Sample records for forest soil profile

  1. Magnetic Soils Profiles in the Volga-Kama Forest-Steppe Region

    Directory of Open Access Journals (Sweden)

    L.A. Fattakhova


    Full Text Available The magnetic properties of virgin forest-steppe soils developed on the originally vertically uniform unconsolidated parent material have been investigated. The profile samples of virgin dark-grey forest light-clayey soil derived from a siltstone of the Kazan layer of the Upper Permian and virgin leached medium-thick fertile light-clayey chernozem derived from a Quaternary heavy deluvial loam have been considered. Both soils are characterized by the accumulative type of magnetic susceptibility and F-factor values distribution patterns with depth. In the humus part of the soil profile, magnetics are present pre-dominantly in the < 2.5 µm fraction. The coercivity spectra allowed to determine the contribution of dia-/paramagnetic and ferromagnetic components to magnetic susceptibility. It has been found that magnetic susceptibility enhancement in the organogenic horizons of virgin forest-steppe soils occurs due to the contribution of ferromagnetic components. The results indicate a strong positive linear correlation between the magnetic susceptibility and oxalate-extractable Fe, as well as between the magnetic susceptibility and Schwertmann’s criterion values. Using the method of thermomagnetic analysis of the < 2.5 µm fraction, it has been found that the magnetic susceptibility enhancement in the profiles of forest-steppe soils took place due to the formation of maghemite-magnetite associations. The predominantly ferromagnetic fraction consists of small single-domain grains.

  2. Regional Assessment of soil organic matter profile distribution in the boreal forest ecosystems of Russia (United States)

    Meshalkina, Joulia; Belousova, Nataliya; Vasenev, Ivan


    Boreal forest ecosystems play one of the key roles in the Global Change challenges responses. The soil carbon stocks are principal regulators of their environmental functions. Boreal forest soil cover is characterized by mutually increased spatial variability in soil organic matter content (SOMC) that one need to take into attention in its current and future environmental functions state assessment including the potential of regional soil organic matter stocks changes due to Global Change and inverse ones. Knowledge of the regional regularities in SOMC profile vertical distribution allows improving their soil environmental functions prediction land quality evaluation. More than 900 profiles of SOMC distribution were studied using the database Boreal that contains data on Russian boreal soils developed in drained conditions on loamy soil forming rocks. These soil profiles belong to seven main types of forest soils of Russian classification and six major regions of Russia. The predomination of accumulation profile type was observed for all cases. Thus the vertical distribution of OMC in the profiles of boreal soils can be described as follow: the layer of maximum OMC is replaced by the layer of dramatic OMC reduction; then the layer of minimal OMC extends up to 2.5 m. The layer of maximal OMC accumulation has the low depth of 5-15 cm. It carried out in different genetic horizons: A1, A1A2, A2, B, AB; sometimes it captures the A2B horizon or the upper part of the illuvial horizon. The OMC in this layer increases from the northern taiga to the southern taiga and from the European part of Russia to Siberia. The second layer is characterized by its depth and by the gradient of OMC decreasing. A great variety of the both parameters is observed. The layer of the sharp OMC fall most often fits with the eluvial horizons A2 or А2В or even the upper part of the Вt (textural) or Bm (metamorphic) horizons. The layer of permanently small OMC may begin in any genetic horizon

  3. Taxonomic and functional profiles of soil samples from Atlantic forest and Caatinga biomes in northeastern Brazil. (United States)

    Pacchioni, Ralfo G; Carvalho, Fabíola M; Thompson, Claudia E; Faustino, André L F; Nicolini, Fernanda; Pereira, Tatiana S; Silva, Rita C B; Cantão, Mauricio E; Gerber, Alexandra; Vasconcelos, Ana T R; Agnez-Lima, Lucymara F


    Although microorganisms play crucial roles in ecosystems, metagenomic analyses of soil samples are quite scarce, especially in the Southern Hemisphere. In this work, the microbial diversity of soil samples from an Atlantic Forest and Caatinga was analyzed using a metagenomic approach. Proteobacteria and Actinobacteria were the dominant phyla in both samples. Among which, a significant proportion of stress-resistant bacteria associated to organic matter degradation was found. Sequences related to metabolism of amino acids, nitrogen, and DNA and stress resistance were more frequent in Caatinga soil, while the forest sample showed the highest occurrence of hits annotated in phosphorous metabolism, defense mechanisms, and aromatic compound degradation subsystems. The principal component analysis (PCA) showed that our samples are close to the desert metagenomes in relation to taxonomy, but are more similar to rhizosphere microbiota in relation to the functional profiles. The data indicate that soil characteristics affect the taxonomic and functional distribution; these characteristics include low nutrient content, high drainage (both are sandy soils), vegetation, and exposure to stress. In both samples, a rapid turnover of organic matter with low greenhouse gas emission was suggested by the functional profiles obtained, reinforcing the importance of preserving natural areas. © 2014 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  4. Distribution of some organic components in two forest soils profiles with evidence of soil organic matter leaching. (United States)

    Álvarez-Romero, Marta; Papa, Stefania; Lozano-García, Beatriz; Parras-Alcántara, Luis; Coppola, Elio


    Soil stores organic carbon more often than we can find in living vegetation and atmosphere together. This reservoir is not inert, but it is constantly in a dynamic phase of inputs and losses. Soil organic carbon mainly depends on land cover, environment conditions and soil properties. After soil deposition, the organic residues of different origin and nature, the Soil Organic Matter (SOM) can be seen involved in two different processes during the pedogenesis: mineralization and humification. The transport process along profile happens under certain conditions such as deposition of high organic residues amount on the top soil, high porosity of the soil caused by sand or skeleton particles, that determine a water strong infiltrating capacity, also, extreme temperatures can slow or stop the mineralization and/or humification process in one intermediate step of the degradation process releasing organic metabolites with high or medium solubility and high loads of water percolating in relation to intense rainfall. The transport process along soil profile can take many forms that can end in the formation of Bh horizons (h means accumulation of SOM in depth). The forest cover nature influence to the quantity and quality of the organic materials deposited with marked differences between coniferous and deciduous especially in relation to resistance to degradation. Two soils in the Campania region, located in Lago Laceno (Avellino - Italy) with different forest cover (Pinus sp. and Fagus sp.) and that meets the requirements of the place and pedological formation suitable for the formation and accumulation of SOM in depth (Bh horizon) were studied. The different soil C fractions were determinated and were assessed (Ciavatta C. et al. 1990; Dell'Abate M.T. et al. 2002) for each soil profile the Total Extractable Lipids (TEL). Furthermore, the lignin were considered as a major component of soil organic matter (SOM), influencing its pool-size and its turnover, due to the high

  5. Slope gradient and shape effects on soil profiles in the northern mountainous forests of Iran (United States)

    Fazlollahi Mohammadi, M.; Jalali, S. G. H.; Kooch, Y.; Said-Pullicino, D.


    In order to evaluate the variability of the soil profiles at two shapes (concave and convex) and five positions (summit, shoulder, back slope, footslope and toeslope) of a slope, a study of a virgin area was made in a Beech stand of mountain forests, northern Iran. Across the slope positions, the soil profiles demonstrated significant changes due to topography for two shape slopes. The solum depth of the convex slope was higher than the concave one in all five positions, and it decreased from the summit to shoulder and increased from the mid to lower slope positions for both convex and concave slopes. The thin solum at the upper positions and concave slope demonstrated that pedogenetic development is least at upper slope positions and concave slope where leaching and biomass productivity are less than at lower slopes and concave slope. A large decrease in the thickness of O and A horizons from the summit to back slope was noted for both concave and convex slopes, but it increased from back slope toward down slope for both of them. The average thickness of B horizons increased from summit to down slopes in the case of the concave slope, but in the case of convex slope it decreased from summit to shoulder and afterwards it increased to the down slope. The thicknesses of the different horizons varied in part in the different positions and shape slopes because they had different plant species cover and soil features, which were related to topography.

  6. Fluxes of CO2, CH4 and N2O at two European beech forests: linking soil gas production profiles with soil and stem fluxes (United States)

    Maier, Martin; Machacova, Katerina; Halaburt, Ellen; Haddad, Sally; Urban, Otmar; Lang, Friederike


    Soil and plant surfaces are known to exchange greenhouse gases with the atmosphere. Some gases like nitrous oxide (N2O) and methane (CH4) can be produced and re-consumed in different soil depths and soil compartments, so that elevated concentrations of CH4 or N2O in the soil do not necessarily mean a net efflux from the soil into the atmosphere. Soil aeration, and thus the oxygen status can underlay a large spatial variability within the soil on the plot and profile scale, but also within soil aggregates. Thus, conditions suitable for production and consumption of CH4 and N2O can vary on different scales in the soil. Plant surfaces can also emit or take up CH4 and N2O, and these fluxes can significantly contribute to the net ecosystem exchange. Since roots usually have large intercellular spaces or aerenchyma they may represent preferential transport ways for soil gases, linking possibly elevated soil gas concentrations in the subsoil in a "shortcut" to the atmosphere. We tested the hypothesis that the spatial variability of the soil-atmosphere fluxes of CO2, CH4 and N2O is caused by the heterogeneity in soil properties. Therefore, we measured soil-atmosphere gas fluxes, soil gas concentrations and soil diffusivity profiles and did a small scale field assessment of soil profiles on the measurments plots. We further tried to link vertical profiles of soil gas concentrations and diffusivity to derive the production and consumption profiles, and to link these profiles to the stem-atmosphere flux rates of individual trees. Measurements were conducted in two mountain beech forests with different geographical and climatic conditions (White Carpathians, Czech Republic; Black Forest, Germany). Gas fluxes at stem and soil levels were measured simultaneously using static chamber systems and chromatographic and continuous laser analyses. Monitoring simultaneously vertical soil gas profiles allowed to assess the within-soil gas fluxes, and thus to localize the production and

  7. Tree species and soil nutrient profiles in old-growth forests of the Oregon Coast Range (United States)

    Cross, Alison; Perakis, Steven S.


    Old-growth forests of the Pacific Northwest provide a unique opportunity to examine tree species – soil relationships in ecosystems that have developed without significant human disturbance. We characterized foliage, forest floor, and mineral soil nutrients associated with four canopy tree species (Douglas-fir (Pseudotsuga menziesii (Mirbel) Franco), western hemlock (Tsuga heterophylla (Raf.) Sarg.), western redcedar (Thuja plicata Donn ex D. Don), and bigleaf maple (Acer macrophyllum Pursh)) in eight old-growth forests of the Oregon Coast Range. The greatest forest floor accumulations of C, N, P, Ca, Mg, and K occurred under Douglas-fir, primarily due to greater forest floor mass. In mineral soil, western hemlock exhibited significantly lower Ca concentration and sum of cations (Ca + Mg + K) than bigleaf maple, with intermediate values for Douglas-fir and western redcedar. Bigleaf maple explained most species-based differences in foliar nutrients, displaying high concentrations of N, P, Ca, Mg, and K. Foliar P and N:P variations largely reflected soil P variation across sites. The four tree species that we examined exhibited a number of individualistic effects on soil nutrient levels that contribute to biogeochemical heterogeneity in these ecosystems. Where fire suppression and long-term succession favor dominance by highly shade-tolerant western hemlock, our results suggest a potential for declines in both soil Ca availability and soil biogeochemical heterogeneity in old-growth forests.

  8. Profile distribution and temporal changes of sulphate and nitrate contents and related soil properties under beech and spruce forests. (United States)

    Tejnecký, Václav; Bradová, Monika; Borůvka, Luboš; Němeček, Karel; Sebek, Ondřej; Nikodem, Antonín; Zenáhlíková, Jitka; Rejzek, Jan; Drábek, Ondřej


    The behaviour of principal inorganic anions in forest soils, originating mainly from acid deposition, strongly influences the forest ecosystem response on acidification. The aim of this study was to describe seasonal and temporal changes of sulphate and nitrate contents and related soil properties under beech and spruce forests in a region heavily impacted by acidification. The Jizera Mountains area (Czech Republic) was chosen as such a representative mountainous soil ecosystem. Soil samples were collected at monthly intervals from April to October during the years 2008-2010 under both beech and spruce stands. Soil samples were collected from surface fermentation (F) and humified (H) organic horizons, humic (A) organo-mineral horizons and subsurface mineral (B) horizons (cambic or spodic). A deionised water extract was applied to unsieved fresh samples and the content of anions in these extracts was determined by ion chromatography (IC). In the studied soil profiles, the lowest amount of SO(4)(2-) was found in the organo-mineral A horizons under both types of vegetation. Under spruce the highest amount of SO(4)(2-) was determined in mineral spodic (B) horizons, where a strong sorption influence of Fe and Al oxy-hydroxides is expected. Under beech the highest amount was observed in the surface organic F horizons (forest floor). The amount of NO(3)(-) is highest in the F horizons and decreases with increasing soil profile depth under both types of vegetation. A significantly higher amount of NO(3)(-) was determined in soils under the beech stand compared to spruce. For both soil environments - under beech and also spruce stands - we have determined a general increase of water-extractable SO(4)(2-) and NO(3)(-) during the whole monitoring period. The behaviour of SO(4)(2-) and NO(3)(-) in the soils is strongly related to the dynamics of soil organic matter and particularly to the DOC.

  9. Small scale temporal distribution of radiocesium in undisturbed coniferous forest soil: Radiocesium depth distribution profiles. (United States)

    Teramage, Mengistu T; Onda, Yuichi; Kato, Hiroaki


    The depth distribution of pre-Fukushima and Fukushima-derived (137)Cs in undisturbed coniferous forest soil was investigated at four sampling dates from nine months to 18 months after the Fukushima nuclear power plant accident. The migration rate and short-term temporal variability among the sampling profiles were evaluated. Taking the time elapsed since the peak deposition of pre-Fukushima (137)Cs and the median depth of the peaks, its downward displacement rates ranged from 0.15 to 0.67 mm yr(-1) with a mean of 0.46 ± 0.25 mm yr(-1). On the other hand, in each examined profile considerable amount of the Fukushima-derived (137)Cs was found in the organic layer (51%-92%). At this moment, the effect of time-distance on the downward distribution of Fukushima-derived (137)Cs seems invisible as its large portion is still found in layers where organic matter is maximal. This indicates that organic matter seems the primary and preferential sorbent of radiocesium that could be associated with the physical blockage of the exchanging sites by organic-rich dusts that act as a buffer against downward propagation of radiocesium, implying radiocesium to be remained in the root zone for considerable time period. As a result, this soil section can be a potential source of radiation dose largely due to high radiocesium concentration coupled with its low density. Generally, such kind of information will be useful to establish a dynamic safety-focused decision support system to ease and assist management actions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Soil profile, relief features and their relation to structure and distribution of Brazilian Atlantic rain forest trees

    Directory of Open Access Journals (Sweden)

    Frederico Augusto Guimarães Guilherme


    Full Text Available In tropical forests, the environmental heterogeneity can provide niche partitioning at local scales and determine the diversity and plant species distribution. Thus, this study aimed to investigate the variations of tree species structure and distribution in response to relief and soil profile features in a portion of the largest remnant of Brazilian Atlantic rain forest. All trees ³ 5 cm diameter at breast height were recorded in two 0.99 ha plots. Topographic survey and a soil characterization were accomplished in both plots. Topsoil samples (0-20 cm were taken from 88 quadrats and analyzed for chemical and particle size properties. Differences for both diversity and tree density were identified among three kinds of soils. A canonical correspondence analysis (CCA indicated that the specific abundance varied among the three kinds of soils mapped: a shallow Udept - Orthent / Aquent gradient, probably due to differences in soil drainage. Nutrient content was less likely to affect tree species composition and distribution than relief, pH, Al3+, and soil texture. Some species were randomly distributed and did not show restriction to relief and soil properties. However, preferences in niche occupation detected in this study, derived from the catenary environments found, rise up as an important explanation for the high tree species diversity in tropical forests.

  11. Into the Deep: Variability in Soil Microbial Communities and Carbon Turnover Along a Tropical Forest Soil Depth Profile (United States)

    Pett-Ridge, J.; McFarlane, K. J.; Heckman, K. A.; Reed, S.; Wood, T. E.


    Tropical forest soils store more carbon (C) than any other terrestrial ecosystem and exchange vast amounts of CO2, water, and energy with the atmosphere. Much of this C is leached and stored within deeper soil layers, but we know exceedingly little about the fate of this C or the microbial communities that drive deep soil biogeochemistry. From the data that do exist, most organic matter (OM) in tropical soils appears associated with mineral particles, suggesting deep soils may provide greater C stabilization due to organo-metal co-precipitation and mineral-surface interactions. However, few studies have evaluated sub-surface soils in tropical ecosystems, the turnover times of deep soil C, and sensitivity of this C to global environmental change. To address this critical research need, we quantified C pools, microbial communities and soil radiocarbon turnover times in bulk soils and soil fractions [free light (unprotected), dense (mineral-associated)] from 0-140 cm in replicate soil pits in the Luquillo Experimental Forest, Puerto Rico. Unsurprisingly, we found soil C, nitrogen, and root and microbial biomass all declined exponentially with depth; total C stocks dropped from 5.5 % at the surface to mineral associated fraction was much older than the free light fraction C, which reflected modern 14C at all depths. In comparison to temperate deciduous forests, these 14C values reflect far older soil C, and OM decomposition that highly favors free light C pools, even at depth. While previous work suggests these low C tropical subsoils contain small but metabolically active microbial communities at depths of ~100cm, these organisms appear highly OM limited, and preferentially degrade recent inputs. In the coming half century, tropical forests are predicted to see a 2 - 5 ° C temperature increase and substantial differences in rainfall amount and timing. The data described here represent baseline data for a site now undergoing a 4°C warming experiment; upcoming

  12. Soil depth profiles and radiological assessment of natural radionuclides in forest ecosystem

    Energy Technology Data Exchange (ETDEWEB)

    Manigandan, P.K. [Al Musanna College of Technology, Muscat (Oman); Chandar Shekar, B. [Bharathiar Univ., Coimbatore (India). Kongunadu Arts and Science College


    We measured the distribution of three naturally occurring radionuclides, {sup 238}U, {sup 232}Th, and {sup 40}K, in soil samples collected from a rainforest in the Western Ghats of India. For each surface sample, we calculated average activity concentration, outdoor terrestrial γ dose rate, annual effective dose equivalent (AEDE), and radiation hazard index. The activity concentrations of surface samples were randomly distributed over space, but differed slightly with different soil depths. The concentration of {sup 232}Th and the average terrestrial γ dose rates were slightly higher than the world averages, so slightly high γ radiation appears to be a general characteristic of the Western Ghats. However, all radiological hazard indices were within the limits proposed by the International Commission on Radiological Protection. The results reported here indicate that, except for {sup 232}Th, the naturally occurring radionuclides in the forest soils of the Western Ghats were within the ranges specified by United Nations Scientific Committee on the Effects of Atomic Radiation for undisturbed virgin soils.

  13. The dynamic of nickel and lead content in the profile of the meadow forest flooded soil in the experiment

    Directory of Open Access Journals (Sweden)

    O. М. Kunah


    Full Text Available The results of the experiment dealing with the study of nickel and lead migration through the soil profile have been presented in the work. Special attention has been paid to zoogenic factor of heavy metal migration. The usage of entropy measure to assess the heavy metal distribution in the soil profile has been proposed. The entropy evenness index has been shown to permit quantity estimation of the migration processes in the horizontal and vertical direction. The evenness of metal distribution in vertical direction is more active than in horizontal direction. The soil animals have an impotent role in the processes of increasing of horizontal heavy metal migration.

  14. Soil strength and forest operations.

    NARCIS (Netherlands)

    Beekman, F.


    The use of heavy machinery and transport vehicles is an integral part of modern forest operations. This use often causes damage to the standing trees and to the soil. In this study the effects of vehicle traffic on the soil are analysed and the possible consequences for forest management discussed.

  15. Method to measure soil matrix infiltration in forest soil (United States)

    Zhang, Jing; Lei, Tingwu; Qu, Liqin; Chen, Ping; Gao, Xiaofeng; Chen, Chao; Yuan, Lili; Zhang, Manliang; Su, Guangxu


    Infiltration of water into forest soil commonly involves infiltration through the matrix body and preferential passages. Determining the matrix infiltration process is important in partitioning water infiltrating into the soil through the soil body and macropores to evaluate the effects of soil and water conservation practices on hillslope hydrology and watershed sedimentation. A new method that employs a double-ring infiltrometer was applied in this study to determine the matrix infiltration process in forest soil. Field experiments were conducted in a forest field on the Loess Plateau at Tianshui Soil and Water Conservation Experimental Station. Nylon cloth was placed on the soil surface in the inner ring and between the inner and outer rings of infiltrometers. A thin layer of fine sands were placed onto the nylon cloth to shelter the macropores and ensure that water infiltrates the soil through the matrix only. Brilliant Blue tracers were applied to examine the exclusion of preferential flow occurrences in the measured soil body. The infiltration process was measured, computed, and recorded through procedures similar to those of conventional methods. Horizontal and vertical soil profiles were excavated to check the success of the experiment and ensure that preferential flow did not occur in the measured soil column and that infiltration was only through the soil matrix. The infiltration processes of the replicates of five plots were roughly the same, thereby indicating the feasibility of the methodology to measure soil matrix infiltration. The measured infiltration curves effectively explained the transient process of soil matrix infiltration. Philip and Kostiakov models fitted the measured data well, and all the coefficients of determination were greater than 0.9. The wetted soil bodies through excavations did not present evidence of preferential flow. Therefore, the proposed method can determine the infiltration process through the forest soil matrix. This

  16. Soils characterisation along ecological forest zones in the Eastern Himalayas (United States)

    Simon, Alois; Dhendup, Kuenzang; Bahadur Rai, Prem; Gratzer, Georg


    Elevational gradients are commonly used to characterise vegetation patterns and, to a lesser extent, also to describe soil development. Furthermore, interactions between vegetation cover and soil characteristics are repeatedly observed. Combining information on soil development and easily to distinguish forest zones along elevational gradients, creates an added value for forest management decisions especially in less studied mountain regions. For this purpose, soil profiles along elevational gradients in the temperate conifer forests of Western and Central Bhutan, ranging from 2600-4000m asl were investigated. Thereby, 82 soil profiles were recorded and classified according to the World Reference Base for Soil Resources. Based on 19 representative profiles, genetic horizons were sampled and analysed. We aim to provide fundamental information on forest soil characteristics along these elevational transects. The results are presented with regard to ecological forest zones. The elevational distribution of the reference soil groups showed distinct distribution ranges for most of the soils. Cambisols were the most frequently recorded reference soil group with 58% of the sampled profiles, followed by Podzols in higher elevations, and Stagnosols, at intermediate elevations. Fluvisols occurred only at the lower end of the elevational transects and Phaeozems only at drier site conditions in the cool conifer dry forest zone. The humus layer thickness differs between forest zones and show a shift towards increased organic layer (O-layer) with increasing elevation. The reduced biomass productivity with increasing elevation and subsequently lower litter input compensates for the slow decomposition rates. The increasing O-layer thickness is an indicator of restrained intermixing of organic and mineral components by soil organisms at higher elevation. Overall, the soil types and soil characteristics along the elevational gradient showed a continuous and consistent change, instead

  17. Dynamics of forest soil chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Alveteg, M.


    Acidification caused by emissions of nitrogen and sulphur and associated adverse effects on forest ecosystems has been an issue on the political agenda for decades. Temporal aspects of soil acidification and/or recovery can be investigated using the soil chemistry model SAFE, a dynamic version of the steady-state model PROFILE used in critical loads assessment on the national level, e.g. for Sweden. In this thesis, possibilities to replace the use of apparent gibbsite solubility coefficients with a more mechanistic Al sub-model are investigated and a reconstruction model, MAKEDEP, is presented which makes hindcasts and forecasts of atmospheric deposition and nutrient uptake and cycling. A regional application of SAFE/MAKEDEP based on 622 sites in Switzerland is also presented. It is concluded that the quantitative information on pools and fluxes of Al in forest ecosystems is very limited and that there currently exists no mechanistic alternative in modelling soil solution Al. MAKEDEP is a valuable and operational tool for deriving input to dynamic soil chemistry models such as SMART, MAGIC and SAFE. For multi-layer models, e.g. the SAFE model, including nutrient cycling in MAKEDEP is shown to be important. The strength of the regional assessment strategy presented in this thesis lies in its transparency and modularity. All sub-modules, including models, transfer functions, assumptions in the data acquisition strategy, etc., can be checked and replaced individually. As the presented assessment strategy is based on knowledge and data from a wide range of scientists and fields it is of vital importance that the research community challenge the assumptions made. The many measurable intermediate results produced by the included models will hopefully encourage scientists to challenge the models through additional measurements at the calculation sites. It is concluded that current reduction plans are not sufficient for all forest ecosystems in Switzerland to recover from

  18. Carbon and nitrogen in Danish forest soils - Contents and distribution determined by soil order

    DEFF Research Database (Denmark)

    Vejre, Henrik; Callesen, Ingeborg; Vesterdal, Lars


    Increasing atmospheric CO2 concentrations, and widespread deposition of N to terrestrial ecosystems has increased the focus on soil C and N pools. The aim of this study was to estimate the size and distribution of organic C and N pools in well-drained Danish forest soils. We examined 140 forest...... soil profiles from pedological surveys of Danish forest soils. We calculated total C and N pools in organic layers and mineral soils to a depth of 1 m. The profiles represent variations in texture (sandy to loamy), and soil order (USDA soil taxonomy Spodosols, Alfisols, Entisols,,and Inceptisols......)) and least in Spodosols (0.51 kg m(-2)). The main contributor to the high C content in Spodosols is the spodic horizons containing illuvial humus, and thick organic horizons. Carbon and N concentrations decreased with soil depth. Soil clay content was negatively correlated to C content and positively...

  19. [Vertical distribution of soil active carbon and soil organic carbon storage under different forest types in the Qinling Mountains]. (United States)

    Wang, Di; Geng, Zeng-Chao; She, Diao; He, Wen-Xiang; Hou, Lin


    Adopting field investigation and indoor analysis methods, the distribution patterns of soil active carbon and soil carbon storage in the soil profiles of Quercus aliena var. acuteserrata (Matoutan Forest, I), Pinus tabuliformis (II), Pinus armandii (III), pine-oak mixed forest (IV), Picea asperata (V), and Quercus aliena var. acuteserrata (Xinjiashan Forest, VI) of Qinling Mountains were studied in August 2013. The results showed that soil organic carbon (SOC), microbial biomass carbon (MBC), dissolved organic carbon (DOC), and easily oxidizable carbon (EOC) decreased with the increase of soil depth along the different forest soil profiles. The SOC and DOC contents of different depths along the soil profiles of P. asperata and pine-oak mixed forest were higher than in the other studied forest soils, and the order of the mean SOC and DOC along the different soil profiles was V > IV > I > II > III > VI. The contents of soil MBC of the different forest soil profiles were 71.25-710.05 mg x kg(-1), with a content sequence of I > V > N > III > II > VI. The content of EOC along the whole soil profile of pine-oak mixed forest had a largest decline, and the order of the mean EOC was IV > V> I > II > III > VI. The sequence of soil organic carbon storage of the 0-60 cm soil layer was V > I >IV > III > VI > II. The MBC, DOC and EOC contents of the different forest soils were significanty correlated to each other. There was significant positive correlation among soil active carbon and TOC, TN. Meanwhile, there was no significant correlation between soil active carbon and other soil basic physicochemical properties.

  20. Enzyme activity in forest peat soils


    Błońska, Ewa


    The aim of the study was to determine the activity of dehydrogenases and urease in forest peat soils of different fertility. There were selected 23 experimental plots localised in central and northern Poland. The research was conducted on forest fens, transition bogs and raised bogs. The biggest differences in soil physical and chemical properties were detected between fen and raised bog soils while raised bog soils and transition bog soils differed the least. Statistically significant dif...

  1. C Stocks in Forest Floor and Mineral Soil of Two Mediterranean Beech Forests

    Directory of Open Access Journals (Sweden)

    Anna De Marco


    Full Text Available This study focuses on two Mediterranean beech forests located in northern and southern Italy and therefore subjected to different environmental conditions. The research goal was to understand C storage in the forest floor and mineral soil and the major determinants. Relative to the northern forest (NF, the southern forest (SF was found to produce higher amounts of litterfall (4.3 vs. 2.5 Mg·ha−1 and to store less C in the forest floor (~8 vs. ~12 Mg·ha−1 but more C in the mineral soil (~148 vs. ~72 Mg·ha−1. Newly-shed litter of NF had lower P (0.4 vs. 0.6 mg·g−1 but higher N concentration (13 vs. 10 mg·g−1 than SF. Despite its lower Mn concentration (0.06 vs. 0.18 mg·g−1, SF litter produces a Mn-richer humus (0.32 vs. 0.16 mg·g−1 that is less stable. The data suggest that decomposition in the NF forest floor is limited by the shorter growing season (178 days vs. 238 days and the higher N concentrations in newly shed litter and forest floor. Differences in C stock in the mineral soil reflect differences in ecosystem productivity and long-term organic-matter accumulation. The vertical gradient of soluble and microbial fractions in the soil profile of SF was consistent with a faster turnover of organic matter in the forest floor and greater C accumulation in mineral soil relative to NF. With reference to regional-scale estimates from Italian National Forest Inventory data, the C stock in the mineral soil and the basal area of Italian beech forests were found to be significantly related, whereas C stock in the forest floor and C stock in the mineral soil were not.

  2. Soil enzyme activities and their indication for fertility of urban forest soil

    Institute of Scientific and Technical Information of China (English)


    To reveal the biological characteristics of urban forest soil and the effects of soil enzyme on soil fertility as well as the correlation between physicochemical properties and enzyme activities,44 urban forest soil profiles in Nanjing were investigated.Basic soil physicochemical properties and enzyme activities were analyzed in the laboratory.Hydrogen peroxidase,dehydrogenase,alkaline phosphatase,and cellulase were determined by potassium permanphosphate dinatrium colorimetry,and anthrone colorimetry,respectively.The result showed that soil pH,organic carbon (C),and total nitrogen (N) had great effects on hydrogen peroxidase,dehydrogenase,and alkaline phosphatase activities in 0-20 cm thick soil.However,pH only had great effect on hydrogen peroxidase,dehydrogenase,and alkaline phosphatase activities in 20-40 cm thick soil.Hydrogen peroxidase,dehydrogenase,and alkaline phosphatase were important biological indicators for the fertility of urban forest soil.Both in 0-20 cm and 20-40 cm soil,soil enzyme system (hydrogen peroxidase,dehydrogenase,alkaline phosphatase,and cellulase) had a close relationship with a combination of physicochemical indicators (pH,organic C,total N,available K,available P,cation exchange capacity (CEC),and microbial biomass carbon(Cmic)).The more soil enzyme activities there were,the higher the fertility of urban forest soil.

  3. Organic matter stocks in temperate forest soil


    Schöning, Ingo


    In temperate forests, more than 60% of the total carbon reserves are located in forest floor and mineral soil. The main objectives of this study were (1) to investigate the composition and radiocarbon age of organic matter (OM) pools of different stability in mineral soils, (2) to identify associations between iron oxides and specific carbon species, and (3) to analyse the small scale spatial variability of soil organic carbon (SOC) stocks. Composition, radiocarbon age and associations betwee...

  4. Analysis of soil moisture variation by forest cover structure in lower western Himalayas, India

    Institute of Scientific and Technical Information of China (English)

    J.v.Tyagi; Nuzhat Qazi; S.P.Rai; M.P.Singh


    Soil moisture affects various hydrological processes,including evapotranspiration,infiltration,and runoff.Forested areas in the lower western Himalaya in India constitute the headwater catchments for many hill streams and have experienced degradation in forest cover due to grazing,deforestation and other human activities.This change in forest cover is likely to alter the soil moisture regime and,consequently,flow regimes in streams.The effect of change in forest cover on soil moisture regimes of this dry region has not been studied through long term field observations.We monitored soil matric potentials in two small watersheds in the lower western Himalaya of India.The watersheds consisted of homogeneous land covers of moderately dense oak forest and moderately degraded mixed oak forest.Observations were recorded at three sites at three depths in each watershed at fortnightly intervals for a period of three years.The soil moisture contents derived from soil potential measurements were analyzed to understand the spatial,temporal and profile variations under the two structures of forest cover.The analysis revealed large variations in soil moisture storage at different sites and depths and also during different seasons in each watershed.Mean soil moisture storage during monsoon,winter and summer seasons was higher under dense forest than under degraded forest.Highest soil moisture content occurred at shallow soil profiles,decreasing with depth in both watersheds.A high positive correlation was found between tree density and soil moisture content.Mean soil moisture content over the entire study period was higher under dense forest than under degraded forest.This indicated a potential for soil water storage under well managed oak forest.Because soil water storage is vital for sustenance of low flows,attention is needed on the management of oak forests in the Himalayan region.

  5. Calculating Organic Carbon Stock from Forest Soils

    Directory of Open Access Journals (Sweden)

    Lucian Constantin DINCĂ


    Full Text Available The organic carbon stock (SOC (t/ha was calculated in different approaches in order to enhance the differences among methods and their utility regarding specific studies. Using data obtained in Romania (2000-2012 from 4,500 profiles and 9,523 soil horizons, the organic carbon stock was calculated for the main forest soils (18 types using three different methods: 1 on pedogenetical horizons, by soil bulk density and depth class/horizon thickness; 2 by soil type and standard depths; 3 using regression equations between the quantity of organic C and harvesting depths. Even though the same data were used, the differences between the values of C stock obtained from the three methods were relatively high. The first method led to an overvaluation of the C stock. The differences between methods 1 and 2 were high (and reached 33% for andosol, while the differences between methods 2 and 3 were smaller (a maximum of 23% for rendzic leptosol. The differences between methods 2 and 3 were significantly lower especially for andosol, arenosol and vertisol. A thorough analysis of all three methods concluded that the best method to evaluate the organic C stock was to distribute the obtained values on the following standard depths: 0 - 10 cm; 10 - 20 cm; 20 - 40 cm; > 40 cm. For each soil type, a correlation between the quantity of organic C and the sample harvesting depth was also established. These correlations were significant for all types of soil; however, lower correlation coefficients were registered for rendzic leptosol, haplic podzol and fluvisol.

  6. Investigation of the vertical distribution and speciation of (137)Cs in soil profiles at burnt and unburnt forest sites in the Belarusian Exclusion Zone. (United States)

    Dowdall, M; Bondar, Y; Skipperud, L; Zabrotski, V; Pettersen, M Nandrup; Selnæs, Ø G; Brown, J E


    The effects of fire events on contaminant radionuclides within soils of the Belarusian Exclusion Zone were investigated. A number of cores were taken from locations known to have been subject to fire events in the past as well as a series of cores from nearby unburnt locations. Both burnt and unburnt cores were analyzed for contaminant radionuclides as well as a range of relevant soil parameters. The distribution of (137)Cs between various fractions (reversibly bound, irreversibly bound and insoluble) was analyzed. Results indicate no evidence of enhancement or enrichment of radionuclides within the soil column although this does not negate the possibility that such effects were evident at some point in the past, the fire events at two of the sites having occurred almost ten years earlier. Evidence was present of a persistent effect on how (137)Cs was distributed between different fractions of the soil, primarily in relation to the proportions associated with oxides of Fe and Mn and organic matter. The results of the study appear to indicate that the long-term effects of a forest fire on contaminant (137)Cs within the soil column are expressed through changes in the physico-chemical forms of the nuclide to a larger extent than simple redistribution of the contaminant within the soil column. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Carbon in boreal coniferous forest soil

    Energy Technology Data Exchange (ETDEWEB)

    Westman, C.J.; Ilvesniemi, H.; Liski, J.; Mecke, M. [Helsinki Univ. (Finland). Dept. of Forest Ecology; Fritze, H.; Helmisaari, H.S.; Pietikaeinen, J.; Smolander, A. [Finnish Forest Research Inst., Vantaa (Finland)


    The working hypothesis of the research was that the soil of boreal forests is a large carbon store and the amount of C is still increasing in young soils, like in the forest soils of Finland, which makes these soils important sinks for atmospheric CO{sub 2}. Since the processes defining the soil C balance, primary production of plants and decomposition, are dependent on environmental factors and site properties, it was assumed that the organic carbon pool in the soil is also dependent on the same factors. The soil C store is therefore likely to change in response to climatic warming. The aim of this research was to estimate the C balance of forest soil in Finland and predict changes in the balance in response to changes in climatic conditions. To achieve the aim (1) intensive empirical experimentation on the density of C in different pools in the soil and on fluxes between the pools was done was done, (2) the effect of site fertility and climate on the amount and properties of organic C in forest soil was investigated and (3) dynamic modelling for investigating dynamics of the soil C storage was used

  8. The variations of aluminium species in mountainous forest soils and its implications to soil acidification. (United States)

    Bradová, Monika; Tejnecký, Václav; Borůvka, Luboš; Němeček, Karel; Ash, Christopher; Šebek, Ondřej; Svoboda, Miroslav; Zenáhlíková, Jitka; Drábek, Ondřej


    Aluminium (Al) speciation is a characteristic that can be used as a tool for describing the soil acidification process. The question that was answered is how tree species (beech vs spruce) and type of soil horizon affect Al speciation. Our hypotesis is that spruce and beech forest vegetation are able to modify the chemical characteristics of organic horizon, hence the content of Al species. Moreover, these characteristics are seasonally dependent. To answer these questions, a detailed chromatographic speciation of Al in forest soils under contrasting tree species was performed. The Jizera Mountains area (Czech Republic) was chosen as a representative mountainous soil ecosystem. A basic forestry survey was performed on the investigated area. Soil and precipitation samples (throughfall, stemflow) were collected under both beech and spruce stands at monthly intervals from April to November during the years 2008-2011. Total aluminium content and Al speciation, pH, and dissolved organic carbon were determined in aqueous soil extracts and in precipitation samples. We found that the most important factors affecting the chemistry of soils, hence content of the Al species, are soil horizons and vegetation cover. pH strongly affects the amount of Al species under both forests. Fermentation (F) and humified (H) organic horizons contain a higher content of water extractable Al and Al(3+) compared to organo-mineral (A) and mineral horizons (B). With increasing soil profile depth, the amount of water extractable Al, Al(3+) and moisture decreases. The prevailing water-extractable species of Al in all studied soils and profiles under both spruce and beech forests were organically bound monovalent Al species. Distinct seasonal variations in organic and mineral soil horizons were found under both spruce and beech forests. Maximum concentrations of water-extractable Al and Al(3+) were determined in the summer, and the lowest in spring.


