forest products when they own forest commons, thereby increasing carbon storage. In showing rule-making autonomy and ownership as distinct and important institutional influences on forest outcomes, our results are directly relevant to international climate change mitigation initiatives such as Reduced Emissions from Deforestation and Forest Degradation (REDD) and avoided deforestation. Transfer of ownership over larger forest commons patches to local communities, coupled with payments for improved carbon storage can contribute to climate change mitigation without adversely affecting local livelihoods.

  17. Forest Carbon Stocks in Woody Plants of Mount Zequalla Monastery ...

    African Journals Online (AJOL)

    Carbon sequestration through forestry has the potential to play a significant role in ameliorating global environmental problems such as atmospheric accumulation of GHG's and climate change.The present study was undertaken to estimate forest carbon stock along altitudinal gradient in Mount Zequalla Monastery forest.

  18. Remote sensing assessment of carbon storage by urban forest

    International Nuclear Information System (INIS)

    Kanniah, K D; Kang, C S; Muhamad, N

    2014-01-01

    Urban forests play a crucial role in mitigating global warming by absorbing excessive CO 2 emissions due to transportation, industry and house hold activities in the urban environment. In this study we have assessed the role of trees in an urban forest, (Mutiara Rini) located within the Iskandar Development region in south Johor, Malaysia. We first estimated the above ground biomass/carbon stock of the trees using allometric equations and biometric data (diameter at breast height of trees) collected in the field. We used remotely sensed vegetation indices (VI) to develop an empirical relationship between VI and carbon stock. We used five different VIs derived from a very high resolution World View-2 satellite data. Results show that model by [1] and Normalized Difference Vegetation Index are correlated well (R 2 = 0.72) via a power model. We applied the model to the entire study area to obtain carbon stock of urban forest. The average carbon stock in the urban forest (mostly consisting of Dipterocarp species) is ∼70 t C ha −1 . Results of this study can be used by the Iskandar Regional Development Authority to better manage vegetation in the urban environment to establish a low carbon city in this region

  19. Modelling effects of forest disturbance history on carbon balance: a deep learning approach using Landsat-time series.

    Science.gov (United States)

    Besnard, S.; Carvalhais, N.; Clevers, J.; Dutrieux, L.; Gans, F.; Herold, M.; Reichstein, M.; Jung, M.

    2017-12-01

    Forests play a crucial role in the global carbon (C) cycle, covering about 30% of the planet's terrestrial surface, accounting for 50% of plant productivity, and storing 45% of all terrestrial C. As such, forest disturbances affect the balance of terrestrial C dioxide (CO 2 ) exchange, with the potential of releasing large amounts of C into the atmosphere. Understanding and quantifying the effect of forest disturbance on terrestrial C metabolism is critical for improving forest C balance estimates and predictions. Here we combine remote sensing, climate, and eddy-covariance (EC) data to study forest land surface-atmosphere C fluxes at more than 180 sites globally. We aim to enhance understanding of C balance in forest ecosystems by capturing the ecological carry-over effect of disturbance historyon C fluxes. Our objectives are to (1) characterize forest disturbance history through the full temporal depth of the Landsat time series (LTS); and (2) to investigate lag and carry-over effects of forest dynamics and climate on ecosystem C fluxes using a data-driven recurrent neural network(RNN). The resulting data-driven model integrates carry-over effects of the system, using LTS, ecosystem productivity, and several abiotic factors. In this study, we show that our RNN algorithm is able to effectively calculate realistic seasonal, interannual, and across-site C flux variabilities based on EC, LTS, and climate data. In addition, our results demonstrate that a deep learning approach with embedded dynamic memory effects offorest dynamics is able to better capture lag and carry-over effects due to soil-vegetation feedback compared to a classic approach considering only the current condition of the ecosystem. Our study paves the way to produce accurate, high resolution carbon fluxes maps, providing morecomprehensive monitoring, mapping, and reporting of the carbon consequences of forest change globally.

  20. Climate impacts of bioenergy: Inclusion of carbon cycle and albedo dynamics in life cycle impact assessment

    International Nuclear Information System (INIS)

    Bright, Ryan M.; Cherubini, Francesco; Strømman, Anders H.

    2012-01-01

    Life cycle assessment (LCA) can be an invaluable tool for the structured environmental impact assessment of bioenergy product systems. However, the methodology's static temporal and spatial scope combined with its restriction to emission-based metrics in life cycle impact assessment (LCIA) inhibits its effectiveness at assessing climate change impacts that stem from dynamic land surface–atmosphere interactions inherent to all biomass-based product systems. In this paper, we focus on two dynamic issues related to anthropogenic land use that can significantly influence the climate impacts of bioenergy systems: i) temporary changes to the terrestrial carbon cycle; and ii) temporary changes in land surface albedo—and illustrate how they can be integrated within the LCA framework. In the context of active land use management for bioenergy, we discuss these dynamics and their relevancy and outline the methodological steps that would be required to derive case-specific biogenic CO 2 and albedo change characterization factors for inclusion in LCIA. We demonstrate our concepts and metrics with application to a case study of transportation biofuel sourced from managed boreal forest biomass in northern Europe. We derive GWP indices for three land management cases of varying site productivities to illustrate the importance and need to consider case- or region-specific characterization factors for bioenergy product systems. Uncertainties and limitations of the proposed metrics are discussed. - Highlights: ► A method for including temporary surface albedo and carbon cycle changes in Life Cycle Impact Assessment (LCIA) is elaborated. ► Concepts are applied to a single bioenergy case whereby a range of feedstock productivities are shown to influence results. ► Results imply that case- and site-specific characterization factors can be essential for a more informed impact assessment. ► Uncertainties and limitations of the proposed methodologies are elaborated.

  1. Forest carbon sinks in the Northern Hemisphere

    Science.gov (United States)

    Christine L. Goodale; Michael J. Apps; Richard A. Birdsey; Christopher B. Field; Linda S. Heath; Richard A. Houghton; Jennifer C. Jenkins; Gundolf H. Kohlmaier; Werner Kurz; Shirong Liu; Gert-Jan Nabuurs; Sten Nilsson; Anatoly Z. Shvidenko

    2002-01-01

    There is general agreement that terrestrial systems in the Northern Hemisphere provide a significant sink for atmospheric CO2; however, estimates of the magnitude and distribution of this sink vary greatly. National forest inventories provide strong, measurement-based constraints on the magnitude of net forest carbon uptake. We brought together...

  2. Mexican forest inventory expands continental carbon monitoring

    Science.gov (United States)

    Alberto Sandoval Uribe; Sean. P. Healey; Gretchen G. Moisen; Rigoberto Palafox Rivas; Enrique Gonzalez Aguilar; Carmen Lourdes Meneses Tovar; Ernesto S. Diaz Ponce Davalos; Vanessa Silva Mascorro

    2008-01-01

    The terrestrial ecosystems of the North American continent represent a large reservoir of carbon and a potential sink within the global carbon cycle. The recent State of the Carbon Cycle Report [U.S. Climate Change Science Program (CCSP), 2007] identified the critical role these systems may play in mitigating effects of greenhouse gases emitted from fossil fuel...

  3. Integrating effects of species composition and soil properties to predict shifts in montane forest carbon-water relations.

    Science.gov (United States)

    Maxwell, Toby M; Silva, Lucas C R; Horwath, William R

    2018-05-01

    This study was designed to address a major source of uncertainty pertaining to coupled carbon-water cycles in montane forest ecosystems. The Sierra Nevada of California was used as a model system to investigate connections between the physiological performance of trees and landscape patterns of forest carbon and water use. The intrinsic water-use efficiency (iWUE)-an index of CO 2 fixed per unit of potential water lost via transpiration-of nine dominant species was determined in replicated transects along an ∼1,500-m elevation gradient, spanning a broad range of climatic conditions and soils derived from three different parent materials. Stable isotope ratios of carbon and oxygen measured at the leaf level were combined with field-based and remotely sensed metrics of stand productivity, revealing that variation in iWUE depends primarily on leaf traits (∼24% of the variability), followed by stand productivity (∼16% of the variability), climatic regime (∼13% of the variability), and soil development (∼12% of the variability). Significant interactions between species composition and soil properties proved useful to predict changes in forest carbon-water relations. On the basis of observed shifts in tree species composition, ongoing since the 1950s and intensified in recent years, an increase in water loss through transpiration (ranging from 10 to 60% depending on parent material) is now expected in mixed conifer forests throughout the region. Copyright © 2018 the Author(s). Published by PNAS.

  4. Integrated model-experimental framework to assess carbon cycle components in disturbed mountainous terrain

    Science.gov (United States)

    Stenzel, J.; Hudiburg, T. W.; Berardi, D.; McNellis, B.; Walsh, E.

    2017-12-01

    In forests vulnerable to drought and fire, there is critical need for in situ carbon and water balance measurements that can be integrated with earth system modeling to predict climate feedbacks. Model development can be improved by measurements that inform a mechanistic understanding of the component fluxes of net carbon uptake (i.e., NPP, autotrophic and heterotrophic respiration) and water use, with specific focus on responses to climate and disturbance. By integrating novel field-based instrumental technology, existing datasets, and state-of-the-art earth system modeling, we are attempting to 1) quantify the spatial and temporal impacts of forest thinning on regional biogeochemical cycling and climate 2) evaluate the impact of forest thinning on forest resilience to drought and disturbance in the Northern Rockies ecoregion. The combined model-experimental framework enables hypothesis testing that would otherwise be impossible because the use of new in situ high temporal resolution field technology allows for research in remote and mountainous terrains that have been excluded from eddy-covariance techniques. Our preliminary work has revealed some underlying difficulties with the new instrumentation that has led to new ideas and modified methods to correctly measure the component fluxes. Our observations of C balance following the thinning operations indicate that the recovery period (source to sink) is longer than hypothesized. Finally, we have incorporated a new plant functional type parameterization for Northern Rocky mixed-conifer into our simulation modeling using regional and site observations.

  5. Effects of harvesting on spatial and temporal diversity of carbon stocks in a boreal forest landscape.

    Science.gov (United States)

    Ter-Mikaelian, Michael T; Colombo, Stephen J; Chen, Jiaxin

    2013-10-01

    Carbon stocks in managed forests of Ontario, Canada, and in harvested wood products originated from these forests were estimated for 2010-2100. Simulations included four future forest harvesting scenarios based on historical harvesting levels (low, average, high, and maximum available) and a no-harvest scenario. In four harvesting scenarios, forest carbon stocks in Ontario's managed forest were estimated to range from 6202 to 6227 Mt C (millions of tons of carbon) in 2010, and from 6121 to 6428 Mt C by 2100. Inclusion of carbon stored in harvested wood products in use and in landfills changed the projected range in 2100 to 6710-6742 Mt C. For the no-harvest scenario, forest carbon stocks were projected to change from 6246 Mt C in 2010 to 6680 Mt C in 2100. Spatial variation in projected forest carbon stocks was strongly related to changes in forest age (r = 0.603), but had weak correlation with harvesting rates. For all managed forests in Ontario combined, projected carbon stocks in combined forest and harvested wood products converged to within 2% difference by 2100. The results suggest that harvesting in the boreal forest, if applied within limits of sustainable forest management, will eventually have a relatively small effect on long-term combined forest and wood products carbon stocks. However, there was a large time lag to approach carbon equality, with more than 90 years with a net reduction in stored carbon in harvested forests plus wood products compared to nonharvested boreal forest which also has low rates of natural disturbance. The eventual near equivalency of carbon stocks in nonharvested forest and forest that is harvested and protected from natural disturbance reflects both the accumulation of carbon in harvested wood products and the relatively young age at which boreal forest stands undergo natural succession in the absence of disturbance.

  6. Adapting fire management to future fire regimes: impacts on boreal forest composition and carbon balance in Canadian National Parks

    Science.gov (United States)

    de Groot, W. J.; Flannigan, M. D.; Cantin, A.

