WorldWideScience

Sample records for forest vegetation management

  1. 76 FR 69700 - Klamath National Forest; California; Pumice Vegetation Management Project

    Science.gov (United States)

    2011-11-09

    ... Management Project AGENCY: Forest Service, USDA. ACTION: Notice of intent to prepare an environmental impact.... Grantham, Forest Supervisor, Attn: Ben Haupt, Pumice Vegetation Management Project Team Leader, Goosenest... Management Project will recommend implementation of one of the following: (1) The proposed action; (2) an...

  2. The state of forest vegetation management in Europe in the 21st century

    DEFF Research Database (Denmark)

    McCarthy, Nick; Bentsen, Niclas Scott; Willoughby, Ian

    2011-01-01

    -effective and practical guidance for managers across Europe on non-chemical control methods can best be brought about by future collaborative research into more sustainable and holistic methods of managing forest vegetation, through the identification of silvicultural approaches to reduce or eliminate pesticide use......Abstract COST (COST is an intergovernmental framework for European cooperation in science and technology. COST funds network activities, workshops and conferences with the aim to reducing the fragmentation in European research) Action E47, European Network for Forest Vegetation Management......—Towards Environmental Sustainability was formed in 2005 and gathered scientists and practitioners from eighteen European countries with the objective of sharing current scientific advances and best practice in the field of forest vegetation management to identify common knowledge gaps and European research potentials...

  3. Forest Vegetation Simulator translocation techniques with the Bureau of Land Management's Forest Vegetation Information system database

    Science.gov (United States)

    Timothy A. Bottomley

    2008-01-01

    The BLM uses a database, called the Forest Vegetation Information System (FORVIS), to store, retrieve, and analyze forest resource information on a majority of their forested lands. FORVIS also has the capability of easily transferring appropriate data electronically into Forest Vegetation Simulator (FVS) for simulation runs. Only minor additional data inputs or...

  4. 76 FR 22075 - Divide Ranger District, Rio Grande National Forest; CO; Black Mesa Vegetation Management Project

    Science.gov (United States)

    2011-04-20

    ... Ranger District, Rio Grande National Forest; CO; Black Mesa Vegetation Management Project AGENCY: Forest... Web site http://www.fs.usda.gov/riogrande under ``Land & Resource Management'', then ``Projects'' on... need for the Black Mesa Vegetation Management Project is move toward achieving long-term desired...

  5. 76 FR 315 - Sisters Ranger District; Deschutes National Forest; Oregon; Popper Vegetation Management Project

    Science.gov (United States)

    2011-01-04

    ...; Oregon; Popper Vegetation Management Project AGENCY: Forest Service, USDA. ACTION: Notice of intent to... submit to [email protected] . Please put ``Popper Vegetation... work to the local and regional economy; and reintroduce fire in fire dependent ecosystems in the Popper...

  6. Unexpectedly large impact of forest management and grazing on global vegetation biomass

    Science.gov (United States)

    Erb, Karl-Heinz; Kastner, Thomas; Plutzar, Christoph; Bais, Anna Liza S.; Carvalhais, Nuno; Fetzel, Tamara; Gingrich, Simone; Haberl, Helmut; Lauk, Christian; Niedertscheider, Maria; Pongratz, Julia; Thurner, Martin; Luyssaert, Sebastiaan

    2018-01-01

    Carbon stocks in vegetation have a key role in the climate system. However, the magnitude, patterns and uncertainties of carbon stocks and the effect of land use on the stocks remain poorly quantified. Here we show, using state-of-the-art datasets, that vegetation currently stores around 450 petagrams of carbon. In the hypothetical absence of land use, potential vegetation would store around 916 petagrams of carbon, under current climate conditions. This difference highlights the massive effect of land use on biomass stocks. Deforestation and other land-cover changes are responsible for 53-58% of the difference between current and potential biomass stocks. Land management effects (the biomass stock changes induced by land use within the same land cover) contribute 42-47%, but have been underestimated in the literature. Therefore, avoiding deforestation is necessary but not sufficient for mitigation of climate change. Our results imply that trade-offs exist between conserving carbon stocks on managed land and raising the contribution of biomass to raw material and energy supply for the mitigation of climate change. Efforts to raise biomass stocks are currently verifiable only in temperate forests, where their potential is limited. By contrast, large uncertainties hinder verification in the tropical forest, where the largest potential is located, pointing to challenges for the upcoming stocktaking exercises under the Paris agreement.

  7. Unexpectedly large impact of forest management and grazing on global vegetation biomass.

    Science.gov (United States)

    Erb, Karl-Heinz; Kastner, Thomas; Plutzar, Christoph; Bais, Anna Liza S; Carvalhais, Nuno; Fetzel, Tamara; Gingrich, Simone; Haberl, Helmut; Lauk, Christian; Niedertscheider, Maria; Pongratz, Julia; Thurner, Martin; Luyssaert, Sebastiaan

    2018-01-04

    Carbon stocks in vegetation have a key role in the climate system. However, the magnitude, patterns and uncertainties of carbon stocks and the effect of land use on the stocks remain poorly quantified. Here we show, using state-of-the-art datasets, that vegetation currently stores around 450 petagrams of carbon. In the hypothetical absence of land use, potential vegetation would store around 916 petagrams of carbon, under current climate conditions. This difference highlights the massive effect of land use on biomass stocks. Deforestation and other land-cover changes are responsible for 53-58% of the difference between current and potential biomass stocks. Land management effects (the biomass stock changes induced by land use within the same land cover) contribute 42-47%, but have been underestimated in the literature. Therefore, avoiding deforestation is necessary but not sufficient for mitigation of climate change. Our results imply that trade-offs exist between conserving carbon stocks on managed land and raising the contribution of biomass to raw material and energy supply for the mitigation of climate change. Efforts to raise biomass stocks are currently verifiable only in temperate forests, where their potential is limited. By contrast, large uncertainties hinder verification in the tropical forest, where the largest potential is located, pointing to challenges for the upcoming stocktaking exercises under the Paris agreement.

  8. A climate sensitive model of carbon transfer through atmosphere, vegetation and soil in managed forest ecosystems

    Science.gov (United States)

    Loustau, D.; Moreaux, V.; Bosc, A.; Trichet, P.; Kumari, J.; Rabemanantsoa, T.; Balesdent, J.; Jolivet, C.; Medlyn, B. E.; Cavaignac, S.; Nguyen-The, N.

    2012-12-01

    For predicting the future of the forest carbon cycle in forest ecosystems, it is necessary to account for both the climate and management impacts. Climate effects are significant not only at a short time scale but also at the temporal horizon of a forest life cycle e.g. through shift in atmospheric CO2 concentration, temperature and precipitation regimes induced by the enhanced greenhouse effect. Intensification of forest management concerns an increasing fraction of temperate and tropical forests and untouched forests represents only one third of the present forest area. Predicting tools are therefore needed to project climate and management impacts over the forest life cycle and understand the consequence of management on the forest ecosystem carbon cycle. This communication summarizes the structure, main components and properties of a carbon transfer model that describes the processes controlling the carbon cycle of managed forest ecosystems. The model, GO+, links three main components, (i) a module describing the vegetation-atmosphere mass and energy exchanges in 3D, (ii) a plant growth module and a (iii) soil carbon dynamics module in a consistent carbon scheme of transfer from atmosphere back into the atmosphere. It was calibrated and evaluated using observed data collected on coniferous and broadleaved forest stands. The model predicts the soil, water and energy balance of entire rotations of managed stands from the plantation to the final cut and according to a range of management alternatives. It accounts for the main soil and vegetation management operations such as soil preparation, understorey removal, thinnings and clearcutting. Including the available knowledge on the climatic sensitivity of biophysical and biogeochemical processes involved in atmospheric exchanges and carbon cycle of forest ecosystems, GO+ can produce long-term backward or forward simulations of forest carbon and water cycles under a range of climate and management scenarios. This

  9. 75 FR 9388 - Prescott National Forest, Bradshaw Ranger District; Arizona; Bradshaw Vegetation Management Project

    Science.gov (United States)

    2010-03-02

    ...; Arizona; Bradshaw Vegetation Management Project AGENCY: Forest Service, USDA. ACTION: Notice of intent to prepare an environmental impact statement. SUMMARY: This project is a proposal to improve the health of.... The project area encompasses about 55,554 acres. Within the project area, the proposal is to...

  10. Vegetation diversity of the Scots pine stands in different forest sites in the Turawa Forest District

    OpenAIRE

    Stefańska-Krzaczek, Ewa; Pech, Paweł

    2014-01-01

    The utility of phytocenotic indices in the diagnosis and classification of forest sites might be limited because of vegetation degeneration in managed forests. However, even in secondary communities it may be possible to determine indicator species, although these may differ from typical and well known plant indicators. The aim of this work was to assess the vegetation diversity of Scots pine stands in representative forest site types along a moisture and fertility gradient. In total ...

  11. Pattern and dynamics of the ground vegetation in south Swedish Carpinus betulus forests. Importance of soil chemistry and management

    Energy Technology Data Exchange (ETDEWEB)

    Brunet, J. [Swedish Univ. of Agricultural Sciences, Dept. of Conservation Biology, Uppsala (Sweden); Falkengren-Grerup, U.; Tyler, G. [Plant Ecology, Dept. of Ecology, Lund (Sweden)

    1997-10-01

    The vegetation and environmental conditions of south Swedish horn-beam Carpinus betulus forests are described with data from 35 permanent sample plots. The main floristic gradient of the ground vegetation is closely related to acid-base properties of the top soil: Base saturation, pH and organic matter content. Other floristic differences are related to tree canopy cover and the distance of the sample plots to the Baltic coast. Species richness of herbaceous plants typical of forests increases with soil pH. The number of other herbaceous species, occurring in both forests and open habitats, and of woody species is not related to pH. Comparisons of vegetation data from 1983 and 1993 show relatively small compositional differences of the herbaceous forest flora. The number of other herbaceous species increased considerably in those plots where canopy trees had been cut after 1983. The number of new species in managed plots increases with soil pH. Species losses and gains of the herbaceous forest flora between 1983 and 1993 are generally lower as compared with other herbaceous species and woody species. However, the ground cover of herbaceous forest species, especially of Oxalis acetosella and Lamium galeobdolon, was considerably lower in 1993 as compared to 1983 in both unmanaged and managed plots. Possible explanations for this decrease are current soil acidification and drought during the growing season. (au) 32 refs.

  12. Forest restoration as a strategy to mitigate climate impacts on wildfire, vegetation, and water in semiarid forests.

    Science.gov (United States)

    O'Donnell, Frances C; Flatley, William T; Springer, Abraham E; Fulé, Peter Z

    2018-06-25

    Climate change and wildfire are interacting to drive vegetation change and potentially reduce water quantity and quality in the southwestern United States, Forest restoration is a management approach that could mitigate some of these negative outcomes. However, little information exists on how restoration combined with climate change might influence hydrology across large forest landscapes that incorporate multiple vegetation types and complex fire regimes. We combined spatially explicit vegetation and fire modeling with statistical water and sediment yield models for a large forested landscape (335,000 ha) on the Kaibab Plateau in northern Arizona, USA. Our objective was to assess the impacts of climate change and forest restoration on the future fire regime, forest vegetation, and watershed outputs. Our model results predict that the combination of climate change and high-severity fire will drive forest turnover, biomass declines, and compositional change in future forests. Restoration treatments may reduce the area burned in high-severity fires and reduce conversions from forested to non-forested conditions. Even though mid-elevation forests are the targets of restoration, the treatments are expected to delay the decline of high-elevation spruce-fir, aspen, and mixed conifer forests by reducing the occurrence of high-severity fires that may spread across ecoregions. We estimate that climate-induced vegetation changes will result in annual runoff declines of up to 10%, while restoration reduced or reversed this decline. The hydrologic model suggests that mid-elevation forests, which are the targets of restoration treatments, provide around 80% of runoff in this system and the conservation of mid- to high-elevation forests types provides the greatest benefit in terms of water conservation. We also predict that restoration treatments will conserve water quality by reducing patches of high-severity fire that are associated with high sediment yield. Restoration

  13. Manual herbicide application methods for managing vegetation in Appalachian hardwood forests

    Science.gov (United States)

    Jeffrey D. Kochenderfer; James N. Kochenderfer; Gary W. Miller

    2012-01-01

    Four manual herbicide application methods are described for use in Appalachian hardwood forests. Stem injection, basal spray, cut-stump, and foliar spray techniques can be used to control interfering vegetation and promote the development of desirable reproduction and valuable crop trees in hardwood forests. Guidelines are presented to help the user select the...

  14. Forest vegetation of Xishuangbanna, south China

    Institute of Scientific and Technical Information of China (English)

    Zhu Hua

    2006-01-01

    Xishuangbanna of southern Yunnan is biogeographically located at a transitional zone from tropical southeast (SE) Asia to subtropical east Asia and is at the junction of the Indian and Burmese plates of Gondwana and the Eurasian plate of Laurasia. The region, though surprisingly far from the equator and at a relatively high altitude, has a rich tropical flora and a typical tropical rain forest in the lowland areas. Based on physiognomic and ecological characteristics, floristic composition and habitats combined, the primary vegetation in Xishuangbanna can be organized into four main vegetation types: tropical rain forest, tropical seasonal moist forest, tropical montane evergreen broad-leaved forest and tropical monsoon forest. The tropical rain forest can be classified into two subtypes, i.e. a tropical seasonal rain forest in the lowlands and a tropical montane rain forest at higher elevations. The tropical seasonal rain forest has almost the same forest profile and physiognomic characteristics as equatorial lowland rain forests and is a type of truly tropical rain forest. Because of conspicuous similarity on ecological and floristic characteristics, the tropical rain forest in Xishuangbanna is a type of tropical Asian rain forest. However, since the tropical rain forest of Xishuangbanna occurs at the northern edge of tropical SE Asia, it differs from typical lowland rain forests in equatorial areas in having some deciduous trees in the canopy layer, fewer megaphanerophytes and epiphytes but more abundant lianas and more plants with microphyll. It is a type of semi-evergreen rain forest at the northern edge of the tropical zone. The tropical montane rain forest occurs at wet montane habitats and is similar to the lower montane rain forest in equatorial Asia in floristic composition and physiognomy. It is a type of lower montane rain forests within the broader category of tropical rain forests. The tropical seasonal moist forest occurs on middle and upper

  15. Opposing Responses of Bird Functional Diversity to Vegetation Structural Diversity in Wet and Dry Forest.

    Directory of Open Access Journals (Sweden)

    Holly Sitters

    Full Text Available Disturbance regimes are changing worldwide, and the consequences for ecosystem function and resilience are largely unknown. Functional diversity (FD provides a surrogate measure of ecosystem function by capturing the range, abundance and distribution of trait values in a community. Enhanced understanding of the responses of FD to measures of vegetation structure at landscape scales is needed to guide conservation management. To address this knowledge gap, we used a whole-of-landscape sampling approach to examine relationships between bird FD, vegetation diversity and time since fire. We surveyed birds and measured vegetation at 36 landscape sampling units in dry and wet forest in southeast Australia during 2010 and 2011. Four uncorrelated indices of bird FD (richness, evenness, divergence and dispersion were derived from six bird traits, and we investigated responses of these indices and species richness to both vertical and horizontal vegetation diversity using linear mixed models. We also considered the extent to which the mean and diversity of time since fire were related to vegetation diversity. Results showed opposing responses of FD to vegetation diversity in dry and wet forest. In dry forest, where fire is frequent, species richness and two FD indices (richness and dispersion were positively related to vertical vegetation diversity, consistent with theory relating to environmental variation and coexistence. However, in wet forest subject to infrequent fire, the same three response variables were negatively associated with vertical diversity. We suggest that competitive dominance by species results in lower FD as vegetation diversity increases in wet forest. The responses of functional evenness were opposite to those of species richness, functional richness and dispersion in both forest types, highlighting the value of examining multiple FD metrics at management-relevant scales. The mean and diversity of time since fire were uncorrelated

  16. Opposing Responses of Bird Functional Diversity to Vegetation Structural Diversity in Wet and Dry Forest.

    Science.gov (United States)

    Sitters, Holly; York, Alan; Swan, Matthew; Christie, Fiona; Di Stefano, Julian

    2016-01-01

    Disturbance regimes are changing worldwide, and the consequences for ecosystem function and resilience are largely unknown. Functional diversity (FD) provides a surrogate measure of ecosystem function by capturing the range, abundance and distribution of trait values in a community. Enhanced understanding of the responses of FD to measures of vegetation structure at landscape scales is needed to guide conservation management. To address this knowledge gap, we used a whole-of-landscape sampling approach to examine relationships between bird FD, vegetation diversity and time since fire. We surveyed birds and measured vegetation at 36 landscape sampling units in dry and wet forest in southeast Australia during 2010 and 2011. Four uncorrelated indices of bird FD (richness, evenness, divergence and dispersion) were derived from six bird traits, and we investigated responses of these indices and species richness to both vertical and horizontal vegetation diversity using linear mixed models. We also considered the extent to which the mean and diversity of time since fire were related to vegetation diversity. Results showed opposing responses of FD to vegetation diversity in dry and wet forest. In dry forest, where fire is frequent, species richness and two FD indices (richness and dispersion) were positively related to vertical vegetation diversity, consistent with theory relating to environmental variation and coexistence. However, in wet forest subject to infrequent fire, the same three response variables were negatively associated with vertical diversity. We suggest that competitive dominance by species results in lower FD as vegetation diversity increases in wet forest. The responses of functional evenness were opposite to those of species richness, functional richness and dispersion in both forest types, highlighting the value of examining multiple FD metrics at management-relevant scales. The mean and diversity of time since fire were uncorrelated with vegetation

  17. How Biotic Differentiation of Human Impacted Nutrient Poor Deciduous Forests Can Affect the Preservation Status of Mountain Forest Vegetation

    Directory of Open Access Journals (Sweden)

    Tomasz Durak

    2016-10-01

    Full Text Available A significant loss of biodiversity resulting from human activity has caused biotic homogenisation to become the dominant process shaping forest communities. In this paper, we present a rare case of biotic differentiation in European temperate deciduous forest herb layer vegetation. The process is occurring in nutrient poor oak-hornbeam forests in mountain areas (Polish Eastern Carpathians, Central Europe where non-timber use was converted into conventional forest management practice. This change contributed to increases in the nitrogen content and pH reaction of the soil that, contrary to predominant beliefs on the negative impact of habitat eutrophication on diversity, did not result in a decrease in the latter. We discuss possible reasons for this phenomenon that indicate the important role of tree stand composition (an increasing admixture of beech worsening the trophic properties of the soil. The second issue considered involves the effect of the changes in herb species composition of oak-hornbeam forest on its distinctiveness from the beech forest predominating in the Polish Eastern Carpathians. Unfortunately, despite the increase in the species compositional dissimilarity of oak-hornbeam forest, a reduction in their distinctiveness in relation to the herb species composition of beech forest was found. Such a phenomenon is an effect of the major fragmentation of oak-hornbeam forests, a spread of beech forest-type species, and forest management that gives preference to beech trees. Consequently, it can be expected that changes occurring in oak-hornbeam forest vegetation will contribute to a decrease in the forest vegetation variability at the regional scale.

  18. Phytosociological characteristics of forest vegetation NPR Dubnik

    International Nuclear Information System (INIS)

    Hrabovsky, A.; Balkovic, J.; Kollar, J.

    2010-01-01

    National Wildlife (NPR) Dubnik represents a unique fragment of natural forest vegetation in the region of Nitra loess upland. Status of oak and oak-hornbeam forests in this book was last documented in 1965. The aim of the contribution is to assess the current status of forest vegetation in the NPR Dubnik by modern methods of phytosociology in accordance with current thinking on the classification of oak and oak-hornbeam forests.

  19. Vegetation carbon sequestration in Chinese forests from 2010 to 2050.

    Science.gov (United States)

    He, Nianpeng; Wen, Ding; Zhu, Jianxing; Tang, Xuli; Xu, Li; Zhang, Li; Hu, Huifeng; Huang, Mei; Yu, Guirui

    2017-04-01

    Forests store a large part of the terrestrial vegetation carbon (C) and have high C sequestration potential. Here, we developed a new forest C sequestration (FCS) model based on the secondary succession theory, to estimate vegetation C sequestration capacity in China's forest vegetation. The model used the field measurement data of 3161 forest plots and three future climate scenarios. The results showed that logistic equations provided a good fit for vegetation biomass with forest age in natural and planted forests. The FCS model has been verified with forest biomass data, and model uncertainty is discussed. The increment of vegetation C storage in China's forest vegetation from 2010 to 2050 was estimated as 13.92 Pg C, while the average vegetation C sequestration rate was 0.34 Pg C yr -1 with a 95% confidence interval of 0.28-0.42 Pg C yr -1 , which differed significantly between forest types. The largest contributor to the increment was deciduous broadleaf forest (37.8%), while the smallest was deciduous needleleaf forest (2.7%). The vegetation C sequestration rate might reach its maximum around 2020, although vegetation C storage increases continually. It is estimated that vegetation C sequestration might offset 6-8% of China's future emissions. Furthermore, there was a significant negative relationship between vegetation C sequestration rate and C emission rate in different provinces of China, suggesting that developed provinces might need to compensate for undeveloped provinces through C trade. Our findings will provide valuable guidelines to policymakers for designing afforestation strategies and forest C trade in China. © 2016 John Wiley & Sons Ltd.

  20. The role of forest fire severity on vegetation recovery after 18 years. Implications for forest management of Quercus suber L. in Iberian Peninsula

    Science.gov (United States)

    Francos, Marcos; Úbeda, Xavier; Tort, Joan; Panareda, Josep María; Cerdà, Artemio

    2016-10-01

    Wildfires are a widespread phenomenon in Mediterranean environments. Wildfires result in different fire severities, and then in contrasting plant cover and floristic composition. This paper analyses the recovery of the vegetation eighteen years after a wildfire in Catalonia. The Pinus pinaster ssp. forest was affected by three different severities in July 1994, and studied the spring of 1995 and again in 2008. After eighteen years (2012), our research found that burnt sites constitute a dense forest with a broad variety of species, including many young pines, shrubs and herbaceous plants, but that the risk of fire remains very high, due to the large quantity of fuel and the flammability of the species. The management of the post-fire is critical when high severity fires take places, and it is recommended that high-severity fires must be avoided for a sustainable forest management. We recommend that once the timber (Pinus plantations) production is not profitable, Quercus suber L. and Pinus pinaster ssp. forest should be promoted, and pine plantations avoided.

  1. Do multiple fires interact to affect vegetation structure in temperate eucalypt forests?

    Science.gov (United States)

    Haslem, Angie; Leonard, Steve W J; Bruce, Matthew J; Christie, Fiona; Holland, Greg J; Kelly, Luke T; MacHunter, Josephine; Bennett, Andrew F; Clarke, Michael F; York, Alan

    2016-12-01

    topography, on many structural features show that foothill forest vegetation is also influenced by factors outside human control. While fire is amenable to human management, results suggest that at broad scales, structural attributes of these forests are relatively resilient to the effects of current fire regimes. Nonetheless, the potential for more frequent severe fires at short intervals, associated with a changing climate and/or fire management, warrant further consideration. © 2016 by the Ecological Society of America.

  2. Proceedings of the California Forest Soils Council Conference on Forest Soils Biology and Forest Management

    Science.gov (United States)

    Robert F. Powers; Donald L. Hauxwell; Gary M. Nakamura

    2000-01-01

    Biotic properties of forest soil are the linkages connecting forest vegetation with an inert rooting medium to create a dynamic, functioning ecosystem. But despite the significance of these properties, managers have little awareness of the biotic world beneath their feet. Much of our working knowledge of soil biology seems anchored in myth and misunderstanding. To...

  3. Forest vegetation simulation tools and forest health assessment

    Science.gov (United States)

    Richard M. Teck; Melody Steele

    1995-01-01

    A Stand Hazard Rating System for Central ldaho forests has been incorporated into the Central ldaho Prognosis variant of the Forest Vegetation Simulator to evaluate how insects, disease and fire hazards within the Deadwood River Drainage change over time. A custom interface, BOISE.COMPUTE.PR, has been developed so hazard ratings can be electronically downloaded...

  4. Development of FVSOntario: A Forest Vegetation Simulator Variant and application software for Ontario

    Science.gov (United States)

    Murray E. Woods; Donald C. E. Robinson

    2008-01-01

    The Ontario Ministry of Natural Resources is leading a government-industry partnership to develop an Ontario variant of the Forest Vegetation Simulator (FVS). Based on the Lake States variant and the PrognosisBC user-interface, the FVSOntarioproject is motivated by a need to model the impacts of intensive forest management...

  5. Late Quaternary vegetation, biodiversity and fire dynamics on the southern Brazilian highland and their implication for conservation and management of modern Araucaria forest and grassland ecosystems.

    Science.gov (United States)

    Behling, Hermann; Pillar, Valério DePatta

    2007-02-28

    Palaeoecological background information is needed for management and conservation of the highly diverse mosaic of Araucaria forest and Campos (grassland) in southern Brazil. Questions on the origin of Araucaria forest and grasslands; its development, dynamic and stability; its response to environmental change such as climate; and the role of human impact are essential. Further questions on its natural stage of vegetation or its alteration by pre- and post-Columbian anthropogenic activity are also important. To answer these questions, palaeoecological and palaeoenvironmental data based on pollen, charcoal and multivariate data analysis of radiocarbon dated sedimentary archives from southern Brazil are used to provide an insight into past vegetation changes, which allows us to improve our understanding of the modern vegetation and to develop conservation and management strategies for the strongly affected ecosystems in southern Brazil.

  6. A Phenology-Based Method for Monitoring Woody and Herbaceous Vegetation in Mediterranean Forests from NDVI Time Series

    Directory of Open Access Journals (Sweden)

    David Helman

    2015-09-01

    Full Text Available We present an efficient method for monitoring woody (i.e., evergreen and herbaceous (i.e., ephemeral vegetation in Mediterranean forests at a sub pixel scale from Normalized Difference Vegetation Index (NDVI time series derived from the Moderate Resolution Imaging Spectroradiometer (MODIS. The method is based on the distinct development periods of those vegetation components. In the dry season, herbaceous vegetation is absent or completely dry in Mediterranean forests. Thus the mean NDVI in the dry season was attributed to the woody vegetation (NDVIW. A constant NDVI value was assumed for soil background during this period. In the wet season, changes in NDVI were attributed to the development of ephemeral herbaceous vegetation in the forest floor and its maximum value to the peak green cover (NDVIH. NDVIW and NDVIH agreed well with field estimates of leaf area index and fraction of vegetation cover in two differently structured Mediterranean forests. To further assess the method’s assumptions, understory NDVI was retrieved form MODIS Bidirectional Reflectance Distribution Function (BRDF data and compared with NDVIH. After calibration, leaf area index and woody and herbaceous vegetation covers were assessed for those forests. Applicability for pre- and post-fire monitoring is presented as a potential use of this method for forest management in Mediterranean-climate regions.

  7. Terrestrial forest management plan for Palmyra Atoll

    Science.gov (United States)

    Hathaway, Stacie A.; McEachern, Kathryn; Fisher, Robert N.

    2011-01-01

    This 'Terrestrial Forest Management Plan for Palmyra Atoll' was developed by the U.S. Geological Survey (USGS) for The Nature Conservancy (TNC) Palmyra Program to refine and expand goals and objectives developed through the Conservation Action Plan process. It is one in a series of adaptive management plans designed to achieve TNC's mission toward the protection and enhancement of native wildlife and habitat. The 'Terrestrial Forest Management Plan for Palmyra Atoll' focuses on ecosystem integrity and specifically identifies and addresses issues related to assessing the status and distribution of resources, as well as the pressures acting upon them, most specifically nonnative and potentially invasive species. The plan, which presents strategies for increasing ecosystem integrity, provides a framework to implement and track the progress of conservation and restoration goals related to terrestrial resources on Palmyra Atoll. The report in its present form is intended to be an overview of what is known about historical and current forest resources; it is not an exhaustive review of all available literature relevant to forest management but an attempt to assemble as much information specific to Palmyra Atoll as possible. Palmyra Atoll is one of the Northern Line Islands in the Pacific Ocean southwest of the Hawai`ian Islands. It consists of many heavily vegetated islets arranged in a horseshoe pattern around four lagoons and surrounded by a coral reef. The terrestrial ecosystem consists of three primary native vegetation types: Pisonia grandis forest, coastal strand forest, and grassland. Among these vegetation types, the health and extent of Pisonia grandis forest is of particular concern. Overall, the three vegetation types support 25 native plant species (two of which may be extirpated), 14 species of sea birds, six shore birds, at least one native reptile, at least seven native insects, and six native land crabs. Green and hawksbill turtles forage at Palmyra Atoll

  8. Watering the forest for the trees: An emerging priority for managing water in forest landscapes

    Science.gov (United States)

    Grant, Gordon E.; Tague, Christina L.; Allen, Craig D.

    2013-01-01

    Widespread threats to forests resulting from drought stress are prompting a re-evaluation of priorities for water management on forest lands. In contrast to the widely held view that forest management should emphasize providing water for downstream uses, we argue that maintaining forest health in the context of a changing climate may require focusing on the forests themselves and on strategies to reduce their vulnerability to increasing water stress. Management strategies would need to be tailored to specific landscapes but could include thinning, planting and selecting for drought-tolerant species, irrigating, and making more water available to plants for transpiration. Hydrologic modeling reveals that specific management actions could reduce tree mortality due to drought stress. Adopting water conservation for vegetation as a priority for managing water on forested lands would represent a fundamental change in perspective and potentially involve trade-offs with other downstream uses of water.

  9. Monitoring temporal Vegetation changes in Lao tropical forests

    International Nuclear Information System (INIS)

    Phompila, Chittana; Lewis, Megan; Clarke, Kenneth; Ostendorf, Bertram

    2014-01-01

    Studies on changes in vegetation are essential for understanding the interaction between humans and the environment. These studies provide key information for land use assessment, terrestrial ecosystem monitoring, carbon flux modelling and impacts of global climate change. The primary purpose of this study was to detect temporal vegetation changes in tropical forests in the southern part of Lao PDR from 2001-2012. The study investigated the annual vegetation phenological response of dominant land cover types across the study area and relationships to seasonal precipitation and temperature. Improved understanding of intra-annual patterns of vegetation variation was useful to detect longer term changes in vegetation. The breaks for additive season and trend (BFAST) approach was implemented to detect changes in these land cover types throughout the 2001-2012 period. We used the enhanced vegetation index (EVI) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) (MOD13Q1 products) and monthly rainfall and temperature data obtained from the Meteorology and Hydrology Department, Ministry of Agriculture-Forestry, published by Lao National Statistical Centre in this research. EVI well documented the annual seasonal growth of vegetation and clearly distinguished the characteristic phenology of four different land use types; native forest, plantation, agriculture and mixed wooded/cleared area. Native forests maintained high EVI throughout the year, while plantations, wooded/cleared areas and agriculture showed greater inter-annual variation, with minimum EVI at the end of the dry season in April and maximum EVI in September-October, around two months after the wet season peak in rainfall. The BFAST analysis detected abrupt temporal changes in vegetation in the tropical forests, especially in a large conversion of mixed wooded/cleared area into plantation. Within the study area from 2001-2012 there has been an overall decreasing trend of vegetation cover for

  10. Bonneville - Hood River Vegetation Management Environmental Assessment

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    1998-08-01

    To maintain the reliability of its electrical system, BPA, in cooperation with the U.S. Forest Service, needs to expand the range of vegetation management options used to clear unwanted vegetation on about 20 miles of BPA transmission line right-of-way between Bonneville Dam and Hood River; Oregon, within the Columbia Gorge National Scenic Area (NSA). We propose to continue controlling undesirable vegetation using a program of Integrated Vegetation Management (IVM) which includes manual, biological and chemical treatment methods. BPA has prepared an Environmental Assessment (EA) (DOE/EA-1257) evaluating the proposed project. Based on the analysis in the EA, BPA has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an Environmental Impact Statement (EIS) is not required and BPA is issuing this FONSI.

  11. Yield Responses of Black Spruce to Forest Vegetation Management Treatments: Initial Responses and Rotational Projections

    Directory of Open Access Journals (Sweden)

    Peter F. Newton

    2012-01-01

    Full Text Available The objectives of this study were to (1 quantitatively summarize the early yield responses of black spruce (Picea mariana (Mill. B.S.P. to forest vegetation management (FVM treatments through a meta-analytical review of the scientific literature, and (2 given (1, estimate the rotational consequences of these responses through model simulation. Based on a fixed-effects meta-analytic approach using 44 treated-control yield pairs derived from 12 experiments situated throughout the Great Lakes—St. Lawrence and Canadian Boreal Forest Regions, the resultant mean effect size (response ratio and associated 95% confidence interval for basal diameter, total height, stem volume, and survival responses, were respectively: 54.7% (95% confidence limits (lower/upper: 34.8/77.6, 27.3% (15.7/40.0, 198.7% (70.3/423.5, and 2.9% (−5.5/11.8. The results also indicated that early and repeated treatments will yield the largest gains in terms of mean tree size and survival. Rotational simulations indicated that FVM treatments resulted in gains in stand-level operability (e.g., reductions of 9 and 5 yr for plantations established on poor-medium and good-excellent site qualities, resp.. The challenge of maintaining coniferous forest cover on recently disturbed sites, attaining statutory-defined free-to-grow status, and ensuring long-term productivity, suggest that FVM will continue to be an essential silvicultural treatment option when managing black spruce plantations.

  12. Managing Understory Vegetation for Maintaining Productivity in Black Spruce Forests: A Synthesis within a Multi-Scale Research Model

    Directory of Open Access Journals (Sweden)

    Gilles Joanisse

    2013-07-01

    Full Text Available Sustainable management of boreal ecosystems involves the establishment of vigorous tree regeneration after harvest. However, two groups of understory plants influence regeneration success in eastern boreal Canada. Ericaceous shrubs are recognized to rapidly dominate susceptible boreal sites after harvest. Such dominance reduces recruitment and causes stagnant conifer growth, lasting decades on some sites. Additionally, peat accumulation due to Sphagnum growth after harvest forces the roots of regenerating conifers out of the relatively nutrient rich and warm mineral soil into the relatively nutrient poor and cool organic layer, with drastic effects on growth. Shifts from once productive black spruce forests to ericaceous heaths or paludified forests affect forest productivity and biodiversity. Under natural disturbance dynamics, fires severe enough to substantially reduce the organic layer thickness and affect ground cover species are required to establish a productive regeneration layer on such sites. We succinctly review how understory vegetation influences black spruce ecosystem dynamics in eastern boreal Canada, and present a multi-scale research model to understand, limit the loss and restore productive and diverse ecosystems in this region. Our model integrates knowledge of plant-level mechanisms in the development of silvicultural tools to sustain productivity. Fundamental knowledge is integrated at stand, landscape, regional and provincial levels to understand the distribution and dynamics of ericaceous shrubs and paludification processes and to support tactical and strategic forest management. The model can be adapted and applied to other natural resource management problems, in other biomes.

  13. An Evaluation of Plotless Sampling Using Vegetation Simulations and Field Data from a Mangrove Forest.

    Directory of Open Access Journals (Sweden)

    Renske Hijbeek

    Full Text Available In vegetation science and forest management, tree density is often used as a variable. To determine the value of this variable, reliable field methods are necessary. When vegetation is sparse or not easily accessible, the use of sample plots is not feasible in the field. Therefore, plotless methods, like the Point Centred Quarter Method, are often used as an alternative. In this study we investigate the accuracy of different plotless sampling methods. To this end, tree densities of a mangrove forest were determined and compared with estimates provided by several plotless methods. None of these methods proved accurate across all field sites with mean underestimations up to 97% and mean overestimations up to 53% in the field. Applying the methods to different vegetation patterns shows that when random spatial distributions were used the true density was included within the 95% confidence limits of all the plotless methods tested. It was also found that, besides aggregation and regularity, density trends often found in mangroves contribute to the unreliability. This outcome raises questions about the use of plotless sampling in forest monitoring and management, as well as for estimates of density-based carbon sequestration. We give recommendations to minimize errors in vegetation surveys and recommendations for further in-depth research.

  14. Photo series for quantifying forest residues in managed lands of the Medicine Bow National Forest

    Science.gov (United States)

    John B. Popp; John E. Lundquist

    2006-01-01

    This photo series presents a visual representation of a range of fuel loading conditions specifically found on the Medicine Bow National Forest. The photos are grouped by forest type and past management practices. This field guide describes the distribution of different types of woody fuels and includes some vegetation data.

  15. Effects of Fireplace Use on Forest Vegetation and Amount of Woody Debris in Suburban Forests in Northwestern Switzerland

    Science.gov (United States)

    Hegetschweiler, K. Tessa; van Loon, Nicole; Ryser, Annette; Rusterholz, Hans-Peter; Baur, Bruno

    2009-02-01

    Urban forests are popular recreation areas in Europe. Several of these temperate broad-leaved forests also have a high conservation value due to sustainable management over many centuries. Recreational activities, particularly the use of fireplaces, can cause extensive damage to soil, ground vegetation, shrubs, and trees. Firewood collection depletes woody debris, leading to a loss of habitat for specialized organisms. We examined the effects of fireplace use on forest vegetation and the amount of woody debris by comparing disturbed and control plots in suburban forests in northwestern Switzerland. At frequently used fireplaces, we found reduced species densities in the ground vegetation and shrub layer and changes in plant species composition due to human trampling within an area of 150-200 m2. Picnicking and grilling also reduced the height and changed the age structure of shrubs and young trees. The amount of woody debris was lower in disturbed plots than in control plots. Pieces of wood with a diameter of 0.6-7.6 cm were preferentially collected by fireplace users. The reduction in woody debris volume extended up to a distance of 16 m from the fire ring, covering an area of 800 m2 at each picnic site. In order to preserve the ecological integrity of urban forests and to maintain their attractiveness as important recreation areas, we suggest depositing logging residues to be used as firewood and to restrict visitor movements near picnic sites.

  16. Tropical secondary forest management influences frugivorous bat composition, abundance and fruit consumption in Chiapas, Mexico

    NARCIS (Netherlands)

    Vleut, I.; Levy-Tacher, S.I.; Boer, de W.F.; Galindo-Gonzalez, J.

    2013-01-01

    Most studies on frugivorous bat assemblages in secondary forests have concentrated on differences among successional stages, and have disregarded the effect of forest management. Secondary forest management practices alter the vegetation structure and fruit availability, important factors associated

  17. Carbon Storage of Forest Vegetation in China and its Relationship with Climatic Factors

    International Nuclear Information System (INIS)

    Zhao, M.; Zhou, Guang-Sheng

    2006-01-01

    Estimates of forest vegetation carbon storage in China varied due to different methods used in the assessments. In this paper, we estimated the forest vegetation carbon storage from the Fourth Forest Inventory Data (FFID) in China using a modified volume-derived method. Results showed that total carbon storage and mean carbon density of forest vegetation in China were 3.8 Pg C (about 1.1% of the global vegetation carbon stock) and 41.32 Mg/ha, respectively. In addition, based on linear multiple regression equation and factor analysis method, we analyzed contributions of biotic and abiotic factors (including mean forest age, mean annual temperature, annual precipitation, and altitude) to forest carbon storage. Our results indicated that forest vegetation carbon storage was more sensitive to changes of mean annual temperature than other factors, suggesting that global warming would seriously affect the forest carbon storage

  18. Vegetation indicators of transformation in the urban forest ecosystems of "Kuzminki-Lyublino" Park

    Science.gov (United States)

    Buyvolova, Anna; Trifonova, Tatiana; Bykova, Elena

    2017-04-01

    Forest ecosystems in the city are at the same time a component of its natural environment and part of urban developmental planning. It imposes upon urban forests a large functional load, both environmental (formation of environment, air purification, noise pollution reducing, etc.) and social (recreational, educational) which defines the special attitude to their management and study. It is not a simple task to preserve maximum accessibility to the forest ecosystems of the large metropolises with a minimum of change. The urban forest vegetates in naturally formed soil, it has all the elements of a morphological structure (canopy layers), represented by natural species of the zonal vegetation. Sometimes it is impossible for a specialist to distinguish between an urban forest and a rural one. However, the urban forests are changing, being under the threat of various negative influences of the city, of which pollution is arguably the most significant. This article presents some indicators of structural changes to the plant communities, which is a response of forest ecosystems to an anthropogenic impact. It is shown that the indicators of the transformation of natural ecosystems in the city can be a reduction of the projective cover of moss layer, until its complete absence (in the pine forest), increasing the role of Acer negundo (adventive species) in the undergrowth, high variability of floristic indicators of the ground herbaceous vegetation, and a change in the spatial arrangement of adventive species. The assessment of the impact of the urban environment on the state of vegetation in the "Kuzminki-Lyublino" Natural-Historical Park was conducted in two key areas least affected by anthropogenic impacts under different plant communities represented by complex pine and birch forests and in similar forest types in the Prioksko-Terrasny Biosphere Reserve. The selection of pine forests as a model is due to the fact that, according to some scientists, pine (Pinus

  19. Influence of air pollution on the northern forest vegetation

    Energy Technology Data Exchange (ETDEWEB)

    Huttunen, S

    1976-01-01

    The forest vegetation has been the object of air pollution research in the vicinities of several industrial processes in Finland; the main object has been the town of Oulu (65/sup 0/ N) and the area near a chemical processing plant there. The starting point was the altered forest ecosystem; on the basis of the changes in the vegetation attempts were made to seek the causes of the changes, that is, to analyze what gives cause to so-called industrial vegetation. The main objects of the investigation are the typical species of prevailing type of forest: Pinus sylvestris, Vaccinium vitis-idaea, Empetrum nigrum coll., mosses and lichens. The nutrition balance of the altering forest ecosystem has been studied for several years, including the studies of the hydrogen ion conditions of rainfall, snow and humus layer, the nutrients in plants, particularly in dwarf shrubs and pine needles, and changes in the soil.

  20. Historic range of variability for upland vegetation in the Medicine Bow National Forest, Wyoming

    Science.gov (United States)

    Gregory K. Dillon; Dennis H. Knight; Carolyn B. Meyer

    2005-01-01

    An approach for synthesizing the results of ecological research pertinent to land management is the analysis of the historic range of variability (HRV) for key ecosystem variables that are affected by management activities. This report provides an HRV analysis for the upland vegetation of the Medicine Bow National Forest in southeastern Wyoming. The variables include...

  1. REAL AND SIMULATED WAVEFORM RECORDING LIDAR DATA IN BOREAL JUVENILE FOREST VEGETATION

    Directory of Open Access Journals (Sweden)

    A. Hovi

    2013-05-01

    Full Text Available Airborne small-footprint LiDAR is replacing field measurements in regional-level forest inventories, but auxiliary field work is still required for the optimal management of young stands. Waveform (WF recording sensors can provide a more detailed description of the vegetation compared to discrete return (DR systems. Furthermore, knowing the shape of the signal facilitates comparisons between real data and those obtained with simulation tools. We performed a quantitative validation of a Monte Carlo ray tracing (MCRT -based LiDAR simulator against real data and used simulations and empirical data to study the WF recording LiDAR for the classification of boreal juvenile forest vegetation. Geometric-optical models of three common species were used as input for the MCRT model. Simulated radiometric and geometric WF features were in good agreement with the real data, and interspecies differences were preserved. We used the simulator to study the effects of sensor parameters on species classification performance. An increase in footprint size improved the classification accuracy up to a certain footprint size, while the emitted pulse width and the WF sampling rate had minor effects. Analyses on empirical data showed small improvement in performance compared to existing studies, when classifying seedling stand vegetation to four operational classes. The results on simulator validation serve as a basis for the future use of simulation models e.g. in LiDAR survey planning or in the simulation of synthetic training data, while the empirical findings clarify the potential of WF LiDAR data in the inventory chain for the operational forest management planning in Finland.

  2. Structural Equation Modeling: Theory and Applications in Forest Management

    Directory of Open Access Journals (Sweden)

    Tzeng Yih Lam

    2012-01-01

    Full Text Available Forest ecosystem dynamics are driven by a complex array of simultaneous cause-and-effect relationships. Understanding this complex web requires specialized analytical techniques such as Structural Equation Modeling (SEM. The SEM framework and implementation steps are outlined in this study, and we then demonstrate the technique by application to overstory-understory relationships in mature Douglas-fir forests in the northwestern USA. A SEM model was formulated with (1 a path model representing the effects of successively higher layers of vegetation on late-seral herbs through processes such as light attenuation and (2 a measurement model accounting for measurement errors. The fitted SEM model suggested a direct negative effect of light attenuation on late-seral herbs cover but a direct positive effect of northern aspect. Moreover, many processes have indirect effects mediated through midstory vegetation. SEM is recommended as a forest management tool for designing silvicultural treatments and systems for attaining complex arrays of management objectives.

  3. Changing Forestry Policy by Integrating Water Aspects into Forest/Vegetation Restoration in Dryland Areas in China

    Institute of Scientific and Technical Information of China (English)

    WANG Yanhui; Mike Bonell; Karl-Heinz Feger; YU Pengtao; XIONG Wei; XU Lihong

    2012-01-01

    Restoration forestry (forest rehabilitation) or re-vegetation is one effective measure to solve environmental problems, notably soil erosion. It may be further stimulated by the Clean Development Mechanism for carbon sequestration. However, there is an intensive and on-going debate about the adverse effects arising from afforestation in dryland areas, such as soil drying up which may cause further damage to the success of forest restoration, and the water yield reduction from watershed which may harm the regional development. On other hand, some preliminary studies showed a possibility that these adverse effects may be diminished more or less by properly designing the system structure and spatial distribution of forest/vegetation in a watershed. However, it is urgent to develop an evidence-based and sustainable new forestry policy for harmonizing forest-water interrelation. As a leading country in afforestation, China is beginning to develop a more trans-disciplinary and cross-sectoral forestry policy for harmonizing forestry development with water management. The main points of the changing new forestry policy should include: (1) Establishing a regional development strategy focusing on harmonized forest-water relations; (2) Taking forest-water interactions as an important part of evaluation; (3) Reducing the 'eco-water' quota of forests through technical advancement; (4) Developing and extending water-adaptive forest management practices; (S) Strengthening forest ecohydrological research and decision support ability.

  4. Correlation analysis between forest carbon stock and spectral vegetation indices in Xuan Lien Nature Reserve, Thanh Hoa, Viet Nam

    Science.gov (United States)

    Dung Nguyen, The; Kappas, Martin

    2017-04-01

    In the last several years, the interest in forest biomass and carbon stock estimation has increased due to its importance for forest management, modelling carbon cycle, and other ecosystem services. However, no estimates of biomass and carbon stocks of deferent forest cover types exist throughout in the Xuan Lien Nature Reserve, Thanh Hoa, Viet Nam. This study investigates the relationship between above ground carbon stock and different vegetation indices and to identify the most likely vegetation index that best correlate with forest carbon stock. The terrestrial inventory data come from 380 sample plots that were randomly sampled. Individual tree parameters such as DBH and tree height were collected to calculate the above ground volume, biomass and carbon for different forest types. The SPOT6 2013 satellite data was used in the study to obtain five vegetation indices NDVI, RDVI, MSR, RVI, and EVI. The relationships between the forest carbon stock and vegetation indices were investigated using a multiple linear regression analysis. R-square, RMSE values and cross-validation were used to measure the strength and validate the performance of the models. The methodology presented here demonstrates the possibility of estimating forest volume, biomass and carbon stock. It can also be further improved by addressing more spectral bands data and/or elevation.

  5. Avian species richness in relation to intensive forest management practices in early seral tree plantations.

    Science.gov (United States)

    Jones, Jay E; Kroll, Andrew J; Giovanini, Jack; Duke, Steven D; Ellis, Tana M; Betts, Matthew G

    2012-01-01

    Managers of landscapes dedicated to forest commodity production require information about how practices influence biological diversity. Individual species and communities may be threatened if management practices truncate or simplify forest age classes that are essential for reproduction and survival. For instance, the degradation and loss of complex diverse forest in young age classes have been associated with declines in forest-associated Neotropical migrant bird populations in the Pacific Northwest, USA. These declines may be exacerbated by intensive forest management practices that reduce hardwood and broadleaf shrub cover in order to promote growth of economically valuable tree species in plantations. We used a Bayesian hierarchical model to evaluate relationships between avian species richness and vegetation variables that reflect stand management intensity (primarily via herbicide application) on 212 tree plantations in the Coast Range, Oregon, USA. Specifically, we estimated the influence of broadleaf hardwood vegetation cover, which is reduced through herbicide applications, on bird species richness and individual species occupancy. Our model accounted for imperfect detection. We used average predictive comparisons to quantify the degree of association between vegetation variables and species richness. Both conifer and hardwood cover were positively associated with total species richness, suggesting that these components of forest stand composition may be important predictors of alpha diversity. Estimates of species richness were 35-80% lower when imperfect detection was ignored (depending on covariate values), a result that has critical implications for previous efforts that have examined relationships between forest composition and species richness. Our results revealed that individual and community responses were positively associated with both conifer and hardwood cover. In our system, patterns of bird community assembly appear to be associated with

  6. [Variation of forest vegetation carbon storage and carbon sequestration rate in Liaoning Province, Northeast China].

    Science.gov (United States)

    Zhen, Wei; Huang, Mei; Zhai, Yin-Li; Chen, Ke; Gong, Ya-Zhen

    2014-05-01

    The forest vegetation carbon stock and carbon sequestration rate in Liaoning Province, Northeast China, were predicted by using Canadian carbon balance model (CBM-CFS3) combining with the forest resource data. The future spatio-temporal distribution and trends of vegetation carbon storage, carbon density and carbon sequestration rate were projected, based on the two scenarios, i. e. with or without afforestation. The result suggested that the total forest vegetation carbon storage and carbon density in Liaoning Province in 2005 were 133.94 Tg and 25.08 t x hm(-2), respectively. The vegetation carbon storage in Quercus was the biggest, while in Robinia pseudoacacia was the least. Both Larix olgensis and broad-leaved forests had higher vegetation carbon densities than others, and the vegetation carbon densities of Pinus tabuliformis, Quercus and Robinia pseudoacacia were close to each other. The spatial distribution of forest vegetation carbon density in Liaoning Province showed a decrease trend from east to west. In the eastern forest area, the future increase of vegetation carbon density would be smaller than those in the northern forest area, because most of the forests in the former part were matured or over matured, while most of the forests in the later part were young. Under the scenario of no afforestation, the future increment of total forest vegetation carbon stock in Liaoning Province would increase gradually, and the total carbon sequestration rate would decrease, while they would both increase significantly under the afforestation scenario. Therefore, afforestation plays an important role in increasing vegetation carbon storage, carbon density and carbon sequestration rate.

  7. Vegetation composition and structure of southern coastal plain pine forests: An ecological comparison

    Science.gov (United States)

    Hedman, C.W.; Grace, S.L.; King, S.E.

    2000-01-01

    Longleaf pine (Pinus palustris) ecosystems are characterized by a diverse community of native groundcover species. Critics of plantation forestry claim that loblolly (Pinus taeda) and slash pine (Pinus elliottii) forests are devoid of native groundcover due to associated management practices. As a result of these practices, some believe that ecosystem functions characteristic of longleaf pine are lost under loblolly and slash pine plantation management. Our objective was to quantify and compare vegetation composition and structure of longleaf, loblolly, and slash pine forests of differing ages, management strategies, and land-use histories. Information from this study will further our understanding and lead to inferences about functional differences among pine cover types. Vegetation and environmental data were collected in 49 overstory plots across Southlands Experiment Forest in Bainbridge, GA. Nested plots, i.e. midstory, understory, and herbaceous, were replicated four times within each overstory plot. Over 400 species were identified. Herbaceous species richness was variable for all three pine cover types. Herbaceous richness for longleaf, slash, and loblolly pine averaged 15, 13, and 12 species per m2, respectively. Longleaf pine plots had significantly more (p < 0.029) herbaceous species and greater herbaceous cover (p < 0.001) than loblolly or slash pine plots. Longleaf and slash pine plots were otherwise similar in species richness and stand structure, both having lower overstory density, midstory density, and midstory cover than loblolly pine plots. Multivariate analyses provided additional perspectives on vegetation patterns. Ordination and classification procedures consistently placed herbaceous plots into two groups which we refer to as longleaf pine benchmark (34 plots) and non-benchmark (15 plots). Benchmark plots typically contained numerous herbaceous species characteristic of relic longleaf pine/wiregrass communities found in the area. Conversely

  8. Self-amplified Amazon forest loss due to vegetation-atmosphere feedbacks

    NARCIS (Netherlands)

    Zemp, Delphine Clara; Schleussner, Carl Friedrich; Barbosa, Henrique M J; Hirota, Marina; Montade, Vincent; Sampaio, Gilvan; Staal, Arie; Wang-Erlandsson, L.; Rammig, Anja

    2017-01-01

    Reduced rainfall increases the risk of forest dieback, while in return forest loss might intensify regional droughts. The consequences of this vegetation-atmosphere feedback for the stability of the Amazon forest are still unclear. Here we show that the risk of self-amplified Amazon forest loss

  9. Intelligent Model Management in a Forest Ecosystem Management Decision Support System

    Science.gov (United States)

    Donald Nute; Walter D. Potter; Frederick Maier; Jin Wang; Mark Twery; H. Michael Rauscher; Peter Knopp; Scott Thomasma; Mayukh Dass; Hajime Uchiyama

    2002-01-01

    Decision making for forest ecosystem management can include the use of a wide variety of modeling tools. These tools include vegetation growth models, wildlife models, silvicultural models, GIS, and visualization tools. NED-2 is a robust, intelligent, goal-driven decision support system that integrates tools in each of these categories. NED-2 uses a blackboard...

  10. The vegetation of spruce forests in the Pinega State Reserve

    Directory of Open Access Journals (Sweden)

    Sergey Yu. Popov

    2016-08-01

    Full Text Available The Pinega Natural State Reserve is located in the Arkhangelsk Province in the northern taiga subzone. Spruce forests represent the dominant vegetation formation of its territory. The vegetation of this forest is classified, based on 192 phytosociological descriptions. It reveals 12 associations, which represent 7 groups of associations. Detailed characteristics of these syntaxa, including analysis of their biodiversity, are provided. The revealed syntaxa differ both in species composition and environmental conditions: moisture, nutrition, nitrogen availability and acidity. Most poor conditions in terms of mineral nutrition occupy sphagnous spruce forests and bilberry-dominated spruce forests, while under the richest conditions varioherbaceous, humidoherbaceous and nemoral-herbaceous spruce forests occur. The Pinega Reserve is the only locality, where the Piceetum rubo saxatilis-vacciniosum association occurs in the northern taiga subzone.

  11. Evaluation of forest management systems under risk of wildfire

    Science.gov (United States)

    Kari Hyytiainen; Robert G. Haight

    2010-01-01

    We evaluate the economic efficiency of even- and uneven-aged management systems under risk of wildfire. The management problems are formulated for a mixed-conifer stand and approximations of the optimal solutions are obtained using simulation optimization. The Northern Idaho variant of the Forest Vegetation Simulator and its Fire and Fuels Extension is used to predict...

  12. Forest Management

    Science.gov (United States)

    S. Hummel; K. L. O' Hara

    2008-01-01

    Global variation in forests and in human cultures means that a single method for managing forests is not possible. However, forest management everywhere shares some common principles because it is rooted in physical and biological sciences like chemistry and genetics. Ecological forest management is an approach that combines an understanding of universal processes with...

  13. The effects of habitat edges and trampling intensity on vegetation in urban forests

    OpenAIRE

    Hamberg, Leena

    2009-01-01

    Although changes in urban forest vegetation have been documented in previous Finnish studies, the reasons for these changes have not been studied explicitly. Especially, the consequences of forest fragmentation, i.e. the fact that forest edges receive more solar radiation, wind and air-borne nutrients than interiors have been ignored. In order to limit the change in urban forest vegetation we need to know why it occurs. Therefore, the effects of edges and recreational use of urban forests on ...

  14. Forest fires are changing: let’s change the fire management strategy

    Directory of Open Access Journals (Sweden)

    Bovio G

    2017-08-01

    Full Text Available Forest fires in Italy are changing. More frequent heatwaves and drought increase the flammability of the vegetation; the abandonment of rural land produces 30.000 ha of newly afforested areas each year; and the wildland-urban interface is expanding with the sprawl of urbanized areas. However, forest fires are rarely understood and managed in their complexity. The public opinion is often misinformed on the causes and consequences of fires in the forest. Moreover, fire management relies almost exclusively on extinction and emergency response, resulting in high costs and limited efficacy versus extreme fire seasons. We advocate to increase the role and investments in wildfire prevention, which can be carried out by fuel-oriented silviculture, such as facilitating less flammable species or prescribed burning, in order to reduce the flammability of the vegetation and mitigate fire intensity in high-leverage areas. A centralized structure is necessary to implement such a strategy and coordinate the competences and actions of all local administrations and actors involved.

  15. Book review: Southern Forested Wetlands: Ecology and Management

    Science.gov (United States)

    Carl C. Trettin

    2000-01-01

    The southern region has the largest proportion of wetlands in the conterminous US. The majority of that wetland resource is forested by diverse vegetation communities reflecting differences in soil, hydrology, geomorphology, climatic conditions and past management. Wetland resources in the southern US are very important to the economy providing both commodity and non-...

  16. Associations between soil variables and vegetation structure and composition of Caribbean dry forests

    Science.gov (United States)

    Elvia M. Melendez-Ackerman; Julissa Rojas-Sandoval; Danny S. Fernandez; Grizelle Gonzalez; Hana Lopez; Jose Sustache; Mariely Morales; Miguel Garcia-Bermudez; Susan Aragon

    2016-01-01

    Soil–vegetation associations have been understudied in tropical dry forests when compared to the amount of extant research on this issue in tropical wet forests. Recent studies assert that vegetation in tropical dry forests is highly heterogeneous and that soil variability may be a contributing factor. In this study, we evaluated the relationship between soil variables...

  17. Role of MODIS Vegetation Phenology Products in the U.S. for Warn Early Warning System for Forest Threats

    Science.gov (United States)

    Spruce, Joseph; Hargrove, William; Norman, Steve; Gasser, Gerald; Smoot, James; Kuper, Philip

    2012-01-01

    U.S. forests occupy approx 751 million acres (approx 1/3 of total land). Several abiotic and biotic damage agents disturb, damage, kill, and/or threaten these forests. Regionally extensive forest disturbances can also threaten human life and property, bio-diversity and water supplies. timely regional forest disturbance monitoring products are needed to aid forest health management work at finer scales. daily MODIS data provide a means to monitor regional forest disturbances on a weekly basis, leveraging vegetation phenology. In response, the USFS and NASA began collaborating in 2006 to develop a Near Real Time (NRT) forest monitoring capability, based on MODIS NDVI data, as part of a national forest threat Early Warning System (EWS).

  18. Evaluating the quality of riparian forest vegetation: the Riparian Forest Evaluation (RFV index

    Directory of Open Access Journals (Sweden)

    Fernando Magdaleno

    2014-08-01

    Full Text Available Aim of study: This paper presents a novel index, the Riparian Forest Evaluation (RFV index, for assessing the ecological condition of riparian forests. The status of riparian ecosystems has global importance due to the ecological and social benefits and services they provide. The initiation of the European Water Framework Directive (2000/60/CE requires the assessment of the hydromorphological quality of natural channels. The Directive describes riparian forests as one of the fundamental components that determine the structure of riverine areas. The RFV index was developed to meet the aim of the Directive and to complement the existing methodologies for the evaluation of riparian forests.Area of study: The RFV index was applied to a wide range of streams and rivers (170 water bodies inSpain.Materials and methods: The calculation of the RFV index is based on the assessment of both the spatial continuity of the forest (in its three core dimensions: longitudinal, transversal and vertical and the regeneration capacity of the forest, in a sampling area related to the river hydromorphological pattern. This index enables an evaluation of the quality and degree of alteration of riparian forests. In addition, it helps to determine the scenarios that are necessary to improve the status of riparian forests and to develop processes for restoring their structure and composition.Main results: The results were compared with some previous tools for the assessment of riparian vegetation. The RFV index got the highest average scores in the basins of northernSpain, which suffer lower human influence. The forests in central and southern rivers got worse scores. The bigger differences with other tools were found in complex and partially altered streams and rivers.Research highlights: The study showed the index’s applicability under diverse hydromorphological and ecological conditions and the main advantages of its application. The utilization of the index allows a

  19. Disentangling Modern Fire-Climate-Vegetation Relationships across the Boreal Forest Biome

    Science.gov (United States)

    Young, A. M.; Boschetti, L.; Duffy, P.; Hu, F.; Higuera, P.

    2015-12-01

    Fire regimes differ between Eurasian and North American boreal forests, due in part to differences in climate and the dominant forest types. While North American boreal forests are dominated by stand-replacing fires, much of the Eurasian boreal forest is characterized by lower intensity surface fires. These different fire regimes have important consequences for continental-scale biogeochemical cycling and surface-energy fluxes1. Here, we use generalized linear models (GLM) and boosted regression trees (BRT) to explore the relative importance of vegetation, annual climatic factors, and their interactions in determining annual fire occurrence across Eurasian and North American boreal forests. We use remotely sensed burned area (MCD64A1), land cover (MCD12Q1), and observed climate data (CRU) from 2002-2012 at 0.25° spatial resolution to quantify these relationships at annual temporal scales and continental spatial scales. The spatial distribution of boreal fire occurrence was well explained with climate and vegetation variables, with similarities and differences in fire-climate-vegetation relationships between Eurasia and North America. For example, while GLMs indicate vegetation is a significant factor determining fire occurrence in both continents, the effect of climate differed. Spring temperature and precipitation are significant factors explaining fire occurrence in Eurasia, but no climate variables were significant for explaining fire occurrence in North America. BRTs complement this analysis, highlighting climatic thresholds to fire occurrence in both continents. The nature of these thresholds can vary among vegetation types, even within each continent, further implying regional sensitivity to climate-induced shifts in wildfire activity. To build on these results and better understand regional sensitivity of northern-high latitude fire regimes, future work will explore these relationships in forest-tundra and arctic tundra ecosystems, and apply historical

  20. How forest management affects ecosystem services, including timber production and economic return

    DEFF Research Database (Denmark)

    Duncker, Philipp S.; Raulund-Rasmussen, Karsten; Gundersen, Per

    2012-01-01

    and services. By use of virtual but realistic datasets, we quantified, for multiple services, the effects of five forest management alternatives that form an intensity gradient. Our virtual forest management units represented Central European forest ecosystems in the submontane vegetation zone under a humid......–temperate climate with acidic soils. In this zone the European beech (Fagus sylvatica L.) is the dominant tree species. In order to assess the effects on ecosystem services, the untouched natural forest reserve served as a reference. Wherever possible, response functions were deduced to couple the various services...... via stand-level data to demonstrate trade-offs between the services. Management units comprised all development phases in the sense of a "normal forest". It was clearly illustrated that maximizing the rates of biomass production and carbon sequestration may conflict with protection of authentic...

  1. Climate change impacts detection in dry forested ecosystem as indicated by vegetation cover change in -Laikipia, of Kenya.

