WorldWideScience

Sample records for forest tree improvement

  1. Genetic improvement of forest tree species

    Directory of Open Access Journals (Sweden)

    Teotônio Francisco Assis

    2011-01-01

    Full Text Available Brazilian forestry sector is considered one of the most developed in the world, being the base for important industrialsegments which use wood as raw material. Tree breeding has played an important role on improving the competitiveness ofBrazilian forestry-based companies, especially for its positive reflexes on increasing adaptation, forestry productivity and woodquality. In spite of the importance of other forest trees for the economy, such as Schizolobium, Araucaria, Populus and Hevea, themain genera under genetic improvement in the country are Eucalyptus, Pinus, Acacia and Tectona. They are used by industries likepulp and paper, siderurgy, tannin, chips for exportation and lumber, constituting an important source of revenues for the Brazilian’seconomy, besides their positive social and environmental impacts. This paper presents a generic approach to genetic improvementaspects of these four major genera currently undergoing breeding in Brazil.

  2. Proceedings of the 23rd Southern Forest Tree Improvement Conference

    Science.gov (United States)

    Robert J. Weir; Alice V. Hatcher; [Compilers

    1995-01-01

    The 23rd Southern Forest Tree Improvement Conference was held at the Holiday Inn SunSpree Resort in Asheville, North Carolina. The Conference was sponsored by the Southern Forest Tree Improvement Committee and hosted by the N. C. State University-Industry Cooperative Tree Improvement Program. A total of 37 presentations, three invited and 34 voluntary, were given....

  3. Proceedings of the eighteenth southern forest tree improvement conference

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    This book contains 50 papers. Some of the titles are: Genetic Engineering in Forest Trees; Biotechnology and Forest Genetics: An Industry Perspective; Biomass Characteristics of Sycamore Coppice Influenced by Parentage and Type of Plant Stock; and Micropropagation of Eucalyptus viminalis.

  4. Tree biomass in the Swiss landscape: nationwide modelling for improved accounting for forest and non-forest trees.

    Science.gov (United States)

    Price, B; Gomez, A; Mathys, L; Gardi, O; Schellenberger, A; Ginzler, C; Thürig, E

    2017-03-01

    Trees outside forest (TOF) can perform a variety of social, economic and ecological functions including carbon sequestration. However, detailed quantification of tree biomass is usually limited to forest areas. Taking advantage of structural information available from stereo aerial imagery and airborne laser scanning (ALS), this research models tree biomass using national forest inventory data and linear least-square regression and applies the model both inside and outside of forest to create a nationwide model for tree biomass (above ground and below ground). Validation of the tree biomass model against TOF data within settlement areas shows relatively low model performance (R (2) of 0.44) but still a considerable improvement on current biomass estimates used for greenhouse gas inventory and carbon accounting. We demonstrate an efficient and easily implementable approach to modelling tree biomass across a large heterogeneous nationwide area. The model offers significant opportunity for improved estimates on land use combination categories (CC) where tree biomass has either not been included or only roughly estimated until now. The ALS biomass model also offers the advantage of providing greater spatial resolution and greater within CC spatial variability compared to the current nationwide estimates.

  5. Molecular and physiological responses to abiotic stress in forest trees and their relevance to tree improvement.

    Science.gov (United States)

    Harfouche, Antoine; Meilan, Richard; Altman, Arie

    2014-11-01

    Abiotic stresses, such as drought, salinity and cold, are the major environmental stresses that adversely affect tree growth and, thus, forest productivity, and play a major role in determining the geographic distribution of tree species. Tree responses and tolerance to abiotic stress are complex biological processes that are best analyzed at a systems level using genetic, genomic, metabolomic and phenomic approaches. This will expedite the dissection of stress-sensing and signaling networks to further support efficient genetic improvement programs. Enormous genetic diversity for stress tolerance exists within some forest-tree species, and due to advances in sequencing technologies the molecular genetic basis for this diversity has been rapidly unfolding in recent years. In addition, the use of emerging phenotyping technologies extends the suite of traits that can be measured and will provide us with a better understanding of stress tolerance. The elucidation of abiotic stress-tolerance mechanisms will allow for effective pyramiding of multiple tolerances in a single tree through genetic engineering. Here we review recent progress in the dissection of the molecular basis of abiotic stress tolerance in forest trees, with special emphasis on Populus, Pinus, Picea, Eucalyptus and Quercus spp. We also outline practices that will enable the deployment of trees engineered for abiotic stress tolerance to land owners. Finally, recommendations for future work are discussed. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Tree diversity does not always improve resistance of forest ecosystems to drought.

    Science.gov (United States)

    Grossiord, Charlotte; Granier, André; Ratcliffe, Sophia; Bouriaud, Olivier; Bruelheide, Helge; Chećko, Ewa; Forrester, David Ian; Dawud, Seid Muhie; Finér, Leena; Pollastrini, Martina; Scherer-Lorenzen, Michael; Valladares, Fernando; Bonal, Damien; Gessler, Arthur

    2014-10-14

    Climate models predict an increase in the intensity and frequency of drought episodes in the Northern Hemisphere. Among terrestrial ecosystems, forests will be profoundly impacted by drier climatic conditions, with drastic consequences for the functions and services they supply. Simultaneously, biodiversity is known to support a wide range of forest ecosystem functions and services. However, whether biodiversity also improves the resistance of these ecosystems to drought remains unclear. We compared soil drought exposure levels in a total of 160 forest stands within five major forest types across Europe along a gradient of tree species diversity. We assessed soil drought exposure in each forest stand by calculating the stand-level increase in carbon isotope composition of late wood from a wet to a dry year (Δδ(13)CS). Δδ(13)CS exhibited a negative linear relationship with tree species diversity in two forest types, suggesting that species interactions in these forests diminished the drought exposure of the ecosystem. However, the other three forest types were unaffected by tree species diversity. We conclude that higher diversity enhances resistance to drought events only in drought-prone environments. Managing forest ecosystems for high tree species diversity does not necessarily assure improved adaptability to the more severe and frequent drought events predicted for the future.

  7. Tree diversity does not always improve resistance of forest ecosystems to drought

    DEFF Research Database (Denmark)

    Grossiord, Charlotte; Granier, André; Ratcliffe, Sophia

    2014-01-01

    , biodiversity is known to support a wide range of forest ecosystem functions and services. However, whether biodiversity also improves the resistance of these ecosystems to drought remains unclear. We compared soil drought exposure levels in a total of 160 forest stands within five major forest types across...... in two forest types, suggesting that species interactions in these forests diminished the drought exposure of the ecosystem. However, the other three forest types were unaffected by tree species diversity. We conclude that higher diversity enhances resistance to drought events only in drought......Climate models predict an increase in the intensity and frequency of drought episodes in the Northern Hemisphere. Among terrestrial ecosystems, forests will be profoundly impacted by drier climatic conditions, with drastic consequences for the functions and services they supply. Simultaneously...

  8. Tree Improvement Glossary

    DEFF Research Database (Denmark)

    Schmidt, Lars Holger

    Forest tree improvement encompasses a number of scientific and technical areas like floral-, reproductive- and micro-biology, genetics breeding methods and strategies, propagation, gene conservation, data analysis and statistics, each area with a comprehensive terminology. The terms selected...... for definition here are those most frequently used in tree improvement literature. Clonal propagation is included in the view of the great expansion of that field as a means of mass multiplication of improved material....

  9. Building generalized tree mass/volume component models for improved estimation of forest stocks and utilization potential

    Science.gov (United States)

    David W. MacFarlane

    2015-01-01

    Accurately assessing forest biomass potential is contingent upon having accurate tree biomass models to translate data from forest inventories. Building generality into these models is especially important when they are to be applied over large spatial domains, such as regional, national and international scales. Here, new, generalized whole-tree mass / volume...

  10. Improving linkage analysis in outcrossed forest trees - an example from Acacia mangium.

    Science.gov (United States)

    Butcher, A.; Williams, R.; Whitaker, D.; Ling, S.; Speed, P.; Moran, F.

    2002-05-01

    Mapping in forest trees generally relies on outbred pedigrees in which genetic segregation is the result of meiotic recombination from both parents. The currently available mapping packages are not optimal for outcrossed pedigrees as they either cannot order phase-ambiguous data or only use pairwise information when ordering loci within linkage groups. A new package, OUTMAP, has been developed for mapping codominant loci in outcrossed trees. A comparison of maps produced using linkage data from two pedigrees of Acacia mangium Willd demonstrated that the marker orders produced using OUTMAP were consistently of higher likelihood than those produced by JOINMAP. In addition, the maps were produced more efficiently, without the need for recoding data or the detailed investigation of pairwise recombination fractions which was necessary to select the optimal marker order using JOINMAP. Distances between markers often varied from those calculated by JOINMAP, resulting in an increase in the estimated genome length. OUTMAP can be used with all segregation types to determine phase and to calculate the likelihood of alternative marker orders, with a choice of three optimisation methods.

  11. Trees of Our National Forests.

    Science.gov (United States)

    Forest Service (USDA), Washington, DC.

    Presented is a description of the creation of the National Forests system, how trees grow, managing the National Forests, types of management systems, and managing for multiple use, including wildlife, water, recreation and other uses. Included are: (1) photographs; (2) line drawings of typical leaves, cones, flowers, and seeds; and (3)…

  12. Steam treatment of forest ground vegetation to improve tree seedling establishment and growth

    Energy Technology Data Exchange (ETDEWEB)

    Norberg, Gisela [Swedish Univ. of Agricultural Sciences, Umeaa (Sweden). Dept. of Forest Vegetation Ecology

    2000-07-01

    Mechanical soil scarification is the commonly used site preparation technique in Sweden today and there is a need for alternative site preparation methods to fulfil some environmental goals in Swedish forestry. Thermal vegetation control could be an alternative method that reduces the competing forest ground vegetation with minimal disturbance to the mineral soil and ground floor. The aim with this work has been to investigate if it is possible to control forest ground vegetation by steam treatment as an alternative site preparation method before planting or seeding. Studies were conducted on four sites, each representing main Swedish forest vegetation types, i.e. the ground vegetation was dominated by crowberry (Empetrum hermaphroditum Hagerup), bilberry (Vaccinium myrtillus L.), heather (Calluna vulgaris (L.) Hull) and wavy hair grass (Deschampsia flexuosa (L.) Trin). Steam generally controlled recolonization of vegetation on all investigated sites for a longer time than soil scarification. Especially in controlling grass vegetation steam treatment was much more effective than soil scarification. The establishment and growth of seeded Scots pine seedlings also improved after vegetation control by steam treatment compared to that in intact vegetation. For all sites, both steam treatment and soil scarification improved seedling height growth compared to seedlings planted in intact vegetation. In the bilberry and heather dominated sites seedling growth in steam treated plots was even better than for seedlings planted in mechanical soil scarified plots. Further, key biological soil processes such as microbial activity and mycorrhizal colonisation were not negatively affected by steam treatment. The conclusion made from these studies is that steam treatment has the potential to be used as an alternative site preparation method especially on sites dominated by ericaceous vegetation. However, the method requires some further technical development before it may be used

  13. Forest, trees and agroforestry

    DEFF Research Database (Denmark)

    Rahman, Syed Ajijur; Foli, Samson; Al Pavel, Muha Abdullah;

    2015-01-01

    Scientific community is concerned to address contemporary issues of food production and conserve tropical forests that support the livelihoods of millions of people. A review of the literature on deforestation, forest utilization, and landscape management for ecosystem services was conducted to i...

  14. Forest, trees and agroforestry

    DEFF Research Database (Denmark)

    Rahman, Syed Ajijur; Foli, Samson; Al Pavel, Muha Abdullah;

    2015-01-01

    of millions of people who depend on forest resources extremely vulnerable. We ask; can better implementation of forest policies and landscape management contribute to curb the current level of deforestation? Agroforestry systems in particular are a promising strategy to sustainably deliver food, nutritional...... and income security, ecosystem services and biodiversity conservation across the landscape. However, for agroforestry to become a viable livelihood venture that simultaneously delivers all these benefits, a mixture of economic and institutional support from the state is needed instead of market driven...

  15. Trees, forests and water

    NARCIS (Netherlands)

    Ellison, David; Morris, Cindy E.; Locatelli, Bruno; Sheil, Douglas; Cohen, Jane; Murdiyarso, Daniel; Gutierrez, Victoria; Noordwijk, van Meine; Creed, Irena F.; Pokorny, Jan; Gaveau, David; Spracklen, Dominick V.; Tobella, Aida Bargués; Ilstedt, Ulrik; Teuling, Adriaan J.; Gebrehiwot, Solomon Gebreyohannis; Sands, David C.; Muys, Bart; Verbist, Bruno; Springgay, Elaine; Sugandi, Yulia; Sullivan, Caroline A.

    2017-01-01

    Forest-driven water and energy cycles are poorly integrated into regional, national, continental and global decision-making on climate change adaptation, mitigation, land use and water management. This constrains humanity's ability to protect our planet's climate and life-sustaining functions. The

  16. Tree diversity does not always improve resistance of forest ecosystems to drought

    DEFF Research Database (Denmark)

    Grossiord, Charlotte; Granier, André; Ratcliffe, Sophia

    2014-01-01

    Climate models predict an increase in the intensity and frequency of drought episodes in the Northern Hemisphere. Among terrestrial ecosystems, forests will be profoundly impacted by drier climatic conditions, with drastic consequences for the functions and services they supply. Simultaneously, b...

  17. The conservation of diversity in forest trees

    Science.gov (United States)

    F. Thomas Ledig

    1988-01-01

    Deforestation, pollution, and climatic change threaten forest diversity all over the world. And because forests are the habitats for diverse organisms, the threat is extended to all the flora and fauna associated with forests, not only forest trees. In a worst case scenario, if the tropical forest in Latin America was reduced to the areas now set aside in parks and...

  18. Monitoring trees outside forests: a review.

    Science.gov (United States)

    Schnell, Sebastian; Kleinn, Christoph; Ståhl, Göran

    2015-09-01

    Trees outside forests (TOFs) are an important natural resource that contributes substantially to national biomass and carbon stocks and to the livelihood of people in many regions. Over the last decades, decision makers have become increasingly aware of the importance of TOF, and as a consequence, this tree resource is nowadays often considered in forest monitoring systems. Our review shows that in many cases, TOF are included in national forest inventories, applying traditional methodologies with relatively sparse networks of field sample plots. Only in some countries, such as India, the design of the inventories has considered the special features of how TOFs occur in the landscape. Several research studies utilising remote sensing for monitoring TOF have been conducted lately, but very few studies include comparative studies to optimise sampling strategies for TOF. Our review indicates that methods combining remote sensing and field surveys appear to be very promising, especially when remote sensing techniques that assess both the horizontal and vertical structures of tree resources are applied. For example, two-phase sampling strategies with laser scanning in the first phase and a field survey in the second phase appear to be effective for assessing TOF resources. However, TOFs often exhibit different characteristics than forest trees. Thus, to improve TOF monitoring, there is often a need to develop models, e.g. for biomass assessment, that are specifically adapted to this tree resource. Alternatively, field-based remote sensing methods that provide structural information about individual trees, notably terrestrial laser scanning, could be further developed for TOF monitoring applications. This also would have a potential to reduce the problem of accessing TOF during field surveys, which is a problem, for example, in countries where TOF are present on intensively utilised private grounds like gardens and agricultural fields.

  19. Partitioning in trees and soil (PiTS) - a experimental approach to improve knowledge of forest carbon dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Jeffrey [ORNL; Garten Jr, Charles T [ORNL; Iversen, Colleen M [ORNL; Norby, Richard J [ORNL; Thornton, Peter E [ORNL; Weston, David [ORNL; Gu, Lianhong [ORNL; Brice, Deanne Jane [ORNL; Childs, Joanne [ORNL; Evans, R [University of Tennessee, Knoxville (UTK)

    2012-01-01

    Summary The dynamics of rapid changes in carbon (C) partitioning within forest ecosystems are not well understood, which limits improvement of mechanistic models of C cycling. Our objective was to inform model processes by describing relationships between C partitioning and accessible environmental or physiological measurements, with a special emphasis on belowground C flux. We exposed eight 7-year-old loblolly pine trees to air enriched with 13CO2 and then implemented adjacent light shade (LS) and heavy shade (HS) treatments in order to manipulate C uptake and flux. A soil pit was dug adjacent to the trees to provide greater access belowground. The impacts of shading on photosynthesis, plant water potential, sap flow, basal area growth, root growth, and soil C exchange rate (CER) were assessed for each tree over a three-week period. The progression of the 13C label was concurrently tracked from the atmosphere through foliage, phloem, roots, and soil CO2 efflux. The HS treatment significantly reduced C uptake, sap flow, stem growth and root standing crop, and resulted in greater residual soil water content to 1 m depth. Sap flow was strongly correlated with CER on the previous day, but not the current day, with no apparent treatment effect on the relationship. The 13C label was immediately detected in foliage on label day (half-life = 0.5 d), progressed through phloem by day 2 (half-life = 4.7 d), roots by day 2-4, and subsequently was evident as respiratory release from soil which peaked between days 3-6. The 13C of soil CO2 efflux was strongly correlated with phloem 13C on the previous day, or two days earlier. These data detail the timing and relative magnitude of C flux through a young pine stand in relation to environmental conditions. Refinement of belowground sampling will be necessary to adequately separate and quantify the flux of recently fixed C into roots, and fate of that new C as respiratory, mycorrhizal or exudative release, storage or partitioning

  20. Mass propagation and genetic improvement of forest trees for biomass production by tissue culture. [Sapium sebiferum, Leucaena leucocephala, and Copaifera multijuga

    Energy Technology Data Exchange (ETDEWEB)

    Venketeswaran, S.; Gandhi, V.

    1982-01-01

    Wood derived from forest trees can serve as a major alternative source of energy and fuel because of the current energy shortage and increase in price of oil and natural gas. Normally, trees take several years to grow and produce seeds. But, in recent years, test tube trees have been produced in large numbers (as many as 3000 plants per year) from one seedling using tissue culture by treating a few cells of a tree with specific chemical substances. Tissue culture is a promising technique for mass production of large numbers of superior trees, derived through genetic improvement, and may prove widely applicable to trees which show promise as energy sources. Three selected tree genera, viz. Sapium sebiferum (Chinese Tallow), Leucaena leucocephala (giant ipil-ipil, a tropical legume) and Copaifera multijuga (Copaiba tree from Brazil) have been studied because of their potential usefulness for biomass production. Regeneration of vegetatively produced plantlets has been achieved from embyros and callus cells grown in specific culture medium for two of the above genera. High yields of protoplasts have been obtained isolated from cells of different plant parts and grown as calli. Conditions which will enable callus derived from protoplasts to undergo in vitro regeneration, plantlet formation and eventually growth into plants are being investigated. 16 figures.

  1. Forests, Trees and Human Health

    DEFF Research Database (Denmark)

    Nilsson, Kjell Svenne Bernhard; Sangster, Marcus; Konijnendijk, Cecil Cornelis

    2011-01-01

    The link between modern lifestyles and increasing levels of chronic heart disease, obesity, stress and poor mental health is a concern across the world. The cost of dealing with these conditions places a large burden on national public health budgets so that policymakers are increasingly looking...... Union’s COST Action E39 ‘Forests, Trees and Human Health and Wellbeing’, and draws together work carried out over four years by scientists from 25 countries working in the fields of forestry, health, environment and social sciences. While the focus is primarily on health priorities defined within Europe...... at prevention as a cost-effective alternative to medical treatment. Attention is turning towards interactions between the environment and lifestyles. Exploring the relationships between health, natural environments in general, and forests in particular, this groundbreaking book is the outcome of the European...

  2. Tree retention in boreal pine forest

    OpenAIRE

    Santaniello, Francesca

    2017-01-01

    Tree retention forestry aims at increasing structural diversity in managed forests. In this study, I have investigated the influence of tree retention forestry on delivery of two ecosystem services (wood production and carbon sequestration) and dead wood (as a proxy for biodiversity). Furthermore, habitat requirements of lichens dependent on dead wood were investigated. The study was conducted in 15 Scots pine forest stands with five various tree retention levels, in which four...

  3. EU Regulations Impede Market Introduction of GM Forest Trees.

    Science.gov (United States)

    Custers, René; Bartsch, Detlef; Fladung, Matthias; Nilsson, Ove; Pilate, Gilles; Sweet, Jeremy; Boerjan, Wout

    2016-04-01

    Biotechnology can greatly improve the efficiency of forest tree breeding for the production of biomass, energy, and materials. However, EU regulations impede the market introduction of genetically modified (GM) trees so their socioeconomic and environmental benefits are not realized. European policy makers should concentrate on a science-based regulatory process.

  4. The Contribution of Forests and Trees to Sustainable Diets

    Directory of Open Access Journals (Sweden)

    Danny Hunter

    2013-11-01

    Full Text Available With the growing demands from a population expected to reach 9 billion people by 2050, it is unclear how our current global food system will meet future food needs. Ensuring that all people have access to adequate and nutritious food produced in an environmentally and socio-culturally sustainable manner is one of the greatest challenges of our time. “Sustainable diets” have been proposed as a multidimensional framework to address the need for nutritious and adequate food in the context of the many challenges facing the world today: reducing poverty and hunger, improving environmental health, enhancing human well-being and health, and strengthening local food networks, sustainable livelihoods and cultural heritage. This paper examines the contribution of forests and trees to sustainable diets, covering among others, nutritional, cultural, environmental and provisioning aspects. The literature reviewed highlight major opportunities to strengthen the contribution of forest and tree foods to sustainable diets. However, several constraints need to be removed. They relate to: cultural aspects, sustainable use of non-wood forest products, organization of forest food provisioning, limited knowledge of forest food composition, challenges in adapting management of forests and trees to account for forest foods, and in integrating forest biodiversity into complex landscapes managed for multiple benefits. Finally, the paper identifies research gaps and makes recommendations to enhance the contribution of forest foods to sustainable diets through increased awareness and better integration of information and knowledge on nutritious forest foods into national nutrition strategies and programs.

  5. Predicting tree heights for biomass estimates in tropical forests

    Directory of Open Access Journals (Sweden)

    Q. Molto

    2013-05-01

    Full Text Available The recent development of REDD+ mechanisms require reliable estimation of carbon stocks, especially in tropical forests that are particularly threatened by global changes. Even if tree height is a crucial variable to compute the above-ground forest biomass, tree heights are rarely measured in large-scale forest census because it requires consequent extra-effort. Tree height have thus to be predicted thanks to height models. Height and diameter of all trees above 10 cm of diameter were measured in thirty-three half-ha plots and nine one-ha plots throughout the northern French Guiana, an area with substantial climate and environmental gradients. We compared four different model shapes and found that the Michaelis–Menten shape was the most appropriate for the tree biomass prediction. Model parameters values were significantly different from one forest plot to another and neglecting these differences would lead to large errors in biomass estimates. Variables from the forest stand structure explained a sufficient part of the plot-to-plot variations of the height model parameters to affect the AGB predictions. In the forest stands dominated by small trees, the trees were found to have rapid height growth for small diameters. In forest stands dominated by larger trees, the trees were found to have the greatest heights for large diameters. The above-ground biomass estimation uncertainty of the forest plots was reduced by the use of the forest structure-based height model. It demonstrates the feasibility and the importance of height modeling in tropical forest for carbon mapping. Tree height is definitely an important variable for AGB estimations. When the tree heights are not measured in an inventory, they can be predicted with a height-diameter model. This model can account for plot-to plot variations in height-diameter relationship thank to variables describing the plots. The variables describing the stand structure of the plots are efficient for

  6. From natural forest to tree crops, co-domestication of forests and tree species: an overview.

    NARCIS (Netherlands)

    Wiersum, K.F.

    1997-01-01

    The process of domestication of tree crops has only been given limited attention. This process starts with the protection of natural forests and ends with the cultivation of domesticated tree crops. In this evolutionary process three types of human-influenced forest environments may be distinguished

  7. From natural forest to tree crops, co-domestication of forests and tree species: an overview.

    NARCIS (Netherlands)

    Wiersum, K.F.

    1997-01-01

    The process of domestication of tree crops has only been given limited attention. This process starts with the protection of natural forests and ends with the cultivation of domesticated tree crops. In this evolutionary process three types of human-influenced forest environments may be distinguished

  8. The dynamics of strangling among forest trees.

    Science.gov (United States)

    Okamoto, Kenichi W

    2015-11-01

    Strangler trees germinate and grow on other trees, eventually enveloping and potentially even girdling their hosts. This allows them to mitigate fitness costs otherwise incurred by germinating and competing with other trees on the forest floor, as well as minimize risks associated with host tree-fall. If stranglers can themselves host other strangler trees, they may not even seem to need non-stranglers to persist. Yet despite their high fitness potential, strangler trees neither dominate the communities in which they occur nor is the strategy particularly common outside of figs (genus Ficus). Here we analyze how dynamic interactions between strangling and non-strangling trees can shape the adaptive landscape for strangling mutants and mutant trees that have lost the ability to strangle. We find a threshold which strangler germination rates must exceed for selection to favor the evolution of strangling, regardless of how effectively hemiepiphytic stranglers may subsequently replace their hosts. This condition describes the magnitude of the phenotypic displacement in the ability to germinate on other trees necessary for invasion by a mutant tree that could potentially strangle its host following establishment as an epiphyte. We show how the relative abilities of strangling and non-strangling trees to occupy empty sites can govern whether strangling is an evolutionarily stable strategy, and obtain the conditions for strangler coexistence with non-stranglers. We then elucidate when the evolution of strangling can disrupt stable coexistence between commensal epiphytic ancestors and their non-strangling host trees. This allows us to highlight parallels between the invasion fitness of strangler trees arising from commensalist ancestors, and cases where strangling can arise in concert with the evolution of hemiepiphytism among free-standing ancestors. Finally, we discuss how our results can inform the evolutionary ecology of antagonistic interactions more generally.

  9. tree structural and species diversities in okwangwo forest, cross river ...

    African Journals Online (AJOL)

    Tersor

    For sound forest management decisions, appraisal of flora species and forest structure is crucial for any meaningful conservation work. We assessed tree species distribution in Okwangwo Forest, Nigeria. ...... Structures and Yield Models.

  10. Coastal fog during summer drought improves the water status of sapling trees more than adult trees in a California pine forest.

    Science.gov (United States)

    Baguskas, Sara A; Still, Christopher J; Fischer, Douglas T; D'Antonio, Carla M; King, Jennifer Y

    2016-05-01

    Fog water inputs can offset seasonal drought in the Mediterranean climate of coastal California and may be critical to the persistence of many endemic plant species. The ability to predict plant species response to potential changes in the fog regime hinges on understanding the ways that fog can impact plant physiological function across life stages. Our study uses a direct metric of water status, namely plant water potential, to understand differential responses of adult versus sapling trees to seasonal drought and fog water inputs. We place these measurements within a water balance framework that incorporates the varying climatic and soil property impacts on water budgets and deficit. We conducted our study at a coastal and an inland site within the largest stand of the regionally endemic bishop pine (Pinus muricata D. Don) on Santa Cruz Island. Our results show conclusively that summer drought negatively affects the water status of sapling more than adult trees and that sapling trees are also more responsive to changes in shallow soil moisture inputs from fog water deposition. Moreover, between the beginning and end of a large, late-season fog drip event, water status increased more for saplings than for adults. Relative to non-foggy conditions, we found that fog water reduces modeled peak water deficit by 80 and 70 % at the inland and coastal sites, respectively. Results from our study inform mechanistically based predictions of how population dynamics of this and other coastal species may be affected by a warmer, drier, and potentially less foggy future.

  11. Tree diversity and economic importance of forest trees of Kashmir (Jammu and Kashmir

    Directory of Open Access Journals (Sweden)

    Sajad Ali Lone

    2013-12-01

    Full Text Available Aim The paper throws light on diversity of trees of forests of Kashmir of Jammu And Kashmir State. Methodology: Present study is based on the extensive and intensive field surveys made during 2007-2008. Various forest areas were visited for the identification of tree species and their economic importance. Various forest areas were visited for the identification of tree species and their economic importance. The areas including Drang Tangmerg, Gulmarg, Dachigam, Lolab and Karanah valley. Information on the utilization of trees for curing common ailments was obtained from people of the above forest areas. Conversation regarding the economic importance of plants was especially done with the elderly men, hakims and tribals. Repeated queries were made to get the data verified and confirmed. The plant specimens were dried using the standard herbarium techniques. The specimens were identified using Hooker method. Wherever necessary, comparisons were made with herbarium specimens in the herbarium of Forest Research Institute, Dehradun. Survey Results: Botanical names, English/common/local/Vernacular names, family, fruiting and flowering period, distribution and uses (wherever known of 53 species belonging to 33 genera and 21 families are provided. Conclusion: Present study has revealed the occurrence of 53 species belonging to 33 genera under 21 families. The most dominant family as per the number of genera is Pinaceae family followed by Betulaceae. And the most dominant genera is Prunus which is having 6 species. The study reveals that there are 10 gymnosperms and 43 angiosperms in the forests of Kashmir. The present work gives a detailed account of economic importance of forest trees of Kashmir. The work shows the relevance of plants to the problems of health care, food, agriculture improvements, conservation of genetic resources and to economic welfare of the tribal is emphasized. The work should rightly be applied to the natural and direct

  12. Forest Management Intensity Affects Aquatic Communities in Artificial Tree Holes.

    Science.gov (United States)

    Petermann, Jana S; Rohland, Anja; Sichardt, Nora; Lade, Peggy; Guidetti, Brenda; Weisser, Wolfgang W; Gossner, Martin M

    2016-01-01

    Forest management could potentially affect organisms in all forest habitats. However, aquatic communities in water-filled tree-holes may be especially sensitive because of small population sizes, the risk of drought and potential dispersal limitation. We set up artificial tree holes in forest stands subject to different management intensities in two regions in Germany and assessed the influence of local environmental properties (tree-hole opening type, tree diameter, water volume and water temperature) as well as regional drivers (forest management intensity, tree-hole density) on tree-hole insect communities (not considering other organisms such as nematodes or rotifers), detritus content, oxygen and nutrient concentrations. In addition, we compared data from artificial tree holes with data from natural tree holes in the same area to evaluate the methodological approach of using tree-hole analogues. We found that forest management had strong effects on communities in artificial tree holes in both regions and across the season. Abundance and species richness declined, community composition shifted and detritus content declined with increasing forest management intensity. Environmental variables, such as tree-hole density and tree diameter partly explained these changes. However, dispersal limitation, indicated by effects of tree-hole density, generally showed rather weak impacts on communities. Artificial tree holes had higher water temperatures (on average 2°C higher) and oxygen concentrations (on average 25% higher) than natural tree holes. The abundance of organisms was higher but species richness was lower in artificial tree holes. Community composition differed between artificial and natural tree holes. Negative management effects were detectable in both tree-hole systems, despite their abiotic and biotic differences. Our results indicate that forest management has substantial and pervasive effects on tree-hole communities and may alter their structure and

  13. Forest Management Intensity Affects Aquatic Communities in Artificial Tree Holes.

    Directory of Open Access Journals (Sweden)

    Jana S Petermann

    Full Text Available Forest management could potentially affect organisms in all forest habitats. However, aquatic communities in water-filled tree-holes may be especially sensitive because of small population sizes, the risk of drought and potential dispersal limitation. We set up artificial tree holes in forest stands subject to different management intensities in two regions in Germany and assessed the influence of local environmental properties (tree-hole opening type, tree diameter, water volume and water temperature as well as regional drivers (forest management intensity, tree-hole density on tree-hole insect communities (not considering other organisms such as nematodes or rotifers, detritus content, oxygen and nutrient concentrations. In addition, we compared data from artificial tree holes with data from natural tree holes in the same area to evaluate the methodological approach of using tree-hole analogues. We found that forest management had strong effects on communities in artificial tree holes in both regions and across the season. Abundance and species richness declined, community composition shifted and detritus content declined with increasing forest management intensity. Environmental variables, such as tree-hole density and tree diameter partly explained these changes. However, dispersal limitation, indicated by effects of tree-hole density, generally showed rather weak impacts on communities. Artificial tree holes had higher water temperatures (on average 2°C higher and oxygen concentrations (on average 25% higher than natural tree holes. The abundance of organisms was higher but species richness was lower in artificial tree holes. Community composition differed between artificial and natural tree holes. Negative management effects were detectable in both tree-hole systems, despite their abiotic and biotic differences. Our results indicate that forest management has substantial and pervasive effects on tree-hole communities and may alter their

  14. Weighted Hybrid Decision Tree Model for Random Forest Classifier

    Science.gov (United States)

    Kulkarni, Vrushali Y.; Sinha, Pradeep K.; Petare, Manisha C.

    2016-06-01

    Random Forest is an ensemble, supervised machine learning algorithm. An ensemble generates many classifiers and combines their results by majority voting. Random forest uses decision tree as base classifier. In decision tree induction, an attribute split/evaluation measure is used to decide the best split at each node of the decision tree. The generalization error of a forest of tree classifiers depends on the strength of the individual trees in the forest and the correlation among them. The work presented in this paper is related to attribute split measures and is a two step process: first theoretical study of the five selected split measures is done and a comparison matrix is generated to understand pros and cons of each measure. These theoretical results are verified by performing empirical analysis. For empirical analysis, random forest is generated using each of the five selected split measures, chosen one at a time. i.e. random forest using information gain, random forest using gain ratio, etc. The next step is, based on this theoretical and empirical analysis, a new approach of hybrid decision tree model for random forest classifier is proposed. In this model, individual decision tree in Random Forest is generated using different split measures. This model is augmented by weighted voting based on the strength of individual tree. The new approach has shown notable increase in the accuracy of random forest.

  15. Tree rings in the tropics: a study on growth and ages of Bolivian rain forest trees

    NARCIS (Netherlands)

    Brienen, Roel Jacobus Wilhelmus

    2005-01-01

    Detailed information on long-term growth rates and ages of tropical rain forest trees is important to obtain a better understanding of the functioning of tropical rain forests. Nevertheless, little is known about long-term growth or ages of tropical forest trees, due to a supposed lack of annual tre

  16. Integrating LIDAR and forest inventories to fill the trees outside forests data gap.

    Science.gov (United States)

    Johnson, Kristofer D; Birdsey, Richard; Cole, Jason; Swatantran, Anu; O'Neil-Dunne, Jarlath; Dubayah, Ralph; Lister, Andrew

    2015-10-01

    Forest inventories are commonly used to estimate total tree biomass of forest land even though they are not traditionally designed to measure biomass of trees outside forests (TOF). The consequence may be an inaccurate representation of all of the aboveground biomass, which propagates error to the outputs of spatial and process models that rely on the inventory data. An ideal approach to fill this data gap would be to integrate TOF measurements within a traditional forest inventory for a parsimonious estimate of total tree biomass. In this study, Light Detection and Ranging (LIDAR) data were used to predict biomass of TOF in all "nonforest" Forest Inventory and Analysis (FIA) plots in the state of Maryland. To validate the LIDAR-based biomass predictions, a field crew was sent to measure TOF on nonforest plots in three Maryland counties, revealing close agreement at both the plot and county scales between the two estimates. Total tree biomass in Maryland increased by 25.5 Tg, or 15.6%, when biomass of TOF were included. In two counties (Carroll and Howard), there was a 47% increase. In contrast, counties located further away from the interstate highway corridor showed only a modest increase in biomass when TOF were added because nonforest conditions were less common in those areas. The advantage of this approach for estimating biomass of TOF is that it is compatible with, and explicitly separates TOF biomass from, forest biomass already measured by FIA crews. By predicting biomass of TOF at actual FIA plots, this approach is directly compatible with traditionally reported FIA forest biomass, providing a framework for other states to follow, and should improve carbon reporting and modeling activities in Maryland.

  17. Tree species, tree genotypes and tree genotypic diversity levels affect microbe-mediated soil ecosystem functions in a subtropical forest

    OpenAIRE

    Purahong, Witoon; Durka, Walter; Fischer, Markus; Dommert, Sven; Schöps, Ricardo; Buscot, François; Wubet, Tesfaye

    2016-01-01

    Tree species identity and tree genotypes contribute to the shaping of soil microbial communities. However, knowledge about how these two factors influence soil ecosystem functions is still lacking. Furthermore, in forest ecosystems tree genotypes co-occur and interact with each other, thus the effects of tree genotypic diversity on soil ecosystem functions merit attention. Here we investigated the effects of tree species, tree genotypes and genotypic diversity levels, alongside soil physicoch...

  18. Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics

    DEFF Research Database (Denmark)

    Slik, J.W.Ferry; Paoli, Gary; McGuire, Krista

    2013-01-01

    Aim Large trees (d.b.h. ≥ 70 cm) store large amounts of biomass. Several studies suggest that large trees may be vulnerable to changing climate, potentially leading to declining forest biomass storage. Here we determine the importance of large trees for tropical forest biomass storage and explore...

  19. A key for the Forest Service hardwood tree grades

    Science.gov (United States)

    Gary W. Miller; Leland F. Hanks; Harry V., Jr. Wiant

    1986-01-01

    A dichotomous key organizes the USDA Forest Service hardwood tree grade specifications into a stepwise procedure for those learning to grade hardwood sawtimber. The key addresses the major grade factors, tree size, surface characteristics, and allowable cull deductions in a series of paried choices that lead the user to a decision regarding tree grade.

  20. Tree height integrated into pantropical forest biomass estimates

    NARCIS (Netherlands)

    Feldpausch, T.R.; Lloyd, J.; Lewis, S.L.; Brienen, R.J.W.; Gloor, M.; Montegudo Mendoza, A.; Arets, E.J.M.M.

    2012-01-01

    Aboveground tropical tree biomass and carbon storage estimates commonly ignore tree height (H). We estimate the effect of incorporating H on tropics-wide forest biomass estimates in 327 plots across four continents using 42 656 H and diameter measurements and harvested trees from 20 sites to answer

  1. Modelling the afforested system: the forest/tree model

    NARCIS (Netherlands)

    Heil, G.W.; Deursen, van W.; Elemans, M.; Mol, J.; Kros, H.

    2007-01-01

    A forest/tree model has been developed of which the main growth processes are based on the CENW model. The model links the flows of carbon (C)), energy, nutrients and water in trees and soil organic matter. Modelled tree growth depends on physiological plant factors, the size of plant pools, such as

  2. Tree growth and competition in an old-growth Picea abies forest of boreal Sweden: influence of tree spatial patterning

    Science.gov (United States)

    Fraver, Shawn; D'Amato, Anthony W.; Bradford, John B.; Jonsson, Bengt Gunnar; Jönsson, Mari; Esseen, Per-Anders

    2013-01-01

    Question: What factors best characterize tree competitive environments in this structurally diverse old-growth forest, and do these factors vary spatially within and among stands? Location: Old-growth Picea abies forest of boreal Sweden. Methods: Using long-term, mapped permanent plot data augmented with dendrochronological analyses, we evaluated the effect of neighbourhood competition on focal tree growth by means of standard competition indices, each modified to include various metrics of trees size, neighbour mortality weighting (for neighbours that died during the inventory period), and within-neighbourhood tree clustering. Candidate models were evaluated using mixed-model linear regression analyses, with mean basal area increment as the response variable. We then analysed stand-level spatial patterns of competition indices and growth rates (via kriging) to determine if the relationship between these patterns could further elucidate factors influencing tree growth. Results: Inter-tree competition clearly affected growth rates, with crown volume being the size metric most strongly influencing the neighbourhood competitive environment. Including neighbour tree mortality weightings in models only slightly improved descriptions of competitive interactions. Although the within-neighbourhood clustering index did not improve model predictions, competition intensity was influenced by the underlying stand-level tree spatial arrangement: stand-level clustering locally intensified competition and reduced tree growth, whereas in the absence of such clustering, inter-tree competition played a lesser role in constraining tree growth. Conclusions: Our findings demonstrate that competition continues to influence forest processes and structures in an old-growth system that has not experienced major disturbances for at least two centuries. The finding that the underlying tree spatial pattern influenced the competitive environment suggests caution in interpreting traditional tree

  3. Forest tree species clssification based on airborne hyper-spectral imagery

    Science.gov (United States)

    Dian, Yuanyong; Li, Zengyuan; Pang, Yong

    2013-10-01

    Forest precision classification products were the basic data for surveying of forest resource, updating forest subplot information, logging and design of forest. However, due to the diversity of stand structure, complexity of the forest growth environment, it's difficult to discriminate forest tree species using multi-spectral image. The airborne hyperspectral images can achieve the high spatial and spectral resolution imagery of forest canopy, so it will good for tree species level classification. The aim of this paper was to test the effective of combining spatial and spectral features in airborne hyper-spectral image classification. The CASI hyper spectral image data were acquired from Liangshui natural reserves area. Firstly, we use the MNF (minimum noise fraction) transform method for to reduce the hyperspectral image dimensionality and highlighting variation. And secondly, we use the grey level co-occurrence matrix (GLCM) to extract the texture features of forest tree canopy from the hyper-spectral image, and thirdly we fused the texture and the spectral features of forest canopy to classify the trees species using support vector machine (SVM) with different kernel functions. The results showed that when using the SVM classifier, MNF and texture-based features combined with linear kernel function can achieve the best overall accuracy which was 85.92%. It was also confirm that combine the spatial and spectral information can improve the accuracy of tree species classification.

  4. Height-diameter relationships of tropical Atlantic moist forest trees in southeastern Brazil

    OpenAIRE

    Marcos Augusto da Silva Scaranello; Luciana Ferreira Alves; Simone Aparecida Vieira; Plinio Barbosa Camargo; Carlos Alfredo Joly; Luiz Antônio Martinelli

    2013-01-01

    Site-specific height-diameter models may be used to improve biomass estimates for forest inventories where only diameter at breast height (DBH) measurements are available. In this study, we fit height-diameter models for vegetation types of a tropical Atlantic forest using field measurements of height across plots along an altitudinal gradient. To fit height-diameter models, we sampled trees by DBH class and measured tree height within 13 one-hectare permanent plots established at four altitu...

  5. Understory plant communities and the functional distinction between savanna trees, forest trees, and pines

    Energy Technology Data Exchange (ETDEWEB)

    Veldman, Joseph W.; Mattingly, W. Brett; Brudvig, Lars A.

    2013-02-01

    Although savanna trees and forest trees are thought to represent distinct functional groups with different effects on ecosystem processes, few empirical studies have examined these effects. In particular, it remains unclear if savanna and forest trees differ in their ability to coexist with understory plants, which comprise the majority of plant diversity in most savannas. We used structural equation modeling (SEM) and data from 157 sites across three locations in the southeastern United States to understand the effects of broadleaf savanna trees, broadleaf forest trees, and pine trees on savanna understory plant communities. After accounting for underlying gradients in fire frequency and soil moisture, abundances (i.e., basal area and stem density) of forest trees and pines, but not savanna trees, were negatively correlated with the cover and density (i.e., local-scale species richness) of C4 graminoid species, a defining savanna understory functional group that is linked to ecosystem flammability. In analyses of the full understory community, abundances of trees from all functional groups were negatively correlated with species density and cover. For both the C4 and full communities, fire frequency promoted understory plants directly, and indirectly by limiting forest tree abundance. There was little indirect influence of fire on the understory mediated through savanna trees and pines, which are more fire tolerant than forest trees. We conclude that tree functional identity is an important factor that influences overstory tree relationships with savanna understory plant communities. In particular, distinct relationships between trees and C4 graminoids have implications for grass-tree coexistence and vegetation-fire feedbacks that maintain savanna environments and their associated understory plant diversity.

  6. TREE SPECIES DIRECT SOWING FOR FOREST RESTORATION

    Directory of Open Access Journals (Sweden)

    Robério Anastácio Ferreira

    2007-09-01

    Full Text Available The direct sowing to tropical forest restoration can be viable when the ecological and silvicultural aspects of species areknown. This work evaluated the effect of breaking seed dormancy and a physical protector on the initial growth of riparian treespecies. The experiment was carried out in a randomized blocks design, in a factorial (2x2, with four blocks and four plots for eachtreatment. The treatment to break seed dormancy used were: immersion in sulphuric acid for 20 minutes and washing in water for 1hour plus soaking for 24 hours for Trema micrantha; immersion in boiling water (100oC with following soaking until refreshing for24 hours to Senna multijuga and Senna macranthera and pre-soaking in water for 2 hours for Solanum granuloso-leprosum. Thephysical protector used was a transparent plastic cup (500mL. The breaking seed dormancy used was efficient in laboratory, exceptfor S. macranthera. In field conditions, it was efficient only for S. multijuga and S. macranthera. The physical protector did notpresented any benefit for the studied tree species regarding seedlings emergence and survival, but it provided significant differencesin height and base diameter for S. multijuga and in height for S. macranthera after three months. After 24 months, T. micranthapresented the highest values for height and basal diameter. S. macranthera presented the height relative growth and T. micrantha thehighest basal diameter. The studied species can be recommended for ecological forest restoration, using direct sowing.

  7. Tree species richness affecting fine root biomass in European forests

    Science.gov (United States)

    Finér, Leena; Domisch, Timo; Vesterdal, Lars; Dawud, Seid M.; Raulund-Rasmussen, Karsten

    2016-04-01

    Fine roots are an important factor in the forest carbon cycle, contributing significantly to below-ground biomass and soil carbon storage. Therefore it is essential to understand the role of the forest structure, indicated by tree species diversity in controlling below-ground biomass and managing the carbon pools of forest soils. We studied how tree species richness would affect fine root biomass and its distribution in the soil profile and biomass above- and below-ground allocation patterns of different tree species. Our main hypothesis was that increasing tree species richness would lead to below-ground niche differentiation and more efficient soil exploitation by the roots, resulting in a higher fine root biomass in the soil. We sampled fine roots of trees and understorey vegetation in six European forest types in Finland, Poland, Germany, Romania, Italy and Spain, representing boreal, temperate and Mediterranean forests, established within the FunDivEUROPE project for studying the effects of tree species diversity on forest functioning. After determining fine root biomasses, we identified the percentages of different tree species in the fine root samples using the near infrared reflectance spectroscopy (NIRS) method. Opposite to our hypothesis we did not find any general positive relationship between tree species richness and fine root biomass. A weak positive response found in Italy and Spain seemed to be related to dry environmental conditions during Mediterranean summers. At the Polish site where we could sample deeper soil layers (down to 40 cm), we found more tree fine roots in the deeper layers under species-rich forests, as compared to the monocultures, indicating the ability of trees to explore more resources and to increase soil carbon stocks. Tree species richness did not affect biomass allocation patterns between above- and below-ground parts of the trees.

  8. EAB induced tree mortality impacts ecosystem respiration and tree water use in an experimental forest

    Science.gov (United States)

    Charles E. Flower; Douglas J. Lynch; Kathleen S. Knight; Miquel A. Gonzales-Meler

    2011-01-01

    The invasive emerald ash borer (Agrilus planipennis Fairmaire, EAB) has been spreading across the forest landscape of the Midwest resulting in the rapid decline of ash trees (Fraxinus spp.). Ash trees represent a dominant riparian species in temperate deciduous forests of the Eastern United States (USDA FIA Database). Prior...

  9. Fighting over forest: interactive governance of conflicts over forest and tree resources in Ghana’s high forest zone

    NARCIS (Netherlands)

    Derkyi, M.A.A.

    2012-01-01

    Based on eight case studies, this book analyses conflicts over forests and trees in Ghana’s high forest zone and ways of dealing with them. It thereby addresses the full range of forest and tree-based livelihoods. Combining interactive governance theory with political ecology and conflict theories,

  10. Responses of Tree Growths to Tree Size, Competition, and Topographic Conditions in Sierra Nevada Forests Using Bi-temporal Airborne LiDAR Data

    Science.gov (United States)

    Ma, Q.; Su, Y.; Tao, S.; Guo, Q.

    2016-12-01

    Trees in the Sierra Nevada (SN) forests are experiencing rapid changes due to human disturbances and climatic changes. An improved monitoring of tree growth and understanding of how tree growth responses to different impact factors, such as tree competition, forest density, topographic and hydrologic conditions, are urgently needed in tree growth modeling. Traditional tree growth modeling mainly relied on field survey, which was highly time-consuming and labor-intensive. Airborne Light detection and ranging System (ALS) is increasingly used in forest survey, due to its high efficiency and accuracy in three-dimensional tree structure delineation and terrain characterization. This study successfully detected individual tree growth in height (∆H), crown area (∆A), and crown volume (∆V) over a five-year period (2007-2012) using bi-temporal ALS data in two conifer forest areas in SN. We further analyzed their responses to original tree size, competition indices, forest structure indices, and topographic environmental parameters at individual tree and forest stand scales. Our results indicated ∆H was strongly sensitive to topographic wetness index; whereas ∆A and ∆V were highly responsive to forest density and original tree sizes. These ALS based findings in ∆H were consistent with field measurements. Our study demonstrated the promising potential of using bi-temporal ALS data in forest growth measurements and analysis. A more comprehensive study over a longer temporal period and a wider range of forest stands would give better insights into tree growth in the SN, and provide useful guides for forest growth monitoring, modeling, and management.

  11. Time to get moving: assisted gene flow of forest trees.

    Science.gov (United States)

    Aitken, Sally N; Bemmels, Jordan B

    2016-01-01

    Geographic variation in trees has been investigated since the mid-18th century. Similar patterns of clinal variation have been observed along latitudinal and elevational gradients in common garden experiments for many temperate and boreal species. These studies convinced forest managers that a 'local is best' seed source policy was usually safest for reforestation. In recent decades, experimental design, phenotyping methods, climatic data and statistical analyses have improved greatly and refined but not radically changed knowledge of clines. The maintenance of local adaptation despite high gene flow suggests selection for local adaptation to climate is strong. Concerns over maladaptation resulting from climate change have motivated many new genecological and population genomics studies; however, few jurisdictions have implemented assisted gene flow (AGF), the translocation of pre-adapted individuals to facilitate adaptation of planted forests to climate change. Here, we provide evidence that temperate tree species show clines along climatic gradients sufficiently similar for average patterns or climate models to guide AGF in the absence of species-specific knowledge. Composite provenancing of multiple seed sources can be used to increase diversity and buffer against future climate uncertainty. New knowledge will continue to refine and improve AGF as climates warm further.

  12. Unifying constructal theory of tree roots, canopies and forests.

    Science.gov (United States)

    Bejan, A; Lorente, S; Lee, J

    2008-10-07

    Here, we show that the most basic features of tree and forest architecture can be put on a unifying theoretical basis, which is provided by the constructal law. Key is the integrative approach to understanding the emergence of "designedness" in nature. Trees and forests are viewed as integral components (along with dendritic river basins, aerodynamic raindrops, and atmospheric and oceanic circulation) of the much greater global architecture that facilitates the cyclical flow of water in nature (Fig. 1) and the flow of stresses between wind and ground. Theoretical features derived in this paper are: the tapered shape of the root and longitudinally uniform diameter and density of internal flow tubes, the near-conical shape of tree trunks and branches, the proportionality between tree length and wood mass raised to 1/3, the proportionality between total water mass flow rate and tree length, the proportionality between the tree flow conductance and the tree length scale raised to a power between 1 and 2, the existence of forest floor plans that maximize ground-air flow access, the proportionality between the length scale of the tree and its rank raised to a power between -1 and -1/2, and the inverse proportionality between the tree size and number of trees of the same size. This paper further shows that there exists an optimal ratio of leaf volume divided by total tree volume, trees of the same size must have a larger wood volume fraction in windy climates, and larger trees must pack more wood per unit of tree volume than smaller trees. Comparisons with empirical correlations and formulas based on ad hoc models are provided. This theory predicts classical notions such as Leonardo's rule, Huber's rule, Zipf's distribution, and the Fibonacci sequence. The difference between modeling (description) and theory (prediction) is brought into evidence.

  13. Scientometrics of Forest Health and Tree Diseases: An Overview

    Directory of Open Access Journals (Sweden)

    Marco Pautasso

    2016-01-01

    Full Text Available Maintaining forest health is a worldwide challenge due to emerging tree diseases, shifts in climate conditions and other global change stressors. Research on forest health is thus accumulating rapidly, but there has been little use of scientometric approaches in forest pathology and dendrology. Scientometrics is the quantitative study of trends in the scientific literature. As with all tools, scientometrics needs to be used carefully (e.g., by checking findings in multiple databases and its results must be interpreted with caution. In this overview, we provide some examples of studies of patterns in the scientific literature related to forest health and tree pathogens. Whilst research on ash dieback has increased rapidly over the last years, papers mentioning the Waldsterben have become rare in the literature. As with human health and diseases, but in contrast to plant health and diseases, there are consistently more publications mentioning “tree health” than “tree disease,” possibly a consequence of the often holistic nature of forest pathology. Scientometric tools can help balance research attention towards understudied emerging risks to forest trees, as well as identify temporal trends in public interest in forests and their health.

  14. Belowground carbon trade among tall trees in a temperate forest.

    Science.gov (United States)

    Klein, Tamir; Siegwolf, Rolf T W; Körner, Christian

    2016-04-15

    Forest trees compete for light and soil resources, but photoassimilates, once produced in the foliage, are not considered to be exchanged between individuals. Applying stable carbon isotope labeling at the canopy scale, we show that carbon assimilated by 40-meter-tall spruce is traded over to neighboring beech, larch, and pine via overlapping root spheres. Isotope mixing signals indicate that the interspecific, bidirectional transfer, assisted by common ectomycorrhiza networks, accounted for 40% of the fine root carbon (about 280 kilograms per hectare per year tree-to-tree transfer). Although competition for resources is commonly considered as the dominant tree-to-tree interaction in forests, trees may interact in more complex ways, including substantial carbon exchange.

  15. Rapid Assessment of Tree Debris Following Urban Forest Ice Storms

    Science.gov (United States)

    Richard J. Hauer; Angela J. Hauer; Dudley R. Hartel; Jill R. Johnson

    2011-01-01

    This paper presents a rapid assessment method to estimate urban tree debris following an ice storm. Data were collected from 60 communities to quantify tree debris volumes, mostly from public rights-of-way, following ice storms based on community infrastructure, weather parameters, and urban forest structure. Ice thickness, area of a community, and street distance are...

  16. Seeing Central African forests through their largest trees

    NARCIS (Netherlands)

    Bastin, J.F.; Barbier, N.; Réjou-Méchain, M.; Fayolle, A.; Gourlet-Fleury, S.; Maniatis, D.; Haulleville, De T.; Baya, F.; Beeckman, H.; Beina, D.; Couteron, P.; Chuyong, G.; Dauby, G.; Doucet, J.L.; Droissart, V.; Dufrêne, M.; Ewango, C.E.N.; Gillet, F.; Gonmadje, C.H.; Hart, T.; Kavali, T.; Kenfack, D.; Libalah, M.; Malhi, Y.; Makana, J.R.; Pélissier, R.; Ploton, P.; Serckx, S.; Sonké, B.; Stevart, T.; Thomas, D.W.; Cannière, De C.; Bogaert, J.

    2015-01-01

    Large tropical trees and a few dominant species were recently identified as the main structuring elements of tropical forests. However, such result did not translate yet into quantitative approaches which are essential to understand, predict and monitor forest functions and composition over large,

  17. Lianas and trees in tropical forests in south China

    NARCIS (Netherlands)

    Cai, Z.Q.

    2007-01-01

    Lianas (woody climbers) and trees are the most important life-forms in most tropical forests. In many of these forests lianas are abundant and diverse and their presence is often a key physiognomic feature. Lianas contribute substantially to the floristic, structural and functional diversity of trop

  18. Lianas and trees in tropical forests in south China

    NARCIS (Netherlands)

    Cai, Z.Q.

    2007-01-01

    Lianas (woody climbers) and trees are the most important life-forms in most tropical forests. In many of these forests lianas are abundant and diverse and their presence is often a key physiognomic feature. Lianas contribute substantially to the floristic, structural and functional diversity of trop

  19. Lianas and trees in tropical forests in south China

    NARCIS (Netherlands)

    Cai, Z.Q.

    2007-01-01

    Lianas (woody climbers) and trees are the most important life-forms in most tropical forests. In many of these forests lianas are abundant and diverse and their presence is often a key physiognomic feature. Lianas contribute substantially to the floristic, structural and functional diversity of

  20. Scientometrics of Forest Health and Tree Diseases: An Overview

    OpenAIRE

    Marco Pautasso

    2016-01-01

    Maintaining forest health is a worldwide challenge due to emerging tree diseases, shifts in climate conditions and other global change stressors. Research on forest health is thus accumulating rapidly, but there has been little use of scientometric approaches in forest pathology and dendrology. Scientometrics is the quantitative study of trends in the scientific literature. As with all tools, scientometrics needs to be used carefully (e.g., by checking findings in multiple databases) and its ...

  1. Unmanned aerial survey of fallen trees in a deciduous broadleaved forest in eastern Japan.

    Science.gov (United States)

    Inoue, Tomoharu; Nagai, Shin; Yamashita, Satoshi; Fadaei, Hadi; Ishii, Reiichiro; Okabe, Kimiko; Taki, Hisatomo; Honda, Yoshiaki; Kajiwara, Koji; Suzuki, Rikie

    2014-01-01

    Since fallen trees are a key factor in biodiversity and biogeochemical cycling, information about their spatial distribution is of use in determining species distribution and nutrient and carbon cycling in forest ecosystems. Ground-based surveys are both time consuming and labour intensive. Remote-sensing technology can reduce these costs. Here, we used high-spatial-resolution aerial photographs (0.5-1.0 cm per pixel) taken from an unmanned aerial vehicle (UAV) to survey fallen trees in a deciduous broadleaved forest in eastern Japan. In nine sub-plots we found a total of 44 fallen trees by ground survey. From the aerial photographs, we identified 80% to 90% of fallen trees that were >30 cm in diameter or >10 m in length, but missed many that were narrower or shorter. This failure may be due to the similarity of fallen trees to trunks and branches of standing trees or masking by standing trees. Views of the same point from different angles may improve the detection rate because they would provide more opportunity to detect fallen trees hidden by standing trees. Our results suggest that UAV surveys will make it possible to monitor the spatial and temporal variations in forest structure and function at lower cost.

  2. Decoupled leaf and stem economics in rain forest trees.

    Science.gov (United States)

    Baraloto, Christopher; Timothy Paine, C E; Poorter, Lourens; Beauchene, Jacques; Bonal, Damien; Domenach, Anne-Marie; Hérault, Bruno; Patiño, Sandra; Roggy, Jean-Christophe; Chave, Jerome

    2010-11-01

    Cross-species analyses of plant functional traits have shed light on factors contributing to differences in performance and distribution, but to date most studies have focused on either leaves or stems. We extend these tissue-specific analyses of functional strategy towards a whole-plant approach by integrating data on functional traits for 13 448 leaves and wood tissues from 4672 trees representing 668 species of Neotropical trees. Strong correlations amongst traits previously defined as the leaf economics spectrum reflect a tradeoff between investments in productive leaves with rapid turnover vs. costly physical leaf structure with a long revenue stream. A second axis of variation, the 'stem economics spectrum', defines a similar tradeoff at the stem level: dense wood vs. high wood water content and thick bark. Most importantly, these two axes are orthogonal, suggesting that tradeoffs operate independently at the leaf and at the stem levels. By simplifying the multivariate ecological strategies of tropical trees into positions along these two spectra, our results provide a basis to improve global vegetation models predicting responses of tropical forests to global change.

  3. Tree species, tree genotypes and tree genotypic diversity levels affect microbe-mediated soil ecosystem functions in a subtropical forest

    Science.gov (United States)

    Purahong, Witoon; Durka, Walter; Fischer, Markus; Dommert, Sven; Schöps, Ricardo; Buscot, François; Wubet, Tesfaye

    2016-11-01

    Tree species identity and tree genotypes contribute to the shaping of soil microbial communities. However, knowledge about how these two factors influence soil ecosystem functions is still lacking. Furthermore, in forest ecosystems tree genotypes co-occur and interact with each other, thus the effects of tree genotypic diversity on soil ecosystem functions merit attention. Here we investigated the effects of tree species, tree genotypes and genotypic diversity levels, alongside soil physicochemical properties, on the overall and specific soil enzyme activity patterns. Our results indicate that tree species identity, tree genotypes and genotypic diversity level have significant influences on overall and specific soil enzyme activity patterns. These three factors influence soil enzyme patterns partly through effects on soil physicochemical properties and substrate quality. Variance partitioning showed that tree species identity, genotypic diversity level, pH and water content all together explained ~30% variations in the overall patterns of soil enzymes. However, we also found that the responses of soil ecosystem functions to tree genotypes and genotypic diversity are complex, being dependent on tree species identity and controlled by multiple factors. Our study highlights the important of inter- and intra-specific variations in tree species in shaping soil ecosystem functions in a subtropical forest.

  4. Tree species, tree genotypes and tree genotypic diversity levels affect microbe-mediated soil ecosystem functions in a subtropical forest

    Science.gov (United States)

    Purahong, Witoon; Durka, Walter; Fischer, Markus; Dommert, Sven; Schöps, Ricardo; Buscot, François; Wubet, Tesfaye

    2016-01-01

    Tree species identity and tree genotypes contribute to the shaping of soil microbial communities. However, knowledge about how these two factors influence soil ecosystem functions is still lacking. Furthermore, in forest ecosystems tree genotypes co-occur and interact with each other, thus the effects of tree genotypic diversity on soil ecosystem functions merit attention. Here we investigated the effects of tree species, tree genotypes and genotypic diversity levels, alongside soil physicochemical properties, on the overall and specific soil enzyme activity patterns. Our results indicate that tree species identity, tree genotypes and genotypic diversity level have significant influences on overall and specific soil enzyme activity patterns. These three factors influence soil enzyme patterns partly through effects on soil physicochemical properties and substrate quality. Variance partitioning showed that tree species identity, genotypic diversity level, pH and water content all together explained ~30% variations in the overall patterns of soil enzymes. However, we also found that the responses of soil ecosystem functions to tree genotypes and genotypic diversity are complex, being dependent on tree species identity and controlled by multiple factors. Our study highlights the important of inter- and intra-specific variations in tree species in shaping soil ecosystem functions in a subtropical forest. PMID:27857198

  5. Larger trees suffer most during drought in forests worldwide

    Science.gov (United States)

    Bennett, Amy C.; McDowell, Nathan G.; Allen, Craig D.; Anderson-Teixeira, Kristina J.

    2015-01-01

    The frequency of severe droughts is increasing in many regions around the world as a result of climate change. Droughts alter the structure and function of forests. Site- and region-specific studies suggest that large trees, which play keystone roles in forests and can be disproportionately important to ecosystem carbon storage and hydrology, exhibit greater sensitivity to drought than small trees. Here, we synthesize data on tree growth and mortality collected during 40 drought events in forests worldwide to see whether this size-dependent sensitivity to drought holds more widely. We find that droughts consistently had a more detrimental impact on the growth and mortality rates of larger trees. Moreover, drought-related mortality increased with tree size in 65% of the droughts examined, especially when community-wide mortality was high or when bark beetles were present. The more pronounced drought sensitivity of larger trees could be underpinned by greater inherent vulnerability to hydraulic stress, the higher radiation and evaporative demand experienced by exposed crowns, and the tendency for bark beetles to preferentially attack larger trees. We suggest that future droughts will have a more detrimental impact on the growth and mortality of larger trees, potentially exacerbating feedbacks to climate change.

  6. Temperate Forest Methane Sink Diminished by Tree Emissions

    Science.gov (United States)

    Megonigal, P.; Pitz, S.

    2015-12-01

    Global budgets ascribe 4-10% of atmospheric CH4 sinks to upland soils and assume that soils are the sole surface for CH4 exchange between upland forests and the atmosphere. The prevailing dogma that upland forests are sinks of atmospheric CH4 was challenged a decade ago by large discrepancies in bottom-up versus top-down models of CH4 concentrations over upland forests that are still unexplained. Evidence of a novel abiotic mechanism for CH4 production from plant tissue is too small to explain the discrepancy. Alternative hypotheses for this observation have been proposed, but not tested. Here we demonstrate that CH4 is emitted from the stems of dominant tree species in an upland forest. Tree emissions occur throughout the growing season while soils adjacent to the trees are consuming CH4, challenging the concept that forests are uniform sinks of CH4. Scaling by stem surface area showed the forest to be a net CH4 source during a wet sample in June and a reduced CH4 sink by 5% annually. High frequency measurements revealed diurnal cycling in the rate of CH4 emissions, pointing to soils as the CH4 source and transpiration as the most likely pathway for CH4 transport. We propose the forests are smaller CH4 sinks than previously estimated due to stem emissions. Stem emissions may be particularly important in upland tropical forests characterized by high rainfall and transpiration, resolving differences between models and measurements.

  7. Height-related changes in leaf photosynthetic traits in diverse Bornean tropical rain forest trees.

    Science.gov (United States)

    Kenzo, Tanaka; Inoue, Yuta; Yoshimura, Mitsunori; Yamashita, Megumi; Tanaka-Oda, Ayumi; Ichie, Tomoaki

    2015-01-01

    Knowledge of variations in morphophysiological leaf traits with forest height is essential for quantifying carbon and water fluxes from forest ecosystems. Here, we examined changes in leaf traits with forest height in diverse tree species and their role in environmental acclimation in a tropical rain forest in Borneo that does not experience dry spells. Height-related changes in leaf physiological and morphological traits [e.g., maximum photosynthetic rate (Amax), stomatal conductance (gs), dark respiration rate (Rd), carbon isotope ratio (δ(13)C), nitrogen (N) content, and leaf mass per area (LMA)] from understory to emergent trees were investigated in 104 species in 29 families. We found that many leaf area-based physiological traits (e.g., A(max-area), Rd, gs), N, δ(13)C, and LMA increased linearly with tree height, while leaf mass-based physiological traits (e.g., A(max-mass)) only increased slightly. These patterns differed from other biomes such as temperate and tropical dry forests, where trees usually show decreased photosynthetic capacity (e.g., A(max-area), A(max-mass)) with height. Increases in photosynthetic capacity, LMA, and δ(13)C are favored under bright and dry upper canopy conditions with higher photosynthetic productivity and drought tolerance, whereas lower R d and LMA may improve shade tolerance in lower canopy trees. Rapid recovery of leaf midday water potential to theoretical gravity potential during the night supports the idea that the majority of trees do not suffer from strong drought stress. Overall, leaf area-based photosynthetic traits were associated with tree height and the degree of leaf drought stress, even in diverse tropical rain forest trees.