    2009-04-01

    The effects of future fire regimes altered by climate change, and fire management in adaptation to climate change were studied in the boreal forest region of western Canada. Present (1975-90) and future (2080-2100) fire regimes were simulated for several National Parks using data from the Canadian (CGCM1) and Hadley (HadCM3) Global Climate Models (GCM) in separate simulation scenarios. The long-term effects of the different fire regimes on forests were simulated using a stand-level, boreal fire effects model (BORFIRE). Changes in forest composition and biomass storage due to future altered fire regimes were determined by comparing current and future simulation results. This was used to assess the ecological impact of altered fire regimes on boreal forests, and the future role of these forests as carbon sinks or sources. Additional future simulations were run using adapted fire management strategies, including increased fire suppression and the use of prescribed fire to meet fire cycle objectives. Future forest composition, carbon storage and emissions under current and adapted fire management strategies were also compared to determine the impact of various future fire management options. Both of the GCM's showed more severe burning conditions under future fire regimes. This includes fires with higher intensity, greater depth of burn, greater total fuel consumption and shorter fire cycles (or higher rates of annual area burned). The Canadian GCM indicated burning conditions more severe than the Hadley GCM. Shorter fire cycles of future fire regimes generally favoured aspen, birch, and jack pine because it provided more frequent regeneration opportunity for these pioneer species. Black spruce was only minimally influenced by future fire regimes, although white spruce declined sharply. Maintaining representation of pure and mixed white spruce ecosystems in natural areas will be a concern under future fire regimes. Active fire suppression is required in these areas. In

  7. Carbon dynamics of mature and regrowth tropical forests derived from a pantropical database (TropForC-db).

    Science.gov (United States)

    Anderson-Teixeira, Kristina J; Wang, Maria M H; McGarvey, Jennifer C; LeBauer, David S

    2016-05-01

    Tropical forests play a critical role in the global carbon (C) cycle, storing ~45% of terrestrial C and constituting the largest component of the terrestrial C sink. Despite their central importance to the global C cycle, their ecosystem-level C cycles are not as well-characterized as those of extra-tropical forests, and knowledge gaps hamper efforts to quantify C budgets across the tropics and to model tropical forest-climate interactions. To advance understanding of C dynamics of pantropical forests, we compiled a new database, the Tropical Forest C database (TropForC-db), which contains data on ground-based measurements of ecosystem-level C stocks and annual fluxes along with disturbance history. This database currently contains 3568 records from 845 plots in 178 geographically distinct areas, making it the largest and most comprehensive database of its type. Using TropForC-db, we characterized C stocks and fluxes for young, intermediate-aged, and mature forests. Relative to existing C budgets of extra-tropical forests, mature tropical broadleaf evergreen forests had substantially higher gross primary productivity (GPP) and ecosystem respiration (Reco), their autotropic respiration (Ra) consumed a larger proportion (~67%) of GPP, and their woody stem growth (ANPPstem) represented a smaller proportion of net primary productivity (NPP, ~32%) or GPP (~9%). In regrowth stands, aboveground biomass increased rapidly during the first 20 years following stand-clearing disturbance, with slower accumulation following agriculture and in deciduous forests, and continued to accumulate at a slower pace in forests aged 20-100 years. Most other C stocks likewise increased with stand age, while potential to describe age trends in C fluxes was generally data-limited. We expect that TropForC-db will prove useful for model evaluation and for quantifying the contribution of forests to the global C cycle. The database version associated with this publication is archived in Dryad (DOI

  8. GIS based approach for atmospheric carbon absorption strategies through forests development in Indian situations

    International Nuclear Information System (INIS)

    Yadav, Surendra Kumar

    2013-01-01

    Geographical information system (GIS) play important role in forest management. An effective strategy for enhancement of atmospheric carbon absorption productivity is through forests development in degraded forest areas and waste lands. Forestry sector has significant emissions removal capability which can further be enhanced by operationalizing major afforestation and reforestation initiatives like National Mission for a Green India besides continued strengthening of the present protection regime of forests. Secondary data was collected and analyzed. Different types of waste lands require different strategies for their development into forest areas; but few waste lands like rocky regions, glacier regions etc. cannot be developed into forest areas. Atmospheric carbon management is major problem before world community in present circumstances to control environmental pollution. Various forest ecosystems play significant role in carbon absorption. The diffusional net absorption rate of anthropogenic carbon to the biosphere is some unknown function of the atmospheric partial pressure of carbon dioxide. Estimations reveal that the average carbon absorption of the forests was around 1,240 grams (1.240 Kg) of carbon per square meter of canopy area. To stabilize atmospheric CO 2 , role of forestry depends on harvesting and disturbance rates, expectations of future forest productivity, and the ability to deploy technology and forest practices to increase the retention of sequestered CO 2 . There is a considerable self-damping effect that will moderate the future increase of the atmospheric carbon dioxide concentration. Capacity of the ocean to absorb carbon dioxide is limited; but atmospheric carbon absorption potentiality of India forests can be increased tremendously through reforestation, afforestation and development of degraded forest areas and waste lands. About 60 % of Indian waste lands can be developed to increase forest cover with reasonable efforts. When

  9. GIS based approach for atmospheric carbon absorption strategies through forests development in Indian situations

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Surendra Kumar [CCS Univ., Meerut (India). SCRIET

    2013-07-01

    Geographical information system (GIS) play important role in forest management. An effective strategy for enhancement of atmospheric carbon absorption productivity is through forests development in degraded forest areas and waste lands. Forestry sector has significant emissions removal capability which can further be enhanced by operationalizing major afforestation and reforestation initiatives like National Mission for a Green India besides continued strengthening of the present protection regime of forests. Secondary data was collected and analyzed. Different types of waste lands require different strategies for their development into forest areas; but few waste lands like rocky regions, glacier regions etc. cannot be developed into forest areas. Atmospheric carbon management is major problem before world community in present circumstances to control environmental pollution. Various forest ecosystems play significant role in carbon absorption. The diffusional net absorption rate of anthropogenic carbon to the biosphere is some unknown function of the atmospheric partial pressure of carbon dioxide. Estimations reveal that the average carbon absorption of the forests was around 1,240 grams (1.240 Kg) of carbon per square meter of canopy area. To stabilize atmospheric CO{sub 2}, role of forestry depends on harvesting and disturbance rates, expectations of future forest productivity, and the ability to deploy technology and forest practices to increase the retention of sequestered CO{sub 2}. There is a considerable self-damping effect that will moderate the future increase of the atmospheric carbon dioxide concentration. Capacity of the ocean to absorb carbon dioxide is limited; but atmospheric carbon absorption potentiality of India forests can be increased tremendously through reforestation, afforestation and development of degraded forest areas and waste lands. About 60 % of Indian waste lands can be developed to increase forest cover with reasonable efforts. When

  10. Drought and ecosystem carbon cycling

    NARCIS (Netherlands)

    Molen, M.K. van der; Dolman, A.J.; Ciais, P.; Eglin, T.; Gobron, N.; Law, B.E.; Meir, P.; Peters, P.; Philips, O.L.; Reichstein, M.; Chen, T.; Dekker, S.C.; Doubkova, M.; Friedl, M.A.; Jung, M.; Hurk, B.J.J.M. van den; Jeu, R.A.M. de; Kruijt, B.; Ohta, T.; Rebel, K.T.; Plummer, S.; Seneviratne, S.I.; Sitch, S.; Teuling, A.J.; Werf, G.R. van der; Wang, G.

    2011-01-01

    Drought as an intermittent disturbance of the water cycle interacts with the carbon cycle differently than the ‘gradual’ climate change. During drought plants respond physiologically and structurally to prevent excessive water loss according to species-specific water use strategies. This has

  11. Estimates of forest canopy height and aboveground biomass using ICESat.

    Science.gov (United States)

    Michael A. Lefsky; David J. Harding; Michael Keller; Warren B. Cohen; Claudia C. Carabajal; Fernando Del Bom; Maria O. Hunter; Raimundo Jr. de Oliveira

    2005-01-01

    Exchange of carbon between forests and the atmosphere is a vital component of the global carbon cycle. Satellite laser altimetry has a unique capability for estimating forest canopy height, which has a direct and increasingly well understood relationship to aboveground carbon storage. While the Geoscience Laser Altimeter System (GLAS) onboard the Ice, Cloud and land...

  12. Carbon Cycling in Wetland Forest Soils

    Science.gov (United States)

    Carl C. Trettin; Martin F. Jurgensen

    2003-01-01

    Wetlands comprise a small proportion (i.e., 2 to 3%) of earth's terrestrial surface, yet they contain a significant proportion of the terrestrial carbon (C) pool. Soils comprise the largest terrestrial C pool (ca. 1550 Pg C in upper 100 cm; Eswaran et al., 1993; Batjes, 1996), and wetlands contain the single largest component, with estimates ranging between 18...

  13. Element cycling in forest soils - modelling the effects of a changing environment

    Energy Technology Data Exchange (ETDEWEB)

    Walse, C.

    1998-11-01

    Element cycling and nutrient supply in forest ecosystems are of vital importance for short-term productivity and for longer-term land management in terms of nutrient leaching and CO{sub 2} fixation. This thesis includes a series of studies with the objective of modelling some aspects of the effect of acidification and climate change on element cycling and nutrient supply in forest soil. A reconstruction model of atmospheric deposition and nutrient uptake and cycling, MAKEDEP, was developed. An existing model of soil chemistry, SAFE, was analyzed and applied. SAFE+MAKEDEP were then applied in combination with the RAINS model to perform scenario analyses of soil acidification/recovery for six European forest sites. A decomposition model intended to run in conjunction with the SAFE model was developed. Key elements were N, Ca, K, Mg, S and Al. In the decomposition model, only carbon release was included to date.The results show, that understanding the history of soil geochemistry is important for modelling the system and for projecting the future impact of acidification on nutrient supply in forest soils. The applied reconstruction models of acid deposition (MAKEDEP, RAINS) seem to generate reasonable and consistent estimates of historic acid deposition, so that present day conditions can be simulated starting from pre-acidification conditions. From applications of the SAFE model to large-scale forest manipulation experiments, we conclude that the geochemical processes and the degree of detail in process descriptions included in SAFE are adequate to capture the most important aspects of soil solution dynamics of forest soils in northern and central Europe. Therefore, SAFE is appropriate for the simulation of acidification and recovery scenarios for these soils. The precision in model prediction on a more general scale is often limited by factors other than model formulation, such as consistency and representativity of input data. It is shown that the physical

  14. Potential to sequester carbon in Canadian forests: Some economic considerations

    International Nuclear Information System (INIS)

    Kooten, G.C. van; Arthur, L.M.; Wilson, W.R.

    1992-01-01

    The potential role of reforestation policies in reducing Canada's contribution to atmospheric CO 2 is examined. The results indicate sequestering carbon by reforestation of forest lands may be a cost-effective means for Canada to offset domestic emissions of CO 2 from other sources, and that planting forests on marginal agricultural lands also warrants consideration. But these policies need to be compared with alternatives for reducing CO 2 emissions to determine their relative cost-effectiveness. It is found that reforestation is more costly than policies to increase the fuel efficiency of automobiles, but economically more efficient than converting vehicles to natural gas. Forestation can make an important contribution to reduced atmospheric accumulation of carbon after the more cost-effective strategy, replacing less fuel-efficient automobiles, is exhausted (i.e. when the marginal costs of automobile emissions increase beyond those of forestation alternatives). Finally, it is demonstrated that, because of its vast forests, Canada is a net carbon sink. 26 refs., 2 figs., 4 tabs

  15. Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics.

    Science.gov (United States)

    Chazdon, Robin L; Broadbent, Eben N; Rozendaal, Danaë M A; Bongers, Frans; Zambrano, Angélica María Almeyda; Aide, T Mitchell; Balvanera, Patricia; Becknell, Justin M; Boukili, Vanessa; Brancalion, Pedro H S; Craven, Dylan; Almeida-Cortez, Jarcilene S; Cabral, George A L; de Jong, Ben; Denslow, Julie S; Dent, Daisy H; DeWalt, Saara J; Dupuy, Juan M; Durán, Sandra M; Espírito-Santo, Mario M; Fandino, María C; César, Ricardo G; Hall, Jefferson S; Hernández-Stefanoni, José Luis; Jakovac, Catarina C; Junqueira, André B; Kennard, Deborah; Letcher, Susan G; Lohbeck, Madelon; Martínez-Ramos, Miguel; Massoca, Paulo; Meave, Jorge A; Mesquita, Rita; Mora, Francisco; Muñoz, Rodrigo; Muscarella, Robert; Nunes, Yule R F; Ochoa-Gaona, Susana; Orihuela-Belmonte, Edith; Peña-Claros, Marielos; Pérez-García, Eduardo A; Piotto, Daniel; Powers, Jennifer S; Rodríguez-Velazquez, Jorge; Romero-Pérez, Isabel Eunice; Ruíz, Jorge; Saldarriaga, Juan G; Sanchez-Azofeifa, Arturo; Schwartz, Naomi B; Steininger, Marc K; Swenson, Nathan G; Uriarte, Maria; van Breugel, Michiel; van der Wal, Hans; Veloso, Maria D M; Vester, Hans; Vieira, Ima Celia G; Bentos, Tony Vizcarra; Williamson, G Bruce; Poorter, Lourens

    2016-05-01

    Regrowth of tropical secondary forests following complete or nearly complete removal of forest vegetation actively stores carbon in aboveground biomass, partially counterbalancing carbon emissions from deforestation, forest degradation, burning of fossil fuels, and other anthropogenic sources. We estimate the age and spatial extent of lowland second-growth forests in the Latin American tropics and model their potential aboveground carbon accumulation over four decades. Our model shows that, in 2008, second-growth forests (1 to 60 years old) covered 2.4 million km(2) of land (28.1% of the total study area). Over 40 years, these lands can potentially accumulate a total aboveground carbon stock of 8.48 Pg C (petagrams of carbon) in aboveground biomass via low-cost natural regeneration or assisted regeneration, corresponding to a total CO2 sequestration of 31.09 Pg CO2. This total is equivalent to carbon emissions from fossil fuel use and industrial processes in all of Latin America and the Caribbean from 1993 to 2014. Ten countries account for 95% of this carbon storage potential, led by Brazil, Colombia, Mexico, and Venezuela. We model future land-use scenarios to guide national carbon mitigation policies. Permitting natural regeneration on 40% of lowland pastures potentially stores an additional 2.0 Pg C over 40 years. Our study provides information and maps to guide national-level forest-based carbon mitigation plans on the basis of estimated rates of natural regeneration and pasture abandonment. Coupled with avoided deforestation and sustainable forest management, natural regeneration of second-growth forests provides a low-cost mechanism that yields a high carbon sequestration potential with multiple benefits for biodiversity and ecosystem services.