    Directory of Open Access Journals (Sweden)

    Anne Johnson


    Full Text Available Three species of green algae and one blue-green alga were recorded from eight samples of soil found associated with bryophytes in the Cibodas Forest Reserve. Chemical analysis of the soil showed severe leaching of soluable mineral substances associated with a low pH. The low light intensity under forest conditions and the low pH may account for the limited algal flora.

  10. Soil organic matter regulates molybdenum storage and mobility in forests (United States)

    Marks, Jade A; Perakis, Steven; King, Elizabeth K; Pett-Ridge, Julie


    The trace element molybdenum (Mo) is essential to a suite of nitrogen (N) cycling processes in ecosystems, but there is limited information on its distribution within soils and relationship to plant and bedrock pools. We examined soil, bedrock, and plant Mo variation across 24 forests spanning wide soil pH gradients on both basaltic and sedimentary lithologies in the Oregon Coast Range. We found that the oxidizable organic fraction of surface mineral soil accounted for an average of 33 %of bulk soil Mo across all sites, followed by 1.4 % associated with reducible Fe, Al, and Mn-oxides, and 1.4 % in exchangeable ion form. Exchangeable Mo was greatest at low pH, and its positive correlation with soil carbon (C) suggests organic matter as the source of readily exchangeable Mo. Molybdenum accumulation integrated over soil profiles to 1 m depth (τMoNb) increased with soil C, indicating that soil organic matter regulates long-term Mo retention and loss from soil. Foliar Mo concentrations displayed no relationship with bulk soil Mo, and were not correlated with organic horizon Mo or soil extractable Mo, suggesting active plant regulation of Mo uptake and/or poor fidelity of extractable pools to bioavailability. We estimate from precipitation sampling that atmospheric deposition supplies, on average, over 10 times more Mo annually than does litterfall to soil. In contrast, bedrock lithology had negligible effects on foliar and soil Mo concentrations and on Mo distribution among soil fractions. We conclude that atmospheric inputs may be a significant source of Mo to forest ecosystems, and that strong Mo retention by soil organic matter limits ecosystem Mo loss via dissolution and leaching pathways.

  11. Long-term forest soil warming alters microbial communities in temperate forest soils. (United States)

    DeAngelis, Kristen M; Pold, Grace; Topçuoğlu, Begüm D; van Diepen, Linda T A; Varney, Rebecca M; Blanchard, Jeffrey L; Melillo, Jerry; Frey, Serita D


    Soil microbes are major drivers of soil carbon cycling, yet we lack an understanding of how climate warming will affect microbial communities. Three ongoing field studies at the Harvard Forest Long-term Ecological Research (LTER) site (Petersham, MA) have warmed soils 5°C above ambient temperatures for 5, 8, and 20 years. We used this chronosequence to test the hypothesis that soil microbial communities have changed in response to chronic warming. Bacterial community composition was studied using Illumina sequencing of the 16S ribosomal RNA gene, and bacterial and fungal abundance were assessed using quantitative PCR. Only the 20-year warmed site exhibited significant change in bacterial community structure in the organic soil horizon, with no significant changes in the mineral soil. The dominant taxa, abundant at 0.1% or greater, represented 0.3% of the richness but nearly 50% of the observations (sequences). Individual members of the Actinobacteria, Alphaproteobacteria and Acidobacteria showed strong warming responses, with one Actinomycete decreasing from 4.5 to 1% relative abundance with warming. Ribosomal RNA copy number can obfuscate community profiles, but is also correlated with maximum growth rate or trophic strategy among bacteria. Ribosomal RNA copy number correction did not affect community profiles, but rRNA copy number was significantly decreased in warming plots compared to controls. Increased bacterial evenness, shifting beta diversity, decreased fungal abundance and increased abundance of bacteria with low rRNA operon copy number, including Alphaproteobacteria and Acidobacteria, together suggest that more or alternative niche space is being created over the course of long-term warming.

  12. Long-term growth of temperate broadleaved forests no longer benefits soil C accumulation (United States)

    Ji, Yu-He; Guo, Ke; Fang, Shi-Bo; Xu, Xiao-Niu; Wang, Zhi-Gao; Wang, Shu-Dong


    It is widely recognized that the long-term growth of forests benefits biomass carbon (C) sequestration, but it is not known whether the long-term growth of forests would also benefit soil C sequestration. We selected 79 representative soil profiles and investigated the influence of the forest stand age on the soil C dynamics of three soil layers (0–10, 10–20 and 20–30 cm) in temperate broadleaved forests in East China. The results suggest that the soil C density in temperature broadleaved forests significantly changes with the stand age, following a convex parabolic curve. At an early stand age, the soil C density usually increases, reaching its peak value at a pre-mature stand age (approximately 50 years old). At later stand ages, the soil C density usually decreases. Therefore, our results reveal a turning point in the soil C density at a pre-mature stand age. The long-term growth of temperate broadleaved forests after pre-mature stand age no longer benefits soil C accumulation, probably promotes topsoil C loss. In addition, we found that the soil C density in the upper soil layer usually changes with the forest stand development more significantly than that in deeper soil layers.

  13. Long-term growth of temperate broadleaved forests no longer benefits soil C accumulation (United States)

    Ji, Yu-he; Guo, Ke; Fang, Shi-bo; Xu, Xiao-niu; Wang, Zhi-gao; Wang, Shu-dong


    It is widely recognized that the long-term growth of forests benefits biomass carbon (C) sequestration, but it is not known whether the long-term growth of forests would also benefit soil C sequestration. We selected 79 representative soil profiles and investigated the influence of the forest stand age on the soil C dynamics of three soil layers (0–10, 10–20 and 20–30 cm) in temperate broadleaved forests in East China. The results suggest that the soil C density in temperature broadleaved forests significantly changes with the stand age, following a convex parabolic curve. At an early stand age, the soil C density usually increases, reaching its peak value at a pre-mature stand age (approximately 50 years old). At later stand ages, the soil C density usually decreases. Therefore, our results reveal a turning point in the soil C density at a pre-mature stand age. The long-term growth of temperate broadleaved forests after pre-mature stand age no longer benefits soil C accumulation, probably promotes topsoil C loss. In addition, we found that the soil C density in the upper soil layer usually changes with the forest stand development more significantly than that in deeper soil layers. PMID:28176873

  14. [Characteristics of soil pH and exchangeable acidity in red soil profile under different vegetation types]. (United States)

    Ji, Gang; Xu, Ming-gang; Wen, Shi-lin; Wang, Bo-ren; Zhang, Lu; Liu, Li-sheng


    The characteristics of soil pH and exchangeable acidity in soil profile under different vegetation types were studied in hilly red soil regions of southern Hunan Province, China. The soil samples from red soil profiles within 0-100 cm depth at fertilized plots and unfertilized plots were collected and analyzed to understand the profile distribution of soil pH and exchangeable acidity. The results showed that, pH in 0-60 cm soil from the fertilized plots decreased as the following sequence: citrus orchard > Arachis hypogaea field > tea garden. As for exchangeable acidity content, the sequence was A. hypogaea field ≤ citrus orchard soil (0-40 cm), compared with the deep soil (60-100 cm), and soil pH decreased by 0.55 and 0.17 respectively, but such changes did not occur in citrus orchard. Soil pH in 0-40 cm soil from the natural recovery vegetation unfertilized plots decreased as the following sequence: Imperata cylindrica land > Castanea mollissima garden > Pinus elliottii forest ≥ Loropetalum chinensis forest. As for exchangeable acidity content, the sequence was L cylindrica land Soil pH in surface soil (0-20 cm) from natural forest plots, secondary forest and Camellia oleifera forest were significantly lower than that from P. massoniana forest, decreased by 0.34 and 0.20 respectively. For exchangeable acidity content in 0-20 cm soil from natural forest plot, P. massoniana forest and secondary forest were significantly lower than C. oleifera forest. Compared with bare land, surface soil acidification in unfertilized plots except I. cylindrica land had been accelerated, and the natural secondary forest was the most serious among them, with surface soil pH decreasing by 0.52. However, the pH increased in deep soils from unfertilized plots except natural secondary forest, and I. cylindrica land was the most obvious among them, with soil pH increasing by 0.43. The effects of fertilization and vegetation type on pH and exchangeable acidity decreased with the

  15. Gaseous mercury fluxes from forest soils in response to forest harvesting intensity: A field manipulation experiment (United States)

    M. Mazur; C.P.J. Mitchell; C.S. Eckley; S.L. Eggert; R.K. Kolka; S.D. Sebestyen; E.B. Swain


    Forest harvesting leads to changes in soil moisture, temperature and incident solar radiation, all strong environmental drivers of soil-air mercury (Hg) fluxes. Whether different forest harvesting practices significantly alter Hg fluxes from forest soils is unknown.We conducted a field-scale experiment in a northern Minnesota deciduous forest wherein gaseous Hg...

  16. Dependence of soil respiration on soil temperature and soil moisture in successional forests in Southern China (United States)

    Tang, X.-L.; Zhou, G.-Y.; Liu, S.-G.; Zhang, D.-Q.; Liu, S.-Z.; Li, J.; Zhou, C.-Y.


    The spatial and temporal variations in soil respiration and its relationship with biophysical factors in forests near the Tropic of Cancer remain highly uncertain. To contribute towards an improvement of actual estimates, soil respiration rates, soil temperature, and soil moisture were measured in three successional subtropical forests at the Dinghushan Nature Reserve (DNR) in southern China from March 2003 to February 2005. The overall objective of the present study was to analyze the temporal variations of soil respiration and its biophysical dependence in these forests. The relationships between biophysical factors and soil respiration rates were compared in successional forests to test the hypothesis that these forests responded similarly to biophysical factors. The seasonality of soil respiration coincided with the seasonal climate pattern, with high respiration rates in the hot humid season (April-September) and with low rates in the cool dry season (October-March). Soil respiration measured at these forests showed a clear increasing trend with the progressive succession. Annual mean (?? SD) soil respiration rate in the DNR forests was (9.0 ?? 4.6) Mg CO2-C/hm2per year, ranging from (6.1 ?? 3.2) Mg CO2-C/hm2per year in early successional forests to (10.7 ?? 4.9) Mg CO2-C/hm2 per year in advanced successional forests. Soil respiration was correlated with both soil temperature and moisture. The T/M model, where the two biophysical variables are driving factors, accounted for 74%-82% of soil respiration variation in DNR forests. Temperature sensitivity decreased along progressive succession stages, suggesting that advanced-successional forests have a good ability to adjust to temperature. In contrast, moisture increased with progressive succession processes. This increase is caused, in part, by abundant respirators in advanced-successional forest, where more soil moisture is needed to maintain their activities. ?? 2006 Institute of Botany, Chinese Academy of

  17. Dependence of Soil Respiration on Soil Temperature and Soil Moisture in Successional Forests in Southern China

    Institute of Scientific and Technical Information of China (English)

    Xu-Li Tang; Guo-Yi Zhou; Shu-Guang Liu; De-Qiang Zhang; Shi-Zhong Liu; Jiong Li; Cun-Yu Zhou


    The spatial and temporal variations in soil respiration and its relationship with biophysical factors in forests near the Tropic of Cancer remain highly uncertain. To contribute towards an improvement of actual estimates, soil respiration rates, soil temperature, and soil moisture were measured in three successional subtropical forests at the Dinghushan Nature Reserve (DNR) in southern China from March 2003 to February 2005. The overall objective of the present study was to analyze the temporal variations of soil respiration and its biophysical dependence in these forests. The relationships between biophysical factors and soil respiration rates were compared in successional forests to test the hypothesis that these forests responded similarly to biophysical factors. The seasonality of soil respiration coincided with the seasonal climate pattern, with high respiration rates in the hot humid season (April-September) and with low rates in the cool dry season (October-March). Soil respiration measured at these forests showed a clear increasing trend with the progressive succession. Annual mean (± SD) soil respiration rate in the DNR forests was (9.0±4.6) Mg CO2-C/hm2 per year, ranging from (6.1±3.2) Mg CO2-C/hm2 per year in early successional forests to (10.7±4.9) Mg CO2-C/hm2 per year in advanced successional forests. Soil respiration was correlated with both soil temperature and moisture. The T/M model, where the two biophysical variables are driving factors, accounted for 74%-82% of soil respiration variation in DNR forests. Temperature sensitivity decreased along progressive succession stages, suggesting that advanced-successional forests have a good ability to adjust to temperature. In contrast, moisture increased with progressive succession processes. This increase is caused, in part, by abundant respirators in advanced-successional forest, where more soil moisture is needed to maintain their activities.

  18. Acidification and Nitrogen Eutrophication of Austrian Forest Soils


    Robert Jandl; Stefan Smidt; Franz Mutsch; Alfred Fürst; Harald Zechmeister; Heidi Bauer; Thomas Dirnböck


    We evaluated the effect of acidic deposition and nitrogen on Austrian forests soils. Until thirty years ago air pollution had led to soil acidification, and concerns on the future productivity of forests were raised. Elevated rates of nitrogen deposition were believed to cause nitrate leaching and imbalanced forest nutrition. We used data from a soil monitoring network to evaluate the trends and current status of the pH and the C : N ratio of Austrian forest soils. Deposition measurements and...

  19. Soil sustainability study in Lithuanian alien forest stands (United States)

    Čiuldiene, Dovile; Skridlaite, Grazina; Žalūdiene, Gaile; Askelsson, Cecilia; Armolaitis, Kestutis


    Tree species are shifting their natural ranges in response to climate changes (Saltré et al., 2013). Northern red oak has originated from North America, but was planted in Europe already in twentieth century. At present, it is considered as invasive species in Poland and at invasive stage in the Lithuanian forests (Riepsas and Straigyte, 2008). European larch naturally grows in Central Europe, but its range has been extended by planting it as far as the Nordic countries. According to a pollen study in peat soils, European larch naturally grew in Lithuania in the sixteenth century and was reintroduced 200 years ago (Jankauskas, 1954). Therefore, the global warming could accelerate the expansion of European larch and Northern red oak into Lithuanian forests. An urgent need appeared to evaluate an impact of those warmth-tolerant species on soil mineral chemistry and quality. New results on the determination of mineral weathering rates in alien forest stands using a PROFILE soil chemistry model were obtained during a doctoral study at the Institute of Forestry. Soil minerals were studied by a Scanning Electron Microscopy at the Institute of Geology and Geography. The results provided a lot of new information on soil weathering rates in Lithuania. The 47 and 157-year-old European larch (Larix decidua Mill.), 45 and 55-year-old Northern red oak (Quercus rubra L.) plantations and adjacent perennial grasslands were chosen for this study. The soils were classified as Luvisols and were developed from glaciofluvial deposits. The PROFILE model requires data of climate conditions (mean annual temperature and precipitation), chemical parameters of atmospheric deposition, forest plantation dendrometric and chemical (wood, foliage litter fall) characteristics, soil physical characteristics and mineral composition. A cation weathering rate (sum of Ca+Mg+ K) is 30% higher in a soil under the Northern red oak than in adjacent perennial grassland. Meanwhile, cation weathering rates

  20. Methods of soil resampling to monitor changes in the chemical concentrations of forest soils (United States)

    Lawrence, Gregory B.; Fernandez, Ivan J.; Hazlett, Paul W.; Bailey, Scott W.; Ross, Donald S.; Villars, Thomas R.; Quintana, Angelica; Ouimet, Rock; McHale, Michael; Johnson, Chris E.; Briggs, Russell D.; Colter, Robert A.; Siemion, Jason; Bartlett, Olivia L.; Vargas, Olga; Antidormi, Michael; Koppers, Mary Margaret


    Recent soils research has shown that important chemical soil characteristics can change in less than a decade, often the result of broad environmental changes. Repeated sampling to monitor these changes in forest soils is a relatively new practice that is not well documented in the literature and has only recently been broadly embraced by the scientific community. The objective of this protocol is therefore to synthesize the latest information on methods of soil resampling in a format that can be used to design and implement a soil monitoring program. Successful monitoring of forest soils requires that a study unit be defined within an area of forested land that can be characterized with replicate sampling locations. A resampling interval of 5 years is recommended, but if monitoring is done to evaluate a specific environmental driver, the rate of change expected in that driver should be taken into consideration. Here, we show that the sampling of the profile can be done by horizon where boundaries can be clearly identified and horizons are sufficiently thick to remove soil without contamination from horizons above or below. Otherwise, sampling can be done by depth interval. Archiving of sample for future reanalysis is a key step in avoiding analytical bias and providing the opportunity for additional analyses as new questions arise.

  1. Reduction of soil erosion on forest roads (United States)

    Edward R. Burroughs; John G. King


    Presents the expected reduction in surface erosion from selected treatments applied to forest road traveledways, cutslopes, fillslopes, and ditches. Estimated erosion reduction is expressed as functions of ground cover, slope gradient, and soil properties whenever possible. A procedure is provided to select rock riprap size for protection of the road ditch.

  2. Soil production in forested landscapes (Invited) (United States)

    Roering, J. J.; Booth, A. M.


    One of the most fundamental characteristics that defines landscapes is the presence or absence of a soil mantle. In actively eroding terrain, soil (and other natural resources that depend on it) persists only when the rate of soil production is not eclipsed by denudation. Despite successful efforts to empirically estimate long-term rates of soil production, little predictive capability exists as soil formation results from a complex interplay of biological, physical, and chemical processes. Here, we synthesize a suite of observations from the steep, forested Oregon Coast Range (OCR) and anlayze the role of trees in the conversion of bedrock to soil. Pit/mound topography on forest floors attests to the persistent, wholesale overturning of soil by tree root activity. Using airborne LiDAR data for our study site in the western Oregon Coast Range, we calculated how terrain roughness varies with spatial scale. At scales greater than 10m, the well-established ridge/valley structure of the landscape defines the topography; whereas for scales less than 7m, terrain roughness increases rapidly reflecting the stochastic nature of bioturbation associated with large, coniferous trees. Empirical estimates of soil production in the OCR by Heimsath et al (2001, ESPL) reveal that production rates decrease exponentially with depth and the decay constant is 2.68 (1/m). From dozens of soil pits in the OCR, we show that the density of trees roots declines exponentially with depth at a similar rate, 2.57 (1/m). In other words, rates of soil production appear to be well-correlated with root density. Bedrock is often excavated during tree turnover events and we documented that the volume of bedrock incorporated in overturned coniferous rootwads increases rapidly for tree diameters greater than 0.5m (which correponds to a 60-80 yr old Douglas fir tree in Western Oregon). Smaller (and thus younger) trees entrain negligible bedrock when overturned, suggesting that their root systems are

  3. Semiquantitative color profiling of soils over a land degradation gradient in Sakaerat, Thailand. (United States)

    Doi, Ryoichi; Wachrinrat, Chongrak; Teejuntuk, Sakhan; Sakurai, Katsutoshi; Sahunalu, Pongsak


    In this study, we attempted multivariate color profiling of soils over a land degradation gradient represented by dry evergreen forest (original vegetation), dry deciduous forest (moderately disturbed by fire), and bare ground (severely degraded) in Sakaerat, Thailand. The soils were sampled in a dry-to-wet seasonal transition. Values of the red-green-blue (RGB), cyan-magenta-yellow-key black (CMYK), L*a*b*, and hue-intensity-saturation (HIS) color models were determined using the digital software Adobe Photoshop. Land degradation produced significant variations (pland degradation gradient, due to effects of fire that darkened the deciduous forest soil, masking the nature of the soil as the intermediate between the evergreen forest and the bare ground soils. Taking these findings into account, the utilization of color profiling of soils in land conservation and rehabilitation is discussed.

  4. Effect of Slope Position on Soil Properties and Types Along an Elevation Gradient of Arasbaran Forest, Iran

    Directory of Open Access Journals (Sweden)

    Hossein Rezaei


    Full Text Available Sustainable development by forest managing need to identify forest ecosystem elements. Forest soil is the most important element of forest ecosystem that has key roles in forest managing. Therefore, studying of soil properties and evolution under different environmental conditions is necessary for sustainable management of forest ecosystems. Spatial variation of soil properties is significantly influenced by some environmental factors that slope position is one of them. The aim of this study was evaluating effects of slope position on forest soil change which was carried out in Arasbaran forest, North-West of Iran. Nine soil profiles were dug, described and sampled in three different parts of an altitudinal transect with same environmental conditions and different slope positions. Then soil samples were analysed physicaly and chemicaly and so classified based on Soil Taxonomy 2014. Also according to obtained results One-way analysis of variance was used to test relations of soil properties and slope positions. This results revealed significant effect of slope positions on thickness of the soil profile and solum, clay, organic carbon and total nitrogen percentages and cation exchange capacity at 5% level of confidence which lead to change of type, depth and sequence of soil horizons along altitudinal transect. Finally, it has found that slope position not only has important role in soil properties changes and soil evolution but also it can't be refused the various role and influence of same forest stand in different slope positions. Therefore various soils such as Inceptisols, Alfisols and Molisols were observed under different slope positions. Then it can be achieved that, because of special forest vegetation, soil evolution along altitudinal transect of forest ecosystems are differing from other ecosystems. Thus, for forest soil management program it is necessary to consider both of topography and vegetation effect over the area, even if one of

  5. Distribution of amino sugars in forest soil profiles of the Changbai Mountain%长白山森林土壤剖面氨基糖的分布

    Institute of Scientific and Technical Information of China (English)

    解宏图; 李维福; 白震; 何红波; 张旭东


    The vertical distribution of three amino sugars and the contribution to organic matter pools in the soil profiles of the Changbai Mountain were discussed. The composite samples of organic layers and mineral horizons were collected at three sites (altitude, 600m, 1680m and 2580m) on the northern slope of the mountain. The contribution of three amino sugars to the total amounts of amino sugars was in the order glucosamine (GlucN) > galactosamine (GalN)> muramic acid (MurAc). The contents of amino sugars and the proportion of amino sugars to soil organic matter in the profiles increased from the top organic layer until A horizons, but they varied among the subsoil horizons. The ratios of GlucN/MurAc and GlucN/GalN in the soil horizons at different altitudes indicated that they might originate from different microbial communities.%研究了长白山土壤剖面中3种氨基糖的垂直分布规律及其对土壤有机质库的贡献,样品采自长白山北坡3个样点(海拔分别为600m,1680m和2580m).3种氨基糖对总氨基糖的贡献为氨基葡萄糖>氨基半乳糖>胞壁酸,剖面中氨基糖的含量及氨基糖对土壤有机质的贡献,在表层土壤中随土壤剖面深度增加而增加,但在矿质层中规律不同.不同纬度的氨基葡萄糖/胞壁酸比值与氨基葡萄糖/氨基半乳糖比值不同,说明它们来源于不同的微生物种群.

  6. Soil Effects on Forest Structure and Diversity in a Moist and a Dry Tropical Forest

    NARCIS (Netherlands)

    Peña-Claros, M.; Poorter, L.; Alarcon, A.; Blate, G.; Choque, U.; Fredericksen, T.S.; Justiniano, J.; Leaño, C.; Licona, J.C.; Pariona, W.; Putz, F.E.; Quevedo, L.; Toledo, M.


    Soil characteristics are important drivers of variation in wet tropical forest structure and diversity, but few studies have evaluated these relationships in drier forest types. Using tree and soil data from 48 and 32 1 ha plots, respectively, in a Bolivian moist and dry forest, we asked how soil co

  7. Soil properties discriminating Araucaria forests with different disturbance levels. (United States)

    Bertini, Simone Cristina Braga; Azevedo, Lucas Carvalho Basilio; Stromberger, Mary E; Cardoso, Elke Jurandy Bran Nogueira


    Soil biological, chemical, and physical properties can be important for monitoring soil quality under one of the most spectacular vegetation formation on Atlantic Forest Biome, the Araucaria Forest. Our aim was to identify a set of soil variables capable of discriminating between disturbed, reforested, and native Araucaria forest soils such that these variables could be used to monitor forest recovery and maintenance. Soil samples were collected at dry and rainy season under the three forest types in two state parks at São Paulo State, Brazil. Soil biological, chemical, and physical properties were evaluated to verify their potential to differentiate the forest types, and discriminant analysis was performed to identify the variables that most contribute to the differentiation. Most of physical and chemical variables were sensitive to forest disturbance level, but few biological variables were significantly different when comparing native, reforested, and disturbed forests. Despite more than 20 years following reforestation, the reforested soils were chemically and biologically distinct from native and disturbed forest soils, mainly because of the greater acidity and Al3+ content of reforested soil. Disturbed soils, in contrast, were coarser in texture and contained greater concentrations of extractable P. Although biological properties are generally highly sensitive to disturbance and amelioration efforts, the most important soil variables to discriminate forest types in both seasons included Al3+, Mg2+, P, and sand, and only one microbial attribute: the NO2- oxidizers. Therefore, these five variables were the best candidates, of the variables we employed, for monitoring Araucaria forest disturbance and recovery.


    Directory of Open Access Journals (Sweden)

    Paweł Wiśniewski


    Full Text Available The basic method of reducing soil and land erosion is a change of land use, for example, from arable to forest. Particularly effective as a protective role – according to the Polish law – soil-protecting forests. The thesis presents differences in the deformation of the basic soil properties on moraine slopes, depending on land use. There has been presented the function and the efficiency of the soil-protecting forests in erosion control. The soil cross section transects and soil analysis displayed that soil-protecting forests are making an essential soil cover protection from degradation, inter alia, limiting the decrease of humus content, reduction of upper soil horizons and soil pedons layer. On the afforested slopes it was stated some clear changes of grain size and chemical properties of soils in relation to adjacent slopes agriculturally used.

  9. Atmospheric (210)Pb as a tracer for soil organic carbon transport in a coniferous forest. (United States)

    Teramage, Mengistu T; Onda, Yuichi; Wakiyama, Yoshifumi; Kato, Hiroaki; Kanda, Takashi; Tamura, Kenji


    Core soils and falling litter samples were collected in a Japanese cypress forest (Chamaecyparis obtusa) to determine the litter-fed (210)Pbex and organic carbon transfer from the forest canopy to soil and their subsequent distribution. Of the canopy residing (210)Pbex pool, litterfall annually transports 53% to the forest floor while it adds 117 g m(-2) per year of organic carbon to the forest soil, implying that litterfall dynamics can influence the distribution of (210)Pbex and soil organic carbon (SOC). (210)Pbex and SOC showed identical profile shapes and strong correlation in spatial as well as along the soil depth, indicating that both are affected by a similar process. Given the ubiquitous natural source of (210)Pbex, it is plausible to infer that radiolead can be a possible tracer to study the SOC redistribution at regional and global scales.

  10. The vulnerability of organic matter in Swiss forest soils (United States)

    González Domínguez, Beatriz; Niklaus, Pascal A.; Studer, Mirjam S.; Hagedorn, Frank; Wacker, Lukas; Haghipour, Negar; Zimmermann, Stephan; Walthert, Lorenz; Abiven, Samuel; McIntyre, Cameron


    Soils contain more carbon than atmosphere and terrestrial vegetation combined [1], and thus are key players in the carbon cycle. With climate change, the soil organic carbon (SOC) pool is vulnerable to loss through increased CO2 emissions, which in turn can amplify changes with this carbon feedback [2]. The objective of this study is to investigate the variation of indicators of SOC vulnerability (e.g. SOC mineralisation, turnover time, bulk soil and mineralised 14C signatures) and to evaluate climate, soil and terrain variables as primary drivers. To choose the study locations we used a statistics-based approach to select a balanced combination of 54 forest sites with de-correlated drivers of SOC vulnerability (i.e. proxies for soil temperature and moisture, pH, % clay, slope gradient and orientation). Sites were selected from the forest soil database of the Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), which in May 2014, contained data from 1,050 soil profiles spread across Switzerland. We re-sampled soils at the 54 locations during summer 2014. With these samples we run a standardized laboratory soil incubation (i.e. 25°C; soils moisture -20kPa; sieved to ≤ 2 mm; 40 g equivalent dry mass; adjusted to 0.8 g cm-3 bulk density) and measured SOC mineralisation on days 4, 13, 30, 63, 121 and 181 by trapping the CO2 evolved from soils in sodium hydroxide traps [3]. Additionally, we measured the 14C signature of the carbon trapped during last stage of the incubation, and compare it to the 14C signature of the bulk soil. Based on the cumulative SOC mineralised, we found that despite the well-studied relationship between climate and SOC dynamics [4], temperature did not emerge as a predictor of SOC vulnerability. In parallel, moisture only had a minor role, with soils from drier sites being the most vulnerable. This indicates a possible limitation of heterotrophic activity due to water shortage. On the other hand, soil pH raised as the driver

  11. Linkages between forest soils and water quality and quantity (United States)

    Daniel G. Neary; George G. Ice; C. Rhett Jackson


    The most sustainable and best quality fresh water sources in the world originate in forest ecosystems. The biological, chemical, and physical characteristics of forest soils are particularly well suited to delivering high quality water to streams, moderating stream hydrology, and providing diverse aquatic habitat. Forest soils feature litter layers and...

  12. Heavy metals in the organic soil layer of beech forests in Serbia

    Directory of Open Access Journals (Sweden)

    Kadović Ratko


    Full Text Available During the last decades, forest ecosystems have been strongly exposed to the effect of different harmful pollutants, especially from the atmosphere. Harmful substances from the air, in addition to the direct effect on forest trees, also deposit in the soil, and have an adverse effect on soil chemistry and pedogenetic processes. The results of previous studies in Serbia (Kadović, Knežević, 2002, 2004 show some specificities regarding the accumulation and migration of heavy metals in the soil. The highest concentrations were found in the layers of forest litter and in the surface organo-mineral horizons. This paper presents the results of the study of heavy metal contents (Zn, Mn, Cu, Fe, Cd, Pb, Ni and Cr in the organic horizon (forest litter of beech forests in Serbia. The study of the heavy metal content in the organic horizon (forest litter is very significant primarily in the aim of monitoring the trend of their migration through the soil profile and the effect on the soil properties and genesis. The soil quality in beech forests in Serbia was assessed within the Project ICP Forest, Level I, by the methodology UN/ECE-EC, 2000.

  13. Wildfire effects on biological properties of soils in forest-steppe ecosystems of Russia

    Directory of Open Access Journals (Sweden)

    E. Maksimova


    Full Text Available Soils affected by forest wildfires in 2010 in Russia were studied on postfire and mature plots near the Togljatty city, Samara region. Soil biological properties and ash composition dynamics were investigated under the forest fire affect: a place of local forest fire, riding forest fire and unaffected site by fire-control (mature during 3 yr of restoration. Soil samples were collected at 0–15 cm. Soil biological properties was measured by the fumigation method. The analytical data obtained shows that wildfires lead to serious changes in a soil profile and soil chemistry of upper horizons. Wildfires change a chemical composition of soil horizons and increase their ash-content. Fires lead to accumulation of biogenic elements' content (P and K in the solum fine earth. Calcium content is increased as a result of fires that leads to an alkaline pH of the solum. The values of nutrients decreased as a result of leaching out with an atmospheric precipitation during the second year of restoration. Thus, when the upper horizons are burning the ash arriving on a soil surface enrich it with nutrients. The mature (unaffected by fire soils is characterized by the greatest values of soil microbial biomass in the top horizon and, respectively, the bigger values of basal respiration whereas declining of the both parameters was revealed on postfire soils. Nevertheless this influence does not extend on depth more than 10 cm. Thus, fire affect on the soil were recognized in decreasing of microbiological activity.

  14. Rapid soil development after windthrow disturbance in pristine forests. (United States)

    B.T. Bormann; H. Spaltenstein; M.H. McClellan; F.C. Ugolini; K. Cromack; S.M. Nay


    1. We examined how rapidly soils can change during secondary succession by observing soil development on 350-year chronosequences in three pristine forest ecosystems in south-east Alaska. 2. Soil surfaces, created by different windthrow events of known or estimated age, were examined within each of three forest stands (0.5-2.0 ha plots; i.e. a within-stand...

  15. Mapping physical properties of Swiss forest soils by robust external-drift kriging from legacy soil data (United States)

    Papritz, Andreas; Ramirez Lopez, Leo; Baltensweiler, Andri; Walthert, Lorenz


    Climate change scenario predict for Switzerland increasing summer temperature and decreasing precipitation. In coming decades forests will therefore likely experience more often drought. However, it is not clear to what extent these changes will occur and where in Switzerland they will be most pronounced. Soil-Vegetation-Atmosphere-Transfer (SVAT) models allow to explore likely changes in the water regime of forest under changing climate. Such process models require information of soil physical properties that largely control water storage in forest soils. Spatial information on physical properties of forest soils is currently lacking in Switzerland. Therefore one objective of the project "Soils and water regime of Swiss forests and forest sites under present and future climate BOWA-CH" ( was to predict basic physical properties of forest soils at high spatial resolution for the whole Swiss territory. Based on legacy data of about 2000 forest soil profiles, we mapped particle size composition, volumetric content of rock fragments, soil organic carbon (SOC) content and soil density for fixed-depth soil layers (0-10, 10-30, 30-60, ..., 120-150 cm) by robust external drift kriging (Nussbaum et al., 2014). Comprehensive, digitally available information on climate, topography, vegetation and geology were used as covariates for statistical modelling. Preliminary sets of covariates were chosen by LASSO, and the selection was refined by cross-validating the model for the external drift. External validation with 20 % of the data revealed that clay and sand content, soil density and SOC could be predicted with acceptable precision. Predictions of rock fragment content and silt content were less precise, and the developed model failed to spatially predict soil depth. This is unfortunate because soil depth and rock fragment content largely control water storage in soils. Nussbaum, M., Papritz, A., Baltensweiler, A

  16. 贵州西部4种林型土壤有机碳及其剖面分布特征%Soil organic carbon and its distribution characteristics in the soil profile for four forest types in west Guizhou

    Institute of Scientific and Technical Information of China (English)

    丁访军; 高艳平; 周凤娇; 潘明亮; 吴鹏


    The carbon bank of the forest soil has become one of the key research subjects concerning global carbon cycle in the context of global climate change. Taking the 4 major forest types in West Guizhou composed of Betula luminifera, Cryptomeria fortunei, Pinus armandii and Cunninghamia lanceolata as the research subjects, this paper studied the organic carbon contents of the soil, the density and the vertical distribution characteristics of the organic carbon. The results indicated that the organic carbon contents in the forests of Pinus armandii, Cunninghamia lanceolata, Cryptomeria fortunei and Betula luminifera were respectively 51.09 g·kg-1, 39.47 g·kg-1, 37.49 g·kg-1, 36.31 g·kg-1 and the carbon density was respectively 30.56 kg·m-2, 22.97 kg·m-2, 21.00 kg·m-2 and 20.13 kg·m-2, uniformly showing the descending order that Pinus arma·ndii > Cunninghamia lanceolata > Cryptomeria fortune > Betula luminifera, and the organic carbon contents as well as the carbon density of the soil in the forest of Pinus armandii were strikingly greater than those of the other 3 forests, among which the difference was not so distinct. Both the organic carbon contents and carbon density of the soil decreased gradually with the deepening of the soil in all the 4 forests and the organic carbon contents were the highest in the 0~10 cm-deep soil, as 1.45-1.61 times high as the average values of the whole soil profile, while the carbon densities in the 0-20 cm-deep soil accounted for 32.69% ~ 38.08% of the whole soil profile, prominently higher than those of the other soil depths. The carbon densities between different soil depths from below 20 cm-deep soil did not differ so much, and such characteristics indicated the soil carbon was more or less concentrating on the surface of the soil. For all the 4 forest types, there were strong negative correlations between the soil carbon contents and the pH values of the soil, and strong positive correlations between the soil carbon

  17. Carbon and nitrogen in forest floor and mineral soil under six common European tree species

    DEFF Research Database (Denmark)

    Vesterdal, Lars; Schmidt, Inger K.; Callesen, Ingeborg;


    The knowledge of tree species effects on soil C and N pools is scarce, particularly for European deciduous tree species. We studied forest floor and mineral soil carbon and nitrogen under six common European tree species in a common garden design replicated at six sites in Denmark. Three decades...... after planting the six tree species had different profiles in terms of litterfall, forest floor and mineral soil C and N attributes. Three groups were identified: (1) ash, maple and lime, (2) beech and oak, and (3) spruce. There were significant differences in forest floor and soil C and N contents...... and C/N ratios, also among the five deciduous tree species. The influence of tree species was most pronounced in the forest floor, where C and N contents increased in the order ash = lime = maple

  18. Anthropogenic Pb accumulation in forest soils from Lake Clair watershed: Duchesnay experimental forest (Quebec, Canada)

    Energy Technology Data Exchange (ETDEWEB)

    Ndzangou, Sabary Omer [Universite du Quebec, INRS-Eau, Terre et Environnement, 490 rue de la Couronne, Quebec, Qc, G1K 9A9 (Canada); Richer-LaFLeche, Marc [Universite du Quebec, INRS-Eau, Terre et Environnement, 490 rue de la Couronne, Quebec, Qc, G1K 9A9 (Canada)]. E-mail:; Houle, Daniel [Direction de la recherche forestiere, ministere des Ressources naturelles et de la Faune du Quebec, 2700 rue Einstein, Quebec, Qc, G1P 3W8 (Canada)


    Mineral soil horizons (Ae, Bhf1, Bhf2, Bf, BC and C) were carefully collected from two podzolic soil profiles in the Lake Clair watershed (Quebec) in order to assess anthropogenic trace metal accumulation. Petrographic and selective analyses were performed to establish the soil mineralogy and properties. Furthermore, a complete sequential extraction procedure has been applied to help understanding the complex chemical speciation of Pb in forest soils. Chemical speciation of Pb showed a strong vertical gradient: 85% of this metal is mainly partitioned in refractory minerals in the C-horizon whereas in the upper Bhf1 and Ae-horizons, less than 50% of Pb is associated with this fraction. In the Ae-horizon, for example, 35%, 30% and 12% of total Pb, respectively, is associated with the exchangeable, labile organic matter and amorphous Fe-Mn oxides fractions. The distribution of Pb and Cr in the studied forest soils mainly reflects progressive contamination of the watershed by anthropogenic atmospheric sources. The anthropogenic source is indicated by elevated Cr and Pb concentrations in the topsoil (Bhf and Ae) horizons and by strong negative correlation between {sup 206}Pb/{sup 207}Pb ratios and total Pb concentrations. According to these isotopic values, penetration of anthropogenic Pb does not exceed 10 cm in both soil profiles. Below this depth, both Pb concentrations and isotopic ratios remain nearly constant and similar to values observed in pre-anthropogenic sediments from Lake Clair. These values are interpreted as the natural geochemical backgrounds of the watershed. Based on that behaviour, calculated anthropogenic Pb net inputs amounted to between 1.24 and 1.8 g/m{sup 2}.