    Science.gov (United States)

    M'mboroki, Kiambi Gilbert; Wandiga, Shem; Oriaso, Silas Odongo

    2018-03-29

    The objective of the study was to detect and identify land cover changes in Laikipia County of Kenya that have occurred during the last three decades. The land use types of study area are six, of which three are the main and the other three are the minor. The main three, forest, shrub or bush land and grassland, changed during the period, of which grasslands reduced by 5864 ha (40%), forest by 3071 ha (24%) and shrub and bush land increased by 8912 ha (43%). The other three minor land use types were bare land which had reduced by 238 ha (45%), river bed vegetation increased by 209 ha (72%) and agriculture increased by 52 ha (600%) over the period decades. Differences in spatiotemporal variations of vegetation could be largely attributed to the effects of climate factors, anthropogenic activities and their interactions. Precipitation and temperature have been demonstrated to be the key climate factors for plant growth and vegetation development where rainfall decreased by 200 mm and temperatures increased by 1.5 °C over the period. Also, the opinion of the community on the change of land use and management was attributed to climate change and also adaptation strategies applied by the community over time. For example unlike the common understanding that forest resources utilisation increases with increasing human population, Mukogodo dry forested ecosystem case is different in that the majority of the respondents (78.9%) reported that the forest resource use was more in that period than now and also a similar majority (74.2%) had the same opinion that forest resource utilisation was low compared to last 30 years. In Yaaku community, change impacts were evidenced and thus mitigation measures suggested to address the impacts which included the following: controlled bush management and indigenous grass reseeding programme were advocated to restore original grasslands, and agricultural (crop farming) activities are carried out in designated areas outside the

  2. Vegetation Dynamics in the Upper Guinean Forest Region of West Africa from 2001 to 2015

    Directory of Open Access Journals (Sweden)

    Zhihua Liu

    2016-12-01

    Full Text Available The Upper Guinea Forest (UGF region of West Africa is one of the most climatically marginal and human-impacted tropical forest regions in the world. Research on the patterns and drivers of vegetation change is critical for developing strategies to sustain ecosystem services in the region and to understand how climate and land use change will affect other tropical forests around the globe. We compared six spectral indices calculated from the 2001–2015 MODIS optical-infrared reflectance data with manually-interpreted measurements of woody vegetation cover from high resolution imagery. The tasseled cap wetness (TCW index was found to have the strongest association with woody vegetation cover, whereas greenness indices, such as the enhanced vegetation index (EVI, had relatively weak associations with woody cover. Trends in woody vegetation cover measured with the TCW index were analyzed using Mann–Kendall statistics and were contrasted with trends in vegetation greenness measured with EVI. In the drier West Sudanian Savanna and Guinean Forest-Savanna Mosaic ecoregions, EVI trends were primarily positive, and TCW trends were primarily negative, suggesting that woody vegetation cover was decreasing, while herbaceous vegetation cover is increasing. In the wettest tropical forests in the Western Guinean Lowland Forest ecoregion, declining trends in both TCW and EVI were indicative of widespread forest degradation resulting from human activities. Across all ecoregions, declines in woody cover were less prevalent in protected areas where human activities were restricted. Multiple lines of evidence suggested that human land use and resource extraction, rather than climate trends or short-term climatic anomalies, were the predominant drivers of recent vegetation change in the UGF region of West Africa.

  3. Forest insect pest management and forest management in China: an overview.

    Science.gov (United States)

    Ji, Lanzhu; Wang, Zhen; Wang, Xiaowei; An, Linli

    2011-12-01

    According to the Seventh National Forest Inventory (2004-2008), China's forests cover an area of 195.45 million ha, or 20.36% of the total land area. China has the most rapidly increasing forest resources in the world. However, China is also a country with serious forest pest problems. There are more than 8,000 species of potential forest pests in China, including insects, plant diseases, rodents and lagomorphs, and hazardous plants. Among them, 300 species are considered as economically or ecologically important, and half of these are serious pests, including 86 species of insects. Forest management and utilization have a considerable influence on the stability and sustainability of forest ecosystems. At the national level, forestry policies always play a major role in forest resource management and forest health protection. In this paper, we present a comprehensive overview of both achievements and challenges in forest management and insect pest control in China. First, we summarize the current status of forest resources and their pests in China. Second, we address the theories, policies, practices and major national actions on forestry and forest insect pest management, including the Engineering Pest Management of China, the National Key Forestry Programs, the Classified Forest Management system, and the Collective Forest Tenure Reform. We analyze and discuss three representative plantations-Eucalyptus, poplar and Masson pine plantations-with respect to their insect diversity, pest problems and pest management measures.

  4. Forest Insect Pest Management and Forest Management in China: An Overview

    Science.gov (United States)

    Ji, Lanzhu; Wang, Zhen; Wang, Xiaowei; An, Linli

    2011-12-01

    According to the Seventh National Forest Inventory (2004-2008), China's forests cover an area of 195.45 million ha, or 20.36% of the total land area. China has the most rapidly increasing forest resources in the world. However, China is also a country with serious forest pest problems. There are more than 8,000 species of potential forest pests in China, including insects, plant diseases, rodents and lagomorphs, and hazardous plants. Among them, 300 species are considered as economically or ecologically important, and half of these are serious pests, including 86 species of insects. Forest management and utilization have a considerable influence on the stability and sustainability of forest ecosystems. At the national level, forestry policies always play a major role in forest resource management and forest health protection. In this paper, we present a comprehensive overview of both achievements and challenges in forest management and insect pest control in China. First, we summarize the current status of forest resources and their pests in China. Second, we address the theories, policies, practices and major national actions on forestry and forest insect pest management, including the Engineering Pest Management of China, the National Key Forestry Programs, the Classified Forest Management system, and the Collective Forest Tenure Reform. We analyze and discuss three representative plantations— Eucalyptus, poplar and Masson pine plantations—with respect to their insect diversity, pest problems and pest management measures.

  5. A Passive Microwave L-Band Boreal Forest Freeze/Thaw and Vegetation Phenology Study

    Science.gov (United States)

    Roy, A.; Sonnentag, O.; Pappas, C.; Mavrovic, A.; Royer, A.; Berg, A. A.; Rowlandson, T. L.; Lemay, J.; Helgason, W.; Barr, A.; Black, T. A.; Derksen, C.; Toose, P.

    2016-12-01

    The boreal forest is the second largest land biome in the world and thus plays a major role in the global and regional climate systems. The extent, timing and duration of seasonal freeze/thaw (F/T) state influences vegetation developmental stages (phenology) and, consequently, constitute an important control on how boreal forest ecosystems exchange carbon, water and energy with the atmosphere. The effective retrieval of seasonal F/T state from L-Band radiometry was demonstrated using satellite mission. However, disentangling the seasonally differing contributions from forest overstory and understory vegetation, and the soil surface to the satellite signal remains challenging. Here we present initial results from a radiometer field campaign to improve our understanding of the L-Band derived boreal forest F/T signal and vegetation phenology. Two L-Band surface-based radiometers (SBR) are installed on a micrometeorological tower at the Southern Old Black Spruce site in central Saskatchewan over the 2016-2017 F/T season. One radiometer unit is installed on the flux tower so it views forest including all overstory and understory vegetation and the moss-covered ground surface. A second radiometer unit is installed within the boreal forest overstory, viewing the understory and the ground surface. The objectives of our study are (i) to disentangle the L-Band F/T signal contribution of boreal forest overstory from the understory and ground surface, (ii) to link the L-Band F/T signal to related boreal forest structural and functional characteristics, and (iii) to investigate the use of the L-Band signal to characterize boreal forest carbon, water and energy fluxes. The SBR observations above and within the forest canopy are used to retrieve the transmissivity (γ) and the scattering albedo (ω), two parameters that describe the emission of the forest canopy though the F/T season. These two forest parameters are compared with boreal forest structural and functional

  6. Mapping vegetation and fuels for fire management on the Gila National Forest Complex, New Mexico

    Science.gov (United States)

    Robert E. Keane; Scott A. Mincemoyer; Kirsten M. Schmidt; Donald G. Long; Janice L. Garner

    2000-01-01

    (Please note: This PDF is part of a CD-ROM package only and was not printed on paper.) Fuels and vegetation spatial data layers required by the spatially explicit fire growth model FARSITE were developed for all lands in and around the Gila National Forest in New Mexico. Satellite imagery, terrain modeling, and biophysical simulation were used to create the three...

  7. Forest restoration: a global dataset for biodiversity and vegetation structure.

    Science.gov (United States)

    Crouzeilles, Renato; Ferreira, Mariana S; Curran, Michael

    2016-08-01

    Restoration initiatives are becoming increasingly applied around the world. Billions of dollars have been spent on ecological restoration research and initiatives, but restoration outcomes differ widely among these initiatives in part due to variable socioeconomic and ecological contexts. Here, we present the most comprehensive dataset gathered to date on forest restoration. It encompasses 269 primary studies across 221 study landscapes in 53 countries and contains 4,645 quantitative comparisons between reference ecosystems (e.g., old-growth forest) and degraded or restored ecosystems for five taxonomic groups (mammals, birds, invertebrates, herpetofauna, and plants) and five measures of vegetation structure reflecting different ecological processes (cover, density, height, biomass, and litter). We selected studies that (1) were conducted in forest ecosystems; (2) had multiple replicate sampling sites to measure indicators of biodiversity and/or vegetation structure in reference and restored and/or degraded ecosystems; and (3) used less-disturbed forests as a reference to the ecosystem under study. We recorded (1) latitude and longitude; (2) study year; (3) country; (4) biogeographic realm; (5) past disturbance type; (6) current disturbance type; (7) forest conversion class; (8) restoration activity; (9) time that a system has been disturbed; (10) time elapsed since restoration started; (11) ecological metric used to assess biodiversity; and (12) quantitative value of the ecological metric of biodiversity and/or vegetation structure for reference and restored and/or degraded ecosystems. These were the most common data available in the selected studies. We also estimated forest cover and configuration in each study landscape using a recently developed 1 km consensus land cover dataset. We measured forest configuration as the (1) mean size of all forest patches; (2) size of the largest forest patch; and (3) edge:area ratio of forest patches. Global analyses of the

  8. Simulating post-wildfire forest trajectories under alternative climate and management scenarios.

    Science.gov (United States)

    Tarancón, Alicia Azpeleta; Fulé, Peter Z; Shive, Kristen L; Sieg, Carolyn H; Meador, Andrew Sánchez; Strom, Barbara

    Post-fire predictions of forest recovery under future climate change and management actions are necessary for forest managers to make decisions about treatments. We applied the Climate-Forest Vegetation Simulator (Climate-FVS), a new version of a widely used forest management model, to compare alternative climate and management scenarios in a severely burned multispecies forest of Arizona, USA. The incorporation of seven combinations of General Circulation Models (GCM) and emissions scenarios altered long-term (100 years) predictions of future forest condition compared to a No Climate Change (NCC) scenario, which forecast a gradual increase to high levels of forest density and carbon stock. In contrast, emissions scenarios that included continued high greenhouse gas releases led to near-complete deforestation by 2111. GCM-emissions scenario combinations that were less severe reduced forest structure and carbon stock relative to NCC. Fuel reduction treatments that had been applied prior to the severe wildfire did have persistent effects, especially under NCC, but were overwhelmed by increasingly severe climate change. We tested six management strategies aimed at sustaining future forests: prescribed burning at 5, 10, or 20-year intervals, thinning 40% or 60% of stand basal area, and no treatment. Severe climate change led to deforestation under all management regimes, but important differences emerged under the moderate scenarios: treatments that included regular prescribed burning fostered low density, wildfire-resistant forests composed of the naturally dominant species, ponderosa pine. Non-fire treatments under moderate climate change were forecast to become dense and susceptible to severe wildfire, with a shift to dominance by sprouting species. Current U.S. forest management requires modeling of future scenarios but does not mandate consideration of climate change effects. However, this study showed substantial differences in model outputs depending on climate

  9. Vegetation and environmental features of forest and range ecosystems

    Science.gov (United States)

    George A. Garrison; Ardell J. Bjugstad; Don A. Duncan; Mont E. Lewis; Dixie R. Smith

    1977-01-01

    This publication describes the 34 ecosystems into which all the land of the 48 contiguous states has been classified in the Forest-Range Environmental Study (FRES) of the Forest Service, U.S. Department of Agriculture. The description of each ecosystem discusses physiography, climate, vegetation, fauna, soils, and land use. For a number of the ecosystems, the...

  10. Climate and Vegetation Effects on Temperate Mountain Forest ...

    Science.gov (United States)

    Current forest composition may be resilient to typical climatic variability; however, climate trends, combined with projected changes in species composition, may increase tree vulnerability to water stress. A shift in forest composition toward tree species with higher water use has implications for biogenic emissions and deposition of reactive nitrogen and carbon compounds. Forest evapotranspiration (ET) can vary greatly at daily and seasonal time scales, but compared to carbon fluxes, often exhibits relatively consistent inter-annual behavior. The processes controlling ET involve the combined effects of physical and biological factors. Atmospheric conditions that promote high ET, consisting of high radiation and vapor pressure deficit (D), are often characterized by rainless periods when soil water supply to vegetation may be limiting and plant stomata may close to prevent excessive water loss. In contrast, periods of high ecosystem water availability require frequent precipitation and are characterized by low D. Thus, the combination of these contrasting conditions throughout a growing season may explain some of the consistency in ET. Additionally, vegetation composition is also an important factor in determining ET. In mixed species forests, physiological differences in water use strategies (e.g. isohydric/anisohydric species) can produce conservative water use throughout wet and dry phases of the growing season. Furthermore, transpiration by evergreen specie

  11. A comparison of structural characteristics and ecological factors between forest reserves and managed silver fir - Norway spruce forests in Slovenia

    International Nuclear Information System (INIS)

    Marinšek, A.; Diaci, J.

    2011-01-01

    In order to examine ecological, floristic and structural differences between the forest stands of managed and unmanaged silver fir - Norway spruce forests (Bazzanio trilobatae-Abietetum albae), twelve sample plots (25x25 m) were established in forest reserves and managed forests. Within the plots, subplots and microplots we conducted phytosociological and pedological surveys, analyses of the stand structure, natural regeneration and estimation of solar radiation. We determined that there are no significant differences in floristic composition and ecological factors between managed forest and forest reserve stands. The only variables that were significantly different were the solar radiation variables (ISF; TSF; DSF), vertical structure (cover indexes (CI)) and stand basal area. Small differences in the composition and the structure of the vegetation indicate that, as far as ecosystematic changes are concerned, managing these forests is not as significant as the soil conditions. Solar radiation had a major influence on natural regeneration. Indirect solar radiation seemed to be more important than direct solar radiation. We found a statistically significant positive correlation between silver fir and Norway spruce regeneration and indirect solar radiation and confirmed that the management of light is a significant factor in the management of regeneration. Another trend that was detected was an increase in the number of beech, which will have quite a large proportion in the upper tree layer of the next generation, especially in forest reserves

  12. Comparing the impacts of hiking, skiing and horse riding on trail and vegetation in different types of forest.

    Science.gov (United States)

    Törn, A; Tolvanen, A; Norokorpi, Y; Tervo, R; Siikamäki, P

    2009-03-01

    Nature-based tourism in protected areas has increased and diversified dramatically during the last decades. Different recreational activities have a range of impacts on natural environments. This paper reports results from a comparison of the impacts of hiking, cross-country skiing and horse riding on trail characteristics and vegetation in northern Finland. Widths and depths of existing trails, and vegetation on trails and in the neighbouring forests were monitored in two research sites during 2001 and 2002. Trail characteristics and vegetation were clearly related to the recreational activity, research site and forest type. Horse trails were as deep as hiking trails, even though the annual number of users was 150-fold higher on the hiking trails. Simultaneously, cross-country skiing had the least effect on trails due to the protective snow cover during winter. Hiking trail plots had little or no vegetation cover, horse riding trail plots had lower vegetation cover than forest plots, while skiing had no impact on total vegetation cover. On the other hand, on horse riding trails there were more forbs and grasses, many of which did not grow naturally in the forest. These species that were limited to riding trails may change the structure of adjacent plant communities in the long run. Therefore, the type of activities undertaken and the sensitivity of habitats to these activities should be a major consideration in the planning and management of nature-based tourism. Establishment of artificial structures, such as stairs, duckboards and trail cover, or complete closure of the site, may be the only way to protect the most sensitive or deteriorated sites.

  13. [Regulation effect of forest vegetation on watershed runoff in the Loess Plateau].

    Science.gov (United States)

    Huang, Mingbin; Liu, Xianzhao

    2002-09-01

    The runoff and rainfall data of typical forested and non-forested watersheds in Ziwuling region, which is located in the hinterland of the Loess Plateau, were used to analyze their annual runoff variation comparatively. The result showed that the annual distribution of runoff in forested watersheds was uniform, compared with that in non-forested watersheds. The total runoff in flood season decreased by 8.88 mm and 7.1 mm. Regression analyses between runoff in dried-up season and rainfall in flood season or in dried-up season showed that the rainfall in flood season in forested watersheds could be changed into underground runoff by forest vegetation, and increased the runoff in dried-up season. The annual variation of runoff also indicated that the total effect of forest vegetation on dried-up runoff complement from October to December was 1.69 mm and 0.5 mm, and that from January to May was not significant.

  14. Effects of forest management practices and environment on occurrence of Armillaria species

    Science.gov (United States)

    Mee-Sook Kim; Ned B. Klopfenstein; Geral I. McDonald

    2010-01-01

    Influences of environment (indicated by plant associations) and forest management practices on the distribution of Armillaria spp. and genets (vegetative clones) were investigated. A total of 142 isolates of Armillaria was collected from various host trees on pristine and managed sites (thinned and/or fertilized) growing in relatively wet and dry environments in...

  15. 18 CFR 1304.203 - Vegetation management.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Vegetation management...-Owned Residential Access Shoreland § 1304.203 Vegetation management. No vegetation management shall be approved on TVA-owned Residential Access Shoreland until a Vegetation Management Plan meeting the...

  16. Vegetation and Ecological Characteristics of Mixed-Conifer and Red Fir Forests at the Teakettle Experimental Forest

    Science.gov (United States)

    Malcolm North; Brian Oakley; Jiquan Chen; Heather Erickson; Andrew Gray; Antonio Izzo; Dale Johnson; Siyan Ma; Jim Marra; Marc Meyer; Kathryn Purcell; Tom Rambo; Dave Rizzo; Brent Roath; Tim. Schowalter

    2002-01-01

    Detailed analysis of mixed-conifer and red fir forests were made from extensive, large vegetation sampling, systematically conducted throughout the Teakettle Experimental Forest. Mixed conifer is characterized by distinct patch conditions of closed-canopy tree clusters, persistent gaps and shrub thickets. This heterogeneous spatial structure provides contrasting...

  17. Effects of visitor pressure on understory vegetation in Warsaw forested parks (Poland).

    Science.gov (United States)

    Sikorski, Piotr; Szumacher, Iwona; Sikorska, Daria; Kozak, Marcin; Wierzba, Marek

    2013-07-01

    Visitor's access to understorey vegetation in park forest stands results in the impoverishment of plant species composition and a reduction in habitat quality. The phenomenon of biotic homogenisation is typical in urban landscapes, but it can proceed differently depending on the scale, a detail that has not been observed in previous studies. This research was carried out in seven Warsaw parks (both public and restricted access). Thirty-four forested areas were randomly selected, some subjected to strong visitors' pressure and some within restricted access areas, free of such impacts. The latter category included woodlands growing in old forest and secondary habitats. Public access to the study areas contributed to the disappearance of some forest species and their replacement by cosmopolitan non-forest species, leading to loss of floristic biodiversity in areas of high ecological importance at the city scale. Some human-induced factors, including soil compaction and changes in soil pH, moisture and capillary volume, were found to cause habitat changes that favoured native non-forest plants. Despite changes in species composition, the taxonomic similarity of understorey vegetation in both categories--public access and restricted access--was comparable. In a distance gradient of measurements taken around selected individual trees, there was found to be significant variation (in light, soil pH and compaction) affecting the quality and quantity of understorey vegetation (including rare species). In conclusion, the protection of rare forest species could be achieved by limiting access to forested areas, particularly in old forest fragments, and we highly recommend its consideration in the proposal of future park restoration plans.

  18. Disentangling the response of streamflow to forest management and climate

    Science.gov (United States)

    Dymond, S.; Miniat, C.; Bladon, K. D.; Keppeler, E.; Caldwell, P. V.

    2016-12-01

    Paired watershed studies have showcased the relationships between forests, management, and streamflow. However, classical analyses of paired-watershed studies have done little to disentangle the effects of management from overarching climatic signals, potentially masking the interaction between management and climate. Such approaches may confound our understanding of how forest management impacts streamflow. Here we use a 50-year record of streamflow and climate data from the Caspar Creek Experimental Watersheds (CCEW), California, USA to separate the effects of forest management and climate on streamflow. CCEW has two treatment watersheds that have been harvested in the past 50 years. We used a nonlinear mixed model to combine the pre-treatment relationship between streamflow and climate and the post-treatment relationship via an interaction between climate and management into one equation. Our results show that precipitation and potential evapotranspiration alone can account for >95% of the variability in pre-treatment streamflow. Including management scenarios into the model explained most of the variability in streamflow (R2 > 0.98). While forest harvesting altered streamflow in both of our modeled watersheds, removing 66% of the vegetation via selection logging using a tractor yarding system over the entire watershed had a more substantial impact on streamflow than clearcutting small portions of a watershed using cable-yarding. These results suggest that forest harvesting may result in differing impacts on streamflow and highlights the need to incorporate climate into streamflow analyses of paired-watershed studies.

  19. UAV Remote Sensing for Urban Vegetation Mapping Using Random Forest and Texture Analysis

    Directory of Open Access Journals (Sweden)

    Quanlong Feng

    2015-01-01

    Full Text Available Unmanned aerial vehicle (UAV remote sensing has great potential for vegetation mapping in complex urban landscapes due to the ultra-high resolution imagery acquired at low altitudes. Because of payload capacity restrictions, off-the-shelf digital cameras are widely used on medium and small sized UAVs. The limitation of low spectral resolution in digital cameras for vegetation mapping can be reduced by incorporating texture features and robust classifiers. Random Forest has been widely used in satellite remote sensing applications, but its usage in UAV image classification has not been well documented. The objectives of this paper were to propose a hybrid method using Random Forest and texture analysis to accurately differentiate land covers of urban vegetated areas, and analyze how classification accuracy changes with texture window size. Six least correlated second-order texture measures were calculated at nine different window sizes and added to original Red-Green-Blue (RGB images as ancillary data. A Random Forest classifier consisting of 200 decision trees was used for classification in the spectral-textural feature space. Results indicated the following: (1 Random Forest outperformed traditional Maximum Likelihood classifier and showed similar performance to object-based image analysis in urban vegetation classification; (2 the inclusion of texture features improved classification accuracy significantly; (3 classification accuracy followed an inverted U relationship with texture window size. The results demonstrate that UAV provides an efficient and ideal platform for urban vegetation mapping. The hybrid method proposed in this paper shows good performance in differentiating urban vegetation mapping. The drawbacks of off-the-shelf digital cameras can be reduced by adopting Random Forest and texture analysis at the same time.

  20. Holocene Vegetation and Fire Dynamics for Ecosystem Management in the Spruce-Moss Domain in Northwestern Québec

    Science.gov (United States)

    Andy, H.; Blarquez, O.; Grondin, P.

    2017-12-01

    Facing the depletion of the wood resource in Québec and possible threats such as climate change, actors of the forest sector urge the need for a scientific frame to the forest management. A set of reference conditions has been developed for defining management targets that will help to keep forests within their natural range of variability according to the preindustrial period (XIX-XX centuries). Those reference conditions are based on the stands age-class distribution under a given fire regime that enable to define the percentage of old-growth forest (>100 years) to be maintained in a landscape. For the western spruce-moss domain in Québec, the fire return interval (FRI) is equal to 150 years resulting in a target of 48% of old-growth forests. Yet, this target supposes that the environment and the ecosystem processes are homogeneous for an entire bioclimatic domain of 175 000 km2. By using a Redundancy Analysis (RDA) on modern inventories data on natural and human disturbances; climate and physical variables and forest composition, we were able to distinguish 5 main zones where interactions between stands and their environment are homogeneous and where local management targets could be developed. We then used 10 published sedimentary pollens and charcoal series in order to reconstruct the holocene fire and vegetation dynamics for those zones. Vegetation deduced from the analysis of the pollen diagrams showed that the long-term vegetation dynamics are zone specific indicating that the modern forest composition is a result of the Holocene trajectories occurring within each zone. Charcoals series were statistically analyzed for past fire detection and long-term FRI reconstruction. They suggest that for the entire territory the holocene FRI range from 174 to 265 years resulting in old-growth forests percentage within 44 and 65% depending on the zone. Hence, we conclude that current management targets should be revised to fit more with local forests ecosystem

  1. Restoration treatments in urban park forests drive long-term changes in vegetation trajectories.

    Science.gov (United States)

    Johnson, Lea R; Handel, Steven N

    2016-04-01

    Municipalities are turning to ecological restoration of urban forests as a measure to improve air quality, ameliorate urban heat island effects, improve storm water infiltration, and provide other social and ecological benefits. However, community dynamics following urban forest restoration treatments are poorly documented. This study examines the long-term effects of ecological restoration undertaken in New York City, New York, USA, to restore native forest in urban park natural areas invaded by woody non-native plants that are regional problems. In 2009 and 2010, we sampled vegetation in 30 invaded sites in three large public parks that were restored 1988-1993, and 30 sites in three large parks that were similarly invaded but had not been restored. Data from these matched plots reveal that the restoration treatment achieved its central goals. After 15-20 years, invasive species removal followed by native tree planting resulted in persistent structural and compositional shifts, significantly lower invasive species abundance, a more complex forest structure, and greater native tree recruitment. Together, these findings indicate that successional trajectories of vegetation dynamics have diverged between restored forests and invaded forests that were not restored. In addition, the data suggest that future composition of these urban forest patches will be novel assemblages. Restored and untreated sites shared a suite of shade-intolerant, quickly-growing tree species that colonize disturbed sites, indicating that restoration treatments created sites hospitable for germination and growth of species adapted to high light conditions and disturbed soils. These findings yield an urban perspective on the use of succession theory in ecological restoration. Models of ecological restoration developed in more pristine environments must be modified for use in cities. By anticipating both urban disturbances and ecological succession, management of urban forest patches can be

  2. Sustainable forest management of Natura 2000 sites: a case study from a private forest in the Romanian Southern Carpathians

    Directory of Open Access Journals (Sweden)

    Helge Walentowski

    2013-07-01

    Full Text Available Biodiversity and forest management are analyzed for a 500 ha privately owned forest within the Natura 2000 area “ROSCI0122 Muntii Fagaras”. Habitat types and indicator species are identified to measure environmental quality. Working towards an integrated approach to conservation, a range of options that will result in sustainable forest management are then considered. For beech forests light heterogeneity emerges as a crucial management target to ensure tree species richness and structural diversity as a basis for saving indicator species such as Morimus funereus, Cucujus cinnaberinus, Bolitophagus reticulatus and Xestobium austriacum. For spruce forests thinning over a broad range of diameters and maintenance of veteran trees would provide habitats for indicator species such asOlisthaerus substriatus. The populations of a number of bird species would be increased by strip-harvesting slopes: species such as Tetrao urogallus, Bonasia bonasia and Ficedula parva prefer forest margins. Steep slopes, and the areas around springs and watercourses, as well as rock faces, should remain unmanaged. Future management should start with a grid-based inventory to create an objective database of forest structure and life. An example is presented for high-elevation spruce forest. The inventory should quantify the variations in diameter, height and volume of trees per unit area. Such data would allow the advanced planning of forest operations. We discuss a wide range of administrative and organizational changes; changes that are needed for the sustainable forest management of the vast close-to-natural forests of the Muntii Fagaras, the maintenance of the Nardusgrasslands and the protection of wetland vegetation around springs and streams in this Natura 2000-area. 

  3. Effects of forest management on California Spotted Owls: implications for reducing wildfire risk in fire‐prone forests.

    Science.gov (United States)

    Tempel, Douglas J; Gutiérrez, R J; Whitmore, Sheila A; Reetz, Matthew J; Stoelting, Ricka E; Berigan, William J; Seamans, Mark E; Zachariah Peery, M

    Management of many North American forests is challenged by the need to balance the potentially competing objectives of reducing risks posed by high-severity wildfires and protecting threatened species. In the Sierra Nevada, California, concern about high-severity fires has increased in recent decades but uncertainty exists over the effects of fuel-reduction treatments on species associated with older forests, such as the California Spotted Owl (Strix occidentalis occidentalis). Here, we assessed the effects of forest conditions, fuel reductions, and wildfire on a declining population of Spotted Owls in the central Sierra Nevada using 20 years of demographic data collected at 74 Spotted Owl territories. Adult survival and territory colonization probabilities were relatively high, while territory extinction probability was relatively low, especially in territories that had relatively large amounts of high canopy cover (≥70%) forest. Reproduction was negatively associated with the area of medium-intensity timber harvests characteristic of proposed fuel treatments. Our results also suggested that the amount of edge between older forests and shrub/sapling vegetation and increased habitat heterogeneity may positively influence demographic rates of Spotted Owls. Finally, high-severity fire negatively influenced the probability of territory colonization. Despite correlations between owl demographic rates and several habitat variables, life stage simulation (sensitivity) analyses indicated that the amount of forest with high canopy cover was the primary driver of population growth and equilibrium occupancy at the scale of individual territories. Greater than 90% of medium-intensity harvests converted high-canopy-cover forests into lower-canopy-cover vegetation classes, suggesting that landscape-scale fuel treatments in such stands could have short-term negative impacts on populations of California Spotted Owls. Moreover, high-canopy-cover forests declined by an average of

  4. Modalities of vegetation management beneath and in the vicinity of overhead power lines; Modalites de gestion de la vegetation sous et aux abords des lignes electriques

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    This guidebook was elaborated in coordination with the French professional national center of forestry property (CNPPF), Electricite de France (EDF), the national federation of contractors of rural agricultural and forestry works (FNETARF), the national federation of the syndicates of sylviculture forestry owners (FNSPFS), the institute for forest development (IDF), the national forest office (ONF), the French manager of the power grid (RTE) and some local agriculture organizations. Its goal is to supply concrete answers to the questions concerning the management of vegetation in the direct vicinity of overhead power lines, and in particular the rights and obligations of land owners with respect to the maintenance of vegetation. This guidebook represents a first step towards the improvement of today's practices in this domain: legal and technical questions and answers, glossary, regulatory texts, useful addresses and bibliography. (J.S.)

  5. Carbon isotope characterization of vegetation and soil organic matter in subtropical forests in Luquillo, Puerto Rico

    International Nuclear Information System (INIS)

    Fischer, J.C. von; Tieszen, L.L.

    1995-01-01

    We examined natural abundances of 13 C in vegetation and soil organic maner (SOM) of subtropical wet and rain forests to characterize the isotopic enrichment through decomposition that has been reported for temperate forests. Soil cores and vegetative samples from the decomposition continuum (leaves, new litter, old liner, wood, and roots) were taken from each of four forest types in the Luquillo Experimental Forest, Puerto Rico. SOM δ 13 C was enriched 1.60/00 relative to aboveground litter. We found no further enrichment within the soil profile. The carbon isotope ratios of vegetation varied among forests, ranging from -28.20/00 in the Colorado forest to -26.90/00 in the Palm forest. Isotope ratios of SOM differed between forests primarily in the top 20 em where the Colorado forest was again most negative at -28.00/00, and the Palm forest was most positive at -26.50/00. The isotopic differences between forests are likely attributable to differences in light regimes due to canopy density variation, soil moisture regimes, and/or recycling of CO 2 . Our data suggest that recalcitrant SOM is not derived directly from plant lignin since plant lignin is even more 13 C depleted than the bulk vegetation. We hypothesize that the anthropogenic isotopic depletion of atmospheric CO 2 , (ca 1.50/00 in the last 150 years) accounts for some of the enrichment observed in the SOM relative to the more modern vegetation in this study and others. This study also supports other observations that under wet or anaerobic soil environments there is no isotopic enrichment during decomposition or with depth in the active profile. (author)

  6. Carbon isotope characterization of vegetation and soil organic matter in subtropical forests in Luquillo, Puerto Rico

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, J.C. von [Cornell University, Ithaca, NY (United States); Tieszen, L. L.

    1995-06-15

    We examined natural abundances of {sup 13}C in vegetation and soil organic maner (SOM) of subtropical wet and rain forests to characterize the isotopic enrichment through decomposition that has been reported for temperate forests. Soil cores and vegetative samples from the decomposition continuum (leaves, new litter, old liner, wood, and roots) were taken from each of four forest types in the Luquillo Experimental Forest, Puerto Rico. SOM δ{sup 13}C was enriched 1.60/00 relative to aboveground litter. We found no further enrichment within the soil profile. The carbon isotope ratios of vegetation varied among forests, ranging from -28.20/00 in the Colorado forest to -26.90/00 in the Palm forest. Isotope ratios of SOM differed between forests primarily in the top 20 em where the Colorado forest was again most negative at -28.00/00, and the Palm forest was most positive at -26.50/00. The isotopic differences between forests are likely attributable to differences in light regimes due to canopy density variation, soil moisture regimes, and/or recycling of CO{sub 2}. Our data suggest that recalcitrant SOM is not derived directly from plant lignin since plant lignin is even more {sup 13}C depleted than the bulk vegetation. We hypothesize that the anthropogenic isotopic depletion of atmospheric CO{sub 2}, (ca 1.50/00 in the last 150 years) accounts for some of the enrichment observed in the SOM relative to the more modern vegetation in this study and others. This study also supports other observations that under wet or anaerobic soil environments there is no isotopic enrichment during decomposition or with depth in the active profile. (author)

  7. Sustainable forest management of Natura 2000 sites: a case study from a private forest in the Romanian Southern Carpathians

    Directory of Open Access Journals (Sweden)

    H. Walentowski

    2013-05-01

    Full Text Available Biodiversity and forest management are analyzed for a 500 haprivately owned forest within the Natura 2000 area “ROSCI0122 MunţiiFăgăraş”. Habitat types and indicator species are identified to measure environmental quality. Working towards an integrated approach to conservation, a range of options that will result in sustainable forest management are then considered. For beech forests light heterogeneity emerges as a crucial management target to ensure tree species richness and structural diversity as a basis for saving indicator species such as Morimus funereus, Cucujus cinnaberinus,Bolitophagus reticulatus and Xestobium austriacum. For spruceforests thinning over a broad range of diameters and maintenance of veteran trees would provide habitats for indicator species such as Olisthaerus substriatus. The populations of a number of bird species would be increased by strip-harvesting slopes: species such as Tetrao urogallus, Bonasia bonasia and Ficedula parva prefer forest margins. Steep slopes, and the areas around springs and watercourses, as well as rock faces, should remain unmanaged. Future management should start with a grid-based inventory to create an objective database of forest structure and life. An example is presented for high-elevation spruce forest. The inventory should quantify the variations in diameter, height and volume of trees per unit area. Such data would allowthe advanced planning of forest operations. We discuss a wide range ofadministrative and organizational changes; changes that are needed for the sustainable forest management of the vast close-to-natural forests of the Munţii Făgăraş, the maintenance of the Nardus grasslands and the protection of wetland vegetation around springs and streams in this Natura 2000-area.

  8. A floristic classification of the vegetation of a forest-savanna boundary in southeastern Zimbabwe

    Directory of Open Access Journals (Sweden)

    I. Mapaure

    1997-10-01

    Full Text Available The vegetation of Chirinda Forest boundary was classified into eight types using Two-way Indicator Species Analysis (TWINSPAN and Detrended Correspondence Analysis (DCA. The moist forest comprises three types:  Strychnos mellodora-Chrysophyllum gonmgosanum Forest on deep dolerite soils; Chrysophyllum gorungosanum-Myrianthus holstii Forest on shallow dolerite soils; and  Teclea iiobilis-Ehretia cymosa Forest on drier, but deep dolerite soils. The non-forest vegetation comprises five types: Themeda triandra Grassland on shallow dolerite soils; Psidium guajava Bushland on sandstone; Bridelia micrantha-Harungana madagascariensis Mixed Woodland not restricted to any one particular soil type; Acacia karroo- Heteropyxis dehniae Woodland on shallow soils derived from sandstone but sometimes on dolerite; and  Julbemardia globiflora-Brachystegia spiciformis (Miombo Woodland on sandstone.

  9. Understory vegetation data quality assessment for the Interior West Forest and Inventory Analysis program

    Science.gov (United States)

    Paul L. Patterson; Renee A. O' Brien

    2011-01-01

    The Interior West Forest Inventory and Analysis (IW-FIA) program of the USDA Forest Service collects field data on understory vegetation structure that have broad applications. In IW-FIA one aspect of quality assurance is assessed based on the repeatability of field measurements. The understory vegetation protocol consists of two suites of measurements; (1) the...

  10. Complexity of Forest Management: Exploring Perceptions of Dutch Forest Managers

    Directory of Open Access Journals (Sweden)

    Jilske O. de Bruin

    2015-09-01

    Full Text Available Challenges of contemporary forest management are frequently referred to as complex. This article empirically studies complexity in forest management decision-making. In contrast to what is often assumed in the literature, this article starts by assuming that complexity does not just consist of an external descriptive element, but also depends on how decision-makers perceive the system at hand. This “perceived complexity” determines decision-making. We used a straightforward interpretation of perceived complexity using two criteria: the number of factors considered and the uncertainty perceived about these factors. The results show that Dutch forest managers generally consider forest management decision-making to be complicated (many factors to consider rather than complex (many uncertain factors to consider. Differences in sources of complexity confirm the individual character of perceived complexity. The factors perceived to be most relevant for decision-making (the forest itself, the organization’s objective, the cost of management, public opinion, national policies and laws, and new scientific insights and ideas are generally seen as rather certain, although “complexity reduction” may play a role that can adversely affect the quality of decision-making. Additional use of more open-ended, forward-looking methods, such as qualitative foresight tools, might enable addressing uncertainty and complexity, and thereby enhance decision-making in forest management to prepare for increasing complexity in the future.

  11. Successional changes in forest vegetation of National Nature Reserve Dubnik

    International Nuclear Information System (INIS)

    Hrabovsky, A.; Balkovic, J.; Kollar, J.

    2011-01-01

    The aim of this is paper is phyto-sociological assessment of the current status of forest vegetation in the National Nature Reserve Dubnik (Slovakia) towards state documented in 1965. The observed state is assigned to progressive succession, which resulted in regression of large group of light-requiring species and extinction of oak forest community Quercetum pubescenti-roboris. During the reporting period there was a shift towards mezophilest types of forest with relative homogenization of habitat conditions on the major environmental gradients. (authors)

  12. Using ecological forecasting of future vegetation transition and fire frequency change in the Sierra Nevada to assess fire management strategies

    Science.gov (United States)

    Thorne, J. H.; Schwartz, M. W.; Holguin, A. J.; Moritz, M.; Batllori, E.; Folger, K.; Nydick, K.

    2013-12-01

    Ecological systems may respond in complex manners as climate change progresses. Among the responses, site-level climate conditions may cause a shift in vegetation due to the physiological tolerances of plant species, and the fire return interval may change. Natural resource managers challenged with maintaining ecosystem health need a way to forecast how these processes may affect every location, in order to determine appropriate management actions and prioritize locations for interventions. We integrated climate change-driven vegetation type transitions with projected change in fire frequency for 45,203 km2 of the southern Sierra Nevada, California, containing over 10 land management agencies as well as private lands. This Magnitude of Change (MOC) approach involves classing vegetation types in current time according to their climate envelopes, and identifying which sites will in the future have climates beyond what that vegetation currently occurs in. Independently, fire models are used to determine the change in fire frequency for each site. We examined 82 vegetation types with >50 grid cell occurrences. We found iconic resources such as the giant sequoia, lower slope oak woodlands, and high elevation conifer forests are projected as highly vulnerable by models that project a warmer drier future, but not as much by models that project a warmer future that is not drier than current conditions. Further, there were strongly divergent vulnerabilities of these forest types across land ownership (National Parks versus US Forest Service lands), and by GCM. For example, of 50 giant sequoia (Sequoiadendron giganteum) groves and complexes, all but 3 (on Sierra National Forest) were in the 2 highest levels of risk of climate and fire under the GFDL A2 projection, while 15 groves with low-to-moderate risk were found on both the National Parks and National Forests 18 in the 2 under PCM A2. Landscape projections of potential MOC suggest that the region is likely to experience

  13. Intensive ground vegetation growth mitigates the carbon loss after forest disturbance.

    Science.gov (United States)

    Zehetgruber, Bernhard; Kobler, Johannes; Dirnböck, Thomas; Jandl, Robert; Seidl, Rupert; Schindlbacher, Andreas

    2017-01-01

    Slow or failed tree regeneration after forest disturbance is increasingly observed in the central European Alps, potentially amplifying the carbon (C) loss from disturbance. We aimed at quantifying C dynamics of a poorly regenerating disturbance site with a special focus on the role of non-woody ground vegetation. Soil CO 2 efflux, fine root biomass, ground vegetation biomass, tree increment and litter input were assessed in (i) an undisturbed section of a ~ 110 years old Norway spruce stand, (ii) in a disturbed section which was clear-cut six years ago (no tree regeneration), and (iii) in a disturbed section which was clear-cut three years ago (no tree regeneration). Total soil CO 2 efflux was similar across all stand sections (8.5 ± 0.2 to 8.9 ± 0.3 t C ha -1  yr. -1 ). The undisturbed forest served as atmospheric C sink (2.1 t C ha -1  yr. -1 ), whereas both clearings were C sources to the atmosphere. The source strength three years after disturbance (-5.5 t C ha -1  yr. -1 ) was almost twice as high as six years after disturbance (-2.9 t C ha -1  yr. -1 ), with declining heterotrophic soil respiration and the high productivity of dense graminoid ground vegetation mitigating C loss. C loss after disturbance decreases with time and ground vegetation growth. Dense non-woody ground vegetation cover can hamper tree regeneration but simultaneously decrease the ecosystem C loss. The role of ground vegetation should be more explicitly taken into account in forest C budgets assessing disturbance effects.

  14. Does participatory forest management promote sustainable forest utilisation in Tanzania?

    DEFF Research Database (Denmark)

    Treue, Thorsten; Ngaga, Y.M.; Meilby, Henrik

    2014-01-01

    Over the past 20 years, Participatory Forest Management (PFM) has become a dominant forest management strategy in Tanzania, covering more than 4.1 million hectares. Sustainable forest use and supply of wood products to local people are major aims of PFM. This paper assesses the sustainability...... of forest utilisation under PFM, using estimates of forest condition and extraction rates based on forest inventories and 480 household surveys from 12 forests; seven under Community Based Forest Management (CBFM), three under Joint Forest Management (JFM) and two under government management (non......-PFM). Extraction of products is intense in forests close to Dar es Salaam, regardless of management regime. Further from Dar es Salaam, harvesting levels in forests under PFM are, with one prominent exception, broadly sustainable. Using GIS data from 116 wards, it is shown that half of the PFM forests in Tanzania...

  15. Managing Forest Conflicts: Perspectives of Indonesia’s Forest Management Unit Directors

    Directory of Open Access Journals (Sweden)

    Larry A. Fisher

    2017-04-01

    Full Text Available Recent expansion of the forestry and plantation sectors in Indonesia has intensified agrarian and natural resource conflicts, and created increased awareness of the social, economic and environmental impacts of these disputes. Addressing these disputes is a critical issue in advancing Indonesia’s commitment to sustainable forest management. The Forest Management Units (Kesatuan Pengelolaan Hutan, or KPH, have become the pivotal structural element for managing all state forests at the local level, with responsibility for conventional forest management and policy implementation (establishing management boundaries, conducting forest inventory, and developing forest management plans, as well as the legal mandate to communicate and work with indigenous people and local communities. This paper presents the results of a national survey of all currently functioning KPH units, the first of its kind ever conducted with KPH leadership, to obtain a system-wide perspective of the KPHs’ role, mandate, and capacity for serving as effective intermediaries in managing forest conflicts in Indonesia. The survey results show that the KPHs are still in a very initial stage of development, and are struggling with a complex and rapidly evolving policy and institutional framework. The most common conflicts noted by respondents included forest encroachment, tenure disputes, boundary conflicts, and illegal logging and land clearing. KPH leadership views conflict resolution as among their primary duties and functions, and underscored the importance of more proactive and collaborative approaches for addressing conflict, many seeing themselves as capable facilitators and mediators. Overall, these results juxtapose a generally constructive view by KPH leadership over their role and responsibility in addressing forest management conflicts, with an extremely challenging social, institutional, and political setting. The KPHs can certainly play an important role as local

  16. Acid precipitation and forest vegetation

    Energy Technology Data Exchange (ETDEWEB)

    Tamm, C O; Cowling, E B

    1977-04-01

    Effects of acidic precipitation on forest vegetation may be classified as being either direct or indirect. Among the most important direct effects are damage to protective cuticular layers, interference with normal functioning of guard cells, poisoning of plant cells after diffusion of acidic substances through stomata or cuticle and interference with reproductive processes. Indirect effects include accelerated leaching of substances from foliar organs, increased susceptibility to drought and other environmental stress factors, and alteration of symbiotic associations and host-parasite interactions. The potential importance of nutrient uptake through foliage and the need to understand atmosphere-plant-soil interactions are stressed.

  17. WebGIS Platform Adressed to Forest Fire Management Methodologies

    Science.gov (United States)

    André Ramos-Simões, Nuno; Neto Paixão, Helena Maria; Granja Martins, Fernando Miguel; Pedras, Celestina; Lança, Rui; Silva, Elisa; Jordán, António; Zavala, Lorena; Soares, Cristina

    2015-04-01

    Forest fires are one of the natural disasters that causes more damages in nature, as well as high material costs, and sometimes, a significant losses in human lives. In summer season, when high temperatures are attained, fire may rapidly progress and destroy vast areas of forest and also rural and urban areas. The forest fires have effect on forest species, forest composition and structure, soil properties and soil capacity for nutrient retention. In order to minimize the negative impact of the forest fires in the environment, many studies have been developed, e.g. Jordán et al (2009), Cerdà & Jordán (2010), and Gonçalves & Vieira (2013). Nowadays, Remote Sensing (RS) and Geographic Information System (GIS) technologies are used as support tools in fire management decisions, namely during the fire, but also before and after. This study presents the development of a user-friendly WebGIS dedicated to share data, maps and provide updated information on forest fire management for stakeholders in Iberia Peninsula. The WebGIS platform was developed with ArcGIS Online, ArcGIS for Desktop; HyperText Markup Language (HTML) and Javascript. This platform has a database that includes spatial and alphanumeric information, such as: origin, burned areas, vegetation change over time, terrain natural slope, land use, soil erosion and fire related hazards. The same database contains also the following relevant information: water sources, forest tracks and traffic ways, lookout posts and urban areas. The aim of this study is to provide the authorities with a tool to assess risk areas and manage more efficiently forest fire hazards, giving more support to their decisions and helping the populations when facing this kind of phenomena.

  18. Vulnerability and Resilience of Temperate Forest Landscapes to Broad-Scale Deforestation in Response to Changing Fire Regimes and Altered Post-Fire Vegetation Dynamics

    Science.gov (United States)

    Tepley, A. J.; Veblen, T. T.; Perry, G.; Anderson-Teixeira, K. J.

    2015-12-01

    In the face of on-going climatic warming and land-use change, there is growing concern that temperate forest landscapes could be near a tipping point where relatively small changes to the fire regime or altered post-fire vegetation dynamics could lead to extensive conversion to shrublands or savannas. To evaluate vulnerability and resilience to such conversion, we develop a simple model based on three factors we hypothesize to be key in predicting temperate forest responses to changing fire regimes: (1) the hazard rate (i.e., the probability of burning in the next year given the time since the last fire) in closed-canopy forests, (2) the hazard rate for recently-burned, open-canopy vegetation, and (3) the time to redevelop canopy closure following fire. We generate a response surface representing the proportions of the landscape potentially supporting closed-canopy forest and non-forest vegetation under nearly all combinations of these three factors. We then place real landscapes on this response surface to assess the type and magnitude of changes to the fire regime that would drive extensive forest loss. We show that the deforestation of much of New Zealand that followed initial human colonization and the introduction of a new ignition source ca. 750 years ago was essentially inevitable due to the slow rate of forest recovery after fire and the high flammability of post-fire vegetation. In North America's Pacific Northwest, by contrast, a predominantly forested landscape persisted despite two periods of widespread burning in the recent past due in large part to faster post-fire forest recovery and less pronounced differences in flammability between forests and the post-fire vegetation. We also assess the factors that could drive extensive deforestation in other regions to identify where management could reduce this potential and to guide field and modeling work to better understand the responses and ecological feedbacks to changing fire regimes.

  19. Sustainable Forest Management in Cameroon Needs More than Approved Forest Management Plans

    Directory of Open Access Journals (Sweden)

    Paolo Omar. Cerutti

    2008-12-01

    Full Text Available One of the main objectives of the 1994 Cameroonian forestry law is to improve the management of production forests by including minimum safeguards for sustainability into compulsory forest management plans. As of 2007, about 3.5 million hectares (60% of the productive forests are harvested following the prescriptions of 49 approved management plans. The development and implementation of these forest management plans has been interpreted by several international organizations as long awaited evidence that sustainable management is applied to production forests in Cameroon. Recent reviews of some plans have concluded, however, that their quality was inadequate. This paper aims at taking these few analyses further by assessing the actual impacts that approved management plans have had on sustainability and harvesting of commercial species. We carry out an assessment of the legal framework, highlighting a fundamental flaw, and a thorough comparison between data from approved management plans and timber production data. Contrary to the principles adhered to by the 1994 law, we find that the government has not yet succeeded in implementing effective minimum sustainability safeguards and that, in 2006, 68% of the timber production was still carried out as though no improved management rules were in place. The existence of a number of approved management plans cannot be used a proxy for proof of improved forest management.

  20. The application of APEX images in the assessment of the state of non-forest vegetation in the Karkonosze Mountains

    Directory of Open Access Journals (Sweden)

    Jarocińska Anna M.

    2016-03-01

    Full Text Available Information about vegetation condition is needed for the effective management of natural resources and the estimation of the effectiveness of nature conservation. The aim of the study was to analyse the condition of non-forest mountain communities: synanthropic communities and natural grasslands. UNESCO’s M&B Karkonosze Transboundary Biosphere Reserve was selected as the research area. The analysis was based on 40 field test polygons and APEX hyperspectral images. The field measurements allowed the collection of biophysical parameters - Leaf Area Index (LAI, fraction of Absorbed Photosynthetically Active Radiation (fAPAR and chlorophyll content - which were correlated with vegetation indices calculated using the APEX images. Correlations were observed between the vegetation indices (general condition, plant structure and total area of leaves (LAI, as well as fraction of Absorbed Photosynthetically Active Radiation (fAPAR. The outcomes show that the non-forest communities in the Karkonosze are in good condition, with the synanthropic communities characterised by better condition compared to the natural communities.

  1. Wood-inhabiting fungi in southern Italy forest stands: morphogroups, vegetation types and decay classes.

    Science.gov (United States)

    Granito, Vito Mario; Lunghini, Dario; Maggi, Oriana; Persiani, Anna Maria

    2015-01-01

    The authors conducted an ecological study of forests subjected to varying management. The aim of the study was to extend and integrate, within a multivariate context, knowledge of how saproxylic fungal communities behave along altitudinal/vegetational gradients in response to the varying features and quality of coarse woody debris (CWD). The intra-annual seasonal monitoring of saproxylic fungi, based on sporocarp inventories, was used to investigate saproxylic fungi in relation to vegetation types and management categories. We analyzed fungal species occurrence, recorded according to the presence/absence and frequency of sporocarps, on the basis of the harvest season, of coarse woody debris decay classes as well as other environmental and ecological variables. Two-way cluster analysis, DCA and Spearman's rank correlations, for indirect gradient analysis, were performed to identify any patterns of seasonality and decay. Most of the species were found on CWD in an intermediate decay stage. The first DCA axis revealed the vegetational/microclimate gradient as the main driver of fungal community composition, while the second axis corresponded to a strong gradient of CWD decay classes. © 2015 by The Mycological Society of America.

  2. Vegetation Diversity Quality in Mountainous Forest of Ranu Regulo Lake Area, Bromo Tengger Semeru National Park, East Java

    Directory of Open Access Journals (Sweden)

    Jehan Ramdani Hariyati

    2012-01-01

    Full Text Available Aim of this research was to study vegetation diversity quality in mountainous forest of Ranu Regulo Lake area in Bromo Tengger Semeru National Park (TNBTS, East Java. Field observation was carried out by vegetation analysis using sampling plots of 25x25 m2 for trees, 5x5 m2 for poles, 1x1 m2 for ground surface plants. Community structure of each lake side was determined by calculating vegetation's density, basal area, frequency, important value and stratification of species. While vegetations diversity was estimated by taxa richness, Shannon-Wiener diversity index, and rate of endemism. Each lake side forests were compared by Morisita community similarity index. Data were tabulated by Microsoft Excel 2007. The result showed that based on existed vegetation, mountainous forest surrounding Ranu Regulo Lake consisted of four ecosystems, i.e. heterogenic mountainous forest, pine forest, acacia forest and bushes. Bushes Area has two types of population, edelweiss and Eupatorium odoratum invaded area. Vegetation diversity quality in heterogenic mountainous forest of Ranu Regulo TNBTS was the highest, indicated by its multi-stratification to B stratum trees of 20-30m high. Heterogenic mountainous forest’s formation was Acer laurinum and Acmena accuminatissima for trees, Chyatea for poles. Taxa richness was found 59 species and 30 families, while the others were found below 28 species and 17 families. Diversity Index of heterogenic mountainous forest is the highest among others for trees is 2.31 and 3.24 for poles and second in bushes (H=3.10 after edelweiss ecosystem (H=3.39. Highest rate of endemism reached 100% for trees in heterogenic mountainous forest, 87% for poles in edelweiss area and 89% for bushes also in heterogenic mountainous forest. Trees, poles and herbs most similarity community showed by pine and acacia forest. Based on those five characters, vegetation diversity quality in Ranu Regulo Lake area was medium for heterogenic mountainous

  3. A Phenology-Based Method for Monitoring Woody and Herbaceous Vegetation in Mediterranean Forests from NDVI Time Series

    OpenAIRE

    David Helman; Itamar M. Lensky; Naama Tessler; Yagil Osem

    2015-01-01

    We present an efficient method for monitoring woody (i.e., evergreen) and herbaceous (i.e., ephemeral) vegetation in Mediterranean forests at a sub pixel scale from Normalized Difference Vegetation Index (NDVI) time series derived from the Moderate Resolution Imaging Spectroradiometer (MODIS). The method is based on the distinct development periods of those vegetation components. In the dry season, herbaceous vegetation is absent or completely dry in Mediterranean forests. Thus the mean NDVI ...

  4. Responses of the Carbon Storage and Sequestration Potential of Forest Vegetation to Temperature Increases in Yunnan Province, SW China

    Directory of Open Access Journals (Sweden)

    Ruiwu Zhou

    2018-04-01

    Full Text Available The distribution of forest vegetation and forest carbon sequestration potential are significantly influenced by climate change. In this study, a map of the current distribution of vegetation in Yunnan Province was compiled based on data from remote sensing imagery from the Advanced Land Observing Satellite (ALOS from 2008 to 2011. A classification and regression tree (CART model was used to predict the potential distribution of the main forest vegetation types in Yunnan Province and estimate the changes in carbon storage and carbon sequestration potential (CSP in response to increasing temperature. The results show that the current total forest area in Yunnan Province is 1.86 × 107 ha and that forest covers 48.63% of the area. As the temperature increases, the area of forest distribution first increases and then decreases, and it decreases by 11% when the temperature increases from 1.5 to 2 °C. The mean carbon density of the seven types of forest vegetation in Yunnan Province is 84.69 Mg/ha. The total carbon storage of the current forest vegetation in Yunnan Province is 871.14 TgC, and the CSP is 1100.61 TgC. The largest CSP (1114.82 TgC occurs when the temperature increases by 0.5 °C. Incremental warming of 2 °C will sharply decrease the forest CSP, especially in those regions with mature coniferous forest vegetation. Semi-humid evergreen broad-leaved forests were highly sensitive to temperature changes, and the CSP of these forests will decrease with increasing temperature. Warm-hot coniferous forests have the greatest CSP in all simulation scenarios except the scenario of a 2 °C temperature increase. These results indicate that temperature increases can influence the CSP in Yunnan Province, and the largest impact emerged in the 2 °C increase scenario.

  5. Managing Sierra Nevada forests

    Science.gov (United States)

    Malcolm North

    2012-01-01

    There has been widespread interest in applying new forest practices based on concepts presented in U.S. Forest Service General Technical Report PSW-GTR-220, "An Ecosystem Management Strategy for Sierran Mixed-Conifer Forests." This collection of papers (PSW-GTR-237) summarizes the state of the science in some topics relevant to this forest management approach...

  6. Forest ecosystems: Vegetation, disturbance, and economics: Chapter 5

    Science.gov (United States)

    Littell, Jeremy S.; Hicke, Jeffrey A.; Shafer, Sarah L.; Capalbo, Susan M.; Houston, Laurie L.; Glick, Patty

    2013-01-01

    Forests cover about 47% of the Northwest (NW–Washington, Oregon, and Idaho) (Smith et al. 2009, fig. 5.1, table 5.1). The impacts of current and future climate change on NW forest ecosystems are a product of the sensitivities of ecosystem processes to climate and the degree to which humans depend on and interact with those systems. Forest ecosystem structure and function, particularly in relatively unmanaged forests where timber harvest and other land use have smaller effects, is sensitive to climate change because climate has a strong influence on ecosystem processes. Climate can affect forest structure directly through its control of plan physiology and life history (establishment, individual growth, productivity, and morality) or indirectly through its control of disturbance (fire, insects, disease). As climate changes, many forest processes will be affected, altering ecosystem services such as timber production and recreation. These changes have socioeconomic implications (e.g. for timber economies) and will require changes to current management of forests. Climate and management will interact to determine the forests of the future, and the scientific basis for adaptation to climate change in forests thus depends significantly on how forests will be affected.

  7. Quantitative vegetation reconstruction from pollen analysis and historical inventory data around a Danish small forest hollow

    DEFF Research Database (Denmark)

    Overballe-Petersen, Mette V; Nielsen, Anne Birgitte; Bradshaw, Richard H.W.

    2013-01-01

    of the pollen record? Location Denmark. The Gribskov-Ostrup small forest hollow (56°N, 12°20' E, 44 m a.s.l.) in the forest of Gribskov, eastern Denmark. Methods Pollen analysis was carried out on a small forest hollow, and LRA used to derive pollen-based quantitative estimates of past vegetation. Historical......Questions Can the model performance of the landscape reconstruction algorithm (LRA) for small forest hollows be validated through comparison to inventory-based vegetation reconstructions from the last 150 yrs? Does the application of LRA and the comparison to historical data enhance interpretation...... forest inventory data and maps were used to reconstruct the vegetation within three different circles around the hollow (20, 50 and 200 m ring widths) for five time periods during the last 150 yrs. The results of the two approaches were compared in order to evaluate model performance, and the LRA...

  8. Landscape and vegetation effects on avian reproduction on bottomland forest restorations

    Science.gov (United States)

    Twedt, Daniel J.; Somershoe, Scott G.; Hazler, Kirsten R.; Cooper, Robert J.

    2010-01-01

    Forest restoration has been undertaken on >200,000 ha of agricultural land in the Mississippi Alluvial Valley, USA, during the past few decades. Decisions on where and how to restore bottomland forests are complex and dependent upon landowner objectives, but for conservation of silvicolous (forest-dwelling) birds, ecologists have espoused restoration through planting a diverse mix of densely spaced seedlings that includes fast-growing species. Application of this planting strategy on agricultural tracts that are adjacent to extant forest or within landscapes that are predominately forested has been advocated to increase forest area and enhance forested landscapes, thereby benefiting area-sensitive, silvicolous birds. We measured support for these hypothesized benefits through assessments of densities of breeding birds and reproductive success of 9 species on 36 bottomland forest restoration sites. Densities of thamnic (shrub-scrub dwelling) and silvicolous birds, such as yellow-breasted chat (Icteria virens), indigo bunting (Passerina cyanea), and white-eyed vireo (Vireo griseus) were positively associated with 1) taller trees, 2) greater stem densities, and 3) a greater proportion of forest within the landscape, whereas densities of birds associated with grasslands, such as dickcissel (Spiza americana) and red-winged blackbird (Agelaius phoeniceus), were negatively associated with these variables. Vegetation structure, habitat edge, and temporal effects had greater influence on nest success than did landscape effects. Taller trees, increased density of woody stems, greater vegetation density, and more forest within the landscape were often associated with greater nest success. Nest success of grassland birds was positively related to distance from forest edge but, for thamnic birds, success was greater near edges. Moreover, nest success and estimated fecundity of thamnic species suggested their populations are self-sustaining on forest restoration sites, whereas

  9. THE VEGETATION OF LAMBUSANGO FOREST, BUTON, INDONESIA

    Directory of Open Access Journals (Sweden)

    ANDREW POWLING

    2016-01-01

    Full Text Available POWLING, A., PHILLIPS, A., PRITCHETT, R., SEGAR, S. T., WHEELER, R. & MARDIASTUTI, A. 2015. Thevegetation of Lambusango Forest, Buton, Indonesia. Reinwardtia 14(2: 265 – 286. ― Lambusango Forest is a tropicalrainforest on the island of Buton, which lies close to south east Sulawesi. The forest covers an area of about 95.000 ha,with different parts of the forest having different levels of conservation protection. It lies on rocks of both calcareous(limestone and non-calcareous (sandstone, conglomerate, peridotite and chert nature, which give rise to soils withvarying pH values, nutrient levels and water-holding capacities. The climate is seasonal, with a dry season of threemonths and considerable year-to-year variability due to El Niño and La Niña events. The vegetation on the differentsoils and in different habitats has been studied. Over 300 species of vascular plants found in the forest and surroundingareas are listed, including trees and shrubs, herbs, climbers, epiphytes, ferns and club-mosses. Two genera, Calamuswith 18 species and Ficus with 29 species, are particularly species-rich, apparently due to their ability to occupy numerousedaphic and ecological niches. Species of these two genera are also good colonists and so better able to reachButon in the recent past than other species. The plants of the forest indicate that Buton is floristically very similar toSulawesi, with at least 83% of the species found in the forest also being known from Sulawesi. Most of the plant familiesand genera present on Buton are common in SE Asia, indicating colonisation primarily from that continent. Manyfewer families and genera have colonised from the Australasian continent. The conservation of plant diversity is necessaryfor the forest to continue as a functioning ecosystem, to the benefit of the animals of the forest and also the localpeople.

  10. Self-amplified Amazon forest loss due to vegetation-atmosphere feedbacks

    Science.gov (United States)

    Zemp, Delphine Clara; Schleussner, Carl-Friedrich; Barbosa, Henrique M. J.; Hirota, Marina; Montade, Vincent; Sampaio, Gilvan; Staal, Arie; Wang-Erlandsson, Lan; Rammig, Anja

    2017-03-01

    Reduced rainfall increases the risk of forest dieback, while in return forest loss might intensify regional droughts. The consequences of this vegetation-atmosphere feedback for the stability of the Amazon forest are still unclear. Here we show that the risk of self-amplified Amazon forest loss increases nonlinearly with dry-season intensification. We apply a novel complex-network approach, in which Amazon forest patches are linked by observation-based atmospheric water fluxes. Our results suggest that the risk of self-amplified forest loss is reduced with increasing heterogeneity in the response of forest patches to reduced rainfall. Under dry-season Amazonian rainfall reductions, comparable to Last Glacial Maximum conditions, additional forest loss due to self-amplified effects occurs in 10-13% of the Amazon basin. Although our findings do not indicate that the projected rainfall changes for the end of the twenty-first century will lead to complete Amazon dieback, they suggest that frequent extreme drought events have the potential to destabilize large parts of the Amazon forest.

  11. Quantifying pollen-vegetation relationships to reconstruct ancient forests using 19th-century forest composition and pollen data

    Science.gov (United States)

    Dawson, Andria; Paciorek, Christopher J.; McLachlan, Jason S.; Goring, Simon; Williams, John W.; Jackson, Stephen T.

    2016-04-01

    Mitigation of climate change and adaptation to its effects relies partly on how effectively land-atmosphere interactions can be quantified. Quantifying composition of past forest ecosystems can help understand processes governing forest dynamics in a changing world. Fossil pollen data provide information about past forest composition, but rigorous interpretation requires development of pollen-vegetation models (PVMs) that account for interspecific differences in pollen production and dispersal. Widespread and intensified land-use over the 19th and 20th centuries may have altered pollen-vegetation relationships. Here we use STEPPS, a Bayesian hierarchical spatial PVM, to estimate key process parameters and associated uncertainties in the pollen-vegetation relationship. We apply alternate dispersal kernels, and calibrate STEPPS using a newly developed Euro-American settlement-era calibration data set constructed from Public Land Survey data and fossil pollen samples matched to the settlement-era using expert elicitation. Models based on the inverse power-law dispersal kernel outperformed those based on the Gaussian dispersal kernel, indicating that pollen dispersal kernels are fat tailed. Pine and birch have the highest pollen productivities. Pollen productivity and dispersal estimates are generally consistent with previous understanding from modern data sets, although source area estimates are larger. Tests of model predictions demonstrate the ability of STEPPS to predict regional compositional patterns.