  16. Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics

    Science.gov (United States)

    Chazdon, Robin L.; Broadbent, Eben N.; Rozendaal, Danaë M. A.; Bongers, Frans; Zambrano, Angélica María Almeyda; Aide, T. Mitchell; Balvanera, Patricia; Becknell, Justin M.; Boukili, Vanessa; Brancalion, Pedro H. S.; Craven, Dylan; Almeida-Cortez, Jarcilene S.; Cabral, George A. L.; de Jong, Ben; Denslow, Julie S.; Dent, Daisy H.; DeWalt, Saara J.; Dupuy, Juan M.; Durán, Sandra M.; Espírito-Santo, Mario M.; Fandino, María C.; César, Ricardo G.; Hall, Jefferson S.; Hernández-Stefanoni, José Luis; Jakovac, Catarina C.; Junqueira, André B.; Kennard, Deborah; Letcher, Susan G.; Lohbeck, Madelon; Martínez-Ramos, Miguel; Massoca, Paulo; Meave, Jorge A.; Mesquita, Rita; Mora, Francisco; Muñoz, Rodrigo; Muscarella, Robert; Nunes, Yule R. F.; Ochoa-Gaona, Susana; Orihuela-Belmonte, Edith; Peña-Claros, Marielos; Pérez-García, Eduardo A.; Piotto, Daniel; Powers, Jennifer S.; Rodríguez-Velazquez, Jorge; Romero-Pérez, Isabel Eunice; Ruíz, Jorge; Saldarriaga, Juan G.; Sanchez-Azofeifa, Arturo; Schwartz, Naomi B.; Steininger, Marc K.; Swenson, Nathan G.; Uriarte, Maria; van Breugel, Michiel; van der Wal, Hans; Veloso, Maria D. M.; Vester, Hans; Vieira, Ima Celia G.; Bentos, Tony Vizcarra; Williamson, G. Bruce; Poorter, Lourens

    2016-01-01

    Regrowth of tropical secondary forests following complete or nearly complete removal of forest vegetation actively stores carbon in aboveground biomass, partially counterbalancing carbon emissions from deforestation, forest degradation, burning of fossil fuels, and other anthropogenic sources. We estimate the age and spatial extent of lowland second-growth forests in the Latin American tropics and model their potential aboveground carbon accumulation over four decades. Our model shows that, in 2008, second-growth forests (1 to 60 years old) covered 2.4 million km2 of land (28.1% of the total study area). Over 40 years, these lands can potentially accumulate a total aboveground carbon stock of 8.48 Pg C (petagrams of carbon) in aboveground biomass via low-cost natural regeneration or assisted regeneration, corresponding to a total CO2 sequestration of 31.09 Pg CO2. This total is equivalent to carbon emissions from fossil fuel use and industrial processes in all of Latin America and the Caribbean from 1993 to 2014. Ten countries account for 95% of this carbon storage potential, led by Brazil, Colombia, Mexico, and Venezuela. We model future land-use scenarios to guide national carbon mitigation policies. Permitting natural regeneration on 40% of lowland pastures potentially stores an additional 2.0 Pg C over 40 years. Our study provides information and maps to guide national-level forest-based carbon mitigation plans on the basis of estimated rates of natural regeneration and pasture abandonment. Coupled with avoided deforestation and sustainable forest management, natural regeneration of second-growth forests provides a low-cost mechanism that yields a high carbon sequestration potential with multiple benefits for biodiversity and ecosystem services. PMID:27386528

  17. Exploring Opportunities for Promoting Synergies between Climate Change Adaptation and Mitigation in Forest Carbon Initiatives

    Directory of Open Access Journals (Sweden)

    Eugene L. Chia

    2016-01-01

    Full Text Available There is growing interest in designing and implementing climate change mitigation and adaptation (M + A in synergy in the forest and land use sectors. However, there is limited knowledge on how the planning and promotion of synergies between M + A can be operationalized in the current efforts to mitigate climate change through forest carbon. This paper contributes to fill this knowledge gap by exploring ways of planning and promoting M + A synergy outcomes in forest carbon initiatives. It examines eight guidelines that are widely used in designing and implementing forest carbon initiatives. Four guiding principles with a number of criteria that are relevant for planning synergy outcomes in forest carbon activities are proposed. The guidelines for developing forest carbon initiatives need to demonstrate that (1 the health of forest ecosystems is maintained or enhanced; (2 the adaptive capacity of forest-dependent communities is ensured; (3 carbon and adaptation benefits are monitored and verified; and (4 adaptation outcomes are anticipated and planned in forest carbon initiatives. The forest carbon project development guidelines can encourage the integration of adaptation in forest carbon initiatives. However, their current efforts guiding projects and programs to deliver biodiversity and environmental benefits, ecosystem services, and socioeconomic benefits are not considered explicitly as efforts towards enhancing adaptation. An approach for incentivizing and motivating project developers, guideline setters, and offset buyers is imperative in order to enable existing guidelines to make clear contributions to adaptation goals. We highlight and discuss potential ways of incentivizing and motivating the explicit planning and promotion of adaptation outcomes in forest carbon initiatives.

  18. Above Ground Biomass-carbon Partitioning, Storage and Sequestration in a Rehabilitated Forest, Bintulu, Sarawak, Malaysia

    International Nuclear Information System (INIS)

    Kueh, J.H.R.; Majid, N.M.A.; Seca, G.; Ahmed, O.H.

    2013-01-01

    Forest degradation and deforestation are some of the major global concerns as it can reduce forest carbon storage and sequestration capacity. Forest rehabilitation on degraded forest areas has the potential to improve carbon stock, hence mitigate greenhouse gases emission. However, the carbon storage and sequestration potential in a rehabilitated tropical forest remains unclear due to the lack of information. This paper reports an initiative to estimate biomass-carbon partitioning, storage and sequestration in a rehabilitated forest. The study site was at the UPM-Mitsubishi Corporation Forest Rehabilitation Project, UPM Bintulu Sarawak Campus, Bintulu, Sarawak. A plot of 20 x 20 m 2 was established each in site 1991 (Plot 1991), 1999 (Plot 1999) and 2008 (Plot 2008). An adjacent natural regenerating secondary forest plot (Plot NF) was also established for comparison purposes. The results showed that the contribution of tree component biomass/ carbon to total biomass/ carbon was in the order of main stem > branch > leaf. As most of the trees were concentrated in diameter size class = 10 cm for younger rehabilitated forests, the total above ground biomass/ carbon was from this class. These observations suggest that the forests are in the early successional stage. The total above ground biomass obtained for the rehabilitated forest ranged from 4.3 to 4,192.3 kg compared to natural regenerating secondary forest of 3,942.3 kg while total above ground carbon ranged from 1.9 to 1,927.9 kg and 1,820.4 kg, respectively. The mean total above ground biomass accumulated ranged from 1.3 x 10 -2 to 20.5 kg/ 0.04 ha and mean total carbon storage ranged from 5.9 x 10 -3 to 9.4 kg/ 0.04 ha. The total CO 2 sequestrated in rehabilitated forest ranged from 6.9 to 7,069.1 kg CO 2 / 0.04 ha. After 19 years, the rehabilitated forest had total above ground biomass and carbon storage comparable to the natural regeneration secondary forest. The forest rehabilitated activities have the

  19. Protecting tropical forests from the rapid expansion of rubber using carbon payments.

    Science.gov (United States)

    Warren-Thomas, Eleanor M; Edwards, David P; Bebber, Daniel P; Chhang, Phourin; Diment, Alex N; Evans, Tom D; Lambrick, Frances H; Maxwell, James F; Nut, Menghor; O'Kelly, Hannah J; Theilade, Ida; Dolman, Paul M

    2018-03-02

    Expansion of Hevea brasiliensis rubber plantations is a resurgent driver of deforestation, carbon emissions, and biodiversity loss in Southeast Asia. Southeast Asian rubber extent is massive, equivalent to 67% of oil palm, with rapid further expansion predicted. Results-based carbon finance could dis-incentivise forest conversion to rubber, but efficacy will be limited unless payments match, or at least approach, the costs of avoided deforestation. These include opportunity costs (timber and rubber profits), plus carbon finance scheme setup (transaction) and implementation costs. Using comprehensive Cambodian forest data, exploring scenarios of selective logging and conversion, and assuming land-use choice is based on net present value, we find that carbon prices of $30-$51 per tCO 2 are needed to break even against costs, higher than those currently paid on carbon markets or through carbon funds. To defend forests from rubber, either carbon prices must be increased, or other strategies are needed, such as corporate zero-deforestation pledges, and governmental regulation and enforcement of forest protection.

  20. Would protecting tropical forest fragments provide carbon and biodiversity cobenefits under REDD+?

    Science.gov (United States)

    Magnago, Luiz Fernando S; Magrach, Ainhoa; Laurance, William F; Martins, Sebastião V; Meira-Neto, João Augusto A; Simonelli, Marcelo; Edwards, David P

    2015-09-01

    Tropical forests store vast amounts of carbon and are the most biodiverse terrestrial habitats, yet they are being converted and degraded at alarming rates. Given global shortfalls in the budgets required to prevent carbon and biodiversity loss, we need to seek solutions that simultaneously address both issues. Of particular interest are carbon-based payments under the Reducing Emissions from Deforestation and Forest Degradation (REDD+) mechanism to also conserve biodiversity at no additional cost. One potential is for REDD+ to protect forest fragments, especially within biomes where contiguous forest cover has diminished dramatically, but we require empirical tests of the strength of any carbon and biodiversity cobenefits in such fragmented systems. Using the globally threatened Atlantic Forest landscape, we measured above-ground carbon stocks within forest fragments spanning 13 to 23 442 ha in area and with different degrees of isolation. We related these stocks to tree community structure and to the richness and abundance of endemic and IUCN Red-listed species. We found that increasing fragment size has a positive relationship with above-ground carbon stock and with abundance of IUCN Red-listed species and tree community structure. We also found negative relationships between distance from large forest block and tree community structure, endemic species richness and abundance, and IUCN Red-listed species abundance. These resulted in positive congruence between carbon stocks and Red-listed species, and the abundance and richness of endemic species, demonstrating vital cobenefits. As such, protecting forest fragments in hotspots of biodiversity, particularly larger fragments and those closest to sources, offers important carbon and biodiversity cobenefits. More generally, our results suggest that macroscale models of cobenefits under REDD+ have likely overlooked key benefits at small scales, indicating the necessity to apply models that include finer

  1. Fifty years dynamics of Russian forests: Impacts on the earth system

    Science.gov (United States)

    Shvidenko, Anatoly; Schepaschenko, Dmitry; Kraxner, Florian

    2015-04-01

    The paper presents a succinct history of Russian forests during the time period of 1960-2010 and reanalysis of their impacts on global carbon and nitrogen cycles. We present dynamics of land cover change (including major categories of forest land) and biometric characteristics of forests (species composition, age structure, growing stock volume etc.) based on reconciling all relevant information (data of forest and land inventories, official forest management statistics, multi-sensor remote sensing products, data of forest pathological monitoring etc.). Completeness and reliability of background information was different during the period of the study. Forest inventory data and official statistics were partially modified based on relevant auxiliary information and used for 1960-2000. The analysis for 2001-2010 was provided with a crucial use of multi-sensor remote sensing data. For this last period a hybrid forest mask was developed at resolution of 230m by integration of 8 remote sensing products and using geographical weighted regression and data of crowdsourcing. During the considered 50 years forested areas of Russia substantially increased by middle of 1990s and slightly declined (at about 5%) after. Indicators needed for assessment of carbon and nitrogen cycles of forest ecosystems were defined for the entire period (aggregated estimates by decades for 1960-2000 and yearly for 2001-2010) based on unified methodology with some peculiarities following from availability of information. Major results were obtained by landscape-ecosystem method that uses as comprehensive as possible empirical and semi-empirical information on ecosystems and landscapes in form of an Integrated Land Information System and complimentary combines pool- and flux-based methods. We discuss and quantify major drivers of forest cover change (socio-economic, environmental and climatic) including forest management (harvest, reforestation and afforestation), impacts of seasonal weather on

  2. Tamm Review: Sequestration of carbon from coarse woody debris in forest soils

    NARCIS (Netherlands)

    Magnússon, R.Í.; Tietema, A.; Cornelissen, J.H.C.; Hefting, M.M.; Kalbitz, K.

    2016-01-01

    Worldwide, forests have absorbed around 30% of global anthropogenic emissions of carbon dioxide (CO2) annually, thereby acting as important carbon (C) sinks. It is proposed that leaving large fragments of dead wood, coarse woody debris (CWD), in forest ecosystems may contribute to the forest C sink

  3. Terrestrial carbon turnover time constraints on future carbon cycle-climate feedback

    Science.gov (United States)

    Fan, N.; Carvalhais, N.; Reichstein, M.

    2017-12-01

    Understanding the terrestrial carbon cycle-climate feedback is essential to reduce the uncertainties resulting from the between model spread in prognostic simulations (Friedlingstein et al., 2006). One perspective is to investigate which factors control the variability of the mean residence times of carbon in the land surface, and how these may change in the future, consequently affecting the response of the terrestrial ecosystems to changes in climate as well as other environmental conditions. Carbon turnover time of the whole ecosystem is a dynamic parameter that represents how fast the carbon cycle circulates. Turnover time τ is an essential property for understanding the carbon exchange between the land and the atmosphere. Although current Earth System Models (ESMs), supported by GVMs for the description of the land surface, show a strong convergence in GPP estimates, but tend to show a wide range of simulated turnover times (Carvalhais, 2014). Thus, there is an emergent need of constraints on the projected response of the balance between terrestrial carbon fluxes and carbon stock which will give us more certainty in response of carbon cycle to climate change. However, the difficulty of obtaining such a constraint is partly due to lack of observational data on temporal change of terrestrial carbon stock. Since more new datasets of carbon stocks such as SoilGrid (Hengl, et al., 2017) and fluxes such as GPP (Jung, et al., 2017) are available, improvement in estimating turnover time can be achieved. In addition, previous study ignored certain aspects such as the relationship between τ and nutrients, fires, etc. We would like to investigate τ and its role in carbon cycle by combining observatinoal derived datasets and state-of-the-art model simulations.

  4. Carbon rentals and silvicultural subsidies for private forests as climate policy instruments

    International Nuclear Information System (INIS)

    Uusivuori, J.; Laturi, J.

    2007-01-01

    The impacts of potential climate policy instruments on the carbon production of privately owned and operated forests were investigated. A forest model with an endogenous growth description and age-class structure was used to describe both the output supply and input demand decisions of a private non-industrial landowner with optimized consumption flow, harvest timing, and an intertemporal allocation of forest investments. Two scenarios were examined, notably (1) a scenario in which the landowner was granted periodic carbon rental payments; and (2) a scenario in which the government subsidized the costs of silvicultural investments. The intended and unintended effects of the policies were examined. Models were used to demonstrate that the effectiveness of the instruments was significantly influenced by the age-class structure of forests when future carbon benefits were discounted. It was concluded that carbon rental payments were a more effective policy for older age-class structured forests. Silvicultural subsidies were more beneficial for forests with younger age-class structures. 21 refs., 6 figs

  5. Climate Change Effects of Forest Management and Substitution of Carbon-Intensive Materials and Fossil Fuels

    Science.gov (United States)

    Sathre, R.; Gustavsson, L.; Haus, S.; Lundblad, M.; Lundström, A.; Ortiz, C.; Truong, N.; Wikberg, P. E.