    Directory of Open Access Journals (Sweden)

    Ana Paula Moreira Rovedder


    Full Text Available forestry sector plays an important role in the socioeconomic and environmental Brazilian context, therefore the improvement of the knowledge about forest soil becomes essential for its sustainable use as a conservation base of natural heritage as resource for economical development. Forest soil can be characterized by pedogenesis occurred under influence of a forestry typology or under a currently natural or cultivated forest coverage. Differentiating forest soils from those occupied with other uses helps the understanding of possible alterations related to vegetal coverage and the developing of better management strategies to soil and forest use. Nevertheless, there is no consensus about this term because the soils present variations according to the forest characteristics, stimulating the discussion concerning its interpretation and applicability. This review aimed to analyze the utilization of forest soil concept, highlighting the differentiation characteristics and the relation with coverage type, natural or cultivated. Aspects related to deposition, quality and management of residues, nutrients cycling, soil compaction and site productivity are emphasized. The forest soil concept is widely used by specific literature and useful to collect specific information and to plan the sustainable use of soil and forest. The improvement of knowledge about these resources provides the creation of a common identity, supporting comparative studies and consolidating the research regarding to this theme.

  20. Chemical evaluation of soil-solution in acid forest soils (United States)

    Lawrence, G.B.; David, M.B.


    Soil-solution chemistry is commonly studied in forests through the use of soil lysimeters.This approach is impractical for regional survey studies, however, because lysimeter installation and operation is expensive and time consuming. To address these problems, a new technique was developed to compare soil-solution chemistry among red spruce stands in New York, Vermont, New Hampshire, Maine. Soil solutions were expelled by positive air pressure from soil that had been placed in a sealed cylinder. Before the air pressure was applied, a solution chemically similar to throughfall was added to the soil to bring it to approximate field capacity. After the solution sample was expelled, the soil was removed from the cylinder and chemically analyzed. The method was tested with homogenized Oa and Bs horizon soils collected from a red spruce stand in the Adirondack Mountains of New York, a red spruce stand in east-central Vermont, and a mixed hardwood stand in the Catskill Mountains of New York. Reproducibility, effects of varying the reaction time between adding throughfall and expelling soil solution (5-65 minutes) and effects of varying the chemical composition of added throughfall, were evaluated. In general, results showed that (i) the method was reproducible (coefficients of variation were generally reaction-time did not affect expelled solution concentrations, and (iii) adding and expelling solution did not cause detectable changes in soil exchange chemistry. Concentrations of expelled solutions varied with the concentrations of added throughfall; the lower the CEC, the more sensitive expelled solution concentrations were to the chemical concentrations of added throughfall. Addition of a tracer (NaBr) showed that the expelled solution was a mixture of added solution and solution that preexisted in the soil. Comparisons of expelled solution concentrations with concentrations of soil solutions collected by zero-tension and tension lysimetry indicated that expelled

  1. Biological and biochemical properties in evaluation of forest soil quality


    Błońska Ewa; Lasota Jarosław


    The aim of this study was to assess the possibility of using biological and biochemical parameters in the evaluation of forest soil quality and changes caused by land use. The study attempted to determine a relationship between the enzymatic activity of soil, the number of earthworms and soil physico-chemical properties. The study was carried out in central Poland in adjoining Forest Districts (Przedbórz and Smardzewice). In soil samples taken from 12 research plots, basic physico-chemical pr...

  2. Biological and biochemical properties in evaluation of forest soil quality


    Błońska, Ewa; Lasota, Jarosław


    The aim of this study was to assess the possibility of using biological and biochemical parameters in the evaluation of forest soil quality and changes caused by land use. The study attempted to determine a relationship between the enzymatic activity of soil, the number of earthworms and soil physico-chemical properties. The study was carried out in central Poland in adjoining Forest Districts (Przedbórz and Smardzewice). In soil samples taken from 12 research plots, basic physico-chem...

  3. Soil charcoal as long-term pyrogenic carbon storage in Amazonian seasonal forests. (United States)

    Turcios, Maryory M; Jaramillo, Margarita M A; do Vale, José F; Fearnside, Philip M; Barbosa, Reinaldo Imbrozio


    Forest fires (paleo + modern) have caused charcoal particles to accumulate in the soil vertical profile in Amazonia. This forest compartment is a long-term carbon reservoir with an important role in global carbon balance. Estimates of stocks remain uncertain in forests that have not been altered by deforestation but that have been impacted by understory fires and selective logging. We estimated the stock of pyrogenic carbon derived from charcoal accumulated in the soil profile of seasonal forest fragments impacted by fire and selective logging in the northern portion of Brazilian Amazonia. Sixty-nine soil cores to 1-m depth were collected in 12 forest fragments of different sizes. Charcoal stocks averaged 3.45 ± 2.17 Mg ha(-1) (2.24 ± 1.41 Mg C ha(-1) ). Pyrogenic carbon was not directly related to the size of the forest fragments. This carbon is equivalent to 1.40% (0.25% to 4.04%) of the carbon stocked in aboveground live tree biomass in these fragments. The vertical distribution of pyrogenic carbon indicates an exponential model, where the 0-30 cm depth range has 60% of the total stored. The total area of Brazil's Amazonian seasonal forests and ecotones not altered by deforestation implies 65-286 Tg of pyrogenic carbon accumulated along the soil vertical profile. This is 1.2-2.3 times the total amount of residual pyrogenic carbon formed by biomass burning worldwide in 1 year. Our analysis suggests that the accumulated charcoal in the soil vertical profile in Amazonian forests is a substantial pyrogenic carbon pool that needs to be considered in global carbon models.

  4. Sorption of niobium on boreal forest soil

    Energy Technology Data Exchange (ETDEWEB)

    Soederlund, Mervi; Hakanen, Martti; Lehto, Jukka [Helsinki Univ. (Finland). Lab. of Radiochemistry


    The sorption of niobium (Nb) was investigated on humus and mineral soil samples taken from various depths of a four-metre deep forest soil pit on Olkiluoto Island, southwestern Finland. Mass distribution coefficients, K{sub d}, were determined in batch sorption tests. The steady state of Nb sorption was observed in the mineral soil samples already after one week of equilibration, and sorption decreased with depth from a very high value of 185000 mL/g at 0.7 m to 54000 mL/g at 3.4 m. The reason behind this decrease is probably the tenfold reduction in the specific surface area of the soil at the same depth range. Distribution coefficients were clearly lower in the humus layer (1000 mL/g). The K{sub d} values determined in pure water at a pH range of 4.7-6.5 were at a high level (above 55000 mL/g), but decreased dramatically above pH 6.5, corresponding to the change in the major Nb species from the neutral Nb(OH){sub 5} to the low-sorbing anionic Nb(OH){sub 6}{sup -} and Nb(OH){sub 7}{sup 2-}. However, the K{sub d} values in the model soil solution were in the slightly alkaline range an order of magnitude higher than in pure water, which is probably caused by the formation of calcium niobate surface precipitate or electrostatic interaction between surface-sorbed calcium and solute Nb. Among nine soil constituent minerals kaolinite performed best in retaining Nb in both pure water and model soil solution at pH 8, whereas potassium feldspar showed the poorest sorption. The K{sub d} value for kaolinite was above 500000 mL/g in both solutions, while the respective potassium feldspar values were in the range of 120-220 mL/g.

  5. Soil properties and understory herbaceous biomass in forests of three species of Quercus in Northeast Portugal

    Directory of Open Access Journals (Sweden)

    Marina Castro


    Full Text Available Aim of study: This paper aims to characterize some soil properties within the first 25 cm of the soil profile and the herbaceous biomass in Quercus forests, and the possible relationships between soil properties and understory standing biomass.Area of study: Three monoespecific Quercus forests (Q. suber L., Q. ilex subsp. rotundifolia Lam. and Q. pyrenaica Willd in NE Portugal.Material and methods: During 1999 and 2000 soil properties (pH-KCl, total soil nitrogen (N, soil organic carbon (SOC, C/N ratio, available phosphorus (P, and available potassium (K and herbaceous biomass production of three forest types: Quercus suber L., Quercus ilex subsp. rotundifolia Lam. and Quercus pyrenaica Willd were studied.Main results: The results showed a different pattern of soil fertility (N, SOC, P, K in Quercus forests in NE of Portugal. The C/N ratio and the herbaceous biomass confirmed this pattern. Research highlights: There is a pattern of Quercus sp. distribution that correlates with different soil characteristics by soil characteristics in NE Portugal. Q. pyrenaica ecosystems were found in more favoured areas (mesic conditions; Q. rotundifolia developed in nutrient-poor soils (oligotrophic conditions; and Q. suber were found in intermediate zones.Keywords: fertility; biomass; C/N ratio; cork oak; holm oak; pyrenean oak.

  6. Estimating soil organic carbon stocks of Swiss forest soils by robust external-drift kriging

    Directory of Open Access Journals (Sweden)

    M. Nussbaum


    Full Text Available Accurate estimates of soil organic carbon (SOC stocks are required to quantify carbon sources and sinks caused by land use change at national scale. This study presents a novel robust kriging method to precisely estimate regional and national mean SOC stocks, along with truthful standard errors. We used this new approach to estimate mean forest SOC stock for Switzerland and for its five main ecoregions. Using data of 1033 forest soil profiles, we modelled stocks of two compartments (0–30, 0–100 cm depth of mineral soils. Log-normal regression models that accounted for correlation between SOC stocks and environmental covariates and residual (spatial auto-correlation were fitted by a newly developed robust restricted maximum likelihood method, which is insensitive to outliers in the data. Precipitation, near-infrared reflectance, topographic and aggregated information of a soil and a geotechnical map were retained in the models. Both models showed weak but significant residual autocorrelation. The predictive power of the fitted models, evaluated by comparing predictions with independent data of 175 soil profiles, was moderate (robust R2 = 0.34 for SOC stock in 0–30 cm and R2 = 0.40 in 0–100 cm. Prediction standard errors (SE, validated by comparing point prediction intervals with data, proved to be conservative. Using the fitted models, we mapped forest SOC stock by robust external-drift point kriging at high resolution across Switzerland. Predicted mean stocks in 0–30 and 0–100 cm depth were equal to 7.99 kg m−2 (SE 0.15 kg m−2 and 12.58 kg m−2 (SE 0.24 kg m−2, respectively. Hence, topsoils store about 64% of SOC stocks down to 100 cm depth. Previous studies underestimated SOC stocks of topsoil slightly and those of subsoils strongly. The comparison further revealed that our estimates have substantially smaller SE than previous estimates.

  7. Distribution and Migration of Heavy Metals in Undisturbed Forest Soils: A High Resolution Sampling Method

    Institute of Scientific and Technical Information of China (English)

    RUAN Xin-Ling; ZHANG Gan-Lin; NI Liu-Jian; HE Yue


    The vertical distribution and migration of Cu,Zn,Pb,and Cd in two forest soil profiles near an industrial emission source were investigated using a high resolution sampling method together with reference element Ti.One-meter soil profile was sectioned horizontally at 2 cm intervals in the first 40 cm,5 cm intervals in the next 40 cm,and 10 cm intervals in the last 20 cm.The migration distance and rate of heavy metals in the soil profiles were calculated according to their relative concentrations in the profiles,as calibrated by the reference element Ti.The enrichment of heavy metals appeared in the uppermost layer of the forest soil,and the soil heavy metal concentrations decreased down the profile until reaching their background values.The calculated average migration rates of Cd,Cu,Pb,and Zn were 0.70,0.33,0.37,and 0.76cm year-1,respectively,which were comparable to other methods.A simulation model was proposed,which could well describe the distribution of Cu,Zn,Pb,and Cd in natural forest soils.

  8. Forest soil biology-timber harvesting relationships: a perspective (United States)

    M. F. Jurgensen; M. J. Larsen; A. E. Harvey


    Timber harvesting has a pronounced effect on the soil microflora by wood removal and changing properties. This paper gives a perspective on soil biology-harvesting relationships with emphasis on the northern Rocky Mountain region. Of special significance to forest management operations are the effects of soil micro-organisms on: the availability of soil nutrients,...

  9. Nitrate concentrations in soil solutions below Danish forests

    DEFF Research Database (Denmark)

    Callesen, Ingeborg; Raulund-Rasmussen, Karsten; Gundersen, Per;


    had higher concentrations than forest-type 'other woodland'), (3) soil-type (humus soils showed above average concentrations, and fine textured soils had higher concentrations than coarse textured soils), and (4) sampling time. Unlike other investigations, there was no significant effect of tree...

  10. Quantifying soil and critical zone variability in a forested catchment through digital soil mapping (United States)

    Holleran, M.; Levi, M.; Rasmussen, C.


    Quantifying catchment-scale soil property variation yields insights into critical zone evolution and function. The objective of this study was to quantify and predict the spatial distribution of soil properties within a high-elevation forested catchment in southern Arizona, USA, using a combined set of digital soil mapping (DSM) and sampling design techniques to quantify catchment-scale soil spatial variability that would inform interpretation of soil-forming processes. The study focused on a 6 ha catchment on granitic parent materials under mixed-conifer forest, with a mean elevation of 2400 m a.s.l, mean annual temperature of 10 °C, and mean annual precipitation of ~ 85 cm yr-1. The sample design was developed using a unique combination of iterative principal component analysis (iPCA) of environmental covariates derived from remotely sensed imagery and topography, and a conditioned Latin hypercube sampling (cLHS) scheme. Samples were collected by genetic horizon from 24 soil profiles excavated to the depth of refusal and characterized for soil mineral assemblage, geochemical composition, and general soil physical and chemical properties. Soil properties were extrapolated across the entire catchment using a combination of least-squares linear regression between soil properties and selected environmental covariates, and spatial interpolation or regression residual using inverse distance weighting (IDW). Model results indicated that convergent portions of the landscape contained deeper soils, higher clay and carbon content, and greater Na mass loss relative to adjacent slopes and divergent ridgelines. The results of this study indicated that (i) the coupled application of iPCA and cLHS produced a sampling scheme that captured the greater part of catchment-scale soil variability; (ii) application of relatively simple regression models and IDW interpolation of residuals described well the variance in measured soil properties and predicted spatial correlation of soil

  11. Nitrate Sorption in an Agricultural Soil Profile

    Directory of Open Access Journals (Sweden)

    Wissem Hamdi


    Full Text Available Increasing concentrations of in surface water and groundwater can cause ecological and public health effects and has come under increased scrutiny by both environmental scientists and regulatory agencies. For many regions though, including the Sahel of Tunisia, little is known about the sorption capacity of soils. In this project we measured sorption by a profile of an iso-humic soil from Chott Meriem, Tunisia. Soil samples were collected from four soil depths (0–25, 25–60, 60–90, and 90–120 cm on 1 June 2011, and their sorption capacity was determined using batch experiments under laboratory conditions. The effects of contact time, the initial concentration, and the soil-solution ratio on sorption were investigated. In general, the results suggested that was weakly retained by the Chott Meriem soil profile. The quantity of sorption increased with depth, contact time, initial concentration, and soil-solution ratios. To evaluate the sorption capacities of the soil samples at concentrations ranging between 25 and 150 mg L−1 experimental data were fitted to both Freundlich and Langmuir isotherm sorption models. The results indicated that Freundlich model was better for describing sorption in this soil profile.

  12. Aspects of the chemical microcompartimentation in forest soils

    Energy Technology Data Exchange (ETDEWEB)

    Hildebrand, E.E.; Horsch, F.; Filby, G.; Fund, N.; Gross, S.; Hanisch, B.; Kilz, E.; Seidel, A. (comps.)


    A new arrangement for the percolation of undisturbed soil cores has been developped. Thereby it can be shown, that in forest soils exist chemical desequilibria between the surfaces of aggregates and the bulk soil. The surfaces of aggregates, which are mainly in contact with soil water of low water tension, show more intensive soil acidity parameters. When soil acidity characteristics are derived from bulk soil analysis, the loss of information, caused by the removal of chemical desequilibria, must be taken into consideration. The same is valid, if results from soil analysis are used to predict benefits or risks of forest fertilization practices. Examples of application demonstrate the scale, variation and the ecological importance of chemical desequilibria in forest soils.

  13. Ecological factors governing the distribution of soil microfungi in some forest soils of Pachmarhi Hills, India

    Directory of Open Access Journals (Sweden)

    Shashi Chauhan


    Full Text Available An ecological study of the microfungi occurring in the various forest soils of Pachmarhi Hills, India has been carried-out by the soil plate technique. Soil samples from 5 different forest communities viz., moist deciduous forest dominated by tree ferns, Diospyros forest, Terminalia forest, Shorea forest and scrub forest dominated by Acacia and Dalbergia sp. were collected during October, 1983. Some physico-chemical characteristics of the soil were analysed and their role in distribution of fungi in 5 soil types was studied and discussed. 43 fungal species were isolated, of which Asperigillus niger I and Penicillium janthinellum occurred in all the 5 soil types. Statistically, none of the edaphic factors showed positive significant correlation with the number of fungi.

  14. Priming alters soil carbon dynamics during forest succession (United States)

    Qiao, Na; Xu, Xingliang; Wang, Juan; Kuzyakov, Yakov


    The mechanisms underlying soil carbon (C) dynamics during forest succession remain challenged. We examined priming of soil organic matter (SOM) decomposition along a vegetation succession: grassland, young and old-growth forests. Soil C was primed much more strongly in young secondary forest than in grassland or old-growth forest. Priming resulted in large C losses (negative net C balance) in young-forest soil, whereas C stocks increased in grassland and old-growth forest. Microbial composition assessed by phospholipid fatty acids (PLFA) and utilization of easily available organics (13C-PLFA) indicate that fungi were responsible for priming in young-forest soils. Consequently, labile C inputs released by litter decomposition and root exudation determine microbial functional groups that decompose SOM during forest succession. These findings provide novel insights into connections between SOM dynamics and stabilization with microbial functioning during forest succession and show that priming is an important mechanism for contrasting soil C dynamics in young and old-growth forests.

  15. Acidification and Nitrogen Eutrophication of Austrian Forest Soils

    Directory of Open Access Journals (Sweden)

    Robert Jandl


    Full Text Available We evaluated the effect of acidic deposition and nitrogen on Austrian forests soils. Until thirty years ago air pollution had led to soil acidification, and concerns on the future productivity of forests were raised. Elevated rates of nitrogen deposition were believed to cause nitrate leaching and imbalanced forest nutrition. We used data from a soil monitoring network to evaluate the trends and current status of the pH and the C : N ratio of Austrian forest soils. Deposition measurements and nitrogen contents of Norway spruce needles and mosses were used to assess the nitrogen supply. The pH values of soils have increased because of decreasing proton depositions caused by reduction of emissions. The C : N ratio of Austrian forest soils is widening. Despite high nitrogen deposition rates the increase in forest stand density and productivity has increased the nitrogen demand. The Austrian Bioindicator Grid shows that forest ecosystems are still deficient in nitrogen. Soils retain nitrogen efficiently, and nitrate leaching into the groundwater is presently not a large-scale problem. The decline of soil acidity and the deposition of nitrogen together with climate change effects will further increase the productivity of the forests until a limiting factor such as water scarcity becomes effective.

  16. Water repellency of two forest soils after biochar addition (United States)

    D. S. Page-Dumroese; P. R. Robichaud; R. E. Brown; J. M. Tirocke


    Practical application of black carbon (biochar) to improve forest soil may be limited because biochar is hydrophobic. In a laboratory, we tested the water repellency of biochar application (mixed or surface applied) to two forest soils of varying texture (a granitic coarse-textured Inceptisol and an ash cap fine-textured Andisol) at four different application rates (0...

  17. Modeling soil erosion and transport on forest landscape (United States)

    Ge Sun; Steven G McNulty


    Century-long studies on the impacts of forest management in North America suggest sediment can cause major reduction on stream water quality. Soil erosion patterns in forest watersheds are patchy and heterogeneous. Therefore, patterns of soil erosion are difficult to model and predict. The objective of this study is to develop a user friendly management tool for land...

  18. Mapping forest soil organic matter on New Jersey's coastal plain (United States)

    Brian J. Clough; Edwin J. Green; Richard B. Lathrop


    Managing forest soil organic matter (SOM) stocks is a vital strategy for reducing the impact of anthropogenic carbon dioxide emissions. However, the SOM pool is highly variable, and developing accurate estimates to guide management decisions has remained a difficult task. We present the results of a spatial model designed to map soil organic matter for all forested...

  19. Modelling Soil Profiles in their Landscape Context. (United States)

    Kirkby, M. J.


    Through models, explores the relationships between the interacting drivers of soil profile evolution. Soil hydrology drives the partition of precipitation between overland flow, shallow subsurface flow and deeper percolation/ lateral flow. Critical parts of this interchange occurs close to the surface, within the zone of strong bioturbation, where inorganic composition is determined by the balance between erosion and weathering rates expressed in the chemical depletion ratio. The intensity of organic matter cycling may also limit the final composition of weathering products. Erosion rates are partly driven by the geomorphic environment, through gradient and hydrology, but also constrained by the degree of soil weathering, through particle size and mineralogy. Weathering rates are determined by water movement below the bioturbation zone and ionic diffusion from parent material, which control the rate of decline with soil depth. These interactions are explored through simple equilibrium and evolutionary models for the soil profile that are applicable across a wide range of geological and climatic environments.

  20. Soil Organic Carbon Responses to Forest Expansion on Mountain Grasslands

    DEFF Research Database (Denmark)

    Guidi, Claudia

    Grassland abandonment followed by progressive forest expansion is the dominant land-use change in the European Alps. Contrasting trends in soil organic carbon (SOC) stocks have been reported for mountainous regions following forest expansion on grasslands. Moreover, its effects on SOC properties...... involved into long-term stability are largely unknown. The aim of this PhD thesis was to explore changes in: (i) SOC stocks; (ii) physical SOC fractions; and (iii) labile soil carbon components following forest expansion on mountain grasslands. A land-use gradient located in the Southern Alps (Italy....... Changes in labile soil C were assessed by carbohydrate and thermal analyses of soil samples and fractions. Forest expansion on mountain grasslands caused a decrease in SOC stocks within the mineral soil. The SOC accumulation within the organic layers following forest establishment could not fully...

  1. Boreal coniferous forest density leads to significant variations in soil physical and geochemical properties (United States)

    Bastianelli, Carole; Ali, Adam A.; Beguin, Julien; Bergeron, Yves; Grondin, Pierre; Hély, Christelle; Paré, David


    At the northernmost extent of the managed forest in Quebec, Canada, the boreal forest is currently undergoing an ecological transition between two forest ecosystems. Open lichen woodlands (LW) are spreading southward at the expense of more productive closed-canopy black spruce-moss forests (MF). The objective of this study was to investigate whether soil properties could distinguish MF from LW in the transition zone where both ecosystem types coexist. This study brings out clear evidence that differences in vegetation cover can lead to significant variations in soil physical and geochemical properties.Here, we showed that soil carbon, exchangeable cations, and iron and aluminium crystallinity vary between boreal closed-canopy forests and open lichen woodlands, likely attributed to variations in soil microclimatic conditions. All the soils studied were typical podzolic soil profiles evolved from glacial till deposits that shared a similar texture of the C layer. However, soil humus and the B layer varied in thickness and chemistry between the two forest ecosystems at the pedon scale. Multivariate analyses of variance were used to evaluate how soil properties could help distinguish the two types at the site scale. MF humus (FH horizons horizons composing the O layer) showed significantly higher concentrations of organic carbon and nitrogen and of the main exchangeable base cations (Ca, Mg) than LW soils. The B horizon of LW sites held higher concentrations of total Al and Fe oxides and particularly greater concentrations of inorganic amorphous Fe oxides than MF mineral soils, while showing a thinner B layer. Overall, our results show that MF store three times more organic carbon in their soils (B+FH horizons, roots apart) than LW. We suggest that variations in soil properties between MF and LW are linked to a cascade of events involving the impacts of natural disturbances such as wildfires on forest regeneration that determines the vegetation structure (stand density

  2. Modelling trends in soil solution concentrations under five forest-soil combinations in the Netherlands

    NARCIS (Netherlands)

    Salm, van der C.; Vries, de W.; Kros, J.


    The influence of forest and soil properties on changes in soil solution concentration upon a reduction deposition was examined for five forest-soil combinations with the dynamic RESAM model. Predicted concentrations decreased in the direction Douglas fir - Scotch pine - oak, due to decreased filteri

  3. Carbon Dioxide in Arable Soil Profiles

    DEFF Research Database (Denmark)

    Chirinda, Ngoni; Plauborg, Finn; Heckrath, Goswin Johann


    on the comparability of results obtained using different methods is limited. We therefore aimed to compare the dynamics in soil CO2 concentrations obtained from an automated system (GMP343 sensors) to those from a manually operated measurement system (i.e., soil gas sampled using stainless steel needles and rods......; however, differences may occur in response to soil spatial variability. A better coverage of spatial variability is more easily addressed using manually operated systems whereas temporal variability can be covered using the automated system. Depending on the aim of the study, the two systems may be used......Carbon dioxide (CO2) concentrations in arable soil profiles are influenced by autotrophic and heterotrophic respiration as well as soil physical properties that regulate gas transport. Whereas different methods have been used to assess dynamics of soil CO2 concentrations, our understanding...

  4. Surficial gains and subsoil losses of soil carbon and nitrogen during secondary forest development. (United States)

    Mobley, Megan L; Lajtha, Kate; Kramer, Marc G; Bacon, Allan R; Heine, Paul R; Richter, Daniel Deb


    Reforestation of formerly cultivated land is widely understood to accumulate above- and belowground detrital organic matter pools, including soil organic matter. However, during 40 years of study of reforestation in the subtropical southeastern USA, repeated observations of above- and belowground carbon documented that significant gains in soil organic matter (SOM) in surface soils (0-7.5 cm) were offset by significant SOM losses in subsoils (35-60 cm). Here, we extended the observation period in this long-term experiment by an additional decade, and used soil fractionation and stable isotopes and radioisotopes to explore changes in soil organic carbon and soil nitrogen that accompanied nearly 50 years of loblolly pine secondary forest development. We observed that accumulations of mineral soil C and N from 0 to 7.5 cm were almost entirely due to accumulations of light-fraction SOM. Meanwhile, losses of soil C and N from mineral soils at 35 to 60 cm were from SOM associated with silt and clay-sized particles. Isotopic signatures showed relatively large accumulations of forest-derived carbon in surface soils, and little to no accumulation of forest-derived carbon in subsoils. We argue that the land use change from old field to secondary forest drove biogeochemical and hydrological changes throughout the soil profile that enhanced microbial activity and SOM decomposition in subsoils. However, when the pine stands aged and began to transition to mixed pines and hardwoods, demands on soil organic matter for nutrients to support aboveground growth eased due to pine mortality, and subsoil organic matter levels stabilized. This study emphasizes the importance of long-term experiments and deep measurements when characterizing soil C and N responses to land use change and the remarkable paucity of such long-term soil data deeper than 30 cm. © 2014 John Wiley & Sons Ltd.

  5. Organic carbon stock in some forest soils in Serbia


    Kadovic Ratko; Belanovic Snežana; Kneževic Milan; Danilovic Milorad; Košanin Olivera; Beloica Jelena


    The content of organic carbon (C) was researched in topsoil layers (0-20 cm) in the most represented soils of forest ecosystems in central Serbia: eutric ranker, eutric cambisol and dystric cambisol. The soils were sampled during 2003, 2004 and 2010. Laboratory analyses included the soil physical and chemical properties necessary for the quantification of the soil organic carbon in organic and mineral layers. Mean values of the soil organic carbon (SOC) sto...


    Directory of Open Access Journals (Sweden)

    Kozun Y. S.


    Full Text Available Agricultural use leads to a significant transformation of soils. The first to use the soil for cultivation react most sensitive biological indicators. The purpose of the study - to establish the effect of using the brown forest soils for planting apple orchards for their biological activity, in particular on the humus content, enzyme activity (catalase and dehydrogenase. For the control, we have selected forest area adjacent to arable land. Because of violations of the natural vegetation, there are changes in hydrothermal conditions of the soil. Humidity soil plowed off under forest, while temperatures gets considerably higher. Plowing, compared with the control, revealed significant loss of humus (50% in the upper most disturbed horizons. In the lower horizons of the values of this index were quite low (1.5% on all sections of the test. The decline in humus content, as well as overheating and draining soil tillage results in a change of enzymatic activity not only in the surface layers, but also in the whole profile. Due to the movement of the most favorable hydrothermal conditions in the underlying horizons, an increase of enzyme activity over control values in the deeper layers of the soil. The article shows a possibility of the use of biological indicators as indicators of changes in the brown forest soils as a result of agricultural use

  7. Changes in microbial community structure following herbicide (glyphosate) additions to forest soils (United States)

    Alice W. Ratcliff; Matt D. Busse; Carol J. Shestak


    Glyphosate applied at the recommended field rate to a clay loam and a sandy loam forest soil resulted in few changes in microbial community structure. Total and culturable bacteria, fungal hyphal length, bacterial:fungal biomass, carbon utilization profiles (BIOLOG), and bacterial and fungal phospholipid fatty acids (PLFA) were unaffected 1, 3, 7, or 30 days...

  8. Management impacts on forest floor and soil organic carbon in northern temperate forests of the US (United States)

    Coeli M. Hoover


    The role of forests in the global carbon cycle has been the subject of a great deal of research recently, but the impact of management practices on forest soil dynamics at the stand level has received less attention. This study used six forest management experimental sites in five northern states of the US to investigate the effects of silvicultural treatments (light...

  9. Soil microbiological composition and its evolution along with forest succession in West Siberia (United States)

    Naplekova, Nadezhda N.; Malakhova, Nataliya A.; Maksyutov, Shamil


    Natural forest succession process in West Siberia is mostly initiated by fire disturbance and involves changing tree species composition from pioneer species to late succession trees. Along with forest aging, litter and forest biomass accumulate. Changes of the soil nitrogen cycle between succession stages, important for plant functioning, have been reported in a number of studies. To help understanding the mechanism of the changes in the soil nitrogen cycle we analyzed soil microbiological composition for soil profiles (0-160 cm) taken at sites corresponding to three forest succession stages: (1) young pine, age 18-20 years, (2) mid age, dark coniferous, age 50-70 years, (3) mature, fir-spruce, age 170-180 years. Soil samples were taken from each soil horizon and analyzed in the laboratory for quantity and species composition of algae and other microorganisms. Algae community at all stages of succession is dominated by species typical for forest (pp. Chlorhormidium, Chlamydomonas, Chloroccocum, Pleurochloris, Stichococcus). Algae species composition is summarized by formulas: young forest C14X10Ch9H2P4Cf1B2amph4, mid age X16C15Ch10H4P4Cf1B2amph4, mature X24C22Ch17H10P2amph5Cf1, with designations C -- Cyanophyta, X -- Xantophyta, Ch -- Chlorophyta, B -- Bacillariophyta. Diversity is highest in upper two horizons and declines with depth. Microorganism composition on upper 20 cm was analyzed in three types of forests separately for consumers of protein (ammonifiers) and mineral nitrogen, fungi, azotobacter, Clostridium pasteurianum, oligonitrophylic (eg diazotrophs), nitrifiers and denitrifiers. Nitrogen biologic fixation in the mature forest soils is done mostly by oligonitrophyls and microorganisms of the genus Clostridium as well as сyanobacteria of sp. Nostoc, but the production rate appears low. Concentrations (count in gram soil) of nitrogen consumers (eg ammonifiers), oligonitrophyls, Clostridium and denitrifiers increase several fold from young forest to mid

  10. To What Extent Local Forest Soil Pollen Can Assist Restoration in Subtropical China? (United States)

    Sun, Zhongyu; Wang, Jun; Ren, Hai; Guo, Qinfeng; Shu, Junwu; Liu, Nan


    Long-term ecological data play a vital role in ecological conservation and restoration, however, using information from local forest soil pollen data to assist restoration remains a challenge. This study analyzed two data sets, including 1) surface soil pollen (0–5 cm) and current vegetation data from four near-natural communities and four plantations, and 2) fossil pollen from soil profiles (0–80 cm) from a regional climax community and a degraded land. The pollen representativeness and similarity indexes were calculated. The results showed a low similarity between soil pollen and current vegetation (about 20%) thus forest soil pollen data should be used with caution when defining reference ecosystems. Pollen from Gironniera and Rutaceae which were abundant in broadleaved forest, were also detected in the 40–80 cm layer of a soil profile from the degraded land, which indicates its restoration possibility. Our study considered that the early restoration stage of the study area may benefit from using plant taxa of Pinus, Poaceae, Lonicera, Casuarina, Trema and Quercus. As Pinus, Castanopsis, Gironniera, Rutaceae, Helicia, Randia, Poaceae, Dicranopteris and Pteris always existed during succession, for regional forest restoration under global climate change, the roles of such “stable species” should be considered.

  11. Geomorphic controls of soil spatial complexity in a primeval mountain forest in the Czech Republic (United States)

    Daněk, Pavel; Šamonil, Pavel; Phillips, Jonathan D.


    Soil diversity and complexity is influenced by a variety of factors, and much recent research has been focused on interpreting or modeling complexity based on soil-topography relationships, and effects of biogeomorphic processes. We aimed to (i) describe local soil diversity in one of the oldest forest reserves in Europe, (ii) employ existing graph theory concepts in pedocomplexity calculation and extend them by a novel approach based on hypothesis testing and an index measuring graph sequentiality (the extent to which soils have gradual vs. abrupt variations in underlying soil factors), and (iii) reveal the main sources of pedocomplexity, with a particular focus on geomorphic controls. A total of 954 soil profiles were described and classified to soil taxonomic units (STU) within a 46 ha area. We analyzed soil diversity using the Shannon index, and soil complexity using a novel graph theory approach. Pairwise tests of observed adjacencies, spectral radius and a newly proposed sequentiality index were used to describe and quantify the complexity of the spatial pattern of STUs. This was then decomposed into the contributions of three soil factor sequences (SFS), (i) degree of weathering and leaching processes, (ii) hydromorphology, and (iii) proportion of rock fragments. Six Reference Soil Groups and 37 second-level soil units were found. A significant portion of pedocomplexity occurred at distances shorter than the 22 m spacing of neighbouring soil profiles. The spectral radius (an index of complexity) of the pattern of soil spatial adjacency was 14.73, to which the individual SFS accounted for values of 2.0, 8.0 and 3.5, respectively. Significant sequentiality was found for degree of weathering and hydromorphology. Exceptional overall pedocomplexity was particularly caused by enormous spatial variability of soil wetness, representing a crucial soil factor sequence in the primeval forest. Moreover, the soil wetness gradient was partly spatially correlated with the

  12. Water Repellency, Infiltration and Water Retention Properties of Forest Soils Under Different Management Practices (United States)

    Wahl, N. A.; Bens, O.; Schäfer, B.; Hüttl, R. F.

    significant proportion of severely and extremely hydrophobic samples in the upper 10 cm of the soil profile was revealed, whereas the persistence of repellency decreases with increasing soil depth. The EP exhibit for all plots a shallower depth distribution than the WDPT. During forest transformation, both humus type as well as humus distribution in the soil and the litter layers are altered. These changes influence above 1 all the water storage capacity of the soil which declines considerably during the first stage of forest transformation. The obtained results will be incorporated in a hydrologic catchment model in order to evaluate the possible impact on the runoff characteristics. Simulated runoff data for selected mesoscale catchments (e.g. of the Rhine area) will serve to evaluate different soil management practices in terms of minimizing surface runoff and preventing flood events. 2

  13. The carbon balance of forest soils: detectability of changes in soil carbon stocks in temperate and Boreal forests. (United States)

    Conen, Frauz; Zerva, Argyro; Arrouays, Dominique; Jolivet, Claude; Jarvis, Paul G; Grace, John; Mencuccini, Maurizio


    Estimating soil carbon content as the product of mean carbon concentration and bulk density can result in considerable overestimation. Carbon concentration and soil mass need to be measured on the same sample and carbon contents calculated for each individual sample before averaging. The effect of this bias is likely to be smaller (but still greater than zero) when the primary objective is to determine stock changes over time. Variance and mean carbon content are significantly and positively related to each other, although some sites showed much higher variability than predicted by this relationship, as a likely consequence of their particular site history, forest management, and micro-topography. Because of the proportionality between mean and variance, the number of samples required to detect a fixed change in soil carbon stocks varied directly with the site mean carbon content from less than 10 to several thousands across the range of carbon stocks normally encountered in temperate and Boreal forests. This raises important questions about how to derive an optimal sampling strategy across such a varied range of conditions so as to achieve the aims of the Kyoto Protocol. Overall, on carbon-poor forest sites with little or no disturbance to the soil profile, it is possible to detect changes in total soil organic carbon over time of the order of 0.5 kg (C) m(-2) with manageable sample sizes even using simple random sampling (i.e., about 50 samples per sampling point). More efficient strategies will reveal even smaller differences. On disturbed forest sites (ploughed, windthrow) this is no longer possible (required sample sizes are much larger than 100). Soils developed on coarse aeolian sediments (sand dunes), or where buried logs or harvest residues of the previous rotation are present, can also exhibit large spatial variability in soil carbon. Generally, carbon-rich soils will always require larger numbers of samples. On these sites, simple random sampling is

  14. Mapping Soil Properties of Africa at 250 m Resolution: Random Forests Significantly Improve Current Predictions. (United States)

    Hengl, Tomislav; Heuvelink, Gerard B M; Kempen, Bas; Leenaars, Johan G B; Walsh, Markus G; Shepherd, Keith D; Sila, Andrew; MacMillan, Robert A; Mendes de Jesus, Jorge; Tamene, Lulseged; Tondoh, Jérôme E


    80% of arable land in Africa has low soil fertility and suffers from physical soil problems. Additionally, significant amounts of nutrients are lost every year due to unsustainable soil management practices. This is partially the result of insufficient use of soil management knowledge. To help bridge the soil information gap in Africa, the Africa Soil Information Service (AfSIS) project was established in 2008. Over the period 2008-2014, the AfSIS project compiled two point data sets: the Africa Soil Profiles (legacy) database and the AfSIS Sentinel Site database. These data sets contain over 28 thousand sampling locations and represent the most comprehensive soil sample data sets of the African continent to date. Utilizing these point data sets in combination with a large number of covariates, we have generated a series of spatial predictions of soil properties relevant to the agricultural management--organic carbon, pH, sand, silt and clay fractions, bulk density, cation-exchange capacity, total nitrogen, exchangeable acidity, Al content and exchangeable bases (Ca, K, Mg, Na). We specifically investigate differences between two predictive approaches: random forests and linear regression. Results of 5-fold cross-validation demonstrate that the random forests algorithm consistently outperforms the linear regression algorithm, with average decreases of 15-75% in Root Mean Squared Error (RMSE) across soil properties and depths. Fitting and running random forests models takes an order of magnitude more time and the modelling success is sensitive to artifacts in the input data, but as long as quality-controlled point data are provided, an increase in soil mapping accuracy can be expected. Results also indicate that globally predicted soil classes (USDA Soil Taxonomy, especially Alfisols and Mollisols) help improve continental scale soil property mapping, and are among the most important predictors. This indicates a promising potential for transferring pedological

  15. Soil Organic Matter in Forest Ecosystems of the Forest-tundra zone of Central Siberia (United States)

    Mukhortova, Liudmila


    Our study was conducted on 17 forest sample plots in the forest-tundra zone of Central Siberia, Krasnoyarsk region, Russia. They were covered by larch/feather moss/shrub and larch/grass forest types growing on cryozems and podburs (Cryosols). The investigation was aimed at estimating soil organic matter storage and structure in forest ecosystems growing along the northern tree line. Such ecosystems have low rates of exchange processes and biological productivity. Estimating soil carbon in these forest types is important for a deeper understanding of their role in biogeochemical cycles and forecasting consequences of climate changes. Soil organic matter was divided into pools by biodegradation resistance level and, hence, different roles of these pools in biological cycles. The soil organic matter was divided into an easily mineralizable (LMOM) fraction, which includes labile (insoluble) (LOM) and mobile (soluble) (MOM) organic compounds, and a stable organic matter fraction that is humus substances bound with soil matrix. The forest-tundra soil carbon was found to total 30.9 to 125.9 tons/ha. Plant residues were the main part of the soil easily mineralizable organic matter and contained from 13.3 to 62.4% of this carbon. Plant residue carbon was mainly allocated on the soil surface, in the forest litter. Plant residues in the soil (dead roots + other "mortmass") were calculated to contribute 10-30% of the plant residues carbon, or 2.5-15.1% of the total soil carbon. Soil surface and in-soil dead plant material included 60-95% of heavily decomposed residues that made up a forest litter fermentation subhorizon and an "other mortmass" fraction of the root detritus. Mobile organic matter (substances dissolved in water and 0.1N NaOH) of plant residues was found to allocate 15-25% of carbon. In soil humus, MOM contribution ranged 14 to 64%. Easily mineralizable organic matter carbon appeared to generally dominate forest-tundra soil carbon pool. It was measured to

  16. Distribution of yeast complexes in the profiles of different soil types (United States)

    Glushakova, A. M.; Kachalkin, A. V.; Tiunov, A. V.; Chernov, I. Yu.