  12. Quantifying pollen-vegetation relationships to reconstruct ancient forests using 19th-century forest composition and pollen data

    Science.gov (United States)

    Dawson, Andria; Paciorek, Christopher J.; McLachlan, Jason S.; Goring, Simon; Williams, John W.; Jackson, Stephen T.

    2016-01-01

    Mitigation of climate change and adaptation to its effects relies partly on how effectively land-atmosphere interactions can be quantified. Quantifying composition of past forest ecosystems can help understand processes governing forest dynamics in a changing world. Fossil pollen data provide information about past forest composition, but rigorous interpretation requires development of pollen-vegetation models (PVMs) that account for interspecific differences in pollen production and dispersal. Widespread and intensified land-use over the 19th and 20th centuries may have altered pollen-vegetation relationships. Here we use STEPPS, a Bayesian hierarchical spatial PVM, to estimate key process parameters and associated uncertainties in the pollen-vegetation relationship. We apply alternate dispersal kernels, and calibrate STEPPS using a newly developed Euro-American settlement-era calibration data set constructed from Public Land Survey data and fossil pollen samples matched to the settlement-era using expert elicitation. Models based on the inverse power-law dispersal kernel outperformed those based on the Gaussian dispersal kernel, indicating that pollen dispersal kernels are fat tailed. Pine and birch have the highest pollen productivities. Pollen productivity and dispersal estimates are generally consistent with previous understanding from modern data sets, although source area estimates are larger. Tests of model predictions demonstrate the ability of STEPPS to predict regional compositional patterns.

  13. Effects of gamma radiation on biomass production of ground vegetation under broadleaved forests of northern Wisconsin

    International Nuclear Information System (INIS)

    Zavitkovski, J.; Salmonson, B.J.

    1977-01-01

    Effects of gamma irradiation (10,000-Ci 137 Cs source) for one growing season on biomass production of ground vegetation under northern Wisconsin aspen and maple-aspen-birch forests and on an abandoned logging road were evaluated during and 1 year after irradiation. No significant changes in production were determined during the irradiation year. One year later three distinct zones--semidevastated, herbaceous, and original forest--developed along the radiation gradient. Biomass production under forest canopies decreased significantly in the semidevastated zone, increased significantly in the herbaceous zone (primarily responding to additional light), and remained unchanged under the original forest. Logging-road vegetation responded similarly, but the changes were restricted within higher radiation doses. At comparable levels of radiation, production of species of the logging-road vegetation was affected less than that of species under forest canopies. Such a trend was predictable from the generally smaller interphase chromosome volumes of the species on the logging road and from their ability to survive in severe habitats

  14. Reproductive phenology of coastal plain Atlantic forest vegetation: comparisons from seashore to foothills.

    Science.gov (United States)

    Staggemeier, Vanessa Graziele; Morellato, Leonor Patrícia Cerdeira

    2011-11-01

    The diversity of tropical forest plant phenology has called the attention of researchers for a long time. We continue investigating the factors that drive phenological diversity on a wide scale, but we are unaware of the variation of plant reproductive phenology at a fine spatial scale despite the high spatial variation in species composition and abundance in tropical rainforests. We addressed fine scale variability by investigating the reproductive phenology of three contiguous vegetations across the Atlantic rainforest coastal plain in Southeastern Brazil. We asked whether the vegetations differed in composition and abundance of species, the microenvironmental conditions and the reproductive phenology, and how their phenology is related to regional and local microenvironmental factors. The study was conducted from September 2007 to August 2009 at three contiguous sites: (1) seashore dominated by scrub vegetation, (2) intermediary covered by restinga forest and (3) foothills covered by restinga pre-montane transitional forest. We conducted the microenvironmental, plant and phenological survey within 30 transects of 25 m × 4 m (10 per site). We detected significant differences in floristic, microenvironment and reproductive phenology among the three vegetations. The microenvironment determines the spatial diversity observed in the structure and composition of the flora, which in turn determines the distinctive flowering and fruiting peaks of each vegetation (phenological diversity). There was an exchange of species providing flowers and fruits across the vegetation complex. We conclude that plant reproductive patterns as described in most phenological studies (without concern about the microenvironmental variation) may conceal the fine scale temporal phenological diversity of highly diverse tropical vegetation. This phenological diversity should be taken into account when generating sensor-derived phenologies and when trying to understand tropical vegetation

  15. Songbird response to alternative forest density management in young Douglas-fir stands

    Science.gov (United States)

    Joan C. Hagar

    2013-01-01

    Th inning has been increasingly used in the Pacifi c Northwest to restore structural and biological diversity to densely-stocked young- to mid-aged forests that have been previously intensively managed for timber production. In the short term, thinning promotes development of understory vegetation, which in turn can increase habitat diversity for wildlife, particularly...

  16. Forest Imaging

    Science.gov (United States)

    1992-01-01

    NASA's Technology Applications Center, with other government and academic agencies, provided technology for improved resources management to the Cibola National Forest. Landsat satellite images enabled vegetation over a large area to be classified for purposes of timber analysis, wildlife habitat, range measurement and development of general vegetation maps.

  17. Studies of the Woody Vegetation of the Welor Forest Reserve ...

    African Journals Online (AJOL)

    komla

    Institute of Environmental Sciences, Faculty of Sciences and Techniques, ... Due to lack of information on this potential, the plant resources of this forest .... to assess the flora and the vegetation derive from a review of the literature, an inventory.

  18. Southern Forests: a Journal of Forest Science - Vol 198 (2003)

    African Journals Online (AJOL)

    Reverting urban exotic pine forests to Macchia and indigenous forest vegetation, using cable-yarders on the slopes of Table Mountain, South Africa: management paper · EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. Pierre Ackerman, Bruce Talbot, 35-44 ...

  19. Nucleated regeneration of semiarid sclerophyllous forests close to remnant vegetation

    NARCIS (Netherlands)

    Fuentes-Castillo, T.; Miranda, A.; Rivera-Hutinel, A.; Smith-Ramirez, C.; Holmgren, M.

    2012-01-01

    Natural regeneration of mediterranean plant communities has proved difficult in all continents. In this paper we assess whether regeneration of sclerophyllous forests shows nucleated patterns indicative of a positive effect of vegetation remnants at the landscape level and compare the regeneration

  20. Landscape development, forest fires, and wilderness management.

    Science.gov (United States)

    Wright, H E

    1974-11-08

    fire. Major fires occur so often that the vegetation pattern is a record of fire history. All elements in the forest mosaic are in various stages of postfire succession, with only a few approaching climax. Fire interrupts the successful sequence toward climax. Geomorphic and edaphic factors in vegetational distribution are largely submerged by the fire regime, except for bog and other lowland vegetation. Fire recycles nutrients and renews succession. Nevertheless, despite the fire regime, the resulting long-term equilibrium of the forest mosaic, characterized by severe and irregular fluctuations of individual elements, reflects regional climate. In the BWCA and the western mountains, large virgin forests can be preserved for study and wilderness recreation. These wilderness areas must be managed to return them to the natural equilibrium which has been disturbed by 50 to 70 years of fire suppression. The goal should be to maintain virgin forests as primeval wilderness. This can be done by management that permits fire and other natural processes to determine the forest mosaic. Mechanized tree-felling and other human disturbances should be kept to an absolute minimum. Natural landforms also should be preserved for study and for certain nondestructive recreational activities. It is somewhat late for the Colorado River and other rivers of the West, because natural balances are upset by drainagebasin disturbances. Modification of plant cover on hillslopes changes infiltration and erosion rates and thus the stream discharge and sediment load, so the stream balance is altered from primeval conditions. Scenic Rivers legislation should thus be used to restore certain river systems and their drainage basins. Mountain meadows, badlands, desert plains, and patterned permafrost terrain are extremely fragile and sensitive. Intricate stream and weathering processes leave patterns easily obliterated by mechanized vehicles. Tire tracks can last for decades or centuries. The mineral

  1. Impacts of climate change on Ontario's forests. Forest research information paper number 143

    International Nuclear Information System (INIS)

    Buse, L.J.; Colombo, S.J.

    1998-01-01

    Reviews literature concerning the effects of global climate change on forest plants and communities, and provides opinions on the potential impacts that climate change may have on Ontario forests. Sections of the review discuss the following: The climate of Ontario in the 21st century as predicted by climate models; forest hydrology in relation to climate change; insects and climate change; impacts on fungi in the forest ecosystem; impacts on forest fires and their management; plant physiological responses; genetic implications of climate change; forest vegetation dynamics; the use of models in global climate change studies; and forest management responses to climate change

  2. Hydroeconomic DSS for optimal hydrology-oriented forest management in semiarid areas

    Science.gov (United States)

    Garcia-Prats, A.; del Campo, A.; Pulido-Velazquez, M.

    2016-12-01

    In semiarid regions like the Mediterranean, managing the upper-catchment forests for water provision goals (hydrology-oriented silviculture) offers a strategy to increase the resilience of catchments to droughts and lower precipitation and higher evapotranspiration due to climate change. Understanding the effects of forest management on vegetation water use and groundwater recharge is particularly important in those regions. Despite the essential role that forests play in the water cycle on the provision of water resources, this contribution is often neither quantified nor explicitly valued. The aim of this work is to develop a novel decision support system (DSS) based on hydro-economic modelling, for assessing and designing the optimal integrated forest and water management for forested catchments. Hydro-economic modelling may support the design of economically efficient strategies integrating the hydrologic, engineering, environmental and economic aspects of water resources systems within a coherent framework. The optimization model explicitly integrates changes in water yield (increase n groundwater recharge) induced by the management of forest density, and the value of the additional water provided to the system. This latter component could serve as an indicator for the design of a "payment for environmental services" scheme in which groundwater beneficiaries could contribute towards funding and promoting efficient forest management operations. Besides, revenues from timber logging are also articulated in the modelling. The case study was an Aleppo pine forest in south-western Valencia province (Spain), using a typical 100-year rotation horizon. The model determines the optimal schedule of thinning interventions in the stands in order to maximize the total net benefits in the system (timber and water). Canopy cover and biomass evolution over time were simulated using growth and yield allometric equations specific for the species in Mediterranean conditions

  3. Forest tenure and sustainable forest management

    Science.gov (United States)

    J.P. Siry; K. McGinley; F.W. Cubbage; P. Bettinger

    2015-01-01

    We reviewed the principles and key literature related to forest tenure and sustainable forest management, and then examined the status of sustainable forestry and land ownership at the aggregate national level for major forested countries. The institutional design principles suggested by Ostrom are well accepted for applications to public, communal, and private lands....

  4. Examining relationship between environmental gradients and Lesser Himalyan forest vegetation of Nikyal valley, Azad Jammu and Kashmir using ordination analysis.

    Science.gov (United States)

    Amjad, Muhammad Shoaib; Arshad, Muhammad; Rashid, Audil; Chaudhari, Sunbal Khalil; Malik, Nafeesa Zahid; Fatima, Sammer; Akrim, Faraz

    2014-09-01

    To report the relationship of vegetation structure and environmental gradient and physiochemical properties of soil at Nikyal valley, Azad Jammu and Kashmir . A survey of natural vegetation and soil of Nikyal valley was undertaken. Phytosociological survey was conducted by using Braun-Blanquet's approach. The study also investigated the vegetation structure and its relationship with altitude and edaphic factors. The floristic data was analyzed by cluster anlaysis, detrended correspondence analysis and canonical correspondence analysis using CANACOO 5.0. A total of 110 plant species and 13 stands were merged into five major associations as dema rcated by cluster analysis and detrended correspondence analysis. The associations were Olea-Pinus-Themeda association, Myrsine-Rhus-Quercus association, Quercus-Rubus-Pinus association and Quercus association. Soil organic matter, saturation, pH and altitude play the major role in distribution of species. The variation in vegetation structure is controlled by the altitudinal gradient and physiochemical properties of soil. These results indicate a deteriorated forest structure and reduced regeneration pattern, demanding immediate attention of forest management authorities. Copyright © 2014 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  5. Chapter 13 Application of landscape and habitat suitability models to conservation: the Hoosier National Forest land-management plan

    Science.gov (United States)

    Chadwick D. Rittenhouse; Stephen R. Shifley; William D. Dijak; Zhaofei Fan; Frank R., III Thompson; Joshua J. Millspaugh; Judith A. Perez; Cynthia M. Sandeno

    2011-01-01

    We demonstrate an approach to integrated land-management planning and quantify differences in vegetation and avian habitat conditions among 5 management alternatives as part of the Hoosier National Forest planning process. The alternatives differed in terms of the type, extent, magnitude, frequency, and location of management activities. We modeled ecological processes...

  6. A framework for evaluating forest restoration alternatives and their outcomes, over time, to inform monitoring: Bioregional inventory originated simulation under management

    Science.gov (United States)

    Jeremy S. Fried; Theresa B. Jain; Sara Loreno; Robert F. Keefe; Conor K. Bell

    2017-01-01

    The BioSum modeling framework summarizes current and prospective future forest conditions under alternative management regimes along with their costs, revenues and product yields. BioSum translates Forest Inventory and Analysis (FIA) data for input to the Forest Vegetation Simulator (FVS), summarizes FVS outputs for input to the treatment operations cost model (OpCost...

  7. Tropical forest biomass and successional age class relationships to a vegetation index derived from Landsat TM data

    Science.gov (United States)

    Sader, Steven A.; Waide, Robert B.; Lawrence, William T.; Joyce, Armond T.

    1989-01-01

    Forest stand structure and biomass data were collected using conventional forest inventory techniques in tropical, subtropical, and warm temperate forest biomes. The feasibility of detecting tropical forest successional age class and total biomass differences using Landsat-Thematic mapper (TM) data, was evaluated. The Normalized Difference Vegetation Index (NDVI) calculated from Landsat-TM data were not significantly correlated with forest regeneration age classes in the mountain terrain of the Luquillo Experimental Forest, Puerto Rico. The low sun angle and shadows cast on steep north and west facing slopes reduced spectral reflectance values recorded by TM orbital altitude. The NDVI, calculated from low altitude aircraft scanner data, was significatly correlated with forest age classes. However, analysis of variance suggested that NDVI differences were not detectable for successional forests older than approximately 15-20 years. Also, biomass differences in young successional tropical forest were not detectable using the NDVI. The vegetation index does not appear to be a good predictor of stand structure variables (e.g., height, diameter of main stem) or total biomass in uneven age, mixed broadleaf forest. Good correlation between the vegetation index and low biomass in even age pine plantations were achieved for a warm temperate study site. The implications of the study for the use of NDVI for forest structure and biomass estimation are discussed.

  8. Vegetation of birch and aspen forests in the Pinega State Reserve

    Directory of Open Access Journals (Sweden)

    Sergey Yu. Popov

    2017-05-01

    Full Text Available The Pinega State Nature Reserve (Russia is located in the Arkhangelsk region in the northern taiga subzone. Together with spruce forests and mires, birch forests represent one of the most wide-spread plant communities of its territory. Birch forests cover 24.6% of the Reserve's area. Aspen forests are rare plant communities in the Pinega Reserve. These forests cover only 0.9% of the whole Reserve's area. The birch and aspen forests vegetation has been classified based on 82 relevès. Eleven associations could be distinguished, which represent six groups of associations. Detailed characteristics of these syntaxa are provided including their biodiversity analysis. The analysis allowed establishing that the revealed syntaxa differ in relation to habitat environmental conditions: e.g., soil moisture, trophicity, nitrogen saturation and soil acidity. Sphagnum and blueberry birch forests proved to be the poorest in nitrogen, in contrast to the richest humidoherbaceous and broad-grassed groups of birch forest associations. Broad-grassed birch forests in the Pinega Reserve inhabit the most drained locations, while humidoherbaceous and Sphagnum forests occur in lesser drained locations.

  9. Mapping post-fire forest regeneration and vegetation recovery using a combination of very high spatial resolution and hyperspectral satellite imagery

    Science.gov (United States)

    Mitri, George H.; Gitas, Ioannis Z.

    2013-02-01

    Careful evaluation of forest regeneration and vegetation recovery after a fire event provides vital information useful in land management. The use of remotely sensed data is considered to be especially suitable for monitoring ecosystem dynamics after fire. The aim of this work was to map post-fire forest regeneration and vegetation recovery on the Mediterranean island of Thasos by using a combination of very high spatial (VHS) resolution (QuickBird) and hyperspectral (EO-1 Hyperion) imagery and by employing object-based image analysis. More specifically, the work focused on (1) the separation and mapping of three major post-fire classes (forest regeneration, other vegetation recovery, unburned vegetation) existing within the fire perimeter, and (2) the differentiation and mapping of the two main forest regeneration classes, namely, Pinus brutia regeneration, and Pinus nigra regeneration. The data used in this study consisted of satellite images and field observations of homogeneous regenerated and revegetated areas. The methodology followed two main steps: a three-level image segmentation, and, a classification of the segmented images. The process resulted in the separation of classes related to the aforementioned objectives. The overall accuracy assessment revealed very promising results (approximately 83.7% overall accuracy, with a Kappa Index of Agreement of 0.79). The achieved accuracy was 8% higher when compared to the results reported in a previous work in which only the EO-1 Hyperion image was employed in order to map the same classes. Some classification confusions involving the classes of P. brutia regeneration and P. nigra regeneration were observed. This could be attributed to the absence of large and dense homogeneous areas of regenerated pine trees in the study area.

  10. Assessing rates of forest change and fragmentation in Alabama, USA, using the vegetation change tracker model

    Science.gov (United States)

    Li, Mingshi; Huang, Chengquan; Zhu, Zhiliang; Shi, Hua; Lu, Heng; Peng, Shikui

    2009-01-01

    Forest change is of great concern for land use decision makers and conservation communities. Quantitative and spatial forest change information is critical for addressing many pressing issues, including global climate change, carbon budgets, and sustainability. In this study, our analysis focuses on the differences in geospatial patterns and their changes between federal forests and nonfederal forests in Alabama over the time period 1987–2005, by interpreting 163 Landsat Thematic Mapper (TM) scenes using a vegetation change tracker (VCT) model. Our analysis revealed that for the most part of 1990 s and between 2000 and 2005, Alabama lost about 2% of its forest on an annual basis due to disturbances, but much of the losses were balanced by forest regeneration from previous disturbances. The disturbance maps revealed that federal forests were reasonably well protected, with the fragmentation remaining relatively stable over time. In contrast, nonfederal forests, which are predominant in area share (about 95%), were heavily disturbed, clearly demonstrating decreasing levels of fragmentation during the time period 1987–1993 giving way to a subsequent accelerating fragmentation during the time period 1994–2005. Additionally, the identification of the statistical relationships between forest fragmentation status and forest loss rate and forest net change rate in relation to land ownership implied the distinct differences in forest cutting rate and cutting patterns between federal forests and nonfederal forests. The forest spatial change information derived from the model has provided valuable insights regarding regional forest management practices and disturbance regimes, which are closely associated with regional economics and environmental concerns.

  11. Climate effects on vegetation vitality at the treeline of boreal forests of Mongolia

    Science.gov (United States)

    Klinge, Michael; Dulamsuren, Choimaa; Erasmi, Stefan; Nikolaus Karger, Dirk; Hauck, Markus

    2018-03-01

    In northern Mongolia, at the southern boundary of the Siberian boreal forest belt, the distribution of steppe and forest is generally linked to climate and topography, making this region highly sensitive to climate change and human impact. Detailed investigations on the limiting parameters of forest and steppe in different biomes provide necessary information for paleoenvironmental reconstruction and prognosis of potential landscape change. In this study, remote sensing data and gridded climate data were analyzed in order to identify main distribution patterns of forest and steppe in Mongolia and to detect environmental factors driving forest development. Forest distribution and vegetation vitality derived from the normalized differentiated vegetation index (NDVI) were investigated for the three types of boreal forest present in Mongolia (taiga, subtaiga and forest-steppe), which cover a total area of 73 818 km2. In addition to the forest type areas, the analysis focused on subunits of forest and nonforested areas at the upper and lower treeline, which represent ecological borders between vegetation types. Climate and NDVI data were analyzed for a reference period of 15 years from 1999 to 2013. The presented approach for treeline delineation by identifying representative sites mostly bridges local forest disturbances like fire or tree cutting. Moreover, this procedure provides a valuable tool to distinguish the potential forested area. The upper treeline generally rises from 1800 m above sea level (a.s.l.) in the northeast to 2700 m a.s.l. in the south. The lower treeline locally emerges at 1000 m a.s.l. in the northern taiga and rises southward to 2500 m a.s.l. The latitudinal gradient of both treelines turns into a longitudinal one on the eastern flank of mountain ranges due to higher aridity caused by rain-shadow effects. Less productive trees in terms of NDVI were identified at both the upper and lower treeline in relation to the respective total boreal forest

  12. Effects of air pollution and simulated acid rain on the ground vegetation of coniferous forests

    International Nuclear Information System (INIS)

    Rodenkirchen, H.

    1993-01-01

    Descriptive and experimental studies on the ground vegetation of coniferous forests in Bavaria indicated the following phenomena: a. In N-limited pine forests recent eutrophication effects occur. b. The structure of the moss layer in coniferous forests sensitively reacts to very acid throughfall water (pH [de

  13. Forest operations for ecosystem management

    Science.gov (United States)

    Robert B. Rummer; John Baumgras; Joe McNeel

    1997-01-01

    The evolution of modern forest resource management is focusing on ecologically sensitive forest operations. This shift in management strategies is producing a new set of functional requirements for forest operations. Systems to implement ecosystem management prescriptions may need to be economically viable over a wider range of piece sizes, for example. Increasing...

  14. Forest restoration as a strategy to mitigate climate impacts on wildfire, vegetation, and water in semi-arid forests of the southwestern U.S.

    Science.gov (United States)

    O'Donnell, F. C.; Flatley, W. T.; Masek Lopez, S.; Fulé, P. Z.; Springer, A. E.

    2017-12-01

    Climate change and fire suppression are interacting to reduce forest health, drive high-intensity wildfires, and potentially reduce water quantity and quality in high-elevation forests of the southwestern US. Forest restoration including thinning and prescribed fire, is a management approach that reduces fire risk. It may also improve forest health by increasing soil moisture through the combined effects of increased snow pack and reduced evapotranspiration (ET), though the relative importance of these mechanisms is unknown. It is also unclear how small-scale changes in the hydrologic cycle will scale-up to influence watershed dynamics. We conducted field and modeling studies to investigate these issues. We measured snow depth, snow water equivalent (SWE), and soil moisture at co-located points in paired restoration-control plots near Flagstaff, AZ. Soil moisture was consistently higher in restored plots across all seasons. Snow depth and SWE were significantly higher in restored plots immediately after large snow events with no difference one week after snowfall, suggesting that restoration leads to both increased accumulation and sublimation. At the point scale, there was a small (ρ=0.28) but significant correlation between fall-to-spring soil moisture increase and peak SWE during the winter. Consistent with previous studies, soil drying due to ET was more rapid in recently restored sites than controls, but there was no difference 10 years after restoration. In addition to the small role played by snow and ET, we also observed more rapid soil moisture loss in the 1-2 days following rain or rapid snowmelt in control than in restoration plots. We hypothesize that this is due to a loss of macropores when woody plants are replaced by herbaceous vegetation and warrants further study. To investigate watershed-scale dynamics, we combined spatially-explicit vegetation and fire modeling with statistical water and sediment yield models for a large forested landscape on

  15. Adaptation of forest management to climate change as perceived by forest owners and managers in Belgium

    OpenAIRE

    Sousa-Silva, Rita; Ponette, Quentin; Verheyen, Kris; Van Herzele, Ann; Muys, Bart

    2016-01-01

    Background Climate change is likely to cause significant modifications in forests. Rising to this challenge may require adaptation of forest management, and therefore should trigger proactive measures by forest managers, but it is unclear to what extent this is already happening. Methods The survey carried out in this research assesses how forest stakeholders in Belgium perceive the role of their forest management in the context of climate change and the impediments that limit their...

  16. Integrating Vegetation Classification, Mapping, and Strategic Inventory for Forest Management

    Science.gov (United States)

    C. K. Brewer; R. Bush; D. Berglund; J. A. Barber; S. R. Brown

    2006-01-01

    Many of the analyses needed to address multiple resource issues are focused on vegetation pattern and process relationships and most rely on the data models produced from vegetation classification, mapping, and/or inventory. The Northern Region Vegetation Mapping Project (R1-VMP) data models are based on these three integrally related, yet separate processes. This...

  17. The Potential of Forest Biomass Inversion Based on Vegetation Indices Using Multi-Angle CHRIS/PROBA Data

    Directory of Open Access Journals (Sweden)

    Qiang Wang

    2016-10-01

    Full Text Available Multi-angle remote sensing can either be regarded as an added source of uncertainty for variable retrieval, or as a source of additional information, which enhances variable retrieval compared to traditional single-angle observation. However, the magnitude of these angular and band effects for forest structure parameters is difficult to quantify. We used the Discrete Anisotropic Radiative Transfer (DART model and the Zelig model to simulate the forest canopy Bidirectional Reflectance Distribution Factor (BRDF in order to build a look-up table, and eight vegetation indices were used to assess the relationship between BRDF and forest biomass in order to find the sensitive angles and bands. Further, the European Space Agency (ESA mission, Compact High Resolution Imaging Spectrometer onboard the Project for On-board Autonomy (CHRIS-PROBA and field sample measurements, were selected to test the angular and band effects on forest biomass retrieval. The results showed that the off-nadir vegetation indices could predict the forest biomass more accurately than the nadir. Additionally, we found that the viewing angle effect is more important, but the band effect could not be ignored, and the sensitive angles for extracting forest biomass are greater viewing angles, especially around the hot and dark spot directions. This work highlighted the combination of angles and bands, and found a new index based on the traditional vegetation index, Atmospherically Resistant Vegetation Index (ARVI, which is calculated by combining sensitive angles and sensitive bands, such as blue band 490 nm/−55°, green band 530 nm/55°, and the red band 697 nm/55°, and the new index was tested to improve the accuracy of forest biomass retrieval. This is a step forward in multi-angle remote sensing applications for mining the hidden relationship between BRDF and forest structure information, in order to increase the utilization efficiency of remote sensing data.

  18. PARTICIPATORY FOREST MANAGEMENT FOR THE SUSTAINABLE MANAGEMENT OF THE SUNDARBANS MANGROVE FOREST

    OpenAIRE

    Anjan Kumer Dev Roy; Khorshed Alam

    2012-01-01

    Peopleâs participation in forest management has become successful in many countries of the world. The Sundarbans is the single largest mangrove forest in the world, bearing numerous values and holding importance from economic, social and ecological perspectives. It is the direct and indirect sources of the livelihood of 3.5 million people. As a reserve forest, government is always providing extra care through state monopolies for its management with the introduction of policies and guidelines...

  19. Comparison of vegetation patterns and soil nutrient relations in an oak-pine forest and a mixed deciduous forest on Long Island, New York

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, S.C.; Curtis, P.S.

    1980-11-01

    An analysis of soil nutrient relations in two forest communities on Long Island, NY, yielded a correlation between the fertility of the top-soil and vegetational composition. The oak-pine forest soils at Brookhaven National Laboratory contain lower average concentrations of NH/sub 3/, Ca, K, and organic matter than the mixed deciduous forest soils in the Stony Brook area. The pH of the topsoil is also more acidic at Brookhaven. The observed differences between localities are greater than within-locality differences between the two soil series tested (Plymouth and Riverhead), which are common to both localities. Nutrient concentrations in the subsoil are not consistently correlated with either locality or soil series, although organic matter and NH/sub 3/ show significantly higher concentrations at Stony Brook. Supporting data on density and basal area of trees and coverage of shrubs and herbs also reveals significant variation between the two forest communities. An ordination of the vegetation data shows higher similarity within than between localities, while no obvious pattern of within-locality variation due to soil series treatments is apparent. These data support the hypothesis that fertility gradients may influence forest community composition and structure. This hypothesis is discussed with reference to vegetation-soil interactions and other factors, such as frequency of burning, which may direct the future development of the Brookhaven oak-pine forest.

  20. Vegetation assessment of forests of Pagan Island, Commonwealth of the Northern Mariana Islands

    Science.gov (United States)

    Pratt, Linda W.

    2011-01-01

    As part of the Marianas Expedition Wildlife Surveys-2010, the forest vegetation of the island of Pagan, Commonwealth of the Northern Mariana Islands (CNMI), was sampled with a series of systematic plots along 13 transects established for monitoring forest bird populations. Shrubland and grassland were also sampled in the northern half of the island. Data collected were woody plant density, tree diameter at breast height, woody plant density in height classes below 2 m, and ground cover measured with the point-intercept method. Coconut forests (Cocos nucifera) were generally found to have low native tree diversity, little regeneration of trees and shrubs in the forest understory, and little live ground cover. The sole exception was a coconut-dominated forest of the northeast side of the island that exhibited high native tree diversity and a large number of young native trees in the understory. Ironwood (Casuarina equisetifolia) forests on the northern half of the island were nearly monocultures with almost no trees other than ironwood in vegetation plots, few woody plants in the understory, and low ground cover dominated by native ferns. Mixed native forests of both northern and southern sections of the island had a diversity of native tree species in both the canopy and the sparse understory. Ground cover of native forests in the north had a mix of native and alien species, but that of the southern half of the island was dominated by native ferns and woody plants.

  1. Rare Plants of the Redwood Forest and Forest Management Effects

    Science.gov (United States)

    Teresa Sholars; Clare Golec

    2007-01-01

    Coast redwood forests are predominantly a timber managed habitat type, subjected to repeated disturbances and short rotation periods. What does this repeated disturbance mean for rare plants associated with the redwood forests? Rare plant persistence through forest management activities is influenced by many factors. Persistence of rare plants in a managed landscape is...

  2. Ecological modeling for forest management in the Shawnee National Forest

    Science.gov (United States)

    Richard G. Thurau; J.F. Fralish; S. Hupe; B. Fitch; A.D. Carver

    2008-01-01

    Land managers of the Shawnee National Forest in southern Illinois are challenged to meet the needs of a diverse populace of stakeholders. By classifying National Forest holdings into management units, U.S. Forest Service personnel can spatially allocate resources and services to meet local management objectives. Ecological Classification Systems predict ecological site...

  3. Addressing climate change in the Forest Vegetation Simulator to assess impacts on landscape forest dynamics

    Science.gov (United States)

    Nicholas L. Crookston; Gerald E. Rehfeldt; Gary E. Dixon; Aaron R. Weiskittel

    2010-01-01

    To simulate stand-level impacts of climate change, predictors in the widely used Forest Vegetation Simulator (FVS) were adjusted to account for expected climate effects. This was accomplished by: (1) adding functions that link mortality and regeneration of species to climate variables expressing climatic suitability, (2) constructing a function linking site index to...

  4. Using urban forest assessment tools to model bird habitat potential

    Science.gov (United States)

    Susannah B. Lerman; Keith H. Nislow; David J. Nowak; Stephen DeStefano; David I. King; D. Todd. Jones-Farrand

    2014-01-01

    The alteration of forest cover and the replacement of native vegetation with buildings, roads, exotic vegetation, and other urban features pose one of the greatest threats to global biodiversity. As more land becomes slated for urban development, identifying effective urban forest wildlife management tools becomes paramount to ensure the urban forest provides habitat...

  5. 50 CFR 35.8 - Forest management.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Forest management. 35.8 Section 35.8... NATIONAL WILDLIFE REFUGE SYSTEM WILDERNESS PRESERVATION AND MANAGEMENT General Rules § 35.8 Forest management. Forest management activities in a wilderness unit will be directed toward allowing natural...

  6. Atmospheric pollutants in peri-urban forests of Quercus ilex: evidence of pollution abatement and threats for vegetation.

    Science.gov (United States)

    García-Gómez, Héctor; Aguillaume, Laura; Izquieta-Rojano, Sheila; Valiño, Fernando; Àvila, Anna; Elustondo, David; Santamaría, Jesús M; Alastuey, Andrés; Calvete-Sogo, Héctor; González-Fernández, Ignacio; Alonso, Rocío

    2016-04-01

    Peri-urban vegetation is generally accepted as a significant remover of atmospheric pollutants, but it could also be threatened by these compounds, with origin in both urban and non-urban areas. To characterize the seasonal and geographical variation of pollutant concentrations and to improve the empirical understanding of the influence of Mediterranean broadleaf evergreen forests on air quality, four forests of Quercus ilex (three peri-urban and one remote) were monitored in different areas in Spain. Concentrations of nitrogen dioxide (NO2), ammonia (NH3), nitric acid (HNO3) and ozone (O3) were measured during 2 years in open areas and inside the forests and aerosols (PM10) were monitored in open areas during 1 year. Ozone was the only air pollutant expected to have direct phytotoxic effects on vegetation according to current thresholds for the protection of vegetation. The concentrations of N compounds were not high enough to directly affect vegetation but could be contributing through atmospheric N deposition to the eutrophization of these ecosystems. Peri-urban forests of Q. ilex showed a significant below-canopy reduction of gaseous concentrations (particularly NH3, with a mean reduction of 29-38%), which indicated the feasibility of these forests to provide an ecosystem service of air quality improvement. Well-designed monitoring programs are needed to further investigate air quality improvement by peri-urban ecosystems while assessing the threat that air pollution can pose to vegetation.

  7. Is Matang Mangrove Forest in Malaysia Sustainably Rejuvenating after More than a Century of Conservation and Harvesting Management?

    Science.gov (United States)

    Van der Stocken, Tom; Quispe Zuniga, Melissa; Mohd-Lokman, Husain; Sulong, Ibrahim

    2014-01-01

    Matang Mangrove Forest Reserve (MMFR) in Peninsular Malaysia is under systematic management since 1902 and still considered as the best managed mangrove forest in the world. The present study on silvimetrics assessed the ongoing MMFR forest management, which includes a first thinning after 15 years, a second thinning after 20 years and clear-felling of 30-year old forest blocks, for its efficiency and productivity in comparison to natural mangroves. The estimated tree structural parameters (e.g. density, frequency) from three different-aged mangrove blocks of fifteen (MF15), twenty (MF20), and thirty (MF30) years old indicated that Bruguiera and Excoecaria spp. did not constitute a significant proportion of the vegetation (mangrove management based on a 30-year rotation is appropriate for the MMFR. Since Matang is the only iconic site that practicing sustainable wood production, it could be an exemplary to other mangrove locations for their improved management. PMID:25144689

  8. An enhanced forest classification scheme for modeling vegetation-climate interactions based on national forest inventory data

    Science.gov (United States)

    Majasalmi, Titta; Eisner, Stephanie; Astrup, Rasmus; Fridman, Jonas; Bright, Ryan M.

    2018-01-01

    Forest management affects the distribution of tree species and the age class of a forest, shaping its overall structure and functioning and in turn the surface-atmosphere exchanges of mass, energy, and momentum. In order to attribute climate effects to anthropogenic activities like forest management, good accounts of forest structure are necessary. Here, using Fennoscandia as a case study, we make use of Fennoscandic National Forest Inventory (NFI) data to systematically classify forest cover into groups of similar aboveground forest structure. An enhanced forest classification scheme and related lookup table (LUT) of key forest structural attributes (i.e., maximum growing season leaf area index (LAImax), basal-area-weighted mean tree height, tree crown length, and total stem volume) was developed, and the classification was applied for multisource NFI (MS-NFI) maps from Norway, Sweden, and Finland. To provide a complete surface representation, our product was integrated with the European Space Agency Climate Change Initiative Land Cover (ESA CCI LC) map of present day land cover (v.2.0.7). Comparison of the ESA LC and our enhanced LC products (https://doi.org/10.21350/7zZEy5w3) showed that forest extent notably (κ = 0.55, accuracy 0.64) differed between the two products. To demonstrate the potential of our enhanced LC product to improve the description of the maximum growing season LAI (LAImax) of managed forests in Fennoscandia, we compared our LAImax map with reference LAImax maps created using the ESA LC product (and related cross-walking table) and PFT-dependent LAImax values used in three leading land models. Comparison of the LAImax maps showed that our product provides a spatially more realistic description of LAImax in managed Fennoscandian forests compared to reference maps. This study presents an approach to account for the transient nature of forest structural attributes due to human intervention in different land models.

  9. Effects of national forest-management regimes on unprotected forests of the Himalaya.

    Science.gov (United States)

    Brandt, Jodi S; Allendorf, Teri; Radeloff, Volker; Brooks, Jeremy

    2017-12-01

    Globally, deforestation continues, and although protected areas effectively protect forests, the majority of forests are not in protected areas. Thus, how effective are different management regimes to avoid deforestation in non-protected forests? We sought to assess the effectiveness of different national forest-management regimes to safeguard forests outside protected areas. We compared 2000-2014 deforestation rates across the temperate forests of 5 countries in the Himalaya (Bhutan, Nepal, China, India, and Myanmar) of which 13% are protected. We reviewed the literature to characterize forest management regimes in each country and conducted a quasi-experimental analysis to measure differences in deforestation of unprotected forests among countries and states in India. Countries varied in both overarching forest-management goals and specific tenure arrangements and policies for unprotected forests, from policies emphasizing economic development to those focused on forest conservation. Deforestation rates differed up to 1.4% between countries, even after accounting for local determinants of deforestation, such as human population density, market access, and topography. The highest deforestation rates were associated with forest policies aimed at maximizing profits and unstable tenure regimes. Deforestation in national forest-management regimes that emphasized conservation and community management were relatively low. In India results were consistent with the national-level results. We interpreted our results in the context of the broader literature on decentralized, community-based natural resource management, and our findings emphasize that the type and quality of community-based forestry programs and the degree to which they are oriented toward sustainable use rather than economic development are important for forest protection. Our cross-national results are consistent with results from site- and regional-scale studies that show forest-management regimes that

  10. Dry forest resilience varies under simulated climate‐management scenarios in a central Oregon, USA landscape.

    Science.gov (United States)

    Halofsky, Joshua S; Halofsky, Jessica E; Burcsu, Theresa; Hemstrom, Miles A

    Determining appropriate actions to create or maintain landscapes resilient to climate change is challenging because of uncertainty associated with potential effects of climate change and their interactions with land management. We used a set of climate-informed state-and-transition models to explore the effects of management and natural disturbances on vegetation composition and structure under different future climates. Models were run for dry forests of central Oregon under a fire suppression scenario (i.e., no management other than the continued suppression of wildfires) and an active management scenario characterized by light to moderate thinning from below and some prescribed fire, planting, and salvage logging. Without climate change, area in dry province forest types remained constant. With climate change, dry mixed-conifer forests increased in area (by an average of 21–26% by 2100), and moist mixed-conifer forests decreased in area (by an average of 36–60% by 2100), under both management scenarios. Average area in dry mixed-conifer forests varied little by management scenario, but potential decreases in the moist mixed-conifer forest were lower with active management. With changing climate in the dry province of central Oregon, our results suggest the likelihood of sustaining current levels of dense, moist mixed-conifer forests with large-diameter, old trees is low (less than a 10% chance) irrespective of management scenario; an opposite trend was observed under no climate change simulations. However, results also suggest active management within the dry and moist mixed-conifer forests that creates less dense forest conditions can increase the persistence of larger-diameter, older trees across the landscape. Owing to projected increases in wildfire, our results also suggest future distributions of tree structures will differ from the present. Overall, our projections indicate proactive management can increase forest resilience and sustain some societal

  11. Mammal indicator species for protected areas and managed forests in a landscape conservation area in northern India

    Science.gov (United States)

    Pradeep K. Mathur; Harish Kumar; John F. Lehmkuhl; Anshuman Tripathi; Vishwas B. Sawarkar; Rupak. De

    2010-01-01

    There is a realization that managed forests and other natural areas in the landscape matrix can and must make significant contributions to biodiversity conservation. Often, however, there are no consistent baseline vegetation or wildlife data for assessing the status of biodiversity elements across protected and managed areas for conservation planning, nor is there a...

  12. Vegetation and soils

    Science.gov (United States)

    Burke, M.K.; King, S.L.; Eisenbies, M.H.; Gartner, D.

    2000-01-01

    Intro paragraph: Characterization of bottomland hardwood vegetation in relatively undisturbed forests can provide critical information for developing effective wetland creation and restoration techniques and for assessing the impacts of management and development. Classification is a useful technique in characterizing vegetation because it summarizes complex data sets, assists in hypothesis generation about factors influencing community variation, and helps refine models of community structure. Hierarchical classification of communities is particularly useful for showing relationships among samples (Gauche 1982).

  13. Climatic Changes Effects On Spectral Vegetation Indices For Forested Areas Analysis From Satellite Data

    International Nuclear Information System (INIS)

    Zoran, M.; Stefan, S.

    2007-01-01

    Climate-induced changes at the land surface may in turn feed back on the climate itself through changes in soil moisture, vegetation, radiative characteristics, and surface-atmosphere exchanges of water vapor. Thresholding based on biophysical variables derived from time trajectories of satellite data is a new approach to classifying forest land cover via remote . sensing .The input data are composite values of the Normalized Difference Vegetation Index (NDVI). Classification accuracies are function of the class, comparison method and season of the year. The aim of the paper is forest biomass assessment and land-cover changes analysis due to climatic effects

  14. Reviews and syntheses: Hidden forests, the role of vegetated coastal habitats in the ocean carbon budget

    KAUST Repository

    Duarte, Carlos M.

    2017-01-01

    Vegetated coastal habitats, including seagrass and macroalgal beds, mangrove forests and salt marshes, form highly productive ecosystems, but their contribution to the global carbon budget remains overlooked, and these forests remain

  15. Reviews and syntheses: Hidden forests, the role of vegetated coastal habitats in the ocean carbon budget

    KAUST Repository

    Duarte, Carlos M.

    2017-01-23

    Vegetated coastal habitats, including seagrass and macroalgal beds, mangrove forests and salt marshes, form highly productive ecosystems, but their contribution to the global carbon budget remains overlooked, and these forests remain

  16. Managing the world's forests.

    Science.gov (United States)

    Sharma, N; Rowe, R

    1992-06-01

    Forests play a vital role in balancing natural systems: the stabilization of global climate and the management of water and land. 30% of the earth's total land area is forested. 66% of the tropical moist forests are in Latin America and the remainder in Africa and Asia. 75% of tropical dry forests are in Africa. Temperate forests are primarily in developed countries. Deforestation and misuse of forests occurs primarily in developing countries at significant social, economic, and environmental costs. Losses have occurred in fuelwood, fodder, timber, forest products, biological diversity, habitats, genetic materials for food and medicine. The World Bank's evolving role in forestry is briefly described. Agreement has not been reached among people or nations about the most appropriate means to balance conservation and development goals. The challenge is to stabilize existing forests and increase forest planting. The causes of forest degradation must be understood. Direct causes include agricultural encroachment, cattle ranching, fuelwood gathering, commercial logging, and infrastructure development. These direct causes are driven by economic, social, and political forces: market and policy failures, population growth, and poverty. The market failures include: 1) the lack of clearly defined property rights on forest resources for now and the future, 2) the conflict between individual and societal needs, 3) the difficulty in placing a value on nonmarket environmental services and joint products, and 4) the separation between private and social costs. The solution is action at the local, national, and global levels. Countries must establish forest policy. The existing government incentives which promote deforestation must be changed. For example, concession policy and royalty systems must be corrected; explicit and implicit export subsidies on timber and forest products must be stopped. Private incentives must be established to promote planting of trees, practicing

  17. Hydrologic responses to restored wildfire regimes revealed by soil moisture-vegetation relationships

    Science.gov (United States)

    Boisramé, Gabrielle; Thompson, Sally; Stephens, Scott

    2018-02-01

    Many forested mountain watersheds worldwide evolved with frequent fire, which Twentieth Century fire suppression activities eliminated, resulting in unnaturally dense forests with high water demand. Restoration of pre-suppression forest composition and structure through a variety of management activities could improve forest resilience and water yields. This study explores the potential for "managed wildfire", whereby naturally ignited fires are allowed to burn, to alter the water balance. Interest in this type of managed wildfire is increasing, yet its long-term effects on water balance are uncertain. We use soil moisture as a spatially-distributed hydrologic indicator to assess the influence of vegetation, fire history and landscape position on water availability in the Illilouette Creek Basin in Yosemite National Park. Over 6000 manual surface soil moisture measurements were made over a period of three years, and supplemented with continuous soil moisture measurements over the top 1m of soil in three sites. Random forest and linear mixed effects models showed a dominant effect of vegetation type and history of vegetation change on measured soil moisture. Contemporary and historical vegetation maps were used to upscale the soil moisture observations to the basin and infer soil moisture under fire-suppressed conditions. Little change in basin-averaged soil moisture was inferred due to managed wildfire, but the results indicated that large localized increases in soil moisture had occurred, which could have important impacts on local ecology or downstream flows.

  18. Participatory forest management in Ethiopia

    DEFF Research Database (Denmark)

    Yietagesu, Aklilu Ameha; Larsen, Helle Overgaard; Lemenih, Mulugeta

    2014-01-01

    Different arrangements of decentralized forest management have been promoted as alternatives to centralized and top down approaches to halt tropical deforestation and forest degradation. Ethiopia is one of the countries piloting one of these approaches. To inform future programs and projects...... it is essential to learn from existing pilots and experiences. This paper analyses five of the pilot participatory forest management (PFM) programs undertaken in Ethiopia. The study is based on the Forest User Group (FUG) members’ analyses of the programs using selected outcome variables: forest income, change...

  19. Measuring Tree Seedlings and Associated Understory Vegetation in Pennsylvania's Forests

    Science.gov (United States)

    William H. McWilliams; Todd W. Bowersox; Patrick H. Brose; Daniel A. Devlin; James C. Finley; Kurt W. Gottschalk; Steve Horsley; Susan L. King; Brian M. LaPoint; Tonya W. Lister; Larry H. McCormick; Gary W. Miller; Charles T. Scott; Harry Steele; Kim C. Steiner; Susan L. Stout; James A. Westfall; Robert L. White

    2005-01-01

    The Northeastern Research Station's Forest Inventory and Analysis (NE-FIA) unit is conducting the Pennsylvania Regeneration Study (PRS) to evaluate composition and abundance of tree seedlings and associated vegetation. Sampling methods for the PRS were tested and developed in a pilot study to determine the appropriate number of 2-m microplots needed to capture...

  20. Determining relative contributions of vegetation and topography to burn severity from LANDSAT imagery.

    Science.gov (United States)

    Wu, Zhiwei; He, Hong S; Liang, Yu; Cai, Longyan; Lewis, Bernard J

    2013-10-01

    Fire is a dominant process in boreal forest landscapes and creates a spatial patch mosaic with different burn severities and age classes. Quantifying effects of vegetation and topography on burn severity provides a scientific basis on which forest fire management plans are developed to reduce catastrophic fires. However, the relative contribution of vegetation and topography to burn severity is highly debated especially under extreme weather conditions. In this study, we hypothesized that relationships of vegetation and topography to burn severity vary with fire size. We examined this hypothesis in a boreal forest landscape of northeastern China by computing the burn severity of 24 fire patches as the difference between the pre- and post-fire Normalized Difference Vegetation Index obtained from two Landsat TM images. The vegetation and topography to burn severity relationships were evaluated at three fire-size levels of small (1,000 ha, n = 3). Our results showed that vegetation and topography to burn severity relationships were fire-size-dependent. The burn severity of small fires was primary controlled by vegetation conditions (e.g., understory cover), and the burn severity of large fires was strongly influenced by topographic conditions (e.g., elevation). For moderate fires, the relationships were complex and indistinguishable. Our results also indicated that the pattern trends of relative importance for both vegetation and topography factors were not dependent on fire size. Our study can help managers to design fire management plans according to vegetation characteristics that are found important in controlling burn severity and prioritize management locations based on the relative importance of vegetation and topography.

  1. Vegetation Succession on Degraded Sites in the Pomacochas Basin (Amazonas, N Peru—Ecological Options for Forest Restoration

    Directory of Open Access Journals (Sweden)

    Helge Walentowski

    2018-02-01

    Full Text Available The Andes of northern Peru are still widely covered with forests, but increasingly suffer from habitat fragmentation. Subsequent soil degradation often leads to the abandonment of overused forests and pastures. Ecological knowledge on the restoration potential, e.g., on dependencies of soil conditions and altitude, is scarce. Therefore, we compared soil and vegetation patterns along nine transects within the upper Pomacochas Basin, which is an important biodiversity corridor along the Andes, between remaining forests, succession sites and pastures. Anthropogenic successional and disturbance levels, geological substrate, and altitude have the most important ecological impacts on vegetation and tree species composition. Species responded to sandstone versus calcareous substrates, but also to depths of the organic soil layer, and light conditions. The absence of organic layers under pastures contrasted with the accumulation of thick organic layers under forest cover. Vegetation composition at succession sites revealed certain starting points (herbal stage, bush stage, or secondary forest for restoration that will determine the length of regeneration paths. Pre-forest patches of Alchornea sp. and Parathesis sp. may act as habitat stepping stones for expeditiously restoring biocorridors for wildlife. The key findings can contribute to the sustainable use and conservation of biodiversity in a fragile ecoregion.

  2. Zoning of the Russian Federation territory based on forest management and forest use intensity

    Directory of Open Access Journals (Sweden)

    A. A. Маrtynyuk

    2016-02-01

    Full Text Available Over extended periods issues of forest management intensification are important in all aspects of Russian forest sector development. Sufficient research has been done in silviculture, forest planning and forest economics to address forest management intensification targets. Systems of our national territory forest management and forest economics zoning due to specifics of timber processing and forest area infrastructure have been developed. Despite sufficient available experience in sustainable forest management so far intensification issues were addressed due to development of new woodlands without proper consideration of forest regeneration and sustainable forest management operations. It resulted in forest resource depletion and unfavorable substitution of coniferous forests with less valuable softwood ones in considerable territories (especially accessible for transport. The situation is complicated since degree of forest ecosystem changes is higher in territories with high potential productivity. Ongoing changes combined with the present effective forest management system resulted in a situation where development of new woodlands is impossible without heavy investments in road construction; meanwhile road construction is unfeasible due to distances to timber processing facilities. In the meantime, changes in forest legislation, availability of forest lease holding, and promising post-logging forest regeneration technologies generate new opportunities to increase timber volumes due to application of other procedures practically excluding development of virgin woodlands. With regard to above, the Russian territory was zoned on a basis of key factors that define forest management and forest use intensification based on forest ecosystem potential productivity and area transport accessibility. Based on available data with GIS analysis approach (taking into consideration value of various factors the Russian Federation forest resources have been

  3. A survey of drought and Variation of Vegetation by statistical indexes and remote sensing (Case study: Jahad forest in Bandar Abbas)

    International Nuclear Information System (INIS)

    Tamassoki, E; Soleymani, Z; Bahrami, F; Abbasgharemani, H

    2014-01-01

    The damages of drought as a climatic and creeping phenomenon are very enormous specially in deserts. Necessity of management and conflict with it is clear. In this case vegetation are damaged too, and even are changed faster. This paper describes the process of vegetation changes and surveys it with drought indexes such as statistical and remote sensing indexes and correlation between temperature and relative humidity by Geographical Information System (GIS) and Remote Sensing (RS) in forest park of Bandar Abbas in successive years. At the end the regression and determination-coefficient for showing the importance of droughts survey are computed. Results revealed that the correlation between vegetation and indexes was 0.5. The humidity had maximum correlation and when we close to 2009 the period of droughts increase and time intervals decrease that influence vegetation enormously and cause the more area lost its vegetation

  4. Forest management in India. Local versus state control of forest resources

    Energy Technology Data Exchange (ETDEWEB)

    Wilk, J

    1998-12-31

    Degradation and substantial losses to India`s forests have prompted a change in existing forestry management strategy. The new approach includes recognition of local participation in forestry management schemes but state control over most decisions is still dominant. Seen in terms of a common property resource system, India`s forests lack many of the factors usually considered inherent to successful management programs. Though India`s latest Forest Act affords more local involvement in forestry management, there continues to be an apparent lack of rights for local management groups over decision-making and the resource itself. Can this system enable the required balance between state and local management of India`s forests? 24 refs, 1 tab

  5. Forest management in India. Local versus state control of forest resources

    Energy Technology Data Exchange (ETDEWEB)

    Wilk, J.

    1997-12-31

    Degradation and substantial losses to India`s forests have prompted a change in existing forestry management strategy. The new approach includes recognition of local participation in forestry management schemes but state control over most decisions is still dominant. Seen in terms of a common property resource system, India`s forests lack many of the factors usually considered inherent to successful management programs. Though India`s latest Forest Act affords more local involvement in forestry management, there continues to be an apparent lack of rights for local management groups over decision-making and the resource itself. Can this system enable the required balance between state and local management of India`s forests? 24 refs, 1 tab

  6. Effects of post-fire wood management strategies on vegetation recovery and land surface temperature (LST) estimated from Landsat images

    Science.gov (United States)

    Vlassova, Lidia; Pérez-Cabello, Fernando

    2016-02-01

    The study contributes remote sensing data to the discussion about effects of post-fire wood management strategies on forest regeneration. Land surface temperature (LST) and Normalized Differenced Vegetation Index (NDVI), estimated from Landsat-8 images are used as indicators of Pinus halepensis ecosystem recovery after 2008 fire in areas of three post-fire treatments: (1) salvage logging with wood extraction from the site on skidders in suspended position (SL); (2) snag shredding in situ leaving wood debris in place (SS) performed two years after the event; and (3) non-intervention control areas (CL) where all snags were left standing. Six years after the fire NDVI values ∼0.5 estimated from satellite images and field radiometry indicate considerable vegetation recovery due to efficient regeneration traits developed by the dominant plant species. However, two years after management activities in part of the burnt area, the effect of SL and SS on ecosystem recovery is observed in terms of both LST and NDVI. Statistically significant differences are detected between the intervened areas (SL and SS) and control areas of non-intervention (CL); no difference is registered between zones of different intervention types (SL and SS). CL areas are on average 1 °C cooler and 10% greener than those corresponding to either SL or SS, because of the beneficial effects of burnt wood residuals, which favor forest recovery through (i) enhanced nutrient cycling in soils, (ii) avoidance of soil surface disturbance and mechanical damage of seedlings typical to the managed areas, and (iii) ameliorated microclimate. The results of the study show that in fire-resilient ecosystems, such as P. halepensis forests, NDVI is higher and LST is lower in areas with no management intervention, being an indication of more favorable conditions for vegetation regeneration.

  7. TREES AND REGENERATION IN RUBBER AGROFORESTS AND OTHER FOREST-DERIVED VEGETATION IN JAMBI (SUMATRA, INDONESIA

    Directory of Open Access Journals (Sweden)

    Hesti L. Tata

    2008-06-01

    Full Text Available The rubber  agroforests  (RAF  of Indonesia provide  a dynamic interface  between natural  processes  of forest  regeneration and  human’s management   targeting  the harvesting  of latex  with  minimum investment  of time  and financial  resources.  The composition  and species richness  of higher  plants  across an intensification gradient from forest to monocultures of tree crops have been investigated  in six land use types (viz. secondary forest, RAF, rubber monoculture, oil palm plantation, cassava field and Imperata grassland  in Bungo,  Jambi  Province,  Indonesia.  We emphasize  comparison of four different  strata  (understory, seedling,  sapling  and tree of vegetation  between forest and RAF,  with  specific interest  in plant  dependence  on ectomycorrhiza fungi. Species richness  and species accumulation curves for seedling  and sapling  stages were similar  between forest and RAF,  but in the tree stratum  (trees > 10 cm dbh selective thinning by farmers was evident in a reduction  of species diversity and an increase in the proportion of trees with edible parts. Very few trees dependent on ectomycorrhiza fungi were encountered  in the RAF. However, the relative distribution of early and late successional species as evident from the wood density distribution showed no difference between RAF and forest.

  8. Logging safety in forest management education

    Science.gov (United States)

    David Elton Fosbroke; John R. Myers

    1995-01-01

    Forest management degree programs prepare students for careers in forestry by teaching a combination of biological sciences (e.g., silvics and genetics) and business management (e.g., forest policy and timber valuation). During a 4-year degree program, students learn the impact of interest rates, equipment costs, and environmental policies on forest management and...

  9. Reassuring livelihood functions of the forests to their dependents: Adoption of collaborative forest management system over Joint forest management regime in India

    Directory of Open Access Journals (Sweden)

    Narendra Kumar Bhatia

    2013-12-01

    Full Text Available With regard to forest management, rural livelihood, and poverty in India, it is often debated that JFM regime is not delivering livelihood functions of the forests to their dependents. This paper examines the state and scale of two decades old people-centric JFM system of India, and analyses the reasons with their indicators to shade off its shine in reducing povertyamong forest dependent people in several parts of the country. Paper also iscuss, how and to what extent, adoption of a multi-agency linked Collaborative Forest Management (CFM system could be a better strategy over JFM regime to reassure delivery of livelihood functions of the forests to their dependents in rural India. Arguments in this communication are intended to provide forest managers and policy-makers with necessary input to consider some location specific forest based entrepreneurial activities in CFM mode to provide a continuous source of small income to forest dependent people to ensure long lasting success of their forest management endeavours. Paper concludes with a recommendation to convert unviable JFM areas of India into a multiagency linked CFM system in a phased manner.

  10. Acidic precipitation and forest vegetation

    Science.gov (United States)

    Carl Olof Tamm; Ellis B. Cowling

    1976-01-01

    Most plants can take up nutrients from the atmosphere as well as from the soil solution. This capacity is especially important in natural ecosystems such as forests and bogs where nutrients from other sources are scarce and where fertilization is not a normal management procedure. Trees develop very large canopies of leaves and branches that extend high into the air....

  11. Elephant movement closely tracks precipitation-driven vegetation dynamics in a Kenyan forest-savanna landscape.

    Science.gov (United States)

    Bohrer, Gil; Beck, Pieter Sa; Ngene, Shadrack M; Skidmore, Andrew K; Douglas-Hamilton, Ian

    2014-01-01

    This study investigates the ranging behavior of elephants in relation to precipitation-driven dynamics of vegetation. Movement data were acquired for five bachelors and five female family herds during three years in the Marsabit protected area in Kenya and changes in vegetation were mapped using MODIS normalized difference vegetation index time series (NDVI). In the study area, elevations of 650 to 1100 m.a.s.l experience two growth periods per year, while above 1100 m.a.s.l. growth periods last a year or longer. We find that elephants respond quickly to changes in forage and water availability, making migrations in response to both large and small rainfall events. The elevational migration of individual elephants closely matched the patterns of greening and senescing of vegetation in their home range. Elephants occupied lower elevations when vegetation activity was high, whereas they retreated to the evergreen forest at higher elevations while vegetation senesced. Elephant home ranges decreased in size, and overlapped less with increasing elevation. A recent hypothesis that ungulate migrations in savannas result from countervailing seasonally driven rainfall and fertility gradients is demonstrated, and extended to shorter-distance migrations. In other words, the trade-off between the poor forage quality and accessibility in the forest with its year-round water sources on the one hand and the higher quality forage in the low-elevation scrubland with its seasonal availability of water on the other hand, drives the relatively short migrations (the two main corridors are 20 and 90 km) of the elephants. In addition, increased intra-specific competition appears to influence the animals' habitat use during the dry season indicating that the human encroachment on the forest is affecting the elephant population.

  12. Impacts of participatory forest management on species composition and forest structure in Ethiopia

    DEFF Research Database (Denmark)

    Yietagesu, Aklilu Ameha; Meilby, Henrik; Feyisa, Gudina Legese

    2016-01-01

    The present study assesses the impacts of decentralized forest management on forest conditions in Ethiopian Montane forests. We compared observed densities of different tree species and size categories in forests managed by local forest user groups (FUGs) and the government. We used forest...

  13. Effects of climate change on forest vegetation in the northern Rockies

    Science.gov (United States)

    Keane, Robert E.; Mahalovich, Mary Frances; Bollenbacher, Barry L.; Manning, Mary E.; Loehman, Rachel A.; Jain, Terrie B.; Holsinger, Lisa M.; Larson, Andrew J.; Halofsky, Jessica E.; Peterson, David L.

    2018-01-01

    Increasing air temperature, through its influence on soil moisture, is expected to cause gradual changes in the abundance and distribution of tree, shrub, and grass species throughout the Northern Rockies, with drought tolerant species becoming more competitive. The earliest changes will be at ecotones between lifeforms (e.g., upper and lower treelines). Ecological disturbance, including wildfire and insect outbreaks, will be the primary facilitator of vegetation change, and future forest landscapes may be dominated by younger age classes and smaller trees. High-elevation forests will be especially vulnerable if disturbance frequency

  14. A Special Issue of the Journal of Forestry—Tribal Forest Management: Innovations for Sustainable Forest Management

    Science.gov (United States)

    Michael J. Dockry; Serra J. Hoagland

    2017-01-01

    Native American forests and tribal forest management practices have sustained indigenous communities, economies, and resources for millennia. These systems provide a wealth of knowledge and successful applications of long-term environmental stewardship and integrated, sustainable forest management. Tribal forestry has received an increasing amount of attention from...

  15. Detection and Characterization of Stress Symptoms in Forest Vegetation

    Science.gov (United States)

    Heller, R. C.

    1971-01-01

    Techniques used at the Pacific Southwest Forest and Range Experiment Station to detect advanced and previsual symptoms of vegetative stress are discussed. Stresses caused by bark beetles in coniferous stands of timber are emphasized because beetles induce stress more rapidly than most other destructive agents. Bark beetles are also the most damaging forest insects in the United States. In the work on stress symptoms, there are two primary objectives: (1) to learn the best combination of films, scales, and filters to detect and locate injured trees from aircraft and spacecraft, and (2) to learn if stressed trees can be detected before visual symptoms of decline occur. Equipment and techniques used in a study of the epidemic of the Black Hills bark beetle are described.

  16. Detailed maps of tropical forest types are within reach: forest tree communities for Trinidad and Tobago mapped with multiseason Landsat and multiseason fine-resolution imagery

    Science.gov (United States)

    Eileen H. Helmer; Thomas S. Ruzycki; Jay Benner; Shannon M. Voggesser; Barbara P. Scobie; Courtenay Park; David W. Fanning; Seepersad. Ramnarine

    2012-01-01

    Tropical forest managers need detailed maps of forest types for REDD+, but spectral similarity among forest types; cloud and scan-line gaps; and scarce vegetation ground plots make producing such maps with satellite imagery difficult. How can managers map tropical forest tree communities with satellite imagery given these challenges? Here we describe a case study of...

  17. The Missouri Ozark Forest Ecosystem Project: the effects of forest management on the forest ecosystem

    Science.gov (United States)

    Brian Brookshire; Carl Hauser

    1993-01-01

    The effects of forest management on non-timber resources are of growing concern to forest managers and the public. While many previous studies have reported effects of stand-level treatments (less than 15 ha) on various stand-level attributes, few studies have attempted to document the influence of forest management on the biotic and abiotic characteristics of entire...

  18. Understory vegetation response to mechanical mastication and other fuels treatments in a ponderosa pine forest

    Science.gov (United States)

    Jeffrey M. Kane; J. Morgan Varner; Eric E. Knapp

    2010-01-01

    Questions: What influence does mechanical mastication and other fuel treatments have on: (1) canopy and forest floor response variables that influence understory plant development; (2) initial understory vegetation cover, diversity, and composition; and (3) shrub and non-native species density in a secondgrowth ponderosa pine forest....

  19. Influence of forest roads standards and networks on water yield as predicted by the distributed hydrology-soil-vegetation model

    Science.gov (United States)

    Salli F. Dymond; W. Michael Aust; Steven P. Prisley; Mark H. Eisenbies; James M. Vose

    2013-01-01

    Throughout the country, foresters are continually looking at the effects of logging and forest roads on stream discharge and overall stream health. In the Pacific Northwest, a distributed hydrology-soil-vegetation model (DHSVM) has been used to predict the effects of logging on peak discharge in mountainous regions. DHSVM uses elevation, meteorological, vegetation, and...