  8. Tree agency and urban forest governance

    DEFF Research Database (Denmark)

    Konijnendijk, Cecil Cornelis

    2016-01-01

    places, something which needs to be better recognised in governance. Case studies show that this type of non-reflexive agency of urban trees often has emerged in the case of acute threats to urban trees or woodlands. New approaches such as those of biophilic urbanism and biocultural diversity can assist...

  9. Utilizing forest tree genetic diversity for an adaptation of forest to climate change

    Science.gov (United States)

    Schueler, Silvio; Lackner, Magdalena; Chakraborty, Debojyoti

    2017-04-01

    Since climate conditions are considered to be major determinants of tree species' distribution ranges and drivers of local adaptation, anthropogenic climate change (CC) is expected to modify the distribution of tree species, tree species diversity and the forest ecosystems connected to these species. The expected speed of environmental change is significantly larger than the natural migration and adaptation capacity of trees and makes spontaneous adjustment of forest ecosystems improbable. Planting alternative tree species and utilizing the tree species' intrinsic adaptive capacity are considered to be the most promising adaptation strategy. Each year about 900 million seedlings of the major tree species are being planted in Central Europe. At present, the utilization of forest reproductive material is mainly restricted to nationally defined ecoregions (seed/provenance zones), but when seedlings planted today become adult, they might be maladapted, as the climate conditions within ecoregions changed significantly. In the cooperation project SUSTREE, we develop transnational delineation models for forest seed transfer and genetic conservation based on species distribution models and available intra-specific climate-response function. These models are being connected to national registers of forest reproductive material in order support nursery and forest managers by selecting the appropriate seedling material for future plantations. In the long-term, European and national policies as well as regional recommendations for provenances use need to adapted to consider the challenges of climate change.

  10. Seeing Central African forests through their largest trees

    Science.gov (United States)

    Bastin, J.-F.; Barbier, N.; Réjou-Méchain, M.; Fayolle, A.; Gourlet-Fleury, S.; Maniatis, D.; de Haulleville, T.; Baya, F.; Beeckman, H.; Beina, D.; Couteron, P.; Chuyong, G.; Dauby, G.; Doucet, J.-L.; Droissart, V.; Dufrêne, M.; Ewango, C.; Gillet, J. F.; Gonmadje, C. H.; Hart, T.; Kavali, T.; Kenfack, D.; Libalah, M.; Malhi, Y.; Makana, J.-R.; Pélissier, R.; Ploton, P.; Serckx, A.; Sonké, B.; Stevart, T.; Thomas, D. W.; de Cannière, C.; Bogaert, J.

    2015-08-01

    Large tropical trees and a few dominant species were recently identified as the main structuring elements of tropical forests. However, such result did not translate yet into quantitative approaches which are essential to understand, predict and monitor forest functions and composition over large, often poorly accessible territories. Here we show that the above-ground biomass (AGB) of the whole forest can be predicted from a few large trees and that the relationship is proved strikingly stable in 175 1-ha plots investigated across 8 sites spanning Central Africa. We designed a generic model predicting AGB with an error of 14% when based on only 5% of the stems, which points to universality in forest structural properties. For the first time in Africa, we identified some dominant species that disproportionally contribute to forest AGB with 1.5% of recorded species accounting for over 50% of the stock of AGB. Consequently, focusing on large trees and dominant species provides precise information on the whole forest stand. This offers new perspectives for understanding the functioning of tropical forests and opens new doors for the development of innovative monitoring strategies.

  11. Tree age, disturbance history, and carbon stocks and fluxes in subalpine Rocky Mountain forests

    Science.gov (United States)

    J.B. Bradford; R.A. Birdsey; L.A. Joyce; M.G. Ryan

    2008-01-01

    Forest carbon stocks and fluxes vary with forest age, and relationships with forest age are often used to estimate fluxes for regional or national carbon inventories. Two methods are commonly used to estimate forest age: observed tree age or time since a known disturbance. To clarify the relationships between tree age, time since disturbance and forest carbon storage...

  12. Ancient Forests and the Tree-Ring Reconstruction of Past Climate (Ancient Forests and Dendroclimatology)

    Energy Technology Data Exchange (ETDEWEB)

    Stahle, David (Tree-Ring Laboratory, University of Arkansas)

    2003-02-12

    The original presettlement forests of North America have been dramatically altered, but thousands of unmolested ancient forests survive on remote or noncommercial terrain, including dry-site eastern hardwoods such as chestnut oak and post oak, the pinyon-juniper woodlands of the semiarid West, oak woodlands of California and in northeast Mexico, and the boreal forests of Canada and Alaska. Long tree-ring chronologies derived from these ancient forest remnants provide irreplaceable archives of environmental variability which are crucial for evaluating present and future change. Temperature sensitive tree -ring chronologies from cold treeline environments place 20th century warming into long historical perspective, and moisture sensitive tree-ring chronologies provide analogs to the decadal moisture regimes of the 20th century. These tree-ring data suggests that the 16th century megadrought was the most severe-sustained drought to impact North America in 1500 years, and had huge environmental and social impacts at the dawn of European settlement.

  13. Climate and Edaphic Controls on Humid Tropical Forest Tree Height

    Science.gov (United States)

    Yang, Y.; Saatchi, S. S.; Xu, L.

    2014-12-01

    Uncertainty in the magnitude and spatial variations of forest carbon density in tropical regions is due to under sampling of forest structure from inventory plots and the lack of regional allometry to estimate the carbon density from structure. Here we quantify the variation of tropical forest structure by using more than 2.5 million measurements of canopy height from systematic sampling of Geoscience Laser Altimeter System (GLAS) satellite observations between 2004 to 2008 and examine the climate and edaphic variables influencing the variations. We used top canopy height of GLAS footprints (~ 0.25 ha) to grid the statistical mean and 90 percentile of samples at 0.5 degrees to capture the regional variability of large trees in tropics. GLAS heights were also aggregated based on a stratification of tropical regions using soil, elevation, and forest types. Both approaches provided consistent patterns of statistically dominant large trees and the least heterogeneity, both as strong drivers of distribution of high biomass forests. Statistical models accounting for spatial autocorrelation suggest that climate, soil and spatial features together can explain more than 60% of the variations in observed tree height information, while climate-only variables explains about one third of the first-order changes in tree height. Soil basics, including physical compositions such as clay and sand contents, chemical properties such as PH values and cation-exchange capacity, as well as biological variables such as organic matters, all present independent but statistically significant relationships to tree height variations. The results confirm other landscape and regional studies that soil fertility, geology and climate may jointly control a majority of the regional variations of forest structure in pan-tropics and influencing both biomass stocks and dynamics. Consequently, other factors such as biotic and disturbance regimes, not included in this study, may have less influence on

  14. Patterns of drought tolerance in major European temperate forest trees: climatic drivers and levels of variability.

    Science.gov (United States)

    Zang, Christian; Hartl-Meier, Claudia; Dittmar, Christoph; Rothe, Andreas; Menzel, Annette

    2014-12-01

    The future performance of native tree species under climate change conditions is frequently discussed, since increasingly severe and more frequent drought events are expected to become a major risk for forest ecosystems. To improve our understanding of the drought tolerance of the three common European temperate forest tree species Norway spruce, silver fir and common beech, we tested the influence of climate and tree-specific traits on the inter and intrasite variability in drought responses of these species. Basal area increment data from a large tree-ring network in Southern Germany and Alpine Austria along a climatic cline from warm-dry to cool-wet conditions were used to calculate indices of tolerance to drought events and their variability at the level of individual trees and populations. General patterns of tolerance indicated a high vulnerability of Norway spruce in comparison to fir and beech and a strong influence of bioclimatic conditions on drought response for all species. On the level of individual trees, low-growth rates prior to drought events, high competitive status and low age favored resilience in growth response to drought. Consequently, drought events led to heterogeneous and variable response patterns in forests stands. These findings may support the idea of deliberately using spontaneous selection and adaption effects as a passive strategy of forest management under climate change conditions, especially a strong directional selection for more tolerant individuals when frequency and intensity of summer droughts will increase in the course of global climate change.

  15. Global Changes And Tree Growth Rate In The Amazon Forest

    Science.gov (United States)

    Camargo, P. B.; Vieira, S. A.; Trumbore, S. E.

    2003-12-01

    A better understanding of the variations in the dynamics and structure of trees in tropical forests is necessary for predicting the potential for these ecosystems to lose or store carbon. In general, tropical forests have been treated as if all trees behaved similarly, and little is known about how forests vary across the large extent of the Amazon basin. Our data show large differences in forest structure, biomass, and tree growth rates among plots under study in three locations in Brazil: ZF-2 Bionte/Jacaranda plots \\(Manaus\\), Catuaba Reserve \\(Rio Branco\\), and Tapaj¢s National Forest \\(Santarém\\). These locations span an east-west transect of the Amazon basin with different dry-season lengths. The number of stems >10cm diameter and stocks of C in aboveground biomass are the highest in Manaus \\(626ha-1, 180.1Mg.C.ha-1\\), than Rio Branco \\(466ha-1, 122.1Mg.C.ha-1\\) or Santarém \\(460ha-1, 140.6Mg.C.ha-1\\). Estimates of mean annual accumulation of C ranged from 1.6 \\(Manaus\\) and 2.5 \\(Rio Branco\\) to 2.8Mg.C.ha-1.yr-1 \\(Santarém\\). Trees in the 10-30cm diameter-size showed the highest accumulation of C \\(38%, 55%, and 56% - Manaus, Rio Branco, and Santarém, respectively\\). Our results showed marked seasonal growth, with the highest growth rates in the wet-season and the lowest growth rates in the dry-season. This effect was most evident for trees with diameter >50cm. The comparison of the three areas investigated suggests that forests experiencing a longer dry-season have larger annual diameter growth increments for individual trees. Tree average age was larger in Manaus where the increment was smaller. In all the three areas it was found specimens with DBH smaller than 30cm, but with ages over 200 years. It was found a specimen of 17 cm of DBH and age of 920 years. The fact that small trees can reach old ages may alter the scope of the present forest management planning whose focus is tree species of economical interest and the time the

  16. Forest Structure, Composition and Above Ground Biomass of Tree Community in Tropical Dry Forests of Eastern Ghats, India

    Directory of Open Access Journals (Sweden)

    Sudam Charan SAHU

    2016-03-01

    Full Text Available The study of biomass, structure and composition of tropical forests implies also the investigation of forest productivity, protection of biodiversity and removal of CO2 from the atmosphere via C-stocks. The hereby study aimed at understanding the forest structure, composition and above ground biomass (AGB of tropical dry deciduous forests of Eastern Ghats, India, where as a total of 128 sample plots (20 x 20 meters were laid. The study showed the presence of 71 tree species belonging to 57 genera and 30 families. Dominant tree species was Shorea robusta with an importance value index (IVI of 40.72, while Combretaceae had the highest family importance value (FIV of 39.01. Mean stand density was 479 trees ha-1 and a basal area of 15.20 m2 ha-1. Shannon’s diversity index was 2.01 ± 0.22 and Simpson’s index was 0.85 ± 0.03. About 54% individuals were in the size between 10 and 20 cm DBH, indicating growing forests. Mean above ground biomass value was 98.87 ± 68.8 Mg ha-1. Some of the dominant species that contributed to above ground biomass were Shorea robusta (17.2%, Madhuca indica (7.9%, Mangifera indica (6.9%, Terminalia alata (6.9% and Diospyros melanoxylon (4.4%, warranting extra efforts for their conservation. The results suggested that C-stocks of tropical dry forests can be enhanced by in-situ conserving the high C-density species and also by selecting these species for afforestation and stand improvement programs. Correlations were computed to understand the relationship between above ground biomass, diversity indices, density and basal area, which may be helpful for implementation of REDD+ (reduce emissions from deforestation and forest degradation, and foster conservation, sustainable management of forests and enhancement of forest carbon stocks scheme.

  17. Nitrous oxide fluxes from forest floor, tree stems and canopies of boreal tree species during spring

    Science.gov (United States)

    Haikarainen, Iikka; Halmeenmäki, Elisa; Machacova, Katerina; Pihlatie, Mari

    2017-04-01

    Boreal forests are considered as small sources of atmospheric nitrous oxide (N2O) due to microbial N2O production in the soils. Recent evidence shows that trees may play an important role in N2O exchange of forest ecosystems by offering pathways for soil produced N2O to the atmosphere. To confirm magnitude, variability and the origin of the tree mediated N2O emissions more research is needed, especially in boreal forests which have been in a minority in such investigation. We measured forest floor, tree stem and shoot N2O exchange of three boreal tree species at the beginning of the growing season (13.4.-13.6.2015) at SMEAR II station in Hyytiälä, located in Southern Finland (61˚ 51´N, 24˚ 17´E, 181 a.s.l.). The fluxes were measured in silver birch (Betula pendula), downy birch (B. pubescens) and Norway spruce (Picea abies) on two sites with differing soil type and characteristics (paludified and mineral soil), vegetation cover and forest structure. The aim was to study the vertical profile of N2O fluxes at stem level and to observe temporal changes in N2O fluxes over the beginning of the growing season. The N2O exchange was determined using the static chamber technique and gas chromatographic analyses. Scaffold towers were used for measurements at multiple stem heights and at the canopy level. Overall, the N2O fluxes from the forest floor and trees at both sites were very small and close to the detection limit. The measured trees mainly emitted N2O from their stems and shoots, while the forest floor acted as a sink of N2O at the paludified site and as a small source of N2O at the mineral soil site. Stem emissions from all the trees at both sites were on average below 0.5 μg N2O m-2 of stem area h-1, and the shoot emissions varied between 0.2 and 0.5 ng N2O m-2 g-1 dry biomass. When the N2O fluxes were scaled up to the whole forest ecosystem, based on the tree biomass and stand density, the N2O emissions from birch and spruce trees at the paludified site

  18. Seeing the forest for the trees

    DEFF Research Database (Denmark)

    Ribbons, Relena Rose

    (nirS and nirK), and the general markers for bacteria (16S) and fungi (ITS). Two paired high-resolution laboratory methods were used to investigate the relationships between trees, soils, and the microbial communities, including molecular techniques such as quantitative polymerase chain reaction (q...... corresponded with western red cedar (Thuja plicata) had highest abundances of bacterial 16S and amoA AOA genes. A manipulative mesocosm (the Rhizotron) in Wales was used to determine how seedlings species mixtures and monocultures influenced tree growth, soil physical properties and soil microbial community...... for parsing out relationships between site, tree species identity and ecosystem functions, with the largest links observed between gross ammonification and microbial communities....

  19. Measuring Tree Seedlings and Associated Understory Vegetation in Pennsylvania's Forests

    Science.gov (United States)

    William H. McWilliams; Todd W. Bowersox; Patrick H. Brose; Daniel A. Devlin; James C. Finley; Kurt W. Gottschalk; Steve Horsley; Susan L. King; Brian M. LaPoint; Tonya W. Lister; Larry H. McCormick; Gary W. Miller; Charles T. Scott; Harry Steele; Kim C. Steiner; Susan L. Stout; James A. Westfall; Robert L. White

    2005-01-01

    The Northeastern Research Station's Forest Inventory and Analysis (NE-FIA) unit is conducting the Pennsylvania Regeneration Study (PRS) to evaluate composition and abundance of tree seedlings and associated vegetation. Sampling methods for the PRS were tested and developed in a pilot study to determine the appropriate number of 2-m microplots needed to capture...

  20. Exploring gender and forest, tree and agroforestry value chains

    NARCIS (Netherlands)

    Haverhals, Merel; Ingram, V.J.; Elias, M.; Basnett, Bimbika Sijapati; Petersen, S.

    2016-01-01

    •This systematic review of literature on gender and value chains of forest, tree and agroforestry (FTA) products examined gender differences and inequalities in FTA value chains, factors that influence these differences, and interventions to foster greater gender equity.
    •There is limited inform

  1. Vertical stratification of forest canopy for segmentation of understory trees within small-footprint airborne LiDAR point clouds

    Science.gov (United States)

    Hamraz, Hamid; Contreras, Marco A.; Zhang, Jun

    2017-08-01

    Airborne LiDAR point cloud representing a forest contains 3D data, from which vertical stand structure even of understory layers can be derived. This paper presents a tree segmentation approach for multi-story stands that stratifies the point cloud to canopy layers and segments individual tree crowns within each layer using a digital surface model based tree segmentation method. The novelty of the approach is the stratification procedure that separates the point cloud to an overstory and multiple understory tree canopy layers by analyzing vertical distributions of LiDAR points within overlapping locales. The procedure does not make a priori assumptions about the shape and size of the tree crowns and can, independent of the tree segmentation method, be utilized to vertically stratify tree crowns of forest canopies. We applied the proposed approach to the University of Kentucky Robinson Forest - a natural deciduous forest with complex and highly variable terrain and vegetation structure. The segmentation results showed that using the stratification procedure strongly improved detecting understory trees (from 46% to 68%) at the cost of introducing a fair number of over-segmented understory trees (increased from 1% to 16%), while barely affecting the overall segmentation quality of overstory trees. Results of vertical stratification of the canopy showed that the point density of understory canopy layers were suboptimal for performing a reasonable tree segmentation, suggesting that acquiring denser LiDAR point clouds would allow more improvements in segmenting understory trees. As shown by inspecting correlations of the results with forest structure, the segmentation approach is applicable to a variety of forest types.

  2. Tree-ring widths are good proxies of annual variation in forest productivity in temperate forests.

    Science.gov (United States)

    Xu, Kai; Wang, Xiangping; Liang, Penghong; An, Hailong; Sun, Han; Han, Wei; Li, Qiaoyan

    2017-05-16

    Tree rings have long been used to calibrate the net primary production (NPP) time-series predicted by process-based models, based on an implicit assumption that ring-width indices (RWI) can well reflect temporal NPP change. However, this assumption has seldom been tested systematically. In this study, 36 plots were set in three forest types from four sites along a latitudinal gradient in northeast China. For each plot, we constructed chronologies and stand NPP of the past 20 years to examine: is RWI a good proxy of inter-annual variation of forest NPP for different forest types under different climate? If it is, why? Our results indicate that RWI was closely related to stand NPP in most cases, and could be used as a good proxy of NPP in temperate forests. Standard and arstan chronologies were better related to NPP series than residual chronology. Stand NPP time-series were mainly determined by large trees, and the correlation between RWI and NPP was also higher for larger trees. We suggest that large trees and dominant species of canopy layer should be sampled for chronology construction. Large trees are major contributors of forest biomass and productivity, and should have priority in forest conservation in a rapid-warming world.

  3. Quality Measures for Improving Technology Trees

    Directory of Open Access Journals (Sweden)

    Teemu J. Heinimäki

    2015-01-01

    Full Text Available The quality of technology trees in digital games can be improved by adjusting their structural and quantitative properties. Therefore, there is a demand for recognizing and measuring such properties. Part of the process can be automated; there are properties measurable by computers, and analyses based on the results (and visualizations of them may help to produce significantly better technology trees, even practically without extra workload for humans. In this paper, we introduce useful technology tree properties and novel measuring features implemented into our software tool for manipulating technology trees.

  4. The role of forest floor and trees to the ecosystem scale methane budget of boreal forests

    Science.gov (United States)

    Pihlatie, Mari; Halmeenmäki, Elisa; Peltola, Olli; Haikarainen, Iikka; Heinonsalo, Jussi; Santalahti, Minna; Putkinen, Anuliina; Fritze, Hannu; Urban, Otmar; Machacova, Katerina

    2016-04-01

    Boreal forests are considered as a sink of atmospheric methane (CH4) due to the activity of CH4 oxidizing bacteria (methanotrophs) in the soil. This soil CH4 sink is especially strong for upland forest soils, whereas forests growing on organic soils may act as small sources due to the domination of CH4 production by methanogens in the anaerobic parts of the soil. The role of trees to the ecosystem-scale CH4 fluxes has until recently been neglected due to the perception that trees do not contribute to the CH4 exchange, and also due to difficulties in measuring the CH4 exchange from trees. Findings of aerobic CH4 formation in plants and emissions from tree-stems in temperate and tropical forests during the past decade demonstrate that our understanding of CH4 cycling in forest ecosystems is not complete. Especially the role of forest canopies still remain unresolved, and very little is known of CH4 fluxes from trees in boreal region. We measured the CH4 exchange of tree-stems and tree-canopies from pine (Pinus sylvestris), spruce (Picea abies) and birch (Betula pubescens, Betula pendula) trees growing in Southern Finland (SMEAR II station) on varying soil conditions, from upland mineral soils to paludified soil. We compared the CH4 fluxes from trees to forest-floor CH4 exchange, both measured by static chambers, and to CH4 fluxes measured above the forest canopy by a flux gradient technique. We link the CH4 fluxes from trees and forest floor to physiological activity of the trees, such as transpiration, sap-flow, CO2 net ecosystem exchange (NEE), soil properties such as temperature and moisture, and to the presence of CH4 producing methanogens and CH4 oxidizing methanotrophs in trees or soil. The above canopy CH4 flux measurements show that the whole forest ecosystem was a small source of CH4 over extended periods in the spring and summer 2012, 2014 and 2015. Throughout the 2013-2014 measurements, the forest floor was in total a net sink of CH4, with variation

  5. Tree height integrated into pan-tropical forest biomass estimates

    Directory of Open Access Journals (Sweden)

    T. R. Feldpausch

    2012-03-01

    Full Text Available Above-ground tropical tree biomass and carbon storage estimates commonly ignore tree height. We estimate the effect of incorporating height (H on forest biomass estimates using 37 625 concomitant H and diameter measurements (n = 327 plots and 1816 harvested trees (n = 21 plots tropics-wide to answer the following questions:

    1. For trees of known biomass (from destructive harvests which H-model form and geographic scale (plot, region, and continent most reduces biomass estimate uncertainty?

    2. How much does including H relationship estimates derived in (1 reduce uncertainty in biomass estimates across 327 plots spanning four continents?

    3. What effect does the inclusion of H in biomass estimates have on plot- and continental-scale forest biomass estimates?

    The mean relative error in biomass estimates of the destructively harvested trees was half (mean 0.06 when including H, compared to excluding H (mean 0.13. The power- and Weibull-H asymptotic model provided the greatest reduction in uncertainty, with the regional Weibull-H model preferred because it reduces uncertainty in smaller-diameter classes that contain the bulk of biomass per hectare in most forests. Propagating the relationships from destructively harvested tree biomass to each of the 327 plots from across the tropics shows errors are reduced from 41.8 Mg ha−1 (range 6.6 to 112.4 to 8.0 Mg ha−1 (−2.5 to 23.0 when including $H$. For all plots, above-ground live biomass was 52.2±17.3 Mg ha−1 lower when including H estimates (13%, with the greatest reductions in estimated biomass in Brazilian Shield forests and relatively no change in the Guyana Shield, central Africa and southeast Asia. We show fundamentally different stand structure across the four forested tropical continents, which affects biomass reductions due to $H

  6. Propagation of Native Tree Species to Restore Subtropical Evergreen Broad-Leaved Forests in SW China

    Directory of Open Access Journals (Sweden)

    Yang Lu

    2016-01-01

    Full Text Available Subtropical evergreen broad-leaved forest (EBLF is a widespread vegetation type throughout East Asia that has suffered extensive deforestation and fragmentation. Selection and successful propagation of native tree species are important for improving ecological restoration of these forests. We carried out a series of experiments to study the propagation requirements of indigenous subtropical tree species in Southwest China. Seeds of 21 tree species collected from the natural forest were materials for the experiment. This paper examines the seed germination and seedling growth performance of these species in a nursery environment. Germination percentages ranged from 41% to 96% and were ≥50% for 19 species. The median length of germination time (MLG ranged from 24 days for Padus wilsonii to 144 days for Ilex polyneura. Fifteen species can reach the transplant size (≥15 cm in height within 12 months of seed collection. Nursery-grown seedlings for each species were planted in degraded site. Two years after planting, the seedling survival rate was >50% in 18 species and >80% in 12 species. Based on these results, 17 species were recommended as appropriate species for nursery production in forest restoration projects. Our study contributes additional knowledge regarding the propagation techniques for various native subtropical tree species in nurseries for forest restoration.

  7. Varying rotation lengths in northern production forests: Implications for habitats provided by retention and production trees.

    Science.gov (United States)

    Felton, Adam; Sonesson, Johan; Nilsson, Urban; Lämås, Tomas; Lundmark, Tomas; Nordin, Annika; Ranius, Thomas; Roberge, Jean-Michel

    2017-02-24

    Because of the limited spatial extent and comprehensiveness of protected areas, an increasing emphasis is being placed on conserving habitats which promote biodiversity within production forest. For this reason, alternative silvicultural programs need to be evaluated with respect to their implications for forest biodiversity, especially if these programs are likely to be adopted. Here we simulated the effect of varied rotation length and associated thinning regimes on habitat availability in Scots pine and Norway spruce production forests, with high and low productivity. Shorter rotation lengths reduced the contribution made by production trees (trees grown for industrial use) to the availability of key habitat features, while concurrently increasing the contribution from retention trees. The contribution of production trees to habitat features was larger for high productivity sites, than for low productivity sites. We conclude that shortened rotation lengths result in losses of the availability of habitat features that are key for biodiversity conservation and that increased retention practices may only partially compensate for this. Ensuring that conservation efforts better reflect the inherent variation in stand rotation lengths would help improve the maintenance of key forest habitats in production forests.

  8. Tree Regeneration in Church Forests of Ethiopia: Effects of Microsites and Management

    NARCIS (Netherlands)

    Wassie Eshete, A.; Sterck, F.J.; Teketay, D.; Bongers, F.

    2009-01-01

    Tree regeneration is severely hampered in the fragmented afromontane forests of northern Ethiopia. We explored how trees regenerate in remnant forests along the gradient from open field, forest edge to closed sites and canopy gaps inside the forest. We investigated the effects of seed sowing, litter

  9. Biogeochemical modelling vs. tree-ring data - comparison of forest ecosystem productivity estimates

    Science.gov (United States)

    Zorana Ostrogović Sever, Maša; Barcza, Zoltán; Hidy, Dóra; Paladinić, Elvis; Kern, Anikó; Marjanović, Hrvoje

    2017-04-01

    Forest ecosystems are sensitive to environmental changes as well as human-induce disturbances, therefore process-based models with integrated management modules represent valuable tool for estimating and forecasting forest ecosystem productivity under changing conditions. Biogeochemical model Biome-BGC simulates carbon, nitrogen and water fluxes, and it is widely used for different terrestrial ecosystems. It was modified and parameterised by many researchers in the past to meet the specific local conditions. In this research, we used recently published improved version of the model Biome-BGCMuSo (BBGCMuSo), with multilayer soil module and integrated management module. The aim of our research is to validate modelling results of forest ecosystem productivity (NPP) from BBGCMuSo model with observed productivity estimated from an extensive dataset of tree-rings. The research was conducted in two distinct forest complexes of managed Pedunculate oak in SE Europe (Croatia), namely Pokupsko basin and Spačva basin. First, we parameterized BBGCMuSo model at a local level using eddy-covariance (EC) data from Jastrebarsko EC site. Parameterized model was used for the assessment of productivity on a larger scale. Results of NPP assessment with BBGCMuSo are compared with NPP estimated from tree ring data taken from trees on over 100 plots in both forest complexes. Keywords: Biome-BGCMuSo, forest productivity, model parameterization, NPP, Pedunculate oak

  10. Finding a Forest in a Tree

    DEFF Research Database (Denmark)

    Bacci, Giorgio; Miculan, Marino; Rizzi, Romeo

    2014-01-01

    Wide reactive systems are rewriting systems specified by wide reaction rules, where redex and reactum are lists of terms (forests), i.e. rules of the form ⟨l1(x1),…,ln(xn)⟩⇒⟨r1(y1),…,rn(yn)⟩ such that ∪iyi⊆∪ixi. Wide reaction rules are particularly useful for process calculi for mobile and global...

  11. Gene pool conservation and tree improvement in Serbia

    Directory of Open Access Journals (Sweden)

    Isajev Vasilije

    2009-01-01

    Full Text Available This paper presents the concepts applied in the gene pool conservation and tree improvement in Serbia. Gene pool conservation of tree species in Serbia includes a series of activities aiming at the sustainability and protection of genetic and species variability. This implies the investigation of genetic resources and their identification through the research of the genetic structure and the breeding system of individual species. Paper also includes the study of intra- and inter-population variability in experiments - provenance tests, progeny tests, half- and full-sib lines, etc. The increased use of the genetic potential in tree improvement in Serbia should be intensified by the following activities: improvement of production of normal forest seed, application of the concept of new selections directed primarily to the improvement of only one character, because in that case the result would be certain, establishment and management of seed orchards as specialized plantations for long-term production of genetically good-quality forest seeds, and the shortening of the improvement process by introducing new techniques and methods (molecular markers, somaclonal variation, genetic engineering, protoplast fusion, micropropagation, etc..

  12. 厦门城市森林林相改造树种选择与评价%Selection and evaluation of tree species for urban forest form improvement in Xiamen City

    Institute of Scientific and Technical Information of China (English)

    陈东华

    2013-01-01

    30 experts of forest transformation were invited to participate in survey and analysis of tree species of urban forest form improvement in Xiamen.Analytic hierarchy process was applied to set up a comprehensive evaluation indices system including 5 aspects such as adaptability,resistance,growth characteristics,forest landscape and afforestation cost and involving 15 evaluating factors such as infertility tolerance,drought tolerance,survival rate,fire resistance,disease and pest resistance,typhoon resistance,rapid growing,densecrown,life-span of leaves,landscape of tree,landscape of leaf color,landscape of flowers and fruits,cost of seedlings,cost of establishment,cost of raising.37 tree species of forest form improvement were evaluated comprehensively and arranged in order,and they were classified into four categories.Among them 9 species such as Mimosaceae confuse,Aleurites montana,Albizia falcataria,Eucalyptus grandis × E.urophylla and Castanopsis hystrix belonged to the first grade (excellent),and could be well-grown in barens.20 species such as Liquidambar formosana,Ficus elastica and Mimosaceae cincinnata belonged to the second grade (well adaptable).7 species such as Dendrocalamopsis oldhami,Bauhinia blakeana,Cinnamomum pedunculatum belonged to the third grade (adaptable).And Taxus chinensis vat.mairei belonged to the fourth grade (inadaptable).%以厦门地区城市森林林相改造树种为研究对象,邀请30名从事林相改造的科技人员参加调查和分析,采用层次分析法建立了包含适应性、抗逆性、生长特性、林相景观和造林成本等5个方面,覆盖了耐贫瘠、耐干旱、成活率、抗火性、抗病虫、抗台风、速生性、冠幅浓密、载叶时间、树体景观、叶色景观、花果景观、苗木成本、营造成本、抚育成本等15个评价因子的综合评价指标体系,对37个林相改造树种进行综合评价和排序.结果表明,试验树种分为4级,台湾相思、千年桐、南

  13. boreal forest when timber prices and tree growth are stochastic

    Institute of Scientific and Technical Information of China (English)

    Timo Pukkala

    2015-01-01

    Background:Decisions on forest management are made under risk and uncertainty because the stand development cannot be predicted exactly and future timber prices are unknown. Deterministic calculations may lead to biased advice on optimal forest management. The study optimized continuous cover management of boreal forest in a situation where tree growth, regeneration, and timber prices include uncertainty. Methods:Both anticipatory and adaptive optimization approaches were used. The adaptive approach optimized the reservation price function instead of fixed cutting years. The future prices of different timber assortments were described by cross-correlated auto-regressive models. The high variation around ingrowth model was simulated using a model that describes the cross-and autocorrelations of the regeneration results of different species and years. Tree growth was predicted with individual tree models, the predictions of which were adjusted on the basis of a climate-induced growth trend, which was stochastic. Residuals of the deterministic diameter growth model were also simulated. They consisted of random tree factors and cross-and autocorrelated temporal terms. Results:Of the analyzed factors, timber price caused most uncertainty in the calculation of the net present value of a certain management schedule. Ingrowth and climate trend were less significant sources of risk and uncertainty than tree growth. Stochastic anticipatory optimization led to more diverse post-cutting stand structures than obtained in deterministic optimization. Cutting interval was shorter when risk and uncertainty were included in the analyses. Conclusions:Adaptive optimization and management led to 6%–14%higher net present values than obtained in management that was based on anticipatory optimization. Increasing risk aversion of the forest landowner led to earlier cuttings in a mature stand. The effect of risk attitude on optimization results was small.

  14. MetaTree: augmented reality narrative explorations of urban forests

    Science.gov (United States)

    West, Ruth; Margolis, Todd; O'Neil-Dunne, Jarlath; Mendelowitz, Eitan

    2012-03-01

    As cities world-wide adopt and implement reforestation initiatives to plant millions of trees in urban areas, they are engaging in what is essentially a massive ecological and social experiment. Existing air-borne, space-borne, and fieldbased imaging and inventory mechanisms fail to provide key information on urban tree ecology that is crucial to informing management, policy, and supporting citizen initiatives for the planting and stewardship of trees. The shortcomings of the current approaches include: spatial and temporal resolution, poor vantage point, cost constraints and biological metric limitations. Collectively, this limits their effectiveness as real-time inventory and monitoring tools. Novel methods for imaging and monitoring the status of these emerging urban forests and encouraging their ongoing stewardship by the public are required to ensure their success. This art-science collaboration proposes to re-envision citizens' relationship with urban spaces by foregrounding urban trees in relation to local architectural features and simultaneously creating new methods for urban forest monitoring. We explore creating a shift from overhead imaging or field-based tree survey data acquisition methods to continuous, ongoing monitoring by citizen scientists as part of a mobile augmented reality experience. We consider the possibilities of this experience as a medium for interacting with and visualizing urban forestry data and for creating cultural engagement with urban ecology.

  15. Variation in phenolic root exudates and rhizosphere carbon cycling among tree species in temperate forest ecosystems

    Science.gov (United States)

    Zwetsloot, Marie; Bauerle, Taryn; Kessler, André; Wickings, Kyle

    2017-04-01

    Temperate forest tree species composition has been highly dynamic over the past few centuries and is expected to only further change under current climate change predictions. While aboveground changes in forest biodiversity have been widely studied, the impacts on belowground processes are far more challenging to measure. In particular, root exudation - the process through which roots release organic and inorganic compounds into the rhizosphere - has received little scientific attention yet may be the key to understanding root-facilitated carbon cycling in temperate forest ecosystems. The aim of this study was to analyze the extent by which tree species' variation in phenolic root exudate profiles influences soil carbon cycling in temperate forest ecosystems. In order to answer this question, we grew six temperate forest tree species in a greenhouse including Acer saccharum, Alnus rugosa, Fagus grandifolia, Picea abies, Pinus strobus, and Quercus rubra. To collect root exudates, trees were transferred to hydroponic growing systems for one week and then exposed to cellulose acetate strips in individual 800 mL jars with a sterile solution for 24 hours. We analyzed the methanol-extracted root exudates for phenolic composition with high-performance liquid chromatography (HPLC) and determined species differences in phenolic abundance, diversity and compound classes. This information was used to design the subsequent soil incubation study in which we tested the effect of different phenolic compound classes on rhizosphere carbon cycling using potassium hydroxide (KOH) traps to capture soil CO2 emissions. Our findings show that tree species show high variation in phenolic root exudate patterns and that these differences can significantly influence soil CO2 fluxes. These results stress the importance of linking belowground plant traits to ecosystem functioning. Moreover, this study highlights the need for research on root and rhizosphere processes in order to improve

  16. Mechanisms of nitrogen deposition effects on temperate forest lichens and trees

    Science.gov (United States)

    Carter, Therese S.; Clark, Christopher M.; Fenn, Mark E.; Jovan, Sarah E.; Perakis, Steven; Riddell, Jennifer; Schaberg, Paul G.; Greaver, Tara; Hastings, Meredith

    2017-01-01

    We review the mechanisms of deleterious nitrogen (N) deposition impacts on temperate forests, with a particular focus on trees and lichens. Elevated anthropogenic N deposition to forests has varied effects on individual organisms depending on characteristics both of the N inputs (form, timing, amount) and of the organisms (ecology, physiology) involved. Improved mechanistic knowledge of these effects can aid in developing robust predictions of how organisms respond to either increases or decreases in N deposition. Rising N levels affect forests in micro- and macroscopic ways from physiological responses at the cellular, tissue, and organism levels to influencing individual species and entire communities and ecosystems. A synthesis of these processes forms the basis for the overarching themes of this paper, which focuses on N effects at different levels of biological organization in temperate forests. For lichens, the mechanisms of direct effects of N are relatively well known at cellular, organismal, and community levels, though interactions of N with other stressors merit further research. For trees, effects of N deposition are better understood for N as an acidifying agent than as a nutrient; in both cases, the impacts can reflect direct effects on short time scales and indirect effects mediated through long-term soil and belowground changes. There are many gaps on fundamental N use and cycling in ecosystems, and we highlight the most critical gaps for understanding potential deleterious effects of N deposition. For lichens, these gaps include both how N affects specific metabolic pathways and how N is metabolized. For trees, these gaps include understanding the direct effects of N deposition onto forest canopies, the sensitivity of different tree species and mycorrhizal symbionts to N, the influence of soil properties, and the reversibility of N and acidification effects on plants and soils. Continued study of how these N response mechanisms interact with one

  17. Tree and forest effects on air quality and human health in the United States.

    Science.gov (United States)

    Nowak, David J; Hirabayashi, Satoshi; Bodine, Allison; Greenfield, Eric

    2014-10-01

    Trees remove air pollution by the interception of particulate matter on plant surfaces and the absorption of gaseous pollutants through the leaf stomata. However, the magnitude and value of the effects of trees and forests on air quality and human health across the United States remains unknown. Computer simulations with local environmental data reveal that trees and forests in the conterminous United States removed 17.4 million tonnes (t) of air pollution in 2010 (range: 9.0-23.2 million t), with human health effects valued at 6.8 billion U.S. dollars (range: $1.5-13.0 billion). This pollution removal equated to an average air quality improvement of less than one percent. Most of the pollution removal occurred in rural areas, while most of the health impacts and values were within urban areas. Health impacts included the avoidance of more than 850 incidences of human mortality and 670,000 incidences of acute respiratory symptoms.

  18. Linking individual-tree and whole-stand models for forest growth and yield prediction

    Directory of Open Access Journals (Sweden)

    Quang V Cao

    2014-10-01

    Full Text Available Background Different types of growth and yield models provide essential information for making informed decisions on how to manage forests. Whole-stand models often provide well-behaved outputs at the stand level, but lack information on stand structures. Detailed information from individual-tree models and size-class models typically suffers from accumulation of errors. The disaggregation method, in assuming that predictions from a whole-stand model are reliable, partitions these outputs to individual trees. On the other hand, the combination method seeks to improve stand-level predictions from both whole-stand and individual-tree models by combining them. Methods Data from 100 plots randomly selected from the Southwide Seed Source Study of loblolly pine (Pinus taeda L. were used to evaluate the unadjusted individual-tree model against the disaggregation and combination methods. Results Compared to the whole-stand model, the combination method did not show improvements in predicting stand attributes in this study. The combination method also did not perform as well as the disaggregation method in tree-level predictions. The disaggregation method provided the best predictions of tree- and stand-level survival and growth. Conclusions The disaggregation approach provides a link between individual-tree models and whole-stand models, and should be considered as a better alternative to the unadjusted tree model.

  19. Forest Tree Species Distribution Mapping Using Landsat Satellite Imagery and Topographic Variables with the Maximum Entropy Method in Mongolia

    Science.gov (United States)

    Hao Chiang, Shou; Valdez, Miguel; Chen, Chi-Farn

    2016-06-01

    Forest is a very important ecosystem and natural resource for living things. Based on forest inventories, government is able to make decisions to converse, improve and manage forests in a sustainable way. Field work for forestry investigation is difficult and time consuming, because it needs intensive physical labor and the costs are high, especially surveying in remote mountainous regions. A reliable forest inventory can give us a more accurate and timely information to develop new and efficient approaches of forest management. The remote sensing technology has been recently used for forest investigation at a large scale. To produce an informative forest inventory, forest attributes, including tree species are unavoidably required to be considered. In this study the aim is to classify forest tree species in Erdenebulgan County, Huwsgul province in Mongolia, using Maximum Entropy method. The study area is covered by a dense forest which is almost 70% of total territorial extension of Erdenebulgan County and is located in a high mountain region in northern Mongolia. For this study, Landsat satellite imagery and a Digital Elevation Model (DEM) were acquired to perform tree species mapping. The forest tree species inventory map was collected from the Forest Division of the Mongolian Ministry of Nature and Environment as training data and also used as ground truth to perform the accuracy assessment of the tree species classification. Landsat images and DEM were processed for maximum entropy modeling, and this study applied the model with two experiments. The first one is to use Landsat surface reflectance for tree species classification; and the second experiment incorporates terrain variables in addition to the Landsat surface reflectance to perform the tree species classification. All experimental results were compared with the tree species inventory to assess the classification accuracy. Results show that the second one which uses Landsat surface reflectance coupled

  20. FOREST TREE SPECIES DISTRIBUTION MAPPING USING LANDSAT SATELLITE IMAGERY AND TOPOGRAPHIC VARIABLES WITH THE MAXIMUM ENTROPY METHOD IN MONGOLIA

    Directory of Open Access Journals (Sweden)

    S. H. Chiang

    2016-06-01

    Full Text Available Forest is a very important ecosystem and natural resource for living things. Based on forest inventories, government is able to make decisions to converse, improve and manage forests in a sustainable way. Field work for forestry investigation is difficult and time consuming, because it needs intensive physical labor and the costs are high, especially surveying in remote mountainous regions. A reliable forest inventory can give us a more accurate and timely information to develop new and efficient approaches of forest management. The remote sensing technology has been recently used for forest investigation at a large scale. To produce an informative forest inventory, forest attributes, including tree species are unavoidably required to be considered. In this study the aim is to classify forest tree species in Erdenebulgan County, Huwsgul province in Mongolia, using Maximum Entropy method. The study area is covered by a dense forest which is almost 70% of total territorial extension of Erdenebulgan County and is located in a high mountain region in northern Mongolia. For this study, Landsat satellite imagery and a Digital Elevation Model (DEM were acquired to perform tree species mapping. The forest tree species inventory map was collected from the Forest Division of the Mongolian Ministry of Nature and Environment as training data and also used as ground truth to perform the accuracy assessment of the tree species classification. Landsat images and DEM were processed for maximum entropy modeling, and this study applied the model with two experiments. The first one is to use Landsat surface reflectance for tree species classification; and the second experiment incorporates terrain variables in addition to the Landsat surface reflectance to perform the tree species classification. All experimental results were compared with the tree species inventory to assess the classification accuracy. Results show that the second one which uses Landsat surface

  1. Climatic correlates of tree mortality in water- and energy-limited forests.

    Directory of Open Access Journals (Sweden)

    Adrian J Das

    Full Text Available Recent increases in tree mortality rates across the western USA are correlated with increasing temperatures, but mechanisms remain unresolved. Specifically, increasing mortality could predominantly be a consequence of temperature-induced increases in either (1 drought stress, or (2 the effectiveness of tree-killing insects and pathogens. Using long-term data from California's Sierra Nevada mountain range, we found that in water-limited (low-elevation forests mortality was unambiguously best modeled by climatic water deficit, consistent with the first mechanism. In energy-limited (high-elevation forests deficit models were only equivocally better than temperature models, suggesting that the second mechanism is increasingly important in these forests. We could not distinguish between models predicting mortality using absolute versus relative changes in water deficit, and these two model types led to different forecasts of mortality vulnerability under future climate scenarios. Our results provide evidence for differing climatic controls of tree mortality in water- and energy-limited forests, while highlighting the need for an improved understanding of tree mortality processes.

  2. Climatic correlates of tree mortality in water- and energy-limited forests.

    Science.gov (United States)

    Das, Adrian J; Stephenson, Nathan L; Flint, Alan; Das, Tapash; van Mantgem, Phillip J

    2013-01-01

    Recent increases in tree mortality rates across the western USA are correlated with increasing temperatures, but mechanisms remain unresolved. Specifically, increasing mortality could predominantly be a consequence of temperature-induced increases in either (1) drought stress, or (2) the effectiveness of tree-killing insects and pathogens. Using long-term data from California's Sierra Nevada mountain range, we found that in water-limited (low-elevation) forests mortality was unambiguously best modeled by climatic water deficit, consistent with the first mechanism. In energy-limited (high-elevation) forests deficit models were only equivocally better than temperature models, suggesting that the second mechanism is increasingly important in these forests. We could not distinguish between models predicting mortality using absolute versus relative changes in water deficit, and these two model types led to different forecasts of mortality vulnerability under future climate scenarios. Our results provide evidence for differing climatic controls of tree mortality in water- and energy-limited forests, while highlighting the need for an improved understanding of tree mortality processes.

  3. Delineating Tree Types in a Complex Tropical Forest Setting Using High Resolution Multispectral Satellite Imagery

    Science.gov (United States)

    Cross, M.

    2016-12-01

    An improved process for the identification of tree types from satellite imagery for tropical forests is needed for more accurate assessments of the impact of forests on the global climate. La Selva Biological Station in Costa Rica was the tropical forest area selected for this particular study. WorldView-3 imagery was utilized because of its high spatial, spectral and radiometric resolution, its availability, and its potential to differentiate species in a complex forest setting. The first-step was to establish confidence in the high spatial and high radiometric resolution imagery from WorldView-3 in delineating tree types within a complex forest setting. In achieving this goal, ASD field spectrometer data were collected of specific tree species to establish solid ground control within the study site. The spectrometer data were collected from the top of each specific tree canopy utilizing established towers located at La Selva Biological Station so as to match the near-nadir view of the WorldView-3 imagery. The ASD data was processed utilizing the spectral response functions for each of the WorldView-3 bands to convert the ASD data into a band specific reflectivity. This allowed direct comparison of the ASD spectrometer reflectance data to the WorldView-3 multispectral imagery. The WorldView-3 imagery was processed to surface reflectance using two standard atmospheric correction procedures and the proprietary DigitalGlobe Atmospheric Compensation (AComp) product. The most accurate correction process was identified through comparison to the spectrometer data collected. A series of statistical measures were then utilized to access the accuracy of the processed imagery and which imagery bands are best suited for tree type identification. From this analysis, a segmentation/classification process was performed to identify individual tree type locations within the study area. It is envisioned the results of this study will improve traditional forest classification

  4. Upland beech trees significantly contribute to forest methane exchange

    Science.gov (United States)

    Machacova, Katerina; Maier, Martin; Svobodova, Katerina; Halaburt, Ellen; Haddad, Sally; Lang, Friederike; Urban, Otmar

    2016-04-01

    Methane (CH4) can be emitted not only from soil, but also from plants. Fluxes of CH4were predominantly investigated in riparian herbaceous plants, whereas studies on trees, particularly those lacking an aerenchyma, are rare. In soil produced CH4 can be taken up by roots, transported via intercellular spaces and the aerenchyma system, or transpiration stream to aboveground plant tissues and released to the atmosphere via lenticels or stomata. Although CH4 might be also produced by microorganisms living in plant tissues or photochemical processes in plants, these processes are relatively minor. It has been shown that seedlings of European beech (Fagus sylvatica) emit CH4 from its stems despite the lack of an aerenchyma. Our objectives were to determine the CH4 fluxes from mature beech trees and adjacent soil under natural field conditions, and to estimate the role of trees in the CH4exchange within the soil-tree-atmosphere continuum. Measurements were conducted in two mountain beech forests with different geographical and climatic conditions (White Carpathians, Czech Republic; Black Forest, Germany). CH4 fluxes at stems (profile) and root bases level were simultaneously measured together with soil-atmosphere fluxes using static chamber systems followed by chromatographic analysis or continuous laser detection of CH4 concentrations. Our study shows that mature beech trees have the ability to exchange CH4 with the atmosphere. The beech stems emitted CH4 into the atmosphere at the White Carpathians site in the range from 2.00 to 179 μg CH4 m-2 stem area h-1, while CH4 flux rates ranged between -1.34 to 1.73 μg CH4 m-2 h-1 at the Black Forest site. The root bases of beech trees from the White Carpathians released CH4 into the atmosphere (from 0.62 to 49.8 μg CH4 m-2 root area h-1), whereas a prevailing deposition was observed in the Black Forest (from -1.21 to 0.81 μg CH4 m-2 h-1). These fluxes seem to be affected by soil water content and its spatial heterogeneity

  5. Forest classification trees and forest support vector machines algorithms: Demonstration using microarray data.

    Science.gov (United States)

    Zintzaras, Elias; Kowald, Axel

    2010-05-01

    Classification into multiple classes when the measured variables are outnumbered is a major methodological challenge in -omics studies. Two algorithms that overcome the dimensionality problem are presented: the forest classification tree (FCT) and the forest support vector machines (FSVM). In FCT, a set of variables is randomly chosen and a classification tree (CT) is grown using a forward classification algorithm. The process is repeated and a forest of CTs is derived. Finally, the most frequent variables from the trees with the smallest apparent misclassification rate (AMR) are used to construct a productive tree. In FSVM, the CTs are replaced by SVMs. The methods are demonstrated using prostate gene expression data for classifying tissue samples into four tumor types. For threshold split value 0.001 and utilizing 100 markers the productive CT consisted of 29 terminal nodes and achieved perfect classification (AMR=0). When the threshold value was set to 0.01, a tree with 17 terminal nodes was constructed based on 15 markers (AMR=7%). In FSVM, reducing the fraction of the forest that was used to construct the best classifier from the top 80% to the top 20% reduced the misclassification to 25% (when using 200 markers). The proposed methodologies may be used for identifying important variables in high dimensional data. Furthermore, the FCT allows exploring the data structure and provides a decision rule.

  6. Fungal disease incidence along tree diversity gradients depends on latitude in European forests.

    Science.gov (United States)

    Nguyen, Diem; Castagneyrol, Bastien; Bruelheide, Helge; Bussotti, Filippo; Guyot, Virginie; Jactel, Hervé; Jaroszewicz, Bogdan; Valladares, Fernando; Stenlid, Jan; Boberg, Johanna

    2016-04-01

    European forests host a diversity of tree species that are increasingly threatened by fungal pathogens, which may have cascading consequences for forest ecosystems and their functioning. Previous experimental studies suggest that foliar and root pathogen abundance and disease severity decrease with increasing tree species diversity, but evidences from natural forests are rare. Here, we tested whether foliar fungal disease incidence was negatively affected by tree species diversity in different forest types across Europe. We measured the foliar fungal disease incidence on 16 different tree species in 209 plots in six European countries, representing a forest-type gradient from the Mediterranean to boreal forests. Forest plots of single species (monoculture plots) and those with different combinations of two to five tree species (mixed species plots) were compared. Specifically, we analyzed the influence of tree species richness, functional type (conifer vs. broadleaved) and phylogenetic diversity on overall fungal disease incidence. The effect of tree species richness on disease incidence varied with latitude and functional type. Disease incidence tended to increase with tree diversity, in particular in northern latitudes. Disease incidence decreased with tree species richness in conifers, but not in broadleaved trees. However, for specific damage symptoms, no tree species richness effects were observed. Although the patterns were weak, susceptibility of forests to disease appears to depend on the forest site and tree type.

  7. Forests, Trees, and Micronutrient-Rich Food Consumption in Indonesia.

    Science.gov (United States)

    Ickowitz, Amy; Rowland, Dominic; Powell, Bronwen; Salim, Mohammad Agus; Sunderland, Terry

    2016-01-01

    Micronutrient deficiency remains a serious problem in Indonesia with approximately 100 million people, or 40% of the population, suffering from one or more micronutrient deficiencies. In rural areas with poor market access, forests and trees may provide an essential source of nutritious food. This is especially important to understand at a time when forests and other tree-based systems in Indonesia are being lost at unprecedented rates. We use food consumption data from the 2003 Indonesia Demographic Health Survey for children between the ages of one and five years and data on vegetation cover from the Indonesian Ministry of Forestry to examine whether there is a relationship between different tree-dominated land classes and consumption of micronutrient-rich foods across the archipelago. We run our models on the aggregate sample which includes over 3000 observations from 25 provinces across Indonesia as well as on sub-samples from different provinces chosen to represent the different land classes. The results show that different tree-dominated land classes were associated with the dietary quality of people living within them in the provinces where they were dominant. Areas of swidden/agroforestry, natural forest, timber and agricultural tree crop plantations were all associated with more frequent consumption of food groups rich in micronutrients in the areas where these were important land classes. The swidden/agroforestry land class was the landscape associated with more frequent consumption of the largest number of micronutrient rich food groups. Further research needs to be done to establish what the mechanisms are that underlie these associations. Swidden cultivation in is often viewed as a backward practice that is an impediment to food security in Indonesia and destructive of the environment. If further research corroborates that swidden farming actually results in better nutrition than the practices that replace it, Indonesian policy makers may need to

  8. Forests, Trees, and Micronutrient-Rich Food Consumption in Indonesia

    Science.gov (United States)

    Ickowitz, Amy; Rowland, Dominic; Powell, Bronwen; Salim, Mohammad Agus; Sunderland, Terry

    2016-01-01

    Micronutrient deficiency remains a serious problem in Indonesia with approximately 100 million people, or 40% of the population, suffering from one or more micronutrient deficiencies. In rural areas with poor market access, forests and trees may provide an essential source of nutritious food. This is especially important to understand at a time when forests and other tree-based systems in Indonesia are being lost at unprecedented rates. We use food consumption data from the 2003 Indonesia Demographic Health Survey for children between the ages of one and five years and data on vegetation cover from the Indonesian Ministry of Forestry to examine whether there is a relationship between different tree-dominated land classes and consumption of micronutrient-rich foods across the archipelago. We run our models on the aggregate sample which includes over 3000 observations from 25 provinces across Indonesia as well as on sub-samples from different provinces chosen to represent the different land classes. The results show that different tree-dominated land classes were associated with the dietary quality of people living within them in the provinces where they were dominant. Areas of swidden/agroforestry, natural forest, timber and agricultural tree crop plantations were all associated with more frequent consumption of food groups rich in micronutrients in the areas where these were important land classes. The swidden/agroforestry land class was the landscape associated with more frequent consumption of the largest number of micronutrient rich food groups. Further research needs to be done to establish what the mechanisms are that underlie these associations. Swidden cultivation in is often viewed as a backward practice that is an impediment to food security in Indonesia and destructive of the environment. If further research corroborates that swidden farming actually results in better nutrition than the practices that replace it, Indonesian policy makers may need to

  9. Forests, Trees, and Micronutrient-Rich Food Consumption in Indonesia.

    Directory of Open Access Journals (Sweden)

    Amy Ickowitz

    Full Text Available Micronutrient deficiency remains a serious problem in Indonesia with approximately 100 million people, or 40% of the population, suffering from one or more micronutrient deficiencies. In rural areas with poor market access, forests and trees may provide an essential source of nutritious food. This is especially important to understand at a time when forests and other tree-based systems in Indonesia are being lost at unprecedented rates. We use food consumption data from the 2003 Indonesia Demographic Health Survey for children between the ages of one and five years and data on vegetation cover from the Indonesian Ministry of Forestry to examine whether there is a relationship between different tree-dominated land classes and consumption of micronutrient-rich foods across the archipelago. We run our models on the aggregate sample which includes over 3000 observations from 25 provinces across Indonesia as well as on sub-samples from different provinces chosen to represent the different land classes. The results show that different tree-dominated land classes were associated with the dietary quality of people living within them in the provinces where they were dominant. Areas of swidden/agroforestry, natural forest, timber and agricultural tree crop plantations were all associated with more frequent consumption of food groups rich in micronutrients in the areas where these were important land classes. The swidden/agroforestry land class was the landscape associated with more frequent consumption of the largest number of micronutrient rich food groups. Further research needs to be done to establish what the mechanisms are that underlie these associations. Swidden cultivation in is often viewed as a backward practice that is an impediment to food security in Indonesia and destructive of the environment. If further research corroborates that swidden farming actually results in better nutrition than the practices that replace it, Indonesian policy

  10. Relationship of Tree Stand Heterogeneity and Forest Naturalness

    Directory of Open Access Journals (Sweden)

    BARTHA, Dénes

    2006-01-01

    Full Text Available The aim of our study was to investigate if compositional (tree species richness andstructural (vertical structure, age-structure, patterns of canopy closure heterogeneity of the canopylayer is related to individual naturalness criteria and to overall forest naturalness at the stand scale. Thenaturalness values of the assessed criteria (tree species composition, tree stand structure, speciescomposition and structure of shrub layer and forest floor vegetation, dead wood, effects of game, sitecharacteristics showed similar behaviour when groups of stands with different heterogeneity werecompared, regardless of the studied aspect of canopy heterogeneity. The greatest difference was foundfor criteria describing the canopy layer. Composition and structure of canopy layer, dead wood andtotal naturalness of the stand differed significantly among the stand groups showing consistentlyhigher values from homogeneous to the most heterogeneous group. Naturalness of the compositionand structure of the shrub layer is slightly but significantly higher in stands with heterogeneous canopylayer. Regarding other criteria, significant differences were found only between the homogeneous andthe most heterogeneous groups, while groups with intermediate level of heterogeneity did not differsignificantly from one extreme. However, the criterion describing effects of game got lowernaturalness values in more heterogeneous stands. Naturalness of site characteristics did not differsignificantly among the groups except for when stands were grouped based on pattern of canopyclosure. From the practical viewpoint it is shown that purposeful forestry operations affecting thecanopy layer cause changes in compositional and structural characteristics of other layers as well as inoverall stand scale forest naturalness.

  11. Sampling forest tree regeneration with a transect approach

    Directory of Open Access Journals (Sweden)

    D. Hessenmöller

    2013-05-01

    Full Text Available A new transect approach for sampling forest tree regeneration isdeveloped with the aim to minimize the amount of field measurements, and to produce an accurate estimation of tree species composition and density independent of tree height. This approach is based on the “probability proportional to size” (PPS theory to assess heterogeneous vegetation. This new method is compared with other approaches to assess forest regeneration based on simulated and measured, real data. The main result is that the transect approach requires about 50% of the time to assess stand density as compared to the plot approach, due to the fact that only 25% of the tree individuals are measured. In addition, tall members of the regeneration are counted with equal probability as small members. This is not the case in the plot approach. The evenness is 0.1 to 0.2 units larger in the transect by PPS than in the plot approach, which means that the plot approach shows a more homogeneous regeneration layer than the PPS approach, even though the stand densities and height distributions are similar. The species diversity is variable in both approaches and needs further investigations.

  12. Sampling forest tree regeneration with a transect approach

    Directory of Open Access Journals (Sweden)

    D. Hessenmoeller

    2013-07-01

    Full Text Available A new transect approach for sampling forest tree regeneration is developed with the aim to minimize the amount of field measurements, and to produce an accurate estimation of tree species composition and density independent of tree height. This approach is based on the “probability proportional to size” (PPS theory to assess heterogeneous vegetation. This new method is compared with other approaches to assess forest regeneration based on simulated and measured, real data. The main result is that the transect approach requires about 50% of the time to assess stand density as compared to the plot approach, due to the fact that only 25% of the tree individuals are measured. In addition, tall members of the regeneration are counted with equal probability as small members. This is not the case in the plot approach. The evenness is 0.1 to 0.2 units larger in the transect by PPS than in the plot approach, which means that the plot approach shows a more homogenous regeneration layer than the PPS approach, even though the stand densities and height distributions are similar. The species diversity is variable in both approaches and needs further investigations.

  13. Cryptic adaptive radiation in tropical forest trees in New Caledonia.

    Science.gov (United States)

    Pillon, Yohan; Hopkins, Helen C F; Rigault, Frédéric; Jaffré, Tanguy; Stacy, Elizabeth A

    2014-04-01

    The causes of the species richness of tropical trees are poorly understood, in particular the roles of ecological factors such as soil composition. The nickel(Ni)-hyperaccumulating tree genus Geissois (Cunoniaceae) from the South-west Pacific was chosen as a model of diversification on different substrates. Here, we investigated the leaf element compositions, spatial distributions and phylogeny of all species of Geissois occurring on New Caledonia. We found that New Caledonian Geissois descended from a single colonist and diversified relatively quickly into 13 species. Species on ultramafic and nonultramafic substrates showed contrasting patterns of leaf element composition and range overlap. Those on nonultramafic substrates were largely sympatric but had distinct leaf element compositions. By contrast, species on ultramafic substrates showed similar leaf element composition, but occurred in many cases exclusively in allopatry. Further, earlier work showed that at least three out of these seven species use different molecules to bind Ni. Geissois qualifies as a cryptic adaptive radiation, and may be the first such example in a lineage of tropical forest trees. Variation in biochemical strategies for coping with both typical and adverse soil conditions may help to explain the diversification and coexistence of tropical forest trees on similar soil types.

  14. Early positive effects of tree species richness on herbivory in a large-scale forest biodiversity experiment influence tree growth

    OpenAIRE

    Schuldt, Andreas; Bruelheide, Helge; Härdtle, Werner; Assmann, Thorsten; Li, Ying; Ma, Keping; von Oheimb, Goddert; Zhang, Jiayong

    2015-01-01

    Despite the importance of herbivory for the structure and functioning of species-rich forests, little is known about how herbivory is affected by tree species richness, and more specifically by random vs. non-random species loss. We assessed herbivore damage and its effects on tree growth in the early stage of a large-scale forest biodiversity experiment in subtropical China that features random and non-random extinction scenarios of tree mixtures numbering between one and 24 species. In cont...

  15. Drought responses by individual tree species are not often correlated with tree species diversity in European forests

    OpenAIRE

    2016-01-01

    Drought frequency and intensity are predicted to increase in many parts of the Northern Hemisphere and the effects of such changes on forest growth and tree mortality are already evident in many regions around the world. Mixed-species forests and increasing tree species diversity have been put forward as important risk reduction and adaptation strategies in the face of climate change. However, little is known about whether the species interactions that occur in diverse forests will reduce dro...

  16. Tree species diversity mitigates disturbance impacts on the forest carbon cycle.

    Science.gov (United States)

    Pedro, Mariana Silva; Rammer, Werner; Seidl, Rupert

    2015-03-01

    Biodiversity fosters the functioning and stability of forest ecosystems and, consequently, the provision of crucial ecosystem services that support human well-being and quality of life. In particular, it has been suggested that tree species diversity buffers ecosystems against the impacts of disturbances, a relationship known as the "insurance hypothesis". Natural disturbances have increased across Europe in recent decades and climate change is expected to amplify the frequency and severity of disturbance events. In this context, mitigating disturbance impacts and increasing the resilience of forest ecosystems is of growing importance. We have tested how tree species diversity modulates the impact of disturbance on net primary production and the total carbon stored in living biomass for a temperate forest landscape in Central Europe. Using the simulation model iLand to study the effect of different disturbance regimes on landscapes with varying levels of tree species richness, we found that increasing diversity generally reduces the disturbance impact on carbon storage and uptake, but that this effect weakens or even reverses with successional development. Our simulations indicate a clear positive relationship between diversity and resilience, with more diverse systems experiencing lower disturbance-induced variability in their trajectories of ecosystem functioning. We found that positive effects of tree species diversity are mainly driven by an increase in functional diversity and a modulation of traits related to recolonization and resource usage. The results of our study suggest that increasing tree species diversity could mitigate the effects of intensifying disturbance regimes on ecosystem functioning and improve the robustness of forest carbon storage and the role of forests in climate change mitigation.

  17. Spatial aspects of tree mortality strongly differ between young and old-growth forests.

    Science.gov (United States)

    Larson, Andrew J; Lutz, James A; Donato, Daniel C; Freund, James A; Swanson, Mark E; HilleRisLambers, Janneke; Sprugel, Douglas G; Franklin, Jerry F

    2015-11-01

    Rates and spatial patterns of tree mortality are predicted to change during forest structural development. In young forests, mortality should be primarily density dependent due to competition for light, leading to an increasingly spatially uniform pattern of surviving trees. In contrast, mortality in old-growth forests should be primarily caused by contagious and spatially autocorrelated agents (e.g., insects, wind), causing spatial aggregation of surviving trees to increase through time. We tested these predictions by contrasting a three-decade record of tree mortality from replicated mapped permanent plots located in young ( 300-year-old) Abies amabilis forests. Trees in young forests died at a rate of 4.42% per year, whereas trees in old-growth forests died at 0.60% per year. Tree mortality in young forests was significantly aggregated, strongly density dependent, and caused live tree patterns to become more uniform through time. Mortality in old-growth forests was spatially aggregated, but was density independent and did not change the spatial pattern of surviving trees. These results extend current theory by demonstrating that density-dependent competitive mortality leading to increasingly uniform tree spacing in young forests ultimately transitions late in succession to a more diverse tree mortality regime that maintains spatial heterogeneity through time.