    The number and taxonomic structure of the yeast complexes were investigated in the full profiles of the soddy-podzolic soil (Central Forest State Nature Biosphere Reserve), dark gray forest soil (Kaluzhskie Zaseki Reserve), and chernozem (Privolzhskaya Forest-Steppe Reserve). In all these soils, the number of yeasts was maximal (104 CFU/g) directly under the litter; it drastically decreased with the depth. However, at the depth of 120-160 cm, the number of yeasts significantly increased in all the soils; their maximum was found in the illuvial horizon of the soddy-podzolic soil. Such a statistically significant increase in the number of yeasts at a considerable depth was found for the first time. Different groups of yeasts were present in the yeast communities of different soils. The species structure of yeast communities changed little in each soil: the same species were isolated both from the soil surface and from the depth of more than 2 m. The results showed that yeasts could be used for soil bioindication on the basis of specific yeast complexes in the profiles of different soil types rather than individual indicative species.

  17. Soil and soil cover changes in spruce forests after final logging

    Directory of Open Access Journals (Sweden)

    E. M. Lapteva


    Full Text Available Soil cover transformation and changes of morphological and chemical properties of Albeluvisols in clear-cuttings of middle taiga spruce forests were studied. The observed changes in structure and properties of podzolic texturally-differentiated soils at cuttings of spruce forests in the middle taiga subzone do not cause their transition to any other soil type. Soil cover of secondary deciduous-coniferous forests which replace cut forests are characterized with a varied soil contour and a combination of the main type of podzolic soils under undisturbed spruce forests. The increased surface hydromorphism in cut areas causes formation of complicated sub-types of podzolic texturally differentiated soils (podzolic surface-gley soils with microprofile of podzol and enlarges their ratio (up to 35–38 % in soil cover structure. Temporary soil over-wetting at the initial (5–10 years stage of after-cutting self-restoring vegetation succession provides for soil gleyzation, improves yield and segregation of iron compounds, increases the migratory activity of humic substances. Low content and resources of total nitrogen in forest litters mark anthropogenic transformation processes of podzolic soils at this stage. Later (in 30–40 years after logging, soils in cut areas still retain signs of hydromorphism. Forest litters are denser, less acidic and thick with a low weight ratio of organic carbon as compared with Albeluvisols of undisturbed spruce forest. The upper mineral soil horizons under secondary deciduous-coniferous forests contain larger amounts of total iron, its mobile (oxalate-dissolvable components, and Fe-Mn-concretions.

  18. Long-term forest soil warming alters microbial communities in temperate forest soils

    Directory of Open Access Journals (Sweden)

    Kristen M DeAngelis


    Full Text Available Soil microbes are major drivers of soil carbon cycling, yet we lack an understanding of how climate warming will affect microbial communities. Three ongoing field studies at the Harvard Forest Long-term Ecological Research (LTER site (Petersham, MA have warmed soils 5oC above ambient temperatures for 5, 8 and 20 years. We used this chronosequence to examine soil microbial communities in response to chronic warming. Bacterial community composition was studied using Illumina sequencing of the 16S ribosomal RNA gene, and bacterial and fungal abundance were assessed using quantitative PCR. Only the 20-year warmed site exhibited significant change in bacterial community structure in the organic soil horizon, with no significant changes in the mineral soil. The dominant taxa, abundant at 0.1% or greater, represented 0.3% of the richness but nearly 50% of the observations (sequences. Individual members of the Actinobacteria, Alphaproteobacteria and Acidobacteria showed strong warming responses, with one Actinomycete decreasing from 10% to 2% relative abundance with warming. We also observed a significant decrease in mean bacterial ribosomal RNA gene copy number in warming plots compared to controls, a trait linked to maximum growth rate or trophic strategy among bacteria. Increased bacterial alpha diversity, shifting beta diversity, decreased fungal abundance and increased abundance of bacteria with low rRNA operon copy number, including Alphaproteobacteria and Acidobacteria suggest that more or alternative niche space is being created over the course of long-term warming.

  19. How deep does disturbance go? The legacy of hurricanes on tropical forest soil biogeochemistry (United States)

    Gutiérrez del Arroyo, O.; Silver, W. L.


    Ecosystem-scale disturbances, such as hurricanes and droughts, are periodic events with the capacity to cycle vast amounts of energy and matter. Such is the case of hurricanes in wet tropical forests, where intense winds defoliate the forest canopy and deposit large quantities of debris on the forest floor. These disturbances strongly affect soil biogeochemistry by altering soil moisture and temperature regimes, as well as litterfall, decomposition rates, and ultimately soil carbon (C) pools. Although these impacts are mostly concentrated near the soil surface, it is critical to consider the long-term effects on hurricanes on the deep soil profile, given the potential for soil C sequestration to occur at depth. Our study was conducted in the Canopy Trimming Experiment, an ongoing experiment within the Luquillo LTER in Puerto Rico. Ten years prior to our study, treatments including canopy trimming and debris deposition, independently and in combination, were imposed on 30 x 30 m plots within Tabonuco forests. We sampled 12 soil profiles (4 treatments, n=3) from 0 to 100 cm, at 10 cm intervals, and measured a suite of biogeochemical properties to explore treatment effects, as well as changes with depth. After a decade of recovery from the imposed treatments, there were no significant differences in soil moisture or soil pH among treatments at any depth, although significant changes with depth occurred for both variables. Iron concentrations, despite showing no treatment effects, decreased markedly with depth, highlighting the biogeochemical thresholds that occur along the soil profile. Notably, debris deposition resulted in significantly higher soil C, nitrogen (N), and phosphorus (P) concentrations in bulk soils, with effects being detected even at depths >50 cm. Moreover, density fractionation analyses of surface and deep soils revealed potential pathways for the measured increases in C, N, and P, including the accumulation of organic matter in the light fraction

  20. Forest Soil Productivity on the Southern Long-Term Soil Productivity Sites at Age 5 (United States)

    D. Andrew Scott; Allan E. Tiarks; Felipe G. Sanchez; Michael Elliott-Smith; Rick Stagg


    Forest management operations have the potential to reduce soil productivity through organic matter and nutrient removal and soil compaction. We measured pine volume, bulk density, and soil and foliar nitrogen and phosphorus at age 5 on the 13 southern Long-Term Soil Productivity study sites. The treatments were organic matter removal [bole only (BO), whole tree (WT),...

  1. Results of the second national forest soil inventory in Germany - Interpretation of level and stock profiles for PCDD/F and PCB in terms of vegetation and humus type. (United States)

    Pandelova, Marchela; Henkelmann, Bernhard; Bussian, Bernd M; Schramm, Karl-Werner


    Polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs) and polychlorinated biphenyls (PCBs) were detected in 86 humic topsoil layers and in a subset of 11 randomly selected top mineral forest soils at the depths of 0-5cm and 5-10cm collected from different federal states of Germany. The distribution of these persistent organic pollutants (POPs) in humic topsoils with respect to vegetation cover (coniferous vs. deciduous vs. mixed), total organic carbon (TOC), altitude and latitude data was investigated. There is cross correlation between the contents and TOC while the correlation with latitude indicates higher abundances of POPs in central Germany where there is high population density accompanied with industrial activities. The calculated stocks suggest that humus type (mor, mull, or moder) in conjunction with forest type can explain the relative POPs abundances in different soil layers. Generally, humic topsoils show highest contents of POPs compare to the two mineral soils with a ratio of 100:10:1. However, the stock humic layers of coniferous stands contribute about 50% to the total stock, whereas at deciduous stands the stock is mainly located in the upper mineral soil layer (0-5cm). The soil-water distribution coefficients (Kd) were calculated to estimate the potential translocation in the different soil types. The Kd values vary among the PCBs and PCDD/Fs congeners and are most variable for humic topsoils. There is pronounced chemical abundance in the top mineral soils with increasing Kd and this points to non-water bound transport processes for superlipophilic compounds. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Three new species of Aspergillus from Amazonian forest soil (Ecuador). (United States)

    Mares, Donatella; Andreotti, Elisa; Maldonado, Maria Elena; Pedrini, Paola; Colalongo, Chiara; Romagnoli, Carlo


    From an undisturbed natural forest soil in Ecuador, three fungal strains of the genus Aspergillus were isolated. Based on molecular and morphological features they are described as three new species, named A. quitensis, A. amazonicus, and A. ecuadorensis.

  3. Role of forest soils in the national greenhouse gas inventory (United States)

    Jandl, R.


    In Austria the forests are a key category of the GHG budget. The role of forest soils as a sink or source of carbon has so far not been fully assessed and as a default position a stable soil carbon pool was reported. A combination from a modeling exercise and a field survey allowed the scrutinization of this assumption. The field data represent a repeated soil inventory after 20 years. Due to the spatial heterogeneity of chemical soil properties no clear conclusion of the temporal change of soil carbon was made. The data set from the field survey was used for the validation of a modeling exercise. We used the model Yasso07 that is well suited for the available site information in Austria. The measured and the simulated soil carbon change had an acceptable fit. The modeling exercise suggested a statistically insignificant loss of soil carbon during a committment period of the Kyoto Protocol. The standing biomass of the forest is still a carbon sink. Owing to the large forest area this insignificant soil carbon loss strongly reduces the carbon sink strength of the entire forest.

  4. Soil Organic Carbon (SOC) distribution in two differents soil types (Podzol and Andosol) under natural forest cover. (United States)

    Álvarez-Romero, Marta; Papa, Stefania; Verstraeten, Arne; Cools, Nathalie; Lozano-García, Beatriz; Parras-Alcántara, Luis; Coppola, Elio


    Andosols are young soils that shall know a successive evolution towards pedological types where the dominant pedogenetic processes are more evident. Vegetation and climate influence Andosols evolution to other order of soils. In cold and wet climates or on acid vulcanite under heavy leaching young Andosols could change into Podzols (Van Breemn and Buurman, 1998). Were investigated a Podzol soil (World References Base, 2014) at Zoniën (Belgium), were and an Andosol soil (World References Base, 2014) at Lago Laceno (Avellino, Italy). This study shows the data on the SOC (Soil Organic Carbon) fractionation in two profiles from two natural pine forest soils. Together with the conventional activities of sampling and analysis of soil profile were examined surveys meant to fractionation and characterization of SOC, in particular: Total Organic Carbon (TOC) and Total Extractable Carbon (TEC) soil contents were determined by Italian official method of soil analysis (Mi.P.A.F. (2000)). Different soil C fractions were also determined: Humic Acid Carbon (HAC), Fulvic Acid Carbon (FAC), Not Humic Carbon (NHC) and Humin Carbon (Huc) fractions were obtained by difference. In the whole profile, therefore, were also assayed cellulose and lignin contents. The aim of this work was to compare the distribution of different soil organic components in a podzol and a soil with andic properties. The data show great similarity, among the selected profiles, in the organic components distribution estudied. References: - Mi.P.A.F. - Ministero per le Politiche Agricole e Forestali - Osservatorio Nazionale Pedologico e per la Qualità del Suolo (2000): Metodi Ufficiali di Analisi Chimica del Suolo. In: Franco Angeli (Editor), Collana di metodi analitici per l'agricoltura diretta da Paolo Sequi, n. 1124.2, Milano, Italy. - Van Breemn N. and Buurman P. (1998) Chapter 12 Formation of Andisols. In: Soil formation. Kluwer Ed., Wageningen, The Netherlands, 271-289. -Ussiri D.A.N., Johnson C

  5. Reduction of forest soil respiration in response to nitrogen deposition


    I. A. Janssens; Dieleman, W.; S. Luyssaert; Subke, J-A.; M. Reichstein; Ceulemans, R; Ciais, P; Dolman, A.J.; J. Grace; Matteucci, G.; Papale, D.; S. L. Piao; Schulze, E-D.; Tang, J.; Law, B.E.


    International audience; The use of fossil fuels and fertilizers has increased the amount of biologically reactive nitrogen in the atmosphere over the past century. As a consequence, forests in industrialized regions have experienced greater rates of nitrogen deposition in recent decades. This unintended fertilization has stimulated forest growth, but has also affected soil microbial activity, and thus the recycling of soil carbon and nutrients. A meta-analysis suggests that nitrogen depositio...

  6. Contributions of ectomycorrhizal fungal mats to forest soil respiration (United States)

    C. Phillips; L.A. Kluber; J.P. Martin; B.A. Caldwell; B.J. Bond


    Distinct aggregations of fungal hyphae and rhizomorphs, or “mats”, formed by some genera of ectomycorrhizal (EcM) fungi are common features of soils in coniferous forests of the Pacific Northwest. We measured in situ respiration rates of Piloderma mats and neighboring non-mat soils in an old-growth Douglas-fir forest in western Oregon to investigate whether there was...

  7. Effects of fine root length density and root biomass on soil preferential flow in forest ecosystems

    Directory of Open Access Journals (Sweden)

    Yinghu Zhang


    Full Text Available Aim of study: The study was conducted to characterize the impacts of plant roots systems (e.g., root length density and root biomass on soil preferential flow in forest ecosystems. Area of study: The study was carried out in Jiufeng National Forest Park, Beijing, China. Material and methods: The flow patterns were measured by field dye tracing experiments. Different species (Sophora japonica Linn,Platycladus orientalis Franco, Quercus dentata Thunbwere quantified in two replicates, and 12 soil depth were applied. Plant roots were sampled in the sieving methods. Root length density and root biomass were measured by WinRHIZO. Dye coverage was implied in the image analysis, and maximum depth of dye infiltration by direct measurement. Main results: Root length density and root biomass decreased with the increasing distance from soil surface, and root length density was 81.6% higher in preferential pathways than in soil matrix, and 66.7% for root biomass with respect to all experimental plots. Plant roots were densely distributed in the upper soil layers. Dye coverage was almost 100% in the upper 5-10 cm, but then decreased rapidly with soil depth. Root length density and root biomass were different from species: Platycladus orientalis Franco > Quercus dentata Thunb > Sophora japonica Linn. Research highlights: The results indicated that fine roots systems had strong effects on soil preferential flow, particularly root channels enhancing nutrition transport across soil profiles in forest dynamics.

  8. Forest productivity decline caused by successional paludification of boreal soils. (United States)

    Simard, Martin; Lecomte, Nicolas; Bergeron, Yves; Bernier, Pierre Y; Paré, David


    Long-term forest productivity decline in boreal forests has been extensively studied in the last decades, yet its causes are still unclear. Soil conditions associated with soil organic matter accumulation are thought to be responsible for site productivity decline. The objectives of this study were to determine if paludification of boreal soils resulted in reduced forest productivity, and to identify changes in the physical and chemical properties of soils associated with reduction in productivity. We used a chronosequence of 23 black spruce stands ranging in postfire age from 50 to 2350 years and calculated three different stand productivity indices, including site index. We assessed changes in forest productivity with time using two complementary approaches: (1) by comparing productivity among the chronosequence stands and (2) by comparing the productivity of successive cohorts of trees within the same stands to determine the influence of time independently of other site factors. Charcoal stratigraphy indicates that the forest stands differ in their fire history and originated either from high- or low-severity soil burns. Both chronosequence and cohort approaches demonstrate declines in black spruce productivity of 50-80% with increased paludification, particularly during the first centuries after fire. Paludification alters bryophyte abundance and succession, increases soil moisture, reduces soil temperature and nutrient availability, and alters the vertical distribution of roots. Low-severity soil burns significantly accelerate rates of paludification and productivity decline compared with high-severity fires and ultimately reduce nutrient content in black spruce needles. The two combined approaches indicate that paludification can be driven by forest succession only, independently of site factors such as position on slope. This successional paludification contrasts with edaphic paludification, where topography and drainage primarily control the extent and rate

  9. Soil evolution in spruce forest ecosystems: role and influence of humus studied by morphological approach

    Directory of Open Access Journals (Sweden)

    Chersich S


    Full Text Available In order to understand the role and the mutual influences of humus and soil in alpine spruce forest ecosystems we studied and classified 7 soil - humic profiles on the 4 main forestry dynamics: open canopy, regeneration, young stand, tree stage. We studied the role of humification process in the pedologic process involving soils and vegetations studing humic and soil horizons. Study sites are located at an altitude of 1740 m a.s.l near Pellizzano (TN, and facing to the North. The parent soil material is predominantly composed of morenic sediments, probably from Cevedale glacier lying on a substrate of tonalite from Presanella (Adamello Tertiary pluton. The soil temperature regime is frigid, while the moisture regime is udic. The characteristics observed in field were correlated with classical chemical and physical soil analyses (MIPAF 2000. In order to discriminate the dominant soil forming process, the soils were described and classified in each site according to the World Reference Base (FAO-ISRIC-ISSS 1998. Humus was described and classified using the morphological-genetic approach (Jabiol et al. 1995. The main humus forms are acid and they are for the greater part Dysmoder on PODZOLS. The main pedogenetic processes is the podzolization, locally there are also hydromorphic processes. We associate a definite humus form with a pedological process at a particular step of the forest evolution. We concluded thath the soil study for a correct pedological interpretation must take count of the characteristics of the humic epipedon.

  10. Vertical variations of soil hydraulic properties within two soil profiles and its relevance for soil water simulations (United States)

    Schwen, Andreas; Zimmermann, Michael; Bodner, Gernot


    Numerical simulations of soil water dynamics can be valuable tools for the assessment of different soil and land management practices. For accurate simulations, the soil hydraulic properties (SHP), i.e. the hydraulic conductivity and water retention function have to be properly known. They can be either estimated from physical soil properties by pedotransfer functions (PTF) or measured. In most studies, soil profiles are analyzed and sampled with respect to their pedogenic horizons. While considerable effort has been put on horizontal spatial SHP variations, vertical changes within soil profiles have not been analyzed in detail. Therefore, the objectives of this study were (i) the SHP measurement along vertical transects within two soil profiles, (ii) to evaluate their spatial variation and correlation with physical soil properties, and (iii) to assess the impact of the SHP determination method and its spatial discretization on simulated soil water balance components. Two soils, an agriculturally used silty-loam Chernozem and a forested sandy Cambisol were sampled in 0.05 m increments along vertical transects. The parameters of a dual porosity model were derived using the evaporation method and scaling was applied to derive representative mean SHP parameters and scaling factors as a measure of spatial variability. State-space models described spatial variations of the scaling factors by physical soil properties. Simulations with HYDRUS 1D delivered the soil water balance for different climatic conditions with the SHP being estimated from horizon-wise PTFs, or discretized either sample-wise, according to the pedogenic horizons, or as hydrologically relevant units (hydropedological approach). Considerable SHP variations were found for both soil profiles. In the Chernozem, variations of the hydraulic conductivity were largest within the ploughed Ap-horizon and could be attributed to variations in soil structure (macropores). In the subsoil, soil water retention showed

  11. Africa Soil Profiles Database, Version 1.0

    NARCIS (Netherlands)

    Leenaars, J.G.B.


    The Africa Soil Profiles Database, Version 1.0, was compiled by ISRIC - World Soil Information as a project activity for the Globally integrated- Africa Soil Information Service (AfSIS) project ( The Africa Soil Profiles Database is a compilation of georeferen

  12. Africa Soil Profiles Database, Version 1.0

    NARCIS (Netherlands)

    Leenaars, J.G.B.


    The Africa Soil Profiles Database, Version 1.0, was compiled by ISRIC - World Soil Information as a project activity for the Globally integrated- Africa Soil Information Service (AfSIS) project ( The Africa Soil Profiles Database is a compilation of georeferen

  13. Soil warming affects soil organic matter chemistry of all density fractions of a mountain forest soil (United States)

    Schnecker, Jörg; Wanek, Wolfgang; Borken, Werner; Schindlbacher, Andreas


    Rising temperatures enhance microbial decomposition of soil organic matter (SOM) and increase thereby the soil CO2 efflux. Elevated microbial activity might differently affect distinct SOM pools, depending on their stability and accessibility. Soil fractions derived from density fractionation have been suggested to represent SOM pools with different turnover times and stability against microbial decomposition. We here investigated the chemical and isotopic composition of bulk soil and three different density fractions of forest soils from a long term warming experiment in the Austrian Alps. At the time of sampling the soils in this experiment had been warmed during the snow-free period for 8 consecutive years. During that time no thermal adaptation of the microbial community could be identified and CO2 release from the soil continued to be elevated by the warming treatment. Our results which included organic C content, total N content, δ13C, δ 14C, δ 15N and the chemical composition, identified by pyrolysis-GC/MS, showed no significant differences in bulk soil between warming treatment and control. The differences in the three individual fractions (free particulate organic matter, occluded particulate organic matter and mineral associated organic matter) were mostly small and the direction of warming induced change was variable with fraction and sampling depth. We did however find statistically significant effects of warming in all density fractions from 0-10 cm depth, 10-20 cm depth or both. Our results also including significant changes in the supposedly more stable mineral associated organic matter fraction where δ 13C values decreased at both sampling depths and the relative proportion of N-bearing compounds decreased at a sampling depth of 10-20 cm. All the observed changes can be attributed to an interplay of enhanced microbial decomposition of SOM and increased root litter input. This study suggests that soil warming destabilizes all density fractions of

  14. Properties of Forested Loess Soils After Repeated Prescribed Burns (United States)

    D.M. Moehring; C.X. Grano; J.R. Bassett


    Nine annual burns have had little effect on the nutrient content and structure of the surface 4 inches of loess soils on flat terrain.Because prescribed burns must often be repeated to obtain desired results, many foresters are apprehensive about the possible deleterious effects on soils. In 1954 the Timber Management Laboratory at Crossett, Arkansas, in co-...

  15. [Effects of different type urban forest plantations on soil fertility]. (United States)

    Sun, Hui-zhen; Chen, Ming-yue; Cai, Chun-ju; Zhu, Ning


    Aimed to study the effects of different urban forest plantations on soil fertility, soil samples were collected from eight mono-cultured plantations (Larix gmelinii, Pinus sylvestris var. mongolica, Pinus tabulaeformis var. mukdensis, Phellodendron amurense, Juglans mandshurica, Fraxinus mandshurica, Betula platyphylla, and Quercus mongolica) and one mixed plantation (P. sylvestris var. mongolica + F. mandshurica + Picea koraiensis + P. amurense + B. platyphylla) established in Northeast Forestry University's Urban Forestry Demonstration Research Base in the 1950s, with two sites of neighboring farmland and abandoned farmland as the control. The soils in broadleaved forest plantations except Q. mongolica were near neutral, those in mixed plantation, L. gmelinii, P. sylvestris var. mongolica, and P. tabulaeformis var. mukdensis were slightly acidic, and that in Q. mongolica was acidic. The contents of soil organic matter, total N and P, available P and K, and hydrolysable N tended to decrease with soil depth. There existed significant differences in the chemical indices of the same soil layers among different plantations. The soil fertility was decreased in the order of F. mandshurica > P. amurense > mixed plantation > J. mandshurica > B. platyphylla > abandoned farmland > farmland > P. sylvestris var. mongolica > L. gmelinii > Q. mongolica > P. tabulaeformis var. mukdensis, suggesting that the soil fertility in broadleaved forest plantations except Q. mongolica and in mixed plantation increased, while that in needle-leaved forest plantations tended to decrease.

  16. The contribution of atmospheric deposition and forest harvesting to forest soil acidification in China since 1980 (United States)

    Zhu, Qichao; De Vries, Wim; Liu, Xuejun; Zeng, Mufan; Hao, Tianxiang; Du, Enzai; Zhang, Fusuo; Shen, Jianbo


    Soils below croplands and grasslands have acidified significantly in China since the 1980s in terms of pH decline in response to acid inputs caused by intensified fertilizer application and/or acid deposition. However, it is unclear what the rate is of pH decline of forest soils in China in response to enhanced acid deposition and wood production over the same period. We therefore gathered soil pH data from the Second National Soil Inventory of China and publications from the China National Knowledge Infrastructure (CNKI) database in 1981-1985 and 2006-2010, respectively, to evaluate the long-term change of pH values in forest soils. We found that soil pH decreased on average by 0.36 units in the period 1981-1985 to 2006-2010., with most serious pH decline occurring in southwest China (0.63 pH units). The soil type with the strongest pH decline was the semi-Luvisol (0.44 pH units). The decrease in pH was significantly correlated with the acid input induced by atmospheric deposition and forest harvesting. On average, the contribution of atmospheric deposition to the total acid input was estimated at 84% whereas element uptake (due to forest wood growth and harvest) contributed 16% only. Atmospheric deposition is thus the major driver for the significant forest soil acidification across China.

  17. Organic carbon concentrations and stocks in Romanian mineral forest soils

    Directory of Open Access Journals (Sweden)

    Lucian C. Dincă


    Full Text Available Estimating soils organic carbon stock and its change in time is an actual concern for scientists and climate change policy makers. The present article firstly focus on determination of C stocks in Romania on forest soil types, as well as development of the spatial distribution mapping using a Geographic Information System (GIS and also the secondly on the quantification of uncertainty associated with currently available data on C concentration on forest soils geometrical layers. Determination of C stock was done based on forest management plans database created over 2000-2006. Unlike original database, the data for this study was harmonized on following depths: 0-10 cm, 10-20 cm, 20-40 cm, and > 40 cm. Then, the obtained values were grouped by soil types, resulting average values for the main forest soils from Romania. A soil area weighted average value of 137 t/ha is calculated for Romania, in the range of estimations for other European geographic and climatic areas. The soils that have the largest amount of organic carbon are andosols, vertisols, entic and haplic podzols, whereas the ones that have the smallest values of organic carbon are solonetz and solonchaks. Although current assessment relies on very large number of samples from the forest management planning database, the variability of C concentration remains very large, ~40-50% for coefficient the variation and ~100% of the average, when defining the range of 95% of entire soil population, rather showing the variability than uncertainty of the average estimated. Best fit for C concentration on geometric layers in any forest soil is asymmetric, associated with log-normal distributions.

  18. Soil erosion after forest fires in the Valencia region (United States)

    González-Pelayo, Óscar; Keizer, Jan Jacob; Cerdà, Artemi


    spain. Annales Geophysicae. C531. Martín, A., Díaz-Raviña, M., Carballas, T. 2012. Short- and medium-term evolution of soil properties in Atlantic forest ecosystems affected by wildfires. Land Degradation & Development, 23: 427- 439. DOI 10.1002/ldr.1078 Mataix-Solera, J., Doerr, S.H. 2004. Hydrophobic and aggregate stability in calcareous topsoils from fire-affected pine forest in southeastern Spain. Geoderma 118, 77-88. Mayor, A.G., Bautista, S., Llovet, L., Bellot, J. 2007. Post-fire hydrological and erosional responses of a Mediterranean landscape: Seven years of catchment-scale dynamics. Catena 71, 68-75. Pausas, J.G. 2004. Changes in fire and climate in the eastern Iberian Peninsula (Mediterranean basin). Climatic Change 63: 337-350. Rubio, J.L., Andreu, V., Cerni, R. 1994. A monitoring system for experimental soil erosion plots. In: Rickson, R.J. (Ed.), Conserving Soil Resources: European Perspectives. CAB International, Wallingford, pp. 127-135. Rubio, J.L., Forteza, J., Andreu,V., Cerní, R. 1997. Soil profile characteristics influencing runoff and soil erosion after forest fire: A case of study (Valencia, Spain). Soil Technology 11, 67-78. Sanroque, P., Rubio, J.L., Mansanet, J. 1985. Efectos de los incendios forestales en las propiedades del suelo, en la composición florística y en la erosión hídrica de zonas forestales de Valencia (España). Rev. Ecol. Biol. Sol. 22 (2), 131-147.

  19. Soil phosphorus and the ecology of lowland tropical forests (United States)

    Turner, Ben


    In this presentation I will explore the extent to which phosphorus influences the productivity, diversity, and distribution of plant species in tropical forests. I will highlight the range of soils that occur in tropical forests and will argue that pedogenesis and associated phosphorus depletion is a primary driver of forest diversity over long timescales. I will draw on data from a regional-scale network of forest dynamics plots in Panama to show that tree species distributions are determined predominantly as a function of dry season intensity and soil phosphorus availability, and will suggest potential mechanistic explanations for this pattern in relation to phosphorus acquisition. Finally, I will present observational and experimental evidence from Panama to show how phosphorus, nitrogen, and potassium, limit plant productivity and microbial communities on strongly-weathered soils in the lowland tropics.

  20. Contributions of ectomycorrhizal fungal mats to forest soil respiration

    Directory of Open Access Journals (Sweden)

    C. L. Phillips


    Full Text Available Distinct aggregations of fungal hyphae and rhizomorphs, or "mats" formed by some genera of ectomycorrhizal (EcM fungi are common features of soils in coniferous forests of the Pacific Northwest. We measured in situ respiration rates of Piloderma mats and neighboring non-mat soils in an old-growth Douglas-fir forest in Western Oregon to investigate whether there was an incremental increase in respiration from mat soils, and to estimate mat contributions to total soil respiration. We found that areas where Piloderma mats colonized the organic horizon often had higher soil surface flux than non-mats, with the incremental increase in respiration averaging 16 % across two growing seasons. Both soil physical factors and biochemistry were related to the higher surface flux of mat soils. When air-filled pore space was low (high soil moisture, soil CO2 production was concentrated into near-surface soil horizons where mats tend to colonize, resulting in greater apparent differences in respiration between mat and non-mat soils. Respiration rates were also correlated with the activity of chitin-degrading soil enzymes. This suggests that the elevated activity of fungal mats may be related to consumption or turnover of chitinous fungal cell-wall materials. We found Piloderma mats present across 57 % of the soil surface in the study area, and use this value to estimate a respiratory contribution from mats at the stand-scale of about 9 % of total soil respiration. The activity of EcM mats, which includes both EcM fungi and microbial associates, was estimated to constitute a substantial portion of total soil respiration in this old-growth Douglas-fir forest.

  1. Effect of Fluctuating Temperatures on Forest Soil Nitrogen Minerealization

    Institute of Scientific and Technical Information of China (English)



    Nitrogen mineralization in forest soil wa studied in laboratory by incubating undisturbed soil cores enclosed within PVC columns at different temperatures to compare the effect of flucttuating temperature with that of constant temperaature,and to find out whether soil nitrification shows linearity over time .The results showed that there was no significant difference between soil nitrification at fluctuating temperature and that at constant temperature,and suggested that it must be careful to make the conclusion that soil nitrification has linearity over time.

  2. Characterization of soil microarthropod communities in Italian beech forest (United States)

    Conti, F. D.; Menta, C.; Piovesan, G.


    The contribution of soil organisms to ecosystem functions such as decomposition, nutrient recycling and the maintenance of physico-chemical properties is well recognised, as is the fact that soil fauna plays an important role in the formation and stabilisation of soil structure. The diversity of soil fauna includes a quarter of described living species, the majority of which are insects and arachnids. Soil fauna plays an essential role in forests and agro-ecosystems by maintaining their functionality and productivity. The aim of this study is to evaluate the biodiversity of soil microarthropods communities in different Italian beech forest. Particular attention is paid to the role of fossorial microarthropods in the maintenance of soil structure and in the organic matter movements. Three beech forests are studied, two located in the North and one in the Centre of Italy. Microarthropods are extracted from litter and soil with a Berlese-Tullgren funnel, identified to order level (class level for myriapods) and counted using a microscope. Relative order abundance and biodiversity are expressed using the Shannon-Weaver diversity index (H) and evenness index (J). Soil biological quality is expressed using the QBS-ar index and Acari/Collembola ratio. The results show a richness of microarthropods: several orders, till 19 different groups, are determined and identified. Acari and collembola are the main represented taxa and, especially in litter samples, pseudoscorpions, different specimens of diplopods (or millipedes) and chilopods (centipedes) are found. Thus the presence in particular of diplopods offers the possibility of studying fossorial microarthropods functions in detail. Furthermore, both in soil and in litter samples, adapted groups are recognized, such as pauropods, symphyla, proturans and diplurans, with specific morphological characteristics that these species suited to soil habitat. Therefore they attest a good level of soil quality and high natural value

  3. Nitrogen Deposition Effects on Soil Carbon Dynamics in Temperate Forests

    DEFF Research Database (Denmark)

    Ginzburg Ozeri, Shimon

    Soils contain the largest fraction of terrestrial carbon (C). Understanding the factors regulating the decomposition and storage of soil organic matter (SOM) is essential for predictions of the C sink strength of the terrestrial environment in the light of global change. Elevated long-term nitrogen...... (N) deposition into forest ecosystems has been increasing globally and was hypothesized to raise soil organic C (SOC) stocks by increasing forest productivity and by reducing SOM decomposition. Yet, these effects of N deposition on forest SOC stocks are uncertain and largely based on observations...... edges were used to study the effects of varying N deposition load on SOC stocks and fluxes as well as on the temperature sensitivity of SOM respiration. In a third study, the effects of 20 years of continuous experimental N addition (35 kg N ha-1 year-1) on soil C budget were investigated. Our general...

  4. Benchmark values for forest soil carbon stocks in Europe

    DEFF Research Database (Denmark)

    De Vos, Bruno; Cools, Nathalie; Ilvesniemi, Hannu;


    to the UN/ECE ICP Forests 16 × 16 km Level I network. Plots were sampled and analysed according to harmonized methods during the 2nd European Forest Soil Condition Survey. Using continuous carbon density depth functions, we estimated SOC stocks to 30-cm and 1-m depth, and stratified these stocks according...... to 22 WRB Reference Soil Groups (RSGs) and 8 humus forms to provide European scale benchmark values. Average SOC stocks amounted to 22.1 t C ha− 1 in forest floors, 108 t C ha− 1 in mineral soils and 578 t C ha− 1 in peat soils, to 1 m depth. Relative to 1-m stocks, the vertical SOC distribution...

  5. Driving forces of soil bacterial community structure, diversity, and function in temperate grasslands and forests (United States)

    Kaiser, Kristin; Wemheuer, Bernd; Korolkow, Vera; Wemheuer, Franziska; Nacke, Heiko; Schöning, Ingo; Schrumpf, Marion; Daniel, Rolf


    Soil bacteria provide a large range of ecosystem services such as nutrient cycling. Despite their important role in soil systems, compositional and functional responses of bacterial communities to different land use and management regimes are not fully understood. Here, we assessed soil bacterial communities in 150 forest and 150 grassland soils derived from three German regions by pyrotag sequencing of 16S rRNA genes. Land use type (forest and grassland) and soil edaphic properties strongly affected bacterial community structure and function, whereas management regime had a minor effect. In addition, a separation of soil bacterial communities by sampling region was encountered. Soil pH was the best predictor for bacterial community structure, diversity and function. The application of multinomial log-linear models revealed distinct responses of abundant bacterial groups towards pH. Predicted functional profiles revealed that differences in land use not only select for distinct bacterial populations but also for specific functional traits. The combination of 16S rRNA data and corresponding functional profiles provided comprehensive insights into compositional and functional adaptations to changing environmental conditions associated with differences in land use and management. PMID:27650273

  6. Driving forces of soil bacterial community structure, diversity, and function in temperate grasslands and forests (United States)

    Kaiser, Kristin; Wemheuer, Bernd; Korolkow, Vera; Wemheuer, Franziska; Nacke, Heiko; Schöning, Ingo; Schrumpf, Marion; Daniel, Rolf


    Soil bacteria provide a large range of ecosystem services such as nutrient cycling. Despite their important role in soil systems, compositional and functional responses of bacterial communities to different land use and management regimes are not fully understood. Here, we assessed soil bacterial communities in 150 forest and 150 grassland soils derived from three German regions by pyrotag sequencing of 16S rRNA genes. Land use type (forest and grassland) and soil edaphic properties strongly affected bacterial community structure and function, whereas management regime had a minor effect. In addition, a separation of soil bacterial communities by sampling region was encountered. Soil pH was the best predictor for bacterial community structure, diversity and function. The application of multinomial log-linear models revealed distinct responses of abundant bacterial groups towards pH. Predicted functional profiles revealed that differences in land use not only select for distinct bacterial populations but also for specific functional traits. The combination of 16S rRNA data and corresponding functional profiles provided comprehensive insights into compositional and functional adaptations to changing environmental conditions associated with differences in land use and management.