    2016-12-01

    Forests can play several roles in climate change mitigation strategies, for example as a reservoir for storing carbon and as a source of renewable materials and energy. To better understand the linkages and possible trade-offs between different forest management strategies, we conduct an integrated analysis where both sequestration of carbon in growing forests and the effects of substituting carbon intensive products within society are considered. We estimate the climate effects of directing forest management in Sweden towards increased carbon storage in forests, with more land set-aside for protection, or towards increased forest production for the substitution of carbon-intensive materials and fossil fuels, relative to a reference case of current forest management. We develop various scenarios of forest management and biomass use to estimate the carbon balances of the forest systems, including ecological and technological components, and their impacts on the climate in terms of cumulative radiative forcing over a 100-year period. For the reference case of current forest management, increasing the harvest of forest residues is found to give increased climate benefits. A scenario with increased set-aside area and the current level of forest residue harvest begins with climate benefits compared to the reference scenario, but the benefits cannot be sustained for 100 years because the rate of carbon storage in set-aside forests diminishes over time as the forests mature, but the demand for products and fuels remains. The most climatically beneficial scenario, expressed as reduced cumulative radiative forcing, in both the short and long terms is a strategy aimed at high forest production, high residue recovery rate, and high efficiency utilization of harvested biomass. Active forest management with high harvest level and efficient forest product utilization will provide more climate benefit, compared to reducing harvest and storing more carbon in the forest. Figure

  6. Chemical vapor deposition of carbon nanotube forests

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, J.; Zhong, G.; Esconjauregui, S.; Zhang, C.; Fouquet, M.; Hofmann, S. [Engineering Department, Cambridge University, Cambridge CB2 1PZ (United Kingdom)

    2012-12-15

    We review the growth mechanisms of vertically aligned carbon nanotube forests, in terms of what controls the growth rate and control of the catalyst lifetime. We also review the production of very high-density forests, in terms of increasing the catalyst particle density. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Chemical vapor deposition of carbon nanotube forests

    International Nuclear Information System (INIS)

    Robertson, J.; Zhong, G.; Esconjauregui, S.; Zhang, C.; Fouquet, M.; Hofmann, S.

    2012-01-01

    We review the growth mechanisms of vertically aligned carbon nanotube forests, in terms of what controls the growth rate and control of the catalyst lifetime. We also review the production of very high-density forests, in terms of increasing the catalyst particle density. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Forest Carbon Monitoring and Reporting for REDD+: What Future for Africa?

    Science.gov (United States)

    Gizachew, Belachew; Duguma, Lalisa A

    2016-11-01

    A climate change mitigation mechanism for emissions reduction from reduced deforestation and forest degradation, plus forest conservation, sustainable management of forest, and enhancement of carbon stocks (REDD+), has received an international political support in the climate change negotiations. The mechanism will require, among others, an unprecedented technical capacity for monitoring, reporting and verification of carbon emissions from the forest sector. A functional monitoring, reporting and verification requires inventories of forest area, carbon stock and changes, both for the construction of forest reference emissions level and compiling the report on the actual emissions, which are essentially lacking in developing countries, particularly in Africa. The purpose of this essay is to contribute to a better understanding of the state and prospects of forest monitoring and reporting in the context of REDD+ in Africa. We argue that monitoring and reporting capacities in Africa fall short of the stringent requirements of the methodological guidance for monitoring, reporting and verification for REDD+, and this may weaken the prospects for successfully implementing REDD+ in the continent. We presented the challenges and prospects in the national forest inventory, remote sensing and reporting infrastructures. A North-South, South-South collaboration as well as governments own investments in monitoring, reporting and verification system could help Africa leapfrog in monitoring and reporting. These could be delivered through negotiations for the transfer of technology, technical capacities, and experiences that exist among developed countries that traditionally compile forest carbon reports in the context of the Kyoto protocol.

  9. Offset of the potential carbon sink from boreal forestation by decreases in surface albedo

    International Nuclear Information System (INIS)

    Betts, R.A.

    2000-01-01

    Carbon uptake by forestation is one method proposed to reduce net carbon dioxide emissions to the atmosphere and so limit the radiative forcing of climate change. But the overall impact of forestation on climate will also depend on other effects associated with the creation of new forests. In particular the albedo of a forested landscape is generally lower than that of cultivated land, especially when snow is lying, and decreasing albedo exerts a positive radiative forcing on climate. Here I simulate the radiative forcings associated with changes in surface albedo as a result of forestation in temperate and boreal forest areas, and translate these forcings into equivalent changes in local carbon stock for comparison with estimated carbon sequestration potentials. I suggest that in many boreal forest areas, the positive forcing induced by decreases in albedo can offset the negative forcing that is expected from carbon sequestration. Some high-latitude forestation activities may therefore increase climate change, rather that mitigating it as intended

  10. Carbon emissions and sequestration in forests: Case studies from seven developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Makundi, W.; Sathaye, J. (eds.) (Lawrence Berkeley Lab., CA (United States)); Cerutti, O.M.; Ordonez, M.J.; Minjarez, R.D. (Universidad Nacional Autonoma de Mexico, Mexico City (Mexico) Centro de Ecologia)

    1992-08-01

    Estimates of carbon emissions from deforestation in Mexico are derived for the year 1985 and for two contrasting scenarios in 2025. Carbon emissions are calculated through an in-depth review of the existing information on forest cover deforestation mtes and area affected by forest fires as well as on forests' carbon-related biological characteristics. The analysis covers both tropical -- evergreen and deciduous -- and temperate -- coniferous and broadleaf -- closed forests. Emissions from the forest sector are also compared to those from energy and industry. Different policy options for promoting the sustainable management of forest resources in the country are discussed. The analysis indicates that approximately 804,000 hectares per year of closed forests suffered from major perturbations in the mid 1980's in Mexico, leading to an annual deforestation mte of 668,000 hectares. Seventy five percent of total deforestation is concentrated in tropical forests. The resulting annual carbon balance is estimated in 53.4 million tons per year, and the net committed emissions in 45.5 million tons or 41% and 38%, respectively, of the country's total for 1985--87. The annual carbon balance from the forest sector in 2025 is expected to decline to 16.5 million tons in the low emissions scenario and to 22.9 million tons in the high emissions scenario. Because of the large uncertainties in some of the primary sources of information, the stated figures should be taken as preliminary estimates.

  11. The complete nitrogen cycle of an N-saturated spruce forest ecosystem.

    Science.gov (United States)

    Kreutzer, K; Butterbach-Bahl, K; Rennenberg, H; Papen, H

    2009-09-01

    Long-term nitrogen deposition into forest ecosystems has turned many forests in Central Europe and North America from N-limited to N-saturated systems, with consequences for climate as well as air and groundwater quality. However, complete quantification of processes that convert the N deposited and contributed to ecosystem N cycling is scarce. In this study, we provide the first complete quantification of external and internal N fluxes in an old-growth spruce forest, the Höglwald, Bavaria, Germany, exposed to high chronic N deposition. In this forest, N cycling is dominated by high rates of mineralisation of soil organic matter, nitrification and immobilisation of ammonium and nitrate into microbial biomass. The amount of ammonium available is sufficient to cover the entire N demand of the spruce trees. The data demonstrate the existence of a highly dynamic internal N cycle within the soil, driven by growth and death of the microbial biomass, which turns over approximately seven times each year. Although input and output fluxes are of high environmental significance, they are low compared to the internal fluxes mediated by microbial activity.

  12. High-resolution mapping of forest carbon stocks in the Colombian Amazon

    Directory of Open Access Journals (Sweden)

    G. P. Asner

    2012-07-01

    Full Text Available High-resolution mapping of tropical forest carbon stocks can assist forest management and improve implementation of large-scale carbon retention and enhancement programs. Previous high-resolution approaches have relied on field plot and/or light detection and ranging (LiDAR samples of aboveground carbon density, which are typically upscaled to larger geographic areas using stratification maps. Such efforts often rely on detailed vegetation maps to stratify the region for sampling, but existing tropical forest maps are often too coarse and field plots too sparse for high-resolution carbon assessments. We developed a top-down approach for high-resolution carbon mapping in a 16.5 million ha region (> 40% of the Colombian Amazon – a remote landscape seldom documented. We report on three advances for large-scale carbon mapping: (i employing a universal approach to airborne LiDAR-calibration with limited field data; (ii quantifying environmental controls over carbon densities; and (iii developing stratification- and regression-based approaches for scaling up to regions outside of LiDAR coverage. We found that carbon stocks are predicted by a combination of satellite-derived elevation, fractional canopy cover and terrain ruggedness, allowing upscaling of the LiDAR samples to the full 16.5 million ha region. LiDAR-derived carbon maps have 14% uncertainty at 1 ha resolution, and the regional map based on stratification has 28% uncertainty in any given hectare. High-resolution approaches with quantifiable pixel-scale uncertainties will provide the most confidence for monitoring changes in tropical forest carbon stocks. Improved confidence will allow resource managers and decision makers to more rapidly and effectively implement actions that better conserve and utilize forests in tropical regions.

  13. Net aboveground biomass declines of four major forest types with forest ageing and climate change in western Canada's boreal forests.

    Science.gov (United States)

    Chen, Han Y H; Luo, Yong

    2015-10-01

    Biomass change of the world's forests is critical to the global carbon cycle. Despite storing nearly half of global forest carbon, the boreal biome of diverse forest types and ages is a poorly understood component of the carbon cycle. Using data from 871 permanent plots in the western boreal forest of Canada, we examined net annual aboveground biomass change (ΔAGB) of four major forest types between 1958 and 2011. We found that ΔAGB was higher for deciduous broadleaf (DEC) (1.44 Mg ha(-1)  year(-1) , 95% Bayesian confidence interval (CI), 1.22-1.68) and early-successional coniferous forests (ESC) (1.42, CI, 1.30-1.56) than mixed forests (MIX) (0.80, CI, 0.50-1.11) and late-successional coniferous (LSC) forests (0.62, CI, 0.39-0.88). ΔAGB declined with forest age as well as calendar year. After accounting for the effects of forest age, ΔAGB declined by 0.035, 0.021, 0.032 and 0.069 Mg ha(-1)  year(-1) per calendar year in DEC, ESC, MIX and LSC forests, respectively. The ΔAGB declines resulted from increased tree mortality and reduced growth in all forest types except DEC, in which a large biomass loss from mortality was accompanied with a small increase in growth. With every degree of annual temperature increase, ΔAGB decreased by 1.00, 0.20, 0.55 and 1.07 Mg ha(-1)  year(-1) in DEC, ESC, MIX and LSC forests, respectively. With every cm decrease of annual climatic moisture availability, ΔAGB decreased 0.030, 0.045 and 0.17 Mg ha(-1)  year(-1) in ESC, MIX and LSC forests, but changed little in DEC forests. Our results suggest that persistent warming and decreasing water availability have profound negative effects on forest biomass in the boreal forests of western Canada. Furthermore, our results indicate that forest responses to climate change are strongly dependent on forest composition with late-successional coniferous forests being most vulnerable to climate changes in terms of aboveground biomass. © 2015 John Wiley & Sons Ltd.

  14. Exotic grasses and nitrate enrichment alter soil carbon cycling along an urban-rural tropical forest gradient.

    Science.gov (United States)

    Cusack, Daniela F; Lee, Joseph K; McCleery, Taylor L; LeCroy, Chase S

    2015-12-01

    Urban areas are expanding rapidly in tropical regions, with potential to alter ecosystem dynamics. In particular, exotic grasses and atmospheric nitrogen (N) deposition simultaneously affect tropical urbanized landscapes, with unknown effects on properties like soil carbon (C) storage. We hypothesized that (H1) soil nitrate (NO3 (-) ) is elevated nearer to the urban core, reflecting N deposition gradients. (H2) Exotic grasslands have elevated soil NO3 (-) and decreased soil C relative to secondary forests, with higher N promoting decomposer activity. (H3) Exotic grasslands have greater seasonality in soil NO3 (-) vs. secondary forests, due to higher sensitivity of grassland soil moisture to rainfall. We predicted that NO3 (-) would be positively related to dissolved organic C (DOC) production via changes in decomposer activity. We measured six paired grassland/secondary forest sites along a tropical urban-to-rural gradient during the three dominant seasons (hurricane, dry, and early wet). We found that (1) soil NO3 (-) was generally elevated nearer to the urban core, with particularly clear spatial trends for grasslands. (2) Exotic grasslands had lower soil C than secondary forests, which was related to elevated decomposer enzyme activities and soil respiration. Unexpectedly, soil NO3 (-) was negatively related to enzyme activities, and was lower in grasslands than forests. (3) Grasslands had greater soil NO3 (-) seasonality vs. forests, but this was not strongly linked to shifts in soil moisture or DOC. Our results suggest that exotic grasses in tropical regions are likely to drastically reduce soil C storage, but that N deposition may have an opposite effect via suppression of enzyme activities. However, soil NO3 (-) accumulation here was higher in urban forests than grasslands, potentially related to of aboveground N interception. Net urban effects on C storage across tropical landscapes will likely vary depending on the mosaic of grass cover, rates of N

  15. Soil Carbon and Nitrogen Cycle Modeling

    Science.gov (United States)

    Woo, D.; Chaoka, S.; Kumar, P.; Quijano, J. C.