  18. Living Trees are a Major Source of Methane in the Temperate Forest

    Science.gov (United States)

    Covey, Kristofer

    2017-04-01

    Globally, forests sequester about 1.1 ± 0.8 Pg C yr-1, an ecosystem service worth hundreds of billions of dollars annually. Following the COP21 meeting in Paris, an international consensus emerged: The protection and expansion of forests worldwide is a necessary component of climate mitigation strategies to limit warming to less than 2°C. The physiological processes governing sequestration of CO2 in living trees are well studied and the resulting pattern in global forest carbon sequestration is clear. The role living trees play in the production and emission of methane (CH4) remains unclear, despite the fact it has the potential to offset climate benefits of forest CO2 sequestration. A known but largely unexplored pathway of forest CH4 production involves microbial-based methanogenesis in the wood of living trees. In the first regional-scale study of tree trunk gas composition, we examine the ubiquity and potential source strength of this pathway. Trunk methane concentrations were as high as 67.4% by volume (375,000-times atmospheric), with the highest concentrations found in older angiosperms (18,293 μLṡL-1 ± 3,096). Bark flux chambers from 23 living trees show emissions under field conditions, and large static chambers demonstrate high rates of production in felled Acer rubrum trunk sections. Diffusion flux modeling of trunk concentrations suggests wood-based microflora could produce a global CH4 efflux of 26 Tg CH4 yr-1. Applying these fluxes to provide a spatially explicit map of trunk-based CH4 flux, we estimate the potential relationship between carbon sequestration rates and CH4 emission by forest trees in Eastern North America. Methane emissions from the trunk-based methanogenic pathway could reduce the average climate mitigation value of these temperate forests by 10-30%. We highlight the need to improve earth systems models to account for the full complexity of forest climate interactions and provide a data layer useful in reducing large uncertainty

  19. Vertical and horizontal distribution of radiocesium around trees in forest soil of deciduous forests, Fukushima, Japan

    Energy Technology Data Exchange (ETDEWEB)

    Takada, Mono; Oba, Yurika; Nursal, Wim I.; Yamada, Toshihiro; Okuda, Toshinori [Graduate School of Integrated Arts and Sciences, Hiroshima University, 1-7-1 Kagamiyama, Higashi- Hiroshima 739-8521 (Japan); Shizuma, Kiyoshi [Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527 (Japan)

    2014-07-01

    After the 2011 Nuclear Power Plant accident in Japan, large amount of radionuclides were deposited and remains in the forest land of Fukushima region, yet still uncertain how much deposition stays in the forest. This region is mostly covered by the secondary deciduous forest which sporadically includes Japanese fir (Abies firma). As the leaves of all deciduous trees were shed, we hypothesized that the amounts of deposition radionuclides will be exhibit difference between the conifer trees (Japanese fir) and the other deciduous trees. As these trees inhabit on steep slopes, we also hypothesized there are differences in the radionuclides deposition in soils in relation to the position around tree trunk base (upper side, lower side and mid side at the foot of trees), tree species and slope angles. Study site and method: our study was conducted in deciduous forest of Fukushima region in August 2013, two and a half years after the accident. Samples of litter layer and two soil layers (0 - 5, 5 - 10 cm) were collected under Abies firma and eight deciduous tree species. In total 23 trees in eight forest stands were investigated. Under one tree, samples were taken from four pints (upper side, lower side and mid sides at the foot of trees) around a tree trunk within a radius of one meter from the base of tree trunks. Angle of slope at each tree was also checked. The samples were dried (70 deg. C, 48 hr) and radiocesium and potassium-40 was determined by a germanium detector (GEM Series HPGe Coaxial Detector System) (measurement time 300 - 30000 sec). Results and discussion: we found that radiocesium contained in litter layer accounts for more than 80% of total amount (within litter layer to 10 cm depth from the surface), and almost all the radiocesium exists within litter layer up to 5 cm depth. Although it is well known that cesium shows similar movement to potassium in a plant body, soil contained much more amount of potassium-40 than litter layer. We predicted that

  20. Forest response to increasing typhoon activity on the Korean peninsula: evidence from oak tree-rings.

    Science.gov (United States)

    Altman, Jan; Doležal, Jiří; Cerný, Tomáš; Song, Jong-Suk

    2013-02-01

    The globally observed trend of changing intensity of tropical cyclones over the past few decades emphasizes the need for a better understanding of the effects of such disturbance events in natural and inhabited areas. On the Korean Peninsula, typhoon intensity has increased over the past 100 years as evidenced by instrumental data recorded from 1904 until present. We examined how the increase in three weather characteristics (maximum hourly and daily precipitation, and maximum wind speed) during the typhoon activity affected old-growth oak forests. Quercus mongolica is a dominant species in the Korean mountains and the growth releases from 220 individuals from three sites along a latitudinal gradient (33-38°N) of decreasing typhoon activity were studied. Growth releases indicate tree-stand disturbance and improved light conditions for surviving trees. The trends in release events corresponded to spatiotemporal gradients in maximum wind speed and precipitation. A high positive correlation was found between the maximum values of typhoon characteristics and the proportion of trees showing release. A higher proportion of disturbed trees was found in the middle and southern parts of the Korean peninsula where typhoons are most intense. This shows that the releases are associated with typhoons and also indicates the differential impact of typhoons on the forests. Finally, we present a record of the changing proportion of trees showing release based on tree-rings for the period 1770-1979. The reconstruction revealed no trend during the period 1770-1879, while the rate of forest disturbances increased rapidly from 1880 to 1979. Our results suggest that if typhoon intensity rises, as is projected by some climatic models, the number of forest disturbance events will increase thus altering the disturbance regime and ecosystem processes.

  1. Allometry, biomass, and chemical content of novel African Tulip Tree (Spathodea campanulata) forests in Puerto Rico

    Science.gov (United States)

    Ariel E. Lugo; Oscar J. Abelleira; Alexander Collado; Christian A. Viera; Cynthia Santiago; Diego O. Velez; Emilio Soto; Giovanni Amaro; Graciela Charon; Jr. Colon; Jennifer Santana; Jose L. Morales; Katherine Rivera; Luis Ortiz; Luis Rivera; Mianel Maldonado; Natalia Rivera; Norelis J. Vazquez

    2011-01-01

    The African tulip tree, Spathodea campanulata, the most common tree in Puerto Rico, forms novel forest types with mixtures of native and other introduced tree species. Novel forests increase in area in response to human activity and there is no information about their biomass accumulation and nutrient cycling. We established allometric relationships and chemically...

  2. Sustainable development and use of ecosystems with non-forest trees

    Science.gov (United States)

    Non-forest trees are components of managed ecosystems including orchards and agroforestry systems and natural ecosystems such as savannas and riparian corridors. Each of these ecosystems includes trees but does not have a complete tree canopy or spatial extent necessary to create a true forest ecosy...

  3. Trends over time in tree and seedling phylogenetic diversity indicate regional differences in forest biodiversity change

    Science.gov (United States)

    Kevin M. Potter; Christopher W. Woodall

    2012-01-01

    Changing climate conditions may impact the short-term ability of forest tree species to regenerate in many locations. In the longer term, tree species may be unable to persist in some locations while they become established in new places. Over both time frames, forest tree biodiversity may change in unexpected ways. Using repeated inventory measurements five years...

  4. The importance of crown dimensions to improve tropical tree biomass estimates.

    Science.gov (United States)

    Goodman, Rosa C; Phillips, Oliver L; Baker, Timothy R

    2014-06-01

    Tropical forests play a vital role in the global carbon cycle, but the amount of carbon they contain and its spatial distribution remain uncertain. Recent studies suggest that once tree height is accounted for in biomass calculations, in addition to diameter and wood density, carbon stock estimates are reduced in many areas. However, it is possible that larger crown sizes might offset the reduction in biomass estimates in some forests where tree heights are lower because even comparatively short trees develop large, well-lit crowns in or above the forest canopy. While current allometric models and theory focus on diameter, wood density, and height, the influence of crown size and structure has not been well studied. To test the extent to which accounting for crown parameters can improve biomass estimates, we harvested and weighed 51 trees (11-169 cm diameter) in southwestern Amazonia where no direct biomass measurements have been made. The trees in our study had nearly half of total aboveground biomass in the branches (44% +/- 2% [mean +/- SE]), demonstrating the importance of accounting for tree crowns. Consistent with our predictions, key pantropical equations that include height, but do not account for crown dimensions, underestimated the sum total biomass of all 51 trees by 11% to 14%, primarily due to substantial underestimates of many of the largest trees. In our models, including crown radius greatly improves performance and reduces error, especially for the largest trees. In addition, over the full data set, crown radius explained more variation in aboveground biomass (10.5%) than height (6.0%). Crown form is also important: Trees with a monopodial architectural type are estimated to have 21-44% less mass than trees with other growth patterns. Our analysis suggests that accounting for crown allometry would substantially improve the accuracy of tropical estimates of tree biomass and its distribution in primary and degraded forests.

  5. Tree migration detection through comparisons of historic and current forest inventories

    Science.gov (United States)

    Christopher W. Woodall; Christopher M. Oswalt; James A. Westfall; Charles H. Perry; Mark N. Nelson

    2009-01-01

    Changes in tree species distributions are a potential impact of climate change on forest ecosystems. The examination of tree species shifts in forests of the eastern United States largely has been limited to modeling activities with little empirical analysis of long-term forest inventory datasets. The goal of this study was to compare historic and current spatial...

  6. How does tree age influence damage and recovery in forests impacted by freezing rain and snow?

    Science.gov (United States)

    Zhu, LiRong; Zhou, Ting; Chen, BaoMing; Peng, ShaoLin

    2015-05-01

    The response and recovery mechanisms of forests to damage from freezing rain and snow events are a key topic in forest research and management. However, the relationship between the degree of damage and tree age, i.e., whether seedlings, young trees, or adult trees are most vulnerable, remains unclear and is rarely reported. We investigated the effect of tree age on the degrees of vegetation damage and subsequent recovery in three subtropical forest types-coniferous, mixed, and broad-leaved-in the Tianjing Mountains, South China, after a series of rare icy rain and freezing snow events in 2008. The results showed that damage and recovery rates were both dependent on tree age, with the proportion of damaged vegetation increasing with age (estimated by diameter at breast height, DBH) in all three forest types and gradually plateauing. Significant variation occurred among forest types. Young trees in the coniferous forest were more vulnerable than those in the broad-leaved forest. The type of damage also varied with tree age in different ways in the three forest types. The proportion of young seedlings that were uprooted (the most severe type of damage) was highest in the coniferous forest. In the mixed forest, young trees were significantly more likely to be uprooted than seedlings and adult trees, while in the broad-leaved forest, the proportion of uprooted adult trees was significantly higher than that of seedlings and young trees. There were also differences among forest types in how tree age affected damage recovery. In the coniferous forest, the recovery rate of trees with broken trunks or crowns (DBH > 2.5 cm) increased with tree age. However, in the mixed and broad-leaved forests, no obvious correlation between the recovery rate of trees with broken trunks or crowns and tree age was observed. Trees with severe root damage did not recover; they were uprooted and died. In these forests, vegetation damage and recovery showed tree age dependencies, which varied

  7. Height-diameter allometry of tropical forest trees

    Directory of Open Access Journals (Sweden)

    T. R. Feldpausch

    2011-05-01

    Full Text Available Tropical tree height-diameter (H:D relationships may vary by forest type and region making large-scale estimates of above-ground biomass subject to bias if they ignore these differences in stem allometry. We have therefore developed a new global tropical forest database consisting of 39 955 concurrent H and D measurements encompassing 283 sites in 22 tropical countries. Utilising this database, our objectives were:

    1. to determine if H:D relationships differ by geographic region and forest type (wet to dry forests, including zones of tension where forest and savanna overlap.

    2. to ascertain if the H:D relationship is modulated by climate and/or forest structural characteristics (e.g. stand-level basal area, A.

    3. to develop H:D allometric equations and evaluate biases to reduce error in future local-to-global estimates of tropical forest biomass.

    Annual precipitation coefficient of variation (PV, dry season length (SD, and mean annual air temperature (TA emerged as key drivers of variation in H:D relationships at the pantropical and region scales. Vegetation structure also played a role with trees in forests of a high A being, on average, taller at any given D. After the effects of environment and forest structure are taken into account, two main regional groups can be identified. Forests in Asia, Africa and the Guyana Shield all have, on average, similar H:D relationships, but with trees in the forests of much of the Amazon Basin and tropical Australia typically being shorter at any given D than their counterparts elsewhere. The region-environment-structure model with the lowest Akaike's information criterion and lowest deviation estimated stand-level H across all plots to within amedian −2.7 to 0.9% of the true value. Some of the plot-to-plot variability in

  8. Height-diameter allometry of tropical forest trees

    Directory of Open Access Journals (Sweden)

    T. R. Feldpausch

    2010-10-01

    Full Text Available Tropical tree height-diameter (H:D relationships may vary by forest type and region making large-scale estimates of above-ground biomass subject to bias if they ignore these differences in stem allometry. We have therefore developed a new global tropical forest database consisting of 39 955 concurrent H and D measurements encompassing 283 sites in 22 tropical countries. Utilising this database, our objectives were:

      1. to determine if H:D relationships differ by geographic region and forest type (wet to dry forests, including zones of tension where forest and savanna overlap.

      2. to ascertain if the H:D relationship is modulated by climate and/or forest structural characteristics (e.g. stand-level basal area, A.

      3. to develop H:D allometric equations and evaluate biases to reduce error in future local-to-global estimates of tropical forest biomass.

    Annual precipitation coefficient of variation (PV, dry season length (SD, and mean annual air temperature (TA emerged as key drivers of variation in H:D relationships at the pantropical and region scales. Vegetation structure also played a role with trees in forests of a high A being, on average, taller at any given D. After the effects of environment and forest structure are taken into account, two main regional groups can be identified. Forests in Asia, Africa and the Guyana Shield all have, on average, similar H:D relationships, but with trees in the forests of much of the Amazon Basin and tropical Australia typically being shorter at any given D than their counterparts elsewhere.

    The region-environment-structure model with the lowest Akaike's information criterion and lowest deviation estimated stand-level H across all plots to within a median –2.7 to 0.9% of the true value. Some of the plot

  9. Errors in estimating volume increments of forest trees

    Directory of Open Access Journals (Sweden)

    Magnani F

    2014-02-01

    Full Text Available Errors in estimating volume increments of forest trees. Periodic tree and stand increments are often estimated retrospectively from measurements of diameter and height growth of standing trees, through the application of various simplifications of the general formula for volume increment rates. In particular, the Hellrigl method and its various formulations have been often suggested in Italy. Like other retrospective approaches, the Hellrigl method is affected by a systematic error, resulting from the assumption as a reference term of conditions at one of the extremes of the period considered. The magnitude of the error introduced by different formulations has been assessed in the present study through their application to mensurational and increment measurements from the detailed growth analysis of 107 Picea abies trees. Results are compared with those obtained with a new equation, which makes reference to the interval mid-point. The newly proposed method makes it possible to drastically reduce the error in the estimate of periodic tree increments, and especially its systematic component. This appears of particular relevance for stand- and national level applications.

  10. Tree assemblages and diversity patterns in Tropical Juri Forest, Bangladesh

    Institute of Scientific and Technical Information of China (English)

    Swapan Kumar Sarker; Muhammad Nur-Un-Nabi; Md. Mohasinul Haque; Mahmuda Sharmin; Sanjay Saha Sonet; Sourav Das; Niamjit Das

    2015-01-01

    Juri is a biodiversity-rich primary forest in Bangladesh, which remains ecologically unexplored. We identified tree species and examined the richness, alpha (α) diversity and floristic similarity patterns within the identi-fied communities. Vegetation and environmental data were sampled in 120 (0.04 ha) study plots. Tree communities were delimited by two-way indicator species analysis (TWINSPAN). In total, 78 tree species of 35 families and 58 genera were identified. TWINSPAN identified six tree communities: A—Tricalysia singularis; B—Kydia calyci-na-Castanopsis tribuloides;C—Polyalthia simiarum-Dua-banga grandiflora; D—Ficus roxburghii; E—Artocarpus lacucha;F—Artocarpus lacucha. Mean richness, Shannon and Gini-Simpson indices were highest for the Polyalthia simiarum-Duabanga grandiflora community, while Ficus roxburghii showed lowest diversity. Significant differences (p=0.05) in three diversity indices were recorded between Polyalthia simiarum-Duabanga grandiflora and Ficus roxburghii. Tree compositional similarity was greatest between Kydia calycina-Castanopsis tribuloides and Polyalthia simiarum-Duabanga grandiflora (0.712).

  11. Tree height integrated into pantropical forest biomass estimates

    Directory of Open Access Journals (Sweden)

    T. R. Feldpausch

    2012-08-01

    Full Text Available Aboveground tropical tree biomass and carbon storage estimates commonly ignore tree height (H. We estimate the effect of incorporating H on tropics-wide forest biomass estimates in 327 plots across four continents using 42 656 H and diameter measurements and harvested trees from 20 sites to answer the following questions:

    1. What is the best H-model form and geographic unit to include in biomass models to minimise site-level uncertainty in estimates of destructive biomass?

    2. To what extent does including H estimates derived in (1 reduce uncertainty in biomass estimates across all 327 plots?

    3. What effect does accounting for H have on plot- and continental-scale forest biomass estimates?

    The mean relative error in biomass estimates of destructively harvested trees when including H (mean 0.06, was half that when excluding H (mean 0.13. Power- and Weibull-H models provided the greatest reduction in uncertainty, with regional Weibull-H models preferred because they reduce uncertainty in smaller-diameter classes (≤40 cm D that store about one-third of biomass per hectare in most forests. Propagating the relationships from destructively harvested tree biomass to each of the 327 plots from across the tropics shows that including H reduces errors from 41.8 Mg ha−1 (range 6.6 to 112.4 to 8.0 Mg ha−1 (−2.5 to 23.0. For all plots, aboveground live biomass was −52.2 Mg ha−1 (−82.0 to −20.3 bootstrapped 95% CI, or 13%, lower when including H estimates, with the greatest relative reductions in estimated biomass in forests of the Brazilian Shield, east Africa, and Australia, and relatively little change in the Guiana Shield, central Africa and southeast Asia. Appreciably different stand structure was observed among regions across the tropical continents, with some storing significantly

  12. Effects of tree harvest on the stable-state dynamics of savanna and forest.

    Science.gov (United States)

    Tredennick, Andrew T; Hanan, Niall P

    2015-05-01

    Contemporary theory on the maintenance and stability of the savanna biome has focused extensively on how climate and disturbances interact to affect tree growth and demography. In particular, the role of fire in reducing tree cover from climatic maxima is now well appreciated, and in certain cases, herbivory also strongly affects tree cover. However, in African savannas and forests, harvest of trees by humans for cooking and heating is an oft overlooked disturbance. Thus, we incorporate tree harvest into a population dynamic model of grasses, savanna saplings, savanna trees, and forest trees. We use assumptions about the differential demographic responses of savanna trees and forest trees to harvest to show how tree harvest influences tree cover, demography, and community composition. Tree harvest can erode the intrinsic basin of attraction for forest and make a state transition via fire to savanna more likely. The savanna state is generally resilient to all but high levels of tree harvest because of the resprouting abilities of savanna trees. In the absence of active fire suppression, our analysis suggests that we can expect to see large and potentially irreversible shifts from forest to savanna as demand increases for charcoal in sub-Saharan Africa. On the other hand, savanna tree species' traits promote savanna stability in the face of low to moderate harvest pressure.

  13. Fungal disease incidence along tree diversity gradients depends on latitude in European forests

    OpenAIRE

    Nguyen, Diem; Castagneyrol, Bastien; Bruelheide, Helge; Bussotti, Filippo; Guyot, Virginie; Jactel, Hervé; Jaroszewicz, Bogdan; Valladares, Fernando; Stenlid, Jan; Boberg, Johanna

    2016-01-01

    International audience; European forests host a diversity of tree species that are increasingly threatened by fungal pathogens, which may have cascading consequences for forest ecosystems and their functioning. Previous experimental studies suggest that foliar and root pathogen abundance and disease severity decrease with increasing tree species diversity, but evidences from natural forests are rare. Here, we tested whether foliar fungal disease incidence was negatively affected by tree speci...

  14. The contribution of trees outside forests to national tree biomass and carbon stocks--a comparative study across three continents.

    Science.gov (United States)

    Schnell, Sebastian; Altrell, Dan; Ståhl, Göran; Kleinn, Christoph

    2015-01-01

    In contrast to forest trees, trees outside forests (TOF) often are not included in the national monitoring of tree resources. Consequently, data about this particular resource is rare, and available information is typically fragmented across the different institutions and stakeholders that deal with one or more of the various TOF types. Thus, even if information is available, it is difficult to aggregate data into overall national statistics. However, the National Forest Monitoring and Assessment (NFMA) programme of FAO offers a unique possibility to study TOF resources because TOF are integrated by default into the NFMA inventory design. We have analysed NFMA data from 11 countries across three continents. For six countries, we found that more than 10% of the national above-ground tree biomass was actually accumulated outside forests. The highest value (73%) was observed for Bangladesh (total forest cover 8.1%, average biomass per hectare in forest 33.4 t ha(-1)) and the lowest (3%) was observed for Zambia (total forest cover 63.9%, average biomass per hectare in forest 32 t ha(-1)). Average TOF biomass stocks were estimated to be smaller than 10 t ha(-1). However, given the large extent of non-forest areas, these stocks sum up to considerable quantities in many countries. There are good reasons to overcome sectoral boundaries and to extend national forest monitoring programmes on a more systematic basis that includes TOF. Such an approach, for example, would generate a more complete picture of the national tree biomass. In the context of climate change mitigation and adaptation, international climate mitigation programmes (e.g. Clean Development Mechanism and Reduced Emission from Deforestation and Degradation) focus on forest trees without considering the impact of TOF, a consideration this study finds crucial if accurate measurements of national tree biomass and carbon pools are required.

  15. Tree communities of white-sand and terra-firme forests of the upper Rio Negro

    NARCIS (Netherlands)

    Stropp, J.; Sleen, van der J.P.; Assunção, P.A.; Silva, da A.L.; Steege, ter H.

    2011-01-01

    The high tree diversity and vast extent of Amazonian forests challenge our understanding of how tree species abundance and composition varies across this region. Information about these parameters, usually obtained from tree inventories plots, is essential for revealing patterns of tree diversity. N

  16. Tree communities of white-sand and terra-firme forests of the upper Rio Negro

    NARCIS (Netherlands)

    Stropp, J.; Sleen, van der J.P.; Assunção, P.A.; Silva, da A.L.; Steege, ter H.

    2011-01-01

    The high tree diversity and vast extent of Amazonian forests challenge our understanding of how tree species abundance and composition varies across this region. Information about these parameters, usually obtained from tree inventories plots, is essential for revealing patterns of tree diversity.

  17. Individual tree crown delineation using localized contour tree method and airborne LiDAR data in coniferous forests

    Science.gov (United States)

    Wu, Bin; Yu, Bailang; Wu, Qiusheng; Huang, Yan; Chen, Zuoqi; Wu, Jianping

    2016-10-01

    Individual tree crown delineation is of great importance for forest inventory and management. The increasing availability of high-resolution airborne light detection and ranging (LiDAR) data makes it possible to delineate the crown structure of individual trees and deduce their geometric properties with high accuracy. In this study, we developed an automated segmentation method that is able to fully utilize high-resolution LiDAR data for detecting, extracting, and characterizing individual tree crowns with a multitude of geometric and topological properties. The proposed approach captures topological structure of forest and quantifies topological relationships of tree crowns by using a graph theory-based localized contour tree method, and finally segments individual tree crowns by analogy of recognizing hills from a topographic map. This approach consists of five key technical components: (1) derivation of canopy height model from airborne LiDAR data; (2) generation of contours based on the canopy height model; (3) extraction of hierarchical structures of tree crowns using the localized contour tree method; (4) delineation of individual tree crowns by segmenting hierarchical crown structure; and (5) calculation of geometric and topological properties of individual trees. We applied our new method to the Medicine Bow National Forest in the southwest of Laramie, Wyoming and the HJ Andrews Experimental Forest in the central portion of the Cascade Range of Oregon, U.S. The results reveal that the overall accuracy of individual tree crown delineation for the two study areas achieved 94.21% and 75.07%, respectively. Our method holds great potential for segmenting individual tree crowns under various forest conditions. Furthermore, the geometric and topological attributes derived from our method provide comprehensive and essential information for forest management.

  18. Observations from old forests underestimate climate change effects on tree mortality

    National Research Council Canada - National Science Library

    Luo, Yong; Chen, Han Y H

    2013-01-01

    .... Furthermore, interpreting the climate change-associated tree mortality estimated from old forests for regional forests rests on an un-tested assumption that the effects of climate change are the same...

  19. Effect of Mixed Forests of Chinese Fir and Tsoong‘s Tree on Soil Properties

    Institute of Scientific and Technical Information of China (English)

    ZHENGYUSHAN; DINGYINGXIANG

    1998-01-01

    An investigation and on 13-year-old(1984-1996) Chinese fir and Tsoong's tree mixed forests in Jianou City,Fujian Province,China was carried out to compare the influences of different interplanting types of individual tree-tree,row-row,row-strip(three rows)and pure Chinese fir stands on soil properties.Compared with the pure stands of Chinese fir ,the mixed stands exerted a posivtive effect on soil fertility,with increases in soil organic matter,total N,available P and available K.Moreover,improvements were also observed in soil enzymatic activities ,aggregate structure,structure,stability,status of soil porosity,soil aeration and penetrability in miexd stands.The row-row interplanted stands had the best effect on tree growth and soil properties among these mixed forests.In the southern subtropical region,the spreading of the row-row mixing model of the two tree species would be helpful to preventin ghe soil from fertility deterioratio caused by successive plantation of Chineses fir.

  20. Housing shortages in urban regions: aggressive interactions at tree hollows in forest remnants.

    Directory of Open Access Journals (Sweden)

    Adrian Davis

    Full Text Available Urbanisation typically results in a reduction of hollow-bearing trees and an increase in the density of particularly species, potentially resulting in an increased level of competition as cavity-nesting species compete for a limited resource. To improve understanding of hollow usage between urban cavity-nesting species in Australia, particularly parrots, we investigated how the hollow-using assemblage, visitation rate, diversity and number of interactions varied between hollows within urban remnant forest and continuous forest. Motion-activated video cameras were installed, via roped access to the canopy, and hollow usage was monitored at 61 hollows over a two-year period. Tree hollows within urban remnants had a significantly different assemblage of visitors to those in continuous forest as well as a higher rate of visitation than hollows within continuous forest, with the rainbow lorikeet making significantly more visitations than any other taxa. Hollows within urban remnants were characterised by significantly higher usage rates and significantly more aggressive interactions than hollows within continuous forest, with parrots responsible for almost all interactions. Within urban remnants, high rates of hollow visitation and both interspecific and intraspecific interactions observed at tree hollows suggest the number of available optimal hollows may be limiting. Understanding the usage of urban remnant hollows by wildlife, as well as the role of parrots as a potential flagship for the conservation of tree-hollows, is vital to prevent a decrease in the diversity of urban fauna, particularly as other less competitive species risk being outcompeted by abundant native species.

  1. Forest biomass variation in Southernmost Brazil: the impact of Araucaria trees.

    Science.gov (United States)

    Rosenfield, Milena Fermina; Souza, Alexandre F

    2014-03-01

    A variety of environmental and biotic factors determine vegetation growth and affect plant biomass accumulation. From temperature to species composition, aboveground biomass storage in forest ecosystems is influenced by a number of variables and usually presents a high spatial variability. With this focus, the aim of the study was to evaluate the variables affecting live aboveground forest biomass (AGB) in Subtropical Moist Forests of Southern Brazil, and to analyze the spatial distribution of biomass estimates. Data from a forest inventory performed in the State of Rio Grande do Sul, Southern Brazil, was used in the present study. Thirty-eight 1-ha plots were sampled and all trees with DBH > or = 9.5cm were included for biomass estimation. Values for aboveground biomass were obtained using published allometric equations. Environmental and biotic variables (elevation, rainfall, temperature, soils, stem density and species diversity) were obtained from the literature or calculated from the dataset. For the total dataset, mean AGB was 195.2 Mg/ha. Estimates differed between Broadleaf and Mixed Coniferous-Broadleaf forests: mean AGB was lower in Broadleaf Forests (AGB(BF)=118.9 Mg/ha) when compared to Mixed Forests (AGB(MF)=250.3 Mg/ha). There was a high spatial and local variability in our dataset, even within forest types. This condition is normal in tropical forests and is usually attributed to the presence of large trees. The explanatory multiple regressions were influenced mainly by elevation and explained 50.7% of the variation in AGB. Stem density, diversity and organic matter also influenced biomass variation. The results from our study showed a positive relationship between aboveground biomass and elevation. Therefore, higher values of AGB are located at higher elevations and subjected to cooler temperatures and wetter climate. There seems to be an important contribution of the coniferous species Araucaria angustifolia in Mixed Forest plots, as it presented

  2. Tree health influences diameter growth along site quality, crown class and age gradients in Nothofagus forests of southern Patagonia

    OpenAIRE

    2015-01-01

    We examined the influence of tree health on annual diameter increment of trees along gradients in stand site quality, crown classes and tree age in Nothofagus pumilio forests of Southern Patagonia. Healthy trees had higher annual diameter increment than unhealthy trees along all gradients (site quality, crown class, tree age). We argue that tree health could be employed as a qualitative variable in models of tree growth to estimate aboveground biomass and carbon stocks in this forest system. ...

  3. Unlocking the forest inventory data: relating individual tree performance to unmeasured environmental factors

    Science.gov (United States)

    Jeremy W. Lichstein; Jonathan Dushoff; Kiona Ogle; Anping Chen; Drew W. Purves; John P. Caspersen; Stephen W. Pacala

    2010-01-01

    Geographically extensive forest inventories, such as the USDA Forest Service's Forest Inventory and Analysis (FIA) program, contain millions of individual tree growth and mortality records that could be used to develop broad-scale models of forest dynamics. A limitation of inventory data, however, is that individual-level measurements of light (L) and other...

  4. Edge-related loss of tree phylogenetic diversity in the severely fragmented Brazilian Atlantic forest.

    Science.gov (United States)

    Santos, Bráulio A; Arroyo-Rodríguez, Víctor; Moreno, Claudia E; Tabarelli, Marcelo

    2010-09-08

    Deforestation and forest fragmentation are known major causes of nonrandom extinction, but there is no information about their impact on the phylogenetic diversity of the remaining species assemblages. Using a large vegetation dataset from an old hyper-fragmented landscape in the Brazilian Atlantic rainforest we assess whether the local extirpation of tree species and functional impoverishment of tree assemblages reduce the phylogenetic diversity of the remaining tree assemblages. We detected a significant loss of tree phylogenetic diversity in forest edges, but not in core areas of small (tree phylogenetic diversity in the severely fragmented Brazilian Atlantic forest.

  5. A MULTIVARIATE APPROACH TO ANALYSE NATIVE FOREST TREE SPECIE SEEDS

    Directory of Open Access Journals (Sweden)

    Alessandro Dal Col Lúcio

    2006-03-01

    Full Text Available This work grouped, by species, the most similar seed tree, using the variables observed in exotic forest species of theBrazilian flora of seeds collected in the Forest Research and Soil Conservation Center of Santa Maria, Rio Grande do Sul, analyzedfrom January, 1997, to march, 2003. For the cluster analysis, all the species that possessed four or more analyses per lot wereanalyzed by the hierarchical Clustering method, of the standardized Euclidian medium distance, being also a principal componentanalysis technique for reducing the number of variables. The species Callistemon speciosus, Cassia fistula, Eucalyptus grandis,Eucalyptus robusta, Eucalyptus saligna, Eucalyptus tereticornis, Delonix regia, Jacaranda mimosaefolia e Pinus elliottii presentedmore than four analyses per lot, in which the third and fourth main components explained 80% of the total variation. The clusteranalysis was efficient in the separation of the groups of all tested species, as well as the method of the main components.

  6. The longevity of broadleaf deciduous trees in Northern Hemisphere temperate forests: insights from tree-ring series

    Directory of Open Access Journals (Sweden)

    Alfredo eDi Filippo

    2015-05-01

    Full Text Available Understanding the factors controlling the expression of longevity in trees is still an outstanding challenge for tree biologists and forest ecologists. We gathered tree-ring data and literature for broadleaf deciduous (BD temperate trees growing in closed-canopy old-growth forests in the Northern Hemisphere to explore the role of geographic patterns, climate variability, and growth rates on longevity. Our pan-continental analysis, covering 32 species from 12 genera, showed that 300-400 years can be considered a baseline threshold for maximum tree lifespan in many temperate deciduous forests. Maximum age varies greatly in relation to environmental features, even within the same species. Tree longevity is generally promoted by reduced growth rates across large genetic differences and environmental gradients. We argue that slower growth rates, and the associated smaller size, provide trees with an advantage against biotic and abiotic disturbance agents, supporting the idea that size, not age, is the main constraint to tree longevity. The oldest trees were living most of their life in subordinate canopy conditions and/or within primary forests in cool temperate environments and outside major storm tracks. Very old trees are thus characterized by slow growth and often live in forests with harsh site conditions and infrequent disturbance events that kill much of the trees. Temperature inversely controls the expression of longevity in mesophilous species (Fagus spp., but its role in Quercus spp. is more complex and warrants further research in disturbance ecology. Biological, ecological and historical drivers must be considered to understand the constraints imposed to longevity within different forest landscapes.

  7. Potential of tree-ring analysis in a wet tropical forest: A case study on 22 commercial tree species in Central Africa

    NARCIS (Netherlands)

    Groenendijk, P.; Sass, U.G.W.; Bongers, F.; Zuidema, P.A.

    2014-01-01

    Implementing sustainable forest management requires basic information on growth, ages, reproduction and survival of exploited tree species. This information is generally derived from permanent sample plots where individual trees are monitored. Accurately estimating growth rates and especially tree a

  8. Potential of tree-ring analysis in a wet tropical forest: A case study on 22 commercial tree species in Central Africa

    NARCIS (Netherlands)

    Groenendijk, P.; Sass, U.G.W.; Bongers, F.; Zuidema, P.A.

    2014-01-01

    Implementing sustainable forest management requires basic information on growth, ages, reproduction and survival of exploited tree species. This information is generally derived from permanent sample plots where individual trees are monitored. Accurately estimating growth rates and especially tree

  9. Phylogenetic Structure of Tree Species across Different Life Stages from Seedlings to Canopy Trees in a Subtropical Evergreen Broad-Leaved Forest.

    Science.gov (United States)

    Jin, Yi; Qian, Hong; Yu, Mingjian

    2015-01-01

    Investigating patterns of phylogenetic structure across different life stages of tree species in forests is crucial to understanding forest community assembly, and investigating forest gap influence on the phylogenetic structure of forest regeneration is necessary for understanding forest community assembly. Here, we examine the phylogenetic structure of tree species across life stages from seedlings to canopy trees, as well as forest gap influence on the phylogenetic structure of forest regeneration in a forest of the subtropical region in China. We investigate changes in phylogenetic relatedness (measured as NRI) of tree species from seedlings, saplings, treelets to canopy trees; we compare the phylogenetic turnover (measured as βNRI) between canopy trees and seedlings in forest understory with that between canopy trees and seedlings in forest gaps. We found that phylogenetic relatedness generally increases from seedlings through saplings and treelets up to canopy trees, and that phylogenetic relatedness does not differ between seedlings in forest understory and those in forest gaps, but phylogenetic turnover between canopy trees and seedlings in forest understory is lower than that between canopy trees and seedlings in forest gaps. We conclude that tree species tend to be more closely related from seedling to canopy layers, and that forest gaps alter the seedling phylogenetic turnover of the studied forest. It is likely that the increasing trend of phylogenetic clustering as tree stem size increases observed in this subtropical forest is primarily driven by abiotic filtering processes, which select a set of closely related evergreen broad-leaved tree species whose regeneration has adapted to the closed canopy environments of the subtropical forest developed under the regional monsoon climate.

  10. Arbuscular mycorrhizal associations in different forest tree species of Hazarikhil forest of Chittagong, Bangladesh

    Institute of Scientific and Technical Information of China (English)

    P.P.Dhar; M.A.U.Mridha

    2012-01-01

    Biodiversity ofarbuscular mycorrhizal (AM) colonization and AM fungal spores were studied in the roots and rhizosphere soils of Acacia catechu (L.f).Wild.,A.mangium Willd,Anthocephala cadamba Miq.,Artocarpus chaplasha Roxb.,Chickrassia tabularis A.Juss.,Swietenia macrophylla King.,Tectona grandis L.from plantations; Albizia procera (Roxb.) Benth.,A.falcataria L.,Alstonia scholaris (L.) R.Br.,Aphanamixis polystachya (Wall.) Parker.,Hydnocarpus kurzii (King.)Warb.,Heynea trijuga Roxb.,Lagerstroemia speciosa (L.) Pers.,Messua ferrea Linn.,Podocarpus nerifolia Don.,Swintonia floribunda Griff.,Syzygium fruticosum (Roxb.) DC.,S.grandis (Wt.) Wal.from forest and nursery seedlings of A.polystachya,A.chaplasha,Gmelina arborea Roxb.and S.cuminii (L.) Skeels from Hazarikhil forest,Chittagong of Bangladesh.Roots were stained in aniline blue and rhizosphere soils were assessed by wet sieving and decanting methods.The range of AM colonization varied significantly from 10%-73% in the plantations samples.Maximum colonization was observed in A.mangium (73%) and minimum colonization was observed in C tabularis (10%).Vesicular colonization was recorded 15%-67% in five plantation tree species.The highest was in A.cadamba (67%) and the lowest was in T.grandis; A.chaplasha and C tabularis showed no vesicular colonization.Arbuscular colonization was recorded 12%-60% in four plantation tree species.The highest was in A.mangium (60%) and the lowest was in A.cadamba.Roots of Artocarpus chaplasha,C tabularis and T.grandis showed no arbuscular colonization.Among 12 forest tree species,nine tree species showed AM colonization.The highest was in A.falcataria (62%) and the lowest was in S.fruticosum (10%).Significant variation in vesicular colonization was recorded in seven forest tree species.The highest was in H.trijuga (52%) and the lowest was in L.speciosa (18%).Hydnocarpus kurzii,M.ferrea,P.nerifolia S.fruticosum and S.grandis showed no vesicular colonization.Arbuscular colonization was

  11. Climatic Control on Forests and Tree Species Distribution in the Forest Region of Northeast China

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    North-east (NE) China covers considerable climatic gradients and all major forests types of NE Asia. In the present study, 10 major forest types across the forest region of NE China were sampled to investigate forest distribution in relation to climate. Canonical correspondence analysis (CCA) revealed that growing season precipitation and energy availability were primary climatic factors for the overall forest pattern of NE China, accounting for 66% of the explanatory power of CCA. Conversely, annual precipitation and winter coldness had minor effects. Generalized additive models revealed that tree species responded to climatic gradients differently and showed three types of response curve: (i) monotonous decline; (ii) monotonous increase; and (iii) a unimodal pattern. Furthermore, tree species showed remarkable differences in limiting climatic factors for their distribution. The power of climate in explaining species distribution declined significantly with decreasing species dominance, suggesting that the distribution of dominant species was primarily controlled by climate, whereas that of subordinate species was more affected by competition from other species.

  12. Annual Proxy Records from Tropical Cloud Forest Trees in the Monteverde Cloud Forest, Costa Rica

    Science.gov (United States)

    Anchukaitis, K. J.; Evans, M. N.; Wheelwright, N. T.; Schrag, D. P.

    2005-12-01

    The extinction of the Golden Toad (Bufo periglenes) from Costa Rica's Monteverde Cloud Forest prompted research into the causes of ecological change in the montane forests of Costa Rica. Subsequent analysis of meteorological data has suggested that warmer global surface and tropical Pacific sea surface temperatures contribute to an observed decrease in cloud cover at Monteverde. However, while recent studies may have concluded that climate change is already having an effect on cloud forest environments in Costa Rica, without the context provided by long-term climate records, it is difficult to confidently conclude that the observed ecological changes are the result of anthropogenic climate forcing, land clearance in the lowland rainforest, or natural variability in tropical climate. To address this, we develop high-resolution proxy paleoclimate records from trees without annual rings in the Monteverde Cloud Forest in Costa Rica. Calibration of an age model in these trees is a fundamental prerequisite for proxy paleoclimate reconstructions. Our approach exploits the isotopic seasonality in the δ18O of water sources (fog versus rainfall) used by trees over the course of a single year. Ocotea tenera individuals of known age and measured annual growth increments were sampled in long-term monitored plantation sites in order to test this proposed age model. High-resolution (200μm increments) stable isotope measurements on cellulose reveal distinct, coherent δ18O cycles of 6 to 10‰. The calculated growth rates derived from the isotope timeseries match those observed from basal growth increment measurements. Spatial fidelity in the age model and climate signal is examined by using multiple cores from multiple trees and multiple sites. These data support our hypothesis that annual isotope cycles in these trees can be used to provide chronological control in the absence of rings. The ability of trees to record interannual climate variability in local hydrometeorology

  13. Gurjun-Oil Tree: Buddhist Way and the Conservation and Revitalization of Gurjun-Oil Trees in Isan Cultural Forests

    Directory of Open Access Journals (Sweden)

    Chatchawan Kaewsaen

    2010-01-01

    Full Text Available Problem statement: This research aimed at investigating the background of gurjun-oil trees in Iran cultural forests, the present situation and difficulties of gurjun-oil tress and the Buddhist way concerning the conservation and revitalization of them in Iran cultural forests. Approach: A qualitative research was applied to find the data in 7 forest areas of the province of Yasothon, Roi ET, Sisaket, Ubonratchathani, Burirum, Mahasarakham and Kakasin. The sample of 147 people was selected by means of a purposive sampling consisted of 42 key-informants, 70 people involved the conservation and revitalization of gurjun-oil trees and 35 general informants. The data were collected by survey, a participative observation, a non-participative observation, a structured in-depth interview, a non-structured in depth interview, a focus-group interview, a workshop and an evaluation of planting activity. Research data were analyzed according to research purposes and presented by means of a descriptive analysis. Results: The results revealed that gurjun-oil trees in Iran cultural forests (cultural forests in the north-east of Thailand were native trees which gave people a lot of useful thing; for example people used oil of gurjun-oil trees for tinder, torches and putty. The present situation is a sharp reduction in the number of trees, the forests deteriorated into denuded forests, the people degenerated into selfish persons and competed in using natural resources for living and commercial purposes. The Buddhist way concerning the conservation and revitalization of gurjun-oil trees was the participation of three sectors; they were community leaders, state leaders and monk leaders. Necessarily, all community members must do their right duties in order to conserve and revitalize gurjun-oil trees. Conclusion/Recommendations: In conclusion, the conservation and revitalization of Gurjun-oil trees must support by the participation of all social sectors then it will

  14. Long tree-ring chronologies provide evidence of recent tree growth decrease in a Central African tropical forest.

    Science.gov (United States)

    Battipaglia, Giovanna; Zalloni, Enrica; Castaldi, Simona; Marzaioli, Fabio; Cazzolla-Gatti, Roberto; Lasserre, Bruno; Tognetti, Roberto; Marchetti, Marco; Valentini, Riccardo

    2015-01-01

    It is still unclear whether the exponential rise of atmospheric CO2 concentration has produced a fertilization effect on tropical forests, thus incrementing their growth rate, in the last two centuries. As many factors affect tree growth patterns, short -term studies might be influenced by the confounding effect of several interacting environmental variables on plant growth. Long-term analyses of tree growth can elucidate long-term trends of plant growth response to dominant drivers. The study of annual rings, applied to long tree-ring chronologies in tropical forest trees enables such analysis. Long-term tree-ring chronologies of three widespread African species were measured in Central Africa to analyze the growth of trees over the last two centuries. Growth trends were correlated to changes in global atmospheric CO2 concentration and local variations in the main climatic drivers, temperature and rainfall. Our results provided no evidence for a fertilization effect of CO2 on tree growth. On the contrary, an overall growth decline was observed for all three species in the last century, which appears to be significantly correlated to the increase in local temperature. These findings provide additional support to the global observations of a slowing down of C sequestration in the trunks of forest trees in recent decades. Data indicate that the CO2 increase alone has not been sufficient to obtain a tree growth increase in tropical trees. The effect of other changing environmental factors, like temperature, may have overridden the fertilization effect of CO2.

  15. Seed arrival in tropical forest tree fall gaps.

    Science.gov (United States)

    Puerta-Pińero, Carolina; Muller-Landau, Helene C; Calderón, Osvaldo; Wright, S Joseph

    2013-07-01

    Tree deaths open gaps in closed-canopy forests, which allow light to reach the forest floor and promote seed germination and seedling establishment. Gap dependence of regeneration is an important axis of life history variation among forest plant species, and many studies have evaluated how plant species differ in seedling and sapling performance in gaps. However, relatively little is known about how seed arrival in gaps compares with seed arrival in the understory, even though seed dispersal by wind and animals is expected to be altered in gaps. We documented seed arrival for the first seven years after gap formation in the moist tropical forests of Barro Colorado Island (BCI), Panama, and evaluated how the amount and functional composition of arriving seeds compared with understory sites. On average, in the first three years after gap formation, 72% fewer seeds arrived in gaps than in the understory (207 vs. 740 seeds x m(-2) x yr(-1)). The reduction in number of arriving seeds fell disproportionately on animal-dispersed species, which suffered an 86% reduction in total seed number, while wind-dispersed species experienced only a 47% reduction, and explosively dispersed species showed increased seed numbers arriving. The increase in explosively dispersed seeds consisted entirely of the seeds of several shrub species, a result consistent with greater in situ seed production by explosively dispersed shrubs that survived gap formation or recruited immediately thereafter. Lianas did relatively better in seed arrival into gaps than did trees, suffering less of a reduction in seed arrival compared with understory sites. This result could in large part be explained by the greater predominance of wind dispersal among lianas: there were no significant differences between lianas and trees when controlling for dispersal syndromes. Our results show that seed arrival in gaps is very different from seed arrival in the understory in both total seeds arriving and functional

  16. Discrimination of tree species using random forests from the Chinese high-resolution remote sensing satellite GF-1

    Science.gov (United States)

    Lv, Jie; Ma, Ting

    2016-10-01

    Tree species distribution is an important issue for sustainable forest resource management. However, the accuracy of tree species discrimination using remote-sensing data needs to be improved to support operational forestry-monitoring tasks. This study aimed to classify tree species in the Liangshui Nature Reserve of Heilongjiang Province, China using spectral and structural remote sensing information in an auto-mated Random Forest modelling approach. This study evaluates and compares the performance of two machine learning classifiers, random forests (RF), support vector machine (SVM) to classify the Chinese high-resolution remote sensing satellite GF-1 images. Texture factor was extracted from GF-1 image with grey-level co-occurrence matrix method. Normalized Difference Vegetation Index (NDVI), Ratio Vegetation Index (RVI), Enhanced Vegetation Index (EVI), Difference Vegetation Index (DVI) were calculated and coupled into the model. The result show that the Random Forest model yielded the highest classification accuracy and prediction success for the tree species with an overall classification accuracy of 81.07% and Kappa coefficient value of 0.77. The proposed random forests method was able to achieve highly satisfactory tree species discrimination results. And aerial LiDAR data should be further explored in future research activities.

  17. A classification and regression tree model of controls on dissolved inorganic nitrogen leaching from European forests.

    Science.gov (United States)

    Rothwell, James J; Futter, Martyn N; Dise, Nancy B

    2008-11-01

    Often, there is a non-linear relationship between atmospheric dissolved inorganic nitrogen (DIN) input and DIN leaching that is poorly captured by existing models. We present the first application of the non-parametric classification and regression tree approach to evaluate the key environmental drivers controlling DIN leaching from European forests. DIN leaching was classified as low (15kg N ha(-1) year(-1)) at 215 sites across Europe. The analysis identified throughfall NO(3)(-) deposition, acid deposition, hydrology, soil type, the carbon content of the soil, and the legacy of historic N deposition as the dominant drivers of DIN leaching for these forests. Ninety four percent of sites were successfully classified into the appropriate leaching category. This approach shows promise for understanding complex ecosystem responses to a wide range of anthropogenic stressors as well as an improved method for identifying risk and targeting pollution mitigation strategies in forest ecosystems.

  18. Local-scale drivers of tree survival in a temperate forest.

    Science.gov (United States)

    Wang, Xugao; Comita, Liza S; Hao, Zhanqing; Davies, Stuart J; Ye, Ji; Lin, Fei; Yuan, Zuoqiang

    2012-01-01

    Tree survival plays a central role in forest ecosystems. Although many factors such as tree size, abiotic and biotic neighborhoods have been proposed as being important in explaining patterns of tree survival, their contributions are still subject to debate. We used generalized linear mixed models to examine the relative importance of tree size, local abiotic conditions and the density and identity of neighbors on tree survival in an old-growth temperate forest in northeastern China at three levels (community, guild and species). Tree size and both abiotic and biotic neighborhood variables influenced tree survival under current forest conditions, but their relative importance varied dramatically within and among the community, guild and species levels. Of the variables tested, tree size was typically the most important predictor of tree survival, followed by biotic and then abiotic variables. The effect of tree size on survival varied from strongly positive for small trees (1-20 cm dbh) and medium trees (20-40 cm dbh), to slightly negative for large trees (>40 cm dbh). Among the biotic factors, we found strong evidence for negative density and frequency dependence in this temperate forest, as indicated by negative effects of both total basal area of neighbors and the frequency of conspecific neighbors. Among the abiotic factors tested, soil nutrients tended to be more important in affecting tree survival than topographic variables. Abiotic factors generally influenced survival for species with relatively high abundance, for individuals in smaller size classes and for shade-tolerant species. Our study demonstrates that the relative importance of variables driving patterns of tree survival differs greatly among size classes, species guilds and abundance classes in temperate forest, which can further understanding of forest dynamics and offer important insights into forest management.

  19. Patterns and drivers of tree mortality in iberian forests: climatic effects are modified by competition.

    Directory of Open Access Journals (Sweden)

    Paloma Ruiz-Benito

    Full Text Available Tree mortality is a key process underlying forest dynamics and community assembly. Understanding how tree mortality is driven by simultaneous drivers is needed to evaluate potential effects of climate change on forest composition. Using repeat-measure information from c. 400,000 trees from the Spanish Forest Inventory, we quantified the relative importance of tree size, competition, climate and edaphic conditions on tree mortality of 11 species, and explored the combined effect of climate and competition. Tree mortality was affected by all of these multiple drivers, especially tree size and asymmetric competition, and strong interactions between climate and competition were found. All species showed L-shaped mortality patterns (i.e. showed decreasing mortality with tree size, but pines were more sensitive to asymmetric competition than broadleaved species. Among climatic variables, the negative effect of temperature on tree mortality was much larger than the effect of precipitation. Moreover, the effect of climate (mean annual temperature and annual precipitation on tree mortality was aggravated at high competition levels for all species, but especially for broadleaved species. The significant interaction between climate and competition on tree mortality indicated that global change in Mediterranean regions, causing hotter and drier conditions and denser stands, could lead to profound effects on forest structure and composition. Therefore, to evaluate the potential effects of climatic change on tree mortality, forest structure must be considered, since two systems of similar composition but different structure could radically differ in their response to climatic conditions.

  20. Tracking deforestation, tree plantation expansion, and forest regrowth in a Costa Rican biological corridor using a Landsat time series

    Science.gov (United States)

    Fagan, M. E.; Sesnie, S.; Arroyo, J.; Walker, W. S.; Soto, C.; Chazdon, R. L.; Sanchun, A.; DeFries, R. S.

    2012-12-01

    Wood demand and voluntary carbon markets have driven a rapid global expansion in tropical tree plantations. To effectively monitor this expansion, new remote sensing-based methods are needed that can overcome difficulties in distinguishing between tree plantations, mature forests, and forest regrowth using low-cost moderate-resolution (10-100 m) satellite sensors. The objective of this study was to accurately map changes in the area of these three forest types in northern Costa Rica using Landsat imagery spanning a 25 year period (1986-2011). We mapped forest and tree plantation cover in a fragmented tropical landscape spanning approximately 2500 km2: the San Juan-La Selva Biological Corridor (SJLSBC). In 1996, the Costa Rican government banned deforestation country-wide and concentrated payments for environmental services (PES) within Biological Corridors to promote native tree plantations and protect forests on private land. To evaluate this program's long-term success, we first tracked forest cover change over time and then distinguished between spectrally-similar forest types. We classified five dates (1986, 1996, 2001, 2005, and 2011) of multispectral Landsat TM and ETM+ imagery (30 m resolution). Using Random Forests, we classified each single-date Landsat image first to forest/nonforest and then to thirteen land cover classes (Figures 1-3). To improve mapping of reforestation, final land cover classification was constrained by forest masks integrated over the time series. Training and validation data (1932 polygons covering 2185 ha) were collected using field data and aerial photography; final accuracy analysis was conducted by withholding twenty bootstrapped samples of the training data. Overall mean change-detection accuracy for the forest mask time series was 95.1% (Kappa= 0.93) and the overall land cover accuracy for all maps was greater than 80%. For tree plantations, the inclusion of multitemporal data improved classification accuracy over single

  1. Pathological Condition of Trees and Shrubs of Forest Plantations in the Middle and Lower Volga Region

    Directory of Open Access Journals (Sweden)

    Kolmukidi Svetlana Valeryevna

    2015-09-01

    Full Text Available The materials on the study of the characteristics of pathologies common in the protective forest plantations are presented. The basic factors of deterioration of woody species pathological conditions are identified. The most common and harmful diseases of the major tree species of the Lower and Middle Volga region are determined. The comparative tolerance of systematic structure of the main forest-forming species to diseases are revealed. The complex research of modern pathological condition of trees and shrubs agroforestry plantations in the steppe and dry steppe regions of Lower and Middle Volga is carried out. Arid climate and harsh growing conditions contribute to the weakening of the stability of trees and shrubs and the deterioration of the pathological state plantations. Abnormal weather conditions (high temperatures, insufficiency or lack of precipitation, strong winds, hot winds, careless use of fire were the reason of forest plantations death. The varying degrees of resistance to pathogens among systematic composition rocks of artificial planting: elm, poplar, birch, ash, maple and others are revealed. The diseases of various etiologies, aggressiveness and severity leading to partial or complete loss of epiphytotics are identified. The most harmful are the vascular pathology (Dutch elm disease, Verticillium of maple, necrotic and cancerous disease of poplar, rot, bacterial diseases. The Middle Volga region Submucusracemosa is the most immune to pathogens, but Ribesaureum is quite resistant to anthracnose and powdery mildew, meanwhile it is subject to Verticillium wilt (Fungi of the genus Verticillium. In the Lower Volga region Cotinuscoggygria and Loniceratatarica are resistant to pathogens. Ribesaureum is subject to anthracnose and Verticillium wilt, on the branches of shadberry necrosis sore meets. Leaves of pea tree suffer from Septoria and rust, branch necrosis and cancer. The use of more sustainable, fast-growing species, hybrids

  2. Metabolic diversity and microbial biomass in forest soils across climatic and tree species diversity gradients

    OpenAIRE

    Carnol, Monique; Bosman, Bernard; Vanoppen, Astrid; De Wandeler, Hans; Muys, Bart

    2013-01-01

    The biogeochemical cycling in forest ecosystems is highly dependent on the interactions between plants and soil. Tree species affect element cycling through deposition in throughfall, litterfall, microbial activities in soil and rhizosphere processes. Tree species diversification has been suggested for maintaining forest ecosystem services and combining provisioning and supporting services within multifunctional and sustainable forestry. However, the understanding of the role of biodiversity ...

  3. Does the Transfer of Forest Reproductive Material Significantly Affect Local Tree Diversity?

    NARCIS (Netherlands)

    Kramer, K.; Geburek, Thomas; Jansen, Simon

    2016-01-01

    Genetic variation within tree species is an important component
    of forest biodiversity. It enables forest ecosystems to adapt to
    environmental changes and it provides genetic material for
    breeding to sustainably increase production. In the framework of
    forestry activities, tree

  4. Assisted migration of forest populations for adapting trees to climate change

    Science.gov (United States)

    Cuauhtémoc Sáenz-Romero; Roberto A. Lindig-Cisneros; Dennis G. Joyce; Jean Beaulieu; J. Bradley St. Clair; Barry C. Jaquish

    2016-01-01

    We present evidence that climatic change is an ongoing process and that forest tree populations are genetically differentiated for quantitative traits because of adaptation to specific habitats. We discuss in detail indications that the shift of suitable climatic habitat for forest tree species and populations, as a result of rapid climatic change, is likely to cause...

  5. Light-dependent leaf trait variation in 43 tropical dry forest tree species

    NARCIS (Netherlands)

    Markesteijn, L.; Poorter, L.; Bongers, F.J.J.M.

    2007-01-01

    Our understanding of leaf acclimation in relation to irradiance of fully grown or juvenile trees is mainly based on research involving tropical wet forest species. We studied sun¿shade plasticity of 24 leaf traits of 43 tree species in a Bolivian dry deciduous forest. Sampling was confined to small

  6. The Potential of Tree Rings for the Study of Forest Succession in Southern Mexico

    NARCIS (Netherlands)

    Brienen, R.J.W.; Lebrija Trejos, E.E.; Breugel, van M.; Bongers, F.; Meave, J.; Martinez-Ramos, M.

    2009-01-01

    Studies of tropical secondary forest succession face strong limitations due to the slow pace of succession and the time-consuming task of monitoring processes. The occurrence of tree rings in secondary forest trees may help expand our knowledge on succession in these systems and may be useful for fa

  7. Aboveground biomass, wood volume, nutrient stocks and leaf litter in novel forests compared to native forests and tree plantations in Puerto Rico

    Science.gov (United States)

    A.E. Lugo; O. Abelleira Martínez; J. Fonseca da Silva

    2012-01-01

    The article presents comparative data for aboveground biomass, wood volume, nutirent stocks (N, P, K) and leaf litter in different types of forests in Puerto Rico. The aim of the study is to assess how novel forests of Castilla elastica, Panama Rubber Tree, and Spathodea campanulata, African Tulip Tree, compare with tree plantations and native historical forests (both...

  8. Applications of Photogrammetry for Analysis of Forest Plantations. Preliminary study: Analysis of individual trees

    Science.gov (United States)

    Mora, R.; Barahona, A.; Aguilar, H.

    2015-04-01

    This paper presents a method for using high detail volumetric information, captured with a land based photogrammetric survey, to obtain information from individual trees. Applying LIDAR analysis techniques it is possible to measure diameter at breast height, height at first branch (commercial height), basal area and volume of an individual tree. Given this information it is possible to calculate how much of that tree can be exploited as wood. The main objective is to develop a methodology for successfully surveying one individual tree, capturing every side of the stem a using high resolution digital camera and reference marks with GPS coordinates. The process is executed for several individuals of two species present in the metropolitan area in San Jose, Costa Rica, Delonix regia (Bojer) Raf. and Tabebuia rosea (Bertol.) DC., each one with different height, stem shape and crown area. Using a photogrammetry suite all the pictures are aligned, geo-referenced and a dense point cloud is generated with enough detail to perform the required measurements, as well as a solid tridimensional model for volume measurement. This research will open the way to develop a capture methodology with an airborne camera using close range UAVs. An airborne platform will make possible to capture every individual in a forest plantation, furthermore if the analysis techniques applied in this research are automated it will be possible to calculate with high precision the exploit potential of a forest plantation and improve its management.

  9. Tree diversity in the tropical dry forest of Bannerghatta National Park in Eastern Ghats, Southern India

    Directory of Open Access Journals (Sweden)

    Gopalakrishna S. Puttakame

    2015-12-01

    Full Text Available Tree species inventories, particularly of poorly known dry deciduous forests, are needed to protect and restore forests in degraded landscapes. A study of forest stand structure, and species diversity and density of trees with girth at breast height (GBH ≥10 cm was conducted in four management zones of Bannerghatta National Park (BNP in the Eastern Ghats of Southern India. We identified 128 tree species belonging to 45 families in 7.9 hectares. However, 44 species were represented by ≤ 2 individuals. Mean diversity values per site for the dry forest of BNP were: tree composition (23.8 ±7.6, plant density (100.69 ± 40.02, species diversity (2.56 ± 0.44 and species richness (10.48 ± 4.05. Tree diversity was not significantly different (P>0.05 across the four management zones in the park. However, the number of tree species identified significantly (P<0.05 increased with increasing number of sampling sites, but majority of the species were captured. Similarly, there were significant variations (p<0.05 between tree diameter class distributions. Juveniles accounted for 87% of the tree population. The structure of the forest was not homogeneous, with sections ranging from poorly structured to highly stratified configurations. The study suggests that there was moderate tree diversity in the tropical dry thorn forest of Bannerghatta National Park, but the forest was relatively young.

  10. Deciduous Tree Species Alter Nitrogen and Phosphorus Availability in Mid-successional Alaskan Boreal Forest

    Science.gov (United States)

    Melvin, A. M.; Mack, M. C.; Johnstone, J. F.; Schuur, E. A.

    2013-12-01

    In Alaskan boreal forest, increased fire severity associated with climate change is altering successional processes and ecosystem nutrient dynamics. Fire is a common disturbance in Interior Alaska and typically burns forests dominated by black spruce (Picea mariana), a tree species associated with slow nutrient turnover and high soil organic matter accumulation rates. Historically, low severity fires have driven black spruce regeneration post-fire, thereby maintaining slow nutrient cycling rates and large soil organic matter stocks. In contrast, high severity fires consume the organic layer and can lead to the establishment of deciduous tree species on exposed mineral soil, which produce less recalcitrant leaf litter and exhibit faster nutrient cycling rates. To improve our understanding of the long-term impacts of tree species composition on nutrient cycling in boreal forest, we quantified nitrogen (N) cycling rates and estimated soil N, phosphorus (P), and base cation pools in adjacent, mid-successional stands of black spruce and Alaska paper birch (Betula neoalaskana) that established following a 1960 fire near Fairbanks, Alaska. Results indicate significantly higher net N mineralization in paper birch soils relative to black spruce for both the fibric organic layer and top 10 cm of mineral soil during 30-day and 90-day lab incubation studies. Net nitrification was significantly higher in the paper birch fibric layer after 90 days. Total soil N concentrations did not differ between paper birch and black spruce stands, however the black spruce organic layer was significantly larger than that of birch, resulting in larger organic layer N stocks (130 vs. 87 g N m2). In contrast, total P concentrations were significantly higher in the organic layer in birch forest, but the total P stocks did not differ significantly between species because of the larger mass of soil organic matter in the black spruce. These findings suggest that a shift towards greater deciduous

  11. Application of Native Tree Species to Urban Forest

    Institute of Scientific and Technical Information of China (English)

    ZHOUZaohong; GUOMeifeng; WUGuoxun

    2004-01-01

    Native trees play important roles in urban forestry, such as a deep cultural background, a strong ecological adaptability, a high performance-cost ratio and a convenient management. But now there are some difficulties in native trees' utilization and popularization due to few study on landscape plant. In order to seek an abnormal and artificial landscaping and to produce an effective result as soon as possible, native and foreign plants can be properly used as an available resource by improving their technological level and emphasizing natural balance. Then Chinese classic culture and green economics can be combined with beautiful forestry by implementing urban sustainable development.

  12. Insect-induced tree mortality of boreal forests in eastern Canada under a changing climate.

    Science.gov (United States)

    Zhang, Xiongqing; Lei, Yuancai; Ma, Zhihai; Kneeshaw, Dan; Peng, Changhui

    2014-06-01

    Forest insects are major disturbances that induce tree mortality in eastern coniferous (or fir-spruce) forests in eastern North America. The spruce budworm (SBW) (Choristoneura fumiferana [Clemens]) is the most devastating insect causing tree mortality. However, the relative importance of insect-caused mortality versus tree mortality caused by other agents and how this relationship will change with climate change is not known. Based on permanent sample plots across eastern Canada, we combined a logistic model with a negative model to estimate tree mortality. The results showed that tree mortality increased mainly due to forest insects. The mean difference in annual tree mortality between plots disturbed by insects and those without insect disturbance was 0.0680 per year (P forests. We also found that annual tree mortality increased significantly with the annual climate moisture index (CMI) and decreased significantly with annual minimum temperature (T min), annual mean temperature (T mean) and the number of degree days below 0°C (DD0), which was inconsistent with previous studies (Adams et al. 2009; van Mantgem et al. 2009; Allen et al. 2010). Furthermore, the results for the trends in the magnitude of forest insect outbreaks were consistent with those of climate factors for annual tree mortality. Our results demonstrate that forest insects are the dominant cause of the tree mortality in eastern Canada but that tree mortality induced by insect outbreaks will decrease in eastern Canada under warming climate.

  13. Markedly Divergent Tree Assemblage Responses to Tropical Forest Loss and Fragmentation across a Strong Seasonality Gradient.

    Directory of Open Access Journals (Sweden)

    Rodrigo L L Orihuela

    Full Text Available We examine the effects of forest fragmentation on the structure and composition of tree assemblages within three seasonal and aseasonal forest types of southern Brazil, including evergreen, Araucaria, and deciduous forests. We sampled three southernmost Atlantic Forest landscapes, including the largest continuous forest protected areas within each forest type. Tree assemblages in each forest type were sampled within 10 plots of 0.1 ha in both continuous forests and 10 adjacent forest fragments. All trees within each plot were assigned to trait categories describing their regeneration strategy, vertical stratification, seed-dispersal mode, seed size, and wood density. We detected differences among both forest types and landscape contexts in terms of overall tree species richness, and the density and species richness of different functional groups in terms of regeneration strategy, seed dispersal mode and woody density. Overall, evergreen forest fragments exhibited the largest deviations from continuous forest plots in assemblage structure. Evergreen, Araucaria and deciduous forests diverge in the functional composition of tree floras, particularly in relation to regeneration strategy and stress tolerance. By supporting a more diversified light-demanding and stress-tolerant flora with reduced richness and abundance of shade-tolerant, old-growth species, both deciduous and Araucaria forest tree assemblages are more intrinsically resilient to contemporary human-disturbances, including fragmentation-induced edge effects, in terms of species erosion and functional shifts. We suggest that these intrinsic differences in the direction and magnitude of responses to changes in landscape structure between forest types should guide a wide range of conservation strategies in restoring fragmented tropical forest landscapes worldwide.

  14. Genetically engineered trees for plantation forests: key considerations for environmental risk assessment.

    Science.gov (United States)

    Häggman, Hely; Raybould, Alan; Borem, Aluizio; Fox, Thomas; Handley, Levis; Hertzberg, Magnus; Lu, Meng-Zu; Macdonald, Philip; Oguchi, Taichi; Pasquali, Giancarlo; Pearson, Les; Peter, Gary; Quemada, Hector; Séguin, Armand; Tattersall, Kylie; Ulian, Eugênio; Walter, Christian; McLean, Morven

    2013-09-01

    Forests are vital to the world's ecological, social, cultural and economic well-being yet sustainable provision of goods and services from forests is increasingly challenged by pressures such as growing demand for wood and other forest products, land conversion and degradation, and climate change. Intensively managed, highly productive forestry incorporating the most advanced methods for tree breeding, including the application of genetic engineering (GE), has tremendous potential for producing more wood on less land. However, the deployment of GE trees in plantation forests is a controversial topic and concerns have been particularly expressed about potential harms to the environment. This paper, prepared by an international group of experts in silviculture, forest tree breeding, forest biotechnology and environmental risk assessment (ERA) that met in April 2012, examines how the ERA paradigm used for GE crop plants may be applied to GE trees for use in plantation forests. It emphasizes the importance of differentiating between ERA for confined field trials of GE trees, and ERA for unconfined or commercial-scale releases. In the case of the latter, particular attention is paid to characteristics of forest trees that distinguish them from shorter-lived plant species, the temporal and spatial scale of forests, and the biodiversity of the plantation forest as a receiving environment.