    Directory of Open Access Journals (Sweden)

    A. TESTI


    Full Text Available Soil water content is a critical factor in Mediterranean forest vegetation, especially in areas subjected to prolonged summer drought where winter and autumn rainfall are the main sources of water. Available soil water capacity (AWC is the maximum amount of water available for plants that a soil could possibly contain. Each soil has a specific available water capacity, however, most of the published literature on AWC refers 10 agricultural settings, although the interaction between the soil and the vegetation dynamics has long been recognized. The aim of this study was to investigate whether this edaphic factor could be discriminant in species assemblage of communities belonging to the thermophylous oak forest (order Quercetalia pubescentis. Thirty-two vegetation relevés and soil profiles were carried out in five different sites, with a similar pluvio-thermic regime, located in the sub-coastal belt of Latium, Central Italy. From the physical\\-chemical analyses of soil profiles, the AWC values, of the related relevés, were calculated. Multivariate statistical analysis was applied to the vegetation surveys, using Cluster Analysis from which a classification in three different clusters was obtained; subsequently the AWC values were grouped according to the c1assification obtained. Analysis of variance was used to test similarity and the output pointed out a significant difference among the three clusters (F=6.35; P


    Directory of Open Access Journals (Sweden)



    Full Text Available Soil water content is a critical factor in Mediterranean forest vegetation, especially in areas subjected to prolonged summer drought where winter and autumn rainfall are the main sources of water. Available soil water capacity (AWC is the maximum amount of water available for plants that a soil could possibly contain. Each soil has a specific available water capacity, however, most of the published literature on AWC refers 10 agricultural settings, although the interaction between the soil and the vegetation dynamics has long been recognized. The aim of this study was to investigate whether this edaphic factor could be discriminant in species assemblage of communities belonging to the thermophylous oak forest (order Quercetalia pubescentis. Thirty-two vegetation relevés and soil profiles were carried out in five different sites, with a similar pluvio-thermic regime, located in the sub-coastal belt of Latium, Central Italy. From the physical-chemical analyses of soil profiles, the AWC values, of the related relevés, were calculated. Multivariate statistical analysis was applied to the vegetation surveys, using Cluster Analysis from which a classification in three different clusters was obtained; subsequently the AWC values were grouped according to the c1assification obtained. Analysis of variance was used to test similarity and the output pointed out a significant difference among the three clusters (F=6.35; P

  9. Driving forces of soil bacterial community structure, diversity, and function in temperate grasslands and forests. (United States)

    Kaiser, Kristin; Wemheuer, Bernd; Korolkow, Vera; Wemheuer, Franziska; Nacke, Heiko; Schöning, Ingo; Schrumpf, Marion; Daniel, Rolf


    Soil bacteria provide a large range of ecosystem services such as nutrient cycling. Despite their important role in soil systems, compositional and functional responses of bacterial communities to different land use and management regimes are not fully understood. Here, we assessed soil bacterial communities in 150 forest and 150 grassland soils derived from three German regions by pyrotag sequencing of 16S rRNA genes. Land use type (forest and grassland) and soil edaphic properties strongly affected bacterial community structure and function, whereas management regime had a minor effect. In addition, a separation of soil bacterial communities by sampling region was encountered. Soil pH was the best predictor for bacterial community structure, diversity and function. The application of multinomial log-linear models revealed distinct responses of abundant bacterial groups towards pH. Predicted functional profiles revealed that differences in land use not only select for distinct bacterial populations but also for specific functional traits. The combination of 16S rRNA data and corresponding functional profiles provided comprehensive insights into compositional and functional adaptations to changing environmental conditions associated with differences in land use and management.

  10. Sand and clay mineralogy of sal forest soils of the Doon Siwalik Himalayas

    Indian Academy of Sciences (India)

    Mukesh; R K Manhas; A K Tripathi; A K Raina; M K Gupta; S K Kamboj


    The peteromineralogical characterization of the soil was carried out for the 12 soil profiles exposed in the Shorea robusta dominated forests of the Siwalik forest division, Dehradun. The quartz was observed as the dominating light mineral fraction (64–80%) in all the profiles studied. Biotite, hornblende, zircon, tourmaline, rutile and opaques comprising of iron minerals constituted the heavy mineral fraction (20%). The mineralogy of both the sand and clay fractions revealed a mixed mineralogy. The clay minerals in the order of their dominance were vermiculite, illite, kaolinite and mixed layer minerals. The presence of vermiculite and illite in appreciable quantities indicates that these were synthesized from the K-rich soil solution, as orthoclase and micas were present in significant quantities in the sand minerals. The mineral suites identified in the study shows that the geological, climatological and topographical factors of the region collectively played a dominant role in their formation and transformation. After critical appraisal of the results, it may be deduced that the mineralogical composition, physicochemical properties and total elemental analysis of the soils do not show any deficiency of the bases and other plant nutrients in general. The inherent fertility of the soil is good as indicated by the sand and clay mineralogy of the soil and the biotite and feldspar together with the mica is an important source of nutrients for the vegetation in the soils of the Doon valley.

  11. BOREAS TE-1 SSA-Fen Soil Profile Nutrient Data (United States)

    Papagno, Andrea; Anderson, Darwin; Newcomer, Jeffrey A. (Editor); Hall, Forrest G. (Editor)


    The BOREAS TE-1 team collected various data to characterize the soil-plant systems in the BOREAS SSA. Particular emphasis was placed on nutrient biochemistry, the stores and transfers of organic carbon, and how the characteristics were related to measured methane fluxes. The overall traniect in the Prince Albert National Park (Saskatchewan, Canada) included the major plant communities and related soils that occurred in that section of the boreal forest. Soil physical, chemical, and biological measurements along the transect were used to characterize the static environment, which allowed them to be related to methane fluxes. Chamber techniques were used to provide a measure of methane production/uptake. Chamber measurements coupled with flask sampling were used to determine the seasonality of methane fluxes. This particular data set contains soil profile measurements of various nutrients at the SSA-Fen site. The data were collected from 23-May to 21-Oct- 1994. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  12. Soil characteristics pattern with the depth as affected by forest conversion to rubber plantation

    Directory of Open Access Journals (Sweden)

    C Agustina


    Full Text Available This research was an attempt to study the impact of forest conversion to intensive rubber plantation impact on soil characteristics. We selected three landuses (forest, jungle rubber, and rubber plantation in Bukit Duabelas and Harapan landscape, Jambi, and each repeated three times. Soil profiles were described and sampled at every 10 cm layer to 200 cm depth. Soil bulk density, pH, basic cations content, and CEC were determined. The result showed that in three landuses, bulk density is relatively low in the upper 20 cm, but increased with depth. Clay content was lower in forest than other landuses, and increased with depth in forest and jungle rubber. In rubber plantation however, fine clay however was accumulated at 60-140 cm depth. The CEC was in accordance with clay content. There was no significant difference in soil pH between all landuses. In rubber plantation, soil pH was commonly higher in the surface, which probably due to liming. Sum of bases decreased with depth and tended to be generally lower in rubber plantation.

  13. The role of leaf cutter ants on soil organic carbon dynamics in a wet tropical forest (United States)

    Schwendenmann, L.; Meredyth-Young, M.; Dierick, D.; Allen, M. F.; Harmon, T. C.; Oberbauer, S. F.; Rundel, P.; Trahan, N. A.; Zelikova, T. J.


    Tropical forest ecosystems play an important role in the global carbon (C) cycle. Neotropical forests are significantly influenced by leaf cutter ants (LCA) which are the most important herbivore in these systems. LCA cut fresh leaves and bring large amounts of plant biomass into their nests to grow their fungus gardens. The excavation and continual maintenance of their large nests modifies soil characteristics and biogeochemistry with direct and indirect impacts on soil organic carbon (SOC) dynamics. The aim of this study was to quantify the effects of LCA (Atta cephalotes) on soil C mineralization, carbon degrading enzymes (β-glucosidase and α-glucosidase), and labile soil C (hot water extractable carbon) across a 1 m soil depth profile and comparing between two different soils (residual and alluvial) and forest types (primary and secondary) in a wet tropical rainforest in Costa Rica. We hypothesized that C mineralization rates will be higher inside LCA nests due to continual input of fresh organic matter, as evidenced by higher microbial biomass and carbon degrading enzymes. Similarly, we expected more labile C inside nests. All soil C parameters were highly variable among sites and between nests and controls. Carbon mineralization rates ranged from 0.02 to 0.2 µmol C h-1 g soil-1 during the initial decay phase which lasted approximately 6 days during soil incubation. The highest respiration rates were measured in the top 20 cm of the primary forest residual soil. Contrary to our expectations, C mineralization rates were higher in control soils, where C degrading enzymes were in higher concentrations (around 250 µmol). The labile soil C concentrations were variable across sites (2-25 mg C g soil-1) and higher in the upper soil profiles, but no significant differences were found between controls and nests. Our results indicate greater heterogeneity inside the nests than previously expected. We explain our findings in terms of the removal of leaf and organic

  14. Method comparison for forest soil carbon and nitrogen estimates in the Delaware River basin (United States)

    B. Xu; Yude Pan; A.H. Johnson; A.F. Plante


    The accuracy of forest soil C and N estimates is hampered by forest soils that are rocky, inaccessible, and spatially heterogeneous. A composite coring technique is the standard method used in Forest Inventory and Analysis, but its accuracy has been questioned. Quantitative soil pits provide direct measurement of rock content and soil mass from a larger, more...

  15. Development of internal forest soil reference samples and testing of digestion methods (United States)

    J.E. Hislop; J.W. Hornbeck; S.W. Bailey; R.A. Hallett


    Our research requires determinations of total elemental concentrations of forest soils. The lack of certified forest soil reference materials led us to develop internal reference samples. Samples were collected from three soil horizons (Oa, B, and C) at three locations having forested, acidic soils similar to those we commonly analyze. A shatterbox was used to...

  16. Carbon and nitrogen dynamics of soil and litter along an altitudinal gradient in Atlantic Forest (United States)

    Piccolo, M. D.; Martins, S. C.; Camargo, P. B.; Carmo, J. B.; Sousa Neto, E.; Martinelli, L. A.


    The Ombrophylus Dense Forest or Atlantic Forest is the second most important Biome in extension of Brazil, and it is considered a hot-spot in terms of biodiversity. It is localized in Brazilian Coast, and it covered originally 1.2 million km2, but currently only 8% of the original forest remains. The study was carried out in Sao Paulo State, Brazil (23° 24' S and 45° 11' W). The studied areas were: Restinga Vegetation (RV), 5 m above sea level; Low Altitude Ombrophylus Dense Forest (LAODF), 100 m asl; Submontane Ombrophylus Dense Forest (SODF), 600m asl and; Montane Ombrophylus Dense Forest (MODF), 1000 m asl. The aim of this study was to evaluate the effect of altitudinal gradient, with specific phytophysiognomies, on C and N dynamics in the soil and litter at Atlantic Forest. A sampling area of 1 ha was subdivided in contiguous sub- parcels (10 x 10 m). The forest floor litter accumulated (0.06 m2) was collected monthly (n=60), during 12 months, in each phytophysiognomies. Soils samples (0-0.05m depth) were collected (n=32) from square regular grids, 30 m away from each other. Changes in litter contents of C and N were not detected along the altitudinal gradient, and the values observed were 400 and 15g kg-1 for C and N, respectively. Litter ä13C values did not change significantly with the altitudinal gradient and were represented by C3 plants values. The C and N stocks were high in the clay soils (LAODF, SODF and MODF) when compared to sandy soil (RV). The soil C stocks (24 to 30 Mg ha-1) were similar among the altitudinal gradients, except RV (16 Mg ha-1). The areas of elevated altitude (MODF and SODF) showed high N stocks (2.3 Mg ha-1), followed by LAODF (1.8Mg ha-1) and RV (0.9Mg ha-1). In all altitudes there was 13C enrichment with soil depth, and it can be explained by the different fractions of the organic matter distributed along the soil profile, and also due the effect of the isotopic dilution between the forest floor litter and the soil.

  17. The contribution of atmospheric deposition and forest harvesting to forest soil acidification in China since 1980

    NARCIS (Netherlands)

    Zhu, Qichao; Vries, De Wim; Liu, Xuejun; Zeng, Mufan; Hao, Tianxiang; Du, Enzai; Zhang, Fusuo; Shen, Jianbo


    Soils below croplands and grasslands have acidified significantly in China since the 1980s in terms of pH decline in response to acid inputs caused by intensified fertilizer application and/or acid deposition. However, it is unclear what the rate is of pH decline of forest soils in China in respo

  18. Soluble organic nitrogen in forest soils of northeast China

    Institute of Scientific and Technical Information of China (English)

    SONG Li-chen; HAO Jing-mei; CUI Xiao-yang


    Soluble organic nitrogen (SON) is recognized as a sensitive indicator of soil nitrogen status. The present work was conducted in the temperate forests of northeast China where soils are typically characterized by high organic matter and high organic nitrogen content, and soil sampling was made in early spring just after the freeze-thaw period. The water extracted SON pools in the organic layer of forest soils were measured within the range from 156.0 mg·kg-1 to 292.6 mg·kg-1, a similar magnitude of salt solution extracted SON pools reported in literatures. However, the water soluble SON pools in 0-15 cm mineral soils in present study were much higher (3-10 times) than any other reports, ranging from 58.6 mg·kg-1 to 125.2 mg·kg-1. Water soluble SON varied markedly among the soils under different forests and at different sites. The SON in water extracts were positively and significantly correlated to soil organic matter and total nitrogen contents, but negatively correlated to microbial biomass nitrogen (MBN). The reasons of the abnormally large SON pools and the negative correlations between SON and MBN in the 0-15cm mineral soils in this study were specially discussed.

  19. {sup 137}Cs in the fungal compartment of Swedish forest soils

    Energy Technology Data Exchange (ETDEWEB)

    Vinichuk, Mykhaylo M. [Department of General Ecology, University of Agriculture and Ecology, Stary Blvd. 7, Zhytomyr 10001 (Ukraine); Johanson, Karl J.; Taylor, Andy F.S. [Department of Forest Mycology and Pathology, Swedish University of Agricultural Sciences, P.O. Box 7026, Uppsala S-750 07 (Sweden)


    The {sup 137}Cs activities in soil profiles and in the mycelia of four ectomycorrhizal fungi were studied in a Swedish forest in an attempt to understand the mechanisms governing the transfer and retention of {sup 137}Cs in forest soil. The biomass of four species of fungi was determined and estimated to be 16 g m{sup -2} in a peat soil and 47-189 g m{sup -2} in non-peat soil to the depth of 10 cm. The vertical distribution was rather homogeneous for two species (Tylospora spp. and Piloderma fallax) and very superficial for Hydnellum peckii. Most of the {sup 137}Cs activity in mycelium of non-peat soils was found in the upper 5 cm. Transfer factors were quite high even for those species producing resupinate sporocarps. In the peat soil only approximately 0.3% of the total {sup 137}Cs inventory in soil was found in the fungal mycelium. The corresponding values for non-peat soil were 1.3, 1.8 and 1.9%.

  20. Comparative analysis of the actual evapotranspiration of Flemish forest and cropland, using the soil water balance model WAVE

    Directory of Open Access Journals (Sweden)

    W. W. Verstraeten


    Full Text Available This paper focuses on the quantification of the green – vegetation related – water flux of forest stands in the temperate lowland of Flanders. The underlying reason of the research was to develop a methodology for assessing the impact of forests on the hydrologic cycle in comparison to agriculture. The tested approach for calculating the water use by forests was based on the application of the soil water balance model WAVE. The study involved the collection of data from 14 forest stands, the calibration and validation of the WAVE model, and the comparison of the water use (WU components – transpiration, soil and interception evaporation – between forest and cropland. For model calibration purposes simulated and measured time series of soil water content at different soil depths, period March 2000–August 2001, were compared. A multiple-site validation was conducted as well. Actual tree transpiration calculated with sap flow measurements in three forest stands gave similar results for two of the three stands of pine (Pinus sylvestris L., but WAVE overestimated the actual measured transpiration for a stand of poplar (Populus sp.. A useful approach to compare the WU components of forest versus cropland is scenario analysis based on the validated WAVE model. The statistical Profile Analysis method was implemented to explore and analyse the simulated WU time series. With an average annual rainfall of 819 mm, the results reveal that forests in Flanders consume more water than agricultural crops. A 30 years average of 491 mm for 10 forests stands versus 398 mm for 10 cropped agricultural fields was derived. The WU components, on yearly basis, also differ between the two land use types (transpiration: 315 mm for forest and 261 mm for agricultural land use; soil evaporation: 47 mm and 131 mm, for forest and cropland, respectively. Forest canopy interception evaporation was estimated at 126 mm, while it was negligible for cropland.

  1. Ecotoxicology of mercury in tropical forest soils: Impact on earthworms. (United States)

    Buch, Andressa Cristhy; Brown, George Gardner; Correia, Maria Elizabeth Fernandes; Lourençato, Lúcio Fábio; Silva-Filho, Emmanoel Vieira


    Mercury (Hg) is one of the most toxic nonessential trace metals in the environment, with high persistence and bioaccumulation potential, and hence of serious concern to environmental quality and public health. Emitted to the atmosphere, this element can travel long distances, far from emission sources. Hg speciation can lead to Hg contamination of different ecosystem components, as well as biomagnification in trophic food webs. To evaluate the effects of atmospheric Hg deposition in tropical forests, we investigated Hg concentrations in earthworm tissues and soils of two Forest Conservation Units in State of Rio de Janeiro, Brazil. Next, we performed a laboratory study of the biological responses (cast analysis and behavioral, acute, chronic and bioaccumulation ecotoxicological tests) of two earthworms species (Pontoscolex corethrurus and Eisenia andrei) to Hg contamination in tropical artificial soil (TAS) and two natural forest soils (NS) spiked with increasing concentration of HgCl2. Field results showed Hg concentrations up to 13 times higher in earthworm tissues than in forest soils, while in the laboratory Hg accumulation after 91-days of exposure was 25 times greater in spiked-soils with 128mgHgkg(-1) (dry wt) than in control (unspiked) soils. In all the toxicity tests P. corethrurus showed a higher adaptability or resistance to mercury than E. andrei. The role of earthworms as environmental bioremediators was confirmed in this study, showing their ability to greatly bioaccumulate trace metals while reducing Hg availability in feces. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Nitrogen Deposition Effects on Soil Carbon Dynamics in Temperate Forests

    DEFF Research Database (Denmark)

    Ginzburg Ozeri, Shimon

    (N) deposition into forest ecosystems has been increasing globally and was hypothesized to raise soil organic C (SOC) stocks by increasing forest productivity and by reducing SOM decomposition. Yet, these effects of N deposition on forest SOC stocks are uncertain and largely based on observations...... hypotheses were that elevated N deposition will: i) increase SOC stocks owing to positive effect of N on litterfall C inputs combined with negative effect on SOM decomposition regardless of negative effects on belowground C inputs by roots and associated mycorrhiza; ii) reduce the temperature sensitivity......Soils contain the largest fraction of terrestrial carbon (C). Understanding the factors regulating the decomposition and storage of soil organic matter (SOM) is essential for predictions of the C sink strength of the terrestrial environment in the light of global change. Elevated long-term nitrogen...

  3. Tracer-based studies of soil water movement in semi-arid forests of New Mexico (United States)

    Newman, Brent D.; Campbell, Andrew R.; Wilcox, Bradford P.


    The related issues of water movement and contaminant transport in arid and semi-arid environments have generated considerable interest and concern in the last few decades. Essential to understanding these issues is knowledge of how water moves through the soils that form the uppermost part of the vadose zone. The use of tracers, both natural and artificially introduced, is proving to be an effective method for gaining such knowledge in dry regions, where investigation by other means is difficult. In this study, natural stable-isotope and chloride tracers were used to investigate water movement in the soils of a piñon-juniper woodland and of a ponderosa pine forest on the Pajarito Plateau in northern New Mexico. The objectives were to (1) estimate and compare near-surface flux rates and evaluate the importance of evaporation in the two communities, and (2) determine to what extent differences in flux rates and evaporation are due to differences in plant cover and/or soil hydraulic properties. The results of this study will aid in evaluating the potential for contaminant mobility in semi-arid systems such as the Pajarito Plateau and, in addition, will increase understanding of nutrient distributions and plant water use in semi-arid environments. The stable-isotope data indicate a similarity between the piñon-juniper and ponderosa communities with respect to evaporation: in both, it is restricted mainly to the upper 10 cm of soil. Chloride profiles from the two communities, on the other hand, show a distinct difference with respect to downward fluxes: in the ponderosa pine forest, these fluxes (≈0.02 cm year -1) are an order of magnitude lower than those in the piñon-juniper woodland (≈0.2 cm year -1), even though total precipitation is about 4 cm year -1 higher in the ponderosa pine forest. This difference, however, appears to be related not to plant cover, but to differences in soil hydraulic properties. The soils of the ponderosa pine forest contain clay

  4. Atmospheric nitrous oxide uptake in boreal spruce forest soil (United States)

    Siljanen, Henri; Welti, Nina; Heikkinen, Juha; Biasi, Christina; Martikainen, Pertti


    Nitrous oxide (N2O) uptake from the atmosphere has been found in forest soils but environmental factors controlling the uptake and its atmospheric impact are poorly known. We measured N2O fluxes over growing season in a boreal spruce forest having control plots and plots with long nitrogen fertilization history. Also methane (CH4) fluxes were measured to compare the atmospheric impact of N2O and CH4fluxes. Soil chemical and physical characteristics and climatic conditions were measured as background data. Nitrous oxide consumption and uptake mechanisms were measured in complementary laboratory incubation experiments using stable isotope approaches. Gene transcript numbers of nitrous oxide reductase (nosZ) I and II genes were quantified along the incubation with elevated N2O atmosphere. The spruce forests without fertilization history showed highest N2O uptake rates whereas pine forest had low emissions. Nitrous oxide uptake correlated positively with soil moisture, high soil silt content, and low temperature. Nitrous oxide uptake varied seasonally, being highest in spring and autumn when temperature was low and water content was high. The spruce forest was sink for CH4.Methane fluxes were decoupled from the N2O fluxes (i.e. when the N2O uptake was high the CH4 uptake was low). By using GWP approach, the cooling effect of N2O uptake was on average 30% of the cooling effect of CH4 uptake in spruce forest without fertilization. Anoxic conditions promoted higher N2O consumption rates in all soils. Gene transcription of nosZ-I genes were activated at beginning of the incubation. However, atypical/clade-II nosZ was not detected. These results suggests, that also N2O uptake rates have to be considered when accounting for the GHG budget of spruce forests.

  5. Radon 222 tracing of soil and forest canopy trace gas exchange in an open canopy boreal forest (United States)

    Ussler, William, III; Chanton, Jeffrey P.; Kelley, Cheryl A.; Martens, Christopher S.


    A set of continuous, high-resolution atmospheric radon (Rn-222) concentration time series and radon soil flux measurements were acquired during the summer of 1990 at a micrometeorological tower site 13 km northwest of Schefferville, Quebec, Canada. The tower was located in a dry upland, open-canopy lichen-spruce woodland. For the period July 23 to August 1, 1990, the mean radon soil flux was 41.1 +/- 4.8 Bq m(exp -2)/h. Radon surface flux from the two end-member forest floor cover types (lichen mat and bare soil) were 38.8 +/- 5.1 and 61.8 +/- 15.6 Bq m(exp -2)/h, respectively. Average total forest canopy resistances computed using a simple 'flux box' model for radon exchange between the forest canopy and the overlying atmosphere range from 0.47 +/- 0.24 s cm(exp -1) to 2.65 +/- 1.61 cm(exp -1) for daytime hours (0900-1700 LT) and from 3.44 +/- 0.91 s cm(exp -1) to 10.55 +/- 7.16 s cm(exp -1) for nighttime hours (2000-0600) for the period July 23 to August 6, 1990. Continuous radon profiling of canopy atmospheres is a suitable approach for determining rates of biosphere/atmosphere trace gas exchange for remote field sites where daily equipment maintenance is not possible. where daily equipment maintenance is not possible.

  6. Principles and Practice of Forestation in Saline Soil in China

    Institute of Scientific and Technical Information of China (English)

    ZHANGJianfeng; XINGShangjun[; ZHANGXudong; SUNQixiang


    With world population growth arable land area is decreasing. Saline soil is an important natural resource. However it has not been well reclaimed owing to adverse conditions. Forestation is one way of salty soil utilization; on the other hand, it can improve soil quality as well. The mechanism of salinity tolerance is the basis for tree species selection when planting in salt affected soil. Different plants have various way of salinity tolerance, some are salt-exclusion, e.g. Elaeagnus angustifolia; some are salt-secretion, e.g. Tamarix spp.; some are salt-dilution, e.g. Hordeum vulgare; some are salt-avoidance, e.g. Rhizophora apiculata. Trees are favorable, which are salt tolerant and drought or waterlogging tolerant, as well as grow fast. After tree species have been decided, site preparation including change or exchange of soil is necessary. Meanwhile suitable density of trees and planting time must be carefully considered in terms of soil conditions and climatic characteristics. Now a large scale of forests has been established in salt-affected soil in China by the means discussed in the paper, and protect forest system along coast plays important roles in socio-economic sustainable development and improvement of eco-environment.

  7. Spatial variability of soils in a seasonally dry tropical forest (United States)

    Pulla, Sandeep; Riotte, Jean; Suresh, Hebbalalu; Dattaraja, Handanakere; Sukumar, Raman


    Soil structures communities of plants and soil organisms in tropical forests. Understanding the controls of soil spatial variability can therefore potentially inform efforts towards forest restoration. We studied the relationship between soils and lithology, topography, vegetation and fire in a seasonally dry tropical forest in southern India. We extensively sampled soil (available nutrients, Al, pH, and moisture), rocks, relief, woody vegetation, and spatial variation in fire burn frequency in a permanent 50-ha plot. Lower elevation soils tended to be less moist and were depleted in several nutrients and clay. The availability of several nutrients was, in turn, linked to whole-rock chemical composition differences since some lithologies were associated with higher elevations, while the others tended to dominate lower elevations. We suggest that local-scale topography in this region has been shaped by the spatial distribution of lithologies, which differ in their susceptibility to weathering. Nitrogen availability was uncorrelated with the presence of trees belonging to Fabaceae, a family associated with N-fixing species. No effect of burning on soil parameters could be discerned at this scale.

  8. Soil Organic Carbon Responses to Forest Expansion on Mountain Grasslands

    DEFF Research Database (Denmark)

    Guidi, Claudia

    Grassland abandonment followed by progressive forest expansion is the dominant land-use change in the European Alps. Contrasting trends in soil organic carbon (SOC) stocks have been reported for mountainous regions following forest expansion on grasslands. Moreover, its effects on SOC properties ...... grasslands, which can be explained by lower accumulation of binding agents of microbial origin. This can have implications for the accumulation of atmospheric CO2 in soil and for the susceptibility of SOC to external disturbances such as management and environmental changes.......Grassland abandonment followed by progressive forest expansion is the dominant land-use change in the European Alps. Contrasting trends in soil organic carbon (SOC) stocks have been reported for mountainous regions following forest expansion on grasslands. Moreover, its effects on SOC properties...... involved into long-term stability are largely unknown. The aim of this PhD thesis was to explore changes in: (i) SOC stocks; (ii) physical SOC fractions; and (iii) labile soil carbon components following forest expansion on mountain grasslands. A land-use gradient located in the Southern Alps (Italy...

  9. Forest management type influences diversity and community composition of soil fungi across temperate forest ecosystems

    Directory of Open Access Journals (Sweden)

    Kezia eGoldmann


    Full Text Available Fungal communities have been shown to be highly sensitive towards shifts in plant diversity and species composition in forest ecosystems. However, little is known about the impact of forest management on fungal diversity and community composition of geographically separated sites. This study examined the effects of four different forest management types on soil fungal communities. These forest management types include age class forests of young managed beech (Fagus sylvatica L., with beech stands age of approximately 30 years, age class beech stands with an age of approximately 70 years, unmanaged beech stands, and coniferous stands dominated by either pine (Pinus sylvestris L. or spruce (Picea abies Karst. which are located in three study sites across Germany. Soil were sampled from 48 study plots and we employed fungal ITS rDNA pyrotag sequencing to assess the soil fungal diversity and community structure.We found that forest management type significantly affects the Shannon diversity of soil fungi and a significant interaction effect of study site and forest management on the fungal OTU richness. Consequently distinct fungal communities were detected in the three study sites and within the four forest management types, which were mainly related to the main tree species. Further analysis of the contribution of soil properties revealed that C/N ratio being the most important factor in all the three study sites whereas soil pH was significantly related to the fungal community in two study sites. Functional assignment of the fungal communities indicated that 38% of the observed communities were Ectomycorrhizal fungi (ECM and their distribution is significantly influenced by the forest management. Soil pH and C/N ratio were found to be the main drivers of the ECM fungal community composition. Additional fungal community similarity analysis revealed the presence of study site and management type specific ECM genera.This study extends our knowledge

  10. DRAINMOD-FOREST: Integrated modeling of hydrology, soil carbon and nitrogen dynamics, and plant growth for drained forests (United States)

    Shiying Tian; Mohamed A. Youssef; R. Wayne Skaggs; Devendra M. Amatya; G.M. Chescheir


    We present a hybrid and stand-level forest ecosystem model, DRAINMOD-FOREST, for simulating the hydrology, carbon (C) and nitrogen (N) dynamics, and tree growth for drained forest lands under common silvicultural practices. The model was developed by linking DRAINMOD, the hydrological model, and DRAINMOD-N II, the soil C and N dynamics model, to a forest growth model,...

  11. Land use, forest density, soil mapping, erosion, drainage, salinity limitations (United States)

    Yassoglou, N. J. (Principal Investigator)


    The author has identified the following significant results. The results of analyses show that it is possible to obtain information of practical significance as follows: (1) A quick and accurate estimate of the proper use of the valuable land can be made on the basis of temporal and spectral characteristics of the land features. (2) A rather accurate delineation of the major forest formations in the test areas was achieved on the basis of spatial and spectral characteristics of the studied areas. The forest stands were separated into two density classes; dense forest, and broken forest. On the basis of ERTS-1 data and the existing ground truth information a rather accurate mapping of the major vegetational forms of the mountain ranges can be made. (3) Major soil formations are mapable from ERTS-1 data: recent alluvial soils; soil on quarternary deposits; severely eroded soil and lithosol; and wet soils. (4) An estimation of cost benefits cannot be made accurately at this stage of the investigation. However, a rough estimate of the ratio of the cost for obtaining the same amount information from ERTS-1 data and from conventional operations would be approximately 1:6 to 1:10, in favor of the ERTS-1.

  12. Shifts in soil testate amoeba communities associated with forest diversification. (United States)

    Bobrov, Anatoly A; Zaitsev, Andrei S; Wolters, Volkmar


    We studied changes of testate amoeba communities associated with the conversion of spruce monocultures into mixed beech-fir-spruce forests in the Southern Black Forest Mountains (Germany). In this region, forest conversion is characterized by a gradual development of beech undergrowth within thinned spruce tree stands leading to multiple age continuous cover forests with a diversified litter layer. Strong shifts in the abundance of testate amoeba observed in intermediate stages levelled off to monoculture conditions again after the final stage of the conversion process had been reached. The average number of species per conversion stage (i.e., local richness) did not respond strongly to forest conversion, but the total number of species (i.e., regional richness) was considerably higher in the initial stage than in the mixed forests, due to the large number of hygrophilous species inhabiting spruce monocultures. Functional diversity of the testate amoeba community, however, significantly increased during the conversion process. This shift was closely associated with improved C and N availability as well as higher niche diversity in the continuous cover stands. Lower soil acidity in these forests coincided with a higher relative abundance of eurytopic species. Our results suggest that testate amoeba communities are much more affected by physicochemical properties of the soil than directly by litter diversity.

  13. Nitrogen release from forest soils containing sulfide-bearing sediments (United States)

    Maileena Nieminen, Tiina; Merilä, Päivi; Ukonmaanaho, Liisa


    Soils containing sediments dominated by metal sulfides cause high acidity and release of heavy metals, when excavated or drained, as the aeration of these sediments causes formation of sulfuric acid. Consequent leaching of acidity and heavy metals can kill tree seedlings and animals such as fish, contaminate water, and corrode concrete and steel. These types of soils are called acid sulfate soils. Their metamorphic equivalents, such as sulfide rich black shales, pose a very similar risk of acidity and metal release to the environment. Until today the main focus in treatment of the acid sulfate soils has been to prevent acidification and metal toxicity to agricultural crop plants, and only limited attention has been paid to the environmental threat caused by the release of acidity and heavy metals to the surrounding water courses. Even less attention is paid on release of major nutrients, such as nitrogen, although these sediments are extremely rich in carbon and nitrogen and present a potentially high microbiological activity. In Europe, the largest cover of acid sulfate soils is found in coastal lowlands of Finland. Estimates of acid sulfate soils in agricultural use range from 1 300 to 3 000 km2, but the area in other land use classes, such as managed peatland forests, is presumably larger. In Finland, 49 500 km2 of peatlands have been drained for forestry, and most of these peatland forests will be at the regeneration stage within 10 to 30 years. As ditch network maintenance is often a prerequisite for a successful establishment of the following tree generation, the effects of maintenance operations on the quality of drainage water should be under special control in peatlands underlain by sulfide-bearing sediments. Therefore, identification of risk areas and effective prevention of acidity and metal release during drain maintenance related soil excavating are great challenges for forestry on coastal lowlands of Finland. The organic and inorganic nitrogen

  14. Assessing bioenergy harvest risks: Geospatially explicit tools for maintaining soil productivity in western US forests (United States)

    Mark Kimsey; Deborah Page-Dumroese; Mark Coleman


    Biomass harvesting for energy production and forest health can impact the soil resource by altering inherent chemical, physical and biological properties. These impacts raise concern about damaging sensitive forest soils, even with the prospect of maintaining vigorous forest growth through biomass harvesting operations. Current forest biomass harvesting research...

  15. Soil Temperature and Moisture Profile (STAMP) System Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Cook, David R [Argonne National Lab. (ANL), Argonne, IL (United States)


    The soil temperature and moisture profile system (STAMP) provides vertical profiles of soil temperature, soil water content (soil-type specific and loam type), plant water availability, soil conductivity, and real dielectric permittivity as a function of depth below the ground surface at half-hourly intervals, and precipitation at one-minute intervals. The profiles are measured directly by in situ probes at all extended facilities of the SGP climate research site. The profiles are derived from measurements of soil energy conductivity. Atmospheric scientists use the data in climate models to determine boundary conditions and to estimate the surface energy flux. The data are also useful to hydrologists, soil scientists, and agricultural scientists for determining the state of the soil. The STAMP system replaced the SWATS system in early 2016.

  16. Mapping organic carbon stocks of Swiss forest soil (United States)

    Nussbaum, M.; Papritz, A.; Baltensweiler, A.; Walthert, L.


    Carbon (C) sequestration into forest sinks offsets greenhouse gas emissions under the Kyoto protocol. Therefore, quantifying C stocks and fluxes in forest ecosystems is of interest for reporting greenhouse gas emissions. In Switzerland, the National Forest Inventory offers comprehensive data to quantify the above ground forest biomass and its change in time. Estimating stocks of soil organic C (SOC) in forests is more difficult because of its high spatial variability. To date the greenhouse gas inventory relies only on sparse data and regionally differentiated predictions of SOC stocks in forest soils are currently not possible. Recently, more soil data and new explanatory variables for statistical modeling like high resolution elevation data and satellite images became available. Based on data from 1'033 sites, we modeled SOC stocks to a depth of 1 m including the organic layer for the Swiss forested area. We used a novel robust restricted maximum likelihood method to fit a linear regression model with spatially correlated errors to the C stock data. For the regression analysis we used a broad range of covariates derived from climate data (precipitation, temperature, radiation), two elevation models (resolutions 25 and 2 m) and spectral variables representing vegetation. Furthermore, the main cartographic categories of an overview soil map were used to broadly represent the parent material. The numerous covariates, that partly correlated strongly, were reduced to a first subset using LASSO (Least Absolute Shrinkage and Selection Operator). This subset of covariates was then further reduced based on cross validation of the robustly fitted spatial model. The levels of categorical covariates were partly aggregated during this process and interactions between covariates were explored to account for nonlinear dependence of C stocks on the covariates. Using the final model, robust kriging prediction and error maps were computed with a resolution of one hectare.

  17. Distribution of black carbon in ponderosa pine forest floor and soils following the High Park wildfire (United States)

    Boot, C. M.; Haddix, M.; Paustian, K.; Cotrufo, M. F.