  20. Remote sensing applications in agriculture and forestry. Applications of aerial photography and ERTS data to agricultural, forest and water resources management

    Science.gov (United States)

    1973-01-01

    Remote sensing techniques are being used in Minnesota to study: (1) forest disease detection and control; (2) water quality indicators; (3) forest vegetation classification and management; (4) detection of saline soils in the Red River Valley; (5) corn defoliation; and (6) alfalfa crop productivity. Results of progress, and plans for future work in these areas, are discussed.

  1. Groundwater uptake by forest and herbaceous vegetation in the context of salt accumulation in the Hungarian Great Plain

    Science.gov (United States)

    Gribovszki, Zoltán; Kalicz, Péter; Balog, Kitti; Szabó, András; Fodor, Nándor; Tóth, Tibor

    2013-04-01

    In Hungarian Great Plain forested areas has significantly increased during the last century. Hydrological effects of trees differ from that of crops or grasses in that, due to their deep roots, they extract water from much deeper soil layers. It has been demonstrated that forest cover causes water table depression and subsurface salt accumulation above shallow saline water table in areas with a negative water balance. The above mentioned situation caused by the afforestation in the Hungarian Great Plain is examined in the frame of a systematic study, which analyzed all affecting factors, like climatic water balance, water table depth and salinity, three species, subsoil layering and stand age. At the regional scale altogether 108 forested and neighbouring non forested plots are sampled. At the stand scale 18 representative forested and accompanying non forested plots (from the 108) are monitored intensively. In this paper dataset of two neighbouring plots (common oak forest and herbaceous vegetation) was compared (as first results of this complex investigation). On the basis of the analysis it could be summarized that under forest the water table was lower, and the amplitude of diel fluctuation of water table was significantly larger as under the herbaceous vegetation. Both results demonstrate greater groundwater use of forest vegetation. Groundwater uptake of the forest (which was calculated by diel based method) was almost same as potential reference evapotranspiration (calculated by Penman-Monteith equation with locally measured meteorological dataset) along the very dry summer of 2012. Larger amount of forest groundwater use is not parallel with salt uptake, therefore salt accumulates in soil and also in groundwater as can be measured of the representative monitoring sites as well. In the long run this process can result in the decline of biological production or even the dry out of some part of the forest. Greater groundwater uptake and salt accumulation

  2. Post Fire Vegetation Recovery in Portugal

    Science.gov (United States)

    Gouveia, Celia; Bastos, Ana; DaCamara, Carlos; Trigo, Ricardo M.

    2011-01-01

    Fires in Portugal, as in the Mediterranean ecosystems, have a complex effect on vegetation regeneration due to the different responses of vegetation to the variety of fire regimes and to the complexity of landscape structures. A thorough evaluation of vegetation recovery after fire events becomes therefore crucial in land management. In 2005, Portugal suffered a strong damage from forest fires that damaged an area of 300 000 ha of forest and shrub. This year are particularly interesting because it is associated the severe drought of 2005. The aim of the present study is to identify large burnt scars in Portugal during the 2005 fire seasons and monitoring vegetation behaviour throughout the pre and the post fire periods. The mono-parametric model developed by Gouveia et al. (2010), based on monthly values of NDVI, at the 1km×1km spatial scale, as obtained from the VEGETATION-SPOT5 instrument, from 1999 to 2009, was used.

  3. Integrated modeling of long-term vegetation and hydrologic dynamics in Rocky Mountain watersheds

    Science.gov (United States)

    Robert Steven Ahl

    2007-01-01

    Changes in forest structure resulting from natural disturbances, or managed treatments, can have negative and long lasting impacts on water resources. To facilitate integrated management of forest and water resources, a System for Long-Term Integrated Management Modeling (SLIMM) was developed. By combining two spatially explicit, continuous time models, vegetation...

  4. Changing Forest Values and Ecosystem Management

    Science.gov (United States)

    David N. Bengston

    1994-01-01

    There is substantial evidence that we are currently in a period of rapid and significant change in forest values. Some have charged that managing forests in ways that are responsive to diverse and changing forest values is the main challenge faced by public forest managers. To tackle this challenge, we need to address the following questions: (1) What is the nature of...

  5. Large-scale carbon stock assessment of woody vegetation in tropical dry deciduous forest of Sathanur reserve forest, Eastern Ghats, India.

    Science.gov (United States)

    Gandhi, Durai Sanjay; Sundarapandian, Somaiah

    2017-04-01

    Tropical dry forests are one of the most widely distributed ecosystems in tropics, which remain neglected in research, especially in the Eastern Ghats. Therefore, the present study was aimed to quantify the carbon storage in woody vegetation (trees and lianas) on large scale (30, 1 ha plots) in the dry deciduous forest of Sathanur reserve forest of Eastern Ghats. Biomass of adult (≥10 cm DBH) trees was estimated by species-specific allometric equations using diameter and wood density of species whereas in juvenile tree population and lianas, their respective general allometric equations were used to estimate the biomass. The fractional value 0.4453 was used to convert dry biomass into carbon in woody vegetation of tropical dry forest. The mean aboveground biomass value of juvenile tree population was 1.86 Mg/ha. The aboveground biomass of adult trees ranged from 64.81 to 624.96 Mg/ha with a mean of 245.90 Mg/ha. The mean aboveground biomass value of lianas was 7.98 Mg/ha. The total biomass of woody vegetation (adult trees + juvenile population of trees + lianas) ranged from 85.02 to 723.46 Mg/ha, with a mean value of 295.04 Mg/ha. Total carbon accumulated in woody vegetation in tropical dry deciduous forest ranged from 37.86 to 322.16 Mg/ha with a mean value of 131.38 Mg/ha. Adult trees accumulated 94.81% of woody biomass carbon followed by lianas (3.99%) and juvenile population of trees (1.20%). Albizia amara has the greatest biomass and carbon stock (58.31%) among trees except for two plots (24 and 25) where Chloroxylon swietenia contributed more to biomass and carbon stock. Similarly, Albizia amara (52.4%) showed greater carbon storage in juvenile population of trees followed by Chloroxylon swietenia (21.9%). Pterolobium hexapetalum (38.86%) showed a greater accumulation of carbon in liana species followed by Combretum albidum (33.04%). Even though, all the study plots are located within 10 km radius, they show a significant spatial variation among

  6. Climate effects on vegetation vitality at the treeline of boreal forests of Mongolia

    Directory of Open Access Journals (Sweden)

    M. Klinge

    2018-03-01

    Full Text Available In northern Mongolia, at the southern boundary of the Siberian boreal forest belt, the distribution of steppe and forest is generally linked to climate and topography, making this region highly sensitive to climate change and human impact. Detailed investigations on the limiting parameters of forest and steppe in different biomes provide necessary information for paleoenvironmental reconstruction and prognosis of potential landscape change. In this study, remote sensing data and gridded climate data were analyzed in order to identify main distribution patterns of forest and steppe in Mongolia and to detect environmental factors driving forest development. Forest distribution and vegetation vitality derived from the normalized differentiated vegetation index (NDVI were investigated for the three types of boreal forest present in Mongolia (taiga, subtaiga and forest–steppe, which cover a total area of 73 818 km2. In addition to the forest type areas, the analysis focused on subunits of forest and nonforested areas at the upper and lower treeline, which represent ecological borders between vegetation types. Climate and NDVI data were analyzed for a reference period of 15 years from 1999 to 2013. The presented approach for treeline delineation by identifying representative sites mostly bridges local forest disturbances like fire or tree cutting. Moreover, this procedure provides a valuable tool to distinguish the potential forested area. The upper treeline generally rises from 1800 m above sea level (a.s.l. in the northeast to 2700 m a.s.l. in the south. The lower treeline locally emerges at 1000 m a.s.l. in the northern taiga and rises southward to 2500 m a.s.l. The latitudinal gradient of both treelines turns into a longitudinal one on the eastern flank of mountain ranges due to higher aridity caused by rain-shadow effects. Less productive trees in terms of NDVI were identified at both the upper and lower treeline in relation

  7. Forest Management as an Element of Environment Development

    Science.gov (United States)

    Jaszczak, Roman; Gołojuch, Piotr; Wajchman-Świtalska, Sandra; Miotke, Mariusz

    2017-12-01

    The implementation of goals of modern forestry requires a simultaneous consideration of sustainable development of forests, protection, needs of the environment development, as well as maintaining a balance between functions of forests. In the current multifunctional forest model, rational forest management assumes all of its tasks as equally important. Moreover, its effects are important factors in the nature and environment protection. The paper presents legal conditions related to the definitions of forest management concepts and sustainable forest management. Authors present a historical outline of human's impact on the forest and its consequences for the environment. The selected aspects of forest management (eg. forest utilization, afforestation, tourism and recreation) and their role in the forest environment have been discussed.

  8. Public acceptability of forest management practices at Morgan-Monroe State Forest

    Science.gov (United States)

    Shannon C. Rogers; William L. Hoover; Shorna B. Allred

    2013-01-01

    Forest management practices on public forests are controversial with many organizational and individual stakeholders. Forest managers' understanding of the attitudes of stakeholders is necessary to honor statutory requirements and the social contract under which they operate. The human dimension component of the Hardwood Ecosystem Experiment (HEE) in Indiana...

  9. Forest inventory: role in accountability for sustainable forest management

    Science.gov (United States)

    Lloyd C. Irland

    2007-01-01

    Forest inventory can play several roles in accountability for sustainable forest management. A first dimension is accountability for national performance. The new field of Criteria and Indicators is an expression of this need. A more familiar role for the U.S. Department of Agriculture Forest Service Forest Inventory and Analysis (FIA) program is for assessment and...

  10. Restoration of three forest herbs in the Liliaceae family by manipulating deer herbivory and overstorey and understorey vegetation

    Science.gov (United States)

    Cynthia D. Huebner; Kurt W. Gottschalk; Gary W. Miller; Patrick H. Brose

    2010-01-01

    Research on herbaceous vegetation restoration in forests characterised by overstorey tree harvests, excessive deer herbivory, and a dominant fern understorey is lacking. Most of the plant diversity found in Eastern hardwood forests in the United States is found in the herbaceous understorey layer. Loss of forest herbaceous species is an indicator of declining forest...

  11. Vegetation dynamics in Bishrampur collieries of northern Chhattisgarh, India: eco-restoration and management perspectives.

    Science.gov (United States)

    Kumar, A; Jhariya, M K; Yadav, D K; Banerjee, A

    2017-08-01

    Phytosociological study in and around reclaimed coal mine site is an essential requirement for judging restoration impact on a disturbed site. Various studies have been aimed towards assessing the impact of different restoration practices on coal mine wastelands. Plantation scheme in a scientific way is the most suitable approach in this context. During the present investigation, an effort have been made to assess the vegetation dynamics through structure, composition, diversity, and forest floor biomass analysis in and around Bishrampur collieries, Sarguja division, northern Chhattisgarh, India. We have tried to develop strategies for eco-restoration and habitat management of the concerned study sites. Four sites were randomly selected in different directions of the study area. We classified the vegetation community of the study sites into various strata on the basis of height. Two hundred forty quadrats were laid down in various directions of the study area to quantify vegetation under different strata. During our investigation, we found eight different tree species representing four families in the different study sites. The density of the various tree species ranged between 40 and 160 individuals ha -1 . The density of sapling, seedling, shrub, and herb ranged between 740 and 1620; 2000 and 6000; 1200 and 2000; and 484,000 and 612,000 individuals ha -1 , respectively, in different directions. The diversity indices of the tree reflected highest Shannon index value of 1.91. Simpsons index ranged between 0.28 and 0.50, species richness ranged between 0.27 and 0.61, equitability up to 1.44, and Beta diversity ranged between 2.00 and 4.00. Total forest floor biomass ranged between 4.20 and 5.65 t/ha among the study sites. Highest forest floor biomass occurred in the south direction and lowest at east direction. Total forest floor biomass declined by 6.19% in west, 13.10% in north, and 25.66% in east direction, respectively. The mining activities resulted

  12. Vulnerability of the boreal forest to climate change: are managed forests more susceptible?

    International Nuclear Information System (INIS)

    Leduc, A.; Gauthier, S.

    2004-01-01

    This paper postulates that forests dominated by younger seral stages are less vulnerable to climate change that those composed of mature and overmature stands. To support this analysis, an overview of expected changes in climate conditions was provided. Expected changes include higher maximum temperatures, higher minimum temperatures and a decrease in periods of intense cold and fewer frost days; reduction in the diurnal temperature range; an increase in the apparent heat index; greater numbers of intense precipitation; and, increased risk of drought associated with air mass movements. A comparison between conditions in a managed forest mosaic and natural forests was made, with managed forests differing due to efforts to regulate the age structure. The inversion in the age structure of forest mosaics creates significant changes in structural characteristics and composition, including greater hardwood components and more even-aged stands. It was concluded that in Canada, managed boreal forests are younger and have less black spruce and more hardwoods and fir, making younger forests less vulnerable to fire and more amenable to fire control due to increased accessibility. It was also noted that because of their relative youth, managed forests are more vulnerable to regeneration failure and that managed forests with more balsam fir and trembling aspen are at greater risk for insect outbreaks. In addition, wind throw, a threat to older forests, is not significant in managed forests. 15 refs., 1 tab., 2 figs

  13. Vegetation Indices for Mapping Canopy Foliar Nitrogen in a Mixed Temperate Forest

    Directory of Open Access Journals (Sweden)

    Zhihui Wang

    2016-06-01

    Full Text Available Hyperspectral remote sensing serves as an effective tool for estimating foliar nitrogen using a variety of techniques. Vegetation indices (VIs are a simple means of retrieving foliar nitrogen. Despite their popularity, few studies have been conducted to examine the utility of VIs for mapping canopy foliar nitrogen in a mixed forest context. In this study, we assessed the performance of 32 vegetation indices derived from HySpex airborne hyperspectral images for estimating canopy mass-based foliar nitrogen concentration (%N in the Bavarian Forest National Park. The partial least squares regression (PLSR was performed for comparison. These vegetation indices were classified into three categories that are mostly correlated to nitrogen, chlorophyll, and structural properties such as leaf area index (LAI. %N was destructively measured in 26 broadleaf, needle leaf, and mixed stand plots to represent the different species and canopy structure. The canopy foliar %N is defined as the plot-level mean foliar %N of all species weighted by species canopy foliar mass fraction. Our results showed that the variance of canopy foliar %N is mainly explained by functional type and species composition. The normalized difference nitrogen index (NDNI produced the most accurate estimation of %N (R2CV = 0.79, RMSECV = 0.26. A comparable estimation of %N was obtained by the chlorophyll index Boochs2 (R2CV = 0.76, RMSECV = 0.27. In addition, the mean NIR reflectance (800–850 nm, representing canopy structural properties, also achieved a good accuracy in %N estimation (R2CV = 0.73, RMSECV = 0.30. The PLSR model provided a less accurate estimation of %N (R2CV = 0.69, RMSECV = 0.32. We argue that the good performance of all three categories of vegetation indices in %N estimation can be attributed to the synergy among plant traits (i.e., canopy structure, leaf chemical and optical properties while these traits may converge across plant species for evolutionary reasons. Our

  14. 25 CFR 163.25 - Forest management deductions.

    Science.gov (United States)

    2010-04-01

    ... that are paid from funds appropriated for fire suppression or pest control or otherwise offset federal... 25 Indians 1 2010-04-01 2010-04-01 false Forest management deductions. 163.25 Section 163.25... Forest Management and Operations § 163.25 Forest management deductions. (a) Pursuant to the provisions of...

  15. National forest inventory contributions to forest biodiversity monitoring

    DEFF Research Database (Denmark)

    Chirici, Cherardo; McRoberts, Ronald; Winter, Susanne

    2012-01-01

    . The primary international processes dealing with biodiversity and sustainable forest management, the Convention on Biological Diversity (CBD), Forest Europe, Streamlining European Biodiversity Indicators 2010 of the European Environmental Agency, and the Montréal Process, all include indicators related...... (ground vegetation and regeneration) NFIs should invest more in harmonization efforts. On the basis of these key findings, we recommend that NFIs should represent a main component of a future global biodiversity monitoring network as urgently requested by the CBD....

  16. Leaf area index retrieval using Hyperion EO-1 data-based vegetation indices in Himalayan forest system

    Science.gov (United States)

    Singh, Dharmendra; Singh, Sarnam

    2016-04-01

    Present Study is being taken to retrieve Leaf Area Indexn(LAI) in Himalayan forest system using vegetation indices developed from Hyperion EO-1 hyperspectral data. Hemispherical photograph were captured in the month of March and April, 2012 at 40 locations, covering moist tropical Sal forest, subtropical Bauhinia and pine forest and temperate Oak forest and analysed using an open source GLA software. LAI in the study region was ranging in between 0.076 m2/m2 to 6.00 m2/m2. These LAI values were used to develop spectral models with the FLAASH corrected Hyperion measurements.Normalized difference vegetation index (NDVI) was used taking spectral reflectance values of all the possible combinations of 170 atmospherically corrected channels. The R2 was ranging from lowest 0.0 to highest 0.837 for the band combinations of spectral region 640 nm and 670 nm. The spectral model obtained was, spectral reflectance (y) = 0.02x LAI(x) - 0.0407.

  17. Management and utilization of forest resources in Papua New Guinea

    Science.gov (United States)

    P.B.L. Srivastava

    1992-01-01

    Papua New Guinea, with an area of about 46.7 million ha and population of 3.7 million, is blessed with a large natural forest resource. Over 80 percent of the land is covered with forests of various types, ranging from swamp and lowland rain forests in coastal plains to alpine vegetation and moss forests in the highlands, most of which are owned by the people. About 15...

  18. Palaeoecological data as a tool to predict possible future vegetation changes in the boreal forest zone of European Russia: a case study from the Central Forest Biosphere Reserve

    Science.gov (United States)

    Novenko, E. Yu; Tsyganov, A. N.; Olchev, A. V.

    2018-01-01

    New multi-proxy records (pollen, testate amoebae, and charcoal) were applied to reconstruct the vegetation dynamics in the boreal forest area of the southern part of Valdai Hills (the Central Forest Biosphere Reserve) during the Holocene. The reconstructions of the mean annual temperature and precipitation, the climate moisture index (CMI), peatland surface moisture, and fire activity have shown that climate change has a significant impact on the boreal forests of European Russia. Temperature growth and decreased moistening during the warmest phases of the Holocene Thermal Maximum in 7.0-6.2 ka BP and 6.0-5.5 ka BP and in the relatively warm phase in 3.4-2.5 ka BP led to structural changes in plant communities, specifically an increase in the abundance of broadleaf tree species in forest stands and the suppression of Picea. The frequency of forest fires was higher in that period, and it resulted in the replacement of spruce forests by secondary stands with Betula and Pinus. Despite significant changes in the climatic parameters projected for the 21st century using even the optimistic RCP2.6 scenario, the time lag between climate changes and vegetation responses makes any catastrophic vegetation disturbances (due to natural reasons) in the area in the 21st century unlikely.

  19. The impact of future forest dynamics on climate: interactive effects of changing vegetation and disturbance regimes

    Science.gov (United States)

    Thom, Dominik; Rammer, Werner; Seidl, Rupert

    2018-01-01

    Currently, the temperate forest biome cools the earth’s climate and dampens anthropogenic climate change. However, climate change will substantially alter forest dynamics in the future, affecting the climate regulation function of forests. Increasing natural disturbances can reduce carbon uptake and evaporative cooling, but at the same time increase the albedo of a landscape. Simultaneous changes in vegetation composition can mitigate disturbance impacts, but also influence climate regulation directly (e.g., via albedo changes). As a result of a number of interactive drivers (changes in climate, vegetation, and disturbance) and their simultaneous effects on climate-relevant processes (carbon exchange, albedo, latent heat flux) the future climate regulation function of forests remains highly uncertain. Here we address these complex interactions to assess the effect of future forest dynamics on the climate system. Our specific objectives were (1) to investigate the long-term interactions between changing vegetation composition and disturbance regimes under climate change, (2) to quantify the response of climate regulation to changes in forest dynamics, and (3) to identify the main drivers of the future influence of forests on the climate system. We investigated these issues using the individual-based forest landscape and disturbance model (iLand). Simulations were run over 200 yr for Kalkalpen National Park (Austria), assuming different future climate projections, and incorporating dynamically responding wind and bark beetle disturbances. To consistently assess the net effect on climate the simulated responses of carbon exchange, albedo, and latent heat flux were expressed as contributions to radiative forcing. We found that climate change increased disturbances (+27.7% over 200 yr) and specifically bark beetle activity during the 21st century. However, negative feedbacks from a simultaneously changing tree species composition (+28.0% broadleaved species) decreased

  20. The impact of future forest dynamics on climate: interactive effects of changing vegetation and disturbance regimes.

    Science.gov (United States)

    Thom, Dominik; Rammer, Werner; Seidl, Rupert

    2017-11-01

    Currently, the temperate forest biome cools the earth's climate and dampens anthropogenic climate change. However, climate change will substantially alter forest dynamics in the future, affecting the climate regulation function of forests. Increasing natural disturbances can reduce carbon uptake and evaporative cooling, but at the same time increase the albedo of a landscape. Simultaneous changes in vegetation composition can mitigate disturbance impacts, but also influence climate regulation directly (e.g., via albedo changes). As a result of a number of interactive drivers (changes in climate, vegetation, and disturbance) and their simultaneous effects on climate-relevant processes (carbon exchange, albedo, latent heat flux) the future climate regulation function of forests remains highly uncertain. Here we address these complex interactions to assess the effect of future forest dynamics on the climate system. Our specific objectives were (1) to investigate the long-term interactions between changing vegetation composition and disturbance regimes under climate change, (2) to quantify the response of climate regulation to changes in forest dynamics, and (3) to identify the main drivers of the future influence of forests on the climate system. We investigated these issues using the individual-based forest landscape and disturbance model (iLand). Simulations were run over 200 yr for Kalkalpen National Park (Austria), assuming different future climate projections, and incorporating dynamically responding wind and bark beetle disturbances. To consistently assess the net effect on climate the simulated responses of carbon exchange, albedo, and latent heat flux were expressed as contributions to radiative forcing. We found that climate change increased disturbances (+27.7% over 200 yr) and specifically bark beetle activity during the 21st century. However, negative feedbacks from a simultaneously changing tree species composition (+28.0% broadleaved species) decreased

  1. Simulating boreal forest carbon dynamics after stand-replacing fire disturbance : Insights from a global process-based vegetation model

    NARCIS (Netherlands)

    Yue, Chao; Ciais, P.; Luyssaert, S.; Cadule, Patricia; Harden, J. L.; Randerson, J.; Bellassen, V.; Wang, T.; Piao, S.L.; Poulter, B.; Viovy, N.

    2013-01-01

    Stand-replacing fires are the dominant fire type in North American boreal forests. They leave a historical legacy of a mosaic landscape of different aged forest cohorts. This forest age dynamics must be included in vegetation models to accurately quantify the role of fire in the historical and

  2. 25 CFR 163.10 - Management of Indian forest land.

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Management of Indian forest land. 163.10 Section 163.10... Forest Management and Operations § 163.10 Management of Indian forest land. (a) The Secretary shall undertake forest land management activities on Indian forest land, either directly or through contracts...

  3. Influence of forest management alternatives and land type on susceptibility to fire in northern Wisconsin, USA

    Science.gov (United States)

    Eric J. Gustafson; Patrick A. Zollner; Brian R. Sturtevant; S. He Hong; David J. Mladenoff

    2004-01-01

    We used the LANDIS disturbance and succession model to study the effects of six alternative vegetation management scenarios on forest succession and the subsequent risk of canopy fire on a 2791 km2 landscape in northern Wisconsin, USA. The study area is a mix of fire-prone and fire-resistant land types. The alternatives vary the spatial...

  4. Sustainable forest management in Serbia: State and potentials

    Directory of Open Access Journals (Sweden)

    Medarević Milan

    2008-01-01

    Full Text Available Starting from the internationally adopted definition of sustainable forest management, this paper points to the demands of sustainable forest management that can be satisfied by meeting the definite assumptions. The first part presents the objectives of forest and woodland management planning and utilisation, hunting management, and protection of protected areas, as well as the all-inclusive compatible goals of forest policy in Serbia. The second part presents the analysis of the present state of forests in Serbia, in relation to the Pan-European criteria for the assessment of sustainability, and the potentials of our forests to meet all the demands.

  5. Simulating vegetation response to climate change in the Blue Mountains with MC2 dynamic global vegetation model

    Directory of Open Access Journals (Sweden)

    John B. Kim

    2018-04-01

    Full Text Available Warming temperatures are projected to greatly alter many forests in the Pacific Northwest. MC2 is a dynamic global vegetation model, a climate-aware, process-based, and gridded vegetation model. We calibrated and ran MC2 simulations for the Blue Mountains Ecoregion, Oregon, USA, at 30 arc-second spatial resolution. We calibrated MC2 using the best available spatial datasets from land managers. We ran future simulations using climate projections from four global circulation models (GCM under representative concentration pathway 8.5. Under this scenario, forest productivity is projected to increase as the growing season lengthens, and fire occurrence is projected to increase steeply throughout the century, with burned area peaking early- to mid-century. Subalpine forests are projected to disappear, and the coniferous forests to contract by 32.8%. Large portions of the dry and mesic forests are projected to convert to woodlands, unless precipitation were to increase. Low levels of change are projected for the Umatilla National Forest consistently across the four GCM’s. For the Wallowa-Whitman and the Malheur National Forest, forest conversions are projected to vary more across the four GCM-based simulations, reflecting high levels of uncertainty arising from climate. For simulations based on three of the four GCMs, sharply increased fire activity results in decreases in forest carbon stocks by the mid-century, and the fire activity catalyzes widespread biome shift across the study area. We document the full cycle of a structured approach to calibrating and running MC2 for transparency and to serve as a template for applications of MC2. Keywords: Climate change, Regional change, Simulation, Calibration, Forests, Fire, Dynamic global vegetation model

  6. Forest management educational needs in South African forestry ...

    African Journals Online (AJOL)

    The survey results confirm that, although forest managers still need a core technical toolbox, they are also required to address multiple issues and require a broader 'package' of skills. Keywords: business; economics; forest education; forest management; South African forest industry; survey instrument. Southern Forests ...

  7. Application of analytic hierarchy process in landscape management: Case study area Košutnjak park-forest

    Directory of Open Access Journals (Sweden)

    Lakićević Milena

    2011-01-01

    Full Text Available Proper management is one of key elements of the natural landscape protection strategy. Park-forests with protected and conserved natural elements represent attractive eco-tourism urban zones. Košutnjak is the most visited park-forest in Serbian capitol Belgrade, unfortunately with increasing number of degraded and devastated areas as a consequence of negative human impacts in the past. In order to conserve natural values in this popular forested city area, and to improve its tourism potential, we found that in achieving that goal, it is meaningful to asses possible management practices and identify the most desired one by applying the analytic hierarchy process (AHP, scientifically sound multi-criteria decision making tool. Based on the obtained results, a recommended strategy is to renovate natural vegetation and to promote recreational and tourism offer in Košutnjak with respect of the sustainability principle.

  8. Evolution of Sustainability in American Forest Resource Management Planning in the Context of the American Forest Management Textbook

    Directory of Open Access Journals (Sweden)

    Thomas J. Straka

    2009-10-01

    Full Text Available American forest resource management and planning goes back to the European roots of American Forestry. Timber management plans, documents based on forest regulation for timber production, were the foundation of American forestry. These types of management plans predominated until World War II. Multiple use forestry developed after World War II and issues like recreation, wildlife, water quality, and wilderness became more important. In the 1970’s harvest scheduling became part of the planning process, allowing for optimization of multiple goals. By 2001 social, environmental, and economic goals were integrated into the timber production process. American forestry experienced distinct historical periods of resource planning, ranging from classic sustained yield timber production, to multiple use-sustained yield, to sustainable human-forest systems. This article traces the historical changes in forest management planning philosophy using the forest management textbooks of the time. These textbooks provide insight into the thought process of the forestry profession as changes in the concept of sustainability occurred.

  9. Managing Forests for Water in the Anthropocene—The Best Kept Secret Services of Forest Ecosystems

    Directory of Open Access Journals (Sweden)

    Irena F. Creed

    2016-03-01

    Full Text Available Water and forests are inextricably linked. Pressures on forests from population growth and climate change are increasing risks to forests and their aquatic ecosystem services (AES. There is a need to incorporate AES in forest management but there is considerable uncertainty about how to do so. Approaches that manage forest ecosystem services such as fiber, water and carbon sequestration independently ignore the inherent complexities of ecosystem services and their responses to management actions, with the potential for unintended consequences that are difficult to predict. The ISO 31000 Risk Management Standard is a standardized framework to assess risks to forest AES and to prioritize management strategies to manage risks within tolerable ranges. The framework consists of five steps: establishing the management context, identifying, analyzing, evaluating and treating the risks. Challenges to implementing the framework include the need for novel models and indicators to assess forest change and resilience, quantification of linkages between forest practice and AES, and the need for an integrated systems approach to assess cumulative effects and stressors on forest ecosystems and AES. In the face of recent international agreements to protect forests, there are emerging opportunities for international leadership to address these challenges in order to protect both forests and AES.

  10. Can Airborne Laser Scanning (ALS and Forest Estimates Derived from Satellite Images Be Used to Predict Abundance and Species Richness of Birds and Beetles in Boreal Forest?

    Directory of Open Access Journals (Sweden)

    Eva Lindberg

    2015-04-01

    Full Text Available In managed landscapes, conservation planning requires effective methods to identify high-biodiversity areas. The objective of this study was to evaluate the potential of airborne laser scanning (ALS and forest estimates derived from satellite images extracted at two spatial scales for predicting the stand-scale abundance and species richness of birds and beetles in a managed boreal forest landscape. Multiple regression models based on forest data from a 50-m radius (i.e., corresponding to a homogenous forest stand had better explanatory power than those based on a 200-m radius (i.e., including also parts of adjacent stands. Bird abundance and species richness were best explained by the ALS variables “maximum vegetation height” and “vegetation cover between 0.5 and 3 m” (both positive. Flying beetle abundance and species richness, as well as epigaeic (i.e., ground-living beetle richness were best explained by a model including the ALS variable “maximum vegetation height” (positive and the satellite-derived variable “proportion of pine” (negative. Epigaeic beetle abundance was best explained by “maximum vegetation height” at 50 m (positive and “stem volume” at 200 m (positive. Our results show that forest estimates derived from satellite images and ALS data provide complementary information for explaining forest biodiversity patterns. We conclude that these types of remote sensing data may provide an efficient tool for conservation planning in managed boreal landscapes.

  11. Carbon stock and carbon turnover in boreal and temperate forests - Integration of remote sensing data and global vegetation models

    Science.gov (United States)

    Thurner, Martin; Beer, Christian; Carvalhais, Nuno; Forkel, Matthias; Tito Rademacher, Tim; Santoro, Maurizio; Tum, Markus; Schmullius, Christiane

    2016-04-01

    Long-term vegetation dynamics are one of the key uncertainties of the carbon cycle. There are large differences in simulated vegetation carbon stocks and fluxes including productivity, respiration and carbon turnover between global vegetation models. Especially the implementation of climate-related mortality processes, for instance drought, fire, frost or insect effects, is often lacking or insufficient in current models and their importance at global scale is highly uncertain. These shortcomings have been due to the lack of spatially extensive information on vegetation carbon stocks, which cannot be provided by inventory data alone. Instead, we recently have been able to estimate northern boreal and temperate forest carbon stocks based on radar remote sensing data. Our spatially explicit product (0.01° resolution) shows strong agreement to inventory-based estimates at a regional scale and allows for a spatial evaluation of carbon stocks and dynamics simulated by global vegetation models. By combining this state-of-the-art biomass product and NPP datasets originating from remote sensing, we are able to study the relation between carbon turnover rate and a set of climate indices in northern boreal and temperate forests along spatial gradients. We observe an increasing turnover rate with colder winter temperatures and longer winters in boreal forests, suggesting frost damage and the trade-off between frost adaptation and growth being important mortality processes in this ecosystem. In contrast, turnover rate increases with climatic conditions favouring drought and insect outbreaks in temperate forests. Investigated global vegetation models from the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP), including HYBRID4, JeDi, JULES, LPJml, ORCHIDEE, SDGVM, and VISIT, are able to reproduce observation-based spatial climate - turnover rate relationships only to a limited extent. While most of the models compare relatively well in terms of NPP, simulated

  12. Predicting Potential Fire Severity Using Vegetation, Topography and Surface Moisture Availability in a Eurasian Boreal Forest Landscape

    Directory of Open Access Journals (Sweden)

    Lei Fang

    2018-03-01

    Full Text Available Severity of wildfires is a critical component of the fire regime and plays an important role in determining forest ecosystem response to fire disturbance. Predicting spatial distribution of potential fire severity can be valuable in guiding fire and fuel management planning. Spatial controls on fire severity patterns have attracted growing interest, but few studies have attempted to predict potential fire severity in fire-prone Eurasian boreal forests. Furthermore, the influences of fire weather variation on spatial heterogeneity of fire severity remain poorly understood at fine scales. We assessed the relative importance and influence of pre-fire vegetation, topography, and surface moisture availability (SMA on fire severity in 21 lightning-ignited fires occurring in two different fire years (3 fires in 2000, 18 fires in 2010 of the Great Xing’an Mountains with an ensemble modeling approach of boosted regression tree (BRT. SMA was derived from 8-day moderate resolution imaging spectroradiometer (MODIS evapotranspiration products. We predicted the potential distribution of fire severity in two fire years and evaluated the prediction accuracies. BRT modeling revealed that vegetation, topography, and SMA explained more than 70% of variations in fire severity (mean 83.0% for 2000, mean 73.8% for 2010. Our analysis showed that evergreen coniferous forests were more likely to experience higher severity fires than the dominant deciduous larch forests of this region, and deciduous broadleaf forests and shrublands usually burned at a significantly lower fire severity. High-severity fires tended to occur in gentle and well-drained slopes at high altitudes, especially those with north-facing aspects. SMA exhibited notable and consistent negative association with severity. Predicted fire severity from our model exhibited strong agreement with the observed fire severity (mean r2 = 0.795 for 2000, 0.618 for 2010. Our results verified that spatial variation

  13. Study on the forest vegetation restoration monitoring using HJ-1A hyperspectral data

    International Nuclear Information System (INIS)

    Chuan, Zhang; Fawang, Ye; Hongcheng, Liu; Haixia, He

    2014-01-01

    In this paper, Xunke County was studied using HJ-1A hyperspectral data for monitoring vegetation restoration after forest fires. The pre-processing procedure including data format conversion, image mosaicing and atmospheric correction. Support vector machine classification was used to perform surface feature identification based on the extracted spectral end-members. On that basis, the image area was divided into seven categories and statistical analysis of classification types was performed. The results showed that HJ-1A hyperspectral data had great potential in fine classification of surface features and the accuracy of classification was 91.8%. The mild and severe fire-affected area extraction provided useful reference for disaster recovery monitoring. Furthermore, the distinction between coniferous forest and broadleaved forest can offer useful information for forest fire prevention and early warning to some extent

  14. The influence of connectivity in forest patches, and riparian vegetation width on stream macroinvertebrate fauna

    Directory of Open Access Journals (Sweden)

    IC Valle

    Full Text Available We assessed two dimensions of stream connectivity: longitudinal (between forest patches along the stream and lateral (riparian vegetation, using macroinvertebrate assemblages as bioindicators. Sites representing different land-uses were sampled in a lowland basin that holds a mosaic of protected areas. Land-use analysis, forest successional stages and riparian zone widths were calculated by the GIS analysis. Macroinvertebrate fauna was strongly affected by land-use. We observed a continuous decrease in the number of sensitive species, %Shredders and IBE-IOC biotic index from the upstream protected area to highly deforested sites, increasing again where the stream crosses a Biological Reserve. When analysing buffer strips, we found aquatic fauna responding to land-use alterations beyond the 30 m riparian corridor (60 m and 100 m wide. We discussed the longitudinal connectivity between forest patches and the riparian vegetation buffer strips necessary to hold high macroinvertebrate diversity. We recommend actions for the increase/maintenance of biodiversity in this and other lowland basins.

  15. Reconstructing European forest management from 1600 to 2010

    Science.gov (United States)

    McGrath, M. J.; Luyssaert, S.; Meyfroidt, P.; Kaplan, J. O.; Buergi, M.; Chen, Y.; Erb, K.; Gimmi, U.; McInerney, D.; Naudts, K.; Otto, J.; Pasztor, F.; Ryder, J.; Schelhaas, M.-J.; Valade, A.

    2015-04-01

    European forest use for fuel, timber and food dates back to pre-Roman times. Century-scale ecological processes and their legacy effects require accounting for forest management when studying today's forest carbon sink. Forest management reconstructions that are used to drive land surface models are one way to quantify the impact of both historical and today's large scale application of forest management on today's forest-related carbon sink and surface climate. In this study we reconstruct European forest management from 1600 to 2010 making use of diverse approaches, data sources and assumptions. Between 1600 and 1828, a demand-supply approach was used in which wood supply was reconstructed based on estimates of historical annual wood increment and land cover reconstructions. For the same period demand estimates accounted for the fuelwood needed in households, wood used in food processing, charcoal used in metal smelting and salt production, timber for construction and population estimates. Comparing estimated demand and supply resulted in a spatially explicit reconstruction of the share of forests under coppice, high stand management and forest left unmanaged. For the reconstruction between 1829 and 2010 a supply-driven back-casting method was used. The method used age reconstructions from the years 1950 to 2010 as its starting point. Our reconstruction reproduces the most important changes in forest management between 1600 and 2010: (1) an increase of 593 000 km2 in conifers at the expense of deciduous forest (decreasing by 538 000 km2), (2) a 612 000 km2 decrease in unmanaged forest, (3) a 152 000 km2 decrease in coppice management, (4) a 818 000 km2 increase in high stand management, and (5) the rise and fall of litter raking which at its peak in 1853 removed 50 Tg dry litter per year.

  16. Evaluating herbivore management outcomes and associated vegetation impacts

    Directory of Open Access Journals (Sweden)

    Rina C.C. Grant

    2011-05-01

    Conservation implications: In rangeland, optimising herbivore numbers to achieve the management objectives without causing unacceptable or irreversible change in the vegetation is challenging. This manuscript explores different avenues to evaluate herbivore impact and the outcomes of management approaches that may affect vegetation.

  17. Comparing Sustainable Forest Management Certifications Standards: A Meta-analysis

    Directory of Open Access Journals (Sweden)

    Michael Rawson. Clark

    2011-03-01

    Full Text Available To solve problems caused by conventional forest management, forest certification has emerged as a driver of sustainable forest management. Several sustainable forest management certification systems exist, including the Forest Stewardship Council and those endorsed by the Programme for the Endorsement of Forest Certification, such as the Canadian Standards Association - Sustainable Forestry Management Standard CAN/CSA - Z809 and Sustainable Forestry Initiative. For consumers to use certified products to meet their own sustainability goals, they must have an understanding of the effectiveness of different certification systems. To understand the relative performance of three systems, we determined: (1 the criteria used to compare the Forest Stewardship Council, Canadian Standards Association - Sustainable Forestry Management, and Sustainable Forestry Initiative, (2 if consensus exists regarding their ability to achieve sustainability goals, and (3 what research gaps must be filled to improve our understanding of how forest certification systems affect sustainable forest management. We conducted a qualitative meta-analysis of 26 grey literature references (books, industry and nongovernmental organization publications and 9 primary literature references (articles in peer-reviewed academic journals that compared at least two of the aforementioned certification systems. The Forest Stewardship Council was the highest performer for ecological health and social sustainable forest management criteria. The Canadian Standards Association - Sustainable Forestry Management and Sustainable Forestry Initiative performed best under sustainable forest management criteria of forest productivity and economic longevity of a firm. Sixty-two percent of analyses were comparisons of the wording of certification system principles or criteria; 34% were surveys of foresters or consumers. An important caveat to these results is that only one comparison was based on

  18. Bark beetle responses to vegetation management practices

    Science.gov (United States)

    Joel D. McMillin; Christopher J. Fettig

    2009-01-01

    Native tree-killing bark beetles (Coleoptera: Curculionidae, Scolytinae) are a natural component of forest ecosystems. Eradication is neither possible nor desirable and periodic outbreaks will occur as long as susceptible forests and favorable climatic conditions co-exist. Recent changes in forest structure and tree composition by natural processes and management...

  19. Faunal impact on vegetation structure and ecosystem function in mangrove forests

    DEFF Research Database (Denmark)

    Cannicci, S.; Burrows, Damien; Fratini, Sara

    2008-01-01

    The last 20 years witnessed a real paradigm shift concerning the impact of biotic factors on ecosystem functions as well as on vegetation structure of mangrove forests. Before this small scientific revolution took place, structural aspects of mangrove forests were viewed to be the result of abiotic...... processes acting from the bottom-up, while, at ecosystem level, the outwelling hypothesis stated that mangroves primary production was removed via tidal action and carried to adjacent nearshore ecosystems where it fuelled detrital based food-webs. The sesarmid crabs were the first macrofaunal taxon...... to be considered a main actor in mangrove structuring processes, thanks to a number of studies carried out in the Indo-Pacific forests in the late 1970s and early 1980s. Following these classical papers, a number of studies on Sesarmidae feeding and burrowing ecology were carried out, which leave no doubts about...

  20. A non-parametric, supervised classification of vegetation types on the Kaibab National Forest using decision trees

    Science.gov (United States)

    Suzanne M. Joy; R. M. Reich; Richard T. Reynolds

    2003-01-01

    Traditional land classification techniques for large areas that use Landsat Thematic Mapper (TM) imagery are typically limited to the fixed spatial resolution of the sensors (30m). However, the study of some ecological processes requires land cover classifications at finer spatial resolutions. We model forest vegetation types on the Kaibab National Forest (KNF) in...

  1. Large-Scale Variation in Forest Carbon Turnover Rate and its Relation to Climate - Remote Sensing vs. Global Vegetation Models

    Science.gov (United States)

    Carvalhais, N.; Thurner, M.; Beer, C.; Forkel, M.; Rademacher, T. T.; Santoro, M.; Tum, M.; Schmullius, C.

    2015-12-01

    While vegetation productivity is known to be strongly correlated to climate, there is a need for an improved understanding of the underlying processes of vegetation carbon turnover and their importance at a global scale. This shortcoming has been due to the lack of spatially extensive information on vegetation carbon stocks, which we recently have been able to overcome by a biomass dataset covering northern boreal and temperate forests originating from radar remote sensing. Based on state-of-the-art products on biomass and NPP, we are for the first time able to study the relation between carbon turnover rate and a set of climate indices in northern boreal and temperate forests. The implementation of climate-related mortality processes, for instance drought, fire, frost or insect effects, is often lacking or insufficient in current global vegetation models. In contrast to our observation-based findings, investigated models from the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP), including HYBRID4, JeDi, JULES, LPJml, ORCHIDEE, SDGVM, and VISIT, are able to reproduce spatial climate - turnover rate relationships only to a limited extent. While most of the models compare relatively well to observation-based NPP, simulated vegetation carbon stocks are severely biased compared to our biomass dataset. Current limitations lead to considerable uncertainties in the estimated vegetation carbon turnover, contributing substantially to the forest feedback to climate change. Our results are the basis for improving mortality concepts in global vegetation models and estimating their impact on the land carbon balance.

  2. Advances in Remote Sensing for Vegetation Dynamics and Agricultural Management

    Science.gov (United States)

    Tucker, Compton; Puma, Michael

    2015-01-01

    Spaceborne remote sensing has led to great advances in the global monitoring of vegetation. For example, the NASA Global Inventory Modeling and Mapping Studies (GIMMS) group has developed widely used datasets from the Advanced Very High Resolution Radiometer (AVHRR) sensors as well as the Moderate Resolution Imaging Spectroradiometer (MODIS) map imagery and normalized difference vegetation index datasets. These data are valuable for analyzing vegetation trends and variability at the regional and global levels. Numerous studies have investigated such trends and variability for both natural vegetation (e.g., re-greening of the Sahel, shifts in the Eurasian boreal forest, Amazonian drought sensitivity) and crops (e.g., impacts of extremes on agricultural production). Here, a critical overview is presented on recent developments and opportunities in the use of remote sensing for monitoring vegetation and crop dynamics.

  3. Effect of land-use practice on soil moisture variability for soils covered with dense forest vegetation of Puerto Rico

    Science.gov (United States)

    Tsegaye, T.; Coleman, T.; Senwo, Z.; Shaffer, D.; Zou, X.

    1998-01-01

    Little is known about the landuse management effect on soil moisture and soil pH distribution on a landscape covered with dense tropical forest vegetation. This study was conducted at three locations where the history of the landuse management is different. Soil moisture was measured using a 6-cm three-rod Time Domain Reflectometery (TDR) probe. Disturbed soil samples were taken from the top 5-cm at the up, mid, and foothill landscape position from the same spots where soil moisture was measured. The results showed that soil moisture varies with landscape position and depth at all three locations. Soil pH and moisture variability were found to be affected by the change in landuse management and landscape position. Soil moisture distribution usually expected to be relatively higher in the foothill (P3) area of these forests than the uphill (P1) position. However, our results indicated that in the Luquillo and Guanica site the surface soil moisture was significantly higher for P1 than P3 position. These suggest that the surface and subsurface drainage in these two sites may have been poor due to the nature of soil formation and type.

  4. Management Conflicts in Cameroonian Community Forests

    Directory of Open Access Journals (Sweden)

    Driss Ezzine de Blas

    2011-03-01

    Full Text Available Cameroonian community forests were designed and implemented to meet the general objectives of forest management decentralization for democratic and community management. The spread of management conflicts all over the country has shown that these broad expectations have not been met. We describe conflicts occurring in 20 community forests by types of actors and processes involved. We argue that a number of external (community vs. external actors and internal (intra-community conflicts are part of the causes blocking the expected outcome of Cameroonian community forests, fostering bad governance and loss of confidence. Rent appropriation and control of forest resources appear as systemic or generalized conflicts. While community forest support projects have tended to focus on capacity building activities, less direct attention has been given to these systemic problems. We conclude that some factors like appropriate leadership, and spending of logging receipts on collective benefits (direct and indirect are needed to minimize conflicts. Government and development agencies should concentrate efforts on designing concrete tools for improving financial transparency while privileging communities with credible leaders.

  5. Evaluation of climate-related carbon turnover processes in global vegetation models for boreal and temperate forests.

    Science.gov (United States)

    Thurner, Martin; Beer, Christian; Ciais, Philippe; Friend, Andrew D; Ito, Akihiko; Kleidon, Axel; Lomas, Mark R; Quegan, Shaun; Rademacher, Tim T; Schaphoff, Sibyll; Tum, Markus; Wiltshire, Andy; Carvalhais, Nuno

    2017-08-01

    Turnover concepts in state-of-the-art global vegetation models (GVMs) account for various processes, but are often highly simplified and may not include an adequate representation of the dominant processes that shape vegetation carbon turnover rates in real forest ecosystems at a large spatial scale. Here, we evaluate vegetation carbon turnover processes in GVMs participating in the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP, including HYBRID4, JeDi, JULES, LPJml, ORCHIDEE, SDGVM, and VISIT) using estimates of vegetation carbon turnover rate (k) derived from a combination of remote sensing based products of biomass and net primary production (NPP). We find that current model limitations lead to considerable biases in the simulated biomass and in k (severe underestimations by all models except JeDi and VISIT compared to observation-based average k), likely contributing to underestimation of positive feedbacks of the northern forest carbon balance to climate change caused by changes in forest mortality. A need for improved turnover concepts related to frost damage, drought, and insect outbreaks to better reproduce observation-based spatial patterns in k is identified. As direct frost damage effects on mortality are usually not accounted for in these GVMs, simulated relationships between k and winter length in boreal forests are not consistent between different regions and strongly biased compared to the observation-based relationships. Some models show a response of k to drought in temperate forests as a result of impacts of water availability on NPP, growth efficiency or carbon balance dependent mortality as well as soil or litter moisture effects on leaf turnover or fire. However, further direct drought effects such as carbon starvation (only in HYBRID4) or hydraulic failure are usually not taken into account by the investigated GVMs. While they are considered dominant large-scale mortality agents, mortality mechanisms related to insects and

  6. Intentional systems management: managing forests for biodiversity.

    Science.gov (United States)

    A.B. Carey; B.R. Lippke; J. Sessions

    1999-01-01

    Conservation of biodiversity provides for economic, social, and environmental sustainability. Intentional management is designed to manage conflicts among groups with conflicting interests. Our goal was to ascertain if intentional management and principles of conservation of biodiversity could be combined into upland and riparian forest management strategies that would...

  7. The use and usefulness of inventory-based management planning to forest management

    DEFF Research Database (Denmark)

    Toft, Maja Nastasia Juul; Adeyeye, Yemi; Lund, Jens Friis

    2015-01-01

    -structured interviews, participatory rural appraisal exercises and analyses of aerial photographs. First, we find that the operational plans supposed to guide community-level management are based on sub-standard forest inventories, which limits their potential role in practical forest management. Second, we find...... of their forests in the sense that their impressions of past and current forest condition are mirrored in what we can observe from analysis of change in forest condition based on aerial photographs. Based on these results we question the usefulness of inventory-based management planning in the context of community...

  8. Using soil quality indicators for monitoring sustainable forest management

    Science.gov (United States)

    James A. Burger; Garland Gray; D. Andrew Scott

    2010-01-01

    Most private and public forest land owners and managers are compelled to manage their forests sustainably, which means management that is economically viable,environmentally sound, and socially acceptable. To meet this mandate, the USDA Forest Service protects the productivity of our nation’s forest soils by monitoring and evaluating management activities to ensure...

  9. Making Forest Values Work: Enhancing Multi-Dimensional Perspectives towards Sustainable Forest Management

    Directory of Open Access Journals (Sweden)

    Doni Blagojević

    2016-06-01

    Full Text Available Background and Purpose: Sustainability, sustainable development and sustainable forest management are terms that are commonly, and interchangeably used in the forest industry, however their meaning take on different connotations, relative to varying subject matter. The aim of this paper is to look at these terms in a more comprehensive way, relative to the current ideology of sustainability in forestry. Materials and Methods: This paper applies a literature review of the concepts of: i sustainable development; ii sustainable forest management; and iii economic and non-economic valuation. The concepts are viewed through a historical dimension of shifting paradigms, originating from production- to service-based forestry. Values are discussed through a review of general value theory and spatial, cultural and temporal differences in valuation. Along the evolution of these concepts, we discuss their applicability as frameworks to develop operational guidelines for forest management, relative to the multi-functionality of forests. Results and Conclusions: Potential discrepancies between the conceptual origins of sustainable development and sustainable forest management are highlighted, relative to how they have been interpreted and diffused as new perceptions on forest value for the human society. We infer the current paradigm may not reflect the various dimensions adequately as its implementation is likely to be more related to the distribution of power between stakeholders, rather than the value stakeholders’ place on the various forest attributes.

  10. Monitoring the Effects of Forest Restoration Treatments on Post-Fire Vegetation Recovery with MODIS Multitemporal Data

    Directory of Open Access Journals (Sweden)

    Willem J. D. van Leeuwen

    2008-03-01

    Full Text Available This study examines how satellite based time-series vegetation greenness data and phenological measurements can be used to monitor and quantify vegetation recovery after wildfire disturbances and examine how pre-fire fuel reduction restoration treatments impact fire severity and impact vegetation recovery trajectories. Pairs of wildfire affected sites and a nearby unburned reference site were chosen to measure the post-disturbance recovery in relation to climate variation. All site pairs were chosen in forested uplands in Arizona and were restricted to the area of the Rodeo-Chediski fire that occurred in 2002. Fuel reduction treatments were performed in 1999 and 2001. The inter-annual and seasonal vegetation dynamics before, during, and after wildfire events can be monitored using a time series of biweekly composited MODIS NDVI (Moderate Resolution Imaging Spectroradiometer - Normalized Difference Vegetation Index data. Time series analysis methods included difference metrics, smoothing filters, and fitting functions that were applied to extract seasonal and inter-annual change and phenological metrics from the NDVI time series data from 2000 to 2007. Pre- and post-fire Landsat data were used to compute the Normalized Burn Ratio (NBR and examine burn severity at the selected sites. The phenological metrics (pheno-metrics included the timing and greenness (i.e. NDVI for the start, peak and end of the growing season as well as proxy measures for the rate of green-up and senescence and the annual vegetation productivity. Pre-fire fuel reduction treatments resulted in lower fire severity, which reduced annual productivity much less than untreated areas within the Rodeo-Chediski fire perimeter. The seasonal metrics were shown to be useful for estimating the rate of post-fire disturbance recovery and the timing of phenological greenness phases. The use of satellite time series NDVI data and derived pheno-metrics show potential for tracking vegetation

  11. Forest Resource Management Plans: A Sustainability Approach

    Science.gov (United States)

    Pile, Lauren S.; Watts, Christine M.; Straka, Thomas J.

    2012-01-01

    Forest Resource Management Plans is the capstone course in many forestry and natural resource management curricula. The management plans are developed by senior forestry students. Early management plans courses were commonly technical exercises, often performed on contrived forest "tracts" on university-owned or other public lands, with a goal of…

  12. Information for forest process models: a review of NRS-FIA vegetation measurements

    Science.gov (United States)

    Charles D. Canham; William H. McWilliams

    2012-01-01

    The Forest and Analysis Program of the Northern Research Station (NRS-FIA) has re-designed Phase 3 measurements and intensified the sample intensity following a study to balance costs, utility, and sample size. The sampling scheme consists of estimating canopy-cover percent for six vegetation growth habits on 24-foot-radius subplots in four height classes and as an...

  13. Understanding the effects of fire management practices on forest health: implications for weeds and vegetation structure

    Science.gov (United States)

    Anne E. Black; Peter Landres

    2012-01-01

    Current fire policy to restore ecosystem function and resiliency and reduce buildup of hazardous fuels implies a larger future role for fire (both natural and human ignitions) (USDA Forest Service and U.S. Department of the Interior 2000). Yet some fire management (such as building fire line, spike camps, or helispots) potentially causes both short- and longterm...

  14. 77 FR 21161 - National Forest System Land Management Planning

    Science.gov (United States)

    2012-04-09

    ... 219 National Forest System Land Management Planning; Final Rule #0;#0;Federal Register / Vol. 77 , No... Forest Service 36 CFR Part 219 RIN 0596-AD02 National Forest System Land Management Planning AGENCY... Agriculture is adopting a new National Forest System land management planning rule (planning rule). The new...

  15. Promoting Sustainable Forest Management Among Stakeholders in the Prince Albert Model Forest, Canada

    Directory of Open Access Journals (Sweden)

    Glen T Hvenegaard

    2015-01-01

    Full Text Available Model Forests are partnerships for shared decision-making to support social, environmental, and economic sustainability in forest management. Relationships among sustainable forest management partners are often strained, but the Prince Albert Model Forest (PAMF represents a process of effective stakeholder involvement, cooperative relationships, visionary planning, and regional landscape management. This article seeks to critically examine the history, drivers, accomplishments, and challenges associated with the PAMF. Four key phases are discussed, representing different funding levels, planning processes, research projects, and partners. Key drivers in the PAMF were funding, urgent issues, provincial responsibility, core of committed people, evolving governance, desire for a neutral organisation, role of protected areas, and potential for mutual benefits. The stakeholders involved in the Model Forest, including the forest industry and associated groups, protected areas, Aboriginal groups, local communities, governments, and research groups, were committed to the project, cooperated on many joint activities, provided significant staffing and financial resources, and gained many benefits to their own organisations. Challenges included declining funding, changing administrative structures, multiple partners, and rotating representatives. The PAMF process promoted consultative and integrated land resource management in the region, and demonstrated the positive results of cooperation between stakeholders interested in sustainable forest management.

  16. A comprehensive guide to fuel management practices for dry mixed conifer forests in the northwestern United States: Mechanical, chemical, and biological fuel treatment methods

    Science.gov (United States)

    Theresa B. Jain; Mike A. Battaglia; Han-Sup Han; Russell T. Graham; Christopher R. Keyes; Jeremy S. Fried; Jonathan E. Sandquist

    2014-01-01

    Several mechanical approaches to managing vegetation fuels hold promise when applied to the dry mixed conifer forests in the western United States. These are most useful to treat surface, ladder, and crown fuels. There are a variety of techniques to remove or alter all kinds of plant biomass (live, dead, or decomposed) that affect forest resilience. It is important for...

  17. Managing forests because carbon matters: integrating energy, products, and land management policy

    Science.gov (United States)

    Robert W. Malmsheimer; James L. Bowyer; Jeremy S. Fried; Edmund Gee; Robert Izlar; Reid A. Miner; Ian A. Munn; Elaine Oneil; William C. Stewart

    2011-01-01

    The United States needs many different types of forests: some managed for wood products plus other benefits, and some managed for nonconsumptive uses and benefits. The objective of reducing global greenhouse gases (GHG) requires increasing carbon storage in pools other than the atmosphere. Growing more forests and keeping forests as forests are only part of the...

  18. Effects of gamma radiation on vegetative and reproductive phenology of herbaceous species of northern deciduous forests

    International Nuclear Information System (INIS)

    Zavitkovski, J.

    1977-01-01

    Vegetative and reproductive phenology of 38 herbaceous species of northern deciduous forests and forest roads were observed for 5 years, before (1970 and 1971), during (1972), and after (1973 and 1974) gamma irradiation. During the preirradiation years the occurrence of key vegetative and reproductive phenophases was very uniform throughout the area. This uniformity was upset by irradiation. In 1972 signs of senescence appeared earlier in most plants of the high-radiation zone (greater than or equal to 300 r/day) than in those outside that zone. In 1973 initiation of growth and completion of leaf growth of most plants was delayed by several weeks in the high-radiation zone. In both years the length of growing season was significantly shortened; this was also reflected in reduced biomass production. Vegetative development of surviving plants normalized in 1974. In 1972 flowering of forest herbs (which as a group flower early in the spring) was not affected by radiation, but that of summer-flowering logging-road herbs was delayed because the critical radiation doses were reached at that time. In 1973 all five flowering phenophases of the logging-road herbs were delayed about 3 weeks in the high-radiation zone. Normalization of reproductive phenophases became evident in 1974

  19. 25 CFR 163.11 - Forest management planning and sustained yield management.

    Science.gov (United States)

    2010-04-01

    ... principles of sustained yield management and will not be authorized until practical methods of harvest based on sound economic and silvicultural and other forest management principles have been prescribed... period in the future. Forest management plans shall be based on the principle of sustained yield...

  20. 75 FR 62809 - Transmission Vegetation Management Practices; Notice of Technical Conference

    Science.gov (United States)

    2010-10-13

    ... Vegetation Management Practices; Notice of Technical Conference October 5, 2010. Take notice that the Federal... the conference is to discuss current vegetation management programs and practices as required under... landowners and other affected parties have raised concerns about changes in vegetation management practices...

  1. Understanding patterns of vegetation structure and distribution across Great Smoky Mountains National Park using LiDAR and meteorology data

    Science.gov (United States)

    Kumar, J.; Hargrove, W. W.; Norman, S. P.; Hoffman, F. M.

    2017-12-01

    Great Smoky Mountains National Park (GSMNP) in Tennessee is a biodiversity hotspot and home to a large number of plant, animal and bird species. Driven by gradients of climate (ex. temperature, precipitation regimes), topography (ex. elevation, slope, aspect), geology (ex. soil types, textures, depth), hydrology (ex. drainage, moisture availability) etc. GSMNP offers a diverse composition and distribution of vegetation which in turn supports an array of wildlife. Understanding the vegetation canopy structure is critical to understand, monitor and manage the complex forest ecosystems like the Great Smoky Mountain National Park (GSMNP). Vegetation canopies not only help understand the vegetation, but are also a critically important habitat characteristics of many threatened and endangered animal and bird species that GSMNP is home to. Using airborne Light Detection and Ranging (LiDAR) we characterize the three-dimensional structure of the vegetation. LiDAR based analysis gives detailed insight in the canopy structure (overstory and understory) and its spatial variability within and across forest types. Vegetation structure and spatial distribution show strong correlation with climate, topographic, and edaphic variables and our multivariate analysis not just mines rich and large LiDAR data but presents ecological insights and data for vegetation within the park that can be useful to forest managers in their management and conservation efforts.

  2. Municipal Forest Management in Latin America | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2004-01-01

    Jan 1, 2004 ... Book cover Municipal Forest Management in Latin America ... forest management schemes we could use as models to develop policies? ... Call for proposals: Innovations for the economic inclusion of marginalized youth.

  3. Forest owner representation of forest management and perception of resource efficiency: a structural equation modeling study

    Directory of Open Access Journals (Sweden)

    Andrej Ficko

    2015-03-01

    Full Text Available Underuse of nonindustrial private forests in developed countries has been interpreted mostly as a consequence of the prevailing noncommodity objectives of their owners. Recent empirical studies have indicated a correlation between the harvesting behavior of forest owners and the specific conceptualization of appropriate forest management described as "nonintervention" or "hands-off" management. We aimed to fill the huge gap in knowledge of social representations of forest management in Europe and are the first to be so rigorous in eliciting forest owner representations in Europe. We conducted 3099 telephone interviews with randomly selected forest owners in Slovenia, asking them whether they thought they managed their forest efficiently, what the possible reasons for underuse were, and what they understood by forest management. Building on social representations theory and applying a series of structural equation models, we tested the existence of three latent constructs of forest management and estimated whether and how much these constructs correlated to the perception of resource efficiency. Forest owners conceptualized forest management as a mixture of maintenance and ecosystem-centered and economics-centered management. None of the representations had a strong association with the perception of resource efficiency, nor could it be considered a factor preventing forest owners from cutting more. The underuse of wood resources was mostly because of biophysical constraints in the environment and not a deep-seated philosophical objection to harvesting. The difference between our findings and other empirical studies is primarily explained by historical differences in forestland ownership in different parts of Europe and the United States, the rising number of nonresidential owners, alternative lifestyle, and environmental protectionism, but also as a consequence of our high methodological rigor in testing the relationships between the constructs

  4. Comparing Floristic Diversity between a Silviculturally Managed Arboretum and a Forest Reserve in Dambulla, Sri Lanka

    Directory of Open Access Journals (Sweden)

    B. D. Madurapperuma

    2014-01-01

    Full Text Available Repeated slash and burn cultivation creates wasteland with thorny shrubs, which then takes a long time to become secondary forests through serial stages of succession. Assisted natural regeneration through silvicultural management is a useful restoration method to accelerate succession. This survey evaluates the effectiveness of a simple silvicultural method for the rehabilitation of degraded lands to productive forest, thereby increasing floristic wealth. Field-based comparative analyses of floristic composition were carried out at a silviculturally managed forest (Popham Arboretum and a primary forest (Kaludiyapokuna Forest Reserve which is located in Dambulla in Sri Lanka. Floristic analysis was used to examine the effectiveness of silvicultural techniques for successful restoration of degraded forest in the dry zone. Nine 20 m × 20 m plots in each forest were enumerated and the vegetation ≥ 10 cm girth at breast height was quantitatively analyzed. Cluster analysis resulted in five distinguishable clusters (two from Popham Arboretum and three from Kaludiyapokuna Forest Reserve. Similarity indices were generated to compare the plots within and between sites. Floristic similarity was higher in forest reserve plots compared to arboretum plots. A total of 72 plant species belonging to 60 genera and 26 families were recorded from the study sites. Of the recorded species, Grewia damine and Syzygium cumini (Importance Value Index, IVI = 24 and 23 respectively were the ecologically co-dominant taxa at the Popham Arboretum. In contrast, Mischodon zeylanicus (IVI = 31, Schleichera oleosa (IVI = 25 and Diospyros ebenum (IVI = 21 were the abundant taxa in the forest reserve.