    2012-12-01

    Second generation bioenergy crops, such as miscanthus (Miscantus × giganteus) and switchgrass (Panicum virgatum), are regarded as clean energy sources, and are an attractive option to mitigate the human-induced climate change. However, the global climate change and the expansion of perennial grass bioenergy crops have the power to alter the biogeochemical cycles in soil, especially, soil carbon storages, over long time scales. In order to develop a predictive understanding, this study develops a coupled hydrological-soil nutrient model to simulate soil carbon responses under different climate scenarios such as: (i) current weather condition, (ii) decreased precipitation by -15%, and (iii) increased temperature up to +3C for four different crops, namely miscanthus, switchgrass, maize, and natural prairie. We use Precision Agricultural Landscape Modeling System (PALMS), version 5.4.0, to capture biophysical and hydrological components coupled with a multilayer carbon and ¬nitrogen cycle model. We apply the model at daily time scale to the Energy Biosciences Institute study site, located in the University of Illinois Research Farms, in Urbana, Illinois. The atmospheric forcing used to run the model was generated stochastically from parameters obtained using available data recorded in Bondville Ameriflux Site. The model simulations are validated with observations of drainage and nitrate and ammonium concentrations recorded in drain tiles during 2011. The results of this study show (1) total soil carbon storage of miscanthus accumulates most noticeably due to the significant amount of aboveground plant carbon, and a relatively high carbon to nitrogen ratio and lignin content, which reduce the litter decomposition rate. Also, (2) the decreased precipitation contributes to the enhancement of total soil carbon storage and soil nitrogen concentration because of the reduced microbial biomass pool. However, (3) an opposite effect on the cycle is introduced by the increased

  16. Carbon and Nitrogen Pools and Fluxes in Adjacent Mature Norway Spruce and European Beech Forests

    Directory of Open Access Journals (Sweden)

    Filip Oulehle

    2016-11-01

    Full Text Available We compared two adjacent mature forest ecosystem types (spruce vs. beech to unravel the fate of assimilated carbon (C and the cycling of organic and inorganic nitrogen (N without the risk of the confounding influences of climatic and site differences when comparing different sites. The stock of C in biomass was higher (258 t·ha−1 in the older (150 years beech stand compared to the younger (80 years planted spruce stand (192 t·ha−1, whereas N biomass pools were comparable (1450 kg·ha−1. Significantly higher C and N soil pools were measured in the beech stand, both in forest floor and mineral soil. Cumulative annual CO2 soil efflux was similar among stands, i.e., 9.87 t·ha−1·year−1 of C in the spruce stand and 9.01 t·ha−1·year−1 in the beech stand. Soil temperature explained 78% (Q10 = 3.7 and 72% (Q10 = 4.2 of variability in CO2 soil efflux in the spruce and beech stand, respectively. However, the rather tight N cycle in the spruce stand prevented inorganic N losses, whereas losses were higher in the beech stand and were dominated by nitrate in the mineral soil. Our results highlighted the long-term consequences of forest management on C and N cycling.

  17. Carbon stocks assessment in subtropical forest types of Kashmir Himalayas

    International Nuclear Information System (INIS)

    Shaheen, H.; Khan, R.W.A.; Hussain, K.; Ullah, T.S.; Mehmood, A.

    2016-01-01

    Estimation of carbon sequestration in forest ecosystem is necessary to mitigate impacts of climate change. Current research project was focused to assess the Carbon contents in standing trees and soil of different subtropical forest sites in Kashmir. Tree biomass was estimated by using allometric equations whereas Soil carbon was calculated by Walkey-Black titration method. Total carbon stock was computed as 186.27 t/ha with highest value of 326 t/ha recorded from Pinus roxburghii forest whereas lowest of 75.86 t/ha at mixed forest. Average biomass carbon was found to be 151.38 t/ha with a maximum value of 294.7 t/ha and minimum of 43.4 t/ha. Pinus roxburghii was the most significant species having biomass value of 191.8 t/ha, followed by Olea cuspidata (68.9 t/ha), Acacia modesta (12.71 t/ha), Dalbergia sissoo (12.01 t/ha), Broussonetia papyrifera (5.93 t/ha), Punica granatum (2.27 t/ha), Mallotus philippensis (2.2 t/ha), Albizia lebbeck (1.8t/ha), Ficus palmata (1.51 t/ha), Acacia arabica (1.4 t/ha), Melia azedarach, (1.14 t/ha) and Ficus carica (1.07 t/ha) respectively. Recorded value of tree density was 492/ha; average DBH was 87.27 cm; tree height was 13.3m; and regeneration value was 83 seedlings/ha. Soil carbon stocks were found to be 34.89 t/ha whereas agricultural soil carbon was calculated as 27.18 t/ha. Intense deforestation was represented by a stump density of 147.4/ha. The results of Principal Component Analysis (PCA) revealed the distinct species clusters on the basis of location, biomass and Carbon stock values. Pinus roxburghii and Olea cuspidata were found to be the major contributors of carbon stock having maximum vector lengths in the PCA Biplot. Forest in the area needs to be managed in a sustainable manner to increase its carbon sequestration potential. (author)

  18. Gross changes in forest area shape the future carbon balance of tropical forests

    Directory of Open Access Journals (Sweden)

    W. Li

    2018-01-01

    Full Text Available Bookkeeping models are used to estimate land-use and land-cover change (LULCC carbon fluxes (ELULCC. The uncertainty of bookkeeping models partly arises from data used to define response curves (usually from local data and their representativeness for application to large regions. Here, we compare biomass recovery curves derived from a recent synthesis of secondary forest plots in Latin America by Poorter et al. (2016 with the curves used previously in bookkeeping models from Houghton (1999 and Hansis et al. (2015. We find that the two latter models overestimate the long-term (100 years vegetation carbon density of secondary forest by about 25 %. We also use idealized LULCC scenarios combined with these three different response curves to demonstrate the importance of considering gross forest area changes instead of net forest area changes for estimating regional ELULCC. In the illustrative case of a net gain in forest area composed of a large gross loss and a large gross gain occurring during a single year, the initial gross loss has an important legacy effect on ELULCC so that the system can be a net source of CO2 to the atmosphere long after the initial forest area change. We show the existence of critical values of the ratio of gross area change over net area change (γAnetAgross, above which cumulative ELULCC is a net CO2 source rather than a sink for a given time horizon after the initial perturbation. These theoretical critical ratio values derived from simulations of a bookkeeping model are compared with observations from the 30 m resolution Landsat Thematic Mapper data of gross and net forest area change in the Amazon. This allows us to diagnose areas in which current forest gains with a large land turnover will still result in LULCC carbon emissions in 20, 50 and 100 years.

  19. Leveraging FIA data for analysis beyond forest reports: examples from the world of carbon

    Science.gov (United States)

    Brian F. Walters; Grant M. Domke; Christopher W. Woodall

    2015-01-01

    The Forest Inventory and Analysis program of the USDA Forest Service is the go-to source for data to estimate carbon stocks and stock changes for the annual national greenhouse gas inventory (NGHGI) of the United States. However, the different pools of forest carbon have not always been estimated directly from FIA measurements. As part of the new forest carbon...

  20. Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics

    NARCIS (Netherlands)

    Chazdon, R.L.; Broadbent, E.N.; Rozendaal, Danae; Bongers, F.; Jakovac, A.C.; Braga Junqueira, A.; Lohbeck, M.W.M.; Pena Claros, M.; Poorter, L.

    2016-01-01

    Regrowth of tropical secondary forests following complete or nearly complete removal of forest vegetation actively stores carbon in aboveground biomass, partially counterbalancing carbon emissions from deforestation, forest degradation, burning of fossil fuels, and other anthropogenic sources. We

  1. Temporal carbon dynamics of forests in Washington, US: implications for ecological theory and carbon management

    Science.gov (United States)

    Crystal L. Raymond; Donald. McKenzie

    2014-01-01

    We quantified carbon (C) dynamics of forests in Washington, US using theoretical models of C dynamics as a function of forest age. We fit empirical models to chronosequences of forest inventory data at two scales: a coarse-scale ecosystem classification (ecosections) and forest types (potential vegetation) within ecosections. We hypothesized that analysis at the finer...

  2. Post-harvest carbon emissions and sequestration in southern United States forest industries

    Energy Technology Data Exchange (ETDEWEB)

    Row, C.

    1997-12-31

    Whether the forest industries in the southern United States are net emitters or sequesters of carbon from the atmosphere depends on one`s viewpoint. In the short-term, the solid-wood industries-lumber, plywood, and panels--appear to sequester more carbon than is in the fossil fuels they use for processing. The paper industries, however, emit more carbon from fossil fuels than they sequester in the pulp and paper they manufacture. This viewpoint is quite limited. If one considers the life-cycles of solid-wood and paper products from seedlings to landfill, these industries sequester more carbon than they emit from burning fossil fuels. These industries also generate large amounts of energy by replacing fossil fuels with biofuels from processing residues, and wood-based products produce more energy from incineration and landfill gases. Use of the carbon in these biofuels in effect keeps fossil fuel carbon in the ground, considering that at least that amount of carbon would be emitted in producing alternative materials. Another way of looking the emission balances is that wood-based materials, pound for pound or use for use, are the most {open_quotes}carbon efficient{close_quotes} group of major industrial materials. 5 refs., 12 figs.

  3. Linking plant functional traits and forest carbon stocks in the Congo Basin

    Science.gov (United States)

    Kearsley, Elizabeth; Verbeeck, Hans; Hufkens, Koen; Lewis, Simon; Huygens, Dries; Beeckman, Hans; Steppe, Kathy; Boeckx, Pascal

    2013-04-01

    Accurate estimates of the amount of carbon stored in tropical forests represent crucial baseline data for recent climate change mitigation policies. Such data are needed to quantify possible emissions due to deforestation and forest degradation, and to evaluate the potential of these forests to act as carbon sinks. Currently, only rough estimates of the carbon stocks for Central African tropical forests are available due to a lack of field data, and little is known about the response of these stocks to climate change. We present the first ground-based carbon stock data for the central Congo Basin in Yangambi, D. R. Congo, based on data of 20 inventory plots of 1 ha covering different forest types. We found an average aboveground carbon stock of 163 ± 19 Mg C ha-1 for intact old-growth forest, which is significantly lower than the stocks recorded in the outer regions of the Congo Basin. Commonly studied drivers for variations of carbon stocks include climatic and edaphic factors, but detailed trait-based studies are lacking. We identified a significant difference in height-diameter relations across the Congo Basin as a driver for spatial differences in carbon stocks. The study of a more detailed interaction of the environment and the available tree species pool as drivers for differences in carbon storage could have large implications. The effect of the species pool on carbon storage can be large since species differ in their ability to sequester carbon, and the collective functional characteristics of plant communities could be a major driver of carbon accumulation. The use of a trait-based approach shows high potential for identifying and quantifying carbon stocks as an ecosystem service. We test for associations between functional trait values and carbon storage across multiple regrowth and old-growth forests types in the Yangambi study area, with soil properties and climate similar for all plots. A selection of traits associated with carbon dynamics is made

  4. Understanding Coastal Carbon Cycling by Linking Top-Down and Bottom-Up Approaches

    Science.gov (United States)

    Barr, Jordan G.; Troxler, Tiffany G.; Najjar, Raymond G.

    2014-09-01

    The coastal zone, despite occupying a small fraction of the Earth's surface area, is an important component of the global carbon (C) cycle. Coastal wetlands, including mangrove forests, tidal marshes, and seagrass meadows, compose a domain of large reservoirs of biomass and soil C [Fourqurean et al., 2012; Donato et al., 2011; Pendleton et al., 2012; Regnier et al., 2013; Bauer et al., 2013]. These wetlands and their associated C reservoirs (2 to 25 petagrams C; best estimate of 7 petagrams C [Pendleton et al., 2012]) provide numerous ecosystem services and serve as key links between land and ocean.

  5. Ecosystem-Level Carbon Stocks in Costa Rican Mangrove Forests

    Science.gov (United States)

    Cifuentes, M.

    2012-12-01

    Tropical mangroves provide a wide variety of ecosystem services, including atmospheric carbon sequestration. Because of their high rates of carbon accumulation, the large expected size of their total stocks (from 2 to 5 times greater than those of upland tropical forests), and the alarming rates at which they are being converted to other uses (releasing globally from 0.02 to 0.12 Pg C yr-1), mangroves are receiving increasing attention as additional tools to mitigate climate change. However, data on whole ecosystem-level carbon in tropical mangroves is limited. Here I present the first estimate of ecosystem level carbon stocks in mangrove forests of Central America. I established 28, 125 m-long, sampling transects along the 4 main rivers draining the Térraba-Sierpe National Wetland in the southern Pacific coast of Costa Rica. This area represents 39% of all remaining mangroves in the country (48300 ha). A circular nested plot was placed every 25 m along each transect. Carbon stocks of standing trees, regeneration, the herbaceous layer, litter, and downed wood were measured following internationally-developed methods compatible with IPCC "Good Practice Guidelines". In addition, total soil carbon stocks were determined down to 1 m depth. Together, these carbon estimates represent the ecosystem-carbon stocks of these forests. The average aboveground carbon stocks were 72.5 ± 3.2 MgC ha-1 (range: 9 - 241 MgC ha-1), consistent with results elsewhere in the world. Between 74 and 92% of the aboveground carbon is stored in trees ≥ 5cm dbh. I found a significant correlation between basal area of trees ≥ 5cm dbh and total aboveground carbon. Soil carbon stocks to 1 m depth ranged between 141 y 593 MgC ha-1. Ecosystem-level carbon stocks ranged from 391 MgC ha-1 to 438 MgC ha-1, with a slight increase from south to north locations. Soil carbon stocks represent an average 76% of total ecosystem carbon stocks, while trees represent only 20%. These Costa Rican mangroves

  6. Carbon changes in conterminous US forests associated with growth and major disturbances: 1992-2001

    International Nuclear Information System (INIS)

    Zheng Daolan; Ducey, Mark J; Heath, Linda S; Smith, James E

    2011-01-01

    We estimated forest area and carbon changes in the conterminous United States using a remote sensing based land cover change map, forest fire data from the Monitoring Trends in Burn Severity program, and forest growth and harvest data from the USDA Forest Service, Forest Inventory and Analysis Program. Natural and human-associated disturbances reduced the forest ecosystems' carbon sink by 36% from 1992 to 2001, compared to that without disturbances in the 48 states. Among the three identified disturbances, forest-related land cover change contributed 33% of the total effect in reducing the forest carbon potential sink, while harvests and fires accounted for 63% and 4% of the total effect, respectively. The nation's forests sequestered 1.6 ± 0.1 Pg (10 15 petagram) carbon during the period, or 0.18 Pg C yr -1 , with substantial regional variation. The southern region of the United States was a small net carbon source whereas the greater Pacific Northwest region was a strong net sink. Results of the approach fit reasonably well at an aggregate level with other related estimates of the current forest US greenhouse gas inventory, suggesting that further research using this approach is warranted.