    Biomass burning produces black carbon (BC), effectively transferring a fraction of the biomass C from an actively cycling pool to a passive C pool, which may be stored in the soil. Yet the timescales and mechanisms for incorporation of BC into the soil profile are not well understood. The High Park fire (HPF), which occurred in northwestern Colorado in the summer of 2012, provided an opportunity to study the effects of both fire severity and geomorphology on properties of carbon (C), nitrogen (N) and BC in the Cache La Poudre River drainage. We sampled montane ponderosa pine forest floor (litter plus O-horizon) and soils at 0-5 and 5-15 cm depth 4 months post-fire in order to examine the effects of slope and burn severity on %C, C stocks, %N and BC. We used the benzene polycarboxylic acid (BPCA) method for quantifying BC. With regard to slope, we found that steeper slopes had higher C : N than shallow slopes but that there was no difference in BPCA-C content or stocks. BC content was greatest in the forest floor at burned sites (19 g BPCA-C kg-1 C), while BC stocks were greatest in the 5-15 cm subsurface soils (23 g BPCA-C m-2). At the time of sampling, unburned and burned soils had equivalent BC content, indicating none of the BC deposited on the land surface post-fire had been incorporated into either the 0-5 or 5-15 cm soil layers. The ratio of B6CA : total BPCAs, an index of the degree of aromatic C condensation, suggested that BC in the 5-15 cm soil layer may have been formed at higher temperatures or experienced selective degradation relative to the forest floor and 0-5 cm soils. Total BC soil stocks were relatively low compared to other fire-prone grassland and boreal forest systems, indicating most of the BC produced in this system is likely lost, either through erosion events, degradation or translocation to deeper soils. Future work examining mechanisms for BC losses from forest soils will be required for understanding the role BC plays in the global

  18. Plant Community and Nitrogen Deposition as Drivers of Alpha and Beta Diversities of Prokaryotes in Reconstructed Oil Sand Soils and Natural Boreal Forest Soils. (United States)

    Masse, Jacynthe; Prescott, Cindy E; Renaut, Sébastien; Terrat, Yves; Grayston, Sue J


    The Athabasca oil sand deposit is one of the largest single oil deposits in the world. Following surface mining, companies are required to restore soil-like profiles that can support the previous land capabilities. The objective of this study was to assess whether the soil prokaryotic alpha diversity (α-diversity) and β-diversity in oil sand soils reconstructed 20 to 30 years previously and planted to one of three vegetation types (coniferous or deciduous trees and grassland) were similar to those found in natural boreal forest soils subject to wildfire disturbance. Prokaryotic α-diversity and β-diversity were assessed using massively parallel sequencing of 16S rRNA genes. The β-diversity, but not the α-diversity, differed between reconstructed and natural soils. Bacteria associated with an oligotrophic lifestyle were more abundant in natural forest soils, whereas bacteria associated with a copiotrophic lifestyle were more abundant in reconstructed soils. Ammonia-oxidizing archaea were most abundant in reconstructed soils planted with grasses. Plant species were the main factor influencing α-diversity in natural and in reconstructed soils. Nitrogen deposition, pH, and plant species were the main factors influencing the β-diversity of the prokaryotic communities in natural and reconstructed soils. The results highlight the importance of nitrogen deposition and aboveground-belowground relationships in shaping soil microbial communities in natural and reconstructed soils.IMPORTANCE Covering over 800 km(2), land disturbed by the exploitation of the oil sands in Canada has to be restored. Here, we take advantage of the proximity between these reconstructed ecosystems and the boreal forest surrounding the oil sand mining area to study soil microbial community structure and processes in both natural and nonnatural environments. By identifying key characteristics shaping the structure of soil microbial communities, this study improved our understanding of how

  19. Flux-profile relationships over a fetch limited beech forest

    DEFF Research Database (Denmark)

    Dellwik, E.; Jensen, N.O.


    The influence of an internal boundary layer and a roughness sublayer on flux-profile relationships for momentum and sensible heat have been investigated for a closed beech forest canopy with limited fetch conditions. The influence was quantified by derivation of local scaling functions for sensib...

  20. Soil carbon sequestration and changes in fungal and bacterial biomass following incorporation of forest residues (United States)

    Matt D. Busse; Felipe G. Sanchez; Alice W. Ratcliff; John R. Butnor; Emily A. Carter; Robert F. Powers


    Sequestering carbon (C) in forest soils can benefit site fertility and help offset greenhouse gas emissions. However, identifying soil conditions and forest management practices which best promote C accumulation remains a challenging task. We tested whether soil incorporation of masticated woody residues alters short-term C storage at forested sites in western and...

  1. Effects of fire on properties of forest soils: a review. (United States)

    Certini, Giacomo


    Many physical, chemical, mineralogical, and biological soil properties can be affected by forest fires. The effects are chiefly a result of burn severity, which consists of peak temperatures and duration of the fire. Climate, vegetation, and topography of the burnt area control the resilience of the soil system; some fire-induced changes can even be permanent. Low to moderate severity fires, such as most of those prescribed in forest management, promote renovation of the dominant vegetation through elimination of undesired species and transient increase of pH and available nutrients. No irreversible ecosystem change occurs, but the enhancement of hydrophobicity can render the soil less able to soak up water and more prone to erosion. Severe fires, such as wildfires, generally have several negative effects on soil. They cause significant removal of organic matter, deterioration of both structure and porosity, considerable loss of nutrients through volatilisation, ash entrapment in smoke columns, leaching and erosion, and marked alteration of both quantity and specific composition of microbial and soil-dwelling invertebrate communities. However, despite common perceptions, if plants succeed in promptly recolonising the burnt area, the pre-fire level of most properties can be recovered and even enhanced. This work is a review of the up-to-date literature dealing with changes imposed by fires on properties of forest soils. Ecological implications of these changes are described.

  2. 鹰咀界天然次生林自然保护区林地土壤特性研究%The Characteristics of Soil in Natural Secondary Forest Conservation Area of Yingzui Mountain

    Institute of Scientific and Technical Information of China (English)

    吴建平; 袁正科; 梁文斌


    According to the studies on 22 samples of soil profile from the natural forest conservation area at Yingzui mountain,the characteristics of soil were described.Research results indicated that the type of soil profile structure was A-B-C-D,and the soil development was successive.The average contents of organic matter in the soil was 54.30g*kg-1,the ratio of C/N was 10.93 and the bulk density was 1.25g*cm-3.the soil texture was heavy loam or light clay.The soil fertility was higher compared with the soil from natural forest conservation of ZhangJiajie mountain,which developed from the same parent material of silicon rocks as Yingzui area.The forest soil of the area is typical in the subtropical natural forest.So it is valuable to be protected.

  3. Preliminary assessment of soil erosion impact during forest restoration process (United States)

    Lai, Yen-Jen; Chang, Cheng-Sheng; Tsao, Tsung-Ming; Wey, Tsong-Huei; Chiang, Po-Neng; Wang, Ya-Nan


    Taiwan has a fragile geology and steep terrain. The 921 earthquake, Typhoon Toraji, Typhoon Morakot, and the exploitation and use of the woodland by local residents have severely damaged the landscape and posed more severe challenges to the montane ecosystem. A land conservation project has been implemented by the Experimental Forest of National Taiwan University which reclaimed approximately 1,500 hectares of leased woodland from 2008 to 2010, primarily used to grow bamboo, tea trees, betel nut, fruit, and vegetable and about 1,298 hectares have been reforested. The process of forest restoration involves clear cutting, soil preparation and a six-year weeding and tending period which may affect the amount of soil erosion dramatically. This study tried to assess the impact of forest restoration from the perspective of soil erosion through leased-land recovery periods and would like to benefit the practical implementation of reforestation in the future. A new plantation reforested in the early 2013 and a nearby 29-year-old mature forest were chosen as experimental and comparison sites. A self-designed weir was set up in a small watershed of each site for the runoff and sediment yield observation. According to the observed results from May to August 2013, a raining season in Taiwan, the runoff and erosion would not as high as we expected, because the in-situ soil texture of both sites is sandy loam to sandy with high percentage of coarse fragment which increased the infiltration. There were around 200 kg to 250 kg of wet sand/soil yielded in mature forest during the hit of Typhoon Soulik while the rest of the time only suspended material be yielded at both sites. To further investigate the influence of the six-year weeding and tending period, long term observations are needed for a more completed assessment of soil erosion impact.

  4. Formation, fate and leaching of chloroform in coniferous forest soils

    Energy Technology Data Exchange (ETDEWEB)

    Albers, Christian N., E-mail: [Dept. Geochemistry, Geological Survey of Denmark and Greenland, O. Voldgade 10, DK-1350, Copenhagen (Denmark); Laier, Troels; Jacobsen, Ole S. [Dept. Geochemistry, Geological Survey of Denmark and Greenland, O. Voldgade 10, DK-1350, Copenhagen (Denmark)


    Research highlights: {yields} Chloroform may be formed in coniferous forest soil. {yields} The formed chloroform may enter the groundwater in {mu}g/L concentrations. {yields} Clear seasonal patterns in chloroform formation in soil are observed. {yields} Sorption and degradation affects the fate of chloroform in forest soil. - Abstract: Chloroform is a common groundwater pollutant but also a natural compound in forest ecosystems. Leaching of natural chloroform from forest soil to groundwater was followed by regular analysis of soil air and groundwater from multilevel wells at four different sites in Denmark for a period of up to 4 a. Significant seasonal variation in chloroform was observed in soil air 0.5 m below surface ranging at one site from 120 ppb by volume in summer to 20 ppb during winter. With depth, the seasonal variation diminished gradually, ranging from 30 ppb in summer to 20 ppb during winter, near the groundwater table. Chloroform in the shallowest groundwater ranged from 0.5-1.5 {mu}g L{sup -1} at one site to 2-5 {mu}g L{sup -1} at another site showing no clear correlation with season. Comparing changes in chloroform in soil air versus depth with on-site recorded meteorological data indicated that a clear relationship appears between rain events and leaching of chloroform. Chloroform in top soil air co-varied with CO{sub 2} given a delay of 3-4 weeks providing evidence for its biological origin. This was confirmed during laboratory incubation experiments which further located the fermentation layer as the most chloroform producing soil horizon. Sorption of chloroform to soils, examined using {sup 14}C-CHCl{sub 3}, correlated with organic matter content, being high in the upper organic rich soils and low in the deeper more minerogenic soils. The marked decrease in chloroform in soil with depth may in part be due to microbial degradation which was shown to occur at all depths by laboratory tests using {sup 14}C-CHCl{sub 3}.

  5. Composition and ecological distribution of forest soil animal in Confucian graveyard of Qufu

    Institute of Scientific and Technical Information of China (English)


    Soil animal communities of Secondary forest, Platycladus forest and Quercus acutissima forest in Confucian graveyard of Qufu were investigated. 3583 specimens were collected, belonging separately to 5 Phylums, 11 Classes and 23 Orders. Two dominant groups and 9 common groups account for 94.45% of the total numbers. The soil animals in these three forest habitats differ in composition, ecological distribution and important indices. The dominant groups of soil animals in the three forests were the same, but other groups differ more greatly. Diversity index (H') and evenness index (E) of soil animal in Secondary forest are the highest, and yet dominance index (C) in Quercus acutissima foerst is the highest. Most soil animals in each forest habitats congregate to the surface soil layer. Their sorts and individual numbers are all layer Ⅰ>Ⅱ>Ⅲ. It is very similar for composition of soil animals in the three forests.

  6. Quantifying soil and critical zone variability in a forested catchment through digital soil mapping (United States)

    Quantifying catchment scale soil property variation yields insights into critical zone evolution and function. The objective of this study was to quantify and predict the spatial distribution of soil properties within a high elevation forested catchment in southern AZ, USA using a combined set of di...

  7. Soil carbon and soil physical properties response to incorporating mulched forest slash (United States)

    Felipe G. Sanchez; Emily A. Carter; John. F. Klepac


    A study was installed in the Lower Coastal Plain near Washington, NC, to test the hypothesis that incorporating organic matter in the form of comminuted forest slash would increase soil carbon and nutrient pools, and alter soil physical properties to favor pine growth. Two sites were selected, an organic and a mineral site, to compare the treatment effects on...

  8. Molybdenum limitation of asymbiotic nitrogen fixation in tropical forest soils (United States)

    Barron, Alexander R.; Wurzburger, Nina; Bellenger, Jean Phillipe; Wright, S. Joseph; Kraepiel, Anne M. L.; Hedin, Lars O.


    Nitrogen fixation, the biological conversion of di-nitrogen to plant-available ammonium, is the primary natural input of nitrogen to ecosystems, and influences plant growth and carbon exchange at local to global scales. The role of this process in tropical forests is of particular concern, as these ecosystems harbour abundant nitrogen-fixing organisms and represent one third of terrestrial primary production. Here we show that the micronutrient molybdenum, a cofactor in the nitrogen-fixing enzyme nitrogenase, limits nitrogen fixation by free-living heterotrophic bacteria in soils of lowland Panamanian forests. We measured the fixation response to long-term nutrient manipulations in intact forests, and to short-term manipulations in soil microcosms. Nitrogen fixation increased sharply in treatments of molybdenum alone, in micronutrient treatments that included molybdenum by design and in treatments with commercial phosphorus fertilizer, in which molybdenum was a `hidden' contaminant. Fixation did not respond to additions of phosphorus that were not contaminated by molybdenum. Our findings show that molybdenum alone can limit asymbiotic nitrogen fixation in tropical forests and raise new questions about the role of molybdenum and phosphorus in the tropical nitrogen cycle. We suggest that molybdenum limitation may be common in highly weathered acidic soils, and may constrain the ability of some forests to acquire new nitrogen in response to CO2 fertilization.

  9. [The forecasting of vertical distribution of 37Cs and 90Sr in the forest soils of the Republic of Belarus]. (United States)

    Perevolotskiĭ, A N; Perevolotskaia, T V


    The study analyzes the distribution of 137Cs and 90Sr in the vertical profile of soil of forest biogeocenoses with different modes of moisture and species composition of woody vegetation on the "long" trail of radioactive fallout in the Republic of Belarus. The parameters of radionuclide migration are calculated for the two component quasi-diffusion equation, also based on this equation, pollution of root zone soil layers is predicted, as well as semi-refined periods and the contribution of migration in this process are defined. The intensity of radionuclide migration in the vertical profile of forest soils is found to increase with the change of the soil moisture regime from automorphic to hydromorphic.

  10. Soil moisture dynamics in an eastern Amazonian tropical forest (United States)

    Bruno, Rogério D.; da Rocha, Humberto R.; de Freitas, Helber C.; Goulden, Michael L.; Miller, Scott D.


    We used frequency-domain reflectometry to make continuous, high-resolution measurements for 22 months of the soil moisture to a depth of 10 m in an Amazonian rain forest. We then used these data to determine how soil moisture varies on diel, seasonal and multi-year timescales, and to better understand the quantitative and mechanistic relationships between soil moisture and forest evapotranspiration. The mean annual precipitation at the site was over 1900 mm. The field capacity was approximately 0.53 m3 m-3 and was nearly uniform with soil depth. Soil moisture decreased at all levels during the dry season, with the minimum of 0.38 m3 m-3 at 3 m beneath the surface. The moisture in the upper 1 m showed a strong diel cycle with daytime depletion due to evapotranspiration. The moisture beneath 1 m declined during both day and night due to the combined effects of evapotranspiration, drainage and a nighttime upward movement of water. The depth of active water withdrawal changed markedly over the year. The upper 2 m of soil supplied 56% of the water used for evapotranspiration in the wet season and 28% of the water used in the dry season. The zone of active water withdrawal extended to a depth of at least 10 m. The day-to-day rates of moisture withdrawal from the upper 10 m of soil during rain-free periods agreed well with simultaneous measurements of whole-forest evapotranspiration made by the eddy covariance technique. The forest at the site was well adapted to the normal cycle of wet and dry seasons, and the dry season had only a small effect on the rates of land-atmosphere water vapour exchange.

  11. Forest soils in France are sequestering substantial amounts of carbon. (United States)

    Jonard, Mathieu; Nicolas, Manuel; Coomes, David A; Caignet, Isabelle; Saenger, Anaïs; Ponette, Quentin


    The aim of this study was to assess whether French forest soils are sources or sinks of carbon and to quantify changes in soil organic carbon (SOC) stocks over time by resampling soil in long-term forest monitoring plots. Within each plot, and for each survey, soils were sampled at five points selected in five subplots and divided into layers. Composite samples were produced for each layer and subplot, then analysed for mass, bulk density and SOC. Linear mixed models were used to estimate SOC changes over 15years between two soil surveys carried out in 102 plots in France. A factor analysis and a budget approach were also used to identify which factors and processes were primarily responsible for SOC dynamics. Forest soils throughout France substantially accumulated SOC (+0.35MgCha(-1)yr(-1)) between 1993 and 2012. The SOC sequestration rate declined with stand age and was affected by stand structure. Uneven-aged stands sequestered more SOC than did even-aged stands (paffecting litter decomposition (climate and litter quality). For the mineral soil, the budget approach was unable to replicate the observed SOC sequestration rate, probably because SOC stocks were not yet at equilibrium with litter inputs at the beginning of the monitoring period (contrary to our steady-state assumption). This explanation is also supported by the fact that the SOC sequestration rate decreased with stand age. As the SOC sequestration rate declines with stand age and is higher in uneven-aged stands, forest management has the potential to influence this carbon sink. Copyright © 2016 Office national des forêts. Published by Elsevier B.V. All rights reserved.

  12. Moss-nitrogen input to boreal forest soils

    DEFF Research Database (Denmark)

    Rousk, Kathrin; Jones, Davey; DeLuca, Thomas


    Cyanobacteria living epiphytically on mosses in pristine, unpolluted areas fix substantial amounts of atmospheric nitrogen (N) and therefore represent a primary source of N in N-limited boreal forests. However, the fate of this N is unclear, in particular, how the fixed N2 enters the soil...

  13. The impact of nitrogen deposition on carbon sequestration in European forests and forest soils

    DEFF Research Database (Denmark)

    de Vries, Wim; Reinds, Gert Jan; Gundersen, Per


    An estimate of net carbon (C) pool changes and long-term C sequestration in trees and soils was made at more than 100 intensively monitored forest plots (level II plots) and scaled up to Europe based on data for more than 6000 forested plots in a systematic 16 km x 16 km grid (level I plots). C...... pool changes in trees at the level II plots were based on repeated forest growth surveys At the level I plots, an estimate of the mean annual C pool changes was derived from stand age and available site quality characteristics. C sequestration, being equal to the long-term C pool changes accounting...... for CO2 emissions because of harvest and forest fires, was assumed 33% of the overall C pool changes by growth. C sequestration in the soil were based on calculated nitrogen (N) retention (N deposition minus net N uptake minus N leaching) rates in soils, multiplied by the C/N ratio of the forest soils...

  14. Effects of CO[sub 2] and climate change on forest trees: Soil biology and enzymology

    Energy Technology Data Exchange (ETDEWEB)

    Moldenke, A.R.; Baumeister, N.; Caldwell, B.A.; Griffith, R.; Ingham, E.R.; Wernz, J. (Oregon State Univ., Corvallis, OR (United States)); Johnson, M.G.; Rygiewicz, P.T.; Tingey, D.T. (Environmental Protection Agency, Corvallis, OR (United States))


    Samples of Teracosm soils were analyzed shortly after initial setup to determine whether initial conditions were equivalent and matched expected values for local soils. Total and active fungal biomass, active bacterial biomass and protozoan numbers were reduced, with greatest decreases occurring in the A horizon. No effect was observed on total bacterial biomass, nematode or anthropod densities, but changes in nematode and arthropod species composition occurred. Significant differences in total density and species composition occurred between the enclosed Teracosms and the open controls. Arthropod and nematode community structure in the three altitudinal field sites had significantly diverged. No significant differences in activities of key soil enzymes in C- and N-cycling (acid phosphatase, protease, B-glucosidase, phenol oxidase and peroxidase) were found between initial samples relative to treatment, but all levels were significantly difference relative to depth in soil profile. Activities were within ranges previously observed in forests of the Pacific Northwest.


    Directory of Open Access Journals (Sweden)

    K. S. Daljit Singh


    Full Text Available Substantial clearance of forests and conversion of forest into various land use types contribute to deterioration of soil fertility and associated nutrients loss. Soils from natural and rehabilitated forest in Chikus Forest Reserve and also enrichment planting forest and secondary forest of Tapah Hill Forest Reserve, Perak, Malaysia were selected in order to assess the influence of land use change on biological properties. This study was carried out to provide fundamental information on soil biological properties and also to compare the differences between natural forest, mono-rehabilitated forest, mixed planting forest and natural regenerated forest (secondary forest. Six subplots (20×20 m were established at each study plot and soil samples were collected at the depths of 0-15 cm (topsoil and 15-30 cm (subsoil. Soil microbial population was determined using spread-plate technique. Fluorescein Diacetate (FDA hydrolysis was used to assess the amount of microbial enzymatic activity for each forest plot. Soil Microbial Biomass C (MBC and N (MBN were extracted using chloroform fumigation extraction technique and the amount of MBC was determined by dichromate digestion, while MBN via Kjeldahl digestion technique. Soil acidity was determined by pH meter and moisture content was elucidated using gravimetric method. The levels of microbial population of bacterial and fungal at natural significantly exceeded the corresponding values of rehabilitated and secondary forest. However, microbial population is much higher in rehabilitated forest of Tapah Hill compared to that of secondary forest and also Chikus Forest Reserve planted forest which proves that rehabilitation activities do help increase the level of microbial community in the soils. Longer period of time after planting as in enrichment planting compared to mono planting of S. leprosula plantation showed that restoring and recovery of the planted forest needed time. Deforestation activities

  16. Distinctive Feature of Microbial Communities and Bacterial Functional Profiles in Tricholoma matsutake Dominant Soil (United States)

    Oh, Seung-Yoon; Fong, Jonathan J.; Park, Myung Soo; Lim, Young Woon


    Tricholoma matsutake, the pine mushroom, is a valuable forest product with high economic value in Asia, and plays an important ecological role as an ectomycorrhizal fungus. Around the host tree, T. matsutake hyphae generate a distinctive soil aggregating environment called a fairy ring, where fruiting bodies form. Because T. matsutake hyphae dominate the soil near the fairy ring, this species has the potential to influence the microbial community. To explore the influence of T. matsutake on the microbial communities, we compared the microbial community and predicted bacterial function between two different soil types—T. matsutake dominant and T. matsutake minor. DNA sequence analyses showed that fungal and bacterial diversity were lower in the T. matsutake dominant soil compared to T. matsutake minor soil. Some microbial taxa were significantly more common in the T. matsutake dominant soil across geographic locations, many of which were previously identified as mycophillic or mycorrhiza helper bacteria. Between the two soil types, the predicted bacterial functional profiles (using PICRUSt) had significantly distinct KEGG modules. Modules for amino acid uptake, carbohydrate metabolism, and the type III secretion system were higher in the T. matsutake dominant soil than in the T. matsutake minor soil. Overall, similar microbial diversity, community structure, and bacterial functional profiles of the T. matsutake dominant soil across geographic locations suggest that T. matsutake may generate a dominance effect. PMID:27977803

  17. Hydro-physical characterization of soils under tropical semi-deciduous forest

    Directory of Open Access Journals (Sweden)

    Miguel Cooper


    Full Text Available The study of the hydro-physical behavior in soils using toposequences is of great importance for better understanding the soil, water and vegetation relationships. This study aims to assess the hydro-physical and morphological characterization of soil from a toposequence in Galia, state of São Paulo, Brazil. The plot covers an area of 10.24 ha (320 × 320 m, located in a semi-deciduous seasonal forest. Based on ultra-detailed soil and topographic maps of the area, a representative transect from the soil in the plot was chosen. Five profiles were opened for the morphological description of the soil horizons, and hydro-physical and micromorphological analyses were performed to characterize the soil. Arenic Haplustult, Arenic Haplustalf and Aquertic Haplustalf were the soil types observed in the plot. The superficial horizons had lower density and greater hydraulic conductivity, porosity and water retention in lower tensions than the deeper horizons. In the sub-superficial horizons, greater water retention at higher tensions and lower hydraulic conductivity were observed, due to structure type and greater clay content. The differences observed in the water retention curves between the sandy E and the clay B horizons were mainly due to the size distribution, shape and type of soil pores.

  18. Migration and bioavailability of {sup 137}Cs in forest soil of southern Germany

    Energy Technology Data Exchange (ETDEWEB)

    Konopleva, I.; Klemt, E. [Hochschule Ravensburg-Weingarten, University of Applied Sciences, 88250 Weingarten (Germany); Konoplev, A. [Scientific Production Association ' TYPHOON' , Obninsk (Russian Federation); Zibold, G. [Hochschule Ravensburg-Weingarten, University of Applied Sciences, 88250 Weingarten (Germany)], E-mail:


    To give a quantitative description of the radiocaesium soil-plant transfer for fern (Dryopteris carthusiana) and blackberry (Rubus fruticosus), physical and chemical properties of soils in spruce and mixed forest stands were investigated. Of special interest was the selective sorption of radiocaesium, which was determined by measuring the Radiocaesium Interception Potential (RIP). Forest soil and plants were taken at 10 locations of the Altdorfer Wald (5 sites in spruce forest and 5 sites in mixed forest). It was found that the bioavailability of radiocaesium in spruce forest was on average seven times higher than in mixed forest. It was shown that important factors determining the bioavailability of radiocaesium in forest soil were its exchangeability and the radiocaesium interception potential (RIP) of the soil. Low potassium concentration in soil solution of forest soils favors radiocaesium soil-plant transfer. Ammonium in forest soils plays an even more important role than potassium as a mobilizer of radiocaesium. The availability factor - a function of RIP, exchangeability and cationic composition of soil solution - characterized reliably the soil-plant transfer in both spruce and mixed forest. For highly organic soils in coniferous forest, radiocaesium sorption at regular exchange sites should be taken into account when its bioavailability is considered.

  19. [GIS-based evaluation of farmland soil fertility and its relationships with soil profile configuration pattern]. (United States)

    Li, Mei; Zhang, Xue-Lei


    Taking the mid and low yielding fields in Yanjin County, Henan Province as a case, and selecting soil organic matter, total N, total P, total K, available N, available P, available K, pH value, and cation exchange capacity as indicators, a comprehensive evaluation on soil fertility was conducted by the method of fuzzy mathematics and using software ArcGIS 9.2. Based on this evaluation, the differences in the soil fertility level under different soil profile configuration pattern were analyzed. In the study region, soils were slightly alkaline, poorer in total N, total P, available N, cation exchange capacity, organic matter, and available K, and medium in available P and total K. The integrated fertility index was 0.14-0.63, indicating that the soil fertility in the region was on the whole at a lower level. There existed significant differences in all indicators except available P and total K under different soil profile configuration patterns (P soil fertility and soil profile configuration. The soil profile loamy in surface soil and clayey in subsurface soil had a higher level of soil fertility, followed by that loamy in surface soil and sandy in subsurface soil, and sandy in both surface and surface soil. Overall, the soils in the region were bad in profile configuration, poor in water and nutrient conservation, and needed to be ameliorated aiming at these features.

  20. A soil burn severity index for understanding soil-fire relations in tropical forests (United States)

    Jain, T.B.; Gould, W.A.; Graham, R.T.; Pilliod, D.S.; Lentile, L.B.; Gonzalez, G.


    Methods for evaluating the impact of fires within tropical forests are needed as fires become more frequent and human populations and demands on forests increase. Short- and long-term fire effects on soils are determined by the prefire, fire, and postfire environments. We placed these components within a fire-disturbance continuum to guide our literature synthesis and develop an integrated soil burn severity index. The soil burn severity index provides a set of indicators that reflect the range of conditions present after a fire. The index consists of seven levels, an unburned level and six other levels that describe a range of postfire soil conditions. We view this index as a tool for understanding the effects of fires on the forest floor, with the realization that as new information is gained, the index may be modified as warranted. ?? Royal Swedish Academy of Sciences 2008.

  1. Characterization of the soil fertility and root system of restinga forests

    Directory of Open Access Journals (Sweden)

    Rodolfo Martins Bonilha


    Full Text Available The Restinga vegetation consists of a mosaic of plant communities, which are defined by the characteristics of the substrates, resulting from the type and age of the depositional processes. This mosaic complex of vegetation types comprises restinga forest in advanced (high restinga and medium regeneration stages (low restinga, each with particular differentiating vegetation characteristics. The climate along the coast is tropical (Köppen. Of all ecosystems of the Atlantic Forest, Restinga is the most fragile and susceptible to anthropic disturbances. Plants respond to soil characteristics with physiological and morphological modifications, resulting in changes in the architecture (spatial configuration of the root system. The purpose of this study was to characterize the soil fertility of high and low restinga forests, by chemical and physical parameters, and its relation to the root system distribution in the soil profile. Four locations were studied: (1 Ilha Anchieta State Park, Ubatuba; (2 two Ecological Stations of Jureia-Itatins and of Chauás, in the municipality of Iguape; (3 Vila de Pedrinhas in the municipality of Ilha Comprida; and (4 Ilha do Cardoso State Park, Cananeia. The soil fertility (chemical and physical properties was analyzed in the layers 0-5, 0-10, 0-20, 20-40 and 40-60 cm. In addition, the distribution of the root system in the soil profile was evaluated, using digital images and the Spring program. It was concluded that the root system of all vegetation types studied is restricted to the surface layers, 0-10 and 10-20 cm, but occupies mainly the 0-10 cm layer (70 %; that soil fertility is low in all environments studied, with base saturation values below 16 %, since most exchange sites are occupied by aluminum; and that restinga vegetation is edaphic.

  2. Urbanization in China drives soil acidification of Pinus massoniana forests (United States)

    Huang, Juan; Zhang, Wei; Mo, Jiangming; Wang, Shizhong; Liu, Juxiu; Chen, Hao


    Soil acidification instead of alkalization has become a new environmental issue caused by urbanization. However, it remains unclear the characters and main contributors of this acidification. We investigated the effects of an urbanization gradient on soil acidity of Pinus massoniana forests in Pearl River Delta, South China. The soil pH of pine forests at 20-cm depth had significantly positive linear correlations with the distance from the urban core of Guangzhou. Soil pH reduced by 0.44 unit at the 0-10 cm layer in urbanized areas compared to that in non-urbanized areas. Nitrogen deposition, mean annual temperature and mean annual precipitation were key factors influencing soil acidification based on a principal component analysis. Nitrogen deposition showed significant linear relationships with soil pH at the 0-10 cm (for ammonium N (-N), P deposition particularly under the climate of high temperature and rainfall, greatly contributed to a significant soil acidification occurred in the urbanized environment.

  3. Sources of nitrous oxide emitted from European forest soils

    DEFF Research Database (Denmark)

    Ambus, P.; Zechmeister-Boltenstern, S.; Butterbach-Bahl, K.


    0.67% (deciduous) and 0.44% (coniferous). Our study suggests that changes in forest composition in response to land use activities and global change may have implications for regional budgets of greenhouse gases. From the study it also became clear that N2O emissions were driven by the nitrification......Forest ecosystems may provide strong sources of nitrous oxide (N2O), which is important for atmospheric chemical and radiative properties. Nonetheless, our understanding of controls on forest N2O emissions is insufficient to narrow current flux estimates, which still are associated with great...... uncertainties. In this study, we have investigated the quantitative and qualitative relationships between N-cycling and N2O production in European forests in order to evaluate the importance of nitrification and denitrification for N2O production. Soil samples were collected in 11 different sites characterized...

  4. Microbial functional diversity in a mediterranean forest soil: impact of soil nitrogen availability (United States)

    Dalmonech, D.; Lagomarsino, A.; Moscatelli, M. C.


    Beneficial or negative effects of N deposition on forest soil are strongly linked to the activity of microbial biomass and enzyme activities because they regulate soil quality and functioning due to their involvement in organic matter dynamics, nutrient cycling and decomposition processes. Moreover, because the ability of an ecosystem to withstand serious disturbances may depend in part on the microbial component of the system, by characterizing microbial functional diversity we may be able to better understand and manipulate ecosystem processes. Changes in the biodiversity of the soil microbial community are likely to be important in relation to maintenance of soil ecosystem function because the microbial communities influence the potential of soils for enzyme-mediated substrate catalysis. Objective of this study was to evaluate how soil N availability affected microbial functional diversity in a 4 months laboratory experiment. The incubation experiment was carried out with an organo-mineral soil collected in a Quercus cerris forest at the Roccarespampani site (Central Italy, Viterbo). All samples were incubated at 28°C and were kept to a water content between 55 and 65% of the water holding capacity. Different amount of N (NH4NO3) were added as solution once a week in order to mimic the N wet deposition and to let microbial community deal with a slow increase in time of inorganic N content. The amount of nutrient solutions was chosen depending on the average soil-water loss due to evaporation in one week. The total amount of N-NH4NO3 was chosen to be comparable with the range of N depositions currently reported in European forests, i.e. between 1 and 75 kg N ha-1 y-1. The total amount added at the end of incubation varied from 0, 10, 25, 50 and 75 kg N ha-1. Distilled water was added in the control soil in order to provide the same amount of solution as the treated soils. In order to discriminate the effect of N, the NH4NO3 solutions were adjusted to soil pH and

  5. Soil moisture sensitivity of autotrophic and heterotrophic forest floor respiration in boreal xeric pine and mesic spruce forests (United States)

    Ťupek, Boris; Launiainen, Samuli; Peltoniemi, Mikko; Heikkinen, Jukka; Lehtonen, Aleksi


    Litter decomposition rates of the most process based soil carbon models affected by environmental conditions are linked with soil heterotrophic CO2 emissions and serve for estimating soil carbon sequestration; thus due to the mass balance equation the variation in measured litter inputs and measured heterotrophic soil CO2 effluxes should indicate soil carbon stock changes, needed by soil carbon management for mitigation of anthropogenic CO2 emissions, if sensitivity functions of the applied model suit to the environmental conditions e.g. soil temperature and moisture. We evaluated the response forms of autotrophic and heterotrophic forest floor respiration to soil temperature and moisture in four boreal forest sites of the International Cooperative Programme on Assessment and Monitoring of Air Pollution Effects on Forests (ICP Forests) by a soil trenching experiment during year 2015 in southern Finland. As expected both autotrophic and heterotrophic forest floor respiration components were primarily controlled by soil temperature and exponential regression models generally explained more than 90% of the variance. Soil moisture regression models on average explained less than 10% of the variance and the response forms varied between Gaussian for the autotrophic forest floor respiration component and linear for the heterotrophic forest floor respiration component. Although the percentage of explained variance of soil heterotrophic respiration by the soil moisture was small, the observed reduction of CO2 emissions with higher moisture levels suggested that soil moisture response of soil carbon models not accounting for the reduction due to excessive moisture should be re-evaluated in order to estimate right levels of soil carbon stock changes. Our further study will include evaluation of process based soil carbon models by the annual heterotrophic respiration and soil carbon stocks.

  6. 137Cs vertical migration in a deciduous forest soil following the Fukushima Dai-ichi Nuclear Power Plant accident. (United States)

    Nakanishi, Takahiro; Matsunaga, Takeshi; Koarashi, Jun; Atarashi-Andoh, Mariko


    The large amount of (137)Cs deposited on the forest floor because of the Fukushima Dai-ichi Nuclear Power Plant accident represents a major potential long-term source for mobile (137)Cs. To investigate (137)Cs mobility in forest soils, we investigated the vertical migration of (137)Cs through seepage water, using a lysimetric method. The study was conducted in a deciduous forest soil over a period spanning 2 month to 2 y after the Fukushima nuclear accident. Our observations demonstrated that the major part of (137)Cs in the litter layer moved into the mineral soil within one year after the accident. On the other hand, the topsoil prevented migration of (137)Cs, and only 2% of (137)Cs in the leachate from litter and humus layer penetrated below a 10 cm depth. The annual migration below a 10 cm depth accounted for 0.1% of the total (137)Cs inventory. Therefore, the migration of (137)Cs by seepage water comprised only a very small part of the total (137)Cs inventory in the mineral soil, which was undetectable from the vertical distribution of (137)Cs in the soil profile. In the present and immediate future, most of the (137)Cs deposited on the forest floor will probably remain in the topsoil successively, although a small but certain amount of bioavailable (137)Cs exists in forest surface soil.

  7. Seasonal dynamics of soil CO2 efflux and soil profile CO2 concentrations in arboretum of Moscow botanical garden (United States)

    Goncharova, Olga; Udovenko, Maria; Matyshak, Georgy


    To analyse and predict recent and future climate change on a global scale exchange processes of greenhouse gases - primarily carbon dioxide - over various ecosystems are of rising interest. In order to upscale land-use dependent sources and sinks of CO2, knowledge of the local variability of carbon fluxes is needed. Among terrestrial ecosystems, urban areas play an important role because most of anthropogenic emissions of carbon dioxide originate from these areas. On the other hand, urban soils have the potential to store large amounts of soil organic carbon and, thus, contribute to mitigating increases in atmospheric CO2 concentrations. Research objectives: 1) estimate the seasonal dynamics of carbon dioxide production (emission - closed chamber technique and profile concentration - soil air sampling tubes method) by soils of Moscow State University Botanical Garden Arboretum planted with Picea obovata and Pinus sylvestris, 1) identification the factors that control CO2 production. The study was conducted with 1-2 weeks intervals between October 2013 and November 2015 at two sites. Carbon dioxide soil surface efflux during the year ranged from 0 to 800 mgCO2/(m2hr). Efflux values above 0 mgCO2/(m2hr) was observed during the all cold period except for only 3 weeks. Soil CO2 concentration ranged from 1600-3000 ppm in upper 10-cm layer to 10000-40000 ppm at a depth of 60 cm. The maximum concentrations of CO2 were recorded in late winter and late summer. We associate it with high biological activity (both heterotrophic and autotrophic) during the summer, and with physical gas jamming in the winter. The high value of annual CO2 production of the studied soils is caused by high organic matter content, slightly alkaline reaction, good structure and texture of urban soils. Differences in soil CO2 production by spruce and pine urban forest soils (in the pine forest 1.5-2.0 times higher) are caused by urban soil profiles construction, but not temperature regimes. Seasonal

  8. Soil biochemical responses to nitrogen addition in a bamboo forest. (United States)

    Tu, Li-hua; Chen, Gang; Peng, Yong; Hu, Hong-ling; Hu, Ting-xing; Zhang, Jian; Li, Xian-wei; Liu, Li; Tang, Yi


    Many vital ecosystem processes take place in the soils and are greatly affected by the increasing active nitrogen (N) deposition observed globally. Nitrogen deposition generally affects ecosystem processes through the changes in soil biochemical properties such as soil nutrient availability, microbial properties and enzyme activities. In order to evaluate the soil biochemical responses to elevated atmospheric N deposition in bamboo forest ecosystems, a two-year field N addition experiment in a hybrid bamboo (Bambusa pervariabilis × Dendrocalamopsis daii) plantation was conducted. Four levels of N treatment were applied: (1) control (CK, without N added), (2) low-nitrogen (LN, 50 kg N ha(-1) year(-1)), (3) medium-nitrogen (MN, 150 kg N ha(-1) year(-1)), and (4) high-nitrogen (HN, 300 kg N ha(-1) year(-1)). Results indicated that N addition significantly increased the concentrations of NH4(+), NO3(-), microbial biomass carbon, microbial biomass N, the rates of nitrification and denitrification; significantly decreased soil pH and the concentration of available phosphorus, and had no effect on the total organic carbon and total N concentration in the 0-20 cm soil depth. Nitrogen addition significantly stimulated activities of hydrolytic enzyme that acquiring N (urease) and phosphorus (acid phosphatase) and depressed the oxidative enzymes (phenol oxidase, peroxidase and catalase) activities. Results suggest that (1) this bamboo forest ecosystem is moving towards being limited by P or co-limited by P under elevated N deposition, (2) the expected progressive increases in N deposition may have a potential important effect on forest litter decomposition due to the interaction of inorganic N and oxidative enzyme activities, in such bamboo forests under high levels of ambient N deposition.