  15. Carbon and nitrogen in forest floor and mineral soil under six common European tree species

    DEFF Research Database (Denmark)

    Vesterdal, Lars; Schmidt, Inger K.; Callesen, Ingeborg;

    2007-01-01

    The knowledge of tree species effects on soil C and N pools is scarce, particularly for European deciduous tree species. We studied forest floor and mineral soil carbon and nitrogen under six common European tree species in a common garden design replicated at six sites in Denmark. Three decades...... after planting the six tree species had different profiles in terms of litterfall, forest floor and mineral soil C and N attributes. Three groups were identified: (1) ash, maple and lime, (2) beech and oak, and (3) spruce. There were significant differences in forest floor and soil C and N contents...... and C/N ratios, also among the five deciduous tree species. The influence of tree species was most pronounced in the forest floor, where C and N contents increased in the order ash = lime = maple

  16. Insight into the Genetic Components of Community Genetics: QTL Mapping of Insect Association in a Fast-Growing Forest Tree

    NARCIS (Netherlands)

    DeWoody, J.; Viger, M.; Lakatos, F.; Tuba, K.; Taylor, G.; Smulders, M.J.M.

    2013-01-01

    Identifying genetic sequences underlying insect associations on forest trees will improve the understanding of community genetics on a broad scale. We tested for genomic regions associated with insects in hybrid poplar using quantitative trait loci (QTL) analyses conducted on data from a common gard

  17. Insight into the Genetic Components of Community Genetics: QTL Mapping of Insect Association in a Fast-Growing Forest Tree

    NARCIS (Netherlands)

    DeWoody, J.; Viger, M.; Lakatos, F.; Tuba, K.; Taylor, G.; Smulders, M.J.M.

    2013-01-01

    Identifying genetic sequences underlying insect associations on forest trees will improve the understanding of community genetics on a broad scale. We tested for genomic regions associated with insects in hybrid poplar using quantitative trait loci (QTL) analyses conducted on data from a common gard

  18. Diversity did not influence soil water use of tree clusters in a temperate mixed forest

    OpenAIRE

    Meißner, M; Köhler, M; D. Hölscher

    2013-01-01

    Compared to monocultures, diverse ecosystems are often expected to show more comprehensive resource use. However, with respect to diversity–soil-water-use relationships in forests, very little information is available. We analysed soil water uptake in 100 tree clusters differing in tree species diversity and species composition in the Hainich forest in central Germany. The clusters contained all possible combinations of five broadleaved tree species in one-, two- and t...

  19. Woodland: Dynamics of Deciduous Tree Stand Average Diameters of the Principal Forest Types

    Directory of Open Access Journals (Sweden)

    R. A. Ziganshin

    2014-06-01

    Full Text Available The analysis of age dynamics of average diameters of a deciduous tree stands of different forest types at Highland Khamar-Daban (natural woodland in South-East Baikal Lake region has been done. The aggregate data of average tree stand diameters by age classes, as well as tree stand current periodic and overall average increment are presented and discussed in the paper. Forest management appraisal is done.

  20. Landscape variation in tree species richness in northern Iran forests.

    Directory of Open Access Journals (Sweden)

    Charles P-A Bourque

    Full Text Available Mapping landscape variation in tree species richness (SR is essential to the long term management and conservation of forest ecosystems. The current study examines the prospect of mapping field assessments of SR in a high-elevation, deciduous forest in northern Iran as a function of 16 biophysical variables representative of the area's unique physiography, including topography and coastal placement, biophysical environment, and forests. Basic to this study is the development of moderate-resolution biophysical surfaces and associated plot-estimates for 202 permanent sampling plots. The biophysical variables include: (i three topographic variables generated directly from the area's digital terrain model; (ii four ecophysiologically-relevant variables derived from process models or from first principles; and (iii seven variables of Landsat-8-acquired surface reflectance and two, of surface radiance. With symbolic regression, it was shown that only four of the 16 variables were needed to explain 85% of observed plot-level variation in SR (i.e., wind velocity, surface reflectance of blue light, and topographic wetness indices representative of soil water content, yielding mean-absolute and root-mean-squared error of 0.50 and 0.78, respectively. Overall, localised calculations of wind velocity and surface reflectance of blue light explained about 63% of observed variation in SR, with wind velocity accounting for 51% of that variation. The remaining 22% was explained by linear combinations of soil-water-related topographic indices and associated thresholds. In general, SR and diversity tended to be greatest for plots dominated by Carpinus betulus (involving ≥ 33% of all trees in a plot, than by Fagus orientalis (median difference of one species. This study provides a significant step towards describing landscape variation in SR as a function of modelled and satellite-based information and symbolic regression. Methods in this study are sufficiently

  1. Adaptive genetic potential of coniferous forest tree species under climate change: implications for sustainable forest management

    Science.gov (United States)

    Mihai, Georgeta; Birsan, Marius-Victor; Teodosiu, Maria; Dumitrescu, Alexandru; Daia, Mihai; Mirancea, Ionel; Ivanov, Paula; Alin, Alexandru

    2017-04-01

    Mountain ecosystems are extremely vulnerable to climate change. The real potential for adaptation depends upon the existence of a wide genetic diversity in trees populations, upon the adaptive genetic variation, respectively. Genetic diversity offers the guarantee that forest species can survive, adapt and evolve under the influence of changing environmental conditions. The aim of this study is to evaluate the genetic diversity and adaptive genetic potential of two local species - Norway spruce and European silver fir - in the context of regional climate change. Based on data from a long-term provenance experiments network and climate variables spanning over more than 50 years, we have investigated the impact of climatic factors on growth performance and adaptation of tree species. Our results indicate that climatic and geographic factors significantly affect forest site productivity. Mean annual temperature and annual precipitation amount were found to be statistically significant explanatory variables. Combining the additive genetic model with the analysis of nuclear markers we obtained different images of the genetic structure of tree populations. As genetic indicators we used: gene frequencies, genetic diversity, genetic differentiation, genetic variance, plasticity. Spatial genetic analyses have allowed identifying the genetic centers holding high genetic diversity which will be valuable sources of gene able to buffer the negative effects of future climate change. Correlations between the marginal populations and in the optimal vegetation, between the level of genetic diversity and ecosystem stability, will allow the assessment of future risks arising from current genetic structure. Therefore, the strategies for sustainable forest management have to rely on the adaptive genetic variation and local adaptation of the valuable genetic resources. This work was realized within the framework of the project GENCLIM (Evaluating the adaptive potential of the main

  2. On the Number of Fireproof Vertices of a Tree in a Random Forest

    OpenAIRE

    Yury L. Pavlov; Elena V. Khvorostyanskaya

    2013-01-01

    We consider the set Fn,N of all possible forests, consisting of N≥2 ordered non-root trees and labeled vertices. We specify the uniform distribution on Fn,N. When N1/3(n/N−2)→∞ there is obtained the limit theorem for the number of fireproof vertices of one tree in a forest fire model on a random forest taken from Fn,N.

  3. Mapping tropical forest trees using high-resolution aerial digital photographs

    NARCIS (Netherlands)

    Garzon-Lopez, Carol X.; Bohlman, Stephanie A.; Olff, Han; Jansen, Patrick A.

    2013-01-01

    The spatial arrangement of tree species is a key aspect of community ecology. Because tree species in tropical forests occur at low densities, it is logistically challenging to measure distributions across large areas. In this study, we evaluated the potential use of canopy tree crown maps, derived

  4. Architecture of 53 rain forest tree species differing in adult stature and shade tolerance

    NARCIS (Netherlands)

    Poorter, L.; Bongers, F.J.J.M.; Sterck, F.J.; Wöll, H.

    2003-01-01

    Tree architecture determines a tree's light capture, stability, and efficiency of crown growth. The hypothesis that light demand and adult stature of tree species within a community, independently of each other, determine species' architectural traits was tested by comparing 53 Liberian rain forest

  5. Tree and forest effects on air quality and human health in the United States

    Science.gov (United States)

    David J. Nowak; Satoshi Hirabayashi; Allison Bodine; Eric. Greenfield

    2014-01-01

    Trees remove air pollution by the interception of particulate matter on plant surfaces and the absorption of gaseous pollutants through the leaf stomata. However, the magnitude and value of the effects of trees and forests on air quality and human health across the United States remains unknown. Computer simulations with local environmental data reveal that trees and...

  6. Architecture of 53 rain forest tree species differing in adult stature and shade tolerance

    NARCIS (Netherlands)

    Poorter, L.; Bongers, F.J.J.M.; Sterck, F.J.; Wöll, H.

    2003-01-01

    Tree architecture determines a tree's light capture, stability, and efficiency of crown growth. The hypothesis that light demand and adult stature of tree species within a community, independently of each other, determine species' architectural traits was tested by comparing 53 Liberian rain forest

  7. Temperature and rainfall strongly drive temporal growth variation in Asian tropical forest trees

    NARCIS (Netherlands)

    Vlam, M.; Baker, P.J.; Bunyavejchewin, S.; Zuidema, P.A.

    2014-01-01

    Climate change effects on growth rates of tropical trees may lead to alterations in carbon cycling of carbon-rich tropical forests. However, climate sensitivity of broad-leaved lowland tropical trees is poorly understood. Dendrochronology (tree-ring analysis) provides a powerful tool to study the

  8. An index of forest management intensity based on assessment of harvested tree volume, tree species composition and dead wood origin

    Directory of Open Access Journals (Sweden)

    Tiemo Kahl

    2014-04-01

    Full Text Available Forest management intensity often affects biodiversity, ecosystem processes and ecosystem services. To assess the influence of past management intensity on current ecosystem properties, management intensity must be quantified in a meaningful and reproducible approach. Here we developed the simple yet effective Forest Management Intensity index (ForMI, which is based only on inventory data of the living stand, stumps and dead wood. The ForMI is the sum of three components taking into account: 1. the proportion of harvested tree volume (Iharv, 2. the proportion of tree species that are not part of the natural forest community (Inonat and 3. the proportion of dead wood showing signs of saw cuts (Idwcut. Each component ranges between 0 (no sign of management and 1 (intensive management. Our analysis suggests that the ForMI can be used to assess management intensity in Central European forests for the last 30 to 40 years, depending on decay rates of stumps and dead wood. Our approach was tested using data of 148 forest plots of 1 ha in size in Germany. We found a significant distinction between plots that were previously described as managed and unmanaged as well as between plots comprising trees species of the natural forest community and those with additional, introduced coniferous tree species. We conclude that the index is applicable to a wide range of forest management types, but should not be misinterpreted as an index for old-growth structure.

  9. Effects of tree species composition on within-forest distribution of understorey species

    NARCIS (Netherlands)

    Oijen, van D.; Feijen, M.; Hommel, P.W.F.M.; Ouden, den J.; Waal, de R.W.

    2005-01-01

    Question: Do tree species, with different litter qualities, affect the within-forest distribution of forest understorey species on intermediate to base-rich soils? Since habitat loss and fragmentation have caused ancient forest species to decline, those species are the main focus of this study. Loca

  10. Land use history, environment, and tree composition in a tropical forest

    Science.gov (United States)

    Jill Thompson; Nicholas Brokaw; Jess K. Zimmerman; Robert B. Waide; Edwin M. III Everham; D. Jean Lodge; Charlotte M. Taylor; Diana Garcia-Montiel; Marcheterre Fluet

    2002-01-01

    The effects of historical land use on tropical forest must be examined to understand present forest characteristics and to plan conservation strategies. We compared the effects of past land use, topography, soil type, and other environmental variables on tree species composition in a subtropical wet forest in the Luquillo Mountains, Puerto Rico. The study involved...

  11. Interacting factors driving a major loss of large trees with cavities in a forest ecosystem.

    Science.gov (United States)

    Lindenmayer, David B; Blanchard, Wade; McBurney, Lachlan; Blair, David; Banks, Sam; Likens, Gene E; Franklin, Jerry F; Laurance, William F; Stein, John A R; Gibbons, Philip

    2012-01-01

    Large trees with cavities provide critical ecological functions in forests worldwide, including vital nesting and denning resources for many species. However, many ecosystems are experiencing increasingly rapid loss of large trees or a failure to recruit new large trees or both. We quantify this problem in a globally iconic ecosystem in southeastern Australia--forests dominated by the world's tallest angiosperms, Mountain Ash (Eucalyptus regnans). Tree, stand and landscape-level factors influencing the death and collapse of large living cavity trees and the decay and collapse of dead trees with cavities are documented using a suite of long-term datasets gathered between 1983 and 2011. The historical rate of tree mortality on unburned sites between 1997 and 2011 was >14% with a mortality spike in the driest period (2006-2009). Following a major wildfire in 2009, 79% of large living trees with cavities died and 57-100% of large dead trees were destroyed on burned sites. Repeated measurements between 1997 and 2011 revealed no recruitment of any new large trees with cavities on any of our unburned or burned sites. Transition probability matrices of large trees with cavities through increasingly decayed condition states projects a severe shortage of large trees with cavities by 2039 that will continue until at least 2067. This large cavity tree crisis in Mountain Ash forests is a product of: (1) the prolonged time required (>120 years) for initiation of cavities; and (2) repeated past wildfires and widespread logging operations. These latter factors have resulted in all landscapes being dominated by stands ≤72 years and just 1.16% of forest being unburned and unlogged. We discuss how the features that make Mountain Ash forests vulnerable to a decline in large tree abundance are shared with many forest types worldwide.

  12. Association mapping in forest trees and fruit crops.

    Science.gov (United States)

    Khan, M Awais; Korban, Schuyler S

    2012-06-01

    Association mapping (AM), also known as linkage disequilibrium (LD) mapping, is a viable approach to overcome limitations of pedigree-based quantitative trait loci (QTL) mapping. In AM, genotypic and phenotypic correlations are investigated in unrelated individuals. Unlike QTL mapping, AM takes advantage of both LD and historical recombination present within the gene pool of an organism, thus utilizing a broader reference population. In plants, AM has been used in model species with available genomic resources. Pursuing AM in tree species requires both genotyping and phenotyping of large populations with unique architectures. Recently, genome sequences and genomic resources for forest and fruit crops have become available. Due to abundance of single nucleotide polymorphisms (SNPs) within a genome, along with availability of high-throughput resequencing methods, SNPs can be effectively used for genotyping trees. In addition to DNA polymorphisms, copy number variations (CNVs) in the form of deletions, duplications, and insertions also play major roles in control of expression of phenotypic traits. Thus, CNVs could provide yet another valuable resource, beyond those of microsatellite and SNP variations, for pursuing genomic studies. As genome-wide SNP data are generated from high-throughput sequencing efforts, these could be readily reanalysed to identify CNVs, and subsequently used for AM studies. However, forest and fruit crops possess unique architectural and biological features that ought to be taken into consideration when collecting genotyping and phenotyping data, as these will also dictate which AM strategies should be pursued. These unique features as well as their impact on undertaking AM studies are outlined and discussed.

  13. Forecasting the forest and the trees: consequences of drought in competitive forests

    Science.gov (United States)

    Clark, J. S.

    2015-12-01

    Models that translate individual tree responses to distribution and abundance of competing populations are needed to understand forest vulnerability to drought. Currently, biodiversity predictions rely on one scale or the other, but do not combine them. Synthesis is accomplished here by modeling data together, each with their respective scale-dependent connections to the scale needed for prediction—landscape to regional biodiversity. The approach we summarize integrates three scales, i) individual growth, reproduction, and survival, ii) size-species structure of stands, and iii) regional forest biomass. Data include 24,347 USDA Forest Inventory and Analysis (FIA) plots and 135 Long-term Forest Demography plots. Climate, soil moisture, and competitive interactions are predictors. We infer and predict the four-dimensional size/species/space/time (SSST) structure of forests, where all demographic rates respond to winter temperature, growing season length, moisture deficits, local moisture status, and competition. Responses to soil moisture are highly non-linear and not strongly related to responses to climatic moisture deficits over time. In the Southeast the species that are most sensitive to drought on dry sites are not the same as those that are most sensitive on moist sites. Those that respond most to spatial moisture gradients are not the same as those that respond most to regional moisture deficits. There is little evidence of simple tradeoffs in responses. Direct responses to climate constrain the ranges of few tree species, north or south; there is little evidence that range limits are defined by fecundity or survival responses to climate. By contrast, recruitment and the interactions between competition and drought that affect growth and survival are predicted to limit ranges of many species. Taken together, results suggest a rich interaction involving demographic responses at all size classes to neighbors, landscape variation in moisture, and regional

  14. Is tree species diversity or tree species identity the most important driver of European forest soil carbon stocks?

    Science.gov (United States)

    Vesterdal, Lars; Muhie Dawud, Seid; Raulund-Rasmussen, Karsten; Finér, Leena; Domisch, Timo

    2016-04-01

    Land management includes the selection of specific tree species and tree species mixtures for European forests. Studies of functional species diversity effects have reported positive effects for aboveground carbon (C) sequestration, but the question remains whether higher soil C stocks could also result from belowground niche differentiation including more efficient root exploitation of soils. We studied topsoil C stocks in tree species diversity gradients established within the FunDivEurope project to explore biodiversity-ecosystem functioning relationships in six European forest types in Finland, Poland, Germany, Romania, Spain and Italy. In the Polish forest type we extended the sampling to also include subsoils. We found consistent but modest effects of species diversity on total soil C stocks (forest floor and 0-20 cm) across the six European forest types. Carbon stocks in the forest floor alone and in the combined forest floor and mineral soil layers increased with increasing tree species diversity. In contrast, there was a strong effect of species identity (broadleaf vs. conifer) and its interaction with site-related factors. Within the Polish forest type we sampled soils down to 40 cm and found that species identity was again the main factor explaining total soil C stock. However, species diversity increased soil C stocks in deeper soil layers (20-40 cm), while species identity influenced C stocks significantly within forest floors and the 0-10 cm layer. Root biomass increased with diversity in 30-40 cm depth, and a positive relationship between C stocks and root biomass in the 30-40 cm layer suggested that belowground niche complementarity could be a driving mechanism for higher root carbon input and in turn a deeper distribution of C in diverse forests. We conclude that total C stocks are mainly driven by tree species identity. However, modest positive diversity effects were detected at the European scale, and stronger positive effects on subsoil C stocks

  15. Complementary resource use by tree species in a rain forest tree plantation.

    Science.gov (United States)

    Richards, Anna E; Schmidt, Susanne

    2010-07-01

    Mixed-species tree plantations, composed of high-value native rain forest timbers, are potential forestry systems for the subtropics and tropics that can provide ecological and production benefits. Choices of rain forest tree species for mixtures are generally based on the concept that assemblages of fast-growing and light-demanding species are less productive than assemblages of species with different shade tolerances. We examined the hypothesis that mixtures of two fast-growing species compete for resources, while mixtures of shade-tolerant and shade-intolerant species are complementary. Ecophysiological characteristics of young trees were determined and analyzed with a physiology-based canopy model (MAESTRA) to test species interactions. Contrary to predictions, there was evidence for complementary interactions between two fast-growing species with respect to nutrient uptake, nutrient use efficiency, and nutrient cycling. Fast-growing Elaeocarpus angustifolius had maximum demand for soil nutrients in summer, the most efficient internal recycling of N, and low P use efficiency at the leaf and whole-plant level and produced a large amount of nutrient-rich litter. In contrast, fast-growing Grevillea robusta had maximum demand for soil nutrients in spring and highest leaf nutrient use efficiency for N and P and produced low-nutrient litter. Thus, mixtures of fast-growing G. robusta and E. angustifolius or G. robusta and slow-growing, shade-tolerant Castanospermum australe may have similar or even greater productivity than monocultures, as light requirement is just one of several factors affecting performance of mixed-species plantations. We conclude that the knowledge gained here will be useful for designing large-scale experimental mixtures and commercial forestry systems in subtropical Australia and elsewhere.

  16. Acclimation of tree function and structure to climate change and implications to forest carbon and nutrient balances

    Energy Technology Data Exchange (ETDEWEB)

    Hari, P.; Nissinen, A.; Berninger, F. [Helsinki Univ. (Finland). Dept. of Forest Ecology] [and others

    1996-12-31

    Before large-scale anthropogenetic emissions the environmental factors have been rather stable for thousands of years, varying yearly, seasonally and daily in rather regular manners around some mean values. In this century the emissions of CO{sub 2}, sulphur and nitrogen from society to atmosphere are changing both atmospheric and soil environment at rates not experienced before. The fluxes to soil affect the contents of plant available nutrients and solubility of toxic compounds in the forest soil. Additionally, the chemical state of soil environment is coupled to tree growth, litter production and nutrient uptake as well as to the activity of biological organisms in soil, which decompose litter and release nutrients from it. Trees have developed effective regulation systems to cope with the environment during the evolution. The resulting acclimations improve the functioning of the trees if the environmental factors remain within their range of variation during the evolution. Outside the range the results of the regulation are unpredictable. The acclimative changes caused by the action of the regulation system may considerably change the response of trees to present environmental change. The analysis of the effects of present environmental change on forests requires simultaneous treatment of the atmosphere, forest soils and trees. Each of these components is dominated by its own features. The analyze of material and energy fluxes connect them to each other. The aim of this research is to analyse changes in the forest soils and reactions of trees to changes in the atmosphere and forest soils under a common theoretical framework, enabling combination of the obtained results into a holistic analysis of the response of forests to the present environmental change

  17. Does Forest Continuity Enhance the Resilience of Trees to Environmental Change?

    Directory of Open Access Journals (Sweden)

    Goddert von Oheimb

    Full Text Available There is ample evidence that continuously existing forests and afforestations on previously agricultural land differ with regard to ecosystem functions and services such as carbon sequestration, nutrient cycling and biodiversity. However, no studies have so far been conducted on possible long-term (>100 years impacts on tree growth caused by differences in the ecological continuity of forest stands. In the present study we analysed the variation in tree-ring width of sessile oak (Quercus petraea (Matt. Liebl. trees (mean age 115-136 years due to different land-use histories (continuously existing forests, afforestations both on arable land and on heathland. We also analysed the relation of growth patterns to soil nutrient stores and to climatic parameters (temperature, precipitation. Tree rings formed between 1896 and 2005 were widest in trees afforested on arable land. This can be attributed to higher nitrogen and phosphorous availability and indicates that former fertilisation may continue to affect the nutritional status of forest soils for more than one century after those activities have ceased. Moreover, these trees responded more strongly to environmental changes - as shown by a higher mean sensitivity of the tree-ring widths - than trees of continuously existing forests. However, the impact of climatic parameters on the variability in tree-ring width was generally small, but trees on former arable land showed the highest susceptibility to annually changing climatic conditions. We assume that incompletely developed humus horizons as well as differences in the edaphon are responsible for the more sensitive response of oak trees of recent forests (former arable land and former heathland to variation in environmental conditions. We conclude that forests characterised by a long ecological continuity may be better adapted to global change than recent forest ecosystems.

  18. Tree diversity, composition, forest structure and aboveground biomass dynamics after single and repeated fire in a Bornean rain forest.

    Science.gov (United States)

    Slik, J W Ferry; Bernard, Caroline S; Van Beek, Marloes; Breman, Floris C; Eichhorn, Karl A O

    2008-12-01

    Forest fires remain a devastating phenomenon in the tropics that not only affect forest structure and biodiversity, but also contribute significantly to atmospheric CO2. Fire used to be extremely rare in tropical forests, leaving ample time for forests to regenerate to pre-fire conditions. In recent decades, however, tropical forest fires occur more frequently and at larger spatial scales than they used to. We studied forest structure, tree species diversity, tree species composition, and aboveground biomass during the first 7 years since fire in unburned, once burned and twice burned forest of eastern Borneo to determine the rate of recovery of these forests. We paid special attention to changes in the tree species composition during burned forest regeneration because we expect the long-term recovery of aboveground biomass and ecosystem functions in burned forests to largely depend on the successful regeneration of the pre-fire, heavy-wood, species composition. We found that forest structure (canopy openness, leaf area index, herb cover, and stem density) is strongly affected by fire but shows quick recovery. However, species composition shows no or limited recovery and aboveground biomass, which is greatly reduced by fire, continues to be low or decline up to 7 years after fire. Consequently, large amounts of the C released to the atmosphere by fire will not be recaptured by the burned forest ecosystem in the near future. We also observed that repeated fire, with an inter-fire interval of 15 years, does not necessarily lead to a huge deterioration in the regeneration potential of tropical forest. We conclude that burned forests are valuable and should be conserved and that long-term monitoring programs in secondary forests are necessary to determine their recovery rates, especially in relation to aboveground biomass accumulation.

  19. Tree species composition affects the abundance of rowan (Sorbus aucuparia L.) in urban forests in Finland.

    Science.gov (United States)

    Hamberg, Leena; Lehvävirta, Susanna; Kotze, D Johan; Heikkinen, Juha

    2015-03-15

    Recent studies have shown a considerable increase in the abundance of rowan (Sorbus aucuparia) saplings in urban forests in Finland, yet the reasons for this increase are not well understood. Here we investigated whether canopy cover or tree species composition, i.e., the basal areas of different tree species in Norway spruce dominated urban forests, affects the abundances of rowan seedlings, saplings and trees. Altogether 24 urban forest patches were investigated. We sampled the number of rowan and other saplings, and calculated the basal areas of trees. We showed that rowan abundance was affected by tree species composition. The basal area of rowan trees (≥ 5 cm in diameter at breast height, dbh) decreased with increasing basal area of Norway spruce, while the cover of rowan seedlings increased with an increase in Norway spruce basal area. However, a decrease in the abundance of birch (Betula pendula) and an increase in the broad-leaved tree group (Acer platanoides, Alnus glutinosa, Alnus incana, Amelanchier spicata, Prunus padus, Quercus robur, Rhamnus frangula and Salix caprea) coincided with a decreasing number of rowans. Furthermore, rowan saplings were scarce in the vicinity of mature rowan trees. Although it seems that tree species composition has an effect on rowan, the relationship between rowan saplings and mature trees is complex, and therefore we conclude that regulating tree species composition is not an easy way to keep rowan thickets under control in urban forests in Finland. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Effects of pioneer tree species hyperabundance on forest fragments in northeastern Brazil.

    Science.gov (United States)

    Tabarelli, Marcelo; Aguiar, Antonio V; Girão, Luciana C; Peres, Carlos A; Lopes, Ariadna V

    2010-12-01

    Despite many studies on fragmentation of tropical forests, the extent to which plant and animal communities are altered in small, isolated forest fragments remains obscure if not controversial. We examined the hypothesis that fragmentation alters the relative abundance of tree species with different vegetative and reproductive traits. In a fragmented landscape (670 km(2) ) of the Atlantic Forest of northeastern Brazil, we categorized 4056 trees of 182 species by leafing pattern, reproductive phenology, and morphology of seeds and fruit. We calculated relative abundance of traits in 50 1-ha plots in three types of forest configurations: forest edges, small forest fragments (3.4-83.6 ha), and interior of the largest forest fragment (3500 ha, old growth). Although evergreen species were the most abundant across all configurations, forest edges and small fragments had more deciduous and semideciduous species than interior forest. Edges lacked supra-annual flowering and fruiting species and had more species and stems with drupes and small seeds than small forest fragments and forest interior areas. In an ordination of species similarity and life-history traits, the three types of configurations formed clearly segregated clusters. Furthermore, the differences in the taxonomic and functional (i.e., trait-based) composition of tree assemblages we documented were driven primarily by the higher abundance of pioneer species in the forest edge and small forest fragments. Our work provides strong evidence that long-term transitions in phenology and seed and fruit morphology of tree functional groups are occurring in fragmented tropical forests. Our results also suggest that edge-induced shifts in tree assemblages of tropical forests can be larger than previously documented.

  1. Disentangling the diversity of arboreal ant communities in tropical forest trees.

    Science.gov (United States)

    Klimes, Petr; Fibich, Pavel; Idigel, Cliffson; Rimandai, Maling

    2015-01-01

    Tropical canopies are known for their high abundance and diversity of ants. However, the factors which enable coexistence of so many species in trees, and in particular, the role of foragers in determining local diversity, are not well understood. We censused nesting and foraging arboreal ant communities in two 0.32 ha plots of primary and secondary lowland rainforest in New Guinea and explored their species diversity and composition. Null models were used to test if the records of species foraging (but not nesting) in a tree were dependent on the spatial distribution of nests in surrounding trees. In total, 102 ant species from 389 trees occurred in the primary plot compared with only 50 species from 295 trees in the secondary forest plot. However, there was only a small difference in mean ant richness per tree between primary and secondary forest (3.8 and 3.3 sp. respectively) and considerably lower richness per tree was found only when nests were considered (1.5 sp. in both forests). About half of foraging individuals collected in a tree belonged to species which were not nesting in that tree. Null models showed that the ants foraging but not nesting in a tree are more likely to nest in nearby trees than would be expected at random. The effects of both forest stage and tree size traits were similar regardless of whether only foragers, only nests, or both datasets combined were considered. However, relative abundance distributions of species differed between foraging and nesting communities. The primary forest plot was dominated by native ant species, whereas invasive species were common in secondary forest. This study demonstrates the high contribution of foragers to arboreal ant diversity, indicating an important role of connectivity between trees, and also highlights the importance of primary vegetation for the conservation of native ant communities.

  2. Disentangling the diversity of arboreal ant communities in tropical forest trees.

    Directory of Open Access Journals (Sweden)

    Petr Klimes

    Full Text Available Tropical canopies are known for their high abundance and diversity of ants. However, the factors which enable coexistence of so many species in trees, and in particular, the role of foragers in determining local diversity, are not well understood. We censused nesting and foraging arboreal ant communities in two 0.32 ha plots of primary and secondary lowland rainforest in New Guinea and explored their species diversity and composition. Null models were used to test if the records of species foraging (but not nesting in a tree were dependent on the spatial distribution of nests in surrounding trees. In total, 102 ant species from 389 trees occurred in the primary plot compared with only 50 species from 295 trees in the secondary forest plot. However, there was only a small difference in mean ant richness per tree between primary and secondary forest (3.8 and 3.3 sp. respectively and considerably lower richness per tree was found only when nests were considered (1.5 sp. in both forests. About half of foraging individuals collected in a tree belonged to species which were not nesting in that tree. Null models showed that the ants foraging but not nesting in a tree are more likely to nest in nearby trees than would be expected at random. The effects of both forest stage and tree size traits were similar regardless of whether only foragers, only nests, or both datasets combined were considered. However, relative abundance distributions of species differed between foraging and nesting communities. The primary forest plot was dominated by native ant species, whereas invasive species were common in secondary forest. This study demonstrates the high contribution of foragers to arboreal ant diversity, indicating an important role of connectivity between trees, and also highlights the importance of primary vegetation for the conservation of native ant communities.

  3. Root–shoot allometry of tropical forest trees determined in a large-scale aeroponic system

    Science.gov (United States)

    Eshel, Amram; Grünzweig, José M.

    2013-01-01

    Background and Aims This study is a first step in a multi-stage project aimed at determining allometric relationships among the tropical tree organs, and carbon fluxes between the various tree parts and their environment. Information on canopy–root interrelationships is needed to improve understanding of above- and below-ground processes and for modelling of the regional and global carbon cycle. Allometric relationships between the sizes of different plant parts will be determined. Methods Two tropical forest species were used in this study: Ceiba pentandra (kapok), a fast-growing tree native to South and Central America and to Western Africa, and Khaya anthotheca (African mahogany), a slower-growing tree native to Central and Eastern Africa. Growth and allometric parameters of 12-month-old saplings grown in a large-scale aeroponic system and in 50-L soil containers were compared. The main advantage of growing plants in aeroponics is that their root systems are fully accessible throughout the plant life, and can be fully recovered for harvesting. Key Results The expected differences in shoot and root size between the fast-growing C. pentandra and the slower-growing K. anthotheca were evident in both growth systems. Roots were recovered from the aeroponically grown saplings only, and their distribution among various diameter classes followed the patterns expected from the literature. Stem, branch and leaf allometric parameters were similar for saplings of each species grown in the two systems. Conclusions The aeroponic tree growth system can be utilized for determining the basic allometric relationships between root and shoot components of these trees, and hence can be used to study carbon allocation and fluxes of whole above- and below-ground tree parts. PMID:23250916

  4. Seasonal dynamics and age of stemwood nonstructural carbohydrates in temperate forest trees.

    Science.gov (United States)

    Richardson, Andrew D; Carbone, Mariah S; Keenan, Trevor F; Czimczik, Claudia I; Hollinger, David Y; Murakami, Paula; Schaberg, Paul G; Xu, Xiaomei

    2013-02-01

    Nonstructural carbohydrate reserves support tree metabolism and growth when current photosynthates are insufficient, offering resilience in times of stress. We monitored stemwood nonstructural carbohydrate (starch and sugars) concentrations of the dominant tree species at three sites in the northeastern United States. We estimated the mean age of the starch and sugars in a subset of trees using the radiocarbon ((14) C) bomb spike. With these data, we then tested different carbon (C) allocation schemes in a process-based model of forest C cycling. We found that the nonstructural carbohydrates are both highly dynamic and about a decade old. Seasonal dynamics in starch (two to four times higher in the growing season, lower in the dormant season) mirrored those of sugars. Radiocarbon-based estimates indicated that the mean age of the starch and sugars in red maple (Acer rubrum) was 7-14 yr. A two-pool (fast and slow cycling reserves) model structure gave reasonable estimates of the size and mean residence time of the total NSC pool, and greatly improved model predictions of interannual variability in woody biomass increment, compared with zero- or one-pool structures used in the majority of existing models. This highlights the importance of nonstructural carbohydrates in the context of forest ecosystem carbon cycling.

  5. Assessment of the Genetic Diversity in Forest Tree Populations Using Molecular Markers

    Directory of Open Access Journals (Sweden)

    Ilga Porth

    2014-04-01

    Full Text Available Molecular markers have proven to be invaluable tools for assessing plants’ genetic resources by improving our understanding with regards to the distribution and the extent of genetic variation within and among species. Recently developed marker technologies allow the uncovering of the extent of the genetic variation in an unprecedented way through increased coverage of the genome. Markers have diverse applications in plant sciences, but certain marker types, due to their inherent characteristics, have also shown their limitations. A combination of diverse marker types is usually recommended to provide an accurate assessment of the extent of intra- and inter-population genetic diversity of naturally distributed plant species on which proper conservation directives for species that are at risk of decline can be issued. Here, specifically, natural populations of forest trees are reviewed by summarizing published reports in terms of the status of genetic variation in the pure species. In general, for outbred forest tree species, the genetic diversity within populations is larger than among populations of the same species, indicative of a negligible local spatial structure. Additionally, as is the case for plants in general, the diversity at the phenotypic level is also much larger than at the marker level, as selectively neutral markers are commonly used to capture the extent of genetic variation. However, more and more, nucleotide diversity within candidate genes underlying adaptive traits are studied for signatures of selection at single sites. This adaptive genetic diversity constitutes important potential for future forest management and conservation purposes.

  6. Single-tree influence on understorey vegetation in five Chinese subtropical forests

    Directory of Open Access Journals (Sweden)

    Liu H-Y

    2012-08-01

    Full Text Available The aim of this study is to examine the effect of individual canopy tree on the species composition and abundance of understorey vegetation in subtropical forests, by applying a model for tree influence on understorey vegetation of boreal spruce forests developed by Økland et al. (1999, according to the principles of Ecological Field Theory (EFT. The study was based upon five vegetation data sets, each with two subsets (vascular plants species and bryophytes species from subtropical forests in south and southwest China. Optimal value of tree influence model parameters was found by maximizing the eigenvalue of a Constrained Ordination (CO axis, obtained by use of the EFT-based tree influence index as the only constraining variable. One CO method, Redundancy Analysis (RDA, was applied to five vegetation data sets. The results showed that the optimal EFT tree influence models generally accounted for only a small part of the variation in species composition (the eigenvalues of RDA axes were low, amounted to 1-10% of total inertia. The higher eigenvalue-to­total-inertia ratio with RDA was interpreted as due mainly to the low species turnover along the tree influence gradient. Vascular plants and bryophytes species differed with respect to optimal parameters in the tree influence mo­del, especially in a conifer dominated forest. Compositional turnover asso­ciated with tree influence indices was also generally low, although somewhat varies among study areas. Thus, it was concluded that single-tree EFT models may have limited suitability for studied subtropical forests; different optimal parameters in the tree influence model obtained for vascular plants and bryo­phytes species in two studied areas indicates that subtropical trees may impact vascular plants and bryophytes species in different ways; and trees may influence the understorey species composition more in a collective manner than through the influence of single individuals in studied

  7. The contribution of competition to tree mortality in old-growth coniferous forests

    Science.gov (United States)

    Das, A.; Battles, J.; Stephenson, N.L.; van Mantgem, P.J.

    2011-01-01

    Competition is a well-documented contributor to tree mortality in temperate forests, with numerous studies documenting a relationship between tree death and the competitive environment. Models frequently rely on competition as the only non-random mechanism affecting tree mortality. However, for mature forests, competition may cease to be the primary driver of mortality.We use a large, long-term dataset to study the importance of competition in determining tree mortality in old-growth forests on the western slope of the Sierra Nevada of California, U.S.A. We make use of the comparative spatial configuration of dead and live trees, changes in tree spatial pattern through time, and field assessments of contributors to an individual tree's death to quantify competitive effects.Competition was apparently a significant contributor to tree mortality in these forests. Trees that died tended to be in more competitive environments than trees that survived, and suppression frequently appeared as a factor contributing to mortality. On the other hand, based on spatial pattern analyses, only three of 14 plots demonstrated compelling evidence that competition was dominating mortality. Most of the rest of the plots fell within the expectation for random mortality, and three fit neither the random nor the competition model. These results suggest that while competition is often playing a significant role in tree mortality processes in these forests it only infrequently governs those processes. In addition, the field assessments indicated a substantial presence of biotic mortality agents in trees that died.While competition is almost certainly important, demographics in these forests cannot accurately be characterized without a better grasp of other mortality processes. In particular, we likely need a better understanding of biotic agents and their interactions with one another and with competition. ?? 2011.

  8. Marbled Murrelets Select Distinctive Nest Trees within Old-Growth Forest Patches

    Directory of Open Access Journals (Sweden)

    Michael P. Silvergieter

    2011-12-01

    Full Text Available The coastal old-growth forests of North America's Pacific Coast are renowned both for their commercial and ecological value. This study adds to growing evidence that selective harvesting of the largest trees may have a disproportionate ecological impact. Marbled Murrelets (Brachyramphus marmoratus, a threatened species, nest almost exclusively in these old-growth forests. Detailed knowledge of nesting habitat selection provides guidance for habitat management and conservation. Habitat selection for this species has been studied at a variety of scales using ground and remote methods. However, because Marbled Murrelet nesting activity is limited to a single mossy platform on a single tree, we investigated nest tree selection within old-growth forest patches, using a set of 59 forest patches containing active nests. Nest trees were usually distinctive compared with neighboring trees in the surrounding 25 m radius patch. They averaged 15 to 20% taller than neighboring trees depending on region, had significantly larger stem diameters, more potential nesting platforms, and more moss. They had the most extreme values of height and width about three times as often as expected by chance. An analysis of moss platform use as a function of number of platforms per platform tree suggests that murrelets select individual platforms, rather than platform trees per se. Nonetheless, highly selective logging practices that remove high-value trees from stands may also remove trees most likely to be selected by nesting murrelets.

  9. Tree Species Establishment in Urban Forest in Relation to Vegetation Composition, Tree Canopy Gap Area and Soil Factors

    Directory of Open Access Journals (Sweden)

    Ilze Jankovska

    2015-12-01

    Full Text Available The study of density and growth of pine, birch and oak seedlings and saplings in canopy gaps in the urban boreal forest in Riga, Latvia, indicates that natural regeneration can increase diversity in small gaps caused by tree mortality, and can ensure conversion from even-aged pine forest. Abundant regeneration in small gaps showed that light (gap area was only one of the factors affecting tree regeneration in the gaps. The depth of the O layer and pH were suggested to be important factors for the establishment and growth of pine and birch. For oak, the main factors for establishment and growth were favorable moisture, higher pH and N concentration. Knowledge of ecological factors affecting the establishment of seedlings and growth of saplings of the most common trees species in the urban boreal forest is needed to predict successional trajectories and to aid management.

  10. Drivers of forests and tree-based systems for food security and nutrition

    DEFF Research Database (Denmark)

    Kleinschmit, Daniela; Sijapati Basnett, Bimbika; Martin, Adrian

    2015-01-01

    In the context of this chapter, drivers are considered to be natural or anthropogenic developments affecting forests and tree-based systems for food security and nutrition. They can improve and contribute to food security and nutrition, but they can also lead to food insecurity and malnutrition....... For analytical purposes, drivers are separated here into the following four interconnected categories: (i) environmental, (ii) social, (iii) economic and (iv) governance. When reviewing scientific findings twelve major drivers (i.e. population growth, urbanisation, governance shifts, climate change......, commercialisation of agriculture, industrialisation of forest resources, gender imbalances, conflicts, formalisation of tenure rights, rising food prices and increasing per capita income) were identified within these four categories. They affect food security and nutrition through land use and management; through...

  11. Lianas suppress seedling growth and survival of 14 tree species in a Panamanian tropical forest.

    Science.gov (United States)

    Martínez-Izquierdo, Laura; García, María M; Powers, Jennifer S; Schnitzer, Stefan A

    2016-01-01

    Lianas are a common plant growth form in tropical forests, where they compete intensely with trees, decreasing tree recruitment, growth, and survival. If the detrimental effects of lianas vary significantly with tree species identity, as is often assumed, then lianas may influence tree species diversity and community composition. Furthermore, recent studies have shown that liana abundance and biomass are increasing relative to trees in neotropical forests, which will likely magnify the detrimental effects of lianas and may ultimately alter tree species diversity, relative abundances, and community composition. Few studies, however, have tested the responses of multiple tree species to the presence of lianas in robust, well-replicated experiments. We tested the hypotheses that lianas reduce tree seedling growth and survival, and that the effect of lianas varies with tree species identity. We used a large-scale liana removal experiment in Central Panama in which we planted 14 replicate seedlings of 14 different tree species that varied in shade tolerance in each of 16 80 x 80 m plots (eight liana-removal and eight unmanipulated controls; 3136 total seedlings). Over a nearly two-yr period, we found that tree seedlings survived 75% more, grew 300% taller, and had twice the aboveground biomass in liana-removal plots than seedlings in control plots, consistent with strong competition between lianas and tree seedlings. There were no significant differences in the response of tree species to liana competition (i.e., there was no species by treatment interaction), indicating that lianas had a similar negative effect on all 14 tree species. Furthermore, the effect of lianas did not vary with tree species shade tolerance classification, suggesting that the liana effect was not solely based on light. Based on these findings, recently observed increases in liana abundance in neotropical forests will substantially reduce tree regeneration, but will not significantly alter

  12. Long tree-ring chronologies provide evidence of recent tree growth decrease in a Central African tropical forest.

    Directory of Open Access Journals (Sweden)

    Giovanna Battipaglia

    Full Text Available It is still unclear whether the exponential rise of atmospheric CO2 concentration has produced a fertilization effect on tropical forests, thus incrementing their growth rate, in the last two centuries. As many factors affect tree growth patterns, short -term studies might be influenced by the confounding effect of several interacting environmental variables on plant growth. Long-term analyses of tree growth can elucidate long-term trends of plant growth response to dominant drivers. The study of annual rings, applied to long tree-ring chronologies in tropical forest trees enables such analysis. Long-term tree-ring chronologies of three widespread African species were measured in Central Africa to analyze the growth of trees over the last two centuries. Growth trends were correlated to changes in global atmospheric CO2 concentration and local variations in the main climatic drivers, temperature and rainfall. Our results provided no evidence for a fertilization effect of CO2 on tree growth. On the contrary, an overall growth decline was observed for all three species in the last century, which appears to be significantly correlated to the increase in local temperature. These findings provide additional support to the global observations of a slowing down of C sequestration in the trunks of forest trees in recent decades. Data indicate that the CO2 increase alone has not been sufficient to obtain a tree growth increase in tropical trees. The effect of other changing environmental factors, like temperature, may have overridden the fertilization effect of CO2.

  13. Individual Tree Segmentation from LiDAR Point Clouds for Urban Forest Inventory

    OpenAIRE

    Caiyun Zhang; Yuhong Zhou; Fang Qiu

    2015-01-01

    The objective of this study is to develop new algorithms for automated urban forest inventory at the individual tree level using LiDAR point cloud data. LiDAR data contain three-dimensional structure information that can be used to estimate tree height, base height, crown depth, and crown diameter. This allows precision urban forest inventory down to individual trees. Unlike most of the published algorithms that detect individual trees from a LiDAR-derived raster surface, we worked directly w...

  14. Quantitative Analysis of Tree Species in Mixed Forests of Mandal Catchments, Garhwal Himalaya

    Directory of Open Access Journals (Sweden)

    Balwant KUMAR

    2012-06-01

    Full Text Available A total of 14 tree species were identified in the study sites, among which Quercus leucotrichophora Hook. F. (Banj oak, Rhododendron arboreum Smith (Burans, Lyonia ovalifolia Drude (Ayar and Pyrus pashia Buch-Hemp (Mehal are the predominant tree species. A quantitative analysis of tree species indicates that on the basis of their canopy cover, tree density and total base area, these study sites fall within the category of disturbed forest. The uncontrolled lopping for timber, firewood and leaf fodder and the absence of saplings and seedlings are some of the major factors responsible for the declining of forests in the Himalayan region.

  15. Identifying Standing Dead Trees in Forest Areas Based on 3d Single Tree Detection from Full Waveform LIDAR Data

    Science.gov (United States)

    Yao, W.; Krzystek, P.; Heurich, M.

    2012-07-01

    In forest ecology, a snag refers to a standing, partly or completely dead tree, often missing a top or most of the smaller branches. The accurate estimation of live and dead biomass in forested ecosystems is important for studies of carbon dynamics, biodiversity, and forest management. Therefore, an understanding of its availability and spatial distribution is required. So far, LiDAR remote sensing has been successfully used to assess live trees and their biomass, but studies focusing on dead trees are rare. The paper develops a methodology for retrieving individual dead trees in a mixed mountain forest using features that are derived from small-footprint airborne full waveform LIDAR data. First, 3D coordinates of the laser beam reflections, the pulse intensity and width are extracted by waveform decomposition. Secondly, 3D single trees are detected by an integrated approach, which delineates both dominate tree crowns and understory small trees in the canopy height model (CHM) using the watershed algorithm followed by applying normalized cuts segmentation to merged watershed areas. Thus, single trees can be obtained as 3D point segments associated with waveform-specific features per point. Furthermore, the tree segments are delivered to feature definition process to derive geometric and reflectional features at single tree level, e.g. volume and maximal diameter of crown, mean intensity, gap fraction, etc. Finally, the spanned feature space for the tree segments is forwarded to a binary classifier using support vector machine (SVM) in order to discriminate dead trees from the living ones. The methodology is applied to datasets that have been captured with the Riegl LMSQ560 laser scanner at a point density of 25 points/m2 in the Bavarian Forest National Park, Germany, respectively under leaf-on and leaf-off conditions for Norway spruces, European beeches and Sycamore maples. The classification experiments lead in the best case to an overall accuracy of 73% in a leaf

  16. Structural overshoot of tree growth with climate variability and the global spectrum of drought-induced forest dieback.

    Science.gov (United States)

    Jump, Alistair S; Ruiz-Benito, Paloma; Greenwood, Sarah; Allen, Craig D; Kitzberger, Thomas; Fensham, Rod; Martínez-Vilalta, Jordi; Lloret, Francisco

    2017-09-01

    Ongoing climate change poses significant threats to plant function and distribution. Increased temperatures and altered precipitation regimes amplify drought frequency and intensity, elevating plant stress and mortality. Large-scale forest mortality events will have far-reaching impacts on carbon and hydrological cycling, biodiversity, and ecosystem services. However, biogeographical theory and global vegetation models poorly represent recent forest die-off patterns. Furthermore, as trees are sessile and long-lived, their responses to climate extremes are substantially dependent on historical factors. We show that periods of favourable climatic and management conditions that facilitate abundant tree growth can lead to structural overshoot of aboveground tree biomass due to a subsequent temporal mismatch between water demand and availability. When environmental favourability declines, increases in water and temperature stress that are protracted, rapid, or both, drive a gradient of tree structural responses that can modify forest self-thinning relationships. Responses ranging from premature leaf senescence and partial canopy dieback to whole-tree mortality reduce canopy leaf area during the stress period and for a lagged recovery window thereafter. Such temporal mismatches of water requirements from availability can occur at local to regional scales throughout a species geographical range. As climate change projections predict large future fluctuations in both wet and dry conditions, we expect forests to become increasingly structurally mismatched to water availability and thus overbuilt during more stressful episodes. By accounting for the historical context of biomass development, our approach can explain previously problematic aspects of large-scale forest mortality, such as why it can occur throughout the range of a species and yet still be locally highly variable, and why some events seem readily attributable to an ongoing drought while others do not. This

  17. Storage dynamics of fallen trees in a mixed broadleaved and Korean pine forest

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A study of the storage dynamics in the mixed broadleaved and Korean pine forests was carried out in the Changbai Mountains, Jilin Province, P. R. China. The modifying law of fallen trees was the storage dynamics of the existing fallen trees and the annual input in the mixed broadleaved and Korean pine forest. The current storage of fallen trees was 16.25 t?hm-2 in the initially, but after 100 years, 85% of the storage in dry weight was decomposed, and little material was left after 300 years. The average annual input of fallen trees was 0.6 t?hm-2and it increased with time to 31.0 t?hm-2after 200 years, which was maintained until the climax community ended. The total storage of fallen trees increased in the early stage. The decomposition of fallen trees eventually reached equilibrium with storage being identical with the annual input of fallen trees.

  18. Rapid warming accelerates tree growth decline in semi-arid forests of Inner Asia.

    Science.gov (United States)

    Liu, Hongyan; Park Williams, A; Allen, Craig D; Guo, Dali; Wu, Xiuchen; Anenkhonov, Oleg A; Liang, Eryuan; Sandanov, Denis V; Yin, Yi; Qi, Zhaohuan; Badmaeva, Natalya K

    2013-08-01

    Forests around the world are subject to risk of high rates of tree growth decline and increased tree mortality from combinations of climate warming and drought, notably in semi-arid settings. Here, we assess how climate warming has affected tree growth in one of the world's most extensive zones of semi-arid forests, in Inner Asia, a region where lack of data limits our understanding of how climate change may impact forests. We show that pervasive tree growth declines since 1994 in Inner Asia have been confined to semi-arid forests, where growing season water stress has been rising due to warming-induced increases in atmospheric moisture demand. A causal link between increasing drought and declining growth at semi-arid sites is corroborated by correlation analyses comparing annual climate data to records of tree-ring widths. These ring-width records tend to be substantially more sensitive to drought variability at semi-arid sites than at semi-humid sites. Fire occurrence and insect/pathogen attacks have increased in tandem with the most recent (2007-2009) documented episode of tree mortality. If warming in Inner Asia continues, further increases in forest stress and tree mortality could be expected, potentially driving the eventual regional loss of current semi-arid forests.

  19. Spatial pattern of tree diversity and evenness across forest types in Majella National Park, Italy

    Directory of Open Access Journals (Sweden)

    Mohammad Redowan

    2015-09-01

    Full Text Available Background Estimation of tree diversity at broader scale is important for conservation planning. Tree diversity should be measured and understood in terms of diversity and evenness, two integral components to describe the structure of a biological community. Variation of the tree diversity and evenness with elevation, topographic relief, aspect, terrain shape, slope, soil nutrient, solar radiation etc. are well documented. Methods Present study explores the variation of tree diversity (measured as Shannon diversity and evenness indices of Majella National Park, Italy with five available forest types namely evergreen oak woods, deciduous oak woods, black/aleppo pine stands, hop-hornbeam forest and beech forest, using satellite, environmental and field data. Results Hop-hornbeam forest was found to be most diverse and even while evergreen Oak woods was the lowest diverse and even. Diversity and evenness of forest types were concurrent to each other i.e. forest type which was more diverse was also more even. As a broad pattern, majority portion of the study area belonged to medium diversity and high evenness class. Conclusions Satellite images and other GIS data proved useful tools in monitoring variation of tree diversity and evenness across various forest types. Present study findings may have implications in prioritizing conservation zones of high tree diversity at Majella.

  20. Fifteen years of forest tree biosafety research in Germany

    Directory of Open Access Journals (Sweden)

    Hoenicka H

    2012-06-01

    Full Text Available Since beginning of 1990, several projects on biosafety research were initiated in Germany with genetically modified plants. Germany was also one of the first countries active on biosafety research with genetically modified trees (GMTs. An EU-funded project coordinated by the Institute of Forest Genetics (Johann Heinrich von Thuenen Institute, Grosshansdorf, from 1994 to 1997, was the first project of this kind in Germany. In the frame of this project, transgene stability was studied under greenhouse conditions in different transgenic aspen clones. A high degree of transgene expression stability was found in transgenic lines, however, gene silencing was detected in some transgenic plants. In Germany, the jump of the GMTs from the greenhouse to the field was initiated in 1996 by the Institute of Forest Genetics (Grosshansdorf, when the first field trial with genetically modified (GM poplar was approved for five years. In the year 2000 and in cooperation with the University of Tuebingen, the same institute established a second field trial with GM poplar to study possible horizontal gene transfer (HGT from the transgenic poplar into mycorrhizal fungi. No HGT was detected in those studies. Two further national funded projects on phytoremediation and status of mycorrhizal fungi in GMTs under field conditions were run by the University of Freiburg on 2002 - 2004 and 2003 - 2005. Topics of national funded biosafety research projects on GMTs released to the field but as well on greenhouse grown plants were transgene stability, genetic containment, transgene influence on mycorrhizal and phytopathogenic fungi, generative and vegetative propagation capacity, and horizontal gene transfer.

  1. Mapping trees outside forests using high-resolution aerial imagery: a comparison of pixel- and object-based classification approaches.

    Science.gov (United States)

    Meneguzzo, Dacia M; Liknes, Greg C; Nelson, Mark D

    2013-08-01

    Discrete trees and small groups of trees in nonforest settings are considered an essential resource around the world and are collectively referred to as trees outside forests (ToF). ToF provide important functions across the landscape, such as protecting soil and water resources, providing wildlife habitat, and improving farmstead energy efficiency and aesthetics. Despite the significance of ToF, forest and other natural resource inventory programs and geospatial land cover datasets that are available at a national scale do not include comprehensive information regarding ToF in the United States. Additional ground-based data collection and acquisition of specialized imagery to inventory these resources are expensive alternatives. As a potential solution, we identified two remote sensing-based approaches that use free high-resolution aerial imagery from the National Agriculture Imagery Program (NAIP) to map all tree cover in an agriculturally dominant landscape. We compared the results obtained using an unsupervised per-pixel classifier (independent component analysis-[ICA]) and an object-based image analysis (OBIA) procedure in Steele County, Minnesota, USA. Three types of accuracy assessments were used to evaluate how each method performed in terms of: (1) producing a county-level estimate of total tree-covered area, (2) correctly locating tree cover on the ground, and (3) how tree cover patch metrics computed from the classified outputs compared to those delineated by a human photo interpreter. Both approaches were found to be viable for mapping tree cover over a broad spatial extent and could serve to supplement ground-based inventory data. The ICA approach produced an estimate of total tree cover more similar to the photo-interpreted result, but the output from the OBIA method was more realistic in terms of describing the actual observed spatial pattern of tree cover.

  2. Tree Climbing Techniques and Volume Equations for Eschweilera (Matá-Matá, a Hyperdominant Genus in the Amazon Forest

    Directory of Open Access Journals (Sweden)

    Bruno O. Gimenez

    2017-05-01

    Full Text Available The Eschweilera genus has great ecological and economic importance due to its wide abundance in the Amazon basin. One potential use for the Eschweilera genus is in forest management, where just a few trees are removed per hectare. In order to improve the forest management in the Amazon, this study assessed two critical issues: volume equations fitted for a single genus and the development of a non-destructive method using climbing techniques. The equipment used to measure the sample trees included: climbing rope, ascenders, descenders, and carabiners. To carry out the objectives of this study, 64 trees with diameter at breast height (DBH ≥ 10 cm were selected and measured in ZF-2 Tropical Forestry Station near the city of Manaus, Brazil. Four single input models with DBH and four dual input models with DBH and merchantable height (H were tested. The Husch model (V = a × DBHb presented the best performance (R2 = 0.97. This model does not require the merchantable height, which is an important advantage, because of the difficulty in measuring this variable in tropical forests. When the merchantable height data are collected using accurate methods, the Schumacher and Hall model (V = a × DBHb × Hc is the most appropriated. Tree climbing techniques with the use of ropes, as a non-destructive method, is a good alternative to measure the merchantable height, the diameter along the stem, and also estimate the tree volume (m3 of the Eschweilera genus in the Amazon basin.

  3. Individual tree crown approach for predicting site index in boreal forests using airborne laser scanning and hyperspectral data

    Science.gov (United States)

    Kandare, Kaja; Ørka, Hans Ole; Dalponte, Michele; Næsset, Erik; Gobakken, Terje

    2017-08-01

    Site productivity is essential information for sustainable forest management and site index (SI) is the most common quantitative measure of it. The SI is usually determined for individual tree species based on tree height and the age of the 100 largest trees per hectare according to stem diameter. The present study aimed to demonstrate and validate a methodology for the determination of SI using remotely sensed data, in particular fused airborne laser scanning (ALS) and airborne hyperspectral data in a forest site in Norway. The applied approach was based on individual tree crown (ITC) delineation: tree species, tree height, diameter at breast height (DBH), and age were modelled and predicted at ITC level using 10-fold cross validation. Four dominant ITCs per 400 m2 plot were selected as input to predict SI at plot level for Norway spruce (Picea abies (L.) Karst.) and Scots pine (Pinus sylvestris L.). We applied an experimental setup with different subsets of dominant ITCs with different combinations of attributes (predicted or field-derived) for SI predictions. The results revealed that the selection of the dominant ITCs based on the largest DBH independent of tree species, predicted the SI with similar accuracy as ITCs matched with field-derived dominant trees (RMSE: 27.6% vs 23.3%). The SI accuracies were at the same level when dominant species were determined from the remotely sensed or field data (RMSE: 27.6% vs 27.8%). However, when the predicted tree age was used the SI accuracy decreased compared to field-derived age (RMSE: 27.6% vs 7.6%). In general, SI was overpredicted for both tree species in the mature forest, while there was an underprediction in the young forest. In conclusion, the proposed approach for SI determination based on ITC delineation and a combination of ALS and hyperspectral data is an efficient and stable procedure, which has the potential to predict SI in forest areas at various spatial scales and additionally to improve existing SI

  4. Analysing Atmospheric Processes and Climatic Drivers of Tree Defoliation to Determine Forest Vulnerability to Climate Warming

    National Research Council Canada - National Science Library

    Sánchez-Salguero, Raúl; Camarero, J; Grau, José; de la Cruz, Ana; Gil, Paula; Minaya, Mayte; Fernández-Cancio, Ángel

    ...) as a proxy of forest health. Climate warming and drought are assumed to be the major drivers of tree growth and crown defoliation, particularly in seasonally dry areas such as the Mediterranean Basin...

  5. Trees and shrubs of the Bartlett Experimental Forest, Carroll County, New Hampshire

    Science.gov (United States)

    Stanley M. Filip; Elbert L., Jr. Little; Elbert L. Little

    1971-01-01

    Sixty-five species of trees and shrubs have been identified as native on the Bartlett Experimental Forest. These species are listed in this paper to provide a record of the woody vegetation of the area.

  6. Improving the Precision of Tree Counting by Combining Tree Detection with Crown Delineation and Classification on Homogeneity Guided Smoothed High Resolution (50 cm Multispectral Airborne Digital Data

    Directory of Open Access Journals (Sweden)

    Masato Katoh

    2012-05-01

    Full Text Available A method of counting the number of coniferous trees by species within forest compartments was developed by combining an individual tree crown delineation technique with a treetop detection technique, using high spatial resolution optical sensor data. When this method was verified against field data from the Shinshu University Campus Forest composed of various cover types, the accuracy for the total number of trees per stand was higher than 84%. This shows improvements over the individual tree crown delineation technique alone which had accuracies lower than 62%, or the treetop detection technique alone which had accuracies lower than 78%. However, the accuracy of the number of trees classified by species was less than 84%. The total number of trees by species per stand was improved with exclusion of the understory species and ranged from 45.2% to 93.8% for Chamaecyparis obtusa and C. pisifera and from 37.9% to 98.1% for broad-leaved trees because many of these were understory species. The better overall results are attributable primarily to the overestimation of Pinus densiflora, Larix kaempferi and broad-leaved trees compensating for the underestimation of C. obtusa and C. pisifera. Practical forest management can be enhanced by registering the output resulting from this technology in a forest geographical information system database. This approach is mostly useful for conifer plantations containing medium to old age trees, which have a higher timber value.

  7. i-Tree: Tools to assess and manage structure, function, and value of community forests

    Science.gov (United States)

    Hirabayashi, S.; Nowak, D.; Endreny, T. A.; Kroll, C.; Maco, S.

    2011-12-01

    Trees in urban communities can mitigate many adverse effects associated with anthropogenic activities and climate change (e.g. urban heat island, greenhouse gas, air pollution, and floods). To protect environmental and human health, managers need to make informed decisions regarding urban forest management practices. Here we present the i-Tree suite of software tools (www.itreetools.org) developed by the USDA Forest Service and their cooperators. This software suite can help urban forest managers assess and manage the structure, function, and value of urban tree populations regardless of community size or technical capacity. i-Tree is a state-of-the-art, peer-reviewed Windows GUI- or Web-based software that is freely available, supported, and continuously refined by the USDA Forest Service and their cooperators. Two major features of i-Tree are 1) to analyze current canopy structures and identify potential planting spots, and 2) to estimate the environmental benefits provided by the trees, such as carbon storage and sequestration, energy conservation, air pollution removal, and storm water reduction. To cover diverse forest topologies, various tools were developed within the i-Tree suite: i-Tree Design for points (individual trees), i-Tree Streets for lines (street trees), and i-Tree Eco, Vue, and Canopy (in the order of complexity) for areas (community trees). Once the forest structure is identified with these tools, ecosystem services provided by trees can be estimated with common models and protocols, and reports in the form of texts, charts, and figures are then created for users. Since i-Tree was developed with a client/server architecture, nationwide data in the US such as location-related parameters, weather, streamflow, and air pollution data are stored in the server and retrieved to a user's computer at run-time. Freely available remote-sensed images (e.g. NLCD and Google maps) are also employed to estimate tree canopy characteristics. As the demand for i-Tree

  8. Effect of whole-tree thinning on long-term forest growth

    Energy Technology Data Exchange (ETDEWEB)

    Tveite, B.; Hanssen, K.H.; Clarke, N. [Norwegian Forest and Landscape Inst., As (Norway)

    2010-07-01

    The demand for forest biomass as an energy source is increasing. However, whole-tree harvesting may cause long-term reductions in soil nutrient availability, and reduce forest growth in the remaining stand. Long-term growth studies are needed to assess the sustainability of intensive biomass harvesting. This study quantified the long-term growth response of Norway spruce and Scots pine to whole-tree harvesting at first thinning. A series of 8 field experiments were set up in 1972-1977 at sites in Norway. Thinning plots using conventional and whole-tree harvesting were established. The amount of dry matter and nutrients removed during the thinning was calculated, and tree growth was measured every 5 years. The study showed that whole-tree harvesting led to a decrease in forest growth in all sites after a 25 year period. Reductions averaged 10 per cent when compared with conventional harvesting practices. Results were more variable in pine stands.

  9. Contributions of a global network of tree diversity experiments to sustainable forest plantations

    OpenAIRE

    Verheyen, Kris; Vanhellemont, Margot; Auge, Harald; Baeten, Lander; Baraloto, Christopher; Barsoum, Nadia; Bilodeau-Gauthier, Simon; Bruelheide, Helge; Castagneyrol, Bastien; Godbold, Douglas; Haase, Josephine; Hector, Andy; Jactel, Hervé; Koricheva, Julia; LOREAU, Michel

    2016-01-01

    The area of forest plantations is increasing worldwide helping to meet timber demand and protect natural forests. However, with global change, monospecific plantations are increasingly vulnerable to abiotic and biotic disturbances. As an adaption measure we need to move to plantations that are more diverse in genotypes, species, and structure, with a design underpinned by science. TreeDivNet, a global network of tree diversity experiments, responds to this need by assessing the advantages and...

  10. Database of 478 allometric equations to estimate biomass for Mexican trees and forests

    OpenAIRE

    Rojas-García, Fabiola; Bernardus H. J. De Jong; Martínez-Zurimendí, Pablo; Paz-Pellat, Fernando

    2015-01-01

    International audience; Key messageWe present a comprehensive database of 478 allometric equations to estimate biomass of trees and other life forms in Mexican forest and scrubland ecosystems.ContextAccurate estimation of standing biomass in forests is a prerequisite for any approach to carbon storage and a number of additional applications.AimsTo provide a comprehensive database with allometric equations applicable to a large number of tree and shrub species of Mexico.MethodsAn intensive lit...

  11. iTree-Hydro: Snow hydrology update for the urban forest hydrology model

    Science.gov (United States)

    Yang Yang; Theodore A. Endreny; David J. Nowak

    2011-01-01

    This article presents snow hydrology updates made to iTree-Hydro, previously called the Urban Forest Effects—Hydrology model. iTree-Hydro Version 1 was a warm climate model developed by the USDA Forest Service to provide a process-based planning tool with robust water quantity and quality predictions given data limitations common to most urban areas. Cold climate...

  12. Converging Climate Sensitivities of European Forests Between Observed Radial Tree Growth and Vegetation Models

    Science.gov (United States)

    Zhang, Zhen; Babst, Flurin; Bellassen, Valentin; Frank, David; Launois, Thomas; Tan, Kun; Ciais, Philippe; Poulter, Benjamin

    2017-01-01

    The impacts of climate variability and trends on European forests are unevenly distributed across different bioclimatic zones and species. Extreme climate events are also becoming more frequent and it is unknown how they will affect feed backs of CO2 between forest ecosystems and the atmosphere. An improved understanding of species differences at the regional scale of the response of forest productivity to climate variation and extremes is thus important for forecasting forest dynamics. In this study, we evaluate the climate sensitivity of above ground net primary production (NPP) simulated by two dynamic global vegetation models (DGVM; ORCHIDEE and LPJ-wsl) against tree ring width (TRW) observations from about1000 sites distributed across Europe. In both the model simulations and the TRW observations, forests in northern Europe and the Alps respond positively to warmer spring and summer temperature, and their overall temperature sensitivity is larger than that of the soil-moisture-limited forests in central Europe and Mediterranean regions. Compared with TRW observations, simulated NPP from ORCHIDEE and LPJ-wsl appear to be overly sensitive to climatic factors. Our results indicate that the models lack biological processes that control time lags, such as carbohydrate storage and remobilization, that delay the effects of radial growth dynamics to climate. Our study highlights the need for re-evaluating the physiological controls on the climate sensitivity of NPP simulated by DGVMs. In particular, DGVMs could be further enhanced by a more detailed representation of carbon reserves and allocation that control year-to year variation in plant growth.