  7. Global assessment of promising forest management practices for sequestration of carbon

    International Nuclear Information System (INIS)

    Winjum, J.K.; Dixon, R.K.; Schroeder, P.E.

    1991-01-01

    In the 1980s, forests covered an estimated 4.08 billion hectares and contained a carbon pool of 1,400 gigatonnes, or 64% of the total terrestrial pool. Forest biomass productivity per unit of land can be enhanced by proper management practices and it is suggested that by implementing such practices, forests could store more carbon globally and thereby slow the increase in atmospheric CO 2 . Currently, only about 10% of world forests are managed at an active level. An assessment is presented of the amount of carbon that could be sequestered globally by implementing the practices of reforestation, afforestation, natural regeneration, silviculture, and agroforestry. The assessment is based on the development of a global database on managed forest and agroforestry systems. For each of the above five practices, the database contains information on carbon sequestered per hectare, implementation costs, and estimates of the amount of land technically suitable for such practices throughout the world. Results are presented for each practice in the boreal, temperate, and tropical regions. Preliminary estimates show that promising forestry and agroforestry practices could sequester, over a 50-y period, ca 50-100 gigatonnes of carbon at a cost of $170-340 million. This would be a significant contribution as a mitigating measure regarding atmospheric CO 2 buildup and projections for global warming, at present rates of anthropogenic carbon emissions (300-400 gigatonnes carbon over 50 y). 19 refs., 2 figs., 4 tabs

  8. Tropical secondary forests regenerating after shifting cultivation in the Philippines uplands are important carbon sinks.

    Science.gov (United States)

    Mukul, Sharif A; Herbohn, John; Firn, Jennifer

    2016-03-08

    In the tropics, shifting cultivation has long been attributed to large scale forest degradation, and remains a major source of uncertainty in forest carbon accounting. In the Philippines, shifting cultivation, locally known as kaingin, is a major land-use in upland areas. We measured the distribution and recovery of aboveground biomass carbon along a fallow gradient in post-kaingin secondary forests in an upland area in the Philippines. We found significantly higher carbon in the aboveground total biomass and living woody biomass in old-growth forest, while coarse dead wood biomass carbon was higher in the new fallow sites. For young through to the oldest fallow secondary forests, there was a progressive recovery of biomass carbon evident. Multivariate analysis indicates patch size as an influential factor in explaining the variation in biomass carbon recovery in secondary forests after shifting cultivation. Our study indicates secondary forests after shifting cultivation are substantial carbon sinks and that this capacity to store carbon increases with abandonment age. Large trees contribute most to aboveground biomass. A better understanding of the relative contribution of different biomass sources in aboveground total forest biomass, however, is necessary to fully capture the value of such landscapes from forest management, restoration and conservation perspectives.

  9. Climate-carbon cycle feedbacks under stabilization: uncertainty and observational constraints

    International Nuclear Information System (INIS)

    Jones, Chris D.; Cox, Peter M.; Huntingford, Chris

    2006-01-01

    Avoiding 'dangerous climate change' by stabilization of atmospheric CO 2 concentrations at a desired level requires reducing the rate of anthropogenic carbon emissions so that they are balanced by uptake of carbon by the natural terrestrial and oceanic carbon cycles. Previous calculations of profiles of emissions which lead to stabilized CO 2 levels have assumed no impact of climate change on this natural carbon uptake. However, future climate change effects on the land carbon cycle are predicted to reduce its ability to act as a sink for anthropogenic carbon emissions and so quantification of this feedback is required to determine future permissible emissions. Here, we assess the impact of the climate-carbon cycle feedback and attempt to quantify its uncertainty due to both within-model parameter uncertainty and between-model structural uncertainty. We assess the use of observational constraints to reduce uncertainty in the future permissible emissions for climate stabilization and find that all realistic carbon cycle feedbacks consistent with the observational record give permissible emissions significantly less than previously assumed. However, the observational record proves to be insufficient to tightly constrain carbon cycle processes or future feedback strength with implications for climate-carbon cycle model evaluation

  10. ROE Carbon Storage - Forest Biomass

    Science.gov (United States)

    This polygon dataset depicts the density of forest biomass in counties across the United States, in terms of metric tons of carbon per square mile of land area. These data were provided in spreadsheet form by the U.S. Department of Agriculture (USDA) Forest Service. To produce the Web mapping application, EPA joined the spreadsheet with a shapefile of U.S. county (and county equivalent) boundaries downloaded from the U.S. Census Bureau. EPA calculated biomass density based on the area of each county polygon. These data sets were converted into a single polygon feature class inside a file geodatabase.

  11. Effect of Forest Management of Picea abies and Fagus sylvatica with Different Types of Felling on Carbon and Economic Balances in the Czech Republic

    Science.gov (United States)

    Plch, Radek; Pulkrab, Karel; Bukáček, Jan; Sloup, Roman; Cudlín, Pavel

    2016-10-01

    The selection of the most sustainable forest management under given site conditions needs suitable criteria and indicators. For this purpose, carbon and economic balance assessment, completed with environmental impact computation using the Life Cycle Assessment (LCA) were used. The aim of this study was to compare forestry operations and wood production of selected forest stands with different i) tree species composition (Norway spruce - Picea abies and European beech - Fagus sylvatica) and ii) type of felling (chainsaw and harvester). Carbon and economic balance methods consist in the comparison of quantified inputs (fossil fuels, electricity, used machinery, fertilizers, etc., converted into emission units of carbon in Mg of C- CO2-eq. or EUR) with quantified outputs (biomass production in Mg of carbon or EUR). In this contribution, similar forest stands (“forest site complexes”) in the 4th forest vegetation zone (in the Czech Republic approximately 400-700 m above sea-level) were selected. Forestry operations were divided into 5 main stages: i) seedling production, ii) stand establishment and pruning, iii) thinning and final cutting, iv) skidding, and v) secondary timber transport and modelled for one rotation period of timber production (ca. 100 years). The differences between Norway spruce and European beech forest stands in the carbon efficiency were relatively small while higher differences were achieved in the economic efficiency (forest stands with Norway spruce had a higher economic efficiency). Concerning the comparison of different types of felling in Norway spruce forest stands, the harvester use proved to induce significantly higher environmental impacts (emission of carbon) and lower economic costs. The comparison of forestry operation stages showed that the main part of carbon emissions, originating from fuel production and combustion, is connected with a thinning and final cutting, skidding and secondary timber transport in relations to

  12. A synthesis of current knowledge on forests and carbon storage in the United States.

    Science.gov (United States)

    McKinley, Duncan C; Ryan, Michael G; Birdsey, Richard A; Giardina, Christian P; Harmon, Mark E; Heath, Linda S; Houghton, Richard A; Jackson, Robert B; Morrison, James F; Murray, Brian C; Patakl, Diane E; Skog, Kenneth E

    2011-09-01

    Using forests to mitigate climate change has gained much interest in science and policy discussions. We examine the evidence for carbon benefits, environmental and monetary costs, risks and trade-offs for a variety of activities in three general strategies: (1) land use change to increase forest area (afforestation) and avoid deforestation; (2) carbon management in existing forests; and (3) the use of wood as biomass energy, in place of other building materials, or in wood products for carbon storage. We found that many strategies can increase forest sector carbon mitigation above the current 162-256 Tg C/yr, and that many strategies have co-benefits such as biodiversity, water, and economic opportunities. Each strategy also has trade-offs, risks, and uncertainties including possible leakage, permanence, disturbances, and climate change effects. Because approximately 60% of the carbon lost through deforestation and harvesting from 1700 to 1935 has not yet been recovered and because some strategies store carbon in forest products or use biomass energy, the biological potential for forest sector carbon mitigation is large. Several studies suggest that using these strategies could offset as much as 10-20% of current U.S. fossil fuel emissions. To obtain such large offsets in the United States would require a combination of afforesting up to one-third of cropland or pastureland, using the equivalent of about one-half of the gross annual forest growth for biomass energy, or implementing more intensive management to increase forest growth on one-third of forestland. Such large offsets would require substantial trade-offs, such as lower agricultural production and non-carbon ecosystem services from forests. The effectiveness of activities could be diluted by negative leakage effects and increasing disturbance regimes. Because forest carbon loss contributes to increasing climate risk and because climate change may impede regeneration following disturbance, avoiding

  13. Economics of forest and forest carbon projects. Translating lessons learned into national REDD+ implementation

    Energy Technology Data Exchange (ETDEWEB)

    Zaballa Romero, M.; Traerup, S.; Wieben, E.; Ravnkilde Moeller, L.; Koch, A.

    2013-01-15

    The financial implications of implementing a new forest management paradigm have not been well understood and have often been underestimated. Resource needs for e.g., stakeholder consultation, capacity building and addressing the political economy are seldom fully accounted for in the resource needs estimates put forward in connection to REDD+. This report investigates the economics of implementing forest and REDD+ projects through eight case studies from Africa, Latin America and Asia, analyzing real forest and REDD+ investments. The report is part of efforts to share financial experiences and lessons learned with policymakers, project developers and stakeholders, with the objective to inform forest project and strategy development. It presents experiences and advice on the risks, costs and revenues of forest projects, thereby informing not only the development of future REDD+ initiatives but also the testing of advanced market commitments as a finance option for sustainable forest management. The findings in the report underline the fact that only through sound and transparent financial information will forest projects and national forest initiatives become interesting for private financial institutions and comparable with other investment opportunities. It is therefore important to include robust analysis of the operations business case and its financial attractiveness to commercial investors, early in the design process. As for the economics of forest and forest carbon projects, it appears that REDD+ payments alone, especially at current prices, will not deliver the revenues that cover all expenses of transparent and long-term mitigation of forest carbon emissions. Instead the findings underline the importance of building up forest operations which effectively manages risk and delivers several revenue streams. These findings are aligned with the advocacy efforts of UNEP and the UN-REDD Programme on multiple benefits and the combination of various funding and

  14. Long-term nitrogen addition decreases carbon leaching in a nitrogen-rich forest ecosystem

    Directory of Open Access Journals (Sweden)

    X. Lu

    2013-06-01

    Full Text Available Dissolved organic carbon (DOC plays a critical role in the carbon (C cycle of forest soils, and has been recently connected with global increases in nitrogen (N deposition. Most studies on effects of elevated N deposition on DOC have been carried out in N-limited temperate regions, with far fewer data available from N-rich ecosystems, especially in the context of chronically elevated N deposition. Furthermore, mechanisms for excess N-induced changes of DOC dynamics have been suggested to be different between the two kinds of ecosystems, because of the different ecosystem N status. The purpose of this study was to experimentally examine how long-term N addition affects DOC dynamics below the primary rooting zones (the upper 20 cm soils in typically N-rich lowland tropical forests. We have a primary assumption that long-term continuous N addition minimally affects DOC concentrations and effluxes in N-rich tropical forests. Experimental N addition was administered at the following levels: 0, 50, 100 and 150 kg N ha−1 yr−1, respectively. Results showed that seven years of N addition significantly decreased DOC concentrations in soil solution, and chemo-physical controls (solution acidity change and soil sorption rather than biological controls may mainly account for the decreases, in contrast to other forests. We further found that N addition greatly decreased annual DOC effluxes from the primary rooting zone and increased water-extractable DOC in soils. Our results suggest that long-term N deposition could increase soil C sequestration in the upper soils by decreasing DOC efflux from that layer in N-rich ecosystems, a novel mechanism for continued accumulation of soil C in old-growth forests.

  15. Effects of multiple interacting disturbances and salvage logging on forest carbon stocks

    Science.gov (United States)

    John B. Bradford; Shawn Fraver; Amy M. Milo; Anthony W. D' Amato; Brian J. Palik

    2012-01-01

    Climate change is anticipated to increase the frequency of disturbances, potentially impacting carbon stocks in terrestrial ecosystems. However, little is known about the implications of either multiple disturbances or post-disturbance forest management activities on ecosystem carbon stocks. This study quantified how forest carbon stocks responded to stand-replacing...

  16. Gap formation and carbon cycling in the Brazilian Amazon: measurement using high-resolution optical remote sensing and studies in large forest plots

    Science.gov (United States)

    F. D. B. Espirito-Santo; M. M. Keller; E. Linder; R. C. Oliveira Junior; C. Pereira; C. G. Oliveira

    2013-01-01

    Background: The dynamics of gaps plays a role in the regimes of tree mortality, production of coarse woody debris (CWD) and the variability of light in the forest understory. Aims: To quantify the area affected by, and the carbon fluxes associated with, natural gap-phase disturbances in a tropical lowland evergreen rain forest by use of ground measurements and high-...

  17. Distribution of black carbon in ponderosa pine forest floor and soils following the High Park wildfire

    Science.gov (United States)

    Boot, C. M.; Haddix, M.; Paustian, K.; Cotrufo, M. F.