  9. Forest structure, diversity and soil properties in a dry tropical forest in Rajasthan, Western India

    Directory of Open Access Journals (Sweden)

    J. I. Nirmal Kumar


    Full Text Available Structure, species composition, and soil properties of a dry tropical forest in Rajasthan Western India, were examined by establishment of 25 plots. The forest was characterized by a relatively low canopy and a large number of small-diameter trees. Mean canopy height for this forest was 10 m and stands contained an average of 995 stems ha-1 (= 3.0 cm DBH; 52% of those stems were smaller than 10 cm DBH. The total basal area was 46.35 m2ha-1, of which Tectona grandis L. contributed 48%. The forest showed high species diversity of trees. 50 tree species (= 3.0 cm DBH from 29 families were identified in the 25 sampling plots. T. grandis (20.81% and Butea monosperma (9% were the dominant and subdominant species in terms of importance value. The mean tree species diversity indices for the plots were 1.08 for Shannon diversity index (H´, 0.71 for equitability index (J´ and 5.57 for species richness index (S´, all of which strongly declined with the increase of importance value of the dominant, T. grandis. Measures of soil nutrients indicated low fertility, extreme heterogeneity. Regression analysis showed that stem density and the dominant tree height were significantly correlated with soil pH. There was a significant positive relationship between species diversity index and soil available P, exchangeable K+, Ca2+ (all p values < 0.001 and a negative relationship with N, C, C:N and C:P ratio. The results suggest that soil properties are major factors influencing forest composition and structure within the dry tropical forest in Rajasthan.

  10. Soil concentrations and soil-atmosphere exchange of alkylamines in a boreal Scots pine forest (United States)

    Kieloaho, Antti-Jussi; Pihlatie, Mari; Launiainen, Samuli; Kulmala, Markku; Riekkola, Marja-Liisa; Parshintsev, Jevgeni; Mammarella, Ivan; Vesala, Timo; Heinonsalo, Jussi


    Alkylamines are important precursors in secondary aerosol formation in the boreal forest atmosphere. To better understand the behavior and sources of two alkylamines, dimethylamine (DMA) and diethylamine (DEA), we estimated the magnitudes of soil-atmosphere fluxes of DMA and DEA using a gradient-diffusion approximation based on measured concentrations in soil solution and in the canopy air space. The ambient air concentration of DMA used in this study was a sum of DMA and ethylamine. To compute the amine fluxes, we first estimated the soil air space concentration from the measured soil solution amine concentration using soil physical (temperature, soil water content) and chemical (pH) state variables. Then, we used the resistance analogy to account for gas transport mechanisms in the soil, soil boundary layer, and canopy air space. The resulting flux estimates revealed that the boreal forest soil with a typical long-term mean pH 5.3 is a possible source of DMA (170 ± 51 nmol m-2 day-1) and a sink of DEA (-1.2 ± 1.2 nmol m-2 day-1). We also investigated the potential role of fungi as a reservoir for alkylamines in boreal forest soil. We found high DMA and DEA concentrations both in fungal hyphae collected from field humus samples and in fungal pure cultures. The highest DMA and DEA concentrations were found in fungal strains belonging to decay and ectomycorrhizal fungal groups, indicating that boreal forest soil and, in particular, fungal biomass may be important reservoirs for these alkylamines.

  11. Soil bacterial community structure responses to precipitation reduction and forest management in forest ecosystems across Germany. (United States)

    Felsmann, Katja; Baudis, Mathias; Gimbel, Katharina; Kayler, Zachary E; Ellerbrock, Ruth; Bruelheide, Helge; Bruehlheide, Helge; Bruckhoff, Johannes; Welk, Erik; Puhlmann, Heike; Weiler, Markus; Gessler, Arthur; Ulrich, Andreas


    Soil microbial communities play an important role in forest ecosystem functioning, but how climate change will affect the community composition and consequently bacterial functions is poorly understood. We assessed the effects of reduced precipitation with the aim of simulating realistic future drought conditions for one growing season on the bacterial community and its relation to soil properties and forest management. We manipulated precipitation in beech and conifer forest plots managed at different levels of intensity in three different regions across Germany. The precipitation reduction decreased soil water content across the growing season by between 2 to 8% depending on plot and region. T-RFLP analysis and pyrosequencing of the 16S rRNA gene were used to study the total soil bacterial community and its active members after six months of precipitation reduction. The effect of reduced precipitation on the total bacterial community structure was negligible while significant effects could be observed for the active bacteria. However, the effect was secondary to the stronger influence of specific soil characteristics across the three regions and management selection of overstorey tree species and their respective understorey vegetation. The impact of reduced precipitation differed between the studied plots; however, we could not determine the particular parameters being able to modify the response of the active bacterial community among plots. We conclude that the moderate drought induced by the precipitation manipulation treatment started to affect the active but not the total bacterial community, which points to an adequate resistance of the soil microbial system over one growing season.

  12. Carbon neutral? No change in mineral soil carbon stock under oil palm plantations derived from forest or non-forest in Indonesia

    NARCIS (Netherlands)

    Khasanah, N.; Noordwijk, van M.; Ningsih, H.; Rahayu, S.


    Sustainability criteria for palm oil production guide new planting toward non-forest land cover on mineral soil, avoiding carbon debts caused by forest and peat conversion. Effects on soil carbon stock (soil Cstock) of land use change trajectories from forest and non-forest to oil palm on mineral so

  13. Observing and modeling links between soil moisture, microbes and CH4 fluxes from forest soils (United States)

    Christiansen, Jesper; Levy-Booth, David; Barker, Jason; Prescott, Cindy; Grayston, Sue


    Soil moisture is a key driver of methane (CH4) fluxes in forest soils, both of the net uptake of atmospheric CH4 and emission from the soil. Climate and land use change will alter spatial patterns of soil moisture as well as temporal variability impacting the net CH4 exchange. The impact on the resultant net CH4 exchange however is linked to the underlying spatial and temporal distribution of the soil microbial communities involved in CH4 cycling as well as the response of the soil microbial community to environmental changes. Significant progress has been made to target specific CH4 consuming and producing soil organisms, which is invaluable in order to understand the microbial regulation of the CH4 cycle in forest soils. However, it is not clear as to which extent soil moisture shapes the structure, function and abundance of CH4 specific microorganisms and how this is linked to observed net CH4 exchange under contrasting soil moisture regimes. Here we report on the results from a research project aiming to understand how the CH4 net exchange is shaped by the interactive effects soil moisture and the spatial distribution CH4 consuming (methanotrophs) and producing (methanogens). We studied the growing season variations of in situ CH4 fluxes, microbial gene abundances of methanotrophs and methanogens, soil hydrology, and nutrient availability in three typical forest types across a soil moisture gradient in a temperate rainforest on the Canadian Pacific coast. Furthermore, we conducted laboratory experiments to determine whether the net CH4 exchange from hydrologically contrasting forest soils responded differently to changes in soil moisture. Lastly, we modelled the microbial mediation of net CH4 exchange along the soil moisture gradient using structural equation modeling. Our study shows that it is possible to link spatial patterns of in situ net exchange of CH4 to microbial abundance of CH4 consuming and producing organisms. We also show that the microbial

  14. Carbon, Nitrogen and Fungal mycelium in the organic and in the mineral soil layers across a chronosequence of Stone pine Forest on Mount Vesuvius (United States)

    de Marco, Anna; Giordano, Maria; Esposito, Fabrizio; Virzo de Santo, Amalia


    Forest ecosystems act as a substantial carbon sink and store about 20% of all soil C. The amount of organic matter sequestered in the soil is dependent on the quantity of plant litter delivered to the soil as well as to the extent of litter decomposition. Stone pine forests are common in the Mediterranean areas of southern Italy, were this tree has been largely used for afforestation of volcanic substrates on Mount Vesuvius. Nevertheless, very little is known about carbon accumulation in Stone pine soil as well as about soil organic matter turnover in the organic and in the mineral soil layers. The aim of this study was to assess, along the whole soil profile, the concentration of C and N and the amount of fungal mycelium across a chronosequence encompassing a 36y, a 66y and a 96y old Stone pine forest within the National Park of Vesuvius. The chronosequence allows to estimate the changes with forest age in C and N concentration and the allocation of organic matter below-ground. The amount of fungal mycelium, particularly the active mycelium, at different depth along the soil profile is an indicator of the organic matter turn-over. The forest stands had been implanted on the same type of parent material, i.e. on lava. The sandy mineral soil was 15 cm deep in the youngest forest and reached a maximum depth of 37 cm in the two older forests. Litter fall (2006-2009) steadily increased from the youngest to the oldest forest stand (3828, 6144 and 7831 Kg/ha/y, respectively) and was positively related to tree basal area. C and N concentration in the organic soil layers (litter and humus) of the three stands did not change remarkably with forest age. In contrast, in the 0-15 cm mineral layer, C and N concentrations were about threefold higher in the 66y old compared to the 36y old forest stand. A further increase (by 2,4 for C and by 1,5 for N) was observed in the 96y old compared to the 66y old forest stand. In the deeper (15-37 cm) mineral soil of the two older forest

  15. [Effects of simulated warming on soil enzyme activities in two subalpine coniferous forests in west Sichuan]. (United States)

    Xu, Zhen-feng; Tang, Zheng; Wan, Chuan; Xiong, Pei; Cao, Gang; Liu, Qing


    With open top chamber (OTC), this paper studied the effects of simulated warming on the activities of soil invertase, urease, catalase, polyphenol oxidase in two contrasting subalpine coniferous forests (a dragon spruce plantation and a natural conifer forest) in west Sichuan. The dynamic changes of soil temperature and soil moisture were monitored synchronously. In the whole growth season, simulated warming enhanced the daily mean temperature at soil depth 5 cm by 0.61 degrees C in the plantation, and by 0.55 degrees C in the natural forest. Conversely, the volumetric moisture at soil depth 10 cm was declined by 4.10% and 2.55%, respectively. Simulated warming also increased soil invertase, urease, catalase, and polyphenol oxidase activities. The interactive effect of warming and forest type was significant on soil urease and catalase, but not significant on soil invertase and polyphenol oxidase. The warming effect on soil catalase depended, to some extent, on season change. In all treatments, the soil enzyme activities in the natural forest were significantly higher than those in the plantation. The seasonal changes of test soil enzyme activities were highly correlated with soil temperature, but less correlated with soil moisture. This study indicated that warming could enhance soil enzyme activities, and the effect had definite correlations with forest type, enzyme category, and season change. The soil enzyme activities in the subalpine coniferous forests were mainly controlled by soil temperature rather than soil moisture.

  16. Phosphorus Speciation and Sorption Processes in Preferential flow paths and Soil Matrix in Forested Podzolic Till Soil (United States)

    Saastamoinen, S.; Laine-Kaulio, H.; Klöve, B.


    The importance of preferential flow paths in nutrient leaching and subsurface transport has been identified in several studies mainly on agricultural soils. In forest soils research, decayed root channels, stone surfaces and other secondary soil structures have shown to affect unsaturated flow in glacial till soil. Until recently, the focus has been on nitrogen and carbon dynamics in the preferential flow paths. Preferential flow may also have a fundamental role in phosphorus (P) sorption processes and transport from forested till soils to surface waters. The main objectives of this study were to determine how preferential flow paths affect to P speciation, sorption and leaching in forested podzolic till soil. Field experiments were conducted in mixed coniferous forest, with soil type of glacial sandy till classified as Haplic Podzol. The first experiment was conducted in Ranua, Northern Finland. The preferential flow paths were identified by introducing Acid Blue 9 dye tracer to a 1 m2 study plot. The soil profile was vertically sliced and samples were collected from the stained preferential flow paths and unstained soil matrix. Ammonium-oxalate extracted trace elements and P, total and inorganic P, inorganic P fractions and organic P forms (31P-NMR spectroscopy) were analyzed from the samples. In the second experiment in Sotkamo, Eastern Finland, three 1 m2 study plots were selected from a forested hillslope: top, middle and bottom slope. The detection of preferential flow paths and the sampling procedure was identical to the first plot experiment. Samples were analyzed for ammonium-oxalate extracted trace elements and P. Also, the effect of reaction time, P concentration and temperature on the sorption process in preferential flow paths and soil matrix was studied by kinetic batch-type sorption experiments. Stone surfaces were the most dominant preferential flow paths and contained lower oxalate-extracted and total P concentrations than the soil matrix in all

  17. Impact of forest fire on physical, chemical and biological properties of soil: A review


    Satyam Verma; S Jayakumar


    Forest fire is very common to all the ecosystems of the world. It affects both vegetation and soil. It is also helpful in maintaining diversity and stability of ecosystems. Effect of forest fire and prescribed fire on forest soil is very complex. It affects soil organic matter, macro and micro-nutrients, physical properties of soil like texture, colour, pH, Bulk Density as well as soil biota. The impact of fire on forest soil depends on various factors such as intensity of fire, fuel load and...

  18. Assessing Bioenergy Harvest Risks: Geospatially Explicit Tools for Maintaining Soil Productivity in Western US Forests


    Deborah Page-Dumroese; Mark Coleman; Mark Kimsey


    Biomass harvesting for energy production and forest health can impact the soil resource by altering inherent chemical, physical and biological properties. These impacts raise concern about damaging sensitive forest soils, even with the prospect of maintaining vigorous forest growth through biomass harvesting operations. Current forest biomass harvesting research concurs that harvest impacts to the soil resource are region- and site-specific, although generalized knowledge from decades of rese...

  19. Measurements of soil and canopy exchange rates in the Amazon rain forest using Rn-222 (United States)

    Trumbore, S. E.; Keller, M.; Wofsy, S. C.; Da Costa, J. M.


    Measurements were taken of the emission of Rn-222 from Amazon forest rocks and soils and used as a tracer of ventilation of the forest canopy layer at night. It was determined that the greatest resistance to transfer of trace gases from the soil to the atmosphere lies in the soil air space. Profiles of Rn-222 and CO2 showed steepest concentration gradients in the layer between 0 and 3 m above soil surface. Aerodynamic resistances calculated for this layer from Rn-222 and CO2 varied from 1.6 to 18 s/cm, with greater resistance during the afternoon than at night. The resistance to exchange with air from the entire 41 m layer below the canopy averaged 4.8 s/cm during 13 nights of CO2 profiles. The calculated average time to flush the layer below 41 m is 5.5 hr, and it is concluded that this indicates that significant exchange occurs despite nocturnal stratification.

  20. Soil microclimate monitoring in forested and meadow sites (United States)

    Freyerova, Katerina; Safanda, Jan


    It is well known fact that forest microclimate differs from open area microclimate (Geiger 1965). Less attention is paid to soil temperatures and their long-term monitoring. To evaluate and compare these two environments from the soil microclimate point of view, Institute of Geophysics in Prague monitors soil and air temperatures in Bedřichov in the Jizerské Hory Mountains (Czech Republic). The soil temperatures are measured in three depths (20, 50 and 100 cm) in forest (700 m a. s. l.) and meadow (750 m a. s. l.). Air temperatures are measured at 2m height both in forest and meadow. Nowadays, we have more than three years long time series. The most of studies and experiments described in literature are short-term ones (in order of days or weeks). However, from short-term experiments the seasonal behaviour and trends can be hardly identified and conclusions on soil temperature reaction to climatic extremes such as heat waves, drought or freeze cannot be done with confidence. These drawbacks of the short-term experiments are discussed in literature (eg. Morecroft et al. 1998; Renaud et al. 2011). At the same, with progression of the global warming, the expected increasing frequency of climatic extremes will affect the future form of forest vegetation (Von Arx et al. 2012). The soil and air temperature series, both from the forest and meadow sites, are evaluated and interpreted with respect to long term temperature characteristics and seasonal trends. The emphasis is given on the soil temperature responses to extreme climatic situations. We examine variability between the localities and depths and spatial and temporal changes in this variability. This long-term monitoring allows us to better understand and examine the behaviour of the soil temperature in extreme weather situations. Therefore, we hope to contribute to better prediction of future reactions of this specific environments to the climate change. Literature Geiger, R., 1965. The climate near the ground

  1. UAV-Borne Profiling Radar for Forest Research

    Directory of Open Access Journals (Sweden)

    Yuwei Chen


    Full Text Available Microwave Radar is an attractive solution for forest mapping and inventories because microwave signals penetrates into the forest canopy and the backscattering signal can provide information regarding the whole forest structure. Satellite-borne and airborne imaging radars have been used in forest resources mapping for many decades. However, their accuracy with respect to the main forest inventory attributes substantially varies depending on the wavelength and techniques used in the estimation. Systems providing canopy backscatter as a function of canopy height are, practically speaking, missing. Therefore, there is a need for a radar system that would enable the scientific community to better understand the radar backscatter response from the forest canopy. Consequently, we undertook a research study to develop an unmanned aerial vehicle (UAV-borne profiling (i.e., waveform radar that could be used to improve the understanding of the radar backscatter response for forestry mapping and inventories. A frequency modulation continuous waveform (FMCW profiling radar, termed FGI-Tomoradar, was introduced, designed and tested. One goal is the total weight of the whole system is less than 7 kg, including the radar system and georeferencing system, with centimetre-level positioning accuracy. Achieving this weight goal would enable the FGI-Tomoradar system to be installed on the Mini-UAV platform. The prototype system had all four linear polarization measuring capabilities, with bistatic configuration in Ku-band. In system performance tests in this study, FGI-Tomoradar was mounted on a manned helicopter together with a Riegl VQ-480-U laser scanner and tested in several flight campaigns performed at the Evo site, Finland. Airborne laser scanning data was simultaneously collected to investigate the differences and similarities of the outputs for the same target area for better understanding the penetration of the microwave signal into the forest canopy

  2. Impact of forest fire on physical, chemical and biological properties of soil: A review

    Directory of Open Access Journals (Sweden)

    Satyam Verma


    Full Text Available Forest fire is very common to all the ecosystems of the world. It affects both vegetation and soil. It is also helpful in maintaining diversity and stability of ecosystems. Effect of forest fire and prescribed fire on forest soil is very complex. It affects soil organic matter, macro and micro-nutrients, physical properties of soil like texture, colour, pH, Bulk Density as well as soil biota. The impact of fire on forest soil depends on various factors such as intensity of fire, fuel load and soil moisture. Fire is beneficial as well as harmful for the forest soil depending on its severity and fire return interval. In low intensity fires, combustion of litter and soil organic matter increase plant available nutrients, which results in rapid growth of herbaceous plants and a significant increase in plant storage of nutrients. Whereas high intensity fires can result into complete loss of soil organic matter, volatilization of N, P, S, K, death of microbes, etc. Intense forest fire results into formation of some organic compounds with hydrophobic properties, which results into high water repellent soils. Forest fire also causes long term effect on forest soil. The purpose of this paper is to review the effect of forest fire on various properties of soil, which are important in maintaining healthy ecosystem.

  3. Tropical forest soil microbial communities couple iron and carbon biogeochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Dubinsky, E.A.; Silver, W.L.; Firestone, M.K.


    We report that iron-reducing bacteria are primary mediators of anaerobic carbon oxidation in upland tropical soils spanning a rainfall gradient (3500 - 5000 mm yr-1) in northeast Puerto Rico. The abundant rainfall and high net primary productivity of these tropical forests provide optimal soil habitat for iron-reducing and iron-oxidizing bacteria. Spatially and temporally dynamic redox conditions make iron-transforming microbial communities central to the belowground carbon cycle in these wet tropical forests. The exceedingly high abundance of iron-reducing bacteria (up to 1.2 x 10{sup 9} cells per gram soil) indicated that they possess extensive metabolic capacity to catalyze the reduction of iron minerals. In soils from the higher rainfall sites, measured rates of ferric iron reduction could account for up to 44 % of organic carbon oxidation. Iron reducers appeared to compete with methanogens when labile carbon availability was limited. We found large numbers of bacteria that oxidize reduced iron at sites with high rates of iron reduction and large numbers of iron-reducers. the coexistence of large populations of ironreducing and iron-oxidizing bacteria is evidence for rapid iron cycling between its reduced and oxidized states, and suggests that mutualistic interactions among these bacteria ultimately fuel organic carbon oxidation and inhibit CH4 production in these upland tropical forests.

  4. Assessing Soil Biological Properties of Natural and Planted Forests in the Malaysian Tropical Lowland Dipterocarp Forest

    Directory of Open Access Journals (Sweden)

    Daljit S. Karam


    Full Text Available Problem statement: A study was conducted to evaluate and compare the soil biological properties of a natural forest and an 18-year-old stand of Shorea leprosula in Chikus Forest Reserve, Perak, Malaysia. Approach: Soils were sampled at depths of 0-15 cm (topsoil and 15-30 cm (subsoil in six subplots (20×20 m of natural forest (C1 and of a planted S. leprosula (C2 plot. Fresh composite soil samples were kept in UV-sterilized polyethylene bags prior to analysis in the laboratory. The microbial population count was determined using a spread-plate count technique. The microbial enzymatic activity was elucidated using a Fluorescein Diacetate (FDA hydrolysis assay; microbial biomass was extracted using a rapid chloroform fumigation extraction method. The Microbial Biomass C (MBC was determined by wet dichromate oxidation; Kjeldahl digestion and a distillation method were used for evaluation of Microbial Biomass N (MBN. Results: Results indicate that only the microbial biomass N and the population count in the soil at the 0-15 cm depth were found to be higher in C1 compared to C2. The higher microbial population count in the soil at the 0-15 cm depth of C1 compared to C2 was enhanced by the large amount of organic matter that serves as a suitable medium for soil microbial growth. The higher MBN in the C1 soil was also influenced by the high content of organic material available that encourages activities of decomposing bacteria to take place. Similarities in the soil biological properties of the plots with regard to enzymatic activity and microbial biomass Care believed to be influenced by the same topographic gradient. The higher MBC/MBN ratios found in soils of C2 compared to C1 were due to the low availability of N compared to C, might result from N utilization by soil microbes for organic material decomposition. Conclusion: There are similarities in microbial enzymatic activity and biomass C, but not in microbial population counts and biomass N

  5. Comparison of the carbon stock in forest soil of sessile oak and beech forests (United States)

    Horváth, Adrienn; Bene, Zsolt; Bidló, András


    Forest ecosystems are the most important carbon sinks. The forest soils play an important role in the global carbon cycle, because the global climate change or the increase of atmospheric CO2 level. We do not have enough data about the carbon stock of soils and its change due to human activities, which have similar value to carbon content of biomass. In our investigation we measured the carbon stock of soil in 10 stands of Quercus petraea and Fagus sylvatica. We took a 1.1 m soil column with soil borer and divided to 11 samples each column. The course organic and root residues were moved. After evaluation, we compared our results with other studies and the carbon stock of forests to each other. Naturally, the amount of SOC was the highest in the topsoil layers. However, we found significant difference between forest stands which stayed on the same homogenous bedrock, but very close to each other (e.g. distance was 1 or 2 km). We detected that different forest utilizations and tree species have an effect on the forest carbon as the litter as well (amount, composition). In summary, we found larger amount (99.1 C t/ha on average) of SOC in soil of stands, where sessile oak were the main stand-forming tree species. The amount of carbon was the least in turkey oak-sessile oak stands (85.4 C t/ha on average). We found the highest SOC (118.3 C t/ha) in the most mixed stand (silver lime-beech-red oak). In the future, it will be very important: How does climate change affect the spread of tree species or on carbon storage? Beech is more sensitive, but even sessile oak. These species are expected to replace with turkey oak, which is less sensitive to drought. Thus, it is possible in the future that we can expect to decrease of forest soil carbon stock capacity, which was confirmed by our experiment. Keywords: carbon sequestration, mitigation, Fagus sylvatica, Quercus petraea, litter Acknowledgements: Research is supported by the "Agroclimate.2" (VKSZ_12-1-2013-0034) EU

  6. Evaporation Dynamics of Moss and Bare Soil in Boreal Forests (United States)

    Dempster, S.; Young, J. M.; Barron, C. G.; Bolton, W. R.


    Evaporation dynamics of mosses is a critical process in boreal and arctic systems and represents a key uncertainty in hydrology and climate models. At this point, moss evaporation is not well quantified at the plot or landscape scale. Relative to bare soil or litter evaporation, moss evaporation can be challenging to predict because the water flux is not isolated to the moss surface. Evaporation can originate from nearly 10 cm below the surface. Some mosses can wick moisture from even deeper than 10 cm, which subsequently evaporates. The goal of this study was to use field measurements to quantify the moss evaporation dynamics in a coniferous forest relative to bare ground or litter evaporation dynamics in a deciduous forest in Interior Alaska. Measurements were made in two ecosystem types within the boreal forest of Interior Alaska: a deciduous forest devoid of moss and a coniferous forest with a thick moss layer. A small clear chamber was attached to a LiCor 840 infrared gas analyzer in a closed loop system with a low flow rate. Water fluxes were measured for ~ 90 seconds on each plot in dry and wet soil and moss conditions. Additional measurements included: soil temperature, soil moisture, air temperature, barometric pressure, dew point, relative humidity, and wind speed. Thermal infrared images were also captured in congruence with water flux measurements to determine skin temperature. We found that the moss evaporation rate was over 100% greater than the soil evaporation rate (0.057 g/min vs. 0.024 g/min), and evaporation rates in both systems were most strongly driven by relative humidity and surface temperature. Surface temperature was lower at the birch site than the black spruce site because trees shade the surface beneath the birch. High fluxes associated with high water content were sustained for a longer period of time over the mosses compared to the bare soil. The thermal IR data showed that skin temperature lagged the evaporation flux, such that the

  7. Mechanisms for the retention of inorganic N in acidic forest soils of southern China (United States)

    Zhang, Jin-bo; Cai, Zu-cong; Zhu, Tong-bin; Yang, Wen-yan; Müller, Christoph


    The mechanisms underlying the retention of inorganic N in acidic forest soils in southern China are not well understood. Here, we simultaneously quantified the gross N transformation rates of various subtropical acidic forest soils located in southern China (southern soil) and those of temperate forest soils located in northern China (northern soil). We found that acidic southern soils had significantly higher gross rates of N mineralization and significantly higher turnover rates but a much greater capacity for retaining inorganic N than northern soils. The rates of autotrophic nitrification and NH3 volatilization in acidic southern soils were significantly lower due to low soil pH. Meanwhile, the relatively higher rates of NO3− immobilization into organic N in southern soils can counteract the effects of leaching, runoff, and denitrification. Taken together, these processes are responsible for the N enrichment of the humid subtropical forest soils in southern China. PMID:23907561

  8. Organic Matter, Carbon and Humic Acids in Rehabilitated and Secondary Forest Soils

    Directory of Open Access Journals (Sweden)

    Lee Y. Leng


    Full Text Available Problem Statement: Tropical rainforests cover about 19.37 million ha (60% of Malaysia’s total area and about 8.71 million ha can be found in Sarawak, Malaysia. Excessive logging, mining and shifting cultivation contribute to deforestation in Sarawak. The objectives of this study were to: (i Quantify soil Organic Matter (SOM, Soil Organic Carbon (SOC and Humic Acids (HA in rehabilitated and secondary forest soils and (ii Compare SOM, SOC and HA sequestrations of both forests. Approach: Soil samples were collected from a 16 year old rehabilitated forest and a secondary forest at Universiti Putra Malaysia, Bintulu Campus. Fifteen samples were taken at random with a soil auger at 0-20 cm and 20-40 cm depths. The bulk densities at these depths were determined by the coring method. The bulk density method was used to quantify the total C (TC, Total Organic Carbon (TOC, Organic Matter (OM, Humic Acids (HA and total N at the stated sampling depths. Results: Regardless of forest soil type and depth, the amount of SOM of the two forests was similar. Except for 20-40 cm of the secondary forest soil whereby the quantity of total C sequestered was significantly lower than that of the rehabilitated forest soil, C sequestration was similar irrespective of forest type and depth. Nevertheless, stable C (organic carbon sequestered in HA was generally higher in the rehabilitated forest soil compared with the secondary forest soil. This was attributed to higher yield of HA in the rehabilitated forest soil partly due to better humification at 20-40 cm in the rehabilitated forest soil. Conclusion: Hence, the findings suggest that organic C in HA realistically reflects C sequestration in the soils of the two forests investigated.

  9. Hypholoma lateritium isolated from coarse woody debris, the forest floor, and mineral soil in a deciduous forest in New Hampshire (United States)

    Therese A. Thompson; R. Greg Thorn; Kevin T. Smith


    Fungi in the Agaricomycetes (Basidiomycota) are the primary decomposers in temperate forests of dead wood on and in the forest soil. Through the use of isolation techniques selective for saprotrophic Agaricomycetes, a variety of wood decay fungi were isolated from a northern hardwood stand in the Bartlett Experimental Forest, New Hampshire, USA. In particular,

  10. Quantifying soil erosion with GIS-based RUSLE under different forest management options in Jianchang Forest Farm

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Hengming; WANG; Qingli; DAI; Limin; Guofan; Shao; TANG; Lina; WANG; Shunzhong; GU; Huiyan


    Quantitatively estimating soil erosion with an integration of geographic information system (GIS) and the revised universal soil loss equation (RUSLE) under four different exposed soil proportion scenarios caused by forest management practices was studied at Jianchang Forest Farm. The GIS provided means of input data generation required by RUSLE model and allowed a spatial assessment of the erosion hazard over the study area. Four exposed soil proportion scenarios of 5%, 10%, 20% and 30% were tested with the GIS-based RUSLE model to evaluate soil erosion hazard. The predicted soil erosion potentials were classified into five categories in order to provide valuable aids for management planning.

  11. Methane consumption and soil respiration by a birch forest soil in West Siberia (United States)

    Nakano, Tomoko; Inoue, Gen; Fukuda, Masami


    Methane and carbon dioxide fluxes were measured in a birch forest soil in West Siberia, in August 1999, June 2000 and September 2000. The study site had a very thick organic horizon that was subject to drought during the observation periods. The soils always took up CH4, while CO2 was released from the surface to the atmosphere. CH4 consumption and CO2 emission rates ranged from 0.092 to 0.28 mg C m2 h1 and from 110 to 400 mg C m2 h1 respectively. The CH4 consumption rate and soil temperatures showed significant relationships for individual measurements. The soil respiration rate was weakly correlated with individual soil temperatures. This study examined the effect of current and lagged soil temperatures at a depth of 5 cm on CH4 consumption and soil respiration. The variation in the correlation coefficient between CH4 consumption and lagged soil temperature was greatest at a 4-h lag, whereas that for soil respiration showed a gentle peak at lags from several hours to half a day. This difference in the temperature-related lag effect between CH4 consumption and soil respiration results from differences in the exchange processes. Neither flux showed any correlation with soil moisture. The limited variation in soil moisture during our observation period may account for the lack of correlation. However, the droughty soil conditions resulted in high gas diffusion and, consequently, high CH4 consumption.

  12. Soil water repellency under stones, forest residue mulch and bare soil following wildfire. (United States)

    Martins, Martinho A. S.; Prats, Sérgio A.; van Keulen, Daan; Vieira, Diana C. S.; Silva, Flávio C.; Keizer, Jan J.; Verheijen, Frank G. A.


    Soil water repellency (SWR) is a physical property that is commonly defined as the aptitude of soil to resist wetting. It has been documented for a wide range of soil and vegetation types, and can vary with soil organic matter (SOM) content and type, soil texture, soil moisture content (SMC) and soil temperature. Fire can induce, enhance or destroy SWR and, therefore, lead to considerable changes in soil water infiltration and storage and increase soil erosion by water, thereby weakening soil quality. In Portugal, wildfires occur frequently and affect large areas, on average some 100000 ha per year, but over 300000 ha in extreme years such as 2003 and 2005. This can have important implications in geomorphological and hydrological processes, as evidenced by the strong and sometimes extreme responses in post-fire runoff and erosion reported from various parts of the world, including Portugal. Thereby, the application of mulches from various materials to cover burned areas has been found to be an efficient stabilization treatment. However, little is known about possible side effects on SWR, especially long term effects. Forest SWR is very heterogeneous, as a result of variation in proximity to trees/shrubs, litter type and thickness, cracks, roots, and stones. This study targeted the spatial heterogeneity of soil water repellency under eucalypt plantation, five years after a wildfire and forest residue mulching application. The main objectives of this work were: 1) to assess the long-term effect of mulching application on the strength and spatial heterogeneity of topsoil SWR, by comparing SWR on bare soil, under stones, and under mulching remains; 2) to assess SWR at 1 cm depth between O and Ah horizons. The soil surface results showed that untreated bare soil areas were slightly more water repellent than mulched areas. However, under stones there were no SWR differences between mulched and control areas. At 1 cm depth, there was a marked mulching effect on SWR, even

  13. Climate Warming Can Increase Soil Carbon Fluxes Without Decreasing Soil Carbon Stocks in Boreal Forests (United States)

    Ziegler, S. E.; Benner, R. H.; Billings, S. A.; Edwards, K. A.; Philben, M. J.; Zhu, X.; Laganiere, J.


    Ecosystem C fluxes respond positively to climate warming, however, the net impact of changing C fluxes on soil organic carbon (SOC) stocks over decadal scales remains unclear. Manipulative studies and global-scale observations have informed much of the existing knowledge of SOC responses to climate, providing insights on relatively short (e.g. days to years) and long (centuries to millennia) time scales, respectively. Natural climate gradient studies capture integrated ecosystem responses to climate on decadal time scales. Here we report the soil C reservoirs, fluxes into and out of those reservoirs, and the chemical composition of inputs and soil organic matter pools along a mesic boreal forest climate transect. The sites studied consist of similar forest composition, successional stage, and soil moisture but differ by 5.2°C mean annual temperature. Carbon fluxes through these boreal forest soils were greatest in the lowest latitude regions and indicate that enhanced C inputs can offset soil C losses with warming in these forests. Respiration rates increased by 55% and the flux of dissolved organic carbon from the organic to mineral soil horizons tripled across this climate gradient. The 2-fold increase in litterfall inputs to these soils coincided with a significant increase in the organic horizon C stock with warming, however, no significant difference in the surface mineral soil C stocks was observed. The younger mean age of the mineral soil C ( 70 versus 330 YBP) provided further evidence for the greater turnover of SOC in the warmer climate soils. In spite of these differences in mean radiocarbon age, mineral SOC exhibited chemical characteristics of highly decomposed material across all regions. In contrast with depth trends in soil OM diagenetic indices, diagenetic shifts with latitude were limited to increases in C:N and alkyl to O-alkyl ratios in the overlying organic horizons in the warmer relative to the colder regions. These data indicate that the

  14. Losses of soil carbon by converting tropical forest to plantations: erosion and decomposition estimated by δ(13) C. (United States)

    Guillaume, Thomas; Damris, Muhammad; Kuzyakov, Yakov


    Indonesia lost more tropical forest than all of Brazil in 2012, mainly driven by the rubber, oil palm, and timber industries. Nonetheless, the effects of converting forest to oil palm and rubber plantations on soil organic carbon (SOC) stocks remain unclear. We analyzed SOC losses after lowland rainforest conversion to oil palm, intensive rubber, and extensive rubber plantations in Jambi Province on Sumatra Island. The focus was on two processes: (1) erosion and (2) decomposition of soil organic matter. Carbon contents in the Ah horizon under oil palm and rubber plantations were strongly reduced up to 70% and 62%, respectively. The decrease was lower under extensive rubber plantations (41%). On average, converting forest to plantations led to a loss of 10 Mg C ha(-1) after about 15 years of conversion. The C content in the subsoil was similar under the forest and the plantations. We therefore assumed that a shift to higher δ(13) C values in plantation subsoil corresponds to the losses from the upper soil layer by erosion. Erosion was estimated by comparing the δ(13) C profiles in the soils under forest and under plantations. The estimated erosion was the strongest in oil palm (35 ± 8 cm) and rubber (33 ± 10 cm) plantations. The (13) C enrichment of SOC used as a proxy of its turnover indicates a decrease of SOC decomposition rate in the Ah horizon under oil palm plantations after forest conversion. Nonetheless, based on the lack of C input from litter, we expect further losses of SOC in oil palm plantations, which are a less sustainable land use compared to rubber plantations. We conclude that δ(13) C depth profiles may be a powerful tool to disentangle soil erosion and SOC mineralization after the conversion of natural ecosystems conversion to intensive plantations when soils show gradual increase of δ(13) C values with depth. © 2015 The Authors. Global Change Biology published by John Wiley & Sons Ltd.

  15. Winter soil CO2 efflux in two contrasting forest ecosystems on the eastern Tibetan Plateau, China

    Institute of Scientific and Technical Information of China (English)

    Zhenfeng Xu; Feifei Zhou; Huajun Yin; Qing Liu


    Significant CO2 fluxes from snow-covered soils occur in cold biomes. However, little is known about winter soil respiration on the eastern Tibetan Plateau of China. We therefore measured winter soil CO2 fluxes and estimated annual soil respiration in two contrasting coniferous forest ecosystems (a Picea asperata plantation and a natural forest). Mean winter soil CO2 effluxes were 1.08 lmol m-2 s-1 in the plantation and 1.16 lmol m-2 s-1 in the natural forest. These values are higher than most reported winter soil CO2 efflux values for temperate or boreal forest ecosystems. Winter soil respiration rates were similar for our two forest ecosystems but mean soil CO2 efflux over the growing season was higher in the natural forest than in the plantation. The estimated winter and annual soil effluxes for the natural forest were 176.3 and 1070.3 g m-2, respectively, based on the relationship between soil respiration and soil temperature, which were 17.2 and 9.7 % greater than their counterparts in the plantation. The contributions of winter soil respiration to annual soil efflux were 15.4 % for the plantation and 16.5 % for the natural forest and were statistically similar. Our results indicate that winter soil CO2 efflux from frozen soils in the alpine coniferous forest ecosystems of the eastern Tibetan Plateau was considerable and was an important component of annual soil respiration. Moreover, reforestation (natural coniferous forests were deforested and reforested with P. asperata plantation) may reduce soil respiration by reducing soil carbon substrate availability and input.