  13. Urban trees and forests of the Chicago region

    Science.gov (United States)

    David J. Nowak; Robert E. III Hoehn; Allison R. Bodine; Daniel E. Crane; John F. Dwyer; Veta Bonnewell; Gary. Watson

    2013-01-01

    An analysis of trees in the Chicago region of Illinois reveals that this area has about 157,142,000 trees with tree and shrub canopy that covers 21.0 percent of the region. The most common tree species are European buckthorn, green ash, boxelder, black cherry, and American elm. Trees in the Chicago region currently store about 16.9 million tons of carbon (61.9 million...

  14. Relationship of Climatic and Forest Factors to Drought- and Heat-Induced Tree Mortality.

    Science.gov (United States)

    Zhang, Qingyin; Shao, Ming'an; Jia, Xiaoxu; Wei, Xiaorong

    2017-01-01

    Tree mortality due to warming and drought is a critical aspect of forest ecosystem in responding to climate change. Spatial patterns of tree mortality induced by drought and its influencing factors, however, have yet to be documented at the global scale. We collected observations from 248 sites globally where trees have died due to drought and then assessed the effects of climatic and forest factors on the rate of tree mortality. The global mean annual mortality rate was 5.5%. The rate of tree mortality was significantly and negatively correlated with mean annual precipitation (P Tree mortality was lowest in tropical rainforests with mean annual precipitation >2000 mm and was severe in regions with mean annual precipitation trees (3.2%), and mortality rates significantly decreased with increasing wood density for all species (P tree mortality around the globe varied with climatic and forest factors. The differences between tree species, wood density, stand density, and stand age should be considered when evaluating tree mortality at a large spatial scale during future climatic extremes.

  15. Tree growth acceleration and expansion of alpine forests: The synergistic effect of atmospheric and edaphic change.

    Science.gov (United States)

    Silva, Lucas C R; Sun, Geng; Zhu-Barker, Xia; Liang, Qianlong; Wu, Ning; Horwath, William R

    2016-08-01

    Many forest ecosystems have experienced recent declines in productivity; however, in some alpine regions, tree growth and forest expansion are increasing at marked rates. Dendrochronological analyses at the upper limit of alpine forests in the Tibetan Plateau show a steady increase in tree growth since the early 1900s, which intensified during the 1930s and 1960s, and have reached unprecedented levels since 1760. This recent growth acceleration was observed in small/young and large/old trees and coincided with the establishment of trees outside the forest range, reflecting a connection between the physiological performance of dominant species and shifts in forest distribution. Measurements of stable isotopes (carbon, oxygen, and nitrogen) in tree rings indicate that tree growth has been stimulated by the synergistic effect of rising atmospheric CO2 and a warming-induced increase in water and nutrient availability from thawing permafrost. These findings illustrate the importance of considering soil-plant-atmosphere interactions to understand current and anticipate future changes in productivity and distribution of forest ecosystems.

  16. Human Impacts Affect Tree Community Features of 20 Forest Fragments of a Vanishing Neotropical Hotspot

    Science.gov (United States)

    Pereira, José Aldo Alves; de Oliveira-Filho, Ary Teixeira; Eisenlohr, Pedro V.; Miranda, Pedro L. S.; de Lemos Filho, José Pires

    2015-02-01

    The loss in forest area due to human occupancy is not the only threat to the remaining biodiversity: forest fragments are susceptible to additional human impact. Our aim was to investigate the effect of human impact on tree community features (species composition and abundance, and structural descriptors) and check if there was a decrease in the number of slender trees, an increase in the amount of large trees, and also a reduction in the number of tree species that occur in 20 fragments of Atlantic montane semideciduous forest in southeastern Brazil. We produced digital maps of each forest fragment using Landsat 7 satellite images and processed the maps to obtain morphometric variables. We used investigative questionnaires and field observations to survey the history of human impact. We then converted the information into scores given to the extent, severity, and duration of each impact, including proportional border area, fire, trails, coppicing, logging, and cattle, and converted these scores into categorical levels. We used linear models to assess the effect of impacts on tree species abundance distribution and stand structural descriptors. Part of the variation in floristic patterns was significantly correlated to the impacts of fire, logging, and proportional border area. Structural descriptors were influenced by cattle and outer roads. Our results provided, for the first time, strong evidence that tree species occurrence and abundance, and forest structure of Atlantic seasonal forest fragments respond differently to various modes of disturbance by humans.

  17. Recruitment of hornbill-dispersed trees in hunted and logged forests of the Indian Eastern Himalaya.

    Science.gov (United States)

    Sethi, Pia; Howe, Henry F

    2009-06-01

    Hunting of hornbills by tribal communities is widespread in logged foothill forests of the Indian Eastern Himalaya. We investigated whether the decline of hornbills has affected the dispersal and recruitment of 3 large-seeded tree species. We hypothesized that 2 low-fecundity tree species, Chisocheton paniculatus and Dysoxylum binectariferum (Meliaceae) bearing arillate fruits, are more dispersal limited than a prolifically fruiting drupaceous tree Polyalthia simiarum (Annonaceae), which has potential dispersers other than hornbills. We estimated the abundance of large avian frugivores during the fruiting season along transects in 2 protected and 2 disturbed forests. We compared recruitment of the tree species near (Aceros undulatus), and Oriental Pied Hornbills (Anthracoceros albirostris) were significantly lower in disturbed forests, but sites did not differ in abundances of the Mountain Imperial Pigeon (Ducula badia). Overall, tree species showed more severely depressed recruitment of seedlings (77% fewer) and juveniles (69% fewer) in disturbed than in protected forests. In disturbed forests, 93% fewer seedlings of C. paniculatus were beyond parental crowns, and a high number of all seedlings (42%) accumulated directly under reproductive adults. In contrast, D. binectariferum and P. simiarum were recruitment rather than dispersal limited, with fewer dispersed seedlings surviving in disturbed than in protected forests. Results are consistent with the idea that disturbance disrupts mutualisms between hornbills and some large-seeded food plants, with the caveat that role redundancy within even small and specialized disperser assemblages renders other tree species less vulnerable to loss of regular dispersal agents.

  18. Tree growth acceleration and expansion of alpine forests: The synergistic effect of atmospheric and edaphic change

    Science.gov (United States)

    Silva, Lucas C. R.; Sun, Geng; Zhu-Barker, Xia; Liang, Qianlong; Wu, Ning; Horwath, William R.

    2016-01-01

    Many forest ecosystems have experienced recent declines in productivity; however, in some alpine regions, tree growth and forest expansion are increasing at marked rates. Dendrochronological analyses at the upper limit of alpine forests in the Tibetan Plateau show a steady increase in tree growth since the early 1900s, which intensified during the 1930s and 1960s, and have reached unprecedented levels since 1760. This recent growth acceleration was observed in small/young and large/old trees and coincided with the establishment of trees outside the forest range, reflecting a connection between the physiological performance of dominant species and shifts in forest distribution. Measurements of stable isotopes (carbon, oxygen, and nitrogen) in tree rings indicate that tree growth has been stimulated by the synergistic effect of rising atmospheric CO2 and a warming-induced increase in water and nutrient availability from thawing permafrost. These findings illustrate the importance of considering soil-plant-atmosphere interactions to understand current and anticipate future changes in productivity and distribution of forest ecosystems. PMID:27652334

  19. Widespread Amazon forest tree mortality from a single cross-basin squall line event

    Science.gov (United States)

    Negrón-Juárez, Robinson I.; Chambers, Jeffrey Q.; Guimaraes, Giuliano; Zeng, Hongcheng; Raupp, Carlos F. M.; Marra, Daniel M.; Ribeiro, Gabriel H. P. M.; Saatchi, Sassan S.; Nelson, Bruce W.; Higuchi, Niro

    2010-08-01

    Climate change is expected to increase the intensity of extreme precipitation events in Amazonia that in turn might produce more forest blowdowns associated with convective storms. Yet quantitative tree mortality associated with convective storms has never been reported across Amazonia, representing an important additional source of carbon to the atmosphere. Here we demonstrate that a single squall line (aligned cluster of convective storm cells) propagating across Amazonia in January, 2005, caused widespread forest tree mortality and may have contributed to the elevated mortality observed that year. Forest plot data demonstrated that the same year represented the second highest mortality rate over a 15-year annual monitoring interval. Over the Manaus region, disturbed forest patches generated by the squall followed a power-law distribution (scaling exponent α = 1.48) and produced a mortality of 0.3-0.5 million trees, equivalent to 30% of the observed annual deforestation reported in 2005 over the same area. Basin-wide, potential tree mortality from this one event was estimated at 542 ± 121 million trees, equivalent to 23% of the mean annual biomass accumulation estimated for these forests. Our results highlight the vulnerability of Amazon trees to wind-driven mortality associated with convective storms. Storm intensity is expected to increase with a warming climate, which would result in additional tree mortality and carbon release to the atmosphere, with the potential to further warm the climate system.

  20. Tree fern trunks facilitate seedling regeneration in a productive lowland temperate rain forest.

    Science.gov (United States)

    Gaxiola, Aurora; Burrows, Larry E; Coomes, David A

    2008-03-01

    Seedling regeneration on forest floors is often impaired by competition with established plants. In some lowland temperate rain forests, tree fern trunks provide safe sites on which tree species establish, and grow large enough to take root in the ground and persist. Here we explore the competitive and facilitative effects of two tree fern species, Cyathea smithii and Dicksonia squarrosa, on the epiphytic regeneration of tree species in nutrient-rich alluvial forests in New Zealand. The difficulties that seedlings have in establishing on vertical tree fern trunks were indicated by the following observations. First, seedling abundance was greatest on the oldest sections of tree fern trunks, near the base, suggesting that trunks gradually recruited more and more seedlings over time, but many sections of trunk were devoid of seedlings, indicating the difficulty of establishment on a vertical surface. Second, most seedlings were from small-seeded species, presumably because smaller seeds can easily lodge on tree fern trunks. Deer browsing damage was observed on 73% of epiphytic seedlings growing within 2 m of the ground, whereas few seedlings above that height were browsed. This suggests that tree ferns provide refugia from introduced deer, and may slow the decline in population size of deer-preferred species. We reasoned that tree ferns would compete with epiphytic seedlings for light, because below the tree fern canopy photosynthetically active radiation (PAR) was about 1% of above-canopy PAR. Frond removal almost tripled %PAR on the forest floor, leading to a significant increase in the height growth rate (HGR) of seedlings planted on the forest floor, but having no effects on the HGRs of epiphytic seedlings. Our study shows evidence of direct facilitative interactions by tree ferns during seedling establishment in plant communities associated with nutrient-rich soils.

  1. Diversity, abundance, and structure of tree communities in the Uluguru forests in the Morogoro region, Tanzania

    Institute of Scientific and Technical Information of China (English)

    David Sylvester Kacholi; Anthony Michael Whitbread; Martin Worbes

    2015-01-01

    Uluguru forests are globally recognized as important biodiversity hotspots, but anthropogenic pressure threatens their value. This study examined species diver-sity, abundance, and structure of trees in the Uluguru for-ests. All trees of diameter at breast height (DBH) C 10 cm were inventoried in seven forests ranging from 3 to 995 ha in area. A total of 900 stems, 101 species and 34 families were inventoried. Fabaceae was the most speciose family. Ehretia amoena Klotzsch was the most abundant species with relative abundance of 9.22%. The forests differed significantly in species richness (26–93 species ha-1), tree density (85–390 stems ha-1), basal area (3–24 m2 ha-1) and Shannon-Wiener diversity (2.50–4.02). Forest area was significantly and positively correlated with species richness (r=0.92) and species diversity (r=0.95). Tree density showed significant positive correlation with species richness (r=0.80) and basal area (r=0.85). Milawilila and Nemele forests had highest floristic similarity (0.55) followed by Kimboza and Kilengwe (0.54) while the rest had similarity coefficients of less than 0.50. Despite leg-islative protection, many forests remain at risk and there-fore the possibility to conserve highly valuable tree species via enhanced protection or cultivation must be considered.

  2. Edge-related loss of tree phylogenetic diversity in the severely fragmented Brazilian Atlantic forest.

    Directory of Open Access Journals (Sweden)

    Bráulio A Santos

    Full Text Available Deforestation and forest fragmentation are known major causes of nonrandom extinction, but there is no information about their impact on the phylogenetic diversity of the remaining species assemblages. Using a large vegetation dataset from an old hyper-fragmented landscape in the Brazilian Atlantic rainforest we assess whether the local extirpation of tree species and functional impoverishment of tree assemblages reduce the phylogenetic diversity of the remaining tree assemblages. We detected a significant loss of tree phylogenetic diversity in forest edges, but not in core areas of small (<80 ha forest fragments. This was attributed to a reduction of 11% in the average phylogenetic distance between any two randomly chosen individuals from forest edges; an increase of 17% in the average phylogenetic distance to closest non-conspecific relative for each individual in forest edges; and to the potential manifestation of late edge effects in the core areas of small forest remnants. We found no evidence supporting fragmentation-induced phylogenetic clustering or evenness. This could be explained by the low phylogenetic conservatism of key life-history traits corresponding to vulnerable species. Edge effects must be reduced to effectively protect tree phylogenetic diversity in the severely fragmented Brazilian Atlantic forest.

  3. Trees in urban parks and forests reduce O3, but not NO2 concentrations in Baltimore, MD, USA

    Science.gov (United States)

    Yli-Pelkonen, Vesa; Scott, Anna A.; Viippola, Viljami; Setälä, Heikki

    2017-10-01

    Trees and other vegetation absorb and capture air pollutants, leading to the common perception that they, and trees in particular, can improve air quality in cities and provide an important ecosystem service for urban inhabitants. Yet, there has been a lack of empirical evidence showing this at the local scale with different plant configurations and climatic regions. We studied the impact of urban park and forest vegetation on the levels of nitrogen dioxide (NO2) and ground-level ozone (O3) while controlling for temperature during early summer (May) using passive samplers in Baltimore, USA. Concentrations of O3 were significantly lower in tree-covered habitats than in adjacent open habitats, but concentrations of NO2 did not differ significantly between tree-covered and open habitats. Higher temperatures resulted in higher pollutant concentrations and NO2 and O3 concentration were negatively correlated with each other. Our results suggest that the role of trees in reducing NO2 concentrations in urban parks and forests in the Mid-Atlantic USA is minor, but that the presence of tree-cover can result in lower O3 levels compared to similar open areas. Our results further suggest that actions aiming at local air pollution mitigation should consider local variability in vegetation, climate, micro-climate, and traffic conditions.

  4. Biomechanical effects of trees in a mountain temperate forest: implications for biogeomorphology, soil science, and forest dynamics

    Science.gov (United States)

    Šamonil, Pavel; Daněk, Pavel; Senecká, Anna; Adam, Dušan; Phillips, Jonathan D.

    2017-04-01

    Biomechanical effects of trees in forest soils represent a potentially significant factor in hillslope processes, pedocomplexity, and forest dynamics. However, these processes have been only rarely studied so far. Within this study we aim (i) to elaborate a detailed and widely applicable methodology of quantification of the main biomechanical effects of trees in soil, (ii) to reveal actual (minimal) frequencies, areas and volumes related to these effects in a mountain temperate old-growth forest. The research took place in the Boubín Primeval Forest in the Czech Republic. The fir-spruce-beech forest reserve belongs among the oldest protected areas in Europe. The reserve occupies NE slopes of an average inclination of about 14˚ on gneiss at an altitude of 930-1110 m a.s.l. We evaluated effects of all standing or lying trees of diameter at breast height (DBH) ≥ 10 cm in an area of 10.2 ha. In total, 4000 trees were studied from viewpoint of following features: treethrow, root mound, bioprotective function of standing as well as lying tree, baumstein, root baumstein, infilling stump, hole after trunk fall, stemwash, trunkwash. Any biomechanical phenomena were recorded in 59% of standing and 51% of lying dead trees (excluding the pervasive soil displacement by thickening trunk and roots and the converse infilling of the space freed during their decay with surrounding soil). Approximately one tenth of the trees expressed simultaneously opposing phenomena such as blocking of slope processes and their intensification. Different tree species and DBH categories exhibited significantly different structure of biomechanical effects in soil. Bioprotective function represented the most frequent process. However, concerning area and volume of affected soil, treethrows were an even more important phenomenon. Total area influenced by the studied biomechanical effects of current generation of trees was 343 m2ha-1. Additional 774 m2ha-1 were occupied by older treethrow pit

  5. Bat and bird diversity along independent gradients of latitude and tree composition in European forests.

    Science.gov (United States)

    Charbonnier, Yohan M; Barbaro, Luc; Barnagaud, Jean-Yves; Ampoorter, Evy; Nezan, Julien; Verheyen, Kris; Jactel, Hervé

    2016-10-01

    Species assemblages are shaped by local and continental-scale processes that are seldom investigated together, due to the lack of surveys along independent gradients of latitude and habitat types. Our study investigated changes in the effects of forest composition and structure on bat and bird diversity across Europe. We compared the taxonomic and functional diversity of bat and bird assemblages in 209 mature forest plots spread along gradients of forest composition and vertical structure, replicated in 6 regions spanning from the Mediterranean to the boreal biomes. Species richness and functional evenness of both bat and bird communities were affected by the interactions between latitude and forest composition and structure. Bat and bird species richness increased with broadleaved tree cover in temperate and especially in boreal regions but not in the Mediterranean where they increased with conifer abundance. Bat species richness was lower in forests with smaller trees and denser understorey only in northern regions. Bird species richness was not affected by forest structure. Bird functional evenness increased in younger and denser forests. Bat functional evenness was also influenced by interactions between latitude and understorey structure, increasing in temperate forests but decreasing in the Mediterranean. Covariation between bat and bird abundances also shifted across Europe, from negative in southern forests to positive in northern forests. Our results suggest that community assembly processes in bats and birds of European forests are predominantly driven by abundance and accessibility of feeding resources, i.e., insect prey, and their changes across both forest types and latitudes.

  6. Trees and light; Tree development and morphology in relation to light availability in a tropical rain forest in French Guiana.

    NARCIS (Netherlands)

    Sterck, F.J.

    1997-01-01

    Tropical rain forest trees spend their life in a heterogeneous light environment. During their life history, they may change their growth in relation to different levels of light availability. Some of their physiological processes (e.g. photosynthesis, carbon allocation, and meristern activity) chan

  7. Tree dynamics in canopy gaps in old-growth forests of Nothofagus pumilio in Southern Chile

    NARCIS (Netherlands)

    Fajardo, Alex; Graaf, de N.R.

    2004-01-01

    The gap dynamics of two Nothofagus pumilio (lenga) stands have been investigated. We evaluated and compared tree diameter distributions, spatial patterns, tree fall and gap characteristics and regeneration responses in gaps in two old-growth forests of Nothofagus pumilio in Southern Chile (Shangri-L

  8. Banking on the future: progress, challenges and opportunities for the genetic conservation of forest trees

    Science.gov (United States)

    Kevin M. Potter; Robert M. Jetton; Andrew Bower; Douglass F. Jacobs; Gary Man; Valerie D. Hipkins; Murphy Westwood

    2017-01-01

    Genetic diversity provides the essential basis for the adaptation and resilience of tree species to environmental stress and change. The genetic conservation of tree species is an urgent global necessity as forest conversion and fragmentation continue apace, damaging insects and pathogens are transported between continents, and climate change alters local habitat...

  9. Effects of tree species on soil properties in a forest of the Northeastern United States

    NARCIS (Netherlands)

    Dijkstra, F.A.

    2001-01-01

    Large differences in soil pH and available Ca in the surface soil exist among tree species growing in a mixed hardwood forest in northwestern Connecticut. The observed association between tree species and specific soil chemical properties within mixed-species stands implies that changes in

  10. Calcium weathering in forested soils and the effedt of different tree species

    NARCIS (Netherlands)

    Dijkstra, F.A.; Breemen, van N.; Jongmans, A.G.; Davies, G.R.; Likens, G.E.

    2003-01-01

    Soil weathering can be an important mechanism to neutralize acidity in forest soils. Tree species may differ in their effect on or response to soil weathering. We used soil mineral data and the natural strontium isotope ratio Sr-87/Sr-86 as a tracer to identify the effect of tree species on the Ca

  11. Calcium weathering in forested soils and the effedt of different tree species

    NARCIS (Netherlands)

    Dijkstra, F.A.; Breemen, van N.; Jongmans, A.G.; Davies, G.R.; Likens, G.E.

    2003-01-01

    Soil weathering can be an important mechanism to neutralize acidity in forest soils. Tree species may differ in their effect on or response to soil weathering. We used soil mineral data and the natural strontium isotope ratio Sr-87/Sr-86 as a tracer to identify the effect of tree species on the Ca w

  12. Building the Forest Inventory and Analysis Tree-Ring Data set

    Science.gov (United States)

    Robert J. DeRose; John D. Shaw; James N. Long

    2017-01-01

    The Interior West Forest Inventory and Analysis (IW-FIA) program measures forestland conditions at great extent with relatively high spatial resolution, including the collection of tree-ring data. We describe the development of an unprecedented spatial tree-ring data set for the IW-FIA that enhances the baseline plot data by incorporating ring-width increment measured...

  13. Tree growth variation in the tropical forest: understanding effects of temperature, rainfall and CO2

    NARCIS (Netherlands)

    Schippers, P.; Sterck, F.J.; Vlam, M.; Zuidema, P.A.

    2015-01-01

    Tropical forest responses to climatic variability have important consequences for global carbon cycling, but are poorly understood. As empirical, correlative studies cannot disentangle the interactive effects of climatic variables on tree growth, we used a tree growth model (IBTREE) to unravel the c

  14. Monitoring tree mortality in mature Douglas-fir forests: size and species matter

    Science.gov (United States)

    Background/Question/MethodsA regional increase in tree mortality rates associated with climate change will influence forest health and ecosystem services, including water quality and quantity. In recent decades, accelerated tree mortality has occurred in some, but not all, fores...

  15. Selective logging and damage to unharvested trees in a hyrcanian forest of Iran

    Directory of Open Access Journals (Sweden)

    Farshad Keivan Behjou

    2012-11-01

    Full Text Available Selective logging in mature hardwood stands of Caspian forests often causes physical damage to residual trees through felling and skidding operations, resulting in a decline in bole quality and subsequent loss of tree value. This study evaluated the logging damage to residual trees following logging operations. A total density of 5.1 trees/ha and 17.3 m3/ha of wood were harvested. On average, 9.8 trees were damaged for every tree extracted, including 8 trees destroyed or severely damaged. The most common types of damage included uprooted stems, stem wounds to the cambial layer, and bark scrapes. Damage to trees sustained along skid trails was found to be significantly more than the damage that incurred within logging gaps and winching areas. The results of this study suggest that logging practices also need to be accompanied by close supervision of field personnel and post-logging site inspections to be implemented properly.

  16. Interaction network of vascular epiphytes and trees in a subtropical forest

    Science.gov (United States)

    Ceballos, Sergio Javier; Chacoff, Natacha Paola; Malizia, Agustina

    2016-11-01

    The commensalistic interaction between vascular epiphytes and host trees is a type of biotic interaction that has been recently analysed with a network approach. This approach is useful to describe the network structure with metrics such as nestedness, specialization and interaction evenness, which can be compared with other vascular epiphyte-host tree networks from different forests of the world. However, in several cases these comparisons showed different and inconsistent patterns between these networks, and their possible ecological and evolutionary determinants have been scarcely studied. In this study, the interactions between vascular epiphytes and host trees of a subtropical forest of sierra de San Javier (Tucuman, Argentina) were analysed with a network approach. We calculated metrics to characterize the network and we analysed factors such as the abundance of species, tree size, tree bark texture, and tree wood density in order to predict interaction frequencies and network structure. The interaction network analysed exhibited a nested structure, an even distribution of interactions, and low specialization, properties shared with other obligated vascular epiphyte-host tree networks with a different assemblage structure. Interaction frequencies were predicted by the abundance of species, tree size and tree bark texture. Species abundance and tree size also predicted nestedness. Abundance indicated that abundant species interact more frequently; and tree size was an important predictor, since larger-diameter trees hosted more vascular epiphyte species than small-diameter trees. This is one of the first studies analyzing interactions between vascular epiphytes and host trees using a network approach in a subtropical forest, and taking the whole vascular epiphyte assemblage of the sampled community into account.

  17. The influence of storm-induced microsites to tree regeneration patterns in boreal and hemiboreal forest

    NARCIS (Netherlands)

    Vodde, F.; Jogiste, K.; Kubota, Y.; Kuuluvainen, T.; Koster, K.; Lukjanova, A.; Metslaid, M.; Yoshida, T.

    2011-01-01

    We reviewed studies dealing with regeneration under variable conditions in boreal and hemiboreal forests as affected by different microsite types by tree species functional groups. Generally, the importance of storm-induced microsites for regeneration dynamics in boreal forests depends on several fa

  18. The influence of storm-induced microsites to tree regeneration patterns in boreal and hemiboreal forest

    NARCIS (Netherlands)

    Vodde, F.; Jogiste, K.; Kubota, Y.; Kuuluvainen, T.; Koster, K.; Lukjanova, A.; Metslaid, M.; Yoshida, T.

    2011-01-01

    We reviewed studies dealing with regeneration under variable conditions in boreal and hemiboreal forests as affected by different microsite types by tree species functional groups. Generally, the importance of storm-induced microsites for regeneration dynamics in boreal forests depends on several

  19. Diversity, Stand Characteristics and Spatial Aggregation of Tree Species in a Bangladesh Forest Ecosystem

    Directory of Open Access Journals (Sweden)

    Carl Beierkuhnlein

    2011-08-01

    Full Text Available Assessing biodiversity and the spatial structures of forest ecosystems are important for forestry and nature conservation. However, tropical forests of Bangladesh are only sparsely investigated. Here we determined biodiversity (alpha, beta and gamma, spatial species turnover and stand characteristics of one of the few remnant tropical forests in Bangladesh. Two differently protected areas of Satchari forest were compared. We recorded tree species composition, in a systematic plot design, measured diameter at breast height for each individual tree (to assess basal area, and calculated decay in similarity of tree species composition with geographical distance. The distance-decay was assessed separately for the whole study area and for two subsamples from Satchari National Park and Satchari Reserve Forest. Satchari National Park (strictly protected had, despite its smaller area, a higher Alpha and Gamma diversity, but a lower Beta diversity than Satchari Reserve Forest. Variation in species composition was not significant between the two differently protected areas. Basal area increased significantly with protection status although tree individuals were of equal size in both areas. Plots in the Reserve Forest were associated with higher species turnover than in the National Park. We suggest anthropogenic disturbance, which occurs in the less strictly protected Reserve Forest, is the main driver for the detected spatial heterogeneity in species composition.

  20. Observations on the fauna that visit African Tulip Tree (Spathodea campanulata Beauv.) forests in Puerto Rico

    Science.gov (United States)

    Oscar J. Abelleira Martinez

    2008-01-01

    Diurnal field observations in secondary forests dominated by the introduced African tulip tree (Spathodea campanulata) in Puerto Rico show a faunal assemblage that consists mostly of native species (81.1 percent). The most abundant species were common birds and reptiles, yet some uncommon fauna appear to be visiting or residing in these forests. The observations...

  1. An object-oriented forest landscape model and its representation of tree species

    Science.gov (United States)

    Hong S. He; David J. Mladenoff; Joel Boeder

    1999-01-01

    LANDIS is a forest landscape model that simulates the interaction of large landscape processes and forest successional dynamics at tree species level. We discuss how object-oriented design (OOD) approaches such as modularity, abstraction and encapsulation are integrated into the design of LANDIS. We show that using OOD approaches, model decisions (olden as model...

  2. SPATIAL CONTAGIOUSNESS OF CANOPY DISTURBANCE IN TROPICAL RAIN FOREST : AN INDIVIDUAL-TREE-BASED TEST

    NARCIS (Netherlands)

    Jansen, Patrick A.; Van Der Meer, Peter J.; Bongers, Frans

    2008-01-01

    Spatial contagiousness of canopy dynamics-the tendency of canopy disturbances to occur nearby existing canopy openings due to an elevated risk of tree fall around gaps-has been demonstrated in many temperate-zone forests, but only inferentially for tropical forests. Hypothesized mechanisms increasin

  3. SPATIAL CONTAGIOUSNESS OF CANOPY DISTURBANCE IN TROPICAL RAIN FOREST : AN INDIVIDUAL-TREE-BASED TEST

    NARCIS (Netherlands)

    Jansen, Patrick A.; Van Der Meer, Peter J.; Bongers, Frans

    2008-01-01

    Spatial contagiousness of canopy dynamics-the tendency of canopy disturbances to occur nearby existing canopy openings due to an elevated risk of tree fall around gaps-has been demonstrated in many temperate-zone forests, but only inferentially for tropical forests. Hypothesized mechanisms increasin

  4. Diversity, stand characteristics and spatial aggregation of tree species in a Bangladesh forest ecosystem

    DEFF Research Database (Denmark)

    Uddin, Mohammad B.; Steinbauer, Manuel; Beierkuhnlein, Carl

    2011-01-01

    in the Reserve Forest were associated with higher species turnover than in the National Park. We suggest anthropogenic disturbance, which occurs in the less strictly protected Reserve Forest, is the main driver for the detected spatial heterogeneity in species composition.......Assessing biodiversity and the spatial structures of forest ecosystems are important for forestry and nature conservation. However, tropical forests of Bangladesh are only sparsely investigated. Here we determined biodiversity (alpha, beta and gamma), spatial species turnover and stand...... characteristics of one of the few remnant tropical forests in Bangladesh. Two differently protected areas of Satchari forest were compared. We recorded tree species composition, in a systematic plot design, measured diameter at breast height for each individual tree (to assess basal area), and calculated decay...

  5. The effect of organic acids on base cation leaching from the forest floor under six North American tree species

    NARCIS (Netherlands)

    Dijkstra, F.A.; Geibe, C.; Holmstrom, S.; Lundstrom, U.S.; Breemen, van N.

    2001-01-01

    Organic acidity and its degree of neutralization in the forest floor can have large consequences for base cation leaching under different tree species. We investigated the effect of organic acids on base cation leaching from the forest floor under six common North American tree species. Forest floor

  6. The effect of organic acids on base cation leaching from the forest floor under six North American tree species

    NARCIS (Netherlands)

    Dijkstra, F.A.; Geibe, C.; Holmstrom, S.; Lundstrom, U.S.; Breemen, van N.

    2001-01-01

    Organic acidity and its degree of neutralization in the forest floor can have large consequences for base cation leaching under different tree species. We investigated the effect of organic acids on base cation leaching from the forest floor under six common North American tree species. Forest floor

  7. Tree species diversity effects on soil microbial biomass, diversity and activity across European forest types

    OpenAIRE

    Carnol, Monique; Baeten, Lander; Bosman, Bernard; De Wandeler, Hans; Muys, Bart

    2014-01-01

    Increasing tree species diversity in forests might contribute to ecosystem-service maintenance, as well as to the reconciliation of regulating, provisioning and supporting services within the frame of multifunctional and sustainable forestry. Individual tree species influence biogeochemical cycling through element deposition (throughfall, litterfall), and through microbial activities in the soil. Yet, the influence of mixing tree species on these ecosystem processes is unclear, in particular ...

  8. Microbial biomass increases with tree species diversity in European forest soils

    OpenAIRE

    Carnol, Monique; Baeten, Lander; Bosman, Bernard; Malchair, Sandrine; Vanoppen, Astrid; De Wandeler, Hans; Muys, Bart

    2015-01-01

    Increasing tree species diversity in forests might contribute to ecosystem-service maintenance, as well as to the reconciliation of regulating, provisioning and supporting services within the frame of multifunctional and sustainable forestry. Individual tree species influence biogeochemical cycling through element deposition (throughfall, litterfall), and through microbial activities in the soil. Yet, the influence of mixing tree species on these ecosystem processes is unclear, in particular ...

  9. Effect of different tree mortality patterns on stand development in the forest model SIBYLA

    Directory of Open Access Journals (Sweden)

    Trombik Jiří

    2016-09-01

    Full Text Available Forest mortality critically affects stand structure and the quality of ecosystem services provided by forests. Spruce bark beetle (Ips typographus generates rather complex infestation and mortality patterns, and implementation of such patterns in forest models is challenging. We present here the procedure, which allows to simulate the bark beetle-related tree mortality in the forest dynamics model Sibyla. We explored how sensitive various production and stand structure indicators are to tree mortality patterns, which can be generated by bark beetles. We compared the simulation outputs for three unmanaged forest stands with 40, 70 and 100% proportion of spruce as affected by the disturbance-related mortality that occurred in a random pattern and in a patchy pattern. The used tree species and age class-specific mortality rates were derived from the disturbance-related mortality records from Slovakia. The proposed algorithm was developed in the SQLite using the Python language, and the algorithm allowed us to define the degree of spatial clustering of dead trees ranging from a random distribution to a completely clustered distribution; a number of trees that died in either mode is set to remain equal. We found significant differences between the long-term developments of the three investigated forest stands, but we found very little effect of the tested mortality modes on stand increment, tree species composition and diversity, and tree size diversity. Hence, our hypothesis that the different pattern of dead trees emergence should affect the competitive interactions between trees and regeneration, and thus affect selected productivity and stand structure indicators was not confirmed.

  10. Coordination of physiological and structural traits in Amazon forest trees

    Science.gov (United States)

    Patiño, S.; Fyllas, N. M.; Baker, T. R.; Paiva, R.; Quesada, C. A.; Santos, A. J. B.; Schwarz, M.; Ter Steege, H.; Phillips, O. L.; Lloyd, J.

    2012-02-01

    Many plant traits covary in a non-random manner reflecting interdependencies associated with "ecological strategy" dimensions. To understand how plants integrate their structural and physiological investments, data on leaf and leaflet size and the ratio of leaf area to sapwood area (ΦLS) obtained for 1020 individual trees (encompassing 661 species) located in 52 tropical forest plots across the Amazon Basin were incorporated into an analysis utilising existing data on species maximum height (Hmax), seed size, leaf mass per unit area (MA), foliar nutrients and δ13C, and branch xylem density (ρx). Utilising a common principal components approach allowing eigenvalues to vary between two soil fertility dependent species groups, five taxonomically controlled trait dimensions were identified. The first involves primarily cations, foliar carbon and MA and is associated with differences in foliar construction costs. The second relates to some components of the classic "leaf economic spectrum", but with increased individual leaf areas and a higher ΦLS newly identified components for tropical tree species. The third relates primarily to increasing Hmax and hence variations in light acquisition strategy involving greater MA, reductions in ΦLS and less negative δ13C. Although these first three dimensions were more important for species from high fertility sites the final two dimensions were more important for low fertility species and were associated with variations linked to reproductive and shade tolerance strategies. Environmental conditions influenced structural traits with ρx of individual species decreasing with increased soil fertility and higher temperatures. This soil fertility response appears to be synchronised with increases in foliar nutrient concentrations and reductions in foliar [C]. Leaf and leaflet area and ΦLS were less responsive to the environment than ρx. Thus, although genetically determined foliar traits such as those associated with leaf

  11. Effects of forest fragmentation on phenological patterns and reproductive success of the tropical dry forest tree Ceiba aesculifolia.

    Science.gov (United States)

    Herrerías-Diego, Yvonne; Quesada, Mauricio; Stoner, Kathryn E; Lobo, Jorge A

    2006-08-01

    Spatial isolation caused by forest fragmentation and temporal isolation caused by asynchronous flowering of plants have been proposed as important factors that affect the reproduction ofplant populations. In a 4-year study, we determined the effects of forest fragmentation and spatial isolation on flowering phenology and reproductive success of the tropical tree Ceiba aesculifolia ([Kunth] Britton & Rose). We conducted our study in the dry forest of Mexico and compared populations in two habitat conditions based on density and environmental conditions: (1) disturbed habitat (four populations of reproductive individuals/ha surrounded by agriculturalfields or pastures) and (2) undisturbed habitat (three populations of groups of >6 reproductive individuals/ha surrounded by undisturbed mature forest). We compared the following variables within these populations over 4 years: flowering overlap, proportion of individuals with flowers and fruit, total flower production, total fruit production, fruit set, seed production, and seed abortion. Little overlap in flowering occurred among the populations in the two habitat conditions. The flowering period of trees in the disturbed habitat initiated between 15 to 20 days before the flowering period of trees in the undisturbed habitat during 3 years. Flowering of trees in the undisturbed habitat peaked at the end of the flowering period of the trees in the disturbed habitat. The proportion of trees that flowered was greater in the undisturbed habitat. Nevertheless, total flower production was greater in the disturbed habitat and these differences were maintained across 3 years. The proportion of individuals that produced fruit did not differ across habitat conditions but did differ across years. Total fruit production was greater in the disturbed habitat, but fruit set and seed production were the same across years and between habitat conditions. Seed abortion varied over years between habitats. We concluded that forest

  12. Timber tree regeneration along abandoned logging roads in a tropical Bolivian forest

    DEFF Research Database (Denmark)

    Nabe-Nielsen, J.; Severiche, W.; Fredericksen, T.;

    2007-01-01

    Sustainable management of selectively logged tropical forests requires that felled trees are replaced through increased recruitment and growth. This study compares road track and roadside regeneration with regeneration in unlogged and selectively logged humid tropical forest in north...... areas should be ensured by interspersing large patches of unlogged forest with logged areas. This may also assist regeneration of species that perform poorly in disturbed areas....

  13. Modeling the Ecosystem Services Provided by Trees in Urban Ecosystems: Using Biome-BGC to Improve i-Tree Eco

    Science.gov (United States)

    Brown, Molly E.; McGroddy, Megan; Spence, Caitlin; Flake, Leah; Sarfraz, Amna; Nowak, David J.; Milesi, Cristina

    2012-01-01

    As the world becomes increasingly urban, the need to quantify the effect of trees in urban environments on energy usage, air pollution, local climate and nutrient run-off has increased. By identifying, quantifying and valuing the ecological activity that provides services in urban areas, stronger policies and improved quality of life for urban residents can be obtained. Here we focus on two radically different models that can be used to characterize urban forests. The i-Tree Eco model (formerly UFORE model) quantifies ecosystem services (e.g., air pollution removal, carbon storage) and values derived from urban trees based on field measurements of trees and local ancillary data sets. Biome-BGC (Biome BioGeoChemistry) is used to simulate the fluxes and storage of carbon, water, and nitrogen in natural environments. This paper compares i-Tree Eco's methods to those of Biome-BGC, which estimates the fluxes and storage of energy, carbon, water and nitrogen for vegetation and soil components of the ecosystem. We describe the two models and their differences in the way they calculate similar properties, with a focus on carbon and nitrogen. Finally, we discuss the implications of further integration of these two communities for land managers such as those in Maryland.

  14. Relationship of Climatic and Forest Factors to Drought- and Heat-Induced Tree Mortality

    Science.gov (United States)

    Zhang, Qingyin; Shao, Ming’an; Jia, Xiaoxu; Wei, Xiaorong

    2017-01-01

    Tree mortality due to warming and drought is a critical aspect of forest ecosystem in responding to climate change. Spatial patterns of tree mortality induced by drought and its influencing factors, however, have yet to be documented at the global scale. We collected observations from 248 sites globally where trees have died due to drought and then assessed the effects of climatic and forest factors on the rate of tree mortality. The global mean annual mortality rate was 5.5%. The rate of tree mortality was significantly and negatively correlated with mean annual precipitation (P 2000 mm and was severe in regions with mean annual precipitation gymnosperms (7.1%) than angiosperms (4.8%) but did not differ significantly between evergreen (6.2%) and deciduous (6.1%) species. Stand age and wood density affected the mortality rate. Saplings (4.6%) had a higher mortality rate than mature trees (3.2%), and mortality rates significantly decreased with increasing wood density for all species (P < 0.01). We therefore concluded that the tree mortality around the globe varied with climatic and forest factors. The differences between tree species, wood density, stand density, and stand age should be considered when evaluating tree mortality at a large spatial scale during future climatic extremes. PMID:28095437

  15. How liana loads alter tree allometry in tropical forests

    NARCIS (Netherlands)

    Souza Dias, de Arildo; Santos, Dos Karin; Santos, Dos Flavio Antonio Maës; Martins, Fernando R.

    2017-01-01

    Intense competition with lianas (wood climbers) can limit tree growth, reproduction, and survival. However, the negative effects of liana loads on tree allometry have not yet been addressed. We investigated the hypothesis that liana loading on tree crown alters tree’s allometry, expressed through sl

  16. How liana loads alter tree allometry in tropical forests

    NARCIS (Netherlands)

    Souza Dias, de Arildo; Santos, Dos Karin; Santos, Dos Flavio Antonio Maës; Martins, Fernando R.

    2017-01-01

    Intense competition with lianas (wood climbers) can limit tree growth, reproduction, and survival. However, the negative effects of liana loads on tree allometry have not yet been addressed. We investigated the hypothesis that liana loading on tree crown alters tree’s allometry, expressed through

  17. Large-Scale Mapping of Tree-Community Composition as a Surrogate of Forest Degradation in Bornean Tropical Rain Forests

    Directory of Open Access Journals (Sweden)

    Shogoro Fujiki

    2016-12-01

    Full Text Available Assessment of the progress of the Aichi Biodiversity Targets set by the Convention on Biological Diversity (CBD and the safeguarding of ecosystems from the perverse negative impacts caused by Reducing Emissions from Deforestation and Forest Degradation Plus (REDD+ requires the development of spatiotemporally robust and sensitive indicators of biodiversity and ecosystem health. Recently, it has been proposed that tree-community composition based on count-plot surveys could serve as a robust, sensitive, and cost-effective indicator for forest intactness in Bornean logged-over rain forests. In this study, we developed an algorithm to map tree-community composition across the entire landscape based on Landsat imagery. We targeted six forest management units (FMUs, each of which ranged from 50,000 to 100,000 ha in area, covering a broad geographic range spanning the most area of Borneo. Approximately fifty 20 m-radius circular plots were established in each FMU, and the differences in tree-community composition at a genus level among plots were examined for trees with diameter at breast height ≥10 cm using an ordination with non-metric multidimensional scaling (nMDS. Subsequently, we developed a linear regression model based on Landsat metrics (e.g., reflectance value, vegetation indices and textures to explain the nMDS axis-1 scores of the plots, and extrapolated the model to the landscape to establish a tree-community composition map in each FMU. The adjusted R2 values based on a cross-validation approach between the predicted and observed nMDS axis-1 scores indicated a close correlation, ranging from 0.54 to 0.69. Histograms of the frequency distributions of extrapolated nMDS axis-1 scores were derived from each map and used to quantitatively diagnose the forest intactness of the FMUs. Our study indicated that tree-community composition, which was reported as a robust indicator of forest intactness, could be mapped at a landscape level to

  18. Scenario Modeling of Thermal Influence from Forest Fire Front on a Coniferous Tree Trunk

    Directory of Open Access Journals (Sweden)

    Baranovskiy Nikolay V.

    2016-01-01

    Full Text Available Scenario research results of heat transfer and tissue damage in three-layered tree trunk influenced by heat flux from forest fire are presented. The problem is solved in two-dimensional statement in polar coordinates. The typical range of influence parameters (heat flux from forest fire front, trunk radius, coniferous species, air temperature, duration of exposure and distance from fire line is considered. Temperature distributions in different moments of time are obtained. Condition of tree damage by forest fire influence is under consideration in this research. Information summarized using tables with scenario and fire consequences results.

  19. Mapping mangrove forests using multi-tidal remotely-sensed data and a decision-tree-based procedure

    Science.gov (United States)

    Zhang, Xuehong; Treitz, Paul M.; Chen, Dongmei; Quan, Chang; Shi, Lixin; Li, Xinhui

    2017-10-01

    Mangrove forests grow in intertidal zones in tropical and subtropical regions and have suffered a dramatic decline globally over the past few decades. Remote sensing data, collected at various spatial resolutions, provide an effective way to map the spatial distribution of mangrove forests over time. However, the spectral signatures of mangrove forests are significantly affected by tide levels. Therefore, mangrove forests may not be accurately mapped with remote sensing data collected during a single-tidal event, especially if not acquired at low tide. This research reports how a decision-tree -based procedure was developed to map mangrove forests using multi-tidal Landsat 5 Thematic Mapper (TM) data and a Digital Elevation Model (DEM). Three indices, including the Normalized Difference Moisture Index (NDMI), the Normalized Difference Vegetation Index (NDVI) and NDVIL·NDMIH (the multiplication of NDVIL by NDMIH, L: low tide level, H: high tide level) were used in this algorithm to differentiate mangrove forests from other land-cover and land-use types in Fangchenggang City, China. Additionally, the recent Landsat 8 OLI (Operational Land Imager) data were selected to validate the results and compare if the methodology is reliable. The results demonstrate that short-term multi-tidal remotely-sensed data better represent the unique nearshore coastal wetland habitats of mangrove forests than single-tidal data. Furthermore, multi-tidal remotely-sensed data has led to improved accuracies using two classification approaches: i.e. decision trees and the maximum likelihood classification (MLC). Since mangrove forests are typically found at low elevations, the inclusion of elevation data in the two classification procedures was tested. Given the decision-tree method does not assume strict data distribution parameters, it was able to optimize the application of multi-tidal and elevation data, resulting in higher classification accuracies of mangrove forests. When using multi

  20. Individual size but not additional nitrogen regulates tree carbon sequestration in a subtropical forest

    Science.gov (United States)

    Wu, Jianping; Duan, Honglang; Liu, Wenfei; Wei, Xiaohua; Liao, Yingchun; Fan, Houbao

    2017-04-01

    Recent studies have indicated that tree carbon accumulation in subtropical forests has been negatively affected by global change phenomena such as warming and drought. However, the long-term effect of nitrogen addition on plant carbon storage remains poorly understood in these regions. In this study, we conducted a 10-year field experiment examining the effect of experimental N addition on plant growth and carbon storage in a subtropical Chinese fir forest. The N levels were 0 (control), 60, 120, and 240 kg ha-1 yr-1, and the N effects on tree carbon were divided into stand and individual levels. The results indicated that tree carbon storage at the stand scale was not affected by long-term N addition in the subtropical forest. By contrast, significant impacts of different tree size classes on carbon sequestration were found under different N treatments, which indicated that the amount of plant carbon sequestration was significantly enhanced with tree size class. Our findings highlight the importance of community structure and growth characteristics in Chinese fir forests, in which individual size but not additional N regulates tree carbon sequestration in this subtropical forest.

  1. Single Nucleotide Polymorphisms (SNPs) Discovery and Linkage Disequilibrium (LD) in Forest Trees

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    With completion of the Populus genome sequencing project and the availability of many expressed sequence tags (ESTs) databases in forest trees, attention is now rapidly shifting towards the study of individual genetic variation in natural populations. The most abundant form of genetic variation in many eukaryotic species is represented by single nucleotide polymorphisms (SNPs), which can account for heritable inter-individual differences in complex phenotypes. Unlike humans, the linkage disequilibrium (LD) rapidly decays within candidate genes in forest trees. Thus, SNPs-based candidate gene association studies are considered to be a most effective approach to dissect the complex quantitative traits in forest trees. The present study demonstrates that LD mapping can be used to identify alleles associated with quantitative traits and suggests that this new approach could be particularly useful for performing breeding programs in forest trees. In this review, we will describe the fundamentals, patterns of SNPs distribution and frequency, summarize recent advances in SNPs discovery and LD and comment on the application of LD in the dissection of complex quantitative traits in forest tress. We also put forward the outlook for future SNPs-based association analysis of quantitative traits in forest trees.

  2. Water and Forest Health: Drought Stress as a Core Driver of Forest Disturbances and Tree Mortality in Western North America

    Science.gov (United States)

    Allen, C. D.; Williams, P.

    2012-12-01

    Increasing warmth and dry climate conditions have affected large portions of western North America in recent years, causing elevated levels of both chronic and acute forest drought stress. In turn, increases in drought stress amplify the incidence and severity of the most significant forest disturbances in this region, including wildfire, drought-induced tree mortality, and outbreaks of damaging insects and diseases. Regional patterns of drought stress and various forest disturbances are reviewed, including interactions among climate and the various disturbance processes; similar global-scale patterns and trends of drought-amplified forest die-off and high-severity wildfire also are addressed. New research is presented that derives a tree-ring-based Forest Drought Stress Index (FDSI) for the three most widespread conifer species (Pinus edulis, Pinus ponderosa, and Pseudotsuga menziesii) in the southwestern US (Arizona, New Mexico), demonstrating nonlinear escalation of FDSI to levels unprecedented in the past 1000 years, in response to both drought and especially recent warming. This new work further highlights strong correlations between drought stress and amplified forest disturbances (fire, bark beetle outbreaks), and projects that by ca. 2050 anticipated regional warming will cause mean FDSI levels to reach extreme levels that may exceed thresholds for the survival of current tree species in large portions of their current range. Given recent trends of forest disturbance and projections for substantially warmer temperatures and greater drought stress for much of western North America in coming years, the growing risks to western forest health are becoming clear. This emerging understanding suggests an urgent need to determine potentials and methods for managing water on-site to maintain the vigor and resilience of western forests in the face of increasing levels of climate-induced water stress.

  3. Tropical Forest Reorganization after Cyclone and Fire Disturbance in Samoa: Remnant Trees as Biological Legacies

    Directory of Open Access Journals (Sweden)

    Åsa Fritioff

    2002-01-01

    Full Text Available In disturbed rain forests, large, living remnant trees may be of significant importance for postdisturbance reorganization either directly, by producing large quantities of seeds, or indirectly, by attracting vertebrate seed dispersers. In addition, remnant trees may also be important in providing a favorable microhabitat for seedlings of late-successional species. This study focused on the role of large remnant trees (> 40 cm dbh in patterns of regeneration after cyclone and fire damage in the Tafua and Falealupo Rain Forest Preserves, Savaií, Samoa. At Tafua, 10 large trees at each of two sites (one site burned in 1990 were investigated with regard to numbers of species and densities of plants from three different size classes at different distances from remnant trees. At the burned site, both species richness and the densities of plants < 1cm dbh were significantly higher inside the canopies of remnant trees than outside of them. At the unburned site, no or only marginally significant differences were observed. At Falealupo, two burned sites (burned in 1993 and 1998 were investigated using seed traps. At both sites, the seed rain from vertebrate dispersers was disproportionally higher under the canopies of remnant trees than in outside areas. No differences in soil characteristics were found when comparing samples taken from inside and outside canopies. Our results are congruent with the prediction that large remnant trees surviving in severely disturbed rain-forest areas represent biological legacies and serve as nuclei for reorganization. Based on this study and our previous work, we suggest that three factors represent essential components of the spatial resilience of tropical forest ecosystems and should be targeted for active management in tropical forests exposed to large-scale disturbances, particularly fire: remnant trees, refugia, and vertebrate dispersers.

  4. Tree Age Distributions Reveal Large-Scale Disturbance-Recovery Cycles in Three Tropical Forests

    Science.gov (United States)

    Vlam, Mart; van der Sleen, Peter; Groenendijk, Peter; Zuidema, Pieter A.

    2017-01-01

    Over the past few decades there has been a growing realization that a large share of apparently ‘virgin’ or ‘old-growth’ tropical forests carries a legacy of past natural or anthropogenic disturbances that have a substantial effect on present-day forest composition, structure and dynamics. Yet, direct evidence of such disturbances is scarce and comparisons of disturbance dynamics across regions even more so. Here we present a tree-ring based reconstruction of disturbance histories from three tropical forest sites in Bolivia, Cameroon, and Thailand. We studied temporal patterns in tree regeneration of shade-intolerant tree species, because establishment of these trees is indicative for canopy disturbance. In three large areas (140–300 ha), stem disks and increment cores were collected for a total of 1154 trees (>5 cm diameter) from 12 tree species to estimate the age of every tree. Using these age estimates we produced population age distributions, which were analyzed for evidence of past disturbance. Our approach allowed us to reconstruct patterns of tree establishment over a period of around 250 years. In Bolivia, we found continuous regeneration rates of three species and a peaked age distribution of a long-lived pioneer species. In both Cameroon and Thailand we found irregular age distributions, indicating strongly reduced regeneration rates over a period of 10–60 years. Past fires, windthrow events or anthropogenic disturbances all provide plausible explanations for the reported variation in tree age across the three sites. Our results support the recent idea that the long-term dynamics of tropical forests are impacted by large-scale disturbance-recovery cycles, similar to those driving temperate forest dynamics. PMID:28105034

  5. Impact of tree retention on wood production, biodiversity conservation and carbon stock changes in boreal pine forest

    OpenAIRE

    Santaniello, Francesca

    2017-01-01

    Tree retention at forest harvesting aims at promoting biodiversity by increasing structural diversity in managed forests. For this thesis, I have investigated the influence of tree retention on delivery of ecosystem services (wood production and carbon storage) and dead wood (as a proxy for biodiversity). Furthermore, habitat requirements of lichens dependent on dead wood were investigated. The investigation was conducted in 15 Scots pine forest stands with five tree retention levels, in whic...

  6. Abundance of green tree frogs and insects in artificial canopy gaps in a bottomland hardwood forest.

    Energy Technology Data Exchange (ETDEWEB)

    Horn, Scott; Hanula, James L.; Ulyshen, Michael D.; Kilgo, John C.

    2005-01-01

    Horn, Scott, James L. Hanula, Michael D. Ulyshen, and John C. Kilgo. 2005. Abundance of green tree frogs and insects in artificial canopy gaps in a bottomland hardwood forest. Am. Midl. Nat. 153:321-326. Abstract: We found more green tree frogs (Hyla cinerea) in canopy gaps than in closed canopy forest. Of the 331 green tree frogs observed, 88% were in canopy gaps. Likewise, higher numbers and biomasses of insects were captured in the open gap habitat. Flies were the most commonly collected insect group accounting for 54% of the total capture. These data suggest that one reason green tree frogs were more abundant in canopy gaps was the increased availability of prey and that small canopy gaps provide early successional habitats that are beneficial to green tree frog populations.

  7. Are ectomycorrhizal fungi alleviating or aggravating nitrogen limitation of tree growth in boreal forests?

    Science.gov (United States)

    Näsholm, Torgny; Högberg, Peter; Franklin, Oskar; Metcalfe, Daniel; Keel, Sonja G; Campbell, Catherine; Hurry, Vaughan; Linder, Sune; Högberg, Mona N

    2013-04-01

    Symbioses between plant roots and mycorrhizal fungi are thought to enhance plant uptake of nutrients through a favourable exchange for photosynthates. Ectomycorrhizal fungi are considered to play this vital role for trees in nitrogen (N)-limited boreal forests. We followed symbiotic carbon (C)-N exchange in a large-scale boreal pine forest experiment by tracing (13) CO(2) absorbed through tree photosynthesis and (15) N injected into a soil layer in which ectomycorrhizal fungi dominate the microbial community. We detected little (15) N in tree canopies, but high levels in soil microbes and in mycorrhizal root tips, illustrating effective soil N immobilization, especially in late summer, when tree belowground C allocation was high. Additions of N fertilizer to the soil before labelling shifted the incorporation of (15) N from soil microbes and root tips to tree foliage. These results were tested in a model for C-N exchange between trees and mycorrhizal fungi, suggesting that ectomycorrhizal fungi transfer small fractions of absorbed N to trees under N-limited conditions, but larger fractions if more N is available. We suggest that greater allocation of C from trees to ectomycorrhizal fungi increases N retention in soil mycelium, driving boreal forests towards more severe N limitation at low N supply. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  8. Characterizing the phylogenetic tree community structure of a protected tropical rain forest area in Cameroon.

    Directory of Open Access Journals (Sweden)

    Stéphanie Manel

    Full Text Available Tropical rain forests, the richest terrestrial ecosystems in biodiversity on Earth are highly threatened by global changes. This paper aims to infer the mechanisms governing species tree assemblages by characterizing the phylogenetic structure of a tropical rain forest in a protected area of the Congo Basin, the Dja Faunal Reserve (Cameroon. We re-analyzed a dataset of 11538 individuals belonging to 372 taxa found along nine transects spanning five habitat types. We generated a dated phylogenetic tree including all sampled taxa to partition the phylogenetic diversity of the nine transects into alpha and beta components at the level of the transects and of the habitat types. The variation in phylogenetic composition among transects did not deviate from a random pattern at the scale of the Dja Faunal Reserve, probably due to a common history and weak environmental variation across the park. This lack of phylogenetic structure combined with an isolation-by-distance pattern of taxonomic diversity suggests that neutral dispersal limitation is a major driver of community assembly in the Dja. To assess any lack of sensitivity to the variation in habitat types, we restricted the analyses of transects to the terra firme primary forest and found results consistent with those of the whole dataset at the level of the transects. Additionally to previous analyses, we detected a weak but significant phylogenetic turnover among habitat types, suggesting that species sort in varying environments, even though it is not predominating on the overall phylogenetic structure. Finer analyses of clades indicated a signal of clustering for species from the Annonaceae family, while species from the Apocynaceae family indicated overdispersion. These results can contribute to the conservation of the park by improving our understanding of the processes dictating community assembly in these hyperdiverse but threatened regions of the world.

  9. Allometric Equations for Estimating Tree Aboveground Biomass in Tropical Dipterocarp Forests of Vietnam

    Directory of Open Access Journals (Sweden)

    Bao Huy

    2016-08-01

    Full Text Available There are few allometric equations available for dipterocarp forests, despite the fact that this forest type covers extensive areas in tropical Southeast Asia. This study aims to develop a set of equations to estimate tree aboveground biomass (AGB in dipterocarp forests in Vietnam and to validate and compare their predictive performance with allometric equations used for dipterocarps in Indonesia and pantropical areas. Diameter at breast height (DBH, total tree height (H, and wood density (WD were used as input variables of the nonlinear weighted least square models. Akaike information criterion (AIC and residual plots were used to select the best models; while percent bias, root mean square percentage error, and mean absolute percent error were used to compare their performance to published models. For mixed-species, the best equation was AGB = 0.06203 × DBH 2.26430 × H 0.51415 × WD 0.79456 . When applied to a random independent validation dataset, the predicted values from the generic equations and the dipterocarp equations in Indonesia overestimated the AGB for different sites, indicating the need for region-specific equations. At the genus level, the selected equations were AGB = 0.03713 × DBH 2.73813 and AGB = 0.07483 × DBH 2.54496 for two genera, Dipterocarpus and Shorea, respectively, in Vietnam. Compared to the mixed-species equations, the genus-specific equations improved the accuracy of the AGB estimates. Additionally, the genus-specific equations showed no significant differences in predictive performance in different regions (e.g., Indonesia, Vietnam of Southeast Asia.

  10. Tree growth rates in an Amazonian evergreen forest: seasonal patterns and correlations with leaf phenology

    Science.gov (United States)

    Wu, J.; Silva Campos, K.; Prohaska, N.; Ferreira, M. L.; Nelson, B. W.; Saleska, S. R.; da Silva, R.

    2014-12-01

    Metabolism and phenology of tropical forests significantly influence global dynamics of climate, carbon and water. However, there is still lack of mechanistic understanding of the controls on tropical forest metabolism, particularly at individual tree level. In this study, we are interested in investigating (1) what is the seasonal pattern of woody growth for tropical trees and (2) what is the mechanistic controls onwoody growth at individual level?To explore the above questions,we use two data sources from an evergreen tropical forest KM67 site (near Santarem, Brazil). They are: (1) image time series from a tower mounted RGB imaging system, with images recordedin10 minutes interval since October 2013.Images near local noon homogeneous diffuse lighting were selectedfor leaf phenologymonitoring; (2) ground based bi-weekly biometry survey (via dendrometry band technique) for 25 trees from random sampling since September 2013. 12 among 25 trees are within the tower mounted camera image view. Our preliminary resultsdemonstrate that 20 trees among 25 trees surveyed significantly increase woody growth (or "green up") in dry season. Our results also find thatamong those 20 trees, 12 trees reaches the maximum woody increment rate in late dry season with a mean DBH (Diameter at Breast Height) around 30 cm,while 8 trees reaching the maximum in the middle of wet season, with a mean DBH around 90 cm. This study,though limited in the sample size, mightprovide another line of evidence that Amazon rainforests "green up" in dry season. As for mechanistic controls on tropical tree woody control, we hypothesize both climate and leaf phenology control individual woody growth. We would like to link both camera based leaf phenology and climate data in the next to explorethe reason as to the pattern found in this study that bigger trees might have different seasonal growth pattern as smaller trees.

  11. Widespread Tree Mortality from the 2011 Texas Drought: Consequences for Forest Structure and Carbon Stocks

    Science.gov (United States)

    Moore, G. W.; Edgar, C.; Vogel, J. G.; Washington-Allen, R. A.; March, R.; Zehnder, R.

    2013-12-01

    Larger and more frequent drought-related tree mortality events can alter the carbon cycling of terrestrial ecosystems; however, the carbon cycling implications of drought in forest ecosystems is poorly understood because the effects are not discrete in time, tree species have varying survival tolerances, and tree mortality from drought is often diffusely distributed across the landscape masking its effect from satellite observation. Widespread tree mortality was caused by the exceptional 2011 drought in Texas. In the summer following the drought, we used a statewide survey of 599 plots and satellite imagery (pre/post drought) to estimate the impact of the 2011 Texas Drought on forest C storage and cycling. In each 0.16 ha plot, dead trees were identified to the genus level and diameters were recorded. Normalized Difference Vegetation Index (ΔNDVI = May 2012 NDVI - May 2011 NDVI) derived from the MODIS satellite sensor was calibrated to the field plots to produce a 2011 tree mortality map for Texas. We estimate that 301 million trees died in Texas from the exceptional drought of 2011 (6.2% of live trees), which resulted in a conversion of 24-30 Tg C from live to dead tree carbon pools. This event was notable in that it affected a wide assemblage of species throughout the state across distinct ecoregions. The largest trees experienced disproportionately higher mortality; large angiosperms from historically wetter regions suffered the greatest losses. Gymnosperms thought to be drought-hardy also experienced unexpectedly high levels of mortality, with significant regional variation in whether the mortality was concentrated in large trees. The concentration of mortality in large trees likely had a disproportionate effect on forest net primary productivity, which is a key constraint on estimating the full effect of this drought on future forest C capture. In an effort toward full accounting of this event, we modeled its cumulative effects on regional C cycling and

  12. Mapping Species Composition of Forests and Tree Plantations in Northeastern Costa Rica with an Integration of Hyperspectral and Multitemporal Landsat Imagery

    Science.gov (United States)

    Fagan, Matthew E.; Defries, Ruth S.; Sesnie, Steven E.; Arroyo-Mora, J. Pablo; Soto, Carlomagno; Singh, Aditya; Townsend, Philip A.; Chazdon, Robin L.

    2015-01-01

    An efficient means to map tree plantations is needed to detect tropical land use change and evaluate reforestation projects. To analyze recent tree plantation expansion in northeastern Costa Rica, we examined the potential of combining moderate-resolution hyperspectral imagery (2005 HyMap mosaic) with multitemporal, multispectral data (Landsat) to accurately classify (1) general forest types and (2) tree plantations by species composition. Following a linear discriminant analysis to reduce data dimensionality, we compared four Random Forest classification models: hyperspectral data (HD) alone; HD plus interannual spectral metrics; HD plus a multitemporal forest regrowth classification; and all three models combined. The fourth, combined model achieved overall accuracy of 88.5%. Adding multitemporal data significantly improved classification accuracy (p less than 0.0001) of all forest types, although the effect on tree plantation accuracy was modest. The hyperspectral data alone classified six species of tree plantations with 75% to 93% producer's accuracy; adding multitemporal spectral data increased accuracy only for two species with dense canopies. Non-native tree species had higher classification accuracy overall and made up the majority of tree plantations in this landscape. Our results indicate that combining occasionally acquired hyperspectral data with widely available multitemporal satellite imagery enhances mapping and monitoring of reforestation in tropical landscapes.

  13. Mapping Species Composition of Forests and Tree Plantations in Northeastern Costa Rica with an Integration of Hyperspectral and Multitemporal Landsat Imagery

    Directory of Open Access Journals (Sweden)

    Matthew E. Fagan

    2015-05-01

    Full Text Available An efficient means to map tree plantations is needed to detect tropical land use change and evaluate reforestation projects. To analyze recent tree plantation expansion in northeastern Costa Rica, we examined the potential of combining moderate-resolution hyperspectral imagery (2005 HyMap mosaic with multitemporal, multispectral data (Landsat to accurately classify (1 general forest types and (2 tree plantations by species composition. Following a linear discriminant analysis to reduce data dimensionality, we compared four Random Forest classification models: hyperspectral data (HD alone; HD plus interannual spectral metrics; HD plus a multitemporal forest regrowth classification; and all three models combined. The fourth, combined model achieved overall accuracy of 88.5%. Adding multitemporal data significantly improved classification accuracy (p < 0.0001 of all forest types, although the effect on tree plantation accuracy was modest. The hyperspectral data alone classified six species of tree plantations with 75% to 93% producer’s accuracy; adding multitemporal spectral data increased accuracy only for two species with dense canopies. Non-native tree species had higher classification accuracy overall and made up the majority of tree plantations in this landscape. Our results indicate that combining occasionally acquired hyperspectral data with widely available multitemporal satellite imagery enhances mapping and monitoring of reforestation in tropical landscapes.

  14. Winning and losing tree species of reassembly in Minnesota's mixed and broadleaf forests.

    Science.gov (United States)

    Hanberry, Brice B; Palik, Brian J; He, Hong S

    2013-01-01

    We examined reassembly of winning and losing tree species, species traits including shade and fire tolerance, and associated disturbance filters and forest ecosystem types due to rapid forest change in the Great Lakes region since 1850. We identified winning and losing species by changes in composition, distribution, and site factors between historical and current surveys in Minnesota's mixed and broadleaf forests. In the Laurentian Mixed Forest, shade-intolerant aspen replaced shade-intolerant tamarack as the most dominant tree species. Fire-tolerant white pine and jack pine decreased, whereas shade-tolerant ashes, maples, and white cedar increased. In the Eastern Broadleaf Forest, fire-tolerant white oaks and red oaks decreased, while shade-tolerant ashes, American basswood, and maples increased. Tamarack, pines, and oaks have become restricted to sites with either wetter or sandier and drier soils due to increases in aspen and shade-tolerant, fire-sensitive species on mesic sites. The proportion of shade-tolerant species increased in both regions, but selective harvest reduced the applicability of functional groups alone to specify winners and losers. Harvest and existing forestry practices supported aspen dominance in mixed forests, although without aspen forestry and with fire suppression, mixed forests will transition to a greater composition of shade-tolerant species, converging to forests similar to broadleaf forests. A functional group framework provided a perspective of winning and losing species and traits, selective filters, and forest ecosystems that can be generalized to other regions, regardless of species identity.