    2015-05-01

    Biomass burning produces black carbon (BC), effectively transferring a fraction of the biomass C from an actively cycling pool to a passive C pool, which may be stored in the soil. Yet the timescales and mechanisms for incorporation of BC into the soil profile are not well understood. The High Park fire (HPF), which occurred in northwestern Colorado in the summer of 2012, provided an opportunity to study the effects of both fire severity and geomorphology on properties of carbon (C), nitrogen (N) and BC in the Cache La Poudre River drainage. We sampled montane ponderosa pine forest floor (litter plus O-horizon) and soils at 0-5 and 5-15 cm depth 4 months post-fire in order to examine the effects of slope and burn severity on %C, C stocks, %N and BC. We used the benzene polycarboxylic acid (BPCA) method for quantifying BC. With regard to slope, we found that steeper slopes had higher C : N than shallow slopes but that there was no difference in BPCA-C content or stocks. BC content was greatest in the forest floor at burned sites (19 g BPCA-C kg-1 C), while BC stocks were greatest in the 5-15 cm subsurface soils (23 g BPCA-C m-2). At the time of sampling, unburned and burned soils had equivalent BC content, indicating none of the BC deposited on the land surface post-fire had been incorporated into either the 0-5 or 5-15 cm soil layers. The ratio of B6CA : total BPCAs, an index of the degree of aromatic C condensation, suggested that BC in the 5-15 cm soil layer may have been formed at higher temperatures or experienced selective degradation relative to the forest floor and 0-5 cm soils. Total BC soil stocks were relatively low compared to other fire-prone grassland and boreal forest systems, indicating most of the BC produced in this system is likely lost, either through erosion events, degradation or translocation to deeper soils. Future work examining mechanisms for BC losses from forest soils will be required for understanding the role BC plays in the global

  18. Robust forests of vertically aligned carbon nanotubes chemically assembled on carbon substrates.

    Science.gov (United States)

    Garrett, David J; Flavel, Benjamin S; Shapter, Joseph G; Baronian, Keith H R; Downard, Alison J

    2010-02-02

    Forests of vertically aligned carbon nanotubes (VACNTs) have been chemically assembled on carbon surfaces. The structures show excellent stability over a wide potential range and are resistant to degradation from sonication in acid, base, and organic solvent. Acid-treated single-walled carbon nanotubes (SWCNTs) were assembled on amine-terminated tether layers covalently attached to pyrolyzed photoresist films. Tether layers were electrografted to the carbon substrate by reduction of the p-aminobenzenediazonium cation and oxidation of ethylenediamine. The amine-modified surfaces were incubated with cut SWCNTs in the presence of N,N'-dicyclohexylcarbodiimide (DCC), giving forests of vertically aligned carbon nanotubes (VACNTs). The SWCNT assemblies were characterized by scanning electron microscopy, atomic force microscopy, and electrochemistry. Under conditions where the tether layers slow electron transfer between solution-based redox probes and the underlying electrode, the assembly of VACNTs on the tether layer dramatically increases the electron-transfer rate at the surface. The grafting procedure, and hence the preparation of VACNTs, is applicable to a wide range of materials including metals and semiconductors.

  19. Nitrogen Deposition Effects on Soil Carbon Dynamics in Temperate Forests

    DEFF Research Database (Denmark)

    Ginzburg Ozeri, Shimon

    Soils contain the largest fraction of terrestrial carbon (C). Understanding the factors regulating the decomposition and storage of soil organic matter (SOM) is essential for predictions of the C sink strength of the terrestrial environment in the light of global change. Elevated long-term nitrog...... implications for modelling the carbon sink-strength of temperate forests under global change.......Soils contain the largest fraction of terrestrial carbon (C). Understanding the factors regulating the decomposition and storage of soil organic matter (SOM) is essential for predictions of the C sink strength of the terrestrial environment in the light of global change. Elevated long-term nitrogen...... (N) deposition into forest ecosystems has been increasing globally and was hypothesized to raise soil organic C (SOC) stocks by increasing forest productivity and by reducing SOM decomposition. Yet, these effects of N deposition on forest SOC stocks are uncertain and largely based on observations...

  20. Forest extent and deforestation in tropical Africa since 1900.

    Science.gov (United States)

    Aleman, Julie C; Jarzyna, Marta A; Staver, A Carla

    2018-01-01

    Accurate estimates of historical forest extent and associated deforestation rates are crucial for quantifying tropical carbon cycles and formulating conservation policy. In Africa, data-driven estimates of historical closed-canopy forest extent and deforestation at the continental scale are lacking, and existing modelled estimates diverge substantially. Here, we synthesize available palaeo-proxies and historical maps to reconstruct forest extent in tropical Africa around 1900, when European colonization accelerated markedly, and compare these historical estimates with modern forest extent to estimate deforestation. We find that forests were less extensive in 1900 than bioclimatic models predict. Resultantly, across tropical Africa, ~ 21.7% of forests have been deforested, yielding substantially slower deforestation than previous estimates (35-55%). However, deforestation was heterogeneous: West and East African forests have undergone almost complete decline (~ 83.3 and 93.0%, respectively), while Central African forests have expanded at the expense of savannahs (~ 1.4% net forest expansion, with ~ 135,270 km 2 of savannahs encroached). These results suggest that climate alone does not determine savannah and forest distributions and that many savannahs hitherto considered to be degraded forests are instead relatively old. These data-driven reconstructions of historical biome distributions will inform tropical carbon cycle estimates, carbon mitigation initiatives and conservation planning in both forest and savannah systems.

  1. Using FIA data to inform United States forest carbon national-level accounting needs: 1990-2010

    Science.gov (United States)

    Linda S. Heath

    2013-01-01

    Forests are partially made up of carbon. Live vegetation, dead wood, forest floor, and soil all contain carbon. Through the process of photosynthesis, trees reduce carbon dioxide to carbohydrates and store the carbon in wood. By removing carbon dioxide from the atmosphere, forests mitigate climate change that may be brought on by increased atmospheric CO2...

  2. Background Document for Workshop no.3 of Forest Carbon Management Workshop Series

    International Nuclear Information System (INIS)

    Griss, P.

    2002-01-01

    Pollution Probe has organized a series of workshops on forest carbon management (FCM) in Canada in order to examine the opportunities, policies and infrastructure for Canada. This report summarizes the events of the third workshop which explored the verification of carbon stocks in forests. It also incorporates the results of the first 2 workshops. There are substantial opportunities for greenhouse gas (GHG) emitters to obtain carbon credits through FCM. Canada, a proponent for the eligibility of FCM under the Kyoto Protocol, must develop these opportunities domestically although policies and infrastructure needed to support FCM activities are not yet clearly identified. The Kyoto Protocol allows developed countries to use international emissions trading to help meet emissions commitments. Details for emissions trading in Canada are still being negotiated and an effective forest-based methodology for carbon dioxide equivalent credit creation must be developed. This paper reviewed the role of forests in creating or canceling out removal units (RMUs) in deforestation, afforestation, reforestation, and forest management. From an FCM perspective, buyers of carbon credits have several choices in the development of their offset portfolio, including: (1) energy type versus carbon sinks, (2) forest sinks versus agricultural/soil sinks, (3) domestic projects versus international projects, and (4) Joint Implementation projects in developed countries versus Clean Development Mechanism projects in developing countries. tabs., figs., appendices

  3. Estimate of biomass and carbon pools in disturbed and undisturbed oak forests in Tunisia

    Energy Technology Data Exchange (ETDEWEB)

    Zribi, L.; Chaar, H.; Khaldi, A.; Henchi, B.; Mouillot, F.; Gharbi, F.

    2016-07-01

    Aim of the study. To estimate biomass and carbon accumulation in a young and disturbed forest (regenerated after a tornado) and an aged cork oak forest (undisturbed forest) as well as its distribution among the different pools (tree, litter and soil). Area of study. The north west of Tunisia. Material and methods. Carbon stocks were evaluated in the above and belowground cork oak trees, the litter and the 150 cm of the soil. Tree biomass was estimated in both young and aged forests using allometric biomass equations developed for wood stem, cork stem, wood branch, cork branch, leaves, roots and total tree biomass based on combinations of diameter at breast height, total height and crown length as independent variables. Main results. Total tree biomass in forests was 240.58 Mg ha-1 in the young forest and 411.30 Mg ha-1 in the aged forest with a low root/shoot ratio (0.41 for young forest and 0.31 for aged forest). Total stored carbon was 419.46 Mg C ha-1 in the young forest and 658.09 Mg C ha-1 in the aged forest. Carbon stock (Mg C ha-1) was estimated to be113.61(27.08%) and 194.08 (29.49%) in trees, 3.55 (0.85%) and 5.73 (0.87%) in litter and 302.30 (72.07%) and 458.27 (69.64%) in soil in the young and aged forests, respectively. Research highlights. Aged undisturbed forest had the largest tree biomass but a lower potential for accumulation of carbon in the future; in contrast, young disturbed forest had both higher growth and carbon storage potential. (Author)

  4. Forest and grassland carbon in North America: A short course for land managers

    Science.gov (United States)

    Chris Swanston; Michael J. Furniss; Kristen Schmitt; Jeffrey Guntle; Maria Janowiak; Sarah Hines

    2012-01-01

    This multimedia short-course presents a range of information on the science, management and policy of forest and grassland carbon. Forests and grasslands worldwide play a critical role in storing carbon and sequestering greenhouse gases from the atmosphere. The U.S. Forest Service, which manages 193 million acres of forests and grasslands, emphasizes the need for...

  5. Assessing ecosystem carbon stocks of Indonesia's threatened wetland forests

    Science.gov (United States)

    Warren, M.; Kauffman, B.; Murdiyarso, D.; Kurnianto, S.

    2011-12-01

    Over millennia, atmospheric carbon dioxide has been sequestered and stored in Indonesia's tropical wetland forests. Waterlogged conditions impede decomposition, allowing the formation of deep organic soils. These globally significant C pools are highly vulnerable to deforestation, degradation and climate change which can potentially switch their function as C sinks to long term sources of greenhouse gas (GHG) emissions. Also at risk are critical ecosystem services which sustain millions of people and the conservation of unique biological communities. The multiple benefits derived from wetland forest conservation makes them attractive for international C offset programs such as the proposed Reduced Emissions from Deforestation and Degradation (REDD+) mechanism. Yet, ecosystem C pools and fluxes in wetland forests remain poorly quantified. Significant knowledge gaps exist regarding how land use changes impact C dynamics in tropical wetlands, and very few studies have simultaneously assessed above- and belowground ecosystem C pools in Indonesia's freshwater peat swamps and mangroves. In addition, most of what is known about Indonesia's tropical wetland forests is derived from few geographic locations where long-standing research has focused, despite their broad spatial distribution. Here we present results from an extensive survey of ecosystem C stocks across several Indonesian wetland forests. Ecosystem C stocks were measured in freshwater peat swamp forests in West Papua, Central Kalimantan, West Kalimantan, and Sumatra. Carbon storage was also measured for mangrove forests in W. Papua, W. Kalimantan, and Sumatra. One overarching goal of this research is to support the development of REDD+ for tropical wetlands by informing technical issues related to carbon measuring, monitoring, and verification (MRV) and providing baseline data about the variation of ecosystem C storage across and within several Indonesian wetland forests.

  6. The nitrogen budget for different forest types in the central Congo Basin

    Science.gov (United States)

    Bauters, Marijn; Verbeeck, Hans; Cizungu, Landry; Boeckx, Pascal

    2016-04-01

    Characterization of fundamental processes in different forest types is vital to understand the interaction of forests with their changing environment. Recent data analyses, as well as modeling activities have shown that the CO2 uptake by terrestrial ecosystems strongly depends on site fertility, i.e. nutrient availability. Accurate projections of future net forest growth and terrestrial CO2 uptake thus necessitate an improved understanding on nutrient cycles and how these are coupled to the carbon (C) cycle in forests. This holds especially for tropical forests, since they represent about 40-50% of the total carbon that is stored in terrestrial vegetation, with the Amazon basin and the Congo basin being the largest two contiguous blocks. However, due to political instability and reduced accessibility in the central Africa region, there is a strong bias in scientific research towards the Amazon basin. Consequently, central African forests are poorly characterized and their role in global change interactions shows distinct knowledge gaps, which is important bottleneck for all efforts to further optimize Earth system models explicitly including this region. Research in the Congo Basin region should combine assessments of both carbon stocks and the underlying nutrient cycles which directly impact the forest productivity. We set up a monitoring network for carbon stocks and nitrogen fluxes in four different forest types in the Congo Basin, which is now operative. With the preliminary data, we can get a glimpse of the differences in nitrogen budget and biogeochemistry of African mixed lowland rainforest, monodominant lowland forest, mixed montane forest and eucalypt plantations.

  7. Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere

    Science.gov (United States)

    Ram Oren; David S. Ellsworth; Kurt H. Johnsen; Nathan Phillips; Brent E. Ewers; Chris Maier; Karina V.R. Schafer; Heather McCarthy; George Hendrey; Steven G. McNulty; Gabriel G. Katul

    2001-01-01

    Northern mid-latitude forests are a large terrestrial carbon sink. Ignoring nutrient limitations, large increases in carbon sequestration from carbon dioxide (CO2) fertilization are expected in these forests. Yet, forests are usually relegated to sites of moderate to poor fertility, where tree growth is often limited by nutrient supply, in...

  8. Fire, carbon, and climate change

    International Nuclear Information System (INIS)

    Amiro, B.; Flannigan, M.