  5. StandsSIM-MD: a Management Driven forest SIMulator

    Directory of Open Access Journals (Sweden)

    Susana Barreiro

    2016-07-01

    Full Text Available Aim of the study: The existing stand level forest simulators available in Portugal were not developed with the aim of including up-to-date model versions and were limited in terms of accounting for forest management. The simulators’ platform, sIMfLOR was recently created to implement different growth models with a common philosophy. The objective was developing one easily-updatable, user-friendly, forest management and climate change sensitive simulator capable of projecting growth for the main tree species in Portugal. Area of the study: Portugal. Material and methods: The new simulator was programmed in a modular form consisting of several modules. The growth module integrates different forest growth and yield models (empirical and process-based for the main wood production tree species in Portugal (eucalypt, umbrella and maritime pines; whereas the management module drives the growth projections along the planning horizon according to a range of forest management approaches and climate (at present only available for eucalypt. Main results: The main result is the StandsSIM-MD Management Driven simulator that overcomes the limitations of the existing stand level simulators. It is a step forward when compared to the models currently available in the sIMfLOR platform covering more tree species, stand structures and stand compositions. It is focused on end-users and it is based on similar concepts regarding the generation of required inputs and generated outputs. Research highlights: -          Forest Management Driven simulations approach -          Multiple Prescriptions-Per-Stand functionality -          StandsSIM-MD can be used to support landowners decisions on stand forest management -          StandsSIM-MD simulations at regional level can be combined with optimization routines Keywords: Forest simulator, Forest Management Approaches; StandsSIM-MD; forest management.

  6. The Effect of Forest Management Strategy on Carbon Storage and Revenue in Western Washington: A Probabilistic Simulation of Tradeoffs.

    Science.gov (United States)

    Fischer, Paul W; Cullen, Alison C; Ettl, Gregory J

    2017-01-01

    The objectives of this study are to understand tradeoffs between forest carbon and timber values, and evaluate the impact of uncertainty in improved forest management (IFM) carbon offset projects to improve forest management decisions. The study uses probabilistic simulation of uncertainty in financial risk for three management scenarios (clearcutting in 45- and 65-year rotations and no harvest) under three carbon price schemes (historic voluntary market prices, cap and trade, and carbon prices set to equal net present value (NPV) from timber-oriented management). Uncertainty is modeled for value and amount of carbon credits and wood products, the accuracy of forest growth model forecasts, and four other variables relevant to American Carbon Registry methodology. Calculations use forest inventory data from a 1,740 ha forest in western Washington State, using the Forest Vegetation Simulator (FVS) growth model. Sensitivity analysis shows that FVS model uncertainty contributes more than 70% to overall NPV variance, followed in importance by variability in inventory sample (3-14%), and short-term prices for timber products (8%), while variability in carbon credit price has little influence (1.1%). At regional average land-holding costs, a no-harvest management scenario would become revenue-positive at a carbon credit break-point price of $14.17/Mg carbon dioxide equivalent (CO 2 e). IFM carbon projects are associated with a greater chance of both large payouts and large losses to landowners. These results inform policymakers and forest owners of the carbon credit price necessary for IFM approaches to equal or better the business-as-usual strategy, while highlighting the magnitude of financial risk and reward through probabilistic simulation. © 2016 Society for Risk Analysis.

  7. RE: Forests and forest management plays a key role in mitigating climate change

    DEFF Research Database (Denmark)

    Bentsen, Niclas Scott; Nord-Larsen, Thomas; Larsen, Søren

    2016-01-01

    as also reported by Naudts et al. By ignoring the link between forestry and fossil carbon pools and not considering development in the absence of forest management, there is no accounting for the effect on GHG emissions, and no basis for estimating the contribution of forest management to cl......The report by Naudts et al. concludes that forest management in Europe during the last 260 years has failed to result in net CO2 removal from the atmosphere. The authors have reached this conclusion through their failure to consider a key factor in their otherwise comprehensive analysis....... The authors present an analysis of net carbon emissions from forest, but omit substitution effects related to the link between forest management and the fossil carbon pool. The link between fossil and terrestrial carbon pools is however critical for modelling climate impacts. To conclude as they do...

  8. Redefining Secondary Forests in the Mexican Forest Code: Implications for Management, Restoration, and Conservation

    Directory of Open Access Journals (Sweden)

    Francisco J. Román-Dañobeytia

    2014-05-01

    Full Text Available The Mexican Forest Code establishes structural reference values to differentiate between secondary and old-growth forests and requires a management plan when secondary forests become old-growth and potentially harvestable forests. The implications of this regulation for forest management, restoration, and conservation were assessed in the context of the Calakmul Biosphere Reserve, which is located in the Yucatan Peninsula. The basal area and stem density thresholds currently used by the legislation to differentiate old-growth from secondary forests are 4 m2/ha and 15 trees/ha (trees with a diameter at breast height of >25 cm; however, our research indicates that these values should be increased to 20 m2/ha and 100 trees/ha, respectively. Given that a management plan is required when secondary forests become old-growth forests, many landowners avoid forest-stand development by engaging slash-and-burn agriculture or cattle grazing. We present evidence that deforestation and land degradation may prevent the natural regeneration of late-successional tree species of high ecological and economic importance. Moreover, we discuss the results of this study in the light of an ongoing debate in the Yucatan Peninsula between policy makers, non-governmental organizations (NGOs, landowners and researchers, regarding the modification of this regulation to redefine the concept of acahual (secondary forest and to facilitate forest management and restoration with valuable timber tree species.

  9. Clearing and vegetation management issues

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    Clearing and continued management of incompatible plant species is critical to maintaining safe and reliable transmission and distribution lines at British Columbia Hydro. As part of a general review of policies regarding rights-of-way, the clearing of BC Hydro rights-of-way was studied by a task team in order to formulate a set of recommended policies and procedures to guide employees in all rights-of-way decisions, and to provide clear direction for resolution of all rights-of-way issues in a cost-effective manner. Issues reviewed were: clearing standards and line security standardization for transmission circuits; clearing rights for removal of trees or management of vegetation beyond the statutory right-of-way; clearing and vegetation management procedures; tree replacement; arboricultural techniques; periodic reviewing of clearing practices; compensation for tree removal; herbicide use; and heritage and wildlife trees. Justification for the recommendation is provided along with alternate options and costs of compliance

  10. Monitoring, modelling and managing Canada's forest carbon cycle

    International Nuclear Information System (INIS)

    Kurz, W.

    2005-01-01

    This paper presents information concerning the management of carbon stocks both globally and in Canada, with reference to the fact that forests may contribute to carbon emissions problems. Global fossil carbon emissions statistics were provided, as well as data of forest area per capita in Canada and various countries. Details of forest management options and carbon accounting with reference to the Kyoto Protocol were reviewed. An explanation of forest management credits in national accounts was provided. An explanation of carbon sinks and carbon sources was also presented, along with details of stand level carbon dynamics. A model for calculating landscape level carbon stocks was presented, with reference to increasing and decreasing disturbances. A hypothetical landscape example was provided. It was concluded that age-class structure affect the amount of carbon stored in landscape; age-class structure also affect carbon dynamics; and responses reflect the change in disturbance regimes. An overview of international reporting requirements was presented. Canadian harvests equal 54,000 tonnes of carbon per year. It was recommended that managed forests could increase carbon in forests while also managing carbon harvests to meet society's needs. A chart presenting forest management details was presented, along with a hypothetical landscape example and a forecast for cumulative changes after 50 years, The benefits and challenges of forest management were reviewed as well as options regarding salvaging and deforestation avoidance. A carbon budget model was presented. It was concluded that forests in Canada could be used in a greenhouse gas management strategy. However, changes in disturbance may mean the difference between net source or net sink. Details of biomass were presented and multi-mode combustion facilities. The feasibility of biomass as a fuel source was discussed, with reference to hydrogen fuel. Gas composition profiles were provided, as well as details of

  11. Perspectives of Forest Management Planning: Slovenian and Croatian Experience

    OpenAIRE

    Bončina, Andrej; Čavlović, Juro

    2009-01-01

    Drawing upon the historical framework of origin and development, and a long tradition in forest management planning in Slovenia and Croatia, and based on a survey of literature and research to date, this paper addresses problems and perspectives of forest management planning. Comparison is made of forest management planning concepts, which generally differ from country to country in terms of natural, social and economic circumstances. Impacts of forest management planning on the condition and...

  12. Simulating boreal forest carbon dynamics after stand-replacing fire disturbance: insights from a global process-based vegetation model

    Science.gov (United States)

    Yue, C.; Ciais, P.; Luyssaert, S.; Cadule, P.; Harden, J.; Randerson, J.; Bellassen, V.; Wang, T.; Piao, S.L.; Poulter, B.; Viovy, N.

    2013-01-01

    Stand-replacing fires are the dominant fire type in North American boreal forests. They leave a historical legacy of a mosaic landscape of different aged forest cohorts. This forest age dynamics must be included in vegetation models to accurately quantify the role of fire in the historical and current regional forest carbon balance. The present study adapted the global process-based vegetation model ORCHIDEE to simulate the CO2 emissions from boreal forest fire and the subsequent recovery after a stand-replacing fire; the model represents postfire new cohort establishment, forest stand structure and the self-thinning process. Simulation results are evaluated against observations of three clusters of postfire forest chronosequences in Canada and Alaska. The variables evaluated include: fire carbon emissions, CO2 fluxes (gross primary production, total ecosystem respiration and net ecosystem exchange), leaf area index, and biometric measurements (aboveground biomass carbon, forest floor carbon, woody debris carbon, stand individual density, stand basal area, and mean diameter at breast height). When forced by local climate and the atmospheric CO2 history at each chronosequence site, the model simulations generally match the observed CO2 fluxes and carbon stock data well, with model-measurement mean square root of deviation comparable with the measurement accuracy (for CO2 flux ~100 g C m−2 yr−1, for biomass carbon ~1000 g C m−2 and for soil carbon ~2000 g C m−2). We find that the current postfire forest carbon sink at the evaluation sites, as observed by chronosequence methods, is mainly due to a combination of historical CO2 increase and forest succession. Climate change and variability during this period offsets some of these expected carbon gains. The negative impacts of climate were a likely consequence of increasing water stress caused by significant temperature increases that were not matched by concurrent increases in precipitation. Our simulation

  13. Using FLUXNET data to improve models of springtime vegetation activity onset in forest ecosystems

    NARCIS (Netherlands)

    Melaas, E.; Richardson, A.; Friedl, M.; Dragoni, D.; Gough, C.; Herbst, M.; Montagnani, L.; Moors, E.J.

    2013-01-01

    Vegetation phenology is sensitive to climate change and variability, and is a first order control on the carbon budget of forest ecosystems. Robust representation of phenology is therefore needed to support model-based projections of how climate change will affect ecosystem function. A variety of

  14. Holocene vegetation dynamics of Taiga forest in the Southern Altai Mountains documented by sediments from Kanas Lake

    Science.gov (United States)

    Huang, X.; Chen, F.

    2016-12-01

    The Chinese Altai is the southern limit of the Taiga forest of the continent, and regional vegetation dynamics during the Holocene will help us to understand regional climate changes, such as the Siberian High variations. Here we present a pollen-based vegetation and climate reconstruction from a well dated sediment core from Kanas Lake, a deep glacial moraine dammed lake in the Southern Altai Mountains (Chinese Altai). The 244-cm-long sequence spans the last 13,500 years, and the chronology is based on nine accelerator mass spectrometry radiocarbon dates from terrestrial plant macrofossils. At least five stages of regional vegetation history are documented: (i) From 13.5 to 11.7 ka (1 ka = 1000 cal yr BP), Kanas Lake region was occupied by steppe dominated by Artemisia, Chenopodiaceae and grass pollen, with low tree coverage. (ii) From 11.7 to 8.5 ka, regional forest build up dramatically indicated by increasing tree pollen percentages, including Picea, Larix, and the highest Junipers, with decreasing Artemisia and increasing Chenopodiaceae. (iii) From 8.5 to 7.2 ka, the forest around the lake became dense with the maximum content of Picea and Betula pollen types. And the steppe pollen types reached their lowest values. (iv) From 7.2 to 4 ka, as a typical tree species of Taiga forest, Larix pollen percentage became much higher than previous stage, and the sum of trees & shrubs pollen types decreased, which possibly indicated cooler and wetter climate (v) After 4 ka, trees & shrubs (e.g. Betula, Junipers) pollen types decreased, with increasing Artemisia and decreasing Chenopodiaceae, which might indicated more humid and cooler climate in the late Holocene. Comparing to the other pollen records in the Altai Mountains, Lake Grusha and Lake Hoton had recorded a slightly different process of vegetation evolution in the early Holocene, where forest was built up in the northern side of the Chinese Altai faster than that of the Kanas Lake area. And the difference could

  15. Forest management type influences diversity and community composition of soil fungi across temperate forest ecosystems

    Directory of Open Access Journals (Sweden)

    Kezia eGoldmann

    2015-11-01

    Full Text Available Fungal communities have been shown to be highly sensitive towards shifts in plant diversity and species composition in forest ecosystems. However, little is known about the impact of forest management on fungal diversity and community composition of geographically separated sites. This study examined the effects of four different forest management types on soil fungal communities. These forest management types include age class forests of young managed beech (Fagus sylvatica L., with beech stands age of approximately 30 years, age class beech stands with an age of approximately 70 years, unmanaged beech stands, and coniferous stands dominated by either pine (Pinus sylvestris L. or spruce (Picea abies Karst. which are located in three study sites across Germany. Soil were sampled from 48 study plots and we employed fungal ITS rDNA pyrotag sequencing to assess the soil fungal diversity and community structure.We found that forest management type significantly affects the Shannon diversity of soil fungi and a significant interaction effect of study site and forest management on the fungal OTU richness. Consequently distinct fungal communities were detected in the three study sites and within the four forest management types, which were mainly related to the main tree species. Further analysis of the contribution of soil properties revealed that C/N ratio being the most important factor in all the three study sites whereas soil pH was significantly related to the fungal community in two study sites. Functional assignment of the fungal communities indicated that 38% of the observed communities were Ectomycorrhizal fungi (ECM and their distribution is significantly influenced by the forest management. Soil pH and C/N ratio were found to be the main drivers of the ECM fungal community composition. Additional fungal community similarity analysis revealed the presence of study site and management type specific ECM genera.This study extends our knowledge

  16. Forest Management Type Influences Diversity and Community Composition of Soil Fungi across Temperate Forest Ecosystems.

    Science.gov (United States)

    Goldmann, Kezia; Schöning, Ingo; Buscot, François; Wubet, Tesfaye

    2015-01-01

    Fungal communities have been shown to be highly sensitive toward shifts in plant diversity and species composition in forest ecosystems. However, little is known about the impact of forest management on fungal diversity and community composition of geographically separated sites. This study examined the effects of four different forest management types on soil fungal communities. These forest management types include age class forests of young managed beech (Fagus sylvatica L.), with beech stands age of approximately 30 years, age class beech stands with an age of approximately 70 years, unmanaged beech stands, and coniferous stands dominated by either pine (Pinus sylvestris L.) or spruce (Picea abies Karst.) which are located in three study sites across Germany. Soil were sampled from 48 study plots and we employed fungal ITS rDNA pyrotag sequencing to assess the soil fungal diversity and community structure. We found that forest management type significantly affects the Shannon diversity of soil fungi and a significant interaction effect of study site and forest management on the fungal operational taxonomic units richness. Consequently distinct fungal communities were detected in the three study sites and within the four forest management types, which were mainly related to the main tree species. Further analysis of the contribution of soil properties revealed that C/N ratio being the most important factor in all the three study sites whereas soil pH was significantly related to the fungal community in two study sites. Functional assignment of the fungal communities indicated that 38% of the observed communities were Ectomycorrhizal fungi (ECM) and their distribution is significantly influenced by the forest management. Soil pH and C/N ratio were found to be the main drivers of the ECM fungal community composition. Additional fungal community similarity analysis revealed the presence of study site and management type specific ECM genera. This study extends our

  17. A Study on Main Actor for Sustainable Forest Management in Korea

    OpenAIRE

    Choi, Soo Im; Oh, Seung Won; Sato, Noriko

    2004-01-01

    According to the estableshment period (1998 to 2007) for sustaineble forest management, the forest basic plan in Korea indicated that a long-term forest management is required to realize the sustainable forest management. In this conditions, most of private forest owners have abandoned or ignored to do the individual management of their forests even through the private forests occupied 70% of total forest land areas, which mean is that the private forest can be the most important main actor f...

  18. Vegetation Description, Rare Plant Inventory, and Vegetation Monitoring for Craig Mountain, Idaho.

    Energy Technology Data Exchange (ETDEWEB)

    Mancuso, Michael; Moseley, Robert

    1994-12-01

    The Craig Mountain Wildlife Mitigation Area was purchased by Bonneville Power Administration (BPA) as partial mitigation for wildlife losses incurred with the inundation of Dworshak Reservoir on the North Fork Clearwater River. Upon completion of the National Environmental Protection Act (NEPA) process, it is proposed that title to mitigation lands will be given to the Idaho Department of Fish and Game (IDFG). Craig Mountain is located at the northern end of the Hells Canyon Ecosystem. It encompasses the plateau and steep canyon slopes extending from the confluence of the Snake and Salmon rivers, northward to near Waha, south of Lewiston, Idaho. The forested summit of Craig Mountain is characterized by gently rolling terrain. The highlands dramatically break into the canyons of the Snake and Salmon rivers at approximately the 4,700 foot contour. The highly dissected canyons are dominated by grassland slopes containing a mosaic of shrubfield, riparian, and woodland habitats. During the 1993 and 1994 field seasons, wildlife, habitat/vegetation, timber, and other resources were systematically inventoried at Craig Mountain to provide Fish and Game managers with information needed to draft an ecologically-based management plan. The results of the habitat/vegetation portion of the inventory are contained in this report. The responsibilities for the Craig Mountain project included: (1) vegetation data collection, and vegetation classification, to help produce a GIS-generated Craig Mountain vegetation map, (2) to determine the distribution and abundance of rare plants populations and make recommendations concerning their management, and (3) to establish a vegetation monitoring program to evaluate the effects of Fish and Game management actions, and to assess progress towards meeting habitat mitigation goals.

  19. Vegetation description, rare plant inventory, and vegetation monitoring for Craig Mountain, Idaho

    International Nuclear Information System (INIS)

    Mancuso, M.; Moseley, R.

    1994-12-01

    The Craig Mountain Wildlife Mitigation Area was purchased by Bonneville Power Administration (BPA) as partial mitigation for wildlife losses incurred with the inundation of Dworshak Reservoir on the North Fork Clearwater River. Upon completion of the National Environmental Protection Act (NEPA) process, it is proposed that title to mitigation lands will be given to the Idaho Department of Fish and Game (IDFG). Craig Mountain is located at the northern end of the Hells Canyon Ecosystem. It encompasses the plateau and steep canyon slopes extending from the confluence of the Snake and Salmon rivers, northward to near Waha, south of Lewiston, Idaho. The forested summit of Craig Mountain is characterized by gently rolling terrain. The highlands dramatically break into the canyons of the Snake and Salmon rivers at approximately the 4,700 foot contour. The highly dissected canyons are dominated by grassland slopes containing a mosaic of shrubfield, riparian, and woodland habitats. During the 1993 and 1994 field seasons, wildlife, habitat/vegetation, timber, and other resources were systematically inventoried at Craig Mountain to provide Fish and Game managers with information needed to draft an ecologically-based management plan. The results of the habitat/vegetation portion of the inventory are contained in this report. The responsibilities for the Craig Mountain project included: (1) vegetation data collection, and vegetation classification, to help produce a GIS-generated Craig Mountain vegetation map, (2) to determine the distribution and abundance of rare plants populations and make recommendations concerning their management, and (3) to establish a vegetation monitoring program to evaluate the effects of Fish and Game management actions, and to assess progress towards meeting habitat mitigation goals

  20. Proceedings of the 1999 Sustainable Forest Management Network conference: science and practice : sustaining the boreal forest

    Energy Technology Data Exchange (ETDEWEB)

    Veeman, S.; Smith, D.W.; Purdy, B.G.; Salkie, F.J.; Larkin, G.A. [eds.

    1999-05-01

    The wide range and complex nature of research in sustainable forest management, supported cooperatively by the forest products industry, governments, the universities, First Nations and other groups, is reflected in the 128 papers presented at this conference. The range of topics discussed include historical perspectives of forest disturbances, including fires and harvesting, biological diversity, gaseous, liquid and solid wastes, community sustainability, public involvement, land aquatic interfaces, forest management planning tools, contaminant transfer, First Nations issues, certification, monitoring and resource trade-offs. The theme of the conference {sup S}cience and practice: sustaining the boreal forest` was selected to identify the key efforts of the Sustainable Forest Management (SFM) Network on boreal forest research. The objective of the conference was to exchange knowledge and integrate participants into a better working network for the improvement of forest management. refs., tabs., figs.

  1. Forest Cover Mapping in Iskandar Malaysia Using Satellite Data

    Science.gov (United States)

    Kanniah, K. D.; Mohd Najib, N. E.; Vu, T. T.

    2016-09-01

    Malaysia is the third largest country in the world that had lost forest cover. Therefore, timely information on forest cover is required to help the government to ensure that the remaining forest resources are managed in a sustainable manner. This study aims to map and detect changes of forest cover (deforestation and disturbance) in Iskandar Malaysia region in the south of Peninsular Malaysia between years 1990 and 2010 using Landsat satellite images. The Carnegie Landsat Analysis System-Lite (CLASlite) programme was used to classify forest cover using Landsat images. This software is able to mask out clouds, cloud shadows, terrain shadows, and water bodies and atmospherically correct the images using 6S radiative transfer model. An Automated Monte Carlo Unmixing technique embedded in CLASlite was used to unmix each Landsat pixel into fractions of photosynthetic vegetation (PV), non photosynthetic vegetation (NPV) and soil surface (S). Forest and non-forest areas were produced from the fractional cover images using appropriate threshold values of PV, NPV and S. CLASlite software was found to be able to classify forest cover in Iskandar Malaysia with only a difference between 14% (1990) and 5% (2010) compared to the forest land use map produced by the Department of Agriculture, Malaysia. Nevertheless, the CLASlite automated software used in this study was found not to exclude other vegetation types especially rubber and oil palm that has similar reflectance to forest. Currently rubber and oil palm were discriminated from forest manually using land use maps. Therefore, CLASlite algorithm needs further adjustment to exclude these vegetation and classify only forest cover.

  2. Assessing management effects on Oak forests in Austria

    Science.gov (United States)

    Gautam, Sishir; Pietsch, Stephan A.; Hasenauer, Hubert

    2010-05-01

    Historic land use as well as silvicultural management practices have changed the structures and species composition of central European forests. Such changes have effects on the growth of forests and contribute to global warming. As insufficient information on historic forest management is available it is hard to explain the effect of management on forests growth and its possible consequences to the environment. In this situation, the BIOME-BGC model, which integrates the main physical, biological and physiological processes based on current understanding of ecophysiology is an option for assessing the management effects through tracking the cycling of energy, water, carbon and nutrients within a given ecosystems. Such models are increasingly employed to simulate current and future forest dynamics. This study first compares observed standing tree volume, carbon and nitrogen content in soil in the high forests and coppice with standards stands of Oak forests in Austria. Biome BGC is then used to assess the effects of management on forest growth and to explain the differences with measured parameters. Close positive correlations and unbiased results and statistically insignificant differences between predicted and observed volumes indicates the application of the model as a diagnostic tool to assess management effects in oak forests. The observed data in 2006 and 2009 was further compared with the results of respective model runs. Further analysis on simulated data shows that thinning leads to an increase in growth efficiency (GE), nitrogen use efficiency (NUE) and water use efficiency (WUE), and to a decrease in the radiation use efficiency (RUE) in both forests. Among all studied growth parameters, only the difference in the NUE was statistically significant. This indicates that the difference in the yield of forests is mainly governed by the NUE difference in stands due to thinning. The coppice with standards system produces an equal amount of net primary

  3. Review of Alternative Management Options of Vegetable Crop Residues to Reduce Nitrate Leaching in Intensive Vegetable Rotations

    Directory of Open Access Journals (Sweden)

    Laura Agneessens

    2014-12-01

    Full Text Available Vegetable crop residues take a particular position relative to arable crops due to often large amounts of biomass with a N content up to 200 kg N ha−1 left behind on the field. An important amount of vegetable crops are harvested during late autumn and despite decreasing soil temperatures during autumn, high rates of N mineralization and nitrification still occur. Vegetable crop residues may lead to considerable N losses through leaching during winter and pose a threat to meeting water quality objectives. However, at the same time vegetable crop residues are a vital link in closing the nutrient and organic matter cycle of soils. Appropriate and sustainable management is needed to harness the full potential of vegetable crop residues. Two fundamentally different crop residue management strategies to reduce N losses during winter in intensive vegetable rotations are reviewed, namely (i on-field management options and modifications to crop rotations and (ii removal of crop residues, followed by a useful and profitable application.

  4. Effects of vegetation type on microbial biomass carbon and nitrogen in subalpine mountain forest soils.

    Science.gov (United States)

    Ravindran, Anita; Yang, Shang-Shyng

    2015-08-01

    Microbial biomass plays an important role in nutrient transformation and conservation of forest and grassland ecosystems. The objective of this study was to determine the microbial biomass among three vegetation types in subalpine mountain forest soils of Taiwan. Tatachia is a typical high-altitude subalpine temperate forest ecosystem in Taiwan with an elevation of 1800-3952 m and consists of three vegetation types: spruce, hemlock, and grassland. Three plots were selected in each vegetation type. Soil samples were collected from the organic layer, topsoil, and subsoil. Microbial biomass carbon (Cmic) was determined by the chloroform fumigation-extraction method, and microbial biomass nitrogen (Nmic) was determined from the total nitrogen (Ntot) released during fumigation-extraction. Bacteria, actinomycetes, fungi, cellulolytic microbes, phosphate-solubilizing microbes, and nitrogen-fixing microbes were also counted. The Cmic and Nmic were highest in the surface soil and declined with the soil depth. These were also highest in spruce soils, followed by in hemlock soils, and were lowest in grassland soils. Cmic and Nmic had the highest values in the spring season and the lowest values in the winter season. Cmic and Nmic had significantly positive correlations with total organic carbon (Corg) and Ntot. Contributions of Cmic and Nmic, respectively, to Corg and Ntot indicated that the microbial biomass was immobilized more in spruce and hemlock soils than in grassland soils. Microbial populations of the tested vegetation types decreased with increasing soil depth. Cmic and Nmic were high in the organic layer and decreased with the depth of layers. These values were higher for spruce and hemlock soils than for grassland soils. Positive correlations were observed between Cmic and Nmic and between Corg and Ntot. Copyright © 2014. Published by Elsevier B.V.

  5. Hydrological Networks and Associated Topographic Variation as Templates for the Spatial Organization of Tropical Forest Vegetation

    OpenAIRE

    Detto, Matteo; Muller-Landau, Helene C.; Mascaro, Joseph; Asner, Gregory P.

    2013-01-01

    An understanding of the spatial variability in tropical forest structure and biomass, and the mechanisms that underpin this variability, is critical for designing, interpreting, and upscaling field studies for regional carbon inventories. We investigated the spatial structure of tropical forest vegetation and its relationship to the hydrological network and associated topographic structure across spatial scales of 10-1000 m using high-resolution maps of LiDAR-derived mean canopy profile heigh...

  6. Scaling estimates of vegetation structure in Amazonian tropical forests using multi-angle MODIS observations

    Science.gov (United States)

    de Moura, Yhasmin Mendes; Hilker, Thomas; Goncalves, Fabio Guimarães; Galvão, Lênio Soares; dos Santos, João Roberto; Lyapustin, Alexei; Maeda, Eduardo Eiji; de Jesus Silva, Camila Valéria

    2018-01-01

    Detailed knowledge of vegetation structure is required for accurate modelling of terrestrial ecosystems, but direct measurements of the three dimensional distribution of canopy elements, for instance from LiDAR, are not widely available. We investigate the potential for modelling vegetation roughness, a key parameter for climatological models, from directional scattering of visible and near-infrared (NIR) reflectance acquired from NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS). We compare our estimates across different tropical forest types to independent measures obtained from: (1) airborne laser scanning (ALS), (2) spaceborne Geoscience Laser Altimeter System (GLAS)/ICESat, and (3) the spaceborne SeaWinds/QSCAT. Our results showed linear correlation between MODIS-derived anisotropy to ALS-derived entropy (r2= 0.54, RMSE=0.11), even in high biomass regions. Significant relationships were also obtained between MODIS-derived anisotropy and GLAS-derived entropy (0.52≤ r2≤ 0.61; pMODIS-derived anisotropy and backscattering measurements (σ0) from SeaWinds/QuikSCAT presented an r2 of 0.59 and a RMSE of 0.11. We conclude that multi-angular MODIS observations are suitable to extrapolate measures of canopy entropy across different forest types, providing additional estimates of vegetation structure in the Amazon. PMID:29618964

  7. Effectiveness of management interventions on forest carbon stock in planted forests in Nepal.

    Science.gov (United States)

    Dangal, Shambhu Prasad; Das, Abhoy Kumar; Paudel, Shyam Krishna

    2017-07-01

    Nepal has successfully established more than 370,000 ha of plantations, mostly with Pinus patula, in the last three and a half decades. However, intensive management of these planted forests is very limited. Despite the fact that the Kyoto Convention in 1997 recognized the role of plantations for forest-carbon sequestration, there is still limited knowledge on the effects of management practices and stand density on carbon-sequestration of popular plantation species (i.e. Pinus patula) in Nepal. We carried out case studies in four community forests planted between 1976 and 1990 to assess the impacts of management on forest carbon stocks. The study found that the average carbon stock in the pine plantations was 217 Mg C ha -1 , and was lower in forests with intensively managed plantations (214.3 Mg C ha -1 ) than in traditionally managed plantations (219 Mg C ha -1 ). However, it was the reverse in case of soil carbon, which was higher (78.65 Mg C ha -1 ) in the forests with intensive management. Though stand density was positively correlated with carbon stock, the proportionate increment in carbon stock was lower with increasing stand density, as carbon stock increased by less than 25% with a doubling of stand density (300-600). The total carbon stock was higher in plantations aged between 25 and 30 years compared to those aged between 30 and 35 years. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. CONSIDERATIONS ON RISK MANAGEMENT APPLIED TO FOREST FIRES

    Directory of Open Access Journals (Sweden)

    Ioan Valentin Marcel Posea

    2016-07-01

    Full Text Available Forest risk and management are ubiquitous in any socio-economic activity. Forestry, more than any other field, is at risk from fire. Consequently, it appears the necessity to implement a fire risk management that could resolve, at least partially, the specific problems. This study attempts to identify the specific stages and processes of forest fire risk management and their content. At the same time, I will try to highlight how a forest fire risk management process planning can be achieved and to present a way of achieving the Plan. I also deem necessary a forest fire risk monitoring and control system that I have built using the Deming cycle.

  9. Evaluating Forest Vegetation Simulator predictions for southern Appalachian upland hardwoods with a modified mortality model

    Science.gov (United States)

    Philip J. Radtke; Nathan D. Herring; David L. Loftis; Chad E. Keyser

    2012-01-01

    Prediction accuracy for projected basal area and trees per acre was assessed for the growth and yield model of the Forest Vegetation Simulator Southern Variant (FVS-Sn). Data for comparison with FVS-Sn predictions were compiled from a collection of n

  10. Burial of downed deadwood is strongly affected by log attributes, forest ground vegetation, edaphic conditions, and climate zones

    Science.gov (United States)

    Jogeir N. Stokland; Christopher W. Woodall; Jonas Fridman; Göran Ståhl

    2016-01-01

    Deadwood can represent a substantial portion of forest ecosystem carbon stocks and is often reported following good practice guidance associated with national greenhouse gas inventories. In high-latitude forest ecosystems, a substantial proportion of downed deadwood is overgrown by ground vegetation and buried in the humus layer. Such burial obfuscates the important...

  11. Assessing economic tradeoffs in forest management.

    Science.gov (United States)

    Ernie Niemi; Ed. Whitelaw

    1999-01-01

    Method is described for assessing the competing demands for forest resources in a forest management plan by addressing economics values, economic impacts, and perceptions of fairness around each demand. Economics trends and forces that shape the dynamic ecosystem-economy relation are developed. The method is demonstrated through an illustrative analysis of a forest-...

  12. Vegetation Analysis and Land Use Land Cover Classification of Forest in Uttara Kannada District India Using Remote Sensign and GIS Techniques

    Science.gov (United States)

    Koppad, A. G.; Janagoudar, B. S.

    2017-10-01

    The study was conducted in Uttara Kannada districts during the year 2012-2014. The study area lies between 13.92° N to 15.52° N latitude and 74.08° E to 75.09° E longitude with an area of 10,215 km2. The Indian satellite IRS P6 LISS-III imageries were used to classify the land use land cover classes with ground truth data collected with GPS through supervised classification in ERDAS software. The land use and land cover classes identified were dense forest, horticulture plantation, sparse forest, forest plantation, open land and agriculture land. The dense forest covered an area of 63.32 % (6468.70 sq km) followed by agriculture 12.88 % (1315.31 sq. km), sparse forest 10.59 % (1081.37 sq. km), open land 6.09 % (622.37 sq. km), horticulture plantation and least was forest plantation (1.07 %). Settlement, stony land and water body together cover about 4.26 percent of the area. The study indicated that the aspect and altitude influenced the forest types and vegetation pattern. The NDVI map was prepared which indicated that healthy vegetation is represented by high NDVI values between 0.1 and 1. The non- vegetated features such as water bodies, settlement, and stony land indicated less than 0.1 values. The decrease in forest area in some places was due to anthropogenic activities. The thematic map of land use land cover classes was prepared using Arc GIS Software.

  13. Impacts of forest and land management on biodiversity and carbon

    Science.gov (United States)

    Valerie Kapos; Werner A. Kurz; Toby Gardner; Joice Ferreira; Manuel Guariguata; Lian Pin Koh; Stephanie Mansourian; John A. Parrotta; Nokea Sasaki; Christine B. Schmitt; Jos Barlow; Markku Kanninen; Kimiko Okabe; Yude Pan; Ian D. Thompson; Nathalie van Vliet

    2012-01-01

    Changes in the management of forest and non-forest land can contribute significantly to reducing emissions from deforestation and forest degradation. Such changes can include both forest management actions - such as improving the protection and restoration of existing forests, introducing ecologically responsible logging practices and regenerating forest on degraded...

  14. Post-fire diversity and abundance in pine and eucalipt stands in Portugal: effects of biogeography, topography, forest type and post-fire management

    OpenAIRE

    Maia, P.; Keizer, J.; Vasques, A.; Abrantes, N.; Roxo, L.; Fernandes, P.; Ferreira, A.; Moreira, F.

    2014-01-01

    This study concerned the mid-term regeneration of the woody understory vegetation of pure and mixed stands of Pinus pinaster Ait. and Eucalyptus globulus Labill. in northern and central Portugal following wildfires in 2005 and 2006. Pine and eucalypt stands are the most widespread and most fire-prone forest types in Portugal. The main aim was to investigate the importance of biogeography, topography, forest type and post-fire management operations in explaining the patterns in shr...

  15. Unexpectedly large impact of forest management and grazing on global vegetation biomass

    NARCIS (Netherlands)

    Erb, Karl-Heinz; Kastner, Thomas; Plutzar, Christoph; Bais, Anna Liza S; Carvalhais, Nuno; Fetzel, Tamara; Gingrich, Simone; Haberl, Helmut; Lauk, Christian; Niedertscheider, Maria; Pongratz, Julia; Thurner, Martin; Luyssaert, Sebastiaan

    2018-01-01

    Carbon stocks in vegetation have a key role in the climate system. However, the magnitude, patterns and uncertainties of carbon stocks and the effect of land use on the stocks remain poorly quantified. Here we show, using state-of-the-art datasets, that vegetation currently stores around 450

  16. Quantifying Carbon Consequences of Recent Land Management, Disturbances and Subsequent Forest Recovery in the Greater Yellowstone Ecosystems (GYE)

    Science.gov (United States)

    Zhao, F. R.; Healey, S. P.; McCarter, J. B.; Garrard, C.; Zhu, Z.; Huang, C.

    2016-12-01

    Natural disturbances and land management directly alter C stored in biomass and soil pools, and forest recovery following these events are critical for long-term regional C balance. The Greater Yellowstone Ecosystem (GYE), located in Central Rocky Mountains of United States, is of different land ownerships within similar environmental settings, making it an ideal site to examine the impacts of land management, disturbance and forest recovery on regional C dynamics. Recent advances in the remote sensing of vegetation condition and change, along with new techniques linking remote sensing with inventory records, have allowed investigations that are much more tightly constrained to actual landscape environments instead of hypothetical or generalized conditions. These new capabilities are built into the Forest Carbon Management Framework (ForCaMF), which is being used by the National Forest System to not only model, but to monitor across very specific management units, the impact of different kinds of disturbance on carbon storage. In this study, we used the ForCaMF approach to examine three C related management questions in GYE National Parks and National Forests: 1) what was the carbon storage impact of fire disturbance and management activities from 1985 to 2010 in the GYE National Parks and National Forests? 2) Using an historic fire that occurred in 1988 as a basis for comparison, what difference would active post-fire forest restoration make in subsequent C storage? 3) In light of the fact that GYE National Forests significantly reduced harvest rates in the 1990s, how would maintaining high harvest rates of the 1980s impacted C storage? Simulation results show that recent forest fires in the GYE National Parks induced an accumulative C storage loss of about 12 Mg/ha, compared with C storage loss up to 2 Mg/ha in the GYE National Forests by harvests. If the high harvest rates as of the 1980s had been maintained, C emissions from the National Forests ( 11 Mg

  17. Transmission System Vegetation Management Program. Draft Environmental Impact Statement

    International Nuclear Information System (INIS)

    1999-01-01

    Bonneville is responsible for maintaining a network of 24,000 kilometers (km) or 15,000 miles (mi.) of electric transmission lines and 350 substations in a region of diverse vegetation. This vegetation can interfere with electric power flow, pose safety problems for Bonneville and the public, and interfere with their ability to maintain these facilities. They need to (1) keep vegetation away from the electric facilities; (2) increase their program efficiency and consistency; (3) review herbicide use (under increased public scrutiny); and (4) maximize the range of tools they can use while minimizing environmental impact (Integrated Vegetation Management). This DEIS establishes Planning Steps for managing vegetation for specific projects (to be tiered to this EIS). In addition to No Action (current practice), alternatives are presented for Rights-of-way, Electric Yards, and Non-electric Facilities (landscaping, work yards). Four vegetation control methods are analyzed: manual, mechanical, herbicide, and biological. Also evaluated are 24 herbicide active ingredients and 4 herbicide application techniques (spot, localized, broadcast, and aerial). For rights-of-way, they consider three sets of alternatives: alternative management approaches (time-driven or establishing low-growing plant communities); alternative method packages; and, if herbicides are in a methods package, alternative vegetation selections (noxious weeds, deciduous, or any vegetation). For electric yards, one herbicide-use alternative is considered. For non-electric facilities, two method package alternatives are considered. For rights-of-way, the environmentally preferred alternative(s) would use manual, mechanical, and biological control methods, as well as spot and localized herbicide applications for noxious and deciduous plant species; the BPA-preferred alternative(s) would add broadcast and aerial herbicide applications, and would use herbicides on any vegetation. Both would favor a management

  18. Development of the BIOME-BGC model for the simulation of managed Moso bamboo forest ecosystems.

    Science.gov (United States)

    Mao, Fangjie; Li, Pingheng; Zhou, Guomo; Du, Huaqiang; Xu, Xiaojun; Shi, Yongjun; Mo, Lufeng; Zhou, Yufeng; Tu, Guoqing

    2016-05-01

    Numerical models are the most appropriate instrument for the analysis of the carbon balance of terrestrial ecosystems and their interactions with changing environmental conditions. The process-based model BIOME-BGC is widely used in simulation of carbon balance within vegetation, litter and soil of unmanaged ecosystems. For Moso bamboo forests, however, simulations with BIOME-BGC are inaccurate in terms of the growing season and the carbon allocation, due to the oversimplified representation of phenology. Our aim was to improve the applicability of BIOME-BGC for managed Moso bamboo forest ecosystem by implementing several new modules, including phenology, carbon allocation, and management. Instead of the simple phenology and carbon allocation representations in the original version, a periodic Moso bamboo phenology and carbon allocation module was implemented, which can handle the processes of Moso bamboo shooting and high growth during "on-year" and "off-year". Four management modules (digging bamboo shoots, selective cutting, obtruncation, fertilization) were integrated in order to quantify the functioning of managed ecosystems. The improved model was calibrated and validated using eddy covariance measurement data collected at a managed Moso bamboo forest site (Anji) during 2011-2013 years. As a result of these developments and calibrations, the performance of the model was substantially improved. Regarding the measured and modeled fluxes (gross primary production, total ecosystem respiration, net ecosystem exchange), relative errors were decreased by 42.23%, 103.02% and 18.67%, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Effects of a large wildfire on vegetation structure in a variable fire mosaic.

    Science.gov (United States)

    Foster, C N; Barton, P S; Robinson, N M; MacGregor, C I; Lindenmayer, D B

    2017-12-01

    Management guidelines for many fire-prone ecosystems highlight the importance of maintaining a variable mosaic of fire histories for biodiversity conservation. Managers are encouraged to aim for fire mosaics that are temporally and spatially dynamic, include all successional states of vegetation, and also include variation in the underlying "invisible mosaic" of past fire frequencies, severities, and fire return intervals. However, establishing and maintaining variable mosaics in contemporary landscapes is subject to many challenges, one of which is deciding how the fire mosaic should be managed following the occurrence of large, unplanned wildfires. A key consideration for this decision is the extent to which the effects of previous fire history on vegetation and habitats persist after major wildfires, but this topic has rarely been investigated empirically. In this study, we tested to what extent a large wildfire interacted with previous fire history to affect the structure of forest, woodland, and heath vegetation in Booderee National Park in southeastern Australia. In 2003, a summer wildfire burned 49.5% of the park, increasing the extent of recently burned vegetation (post-fire) to more than 72% of the park area. We tracked the recovery of vegetation structure for nine years following the wildfire and found that the strength and persistence of fire effects differed substantially between vegetation types. Vegetation structure was modified by wildfire in forest, woodland, and heath vegetation, but among-site variability in vegetation structure was reduced only by severe fire in woodland vegetation. There also were persistent legacy effects of the previous fire regime on some attributes of vegetation structure including forest ground and understorey cover, and woodland midstorey and overstorey cover. For example, woodland midstorey cover was greater on sites with higher fire frequency, irrespective of the severity of the 2003 wildfire. Our results show that even

  20. Participatory forest management for more than a decade in Tanzania

    DEFF Research Database (Denmark)

    Ngaga, Y. M.; Treue, Thorsten; Meilby, Henrik

    2013-01-01

    In Tanzania, Participatory Forest Management (PFM) was introduced in order to address the challenge of deforestation which continues at alarming rate. Equally, PFM aimed to involve communities adjacent to forests in management of forest resources while at the same time accrue economic benefits. PFM...... consists of Community Based Forest Management (CBFM) and Joint Forest Management (JFM). CBFM takes place on village land, in forests that are owned by the village while JFM takes place in Central or Local Government forest reserves (FRs) whereby owner of the FR and adjacent communities jointly manage......, households across wealth categories benefit economically from PFM. However, there is a slight tendency that the rich benefit more than the poor. Similarly, the study concludes that, while CBFM and JFM have formally established appropriate institutions for PFM, this has not promoted enfranchisement...

  1. Reconstructing European forest management from 1600 to 2010

    Science.gov (United States)

    McGrath, M. J.; Luyssaert, S.; Meyfroidt, P.; Kaplan, J. O.; Bürgi, M.; Chen, Y.; Erb, K.; Gimmi, U.; McInerney, D.; Naudts, K.; Otto, J.; Pasztor, F.; Ryder, J.; Schelhaas, M.-J.; Valade, A.

    2015-07-01

    Because of the slow accumulation and long residence time of carbon in biomass and soils, the present state and future dynamics of temperate forests are influenced by management that took place centuries to millennia ago. Humans have exploited the forests of Europe for fuel, construction materials and fodder for the entire Holocene. In recent centuries, economic and demographic trends led to increases in both forest area and management intensity across much of Europe. In order to quantify the effects of these changes in forests and to provide a baseline for studies on future land-cover-climate interactions and biogeochemical cycling, we created a temporally and spatially resolved reconstruction of European forest management from 1600 to 2010. For the period 1600-1828, we took a supply-demand approach, in which supply was estimated on the basis of historical annual wood increment and land cover reconstructions. We made demand estimates by multiplying population with consumption factors for construction materials, household fuelwood, industrial food processing and brewing, metallurgy, and salt production. For the period 1829-2010, we used a supply-driven backcasting method based on national and regional statistics of forest age structure from the second half of the 20th century. Our reconstruction reproduces the most important changes in forest management between 1600 and 2010: (1) an increase of 593 000 km2 in conifers at the expense of deciduous forest (decreasing by 538 000 km2); (2) a 612 000 km2 decrease in unmanaged forest; (3) a 152 000 km2 decrease in coppice management; (4) a 818 000 km2 increase in high-stand management; and (5) the rise and fall of litter raking, which at its peak in 1853 resulted in the removal of 50 Tg dry litter per year.

  2. Comparing MODIS and near-surface vegetation indexes for monitoring tropical dry forest phenology along a successional gradient using optical phenology towers

    Science.gov (United States)

    Rankine, C.; Sánchez-Azofeifa, G. A.; Guzmán, J. Antonio; Espirito-Santo, M. M.; Sharp, Iain

    2017-10-01

    Tropical dry forests (TDFs) present strong seasonal greenness signals ideal for tracking phenology and primary productivity using remote sensing techniques. The tightly synchronized relationship these ecosystems have with water availability offer a valuable natural experiment for observing the complex interactions between the atmosphere and the biosphere in the tropics. To investigate how well the MODIS vegetation indices (normalized difference vegetation index (NDVI) and the enhanced vegetation index (EVI)) represented the phenology of different successional stages of naturally regenerating TDFs, within a widely conserved forest fragment in the semi-arid southeast of Brazil, we installed several canopy towers with radiometric sensors to produce high temporal resolution near-surface vegetation greenness indices. Direct comparison of several years of ground measurements with a combined Aqua/Terra 8 day satellite product showed similar broad temporal trends, but MODIS often suffered from cloud contamination during the onset of the growing season and occasionally during the peak growing season. The strength of the in-situ and MODIS linear relationship was greater for NDVI than for EVI across sites but varied with forest stand age. Furthermore, we describe the onset dates and duration of canopy development phases for three years of in-situ monitoring. A seasonality analysis revealed significant discrepancies between tower and MODIS phenology transitions dates, with up to five weeks differences in growing season length estimation. Our results indicate that 8 and 16 day MODIS satellite vegetation monitoring products are suitable for tracking general patterns of tropical dry forest phenology in this region but are not temporally sufficient to characterize inter-annual differences in phenology phase onset dates or changes in productivity due to mid-season droughts. Such rapid transitions in canopy greenness are important indicators of climate change sensitivity of these

  3. Repeated wildfires alter forest recovery of mixed-conifer ecosystems.

    Science.gov (United States)

    Stevens-Rumann, Camille; Morgan, Penelope

    2016-09-01

    Most models project warmer and drier climates that will contribute to larger and more frequent wildfires. However, it remains unknown how repeated wildfires alter post-fire successional patterns and forest structure. Here, we test the hypothesis that the number of wildfires, as well as the order and severity of wildfire events interact to alter forest structure and vegetation recovery and implications for vegetation management. In 2014, we examined forest structure, composition, and tree regeneration in stands that burned 1-18 yr before a subsequent 2007 wildfire. Three important findings emerged: (1) Repeatedly burned forests had 15% less woody surface fuels and 31% lower tree seedling densities compared with forests that only experienced one recent wildfire. These repeatedly burned areas are recovering differently than sites burned once, which may lead to alternative ecosystem structure. (2) Order of burn severity (high followed by low severity compared with low followed by high severity) did influence forest characteristics. When low burn severity followed high, forests had 60% lower canopy closure and total basal area with 92% fewer tree seedlings than when high burn severity followed low. (3) Time between fires had no effect on most variables measured following the second fire except large woody fuels, canopy closure and tree seedling density. We conclude that repeatedly burned areas meet many vegetation management objectives of reduced fuel loads and moderate tree seedling densities. These differences in forest structure, composition, and tree regeneration have implications not only for the trajectories of these forests, but may reduce fire intensity and burn severity of subsequent wildfires and may be used in conjunction with future fire suppression tactics. © 2016 by the Ecological Society of America.

  4. Traditional access and forest management arrangements for beekeeping: the case of Southwest Ethiopia forest region

    NARCIS (Netherlands)

    Endalamaw, T.B.; Wiersum, K.F.

    2009-01-01

    Forest beekeeping is an ancient form of forest exploitation in south west Ethiopia. The practice has continued to the present with a gradual evolution in beekeeping technology and resource access and management arrangements. The aim of the present study is to study traditional forest management

  5. Effects of using visualization and animation in presentations to communities about forest succession and fire behavior potential

    Science.gov (United States)

    Jane Kapler Smith; Donald E. Zimmerman; Carol Akerelrea; Garrett O' Keefe

    2008-01-01

    Natural resource managers use a variety of computer-mediated presentation methods to communicate management practices to the public. We explored the effects of using the Stand Visualization System to visualize and animate predictions from the Forest Vegetation Simulator-Fire and Fuels Extension in presentations explaining forest succession (forest growth and change...

  6. Sustainability assessment in forest management based on individual preferences.

    Science.gov (United States)

    Martín-Fernández, Susana; Martinez-Falero, Eugenio

    2018-01-15

    This paper presents a methodology to elicit the preferences of any individual in the assessment of sustainable forest management at the stand level. The elicitation procedure was based on the comparison of the sustainability of pairs of forest locations. A sustainability map of the whole territory was obtained according to the individual's preferences. Three forest sustainability indicators were pre-calculated for each point in a study area in a Scots pine forest in the National Park of Sierra de Guadarrama in the Madrid Region in Spain to obtain the best management plan with the sustainability map. We followed a participatory process involving fifty people to assess the sustainability of the forest management and the methodology. The results highlighted the demand for conservative forest management, the usefulness of the methodology for managers, and the importance and necessity of incorporating stakeholders into forestry decision-making processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Forest Interpreter's Primer on Fire Management.

    Science.gov (United States)

    Zelker, Thomas M.

    Specifically prepared for the use of Forest Service field-based interpreters of the management, protection, and use of forest and range resources and the associated human, cultural, and natural history found on these lands, this book is the second in a series of six primers on the multiple use of forest and range resources. Following an…

  8. An evaluation model of protective function in forest management planning: slope stability in regard to shallow landslide events

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available The evaluation of forest protective function has been divided into four main branches according to the different types of instability phenomena (landslide events, erosion, floods, avalanches. This paper presents the first module related to landslide events and will be followed by others. Two opposing factors have been considered: instability tendency of a selected land unit and protective function of the vegetation. While the first factor tends to promote landslide events, the second one opposes their occurrence. An expert evaluation of these aspects allows us to derive some qualitative indexes. For each territorial unit, these indexes express the protection value of vegetation, the degree of management restrictions and suitable improvements to the forest cover. Both propension and protective functional character are influenced by many and different parameters which require multidisciplinary competences to correctly evaluate them. Such skills are not easily found in technicians in charge of forest management. The present paper aims to provide a decision making support tool; based on neural network models, it should be able to interpret and simulate the expert knowledge, extending to the "standard" forest technician the opportunity to perform such a kind of evaluation. The neural network training required the identification and characterization of explanatory variables related to both aspects, and the subsequent expert definition of the respective datasets of real classification examples. The descriptive variables were chosen considering the information availability and its compatibility with GIS techniques as well. Model performances have been validated by testing the whole procedure in two sites situated in Antrona valley (Piemonte and Acqualagna (Marche. The results are discussed in detail and put in evidence a good accordance with both field survey and general conceptual assumptions. Future developments will involve similar analysis and

  9. ForWarn: A Cross-Cutting Forest Resource Management and Decision Support System Providing the Capacity to Identify and Track Forest Disturbances Nationally

    Science.gov (United States)

    Hargrove, W. W.; Spruce, J.; Norman, S.; Christie, W.; Hoffman, F. M.

    2012-12-01

    The Eastern Forest Environmental Threat Assessment Center and Western Wildland Environmental Assessment Center of the USDA Forest Service have collaborated with NASA Stennis Space Center to develop ForWarn, a forest monitoring tool that uses MODIS satellite imagery to produce weekly snapshots of vegetation conditions across the lower 48 United States. Forest and natural resource managers can use ForWarn to rapidly detect, identify, and respond to unexpected changes in the nation's forests caused by insects, diseases, wildfires, severe weather, or other natural or human-caused events. ForWarn detects most types of forest disturbances, including insects, disease, wildfires, frost and ice damage, tornadoes, hurricanes, blowdowns, harvest, urbanization, and landslides. It also detects drought, flood, and temperature effects, and shows early and delayed seasonal vegetation development. Operating continuously since January 2010, results show ForWarn to be a robust and highly capable tool for detecting changes in forest conditions. ForWarn is the first national-scale system of its kind based on remote sensing developed specifically for forest disturbances. It has operated as a prototype since January 2010 and has provided useful information about the location and extent of disturbances detected during the 2011 growing season, including tornadoes, wildfires, and extreme drought. The ForWarn system had an official unveiling and rollout in March 2012, initiated by a joint NASA and USDA press release. The ForWarn home page has had 2,632 unique visitors since rollout in March 2012, with 39% returning visits. ForWarn was used to map tornado scars from the historic April 27, 2011 tornado outbreak, and detected timber damage within more than a dozen tornado tracks across northern Mississippi, Alabama, and Georgia. ForWarn is the result of an ongoing, substantive cooperation among four different government agencies: USDA, NASA, USGS, and DOE. Disturbance maps are available on the

  10. Comparing vegetation cover in the Santee Experimental Forest, South Carolina (USA), before and after hurricane Hugo: 1989-2011

    Science.gov (United States)

    Giovanni R. Cosentino

    2013-01-01

    Hurricane Hugo struck the coast of South Carolina on September 21, 1989 as a category 4 hurricane on the Saffir-Simpson Scale. Landsat Thematic mapper was utilized to determine the extent of damage experienced at the Santee Experimental Forest (SEF) (a part of Francis Marion National Forest) in South Carolina. Normalized Difference Vegetation Index (NDVI) and the...

  11. Governance of private forests in Eastern and Central Europe: An analysis of forest harvesting and management rights

    Directory of Open Access Journals (Sweden)

    Laura Bouriaud

    2013-05-01

    Full Text Available A property rights-based approach is proposed in the paper to underlinethe common characteristics of the forest property rights specificationin ten ECE countries, the specific patterns governing the harvesting of timber in private forestry and the role of the forest management planning in determining the content of the property rights. The analysis deals with the private forests of the individuals (non industrial ownership from ten countries, covering 7.3 million ha and producing yearly some 25 million timber. The study shows that the forest management rights in private forests belong to the State and that the withdrawal rights on timber, yet recognized in the forest management plans, are in reality strongly restricted from aneconomic viewpoint. The forest management planning is the key instrument of the current forest governance system, based on top-down, hierarchically imposed and enforced set of compulsory rules on timber harvesting. With few exceptions, the forest owners’ have little influence in the forest planning and harvesting. The rational and State-lead approach of the private forest management has serious implications not only on the economic content of the property rights, but also on the learning and adaptive capacity of private forestry to cope with current challenges such the climate change, the increased industry needs for wood as raw material, or the marketingof innovative non wood forest products and services. The study highlights that understanding and comparing the regime of the forest ownership require a special analysis of the economic rights attached to each forest attribute; and that the evolution towards more participatory decision-making in the local forest governance can not be accurately assessed in ECE region without a proper understanding of the forest management planning process.

  12. Governance of private forests in Eastern and Central Europe: An analysis of forest harvesting and management rights

    Directory of Open Access Journals (Sweden)

    Laura Bouriaud

    2013-07-01

    Full Text Available A property rights-based approach is proposed in the paper to underline the common characteristics of the forest property rights specification in ten ECE countries, the specific patterns governing the harvesting of timber in private forestry and the role of the forest management planning in determining the content of the property rights. The analysis deals with the private forests of the individuals (non industrial ownership from ten countries, covering 7.3 million ha and producing yearly some 25 million m3 timber. The study shows that the forest management rights in private forests belong to the State and that the withdrawal rights on timber, yet recognised in the forest management plans, are in reality strongly restricted from an economic viewpoint. The forest management planning is the key instrument of the current forest governance system, based on top-down, hierarchically imposed and enforced set of compulsory rules on timber harvesting. With few exceptions, the forest owners’ have little influence in the forest planning and harvesting. The rational and State-lead approach of the private forest management has serious implications not only on the economic content of the property rights, but also on the learning and adaptive capacity of private forestry to cope with current challenges such the climate change, the increased industry needs for wood as raw material, or the marketing of innovative non wood forest products and services. The study highlights that understanding and comparing the regime of the forest ownership require a special analysis of the economic rights attached to each forest attribute; and that the evolution towards more participatory decision-making in the local forest governance can not be accurately assessed in ECE region without a proper understanding of the forest management planning process. 

  13. Close relationship between spectral vegetation indices and Vcmax in deciduous and mixed forests

    Directory of Open Access Journals (Sweden)

    Yanlian Zhou

    2014-04-01

    Full Text Available Seasonal variations of photosynthetic capacity parameters, notably the maximum carboxylation rate, Vcmax, play an important role in accurate estimation of CO2 assimilation in gas-exchange models. Satellite-derived normalised difference vegetation index (NDVI, enhanced vegetation index (EVI and model-data fusion can provide means to predict seasonal variation in Vcmax. In this study, Vcmax was obtained from a process-based model inversion, based on an ensemble Kalman filter (EnKF, and gross primary productivity, and sensible and latent heat fluxes measured using eddy covariance technique at two deciduous broadleaf forest sites and a mixed forest site. Optimised Vcmax showed considerable seasonal and inter-annual variations in both mixed and deciduous forest ecosystems. There was noticeable seasonal hysteresis in Vcmax in relation to EVI and NDVI from 8 d composites of satellite data during the growing period. When the growing period was phenologically divided into two phases (increasing VIs and decreasing VIs phases, significant seasonal correlations were found between Vcmax and VIs, mostly showing R2>0.95. Vcmax varied exponentially with increasing VIs during the first phase (increasing VIs, but second and third-order polynomials provided the best fits of Vcmax to VIs in the second phase (decreasing VIs. The relationships between NDVI and EVI with Vcmax were different. Further efforts are needed to investigate Vcmax–VIs relationships at more ecosystem sites to the use of satellite-based VIs for estimating Vcmax.

  14. StandsSIM-MD: a Management Driven forest SIMulator

    Energy Technology Data Exchange (ETDEWEB)

    Barreiro, S.; Rua, J.; Tomé, M.

    2016-07-01

    Aim of the study. The existing stand level forest simulators available in Portugal were not developed with the aim of including up-to-date model versions and were limited in terms of accounting for forest management. The simulators’ platform, sIMfLOR was recently created to implement different growth models with a common philosophy. The objective was developing one easily-updatable, user-friendly, forest management and climate change sensitive simulator capable of projecting growth for the main tree species in Portugal. Area of the study: Portugal. Material and methods: The new simulator was programmed in a modular form consisting of several modules. The growth module integrates different forest growth and yield models (empirical and process-based) for the main wood production tree species in Portugal (eucalypt, umbrella and maritime pines); whereas the management module drives the growth projections along the planning horizon according to a range of forest management approaches and climate (at present only available for eucalypt). Main results: The main result is the StandsSIM-MD Management Driven simulator that overcomes the limitations of the existing stand level simulators. It is a step forward when compared to the models currently available in the sIMfLOR platform covering more tree species, stand structures and stand compositions. It is focused on end-users and it is based on similar concepts regarding the generation of required inputs and generated outputs. Research highlights: Forest Management Driven simulations approach. Multiple Prescriptions-Per-Stand functionality. StandsSIM-MD can be used to support landowners decisions on stand forest management. StandsSIM-MD simulations at regional level can be combined with optimization routines. (Author)

  15. Simulating Pacific Northwest Forest Response to Climate Change: How We Made Model Results Useful for Vulnerability Assessments

    Science.gov (United States)

    Kim, J. B.; Kerns, B. K.; Halofsky, J.

    2014-12-01

    GCM-based climate projections and downscaled climate data proliferate, and there are many climate-aware vegetation models in use by researchers. Yet application of fine-scale DGVM based simulation output in national forest vulnerability assessments is not common, because there are technical, administrative and social barriers for their use by managers and policy makers. As part of a science-management climate change adaptation partnership, we performed simulations of vegetation response to climate change for four national forests in the Blue Mountains of Oregon using the MC2 dynamic global vegetation model (DGVM) for use in vulnerability assessments. Our simulation results under business-as-usual scenarios suggest a starkly different future forest conditions for three out of the four national forests in the study area, making their adoption by forest managers a potential challenge. However, using DGVM output to structure discussion of potential vegetation changes provides a suitable framework to discuss the dynamic nature of vegetation change compared to using more commonly available model output (e.g. species distribution models). From the onset, we planned and coordinated our work with national forest managers to maximize the utility and the consideration of the simulation results in planning. Key lessons from this collaboration were: (1) structured and strategic selection of a small number climate change scenarios that capture the range of variability in future conditions simplified results; (2) collecting and integrating data from managers for use in simulations increased support and interest in applying output; (3) a structured, regionally focused, and hierarchical calibration of the DGVM produced well-validated results; (4) simple approaches to quantifying uncertainty in simulation results facilitated communication; and (5) interpretation of model results in a holistic context in relation to multiple lines of evidence produced balanced guidance. This latest

  16. Effects of climate change on forest vegetation in the Northern Rockies Region [Chapter 6

    Science.gov (United States)

    Keane, Robert E.; Mahalovich, Mary Frances; Bollenbacher, Barry L.; Manning, Mary E.; Loehman, Rachel A.; Jain, Terrie B.; Holsinger, Lisa M.; Larson, Andrew J.; Webster, Meredith M.

    2018-01-01

    The projected rapid changes in climate will affect the unique vegetation assemblages of the Northern Rockies region in myriad ways, both directly through shifts in vegetation growth, mortality, and regeneration, and indirectly through changes in disturbance regimes and interactions with changes in other ecosystem processes, such as hydrology, snow dynamics, and exotic invasions (Bonan 2008; Hansen and Phillips 2015; Hansen et al. 2001; Notaro et al. 2007). These impacts, taken collectively, could change the way vegetation is managed by public land agencies in this area. Some species may be in danger of rapid decreases in abundance, while others may undergo range expansion (Landhäusser et al. 2010). New vegetation communities may form, while historical vegetation complexes may simply shift to other areas of the landscape or become rare. Juxtaposed with climate change concerns are the consequences of other land management policies and past activities, such as fire exclusion, fuels treatments, and grazing. A thorough assessment of the responses of vegetation to projected climate change is needed, along with an evaluation of the vulnerability of important species, communities, and vegetation-related resources that may be influenced by the effects, both direct and indirect, of climate change. This assessment must also account for past management actions and current vegetation conditions and their interactions with future climates.

  17. Trends in soil-vegetation dynamics in burned Mediterranean pine forests: the effects of soil properties

    Science.gov (United States)

    Wittenberg, L.; Malkinson, D.

    2009-04-01

    Fire can impact a variety of soil physical and chemical properties. These changes may result, given the fire severity and the local conditions, in decreased infiltration and increased runoff and erosion rates. Most of these changes are caused by complex interactions among eco-geomorphic processes which affect, in turn, the rehabilitation dynamics of the soil and the regeneration of the burnt vegetation. Following wildfire events in two forests growing on different soil types, we investigated runoff, erosion, nutrient export (specifically nitrogen and phosphorous) and vegetation recovery dynamics. The Biriya forest site, burned during the 2006 summer, is composed of two dominant lithological types: soft chalk and marl which are relatively impermeable. The rocks are usually overlain by relatively thick, up of to 80 cm, grayish-white Rendzina soil, which contains large amounts of dissolved carbonate. These carbonates serve as a limiting factor for vegetation growth. The planted forest in Biriya is comprised of monospecific stands of Pinus spp. and Cupressus spp. The Mt. Carmel area, which was last burned in the 2005 spring, represents a system of varied Mediterranean landscapes, differentiated by lithology, soils and vegetation. Lithology is mainly composed of limestone, dolomite, and chalk. The dominant soil is Brown Rendzina whilst in some locations Grey Rendzina and Terra Rossa can be found. The local vegetation is composed mainly of a complex of pine (Pinus halepensis), oak (Quercus calliprinos), Pistacia lentiscus and associations At each site several 3X3 m monitoring plots were established to collect runoff and sediment. In-plot vegetation changes were monitored by a sequence of aerial photographs captured using a 6 m pole-mounted camera. At the terra-rosa sites (Mt. Carmel) mean runoff coefficients were 2.18% during the first year after the fire and 1.6% in the second. Mean erosion rates also decreased, from 42 gr/m2 to 4 gr/m2. The recovering vegetation was

  18. 75 FR 66752 - Transmission Vegetation Management Practices; Supplemental Notice of Technical Conference

    Science.gov (United States)

    2010-10-29

    ... Vegetation Management Practices; Supplemental Notice of Technical Conference October 21, 2010. On October 5... Vegetation Management Practices would be held on Tuesday, October 26, from 1 p.m. to 5 p.m. This staff-led... . Kimberly D. Bose, Secretary. Technical Conference on Transmission Vegetation Management Practices Docket No...