  15. Winning and Losing Tree Species of Reassembly in Minnesota’s Mixed and Broadleaf Forests

    Science.gov (United States)

    Hanberry, Brice B.; Palik, Brian J.; He, Hong S.

    2013-01-01

    We examined reassembly of winning and losing tree species, species traits including shade and fire tolerance, and associated disturbance filters and forest ecosystem types due to rapid forest change in the Great Lakes region since 1850. We identified winning and losing species by changes in composition, distribution, and site factors between historical and current surveys in Minnesota’s mixed and broadleaf forests. In the Laurentian Mixed Forest, shade-intolerant aspen replaced shade-intolerant tamarack as the most dominant tree species. Fire-tolerant white pine and jack pine decreased, whereas shade-tolerant ashes, maples, and white cedar increased. In the Eastern Broadleaf Forest, fire-tolerant white oaks and red oaks decreased, while shade-tolerant ashes, American basswood, and maples increased. Tamarack, pines, and oaks have become restricted to sites with either wetter or sandier and drier soils due to increases in aspen and shade-tolerant, fire-sensitive species on mesic sites. The proportion of shade-tolerant species increased in both regions, but selective harvest reduced the applicability of functional groups alone to specify winners and losers. Harvest and existing forestry practices supported aspen dominance in mixed forests, although without aspen forestry and with fire suppression, mixed forests will transition to a greater composition of shade-tolerant species, converging to forests similar to broadleaf forests. A functional group framework provided a perspective of winning and losing species and traits, selective filters, and forest ecosystems that can be generalized to other regions, regardless of species identity. PMID:23613911

  16. Winning and losing tree species of reassembly in Minnesota's mixed and broadleaf forests.

    Directory of Open Access Journals (Sweden)

    Brice B Hanberry

    Full Text Available We examined reassembly of winning and losing tree species, species traits including shade and fire tolerance, and associated disturbance filters and forest ecosystem types due to rapid forest change in the Great Lakes region since 1850. We identified winning and losing species by changes in composition, distribution, and site factors between historical and current surveys in Minnesota's mixed and broadleaf forests. In the Laurentian Mixed Forest, shade-intolerant aspen replaced shade-intolerant tamarack as the most dominant tree species. Fire-tolerant white pine and jack pine decreased, whereas shade-tolerant ashes, maples, and white cedar increased. In the Eastern Broadleaf Forest, fire-tolerant white oaks and red oaks decreased, while shade-tolerant ashes, American basswood, and maples increased. Tamarack, pines, and oaks have become restricted to sites with either wetter or sandier and drier soils due to increases in aspen and shade-tolerant, fire-sensitive species on mesic sites. The proportion of shade-tolerant species increased in both regions, but selective harvest reduced the applicability of functional groups alone to specify winners and losers. Harvest and existing forestry practices supported aspen dominance in mixed forests, although without aspen forestry and with fire suppression, mixed forests will transition to a greater composition of shade-tolerant species, converging to forests similar to broadleaf forests. A functional group framework provided a perspective of winning and losing species and traits, selective filters, and forest ecosystems that can be generalized to other regions, regardless of species identity.

  17. Abundance of Green Tree Frogs and Insects in Artificial Canopy Gaps in a Bottomland Hardwood Forest.

    Energy Technology Data Exchange (ETDEWEB)

    Horn, Scott; Hanula, James, L.; Ulyshen, Michael D.; Kilgo, John, C.

    2005-04-01

    ABSTRACT - We found more green tree frogs ( Hyla cinerea) n canopv gaps than in closed canopy forest. Of the 331 green tree frogs observed, 88% were in canopv gaps. Likewise, higher numbers and biomasses of insects were captured in the open gap habitat Flies were the most commonlv collected insect group accounting for 54% of the total capture. These data suggest that one reason green tree frogs were more abundant in canopy gaps was the increased availability of prey and that small canopy gaps provide early successional habitats that are beneficial to green tree frog populations.

  18. Ecological importance of large-diameter trees in a temperate mixed-conifer forest.

    Science.gov (United States)

    Lutz, James A; Larson, Andrew J; Swanson, Mark E; Freund, James A

    2012-01-01

    Large-diameter trees dominate the structure, dynamics and function of many temperate and tropical forests. Although both scaling theory and competition theory make predictions about the relative composition and spatial patterns of large-diameter trees compared to smaller diameter trees, these predictions are rarely tested. We established a 25.6 ha permanent plot within which we tagged and mapped all trees ≥1 cm dbh, all snags ≥10 cm dbh, and all shrub patches ≥2 m(2). We sampled downed woody debris, litter, and duff with line intercept transects. Aboveground live biomass of the 23 woody species was 507.9 Mg/ha, of which 503.8 Mg/ha was trees (SD = 114.3 Mg/ha) and 4.1 Mg/ha was shrubs. Aboveground live and dead biomass was 652.0 Mg/ha. Large-diameter trees comprised 1.4% of individuals but 49.4% of biomass, with biomass dominated by Abies concolor and Pinus lambertiana (93.0% of tree biomass). The large-diameter component dominated the biomass of snags (59.5%) and contributed significantly to that of woody debris (36.6%). Traditional scaling theory was not a good model for either the relationship between tree radii and tree abundance or tree biomass. Spatial patterning of large-diameter trees of the three most abundant species differed from that of small-diameter conspecifics. For A. concolor and P. lambertiana, as well as all trees pooled, large-diameter and small-diameter trees were spatially segregated through inter-tree distances trees and spatial relationships between large-diameter and small-diameter trees. Long-term observations may reveal regulation of forest biomass and spatial structure by fire, wind, pathogens, and insects in Sierra Nevada mixed-conifer forests. Sustaining ecosystem functions such as carbon storage or provision of specialist species habitat will likely require different management strategies when the functions are performed primarily by a few large trees as opposed to many smaller trees.

  19. Improving Cluster Analysis with Automatic Variable Selection Based on Trees

    Science.gov (United States)

    2014-12-01

    ANALYSIS WITH AUTOMATIC VARIABLE SELECTION BASED ON TREES by Anton D. Orr December 2014 Thesis Advisor: Samuel E. Buttrey Second Reader...DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE IMPROVING CLUSTER ANALYSIS WITH AUTOMATIC VARIABLE SELECTION BASED ON TREES 5. FUNDING NUMBERS 6...2006 based on classification and regression trees to address problems with determining dissimilarity. Current algorithms do not simultaneously address

  20. Residual Long-Term Effects of Forest Fertilization on Tree Growth and Nitrogen Turnover in Boreal Forest

    Directory of Open Access Journals (Sweden)

    Fredrik From

    2015-04-01

    Full Text Available The growth enhancing effects of forest fertilizer is considered to level off within 10 years of the application, and be restricted to one forest stand rotation. However, fertilizer induced changes in plant community composition has been shown to occur in the following stand rotation. To clarify whether effects of forest fertilization have residual long-term effects, extending into the next rotation, we compared tree growth, needle N concentrations and the availability of mobile soil N in young (10 years Pinus sylvestris L. and Picea abies (L. H. Karst. stands. The sites were fertilized with 150 kg·N·ha−1 once or twice during the previous stand rotation, or unfertilized. Two fertilization events increased tree height by 24% compared to the controls. Needle N concentrations of the trees on previously fertilized sites were 15% higher than those of the controls. Soil N mineralization rates and the amounts of mobile soil NH4-N and NO3-N were higher on sites that were fertilized twice than on control sites. Our study demonstrates that operational forest fertilization can cause residual long-term effects on stand N dynamics, with subsequent effects on tree growth that may be more long-lasting than previously believed, i.e., extending beyond one stand rotation.

  1. Advances in ecological genomics in forest trees and applications to genetic resources conservation and breeding.

    Science.gov (United States)

    Holliday, Jason A; Aitken, Sally N; Cooke, Janice E K; Fady, Bruno; González-Martínez, Santiago C; Heuertz, Myriam; Jaramillo-Correa, Juan-Pablo; Lexer, Christian; Staton, Margaret; Whetten, Ross W; Plomion, Christophe

    2017-02-01

    Forest trees are an unparalleled group of organisms in their combined ecological, economic and societal importance. With widespread distributions, predominantly random mating systems and large population sizes, most tree species harbour extensive genetic variation both within and among populations. At the same time, demographic processes associated with Pleistocene climate oscillations and land-use change have affected contemporary range-wide diversity and may impinge on the potential for future adaptation. Understanding how these adaptive and neutral processes have shaped the genomes of trees species is therefore central to their management and conservation. As for many other taxa, the advent of high-throughput sequencing methods is expected to yield an understanding of the interplay between the genome and environment at a level of detail and depth not possible only a few years ago. An international conference entitled 'Genomics and Forest Tree Genetics' was held in May 2016, in Arcachon (France), and brought together forest geneticists with a wide range of research interests to disseminate recent efforts that leverage contemporary genomic tools to probe the population, quantitative and evolutionary genomics of trees. An important goal of the conference was to discuss how such data can be applied to both genome-enabled breeding and the conservation of forest genetic resources under land use and climate change. Here, we report discoveries presented at the meeting and discuss how the ecological genomic toolkit can be used to address both basic and applied questions in tree biology.

  2. Human Influences on Tree Diversity and Composition of a Coastal Forest Ecosystem: The Case of Ngumburuni Forest Reserve, Rufiji, Tanzania

    Directory of Open Access Journals (Sweden)

    J. Kimaro

    2013-01-01

    Full Text Available This paper reports on the findings of an ecological survey conducted in Ngumburuni Forest Reserve, a biodiversity rich forest reserve within the coastal forests of Tanzania. The main goal of this study was to determine the influence of uncontrolled anthropogenic activities on tree species diversity and composition within the forest ecosystem. It was revealed that economic activities including logging, charcoaling, and shifting cultivation were the most important disturbing activities affecting ecological functioning and biodiversity integrity of the forest. Further to this, we noted that the values of species diversity, composition, and regeneration potential within the undisturbed forest areas were significantly different from those in heavily disturbed areas. These observations confirm that the ongoing human activities have already caused size quality degradation of useful plants, enhanced species diversification impacts to the forest ecosystem, and possibly negatively affected the livelihoods of the adjacent local communities. Despite these disturbances, Ngumburuni forest reserve still holds important proportions of both endemic and threatened animal and plant species. The study suggests urgent implementation of several conservation measures in order to limit accessibility to the forest resources so as to safeguard the richness and abundance of useful biodiversity stocks in the reserve.

  3. Frost heaving of planted tree seedlings in the boreal forest of northern Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Goulet, France

    2000-07-01

    Frost heaving can be a leading cause of tree seedling mortality in many places in the boreal forest of Northern Sweden. The aim of this investigation was to improve our understanding of frost heaving of planted tree seedlings as related to snow cover, scarification, planting methods and soil types. The thesis is based on a review paper, three field experiments and one laboratory experiment. The experiments focus on different methods to control frost heaving of forest tree seedlings and on a number of factors affecting the extent of frost heaving. The review paper identifies the many aspects of frost heaving of forest tree seedlings and agricultural crops based on an intensive review of the research contributions made during the last century. Even if many investigations have been carried out with the aim to decrease the extent of frost heaving, very little quantitative results are available for tree seedlings. In a field experiment, the choice of planting positions was effective in decreasing frost heaving of planted seedlings following mounding or disc-trenching. Seedlings planted in the depressions were largely affected by frost heaving with a maximal vertical displacement of 5.4 cm while frost heaving did not occur on the top of the mound. On the other hand, the planting time and planting depth had no influence on the extent of frost heaving. In another field experiment the size of the scarified patches was strongly correlated to frost heaving which reached between 7.6 and 11.5 cm in 4 and 8-dm patches compared to between 4.4 and 5.3 in non-scarified soil and in a 1-dm patch. Ground vegetation probably decreases the diurnal temperature variation and the number of freezing-thawing cycles. The duration and magnitude of frost temperatures, the frost hour sum, increased with patch size. The difference between the 8-dm and 1-dm patch increased to 2064 hour-degrees at the end of the winter. In larger patches, the planting depth seemed to be effective in reducing the

  4. Monopolization of resources by ground-nesting ants foraging on trees in Mediterranean forests

    Science.gov (United States)

    Martinez, Jean-Jacques Itzhak

    2015-05-01

    Ant communities are generally structured by territoriality, dominance and resource monopolization, but in Mediterranean hot grassland thermal tolerance plays a more important role. The main purposes of the present research were to investigate the hypothesis that in cooler Mediterranean forests resource monopolization structures the generalist ground-nesting ant community while foraging on trees, and to learn if tree heterogeneity plays any role in this structure. In Mediterranean forests in Israel, I visually recorded and trapped ants on the forest floor and those climbing on trees of five species. Ants of 27 species were detected, while the Chao2 index indicated an asymptotic richness estimation of 31 ± 8.1 species (mean ± S.D.). The numerically dominant species were Crematogaster lorteti and Tapinoma simrothi followed by Tapinoma israele and Crematogaster scutellaris. In more than 80% of the cases, specimens of only one ant species climbed at the same time on any individual tree, and no tree was occupied by more than three species. The C-score of climbing ants was statistically higher than simulated indexes when resources were individual trees, indicating that the ants strongly monopolized each tree. No difference was detected between observed and simulated C-scores when resources were tree species. The observed index of Pianka's niche overlap indicated no species specific interaction between trees and ants. In conclusion, this study confirms that ant mosaic structure may be formed by ground-nesting ants while foraging on trees. Tree species heterogeneity did not have a selective impact on the ants nor a central role in the ant community structure.

  5. The influence of sampling design on tree-ring-based quantification of forest growth.

    Science.gov (United States)

    Nehrbass-Ahles, Christoph; Babst, Flurin; Klesse, Stefan; Nötzli, Magdalena; Bouriaud, Olivier; Neukom, Raphael; Dobbertin, Matthias; Frank, David

    2014-09-01

    Tree-rings offer one of the few possibilities to empirically quantify and reconstruct forest growth dynamics over years to millennia. Contemporaneously with the growing scientific community employing tree-ring parameters, recent research has suggested that commonly applied sampling designs (i.e. how and which trees are selected for dendrochronological sampling) may introduce considerable biases in quantifications of forest responses to environmental change. To date, a systematic assessment of the consequences of sampling design on dendroecological and-climatological conclusions has not yet been performed. Here, we investigate potential biases by sampling a large population of trees and replicating diverse sampling designs. This is achieved by retroactively subsetting the population and specifically testing for biases emerging for climate reconstruction, growth response to climate variability, long-term growth trends, and quantification of forest productivity. We find that commonly applied sampling designs can impart systematic biases of varying magnitude to any type of tree-ring-based investigations, independent of the total number of samples considered. Quantifications of forest growth and productivity are particularly susceptible to biases, whereas growth responses to short-term climate variability are less affected by the choice of sampling design. The world's most frequently applied sampling design, focusing on dominant trees only, can bias absolute growth rates by up to 459% and trends in excess of 200%. Our findings challenge paradigms, where a subset of samples is typically considered to be representative for the entire population. The only two sampling strategies meeting the requirements for all types of investigations are the (i) sampling of all individuals within a fixed area; and (ii) fully randomized selection of trees. This result advertises the consistent implementation of a widely applicable sampling design to simultaneously reduce uncertainties in

  6. Detection and Segmentation of Small Trees in the Forest-Tundra Ecotone Using Airborne Laser Scanning

    Directory of Open Access Journals (Sweden)

    Marius Hauglin

    2016-05-01

    Full Text Available Due to expected climate change and increased focus on forests as a potential carbon sink, it is of interest to map and monitor even marginal forests where trees exist close to their tolerance limits, such as small pioneer trees in the forest-tundra ecotone. Such small trees might indicate tree line migrations and expansion of the forests into treeless areas. Airborne laser scanning (ALS has been suggested and tested as a tool for this purpose and in the present study a novel procedure for identification and segmentation of small trees is proposed. The study was carried out in the Rollag municipality in southeastern Norway, where ALS data and field measurements of individual trees were acquired. The point density of the ALS data was eight points per m2, and the field tree heights ranged from 0.04 to 6.3 m, with a mean of 1.4 m. The proposed method is based on an allometric model relating field-measured tree height to crown diameter, and another model relating field-measured tree height to ALS-derived height. These models are calibrated with local field data. Using these simple models, every positive above-ground height derived from the ALS data can be related to a crown diameter, and by assuming a circular crown shape, this crown diameter can be extended to a crown segment. Applying this model to all ALS echoes with a positive above-ground height value yields an initial map of possible circular crown segments. The final crown segments were then derived by applying a set of simple rules to this initial “map” of segments. The resulting segments were validated by comparison with field-measured crown segments. Overall, 46% of the field-measured trees were successfully detected. The detection rate increased with tree size. For trees with height >3 m the detection rate was 80%. The relatively large detection errors were partly due to the inherent limitations in the ALS data; a substantial fraction of the smaller trees was hit by no or just a few

  7. Uniform standards for genome databases in forest and fruit trees

    Science.gov (United States)

    TreeGenes and tfGDR serve the international forestry and fruit tree genomics research communities, respectively. These databases hold similar sequence data and provide resources for the submission and recovery of this information in order to enable comparative genomics research. Large-scale genotype...

  8. Mapping tree health using airborne laser scans and hyperspectral imagery: a case study for a floodplain eucalypt forest

    Science.gov (United States)

    Shendryk, Iurii; Tulbure, Mirela; Broich, Mark; McGrath, Andrew; Alexandrov, Sergey; Keith, David

    2016-04-01

    Airborne laser scanning (ALS) and hyperspectral imaging (HSI) are two complementary remote sensing technologies that provide comprehensive structural and spectral characteristics of forests over large areas. In this study we developed two algorithms: one for individual tree delineation utilizing ALS and the other utilizing ALS and HSI to characterize health of delineated trees in a structurally complex floodplain eucalypt forest. We conducted experiments in the largest eucalypt, river red gum forest in the world, located in the south-east of Australia that experienced severe dieback over the past six decades. For detection of individual trees from ALS we developed a novel bottom-up approach based on Euclidean distance clustering to detect tree trunks and random walks segmentation to further delineate tree crowns. Overall, our algorithm was able to detect 67% of tree trunks with diameter larger than 13 cm. We assessed the accuracy of tree delineations in terms of crown height and width, with correct delineation of 68% of tree crowns. The increase in ALS point density from ~12 to ~24 points/m2 resulted in tree trunk detection and crown delineation increase of 11% and 13%, respectively. Trees with incorrectly delineated crowns were generally attributed to areas with high tree density along water courses. The accurate delineation of trees allowed us to classify the health of this forest using machine learning and field-measured tree crown dieback and transparency ratios, which were good predictors of tree health in this forest. ALS and HSI derived indices were used as predictor variables to train and test object-oriented random forest classifier. Returned pulse width, intensity and density related ALS indices were the most important predictors in the tree health classifications. At the forest level in terms of tree crown dieback, 77% of trees were classified as healthy, 14% as declining and 9% as dying or dead with 81% mapping accuracy. Similarly, in terms of tree

  9. Large-scale wind disturbances promote tree diversity in a Central Amazon forest.

    Science.gov (United States)

    Marra, Daniel Magnabosco; Chambers, Jeffrey Q; Higuchi, Niro; Trumbore, Susan E; Ribeiro, Gabriel H P M; Dos Santos, Joaquim; Negrón-Juárez, Robinson I; Reu, Björn; Wirth, Christian

    2014-01-01

    Canopy gaps created by wind-throw events, or blowdowns, create a complex mosaic of forest patches varying in disturbance intensity and recovery in the Central Amazon. Using field and remote sensing data, we investigated the short-term (four-year) effects of large (>2000 m(2)) blowdown gaps created during a single storm event in January 2005 near Manaus, Brazil, to study (i) how forest structure and composition vary with disturbance gradients and (ii) whether tree diversity is promoted by niche differentiation related to wind-throw events at the landscape scale. In the forest area affected by the blowdown, tree mortality ranged from 0 to 70%, and was highest on plateaus and slopes. Less impacted areas in the region affected by the blowdown had overlapping characteristics with a nearby unaffected forest in tree density (583 ± 46 trees ha(-1)) (mean ± 99% Confidence Interval) and basal area (26.7 ± 2.4 m(2) ha(-1)). Highly impacted areas had tree density and basal area as low as 120 trees ha(-1) and 14.9 m(2) ha(-1), respectively. In general, these structural measures correlated negatively with an index of tree mortality intensity derived from satellite imagery. Four years after the blowdown event, differences in size-distribution, fraction of resprouters, floristic composition and species diversity still correlated with disturbance measures such as tree mortality and gap size. Our results suggest that the gradients of wind disturbance intensity encompassed in large blowdown gaps (>2000 m(2)) promote tree diversity. Specialists for particular disturbance intensities existed along the entire gradient. The existence of species or genera taking an intermediate position between undisturbed and gap specialists led to a peak of rarefied richness and diversity at intermediate disturbance levels. A diverse set of species differing widely in requirements and recruitment strategies forms the initial post-disturbance cohort, thus lending a high resilience towards wind

  10. Mortality of large trees and lianas following experimental drought in an Amazon forest.

    Science.gov (United States)

    Nepstad, Daniel C; Tohver, Ingrid Marisa; Ray, David; Moutinho, Paulo; Cardinot, Georgina

    2007-09-01

    Severe drought episodes such as those associated with El Niño Southern Oscillation (ENSO) events influence large areas of tropical forest and may become more frequent in the future. One of the most important forest responses to severe drought is tree mortality, which alters forest structure, composition, carbon content, and flammability, and which varies widely. This study tests the hypothesis that tree mortality increases abruptly during drought episodes when plant-available soil water (PAW) declines below a critical minimum threshold. It also examines the effect of tree size, plant life form (palm, liana, tree) and potential canopy position (understory, midcanopy, overstory) on drought-induced plant mortality. A severe, four-year drought episode was simulated by excluding 60% of incoming throughfall during each wet season using plastic panels installed in the understory of a 1-ha forest treatment plot, while a 1-ha control plot received normal rainfall. After 3.2 years, the treatment resulted in a 38% increase in mortality rates across all stems >2 cm dbh. Mortality rates increased 4.5-fold among large trees (>30 cm dbh) and twofold among medium trees (10-30 cm dbh) in response to the treatment, whereas the smallest stems were less responsive. Recruitment rates did not compensate for the elevated mortality of larger-diameter stems in the treatment plot. Overall, lianas proved more susceptible to drought-induced mortality than trees or palms, and potential overstory tree species were more vulnerable than midcanopy and understory species. Large stems contributed to 90% of the pretreatment live aboveground biomass in both plots. Large-tree mortality resulting from the treatment generated 3.4 times more dead biomass than the control plot. The dramatic mortality response suggests significant, adverse impacts on the global carbon cycle if climatic changes follow current trends.

  11. Implications of weather-induced tree mortality on forest carbon dynamics based on remeasured forest inventory plots in the Eastern United States

    Science.gov (United States)

    Di Vittorio, A. V.; Chambers, J. Q.

    2011-12-01

    Forest tree mortality plays an important role in the global carbon budget through so-called 'background' mortality rates and larger, less frequent mortality events. The actual mortality turnover rates of forest biomass are not well understood and can vary with forest type, stand characteristics, and environmental conditions. Different agents, such as fire, insects, disease, and weather, operate on different time scales and have different effects on ecosystems. These differences make it difficult, but important, to determine a continuum of return frequencies for agent-specific mortality, especially when making projections of forest carbon balance. Some regional and global ecosystem models include a separate fire component to account for burn emissions, but events such as hurricanes can also influence carbon dynamics and are not simulated. Thus, the effects of potential changes in hurricane frequency and intensity over time would not be captured by existing models. Furthermore, many regional and global ecosystem models assume a single, non-fire mortality rate for all forests, which likely introduces bias to projections of forest carbon balance. Using the United States Forest Service (USFS) Forest Inventory Analysis DataBase (FIADB) we estimated historic (~1970 - 2010) mortality rates for Eastern United States forests. We present spatially-explicit estimates of total mortality and of agent-specific mortality due to insects, disease, fire, weather, and harvest. These estimates show that uniform mortality rates in ecosystem models might be improved if varied spatially. The relative contribution of weather-induced mortality indicates that it results from smaller, more frequent events in addition to the effects of more extreme events such as hurricanes. Evidence of relatively high, hurricane-induced mortality suggests that the effects of extreme weather events should be explicitly modeled.

  12. Temperature as a potent driver of regional forest drought stress and tree mortality

    Science.gov (United States)

    Williams, A. Park; Allen, Craig D.; Macalady, Alison K.; Griffin, Daniel; Woodhouse, Connie A.; Meko, David M.; Swetnam, Thomas W.; Rauscher, Sara A.; Seager, Richard; Grissino-Mayer, Henri D.; Dean, Jeffrey S.; Cook, Edward R.; Gangodagamage, Chandana; Cai, Michael; McDowell, Nate G.

    2013-01-01

    As the climate changes, drought may reduce tree productivity and survival across many forest ecosystems; however, the relative influence of specific climate parameters on forest decline is poorly understood. We derive a forest drought-stress index (FDSI) for the southwestern United States using a comprehensive tree-ring data set representing AD 1000-2007. The FDSI is approximately equally influenced by the warm-season vapour-pressure deficit (largely controlled by temperature) and cold-season precipitation, together explaining 82% of the FDSI variability. Correspondence between the FDSI and measures of forest productivity, mortality, bark-beetle outbreak and wildfire validate the FDSI as a holistic forest-vigour indicator. If the vapour-pressure deficit continues increasing as projected by climate models, the mean forest drought-stress by the 2050s will exceed that of the most severe droughts in the past 1,000 years. Collectively, the results foreshadow twenty-first-century changes in forest structures and compositions, with transition of forests in the southwestern United States, and perhaps water-limited forests globally, towards distributions unfamiliar to modern civilization.

  13. Functional decay in tree community within tropical fragmented landscapes: Effects of landscape-scale forest cover.

    Science.gov (United States)

    Rocha-Santos, Larissa; Benchimol, Maíra; Mayfield, Margaret M; Faria, Deborah; Pessoa, Michaele S; Talora, Daniela C; Mariano-Neto, Eduardo; Cazetta, Eliana

    2017-01-01

    As tropical rainforests are cleared, forest remnants are increasingly isolated within agricultural landscapes. Understanding how forest loss impacts on species diversity can, therefore, contribute to identifying the minimum amount of habitat required for biodiversity maintenance in human-modified landscapes. Here, we evaluate how the amount of forest cover, at the landscape scale, affects patterns of species richness, abundance, key functional traits and common taxonomic families of adult trees in twenty Brazilian Atlantic rainforest landscapes. We found that as forest cover decreases, both tree community richness and abundance decline, without exhibiting a threshold. At the family-level, species richness and abundance of the Myrtaceae and Sapotaceae were also negatively impacted by the percent forest remaining at the landscape scale. For functional traits, we found a reduction in shade-tolerant, animal-dispersed and small-seeded species following a decrease in the amount of forest retained in landscapes. These results suggest that the amount of forest in a landscape is driving non-random losses in phylogenetic and functional tree diversity in Brazil's remaining Atlantic rainforests. Our study highlights potential restraints on the conservation value of Atlantic rainforest remnants in deforested landscapes in the future.

  14. A brief history of forests and tree planting in Arkansas

    Science.gov (United States)

    Don C. Bragg

    2012-01-01

    Forests are vital to the socioeconomic well-being of Arkansas. According to one recent report, Arkansas is the eighth leading wood-producing State (Smith and others 2009), providing billions of dollars of economic contributions related to the timber industry (University of Arkansas Division of Agriculture 2009). Additional benefits of Arkansas forests include tourism,...

  15. Geostatistical Evaluation of Natural Tree Regeneration of a Disturbed Forest

    Science.gov (United States)

    José Germán Flores Garnica; David Arturo Moreno Gonzalez; Juan de Dios Benavides Solorio

    2006-01-01

    The implementation of silvicultural strategies in a forest management has to guaranty forest sustainability, which is supported by an adequate regeneration. Therefore, quality and intensity of silvicultural practices is based on an accurate knowledge of the current spatial distribution of regeneration. At the same time, this regeneration is determined by the spatial...

  16. Dead and lying trees: essential for life in the forest.

    Science.gov (United States)

    Sally. Duncan

    1999-01-01

    Twenty years after publication of a report on wildlife habitat in managed east-side forests, Pacific Northwest Research Station scientists Evelyn Bull, Catherine Parks, and Torolf Torgersen, are updating that report and discovering that the current direction for providing wildlife habitat on public forest lands does not reflect findings from research since 1979. More...

  17. Deciduous trees are a large and overlooked sink for snowmelt water in the boreal forest

    Science.gov (United States)

    Young, Jessica; Bolton, W. Robert; Bhatt, Uma; Cristobal, Jordi; Thoman, Richard

    2016-01-01

    The terrestrial water cycle contains large uncertainties that impact our understanding of water budgets and climate dynamics. Water storage is a key uncertainty in the boreal water budget, with tree water storage often ignored. The goal of this study is to quantify tree water content during the snowmelt and growing season periods for Alaskan and western Canadian boreal forests. Deciduous trees reached saturation between snowmelt and leaf-out, taking up 21–25% of the available snowmelt water, while coniferous trees removed boreal deciduous tree area is expected to increase by 1–15%, potentially resulting in an additional 0.3–3 billion m3 of snowmelt water removed from the soil per year. This study is the first to show that deciduous tree water uptake of snowmelt water represents a large but overlooked aspect of the water balance in boreal watersheds.

  18. [Wood transformation in dead-standing trees in the forest-tundra of Central Siberia].

    Science.gov (United States)

    Mukhortova, L V; Kirdianov, A V; Myglan, V S; Guggenberger, G

    2009-01-01

    Changes in the composition of wood organic matter in dead-standing spruce and larch trees depending on the period after their death have been studied in the north of Central Siberia. The period after tree death has been estimated by means of cross-dating. The results show that changes in the composition of wood organic matter in 63% of cases are contingent on tree species. Wood decomposition in dead-standing trees is accompanied by an increase in the contents of alkali-soluble organic compounds. Lignin oxidation in larch begins approximately 80 years after tree death, whereas its transformation in spruce begins not earlier than after 100 years. In the forest-tundra of Central Siberia, the rate of wood organic matter transformation in dead-standing trees is one to two orders of magnitude lower than in fallen wood, which accounts for their role as a long-term store of carbon and mineral elements in these ecosystems.

  19. Contributions of a global network of tree diversity experiments to sustainable forest plantations.

    Science.gov (United States)

    Verheyen, Kris; Vanhellemont, Margot; Auge, Harald; Baeten, Lander; Baraloto, Christopher; Barsoum, Nadia; Bilodeau-Gauthier, Simon; Bruelheide, Helge; Castagneyrol, Bastien; Godbold, Douglas; Haase, Josephine; Hector, Andy; Jactel, Hervé; Koricheva, Julia; Loreau, Michel; Mereu, Simone; Messier, Christian; Muys, Bart; Nolet, Philippe; Paquette, Alain; Parker, John; Perring, Mike; Ponette, Quentin; Potvin, Catherine; Reich, Peter; Smith, Andy; Weih, Martin; Scherer-Lorenzen, Michael

    2016-02-01

    The area of forest plantations is increasing worldwide helping to meet timber demand and protect natural forests. However, with global change, monospecific plantations are increasingly vulnerable to abiotic and biotic disturbances. As an adaption measure we need to move to plantations that are more diverse in genotypes, species, and structure, with a design underpinned by science. TreeDivNet, a global network of tree diversity experiments, responds to this need by assessing the advantages and disadvantages of mixed species plantations. The network currently consists of 18 experiments, distributed over 36 sites and five ecoregions. With plantations 1-15 years old, TreeDivNet can already provide relevant data for forest policy and management. In this paper, we highlight some early results on the carbon sequestration and pest resistance potential of more diverse plantations. Finally, suggestions are made for new, innovative experiments in understudied regions to complement the existing network.

  20. Epigenetic regulation of adaptive responses of forest tree species to the environment

    Science.gov (United States)

    Bräutigam, Katharina; Vining, Kelly J; Lafon-Placette, Clément; Fossdal, Carl G; Mirouze, Marie; Marcos, José Gutiérrez; Fluch, Silvia; Fraga, Mario Fernández; Guevara, M Ángeles; Abarca, Dolores; Johnsen, Øystein; Maury, Stéphane; Strauss, Steven H; Campbell, Malcolm M; Rohde, Antje; Díaz-Sala, Carmen; Cervera, María-Teresa

    2013-01-01

    Epigenetic variation is likely to contribute to the phenotypic plasticity and adaptative capacity of plant species, and may be especially important for long-lived organisms with complex life cycles, including forest trees. Diverse environmental stresses and hybridization/polyploidization events can create reversible heritable epigenetic marks that can be transmitted to subsequent generations as a form of molecular “memory”. Epigenetic changes might also contribute to the ability of plants to colonize or persist in variable environments. In this review, we provide an overview of recent data on epigenetic mechanisms involved in developmental processes and responses to environmental cues in plant, with a focus on forest tree species. We consider the possible role of forest tree epigenetics as a new source of adaptive traits in plant breeding, biotechnology, and ecosystem conservation under rapid climate change. PMID:23467802

  1. Seeing the forest for the heterogeneous trees: stand-scale resource distributions emerge from tree-scale structure.

    Science.gov (United States)

    Boyden, Suzanne; Montgomery, Rebecca; Reich, Peter B; Palik, Brian

    2012-07-01

    Forest ecosystem processes depend on local interactions that are modified by the spatial pattern of trees and resources. Effects of resource supplies on processes such as regeneration are increasingly well understood, yet we have few tools to compare resource heterogeneity among forests that differ in structural complexity. We used a neighborhood approach to examine understory light and nutrient availability in a well-replicated and large-scale variable-retention harvesting experiment in a red pine forest in Minnesota, USA. The experiment included an unharvested control and three harvesting treatments with similar tree abundance but different patterns of retention (evenly dispersed as well as aggregated retention achieved by cutting 0.1- or 0.3-ha gaps). We measured light and soil nutrients across all treatments and mapped trees around each sample point to develop an index of neighborhood effects (NI). Field data and simulation modeling were used to test hypotheses that the mean and heterogeneity of resource availability would increase with patchiness because of greater variation in competitive environments. Our treatments dramatically altered the types and abundances of competitive neighborhoods (NI) in each stand and resulted in significantly nonlinear relationships of light, nitrogen and phosphorus availability to NI. Hence, the distribution of neighborhoods in each treatment had a significant impact on resource availability and heterogeneity. In dense control stands, neighborhood variation had little impact on resource availability, whereas in more open stands (retention treatments), it had large effects on light and modest effects on soil nutrients. Our results demonstrate that tree spatial pattern can affect resource availability and heterogeneity in explainable and predictable ways, and that neighborhood models provide a useful tool for scaling heterogeneity from the individual tree to the stand. These insights are needed to anticipate the outcomes of

  2. The amount and quality of dead trees in a mixed beech forest with different management histories in northern Iran

    Directory of Open Access Journals (Sweden)

    KIOMARS SEFIDI

    2014-10-01

    Full Text Available Sefidi K, Etemad V. 2014. The amount and quality of dead trees in a mixed beech forest with different management histories in northern Iran. Biodiversitas 15: 162-168. Dead tree (fallen logs and snags, is regarded as an important ecological component of forests on which many forest dwelling species depend, yet its relation to management history in Caspian forest has gone unreported. The aim of research aim was to compare the amounts of dead tree in the forests with historically different intensities of management, including: forests with the long term implication of management (Patom, the short term implication of management (Namekhaneh which were compared with semi virgin forest (Gorazbon. The number of 215 individual dead trees were recorded and measured at 79 sampling locations. ANOVA revealed volume of dead tree in the form and decay classes significantly differ within sites and dead volume in the semi virgin forest significantly higher than managed sites. Comparing the amount of dead tree in three sites showed that, dead tree volume related with management history and significantly differ in three study sites. Reaching their highest in virgin site and their lowest in the site with the long term implication of management, it was concluded that forest management cause reduction of the amount of dead tree. Forest management history affect the forest's ability to generate dead tree specially in a large size, thus managing this forest according to ecological sustainable principles require a commitment to maintaining stand structure that allow, continued generation of dead tree in a full range of size.

  3. Tree Diversity Limits the Impact of an Invasive Forest Pest.

    Science.gov (United States)

    Guyot, Virginie; Castagneyrol, Bastien; Vialatte, Aude; Deconchat, Marc; Selvi, Federico; Bussotti, Filippo; Jactel, Hervé

    2015-01-01

    The impact of invasive herbivore species may be lower in more diverse plant communities due to mechanisms of associational resistance. According to the "resource concentration hypothesis" the amount and accessibility of host plants is reduced in diverse plant communities, thus limiting the exploitation of resources by consumers. In addition, the "natural enemy hypothesis" suggests that richer plant assemblages provide natural enemies with more complementary resources and habitats, thus promoting top down regulation of herbivores. We tested these two hypotheses by comparing crown damage by the invasive Asian chestnut gall wasp (Dryocosmus kuriphilus) on chestnut trees (Castanea sativa) in pure and mixed stands in Italy. We estimated the defoliation on 70 chestnut trees in 15 mature stands sampled in the same region along a gradient of tree species richness ranging from one species (chestnut monocultures) to four species (mixtures of chestnut and three broadleaved species). Chestnut defoliation was significantly lower in stands with higher tree diversity. Damage on individual chestnut trees decreased with increasing height of neighboring, heterospecific trees. These results suggest that conservation biological control method based on tree species mixtures might help to reduce the impact of the Asian chestnut gall.

  4. Tree Diversity Limits the Impact of an Invasive Forest Pest.

    Directory of Open Access Journals (Sweden)

    Virginie Guyot

    Full Text Available The impact of invasive herbivore species may be lower in more diverse plant communities due to mechanisms of associational resistance. According to the "resource concentration hypothesis" the amount and accessibility of host plants is reduced in diverse plant communities, thus limiting the exploitation of resources by consumers. In addition, the "natural enemy hypothesis" suggests that richer plant assemblages provide natural enemies with more complementary resources and habitats, thus promoting top down regulation of herbivores. We tested these two hypotheses by comparing crown damage by the invasive Asian chestnut gall wasp (Dryocosmus kuriphilus on chestnut trees (Castanea sativa in pure and mixed stands in Italy. We estimated the defoliation on 70 chestnut trees in 15 mature stands sampled in the same region along a gradient of tree species richness ranging from one species (chestnut monocultures to four species (mixtures of chestnut and three broadleaved species. Chestnut defoliation was significantly lower in stands with higher tree diversity. Damage on individual chestnut trees decreased with increasing height of neighboring, heterospecific trees. These results suggest that conservation biological control method based on tree species mixtures might help to reduce the impact of the Asian chestnut gall.

  5. TREES AND REGENERATION IN RUBBER AGROFORESTS AND OTHER FOREST-DERIVED VEGETATION IN JAMBI (SUMATRA, INDONESIA

    Directory of Open Access Journals (Sweden)

    Hesti L. Tata

    2008-06-01

    Full Text Available The rubber  agroforests  (RAF  of Indonesia provide  a dynamic interface  between natural  processes  of forest  regeneration and  human’s management   targeting  the harvesting  of latex  with  minimum investment  of time  and financial  resources.  The composition  and species richness  of higher  plants  across an intensification gradient from forest to monocultures of tree crops have been investigated  in six land use types (viz. secondary forest, RAF, rubber monoculture, oil palm plantation, cassava field and Imperata grassland  in Bungo,  Jambi  Province,  Indonesia.  We emphasize  comparison of four different  strata  (understory, seedling,  sapling  and tree of vegetation  between forest and RAF,  with  specific interest  in plant  dependence  on ectomycorrhiza fungi. Species richness  and species accumulation curves for seedling  and sapling  stages were similar  between forest and RAF,  but in the tree stratum  (trees > 10 cm dbh selective thinning by farmers was evident in a reduction  of species diversity and an increase in the proportion of trees with edible parts. Very few trees dependent on ectomycorrhiza fungi were encountered  in the RAF. However, the relative distribution of early and late successional species as evident from the wood density distribution showed no difference between RAF and forest.

  6. Disparate effects of global-change drivers on mountain conifer forests: warming-induced growth enhancement in young trees vs. CO2 fertilization in old trees from wet sites.

    Science.gov (United States)

    Camarero, J Julio; Gazol, Antonio; Galván, Juan Diego; Sangüesa-Barreda, Gabriel; Gutiérrez, Emilia

    2015-02-01

    Theory predicts that the postindustrial rise in the concentration of CO2 in the atmosphere (c(a)) should enhance tree growth either through a direct fertilization effect or indirectly by improving water use efficiency in dry areas. However, this hypothesis has received little support in cold-limited and subalpine forests where positive growth responses to either rising ca or warmer temperatures are still under debate. In this study, we address this issue by analyzing an extensive dendrochronological network of high-elevation Pinus uncinata forests in Spain (28 sites, 544 trees) encompassing the whole biogeographical extent of the species. We determine if the basal area increment (BAI) trends are linked to climate warming and increased c(a) by focusing on region- and age-dependent responses. The largest improvement in BAI over the past six centuries occurred during the last 150 years affecting young trees and being driven by recent warming. Indeed, most studied regions and age classes presented BAI patterns mainly controlled by temperature trends, while growing-season precipitation was only relevant in the driest sites. Growth enhancement was linked to rising ca in mature (151-300 year-old trees) and old-mature trees (301-450 year-old trees) from the wettest sites only. This finding implies that any potential fertilization effect of elevated c(a) on forest growth is contingent on tree features that vary with ontogeny and it depends on site conditions (for instance water availability). Furthermore, we found widespread growth decline in drought-prone sites probably indicating that the rise in ca did not compensate for the reduction in water availability. Thus, warming-triggered drought stress may become a more important direct driver of growth than rising ca in similar subalpine forests. We argue that broad approaches in biogeographical and temporal terms are required to adequately evaluate any effect of rising c(a) on forest growth.

  7. New flux based dose-response relationships for ozone for European forest tree species.

    Science.gov (United States)

    Büker, P; Feng, Z; Uddling, J; Briolat, A; Alonso, R; Braun, S; Elvira, S; Gerosa, G; Karlsson, P E; Le Thiec, D; Marzuoli, R; Mills, G; Oksanen, E; Wieser, G; Wilkinson, M; Emberson, L D

    2015-11-01

    To derive O3 dose-response relationships (DRR) for five European forest trees species and broadleaf deciduous and needleleaf tree plant functional types (PFTs), phytotoxic O3 doses (PODy) were related to biomass reductions. PODy was calculated using a stomatal flux model with a range of cut-off thresholds (y) indicative of varying detoxification capacities. Linear regression analysis showed that DRR for PFT and individual tree species differed in their robustness. A simplified parameterisation of the flux model was tested and showed that for most non-Mediterranean tree species, this simplified model led to similarly robust DRR as compared to a species- and climate region-specific parameterisation. Experimentally induced soil water stress was not found to substantially reduce PODy, mainly due to the short duration of soil water stress periods. This study validates the stomatal O3 flux concept and represents a step forward in predicting O3 damage to forests in a spatially and temporally varying climate.

  8. Disturbance legacies and climate jointly drive tree growth and mortality in an intensively studied boreal forest.

    Science.gov (United States)

    Bond-Lamberty, Ben; Rocha, Adrian V; Calvin, Katherine; Holmes, Bruce; Wang, Chuankuan; Goulden, Michael L

    2014-01-01

    Most North American forests are at some stage of post-disturbance regrowth, subject to a changing climate, and exhibit growth and mortality patterns that may not be closely coupled to annual environmental conditions. Distinguishing the possibly interacting effects of these processes is necessary to put short-term studies in a longer term context, and particularly important for the carbon-dense, fire-prone boreal forest. The goals of this study were to combine dendrochronological sampling, inventory records, and machine-learning algorithms to understand how tree growth and death have changed at one highly studied site (Northern Old Black Spruce, NOBS) in the central Canadian boreal forest. Over the 1999-2012 inventory period, mean tree diameter increased even as stand density and basal area declined significantly. Tree mortality averaged 1.4 ± 0.6% yr-(1), with most mortality occurring in medium-sized trees; new recruitment was minimal. There have been at least two, and probably three, significant influxes of new trees since stand initiation, but none in recent decades. A combined tree ring chronology constructed from sampling in 2001, 2004, and 2012 showed several periods of extreme growth depression, with increased mortality lagging depressed growth by ~5 years. Higher minimum and maximum air temperatures exerted a negative influence on tree growth, while precipitation and climate moisture index had a positive effect; both current- and previous-year data exerted significant effects. Models based on these variables explained 23-44% of the ring-width variability. We suggest that past climate extremes led to significant mortality still visible in the current forest structure, with decadal dynamics superimposed on slower patterns of fire and succession. These results have significant implications for our understanding of previous work at NOBS, the carbon sequestration capability of old-growth stands in a disturbance-prone landscape, and the sustainable management of

  9. Forest understory trees can be segmented accurately within sufficiently dense airborne laser scanning point clouds.

    Science.gov (United States)

    Hamraz, Hamid; Contreras, Marco A; Zhang, Jun

    2017-07-28

    Airborne laser scanning (LiDAR) point clouds over large forested areas can be processed to segment individual trees and subsequently extract tree-level information. Existing segmentation procedures typically detect more than 90% of overstory trees, yet they barely detect 60% of understory trees because of the occlusion effect of higher canopy layers. Although understory trees provide limited financial value, they are an essential component of ecosystem functioning by offering habitat for numerous wildlife species and influencing stand development. Here we model the occlusion effect in terms of point density. We estimate the fractions of points representing different canopy layers (one overstory and multiple understory) and also pinpoint the required density for reasonable tree segmentation (where accuracy plateaus). We show that at a density of ~170 pt/m² understory trees can likely be segmented as accurately as overstory trees. Given the advancements of LiDAR sensor technology, point clouds will affordably reach this required density. Using modern computational approaches for big data, the denser point clouds can efficiently be processed to ultimately allow accurate remote quantification of forest resources. The methodology can also be adopted for other similar remote sensing or advanced imaging applications such as geological subsurface modelling or biomedical tissue analysis.

  10. Domination of hillslope denudation by tree uprooting in an old-growth forest

    Science.gov (United States)

    Phillips, Jonathan D.; Šamonil, Pavel; Pawlik, Łukasz; Trochta, Jan; Daněk, Pavel

    2017-01-01

    Razula forest preserve in the Carpathian Mountains of the Czech Republic is an unmanaged forest that has not been logged or otherwise anthropically disturbed for at least 83 years, preceded by only infrequent selective logging. We examined this 25 ha area to determine the dominant geomorphological processes on the hillslope. Tree uprooting displaces about 2.9 m3 of soil and regolith per year, representing about 1.5 uprooted trees ha- 1 yr- 1, based on forest inventory records dating back to 1972, and contemporary measurements of displaced soil and pit-mound topography resulting from uprooting. Pits and mounds occupy > 14% of the ground surface. Despite typical slope gradients of 0.05 mm- 1, and up to 0.41, little evidence of mass wasting (e.g., slump or flow scars or deposits, colluvial deposits) was noted in the field, except in association with pit-mound pairs. Small avalanche and ravel features are common on the upslope side of uproot pits. Surface runoff features were rare and poorly connected, but do include stemwash erosion associated with stemflow. No rills or channels were found above the valley bottom area, and only small, localized areas of erosion and forest litter debris indicating overland flow. Where these features occurred, they either disappeared a short distance downslope (indicating infiltration), or indicate flow into tree throw pits. Surface erosion is also inhibited by surface armoring of coarse rock fragments associated with uprooting, as well as by the nearly complete vegetation and litter cover. These results show that the combination of direct and indirect impacts of tree uprooting can dominate slope processes in old-growth, unmanaged forests. The greater observed expression of different hillslope processes in adjacent managed forests (where tree uprooting dynamics are blocked by management activities) suggests that human interventions can change the slope process regime in forest ecosystems.

  11. Impact of Forest Fragmentation on Patterns of Mountain Pine Beetle-Caused Tree Mortality

    Directory of Open Access Journals (Sweden)

    Trisalyn A. Nelson

    2013-04-01

    Full Text Available The current outbreak of mountain pine beetle, Dendroctonus ponderosae Hopkins, has led to extensive tree mortality in British Columbia and the western United States. While the greatest impacts of the outbreak have been in British Columbia, ongoing impacts are expected as the outbreak continues to spread eastward towards Canada’s boreal and eastern pine forests. Successful mitigation of this outbreak is dependent on understanding how the beetle’s host selection behaviour is influenced by the patchwork of tree mortality across the landscape. While several studies have shown that selective mechanisms operate at the individual tree level, less attention has been given to beetles’ preference for variation in spatial forest patterns, namely forest fragmentation, and if such preference changes with changing population conditions. The objective of this study is to explore the influence of fragmentation on the location of mountain pine beetle caused mortality. Using a negative binomial regression model, we tested the significance of a fragmentation measure called the Aggregation Index for predicting beetle-caused tree mortality in the central interior of British Columbia, Canada in 2000 and 2005. The results explain that mountain pine beetle OPEN ACCESS Forests 2013, 4 280 exhibit a density-dependent dynamic behaviour related to forest patterns, with fragmented forests experiencing greater tree mortality when beetle populations are low (2000. Conversely, more contiguous forests are preferred when populations reach epidemic levels (2005. These results reinforce existing findings that bark beetles exhibit a strong host configuration preference at low population levels and that such pressures are relaxed when beetle densities are high.

  12. Challenges for tree officers to enhance the provision of regulating ecosystem services from urban forests.

    Science.gov (United States)

    Davies, Helen J; Doick, Kieron J; Hudson, Malcolm D; Schreckenberg, Kate

    2017-07-01

    Urbanisation and a changing climate are leading to more frequent and severe flood, heat and air pollution episodes in Britain's cities. Interest in nature-based solutions to these urban problems is growing, with urban forests potentially able to provide a range of regulating ecosystem services such as stormwater attenuation, heat amelioration and air purification. The extent to which these benefits are realized is largely dependent on urban forest management objectives, the availability of funding, and the understanding of ecosystem service concepts within local governments, the primary delivery agents of urban forests. This study aims to establish the extent to which British local authorities actively manage their urban forests for regulating ecosystem services, and identify which resources local authorities most need in order to enhance provision of ecosystem services by Britain's urban forests. Interviews were carried out with staff responsible for tree management decisions in fifteen major local authorities from across Britain, selected on the basis of their urban nature and high population density. Local authorities have a reactive approach to urban forest management, driven by human health and safety concerns and complaints about tree disservices. There is relatively little focus on ensuring provision of regulating ecosystem services, despite awareness by tree officers of the key role that urban forests can play in alleviating chronic air pollution, flood risk and urban heat anomalies. However, this is expected to become a greater focus in future provided that existing constraints - lack of understanding of ecosystem services amongst key stakeholders, limited political support, funding constraints - can be overcome. Our findings suggest that the adoption of a proactive urban forest strategy, underpinned by quantified and valued urban forest-based ecosystem services provision data, and innovative private sector funding mechanisms, can facilitate a change to a

  13. Forest Tree Growth as a Bioindicator of Pollution Abatement Systems at the Radford Army Ammunition Plant.

    Science.gov (United States)

    1982-01-14

    U-0Al C 0LIGNAPLTCGICIS P TT IY BLCSUG-EC FS1/ FOREST TREE GROWTH AS A BIOINDICATOR OF POLLUTION ABATEMENT SYS--ETC(I 𔃾- oa2 JAN 62 J M SKELLY. L W...947! FOREST TREE GROWTH AS A BIOINDICATOR OF POLLUTION ABATEMENT SYSTEMS AT THE RADFORD ARMY AMMUNITION PLANT Accession For FINAL REPORT Dr. John M...test potential bioindicator systems. x The study objectives of this research were: i’l) To determine if the pollution levels alone were responsible

  14. Tsunami damping by mangrove forest: a laboratory study using parameterized trees

    Directory of Open Access Journals (Sweden)

    A. Strusińska-Correia

    2013-02-01

    Full Text Available Tsunami attenuation by coastal vegetation was examined under laboratory conditions for mature mangroves Rhizophora sp. The developed novel tree parameterization concept, accounting for both bio-mechanical and structural tree properties, allowed to substitute the complex tree structure by a simplified tree model of identical hydraulic resistance. The most representative parameterized mangrove model was selected among the tested models with different frontal area and root density, based on hydraulic test results. The selected parameterized tree models were arranged in a forest model of different width and further tested systematically under varying incident tsunami conditions (solitary waves and tsunami bores. The damping performance of the forest models under these two flow regimes was compared in terms of wave height and force envelopes, wave transmission coefficient as well as drag and inertia coefficients. Unlike the previous studies, the results indicate a significant contribution of the foreshore topography to solitary wave energy reduction through wave breaking in comparison to that attributed to the forest itself. A similar rate of tsunami transmission (ca. 20% was achieved for both flow conditions (solitary waves and tsunami bores and the widest forest (75 m in prototype investigated. Drag coefficient CD attributed to the solitary waves tends to be constant (CD = 1.5 over the investigated range of the Reynolds number.

  15. Disentangling the effects of shrubs and herbivores on tree regeneration in a dry Chaco forest (Argentina).

    Science.gov (United States)

    Tálamo, Andrés; Barchuk, Alicia H; Garibaldi, Lucas A; Trucco, Carlos E; Cardozo, Silvana; Mohr, Federico

    2015-07-01

    Successful persistence of dry forests depends on tree regeneration, which depends on a balance of complex biotic interactions. In particular, the relative importance and interactive effects of shrubs and herbivores on tree regeneration are unclear. In a manipulative study, we investigated if thornless shrubs have a direct net effect, an indirect positive effect mediated by livestock, and/or an indirect negative effect mediated by small vertebrates on tree regeneration of two key species of Chaco forest (Argentina). In a spatial association study, we also explored the existence of net positive interactions from thorny and thornless shrubs. The number of Schinopsis lorentzii seedlings was highest under artificial shade with native herbivores and livestock excluded. Even excluding livestock, no seedlings were found with natural conditions (native herbivores present with natural shade or direct sunlight) at the end of the experiment. Surprisingly, seedling recruitment was not enhanced under thornless shrubs, because there was a complementary positive effect of shade and interference. Moreover, thornless shrubs had neither positive nor negative effects on regeneration of S. lorentzii. Regeneration of Aspidosperma quebracho-blanco was minimal in all treatments. In agreement with the experiment, spatial distributions of saplings of both tree species were independent of thornless shrubs, but positively associated with thorny shrubs. Our results suggest that in general thornless shrubs may have a negligible effect and thorny shrubs a net positive effect on tree regeneration in dry forests. These findings provide a conceptual framework for testing the impact of biotic interactions on seedling recruitment in other dry forests.

  16. Influence of repeated prescribed fire on tree growth and mortality in Pinus resinosa forests, northern Minnesota

    Science.gov (United States)

    Bottero, Alessandra; D'Amato, Anthony W.; Palik, Brian J.; Kern, Christel C.; Bradford, John B.; Scherer, Sawyer S.

    2017-01-01

    Prescribed fire is widely used for ecological restoration and fuel reduction in fire-dependent ecosystems, most of which are also prone to drought. Despite the importance of drought in fire-adapted forests, little is known about cumulative effects of repeated prescribed burning on tree growth and related response to drought. Using dendrochronological data in red pine (Pinus resinosa Ait.)-dominated forests in northern Minnesota, USA, we examined growth responses before and after understory prescribed fires between 1960 and 1970, to assess whether repeated burning influences growth responses of overstory trees and vulnerability of overstory tree growth to drought. We found no difference in tree-level growth vulnerability to drought, expressed as growth resistance, resilience, and recovery, between areas receiving prescribed fire treatments and untreated forests. Annual mortality rates during the period of active burning were also low (less than 2%) in all treatments. These findings indicate that prescribed fire can be effectively integrated into management plans and climate change adaptation strategies for red pine forest ecosystems without significant short- or long-term negative consequences for growth or mortality rates of overstory trees.

  17. Climate change and forest trees in the Pacific Northwest: guide to vulnerability assessment methodology

    Science.gov (United States)

    W. Devine; C. Aubry; J. Miller; K. Potter; A. Bower

    2012-01-01

    This guide provides a step-by-step description of the methodology used to apply the Forest Tree Genetic Risk Assessment System (ForGRAS; Potter and Crane 2010) to the tree species of the Pacific Northwest in a recent climate change vulnerability assessment (Devine et al. 2012). We describe our modified version of the ForGRAS model, and we review the model’s basic...

  18. Habitat fragmentation, tree diversity, and plant invasion interact to structure forest caterpillar communities.

    Science.gov (United States)

    Stireman, John O; Devlin, Hilary; Doyle, Annie L

    2014-09-01

    Habitat fragmentation and invasive species are two of the most prominent threats to terrestrial ecosystems. Few studies have examined how these factors interact to influence the diversity of natural communities, particularly primary consumers. Here, we examined the effects of forest fragmentation and invasion of exotic honeysuckle (Lonicera maackii, Caprifoliaceae) on the abundance and diversity of the dominant forest herbivores: woody plant-feeding Lepidoptera. We systematically surveyed understory caterpillars along transects in 19 forest fragments over multiple years in southwestern Ohio and evaluated how fragment area, isolation, tree diversity, invasion by honeysuckle and interactions among these factors influence species richness, diversity and abundance. We found strong seasonal variation in caterpillar communities, which responded differently to fragmentation and invasion. Abundance and richness increased with fragment area, but these effects were mitigated by high levels of honeysuckle, tree diversity, landscape forest cover, and large recent changes in area. Honeysuckle infestation was generally associated with decreased caterpillar abundance and diversity, but these effects were strongly dependent on other fragment traits. Effects of honeysuckle on abundance were moderated when fragment area, landscape forest cover and tree diversity were high. In contrast, negative effects of honeysuckle invasion on caterpillar diversity were most pronounced in fragments with high tree diversity and large recent increases in area. Our results illustrate the complex interdependencies of habitat fragmentation, plant diversity and plant invasion in their effects on primary consumers and emphasize the need to consider these processes in concert to understand the consequences of anthropogenic habitat change for biodiversity.

  19. [The role of historical processes in determining tree species richness in the forests of Western Caucasus].

    Science.gov (United States)

    Akatov, V V; Chefranov, S G; Akatova, T V

    2005-01-01

    To estimate the role of history in variation of tree species richness in the forests of the Western Caucasus we analyzed correlation between their local richness (S--the mean number of species per 300 m2) and size of actual species pool (N--the number of species per 1 ha). If compared communities are differently distant from the point of evolutionary equilibrium one should expect a significant variation in correlation between S and N (determined with the greater sensitivity of N than S in respect of historical factors). The lower value of N/S corresponds to less saturated level of historically determined species richness. A mean N/S ratio in Japana temperate broadleaved forests (Masaki et al., 1999) provided the basis for analysis. The present tree species richness of the forest communities in the 1 ha plots seem essentially determined by the historical processes. The mountain forest communities of Western Caucasus are characterized on the average with lower saturation level of the actual tree species pool in comparison with the Japan temperate broad-leaved forest communities. On the Western Caucasus the middle mountain beech and coniferous-broadleaved communities (400-1600 m a.s.l.) are characterized with the higher saturation level of the actual species pool in comparison with communities located lower and higher. These results confirm published historical reconstructions, according to which the middle mountain forest communities in the Western Caucasus are older than forests located higher or lower. Present low mountain forests of the southern (to Black Sea) and the northern macroslopes of the Western Caucasus are characterized with similar saturation level of the actual species pool. These data agree with the assumption of Dolukhanov (1980) that low mountain zone of the southern macroslope was not a refuge for tree species in Pleistocene.

  20. Conversion of natural forest to managed forest plantations decreases tree resistance to prolonged droughts

    Science.gov (United States)

    Jean-Christophe Domec; John S. King; Eric Ward; A. Christopher Oishi; Sari Palmroth; Andrew Radecki; Dave M. Bell; Guofang Miao; Michael Gavazzi; Daniel M. Johnson; Steve G. McNulty; Ge Sun; Asko. Noormets

    2015-01-01

    Throughout the southern US, past forest management practices have replaced large areas of native forests with loblolly pine plantations and have resulted in changes in forest response to extreme weather conditions. However, uncertainty remains about the response of planted versus natural species to drought across the geographical range of these forests. Taking...

  1. Light Competition and Carbon Partitioning-Allocation in an improved Forest Ecosystem Model

    Science.gov (United States)

    Collalti, Alessio; Santini, Monia; Valentini Valentini, Riccardo

    2010-05-01

    In Italy about 100.000 km2 are covered by forests. This surface is the 30% of the whole national land and this shows how the forests are important both for socio-economic and for environmental aspects. Forests changes affect a delicate balance that involve not only vegetation components but also bio-geochemical cycles and global climate. The knowledge of the amount of Carbon sequestered by forests represents a precious information for their sustainable management in the framework of climate changes. Primary studies in terms of model about this important issue, has been done through Forest Ecosystem Model (FEM), well known and validated as 3PG (Landsberg et Waring, 1997; Sands 2004). It is based on light use efficiency approach at the canopy level. The present study started from the original model 3PG, producing an improved version that uses many of explicit formulations of all relevant ecophysiological processes but makes it able to be applied for natural forests. The mutual interaction of forest growth and light conditions causes vertical and horizontal differentiation in the natural forest mosaic. Only ecophysiological parameters which can be either directly measured or estimates with reasonable certainty are used. The model has been written in C language and has been created considering a tri-dimensional cell structure with different vertical layers depending on the forest type that has to be simulated. This 3PG 'improved' version enable to work on multi-layer and multi-species forests type with cell resolution of one hectare for the typical Italian forest species. The multi-layer version is the result of the implementation and development of Lambert-Beer law for the estimation of intercepted, absorbed and transmitted light through different storeys of the forest. It is possible estimates, for each storey, a Par value (Photosynthetic Active Radiation) through Leaf Area Index (LAI), Light Extinction Coefficient and cell Canopy Cover using a "Big Leaf" approach

  2. The importance of Ficus (Moraceae) trees for tropical forest restoration

    DEFF Research Database (Denmark)

    Cottee-Jones, H. Eden W.; Bajpai, Omesh; Chaudhary, Lal B.

    2016-01-01

    , which are considered to be critically important components of tropical ecosystems, may be particularly attractive to seed dispersers in that they produce large and nutritionally rewarding fruit crops. Here, we evaluate the effectiveness of remnant Ficus trees in inducing forest recovery compared...... to other common trees. We studied the sapling communities growing under 207 scattered trees, and collected data on seed rain for 55 trees in a modified landscape in Assam, India. We found that Ficus trees have more sapling species around them (species richness = 140.1 ± 9.9) than non-Ficus trees (79.5 ± 12.......9), and significantly more saplings of shrub and large tree species. Sapling densities were twice as high under Ficus trees (median = 0.06/m2) compared to non-Ficus (0.03/m2), and seed rain densities of non-parent trees were significantly higher under Ficus trees (mean = 12.73 ± 3/m2/wk) than other fruit or non...

  3. Accounting for density reduction and structural loss in standing dead trees: Implications for forest biomass and carbon stock estimates in the United States

    Directory of Open Access Journals (Sweden)

    Domke Grant M

    2011-11-01

    Full Text Available Abstract Background Standing dead trees are one component of forest ecosystem dead wood carbon (C pools, whose national stock is estimated by the U.S. as required by the United Nations Framework Convention on Climate Change. Historically, standing dead tree C has been estimated as a function of live tree growing stock volume in the U.S.'s National Greenhouse Gas Inventory. Initiated in 1998, the USDA Forest Service's Forest Inventory and Analysis program (responsible for compiling the Nation's forest C estimates began consistent nationwide sampling of standing dead trees, which may now supplant previous purely model-based approaches to standing dead biomass and C stock estimation. A substantial hurdle to estimating standing dead tree biomass and C attributes is that traditional estimation procedures are based on merchantability paradigms that may not reflect density reductions or structural loss due to decomposition common in standing dead trees. The goal of this study was to incorporate standing dead tree adjustments into the current estimation procedures and assess how biomass and C stocks change at multiple spatial scales. Results Accounting for decay and structural loss in standing dead trees significantly decreased tree- and plot-level C stock estimates (and subsequent C stocks by decay class and tree component. At a regional scale, incorporating adjustment factors decreased standing dead quaking aspen biomass estimates by almost 50 percent in the Lake States and Douglas-fir estimates by more than 36 percent in the Pacific Northwest. Conclusions Substantial overestimates of standing dead tree biomass and C stocks occur when one does not account for density reductions or structural loss. Forest inventory estimation procedures that are descended from merchantability standards may need to be revised toward a more holistic approach to determining standing dead tree biomass and C attributes (i.e., attributes of tree biomass outside of sawlog

  4. Can a fast­growing early­successional tree (Ochroma pyramidale, Malvaceae) accelerate forest succession?

    NARCIS (Netherlands)

    Vleut, I.; Levy-Tacher, S.I.; Boer, de W.F.; Galindo-Gonzalez, J.; Ramirez-Marcial, N.

    2013-01-01

    Species-specific traits of trees affect ecosystem dynamics, defining forest structure and understorey development. Ochroma pyramidale is a fast-growing tree species, with life-history traits that include low wood density, short-lived large leaves and a narrow open thin crown. We evaluated forest suc

  5. How fast will trees die? A transition matrix model of ash decline in forest stands infested by emerald ash borer

    Science.gov (United States)

    Kathleen S. Knight; Robert P. Long; Joanne Rebbeck; Annemarie Smith; Kamal Gandhi; Daniel A. Herms

    2008-01-01

    We recorded Fraxinus spp. tree health and other forest stand characteristics for 68 plots in 21 EAB-infested forest stands in Michigan and Ohio in 2005 and 2007. Fraxinus spp. were a dominant component of these stands, with more than 900 ash trees (including Fraxinus americana, Fraxinus pennsylvanica, Fraxinus profunda...