    2005-01-01

    One million hectares of forest are harvested in Canada annually, with 1 to 8 million hectares destroyed by fire and a further 10 to 25 million hectares consumed by insects. Enhanced disturbances have meant that Canadian forests are becoming carbon sources instead of carbon sinks. Canadian fire statistics from the year 1920 were provided along with a map of large fires between 1980 and 1999. A cycle of combustion losses, decomposition and regeneration of forests was presented, along with a stylized concept of forest carbon life cycles with fire. Direct emissions from forests fires were evaluated. An annual net ecosystem production in Canadian boreal forests and stand age was presented. Projections of areas burned were presented based on weather and fire danger relationships, with statistics suggesting that a 75 to 120 per cent increase is likely to occur by the end of this century. Trend observations show that areas burned are correlated with increasing temperature caused by anthropogenic effects. Prevention, detection, suppression and fuels management were presented as areas that needed improvement in fire management. However, management strategies may only postpone an increase in forest fires. Changes in disturbances such as fire and insects will be a significant early impact of climate change on forests. tabs., figs

  9. Benchmark values for forest soil carbon stocks in Europe

    DEFF Research Database (Denmark)

    De Vos, Bruno; Cools, Nathalie; Ilvesniemi, Hannu

    2015-01-01

    Soil organic carbon (SOC) stocks in forest floors and in mineral and peat forest soils were estimated at the European scale. The assessment was based on measured C concentration, bulk density, coarse fragments and effective soil depth data originating from 4914 plots in 22 EU countries belonging...... to the UN/ECE ICP Forests 16 × 16 km Level I network. Plots were sampled and analysed according to harmonized methods during the 2nd European Forest Soil Condition Survey. Using continuous carbon density depth functions, we estimated SOC stocks to 30-cm and 1-m depth, and stratified these stocks according...... to 22 WRB Reference Soil Groups (RSGs) and 8 humus forms to provide European scale benchmark values. Average SOC stocks amounted to 22.1 t C ha− 1 in forest floors, 108 t C ha− 1 in mineral soils and 578 t C ha− 1 in peat soils, to 1 m depth. Relative to 1-m stocks, the vertical SOC distribution...

  10. CO/sub 2/ carbon cycle and climate interactions

    Energy Technology Data Exchange (ETDEWEB)

    Grassl, H; Maier-Reimer, E; Degens, E T; Kempe, S; Spitzy, A

    1984-03-01

    Past and expected emissions of anthropogenic CO/sub 2/ stimulate carbon cycle and climate research. Prognoses of future CO/sub 2/ levels depend on energy scenarios and on the reaction of the biosphere and hydrosphere to elevated atmospheric CO/sub 2/ concentrations. The reaction of the reservoirs vegetation, freshwater and oceans to disturbances of the carbon cycle is reviewed. For the oceans first results of a simple carbon cycle model implanted in a three-dimensional general circulation model are presented. This model allows experiments not possible with previous box models.

  11. Light Competition and Carbon Partitioning-Allocation in an improved Forest Ecosystem Model

    Science.gov (United States)

    Collalti, Alessio; Santini, Monia; Valentini Valentini, Riccardo

    2010-05-01

    In Italy about 100.000 km2 are covered by forests. This surface is the 30% of the whole national land and this shows how the forests are important both for socio-economic and for environmental aspects. Forests changes affect a delicate balance that involve not only vegetation components but also bio-geochemical cycles and global climate. The knowledge of the amount of Carbon sequestered by forests represents a precious information for their sustainable management in the framework of climate changes. Primary studies in terms of model about this important issue, has been done through Forest Ecosystem Model (FEM), well known and validated as 3PG (Landsberg et Waring, 1997; Sands 2004). It is based on light use efficiency approach at the canopy level. The present study started from the original model 3PG, producing an improved version that uses many of explicit formulations of all relevant ecophysiological processes but makes it able to be applied for natural forests. The mutual interaction of forest growth and light conditions causes vertical and horizontal differentiation in the natural forest mosaic. Only ecophysiological parameters which can be either directly measured or estimates with reasonable certainty are used. The model has been written in C language and has been created considering a tri-dimensional cell structure with different vertical layers depending on the forest type that has to be simulated. This 3PG 'improved' version enable to work on multi-layer and multi-species forests type with cell resolution of one hectare for the typical Italian forest species. The multi-layer version is the result of the implementation and development of Lambert-Beer law for the estimation of intercepted, absorbed and transmitted light through different storeys of the forest. It is possible estimates, for each storey, a Par value (Photosynthetic Active Radiation) through Leaf Area Index (LAI), Light Extinction Coefficient and cell Canopy Cover using a "Big Leaf" approach

  12. Forest carbon response to management scenarios intended to mitigate GHG emissions and reduce fire impacts in the US West Coast region

    Science.gov (United States)

    Hudiburg, T. W.; Law, B. E.; Thornton, P. E.; Luyssaert, S.

    2012-12-01

    US West coast forests are among the most carbon dense biomes in the world and the potential for biomass accumulation in mesic coastal forests is the highest recorded (Waring and Franklin 1979, Hudiburg et al. 2009). Greenhouse gas (GHG) mitigation strategies have recently expanded to include forest woody biomass as bioenergy, with the expectation that this will also reduce forest mortality. We examined forest carbon response and life cycle assessment (LCA) of net carbon emissions following varying combinations of bioenergy management scenarios in Pacific Northwest forests for the period from 2010-2100. We use the NCAR CLM4 model combined with a regional atmospheric forcing dataset and account for future environmental change using the IPCC RCP4.5 and RCP 8.5 scenarios. Bioenergy management strategies include a repeated thinning harvest, a repeated clearcut harvest, and a single salvage harvest in areas with projected insect-related mortality. None of the bioenergy management scenarios reduce net emissions to the atmosphere compared to continued business-as-usual harvest (BAU) by the end of the 21st century. Forest regrowth and reduced fire emissions are not large enough to balance the wood removals from harvest. Moreover, the substitution of wood for fossil fuel energy and products is not large enough to offset the wood losses through decomposition and combustion. However, in some ecoregions (Blue Mountains and East Cascades), emissions from the thinning harvests begin to improve over BAU at the end of the century and could lead to net reductions in those ecoregions over a longer time period (> 100 years). For salvage logging, there is no change compared to BAU emissions by the end of the 21st century because the treatment area is minimal compared to the other treatments and only performed once. These results suggest that managing forests for carbon sequestration will need to include a variety of approaches accounting for forest baseline conditions and in some

  13. To sink or burn? A discussion of the potential contributions of forests to greenhouse gas balances through storing carbon or providing biofuels

    International Nuclear Information System (INIS)

    Kirschbaum, M.U.F.

    2003-01-01

    Forests can affect net CO 2 emissions by increasing or decreasing the amount of stored carbon, or by supplying biofuels for power generation to substitute for fossil fuels. However, forests store the most carbon when they remain undisturbed and are allowed to grow to maturity, whereas using wood for bioenergy requires wood removal from forests, which reduces on-site carbon storage. Hence, it is difficult to manage a forest simultaneously for maximum carbon storage and supplying fuelwood. For developing optimal strategies for the use of vegetation sinks, it is necessary to consider the feedbacks via the inherent natural adjustments in the global carbon cycle. Increased atmospheric CO 2 currently provides a driving force for carbon uptake by natural carbon reservoirs, such as the world's oceans. When carbon is removed from the atmosphere and stored in biomass, it lowers the concentration gradient between the atmosphere and these other reservoirs. This reduces the subsequent inherent rate of CO 2 removal from the atmosphere. This means that transferring a quantity of CO 2 from the atmosphere to a biomass pool lowers the atmospheric concentration the most immediately after the initial removal, but subsequently, the atmospheric concentration trends back towards the values without biospheric removal. The optimal timing for the use of vegetation sinks therefore depends on a number of factors: the length of time over which forest growth can be maintained, whether biomass is used for energy generation and on the nature of the most detrimental aspects of climate-change impacts. Climate-change impacts related to the instantaneous effect of temperature are mitigated less by vegetation sinks than impacts that act via the cumulative effect of increased temperature. It also means that short-term carbon storage in temporary sinks is not generally beneficial in mitigating climate change

  14. Estimates of Forest Biomass Carbon Storage in Liaoning Province of Northeast China: A Review and Assessment

    Science.gov (United States)

    Yu, Dapao; Wang, Xiaoyu; Yin, You; Zhan, Jinyu; Lewis, Bernard J.; Tian, Jie; Bao, Ye; Zhou, Wangming; Zhou, Li; Dai, Limin

    2014-01-01

    Accurate estimates of forest carbon storage and changes in storage capacity are critical for scientific assessment of the effects of forest management on the role of forests as carbon sinks. Up to now, several studies reported forest biomass carbon (FBC) in Liaoning Province based on data from China's Continuous Forest Inventory, however, their accuracy were still not known. This study compared estimates of FBC in Liaoning Province derived from different methods. We found substantial variation in estimates of FBC storage for young and middle-age forests. For provincial forests with high proportions in these age classes, the continuous biomass expansion factor method (CBM) by forest type with age class is more accurate and therefore more appropriate for estimating forest biomass. Based on the above approach designed for this study, forests in Liaoning Province were found to be a carbon sink, with carbon stocks increasing from 63.0 TgC in 1980 to 120.9 TgC in 2010, reflecting an annual increase of 1.9 TgC. The average carbon density of forest biomass in the province has increased from 26.2 Mg ha−1 in 1980 to 31.0 Mg ha−1 in 2010. While the largest FBC occurred in middle-age forests, the average carbon density decreased in this age class during these three decades. The increase in forest carbon density resulted primarily from the increased area and carbon storage of mature forests. The relatively long age interval in each age class for slow-growing forest types increased the uncertainty of FBC estimates by CBM-forest type with age class, and further studies should devote more attention to the time span of age classes in establishing biomass expansion factors for use in CBM calculations. PMID:24586881

  15. Estimates of forest biomass carbon storage inLiaoning Province of Northeast China: a review and assessment.

    Science.gov (United States)

    Yu, Dapao; Wang, Xiaoyu; Yin, You; Zhan, Jinyu; Lewis, Bernard J; Tian, Jie; Bao, Ye; Zhou, Wangming; Zhou, Li; Dai, Limin

    2014-01-01

    Accurate estimates of forest carbon storage and changes in storage capacity are critical for scientific assessment of the effects of forest management on the role of forests as carbon sinks. Up to now, several studies reported forest biomass carbon (FBC) in Liaoning Province based on data from China's Continuous Forest Inventory, however, their accuracy were still not known. This study compared estimates of FBC in Liaoning Province derived from different methods. We found substantial variation in estimates of FBC storage for young and middle-age forests. For provincial forests with high proportions in these age classes, the continuous biomass expansion factor method (CBM) by forest type with age class is more accurate and therefore more appropriate for estimating forest biomass. Based on the above approach designed for this study, forests in Liaoning Province were found to be a carbon sink, with carbon stocks increasing from 63.0 TgC in 1980 to 120.9 TgC in 2010, reflecting an annual increase of 1.9 TgC. The average carbon density of forest biomass in the province has increased from 26.2 Mg ha(-1) in 1980 to 31.0 Mg ha(-1) in 2010. While the largest FBC occurred in middle-age forests, the average carbon density decreased in this age class during these three decades. The increase in forest carbon density resulted primarily from the increased area and carbon storage of mature forests. The relatively long age interval in each age class for slow-growing forest types increased the uncertainty of FBC estimates by CBM-forest type with age class, and further studies should devote more attention to the time span of age classes in establishing biomass expansion factors for use in CBM calculations.

  16. Methodology for estimating soil carbon for the forest carbon budget model of the United States, 2001

    Science.gov (United States)

    L. S. Heath; R. A. Birdsey; D. W. Williams

    2002-01-01

    The largest carbon (C) pool in United States forests is the soil C pool. We present methodology and soil C pool estimates used in the FORCARB model, which estimates and projects forest carbon budgets for the United States. The methodology balances knowledge, uncertainties, and ease of use. The estimates are calculated using the USDA Natural Resources Conservation...

  17. Forest wildfire, fuel reduction treatments, and landscape carbon stocks: a sensitivity analysis

    Science.gov (United States)

    John L. Campbell; Alan A. Ager

    2013-01-01

    Fuel reduction treatments prescribed in fire-suppressed forests of western North America pose an apparent paradox with respect to terrestrial carbon management. Such treatments have the immediate effect of reducing forest carbon stocks but likely reduce future carbon losses through the combustion and mortality caused by high-severity wildfires. Assessing the long-term...

  18. Regional and forest-level estimates of carbon stored in harvested wood products from the United States Forest Service Northern Region, 1906-2010

    Science.gov (United States)

    N. Anderson; J. Young; K. Stockmann; K. Skog; S. Healey; D. Loeffler; J.G. Jones; J. Morrison

    2013-01-01

    Global forests capture and store significant amounts of CO2 through photosynthesis. When carbon is removed from forests through harvest, a portion of the harvested carbon is stored in wood products, often for many decades. The United States Forest Service (USFS) and other agencies are interested in accurately accounting for carbon flux associated with harvested wood...

  19. Family forest landowners' interest in forest carbon offset programs: Focus group findings from the Lake States, USA

    Science.gov (United States)

    Kristell A. Miller; Stephanie A. Snyder; Mike A. Kilgore; Mae A. Davenport

    2014-01-01

    In 2012, focus groups were organized with individuals owning 20+ acres in the Lake States region of the United States (Michigan, Minnesota, and Wisconsin) to discuss various issues related to forest carbon offsetting. Focus group participants consisted of landowners who had responded to an earlier mail-back survey (2010) on forest carbon offsets. Two focus groups were...

  20. Change in Soil and Forest Floor Carbon after Shelterwood Harvests in a New England Oak-Hardwood Forest, USA

    Directory of Open Access Journals (Sweden)

    Kayanna L. Warren

    2014-01-01

    Full Text Available There has been effort worldwide to quantify how much carbon forests contain in order to designate appropriate offset credits to forest carbon climate mitigation. Carbon pools on or immediately below the soil surface are understood to be very active in response to environmental change but are not well understood. Our study focused on the effects of shelterwood regeneration harvests in New England on the carbon stored in litter, woody debris, and surface soil carbon. Results demonstrate significant difference in surface (0–10 cm soil carbon between control (nonharvested and harvested sites, with higher carbon percentage on control sites. Results showed a significant difference in coarse woody debris with higher amounts of carbon per area on harvested sites. No significant difference in litter mass was recorded between harvested and control sites. When coarse woody debris and litter are included with soil carbon, total carbon did not have a significant decline over 20 years following shelterwood treatment to the forest to secure regeneration, but there was considerable variability among sites. When taking all surface soil carbon measurements together, our results suggest that for accounting purposes the measurement of below-ground carbon after shelterwood harvests is not necessary for the southern New England region.