  19. Impact of forest disturbance on the structure and composition of vegetation in tropical rainforest of Central Sulawesi, Indonesia

    Directory of Open Access Journals (Sweden)

    RAMADHANIL PITOPANG

    2012-10-01

    Full Text Available We presented the structure and composition of vegetation in four (4 different land use types namely undisturbed primary forest, lightly disturbed primary forest, selectively logged forest, and cacao forest garden in tropical rainforest margin of the Lore Lindu National Park, Central Sulawesi Indonesia. Individually all big trees (dbh > 10 cm was numbered with tree tags and their position in the plot mapped, crown diameter and dbh measured, whereas trunk as well as total height measured by Vertex. Additionally, overstorey plants (dbh 2- 9.9 cm were also surveyed in all land use types. Identification of vouchers and additional herbarium specimens was done in the field as well as at Herbarium Celebense (CEB, Tadulako University, and Nationaal Herbarium of Netherland (L Leiden branch, the Netherland. The result showed that the structure and composition of vegetation in studied are was different. Tree species richness was decreased from primary undisturbed forest to cacao plantation, whereas tree diversity and its composition were significantly different among four (4 land use types. Palaquium obovatum, Chionanthus laxiflorus, Castanopsis acuminatissima, Lithocarpus celebicus, Canarium hirsutum, Eonymus acuminifolius and Sarcosperma paniculata being predominant in land use type A, B and C and Coffea robusta, Theobroma cacao, Erythrina subumbrans, Glyricidia sepium, Arenga pinnata, and Syzygium aromaticum in the cacao plantation. At the family level, undisturbed natural forest was dominated by Fagaceae and Sapotaceae disturbed forest by Moraceae, Sapotaceae, Rubiaceae, and agroforestry systems by Sterculiaceae and Fabaceae.

  20. Using urban forest assessment tools to model bird habitat potential

    Science.gov (United States)

    Lerman, Susannah B.; Nislow, Keith H.; Nowak, David J.; DeStefano, Stephen; King, David I.; Jones-Farrand, D. Todd

    2014-01-01

    The alteration of forest cover and the replacement of native vegetation with buildings, roads, exotic vegetation, and other urban features pose one of the greatest threats to global biodiversity. As more land becomes slated for urban development, identifying effective urban forest wildlife management tools becomes paramount to ensure the urban forest provides habitat to sustain bird and other wildlife populations. The primary goal of this study was to integrate wildlife suitability indices to an existing national urban forest assessment tool, i-Tree. We quantified available habitat characteristics of urban forests for ten northeastern U.S. cities, and summarized bird habitat relationships from the literature in terms of variables that were represented in the i-Tree datasets. With these data, we generated habitat suitability equations for nine bird species representing a range of life history traits and conservation status that predicts the habitat suitability based on i-Tree data. We applied these equations to the urban forest datasets to calculate the overall habitat suitability for each city and the habitat suitability for different types of land-use (e.g., residential, commercial, parkland) for each bird species. The proposed habitat models will help guide wildlife managers, urban planners, and landscape designers who require specific information such as desirable habitat conditions within an urban management project to help improve the suitability of urban forests for birds.

  1. Carbon Stocks and Climate Change: Management Implications in Northern Arizona Ponderosa Pine Forests

    Directory of Open Access Journals (Sweden)

    Benjamin Bagdon

    2014-04-01

    Full Text Available Researchers have observed climate-driven shifts of forest types to higher elevations in the Southwestern US and predict further migration coupled with large-scale mortality events proportional to increases in radiative forcing. Range contractions of forests are likely to impact the total carbon stored within a stand. This study examines the dynamics of Pinus ponderosa stands under three climate change scenarios in Northern Arizona using the Climate Forest Vegetation Simulator (Climate-FVS model to project changes in carbon pools. A sample of 90 stands were grouped according to three elevational ranges; low- (1951 to 2194 m, mid- (2194 to 2499 m, and high- (2499 to 2682 m. elevation stands. Growth, mortality, and carbon stores were simulated in the Climate-FVS over a 100 year timespan. We further simulated three management scenarios for each elevational gradient and climate scenario. Management included (1 a no-management scenario, (2 an intensive-management scenario characterized by thinning from below to a residual basal area (BA of 18 m2/ha in conjunction with a prescribed burn every 10 years, and (3 a moderate-management scenario characterized by a thin-from-below treatment to a residual BA of 28 m2/ha coupled with a prescribed burn every 20 years. Results indicate that any increase in aridity due to climate change will produce substantial mortality throughout the elevational range of ponderosa pine stands, with lower elevation stands projected to experience the most devastating effects. Management was only effective for the intensive-management scenario; stands receiving this treatment schedule maintained moderately consistent levels of basal area and demonstrated a higher level of resilience to climate change relative to the two other management scenarios. The results of this study indicate that management can improve resiliency to climate change, however, resource managers may need to employ more intensive thinning treatments than

  2. VEGETATION ANALYSIS AND LAND USE LAND COVER CLASSIFICATION OF FOREST IN UTTARA KANNADA DISTRICT INDIA USING REMOTE SENSIGN AND GIS TECHNIQUES

    Directory of Open Access Journals (Sweden)

    A. G. Koppad

    2017-10-01

    Full Text Available The study was conducted in Uttara Kannada districts during the year 2012–2014. The study area lies between 13.92° N to 15.52° N latitude and 74.08° E to 75.09° E longitude with an area of 10,215 km2. The Indian satellite IRS P6 LISS-III imageries were used to classify the land use land cover classes with ground truth data collected with GPS through supervised classification in ERDAS software. The land use and land cover classes identified were dense forest, horticulture plantation, sparse forest, forest plantation, open land and agriculture land. The dense forest covered an area of 63.32 % (6468.70 sq km followed by agriculture 12.88 % (1315.31 sq. km, sparse forest 10.59 % (1081.37 sq. km, open land 6.09 % (622.37 sq. km, horticulture plantation and least was forest plantation (1.07 %. Settlement, stony land and water body together cover about 4.26 percent of the area. The study indicated that the aspect and altitude influenced the forest types and vegetation pattern. The NDVI map was prepared which indicated that healthy vegetation is represented by high NDVI values between 0.1 and 1. The non- vegetated features such as water bodies, settlement, and stony land indicated less than 0.1 values. The decrease in forest area in some places was due to anthropogenic activities. The thematic map of land use land cover classes was prepared using Arc GIS Software.

  3. Islands in the Sky: Ecophysiological Cloud-Vegetation Linkages in Southern Appalachian Mountain Cloud Forests

    Science.gov (United States)

    Reinhardt, K.; Emanuel, R. E.; Johnson, D. M.

    2013-12-01

    Mountain cloud forest (MCF) ecosystems are characterized by a high frequency of cloud fog, with vegetation enshrouded in fog. The altitudinal boundaries of cloud-fog zones co-occur with conspicuous, sharp vegetation ecotones between MCF- and non-MCF-vegetation. This suggests linkages between cloud-fog and vegetation physiology and ecosystem functioning. However, very few studies have provided a mechanistic explanation for the sharp changes in vegetation communities, or how (if) cloud-fog and vegetation are linked. We investigated ecophysiological linkages between clouds and trees in Southern Appalachian spruce-fir MCF. These refugial forests occur in only six mountain-top, sky-island populations, and are immersed in clouds on up to 80% of all growing season days. Our fundamental research questions was: How are cloud-fog and cloud-forest trees linked? We measured microclimate and physiology of canopy tree species across a range of sky conditions (cloud immersed, partly cloudy, sunny). Measurements included: 1) sunlight intensity and spectral quality; 2) carbon gain and photosynthetic capacity at leaf (gas exchange) and ecosystem (eddy covariance) scales; and 3) relative limitations to carbon gain (biochemical, stomatal, hydraulic). RESULTS: 1) Midday sunlight intensity ranged from very dark (2500 μmol m-2 s-1), and was highly variable on minute-to-minute timescales whenever clouds were present in the sky. Clouds and cloud-fog increased the proportion of blue-light wavelengths 5-15% compared to sunny conditions, and altered blue:red and red:far red ratios, both of which have been shown to strongly affect stomatal functioning. 2) Cloud-fog resulted in ~50% decreased carbon gain at leaf and ecosystem scales, due to sunlight levels below photosynthetic light-saturation-points. However, greenhouse studies and light-response-curve analyses demonstrated that MCF tree species have low light-compensation points (can photosynthesize even at low light levels), and maximum

  4. Forest management practices and silviculture. Chapter 12.

    Science.gov (United States)

    Donald A. Perala; Elon S. Verry

    2011-01-01

    This chapter is an overview of forest management and silviculture practices, and lessons learned, on the Marcell Experimental Forest (MEF). The forests there are a mosaic of natural regeneration and conifer plantations. Verry (1969) described forest-plant communities in detail for the study watersheds (Sl through S6) on the MEF. The remaining area is described in...

  5. Management effects on carbon fluxes in boreal forests (Invited)

    Science.gov (United States)

    Lindroth, A.; Mölder, M.; Lagergren, F.; Vestin, P.; Hellström, M.; Sundqvist, E.; Norunda Bgs Team

    2010-12-01

    Disturbance by management or natural causes such as wind throw or fire are believed to be one of the main factors that are controlling the carbon balance of vegetation. In Northern Europe a large fraction of the forest area is managed with clear cutting and thinning as the main silvicultural methods. The effect of clear-cutting on carbon dioxide exchanges were studied in different chrono-sequences located in Sweden, Finland, UK and France, respectively. The combined results from these studies showed that a simple model could be developed describing relative net ecosystem exchange as a function of relative rotation length (age). A stand with a rotation length of 100 years, typical for Swedish conditions, looses substantial amounts of carbon during the first 12-15 years and the time it takes to reach cumulative balance after clear-cut, is 25-30 years. The mean net ecosystem exchange over the whole rotation length equals 50% of the maximum uptake. An interesting question is if it is possible to harvest without the substantial carbon losses that take place after clear-cutting. Selective harvest by thinning could potentially be such a method. We therefore studied the effect of thinning on soil and ecosystem carbon fluxes in a mixed pine and spruce forest in Central Sweden, the Norunda forest, located in the semi-boreal zone at 60.08°N, 17.48 °E. The CO2 fluxes from the forest were measured by eddy covariance method and soil effluxes were measured by automatic chambers. Maximum canopy height of the ca. 100 years-old forest was 28 m. The stand was composed of ca 72% pine, 28% before the thinning while the composition after the thinning became 82% pine and 18% spruce. The thinning was made in November/December 2008 in a half- circle from the tower with a radius of 200 m. The LAI decreased from 4.5 to 2.8 after the thinning operation. Immediately after the thinning, we found significantly higher soil effluxes, probably due to increased decomposition of dead roots. The

  6. Forest Health Management and Detection of Invasive Forest Insects

    Directory of Open Access Journals (Sweden)

    Kaelyn Finley

    2016-05-01

    Full Text Available The objectives of this review paper are to provide an overview of issues related to forest health and forest entomology, explain existing methods for forest insect pest detection, and provide background information on a case study of emerald ash borer. Early detection of potentially invasive insect species is a key aspect of preventing these species from causing damage. Invasion management efforts are typically more feasible and efficient if they are applied as early as possible. Two proposed approaches for detection are highlighted and include dendroentomology and near infrared spectroscopy (NIR. Dendroentomology utilizes tree ring principles to identify the years of outbreak and the dynamics of past insect herbivory on trees. NIR has been successfully used for assessing various forest health concerns (primarily hyperspectral imaging and decay in trees. Emerald ash borer (EAB (Agrilus planipennis, is a non-native beetle responsible for widespread mortality of several North American ash species (Fraxinus sp.. Current non-destructive methods for early detection of EAB in specific trees are limited, which restricts the effectiveness of management efforts. Ongoing research efforts are focused on developing methods for early detection of emerald ash borer.

  7. Evaluation of Forest Dynamics Focusing on Various Minimum Harvesting Ages in Multi-Purpose Forest Management Planning

    Directory of Open Access Journals (Sweden)

    Derya Mumcu Kucuker

    2015-04-01

    Full Text Available Aim of study: Exploring the potential effects of various forest management strategies on the ability of forest ecosystems to sequester carbon and produce water has become of great concern among forest researchers. The main purpose of this study is to evaluate the effects of management strategies with different minimum harvesting ages on the amount and monetary worth of carbon, water and timber values. Area of study: The study was performed in the Yalnızçam planning unit located on the northeastern part of Turkey. Material and Methods: A forest management model with linear programming (LP was developed to determine the effects of various minimum harvesting ages. Twenty-four different management strategies were developed to maximize the economic Net Present Value (NPV of timber, water and carbon values in addition to their absolute quantities over time. Amount and NPV of forest values and ending inventory with different minimum harvesting ages were used as performance indicators to assess and thus understand forest dynamics. Main results: Amount and NPV of timber and carbon generally decreased with extended minimum harvesting ages. However, similar trends were not observed for water production values. The results pointed out that the performance of a management strategy depends highly on the development of a management strategy and the initial forest structure aside from the growth rate Research highlights: Minimum harvesting ages affect forest outputs under the same objectives and constraints. Performance of a management strategy highly depends on initial age class structure in addition to the contents of a management strategy.

  8. An assessment of fisher (Pekania pennanti) tolerance to forest management intensity on the landscape

    Science.gov (United States)

    William J. Zielinski; Craig M. Thompson; Kathryn L. Purcell; James D. Garner

    2013-01-01

    Forest restoration intended to reduce the overabundance of dense vegetation can be at odds with wildlife habitat conservation, particularly for species of wildlife that are strongly associated with structurally diverse forests with dense canopies. The fisher (Pekania pennanti), a mesopredator that occurs in mid-elevation forests of the southern...

  9. Tapping into the Forest Management Assistance Programs

    Science.gov (United States)

    John L. Greene; Terry K. Haines

    1998-01-01

    Use of federal and state forest management assistance programs can enable nonindustial private forest owners to reduce their management expenses and practice better stewardship. This paper summarizes six federal and twelve state assistance programs available to owners in the North Central states. It also describes how to calculate the amount of a government...

  10. Management of tropical forests for products and energy

    Science.gov (United States)

    John I. Zerbe

    1992-01-01

    Tropical forests have always been sources for prized timbers, rubber, tannin, and other forest products for use worldwide. However, with the recent concern regarding global change, the importance of effective forest products management and utilization has increased significantly. The USDA Forest Service's Forest Products Laboratory at Madison, Wisconsin, has...

  11. Forest carbon management in the United States: 1600-2100

    Science.gov (United States)

    Richard A. Birdsey; Kurt Pregitzer; Alan Lucier

    2006-01-01

    This paper reviews the effects of past forest management on carbon stocks in the United States, and the challenges for managing forest carbon resources in the 21st century. Forests in the United States were in approximate carbon balance with the atmosphere from 1600-1800. Utilization and land clearing caused a large pulse of forest carbon emissions during the 19th...

  12. Forest residues management guidelines for the Pacific Northwest.

    Science.gov (United States)

    John M. Pierovich; Edward H. Clarke; Stewart G. Pickford; Franklin R. Ward

    1975-01-01

    Forest residues often require treatment to meet land management objectives. Guideline statements for managing forest residues are presented to provide direction for achieving these objectives. The latest research information and the best knowledge of experts in various land management disciplines were used to formulate these statements. A unique keying system is...

  13. On the potential of Kriging for forest management planning

    Energy Technology Data Exchange (ETDEWEB)

    Gunnarsson, F

    1997-12-31

    Forest management planning aims at fulfilling the overall goals for the forest owner. The economic optimal scheduling of treatments in spatially discrete forest stands, the time dimension, has been thoroughly investigated in research. The spatial dimension is less investigated. Normally, spatially discrete stands are defined as treatment units. These are inventoried using subjective methods with unknown precision. As an alternative to this conventional way to describe the forest, the present investigation used kriging for estimating forest characteristics spatially continuously using georeferenced sample plots. Using stratification by age, several variables interesting for forest management planning displayed spatial autocorrelation, even though the estate was thoroughly managed. No hardwood variables displayed the autocorrelation necessary for using kriging. 20 refs, 6 figs, 2 tabs

  14. Vegetation management with fire modifies peatland soil thermal regime.

    Science.gov (United States)

    Brown, Lee E; Palmer, Sheila M; Johnston, Kerrylyn; Holden, Joseph

    2015-05-01

    Vegetation removal with fire can alter the thermal regime of the land surface, leading to significant changes in biogeochemistry (e.g. carbon cycling) and soil hydrology. In the UK, large expanses of carbon-rich upland environments are managed to encourage increased abundance of red grouse (Lagopus lagopus scotica) by rotational burning of shrub vegetation. To date, though, there has not been any consideration of whether prescribed vegetation burning on peatlands modifies the thermal regime of the soil mass in the years after fire. In this study thermal regime was monitored across 12 burned peatland soil plots over an 18-month period, with the aim of (i) quantifying thermal dynamics between burned plots of different ages (from post burning), and (ii) developing statistical models to determine the magnitude of thermal change caused by vegetation management. Compared to plots burned 15 + years previously, plots recently burned (management effects. Temperatures measured in soil plots burned vegetation regrows. Our findings that prescribed peatland vegetation burning alters soil thermal regime should provide an impetus for further research to understand the consequences of thermal regime change for carbon processing and release, and hydrological processes, in these peatlands. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Adaptive genetic potential of coniferous forest tree species under climate change: implications for sustainable forest management

    Science.gov (United States)

    Mihai, Georgeta; Birsan, Marius-Victor; Teodosiu, Maria; Dumitrescu, Alexandru; Daia, Mihai; Mirancea, Ionel; Ivanov, Paula; Alin, Alexandru

    2017-04-01

    Mountain ecosystems are extremely vulnerable to climate change. The real potential for adaptation depends upon the existence of a wide genetic diversity in trees populations, upon the adaptive genetic variation, respectively. Genetic diversity offers the guarantee that forest species can survive, adapt and evolve under the influence of changing environmental conditions. The aim of this study is to evaluate the genetic diversity and adaptive genetic potential of two local species - Norway spruce and European silver fir - in the context of regional climate change. Based on data from a long-term provenance experiments network and climate variables spanning over more than 50 years, we have investigated the impact of climatic factors on growth performance and adaptation of tree species. Our results indicate that climatic and geographic factors significantly affect forest site productivity. Mean annual temperature and annual precipitation amount were found to be statistically significant explanatory variables. Combining the additive genetic model with the analysis of nuclear markers we obtained different images of the genetic structure of tree populations. As genetic indicators we used: gene frequencies, genetic diversity, genetic differentiation, genetic variance, plasticity. Spatial genetic analyses have allowed identifying the genetic centers holding high genetic diversity which will be valuable sources of gene able to buffer the negative effects of future climate change. Correlations between the marginal populations and in the optimal vegetation, between the level of genetic diversity and ecosystem stability, will allow the assessment of future risks arising from current genetic structure. Therefore, the strategies for sustainable forest management have to rely on the adaptive genetic variation and local adaptation of the valuable genetic resources. This work was realized within the framework of the project GENCLIM (Evaluating the adaptive potential of the main

  16. Faunal impact on vegetation structure and ecosystem function in mangrove forests: A review

    DEFF Research Database (Denmark)

    Cannicci, S.; Burows, D.; Fratini, S.

    2008-01-01

    The last 20 years witnessed a real paradigm shift concerning the impact of biotic factors on ecosystem functions as well as on vegetation structure of mangrove forests. Before this small scientific revolution took place, structural aspects of mangrove forests were viewed to be the result of abiotic...... processes acting from the bottom-up, while, at ecosystem level, the outwelling hypothesis stated that mangroves primary production was removed via tidal action and carried to adjacent nearshore ecosystems where it fuelled detrital based food-webs. The sesarmid crabs were the first macrofaunal taxon...... to be considered a main actor in mangrove structuring processes, thanks to a number of studies carried out in the Indo-Pacific forests in the late 1970s and early 1980s. Following these classical papers, a number of studies on Sesarmidae feeding and burrowing ecology were carried out, which leave no doubts about...

  17. Using rainwater harvesting techniques for firefighting in forest plantations

    Science.gov (United States)

    P. Garcia-Chevesich; R. Valdes-Pineda; D. Neary; R. Pizarro

    2015-01-01

    Fire is a natural component of forest ecosystems in parts of North America, South America, Europe, Australia, Africa and the Mediterranean region. These fires are usually uncontrolled wildfires in areas of ignitable vegetation but can also be prescribed fires set for vegetation management purposes. Wildfires are commonly characterised based on cause of ignition,...

  18. Live tree carbon stock equivalence of fire and fuels extension to the Forest Vegetation Simulator and Forest Inventory and Analysis approaches

    Science.gov (United States)

    James E. Smith; Coeli M. Hoover

    2017-01-01

    The carbon reports in the Fire and Fuels Extension (FFE) to the Forest Vegetation Simulator (FVS) provide two alternate approaches to carbon estimates for live trees (Rebain 2010). These are (1) the FFE biomass algorithms, which are volumebased biomass equations, and (2) the Jenkins allometric equations (Jenkins and others 2003), which are diameter based. Here, we...

  19. Integrated forest management to prevent wildfires under Mediterranean environments

    Directory of Open Access Journals (Sweden)

    Piermaria Corona

    2015-02-01

    Full Text Available This review presents a multidisciplinary framework for integrating the ecological, regulatory, procedural and technical aspects of forest management for fires prevention under Mediterranean environments. The aims are to: i provide a foreground of wildfire scenario; ii illustrate the theoretical background of forest fuel management; iii describe the available fuel management techniques and mechanical operations for fire prevention in forest and wildland-urban interfaces, with exemplification of case-studies; iv allocate fire prevention activities under the hierarchy of forest planning. The review is conceived as an outline commentary discussion targeted to professionals, technicians and government personnel involved in forestry and environmental management.

  20. Spatial simulation of forest succession and timber harvesting using LANDIS

    Science.gov (United States)

    Eric J. Gustafson; Stephen R. Shifley; David J. Mladenoff; Kevin K. Nimerfro; Hong S. He

    2000-01-01

    The LANDIS model simulates ecological dynamics, including forest succession, disturbance, seed dispersal and establishment, fire and wind disturbance, and their interactions. We describe the addition to LANDIS of capabilities to simulate forest vegetation management, including harvest. Stands (groups of cells) are prioritized for harvest using one of four ranking...

  1. 75 FR 17913 - Maintenance and Vegetation Management Along Existing Western Area Power Administration...

    Science.gov (United States)

    2010-04-08

    ... Maintenance and Vegetation Management Along Existing Western Area Power Administration Transmission Line... Corporation's mandatory vegetation management and maintenance standards (FAC-003-1) in accordance with section... Service) authorizations or issuing new authorizations to accommodate Western's vegetation management...

  2. Characterization and classification of vegetation canopy structure and distribution within the Great Smoky Mountains National Park using LiDAR

    Science.gov (United States)

    Jitendra Kumar; Jon Weiner; William W. Hargrove; Steve Norman; Forrest M. Hoffman; Doug Newcomb

    2016-01-01

    Vegetation canopy structure is a critically important habitat characteristic for many threatened and endangered birds and other animal species, and it is key information needed by forest and wildlife managers for monitoring and managing forest resources, conservation planning and fostering biodiversity. Advances in Light Detection and Ranging (LiDAR) technologies have...

  3. Managing forests as ecosystems: A success story or a challenge ahead?

    Energy Technology Data Exchange (ETDEWEB)

    Dale, V.H. [Oak Ridge National Lab., TN (United States). Environmental Sciences Div.

    1997-10-01

    To manage forests as ecosystems, the many values they hold for different users must be recognized, and they must be used so that those assets are not destroyed. Important ecosystem features of forests include nutrient cycling, habitat, succession, and water quality. Over time, the ways in which humans value forests have changed as forest uses have altered and as forests have declined in size and quality. Both ecosystem science and forest ecology have developed approaches that are useful to manage forests to retain their value. A historical perspective shows how changes in ecology, legislation, and technology have resulted in modern forest-management practices. However, current forest practices are still a decade or so behind current ecosystem science. Ecologists have done a good job of transferring their theories and approaches to the forest manager classroom but have done a poor job of translating these concepts into practice. Thus, the future for ecosystem management requires a closer linkage between ecologists and other disciplines. For example, the changing ways in which humans value forests are the primary determinant of forest-management policies. Therefore, if ecologists are to understand how ecosystem science can influence these policies, they must work closely with social scientists trained to assess human values.

  4. Meteorological factors associated with abundance of airborne fungal spores over natural vegetation

    Science.gov (United States)

    Crandall, Sharifa G.; Gilbert, Gregory S.

    2017-08-01

    The abundance of airborne fungal spores in agricultural and urban settings increases with greater air temperature, relative humidity, or precipitation. The same meteorological factors that affect temporal patterns in spore abundance in managed environments also vary spatially across natural habitats in association with differences in vegetation structure. Here we investigated how temporal and spatial variation in aerial spore abundance is affected by abiotic (weather) and biotic (vegetation) factors as a foundation for predicting how fungi may respond to changes in weather and land-use patterns. We measured the phenology of airborne fungal spores across a mosaic of naturally occurring vegetation types at different time scales to describe (1) how spore abundance changes over time, (2) which local meteorological variables are good predictors for airborne spore density, and (3) whether spore abundance differs across vegetation types. Using an air volumetric vacuum sampler, we collected spore samples at 3-h intervals over a 120-h period in a mixed-evergreen forest and coastal prairie to measure diurnal, nocturnal, and total airborne spore abundance across vegetation types. Spore samples were also collected at weekly and monthly intervals in mixed-evergreen forest, redwood forest, and maritime chaparral vegetation types from 12 field sites across two years. We found greater airborne spore densities during the wetter winter months compared to the drier summer months. Mean total spore abundance in the mixed-evergreen forest was twice than in the coastal prairie, but there were no significant differences in total airborne spore abundance among mixed-evergreen forest, redwood forest, and maritime chaparral vegetation types. Weekly and monthly peaks in airborne spore abundance corresponded with rain events and peaks in soil moisture. Overall, temporal patterns in meteorological factors were much more important in determining airborne fungal spore abundance than the

  5. Adaptation and mitigation options for forests and forest management in a changing climate

    NARCIS (Netherlands)

    Johnston, M.; Lindner, M.; Parotta, J.; Giessen, L.

    2012-01-01

    Climate change is now accepted as an important issue for forests and forest management around the world. Climate change will affect forests' ability to provide ecosystem goods and services on which human communities depend: biodiversity, carbon sequestration, regulation of water quality and

  6. Forest pest management in a changing world

    Science.gov (United States)

    Andrew M. Liebhold

    2012-01-01

    The scope, context and science guiding forest pest management have evolved and are likely to continue changing into the future. Here, I present six areas of advice to guide practitioners in the implementation of forest pest management. First, human dimensions will continue to play a key role in most pest problems and should always be a primary consideration in...

  7. Fire regimes approaching historic norms reduce wildfire-facilitated conversion from forest to non-forest

    Science.gov (United States)

    Ryan B. Walker; Jonathan D. Coop; Sean A. Parks; Laura Trader

    2018-01-01

    Extensive high-severity wildfires have driven major losses of ponderosa pine and mixed-conifer forests in the southwestern United States, in some settings catalyzing enduring conversions to nonforested vegetation types. Management interventions to reduce the probability of stand-replacing wildfire have included mechanical fuel treatments, prescribed fire, and wildfire...

  8. Forest management under uncertainty for multiple bird population objectives

    Science.gov (United States)

    Moore, C.T.; Plummer, W.T.; Conroy, M.J.; Ralph, C. John; Rich, Terrell D.

    2005-01-01

    We advocate adaptive programs of decision making and monitoring for the management of forest birds when responses by populations to management, and particularly management trade-offs among populations, are uncertain. Models are necessary components of adaptive management. Under this approach, uncertainty about the behavior of a managed system is explicitly captured in a set of alternative models. The models generate testable predictions about the response of populations to management, and monitoring data provide the basis for assessing these predictions and informing future management decisions. To illustrate these principles, we examine forest management at the Piedmont National Wildlife Refuge, where management attention is focused on the recovery of the Red-cockaded Woodpecker (Picoides borealis) population. However, managers are also sensitive to the habitat needs of many non-target organisms, including Wood Thrushes (Hylocichla mustelina) and other forest interior Neotropical migratory birds. By simulating several management policies on a set of-alternative forest and bird models, we found a decision policy that maximized a composite response by woodpeckers and Wood Thrushes despite our complete uncertainty regarding system behavior. Furthermore, we used monitoring data to update our measure of belief in each alternative model following one cycle of forest management. This reduction of uncertainty translates into a reallocation of model influence on the choice of optimal decision action at the next decision opportunity.

  9. Book of Abstracts - Managing Forests to Promote Environmental Services

    DEFF Research Database (Denmark)

    This book includes the abstracts of the oral and poster presentation of the conference ‘Managing Forests to Promote Environmental Services’, 3-5 November 2015, Copenhagen. The conference is arranged by the Centre of Advanced Research on Environmental Services from Nordic Forest Ecosystems (CAR-ES...... forest management and environmental ecosystem services in a broader perspective, and overviews of ten years of CAR-ES integrated research on carbon sequestration, water protection, biodiversity, and soil quality in the Nordic – Baltic are presented. Frederiksberg, October 2015 Inge Stupak, Lars Högbom...... II), funded by Nordic Forest Research (SNS) 2011-2015. This is an open network that brings together Nordic and Baltic forest researchers in order to provide scientific knowledge on the impacts of forest management on major environmental services for decision making within the forestry sector...

  10. Temporal carbon dynamics of forests in Washington, US: implications for ecological theory and carbon management

    Science.gov (United States)

    Crystal L. Raymond; Donald. McKenzie

    2014-01-01

    We quantified carbon (C) dynamics of forests in Washington, US using theoretical models of C dynamics as a function of forest age. We fit empirical models to chronosequences of forest inventory data at two scales: a coarse-scale ecosystem classification (ecosections) and forest types (potential vegetation) within ecosections. We hypothesized that analysis at the finer...

  11. Using silviculture to influence carbon sequestration in southern Appalachian spruce-fir forests

    Science.gov (United States)

    Patrick T. Moore; R. Justin DeRose; James N. Long; Helga. van Miegroet

    2012-01-01

    Enhancement of forest growth through silvicultural modification of stand density is one strategy for increasing carbon (C) sequestration. Using the Fire and Fuels Extension of the Forest Vegetation Simulator, the effects of even-aged, uneven-aged and no-action management scenarios on C sequestration in a southern Appalachian red spruce-Fraser fir forest were modeled....

  12. Implications of climate change for Pacific Northwest forest management

    International Nuclear Information System (INIS)

    Wall, G.

    1991-01-01

    A Canada/USA symposium was held to identify potential consequences of global climate change to Pacific Northwest forests; to identify the future role and relative contribution of those forests in the balance of carbon, moisture, and energy exchange of the atmosphere; and to develop recommendations for Pacific Northwest forest management strategies and policy options for responding to global climate change. Papers were presented on such topics as regional climatic change, forest responses and processes, public policy on forests and climatic change, sequestration of atmospheric carbon, forest management, and forest adaptation to climatic change. Separate abstracts have been prepared for 14 papers from this symposium

  13. Stakeholders’ perception of forest management: a Portuguese mountain case study

    Energy Technology Data Exchange (ETDEWEB)

    Marta-Costa, A.; Torres-Manso, F.; Pinto, R.; Tibério, L.; Carneiro, I.

    2016-07-01

    Aim of study: The Natura 2000 Network “Montemuro Mountain” Site in Portugal. Material and methods: This study combined several consultation and citizen participation techniques. Main results: The perceptions shared by the stakeholders are some similar, others not similar and others still quite paradoxical regarding forest characteristics and the opportunities they offer. The study has shown that it is possible to implement and improve citizen participation methodologies. This can be a viable way towards more effective forest management and fire prevention as this may help blunt conflicts of interest in forest space management. However, for participation to be truly effective and representative, a policy regarding training and awareness of the importance of information is necessary. Research highlights: The stakeholder perceptions on forests and forest management are assessed; forest fires and agrarian abandonment are central for territory’s development; depopulation, old age and absenteeism emphasize degradation of forest areas; Conscious citizen participation benefit policymaking and forest management. (Author)

  14. Using management to address vegetation stress related to land-use and climate change

    Science.gov (United States)

    Middleton, Beth A.; Boudell, Jere; Fisichelli, Nicholas

    2017-01-01

    While disturbances such as fire, cutting, and grazing can be an important part of the conservation of natural lands, some adjustments to management designed to mimic natural disturbance may be necessary with ongoing and projected climate change. Stressed vegetation that is incapable of regeneration will be difficult to maintain if adults are experiencing mortality, and/or if their early life-history stages depend on disturbance. A variety of active management strategies employing disturbance are suggested, including resisting, accommodating, or directing vegetation change by manipulating management intensity and frequency. Particularly if land-use change is the main cause of vegetation stress, amelioration of these problems using management may help vegetation resist change (e.g. strategic timing of water release if a water control structure is available). Managers could direct succession by using management to push vegetation toward a new state. Despite the historical effects of management, some vegetation change will not be controllable as climates shift, and managers may have to accept some of these changes. Nevertheless, proactive measures may help managers achieve important conservation goals in the future.

  15. Carbon storage in Ontario's forests, 2000-2100

    International Nuclear Information System (INIS)

    Colombo, S.J.; Chen, J.; Ter-Mikaelian, M.T.

    2007-01-01

    One of the greatest challenges facing modern society is rapid climate change resulting from greenhouse gases emissions to the atmosphere, primarily in the form of carbon dioxide from the burning of fossil fuels. The effects of climate change on natural environments will inevitably affect people as well, if left unchanged. In addition to many other societal benefits, forests store large amounts of carbon. As a result, it is necessary to understand how forest management and natural processes affect forest carbon storage. Such information can be utilized to manage forests so that they function as carbon sinks and help reduce greenhouse gas concentrations in the atmosphere. This report employed data about Ontario's forest structure and information from the forest management planning process and past harvests to describe carbon in forests and wood products today and through to the end of this century. The paper described the methods used for the study which included modification of the United States national forest carbon model, FORCARB2, to predict Ontario's forest carbon budgets in order to make carbon projections congruent with forest management plans. The modified forest carbon model, which is called FORCARB-ON, predicts carbon in live trees, understory vegetation, forest floor, standing and down dead wood, and soil. Ontario's managed forests are projected to increase carbon storage by 433 million tonnes from 2000 to 2100. The largest forest sink will be in wood products, accounting for 364 million tonnes of carbon storage over the century. 22 refs., 1 tab., 3 figs

  16. ORGEST: Regional guidelines and silvicultural models for sustainable forest management

    Energy Technology Data Exchange (ETDEWEB)

    Piqué, Míriam; Vericat, Pau; Beltrán, Mario

    2017-11-01

    Aim of the study: To develop regional guidelines for sustainable forest management. Area of the study: Forests of Catalonia (NE Spain). Material and methods: The process of developing the forest management guidelines (FMG) started by establishing a thorough classification of forest types at stand level. This classification hinges on two attributes: tree species composition and site quality based on ecological variables, which together determine potential productivity. From there, the management guidelines establish certain objectives and silvicultural models for each forest type. The forest type classifications, like the silvicultural models, were produced using both existing and newly-built growth models based on data from the National Forest Inventory (NFI) and expert knowledge. The effort involved over 20 expert working groups in order to better integrate the expertise and vision of different sectorial agents. Main results: The FMG consist in quantitative silvicultural models that include typical silvicultural variables, technical descriptions of treatments and codes of good practice. Guidelines now cover almost all forest types in Catalonia (spanning up to 90% of the Catalan forest area). Different silvicultural models have been developed for pure and mixed stands, different site quality classes (2–3 classes per species), and even- and multi-aged stands. Research highlights: FMG: i) orient the management of private and public forests, (ii) provide a technical scaffold for efficient allocation/investment of public subsidies in forest management, and (iii) bridge forest planning instruments at regional (strategic-tactical) and stand (operational) level.

  17. ORGEST: Regional guidelines and silvicultural models for sustainable forest management

    International Nuclear Information System (INIS)

    Piqué, Míriam; Vericat, Pau; Beltrán, Mario

    2017-01-01

    Aim of the study: To develop regional guidelines for sustainable forest management. Area of the study: Forests of Catalonia (NE Spain). Material and methods: The process of developing the forest management guidelines (FMG) started by establishing a thorough classification of forest types at stand level. This classification hinges on two attributes: tree species composition and site quality based on ecological variables, which together determine potential productivity. From there, the management guidelines establish certain objectives and silvicultural models for each forest type. The forest type classifications, like the silvicultural models, were produced using both existing and newly-built growth models based on data from the National Forest Inventory (NFI) and expert knowledge. The effort involved over 20 expert working groups in order to better integrate the expertise and vision of different sectorial agents. Main results: The FMG consist in quantitative silvicultural models that include typical silvicultural variables, technical descriptions of treatments and codes of good practice. Guidelines now cover almost all forest types in Catalonia (spanning up to 90% of the Catalan forest area). Different silvicultural models have been developed for pure and mixed stands, different site quality classes (2–3 classes per species), and even- and multi-aged stands. Research highlights: FMG: i) orient the management of private and public forests, (ii) provide a technical scaffold for efficient allocation/investment of public subsidies in forest management, and (iii) bridge forest planning instruments at regional (strategic-tactical) and stand (operational) level.

  18. Overview of Contemporary Issues of Forest Research and Management in China

    Science.gov (United States)

    He, Hong S.; Shifley, Stephen R.; Thompson, Frank R.

    2011-12-01

    With 207 million ha of forest covering 22% of its land area, China ranks fifth in the world in forest area. Rapid economic growth, climate change, and forest disturbances pose new, complex challenges for forest research and management. Progress in meeting these challenges is relevant beyond China, because China's forests represent 34% of Asia's forests and 5% of the worlds' forests. To provide a broader understanding of these management challenges and of research and policies that address them, we organized this special issue on contemporary forest research and management issues in China. At the national level, papers review major forest types and the evolution of sustainable forestry, the development of China's forest-certification efforts, the establishment of a forest inventory system, and achievements and challenges in insect pest control in China. Papers focused on Northern China address historical, social, and political factors that have shaped the region's forests; the use of forest landscape models to assess how forest management can achieve multiple objectives; and analysis and modeling of fuels and fire behavior. Papers addressing Central and South China describe the "Grain for Green" program, which converts low productivity cropland to grassland and woodland to address erosion and soil carbon sequestration; the potential effects of climate change on CO2 efflux and soil respiration; and relationships between climate and net primary productivity. China shares many forest management and research issues with other countries, but in other cases China's capacity to respond to forest management challenges is unique and bears watching by the rest of the world.

  19. Forest management and carbon sequestration in the Mediterranean region: A review

    International Nuclear Information System (INIS)

    Ruiz-Peinado, R.; Bravo-Oviedo, A.; López-Senespleda, E.; Bravo, F.; Río, M. Del

    2017-01-01

    Aim of the study: To review and acknowledge the value of carbon sequestration by forest management in the Mediterranean area. Material and methods: We review the main effects of forest management by comparing the effects of silviculture systems (even-aged vs. uneven-aged stands, coppice systems, agroforestry systems), silvicultural options (thinning, rotation period, species composition), afforestation, harvesting, fire impact or effects of shrub layer on carbon sequestration in the Mediterranean area. Main results: We illustrate as forest management can clearly improve forest carbon sequestration amounts. We conclude that forest management is an effective way to maintain and enhance high carbon sequestration rates in order to cope with climate change and provision of ecosystem services. We also think that although much effort has been put into this topic research, there are still certain gaps that must be dealt with to increase our scientific knowledge and in turn transfer this knowledge to forest practitioners in order to achieve sustainable management aimed at mitigating climate change. Research highlights: It is important to underline the importance of forests in the carbon cycle as this role can be enhanced by forest managers through sustainable forest management. The effects of different management options or disturbances can be critical as regards mitigating climate change. Understanding the effects of forest management is even more important in the Mediterranean area, given that the current high climatic variability together with historical human exploitation and disturbance events make this area more vulnerable to the effects of climate change

  20. Forest management and carbon sequestration in the Mediterranean region: A review

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz-Peinado, R.; Bravo-Oviedo, A.; López-Senespleda, E.; Bravo, F.; Río, M. Del

    2017-11-01

    Aim of the study: To review and acknowledge the value of carbon sequestration by forest management in the Mediterranean area. Material and methods: We review the main effects of forest management by comparing the effects of silviculture systems (even-aged vs. uneven-aged stands, coppice systems, agroforestry systems), silvicultural options (thinning, rotation period, species composition), afforestation, harvesting, fire impact or effects of shrub layer on carbon sequestration in the Mediterranean area. Main results: We illustrate as forest management can clearly improve forest carbon sequestration amounts. We conclude that forest management is an effective way to maintain and enhance high carbon sequestration rates in order to cope with climate change and provision of ecosystem services. We also think that although much effort has been put into this topic research, there are still certain gaps that must be dealt with to increase our scientific knowledge and in turn transfer this knowledge to forest practitioners in order to achieve sustainable management aimed at mitigating climate change. Research highlights: It is important to underline the importance of forests in the carbon cycle as this role can be enhanced by forest managers through sustainable forest management. The effects of different management options or disturbances can be critical as regards mitigating climate change. Understanding the effects of forest management is even more important in the Mediterranean area, given that the current high climatic variability together with historical human exploitation and disturbance events make this area more vulnerable to the effects of climate change.

  1. [Correlation analysis on normalized difference vegetation index (NDVI) of different vegetations and climatic factors in Southwest China].

    Science.gov (United States)

    Zhang, Yuan-Dong; Zhang, Xiao-He; Liu, Shi-Rong

    2011-02-01

    Based on the 1982-2006 NDVI remote sensing data and meteorological data of Southwest China, and by using GIS technology, this paper interpolated and extracted the mean annual temperature, annual precipitation, and drought index in the region, and analyzed the correlations of the annual variation of NDVI in different vegetation types (marsh, shrub, bush, grassland, meadow, coniferous forest, broad-leaved forest, alpine vegetation, and cultural vegetation) with corresponding climatic factors. In 1982-2006, the NDVI, mean annual temperature, and annual precipitation had an overall increasing trend, and the drought index decreased. Particularly, the upward trend of mean annual temperature was statistically significant. Among the nine vegetation types, the NDVI of bush and mash decreased, and the downward trend was significant for bush. The NDVI of the other seven vegetation types increased, and the upward trend was significant for coniferous forest, meadow, and alpine vegetation, and extremely significant for shrub. The mean annual temperature in the areas with all the nine vegetation types increased significantly, while the annual precipitation had no significant change. The drought index in the areas with marsh, bush, and cultural vegetation presented an increasing trend, that in the areas with meadow and alpine vegetation decreased significantly, and this index in the areas with other four vegetation types had an unobvious decreasing trend. The NDVI of shrub and coniferous forest had a significantly positive correlation with mean annual temperature, and that of shrub and meadow had significantly negative correlation with drought index. Under the conditions of the other two climatic factors unchanged, the NDVI of coniferous forest, broad-leaved forest, and alpine vegetation showed the strongest correlation with mean annual temperature, that of grass showed the strongest correlation with annual precipitation, and the NDVI of mash, shrub, grass, meadow, and cultural

  2. Terrain and vegetation structural influences on local avian species richness in two mixed-conifer forests

    Science.gov (United States)

    Jody C. Vogeler; Andrew T. Hudak; Lee A. Vierling; Jeffrey Evans; Patricia Green; Kerri T. Vierling

    2014-01-01

    Using remotely-sensed metrics to identify regions containing high animal diversity and/or specific animal species or guilds can help prioritize forest management and conservation objectives across actively managed landscapes. We predicted avian species richness in two mixed conifer forests, Moscow Mountain and Slate Creek, containing different management contexts and...

  3. Monitoring post-fire vegetation rehabilitation projects: A common approach for non-forested ecosystems

    Science.gov (United States)

    Wirth, Troy A.; Pyke, David A.

    2007-01-01

    Emergency Stabilization and Rehabilitation (ES&R) and Burned Area Emergency Response (BAER) treatments are short-term, high-intensity treatments designed to mitigate the adverse effects of wildfire on public lands. The federal government expends significant resources implementing ES&R and BAER treatments after wildfires; however, recent reviews have found that existing data from monitoring and research are insufficient to evaluate the effects of these activities. The purpose of this report is to: (1) document what monitoring methods are generally used by personnel in the field; (2) describe approaches and methods for post-fire vegetation and soil monitoring documented in agency manuals; (3) determine the common elements of monitoring programs recommended in these manuals; and (4) describe a common monitoring approach to determine the effectiveness of future ES&R and BAER treatments in non-forested regions. Both qualitative and quantitative methods to measure effectiveness of ES&R treatments are used by federal land management agencies. Quantitative methods are used in the field depending on factors such as funding, personnel, and time constraints. There are seven vegetation monitoring manuals produced by the federal government that address monitoring methods for (primarily) vegetation and soil attributes. These methods vary in their objectivity and repeatability. The most repeatable methods are point-intercept, quadrat-based density measurements, gap intercepts, and direct measurement of soil erosion. Additionally, these manuals recommend approaches for designing monitoring programs for the state of ecosystems or the effect of management actions. The elements of a defensible monitoring program applicable to ES&R and BAER projects that most of these manuals have in common are objectives, stratification, control areas, random sampling, data quality, and statistical analysis. The effectiveness of treatments can be determined more accurately if data are gathered using

  4. INTEGRATED SUSTAINABLE MANGROVE FOREST MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Cecep Kusmana

    2015-07-01

    Full Text Available Mangrove forest as a renewable resource must be managed based on sustainable basis in which the benefits of ecological, economic and social from the forest have to equity concern in achieving the optimum forest products and services in fulfill the needs of recent generation without destruction of future generation needs and that does not undesirable effects on the physical and social environment. This Sustainable Forest Management (SFM practices needs the supporting of sustainability in the development of social, economic and environment (ecological sounds simultaneously, it should be run by the proper institutional and regulations. In operational scale, SFM need integration in terms of knowledge, technical, consultative of stakeholders, coordination among sectors and other stakeholders, and considerations of ecological inter-relationship in which mangroves as an integral part of both a coastal ecosystem and a watershed (catchment area. Some tools have been developed to measure the performent of SFM, such as initiated by ITTO at 1992 and followed by Ministry of Forestry of Indonesia (1993, CIFOR (1995, LEI (1999, FSC (1999, etc., however, the true nuance of SFM’s performance is not easy to be measured. 

  5. The East Bay Vegetation Management Consortium:\\ta subregional approach to resource management and planning

    Science.gov (United States)

    Tony Acosta

    1995-01-01

    Formed in response to the October 20, 1991, Oakland/Berkeley hills firestorm, the East Bay Vegetation Management Consortium (EBVMC) is a voluntary association of public agencies concerned with vegetation management and planning related to fire hazard reduction in the Oakland/ Berkeley hills. To date, a total of nine agencies are participating in the EBVMC, including...

  6. Vegetation and flora of short-rotation willow stands from a conservation viewpoint

    Energy Technology Data Exchange (ETDEWEB)

    Gustafsson, L.

    1986-01-01

    The energy forests were studied using random 0.5 x 0.5 m quadrats in which cover for field- and bottom-layer species was recorded in a percentage scale. The data were analysed using various multivariate methods. The vegetation and flora of twelve coppices in southern Sweden were investigated. Also the succession during the establishment phase on a meadow on the west coast and on a peat bog in the east-central part of the country was studied. Moreover, the impact on fen vegetation downstream of an energy forest on a peat bog was investigated. The flora and vegetation of energy forests is dominated by common ruderal species like Cirsium arvense, Galeopsis tetrahit and Urtica dioica. Uncommon species from woodland and fen habitats are only occasionally found. The field layer of energy forests shows a clear seasonality with maximal cover in July. The species number and the composition of vegetation vary greatly between the coppices and is largely determined by the management system. Intense cultivation including fertilization and the use of herbicides depletes the flora. Long rotation times decrease both species diversity and the field-layer cover. Uncommon species are mostly found in old coppices, which also often have a rich spring flora. A change in flora and vegetation occurs when an energy forest is established. The change is great and the time needed for stabilization of the energy forest flora is long when the original flora is dissimilar to the coppice flora. Willow coppices can increase habitat diversity in regions dominated by coniferous forests or in large-scale agricultural areas. Structural heterogeneity of a stand promotes diversity of the flora. Such heterogeneity can be created if a stand is composed of a variety of willow clones, if it is harvested at intervals, contains gaps, open ditches and is surrounded by edge zones of various types.

  7. Forest restoration at Redwood National Park: exploring prescribed fire alternatives to second-growth management: a case study

    Science.gov (United States)

    Engber, Eamon; Teraoka, Jason; van Mantgem, Phillip J.

    2017-01-01

    Almost half of Redwood National Park is comprised of second-growth forests characterized by high stand density, deficient redwood composition, and low understory biodiversity. Typical structure of young redwood stands impedes the recovery of old-growth conditions, such as dominance of redwood (Sequoia sempervirens (D. Don) Endl.), distinct canopy layers and diverse understory vegetation. Young forests are commonly comprised of dense, even-aged Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) and redwood stump sprouts, with simple canopy structure and little understory development. Moreover, many of these young stands are believed to be vulnerable to disturbance in the form of drought, disease and fire. Silvicultural practices are increasingly being employed by conservation agencies to restore degraded forests throughout the coast redwood range; however, prescribed fire treatments are less common and potentially under-utilized as a restoration tool. We present an early synthesis from three separate management-scale prescribed fire projects at Redwood National Park spanning 1to 7 years post-treatment. Low intensity prescribed fire had minimal effect on overstory structure, with some mortality observed in trees smaller than 30 cm diameter. Moderate to high intensity fire may be required to reduce densities of larger Douglas-fir, the primary competitor of redwood in the Park’s second growth forests. Fine woody surface fuels fully recovered by 7 years post-burn, while recruitment of larger surface fuels was quite variable. Managers of coastal redwood ecosystems will benefit by having a variety of tools at their disposal for forest restoration and management.

  8. Galling arthropod diversity in adjacent swamp forests and restinga vegetation in Rio Grande do Sul, Brazil.

    Science.gov (United States)

    Mendonça, Milton De S; Piccardi, Hosana M F; Jahnke, Simone M; Dalbem, Ricardo V

    2010-01-01

    Galling arthropods create plant structures inside which they find shelter. Factors acting on galler diversity are still being discussed, with this fauna considered more diverse in xeric than mesic environments (higrothermic stress hypothesis, HSH), and also in more plant diverse sites. Here we compare galler abundance (N), equitability (E), species richness (S) and composition between adjacent restinga (xeric) and swamp forests (mesic) in Parque Estadual de Itapeva (29°21' S, 49°45' W), Rio Grande do Sul, southern Brazil. Five trails, two in swamp forest and three in restingas, were sampled four times each (January/December 2005). After an effort of 60h/person, 621 galled plant individuals belonging to 104 gall morphotypes were recorded. This suggests a high galler diversity for the Park, comparable to the richest places known. No differences were found for N, E or S between restingas and swamp forests. However, faunal composition differs significantly between the vegetation types. The dominant (most abundant) species are different in either vegetation type, and are rare or absent on the other vegetation type. Such species composition analysis is still largely ignored for gallers, and stresses the fact that the HSH cannot explain this pattern, since the latter is based on preferences by the ovipositing galler for xeric sites instead of mesic ones. The two habitats differ in microclimate, but species richness, as would be predicted by the HSH, does not differ. This small scale pattern can perhaps be attributed to biogeographic processes on larger scales, as suggested by the resource synchronisation hypothesis.

  9. Solid Waste Management in Recreational Forest Areas.

    Science.gov (United States)

    Spooner, Charles S.

    The Forest Service, U. S. Department of Agriculture, requested the Bureau of Solid Waste Management to conduct a study of National Forest recreation areas to establish waste generation rates for major recreation activities and to determine the cost of solid waste handling for selected Forest Service Districts. This report describes the 1968 solid…

  10. Are forest incomes sustainable? Firewood and timber extraction and productivity in community managed forests in Nepal

    DEFF Research Database (Denmark)

    Meilby, Henrik; Smith-Hall, Carsten; Byg, Anja

    2014-01-01

    community managed forests in Nepal, using data from 240 permanent sample plots and a structured household survey conducted in 2006 and 2009 (n = 507 and 558, respectively). We find that analyses of sustainability need to recognize the complexity of forest stand utilization, and that there is considerable...... scope, by altering how existing local forest management rules are implemented, for increasing rural household forest incomes while keeping harvesting levels sustainable....

  11. Utilisation and Management Changes in South Kyrgyzstan's Mountain Forests

    Institute of Scientific and Technical Information of China (English)

    Matthias Schmidt

    2005-01-01

    Using political ecology as its conceptual framework, this paper focuses on the changes in forest utilisation and management of South Kyrgyzstan's walnut-fruit forests over the last century. The aim of this study on human-environment interactions is to investigate the relationship between actors on the one side, their interests and demands, and the forests and forested lands on the other. Forest resource utilisation and management - and even the recognition of different forest products as resources - are connected with political and socio-economic conditions that change with time. The walnut-fruit forests of South Kyrgyzstan are unique, characterised by high biodiversity and a multiplicity of usable products; and they have been utilised for a long time. Centralised and formal management of the forests started with the Russian occupation and was strengthened under Soviet rule, when the region became a part of the USSR. During this era, a state forest administration that was structured from Moscow all the way down to the local level drew up detailed plans and developed procedures for utilising the different forest products. Since the collapse of the Soviet Union, the socio-political and economic frame conditions have changed significantly, which has brought not only the sweeping changes in the managing institutions, but also the access rights and interests in the forest resources. At present, the region is suffering from a high unemployment rate, which has resulted in the forests' gaining considerable importance in the livelihood strategies of the local population. Political and economic liberalization, increased communication and trans-regional exchange relations have opened the door for international companies and agents interested in the valuable forest products. Today, walnut wood and burls, walnuts, wild apples and mushrooms are all exported to various countries in the world. Scientists and members of various international organisations stress the ecological

  12. Forest management and carbon sequestration in the Mediterranean region: A review

    Directory of Open Access Journals (Sweden)

    Ricardo Ruiz-Peinado

    2017-10-01

    Full Text Available Aim of the study: To review and acknowledge the value of carbon sequestration by forest management in the Mediterranean area. Material and methods: We review the main effects of forest management by comparing the effects of silvicultural systems (even-aged vs. uneven-aged stands, coppice systems, agroforestry systems, silvicultural options (thinning, rotation period, species composition, afforestation, harvesting, fire impact or effects of shrub layer on carbon sequestration in the Mediterranean area. Main results: We illustrate as forest management can clearly improve forest carbon sequestration amounts. We conclude that forest management is an effective way to maintain and enhance high carbon sequestration rates in order to cope with climate change and provision of ecosystem services. We also think that although much effort has been put into this topic research, there are still certain gaps that must be dealt with to increase our scientific knowledge and in turn transfer this knowledge to forest practitioners in order to achieve sustainable management aimed at mitigating climate change. Research highlights: It is important to underline the importance of forests in the carbon cycle as this role can be enhanced by forest managers through sustainable forest management. The effects of different management options or disturbances can be critical as regards mitigating climate change. Understanding the effects of forest management is even more important in the Mediterranean area, given that the current high climatic variability together with historical human exploitation and disturbance events make this area more vulnerable to the effects of climate change

  13. Evaluating the sensitivity of Eurasian forest biomass to climate change using a dynamic vegetation model

    International Nuclear Information System (INIS)

    Shuman, J K; Shugart, H H

    2009-01-01

    Climate warming could strongly influence the structure and composition of the Eurasian boreal forest. Temperature related changes have occurred, including shifts in treelines and changes in regeneration. Dynamic vegetation models are well suited to the further exploration of the impacts that climate change may have on boreal forests. Using the individual-based gap model FAREAST, forest composition and biomass are simulated at over 2000 sites across Eurasia. Biomass output is compared to detailed forest data from a representative sample of Russian forests and a sensitivity analysis is performed to evaluate the impact that elevated temperatures and modified precipitation will have on forest biomass and composition in Eurasia. Correlations between model and forest inventory biomass are strong for several boreal tree species. A significant relationship is shown between altered precipitation and biomass. This analysis showed that a modest increase in temperature of 2 deg. C across 200 years had no significant effect on biomass; however further exploration with increased warming reflective of values measured within Siberia, or at an increased rate, are warranted. Overall, FAREAST accurately simulates forest biomass and composition at sites throughout a large geographic area with widely varying climatic conditions and produces reasonable biomass responses to simulated climatic shifts. These results indicate that this model is robust and useful in making predictions regarding the effect of future climate change on boreal forest structure across Eurasia.

  14. Participatory forest management in Ethiopia: learning from pilot projects.

    Science.gov (United States)

    Ameha, Aklilu; Larsen, H O; Lemenih, Mulugeta

    2014-04-01

    Different arrangements of decentralized forest management have been promoted as alternatives to centralized and top down approaches to halt tropical deforestation and forest degradation. Ethiopia is one of the countries piloting one of these approaches. To inform future programs and projects it is essential to learn from existing pilots and experiences. This paper analyses five of the pilot participatory forest management (PFM) programs undertaken in Ethiopia. The study is based on the Forest User Group (FUG) members' analyses of the programs using selected outcome variables: forest income, change in forest conditions, forest ownership feelings and effectiveness of FUGs as forest managing institutions. These variables were assessed at three points in time-before the introduction of PFM, during the project implementation and after the projects ended. Data were collected using group discussions, key informant interviews and transect walks through the PFM forests. The results show that in all of the five cases the state of the forest is perceived to have improved with the introduction of PFM, and in four of the cases the improvement was maintained after projects ended. Regulated access to the forests following introduction of PFM was not perceived to have affected forest income negatively. There are, however, serious concerns about the institutional effectiveness of the FUGs after projects ended, and this may affect the success of the PFM approach in the longer term.

  15. Hydrology-oriented forest management trade-offs. A modeling framework coupling field data, simulation results and Bayesian Networks.

    Science.gov (United States)

    Garcia-Prats, Alberto; González-Sanchis, María; Del Campo, Antonio D; Lull, Cristina

    2018-05-23

    Hydrology-oriented forest management sets water as key factor of the forest management for adaptation due to water is the most limiting factor in the Mediterranean forest ecosystems. The aim of this study was to apply Bayesian Network modeling to assess potential indirect effects and trade-offs when hydrology-oriented forest management is applied to a real Mediterranean forest ecosystem. Water, carbon and nitrogen cycles, and forest fire risk were included in the modeling framework. Field data from experimental plots were employed to calibrate and validate the mechanistic Biome-BGCMuSo model that simulates the storage and flux of water, carbon, and nitrogen between the ecosystem and the atmosphere. Many other 50-year long scenarios with different conditions to the ones measured in the field experiment were simulated and the outcomes employed to build the Bayesian Network in a linked chain of models. Hydrology-oriented forest management was very positive insofar as more water was made available to the stand because of an interception reduction. This resource was made available to the stand, which increased the evapotranspiration and its components, the soil water content and a slightly increase of deep percolation. Conversely, Stemflow was drastically reduced. No effect was observed on Runof due to the thinning treatment. The soil organic carbon content was also increased which in turn caused a greater respiration. The long-term effect of the thinning treatment on the LAI was very positive. This was undoubtedly due to the increased vigor generated by the greater availability of water and nutrients for the stand and the reduction of competence between trees. This greater activity resulted in an increase in GPP and vegetation carbon, and therefore, we would expect a higher carbon sequestration. It is worth emphasizing that this extra amount of water and nutrients was taken up by the stand and did not entail any loss of nutrients. Copyright © 2018 Elsevier B.V. All

  16. Phenological characteristics of the main vegetation types on the Tibetan Plateau based on vegetation and water indices

    International Nuclear Information System (INIS)

    Peng, D L; Huang, W J; Zhou, B; Li, C J; Wu, Y P; Yang, X H

    2014-01-01

    Plant phenology is considered one of the most sensitive and easily observable natural indicators of climate change, though few studies have focused on the heterogeneities of phenology across the different vegetation types. In this study, we tried to find the phenological characteristics of the main vegetation types on the Tibetan Plateau. MCD12Q1 images over the Tibetan Plateau from 2001 to 2010 were used to extract the main vegetation types. The Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), and Land Surface Water Index (LSWI) were calculated using surface reflectance values from the blue, red, near-infrared, short-wave infrared (SWIR) 6 (for LSIW6), and SWIR7 (for LSIW7) bands derived from MOD09A1 and used to explore the phenological characteristics of the main vegetation types on the Tibetan Plateau. The results showed that there were eight constant vegetation types on the Tibetan Plateau from 2001 to 2010 demonstrating multiple phenological characteristics. Evergreen needleleaf forest, evergreen broadleaf forest, and permanent wetland had the minimum NDVI values during the summer season, while open shrubland and grassland had the maximum NDVI/EVI values during this period. NDVI and EVI of cropland/natural vegetation had two peaks for their seasonal variations. EVI showed a more significant correlation with LSWI6/LSWI7 than NDVI. Compared to LSWI7, larger EVI values occurred in evergreen needleleaf forest, evergreen broadleaf forest, mixed forest, and permanent wetland, while smaller values occurred in shrubland and barren or sparsely vegetated cover, and nearly equal values occurred in grassland and cropland

  17. Forest-related partnerships in Brazilian Amazonia: There is more to sustainable forest management than reduced impact logging

    NARCIS (Netherlands)

    Ros-Tonen, M.A.F.; van Andel, T.; Morsello, C.; Otsuki, K.; Rosendo, S.; Scholz, I.

    2008-01-01

    There is more to sustainable forest management than reduced impact logging. Partnerships between multiple actors are needed in order to create the institutional context for good forest governance and sustainable forest management and stimulate the necessary local community involvement. The idea

  18. Conversion of natural forest to managed forest plantations decreases tree resistance to prolonged droughts

    Science.gov (United States)

    Jean-Christophe Domec; John S. King; Eric Ward; A. Christopher Oishi; Sari Palmroth; Andrew Radecki; Dave M. Bell; Guofang Miao; Michael Gavazzi; Daniel M. Johnson; Steve G. McNulty; Ge Sun; Asko. Noormets

    2015-01-01

    Throughout the southern US, past forest management practices have replaced large areas of native forests with loblolly pine plantations and have resulted in changes in forest response to extreme weather conditions. However, uncertainty remains about the response of planted versus natural species to drought across the geographical range of these forests. Taking...

  19. Mapping SOC (Soil Organic Carbon) using LiDAR-derived vegetation indices in a random forest regression model

    Science.gov (United States)

    Will, R. M.; Glenn, N. F.; Benner, S. G.; Pierce, J. L.; Spaete, L.; Li, A.