  6. Does biodiversity make a difference? Relationships between species richness, evolutionary diversity, and aboveground live tree biomass across US forests

    Science.gov (United States)

    Kevin M. Potter; Christopher W. Woodall

    2014-01-01

    Biodiversity conveys numerous functional benefits to forested ecosystems, including community stability and resilience. In the context of managing forests for climate change mitigation/adaptation, maximizing and/or maintaining aboveground biomass will require understanding the interactions between tree biodiversity, site productivity, and the stocking of live trees....

  7. Light environment and tree strategies in a Bolivian tropical moist forest; a test of the light-partitioning hypothesis

    NARCIS (Netherlands)

    Poorter, L.; Arets, E.J.M.M.

    2003-01-01

    Light partitioning is thought to contribute to the coexistence of rain forest tree species. This study evaluates the three premises underlying the light partitioning hypothesis; 1) there is a gradient in light availability at the forest floor, 2) tree species show a differential distribution with re

  8. Can a fast­growing early­successional tree (Ochroma pyramidale, Malvaceae) accelerate forest succession?

    NARCIS (Netherlands)

    Vleut, I.; Levy-Tacher, S.I.; Boer, de W.F.; Galindo-Gonzalez, J.; Ramirez-Marcial, N.

    2013-01-01

    Species-specific traits of trees affect ecosystem dynamics, defining forest structure and understorey development. Ochroma pyramidale is a fast-growing tree species, with life-history traits that include low wood density, short-lived large leaves and a narrow open thin crown. We evaluated forest suc

  9. Aboveground and belowground effects of single-tree removals in New Zealand rain forest.

    Science.gov (United States)

    Wardle, David A; Wiser, Susan K; Allen, Robert B; Doherty, James E; Bonner, Karen I; Williamson, Wendy M

    2008-05-01

    There has been considerable recent interest in how human-induced species loss affects community and ecosystem properties. These effects are particularly apparent when a commercially valuable species is harvested from an ecosystem, such as occurs through single-tree harvesting or selective logging of desired timber species in natural forests. In New Zealand mixed-species rain forests, single-tree harvesting of the emergent gymnosperm Dacrydium cupressinum, or rimu, has been widespread. This harvesting has been contentious in part because of possible ecological impacts of Dacrydium removal on the remainder of the forest, but many of these effects remain unexplored. We identified an area where an unintended 40-year "removal experiment" had been set up that involved selective extraction of individual Dacrydium trees. We measured aboveground and belowground variables at set distances from both individual live trees and stumps of trees harvested 40 years ago. Live trees had effects both above and below ground by affecting diversity and cover of several components of the vegetation (usually negatively), promoting soil C sequestration, enhancing ratios of soil C:P and N:P, and affecting community structure of soil microflora. These effects extended to 8 m from the tree base and were likely caused by poor-quality litter and humus produced by the trees. Measurements for the stumps revealed strong legacy effects of prior presence of trees on some properties (e.g., cover by understory herbs and ferns, soil C sequestration, soil C:P and N:P ratios), but not others (e.g., soil fungal biomass, soil N concentration). These results suggest that the legacy of prior presence of Dacrydium may remain for several decades or centuries, and certainly well over 40 years. They also demonstrate that, while large Dacrydium individuals (and their removal) may have important effects in their immediate proximity, within a forest, these effects should only be important in localized patches

  10. Regression tree modeling of forest NPP using site conditions and climate variables across eastern USA

    Science.gov (United States)

    Kwon, Y.

    2013-12-01

    As evidence of global warming continue to increase, being able to predict forest response to climate changes, such as expected rise of temperature and precipitation, will be vital for maintaining the sustainability and productivity of forests. To map forest species redistribution by climate change scenario has been successful, however, most species redistribution maps lack mechanistic understanding to explain why trees grow under the novel conditions of chaining climate. Distributional map is only capable of predicting under the equilibrium assumption that the communities would exist following a prolonged period under the new climate. In this context, forest NPP as a surrogate for growth rate, the most important facet that determines stand dynamics, can lead to valid prediction on the transition stage to new vegetation-climate equilibrium as it represents changes in structure of forest reflecting site conditions and climate factors. The objective of this study is to develop forest growth map using regression tree analysis by extracting large-scale non-linear structures from both field-based FIA and remotely sensed MODIS data set. The major issue addressed in this approach is non-linear spatial patterns of forest attributes. Forest inventory data showed complex spatial patterns that reflect environmental states and processes that originate at different spatial scales. At broad scales, non-linear spatial trends in forest attributes and mixture of continuous and discrete types of environmental variables make traditional statistical (multivariate regression) and geostatistical (kriging) models inefficient. It calls into question some traditional underlying assumptions of spatial trends that uncritically accepted in forest data. To solve the controversy surrounding the suitability of forest data, regression tree analysis are performed using Software See5 and Cubist. Four publicly available data sets were obtained: First, field-based Forest Inventory and Analysis (USDA

  11. Seeing the forests for the more than the trees.

    OpenAIRE

    Taylor, D

    1997-01-01

    Assessing the health effects of deforestation is difficult because of the rate at which the world's forests are disappearing. From 1990 to 1995 alone, the world lost a total area of forest cover nearly twice the size of Italy. Deforestation, which is caused by human population growth and encroachment, clearance for agricultural production, and the growing worldwide demand for wood products, has been linked with effects ranging from local changes in climatic and disease patterns to global clim...

  12. Tree species and soil nutrient profiles in old-growth forests of the Oregon Coast Range

    Science.gov (United States)

    Cross, Alison; Perakis, Steven S.

    2011-01-01

    Old-growth forests of the Pacific Northwest provide a unique opportunity to examine tree species – soil relationships in ecosystems that have developed without significant human disturbance. We characterized foliage, forest floor, and mineral soil nutrients associated with four canopy tree species (Douglas-fir (Pseudotsuga menziesii (Mirbel) Franco), western hemlock (Tsuga heterophylla (Raf.) Sarg.), western redcedar (Thuja plicata Donn ex D. Don), and bigleaf maple (Acer macrophyllum Pursh)) in eight old-growth forests of the Oregon Coast Range. The greatest forest floor accumulations of C, N, P, Ca, Mg, and K occurred under Douglas-fir, primarily due to greater forest floor mass. In mineral soil, western hemlock exhibited significantly lower Ca concentration and sum of cations (Ca + Mg + K) than bigleaf maple, with intermediate values for Douglas-fir and western redcedar. Bigleaf maple explained most species-based differences in foliar nutrients, displaying high concentrations of N, P, Ca, Mg, and K. Foliar P and N:P variations largely reflected soil P variation across sites. The four tree species that we examined exhibited a number of individualistic effects on soil nutrient levels that contribute to biogeochemical heterogeneity in these ecosystems. Where fire suppression and long-term succession favor dominance by highly shade-tolerant western hemlock, our results suggest a potential for declines in both soil Ca availability and soil biogeochemical heterogeneity in old-growth forests.

  13. Modern tree species composition reflects ancient Maya "forest gardens" in northwest Belize.

    Science.gov (United States)

    Ross, Nanci J

    2011-01-01

    Ecology and ethnobotany were integrated to assess the impact of ancient Maya tree-dominated home gardens (i.e., "forest gardens"), which contained a diversity of tree species used for daily household needs, on the modern tree species composition of a Mesoamerican forest. Researchers have argued that the ubiquity of these ancient gardens throughout Mesoamerica led to the dominance of species useful to Maya in the contemporary forest, but this pattern may be localized depending on ancient land use. The tested hypothesis was that species composition would be significantly different between areas of dense ancient residential structures (high density) and areas of little or no ancient settlement (low density). Sixty-three 400-m2 plots (31 high density and 32 low density) were censused around the El Pilar Archaeological Reserve in northwestern Belize. Species composition was significantly different, with higher abundances of commonly utilized "forest garden" species still persisting in high-density forest areas despite centuries of abandonment. Subsequent edaphic analyses only explained 5% of the species composition differences. This research provides data on the long-term impacts of Maya forests gardens for use in development of future conservation models. For Mesoamerican conservation programs to work, we must understand the complex ecological and social interactions within an ecosystem that developed in intimate association with humans.

  14. Forest volume-to-biomass models and estimates of mass for live and standing dead trees of U.S. forests.

    Science.gov (United States)

    James E. Smith; Linda S. Heath; Jennifer C. Jenkins

    2003-01-01

    Includes methods and equations for nationally consistent estimates of tree-mass density at the stand level (Mg/ha) as predicted by growing-stock volumes reported by the USDA Forest Service for forests of the conterminous United States. Developed for use in FORCARB, a carbon budget model for U.S. forests, the equations also are useful for converting plot-, stand- and...

  15. Size-specific tree mortality varies with neighbourhood crowding and disturbance in a Montane Nothofagus forest.

    Directory of Open Access Journals (Sweden)

    Jennifer M Hurst

    Full Text Available Tree mortality is a fundamental process governing forest dynamics, but understanding tree mortality patterns is challenging because large, long-term datasets are required. Describing size-specific mortality patterns can be especially difficult, due to few trees in larger size classes. We used permanent plot data from Nothofagus solandri var. cliffortioides (mountain beech forest on the eastern slopes of the Southern Alps, New Zealand, where the fates of trees on 250 plots of 0.04 ha were followed, to examine: (1 patterns of size-specific mortality over three consecutive periods spanning 30 years, each characterised by different disturbance, and (2 the strength and direction of neighbourhood crowding effects on size-specific mortality rates. We found that the size-specific mortality function was U-shaped over the 30-year period as well as within two shorter periods characterised by small-scale pinhole beetle and windthrow disturbance. During a third period, characterised by earthquake disturbance, tree mortality was less size dependent. Small trees (<20 cm in diameter were more likely to die, in all three periods, if surrounded by a high basal area of larger neighbours, suggesting that size-asymmetric competition for light was a major cause of mortality. In contrast, large trees (≥ 20 cm in diameter were more likely to die in the first period if they had few neighbours, indicating that positive crowding effects were sometimes important for survival of large trees. Overall our results suggest that temporal variability in size-specific mortality patterns, and positive interactions between large trees, may sometimes need to be incorporated into models of forest dynamics.

  16. The use of airborne hyperspectral data for tree species classification in a species-rich Central European forest area

    Science.gov (United States)

    Richter, Ronny; Reu, Björn; Wirth, Christian; Doktor, Daniel; Vohland, Michael

    2016-10-01

    The success of remote sensing approaches to assess tree species diversity in a heterogeneously mixed forest stand depends on the availability of both appropriate data and suitable classification algorithms. To separate the high number of in total ten broadleaf tree species in a small structured floodplain forest, the Leipzig Riverside Forest, we introduce a majority based classification approach for Discriminant Analysis based on Partial Least Squares (PLS-DA), which was tested against Random Forest (RF) and Support Vector Machines (SVM). The classifier performance was tested on different sets of airborne hyperspectral image data (AISA DUAL) that were acquired on single dates in August and September and also stacked to a composite product. Shadowed gaps and shadowed crown parts were eliminated via spectral mixture analysis (SMA) prior to the pixel-based classification. Training and validation sets were defined spectrally with the conditioned Latin hypercube method as a stratified random sampling procedure. In the validation, PLS-DA consistently outperformed the RF and SVM approaches on all datasets. The additional use of spectral variable selection (CARS, "competitive adaptive reweighted sampling") combined with PLS-DA further improved classification accuracies. Up to 78.4% overall accuracy was achieved for the stacked dataset. The image recorded in August provided slightly higher accuracies than the September image, regardless of the applied classifier.

  17. Selective logging in tropical forests decreases the robustness of liana–tree interaction networks to the loss of host tree species

    Science.gov (United States)

    Magrach, Ainhoa; Senior, Rebecca A.; Rogers, Andrew; Nurdin, Deddy; Benedick, Suzan; Laurance, William F.; Santamaria, Luis; Edwards, David P.

    2016-01-01

    Selective logging is one of the major drivers of tropical forest degradation, causing important shifts in species composition. Whether such changes modify interactions between species and the networks in which they are embedded remain fundamental questions to assess the ‘health’ and ecosystem functionality of logged forests. We focus on interactions between lianas and their tree hosts within primary and selectively logged forests in the biodiversity hotspot of Malaysian Borneo. We found that lianas were more abundant, had higher species richness, and different species compositions in logged than in primary forests. Logged forests showed heavier liana loads disparately affecting slow-growing tree species, which could exacerbate the loss of timber value and carbon storage already associated with logging. Moreover, simulation scenarios of host tree local species loss indicated that logging might decrease the robustness of liana–tree interaction networks if heavily infested trees (i.e. the most connected ones) were more likely to disappear. This effect is partially mitigated in the short term by the colonization of host trees by a greater diversity of liana species within logged forests, yet this might not compensate for the loss of preferred tree hosts in the long term. As a consequence, species interaction networks may show a lagged response to disturbance, which may trigger sudden collapses in species richness and ecosystem function in response to additional disturbances, representing a new type of ‘extinction debt’. PMID:26936241

  18. Selective logging in tropical forests decreases the robustness of liana-tree interaction networks to the loss of host tree species.

    Science.gov (United States)

    Magrach, Ainhoa; Senior, Rebecca A; Rogers, Andrew; Nurdin, Deddy; Benedick, Suzan; Laurance, William F; Santamaria, Luis; Edwards, David P

    2016-03-16

    Selective logging is one of the major drivers of tropical forest degradation, causing important shifts in species composition. Whether such changes modify interactions between species and the networks in which they are embedded remain fundamental questions to assess the 'health' and ecosystem functionality of logged forests. We focus on interactions between lianas and their tree hosts within primary and selectively logged forests in the biodiversity hotspot of Malaysian Borneo. We found that lianas were more abundant, had higher species richness, and different species compositions in logged than in primary forests. Logged forests showed heavier liana loads disparately affecting slow-growing tree species, which could exacerbate the loss of timber value and carbon storage already associated with logging. Moreover, simulation scenarios of host tree local species loss indicated that logging might decrease the robustness of liana-tree interaction networks if heavily infested trees (i.e. the most connected ones) were more likely to disappear. This effect is partially mitigated in the short term by the colonization of host trees by a greater diversity of liana species within logged forests, yet this might not compensate for the loss of preferred tree hosts in the long term. As a consequence, species interaction networks may show a lagged response to disturbance, which may trigger sudden collapses in species richness and ecosystem function in response to additional disturbances, representing a new type of 'extinction debt'. © 2016 The Author(s).

  19. Ecosystem consequences of tree monodominance for nitrogen cycling in lowland tropical forest.

    Science.gov (United States)

    Brookshire, E N Jack; Thomas, Steven A

    2013-01-01

    Understanding how plant functional traits shape nutrient limitation and cycling on land is a major challenge in ecology. This is especially true for lowland forest ecosystems of the tropics which can be taxonomically and functionally diverse and rich in bioavailable nitrogen (N). In many tropical regions, however, diverse forests occur side-by-side with monodominant forest (one species >60% of canopy); the long-term biogeochemical consequences of tree monodominance are unclear. Particularly uncertain is whether the monodominant plant-soil system modifies nutrient balance at the ecosystem level. Here, we use chemical and stable isotope techniques to examine N cycling in old-growth Mora excelsa and diverse watershed rainforests on the island of Trinidad. Across 26 small watershed forests and 4 years, we show that Mora monodominance reduces bioavailable nitrate in the plant-soil system to exceedingly low levels which, in turn, results in small hydrologic and gaseous N losses at the watershed-level relative to adjacent N-rich diverse forests. Bioavailable N in soils and streams remained low and remarkably stable through time in Mora forests; N levels in diverse forests, on the other hand, showed high sensitivity to seasonal and inter-annual rainfall variation. Total mineral N losses from diverse forests exceeded inputs from atmospheric deposition, consistent with N saturation, while losses from Mora forests did not, suggesting N limitation. Our measures suggest that this difference cannot be explained by environmental factors but instead by low internal production and efficient retention of bioavailable N in the Mora plant-soil system. These results demonstrate ecosystem-level consequences of a tree species on the N cycle opposite to cases where trees enhance ecosystem N supply via N2 fixation and suggest that, over time, Mora monodominance may generate progressive N draw-down in the plant-soil system.

  20. Ecosystem consequences of tree monodominance for nitrogen cycling in lowland tropical forest.

    Directory of Open Access Journals (Sweden)

    E N Jack Brookshire

    Full Text Available Understanding how plant functional traits shape nutrient limitation and cycling on land is a major challenge in ecology. This is especially true for lowland forest ecosystems of the tropics which can be taxonomically and functionally diverse and rich in bioavailable nitrogen (N. In many tropical regions, however, diverse forests occur side-by-side with monodominant forest (one species >60% of canopy; the long-term biogeochemical consequences of tree monodominance are unclear. Particularly uncertain is whether the monodominant plant-soil system modifies nutrient balance at the ecosystem level. Here, we use chemical and stable isotope techniques to examine N cycling in old-growth Mora excelsa and diverse watershed rainforests on the island of Trinidad. Across 26 small watershed forests and 4 years, we show that Mora monodominance reduces bioavailable nitrate in the plant-soil system to exceedingly low levels which, in turn, results in small hydrologic and gaseous N losses at the watershed-level relative to adjacent N-rich diverse forests. Bioavailable N in soils and streams remained low and remarkably stable through time in Mora forests; N levels in diverse forests, on the other hand, showed high sensitivity to seasonal and inter-annual rainfall variation. Total mineral N losses from diverse forests exceeded inputs from atmospheric deposition, consistent with N saturation, while losses from Mora forests did not, suggesting N limitation. Our measures suggest that this difference cannot be explained by environmental factors but instead by low internal production and efficient retention of bioavailable N in the Mora plant-soil system. These results demonstrate ecosystem-level consequences of a tree species on the N cycle opposite to cases where trees enhance ecosystem N supply via N2 fixation and suggest that, over time, Mora monodominance may generate progressive N draw-down in the plant-soil system.

  1. Dynamic reorganization of Amazon forest structure and canopy illumination from tree and branch fall events

    Science.gov (United States)

    Morton, D. C.; Leitold, V.; Longo, M.; dos-Santos, M. N.; Keller, M. M.; Cook, B.

    2016-12-01

    Amazon forests are dynamic ecosystems that store and cycle globally-significant amounts of atmospheric CO2. Forest inventory plots and atmospheric CO2 measurements integrate long-term and large-scale changes in Amazon forests, respectively, but neither approach captures the dynamic reorganization of Amazon forests at fine spatial and temporal scales necessary to refine estimates of the Amazon forest carbon sink. Here, we used multi-temporal airborne lidar data to characterize changes in canopy structure and illumination in the Brazilian Amazon. Annualized rates of canopy turnover varied four-fold across study sites (1.18 to 4.63% yr-1). Branch fall events (4 - 25 m2) were widespread and accounted for one-third of total canopy turnover. Branch and tree fall events created intermediate or low illumination conditions in 80% of canopy turnover areas, regardless of size, as taller neighbors partially shaded areas with canopy height losses. Importantly, canopy losses also redistributed light to adjacent canopy trees, doubling the canopy area influenced by turnover dynamics. Linking multi-temporal lidar measurements with field data on tree mortality and coarse woody debris, our analysis provides a critical link between existing forest inventory data and next generation ecosystem models with full three-dimensional representation of tropical forest structure and canopy dynamics. Current ecosystem models do not capture the influence of forest structure on canopy illumination, dynamism in canopy light availability over short (1-4 yr) time scales, or contributions from branch falls to canopy turnover. These mechanisms alter Amazon forest productivity over time scales relevant for carbon cycle science and climate mitigation efforts.

  2. Quantifying Tree and Soil Carbon Stocks in a Temperate Urban Forest in Northeast China

    Directory of Open Access Journals (Sweden)

    Hailiang Lv

    2016-09-01

    Full Text Available Society has placed greater focus on the ecological service of urban forests; however, more information is required on the variation of carbon (C in trees and soils in different functional forest types, administrative districts, and urban-rural gradients. To address this issue, we measured various tree and soil parameters by sampling 219 plots in the urban forest of the Harbin city region. Averaged tree and soil C stock density (C stocks per unit tree cover for Harbin city were 7.71 (±7.69 kg C·m−2 and 5.48 (±2.86 kg C·m−2, respectively. They were higher than those of other Chinese cities (Shenyang and Changchun, but were much lower than local natural forests. The tree C stock densities varied 2.3- to 3.2-fold among forest types, administrative districts, and ring road-based urban-rural gradients. In comparison, soil organic C (SOC densities varied by much less (1.4–1.5-fold. We found these to be urbanization-dependent processes, which were closely related to the urban-rural gradient data based on ring-roads and settlement history patterns. We estimated that SOC accumulation during the 100-year urbanization of Harbin was very large (5 to 14 thousand tons, accounting for over one quarter of the stored C in trees. Our results provide new insights into the dynamics of above- and below-ground C (especially in soil during the urbanization process, and that a city’s ability to provide C-related ecosystem services increases as it ages. Our findings highlight that urbanization effects should be incorporated into calculations of soil C budgets in regions subject to rapid urban expansion, such as China.

  3. The importance of large-diameter trees to forest structural heterogeneity.

    Directory of Open Access Journals (Sweden)

    James A Lutz

    Full Text Available Large-diameter trees dominate the structure, dynamics and function of many temperate and tropical forests. However, their attendant contributions to forest heterogeneity are rarely addressed. We established the Wind River Forest Dynamics Plot, a 25.6 ha permanent plot within which we tagged and mapped all 30,973 woody stems ≥ 1 cm dbh, all 1,966 snags ≥ 10 cm dbh, and all shrub patches ≥ 2 m(2. Basal area of the 26 woody species was 62.18 m(2/ha, of which 61.60 m(2/ha was trees and 0.58 m(2/ha was tall shrubs. Large-diameter trees (≥ 100 cm dbh comprised 1.5% of stems, 31.8% of basal area, and 17.6% of the heterogeneity of basal area, with basal area dominated by Tsuga heterophylla and Pseudotsuga menziesii. Small-diameter subpopulations of Pseudotsuga menziesii, Tsuga heterophylla and Thuja plicata, as well as all tree species combined, exhibited significant aggregation relative to the null model of complete spatial randomness (CSR up to 9 m (P ≤ 0.001. Patterns of large-diameter trees were either not different from CSR (Tsuga heterophylla, or exhibited slight aggregation (Pseudotsuga menziesii and Thuja plicata. Significant spatial repulsion between large-diameter and small-diameter Tsuga heterophylla suggests that large-diameter Tsuga heterophylla function as organizers of tree demography over decadal timescales through competitive interactions. Comparison among two forest dynamics plots suggests that forest structural diversity responds to intermediate-scale environmental heterogeneity and disturbances, similar to hypotheses about patterns of species richness, and richness- ecosystem function. Large mapped plots with detailed within-plot environmental spatial covariates will be required to test these hypotheses.

  4. The importance of large-diameter trees to forest structural heterogeneity.

    Science.gov (United States)

    Lutz, James A; Larson, Andrew J; Freund, James A; Swanson, Mark E; Bible, Kenneth J

    2013-01-01

    Large-diameter trees dominate the structure, dynamics and function of many temperate and tropical forests. However, their attendant contributions to forest heterogeneity are rarely addressed. We established the Wind River Forest Dynamics Plot, a 25.6 ha permanent plot within which we tagged and mapped all 30,973 woody stems ≥ 1 cm dbh, all 1,966 snags ≥ 10 cm dbh, and all shrub patches ≥ 2 m(2). Basal area of the 26 woody species was 62.18 m(2)/ha, of which 61.60 m(2)/ha was trees and 0.58 m(2)/ha was tall shrubs. Large-diameter trees (≥ 100 cm dbh) comprised 1.5% of stems, 31.8% of basal area, and 17.6% of the heterogeneity of basal area, with basal area dominated by Tsuga heterophylla and Pseudotsuga menziesii. Small-diameter subpopulations of Pseudotsuga menziesii, Tsuga heterophylla and Thuja plicata, as well as all tree species combined, exhibited significant aggregation relative to the null model of complete spatial randomness (CSR) up to 9 m (P ≤ 0.001). Patterns of large-diameter trees were either not different from CSR (Tsuga heterophylla), or exhibited slight aggregation (Pseudotsuga menziesii and Thuja plicata). Significant spatial repulsion between large-diameter and small-diameter Tsuga heterophylla suggests that large-diameter Tsuga heterophylla function as organizers of tree demography over decadal timescales through competitive interactions. Comparison among two forest dynamics plots suggests that forest structural diversity responds to intermediate-scale environmental heterogeneity and disturbances, similar to hypotheses about patterns of species richness, and richness- ecosystem function. Large mapped plots with detailed within-plot environmental spatial covariates will be required to test these hypotheses.

  5. Negative plant-soil feedback predicts tree-species relative abundance in a tropical forest.

    Science.gov (United States)

    Mangan, Scott A; Schnitzer, Stefan A; Herre, Edward A; Mack, Keenan M L; Valencia, Mariana C; Sanchez, Evelyn I; Bever, James D

    2010-08-05

    The accumulation of species-specific enemies around adults is hypothesized to maintain plant diversity by limiting the recruitment of conspecific seedlings relative to heterospecific seedlings. Although previous studies in forested ecosystems have documented patterns consistent with the process of negative feedback, these studies are unable to address which classes of enemies (for example, pathogens, invertebrates, mammals) exhibit species-specific effects strong enough to generate negative feedback, and whether negative feedback at the level of the individual tree is sufficient to influence community-wide forest composition. Here we use fully reciprocal shade-house and field experiments to test whether the performance of conspecific tree seedlings (relative to heterospecific seedlings) is reduced when grown in the presence of enemies associated with adult trees. Both experiments provide strong evidence for negative plant-soil feedback mediated by soil biota. In contrast, above-ground enemies (mammals, foliar herbivores and foliar pathogens) contributed little to negative feedback observed in the field. In both experiments, we found that tree species that showed stronger negative feedback were less common as adults in the forest community, indicating that susceptibility to soil biota may determine species relative abundance in these tropical forests. Finally, our simulation models confirm that the strength of local negative feedback that we measured is sufficient to produce the observed community-wide patterns in tree-species relative abundance. Our findings indicate that plant-soil feedback is an important mechanism that can maintain species diversity and explain patterns of tree-species relative abundance in tropical forests.

  6. Methane emissions and uptake in temperate and tropical forest trees on free-draining soils.

    Science.gov (United States)

    Welch, Bertie; Sayer, Emma; Siegenthaler, Andy; Gauci, Vincent

    2016-04-01

    Forests play an important role in the exchange of radiatively important gases with the atmosphere. Previous studies have shown that in both temperate and tropical wetland forests tree stems are significant sources of methane (CH4), yet little is known about trace greenhouse gas dynamics in free-draining soils that dominate global forested areas. We examined trace gas (CH4 and N2O) fluxes from both soils and tree stems in a lowland tropical forest on free-draining soils in Panama, Central America and from a deciduous woodland in the United Kingdom. The tropical field site was a long-term experimental litter manipulation experiment in the Barro Colorado Nature Monument within the Panama Canal Zone, fluxes were sampled over the dry to wet season transition (March-August) in 2014 and November 2015. Temperate fluxes were sampled at Wytham Woods, Oxfordshire, over 12 months from February 2015 to January 2016. Tree stem samples were collected via syringe from temporary chambers strapped to the trees (as per Siegenthaler et al. (2015)) and the soil fluxes were sampled from permanently installed collars inserted to a 3cm depth. We found that seasonality (precipitation) is a significant driver of changing soil exchange from methane uptake to emission at the Panama sites. Experimental changes to litter quantity only become significant when coupled with seasonal change. Seasonal variability is an important control of the fluxes at out temperate forest site with changes in temperature and soil water content leading to changes in soil and tree stem trace gas fluxes from Wytham Woods. Siegenthaler, A., Welch, B., Pangala, S. R., Peacock, M., and Gauci, V.: Technical Note: Semi-rigid chambers for methane gas flux measurements on tree-stems, Biogeosciences Discuss., 12, 16019-16048, doi:10.5194/bgd-12-16019-2015, 2015.

  7. Tree species control rates of free-living nitrogen fixation in a tropical rain forest.

    Science.gov (United States)

    Reed, Sasha C; Cleveland, Cory C; Townsend, Alan R

    2008-10-01

    Tropical rain forests represent some of the most diverse ecosystems on earth, yet mechanistic links between tree species identity and ecosystem function in these forests remains poorly understood. Here, using free-living nitrogen (N) fixation as a model, we explore the idea that interspecies variation in canopy nutrient concentrations may drive significant local-scale variation in biogeochemical processes. Biological N fixation is the largest "natural" source of newly available N to terrestrial ecosystems, and estimates suggest the highest such inputs occur in tropical ecosystems. While patterns of and controls over N fixation in these systems remain poorly known, the data we do have suggest that chemical differences among tree species canopies could affect free-living N fixation rates. In a diverse lowland rain forest in Costa Rica, we established a series of vertical, canopy-to-soil profiles for six common canopy tree species, and we measured free-living N fixation rates and multiple aspects of chemistry of live canopy leaves, senesced canopy leaves, bulk leaf litter, and soil for eight individuals of each tree species. Free-living N fixation rates varied significantly among tree species for all four components, and independent of species identity, rates of N fixation ranged by orders of magnitude along the vertical profile. Our data suggest that variations in phosphorus (P) concentration drove a significant fraction of the observed species-specific variation in free-living N fixation rates within each layer of the vertical profile. Furthermore, our data suggest significant links between canopy and forest floor nutrient concentrations; canopy P was correlated with bulk leaf litter P below individual tree crowns. Thus, canopy chemistry may affect a suite of ecosystem processes not only within the canopy itself, but at and beneath the forest floor as well.

  8. Biology of forest tree protection: its tasks and perspectives

    Directory of Open Access Journals (Sweden)

    Tucović Aleksandar

    2002-01-01

    Full Text Available The logical conclusion of the short analysis of criteria on natural resource planning and management in situ and ex situ (scale, number, intraspecific variability, ecology of communities, policy, economy, organisation of research, recreation, referring to active biological protection of trees, is as follows: biological resources of trees in situ and ex situ should be large, diverse and geographically and ecologically distributed throughout the country. Their number and scale depend on our potentials. At the beginning of the new century, we have to create an active (functional strategy of the protection of tree biology, especially endemic and relic species. Accordingly, the biologists interested in tree resource protection should already exercise their influence in solving these issues (organisation of active protection, more or less directed reproduction, of economically significant species, etc. The biological protection of trees has an intensive development in the developed countries of the world, while the developing countries are trying to follow the trend, depending on their material sources, culture and attitude of their state government Biological protection of trees is an open, new, and very wide area of further research in already set aside natural resources in situ and ex situ. This is a new field of research, without a long tradition. Along with the scientific value of this approach of the systematic and systemic solution of more or less directed tree reproduction, we also need an economic stimulation. The scope and the complexity of this field of research requires further scientific work of a greater number of teams, some of which should be supported by forestry profession and the society in general The introduction of the model of tree recombination system enables a completely new approach to quality control of the successive generations of trees. This means that all current and planned measures in the model must be clearly

  9. Growth responses of trees and understory plants to nitrogen fertilization in a subtropical forest in China

    Science.gov (United States)

    Tian, Di; Li, Peng; Fang, Wenjing; Xu, Jun; Luo, Yongkai; Yan, Zhengbing; Zhu, Biao; Wang, Jingjing; Xu, Xiaoniu; Fang, Jingyun

    2017-07-01

    Reactive nitrogen (N) increase in the biosphere has been a noteworthy aspect of global change, producing considerable ecological effects on the functioning and dynamics of the terrestrial ecosystems. A number of observational studies have explored responses of plants to experimentally simulated N enrichment in boreal and temperate forests. Here we investigate how the dominant trees and different understory plants respond to experimental N enrichment in a subtropical forest in China. We conducted a 3.4-year N fertilization experiment in an old-aged subtropical evergreen broad-leaved forest in eastern China with three treatment levels applied to nine 20 m × 20 m plots and replicated in three blocks. We divided the plants into trees, saplings, shrubs (including tree seedlings), and ground-cover plants (ferns) according to the growth forms, and then measured the absolute and relative basal area increments of trees and saplings and the aboveground biomass of understory shrubs and ferns. We further grouped individuals of the dominant tree species, Castanopsis eyrei, into three size classes to investigate their respective growth responses to the N fertilization. Our results showed that the plot-averaged absolute and relative growth rates of basal area and aboveground biomass of trees were not affected by N fertilization. Across the individuals of C. eyrei, the small trees with a DBH (diameter at breast height) of 5-10 cm declined by 66.4 and 59.5 %, respectively, in N50 (50 kg N ha-1 yr-1) and N100 fertilized plots (100 kg N ha-1 yr-1), while the growth of median and large trees with a DBH of > 10 cm did not significantly change with the N fertilization. The growth rate of small trees, saplings, and the aboveground biomass of understory shrubs and ground-cover ferns decreased significantly in the N-fertilized plots. Our findings suggested that N might not be a limiting nutrient in this mature subtropical forest, and that the limitation of other nutrients in the forest

  10. Some forest trees for honeydew honey production in Turkey

    Directory of Open Access Journals (Sweden)

    S. Ünal

    2017-08-01

    Full Text Available Honey is an important source of nutrients and energy and an effective remedy against various human diseases. Honeydew honey is produced from honeydew of phloem-feeders that honeybees gather. In this study, we focused on honeydew producers and diversity of host tree species which are involved in honeydew production in Turkey. A total of 24 honeydew producers by host tree species are identified in Turkey. Of these, 13 coniferous trees and 11 deciduous trees. The main honeydew producer in Turkey is a scale insect, Marchalina hellenica Gennadius (Hemiptera: Margarodidae living mainly on pines (Turkish red pine, Aleppo pine, and rarely on stone pine, Anatolian black pine and Scots pine. Honeydew producer insects can be treated as serious pests of conifer and broadleaf trees. The aphids and the scale insects such as Ceroplastes floridensis, Cinara cedri, C. laportei, Eulachnus rileyi, Icerya purchase, Kermes vermilio, Lichtensia viburni and Saissetia oleae are known as pests in several European, Asian and African countries. Despite their potential harm to their host plants, insect species producing honeydew play an important role in honey production in Turkey. Turkish honey production is exported to EU countries and, furthermore beekeeping is an important part of agricultural sector in Turkey.

  11. Whole-tree water transport scales with sapwood capacitance in tropical forest canopy trees.

    Science.gov (United States)

    F.C. Meinzer; S.A. James; G. Goldstein; D. Woodruff

    2003-01-01

    The present study examines the manner in which several whole-tree water transport properties scale with species specific variation in sapwood water storage capacity. The hypothesis that constraints on relationships between sapwood capacitance and other water relations characteristics lead to predictable scaling relationships between intrinsic capacitance and whole-tree...

  12. EU-Forest, a high-resolution tree occurrence dataset for Europe

    Science.gov (United States)

    Mauri, Achille; Strona, Giovanni; San-Miguel-Ayanz, Jesús

    2017-01-01

    We present EU-Forest, a dataset that integrates and extends by almost one order of magnitude the publicly available information on European tree species distribution. The core of our dataset (~96% of the occurrence records) came from an unpublished, large database harmonising forest plot surveys from National Forest Inventories on an INSPIRE-compliant 1 km×1 km grid. These new data can potentially benefit several disciplines, including forestry, biodiversity conservation, palaeoecology, plant ecology, the bioeconomy, and pest management.

  13. EU-Forest, a high-resolution tree occurrence dataset for Europe

    Science.gov (United States)

    Mauri, Achille; Strona, Giovanni; San-Miguel-Ayanz, Jesús

    2017-01-01

    We present EU-Forest, a dataset that integrates and extends by almost one order of magnitude the publicly available information on European tree species distribution. The core of our dataset (~96% of the occurrence records) came from an unpublished, large database harmonising forest plot surveys from National Forest Inventories on an INSPIRE-compliant 1 km×1 km grid. These new data can potentially benefit several disciplines, including forestry, biodiversity conservation, palaeoecology, plant ecology, the bioeconomy, and pest management. PMID:28055003

  14. Impact of mining on tree diversity of the silica mining forest area at Shankargarh, Allahabad, India

    Institute of Scientific and Technical Information of China (English)

    Kumud Dubey; K.P.Dubey

    2011-01-01

    The Shankargarh forest area is rich in silica,a major mineral used in glass industry.Extensive open cast silica mining has severely damaged the forest as well as productivity of the region.An understanding of the impact of mining on the environment partienlarly on vegetation characteristics is a prerequisite for further management of these mining sites,especially in the selection of species for reclamation works.The present paper deals with the study of the tree composition of silica mining area of Shgankargarh forest,at both disturbed and undisturbed sites.Tree vegetation study was conducted at undisturbed and disturbed sites of Shankargarh forests using standard quadrate method.Density,abundance and frequency values of tree species were calculated.Species were categorized into different classes according to their frequency.The importance value index (IVI) for each species was determined.Species diversity,Concentration of dominance,Species richness and Evenness index were calculated for the undisturbed and disturbed sites.The distribution pattern of the species was studied by using Whifford's index.Similarity index between tree composition of disturbed and undisturbed sites was determined by using Jaccard's and Sorenson's index of similarity.Tree species showed a drastic reduction in their numbers in disturbed sites compared to that of the undisturbed sites.The phytosociological indices also illustrated the impact of mining on the tree composition of the area.The present study led to the conclusion that resultant tree vegetation analysis can be used as important tool for predicting the suitability of particular species for revegetating the mined areas.

  15. Will the CO2 fertilization effect in forests be offset by reduced tree longevity?

    Science.gov (United States)

    Bugmann, Harald; Bigler, Christof

    2011-02-01

    Experimental studies suggest that tree growth is stimulated in a greenhouse atmosphere, leading to faster carbon accumulation (i.e., a higher rate of gap filling). However, higher growth may be coupled with reduced longevity, thus leading to faster carbon release (i.e., a higher rate of gap creation). The net effect of these two counteracting processes is not known. We quantify this net effect on aboveground carbon stocks using a novel combination of data sets and modeling. Data on maximum growth rate and maximum longevity of 141 temperate tree species are used to derive a relationship between growth stimulation and changes in longevity. We employ this relationship to modify the respective parameter values of tree species in a forest succession model and study aboveground biomass in a factorial design of growth stimulation × reduced maximum longevity at multiple sites along a climate gradient from the cold to the dry treeline. The results show that (1) any growth stimulation at the tree level leads to a disproportionately small increase of stand biomass due to negative feedback effects, even in the absence of reduced longevity; (2) a reduction of tree longevity tends to offset the growth-related biomass increase; at the most likely value of reduced longevity, the net effect is very close to zero in most multi- and single-species simulations; and (3) when averaging the response across all sites to mimic a "landscape-level" response, the net effect is close to zero. Thus, it is important to consider ecophysiological responses with their linkage to demographic processes in forest trees if one wishes to avoid erroneous inference at the ecosystem level. We conclude that any CO(2) fertilization effect is quite likely to be offset by an associated reduction in the longevity of forest trees, thus strongly reducing the carbon mitigation potential of temperate forests.

  16. Maximizing the Diversity of Ensemble Random Forests for Tree Genera Classification Using High Density LiDAR Data

    Directory of Open Access Journals (Sweden)

    Connie Ko

    2016-08-01

    Full Text Available Recent research into improving the effectiveness of forest inventory management using airborne LiDAR data has focused on developing advanced theories in data analytics. Furthermore, supervised learning as a predictive model for classifying tree genera (and species, where possible has been gaining popularity in order to minimize this labor-intensive task. However, bottlenecks remain that hinder the immediate adoption of supervised learning methods. With supervised classification, training samples are required for learning the parameters that govern the performance of a classifier, yet the selection of training data is often subjective and the quality of such samples is critically important. For LiDAR scanning in forest environments, the quantification of data quality is somewhat abstract, normally referring to some metric related to the completeness of individual tree crowns; however, this is not an issue that has received much attention in the literature. Intuitively the choice of training samples having varying quality will affect classification accuracy. In this paper a Diversity Index (DI is proposed that characterizes the diversity of data quality (Qi among selected training samples required for constructing a classification model of tree genera. The training sample is diversified in terms of data quality as opposed to the number of samples per class. The diversified training sample allows the classifier to better learn the positive and negative instances and; therefore; has a higher classification accuracy in discriminating the “unknown” class samples from the “known” samples. Our algorithm is implemented within the Random Forests base classifiers with six derived geometric features from LiDAR data. The training sample contains three tree genera (pine; poplar; and maple and the validation samples contains four labels (pine; poplar; maple; and “unknown”. Classification accuracy improved from 72.8%; when training samples were

  17. Effects of Stand Origin and Near-Natural Restoration on the Stock and Structural Composition of Fallen Trees in Mid-Subtropical Forests

    OpenAIRE

    Chunsheng Wu; Xiaohua Wei; Qifeng Mo; Qinglin Li; Xiaodong Li; Chunjie Shu; Liangying Liu; Yuanqiu Liu

    2015-01-01

    Fallen trees comprise an important part of forest ecosystems and serve a central role in maintaining the biodiversity and tree regeneration of forests. However, the effects of stand origin and near-natural restoration on the biomass and carbon stock of fallen trees remain unclear. Based on 60 sampling plots of field surveys of mid-subtropical forests in Jiangxi Province, we investigated the stock and structural composition of fallen trees in artificial coniferous forests (Acf), natural conife...

  18. Influence of windthrows and tree species on forest soil plant biomass and carbon stocks

    Science.gov (United States)

    Veselinovic, B.; Hager, H.

    2012-04-01

    plots) frame. It was distinguished between following fractions: fine/coarse roots ( than 2mm), woody debris (dead wood, branches and seeds), living vegetation (ground vegetation and its roots), litter (leaves fresh and decomposed until the stage where the basic form can still be recognized) and humus layer (more than 30% organic matter in the fine fraction). Mineral soil was sampled down to 1m depth. The C stocks for 60 and 100cm depth were evaluated. The data enable a good overview of allocation of organic C within the belowground compartments, and its dynamics over the stand development stages for the relevant tree species of the Northern Alpine Foothills. In addition, these data enable the simulation of the long-term development of the belowground biomass and C-stocks for the three different stand types (pure spruce stands, mixed beech-spruce stands and oak stands). These results enable improvement of the statistical models in relation to site factors or stocking tree species and serve herewith further, as a valuable decision support for the innovative forest management practices and ensure the accomplishment of ecological, social and economical services of forest ecosystems.

  19. Phylogenetic responses of forest trees to global change.

    Directory of Open Access Journals (Sweden)

    John K Senior

    Full Text Available In a rapidly changing biosphere, approaches to understanding the ecology and evolution of forest species will be critical to predict and mitigate the effects of anthropogenic global change on forest ecosystems. Utilizing 26 forest species in a factorial experiment with two levels each of atmospheric CO2 and soil nitrogen, we examined the hypothesis that phylogeny would influence plant performance in response to elevated CO2 and nitrogen fertilization. We found highly idiosyncratic responses at the species level. However, significant, among-genetic lineage responses were present across a molecularly determined phylogeny, indicating that past evolutionary history may have an important role in the response of whole genetic lineages to future global change. These data imply that some genetic lineages will perform well and that others will not, depending upon the environmental context.

  20. Trees, poverty and targets: Forests and the Millennium Development Goals

    Energy Technology Data Exchange (ETDEWEB)

    Myers, James

    2007-04-15

    Where are the forests in the MDGs? When players in the forestry world get together they are good at setting goals. They are a good match for the political leaders that gave us the Millennium Development Goals (MDGs). Since the 1980s there has been a proliferation of international dialogues dealing with forests and, a bit like the football World Cup, every four years or so they come up with a feast of goals. If forestry goals were all we needed to make progress, then sustainable and pro-poor forestry would have long since become a worldwide reality. Of course, implementation still lags well behind aspiration, but at least there is now a considerable body of international knowledge and agreement on how forests can contribute to development.

  1. A System to Derive Optimal Tree Diameter Increment Models from the Eastwide Forest Inventory Data Base (EFIDB)

    Science.gov (United States)

    Don C. Bragg

    2002-01-01

    This article is an introduction to the computer software used by the Potential Relative Increment (PRI) approach to optimal tree diameter growth modeling. These DOS programs extract qualified tree and plot data from the Eastwide Forest Inventory Data Base (EFIDB), calculate relative tree increment, sort for the highest relative increments by diameter class, and...

  2. Determining the annual periodicity of growth rings in seven tree species of a tropical moist forest in Santa Cruz, Bolivia

    NARCIS (Netherlands)

    Lopez, L.; Villalba, R.; Peña-Claros, M.

    2012-01-01

    To determine the annual periodicity of growth rings in seven tree species from a tropical moist forest in Santa Cruz, Bolivia, a fire scar was used as a marker point to verify the annual nature of tree rings. The number of tree rings formed between the 1995 fire scar and the collection of the cross

  3. Tree diversity in sub-montane and lower montane primary rain forests in Central Sulawesi

    NARCIS (Netherlands)

    Culmsee, H.; Pitopang, R.

    2009-01-01

    The tree diversity of sub-montane and lower montane primary forests is studied in plot-based inventories on two sites in Lore Lindu National Park, Central Sulawesi. Out of 166 species in total, 50 % are new records for Sulawesi (19 %) or the Central Sulawesi province (31 %). Species richness

  4. Foliar trait contrasts between African forest and savanna trees: Genetic versus environmental effects

    NARCIS (Netherlands)

    Schrodt, F.; Domingues, T.F.; Feldpausch, T.; Saiz, G.; Quesada, C.A.; Schwarz, K.M.; Veenendaal, E.

    2015-01-01

    Variations in leaf mass per unit area (Ma) and foliar concentrations of N, P, C, K, Mg and Ca were determined for 365 trees growing in 23 plots along a precipitation gradient ranging from 0.29 m a-1 to 1.62 m a-1. The transect extended from just south to the Sahara Desert in Mali to the forest-savan

  5. The pristine rain forest? Remnants of historical human impacts on current tree species composition and diversity

    NARCIS (Netherlands)

    Gemerden, Barend S. van; Olff, Han; Parren, Marc P.E.; Bongers, Frans

    2003-01-01

    Aim: Tropical rain forests are often regarded as pristine and undisturbed by humans. In Central Africa, community-wide disturbances by natural causes are rare and therefore current theory predicts that natural gap phase dynamics structure tree species composition and diversity. However, the dominant

  6. Mitigating old tree mortality in long-unburned, fire-dependent forests: a synthesis

    Science.gov (United States)

    Sharon M. Hood

    2010-01-01

    This report synthesizes the literature and current state of knowledge pertaining to reintroducing fire in stands where it has been excluded for long periods and the impact of these introductory fires on overstory tree injury and mortality. Only forested ecosystems in the United States that are adapted to survive frequent fire are included. Treatment options that...

  7. Constraints on physiological function associated with branch architecture and wood density in tropical forest trees

    Science.gov (United States)

    Frederick C. Meinzer; Paula I. Campanello; Jean-Christophe Domec; M. Genoveva Gatti; Guillermo Goldstein; Randol Villalobos-Vega; David R. Woodruff

    2008-01-01

    This study examined how leaf and stem functional traits related to gas exchange and water balance scale with two potential proxies for tree hydraulic architecture: the leaf area:sapwood area ratio (AL:AS) and wood density (W). We studied the upper crowns of individuals of 15 tropical forest...

  8. Plant-animal interactions in two forest herbs along a tree and herb diversity gradient

    NARCIS (Netherlands)

    Vockenhuber, E.; Kabouw, P.; Tscharntke, T.; Scherber, C.

    2013-01-01

    Background: Plant diversity can influence numerous ecosystem processes, including plant–animal interactions, which, in turn, will affect plant growth and fitness. At present, little is known on how plant–animal interactions in forests respond to gradients in tree and herb-layer diversity. Aims: To q

  9. 57 Sales of Medicinal Forest Tree Barks in Abeokuta, Ogun State ...

    African Journals Online (AJOL)

    Administrator

    African Research Review vol.1(1) ... This study identified 43 species being sold in the market places sampled namely Kuto, ... revealed that the trade of forest tree barks is pre-dominated by women accounting for 93.3% of the total respondent. ... This study was carried out in Abeokuta, the home of the Egbas' and capital of.

  10. The pristine rain forest? Remnants of historical human impacts on current tree species composition and diversity

    NARCIS (Netherlands)

    Gemerden, van B.S.; Olff, H.; Parren, M.P.E.; Bongers, F.J.J.M.

    2003-01-01

    Aim Tropical rain forests are often regarded as pristine and undisturbed by humans. In Central Africa, community-wide disturbances by natural causes are rare and therefore current theory predicts that natural gap phase dynamics structure tree species composition and diversity. However, the dominant

  11. Genomic science provides new insights into the biology of forest trees

    Science.gov (United States)

    Andrew Groover

    2015-01-01

    Forest biology is undergoing a fundamental change fostered by the application of genomic science to longstanding questions surrounding the evolution, adaptive traits, development, and environmental interactions of tree species. Genomic science has made major technical leaps in recent years, most notably with the advent of ‘next generation sequencing’ but translating...

  12. Forest fire in the central Himalaya: climate and recovery of trees

    Science.gov (United States)

    Sharma, Subrat; Rikhari, H. C.

    A forest fire event is influenced by climatic conditions and is supported by accumulation of fuel on forest floor. After forest fire, photosynthetically active solar radiation was reduced due to accumulation of ash and dust particles in atmosphere. Post-fire impacts on Quercus leucotrichophora, Rhododendron arboreum and Lyonia ovalifolia in a broadleaf forest were analysed after a wild fire. Bark depth damage was greatest for L. ovalifolia and least for Q. leucotrichophora. Regeneration of saplings was observed for all the tree species through sprouting. Epicormic recovery was observed for the trees of all the species. Young trees of Q. leucotrichophora (<40 cm circumference at breast height) were susceptible to fire as evident by the lack of sprouting. Under-canopy tree species have a high potential for recovery as evident by greater length and diameter of shoots and numbers of buds and leaves per shoot than canopy species. Leaf area, leaf moisture and specific leaf area were greater in the deciduous species, with few exceptions, than in evergreen species.

  13. Functional traits, drought performance, and the distribution of tree species in tropical forests of Ghana

    NARCIS (Netherlands)

    Amissah, L.

    2014-01-01

      Tropical forests occur along a rainfall gradient where annual amount, the length and intensity of dry season vary and water availability shapes therefore strongly the distribution of tree species. Annual rainfall in West Africa has declined at a rate of 4% per decade, and climate change model

  14. European genetic conservation strategies of forest trees in the context of currently running climate change

    NARCIS (Netherlands)

    Vries, de S.M.G.

    2015-01-01

    The diversity of forests, at the level of species and at the level of genetic diversity within species, is an important resource for Europe. Over the past several decades countries have made efforts to conserve the diversity of tree species and genetic diversity. However, there was no harmonised app

  15. Remote Sensing Protocols for Parameterizing an Individual, Tree-Based, Forest Growth and Yield Model

    Science.gov (United States)

    2014-09-01

    IT TO THE ORIGINATOR . ERDC/CERL TR-14-18 iii Contents Abstract... original pixel size of 0.25m, the following segmenta- tion parameters seemed to generate the best (visually compared to origi- nal imagery...Penelope Morgan. 2006. “Regression Modeling and Mapping of Coniferous Forest Basal Area and Tree Density from Discrete- Return LIDAR and

  16. Tree species traits cause divergence in soil acidification during four decades of postagricultural forest development

    DEFF Research Database (Denmark)

    Schrijver, An de; Frenne, Pieter de; Staelens, Jeroen;

    2012-01-01

    retards leaf litter decomposition and, consequently, results in forest-floor build-up and soil acidification. Also nutrient uptake and N2 fixation are causing soil acidification, but were found to be less important. Our results highlight the fact that tree species-specific traits significantly influence...

  17. Towards the harmonization between National Forest Inventory and Forest Condition Monitoring. Consistency of plot allocation and effect of tree selection methods on sample statistics in Italy.

    Science.gov (United States)

    Gasparini, Patrizia; Di Cosmo, Lucio; Cenni, Enrico; Pompei, Enrico; Ferretti, Marco

    2013-07-01

    In the frame of a process aiming at harmonizing National Forest Inventory (NFI) and ICP Forests Level I Forest Condition Monitoring (FCM) in Italy, we investigated (a) the long-term consistency between FCM sample points (a subsample of the first NFI, 1985, NFI_1) and recent forest area estimates (after the second NFI, 2005, NFI_2) and (b) the effect of tree selection method (tree-based or plot-based) on sample composition and defoliation statistics. The two investigations were carried out on 261 and 252 FCM sites, respectively. Results show that some individual forest categories (larch and stone pine, Norway spruce, other coniferous, beech, temperate oaks and cork oak forests) are over-represented and others (hornbeam and hophornbeam, other deciduous broadleaved and holm oak forests) are under-represented in the FCM sample. This is probably due to a change in forest cover, which has increased by 1,559,200 ha from 1985 to 2005. In case of shift from a tree-based to a plot-based selection method, 3,130 (46.7%) of the original 6,703 sample trees will be abandoned, and 1,473 new trees will be selected. The balance between exclusion of former sample trees and inclusion of new ones will be particularly unfavourable for conifers (with only 16.4% of excluded trees replaced by new ones) and less for deciduous broadleaves (with 63.5% of excluded trees replaced). The total number of tree species surveyed will not be impacted, while the number of trees per species will, and the resulting (plot-based) sample composition will have a much larger frequency of deciduous broadleaved trees. The newly selected trees have-in general-smaller diameter at breast height (DBH) and defoliation scores. Given the larger rate of turnover, the deciduous broadleaved part of the sample will be more impacted. Our results suggest that both a revision of FCM network to account for forest area change and a plot-based approach to permit statistical inference and avoid bias in the tree sample

  18. Improving and Conserving Sahelian Fruits Trees

    DEFF Research Database (Denmark)

    Ouedraogo, Moussa

    traits and careful choice has to be made when selecting the provenances for seed orchards. The PhD project leads to the initiation of a programme for conservation and use of genetic resources of P. biglobosa in Burkina Faso through germplasm collection and breeding seed orchard establishment...... is among the top five priority indigenous tree species in the Sahel and one of the priority research species in Burkina Faso. Several studies have been made since the 1980’s. The present thesis is about breeding and conservation of this species and addresses four specific aspects: •Performance...... of provenances in field trials; •Genetic structure of P. biglobosa in its natural range in West and Central Africa based on leaf morphology and molecular markers; •Variation between provenances in phenology; •An approach for utilisation of P. biglobosa genetic resources and a conservation strategy in Burkina...

  19. Improving and Conserving Sahelian Fruits Trees

    DEFF Research Database (Denmark)

    Ouedraogo, Moussa

    of provenances in field trials; •Genetic structure of P. biglobosa in its natural range in West and Central Africa based on leaf morphology and molecular markers; •Variation between provenances in phenology; •An approach for utilisation of P. biglobosa genetic resources and a conservation strategy in Burkina...... its distribution area in West and Central Africa, based on variation in morphological traits and chloroplast haplotypes. The study on variation in phenology between provenances confirmed that significant genetic variation exists among the provenances of P. biglobosa in flushing, flowering and fruiting...... the availability of important resources for rural people, reduced abundance of target species can lead to loss of genetic variation within species, which again can reduce the capacity of trees and shrubs to adapt to environmental change and reduce the gain farmers can realize from selection. Parkia biglobosa...

  20. Leaf traits are related to functional interactions between trees in mixed forests. Silviculture of mixed forests in Europe.

    OpenAIRE

    Bussotti F., Pollastrini M.

    2015-01-01

    Mixed forests are assumed to be more productive and resilient to environmental stress than monocultures, thank to reciprocal beneficial interactions and the ability of different species to exploit more efficiently the resources of the ecosystem. The effects of such interactions on the physiology of singular trees can be assessed by analyzing the overall crown conditions and key foliar features. This contribute reports some experiences carried out within the project FunDivEurope (Functional Si...

  1. Macromycetes diversity of pine-tree plantings on a post-fire forest site in Notecka Forest (NW Poland

    Directory of Open Access Journals (Sweden)

    Stefan Friedrich

    2014-08-01

    Full Text Available The article presents the results of a study on fungi in pine-tree plantings after the last great fire in Notecka Forest. The occurrence of 134 species of fungi and 3 species of myxomycetes was recorded in 25 permanent study areas investigated between 1993 and 1998. The particpalion of bio-ecological of macromycetes was described in the context of vegetation changes in the years following the fire.

  2. Evaluation of Whole Tree Growth Increment Derived from Tree-Ring Series for Use in Assessments of Changes in Forest Productivity across Various Spatial Scales

    OpenAIRE

    Metsaranta, Juha M.; Bhatti, Jagtar S.

    2016-01-01

    The inherent predictability of inter-annual variation in forest productivity remains unknown. Available field-based data sources for understanding this variability differ in their spatial resolution, temporal resolution, and typical units of measure. Nearly all other tree and forest characteristics are in practice derived from measurements of diameter at breast height (DBH). Therefore, diameter increment reconstructed annually from tree-ring data can be used to estimate annual growth incremen...

  3. Generating Decision Trees Method Based on Improved ID3 Algorithm

    Institute of Scientific and Technical Information of China (English)

    Yang Ming; Guo Shuxu1; Wang Jun3

    2011-01-01

    The ID3 algorithm is a classical learning algorithm of decision tree in data mining.The algorithm trends to choosing the attribute with more values,affect the efficiency of classification and prediction for building a decision tree.This article proposes a new approach based on an improved ID3 algorithm.The new algorithm introduces the importance factor λ when calculating the information entropy.It can strengthen the label of important attributes of a tree and reduce the label of non-important attributes.The algorithm overcomes the flaw of the traditional ID3 algorithm which tends to choose the attributes with more values,and also improves the efficiency and flexibility in the process of generating decision trees.

  4. Evaluating carbon fluxes of global forest ecosystems by using an individual tree-based model FORCCHN.

    Science.gov (United States)

    Ma, Jianyong; Shugart, Herman H; Yan, Xiaodong; Cao, Cougui; Wu, Shuang; Fang, Jing

    2017-02-14

    The carbon budget of forest ecosystems, an important component of the terrestrial carbon cycle, needs to be accurately quantified and predicted by ecological models. As a preamble to apply the model to estimate global carbon uptake by forest ecosystems, we used the CO2 flux measurements from 37 forest eddy-covariance sites to examine the individual tree-based FORCCHN model's performance globally. In these initial tests, the FORCCHN model simulated gross primary production (GPP), ecosystem respiration (ER) and net ecosystem production (NEP) with correlations of 0.72, 0.70 and 0.53, respectively, across all forest biomes. The model underestimated GPP and slightly overestimated ER across most of the eddy-covariance sites. An underestimation of NEP arose primarily from the lower GPP estimates. Model performance was better in capturing both the temporal changes and magnitude of carbon fluxes in deciduous broadleaf forest than in evergreen broadleaf forest, and it performed less well for sites in Mediterranean climate. We then applied the model to estimate the carbon fluxes of forest ecosystems on global scale over 1982-2011. This application of FORCCHN gave a total GPP of 59.41±5.67 and an ER of 57.21±5.32PgCyr(-1) for global forest ecosystems during 1982-2011. The forest ecosystems over this same period contributed a large carbon storage, with total NEP being 2.20±0.64PgCyr(-1). These values are comparable to and reinforce estimates reported in other studies. This analysis highlights individual tree-based model FORCCHN could be used to evaluate carbon fluxes of forest ecosystems on global scale.

  5. How tree species-specific drought responses influence the carbon-water interaction in temperate forests

    Science.gov (United States)

    Wolf, Annett; Leuzinger, Sebastian; Bugmann, Harald

    2010-05-01

    Climate-change-induced differences in soil moisture conditions will influence the carbon uptake of tree species and hence the carbon budget of ecosystems. Experimental data showed that in a mature deciduous forest tree transpiration during a prolonged drought was reduced in a species-specific manner (Leuzinger et al. 2005). We implemented such a differential drought responses using the ecosystem model LPJ-GUESS. We simulated forest ecosystems in central Europe, using mixed forests and single species stands. The model showed that one result of the species specific drought response are differences in tree species diversity in the long run. At the intra-annual scale, we showed that a reduction in ecosystem evapotranspiration at an early stage during the drought period resulted in lower water stress later on in the drought. A consequence was that drought sensitive tree species could maintain a positive carbon balance during longer drought periods. As drought periods are likely to become more frequent and/or longer in many parts of the world, projections of ecosystem responses will be sensitive to the processes investigated here, and therefore ecosystem models should be upgraded to take them into account. Leuzinger et al. (2005) Tree physiology 25: 641-650.

  6. Multiyear drought-induced morbidity preceding tree death in southeastern U.S. forests.

    Science.gov (United States)

    Berdanier, Aaron B; Clark, James S

    2016-01-01

    Recent forest diebacks, combined with threats of future drought, focus attention on the extent to which tree death is caused by catastrophic events as opposed to chronic declines in health that accumulate over years. While recent attention has focused on large-scale diebacks, there is concern that increasing drought stress and chronic morbidity may have pervasive impacts on forest composition in many regions. Here we use long-term, whole-stand inventory data from southeastern U.S. forests to show that trees exposed to drought experience multiyear declines in growth prior to mortality. Following a severe, multiyear drought, 72% of trees that did not recover their pre-drought growth rates died within 10 yr. This pattern was mediated by local moisture availability. As an index of morbidity prior to death, we calculated the difference in cumulative growth after drought relative to surviving conspecifics. The strength of drought-induced morbidity varied among species and was correlated with drought tolerance. These findings support the ability of trees to avoid death during drought events but indicate shifts that could occur over decades. Tree mortality following drought is predictable in these ecosystems based on growth declines, highlighting an opportunity to address multiyear drought-induced morbidity in models, experiments, and management decisions.

  7. Estimating Wood Volume for Pinus Brutia Trees in Forest Stands from QUICKBIRD-2 Imagery

    Science.gov (United States)

    Patias, Petros; Stournara, Panagiota

    2016-06-01

    Knowledge of forest parameters, such as wood volume, is required for a sustainable forest management. Collecting such information in the field is laborious and even not feasible in inaccessible areas. In this study, tree wood volume is estimated utilizing remote sensing techniques, which can facilitate the extraction of relevant information. The study area is the University Forest of Taxiarchis, which is located in central Chalkidiki, Northern Greece and covers an area of 58km2. The tree species under study is the conifer evergreen species P. brutia (Calabrian pine). Three plot surfaces of 10m radius were used. VHR Quickbird-2 images are used in combination with an allometric relationship connecting the Tree Crown with the Diameter at breast height (Dbh), and a volume table developed for Greece. The overall methodology is based on individual tree crown delineation, based on (a) the marker-controlled watershed segmentation approach and (b) the GEographic Object-Based Image Analysis approach. The aim of the first approach is to extract separate segments each of them including a single tree and eventual lower vegetation, shadows, etc. The aim of the second approach is to detect and remove the "noisy" background. In the application of the first approach, the Blue, Green, Red, Infrared and PCA-1 bands are tested separately. In the application of the second approach, NDVI and image brightness thresholds are utilized. The achieved results are evaluated against field plot data. Their observed difference are between -5% to +10%.

  8. Modeling transcriptional networks regulating secondary growth and wood formation in forest trees.

    Science.gov (United States)

    Liu, Lijun; Filkov, Vladimir; Groover, Andrew

    2014-06-01

    The complex interactions among the genes that underlie a biological process can be modeled and presented as a transcriptional network, in which genes (nodes) and their interactions (edges) are shown in a graphical form similar to a wiring diagram. A large number of genes have been identified that are expressed during the radial woody growth of tree stems (secondary growth), but a comprehensive understanding of how these genes interact to influence woody growth is currently lacking. Modeling transcriptional networks has recently been made tractable by next-generation sequencing-based technologies that can comprehensively catalog gene expression and transcription factor-binding genome-wide, but has not yet been extensively applied to undomesticated tree species or woody growth. Here we discuss basic features of transcriptional networks, approaches for modeling biological networks, and examples of biological network models developed for forest trees to date. We discuss how transcriptional network research is being developed in the model forest tree genus, Populus, and how this research area can be further developed and applied. Transcriptional network models for forest tree secondary growth and wood formation could ultimately provide new predictive models to accelerate hypothesis-driven research and develop new breeding applications.

  9. Above ground biomass and tree species richness estimation with airborne lidar in tropical Ghana forests

    Science.gov (United States)

    Vaglio Laurin, Gaia; Puletti, Nicola; Chen, Qi; Corona, Piermaria; Papale, Dario; Valentini, Riccardo

    2016-10-01

    Estimates of forest aboveground biomass are fundamental for carbon monitoring and accounting; delivering information at very high spatial resolution is especially valuable for local management, conservation and selective logging purposes. In tropical areas, hosting large biomass and biodiversity resources which are often threatened by unsustainable anthropogenic pressures, frequent forest resources monitoring is needed. Lidar is a powerful tool to estimate aboveground biomass at fine resolution; however its application in tropical forests has been limited, with high variability in the accuracy of results. Lidar pulses scan the forest vertical profile, and can provide structure information which is also linked to biodiversity. In the last decade the remote sensing of biodiversity has received great attention, but few studies focused on the use of lidar for assessing tree species richness in tropical forests. This research aims at estimating aboveground biomass and tree species richness using discrete return airborne lidar in Ghana forests. We tested an advanced statistical technique, Multivariate Adaptive Regression Splines (MARS), which does not require assumptions on data distribution or on the relationships between variables, being suitable for studying ecological variables. We compared the MARS regression results with those obtained by multilinear regression and found that both algorithms were effective, but MARS provided higher accuracy either for biomass (R2 = 0.72) and species richness (R2 = 0.64). We also noted strong correlation between biodiversity and biomass field values. Even if the forest areas under analysis are limited in extent and represent peculiar ecosystems, the preliminary indications produced by our study suggest that instrument such as lidar, specifically useful for pinpointing forest structure, can also be exploited as a support for tree species richness assessment.

  10. PATTERNS OF TREE DOMINANCE IN CONIFEROUS RIPARIAN FORESTS

    Science.gov (United States)

    This research quantified patterns of riparian tree dominance in western Oregon, USA and then compared the observed patterns with the expected patterns defined from the literature. Research was conducted at 110 riparian sites located on private and public lands. The field sites we...

  11. Calcium mineralization in the forest floor and surface soil beneath different tree species in the northeastern US

    NARCIS (Netherlands)

    Dijkstra, F.A.

    2003-01-01

    Calcium (Ca) is an important element for neutralizing soil acidity in temperate forests. The immediate availability of Ca in forested acid soils is largely dependent on mineralization of organic Ca, which may differ significantly among tree species. I estimated net Ca mineralization in the forest

  12.  A global evaluation of forest interior area dynamics using tree cover data from 2000 to 2012

    Science.gov (United States)

    Kurt Riitters; James Wickham; Jennifer K. Costanza; Peter Vogt

    2016-01-01

    Context Published maps of global tree cover derived from Landsat data have indicated substantial changes in forest area from 2000 to 2012. The changes can be arranged in different patterns, with different consequences for forest fragmentation. Thus, the changes in forest area do not necessarily equate to changes in...