    2015-12-01

    Quantifying SOC (Soil Organic Carbon) storage in complex terrain is challenging due to high spatial variability. Generally, the challenge is met by transforming point data to the entire landscape using surrogate, spatially-distributed, variables like elevation or precipitation. In many ecosystems, remotely sensed information on above-ground vegetation (e.g. NDVI) is a good predictor of below-ground carbon stocks. In this project, we are attempting to improve this predictive method by incorporating LiDAR-derived vegetation indices. LiDAR provides a mechanism for improved characterization of aboveground vegetation by providing structural parameters such as vegetation height and biomass. In this study, a random forest model is used to predict SOC using a suite of LiDAR-derived vegetation indices as predictor variables. The Reynolds Creek Experimental Watershed (RCEW) is an ideal location for a study of this type since it encompasses a strong elevation/precipitation gradient that supports lower biomass sagebrush ecosystems at low elevations and forests with more biomass at higher elevations. Sagebrush ecosystems composed of Wyoming, Low and Mountain Sagebrush have SOC values ranging from .4 to 1% (top 30 cm), while higher biomass ecosystems composed of aspen, juniper and fir have SOC values approaching 4% (top 30 cm). Large differences in SOC have been observed between canopy and interspace locations and high resolution vegetation information is likely to explain plot scale variability in SOC. Mapping of the SOC reservoir will help identify underlying controls on SOC distribution and provide insight into which processes are most important in determining SOC in semi-arid mountainous regions. In addition, airborne LiDAR has the potential to characterize vegetation communities at a high resolution and could be a tool for improving estimates of SOC at larger scales.

  20. Challenges and Prospects for Sustainable Forest Management in ...

    African Journals Online (AJOL)

    The forests of these organizations are, however, disappearing at a fast rate which indicates existence of problems in the management approaches of the Organizations. The general objective of this study was to understand existing forest management approaches of the four organizations and indicate some directions ...

  1. Expanding global forest management: An easy first' proposal

    Energy Technology Data Exchange (ETDEWEB)

    Winjum, J.K. (Environmental Protection Agency, Corvallis, OR (United States)); Meganck, R.A. (United Nations Environment Programme, Kingston (Jamaica)); Dixon, R.K.

    1993-04-01

    World leaders have become increasingly aware of the contributions of sustainable forest resources to political, social, economic, and environmental health. As a result, interest is growing for a world treaty or protocol on forest management and protection. This article focuses on global forest management. The first section discusses the current situtation in global forest management (10-12% of the total). Benefits of global benefit to management included sustained and even increased yield, slowing of atmospheric carbon dioxide, and conservation of biodiversity and increase sustainable use options. The Noordwijk Goal is discussed as one example of concrete global action. Finally, the easy first approach is presented in detail. It involves starting in areas where the obstacles are minimal to develop early momentum and a can do outlook for implementation. Difficulties of this approach involve dealing with the political, social, and economic aspects of resource constraints that many nations face daily. But the easy first approach attempts to demonstrate that not all financial commitments, political agreements and forest management techniques must be in place for work to start.

  2. 78 FR 23491 - National Forest System Land Management Planning; Correction

    Science.gov (United States)

    2013-04-19

    ... Management Planning; Correction AGENCY: Forest Service, USDA. ACTION: Correcting amendment. SUMMARY: This..., revising, and monitoring land management plans (the planning rule). The National Forest Management Act... Land Management Planning Rule Final Programmatic Environmental Impact Statement of January 2012. List...

  3. The role of knowledge management tools in supporting sustainable forest management

    Energy Technology Data Exchange (ETDEWEB)

    Vacik, H.; Torresan, C.; Hujala, T.; Khadka, C.; Reynolds, K.

    2013-07-01

    Aim of study: Knowledge Management (KM) tools facilitate the implementation of knowledge processes by identifying, creating, structuring, and sharing knowledge through use of information technology in order to improve decision-making. In this contribution, we review the way in which KM tools and techniques are used in forest management, and categorize a selected set of them according to their contribution to support decision makers in the phases of problem identification, problem modelling, and problem solving. Material and methods: Existing examples of cognitive mapping tools, web portals, work flow systems, best practices, and expert systems as well as intelligent agents are screened for their applicability and use in the context of decision support for sustainable forest management. Evidence from scientific literature and case studies is utilized to evaluate the contribution of the different KM tools to support problem identification, problem modelling, and problem solving. Main results: Intelligent agents, expert systems and cognitive maps support all phases of the forest planning process strongly. Web based tools have good potential to support participatory forest planning. Based on the needs of forest management decision support and the thus-far under utilized capabilities of KM tools it becomes evident that future decision analysis will have to consider the use of KM more intensively. Research highlights: As the problem-solving process is the vehicle for connecting both knowledge and decision making performance, the next generation of DSS will need to better encapsulate practices that enhance and promote knowledge management. Web based tools will substitute desktop applications by utilizing various model libraries on the internet. (Author)

  4. Forest managment options for sequestering carbon in Mexico

    International Nuclear Information System (INIS)

    Masera, O.R.; Bellon, M.R.; Segura, G.

    1995-01-01

    This paper identifies and examines economic response options to avoid carbon emissions and increase carbon sequestration in Mexican forests. A ''Policy'' scenario covering the years 2000, 2010 and 2030 and a ''Technical Potential'' scenario (year 2030) are developed to examine the potential carbon sequestration and costs of each response option. Benefit-cost analyses for three case studies, including management of a pulpwood plantation, a native temperate forest and a native tropical evergreen forest are presented and discussed. The study suggests that a large potential for reducing carbon emissions and increasing carbon sequestration exists in Mexican forests. However, the achievement of this potential will require important reforms to the current institutional setting of the forest sector. The management of native temperate and tropical forests offers the most promising alternatives for carbon sequestration. The cost effectiveness of commercial plantations critically depends on very high site productivity. Restoration of degraded forest lands; particularly through the establishment of energy plantations, also shows a large carbon sequestration potential. (Author)

  5. Assessing the uncertainty of forest carbon estimates using the FVS family of diameter increment equations

    Science.gov (United States)

    Matthew B. Russell; Aaron R. Weiskittel; Anthony W. D’Amato

    2012-01-01

    Serving as a carbon (C) accounting tool, the Forest Vegetation Simulator (FVS) is widely used by forest managers and researchers to forecast future forest C stocks. Assessments of the uncertainty that FVS equations provide in terms of their ability to accurately project forest biomass and C would seemingly differ, depending on the region and scale of interest to the...

  6. Vegetation Changes in a Native Forest Produced by Atta vollenweideri Forel 1893 (Hymenoptera: Formicidae) Nests.

    Science.gov (United States)

    Sabattini, J A; Sabattini, R A; Cian, J C; Sabattini, I A

    2018-02-01

    Herbivory is an important factor to generate spatial mosaics with variations in a plant community composition and organization. The objective of this work was to determine the impact of Atta vollenweideri Forel 1893 nests on herbaceous and shrub vegetation in a degraded native forest of the Espinal ecoregion. The study was carried out in the Protected Area and Multiple Use Nature Reserve called Estancia "El Carayá" (Entre Ríos, Argentina). Ten A. vollenweideri nests were selected by simple random sampling through internal roads, and two transects were drawn from the center of the nest (0 m) up to 60 m away in opposite directions. The line intercept method was used to quantify the percentage of vegetation cover of herbaceous and shrub species, while the floristic composition was estimated by the Canfield method. Afterwards, a nonparametric test between positions and a conglomerate analysis to evaluated distance were applied. Grass species, legumes, and sedges fell in the adjacent areas to nests, highlighting the bare soil at the crest and base of the nests. Fifteen plant species were identified, and two families correspond to monocotyledonous and dicotyledonous species. In conclusion, the nests of A. vollenweideri affect the community of herbaceous and shrub vegetation of the studied degraded native forest of the Espinal ecoregion since these ants perform a high selection of herbaceous species considered as pioneers of plant successions.

  7. Hydrological principles for sustainable management of forest ecosystems

    Science.gov (United States)

    Irena F. Creed; Gabor Z. Sass; Jim M. Buttle; Julia A. Jones

    2011-01-01

    Forested landscapes around the world are changing as a result of human activities, including forest management, fire suppression, mountaintop mining, conversion of natural forests to plantations, and climate change (Brockerhoff et al., 2008; Cyr et al., 2009; Johnston et al., 2010; Miller et al., 2009; Kelly et al., 2010; Palmer et al., 2010). Forests...

  8. Changes in forest cover in the Foresta della Lama (Casentino Forests National Park from Karl Siemon’s and Anton Seeland’s 1837 forest management plan

    Directory of Open Access Journals (Sweden)

    Vazzano E

    2011-05-01

    Full Text Available Forest estates with a long history of forest management plans are quite rare in Italy. In such cases, the analysis of historical documents combined with the use of GIS technology, can provide useful information on the evolution of forest cover and silvicultural and management techniques. Based on two unpublished documents by Karl Siemon and Anton Seeland dating back to 1837 and 1850, an archive of historical maps for the Lama Forest (Foreste Casentinesi, Monte Falterona and Campigna National Park was created using GIS techniques. This archive outlines the evolution of the Lama Forest over the last 170 years. Particular attention was given to silver fir plantations, which have strongly characterized silviculture and local economics in the Foreste Casentinesi area. The results of our analysis show that changes in different historical periods have been caused both by silvicultural interventions prescribed by the management plans and by external causes such as changes in forest property or war periods, which have markedly influenced forest area and stand characteristics. Furthermore, our analysis confirms that the work of Karl Siemon and Anton Seeland, carried out between 1835 and 1837, is the oldest forest management plan for an Italian forest. It is interesting to note that the aim of the plan, i.e., a regulated (or “normal” even-aged forest, and the way the plan was laid out, typical of classic forest management originated in Germany at the end of the XVIIIth century, served as model for the forest management plans drawn out by the Florence Forestry School almost until the end of the XXth century.

  9. The Zoning of Forest Fire Potential of Gulestan Province Forests Using Granular Computing and MODIS Images

    Directory of Open Access Journals (Sweden)

    A. Jalilzadeh Shadlouei

    2013-09-01

    , 6 determinative criterias contributing to forest fires have been designated as follows: vegetation (NDVI, slope, aspect, temperature, humidity and proximity to roadways. By applying these variables on several tentatively selected areas and formation information tables and producing granular decision tree and extraction of rules, the zoning rules (for the areas in question were extracted. According to them the zoning of the entire area has been conducted. The zoned areas have been classified into 5 categories: high hazard, medium hazard (high, medium hazard (low, low hazard (high, low hazard (low. According to the map, the zoning of most of the areas fall into the low hazard (high class while the least number of areas have been classified as low hazard (low. Comparing the forest fires in these regions in 2010 with the MODIS data base for forest fires, it is concluded that areas with high hazards of forest fire have been classified with a 64 percent precision. In other word 64 percent of pixels that are in high hazard classification are classified according to MODIS data base. Using this method we obtain a good range of Perception. Manager will reduce forest fire concern using precautionary proceeding on hazardous area.

  10. Forest vegetation as a sink for atmospheric particulates: Quantitative studies in rain and dry deposition

    International Nuclear Information System (INIS)

    Russel, I.J.; Choquette, C.E.; Fang, S.; Dundulis, W.P.; Pao, A.A.; Pszenny, A.A.P.

    1981-01-01

    Radionuclides in the atmosphere are associated with nonradioactive air particulates and hence serve to trace the fluxes of air particulates to various surfaces. Natural and artificial radioactivities found in the atmosphere have been measured in vegetation for 10 years to elucidate some of the mechanisms of acquirement by forest trees of atmospheric particulates. Whole tree analysis, in conjunction with soil assay, have served to establish the fraction of the flux of radionuclides retained by above-ground tissues of a forest stand. Interpretation is facilitated because most radionuclides in the atmosphere are superficially acquired. Typically 5--20% of the total open field flux is retained by the forest canopy in a moderately rainy climate (120 cm/year). Short-lived daughters of radon give a dry deposition velocity of particulates in the Aitken size range of 0.03--0.05 cm/s, thus permitting an estimate of transient removal by forest canopies by dry deposition of this size fraction

  11. Vegetation, topography and daily weather influenced burn severity in central Idaho and western Montana forests

    Science.gov (United States)

    Donovan S. Birch; Penelope Morgan; Crystal A. Kolden; John T. Abatzoglou; Gregory K. Dillon; Andrew T. Hudak; Alistair M. S. Smith

    2015-01-01

    Burn severity as inferred from satellite-derived differenced Normalized Burn Ratio (dNBR) is useful for evaluating fire impacts on ecosystems but the environmental controls on burn severity across large forest fires are both poorly understood and likely to be different than those influencing fire extent. We related dNBR to environmental variables including vegetation,...

  12. Application of Remote Sensing for Forest Management in Nepal

    Science.gov (United States)

    Bajracharya, B.; Matin, M. A.

    2016-12-01

    Large area of the Hindu Kush Himalayan (HKH) region is covered by forest that is playing a vital role to address the challenges of climate change and livelihood options for a growing population. Effective management of forest cover needs establishment of regular monitoring system for forest. Supporting REDD assessment needs reliable baseline assessment of forest biomass and its monitoring at multiple scale. Adaptation of forest to climate change needs understanding vulnerability of forests and dependence of local communities on these forest. We present here different forest monitoring products developed under the SERVIR-Himalaya programme to address these issues. Landsat 30 meter images were used for decadal land cover change assessment and annual forest change hotspot monitoring. Methodology developed for biomass estimation at national and sub-national level biomass estimation. Decision support system was developed for analysis of forest vulnerability and dependence and selection of adaptation options based on resource availability. These products are forming the basis for development of an integrated system that will be very useful for comprehensive forest monitoring and long term strategy development for sustainable forest management.

  13. Post-fire vegetation and fuel development influences fire severity patterns in reburns.

    Science.gov (United States)

    Coppoletta, Michelle; Merriam, Kyle E; Collins, Brandon M

    2016-04-01

    In areas where fire regimes and forest structure have been dramatically altered, there is increasing concern that contemporary fires have the potential to set forests on a positive feedback trajectory with successive reburns, one in which extensive stand-replacing fire could promote more stand-replacing fire. Our study utilized an extensive set of field plots established following four fires that occurred between 2000 and 2010 in the northern Sierra Nevada, California, USA that were subsequently reburned in 2012. The information obtained from these field plots allowed for a unique set of analyses investigating the effect of vegetation, fuels, topography, fire weather, and forest management on reburn severity. We also examined the influence of initial fire severity and time since initial fire on influential predictors of reburn severity. Our results suggest that high- to moderate-severity fire in the initial fires led to an increase in standing snags and shrub vegetation, which in combination with severe fire weather promoted high-severity fire effects in the subsequent reburn. Although fire behavior is largely driven by weather, our study demonstrates that post-fire vegetation composition and structure are also important drivers of reburn severity. In the face of changing climatic regimes and increases in extreme fire weather, these results may provide managers with options to create more fire-resilient ecosystems. In areas where frequent high-severity fire is undesirable, management activities such as thinning, prescribed fire, or managed wildland fire can be used to moderate fire behavior not only prior to initial fires, but also before subsequent reburns.

  14. Stakeholder Analysis on Community Forest Management Partnership and Independent

    Directory of Open Access Journals (Sweden)

    Dimas Alfred Pasetia

    2018-03-01

    Full Text Available Timber of community forest in one of the alternative supply that is needed by the wood processing industries. Partnership and independent of community forest can be realized in the relationship between farmers and industry. However, parts of the community forest system is represented by different stakeholders, which are interrelated in a system. This study analyzed stakeholder interest, influences and relationships between partnership and independent of community forest management. The study was conducted in Probolinggo District and respondents were selected using snowball sampling. There were 15 stakeholders identified as being involved in the partnership of community forest management of which were classified 4 as key players, 2 as context setters, 5 as subjects and 5 as crowds. There were 12 stakeholders identified as being involved in the independent of community forest management of which were classified 3 as key players, 1 as context setters, 5 as subjects and 3 as crowd. The performances of each stakeholder can be controlled if the integration of relationships and rules has been established. Keywords: community forest, independent, partnership, stakeholders

  15. Carbon sequestration, biological diversity, and sustainable development: Integrated forest management

    Energy Technology Data Exchange (ETDEWEB)

    Cairns, M.A. (Environmental Research Lab., Corvallis, OR (United States)); Meganck, R.A. (United Nations Environment Programme for the Wider Caribbean, Kingston (Jamaica))

    Tropical deforestation provides a significant contribution to anthropogenic increases in atmospheric CO[sub 2] concentration that may lead to global warming. Forestation and other forest management options to sequester CO[sub 2] in the tropical latitudes may fail unless they address local economic, social, environmental, and political needs of people in the developing world. Forest management is discussed in terms of three objectives: Carbon sequestration, sustainable development, and biodiversity conservation. An integrated forest management strategy of land-use planning is proposed to achieve these objectives and is centered around: Preservation of primary forest, intensified use of nontimber resources, agroforestry, and selective use of plantation forestry. 89 refs., 1 fig., 1 tab.

  16. The contribution of nitrogen deposition to the eutrophication signal in understorey plant communities of European forests

    NARCIS (Netherlands)

    Dobben, van H.F.; Vries, de W.

    2017-01-01

    We evaluated effects of atmospheric deposition of nitrogen on the composition of forest understorey vegetation both in space and time, using repeated data from the European wide monitoring program ICP-Forests, which focuses on normally managed forest. Our aim was to assess whether both spatial and

  17. Understanding predation: implications toward forest management

    Science.gov (United States)

    Harvey R. Smith

    1991-01-01

    It is generally accepted that when gypsy moths rest in the litter survival is low due to predation by ground-foraging generalist predators and that predation can maintain these populations indefinitely. Forest Service research on predators of gypsy moth continues to focus on population dynamics, the mechanisms of predation and forest management implications.

  18. Ecological impacts of revegetation and management practices of ski slopes in northern Finland.

    Science.gov (United States)

    Kangas, Katja; Tolvanen, Anne; Kälkäjä, Tarja; Siikamäki, Pirkko

    2009-09-01

    Outdoor recreation and nature-based tourism represent an increasingly intensive form of land use that has considerable impacts on native ecosystems. The aim of this paper is to investigate how revegetation and management of ski runs influence soil nutrients, vegetation characteristics, and the possible invasion of nonnative plant species used in revegetation into native ecosystems. A soil and vegetation survey at ski runs and nearby forests, and a factorial experiment simulating ski run construction and management (factors: soil removal, fertilization, and seed sowing) were conducted at Ruka ski resort, in northern Finland, during 2003-2008. According to the survey, management practices had caused considerable changes in the vegetation structure and increased soil nutrient concentrations, pH, and conductivity on the ski runs relative to nearby forests. Seed mixture species sown during the revegetation of ski runs had not spread to adjacent forests. The experimental study showed that the germination of seed mixture species was favored by treatments simulating the management of ski runs, but none of them could eventually establish in the study forest. As nutrient leaching causes both environmental deterioration and changes in vegetation structure, it may eventually pose a greater environmental risk than the spread of seed mixture species alone. Machine grading and fertilization, which have the most drastic effects on soils and vegetation, should, therefore, be minimized when constructing and managing ski runs.

  19. Ecological Impacts of Revegetation and Management Practices of Ski Slopes in Northern Finland

    Science.gov (United States)

    Kangas, Katja; Tolvanen, Anne; Kälkäjä, Tarja; Siikamäki, Pirkko

    2009-09-01

    Outdoor recreation and nature-based tourism represent an increasingly intensive form of land use that has considerable impacts on native ecosystems. The aim of this paper is to investigate how revegetation and management of ski runs influence soil nutrients, vegetation characteristics, and the possible invasion of nonnative plant species used in revegetation into native ecosystems. A soil and vegetation survey at ski runs and nearby forests, and a factorial experiment simulating ski run construction and management (factors: soil removal, fertilization, and seed sowing) were conducted at Ruka ski resort, in northern Finland, during 2003-2008. According to the survey, management practices had caused considerable changes in the vegetation structure and increased soil nutrient concentrations, pH, and conductivity on the ski runs relative to nearby forests. Seed mixture species sown during the revegetation of ski runs had not spread to adjacent forests. The experimental study showed that the germination of seed mixture species was favored by treatments simulating the management of ski runs, but none of them could eventually establish in the study forest. As nutrient leaching causes both environmental deterioration and changes in vegetation structure, it may eventually pose a greater environmental risk than the spread of seed mixture species alone. Machine grading and fertilization, which have the most drastic effects on soils and vegetation, should, therefore, be minimized when constructing and managing ski runs.

  20. Notable shifting in the responses of vegetation activity to climate change in China

    Science.gov (United States)

    Chen, Aifang; He, Bin; Wang, Honglin; Huang, Ling; Zhu, Yunhua; Lv, Aifeng

    The weakening relationship between inter-annual temperature variability and vegetation activity in the Northern Hemisphere over the last three decades has been reported by a recent study. However, how and to what extent vegetation activity responds to climate change in China is still unclear. We applied the Pearson correlation and partial correlation methods with a moving 15-y window to the GIMMS NDVI dataset from NOAA/AVHRR and observed climate data to examine the variation in the relationships between vegetation activity and climate variables. Results showed that there was an expanding negative response of vegetation growth to climate warming and a positive role of precipitation. The change patterns between NDVI and climate variables over vegetation types during the past three decades pointed an expending negative correlation between NDVI and temperature and a positive role of precipitation over most of the vegetation types (meadow, grassland, shrub, desert, cropland, and forest). Specifically, correlation between NDVI and temperature (PNDVI-T) have shifted from positive to negative in most of the station of temperature-limited areas with evergreen broadleaf forests, whereas precipitation-limited temperate grassland and desert were characterized by a positive PNDVI-P. This study contributes to ongoing investigations of the effects of climate change on vegetation activity. It is also of great importance for designing forest management strategies to cope with climate change.

  1. Compromise Programming in forest management

    Science.gov (United States)

    Boris A. Poff; Aregai Tecle; Daniel G. Neary; Brian Geils

    2010-01-01

    Multi-objective decision-making (MODM) is an appropriate approach for evaluating a forest management scenario involving multiple interests. Today's land managers must accommodate commercial as well as non-commercial objectives that may be expressed quantitatively and/or qualitatively, and respond to social, political, economic and cultural changes. The spatial and...

  2. Post Wildfire Changes in Plant Functioning and Vegetation Dynamics: Implications for Water Fluxes in Re-sprouting Forests

    Science.gov (United States)

    Nolan, R. H.; Lane, P. N.; Mitchell, P. J.; Bradstock, R. A.

    2011-12-01

    Fire induced changes to the vegetation dynamics in temperate forests have been demonstrated to affect evapotranspiration (Et) rates through increases in plant size and density and stand-level transpiration and interception. In many cases these transient changes in forest structure result in substantial declines in stream flow for protracted periods after the disturbance. However to date research has focused on the wetter 'ash' forests of south-eastern Australia which solely regenerate via seedlings, it is unknown what changes in Et may occur in those forests which re-sprout post-fire. We hypothesize that Et fluxes track post-fire changes in sapwood area and leaf area index (L) in re-sprouting temperate forests, increasing as the forest regenerates. Following the 2009 Black Saturday wildfires in Victoria, we monitored Et rates for over a year in both damp and dry re-sprouting forest, incorporating a range of fire severity classes. Components of Et including overstorey transpiration, rainfall interception loss and forest floor Et were measured in conjunction with changes in L, sapwood area and leaf physiology. The monitoring period began one year post-fire with a typical hot, dry summer, at which stage Et rates in burnt forest were similar or less than those in unburnt forest. During the following summer, which was one of the wettest on record, Et increased across all monitoring plots but particularly so in the burnt forest where seedling regeneration resulted in an understorey L nearly twice that of unburnt forest. Forest floor Et was up to 46% higher in burnt forest, and rainfall interception values accounted for approximately 25% of rainfall compared to 15% in unburnt forest. The greatest increase in canopy transpiration rates over this period occurred in those trees subject to a low intensity fire where most of the canopy remained intact but there was also fire-triggered sprouting of new leaves along the trunk and main branches. In these trees rates of sapflow

  3. Is the contribution of community forest users financially efficient? A household level benefit-cost analysis of community forest management in Nepal

    Directory of Open Access Journals (Sweden)

    Rajesh Kumar Rai

    2016-02-01

    Full Text Available Community forestry in Nepal is considered an exemplary forest management regime. However, the economics behind managing a community forest is not fully studied. This study examines whether the benefits generated from community forest management justify the contributions of forest users. The study is based on a survey of community forest users in Chitwan, Nepal. A household level benefit-cost analysis was performed to quantify and compare the costs and benefits from community forest management. Only direct benefits were included in the analysis. The study shows that older forest user groups derive more benefits to households compared to more recently established ones. The extent of timber harvesting also substantially influences the size of the household benefits. In addition, redistribution of benefits at the household level, in terms of income generating activities and payment for involvement in forest management activities, also enhances household benefits. Sensitivity analysis suggests that the current practice of community forest management enhances the welfare of rural households in this subsistence community. However, this finding is sensitive to assumptions regarding the opportunity cost of time. The study also found that the household costs of community forest management depend upon two factors – the area of community forest and the size of the forest area relative to the number of households.

  4. Development of Spatial Scaling Technique of Forest Health Sample Point Information

    Science.gov (United States)

    Lee, J. H.; Ryu, J. E.; Chung, H. I.; Choi, Y. Y.; Jeon, S. W.; Kim, S. H.

    2018-04-01

    Forests provide many goods, Ecosystem services, and resources to humans such as recreation air purification and water protection functions. In rececnt years, there has been an increase in the factors that threaten the health of forests such as global warming due to climate change, environmental pollution, and the increase in interest in forests, and efforts are being made in various countries for forest management. Thus, existing forest ecosystem survey method is a monitoring method of sampling points, and it is difficult to utilize forests for forest management because Korea is surveying only a small part of the forest area occupying 63.7 % of the country (Ministry of Land Infrastructure and Transport Korea, 2016). Therefore, in order to manage large forests, a method of interpolating and spatializing data is needed. In this study, The 1st Korea Forest Health Management biodiversity Shannon;s index data (National Institute of Forests Science, 2015) were used for spatial interpolation. Two widely used methods of interpolation, Kriging method and IDW(Inverse Distance Weighted) method were used to interpolate the biodiversity index. Vegetation indices SAVI, NDVI, LAI and SR were used. As a result, Kriging method was the most accurate method.

  5. DEVELOPMENT OF SPATIAL SCALING TECHNIQUE OF FOREST HEALTH SAMPLE POINT INFORMATION

    Directory of Open Access Journals (Sweden)

    J. H. Lee

    2018-04-01

    Full Text Available Forests provide many goods, Ecosystem services, and resources to humans such as recreation air purification and water protection functions. In rececnt years, there has been an increase in the factors that threaten the health of forests such as global warming due to climate change, environmental pollution, and the increase in interest in forests, and efforts are being made in various countries for forest management. Thus, existing forest ecosystem survey method is a monitoring method of sampling points, and it is difficult to utilize forests for forest management because Korea is surveying only a small part of the forest area occupying 63.7 % of the country (Ministry of Land Infrastructure and Transport Korea, 2016. Therefore, in order to manage large forests, a method of interpolating and spatializing data is needed. In this study, The 1st Korea Forest Health Management biodiversity Shannon;s index data (National Institute of Forests Science, 2015 were used for spatial interpolation. Two widely used methods of interpolation, Kriging method and IDW(Inverse Distance Weighted method were used to interpolate the biodiversity index. Vegetation indices SAVI, NDVI, LAI and SR were used. As a result, Kriging method was the most accurate method.

  6. Mapping Congo Basin vegetation types from 300 m and 1 km multi-sensor time series for carbon stocks and forest areas estimation

    Directory of Open Access Journals (Sweden)

    A. Verhegghen

    2012-12-01

    Full Text Available This study aims to contribute to the understanding of the Congo Basin forests by delivering a detailed map of vegetation types with an improved spatial discrimination and coherence for the whole Congo Basin region. A total of 20 land cover classes were described with the standardized Land Cover Classification System (LCCS developed by the FAO. Based on a semi-automatic processing chain, the Congo Basin vegetation types map was produced by combining 19 months of observations from the Envisat MERIS full resolution products (300 m and 8 yr of daily SPOT VEGETATION (VGT reflectances (1 km. Four zones (north, south and two central were delineated and processed separately according to their seasonal and cloud cover specificities. The discrimination between different vegetation types (e.g. forest and savannas was significantly improved thanks to the MERIS sharp spatial resolution. A better discrimination was achieved in cloudy areas by taking advantage of the temporal consistency of the SPOT VGT observations. This resulted in a precise delineation of the spatial extent of the rural complex in the countries situated along the Atlantic coast. Based on this new map, more accurate estimates of the surface areas of forest types were produced for each country of the Congo Basin. Carbon stocks of the Basin were evaluated to a total of 49 360 million metric tons. The regional scale of the map was an opportunity to investigate what could be an appropriate tree cover threshold for a forest class definition in the Congo Basin countries. A 30% tree cover threshold was suggested. Furthermore, the phenology of the different vegetation types was illustrated systematically with EVI temporal profiles. This Congo Basin forest types map reached a satisfactory overall accuracy of 71.5% and even 78.9% when some classes are aggregated. The values of the Cohen's kappa coefficient, respectively 0.64 and 0.76 indicates a result significantly better than random.

  7. componente vegetal

    Directory of Open Access Journals (Sweden)

    Fabio Moscovich

    2005-01-01

    Full Text Available In order to determine environmental impact, indicators based on vegetation characteristics that would generate the forestry monoculture with the adjacent native forest, 32 sample unit were installed in an area of LIPSIA private enterprise, Esperanza Department, Misiones with those characteristics. The plots of 100 m2 were distributed systematically every 25 meters. The vegetation was divided in stratum: superior (DBH ≥ 10 cm, middle (1,6 cm ≤ DBH > 10 cm and inferior (DBH< cm. There were installed 10 plots in a logged native forest, 10 plots in a 18 years old Pinus elliottii Engelm. with approximately 400 trees/ha., 6 plots in a 10 – 25 years old Araucaria angustifolia (Bertd. Kuntze limiting area with approximately 900 trees/ha., and 6 plots located in this plantation. In the studied area were identified 150 vegetation species. In the inferior stratum there were found differences as function of various floristic diversity indexes. In all the cases the native forest showed larger diversity than plantations, followed by Pinus elliottii, Araucaria plantation and Araucaria limiting area. All the studied forest fitted to a logarithmical series of species distributions, that would indicate the incidence of a environmental factor in this distribution.

  8. Ground beetles as indicators of past management of old-growth forests

    Directory of Open Access Journals (Sweden)

    Mazzei A

    2017-06-01

    Full Text Available Old-growth forests are terrestrial ecosystems with the highest level of biodiversity and the main environments for the study of conservation and dynamics of the forest system. In Mediterranean Europe, two millennia of human exploitation deeply altered the structural complexity of the native forests. Some animal groups, including insects, may be used as a proxy of such changes. In this paper we explored the possible effects of forest management on the functional diversity (species traits of carabid beetle communities. Three old-growth forests of the Sila National Park were sampled by pitfall traps set up in pure beech, beech-silver fir and Calabrian black pine forests. In each forest, five managed vs. five unmanaged stands were considered. Managed sites were exploited until the sixties of the past century and then left unmanaged. More than 6000 carabid specimens belonging to 23 species were collected. The functional diversity in carabid groups is influenced by forest management especially in beech and beech-silver fir stands. Body size, specialized predators, endemic species and forest species were negatively affected by stand management. On the contrary, omnivorous ground beetles populations (or species with a high dispersal power (macropterous and large geographic distribution were positively influenced by stand management. In pine forests the old-growth community seems less sensitive to past management and more affected by soil evolution. Soil erosion and disturbance may reduce species diversity of ground beetles. Anyway, the composition of the carabid community shows that 50-60 years of forest restoration are enough for the reconstruction of a fairly diverse assemblage reflecting a “subclimax” situation.

  9. Evaluating the compatibility of American and Mexican national forest inventory data

    Science.gov (United States)

    Todd A. Schroeder; Sean P. Healey; Gretchen G. Moisen

    2012-01-01

    The international border region between the United States and Mexico represents a point of discontinuity in forest policy, land use management and resource utilization practices. These differences along with physical barriers which separate the two countries can interact to alter the structure and functioning of forest vegetation. One valuable source of information for...

  10. Management impacts on forest floor and soil organic carbon in northern temperate forests of the US

    Science.gov (United States)

    Coeli M. Hoover

    2011-01-01

    The role of forests in the global carbon cycle has been the subject of a great deal of research recently, but the impact of management practices on forest soil dynamics at the stand level has received less attention. This study used six forest management experimental sites in five northern states of the US to investigate the effects of silvicultural treatments (light...

  11. Dynamic Response of Satellite-Derived Vegetation Growth to Climate Change in the Three North Shelter Forest Region in China

    Directory of Open Access Journals (Sweden)

    Bin He

    2015-08-01

    Full Text Available Since the late 1970s, the Chinese government has initiated ecological restoration programs in the Three North Shelter Forest System Project (TNSFSP area. Whether accelerated climate change will help or hinder these efforts is still poorly understood. Using the updated and extended AVHRR NDVI3g dataset from 1982 to 2011 and corresponding climatic data, we investigated vegetation variations in response to climate change. The results showed that the overall state of vegetation in the study region has improved over the past three decades. Vegetation cover significantly decreased in 23.1% and significantly increased in 21.8% of the study area. An increase in all three main vegetation types (forest, grassland, and cropland was observed, but the trend was only statistically significant in cropland. In addition, bare and sparsely vegetated areas, mainly located in the western part of the study area, have significantly expanded since the early 2000s. A moisture condition analysis indicated that the study area experienced significant climate variations, with warm-wet conditions in the western region and warm-dry conditions in the eastern region. Correlation analysis showed that variations in the Normalized Difference Vegetation Index (NDVI were positively correlated with precipitation and negatively correlated with temperature. Ultimately, climate change influenced vegetation growth by controlling the availability of soil moisture. Further investigation suggested that the positive impacts of precipitation on NDVI have weakened in the study region, whereas the negative impacts from temperature have been enhanced in the eastern study area. However, over recent years, the negative temperature impacts have been converted to positive impacts in the western region. Considering the variations in the relationship between NDVI and climatic variables, the warm–dry climate in the eastern region is likely harmful to vegetation growth, whereas the warm

  12. Interactive forest governance to conflict management in Ghana

    NARCIS (Netherlands)

    Derkyi, M.; Ros-Tonen, M.A.F.; Dietz, A.J.; Kyereh, B.

    2012-01-01

    This paper analyzes forest governance and conflict management in the Ghanaian forest sector from the perspective of forest experts. It does so by applying interactive governance theory (Kooiman et al. 2005, 2008) to characterize the governing system in terms of governance modes, actors and elements.

  13. Interactive forest governance for conflict management in Ghana

    NARCIS (Netherlands)

    Derkyi, M.; Ros-Tonen, M.A.F.; Dietz, T.; Kyereh, B.

    2012-01-01

    This paper analyzes forest governance and conflict management in the Ghanaian forest sector from the perspective of forest experts.1 It does so by applying interactive governance theory (Kooiman et al. 2005, 2008) to characterize the governing system in terms of governance modes, actors and

  14. The role of knowledge management tools in supporting sustainable forest management

    Directory of Open Access Journals (Sweden)

    H. Vacik

    2013-12-01

    Full Text Available Aim of study: Knowledge Management (KM tools facilitate the implementation of knowledge processes by identifying, creating, structuring, and sharing knowledge through use of information technology in order to improve decision-making. In this contribution, we review the way in which KM tools and techniques are used in forest management, and categorize a selected set of them according to their contribution to support decision makers in the phases of problem identification, problem modelling, and problem solving.Material and Methods: Existing examples of cognitive mapping tools, web portals, workflow systems, best practices, and expert systems as well as intelligent agents are screened for their applicability and use in the context of decision support for sustainable forest management. Evidence from scientific literature and case studies is utilized to evaluate the contribution of the different KM tools to support problem identification, problem modelling, and problem solving.Main results: Intelligent agents, expert systems and cognitive maps support all phases of the forest planning process strongly. Web based tools have good potential to support participatory forest planning. Based on the needs of forest management decision support and the thus-far underutilized capabilities of KM tools it becomes evident that future decision analysis will have to consider the use of KM more intensively. Research highlights: As the problem-solving process is the vehicle for connecting both knowledge and decision making performance, the next generation of DSS will need to better encapsulate practices that enhance and promote knowledge management. Web based tools will substitute desktop applications by utilizing various model libraries on the internet.Keywords: best practices; cognitive mapping; expert systems; intelligent agents; web portals; workflow systems; Decision Support Systems. 

  15. Let the market help prescribe forest management practices

    Science.gov (United States)

    Gary W. Zinn; Edward Pepke

    1989-01-01

    To obtain the best economic returns from a hardwood forest, you must consider markets. Management decisions made now will affect a stand's future character and value, whether or not the decision results in immediate timber sales. Progressive forest landowners will have a management plan for their woodlots. Typically, such plans are largely land- and resource-...

  16. Strategies for job creation through national forest management

    Science.gov (United States)

    Susan Charnley

    2014-01-01

    This chapter explores the ways in which national forest managers may contribute to community well-being by designing projects that accomplish forest management in ways that not only meet their ecological goals, but also create economic opportunities for nearby communities. The chapter summarizes a number of strategies for enhancing the economic benefits to communities...

  17. On the potential of long wavelength imaging radars for mapping vegetation types and woody biomass in tropical rain forests

    Science.gov (United States)

    Rignot, Eric J.; Zimmermann, Reiner; Oren, Ram

    1995-01-01

    In the tropical rain forests of Manu, in Peru, where forest biomass ranges from 4 kg/sq m in young forest succession up to 100 kg/sq m in old, undisturbed floodplain stands, the P-band polarimetric radar data gathered in June of 1993 by the AIRSAR (Airborne Synthetic Aperture Radar) instrument separate most major vegetation formations and also perform better than expected in estimating woody biomass. The worldwide need for large scale, updated biomass estimates, achieved with a uniformly applied method, as well as reliable maps of land cover, justifies a more in-depth exploration of long wavelength imaging radar applications for tropical forests inventories.

  18. Special Forest Products on the Green Mountain and Finger Lakes National Forests: a research-based approach to management

    Science.gov (United States)

    Marla R. Emery; Clare. Ginger

    2014-01-01

    Special forest products (SFPs) are gathered from more than 200 vascular and fungal species on the Green Mountain National Forest (GMNF) and Finger Lakes National Forest (FLNF). This report documents those SFPs and proposes an approach to managing them in the context of legislation directing the U.S. Forest Service to institute a program of active SFP management. Based...

  19. Plant Traits Demonstrate That Temperate and Tropical Giant Eucalypt Forests Are Ecologically Convergent with Rainforest Not Savanna

    Science.gov (United States)

    Tng, David Y. P.; Jordan, Greg J.; Bowman, David M. J. S.

    2013-01-01

    Ecological theory differentiates rainforest and open vegetation in many regions as functionally divergent alternative stable states with transitional (ecotonal) vegetation between the two forming transient unstable states. This transitional vegetation is of considerable significance, not only as a test case for theories of vegetation dynamics, but also because this type of vegetation is of major economic importance, and is home to a suite of species of conservation significance, including the world’s tallest flowering plants. We therefore created predictions of patterns in plant functional traits that would test the alternative stable states model of these systems. We measured functional traits of 128 trees and shrubs across tropical and temperate rainforest – open vegetation transitions in Australia, with giant eucalypt forests situated between these vegetation types. We analysed a set of functional traits: leaf carbon isotopes, leaf area, leaf mass per area, leaf slenderness, wood density, maximum height and bark thickness, using univariate and multivariate methods. For most traits, giant eucalypt forest was similar to rainforest, while rainforest, particularly tropical rainforest, was significantly different from the open vegetation. In multivariate analyses, tropical and temperate rainforest diverged functionally, and both segregated from open vegetation. Furthermore, the giant eucalypt forests overlapped in function with their respective rainforests. The two types of giant eucalypt forests also exhibited greater overall functional similarity to each other than to any of the open vegetation types. We conclude that tropical and temperate giant eucalypt forests are ecologically and functionally convergent. The lack of clear functional differentiation from rainforest suggests that giant eucalypt forests are unstable states within the basin of attraction of rainforest. Our results have important implications for giant eucalypt forest management. PMID:24358359

  20. Current Status and Problems in Certification of Sustainable Forest Management in China

    Science.gov (United States)

    Zhao, Jingzhu; Xie, Dongming; Wang, Danyin; Deng, Hongbing

    2011-12-01

    Forest certification is a mechanism involving the regulation of trade of forest products in order to protect forest resources and improve forest management. Although China had a late start in adopting this process, the country has made good progress in recent years. As of July 31, 2009, 17 forest management enterprises and more than one million hectares of forests in China have been certified by the Forest Stewardship Council (FSC). Several major factors affect forest certification in China. The first set is institutional in nature. Forest management in China is based on centralized national plans and therefore lacks flexibility. A second factor is public awareness. The importance and value of forest certification are not widely understood and thus consumers do not make informed choices regarding certified forest products. The third major factor is the cost of certification. Together these factors have constrained the development of China's forest certification efforts. However, the process does have great potential. According to preliminary calculations, if 50% of China's commercial forests were certified, the economic cost of forest certification would range from US0.66-86.63 million while the economic benefits for the forestry business sector could exceed US150 million. With continuing progress in forest management practices and the development of international trade in forest products, it becomes important to improve the forest certification process in China. This can be achieved by improving the forest management system, constructing and perfecting market access mechanisms for certificated forest products, and increasing public awareness of environmental protection, forest certification, and their interrelationship.

  1. Current status and problems in certification of sustainable forest management in China.

    Science.gov (United States)

    Zhao, Jingzhu; Xie, Dongming; Wang, Danyin; Deng, Hongbing

    2011-12-01

    Forest certification is a mechanism involving the regulation of trade of forest products in order to protect forest resources and improve forest management. Although China had a late start in adopting this process, the country has made good progress in recent years. As of July 31, 2009, 17 forest management enterprises and more than one million hectares of forests in China have been certified by the Forest Stewardship Council (FSC). Several major factors affect forest certification in China. The first set is institutional in nature. Forest management in China is based on centralized national plans and therefore lacks flexibility. A second factor is public awareness. The importance and value of forest certification are not widely understood and thus consumers do not make informed choices regarding certified forest products. The third major factor is the cost of certification. Together these factors have constrained the development of China's forest certification efforts. However, the process does have great potential. According to preliminary calculations, if 50% of China's commercial forests were certified, the economic cost of forest certification would range from US$0.66-86.63 million while the economic benefits for the forestry business sector could exceed US$150 million. With continuing progress in forest management practices and the development of international trade in forest products, it becomes important to improve the forest certification process in China. This can be achieved by improving the forest management system, constructing and perfecting market access mechanisms for certificated forest products, and increasing public awareness of environmental protection, forest certification, and their interrelationship.

  2. Asset management aided through vegetation management/zoysiagrass along NC roadsides.

    Science.gov (United States)

    2016-08-30

    Research experiments were designed and initiated to evaluate plant growth regulators and recently registered herbicides : for vegetation management along North Carolina roadsides, as well as warm-season turfgrass seed and sod practices to utilize : l...

  3. Managing carbon sequestration and storage in northern hardwood forests

    Science.gov (United States)

    Eunice A. Padley; Deahn M. Donner; Karin S. Fassnacht; Ronald S. Zalesny; Bruce Birr; Karl J. Martin

    2011-01-01

    Carbon has an important role in sustainable forest management, contributing to functions that maintain site productivity, nutrient cycling, and soil physical properties. Forest management practices can alter ecosystem carbon allocation as well as the amount of total site carbon.

  4. Managing impressions and forests

    OpenAIRE

    Ångman, Elin; Hallgren, Lars; Nordström, Eva-Maria

    2011-01-01

    Social interaction is an important—and often forgotten—aspect of conflicts in natural resource management (NRM). Building on the theoretical framework of symbolic interaction, this article explores how the concept of impression management during social interaction can help understand NRM conflicts. A qualitative study was carried out on a Swedish case involving a conflict over clear-cutting of a forest. To explain why the conflict escalated and destructivity increased, we investigated how the...

  5. Managing Southeastern US Forests for Increased Water Yield

    Science.gov (United States)

    Acharya, S.; Kaplan, D. A.; Mclaughlin, D. L.; Cohen, M. J.

    2017-12-01

    Forested lands influence watershed hydrology by affecting water quantity and quality in surface and groundwater systems, making them potentially effective tools for regional water resource planning. In this study, we quantified water use and water yield by pine forests under varying silvicultural management (e.g., high density plantation, thinning, and prescribed burning). Daily forest water use (evapotranspiration, ET) was estimated using continuously monitored soil-moisture in the root-zone at six sites across Florida (USA), each with six plots ranging in forest leaf-area index (LAI). Plots included stands with different rotational ages (from clear-cut to mature pine plantations) and those restored to more historical conditions. Estimated ET relative to potential ET (PET) was strongly associated with LAI, root-zone soil-moisture status, and site hydroclimate; these factors explained 85% of the variation in the ET:PET ratio. Annual water yield (Yw) calculated from these ET estimates and a simple water balance differed significantly among sites and plots (ranging from -0.12 cm/yr to > 100 cm/yr), demonstrating substantive influence of management regimes. LAI strongly influenced Yw in all sites, and a general linear model with forest attributes (LAI and groundcover), hydroclimate, and site characteristics explained >90% of variation in observed Yw. These results can be used to predict water yield changes under different management and climate scenarios and may be useful in the development of payment for ecosystem services approaches that identify water as an important product of forest best management practices.

  6. [Vegetation restoration in western Liaoning hilly region: a study based on succession theory and degradation degree of ecosystem].

    Science.gov (United States)

    Du, Xiaojun; Jiang, Fengqi; Jiao, Zhihua

    2004-09-01

    Analysis with some habitat indexes of different succession stage, this paper quantitatively measured the degradation degree of degraded ecosystems in this region. The results showed that the average dissimilarities between natural Quercus forest, natural Chinese pine (Pinus tabulaeformis) forest and Populus-Quercus forest in Nanliuzhangzi forestry centre and Chinese pine plantations in Niuheliang region and Qitian forestry centre were 0.655, 0.665, 2.029 and 3.919, respectively, and as a whole, the dissimilarities represented the places of the forests in the process of ecosystem succession/degradation. It was also showed that most habitats were degraded to the stage between shrubbery and pioneer arbor forest, and closer to the succession stage of pioneer arbor forest. Some suggestions were made for the management of the existing plantation and the construction of mixed forest, e.g., to increase the proportion of shrubbery and pioneer arbor species, especially that of nitrogen fixation tree species. The plant species list of several main vegetation types in western Liaoning we offered could provide scientific reference for the vegetation restoration and the management of pure Chinese pine plantation in this region.

  7. Diversity of forest vegetation across a strong gradient of climatic continentality: Western Sayan Mountains, southern Siberia

    Czech Academy of Sciences Publication Activity Database

    Chytrý, M.; Danihelka, Jiří; Kubešová, S.; Lustyk, P.; Ermakov, N.; Hájek, Michal; Hájková, Petra; Kočí, M.; Otýpková, Z.; Roleček, J.; Řezníčková, M.; Šmarda, P.; Valachovič, M.; Popov, D.; Pišút, I.

    2008-01-01

    Roč. 196, č. 1 (2008), s. 61-83 ISSN 1385-0237 Grant - others:GA AV ČR(CZ) IAA6163303; RFBR(RU) RFBR 06-04-48971 Program:IA Institutional research plan: CEZ:AV0Z60050516 Keywords : forest * vegetation * Siberia Subject RIV: EF - Botanics Impact factor: 1.730, year: 2008

  8. Perceptions of forest resource use and management in two village ...

    African Journals Online (AJOL)

    Perceptions of forest resource use and management in two village ... parts of the developing world in terms of their use and management of natural forest resources ... Neither group was aware of current or future management strategies for the ...

  9. Impacts of 21st century climate changes on flora and vegetation in Denmark

    International Nuclear Information System (INIS)

    Skov, Flemming; Nygaard, Bettina; Wind, Peter; Floejgaard, Camilla; Borchsenius, Finn; Normand, Signe; Balslev, Henrik; Svenning, Jens-Christian

    2009-01-01

    In this paper we examined the potential impacts of predicted climatic changes on the flora and vegetation in Denmark using data from a digital database on the natural vegetation of Europe. Climate scenarios A2 and B2 were used to find regions with present climatic conditions similar to Denmark's climate in the year 2100. The potential natural vegetation of Denmark today is predominantly deciduous forest that would cover more than 90% of the landscape. Swamps, bogs, and wet forest would be found under moist or wet conditions. Dwarf shrub heaths would be naturally occurring on poor soils along the coast together with dune systems and salt-marsh vegetation. When comparing the natural vegetation of Denmark to the vegetation of five future-climate analogue areas, the most obvious trend is a shift from deciduous to thermophilous broadleaved forest currently found in Southern and Eastern Europe. A total of 983 taxa were recorded for this study of which 539 were found in Denmark. The Soerensen index was used to measure the floristic similarity between Denmark and the five subregions. Deciduous forest, dwarf shrub heath, and coastal vegetation were treated in more detail, focusing on potential new immigrant species to Denmark. Finally, implications for management were discussed. The floristic similarity between Denmark and regions in Europe with a climate similar to what is expected for Denmark in year 2100 was found to vary between 48-78%, decreasing from North to South. Hence, it seems inevitable that climate changes of the magnitudes foreseen will alter the distribution of individual species and the composition of natural vegetation units. Changes, however, will not be immediate. Historic evidence shows a considerable lag in response to climatic change under natural conditions, but little is known about the effects of human land-use and pollution on this process. Facing such uncertainties we suggested that a dynamic strategy based on modeling, monitoring and adaptive

  10. Impacts of 21st century climate changes on flora and vegetation in Denmark

    Science.gov (United States)

    Skov, Flemming; Nygaard, Bettina; Wind, Peter; Borchsenius, Finn; Normand, Signe; Balslev, Henrik; Fløjgaard, Camilla; Svenning, Jens-Christian

    2009-11-01

    In this paper we examined the potential impacts of predicted climatic changes on the flora and vegetation in Denmark using data from a digital database on the natural vegetation of Europe. Climate scenarios A2 and B2 were used to find regions with present climatic conditions similar to Denmark's climate in the year 2100. The potential natural vegetation of Denmark today is predominantly deciduous forest that would cover more than 90% of the landscape. Swamps, bogs, and wet forest would be found under moist or wet conditions. Dwarf shrub heaths would be naturally occurring on poor soils along the coast together with dune systems and salt-marsh vegetation. When comparing the natural vegetation of Denmark to the vegetation of five future-climate analogue areas, the most obvious trend is a shift from deciduous to thermophilous broadleaved forest currently found in Southern and Eastern Europe. A total of 983 taxa were recorded for this study of which 539 were found in Denmark. The Sørensen index was used to measure the floristic similarity between Denmark and the five subregions. Deciduous forest, dwarf shrub heath, and coastal vegetation were treated in more detail, focusing on potential new immigrant species to Denmark. Finally, implications for management were discussed. The floristic similarity between Denmark and regions in Europe with a climate similar to what is expected for Denmark in year 2100 was found to vary between 48-78%, decreasing from North to South. Hence, it seems inevitable that climate changes of the magnitudes foreseen will alter the distribution of individual species and the composition of natural vegetation units. Changes, however, will not be immediate. Historic evidence shows a considerable lag in response to climatic change under natural conditions, but little is known about the effects of human land-use and pollution on this process. Facing such uncertainties we suggested that a dynamic strategy based on modeling, monitoring and adaptive

  11. Impacts of 21st century climate changes on flora and vegetation in Denmark

    Energy Technology Data Exchange (ETDEWEB)

    Skov, Flemming; Nygaard, Bettina; Wind, Peter; Floejgaard, Camilla [Department of Wildlife Ecology and Biodiversity, National Environmental Research Institute, Aarhus University, Grenaavej 14, DK-8410 Roende (Denmark); Borchsenius, Finn; Normand, Signe; Balslev, Henrik; Svenning, Jens-Christian, E-mail: fs@dmu.d [Department of Biological Sciences, Aarhus University, Ny Munkegade 114, DK-8000 Aarhus C (Denmark)

    2009-11-01

    In this paper we examined the potential impacts of predicted climatic changes on the flora and vegetation in Denmark using data from a digital database on the natural vegetation of Europe. Climate scenarios A2 and B2 were used to find regions with present climatic conditions similar to Denmark's climate in the year 2100. The potential natural vegetation of Denmark today is predominantly deciduous forest that would cover more than 90% of the landscape. Swamps, bogs, and wet forest would be found under moist or wet conditions. Dwarf shrub heaths would be naturally occurring on poor soils along the coast together with dune systems and salt-marsh vegetation. When comparing the natural vegetation of Denmark to the vegetation of five future-climate analogue areas, the most obvious trend is a shift from deciduous to thermophilous broadleaved forest currently found in Southern and Eastern Europe. A total of 983 taxa were recorded for this study of which 539 were found in Denmark. The Soerensen index was used to measure the floristic similarity between Denmark and the five subregions. Deciduous forest, dwarf shrub heath, and coastal vegetation were treated in more detail, focusing on potential new immigrant species to Denmark. Finally, implications for management were discussed. The floristic similarity between Denmark and regions in Europe with a climate similar to what is expected for Denmark in year 2100 was found to vary between 48-78%, decreasing from North to South. Hence, it seems inevitable that climate changes of the magnitudes foreseen will alter the distribution of individual species and the composition of natural vegetation units. Changes, however, will not be immediate. Historic evidence shows a considerable lag in response to climatic change under natural conditions, but little is known about the effects of human land-use and pollution on this process. Facing such uncertainties we suggested that a dynamic strategy based on modeling, monitoring and

  12. A framework for identifying carbon hotspots and forest management drivers

    Science.gov (United States)

    Nilesh Timilsina; Francisco J. Escobedo; Wendell P. Cropper; Amr Abd-Elrahman; Thomas Brandeis; Sonia Delphin; Samuel Lambert

    2013-01-01

    Spatial analyses of ecosystem system services that are directly relevant to both forest management decision making and conservation in the subtropics are rare. Also, frameworks that identify and map carbon stocks and corresponding forest management drivers using available regional, national, and international-level forest inventory datasets could provide insights into...

  13. Managing the forest for more than the trees: effects of experimental timber harvest on forest Lepidoptera.

    Science.gov (United States)

    Summerville, Keith S

    2011-04-01

    Studies of the effects of timber harvest on forest insect communities have rarely considered how disturbance from a range of harvest levels interacts with temporal variation in species diversity to affect community resistance to change. Here I report the results of a landscape-scale, before-and-after, treatment-control experiment designed to test how communities of forest Lepidoptera experience (1) changes in species richness and composition and (2) shifts in species dominance one year after logging. I sampled Lepidoptera from 20 forest stands allocated to three harvest treatments (control, even-aged shelterwood or clearcuts, and uneven-aged group selection cuts) within three watersheds at Morgan-Monroe State Forest, Indiana, USA. Moths were sampled from all forest stands one year prior to harvest in 2007 and immediately post-harvest in 2009. Species composition was most significantly affected by temporal variation between years, although uneven-aged management also caused significant changes in lepidopteran community structure. Furthermore, species richness of Lepidoptera was higher in 2007 compared to 2009 across all watersheds and forest stands. The decrease in species richness between years, however, was much larger in even-aged and uneven-aged management units compared to the control. Furthermore, matrix stands within the even-aged management unit demonstrated the highest resistance to species loss within any management unit. Species dominance was highly resistant to effects of timber harvest, with pre- and post-harvest values for Simpson diversity nearly invariant. Counter to prediction, however, the suite of dominant taxa differed dramatically among the three management units post-harvest. My results suggest that temporal variation may have strong interactions with timber harvest, precipitating loss of nearly 50% species richness from managed stands regardless of harvest level. Even-aged management, however, appeared to leave the smallest "footprint" on moth

  14. Endurance and Adaptation of Community Forest Management in Quintana Roo, Mexico

    Directory of Open Access Journals (Sweden)

    Edward A. Ellis

    2015-11-01

    Full Text Available Despite regional deforestation threats, the state of Quintana Roo has maintained over 80% of its territory in forests. Community forest management (CFM has played a pivotal role in forest cover and biodiversity conservation in the region. In this article, we present the institutional, socioeconomic and environmental conditions under which community-based forest management has been consolidated in the tropical state of Quintana Roo, which occupies the eastern half of Mexico’s Yucatan Peninsula. With a focus on management for timber and other market-based development strategies, we then examine the institutional and socioeconomic factors, as well as biophysical shocks, that have constrained community forestry development in the past 25 years, challenging its persistence. Following, we discuss how forest communities and institutions have responded and adapted to changing forest policies and markets as well as major environmental shocks from hurricanes and fires. CFM in Quintana Roo has shown resiliency since its institutionalization 30 years ago. Future challenges and opportunities include biodiversity conservation, carbon management through Reducing Emissions from Deforestation and Forest Degradation (REDD+ initiatives, market strengthening, business management training as well as the implementation of alternative silvicultural systems, particularly to manage sustainable populations of commercial timber species.

  15. Vegetation structure in the mountain forest in the Turquino National Park, province of Granma

    Directory of Open Access Journals (Sweden)

    José Luis Rodríguez Sosa

    2013-12-01

    Full Text Available The research was conducted in the Jeringa site of the Turquino National Park in order to characterize the vegetation of a mountain forest fragment with Juglans jamaicensis. Floristic composition, vegetation structure, and the index value of importance were evaluated. Diameter at 1.30 m above the ground and height of all trees greater than 5 cm in diameter was measured. Data were analyzed using canonical correspondence analysis. 776 individuals of 43 species and 41 genera belonging to 30 families, reporting the Rubiaceae family as the richest in species, followed by Amigdalaceae, Araliaceae, Cyatheaceae, Euphorbiaceae, Flacourtiaceae, Meliaceae, Moraceae, Sapindaceae and Poaceae. The tree species with more IVI were the Pseudolmedia spuria, Oxandra laurifolia, Trophis racemosa, Ocotea leucoxylon, Guarea guara, Dendropanax arboreus and Juglans jamaicensis, mainly due to its abundance in the vegetation, but it was found that the main contributor to the organic weight parameter species was the relative frequency.

  16. Communicating old-growth forest management on the Allegheny National Forest

    Science.gov (United States)

    Brad Nelson; Chris Nowak; Dave deCalesta; Steve Wingate

    1997-01-01

    Successful communication of old-growth management, including the role of silviculture, is achieved by integrating as a working whole the topics addressed in this workshop. We have used research, technology transfer and adaptive management to achieve this integration on the Allegheny National Forest. Program success depends on scientists and practitioners working...

  17. Vegetation composition of the UCM Biological Field Station Finca de Ontalba; Composicion vegetal de la Estacion Biologica de la UCM Finca de Ontalba

    Energy Technology Data Exchange (ETDEWEB)

    Castoldi, E.; Molina, J. A.

    2012-07-01

    A vegetation study in the Biological Field Station of the Complutense University of Madrid named Finca de Ontalba, located in Guadarrama Mountains (North Madrid), was carried out. We identified 12 plant communities grouped in the following seven vegetation types: 1) Hygrophilous and aquatic communities; 2) Meadows; 3) Pioneer community of open disturbed soils; 4) Nitrophilous tall-herb vegetation of forest edge; 5) Forest-edge herbaceous community; 6) Forest-edge scrub community; and 7) Forest vegetation. The interest of the Station for research studies is pointed out. Its scope includes primary succession, amphibious environment, soil moisture gradient, ecotones, and forested environment. Besides, the Biological Station hosts a freshwater habitat type listed in the European Community Directive (92/43/EEC) which corresponds to water courses of plain or montane levels with Ranunculion fluitantis and Callitricho- Batrachion vegetation (habitat code 3260). (Author)

  18. Reviews and syntheses: Hidden forests, the role of vegetated coastal habitats in the ocean carbon budget

    Science.gov (United States)

    Duarte, Carlos M.

    2017-01-01

    Vegetated coastal habitats, including seagrass and macroalgal beds, mangrove forests and salt marshes, form highly productive ecosystems, but their contribution to the global carbon budget remains overlooked, and these forests remain hidden in representations of the global carbon budget. Despite being confined to a narrow belt around the shoreline of the world's oceans, where they cover less than 7 million km2, vegetated coastal habitats support about 1 to 10 % of the global marine net primary production and generate a large organic carbon surplus of about 40 % of their net primary production (NPP), which is either buried in sediments within these habitats or exported away. Large, 10-fold uncertainties in the area covered by vegetated coastal habitats, along with variability about carbon flux estimates, result in a 10-fold bracket around the estimates of their contribution to organic carbon sequestration in sediments and the deep sea from 73 to 866 Tg C yr-1, representing between 3 % and 1/3 of oceanic CO2 uptake. Up to 1/2 of this carbon sequestration occurs in sink reservoirs (sediments or the deep sea) beyond these habitats. The organic carbon exported that does not reach depositional sites subsidizes the metabolism of heterotrophic organisms. In addition to a significant contribution to organic carbon production and sequestration, vegetated coastal habitats contribute as much to carbonate accumulation as coral reefs do. While globally relevant, the magnitude of global carbon fluxes supported by salt-marsh, mangrove, seagrass and macroalgal habitats is declining due to rapid habitat loss, contributing to loss of CO2 sequestration, storage capacity and carbon subsidies. Incorporating the carbon fluxes' vegetated coastal habitats' support into depictions of the carbon budget of the global ocean and its perturbations will improve current representations of the carbon budget of the global ocean.

  19. Can forest watershed management mitigate climate change impacts on water resources?

    Science.gov (United States)

    James M. Vose; Chelcy R. Ford; Stephanie Laseter; Salli Dymond; GE Sun; Mary Beth Adams; Stephen Sebestyen; John Campbell; Charles Luce; Devendra Amatya; Kelly Elder; Tamara. Heartsill-Scalley

    2012-01-01

    Long-term hydrology and climate data from United States Forest Service Experimental Forests and Ranges (EFR) provide critical information on the interactions among climate, streamflow, and forest management practices. We examined the relationships among streamflow responses to climate variation and forest management using long-term data. Analysis of climate data from a...

  20. Influence of Vegetation Structure on Lidar-derived Canopy Height and Fractional Cover in Forested Riparian Buffers During Leaf-Off and Leaf-On Conditions

    Science.gov (United States)

    Wasser, Leah; Day, Rick; Chasmer, Laura; Taylor, Alan

    2013-01-01

    Estimates of canopy height (H) and fractional canopy cover (FC) derived from lidar data collected during leaf-on and leaf-off conditions are compared with field measurements from 80 forested riparian buffer plots. The purpose is to determine if existing lidar data flown in leaf-off conditions for applications such as terrain mapping can effectively estimate forested riparian buffer H and FC within a range of riparian vegetation types. Results illustrate that: 1) leaf-off and leaf-on lidar percentile estimates are similar to measured heights in all plots except those dominated by deciduous compound-leaved trees where lidar underestimates H during leaf off periods; 2) canopy height models (CHMs) underestimate H by a larger margin compared to percentile methods and are influenced by vegetation type (conifer needle, deciduous simple leaf or deciduous compound leaf) and canopy height variability, 3) lidar estimates of FC are within 10% of plot measurements during leaf-on periods, but are underestimated during leaf-off periods except in mixed and conifer plots; and 4) depth of laser pulse penetration lower in the canopy is more variable compared to top of the canopy penetration which may influence within canopy vegetation structure estimates. This study demonstrates that leaf-off lidar data can be used to estimate forested riparian buffer canopy height within diverse vegetation conditions and fractional canopy cover within mixed and conifer forests when leaf-on lidar data are not available. PMID:23382966

  1. Management of Vegetation by Alternative Practices in Fields and Roadsides

    Directory of Open Access Journals (Sweden)

    Allen V. Barker

    2014-01-01

    Full Text Available In attempts to reduce the amounts of conventional herbicides used, alternative practices are sought in the management of roadside vegetation. In this investigation, alternative herbicides (citric-acetic acids, clove oil, corn gluten meal, limonene, and pelargonic acid, flaming, and mulching were assessed in management of annual and perennial, herbaceous vegetation in field and roadside plots. Several formulations of alternative herbicides applied singly or repeatedly during the growing season were evaluated and compared with conventional herbicides (glyphosate and glufosinate ammonium or with flaming or mulching. Citric-acetic acid formulations, clove oil, limonene, or pelargonic acid applied as foliar sprays immediately desiccated foliage, but the efficacy lasted for no longer than five weeks. Repeated applications were better than single applications of these herbicides in suppressing plant vegetative growth. Corn gluten meal imparted little or no early control and stimulated late-season growth of vegetation. A single flaming of vegetation gave no better control than the alternative herbicides, but repeated flaming strongly restricted growth. Mulching with wood chips or bark gave season-long suppression of vegetation. Glyphosate gave season-long inhibition of vegetation, but the efficacy of glufosinate ammonium waned as the growing season progressed. For season-long suppression of vegetation with alternative herbicides or flaming repeated applications will be required.