  13. Predicting live and dead tree basal area of bark beetle affected forests from discrete-return lidar

    Science.gov (United States)

    Benjamin C. Bright; Andrew T. Hudak; Robert McGaughey; Hans-Erik Andersen; Jose Negron

    2013-01-01

    Bark beetle outbreaks have killed large numbers of trees across North America in recent years. Lidar remote sensing can be used to effectively estimate forest biomass, but prediction of both live and dead standing biomass in beetle-affected forests using lidar alone has not been demonstrated. We developed Random Forest (RF) models predicting total, live, dead, and...

  14. Pre-impact forest composition and ongoing tree mortality associated with sudden oak death in the Big Sur region; California

    Science.gov (United States)

    F.W. Davis; M.I. Borchert,; R.K. Meentemeyer; A. Flint; D.M. Rizzo

    2010-01-01

    Mixed-evergreen forests of central coastal California are being severely impacted by the recently introduced plant pathogen, Phytophthora ramorum. We collected forest plot data using a multi-scale sampling design to characterize pre-infestation forest composition and ongoing tree mortality along environmental and time-since-fire gradients. Vegetation pattern was...

  15. The upper mountain forest and tree response to climate change in south Siberian Mountains

    Science.gov (United States)

    Kharuk, V.; Ranson, J.

    2010-12-01

    The aim of this study is to evaluate topographic features of high elevation mountain environments govern spatial distribution and climate-driven dynamics of the forests growing there. The study area included upper mountain forest stands formed by larch (Larix sibirica Ledeb) and Siberian pine(Pinus sibirica Du Tour) (elevation range 1800-2600 m) in the mountains of southern Siberia. We used archive maps, satellite and on-ground data from 1960-2002. Data were normalized to avoid bias caused by uneven distribution of elevation, and slope steepness within the analyzed area. Spatial distribution of forest stands were analyzed with respect to topography based on a DEM. The primary results show that mountain forest spatial patterns are anisotropic with respect to topography. At a given elevation, the majority of forests occupied slopes with greater than mean slope values. As the elevation increased forests shifted to steeper slopes. The forest azimuth distribution orientation changed clockwise with elevation increase (total shift was 120 deg) indicating a combined effect of wind and water stress on the observed forest patterns. Warming caused changes in the forest distribution patterns during the last four decades. The area of closed forests increased 1.5 times, which was attributed to increased stand density and tree migration. The migration rate was 1.5 ± 0.9 m yr^-1 and caused a mean forest line shift of 63 ± 37m. Along with upward migration, downward tree migration onto hill slopes was observed. Changes in tree morphology were also noted as wide-spread transformation of the prostrate forms of Siberian pine and larch into erect forms. An analysis of the radial growth increments showed that the widespread vertical transformation of krummholz began in the mid -1980s. Radial and apical growth increments correlated with increase in air temperature (summer and “cold period”) and CO2 concentration. Regeneration responded to temperature increase of 1 deg C by migration

  16. Biomass Equations for Tropical Forest Tree Species in Mozambique

    Directory of Open Access Journals (Sweden)

    Rosta Mate

    2014-03-01

    Full Text Available Chanfuta (Afzelia quanzensis Welw., Jambire (Millettia stuhlmannii Taub. and Umbila (Pterocarpus angolensis D.C. are, among others, three of the main tropical tree species producing commercial timber in Mozambique. The present study employed destructive biomass estimation methods at three localities in Mozambique (Inhaminga, Mavume, and Tome to acquire data on the mean diameter at breast height (DBH, and height of trees sampled in 21 stands each of Chanfuta and Jambire, and 15 stands of Umbila. Mean diameter at breast height (DBH (ob for Chanfuta, Jambire, and Umbila was: 33.8 ± 12.6 (range 13.5–61.1, 33.4 ± 7.4 (range 21.0–52.2, and 27.0 ± 9.5 (range 14.0–46.5 cm. The mean total values for biomass (kg of trees of Chanfuta, Jambire, and Umbila trees were 864, 1016, and 321 respectively. The mean percentages of total tree biomass as stem, branch and leaf respectively were 54, 43, and 3 for Chanfuta; 77, 22, and 1 for Jambire; and 46, 51, and 3 for Umbila. The best fit species-specific equation for estimating total above ground biomass (AGB was the power equation with only DBH considered as independent variable yielding coefficient of determination (R2 ranging from 0.89 to 0.97. At stand level, a total mean of 27.3 tons ha−1 biomass was determined of which studied species represented 94.6%. At plot level, total mean biomass for Jambire was 11.8 tons ha−1, Chanfuta and Umbila 9.9 and 4.1 tons ha−1 respectively. The developed power equation fitted total and stem biomass data well and could be used for biomass prediction of the studied species in Mozambique.

  17. Vertical Distribution of Termites on Trees in Two Forest Landscapes in Taiwan.

    Science.gov (United States)

    Li, Hou-Feng; Yeh, Hsin-Ting; Chiu, Chun-I; Kuo, Chih-Yu; Tsai, Ming-Jer

    2016-03-25

    Termites are a key functional group in the forest ecosystem, but they damage trees. To investigate the termite infestation pattern on the whole tree, we cut 108 blackboard trees,Alstonia scholaris(L.) R. Br., and 50 Japanese cedars,Cryptomeria japonica (L. f.) D. Don, into sections. The bark surface and cross sections of the tree trunk were examined along the axes. A high percentage of blackboard trees (92.6%) was infested by fungus-growing termites,Odontotermes formosanus(Shiraki), but damage was limited to the bark surface at a 2-m height. The infestation rate of dampwood termites,Neotermes koshunensis(Shiraki), was only 4.6% (5/108), and all infestations were associated with trunk wounds.N. koshunensiswas found at significantly higher portion of a tree thanO. formosanus Among 50 Japanese cedars, 20 living trees were not infested by any termites, but 26 of the 30 dead trees were infested by subterranean termites,Reticulitermes flaviceps(Oshima), which excavated tunnels in the trunk. The infestation rate at basal sections was higher than that at distal sections. Only one Japanese cedar tree was infested by another dampwood termite,Glyptotermes satsumensis(Matsumura). The two dominant termite species,O. formosanusandR. flaviceps, had subterranean nests and infested trees from bottom up. The two primitive termitesN. koshunensis andG. satsumensishad low infestation rates and are most likely to infest trees by alates from top down. The niche segregation in trees of three termite families, Kalotermitidae, Rhinotermitidae, and Termitidae, was distinct.

  18. The biophysical controls on tree defense against attacking bark beetles in managed pine forests of the Southeastern United States

    Science.gov (United States)

    Novick, K. A.; Miniat, C. F.; Denham, S. O.; Ritger, H. M.; Williams, C.; Guldin, J. M.; Bragg, D.; Coyle, D.

    2013-12-01

    Bark beetles are highly damaging pests capable of destroying large areas of southern pine forests, with significant consequences for regional timber supply and forest ecosystem carbon dynamics. A number of recent studies have shown that following bark beetle outbreak, significant effects on ecosystem carbon and water cycling can occur. Relatively few studies have explored how ecosystem carbon and water cycling interact with other factors to control the hazard or risk of bark beetle outbreaks; these interactions, and their representation in conceptual model frameworks, are the focus of this study. Pine trees defend against bark beetle attacks through the exudation of of resin - a viscous compound that deters attacking beetles through a combination of chemical and physical mechanisms. Constitutive resin flow (CRF, representing resin produced before attack) is assumed to be directly proportional to the balance between gross primary productivity (GPP) and net primary productivity (NPP) according to the Growth-Differentiation Balance theory (GDB). Thus, predictions for tree mortality and bark beetle dynamics under different management and climate regimes may be more accurate if a model framework describing the biophysical controls on resin production (e.g., GDB) were employed. Here, we synthesize measurements of resin flow, bark beetle dynamics, and ecosystem C flux from three managed loblolly pine forests in the Southeastern U.S.: the Duke Forest in Durham, NC; the Savannah River DOE site near Aiken, SC; and the Crossett Experimental Forest in southern Arkansas. We also explore the relationship between CRF and induced resin flow (IRF, representing the de novo synthesis of resin following stem wounding) in the latter two sites, where IRF was promoted by a novel tree baiting approach and prescribed fire, respectively. We assimilate observations within a hierarchical Bayesian framework to 1) test whether observations conform to the GDB hypothesis, and 2) explore effects

  19. Trees of Life: Saving Tropical Forests and Their Biological Wealth.

    Science.gov (United States)

    Miller, Kenton; Tangley, Laura

    Staggering statistics and dramatic headlines about the destruction of rain forests, the world's richest ecosystems, are only a small part of the devastating story of global deforestation. This volume provides comprehensive coverage of this complex scientific and political catastrophe-in-the-making and examines the costs and the consequences, in…

  20. Towards an understanding of tree diversity in Amazonian forests

    NARCIS (Netherlands)

    Stropp Carneiro, J.

    2011-01-01

    Amazonian forests harbor the highest biodiversity of all terrestrial ecosystems on Earth. The origin of this extraordinary biodiversity and its current distribution are recently becoming better understood. Still, our knowledge of the contribution of processes operating at different temporal and spat

  1. Conversion of water consumption of a single tree and a forest stand of Populus euphratica

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiao-you; MENG Tong-tong; KANG Er-si

    2008-01-01

    Our study dear with the determination of sapwood sap flow of a single Populus euphratica tree by heat pulse technique and the calculation of water consumption of an entire forest stand, given the correlation between sap flow and sapwood area of P. euphratica. The relation between diameter at breast height (DBH) and sapwood area constitutes a powerful model; these variables are highly correlated. By means of an analysis of DBH in the sample plot, the distribution of the sapwood area of the forest land was obtained and the water consumption of this P. euphratica forest, in the lower reaches of the Heihe River, calculated as 214.9 mm by standard specific conductivity of the sample tree.

  2. Competition between trees, a useful tool in forest management aiming at high present value

    Energy Technology Data Exchange (ETDEWEB)

    Hagner, Mats

    1998-12-31

    Competition focuses growth resources into few stems that matures early and this is beneficial if forest value is estimated with consideration to interest rate. Hence, competition can replace thinning. As the natural dynamics of our forest tend to increase the size variation this also increases our possibility to use competition as a tool in forest management. From the same reason this harmonic way of using the natural dynamics also reduces costs as the need for maintenance procedures is lessened. As hampering the growth of small trees is a necessity if high quality timber shall be produced, competition from bigger trees can be used to manifold present values Working papers 140. 4 refs, 3 figs

  3. Limits to tree species invasion in pampean grassland and forest plant communities.

    Science.gov (United States)

    Mazia, Noemí C; Chaneton, Enrique J; Ghersa, Claudio M; León, Rolando J

    2001-08-01

    Factors limiting tree invasion in the Inland Pampas of Argentina were studied by monitoring the establishment of four alien tree species in remnant grassland and cultivated forest stands. We tested whether disturbances facilitated tree seedling recruitment and survival once seeds of invaders were made available by hand sowing. Seed addition to grassland failed to produce seedlings of two study species, Ligustrum lucidum and Ulmus pumila, but did result in abundant recruitment of Gleditsia triacanthos and Prosopis caldenia. While emergence was sparse in intact grassland, seedling densities were significantly increased by canopy and soil disturbances. Longer-term surveys showed that only Gleditsia became successfully established in disturbed grassland. These results support the hypothesis that interference from herbaceous vegetation may play a significant role in slowing down tree invasion, whereas disturbances create microsites that can be exploited by invasive woody plants. Seed sowing in a Ligustrum forest promoted the emergence of all four study species in understorey and treefall gap conditions. Litter removal had species-specific effects on emergence and early seedling growth, but had little impact on survivorship. Seedlings emerging under the closed forest canopy died within a few months. In the treefall gap, recruits of Gleditsia and Prosopis survived the first year, but did not survive in the longer term after natural gap closure. The forest community thus appeared less susceptible to colonization by alien trees than the grassland. We conclude that tree invasion in this system is strongly limited by the availability of recruitment microsites and biotic interactions, as well as by dispersal from existing propagule sources.

  4. Predicting spatial variations of tree species richness in tropical forests from high-resolution remote sensing.

    Science.gov (United States)

    Fricker, Geoffrey A; Wolf, Jeffrey A; Saatchi, Sassan S; Gillespie, Thomas W

    2015-10-01

    There is an increasing interest in identifying theories, empirical data sets, and remote-sensing metrics that can quantify tropical forest alpha diversity at a landscape scale. Quantifying patterns of tree species richness in the field is time consuming, especially in regions with over 100 tree species/ha. We examine species richness in a 50-ha plot in Barro Colorado Island in Panama and test if biophysical measurements of canopy reflectance from high-resolution satellite imagery and detailed vertical forest structure and topography from light detection and ranging (lidar) are associated with species richness across four tree size classes (>1, 1-10, >10, and >20 cm dbh) and three spatial scales (1, 0.25, and 0.04 ha). We use the 2010 tree inventory, including 204,757 individuals belonging to 301 species of freestanding woody plants or 166 ± 1.5 species/ha (mean ± SE), to compare with remote-sensing data. All remote-sensing metrics became less correlated with species richness as spatial resolution decreased from 1.0 ha to 0.04 ha and tree size increased from 1 cm to 20 cm dbh. When all stems with dbh > 1 cm in 1-ha plots were compared to remote-sensing metrics, standard deviation in canopy reflectance explained 13% of the variance in species richness. The standard deviations of canopy height and the topographic wetness index (TWI) derived from lidar were the best metrics to explain the spatial variance in species richness (15% and 24%, respectively). Using multiple regression models, we made predictions of species richness across Barro Colorado Island (BCI) at the 1-ha spatial scale for different tree size classes. We predicted variation in tree species richness among all plants (adjusted r² = 0.35) and trees with dbh > 10 cm (adjusted r² = 0.25). However, the best model results were for understory trees and shrubs (dbh 1-10 cm) (adjusted r² = 0.52) that comprise the majority of species richness in tropical forests. Our results indicate that high

  5. Synchrony of forest responses to climate from the aspect of tree mortality in South Korea

    Science.gov (United States)

    Kim, M.; Lee, W. K.; Piao, D.; Choi, G. M.; Gang, H. U.

    2016-12-01

    Mortality is a key process in forest-stand dynamics. However, tree mortality is not well understood, particularly in relation to climatic factors. The objectives of this study were to: (i) determine the patterns of maximum stem number (MSN) per ha over dominant tree height from 5-year remeasurements of the permanent sample plots for temperate forests [Red pine (Pinus densiflora), Japanese larch (Larix kaempferi), Korean pine (Pinus koraiensis), Chinese cork oak (Quercus variabilis), and Mongolian oak (Quercus mongolica)] using Sterba's theory and Korean National Forest Inventory (NFI) data, (ii) develop a stand-level mortality (self-thinning) model using the MSN curve, and (iii) assess the impact of temperature on tree mortality in semi-variogram and linear regression models. The MSN curve represents the upper range of observed stem numbers per ha. The mortality model and validation statistic reveal significant differences between the observed data and the model predictions (R2 = 0.55-0.81), and no obvious dependencies or patterns that indicate systematic trends between the residuals and the independent variable. However, spatial autocorrelation was detected from residuals of coniferous species (Red pine, Japanese larch and Korean pine), but not of oak species (Chinese cork oak and Mongolian oak). Based on linear regression from residuals, we found that the mortality of coniferous forests tended to increase when the annual mean temperature increased. Conversely, oak mortality nonsignificantly decreased with increasing temperature. These findings indicate that enhanced tree mortality due to rising temperatures in response to climate change is possible, especially in coniferous forests, and are expected to contribute to policy decisions to support and forest management practices.

  6. Temperature and rainfall strongly drive temporal growth variation in Asian tropical forest trees.

    Science.gov (United States)

    Vlam, Mart; Baker, Patrick J; Bunyavejchewin, Sarayudh; Zuidema, Pieter A

    2014-04-01

    Climate change effects on growth rates of tropical trees may lead to alterations in carbon cycling of carbon-rich tropical forests. However, climate sensitivity of broad-leaved lowland tropical trees is poorly understood. Dendrochronology (tree-ring analysis) provides a powerful tool to study the relationship between tropical tree growth and annual climate variability. We aimed to establish climate-growth relationships for five annual-ring forming tree species, using ring-width data from 459 canopy and understory trees from a seasonal tropical forest in western Thailand. Based on 183/459 trees, chronologies with total lengths between 29 and 62 years were produced for four out of five species. Bootstrapped correlation analysis revealed that climate-growth responses were similar among these four species. Growth was significantly negatively correlated with current-year maximum and minimum temperatures, and positively correlated with dry-season precipitation levels. Negative correlations between growth and temperature may be attributed to a positive relationship between temperature and autotrophic respiration rates. The positive relationship between growth and dry-season precipitation levels likely reflects the strong water demand during leaf flush. Mixed-effect models yielded results that were consistent across species: a negative effect of current wet-season maximum temperatures on growth, but also additive positive effects of, for example, prior dry-season maximum temperatures. Our analyses showed that annual growth variability in tropical trees is determined by a combination of both temperature and precipitation variability. With rising temperature, the predominantly negative relationship between temperature and growth may imply decreasing growth rates of tropical trees as a result of global warming.

  7. Leaf function in tropical rain forest canopy trees: the effect of light on leaf morphology and physiology in different-sized trees

    NARCIS (Netherlands)

    Rijkers, T.

    2000-01-01

    In this thesis the effect of constant and fluctuating light availability on several leaf traits was studied for naturally growing trees of different sizes, i.e . from sapling to adult canopy tree, of five species in a tropical rain forest in French Guiana. Leaf acclimation responses were examined th

  8. Quantifying the success of improved forest management from dendrochronology: examples from North Ethiopia

    Science.gov (United States)

    Jacob, Miro; De Ridder, Maaike; Frankl, Amaury; Guyassa, Etefa; Beeckman, Hans; Nyssen, Jan

    2014-05-01

    The increasing environmental and human pressure on the vulnerable environment of the North Ethiopian highlands requires sustainable management to avoid further land degradation. High altitude forests play a key role in this environmental balance and are very important for local livelihoods. They function as a hygric buffer by capturing and storing rainfall, which reduces soil erosion and protects against flooding, landslides and rock fall. The hygric buffer effect of mountain forests also provides water for downstream sources and for agriculture in the surrounding lowlands. Improved understanding of the growing patterns, ring formation and forest structure of this afro-alpine high altitude Erica arborea L. forests is essential to improve sustainable forest management practices. This paper studies two mountain forests in the North Ethiopian Highlands under contrasting management conditions; Lib Amba of the Abune Yosef Mt. range (12°04'N, 39°22'E, 3993 m a.s.l.) which is completely protected since five years and Mt. Ferrah Amba (12°52'N, 39°30'E, 3939 m a.s.l.) which is still strongly influenced by anthropo-zoogenic impacts. Dendrochronological results from cambial marked stem discs show complex but annual growth ring formations that reflect these differences in anthropo-zoogenic pressure; Tree-ring width is significantly wider in Mt. Lib Amba. Improved insight in the growing pattern of Erica arborea L. forests is also given by monitoring of tree growth and seedling recruitment in experimental plots since 2012 and by studying the relation between tree growth and the geomorphology and soil thickness. Seedling recruitment and vegetation indices indicate that tree growth is significantly better in the protected forest of Lib Amba. One of the key elements for sustainable land management is the creation of forests at critical locations. Insight in the response of tree growth to different types of land management and different morphological conditions can help to

  9. Comparison of structural diversity of tree-crop associations in Peripheral and Buffer zones of Gachabari Sal forest area, Bangladesh

    Institute of Scientific and Technical Information of China (English)

    M.M. Rahman; H. Vacik; F. Begum; A. Nishad; K.K. Islam

    2007-01-01

    The structural diversity of different tree-crop associations were studied at Gachabari Sal forest area of Madhupur Garh on Buffer and Peripheral Zone during 2006. The total density, basal area of trees in the Buffer and Peripheral Zone were 155.5 tree·hm-2,795.4 trees·bm-2 and 3.9 m2·hm-2, 5.8 m2·hm-2, respectively. No regeneration and natural trees were found in Peripheral Zone and the Zone is totally occupied by exotic species where the Buffer Zone comprised of both natural and exotic trees. The Peripheral Zone belonged to younger and smaller trees whereas the Buffer Zone belonged to mixture of smaller, taller, younger and mature trees simultaneously. For the practicing of different agroforestry systems both Zones have lost their original characters of Sal forest.

  10. Spatial modeling of the carbon stock of forest trees in Heilongjiang Province, China

    Institute of Scientific and Technical Information of China (English)

    Chang Liu; Lianjun Zhang; Fengri Li; Xingji Jin

    2014-01-01

    Heilongjiang province is the largest forest zone in China and the forest coverage rate is 46%. Forests of Heilongjiang province play an important role in the forest ecosystem of China. In this study we investi-gated the spatial distribution of forest carbon storage in Heilongjiang province using 3083 plots sampled in 2010. We attempted to fit two global models, ordinary least squares model (OLS) , linear mixed model (LMM), and a local model, geographically weighted regression model (GWR), to the relationship between forest carbon content and stand, environment, and climate factors. Five predictors significantly affected forest carbon storage and spatial distribution, viz. average diameter of stand (DBH), number of trees per hectare (TPH), elevation (Elev), slope (Slope) and the product of precipitation and temperature (Rain_Temp). The GWR model outperformed the two global models in both model fitting and prediction because it successfully reduced both spatial auto-correlation and heterogeneity in model residuals. More importantly, the GWR model provided localized model coefficients for each location in the study area, which allowed us to evaluate the influences of local stand conditions and topographic features on tree and stand growth, and forest carbon stock. It also helped us to better understand the impacts of silvi-cultural and management activities on the amount and changes of forest carbon storage across the province. The detailed information can be readily incorporated with the mapping ability of GIS software to provide excellent tools for assessing the distribution and dynamics of the for-est-carbon stock in the next few years.

  11. National seminar on tree improvement, January 8, 1981

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    Twenty one papers are presented from this seminar held at Kumarapumal Farm Science Centre, Tiruchira. An introductory paper gives a resume of tree improvement work in Tamil Nadu University and this is followed by papers on improvement of eucalypts (11), Casuarina, teak (3) and other species (3 papers on sandal, cashew and gamma irradiation of amla (Emblica officinalis seeds)).

  12. [Effects of forest gap on tree species regeneration and diversity of mixed broadleaved Korean pine forest in Xiaoxing'an Mountains].

    Science.gov (United States)

    Liu, Shao-Chong; Duan, Wen-Biao; Feng, Jing; Han, Sheng-Zhong

    2011-06-01

    This paper studied the quantitative characteristics of main tree species along a forest gap gradient (gap center-near gap center-gap border) of mixed broadleaved Korean pine forest in Xiaoxing'an Mountains, as well as the effects of forest gap size on the regeneration of the tree species. In forest gap, the density of shrub species was obviously larger than that in non-gap, and the density ratio of the same shrub species in forest gap to in non-gap ranged from 1.08 to 18.15. With the increase of gap size, the regeneration density of tree seedlings increased, and that of sapling I (H > or = 1 m, DBH or = 1 m, 2 cm tree seedlings and sapling I. The mean height, mean basal diameter, species density, and individual density of trees in different locations of forest gaps were all different. From gap center to non-gap, the importance value of tree species seedlings in regeneration layer was ranked in gap center > near gap center > gap border > non-gap, the tree species evenness presented a variation of high-low-high, and the species diversity decreased in the order of early phase gap > mid phase gap > late phase gap.

  13. Warming and provenance limit tree recruitment across and beyond the elevation range of subalpine forest

    Science.gov (United States)

    Kueppers, Lara M.; Conlisk, Erin; Castanha, Cristina; Moyes, Andrew B.; Germino, Matthew; de Valpine, Perry; Torn, Margaret S.; Mitton, Jeffry B.

    2017-01-01

    Climate niche models project that subalpine forest ranges will extend upslope with climate warming. These projections assume that the climate suitable for adult trees will be adequate for forest regeneration, ignoring climate requirements for seedling recruitment, a potential demographic bottleneck. Moreover, local genetic adaptation is expected to facilitate range expansion, with tree populations at the upper forest edge providing the seed best adapted to the alpine. Here, we test these expectations using a novel combination of common gardens, seeded with two widely distributed subalpine conifers, and climate manipulations replicated at three elevations. Infrared heaters raised temperatures in heated plots, but raised temperatures more in the forest than at or above treeline because strong winds at high elevation reduced heating efficiency. Watering increased season-average soil moisture similarly across sites. Contrary to expectations, warming reduced Engelmann spruce recruitment at and above treeline, as well as in the forest. Warming reduced limber pine first-year recruitment in the forest, but had no net effect on fourth-year recruitment at any site. Watering during the snow-free season alleviated some negative effects of warming, indicating that warming exacerbated water limitations. Contrary to expectations of local adaptation, low-elevation seeds of both species initially recruited more strongly than high-elevation seeds across the elevation gradient, although the low-provenance advantage diminished by the fourth year for Engelmann spruce, likely due to small sample sizes. High- and low-elevation provenances responded similarly to warming across sites for Engelmann spruce, but differently for limber pine. In the context of increasing tree mortality, lower recruitment at all elevations with warming, combined with lower quality, high-provenance seed being most available for colonizing the alpine, portends range contraction for Engelmann spruce. The lower

  14. Water and forests in the Mediterranean hot climate zone: a review based on a hydraulic interpretation of tree functioning

    Energy Technology Data Exchange (ETDEWEB)

    Soares David, T.; Assunção Pinto, C.; Nadezhdina, N.; Soares David, J.

    2016-07-01

    Aim of the study: Water scarcity is the main limitation to forest growth and tree survival in the Mediterranean hot climate zone. This paper reviews literature on the relations between water and forests in the region, and their implications on forest and water resources management. The analysis is based on a hydraulic interpretation of tree functioning. Area of the study: The review covers research carried out in the Mediterranean hot climate zone, put into perspective of wider/global research on the subject. The scales of analysis range from the tree to catchment levels. Material and Methods: For literature review we used Sc opus, Web of Science and Go ogle Scholar as bibliographic databases. Data from two Quercus suber sites in Portugal were used for illustrative purposes. Main results: We identify knowledge gaps and discuss options to better adapt forest management to climate change under a tree water use/availability perspective. Forest management is also discussed within the wider context of catchment water balance: water is a constraint for biomass production, but also for other human activities such as urban supply, industry and irrigated agriculture. Research highlights: Given the scarce and variable (in space and in time) water availability in the region, further research is needed on: mapping the spatial heterogeneity of water availability to trees; adjustment of tree density to local conditions; silviculture practices that do not damage soil properties or roots; irrigation of forest plantations in some specific areas; tree breeding. Also, a closer cooperation between forest and water managers is needed. (Author)

  15. Extent of localized tree mortality influences soil biogeochemical response in a beetle-infested coniferous forest

    Science.gov (United States)

    Brouillard, Brent; Mikkelson, Kristin; Bokman, Chelsea; Berryman, Erin Michele; Sharp, Jonathan

    2017-01-01

    Recent increases in the magnitude and occurrence of insect-induced tree mortality are disruptingevergreen forests globally. To resolve potentially conflicting ecosystem responses, we investigatedwhether surrounding trees exert compensatory effects on biogeochemical signatures following beetleinfestation. To this end, plots were surveyed within a Colorado Rocky Mountain watershed that expe-rienced beetle infestation almost a decade prior and contained a range of surrounding tree mortality(from 9 to 91% of standing trees). Near-surface soil horizons under plot-centered live (green) and beetle-killed (grey) lodgepole pines were sampled over two consecutive summers with variable moistureconditions. Results revealed that soil respiration was 18e28% lower beneath beetle-infested trees andcorrelated to elevated dissolved organic carbon aromaticity. While certain edaphic parameters includingpH and water content were elevated below grey compared to green trees regardless of the mortalityextent within plots, other biogeochemical responses required a higher severity of surrounding mortalityto overcome compensatory effects of neighboring live trees. For instance, C:N ratios under grey treesdeclined with increased severity of surrounding tree mortality, and the proportion of ammonium dis-played a threshold effect with pronounced increases after surrounding tree mortality exceeded ~40%.Overall, the biogeochemical response to tree death was most prominent in the mineral soil horizonwhere tree mortality had the largest affect on carbon recalcitrance and the enrichment of nitrogenspecies. These results can aid in determining when and where nutrient cycles and biogeochemicalfeedbacks to the atmosphere and hydrosphere will be observed in association with this type of ecological disturbance.

  16. Effects of Warming on Tree Species’ Recruitment in Deciduous Forests of the Eastern United States

    Energy Technology Data Exchange (ETDEWEB)

    Melillo, Jerry M. [Marine Biological Lab., Woods Hole, MA (United States); Clark, James S. [Duke Univ., Durham, NC (United States); Mohan, Jacqueline [Univ. of Georgia, Athens, GA (United States)

    2015-03-25

    Climate change is restructuring forests of the United States, although the details of this restructuring are currently uncertain. Rising temperatures of 2 to 8oC and associated changes in soil moisture will shift the competitive balance between species that compete for light and water, and so change their abilities to produce seed, germinate, grow, and survive. We have used large-scale experiments to determine the effects of warming on the most sensitive stage of species distributions, i.e., recruitment, in mixed deciduous forests in southern New England and in the Piedmont region of North Carolina. Two questions organized our research: (1) Might temperate tree species near the “warm” end of their range in the eastern United States decline in abundance during the coming century due to projected warming? and (2) Might trees near the “cool” end of their range in the eastern United States increase in abundance, or extend their range, during the coming 100 years because of projected warming? To explore these questions, we exposed seedlings to air and soil warming experiments in two eastern deciduous forest sites; one at the Harvard Forest (HF) in central Massachusetts, and the other at the Duke Forest (DF) in the Piedmont region of North Carolina. We focused on tree species common to both Harvard and Duke Forests (such as red, black, and white oaks), those near northern range limits (black oak, flowing dogwood, tulip poplar), and those near southern range limits (yellow birch, sugar maple, Virginia pine). At each site, we planted seeds and seedlings in common gardens established in temperature-controlled, open-top chambers. The experimental design was replicated and fully factorial and involved three temperature regimes (ambient, +3oC and +5oC) and two light regimes (closed forest canopy (low light) and gap conditions (high light)). Measured variables included Winter/Spring responses to temperature and mid-Summer responses to low soil moisture. This research

  17. A Global Perspective on Warmer Droughts as a Key Driver of Forest Disturbances and Tree Mortality (Invited)

    Science.gov (United States)

    Allen, C. D.

    2013-12-01

    Recent global warming, in concert with episodic droughts, is causing elevated levels of both chronic and acute forest water stress across large regions. Such increases in water stress affect forest dynamics in multiple ways, including by amplifying the incidence and severity of many significant forest disturbances, particularly drought-induced tree mortality, wildfire, and outbreaks of damaging insects and diseases. Emerging global-scale patterns of drought-related forest die-off are presented, including a newly updated map overview of documented drought- and heat-induced tree mortality events from around the world, demonstrating the vulnerability of all major forest types to forest drought stress, even in typically wet environments. Comparative patterns of drought stress and associated forest disturbances are reviewed for several regions (southwestern Australia, Inner Asia, western North America, Mediterranean Basin), including interactions among climate and various disturbance processes. From the Southwest USA, research is presented that derives a tree-ring-based Forest Drought Stress Index (FDSI) for the most regionally-widespread conifer species (Pinus edulis, Pinus ponderosa, and Pseudotsuga menziesii), demonstrating recent escalation of FDSI to extreme levels relative to the past 1000 years, due to both drought and especially warming. This new work further highlights strong correlations between drought stress and amplified forest disturbances (fire, bark beetle outbreaks), and projects that by CE 2050 anticipated regional warming will cause mean FDSI values to reach historically unprecedented levels that may exceed thresholds for the survival of current tree species in large portions of their current range in the Southwest. Similar patterns of recent climate-amplified forest disturbance risk are apparent from a variety of relatively dry regions across this planet, and given climate projections for substantially warmer temperatures and greater drought stress

  18. MICROMETEOROLOGICAL ENVIRONMENTS AND BIODIVERSITY IN A CLOSED FOREST AND AT A TREE-FALL GAP IN CENTRAL AMAZONIA

    Directory of Open Access Journals (Sweden)

    Akio Tsuchiya

    2009-09-01

    Full Text Available Micrometeorological parameters were measured in a closed forest (CF and at a tree-fall gap (LG near Novo Aripuanã, AM, along the Madeira River in dry season (August to September 2003 and rainy season (March 2004, and were compared to the number of species per family and the number of seedlings obtained from forest inventory. The daily averages of net radiation (W/m2 between CF and LG were 9.5:168.0 during dry season and 3.6:125.9 during rainy season, and these averages were influenced by the difference in shortwave radiation between the sites (CFtree-falls and recoveries resulted in increases in the numbers of colonizer species, such as Burseraseae, Cecropiaceae, Meliaceae, Myristicaceae, Simaroubaceae, Violaceae, and Sterculiaceae. From the comparison of the number of seedlings at mini-plots, some genera, which have established themselves in response to improvements in environments at gaps, were found, such as Pourouma, Parkia, Tachigalia, and Orbignya, meanwhile genera peculiar to closed forests (Protium, Chrysophyllum, Micropholis were also found.

  19. MICROMETEOROLOGICAL ENVIRONMENTS AND BIODIVERSITY IN A CLOSED FOREST AND AT A TREE-FALL GAP IN CENTRAL AMAZONIA

    Directory of Open Access Journals (Sweden)

    Akio Tsuchiya

    2008-01-01

    Full Text Available Micrometeorological parameters were measured in a closed forest (CF and at a tree-fall gap (LG near Novo Aripuanã, AM, along the Madeira River in dry season (August to September 2003 and rainy season (March 2004, and were compared to the number of species per family and the number of seedlings obtained from forest inventory. The daily averages of net radiation (W/m2 between CF and LG were 9.5:168.0 during dry season and 3.6:125.9 during rainy season, and these averages were influenced by the difference in shortwave radiation between the sites (CFtree-falls and recoveries resulted in increases in the numbers of colonizer species, such as Burseraseae, Cecropiaceae, Meliaceae, Myristicaceae, Simaroubaceae, Violaceae, and Sterculiaceae. From the comparison of the number of seedlings at mini-plots, some genera, which have established themselves in response to improvements in environments at gaps, were found, such as Pourouma, Parkia, Tachigalia, and Orbignya, meanwhile genera peculiar to closed forests (Protium, Chrysophyllum, Micropholis were also found.

  20. Thermal infrared as a tool to detect tree water stress in a coniferous forest

    Science.gov (United States)

    Nourtier, M.; Chanzy, A.; Bes, B.; Davi, H.; Hanocq, J. F.; Mariotte, N.; Sappe, G.

    2009-04-01

    In the context of climatic change, species area may move and so, a study of forest species vulnerability is on interest. In Mediterranean regions, trees can suffer of water stress due to drought during summer. Responses to environmental constraints are delayed in forest so it is necessary to anticipate risks in order to adapt management. It would be therefore interesting to localize areas where trees might be vulnerable to water stress. To detect such areas, the idea developed in this study is to map the severity of water stress, which may be linked to soil. Because vegetation surface temperature is linked to transpiration and so to water stress, the relevance of thermal infrared as a tool to detect water stress was explored. Past studies about surface temperature of forests at the planting scale did not lead to conclusive results. At this scale, important spatial and temporal variations of surface temperature, with a magnitude of about 10°C, can be registered but there is possibly a sizeable contribution of the undergrowth (Duchemin, 1998a, 1998b). In the other hand, important stress are not detectable, probably due to meteorological conditions (Pierce et al., 1990). During spring and summer 2008, an experimentation was carried out on the silver fir (Abies alba) forest of Mont Ventoux (south of France) to evaluate temporal variations at tree scale of the surface temperature in relation to water stress and climatic conditions. Two sites and three trees were chosen for measurements of surface temperature with a view to have different levels of water stress. Transpiration deficit is characterised by the ratio of actual transpiration to potential transpiration which is computed by the ISBA model (Noilhan et al., 1989) implemented by climatic observations made at the top of tree canopy. Sap flow measurements needed to calculate this ratio were completed on different trees of the sites. Climatic datas also allows building reference temperature and then surface

  1. The Urban Forest and Ecosystem Services: Impacts on Urban Water, Heat, and Pollution Cycles at the Tree, Street, and City Scale.

    Science.gov (United States)

    Livesley, S J; McPherson, G M; Calfapietra, C

    2016-01-01

    Many environmental challenges are exacerbated within the urban landscape, such as stormwater runoff and flood risk, chemical and particulate pollution of urban air, soil and water, the urban heat island, and summer heat waves. Urban trees, and the urban forest as a whole, can be managed to have an impact on the urban water, heat, carbon and pollution cycles. However, there is an increasing need for empirical evidence as to the magnitude of the impacts, both beneficial and adverse, that urban trees can provide and the role that climatic region and built landscape circumstance play in modifying those impacts. This special section presents new research that advances our knowledge of the ecological and environmental services provided by the urban forest. The 14 studies included provide a global perspective on the role of trees in towns and cities from five continents. Some studies provide evidence for the cooling benefit of the local microclimate in urban green space with and without trees. Other studies focus solely on the cooling benefit of urban tree transpiration at a mesoscale or on cooling from canopy shade at a street and pedestrian scale. Other studies are concerned with tree species differences in canopy interception of rainfall, water uptake from biofilter systems, and water quality improvements through nutrient uptake from stormwater runoff. Research reported here also considers both the positive and the negative impacts of trees on air quality, through the role of trees in removing air pollutants such as ozone as well as in releasing potentially harmful volatile organic compounds and allergenic particulates. A transdisciplinary framework to support future urban forest research is proposed to better understand and communicate the role of urban trees in urban biogeochemical cycles that are highly disturbed, highly managed, and of paramount importance to human health and well-being.

  2. Tree structure and diversity of lowland Atlantic forest fragments:comparison of disturbed and undisturbed remnants

    Institute of Scientific and Technical Information of China (English)

    Fabrcio Alvim Carvalho; Joao Marcelo Alvarenga Braga; Marcelo Trindade Nascimento

    2016-01-01

    This study describes the tree community structure of three moist lowland Atlantic Forest fragments in Rio de Janeiro State, southeastern Brazil. Two fragments were disturbed and an undisturbed one was used as refer-ence. Our hypothesis was that disturbed fragments show distinct structural patterns in comparison with undisturbed stands due to past disturbance practices and forest frag-mentation. Four 100 9 5 m sampling plots were demar-cated in each fragment and all live and dead trees with DBH C 5 cm were located, measured and identified. The results supported our hypothesis, due to the high values found for standing dead trees, an increase of dominance of a few pioneer species, lower values of large trees and species richness in disturbed fragments in comparison with the undisturbed one. The advanced fragmentation process in the Southern Brazilian lowland areas and the high spe-cies richness in undisturbed areas highlight these forest fragments as priority areas for conservation and management.

  3. Assessing and Improving Student Understanding of Tree-Thinking

    Science.gov (United States)

    Kummer, Tyler A.

    Evolution is the unifying theory of biology. The importance of understanding evolution by those who study the origins, diversification and diversity life cannot be overstated. Because of its importance, in addition to a scientific study of evolution, many researchers have spent time studying the acceptance and the teaching of evolution. Phylogenetic Systematics is the field of study developed to understand the evolutionary history of organisms, traits, and genes. Tree-thinking is the term by which we identify concepts related to the evolutionary history of organisms. It is vital that those who undertake a study of biology be able to understand and interpret what information these phylogenies are meant to convey. In this project, we evaluated the current impact a traditional study of biology has on the misconceptions students hold by assessing tree-thinking in freshman biology students to those nearing the end of their studies. We found that the impact of studying biology was varied with some misconceptions changing significantly while others persisted. Despite the importance of tree-thinking no appropriately developed concept inventory exists to measure student understanding of these important concepts. We developed a concept inventory capable of filling this important need and provide evidence to support its use among undergraduate students. Finally, we developed and modified activities as well as courses based on best practices to improve teaching and learning of tree-thinking and organismal diversity. We accomplished this by focusing on two key questions. First, how do we best introduce students to tree-thinking and second does tree-thinking as a course theme enhance student understanding of not only tree-thinking but also organismal diversity. We found important evidence suggesting that introducing students to tree-thinking via building evolutionary trees was less successful than introducing the concept via tree interpretation and may have in fact introduced or

  4. Disturbance legacies and climate jointly drive tree growth and mortality in an intensively studied boreal forest

    Energy Technology Data Exchange (ETDEWEB)

    Bond-Lamberty, Benjamin; Rocha, Adrian; Calvin, Katherine V.; Holmes, Bruce; Wang, Chuankuan; Goulden, Michael L.

    2014-01-01

    How will regional growth and mortality change with even relatively small climate shifts, even independent of catastrophic disturbances? This question is particularly acute for the North American boreal forest, which is carbon-dense and subject The goals of this study were to combine dendrochronological sampling, inventory records, and machine-learning algorithms to understand how tree growth and death have changed at one highly studied site (Northern Old Black Spruce, NOBS) in the central Canadian boreal forest. Over the 1999-2012 inventory period, mean DBH increased even as stand density and basal area declined significantly from 41.3 to 37.5 m2 ha-1. Tree mortality averaged 1.4±0.6% yr-1, with most mortality occurring in medium-sized trees. A combined tree ring chronology constructed from 2001, 2004, and 2012 sampling showed several periods of extreme growth depression, with increased mortality lagging depressed growth by ~5 years. Minimum and maximum air temperatures exerted a negative influence on tree growth, while precipitation and climate moisture index had a positive effect; both current- and previous-year data exerted significant effects. Models based on these variables explained 23-44% of the ring-width variability. There have been at least one, and probably two, significant recruitment episodes since stand initiation, and we infer that past climate extremes led to significant NOBS mortality still visible in the current forest structure. These results imply that a combination of successional and demographic processes, along with mortality driven by abiotic factors, continue to affect the stand, with significant implications for our understanding of previous work at NOBS and the sustainable management of regional forests.

  5. Observed effects of an exceptional drought on tree mortality in a tropical dry forest

    Science.gov (United States)

    Medvigy, D.; Vargas, G.; Xu, X.; Smith, C. M.; Becknell, J.; Brodribb, T.; Powers, J. S.

    2016-12-01

    Climate models predict that the coming century will bring reduced rainfall to Neotropical dry forests. It is unknown how tropical dry forest trees will respond to such rainfall reductions. Will there be increased mortality? If so, what will be the dominant mechanism of mortality? Will certain functional groups or size classes be more susceptible to unusually dry conditions and do functional traits underlie these patterns? With these questions in mind, we analyzed the response of trees from 18 Costa Rican tropical dry forest inventory plots and from additional transects to the exceptional 2015 drought that coincided with a strong ENSO event. We compared stand-level mortality rates observed during pre-drought years (2008-2014) and during the drought year of 2015 in the inventory plots. For both inventory plots and transects, we analyzed whether particular functional groups or size classes experienced exceptional mortality after the drought. We found that mortality rates were two to three times higher during the drought than before the drought. In contrast to observations at moist tropical forests, tree size had little influence on mortality. In terms of functional groups, mortality rates of evergreen oaks growing on nutrient-poor soils particularly increased during drought. Legumes seemed less affected by the drought than non-legumes. However, elevated mortality rates were not clearly correlated with commonly-measured traits like wood density or specific leaf area. Instead, hydraulic traits like P50 or turgor loss point may be better predictors of drought-driven mortality. In addition, trees that died during the drought tended to have smaller relative growth rate prior to the drought than trees that survived the drought.

  6. Seeing the forest through the trees: Considering roost-site selection at multiple spatial scales

    Science.gov (United States)

    Jachowski, David S.; Rota, Christopher T.; Dobony, Christopher A.; Ford, W. Mark; Edwards, John W.

    2016-01-01

    Conservation of bat species is one of the most daunting wildlife conservation challenges in North America, requiring detailed knowledge about their ecology to guide conservation efforts. Outside of the hibernating season, bats in temperate forest environments spend their diurnal time in day-roosts. In addition to simple shelter, summer roost availability is as critical as maternity sites and maintaining social group contact. To date, a major focus of bat conservation has concentrated on conserving individual roost sites, with comparatively less focus on the role that broader habitat conditions contribute towards roost-site selection. We evaluated roost-site selection by a northern population of federally-endangered Indiana bats (Myotis sodalis) at Fort Drum Military Installation in New York, USA at three different spatial scales: landscape, forest stand, and individual tree level. During 2007–2011, we radiotracked 33 Indiana bats (10 males, 23 females) and located 348 roosting events in 116 unique roost trees. At the landscape scale, bat roost-site selection was positively associated with northern mixed forest, increased slope, and greater distance from human development. At the stand scale, we observed subtle differences in roost site selection based on sex and season, but roost selection was generally positively associated with larger stands with a higher basal area, larger tree diameter, and a greater sugar maple (Acer saccharum) component. We observed no distinct trends of roosts being near high-quality foraging areas of water and forest edges. At the tree scale, roosts were typically in American elm (Ulmus americana) or sugar maple of large diameter (>30 cm) of moderate decay with loose bark. Collectively, our results highlight the importance of considering day roost needs simultaneously across multiple spatial scales. Size and decay class of individual roosts are key ecological attributes for the Indiana bat, however, larger-scale stand structural

  7. Tropical forest structure characterization using airborne lidar data: an individual tree level approach

    Science.gov (United States)

    Ferraz, A.; Saatchi, S. S.

    2015-12-01

    Fine scale tropical forest structure characterization has been performed by means of field measurements techniques that record both the specie and the diameter at the breast height (dbh) for every tree within a given area. Due to dense and complex vegetation, additional important ecological variables (e.g. the tree height and crown size) are usually not measured because they are hardly recognized from the ground. The poor knowledge on the 3D tropical forest structure has been a major limitation for the understanding of different ecological issues such as the spatial distribution of carbon stocks, regeneration and competition dynamics and light penetration gradient assessments. Airborne laser scanning (ALS) is an active remote sensing technique that provides georeferenced distance measurements between the aircraft and the surface. It provides an unstructured 3D point cloud that is a high-resolution model of the forest. This study presents the first approach for tropical forest characterization at a fine scale using remote sensing data. The multi-modal lidar point cloud is decomposed into 3D clusters that correspond to single trees by means of a technique called Adaptive Mean Shift Segmentation (AMS3D). The ability of the corresponding individual tree metrics (tree height, crown area and crown volume) for the estimation of above ground biomass (agb) over the 50 ha CTFS plot in Barro Colorado Island is here assessed. We conclude that our approach is able to map the agb spatial distribution with an error of nearly 12% (RMSE=28 Mg ha-1) compared with field-based estimates over 1ha plots.

  8. Effect of microenvironmental quantitative regulation on growth of Korean pine trees planted under secondary forest

    Institute of Scientific and Technical Information of China (English)

    CONG Jian; Shen Hai-Long; YANG Wen-Hua; FAN Shao-Hui; ZHANG Qun

    2011-01-01

    Korean pine (Pinus koraiensis) and broadleaved mixed forest in Northeast China has been changed regressively into secondary forest with almost no conifers. Planting Korean pine trees under the canopy of secondary forest is a feasible approach for recovering Korean pine and broadleaved mixed forest. For establishing an effective growth promotion method for under-canopy planted young Korean pine trees, two stands were selected as the experiment plots, Stand A (planted in 1989)and Stand B (planted in 1982), and an experiment of microenvironment regulation was conducted relying mainly on Opening degree (K=1,K=1.5, K=2, CK) in 2004. The results were shown that the adjustment had promoted growth of diameter and height of Korean pine planted in Stand A and Stand B, and had a significant influence on the growth rate of basal diameter, diameter at breast height and height in the two growth stands. The four years periodic increment of mean diameter and height of Korean pine planted in 1989 and in 1982 after regulation in K=1 level were 63.4% (D0) and 82.7% (H), 64.8% (D1.3) and 69.7% (H) higher than that of control respectively. Quantitative regulation had significant influence on specific leaf area of Korean pine planted in 1989, and the current year specific leaf area (SLA) was lager than perennial year SLA. Quality indexes of natural priming capacity, normal form quotient and crown size was not significantly changed but shown a positive tendency. The regulation scheme of Opening degree K=I might be proper for adjusting the micreenvironment of Korean pine trees planted under the canopy of secondary forest when the Korean pine trees were in the growth period of 15 to 26 years old in the experiment region.

  9. Seed storage behavior of forest tree species seeds

    Directory of Open Access Journals (Sweden)

    Marcela Carlota Nery

    2014-09-01

    Full Text Available Seeds of five forest species were classified according to their physiological storage behavior. Seeds of Casearia sylvestris Swart (Salicaceae, Qualea grandiflora Mart. (Vochysiaceae, Guarea kunthiana A. Juss. (Meliaceae, Eremanthus incanus Less. (Asteraceae, Protium heptaphyllum March. (Burseraceae were collected and taken to the laboratory, where they were processed and submitted to both rapid and slow drying, storage and assayed for viability. After physiological classification regarding storage behavior, it was observed that seeds of C. sylvestris and E. incanus presented orthodox behavior. Seeds of G. kunthiana and P. heptaphyllum were classified as recalcitrant and Q. grandiflora as an intermediate, which did not tolerate low moisture content.

  10. Methane emissions from bald cypress tree trunks in a bottomland forest

    Science.gov (United States)

    Schile, L. M.; Pitz, S.; Megonigal, P.

    2013-12-01

    Studies on natural methane emissions predominantly have occurred on wetland soils with herbaceous plant species. Less attention, however, has been placed on the role of woody wetland plant species in the methane cycle. Recent studies on methane emissions from tree trunks document that they are a significant source of emissions that previously has been not accounted for. In this study, we examine methane emissions from trunks of mature bald cypress (Taxodium distichum), which is a dominant tree species in bottomland hardwood forests of the Southeastern United States. To date, little is known about soil methane emissions in these systems, and published tree emissions have been limited to a single study conducted on bald cypress knees. In May 2013, we established a plot in a monospecific bald cypress stand planted approximately 70 years ago on the Chesapeake Bay in Maryland and are monitoring methane emissions on 12 tree trunks, soil chambers, and pore-water over the course of a year. Custom-made 30 cm tall open face rectangular tree chambers were constructed out of white acrylic sheets and secured on each tree at a midpoint of 45 cm above the soil surface. Chambers were lined with neoprene along the tree surface and sealed with an epoxy. On three trees that varied in trunk diameter, chambers were placed at average heights of 95, 145, 195, and 345 cm from the soil surface in order to calculate a decay curve of methane emissions. Once a month, chambers were sealed with lids and head-space samples were collected over the course of an hour. Methane flux was calculated and compared to emissions from soil chambers. Average cypress trunk methane fluxes ranged from 17.7 μmole m-2 hr-1 in May to 49.5 and 116.5 μmole m-2 hr-1 in June and July, respectively. Soil fluxes averaged 28.5 μmole m-2 hr-1 in May and June, and decreased to 13.7 μmole m-2 hr-1 in July. Methane emissions decreased exponentially up the tree trunk, with fluxes of 2 μmole m-2 hr-1 and less calculated

  11. Tree Productivity and Water Potential Productivity in Returning Farmland to Forest Project in Datong County, Qinghai Province

    Institute of Scientific and Technical Information of China (English)

    Yin Jing; Liu Chenfeng; Zhao Wanqi; He Kangning

    2004-01-01

    From 2002 to 2003, based on the investigation of sample plots and stem analysis of remained plantation communities in the areas of returning farmland to forest in the 1980s in Datong County, Qinghai Province, this paper studies tree productivity and moisture potential productivity of six types of plantations on the land of returning farmland to forest, such as green poplar (Populus cathayana Rehd.) and shrub mixed forest, Asia white birch (Betula platyphylla) and China spruce (Picea asperata) mixed forest, Dahurian larch (Larix gmelinii) pure forest, China spruce pure forest and Asia white birch pure forest and so on. The results show that: in sub-humid region of Loess Plateau, 3 000 trees per hm2 is a proper standard of planting density. Under current condition, the productivity index of green poplar and shrub mixed forest, Asia white birch pure forest, China spruce pure forest, and Asia white birch and China spruce mixed forest with the density of 2 100-3 333 trees per hm2 can serve as potential productivity standard of actual biomass of arbor established forest. In sub-humid area, Thornthwaite Model is adopted to estimate plant climate potential productivity, which is about 8 462 kg·hm-2·a-1. The actual potential water productive efficiency of Purplecone spruce (Picea purpurea) and Asia white birch pure established forest are 17.22 and 22.14 kg·mm-1·hm-2·a-1 respectively, and that of green poplar and shrub mixed established forest, and Asia white birch and China spruce mixed established forest are 21.14 and 19.09 kg·mm-1·hm-2·a-1 respectively. The potential productivity of green poplar and shrub mixed forest, Asia white birch and China spruce mixed forest, China spruce pure forest and Asia white birch pure forest which have grown into forest with the density of 3 000 trees per hm2 have attained or been close to that of local climax community, which is local maximum tree productivity at present. These types of forestation models are the developing

  12. Effects of Individual Tree Detection Error Sources on Forest Management Planning Calculations

    Directory of Open Access Journals (Sweden)

    Harri Kaartinen

    2011-07-01

    Full Text Available The objective was to investigate the error sources of the airborne laser scanning based individual tree detection (ITD, and its effects on forest management planning calculations. The investigated error sources were detection of trees (etd, error in tree height prediction (eh and error in tree diameter prediction (ed. The effects of errors were analyzed with Monte Carlo simulations. etd was modeled empirically based on a tree’s relative size. A total of five different tree detection scenarios were tested. Effect of eh was investigated using 5% and 0% and effect of ed using 20%, 15%, 10%, 5%, 0% error levels, respectively. The research material comprised 15 forest stands located in Southern Finland. Measurements of 5,300 trees and their timber assortments were utilized as a starting point for the Monte Carlo simulated ITD inventories. ITD carried out for the same study area provided a starting point (Scenario 1 for etd. In Scenario 1, 60.2% from stem number and 75.9% from total volume (Vtotal were detected. When the only error source was etd (tree detection varying from 75.9% to 100% of Vtotal, root mean square errors (RMSEs in stand characteristics ranged between the scenarios from 32.4% to 0.6%, 29.0% to 0.5%, 7.8% to 0.2% and 5.4% to 0.1% in stand basal area (BA, Vtotal, mean height (Hg and mean diameter (Dg, respectively. Saw wood volume RMSE varied from 25.1% to 0.2%, as pulp wood volume respective varied from 37.8% to 1.0% when errors stemmed only from etd. The effect of ed was most significant for Vtotal and BA and the decrease in RMSE was from 12.0% to 0.6% (BA and from 10.9% to 0.5% (Vtotal in the most accurate tree detection scenario when ed varied from 20% to 0%. The effect of increased accuracy in tree height prediction was minor for all the stand characteristics. The results show that the most important error source in ITD is tree detection. At stand level, unbiased predictions for tree height and diameter are enough, given the

  13. Spatial distribution patterns of trees at different life stages in a warm temperate forest.

    Science.gov (United States)

    Tsujino, Riyou; Yumoto, Takakazu

    2007-11-01

    We have investigated tree distributions in relation to topography between different tree life history stages, from the seed-dispersal stage to the adult stage in a warm temperate evergreen broadleaved forest on Yakushima Island, Japan, to clarify the critical stages in determining adult tree distributions. We conducted a census of all living trees > or =30 cm tall and collected seed falls over three years using 25 seed traps in a 50 m x 50 m quadrat. Four life stages were defined: stage 1, dispersed seed; stage 2, individuals taller than 30 cm and diameter at breast height (DBH) DBH DBH > or = 10 cm. We classified 17 common tree species into three groups; group A was distributed mainly on the upper slope, group B on the lower slope, and group C on both. Most of group A and B trees at stages 2-4 showed an aggregated distribution along the topographical gradient. The densities at stage 1 showed weaker aggregations according to slope. Topography-specific tree distribution was probably determined at the regeneration stage, and later survival was less effective as a mechanism of vegetation differentiation.

  14. [Tree uprooting of coniferous-broad leaved Korean pine mixed forest in Lesser Khingan Mountains, China].

    Science.gov (United States)

    Ge, Xiao-wen; Hou, Jie-jian; Wang, Li-hai; Wang, Xing-long; Rong, Bin-bin

    2016-02-01

    The morphological parameters, root wad indexes and site conditions of 127 uprooting trees from 76 plots (20 mx20 m) in Lesser Khingan coniferous-broad leaved Korean pine mixed forest were measured. Then the influencing factors of uprooting differences and the relationship between uprooting trees and disturbed soil were analyzed. Results showed that the number of uprooting trees varied significantly among species. Abies nephrolepis suffered the most serious uprooting damage, then Pinus koraiensis, and Ulmus spp. the least. Deciduous species had a stronger uprooting-resistant capacity than broad-leaved species. With the increase of tree DBH and height, tree' s uprooting resistance declined rapidly first and then was gradually enhanced, and finally reached the minimum at diameter class of 20 cm and height class of 14 m, respectively. The smaller the taper degree and projected area of crown were, the stronger the uprooting resistance was. Uprooting rate was negatively correlated with stand density. Trees lying in wet ground, flat terrain, medium low altitude area and windward slope had a greater risk of uprooting. There were significant positive correlation between the depth, area and volume of disturbed soil and the DBH, height, volume of uprooting trees.

  15. Spatial characteristics of tree diameter distributions in a temperate old-growth forest.

    Science.gov (United States)

    Zhang, Chunyu; Wei, Yanbo; Zhao, Xiuhai; von Gadow, Klaus

    2013-01-01

    This contribution identifies spatial characteristics of tree diameter in a temperate forest in north-eastern China, based on a fully censused observational study area covering 500×600 m. Mark correlation analysis with three null hypothesis models was used to determine departure from expectations at different neighborhood distances. Tree positions are clumped at all investigated scales in all 37 studied species, while the diameters of most species are spatially negatively correlated, especially at short distances. Interestingly, all three cases showing short-distance attraction of dbh marks are associated with light-demanding shrub species. The short-distance attraction of dbh marks indicates spatially aggregated cohorts of stems of similar size. The percentage of species showing significant dbh suppression peaked at a 4 m distance under the heterogeneous Poisson model. At scales exceeding the peak distance, the percentage of species showing significant dbh suppression decreases sharply with increasing distances. The evidence from this large observational study shows that some of the variation of the spatial characteristics of tree diameters is related variations of topography and soil chemistry. However, an obvious interpretation of this result is still lacking. Thus, removing competitors surrounding the target trees is an effective way to avoid neighboring competition effects reducing the growth of valuable target trees in forest management practice.

  16. Chemical investigation on wood tree species in a temperate forest, east-northern Romania

    Directory of Open Access Journals (Sweden)

    Teaca, C. A.

    2007-02-01

    Full Text Available A quantitative evaluation of wood chemical components for some tree species in a forest area from east-northern Romania is presented here, through a comparative study from 1964 to 2000. Investigation upon the wood tree-rings in a Quercus robur L. tree species, as a dominant species, as regards its chemical composition and structure of the natural polymer constituents - cellulose and lignin - was also performed through chemical methods to separate the main wood components, FT-IR spectroscopy, and thermogravimetry. Having in view the impact of climate and external factors (such as pollutant depositions, some possible correlations between wood chemical composition and its further use can be made. The FT-IR spectra give evidence of differences in the frequency domains of 3400-2900 cm-1 and 1730-1640 cm-1, due to some interactions between the chemical groups (OH, C=O. The crystallinity index of cellulose presents variations in the oak wood tree-rings. Thermogravimetry analyses show different behaviour of cellulose at thermal decomposition, as a function of radial growth and tree’s height. A preliminary chemical investigation of oak wood sawdust shows a relatively high content of mineral elements (ash, compared with a previous study performed in 1964, fact that may indicate an intense drying process of the oak tree, a general phenomenon present in European forests for this species.

  17. Application of LIDAR to forest inventory for tree count in stands of Eucalyptus sp

    Directory of Open Access Journals (Sweden)

    Fausto Weimar Acerbi Junior

    2012-06-01

    Full Text Available Light Detection and Ranging, or LIDAR, has become an effective ancillary tool to extract forest inventory data and for use in other forest studies. This work was aimed at establishing an effective methodology for using LIDAR for tree count in a stand of Eucalyptus sp. located in southern Bahia state. Information provided includes in-flight gross data processing to final tree count. Intermediate processing steps are of critical importance to the quality of results and include the following stages: organizing point clouds, creating a canopy surface model (CSM through TIN and IDW interpolation and final automated tree count with a local maximum algorithm with 5 x 5 and 3 x 3 windows. Results were checked against manual tree count using Quickbird images, for verification of accuracy. Tree count using IDW interpolation with a 5x5 window for the count algorithm was found to be accurate to 97.36%. This result demonstrates the effectiveness of the methodology and its use potential for future applications.

  18. The effect of size and competition on tree growth rate in old-growth coniferous forests

    Science.gov (United States)

    Das, Adrian

    2012-01-01

    Tree growth and competition play central roles in forest dynamics. Yet models of competition often neglect important variation in species-specific responses. Furthermore, functions used to model changes in growth rate with size do not always allow for potential complexity. Using a large data set from old-growth forests in California, models were parameterized relating growth rate to tree size and competition for four common species. Several functions relating growth rate to size were tested. Competition models included parameters for tree size, competitor size, and competitor distance. Competitive strength was allowed to vary by species. The best ranked models (using Akaike’s information criterion) explained between 18% and 40% of the variance in growth rate, with each species showing a strong response to competition. Models indicated that relationships between competition and growth varied substantially among species. The results also suggested that the relationship between growth rate and tree size can be complex and that how we model it can affect not only our ability to detect that complexity but also whether we obtain misleading results. In this case, for three of four species, the best model captured an apparent and unexpected decline in potential growth rate for the smallest trees in the data set.

  19. Climate effects on fire regimes and tree recruitment in Black Hills ponderosa pine forests.

    Science.gov (United States)

    Brown, Peter M

    2006-10-01

    Climate influences forest structure through effects on both species demography (recruitment and mortality) and disturbance regimes. Here, I compare multi-century chronologies of regional fire years and tree recruitment from ponderosa pine forests in the Black Hills of southwestern South Dakota and northeastern Wyoming to reconstructions of precipitation and global circulation indices. Regional fire years were affected by droughts and variations in both Pacific and Atlantic sea surface temperatures. Fires were synchronous with La Niñas, cool phases of the Pacific Decadal Oscillation (PDO), and warm phases of the Atlantic Multidecadal Oscillation (AMO). These quasi-periodic circulation features are associated with drought conditions over much of the western United States. The opposite pattern (El Niño, warm PDO, cool AMO) was associated with fewer fires than expected. Regional tree recruitment largely occurred during wet periods in precipitation reconstructions, with the most abundant recruitment coeval with an extended pluvial from the late 1700s to early 1800s. Widespread even-aged cohorts likely were not the result of large crown fires causing overstory mortality, but rather were caused by optimal climate conditions that contributed to synchronous regional recruitment and longer intervals between surface fires. Synchronous recruitment driven by climate is an example of the Moran effect. The presence of abundant fire-scarred trees in multi-aged stands supports a prevailing historical model for ponderosa pine forests in which recurrent surface fires affected heterogenous forest structure, although the Black Hills apparently had a greater range of fire behavior and resulting forest structure over multi-decadal time scales than ponderosa pine forests of the Southwest that burned more often.

  20. Effects of Stand Origin and Near-Natural Restoration on the Stock and Structural Composition of Fallen Trees in Mid-Subtropical Forests

    Directory of Open Access Journals (Sweden)

    Chunsheng Wu

    2015-12-01

    Full Text Available Fallen trees comprise an important part of forest ecosystems and serve a central role in maintaining the biodiversity and tree regeneration of forests. However, the effects of stand origin and near-natural restoration on the biomass and carbon stock of fallen trees remain unclear. Based on 60 sampling plots of field surveys of mid-subtropical forests in Jiangxi Province, we investigated the stock and structural composition of fallen trees in artificial coniferous forests (Acf, natural coniferous forests (Ncf (e.g., different stand origins and natural evergreen broadleaf forests (Nebf (e.g., near-natural restoration. The following results were obtained: (1 the largest biomass and carbon stocks of fallen trees among three forest types (Nebf, Ncf and Acf were measured for Nebf; (2 the fallen tree biomass and carbon stock in natural Cunninghamia lanceolata forest (Nclf were significantly larger than that in artificial Cunninghamia lanceolata forest (Aclf, and the fallen tree biomass and carbon stock in natural Pinus massoniana forest (Npf were also significantly larger than those in artificial Pinus massoniana forest (Apf; (3 the diameter class allocation in natural forests was more uniform than that in artificial forests; (4 the biomass of fallen trees with mild decay was not significantly different among forest types within stand origin or among the stand origin within forest types; however, the biomass of fallen trees with moderate and heavy decay significantly differed among stand origin (Aclf vs. Nclf, Apf vs. Npf, but was not significant among the forest types (Aclf vs. Apf, Nclf vs. Apf within a stand origin. Our results suggested that the large biomass and carbon stock of fallen trees in Nebf may serve a significant role in mitigating global warming and carbon cycles in mid-subtropical forests. Therefore, stand origin and near-natural restoration exert significant effects on the carbon stock and structural composition of fallen trees in mid

  1. Disturbance regimes, gap-demanding trees and seed mass related to tree height in warm temperate rain forests worldwide.

    Science.gov (United States)

    Grubb, Peter J; Bellingham, Peter J; Kohyama, Takashi S; Piper, Frida I; Valido, Alfredo

    2013-08-01

    For tropical lowland rain forests, Denslow (1987) hypothesized that in areas with large-scale disturbances tree species with a high demand for light make up a larger proportion of the flora; results of tests have been inconsistent. There has been no test for warm temperate rain forests (WTRFs), but they offer a promising testing ground because they differ widely in the extent of disturbance. WTRF is dominated by microphylls sensu Raunkiaer and has a simpler structure and range of physiognomy than tropical or subtropical rain forests. It occurs in six parts of the world: eastern Asia, New Zealand, Chile, South Africa, SE Australia and the Azores. On the Azores it has been mostly destroyed, so we studied instead the subtropical montane rain forest (STMRF) on the Canary Islands which also represents a relict of the kind of WTRF that once stretched across southern Eurasia. We sought to find whether in these six regions the proportion of tree