  2. Arthropod diversity in pristine vs. managed beech forests in Transcarpathia (Western Ukraine

    Directory of Open Access Journals (Sweden)

    Vasyl Chumak

    2015-01-01

    We conclude that biodiversity in pristine beech forests is not generally higher than in managed beech forests. However, the much higher amount of dead wood in pristine forests provides a source habitat for saproxylic species spreading into managed forest plots in the same region, but not to distant forests, far from virgin forests, such as in Western Europe.

  3. Tropical forest plantation biomass estimation using RADARSAT-SAR and TM data of south china

    Science.gov (United States)

    Wang, Chenli; Niu, Zheng; Gu, Xiaoping; Guo, Zhixing; Cong, Pifu

    2005-10-01

    Forest biomass is one of the most important parameters for global carbon stock model yet can only be estimated with great uncertainties. Remote sensing, especially SAR data can offers the possibility of providing relatively accurate forest biomass estimations at a lower cost than inventory in study tropical forest. The goal of this research was to compare the sensitivity of forest biomass to Landsat TM and RADARSAT-SAR data and to assess the efficiency of NDVI, EVI and other vegetation indices in study forest biomass based on the field survey date and GIS in south china. Based on vegetation indices and factor analysis, multiple regression and neural networks were developed for biomass estimation for each species of the plantation. For each species, the better relationships between the biomass predicted and that measured from field survey was obtained with a neural network developed for the species. The relationship between predicted and measured biomass derived from vegetation indices differed between species. This study concludes that single band and many vegetation indices are weakly correlated with selected forest biomass. RADARSAT-SAR Backscatter coefficient has a relatively good logarithmic correlation with forest biomass, but neither TM spectral bands nor vegetation indices alone are sufficient to establish an efficient model for biomass estimation due to the saturation of bands and vegetation indices, multiple regression models that consist of spectral and environment variables improve biomass estimation performance. Comparing with TM, a relatively well estimation result can be achieved by RADARSAT-SAR, but all had limitations in tropical forest biomass estimation. The estimation results obtained are not accurate enough for forest management purposes at the forest stand level. However, the approximate volume estimates derived by the method can be useful in areas where no other forest information is available. Therefore, this paper provides a better

  4. Vegetation response to large scale disturbance in a southern Appalachian forest: Hurricane Opal and salvage logging

    Science.gov (United States)

    Katherine J. Elliott; Stephanie L. Hitchcock; Lisa Krueger

    2002-01-01

    Disturbance such as catastrophic windthrow can play a major role in the structure and composition of southern Appalachian forests. We report effects of Hurricane Opal followed by salvage logging on vegetation dynamics (regeneration, composition, and diversity) the first three years after disturbance at the Coweeta Hydrologic Laboratory in western North Carolina. The...

  5. Vegetation characteristics of forest stands used by woodland caribou and those disturbed by fire or logging in Manitoba

    Directory of Open Access Journals (Sweden)

    Juha M. Metsaranta

    2003-04-01

    Full Text Available This study examined woodland caribou (Rangifer tarandus caribou in an area known as the Kississing-Naosap caribou range in west central Manitoba. The vegetation characteristics of areas used by caribou and areas disturbed by fire or logging were measured in order to develop a model to estimate habitat quality from parameters collected during stan¬dard resource inventories. There was evidence that habitat index values calculated using a visual score-sheet index could be used as the basis to relate parameters commonly collected during resource inventories to habitat suitability. Use of this model to select long and short-term leave areas during forest management planning could potentially mitigate some of the negative impacts of forest harvesting. Abundance of arboreal lichen and wind-fallen trees were important predictor variables in the suitability model, but their inclusion did not explain more variance in habitat suitability than models that did not include them. Extreme post-fire deadfall abundance may play a role in predator-prey dynamics by creating habitat that is equally unsuitable for all ungulates, and thus keeping both moose and caribou densities low.

  6. Influences of management of Southern forests on water quantity and quality

    Science.gov (United States)

    Ge Sun; Mark Riedel; Rhett Jackson; Randy Kolka; Devendra Amatya; Jim Shepard

    2004-01-01

    Water is a key output of southern forests and is critical to other processes, functions, and values of forest ecosystems. This chapter synthesizes published literature about the effects of forest management practices on water quantity and water quality across the Southern United States region. We evaluate the influences of forest management at different temporal and...

  7. Urban forest topographical mapping using UAV LIDAR

    Science.gov (United States)

    Putut Ash Shidiq, Iqbal; Wibowo, Adi; Kusratmoko, Eko; Indratmoko, Satria; Ardhianto, Ronni; Prasetyo Nugroho, Budi

    2017-12-01

    Topographical data is highly needed by many parties, such as government institution, mining companies and agricultural sectors. It is not just about the precision, the acquisition time and data processing are also carefully considered. In relation with forest management, a high accuracy topographic map is necessary for planning, close monitoring and evaluating forest changes. One of the solution to quickly and precisely mapped topography is using remote sensing system. In this study, we test high-resolution data using Light Detection and Ranging (LiDAR) collected from unmanned aerial vehicles (UAV) to map topography and differentiate vegetation classes based on height in urban forest area of University of Indonesia (UI). The semi-automatic and manual classifications were applied to divide point clouds into two main classes, namely ground and vegetation. There were 15,806,380 point clouds obtained during the post-process, in which 2.39% of it were detected as ground.

  8. Late Quaternary sedimentary dynamics in Western Amazonia: Implications for the origin of open vegetation/forest contrasts

    Science.gov (United States)

    Rossetti, D. F.; Bertani, T. C.; Zani, H.; Cremon, E. H.; Hayakawa, E. H.

    2012-12-01

    This work investigated the evolution of sedimentary environments during the latest Quaternary and their influence on the paradoxical occurrence of open vegetation patches in sharp contact with the Amazonian forest. The approach integrated pre-existing geological and floristic data from lowlands in the Brazilian Amazonia, with remote sensing imagery including multispectral optical images (TM, ETM+, and ASTER), Phased Array L-band Synthetic Aperture Radar (PALSAR), InSAR C-band SRTM-DEMs, and high resolution images obtained from Google Earth™. The detection of an abundance of paleomorphologies provided evidence of a scenario in which constant environmental shifts were linked to the evolution of fluvial and megafan depositional systems. In all studied areas, the open vegetation patches are not random, but associated with sedimentary deposits representative of environments either deactivated during the Holocene or presently in the process of deactivation. Sedimentary evolution would have determined the distribution of wetlands and terra firme in many areas of the Amazonian lowlands, and would have a major impact on the development of open vegetated patches within the modern rainforest. Subsiding areas were filled up with megafan deposits, and many fluvial tributaries were rearranged on the landscape. The close relationship between vegetation and the physical environment suggests that sedimentary history related to the evolution of depositional settings during the latest Quaternary played a major role in the distribution of flooded and non-flooded areas of the Amazonian lowlands, with a direct impact on the distribution of modern floristic patterns. As the depositional sites were abandoned and their sedimentary deposits were exposed to the surface, they became sites suitable for vegetation growth, first of herbaceous species and then of forest. Although climate fluctuations might have been involved, fault reactivation appears to have been the main cause of changes in

  9. Trends in management of the world's forests and impacts on carbon stocks

    Science.gov (United States)

    Richard Birdsey; Yude. Pan

    2015-01-01

    Global forests are increasingly affected by land-use change, fragmentation, changing management objectives, and degradation. In this paper we broadly characterize trends in global forest area by intensity of management, and provide an overview of changes in global carbon stocks associated with managed forests. We discuss different interpretations of "management...

  10. U.S. National forests adapt to climate change through science-management partnerships

    Science.gov (United States)

    Jeremy S. Littell; David L. Peterson; Constance I. Millar; Kathy A. O' Halloran

    2011-01-01

    Developing appropriate management options for adapting to climate change is a new challenge for land managers, and integration of climate change concepts into operational management and planning on United States national forests is just starting. We established science-management partnerships on the Olympic National Forest (Washington) and Tahoe National Forest (...

  11. Water yield issues in the jarrah forest of south-western Australia

    Science.gov (United States)

    Ruprecht, J. K.; Stoneman, G. L.

    1993-10-01

    The jarrah forest of south-western Australia produces little streamflow from moderate rainfall. Water yield from water supply catchments for Perth, Western Australia, are low, averaging 71 mm (7% of annual rainfall). The low water yields are attributed to the large soil water storage available for continuous use by the forest vegetation. A number of water yield studies in south-western Australia have examined the impact on water yield of land use practices including clearing for agricultural development, forest harvesting and regeneration, forest thinning and bauxite mining. A permanent reduction in forest cover by clearing for agriculture led to permanent increases of water yield of approximately 28% of annual rainfall in a high rainfall catchment. Thinning of a high rainfall catchment led to an increase in water yield of 20% of annual rainfall. However, it is not clear for how long the increased water yield will persist. Forest harvesting and regeneration have led to water yield increases of 16% of annual rainfall. The subsequent recovery of vegetation cover has led to water yields returning to pre-disturbance levels after an estimated 12-15 years. Bauxite mining of a high rainfall catchment led to a water yield increase of 8% of annual rainfall, followed by a return to pre-disturbance water yield after 12 years. The magnitude of specific streamflow generation mechanisms in small catchments subject to forest disturbance vary considerably, typically in a number of distinct stages. The presence of a permanent groundwater discharge area was shown to be instrumental in determining the magnitude of the streamflow response after forest disturbance. The long-term prognosis for water yield from areas subject to forest thinning, harvesting and regeneration, and bauxite mining are uncertain, owing to the complex interrelationship between vegetation cover, tree height and age, and catchment evapotranspiration. Management of the forest for water yield needs to acknowledge

  12. Multi-scale spatial controls of understory vegetation in Douglas-fir–western hemlock forests of western Oregon, USA

    Science.gov (United States)

    Julia I. Burton; Lisa M. Ganio; Klaus J. Puettmann

    2014-01-01

    Forest understory vegetation is influenced by broad-scale variation in climate, intermediate scale variation in topography, disturbance and neighborhood interactions. However, little is known about how these multi-scale controls interact to influence observed spatial patterns. We examined relationships between the aggregated cover of understory plant species (%...

  13. Behaviour of radiocesium in forest ecosystem contaminated during a nuclear accident

    International Nuclear Information System (INIS)

    Thiry, Y.; Ronneau, C.; Myttenaere, C.

    1992-01-01

    Vegetation and soils sampling were realized in 2 forest zones near the accidented power plant of Chernobyl. The 137 Cs distribution in a red pine stand is established; many specific measures of wood complete the study. Results discussion point out the difficulties to manage the contaminated forest area without a good knowledge of the radioelement biochemical cycle. (author)

  14. Next-generation simulation and optimization platform for forest management and analysis

    Science.gov (United States)

    Antti Makinen; Jouni Kalliovirta; Jussi Rasinmaki

    2009-01-01

    Late developments in the objectives and the data collection methods of forestry create new challenges and possibilities in forest management planning. Tools in forest management and forest planning systems must be able to make good use of novel data sources, use new models, and solve complex forest planning tasks at different scales. The SIMulation and Optimization (...

  15. Adaptive economic and ecological forest management under risk

    Science.gov (United States)

    Joseph Buongiorno; Mo Zhou

    2015-01-01

    Background: Forest managers must deal with inherently stochastic ecological and economic processes. The future growth of trees is uncertain, and so is their value. The randomness of low-impact, high frequency or rare catastrophic shocks in forest growth has significant implications in shaping the mix of tree species and the forest landscape...

  16. Forest Vegetation Monitoring Protocol for National Parks in the North Coast and Cascades Network

    Science.gov (United States)

    Woodward, Andrea; Hutten, Karen M.; Boetsch, John R.; Acker, Steven A.; Rochefort, Regina M.; Bivin, Mignonne M.; Kurth, Laurie L.

    2009-01-01

    Plant communities are the foundation for terrestrial trophic webs and animal habitat, and their structure and species composition are an integrated result of biological and physical drivers (Gates, 1993). Additionally, they have a major role in geologic, geomorphologic and soil development processes (Jenny, 1941; Stevens and Walker, 1970). Throughout most of the Pacific Northwest, environmental conditions support coniferous forests as the dominant vegetation type. In the face of anthropogenic climate change, forests have a global role as potential sinks for atmospheric carbon (Goodale and others, 2002). Consequently, knowledge of the status of forests in the three large parks of the NCCN [that is, Mount Rainier (MORA), North Cascades (NOCA), and Olympic (OLYM) National Parks] is fundamental to understanding the condition of Pacific Northwest ecosystems. Diverse climate and soil properties across the Pacific Northwest result in a variety of forest types (Franklin and Dyrness, 1973; Franklin and others, 1988; Henderson and others, 1989, 1992). The mountainous terrain of Mount Rainier, North Cascades, and Olympic National Parks create steep elevational and precipitation gradients within and among the parks: collectively, these parks span from sea level to more than 4,200 m; and include areas with precipitation from 90 to more than 500 cm. The resulting forests range from coastal rainforests with dense understories and massive trees draped with epiphytes; to areas with drought-adapted Ponderosa pines; to high-elevation subalpine fir forests interspersed with meadows just below treeline (table 1). These forests, in turn, are the foundation for other biotic communities constituting Pacific Northwest ecosystems.

  17. Anthropic changes to the biotic factor of soil formation from forests to managed grasslands along summits of the western Pyrenees Mountains, France

    Science.gov (United States)

    Leigh, David; Gragson, Theodore

    2017-04-01

    Mounting evidence indicates that highland pastures of the humid-temperate western Pyrenees were converted from mixed forests to managed grasslands thousands of years ago, as early as during the late Neolithic and Bronze age by human actions including use of fire. We observe pronounced differences between soil profiles of ancient pastures and old-growth forests in otherwise similar landscape positions. In order to test physical and chemical differences, we collected paired samples of forest versus grassland soils at four separate hillslope sites where there was a clear boundary between the two vegetation types. Animal trails were excluded from sampling. Factors of climate, topography, parent material, and time of soil formation were essentially identical in the forests and pastures of each site, but the time of soil under grassland vegetation may have varied. Each paired hillslope site included five core samples (7.6 cm diameter) from the upper 7.6 cm of the mineral soil within each vegetation type, and the A horizon thickness was recorded at each core hole site. In addition, one complete soil profile was sampled in each vegetation type at each site, making a total of 20 core samples and 4 complete profiles from each respective vegetation type. In addition, we measured the magnetic susceptibility of the mineral soil surface on two transects crossing the vegetation boundary. Core samples have been measured for bulk density, pH, plant-available nutrients, and organic matter; and tests for total carbon and nitrogen, amorphous silica, charcoal, and other forms of black carbon are ongoing. Preliminary results indicate pastured A horizons are about three times as thick as forested soils, contain more organic matter, have lower soil bulk densities, have much finer and stronger structural development of soil aggregates. These traits favor much greater infiltration and water holding capacities of the pastured soils, which we have validated with saturated hydraulic

  18. Evaluating Forest Management in Nepal: Views across Space and Time

    Directory of Open Access Journals (Sweden)

    Harini Nagendra

    2005-06-01

    Full Text Available This research follows the manner in which State-driven, upwardly accountable, forest decentralization programs play out on the ground, and evaluates their impact on forests and local institutions, a topic of much current concern and debate. In a landscape in Nepal's Terai plains, we conducted a census of 23 co-managed community and buffer-zone forest user groups - two predominant approaches to involving communities in forest-management activities in Nepal's Terai plains - to draw statistically relevant conclusions about the relative impact of these two programs at a landscape scale. We use a multi-date Landsat TM® image classification to develop a land-cover change classification, and use this to generate objective, quantitative, biophysical indicators that enable us to assess the extent of clearing and regeneration in the forest areas controlled and managed by each of these communities. In-depth field interviews with the communities provide us with information about the impact of these initiatives on local institutions. Finally, we link these two kinds of information sets to interpret the satellite information on forest-cover change with reference to the socioeconomic processes and management rules that influence forest-cover change in these regions. Satellite image analysis shows the regeneration of several patches of forest that are managed within the purview of the Royal Chitwan National Park's buffer-zone program. This can be related to high levels of investment in plantation and forest-management activities by external agencies. The substantial revenue that these communities derive from ecotourism also helps, allowing them to hire forest guards, and afford better monitoring capabilities. In contrast, the less wealthy, community-forestry user groups have to make do with volunteer patrols, and do not have the same level of external technical and financial support to invest in plantation activities. Buffer-zone users, however, have to deal

  19. China's Classification-Based Forest Management: Procedures, Problems, and Prospects

    Science.gov (United States)

    Dai, Limin; Zhao, Fuqiang; Shao, Guofan; Zhou, Li; Tang, Lina

    2009-06-01

    China’s new Classification-Based Forest Management (CFM) is a two-class system, including Commodity Forest (CoF) and Ecological Welfare Forest (EWF) lands, so named according to differences in their distinct functions and services. The purposes of CFM are to improve forestry economic systems, strengthen resource management in a market economy, ease the conflicts between wood demands and public welfare, and meet the diversified needs for forest services in China. The formative process of China’s CFM has involved a series of trials and revisions. China’s central government accelerated the reform of CFM in the year 2000 and completed the final version in 2003. CFM was implemented at the provincial level with the aid of subsidies from the central government. About a quarter of the forestland in China was approved as National EWF lands by the State Forestry Administration in 2006 and 2007. Logging is prohibited on National EWF lands, and their landowners or managers receive subsidies of about 70 RMB (US10) per hectare from the central government. CFM represents a new forestry strategy in China and its implementation inevitably faces challenges in promoting the understanding of forest ecological services, generalizing nationwide criteria for identifying EWF and CoF lands, setting up forest-specific compensation mechanisms for ecological benefits, enhancing the knowledge of administrators and the general public about CFM, and sustaining EWF lands under China’s current forestland tenure system. CFM does, however, offer a viable pathway toward sustainable forest management in China.

  20. Targeting Forest Management through Fire and Erosion Modeling

    Science.gov (United States)

    Elliot, William J.; Miller, Mary Ellen; MacDonald, Lee H.

    2013-04-01

    Forests deliver a number of ecosystem services, including clean water. When forests are disturbed by wildfire, the timing and quantity of runoff can be altered, and the quality can be severely degraded. A modeling study for about 1500 km2 in the Upper Mokelumne River Watershed in California was conducted to determine the risk of wildfire and the associated potential sediment delivery should a wildfire occur, and to calculate the potential reduction in sediment delivery that might result from fuel reduction treatments. The first step was to predict wildfire severity and probability of occurrence under current vegetation conditions with FlamMap fire prediction tool. FlamMap uses current vegetation, topography, and wind characteristics to predict the speed, flame length, and direction of a simulated flame front for each 30-m pixel. As the first step in the erosion modeling, a geospatial interface for the WEPP model (GeoWEPP) was used to delineate approximately 6-ha hillslope polygons for the study area. The flame length values from FlamMap were then aggregated for each hillslope polygon to yield a predicted fire intensity. Fire intensity and pre-fire vegetation conditions were used to estimate fire severity (either unburned, low, moderate or high). The fire severity was combined with soil properties from the STATSGO database to build the vegetation and soil files needed to run WEPP for each polygon. Eight different stochastic climates were generated to account for the weather variability within the basin. A modified batching version of GeoWEPP was used to predict the first-year post-fire sediment yield from each hillslope and subwatershed. Estimated sediment yields ranged from 0 to more than 100 Mg/ha, and were typical of observed values. The polygons that generated the greatest amount of sediment or that were critical for reducing fire spread were identified, and these were "treated" by reducing the amount of fuel available for a wildfire. The erosion associated with

  1. Simulation of the Effect of Intensive Forest Management on Forest Production in Sweden

    Directory of Open Access Journals (Sweden)

    Ola Rosvall

    2011-03-01

    Full Text Available The effects of intensifying the management of 15% of the Swedish forest land on potential future forest production over a 100-year period were investigated in a simulation study. The intensive management treatments, which were introduced over a period of 50 years, were: intensive fertilization of Norway spruce (IntFert; bulking-up Norway spruce elite populations using somatic embryogenesis (SE-seedlings; planting of lodgepole pine, hybrid larch, and Sitka spruce (Contorta, Larch, and Sitka; fertilization with wood ash on peatlands (Wood ash; and conventional fertilization in mature forests (ConFert. Potential sites for applying intensive forest management (IFM to sites with low nature conservation values were determined with a nature conservation score (NCS. Four different scenarios were simulated: “Base scenario”, which aimed at reducing the negative impact on nature conservation values, “Fast implementation”, “No IntFert” (IntFert was not used, and “Large Forest Companies”, where the majority of plots were selected on company land. Total yields during the 100-year simulation period were about 85–92% higher for the intensive forest management scenarios than for the reference scenario (business as usual. In the “No IntFert” scenario total production was 1.8% lower and in the “Large Forest Companies” scenario total production was 4.8% lower than in the “Base scenario”. “Fast implementation” of IFM increased yield by 15% compared to the “Base scenario”. Norway spruce SE-seedlings and IntFert gave the highest yields, measured as total production during the 100-year simulation period, but relative to the yields in the reference scenario, the highest increases in yield were for Contorta. The “Base scenario” and “No IntFert” gave the highest yields for plots with the lowest NCS, but plots with higher NCS had to be used in the “Fast implementation” and “Large Forest Companies” scenarios. More than

  2. Forest Management Challenges for Sustaining Water Resources in the Anthropocene

    Directory of Open Access Journals (Sweden)

    Ge Sun

    2016-03-01

    Full Text Available The Earth has entered the Anthropocene epoch that is dominated by humans who demand unprecedented quantities of goods and services from forests. The science of forest hydrology and watershed management generated during the past century provides a basic understanding of relationships among forests and water and offers management principles that maximize the benefits of forests for people while sustaining watershed ecosystems. However, the rapid pace of changes in climate, disturbance regimes, invasive species, human population growth, and land use expected in the 21st century is likely to create substantial challenges for watershed management that may require new approaches, models, and best management practices. These challenges are likely to be complex and large scale, involving a combination of direct and indirect biophysical watershed responses, as well as socioeconomic impacts and feedbacks. We discuss the complex relationships between forests and water in a rapidly changing environment, examine the trade-offs and conflicts between water and other resources, and propose new management approaches for sustaining water resources in the Anthropocene.

  3. Household Land Management and Biodiversity: Secondary Succession in a Forest-Agriculture Mosaic in Southern Mexico

    Directory of Open Access Journals (Sweden)

    Rinku Roy Chowdhury

    2007-12-01

    Full Text Available This study evaluates anthropogenic and ecological dimensions of secondary forest succession in Mexico's southern Yucatán peninsular region, a hotspot of biodiversity and tropical deforestation. Secondary succession in particular constitutes an ecologically and economically important process, driven by and strongly influencing land management and local ecosystem structure and dynamics. As agents of local land management, smallholding farmers in communal, i.e., ejido lands affect rates of forest change, biodiversity, and sustainability within and beyond their land parcels. This research uses household surveys and land parcel mapping in two ejidos located along the buffer of the Calakmul Biosphere Reserve to analyze how household socioeconomics and policy institutions drive allocations to successional forests in traditional crop fallows and in enriched fallows. Results indicate that household tenancy, livestock holdings, labor-consumer ratios, and receipts of agricultural subsidies are the strongest determinants of traditional fallow areas. Whereas the latter two factors also influence enriched successions, local agroforestry and reforestation programs were the strongest drivers of fallow enrichment. Additionally, the study conducts field vegetation sampling in a nested design within traditional and enriched fallow sites to comparatively assess biodiversity consequences of fallow management. Although enriched fallows display greater species richness in 10x10 m plots and 2x2 m quadrats, plot-scale data reveal no significant differences in Shannon-Wiener or Simpson's diversity indices. Traditional fallows display greater species heterogeneity at the quadrat scale, however, indicating a complex relationship of diversity to fallow management over time. The article discusses the implications of the social and ecological analyses for land change research and conservation policies.

  4. Evidence of climatic effects on soil, vegetation and landform in temperate forests of south-eastern Australia

    Science.gov (United States)

    Inbar, Assaf; Nyman, Petter; Lane, Patrick; Sheridan, Gary

    2016-04-01

    Water and radiation are unevenly distributed across the landscape due to variations in topography, which in turn causes water availability differences on the terrain according to elevation and aspect orientation. These differences in water availability can cause differential distribution of vegetation types and indirectly influence the development of soil and even landform, as expressed in hillslope asymmetry. While most of the research on the effects of climate on the vegetation and soil development and landscape evolution has been concentrated in drier semi-arid areas, temperate forested areas has been poorly studied, particularly in South Eastern Australia. This study uses soil profile descriptions and data on soil depth and landform across climatic gradients to explore the degrees to which coevolution of vegetation, soils and landform are controlled by radiative forcing and rainfall. Soil depth measurements were made on polar and equatorial facing hillslopes located at 3 sites along a climatic gradient (mean annual rainfall between 700 - 1800 mm yr-1) in the Victorian Highlands, where forest types range from dry open woodland to closed temperate rainforest. Profile descriptions were taken from soil pits dag on planar hillslopes (50 m from ridge), and samples were taken from each horizon for physical and chemical properties analysis. Hillslope asymmetry in different precipitation regimes of the study region was quantified from Digital Elevation Models (DEMs). Significant vegetation differences between aspects were noted in lower and intermediate rainfall sites, where polar facing aspects expressed higher overall biomass than the drier equatorial slope. Within the study domain, soil depth was strongly correlated with forest type and above ground biomass. Soil depths and chemical properties varied between topographic aspects and along the precipitation gradient, where wetter conditions facilitate deeper and more weathered soils. Furthermore, soil depths showed

  5. History of Forest Enterprise Management Development in Macedonia

    Directory of Open Access Journals (Sweden)

    Aneta Blazevska

    2013-06-01

    Full Text Available Background and Purpose: The central theme of the paper is the development of forest enterprise management in Macedonia and the adaptation to changes throughout the history. The change has become a permanent phenomenon that has to be addressed and managed appropriately in order to ensure organizational survival. Because of the changes in technology, the market place, social values and work force created a dynamic and unpredictable environment especially for those organizations who are unable to respond to the changes and adapt. Methods and Methodology: For the purpose of the research, a content analysis was applied to forest enterprises that appeared in all documents starting from 1900 to 2012. In order to increase the validity of the research and avoid any gaps, the data was divided into categories according to the meaning of the words. Hence, words with similar meanings were placed into the same categories, in order to obtain a better review of the researched phenomena. Results and Conclusions: The results showed that throughout the history there were different types of forests enterprise managements in Macedonia. According to the analysed documents, during the period of the administration after the World War II (May 1945 the first federal forest company “FESUMA” was established with the help of ASNOM (Anti-Fascist Assembly for the People’s Liberation of Macedonia and the Department of Forestry and Mining. All modifications of forests funds and legislation thereafter have influenced and provoked a lot of changes in the forest enterprise management. At the same time it is interesting to emphasize that the results obtained from the research show that in order to survive and stay competitive on the market, forest enterprises have been developing and adapting to the changes in the environment.

  6. Predicting hydrological response to forest changes by simple statistical models: the selection of the best indicator of forest changes with a hydrological perspective

    Science.gov (United States)

    Ning, D.; Zhang, M.; Ren, S.; Hou, Y.; Yu, L.; Meng, Z.

    2017-01-01

    Forest plays an important role in hydrological cycle, and forest changes will inevitably affect runoff across multiple spatial scales. The selection of a suitable indicator for forest changes is essential for predicting forest-related hydrological response. This study used the Meijiang River, one of the headwaters of the Poyang Lake as an example to identify the best indicator of forest changes for predicting forest change-induced hydrological responses. Correlation analysis was conducted first to detect the relationships between monthly runoff and its predictive variables including antecedent monthly precipitation and indicators for forest changes (forest coverage, vegetation indices including EVI, NDVI, and NDWI), and by use of the identified predictive variables that were most correlated with monthly runoff, multiple linear regression models were then developed. The model with best performance identified in this study included two independent variables -antecedent monthly precipitation and NDWI. It indicates that NDWI is the best indicator of forest change in hydrological prediction while forest coverage, the most commonly used indicator of forest change is insignificantly related to monthly runoff. This highlights the use of vegetation index such as NDWI to indicate forest changes in hydrological studies. This study will provide us with an efficient way to quantify the hydrological impact of large-scale forest changes in the Meijiang River watershed, which is crucial for downstream water resource management and ecological protection in the Poyang Lake basin.

  7. Science-based Forest Management in an Era of Climate Change

    Science.gov (United States)

    Swanston, C.; Janowiak, M.; Brandt, L.; Butler, P.; Handler, S.; Shannon, D.

    2014-12-01

    Recognizing the need to provide climate adaptation information, training, and tools to forest managers, the Forest Service joined with partners in 2009 to launch a comprehensive effort called the Climate Change Response Framework (www.forestadaptation.org). The Framework provides a structured approach to help managers integrate climate considerations into forest management plans and then implement adaptation actions on the ground. A planning tool, the Adaptation Workbook, is used in conjunction with vulnerability assessments and a diverse "menu" of adaptation approaches to generate site-specific adaptation actions that meet explicit management objectives. Additionally, a training course, designed around the Adaptation Workbook, leads management organizations through this process of designing on-the-ground adaptation tactics for their management projects. The Framework is now being actively pursued in 20 states in the Northwoods, Central Hardwoods, Central Appalachians, Mid-Atlantic, and New England. The Framework community includes over 100 science and management groups, dozens of whom have worked together to complete six ecoregional vulnerability assessments covering nearly 135 million acres. More than 75 forest and urban forest adaptation strategies and approaches were synthesized from peer-reviewed and gray literature, expert solicitation, and on-the-ground adaptation projects. These are being linked through the Adaptation Workbook process to on-the-ground adaptation tactics being planned and employed in more than 50 adaptation "demonstrations". This presentation will touch on the scientific and professional basis of the vulnerability assessments, and showcase efforts where adaptation actions are currently being implemented in forests.

  8. Evaluating land-use and private forest management responses to a potential forest carbon offset sales program in western Oregon (USA)

    Science.gov (United States)

    Gregory S. Latta; Darius M. Adams; Kathleen P. Bell; Jeff Kline

    2016-01-01

    We describe the use of linked land-use and forest sector models to simulate the effects of carbon offset sales on private forest owners' land-use and forest management decisions inwestern Oregon (USA). Our work focuses on forest management decisions rather than afforestation, allows full forest sector price adjustment to land-use changes, and incorporates time-...

  9. Characterizing a forest insect outbreak in Colorado by using MODIS NDVI phenology data and aerial detection survey data

    Science.gov (United States)

    Charlie Schrader-Patton; Nancy E. Grulke; Melissa E. Dressen

    2016-01-01

    Forest disturbances are increasing in extent and intensity, annually altering the structure and function of affected systems across millions of acres. Land managers need rapid assessment tools that can be used to characterize disturbance events across space and to meet forest planning needs. Unlike vegetation management projects and wildfire events, which typically are...

  10. [Effects of climate change on forest succession].

    Science.gov (United States)

    Wang, Jijun; Pei, Tiefan

    2004-10-01

    Forest regeneration is an important process driven by forest ecological dynamic resources. More and more concern has been given to forest succession issues since the development of forest succession theory during the early twentieth century. Scientific management of forest ecosystem entails the regulations and research models of forest succession. It is of great practical and theoretical significance to restore and reconstruct forest vegetation and to protect natural forest. Disturbances are important factors affecting regeneration structure and ecological processes. They result in temporal and spatial variations of forest ecosystem, and change the efficiencies of resources. In this paper, some concepts about forest succession and disturbances were introduced, and the difficulties of forest succession were proposed. Four classes of models were reviewed: Markov model, GAP model, process-based equilibrium terrestrial biosphere models (BIOME series models), and non-linear model. Subsequently, the effects of climate change on forest succession caused by human activity were discussed. At last, the existing problem and future research directions were proposed.

  11. Factors affecting collective action for forest fire management: a comparative study of community forest user groups in central Siwalik, Nepal.

    Science.gov (United States)

    Sapkota, Lok Mani; Shrestha, Rajendra Prasad; Jourdain, Damien; Shivakoti, Ganesh P

    2015-01-01

    The attributes of social ecological systems affect the management of commons. Strengthening and enhancing social capital and the enforcement of rules and sanctions aid in the collective action of communities in forest fire management. Using a set of variables drawn from previous studies on the management of commons, we conducted a study across 20 community forest user groups in Central Siwalik, Nepal, by dividing the groups into two categories based on the type and level of their forest fire management response. Our study shows that the collective action in forest fire management is consistent with the collective actions in other community development activities. However, the effectiveness of collective action is primarily dependent on the complex interaction of various variables. We found that strong social capital, strong enforcement of rules and sanctions, and users' participation in crafting the rules were the major variables that strengthen collective action in forest fire management. Conversely, users' dependency on a daily wage and a lack of transparency were the variables that weaken collective action. In fire-prone forests such as the Siwalik, our results indicate that strengthening social capital and forming and enforcing forest fire management rules are important variables that encourage people to engage in collective action in fire management.

  12. Regional forest landscape restoration priorities: Integrating historical conditions and an uncertain future in the northern Rocky Mountains

    Science.gov (United States)

    Barry L. Bollenbacher; Russell T. Graham; Keith M. Reynolds

    2014-01-01

    National law and policy direct the management of the National Forests, with restoring resilient forest conditions being an overarching theme. Climate is a major driver of disturbances that affect ecosystems, especially those with vegetation that show large departures from historical conditions. Drought, fire, insects, and diseases are common forest stressors whose...

  13. Forest management strategies for reducing carbon emissions, the French case

    Science.gov (United States)

    Valade, Aude; Luyssaert, Sebastiaan; Bellassen, Valentin; Vallet, Patrick; Martin, Manuel

    2015-04-01

    International agreements now recognize the role of forest in the mitigation of climate change through the levers of in-situ sequestration, storage in products and energy and product substitution. These three strategies of carbon management are often antagonistic and it is still not clear which strategy would have the most significant impact on atmospheric carbon concentrations. With a focus on France, this study compares several scenarios of forest management in terms of their effect on the overall carbon budget from trees to wood-products. We elaborated four scenarios of forest management that target different wood production objectives. One scenario is 'Business as usual' and reproduces the current forest management and wood production levels. Two scenarios target an increase in bioenergy wood production, with either long-term or short-term goals. One scenario aims at increasing the production of timber for construction. For this, an empirical regression model was developed building on the rich French inventory database. The model can project the current forest resource at a time horizon of 20 years for characteristic variables diameter, standing volume, above-ground biomass, stand age. A simplified life-cycle analysis provides a full carbon budget for each scenario from forest management to wood use and allows the identification of the scenario that most reduces carbon emissions.

  14. Forest Management Intensity Affects Aquatic Communities in Artificial Tree Holes.

    Science.gov (United States)

    Petermann, Jana S; Rohland, Anja; Sichardt, Nora; Lade, Peggy; Guidetti, Brenda; Weisser, Wolfgang W; Gossner, Martin M

    2016-01-01

    Forest management could potentially affect organisms in all forest habitats. However, aquatic communities in water-filled tree-holes may be especially sensitive because of small population sizes, the risk of drought and potential dispersal limitation. We set up artificial tree holes in forest stands subject to different management intensities in two regions in Germany and assessed the influence of local environmental properties (tree-hole opening type, tree diameter, water volume and water temperature) as well as regional drivers (forest management intensity, tree-hole density) on tree-hole insect communities (not considering other organisms such as nematodes or rotifers), detritus content, oxygen and nutrient concentrations. In addition, we compared data from artificial tree holes with data from natural tree holes in the same area to evaluate the methodological approach of using tree-hole analogues. We found that forest management had strong effects on communities in artificial tree holes in both regions and across the season. Abundance and species richness declined, community composition shifted and detritus content declined with increasing forest management intensity. Environmental variables, such as tree-hole density and tree diameter partly explained these changes. However, dispersal limitation, indicated by effects of tree-hole density, generally showed rather weak impacts on communities. Artificial tree holes had higher water temperatures (on average 2°C higher) and oxygen concentrations (on average 25% higher) than natural tree holes. The abundance of organisms was higher but species richness was lower in artificial tree holes. Community composition differed between artificial and natural tree holes. Negative management effects were detectable in both tree-hole systems, despite their abiotic and biotic differences. Our results indicate that forest management has substantial and pervasive effects on tree-hole communities and may alter their structure and

  15. Vegetation studies on Vandenberg Air Force Base, California

    Science.gov (United States)

    Schmalzer, Paul A.; Hickson, Diana E.; Hinkle, C. Ross

    1988-01-01

    Vandenburg Air Force Base, located in coastal central California with an area of 98,400 ac, contains resources of considerable biological significance. Available information on the vegetation and flora of Vandenburg is summarized and new data collected in this project are presented. A bibliography of 621 references dealing with vegetation and related topics related to Vanderburg was compiled from computer and manual literature searches and a review of past studies of the base. A preliminary floristic list of 642 taxa representing 311 genera and 80 families was compiled from past studies and plants identified in the vegetation sampling conducted in this project. Fifty-two special interest plant species are known to occur or were suggested to occur. Vegetation was sampled using permanent plots and transects in all major plant communities including chaparral, Bishop pine forest, tanbark oak forest, annual grassland, oak woodland, coastal sage scrub, purple sage scrub, coastal dune scrub, coastal dunes, box elder riparian woodland, will riparian woodland, freshwater marsh, salt marsh, and seasonal wetlands. Comparison of the new vegetation data to the compostie San Diego State University data does not indicate major changes in most communities since the original study. Recommendations are made for additional studies needed to maintain and extend the environmental data base and for management actions to improve resource protection.

  16. A Multicriteria Risk Analysis to Evaluate Impacts of Forest Management Alternatives on Forest Health in Europe

    Directory of Open Access Journals (Sweden)

    Hervé Jactel

    2012-12-01

    Full Text Available Due to climate change, forests are likely to face new hazards, which may require adaptation of our existing silvicultural practices. However, it is difficult to imagine a forest management approach that can simultaneously minimize all risks of damage. Multicriteria decision analysis (MCDA has been developed to help decision makers choose between actions that require reaching a compromise among criteria of different weights. We adapted this method and produced a multicriteria risk analysis (MCRA to compare the risk of damage associated with various forest management systems with a range of management intensity. The objective was to evaluate the effect of four forest management alternatives (FMAs (i.e., close to nature, extensive management with combined objectives, intensive even-aged plantations, and short-rotation forestry for biomass production on biotic and abiotic risks of damage in eight regional case studies combining three forest biomes (Boreal, Continental, Atlantic and five tree species (Eucalyptus globulus, Pinus pinaster, Pinus sylvestris, Picea sitchensis, and Picea abies relevant to wood production in Europe. Specific forest susceptibility to a series of abiotic (wind, fire, and snow and biotic (insect pests, pathogenic fungi, and mammal herbivores hazards were defined by expert panels and subsequently weighted by corresponding likelihood. The PROMETHEE ranking method was applied to rank the FMAs from the most to the least at risk. Overall, risk was lower in short-rotation forests designed to produce wood biomass, because of the reduced stand susceptibility to the most damaging hazards. At the opposite end of the management intensity gradient, close-to-nature systems also had low overall risk, due to lower stand value exposed to damage. Intensive even-aged forestry appeared to be subject to the greatest risk, irrespective of tree species and bioclimatic zone. These results seem to be robust as no significant differences in relative

  17. Vegetation Response to Upper Pliocene Glacial/Interglacial Cyclicity in the Central Mediterranean

    Science.gov (United States)

    Combourieu-Nebout, Nathalie

    1993-09-01

    New detailed pollen analysis of the lower part of the Upper Pliocene Semaforo section (Crotone, Italy) documents cyclic behavior of vegetation at the beginning of the Northern Hemisphere glaciations. The competition between four vegetation units (subtropical humid forest, deciduous temperate forest, altitudinal coniferous forest, and open xeric assemblage) probably reflects modifications of vegetation belts at this montane site. Several increases in herbaceous open vegetation regularly alternate with subtropical humid forest, which expresses rapid climatic oscillations. The complete temporal succession—deciduous forest (rich in Quercus), followed by subtropical humid forest (Taxodiaceae and Cathaya), then altitudinal coniferous forest ( Tsuga, Cedrus, Abies, and Picea), and finally herbaceous open vegetation (Graminae, Compositae, and Artemisia )—displays the climatic evolution from warm and humid interglaciation to cold and dry glaciation. It also suggests an independent variation of temperature and humidity, the two main climatic parameters. The vegetation history of southern Calabria recorded in the Semaforo section have been correlated with the ∂ 18O signal established in the Atlantic Ocean.

  18. A critical review on effects, tolerance mechanisms and management of cadmium in vegetables.

    Science.gov (United States)

    Rizwan, Muhammad; Ali, Shafaqat; Adrees, Muhammad; Ibrahim, Muhammad; Tsang, Daniel C W; Zia-Ur-Rehman, Muhammad; Zahir, Zahir Ahmad; Rinklebe, Jörg; Tack, Filip M G; Ok, Yong Sik

    2017-09-01

    Cadmium (Cd) accumulation in vegetables is an important environmental issue that threatens human health globally. Understanding the response of vegetables to Cd stress and applying management strategies may help to reduce the Cd uptake by vegetables. The aim of the present review is to summarize the knowledge concerning the uptake and toxic effects of Cd in vegetables and the different management strategies to combat Cd stress in vegetables. Leafy vegetables grown in Cd contaminated soils potentially accumulate higher concentrations of Cd, posing a threat to food commodities. The Cd toxicity decreases seed germination, growth, biomass and quality of vegetables. This reduces the photosynthesis, stomatal conductance and alteration in mineral nutrition. Toxicity of Cd toxicity also interferes with vegetable biochemistry causing oxidative stress and resulting in decreased antioxidant enzyme activities. Several management options have been employed for the reduction of Cd uptake and toxicity in vegetables. The exogenous application of plant growth regulators, proper mineral nutrition, and the use of organic and inorganic amendments might be useful for reducing Cd toxicity in vegetables. The use of low Cd accumulating vegetable cultivars in conjunction with insolubilizing amendments and proper agricultural practices might be a useful technique for reducing Cd exposure in the food chain. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Radioecology of human food chains and forests in Finland

    International Nuclear Information System (INIS)

    Rantavaara, Aino H.

    2003-01-01

    Ageing of radioactive fallout also signifies that contributions of various foodstuffs to the human ingestion dose will change with time. The long-term contamination of forest vegetation has motivated studies on contribution of wild food to dietary radiocaesium and radiostrontium. Consumption rates of these foodstuffs have shown variation by geographical regions in Finland, the loss of radiocaesium during cooking of mushrooms has been found significant, and the approximation of the loss using survey data on the actual practices in households was also shown important for dietary assessment. Forest industry needs information for planning its own emergency response, particularly concerning production of acceptable timber after contamination of forests by radioactive fallout. In recent years experimental evidence has been obtained for the mitigating effect of forest management methods, namely soil preparation and fertilisation, on radioactive contamination of forest vegetation. Thereby realistic options for intervention have been suggested. Further testing will improve the information on effectiveness of different methods and duration of management influence in different types of forests. Results from systematic field experiments have also provided data and conceptual views for forest modelling, e.g. for RODOS, a European decision support system for off-site emergency preparedness. The future topics in terrestrial radioecology will altogether support production of safe foodstuffs and safe use of forests after contamination of rural areas. Evaluation of practicability of countermeasures will greatly benefit from measured radioecological parameters in the contaminated areas and from additional field tests. Natural radionuclides and their connection to both agricultural and semi-natural dose pathways ought to be studied. Radiation impact due to bioenergy production and use of ash is close to forest ecosystem studies. Returning of wood ash to forests will maintain and

  20. Potential of forest management to reduce French carbon emissions - regional modelling of the French forest carbon balance from the forest to the wood.

    Science.gov (United States)

    Valade, A.; Luyssaert, S.; Bellassen, V.; Vallet, P.

    2015-12-01

    In France the low levels of forest harvest (40 Mm3 per year over a volume increment of 89Mm3) is frequently cited to push for a more intensive management of the forest that would help reducing CO2 emissions. This reasoning overlooks the medium-to-long-term effects on the carbon uptake at the national scale that result from changes in the forest's structure and delayed emissions from products decay and bioenergy burning, both determinant for the overall C fluxes between the biosphere and the atmosphere. To address the impacts of an increase in harvest removal on biosphere-atmosphere carbon fluxes at national scale, we build a consistent regional modeling framework to integrate the forest-carbon system from photosynthesis to wood uses. We aim at bridging the gap between regional ecosystem modeling and land managers' considerations, to assess the synergistic and antagonistic effects of management strategies over C-based forest services: C-sequestration, energy and material provision, fossil fuel substitution. For this, we built on inventory data to develop a spatial forest growth simulator and design a novel method for diagnosing the current level of management based on stand characteristics (density, quadratic mean diameter or exploitability). The growth and harvest simulated are then processed with a life cycle analysis to account for wood transformation and uses. Three scenarii describe increases in biomass removals either driven by energy production target (set based on national prospective with a lock on minimum harvest diameters) or by changes in management practices (shorter or longer rotations, management of currently unmanaged forests) to be compared with business as usual simulations. Our management levels' diagnostics quantifies undermanagement at national scale and evidences the large weight of ownership-based undermanagement with an average of 26% of the national forest (between 10% and 40% per species) and thus represents a huge potential wood resource

  1. Forest management challenges for sustaining water resources in the Anthropocene

    Science.gov (United States)

    Ge Sun; James M. Vose

    2016-01-01

    The Earth has entered the Anthropocene epoch that is dominated by humans who demand unprecedented quantities of goods and services from forests. The science of forest hydrology and watershed management generated during the past century provides a basic understanding of relationships among forests and water and offers management principles that maximize the benefits of...

  2. Hydrological Controls on Floodplain Forest Phenology Assessed using Remotely Sensed Vegetation Indices

    Science.gov (United States)

    Lemon, M. G.; Keim, R.

    2017-12-01

    Although specific controls are not well understood, the phenology of temperate forests is generally thought to be controlled by photoperiod and temperature, although recent research suggests that soil moisture may also be important. The phenological controls of forested wetlands have not been thoroughly studied, and may be more controlled by site hydrology than other forests. For this study, remotely sensed vegetation indices were used to investigate hydrological controls on start-of-season timing, growing season length, and end-of-season timing at five floodplains in Louisiana, Arkansas, and Texas. A simple spring green-up model was used to determine the null spring start of season time for each site as a function of land surface temperature and photoperiod, or two remotely sensed indices: MODIS phenology data product and the MODIS Nadir Bidirectional Reflectance Distribution Function-Adjusted Reflectance (NBAR) product. Preliminary results indicate that topographically lower areas within the floodplain with higher flood frequency experience later start-of-season timing. In addition, start-of-season is delayed in wet years relative to predicted timing based solely on temperature and photoperiod. The consequences for these controls unclear, but results suggest hydrological controls on floodplain ecosystem structure and carbon budgets are likely at least partially expressed by variations in growing season length.

  3. The role of forest disturbance in global forest mortality and terrestrial carbon fluxes

    Science.gov (United States)

    Pugh, Thomas; Arneth, Almut; Smith, Benjamin; Poulter, Benjamin

    2017-04-01

    Large-scale forest disturbance dynamics such as insect outbreaks, wind-throw and fires, along with anthropogenic disturbances such as logging, have been shown to turn forests from carbon sinks into intermittent sources, often quite dramatically so. There is also increasing evidence that disturbance regimes in many regions are changing as a result of climatic change and human land-management practices. But how these landscape-scale events fit into the wider picture of global tree mortality is not well understood. Do such events dominate global carbon turnover, or are their effects highly regional? How sensitive is global terrestrial carbon exchange to realistic changes in the occurrence rate of such disturbances? Here, we combine recent advances in global satellite observations of stand-replacing forest disturbances and in compilations of forest inventory data, with a global terrestrial ecosystem model which incorporates an explicit representation of the role of disturbance in forest dynamics. We find that stand-replacing disturbances account for a fraction of wood carbon turnover that varies spatially from less than 5% in the tropical rainforest to ca. 50% in the mid latitudes, and as much as 90% in some heavily-managed regions. We contrast the size of the land-atmosphere carbon flux due to this disturbance with other components of the terrestrial carbon budget. In terms of sensitivity, we find a quasi log-linear relationship of disturbance rate to total carbon storage. Relatively small changes in disturbance rates at all latitudes have marked effects on vegetation carbon storage, with potentially very substantial implications for the global terrestrial carbon sink. Our results suggest a surprisingly small effect of disturbance type on large-scale forest vegetation dynamics and carbon storage, with limited evidence of widespread increases in nitrogen limitation as a result of increasing future disturbance. However, the influence of disturbance type on soil carbon

  4. Diversity in forest management to reduce wildfire losses: implications for resilience

    Directory of Open Access Journals (Sweden)

    Susan Charnley

    2017-03-01

    Full Text Available This study investigates how federal, state, and private corporate forest owners in a fire-prone landscape of southcentral Oregon manage their forests to reduce wildfire hazard and loss to high-severity wildfire. We evaluate the implications of our findings for concepts of social-ecological resilience. Using interview data, we found a high degree of "response diversity" (variation in forest management decisions and behaviors to reduce wildfire losses between and within actor groups. This response diversity contributed to heterogeneous forest conditions across the landscape and was driven mainly by forest management legacies, economics, and attitudes toward wildfire (fortress protection vs. living with fire. We then used an agent-based landscape model to evaluate trends in forest structure and fire metrics by ownership. Modeling results indicated that, in general, U.S. Forest Service management had the most favorable outcomes for forest resilience to wildfire, and private corporate management the least. However, some state and private corporate forest ownerships have the building blocks for developing fire-resilient forests. Heterogeneity in social-ecological systems is often thought to favor social-ecological resilience. We found that despite high social and ecological heterogeneity in our study area, most forest ownerships do not exhibit characteristics that make them resilient to high-severity fire currently or in the future under current management. Thus, simple theories about resilience based on heterogeneity must be informed by knowledge of the environmental and social conditions that comprise that heterogeneity. Our coupled human and natural systems (CHANS approach enabled us to understand connections among the social, economic, and ecological components of a multiownership, fire-prone ecosystem, and to identify how social-ecological resilience to wildfire might improve through interventions to address key constraints in the system. Our

  5. Management intensity and vegetation complexity affect web-building spiders and their prey.

    Science.gov (United States)

    Diehl, Eva; Mader, Viktoria L; Wolters, Volkmar; Birkhofer, Klaus

    2013-10-01

    Agricultural management and vegetation complexity affect arthropod diversity and may alter trophic interactions between predators and their prey. Web-building spiders are abundant generalist predators and important natural enemies of pests. We analyzed how management intensity (tillage, cutting of the vegetation, grazing by cattle, and synthetic and organic inputs) and vegetation complexity (plant species richness, vegetation height, coverage, and density) affect rarefied richness and composition of web-building spiders and their prey with respect to prey availability and aphid predation in 12 habitats, ranging from an uncut fallow to a conventionally managed maize field. Spiders and prey from webs were collected manually and the potential prey were quantified using sticky traps. The species richness of web-building spiders and the order richness of prey increased with plant diversity and vegetation coverage. Prey order richness was lower at tilled compared to no-till sites. Hemipterans (primarily aphids) were overrepresented, while dipterans, hymenopterans, and thysanopterans were underrepresented in webs compared to sticky traps. The per spider capture efficiency for aphids was higher at tilled than at no-till sites and decreased with vegetation complexity. After accounting for local densities, 1.8 times more aphids were captured at uncut compared to cut sites. Our results emphasize the functional role of web-building spiders in aphid predation, but suggest negative effects of cutting or harvesting. We conclude that reduced management intensity and increased vegetation complexity help to conserve local invertebrate diversity, and that web-building spiders at sites under low management intensity (e.g., semi-natural habitats) contribute to aphid suppression at the landscape scale.

  6. Impacts of forest management on runoff and erosion

    Science.gov (United States)

    William J. Elliot; Brandon D. Glaza

    2009-01-01

    In a parallel study, ten small watersheds (about 5 ha) were installed in the Priest River Experimental Forest (PREF) in northern Idaho, and another ten were installed in the Boise Basin Experimental Forest (BBEF) in central Idaho. The long-term objective of the study is to compare the effects of different forest management activities on runoff and...

  7. Factors affecting the remotely sensed response of coniferous forest plantations

    International Nuclear Information System (INIS)

    Danson, F.M.; Curran, P.J.

    1993-01-01

    Remote sensing of forest biophysical properties has concentrated upon forest sites with a wide range of green vegetation amount and thereby leaf area index and canopy cover. However, coniferous forest plantations, an important forest type in Europe, are managed to maintain a large amount of green vegetation with little spatial variation. Therefore, the strength of the remotely sensed signal will, it is hypothesized, be determined more by the structure of this forest than by its cover. Airborne Thematic Mapper (ATM) and SPOT-1 HRV data were used to determine the effects of this structural variation on the remotely sensed response of a coniferous forest plantation in the United Kingdom. Red and near infrared radiance were strongly and negatively correlated with a range of structural properties and with the age of the stands but weakly correlated with canopy cover. A composite variable, related to the volume of the canopy, accounted for over 75% of the variation in near infrared radiance. A simple model that related forest structural variables to the remotely sensed response was used to understand and explain this response from a coniferous forest plantation

  8. The implications of new forest tenure reforms and forestry property markets for sustainable forest management and forest certification in China.

    Science.gov (United States)

    Chen, Juan; Innes, John L

    2013-11-15

    This study examines issues existing in the southern collective forests in China, particularly prior to the implementation of new forest tenure reforms, such as continued illegal logging and timber theft, inadequate availability of finance and inconsistent forest-related policies. Such problems are believed to be hindering the adoption of sustainable forest management (SFM) and forest certification by forest farmers in China. Two strategies were introduced by the Chinese government with the purpose of addressing these issues, namely forest tenure reforms and their associated supporting mechanism, forestry property markets. Through two case studies in southern China, we investigated the effectiveness of the two strategies as well as their implications for the adoption of SFM and forest certification. The two cases were Yong'an in Fujian province and Tonggu in Jiangxi province. Personal interviews with open-ended questions were conducted with small-scale forest farmers who had already benefited from the two strategies as well as market officers working for the two selected forestry property markets. The study identified eight issues constraining the potential adoption of SFM and certification in China, including limited finance, poorly developed infrastructure and transport systems, insecure forest tenures, inconsistent forest policies, low levels of awareness, illegal forest management practices, lack of local cooperative organizations, and inadequate knowledge and technical transfer. We found that the new forest tenure reforms and forestry property markets had generally fulfilled their original objectives and had the capacity to assist in addressing many of the issues facing forests prior to the reforms. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Climate-Soil-Vegetation Interactions: A Case-Study from the Forest Fire Phenomenon in Southern Switzerland

    Science.gov (United States)

    Reinhard, M.; Alexakis, E.; Rebetez, M.; Schlaepfer, R.

    2003-04-01

    In Southern Switzerland, we have observed increasing trends in extreme drought and precipitation events, probably linked to global climatic change. These modifications are more important than changes in annual precipitation sums. On the one hand, an increase in extreme drought implies a higher risk for forest fires, impeding the fulfilment of the various forest functions, on the other hand, extreme precipitation events, developing over a short time span, could simultaneously damage the forest ecosystems or destabilise the soil of burned areas, triggering debris flows. Climatic changes might additionally lead to modifications of the current species composition in the forests. Changes are currently observed at lower elevations (laurophiliation), but are still largely unknown at higher elevations. For the time being, forest fires cannot be regarded as natural phenomena in the South of Switzerland because they are mostly anthropogenically triggered. However, the changing climatic patterns, which set new conditions for the forests, may become a new ecological regulator for the forests as well as the forest fires. The social and environmental consequences are important for these issues. The implications for forest planning and management must be further studied and taken into account. Despite uncertainty about the response of forest ecosystems to climate change, planning and management can no longer rely on decadal to century climatic patterns. The increasing importance of changing environmental conditions within the framework of prevention will have to be reconsidered.

  10. Governmental Forest Policy for Sustainable Forest Management in Costa Rica, Guatemala, and Nicaragua: Regulation, Implementation, and Impact

    Science.gov (United States)

    Kathleen A. McGinley; Frederick W. Cubbage

    2012-01-01

    We evaluated how governmental forest regulation in Costa Rica, Guatemala, and Nicaragua has succeeded or failed in fostering changes in forest owner and user behavior that enhance the sustainability of tropical forest management. As expected, sufficient resources and capacity for forest policy implementation are crucial for attaining governmental forest policy...

  11. Modeling the location of the forest line in northeast European Russia with remotely sensed vegetation and GIS-based climate and terrain data

    DEFF Research Database (Denmark)

    Virtanen, Tarmo; Mikkola, Kari; Nikula, Ari

    2004-01-01

    GIS-based data sets were used to analyze the structure of the forest line at the landscape level in the lowlands of the Usa River Basin, in northeast European Russia. Vegetation zones in the area range from taiga in the south to forest-tundra and tundra in the north. We constructed logistic...

  12. Private Forests: Management and Policy in a Market Economy

    Science.gov (United States)

    Frederick W. Cubbage; Anthony G. Snider; Karen Lee Abt; Robert L. Moulton

    2003-01-01

    This chapter discusses privately owned forests and timber management in a market economy, including private property rights and tenure, landowner objectives and characteristics, markets, and government policies. Private forest land ownership and management-whether it be industrial or nonindustrial-is often assumed to represent the classic model of atomistic competition...

  13. Disturbance ecology and forest management: A review of the literature

    Science.gov (United States)

    Paul Rogers

    1996-01-01

    This review of the disturbance ecology literature, and how it pertains to forest management, is a resource for forest managers and researchers interested in disturbance theory, specific disturbance agents, their interactions, and appropriate methods of inquiry for specific geographic regions. Implications for the future of disturbance ecology-based management are...

  14. The Waswanipi Cree Model Forest: Demonstrating Aboriginal leadership in sustainable forest management

    Energy Technology Data Exchange (ETDEWEB)

    Jolly, A.

    1999-09-01

    Experiences of the Waswanipi Cree community in being partners in sustainable forest management are discussed. The Waswanipi Cree Model Forest was designated as such in 1997. Since then, it has come to be seen as a forum for the community to express its needs, goals and objectives for the future, and as the first opportunity for the Cree community to exercise leadership and decision-making authority related to land management issues. The Waswanipi land is situated on the southernmost tip of eastern James Bay. It extends to some 35,000 sq km, divided into 52 family hunting territories, called traplines. Each trapline has a designated custodian, who is responsible for ensuring that wildlife is harvested in a sustainable manner. Community life is organized around the traplines, although families will sometimes temporarily relocate close to paid employment opportunities. Nevertheless, the purpose of employment is always to return to the bush, with sufficient materials and supplies to last the hunting and trapping season. Prior to the designation of the Model Forest, the major problems have been the rate and extent of forestry activities on Cree land by outside timber companies, the absence of opportunities for the Cree to have a meaningful role in decisions that impacted their future and the difficulties of convincing government experts and forestry companies to allow the Cree to bring their experience-based knowledge to bear on forest resource management issues. The manner in which the new partnership resulting from the designation of the Model Forest is opening the way to better understanding, mitigation of the negative effects of forestry operations on traplines, mediation of conflicts between trappers and forestry companies with timber licences on Waswanipi land, are described as one of the major achievements of the Model Forest Program. The rate and extent of cutting continues to be a problem, however, there are signs of a growing understanding among the timber

  15. Historical fire regime and forest variability on two eastern Great Basin fire-sheds (USA)

    Science.gov (United States)

    Stanley G. Kitchen

    2012-01-01

    Proper management of naturally forested landscapes requires knowledge of key disturbance processes and their effects on species composition and structure. Spatially-intensive fire and forest histories provide valuable information about how fire and vegetation may vary and interact on heterogeneous landscapes. I constructed 800-year fire and tree recruitment...

  16. The Influence of Forest Management Regimes on Deforestation in a Central Indian Dry Deciduous Forest Landscape

    OpenAIRE

    Shivani Agarwal; Harini Nagendra; Rucha Ghate

    2016-01-01

    This research examines the impact of forest management regimes, with various degrees of restriction, on forest conservation in a dry deciduous Indian forest landscape. Forest change is mapped using Landsat satellite images from 1977, 1990, 1999, and 2011. The landscape studied has lost 1478 km2 of dense forest cover between 1977 and 2011, with a maximum loss of 1002 km2 of dense forest between 1977 and 1990. The number of protected forest areas has increased, concomitant with an increase in r...

  17. African savanna-forest boundary dynamics

    DEFF Research Database (Denmark)

    Cuni Sanchez, Aida; White, Lee J. T.; Calders, Kim

    2016-01-01

    -term inventory plots we quantify changes in vegetation structure, above-ground biomass (AGB) and biodiversity of trees ≥10 cm diameter over 20 years for five vegetation types: savanna; colonising forest (F1), monodominant Okoume forest (F2); young Marantaceae forest (F3); and mixed Marantaceae forest (F4...... substantially in structure, AGB or diversity. Critically, the stability of the F3 stage implies that this stage may be maintained for long periods. Soil carbon was low, and did not show a successional gradient as for AGB and diversity. TLS vertical plant profiles showed distinctive differences amongst...... the vegetation types, indicating that this technique can improve ecological understanding. We highlight two points: (i) as forest colonises, changes in biodiversity are much slower than changes in forest structure or AGB; and (ii) all forest types store substantial quantities of carbon. Multidecadal monitoring...

  18. A Drone-based Tropical Forest Experiment to Estimate Vegetation Properties

    Science.gov (United States)

    Henke, D.

    2017-12-01

    In mid-latitudes, remote sensing technology is intensively used to monitor vegetation properties. However, in the tropics, high cloud-cover and saturation effects of vegetation indices (VI) hamper the reliability of vegetation parameters derived from satellite data. A drone experiment over the Barro Colorado Island (BCI), Panama, with high temporal repetition rates was conducted in spring 2017 to investigate the robustness and stability of remotely sensed vegetation parameters in tropical environments. For this purpose, three 10-day flight windows in February, March and April were selected and drone flights were repeated on daily intervals when weather conditions and equipment allowed it. In total, 18 days were recorded with two different optical cameras on sensefly's eBee drone: one red, green, blue (RGB) camera and one camera with near infra-red (NIR), green and blue channels. When possible, the data were acquired at the same time of day. Pix4D and Agisoft software were used to calculate the Normalized Difference VI (NDVI) and forest structure. In addition, leave samples were collected ones per month from 16 different plant species and the relative water content was measured as ground reference. Further data sources for the analysis are phenocam images (RGB & NIR) on BCI and satellite images of MODIS (NDVI; Enhanced VI EVI) and Sentinel-1 (radar backscatter). The attached figure illustrates the main data collected on BCI. Initial results suggest that the coefficient of determination (R2) is relatively high between ground samples and drone data, Sentinel-1 backscatter and MODIS EVI with R2 values ranging from 0.4 to 0.6; on the contrary, R2 values between ground measurements and MODIS NDVI or phenocam images are below 0.2. As the experiment took place mainly during dry season on BCI, cloud-cover rates are less dominate than during wet season. Under these conditions, MODIS EVI, which is less vulnerable to saturation effects, seems to be more reliable than MODIS

  19. Forest and Water Management for Mitigating the effects of Climate ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Forest and Water Management for Mitigating the effects of Climate Change in the ... forest, agriculture and water management strategies play in both adaptation to and ... IDRC joins more than 800 international delegates at the Resilient Cities ...

  20. Transformation to near-natural forest management, climate change and uncertainty

    DEFF Research Database (Denmark)

    Schou, Erik

    Currently transformation from even-aged management to near-natural forest management is being considered or undertaken throughout the Atlantic region of Europe. What in general lies in this transformation is the desire for a higher degree of utilisation in forest management of the natural processes...... inherent in the forest ecosystem. The motivations for transforming involve economic, biological and social values. At the same time, potential climate changes are expected to change growing conditions of tree species – possibly having a high impact on future forest growth. The purpose of this dissertation......, the studies of the dissertation analysed changes in stand structure and the choice of species at the stand and forest level. Only the value of timber was considered. Both optimisation and simulation approaches have been applied in the dissertation. Methods include dynamic programming, evolution algorithms...