  16. Natural radionuclides in soils from Sao Paulo State cerrado forest

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, Marcia V.F.E.S.; Farias, Emerson E.G. de; Cantinha, Rebeca S.; Franca, Elvis J. de, E-mail:, E-mail:, E-mail:, E-mail: [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil)


    Considering the long life history, forests should be preferentially evaluated for the monitoring of radionuclides, mainly artificial radioisotopes. However, little is known about nuclides from Uranium and Thorium series, as well as, K-40, in soils from the Sao Paulo State forests. Soils are the main reservoir of natural radionuclides for vegetation, thereby deserving attention. Taking into account the advantages of High-Resolution Gamma-ray Spectrometry (HRGS), diverse radionuclides can be quantified simultaneously. In this work natural radionuclides in soils from the Estacao Ecologica de Assis were evaluated by HRGS. Samples of 0-10 cm depth were collected under crown projection of most abundant tree species of long-term plots installed within the Estacao Ecologica de Assis, Sao Paulo State, Brazil. After drying and milling until 0.5 mm particle size, test portions of 30 g were transferred to polypropylene vials, sealed with silicone and kept under controlled conditions until 30 days to achieve secular equilibrium. A group of gamma-ray spectrometers was used to analyze about 27 samples by 80,000 seconds. Activity concentrations of Pb-214, Ac-228 and K-40 and their respective expanded analytical uncertainties at the 95% confidence level were calculated by Genie software from Canberra. Abnormal values were not detected for radionuclides in soils samples, however K-40 activity concentrations changed considerably due to the mineral cycling, in which K and, consequently K-40, is mainly stocked in vegetation in spite of soils. (author)

  17. An alternative modelling approach to predict emissions of N2O and NO from forest soils

    NARCIS (Netherlands)

    Bruijn, de A.M.G.; Grote, R.; Butterbach-Bahl, K.


    Emissions of N2O from forest soils in Europe are an important source of global greenhouse gas emissions. However, influencing the emission rates by forest management is difficult because the relations and feedbacks between forest and soils are complex. Process-based models covering both vegetation

  18. Retention of available P in acid soils of tropical and subtropical evergreen broad-leaved forests

    Institute of Scientific and Technical Information of China (English)

    CHEN Jianhui; ZOU Xiaoming; YANG Xiaodong


    Precipitation of mineral phosphate is often recognized as a factor of limiting the availability of P in acidic soils of tropical and subtropical forests.For this paper,we studied the extractable P pools and their transformation rates in soils of a tropical evergreen forest at Xishuangbanna and a subtropical montane wet forest at the Ailao Mountains in order to understand the biogeochemical processes regulating P availability in acidic soils.The two forests differ in forest humus layer;it is deep in the Ailao forest while little is present in the Xishuangbanna forest.The extractable P pools by resin and sodium-bicarbonate decreased when soil organic carbon content was reduced.The lowest levels of extractable P pools occurred in the surface (0-10 era) mineral soils of the Xishuangbanna forest.However,microbial P in the mineral soil of the Xishuangbauna forest was twice that in the Ailao forest.Potential rates of microbial P immobilization were greater than those of organic P mineralization in mineral soils for both forests.We suggest that microbial P immobilization plays an essential role in avoiding mineral P precipitation and retaining available P of plant in tropical acidic soils,whereas both floor mass accumulation and microbial P immobilization function benefit retaining plant available P in subtropical montane wet forests.

  19. Experimental warming effects on the microbial community of a temperate mountain forest soil


    Schindlbacher, A.; Rodler, A.; Kuffner, M.; Kitzler, B.; Sessitsch, A; Zechmeister-Boltenstern, S.


    Soil microbial communities mediate the decomposition of soil organic matter (SOM). The amount of carbon (C) that is respired leaves the soil as CO2 (soil respiration) and causes one of the greatest fluxes in the global carbon cycle. How soil microbial communities will respond to global warming, however, is not well understood. To elucidate the effect of warming on the microbial community we analyzed soil from the soil warming experiment Achenkirch, Austria. Soil of a mature spruce forest was ...

  20. Changes in forest soil properties in different successional stages in lower tropical China.

    Directory of Open Access Journals (Sweden)

    Yuelin Li

    Full Text Available BACKGROUND: Natural forest succession often affects soil physical and chemical properties. Selected physical and chemical soil properties were studied in an old-growth forest across a forest successional series in Dinghushan Nature Reserve, Southern China. METHODOLOGY/PRINCIPAL FINDINGS: The aim was to assess the effects of forest succession change on soil properties. Soil samples (0-20 cm depth were collected from three forest types at different succession stages, namely pine (Pinus massoniana forest (PMF, mixed pine and broadleaf forest (PBMF and monsoon evergreen broadleaf forest (MEBF, representing early, middle and advanced successional stages respectively. The soil samples were analyzed for soil water storage (SWS, soil organic matter (SOM, soil microbial biomass carbon (SMBC, pH, NH4(+-N, available potassium (K, available phosphorus (P and microelements (available copper (Cu, available zinc (Zn, available iron (Fe and available boron (B between 1999 and 2009. The results showed that SWS, SOM, SMBC, Cu, Zn, Fe and B concentrations were higher in the advanced successional stage (MEBF stage. Conversely, P and pH were lower in the MEBF but higher in the PMF (early successional stage. pH, NH4(+-N, P and K declined while SOM, Zn, Cu, Fe and B increased with increasing forest age. Soil pH was lower than 4.5 in the three forest types, indicating that the surface soil was acidic, a stable trend in Dinghushan. CONCLUSION/SIGNIFICANCE: These findings demonstrated significant impacts of natural succession in an old-growth forest on the surface soil nutrient properties and organic matter. Changes in soil properties along the forest succession gradient may be a useful index for evaluating the successional stages of the subtropical forests. We caution that our inferences are drawn from a pseudo-replicated chronosequence, as true replicates were difficult to find. Further studies are needed to draw rigorous conclusions regarding on nutrient dynamics in

  1. Soil organic carbon stocks assessment in Mediterranean natural areas: a comparison of entire soil profiles and soil control sections. (United States)

    Parras-Alcántara, L; Lozano-García, B; Brevik, E C; Cerdá, A


    Soil organic carbon (SOC) is an important part of the global carbon (C) cycle. In addition, SOC is a soil property subject to changes and highly variable in space and time. Over time, some researches have analyzed entire soil profile (ESP) by pedogenetic horizons and other researches have analyzed soil control sections (SCS) to different thickness. However, very few studies compare both methods (ESP versus SCS). This research sought to analyze the SOC stock (SOCS) variability using both methods (ESP and SCS) in The Despeñaperros Natural Park, a nature reserve that consists of a 76.8 km(2) forested area in southern Spain. Thirty-four sampling points were selected in the study zone. Each sampling point was analyzed in two different ways, as ESP (by horizons) and as SCS with different depth increments (0-25, 25-50, 50-75 and 75-100 cm). The major goal of this research was to study the SOCS variability at regional scale. The soils investigated in this study included Phaeozems, Cambisols, Regosols and Leptosols. Total SOCS in the Despeñaperros Natural Park was over 28.2% greater when SCS were used compared to ESP, ranging from 0.8144 Tg C (10,604.2 Mg km(-2)) to 0.6353 Tg C (8272.1 Mg km(-2)) respectively (1 Tg = 10(12) g). However, when the topsoil (surface horizon and superficial section control) was analyzed, this difference increased to 59.8% in SCS compared to ESP. The comparison between ESP and SCS showed the effect of mixing pedogenetic horizons when depth increments were analyzed. This indicates an overestimate of T-SOCS when sampling by SCS.

  2. Increased mercury in forest soils under elevated carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Natali, Susan M. [State University of New York, Stony Brook; Sa_udo-Wilhelmy, Sergio A. [University of Southern California; Norby, Richard J [ORNL; Finzi, Adrien C [Boston University; Lerdau, Manuel T. [University of Virginia


    Fossil fuel combustion is the primary anthropogenic source of both CO2 and Hg to the atmosphere. On a global scale, most Hg that enters ecosystems is derived from atmospheric Hg that deposits onto the land surface. Increasing concentrations of atmospheric CO2 may affect Hg deposition to terrestrial systems and storage in soils through CO2-mediated changes in plant and soil properties. We show, using free-air CO2 enrichment (FACE) experiments, that soil Hg concentrations are almost 30% greater under elevated atmospheric CO2 in two temperate forests. There were no direct CO2 effects, however, on litterfall, throughfall or stemflow Hg inputs. Soil Hg was positively correlated with percent soil organic matter (SOM), suggesting that CO2-mediated changes in SOM have influenced soil Hg concentrations. Through its impacts on SOM, elevated atmospheric CO2 may increase the Hg storage capacity of soils and modulate the movement of Hg through the biosphere. Such effects of rising CO2, ones that transcend the typically studied effects on C and nutrient cycling, are an important next phase for research on global environmental change.

  3. Acid soil indicators in forest soils of the Cherry River Watershed, West Virginia. (United States)

    Farr, C; Skousen, J; Edwards, P; Connolly, S; Sencindiver, J


    Declining forest health has been observed during the past several decades in several areas of the eastern USA, and some of this decline is attributed to acid deposition. Decreases in soil pH and increases in soil acidity are indicators of potential impacts on tree growth due to acid inputs and Al toxicity. The Cherry River watershed, which lies within the Monongahela National Forest in West Virginia, has some of the highest rates of acid deposition in Appalachia. East and West areas within the watershed, which showed differences in precipitation, stream chemistry, and vegetation composition, were compared to evaluate soil acidity conditions and to assess their degree of risk on tree growth. Thirty-one soil pits in the West area and 36 pits in the East area were dug and described, and soil samples from each horizon were analyzed for chemical parameters. In A horizons, East area soils averaged 3.7 pH with 9.4 cmol(c) kg(-1) of acidity compared to pH 4.0 and 6.2 cmol(c) kg(-1) of acidity in West area soils. Extractable cations (Ca, Mg, and Al) were significantly higher in the A, transition, and upper B horizons of East versus West soils. However, even with differences in cation concentrations, Ca/Al molar ratios were similar for East and West soils. For both sites using the Ca/Al ratio, a 50% risk of impaired tree growth was found for A horizons, while a 75% risk was found for deeper horizons. Low concentrations of base cations and high extractable Al in these soils translate into a high degree of risk for forest regeneration and tree growth after conventional tree harvesting.

  4. Radiometric Study of Soil Profiles in the Infrared Band (United States)

    Ponomareva, T. V.; Ponomarev, E. I.


    The applicability of radiometric survey of soil profiles in the infrared range for the analysis of soil physical properties was studied. Radiometric data were obtained for different dates of the growing season for a number of soil profiles. The specificity of temperature profiles of texture-differentiated soils (Luvisols and Retisols) as related to weather conditions of the growing season was examined. The correlation analysis showed a close relationship between the air and surface soil temperatures and between the radiometric and thermodynamic soil temperatures in the upper 10 cm. In the studied profiles, the gradient of radiometric temperatures reached 0.5-0.8°C/cm in the humus horizons and sharply decreased at the depth of more than 15-20 cm. The gradient analysis of radiometric images made it possible to outline the boundaries of soil horizons. For the texture-differentiated soils, the most distinct boundaries were established between the gray-humus AY horizon and the underlying eluvial EL horizon in podzolic soils and between the AY horizon and the underlying humus-eluvial AEL horizon in gray soils.

  5. Gaseous mercury fluxes from forest soils in response to forest harvesting intensity: A field manipulation experiment

    Energy Technology Data Exchange (ETDEWEB)

    Mazur, M. [University of Toronto Scarborough, Department of Physical and Environmental Sciences, 1265 Military Trail, Toronto, ON M1C 1A4 (Canada); Mitchell, C.P.J., E-mail: [University of Toronto Scarborough, Department of Physical and Environmental Sciences, 1265 Military Trail, Toronto, ON M1C 1A4 (Canada); Eckley, C.S. [Meteorological Service of Canada, Environment Canada, 4905 Dufferein Street, Toronto, ON M3H 5T4 (Canada); Eggert, S.L.; Kolka, R.K.; Sebestyen, S.D. [Northern Research Station, USDA Forest Service, 1831 Hwy 169 E, Grand Rapids, MN 55744 (United States); Swain, E.B. [Minnesota Pollution Control Agency, St. Paul, MN 55155 (United States)


    Forest harvesting leads to changes in soil moisture, temperature and incident solar radiation, all strong environmental drivers of soil–air mercury (Hg) fluxes. Whether different forest harvesting practices significantly alter Hg fluxes from forest soils is unknown. We conducted a field-scale experiment in a northern Minnesota deciduous forest wherein gaseous Hg emissions from the forest floor were monitored after two forest harvesting prescriptions, a traditional clear-cut and a clearcut followed by biomass harvest, and compared to an un-harvested reference plot. Gaseous Hg emissions were measured in quadruplicate at four different times between March and November 2012 using Teflon dynamic flux chambers. We also applied enriched Hg isotope tracers and separately monitored their emission in triplicate at the same times as ambient measurements. Clearcut followed by biomass harvesting increased ambient Hg emissions the most. While significant intra-site spatial variability was observed, Hg emissions from the biomass harvested plot (180 ± 170 ng m{sup −2} d{sup −1}) were significantly greater than both the traditional clearcut plot (− 40 ± 60 ng m{sup −2} d{sup −1}) and the un-harvested reference plot (− 180 ± 115 ng m{sup −2} d{sup −1}) during July. This difference was likely a result of enhanced Hg{sup 2+} photoreduction due to canopy removal and less shading from downed woody debris in the biomass harvested plot. Gaseous Hg emissions from more recently deposited Hg, as presumably representative of isotope tracer measurements, were not significantly influenced by harvesting. Most of the Hg tracer applied to the forest floor became sequestered within the ground vegetation and debris, leaf litter, and soil. We observed a dramatic lessening of tracer Hg emissions to near detection levels within 6 months. As post-clearcutting residues are increasingly used as a fuel or fiber resource, our observations suggest that gaseous Hg emissions from forest

  6. Seasonal variation in soil and plant water potentials in a Bolivian tropical moist and dry forest

    NARCIS (Netherlands)

    Markesteijn, L.; Iraipi, J.; Bongers, F.; Poorter, L.


    We determined seasonal variation in soil matric potentials (¿soil) along a topographical gradient and with soil depth in a Bolivian tropical dry (1160 mm y-1 rain) and moist forest (1580 mm y-1). In each forest we analysed the effect of drought on predawn leaf water potentials (¿pd) and drought resp

  7. Evolution of soil, ecosystem, and critical zone research at the USDA FS Calhoun Experimental Forest (United States)

    Daniel deB. Richter; Allan R. Bacon; Sharon A. Billings; Dan Binkley; Marilyn Buford; Mac Callaham; Amy E. Curry; Ryan L. Fimmen; A. Stuart Grandy; Paul R. Heine; Michael Hofmockel; Jason A. Jackson; Elisabeth LeMaster; Jianwei Li; Daniel Markewitz; Megan L. Mobley; Mary W. Morrison; Michael S. Strickland; Thomas Waldrop; Carol G. Wells


    The US Department of Agriculture (USDA) Forest Service Calhoun Experimental Forest was organized in 1947 on the southern Piedmont to engage in research that today is called restoration ecology, to improve soils, forests, and watersheds in a region that had been severely degraded by nearly 150 years farming. Today, this 2,050-ha research forest is managed by the Sumter...

  8. Clay minerals, metallic oxides and oxy-hydroxides and soil organic carbon distribution within soil aggregates in temperate forest soils (United States)

    Gartzia-Bengoetxea, Nahia; Fernández-Ugalde, Oihane; Virto, Iñigo; Arias-González, Ander


    Soil mineralogy is of primary importance for key environmental services provided by soils like carbon sequestration. However, current knowledge on the effects of clay mineralogy on soil organic carbon (SOC) stabilization is based on limited and conflicting data. In this study, we investigated the relationship between clay minerals, metallic oxides and oxy-hydroxides and SOC distribution within soil aggregates in mature Pinus radiata D.Don forest plantations. Nine forest stands located in the same geographical area of the Basque Country (North of Spain) were selected. These stands were planted on different parent material (3 on each of the following: sandstone, basalt and trachyte). There were no significant differences in climate and forest management among them. Moreover, soils under these plantations presented similar content of clay particles. We determined bulk SOC storage, clay mineralogy, the content of Fe-Si-Al-oxides and oxyhydroxides and the distribution of organic C in different soil aggregate sizes at different soil depths (0-5 cm and 5-20 cm). The relationship between SOC and abiotic factors was investigated using a factor analysis (PCA) followed by stepwise regression analysis. Soils developed on sandstone showed significantly lower concentration of SOC (29 g C kg-1) than soils developed on basalts (97 g C kg-1) and trachytes (119 g C kg-1). The soils on sandstone presented a mixed clay mineralogy dominated by illite, with lesser amounts of hydroxivermiculite, hydrobiotite and kaolinite, and a total absence of interstratified chlorite/vermiculite. In contrast, the major crystalline clay mineral identified in the soils developed on volcanic rocks was interstratified chlorite/vermiculite. Nevertheless, no major differences were observed between basaltic and trachytic soils in the clay mineralogy. The selective extraction of Fe showed that the oxalate extractable iron was significantly lower in soils on sandstone (3.7%) than on basalts (11.2%) and

  9. Partitioning of soil water among canopy trees during a soil desiccation period in a temperate mixed forest

    Directory of Open Access Journals (Sweden)

    M. Meißner


    Full Text Available Complementary resource use is considered an important mechanism in the study of biodiversity effects. Here we explore how species identity, species mixture and tree size influence the vertical partitioning of soil water among canopy trees during a soil desiccation period. In the Hainich Forest, Germany, the species Fagus sylvatica, Tilia sp. and Fraxinus excelsior were studied in single- and three-species mixed clusters, each consisting of three co-dominant trees situated within a larger mixed forest stand. Vertical soil water uptake depth was assessed by analyzing the hydrogen stable isotope composition (deuterium, δD of water from depth intervals throughout the soil profile and in tree xylem water. For single species clusters, a mixing model suggested that Fagus distinctively drew water from soil depths of 0.3–0.5 m, Tilia from 0.3–0.5 m and 0.5–0.7 m and Fraxinus mainly used water from 0.5–0.7 m. In mixed clusters, the uptake patterns of Fagus and Tilia were similar to those of the single-species clusters (mainly uptake form 0.3–0.5 m, but Fraxinus showed a different uptake pattern. Fraxinus in mixture had a somewhat homogenously distributed uptake over the soil depths 0.2–0.7 m. For single species clusters, there was no correlation between main soil water uptake depth and tree diameter, irrespective of variations in tree size. In contrast, for mixed clusters there was a significant decrease in the main uptake depth with increasing tree size (P<0.001, R2adj = 0.73, irrespective of species mix. In consequence, soil water partitioning was strongest where species were mixed and tree size varied. We further analyzed whether single and mixed-species clusters differed in the level of water uptake, e.g. due to complementarity, but our soil water budgeting did not indicate any such differences. A possible explanation might be

  10. Partitioning of soil water among canopy trees during a soil desiccation period in a temperate mixed forest

    Directory of Open Access Journals (Sweden)

    M. Meißner


    Full Text Available Complementary resource use is considered an important mechanism in the study of biodiversity effects. Here we explore how species identity, species mixture and tree size influence the vertical partitioning of soil water among canopy trees during a soil desiccation period. In the Hainich forest, Germany, the species Fagus sylvatica, Tilia sp. and Fraxinus excelsior were studied in single- and three-species mixed clusters, each consisting of three co-dominant trees situated within a larger mixed forest stand. Vertical soil water uptake depth was assessed by analyzing the hydrogen stable isotope composition (deuterium, δ D of water from depth intervals throughout the soil profile and in tree xylem water. For single species clusters, a mixing model suggested that Fagus distinctively drew water from soil depths of 0.3–0.5 m, Tilia from 0.3–0.5 m and 0.5–0.7 m and Fraxinus mainly used water from 0.5–0.7 m. In mixed clusters, the uptake patterns of Fagus and Tilia were similar to those of the single-species clusters (mainly uptake form 0.3–0.5 m, but Fraxinus showed a different uptake pattern. Fraxinus in mixture had a somewhat homogenously distributed uptake over the soil depths 0.2–0.7 m. For single species clusters, there was no correlation between main soil water uptake depth and tree diameter, irrespective of variations in tree size. In contrast, for mixed clusters there was a significant decrease in the main uptake depth with increasing tree size (P<0.001, R2adj = 0.73, irrespective of species mix. In consequence, soil water partitioning was strongest where species were mixed and tree size varied. We further analyzed whether single and mixed-species clusters differed in the level of water uptake, e.g. due to complementarity, but our soil water budgeting did not indicate any such differences. A possible explanation might be that the

  11. CO2 efflux from different forest soils and impact factors in Dinghu Mountain, China

    Institute of Scientific and Technical Information of China (English)

    ZHOU Cunyu; ZHOU Guoyi; ZHANG Deqiang; WANG Yinghong; LIU Shizhong


    CO2 fluxes from soils and related environmental factors were measured in three forest ecosystems of Dinghu Mountain using static chamber-gas chromatograph technique for one year. The seasonal pattern of CO2 flux, contribution of litter on total CO2 flux and the correlations of CO2 flux with soil temperature and soil water content were examined for each type of forest. The results were given as followings: (1) The seasonal patterns of CO2 flux from soil of the three types of forest were similar, with a higher CO2 flux in rainy season than in dry season. The comparative relations of mean annual CO2 fluxes between the three sites were expressed as:monsoon forest > mixed forest > pine forest. (2) CO2 fluxes from litter decomposition in monsoon forest, mixed forest and pine forest accounted for 24.43%, 41.75% and 29.23% of the corresponding total CO2 fluxes from forest floor, respectively. (3) Significant relationships were found between CO2 fluxes and soil temperatures at 5 cm depth for the three types of forest, which could be best described by exponential equations. The calculated Q10 values based on soil temperature at 5 cm depth ranged from 1.86 to 3.24. More significant relationships were found between CO2 fluxes and soil water content when the annual variation coefficients of soil moisture were higher.

  12. Anthropic changes to the biotic factor of soil formation from forests to managed grasslands along summits of the western Pyrenees Mountains, France (United States)

    Leigh, David; Gragson, Theodore


    Mounting evidence indicates that highland pastures of the humid-temperate western Pyrenees were converted from mixed forests to managed grasslands thousands of years ago, as early as during the late Neolithic and Bronze age by human actions including use of fire. We observe pronounced differences between soil profiles of ancient pastures and old-growth forests in otherwise similar landscape positions. In order to test physical and chemical differences, we collected paired samples of forest versus grassland soils at four separate hillslope sites where there was a clear boundary between the two vegetation types. Animal trails were excluded from sampling. Factors of climate, topography, parent material, and time of soil formation were essentially identical in the forests and pastures of each site, but the time of soil under grassland vegetation may have varied. Each paired hillslope site included five core samples (7.6 cm diameter) from the upper 7.6 cm of the mineral soil within each vegetation type, and the A horizon thickness was recorded at each core hole site. In addition, one complete soil profile was sampled in each vegetation type at each site, making a total of 20 core samples and 4 complete profiles from each respective vegetation type. In addition, we measured the magnetic susceptibility of the mineral soil surface on two transects crossing the vegetation boundary. Core samples have been measured for bulk density, pH, plant-available nutrients, and organic matter; and tests for total carbon and nitrogen, amorphous silica, charcoal, and other forms of black carbon are ongoing. Preliminary results indicate pastured A horizons are about three times as thick as forested soils, contain more organic matter, have lower soil bulk densities, have much finer and stronger structural development of soil aggregates. These traits favor much greater infiltration and water holding capacities of the pastured soils, which we have validated with saturated hydraulic

  13. Using advanced surface complexation models for modelling soil chemistry under forests: Solling forest, Germany. (United States)

    Bonten, Luc T C; Groenenberg, Jan E; Meesenburg, Henning; de Vries, Wim


    Various dynamic soil chemistry models have been developed to gain insight into impacts of atmospheric deposition of sulphur, nitrogen and other elements on soil and soil solution chemistry. Sorption parameters for anions and cations are generally calibrated for each site, which hampers extrapolation in space and time. On the other hand, recently developed surface complexation models (SCMs) have been successful in predicting ion sorption for static systems using generic parameter sets. This study reports the inclusion of an assemblage of these SCMs in the dynamic soil chemistry model SMARTml and applies this model to a spruce forest site in Solling Germany. Parameters for SCMs were taken from generic datasets and not calibrated. Nevertheless, modelling results for major elements matched observations well. Further, trace metals were included in the model, also using the existing framework of SCMs. The model predicted sorption for most trace elements well.

  14. Profiles of Trace Gas Concentrations in Undisturbed Forest in the Brazilian Amazon (United States)

    Carmo, J.; Crill, P.; Dias, J.; Camargo, P.; Keller, M.


    Globally, upland tropical forests are the largest natural source of nitrous oxide (N2O). Soils of upland tropical forests generally consume methane (CH4) although this process has only a minor effect on the atmospheric CH4 budget. In this study, we investigate the concentrations of N2O, CH4, and carbon dioxide (CO2) measured in profiles on towers in undisturbed forest at three Amazon forest sites located in the municipalities of Manaus, Amazonas, Melgaço, Para (Caxiuana), and Sinop, Mato Grosso. We measured gas concentration profiles at six heights above the ground on during both wet and dry seasons in 2003 and 2004. Nylon tubes (0.95 cm OD) were installed on towers used for meteorological and flux measurements in LBA. Gas samples were drawn through teflon filters (1μ m pore size) to a manifold and directed either to an infra-red gas analyzer (LiCor IRGA Model 6262), to sampling canisters, or to exhaust. During sampling periods, we maintained a continuous flow of at least 1 L min-1 through all sampling tubes. CO2 concentration data from the IRGA were recorded continuously using a Datastick analog to digital converter and a palm top computer. We removed air samples in electro-polished stainless steel canisters for off-site analysis of N2O and CH4 by ECD and FID gas chromatography respectively. Sampling times were selected based upon real-time measurements of CO2 concentration. Relatively stable meteorological conditions at night led to consistent increases in CO2 concentrations. At times we also observed increases in the concentrations of CH4 and N2O concentrations correlated with increasing CO2. The source of the increasing CO2 is most likely respiration by soil and above-ground organisms. Correlated increases in CH4 and N2O concentrations also likely result from biological activity in the soil and the canopy layer of the studied forests. Concentrations of these gases increase at night because the rate of gas emission in the canopy layer exceeds the rates of

  15. Assessing relationships between forest structure and soil erosion in mountainous forest using a Cesium-137 tracer technique (United States)

    Choi, Kwanghun; Reineking, Björn


    The fallout radionuclides (FRNs) particularly Cesium-137 are known as a quantitatively reliable means of estimating sediment redistribution rates within agricultural landscapes and forested area. However, fewer studies have done using FRNs in forested areas even though understanding soil redistribution patterns in mountainous forest areas is one of the important issues for forest management. The objective of this study is to figure out key forest structures affecting soil redistribution rate. In this study, we estimated soil loss and gain rate at 50 points with various forest types and topography in steep mountainous forest area in the Experimental Forest of Kangwon National University in Kangwon Province, South Korea by the Cesium-137 tracing technique. The results show the factors related to the topography such as slope and water accumulation have little effect on soil redistribution rate. The shrub and small tree layer affect more on soil redistribution rate. Additionally, the data shows relatively higher erosion rate in Korean Pine tree plantation area (Pinus koraiensis Sieb. et Zucc.) than semi-natural deciduous and Quercus forests where shrubs and small trees are more prevalent.

  16. How deep does disturbance go? The long-term effects of canopy disturbance on tropical forest soil biogeochemistry (United States)

    Gutiérrez del Arroyo, O.; Silver, W. L.


    We used the Canopy Trimming Experiment (CTE), an ongoing ecosystem manipulation study in the Luquillo Experimental Forest (LEF), Puerto Rico to determine the decadal-scale effects of canopy disturbance and debris deposition on biogeochemistry throughout the soil profile of a wet tropical forest. These manipulations represent the most significant effects of hurricanes, which may increase in frequency or intensity with warming, strengthening their ecosystem-level effects on carbon (C) and nutrient cycling. Four replicated treatments were applied in 2005 using a complete randomized block design: canopy trimming + debris deposition, canopy trimming only, debris deposition only, and untreated control. In 2015, we sampled soils at 10 cm intervals to 1 m depth in each of 12 plots (3 per treatment). We measured gravimetric moisture content, pH, HCl and citrate-ascorbate (CA) extractable iron (Fe) species, organic (Po) and inorganic fractions of NaHCO3 and NaOH phosphorus (P), as well as total C and nitrogen (N). Soil moisture decreased markedly with depth up to ~60-70 cm, and then stabilized at ~33% down to 1 m. Across all treatments, pH increased significantly with depth, ranging from 4.6 in surface soils (0-10 cm) of trimmed plots to 5.2 in deep soils (80-90 cm) of control plots. Canopy trimming decreased pH significantly, possibly due to increased root activity in surface soils as vegetation recovered. Both HCl and CA extractable Fe showed strong depth dependance, decreasing linearly to 50 cm, and stabilizing at very low concentrations (soil profile (deposition significantly increased Po, revealing the role of hurricanes in subsidizing the available soil P pool in these highly productive, low-P wet tropical forests. Debris deposition also increased soil C and N concentrations in surface soils (soil profile in this wet tropical forest. However, effects were persistent and detectable after ten years of the CTE, suggesting that hurricanes result in long-term changes in

  17. Unravelling the importance of forest age stand and forest structure driving microbiological soil properties, enzymatic activities and soil nutrients content in Mediterranean Spanish black pine(Pinus nigra Ar. ssp. salzmannii) Forest. (United States)

    Lucas-Borja, M E; Hedo, J; Cerdá, A; Candel-Pérez, D; Viñegla, B


    This study aimed to investigate the effects that stand age and forest structure have on microbiological soil properties, enzymatic activities and nutrient content. Thirty forest compartments were randomly selected at the Palancares y Agregados managed forest area (Spain), supporting forest stands of five ages; from 100 to 80years old to compartments with trees that were 19-1years old. Forest area ranging from 80 to 120years old and without forest intervention was selected as the control. We measured different soil enzymatic activities, soil respiration and nutrient content (P, K, Na, Mg, Cr, Mn, Fe, Co, Ni, Cu, Zn, Pb and Ca) in the top cm of 10 mineral soils in each compartment. Results showed that the lowest forest stand age and the forest structure created by management presented lower values of organic matter, soil moisture, water holding capacity and litterfall and higher values of C/N ratio in comparison with the highest forest stand age and the related forest structure, which generated differences in soil respiration and soil enzyme activities. The forest structure created by no forest management (control plot) presented the highest enzymatic activities, soil respiration, NH4(+) and NO3(-). Results did not show a clear trend in nutrient content comparing all the experimental areas. Finally, the multivariate PCA analysis clearly clustered three differentiated groups: Control plot; from 100 to 40years old and from 39 to 1year old. Our results suggest that the control plot has better soil quality and that extreme forest stand ages (100-80 and 19-1years old) and the associated forest structure generates differences in soil parameters but not in soil nutrient content. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Physical soil properties and slope treatments effects on hydraulic excavator productivity for forest road construction. (United States)

    Parsakho, Aidin; Hosseini, Seyed Ataollah; Jalilvand, Hamid; Lotfalian, Majid


    Effects of moisture, porosity and soil bulk density properties, grubbing time and terrain side slopes on pc 220 komatsu hydraulic excavator productivity were investigated in Miana forests road construction project which located in the northern forest of Iran. Soil moisture and porosity determined by samples were taken from undisturbed soil. The elements of daily works were measured with a digital stop watch and video camera in 14 observations (days). The road length and cross section profiles after each 20 m were selected to estimate earthworks volume. Results showed that the mean production rates for the pc 220 komatsu excavators were 60.13 m3 h(-1) and earthwork 14.76 m h(-1) when the mean depth of excavation or cutting was 4.27 m3 m(-1), respectively. There was no significant effects (p = 0.5288) from the slope classes' treatments on productivity, whereas grubbing time, soil moisture, bulk density and porosity had significantly affected on excavator earthworks volume (p excavator earthworks length.

  19. Soil, plant, and transport influences on methane in a subalpine forest under high ultraviolet irradiance

    Directory of Open Access Journals (Sweden)

    D. Baer


    Full Text Available Recent studies have demonstrated direct methane emission from plant foliage under aerobic conditions, particularly under high ultraviolet (UV irradiance. We examined the potential importance of this phenomenon in a high-elevation conifer forest using micrometeorological techniques. Vertical profiles of methane and carbon dioxide in forest air were monitored every 2 h for 6 weeks in summer 2007. Day to day variability in above-canopy CH4 was high, with observed values in the range 1790 to 1910 nmol mol−1. High CH4 was correlated with high carbon monoxide and related to wind direction, consistent with pollutant transport from an urban area by a well-studied mountain-plain wind system. Soils were moderately dry during the study. Vertical gradients of CH4 were small but detectable day and night, both near the ground and within the vegetation canopy. Gradients near the ground were consistent with the forest soil being a net CH4 sink. Using scalar similarity with CO2, the magnitude of the summer soil CH4 sink was estimated at ~1.7 mg CH4 m−2 h−1, which is similar to other temperate forest upland soils. The high-elevation forest was naturally exposed to high UV irradiance under clear sky conditions, with observed peak UVB irradiance >2 W m−2. Gradients and means of CO2 within the canopy under daytime conditions showed net uptake of CO2 due to photosynthetic drawdown as expected. No evidence was found for a significant foliar CH4 source in the vegetation canopy, even under high UV conditions. While the possibility of a weak foliar source cannot be excluded given the observed soil sink, overall this subalpine forest was a net sink for atmospheric methane during the growing season.

  20. Does drought alter hydrological functions in forest soils? (United States)

    Gimbel, Katharina F.; Puhlmann, Heike; Weiler, Markus


    Climate change is expected to impact the water cycle and severely affect precipitation patterns across central Europe and in other parts of the world, leading to more frequent and severe droughts. Usually when projecting drought impacts on hydrological systems, it is assumed that system properties, like soil properties, remain stable and will not be affected by drought events. To study if this assumption is appropriate, we address the effects of drought on the infiltration behavior of forest soils using dye tracer experiments on six sites in three regions across Germany, which were forced into drought conditions. The sites cover clayey-, loamy- and sandy-textured soils. In each region, we compared a deciduous and a coniferous forest stand to address differences between the main tree species. The results of the dye tracer experiments show clear evidence for changes in infiltration behavior at the sites. The infiltration changed at the clayey plots from regular and homogeneous flow to fast preferential flow. Similar behavior was observed at the loamy plots, where large areas in the upper layers remained dry, displaying signs of strong water repellency. This was confirmed by water drop penetration time (WDPT) tests, which revealed, in all except one plot, moderate to severe water repellency. Water repellency was also accountable for the change of regular infiltration to fingered flow in the sandy soils. The results of this study suggest that the drought history or, more generally, the climatic conditions of a soil in the past are more important than the actual antecedent soil moisture status regarding hydrophobicity and infiltration behavior; furthermore, drought effects on infiltration need to be considered in hydrological models to obtain realistic predictions concerning water quality and quantity in runoff and groundwater recharge.

  1. Microbial community dynamics in soil aggregates shape biogeochemical gas fluxes from soil profiles (United States)

    Ebrahimi, Ali; Or, Dani


    Microbial communities inhabiting soil aggregates dynamically adjust their activity and composition in response to variations in hydration and other external conditions. These rapid dynamics shape signatures of biogeochemical activity and gas fluxes emitted from soil profiles. Mechanistic models of microbial processes in unsaturated aggregate pore networks revealed dynamic interplay between oxic and anoxic microsites that are jointly shaped by hydration and by aerobic and anaerobic microbial communities. The spatial extent of anoxic niches (hotspots) flicker in time (hot moments) and support significant anaerobic microbial activity even in aerated soil profiles. We employed an individual-based model for microbial community life in soil aggregate assemblies represented by 3-D angular pore networks with profiles of water, carbon, and oxygen that vary with soil depth as boundary conditions. The study integrates microbial activity within aggregates of different sizes and soil depth to obtain biogeochemical fluxes over the soil profile. The results quantify impacts of dynamic shifts in microbial community composition on CO2 and N2O production rates in soil profiles in good agreement with experimental data. Aggregate size distribution and the shape of resource profiles in a soil determine how hydration dynamics shape denitrification and carbon utilization rates. Results from the mechanistic model for microbial activity in aggregates of different sizes were used to derive parameters for analytical representation of soil biogeochemical processes across large scales of interest for hydrological and climate models.

  2. Advances of study on atmospheric methane oxidation (consumption) in forest soil

    Institute of Scientific and Technical Information of China (English)

    WANG Chen-rui; SHI Yi; YANG Xiao-ming; WU Jie; YUE Jin


    Next to CO2, methane (CH4) is the second important contributor to global warming in the atmosphere and global atmospheric CH4 budget depends on both CH4 sources and sinks. Unsaturated soil is known as a unique sink for atmospheric CH4 in terrestrial ecosystem. Many comparison studies proved that forest soil had the biggest capacity of oxidizing atmospheric CH4 in various unsaturated soils. However, up to now, there is not an overall review in the aspect of atmospheric CH4 oxidation (consumption) in forest soil. This paper analyzed advances of studies on the mechanism of atmospheric CH4 oxidation, and related natural factors (Soil physical and chemical characters, temperature and moisture, ambient main greenhouse gases concentrations, tree species, and forest fire) and anthropogenic factors (forest clear-cutting and thinning, fertilization, exogenous aluminum salts and atmospheric deposition, adding biocides, and switch of forest land use) in forest soils. It was believed that CH4 consumption rate by forest soil was limited by diffusion and sensitive to changes in water status and temperature of soil. CH4 oxidation was also particularly sensitive to soil C/N, Ambient CO2, CH4 and N2O concentrations, tree species and forest fire. In most cases, anthropogenic disturbances will decrease atmospheric CH4 oxidation, thus resulting in the elevating of atmospheric CH4. Finally, the author pointed out that our knowledge of atmospheric CH4 oxidation (consumption) in forest soil was insufficient. In order to evaluate the contribution of forest soils to atmospheric CH4 oxidation and the role of forest played in the process of global environmental change, and to forecast the trends of global warming exactly, more researchers need to studies further on CH4 oxidation in various forest soils of different areas.

  3. Landscape Planning of Forest Amelioration on Irrigated Soils

    Directory of Open Access Journals (Sweden)

    Ruleva Olga Vasilyevna


    Full Text Available The authors study the landscape program which supposes the formation of land use system aimed at connection of protective shelterbelts to geo-morphological watershed elements, relief, unsimilarity of agricultural territories, adapted to the dynamically balanced state of substance and energy within a landscape. Such approach favors the development of agricultural lands estimation system by means of forest amelioration. It happens due to transformation (reorganization of qualitative and quantitative characteristics of energy mass transfer. Consequently, the radiation, heat, soil, hydrophysical and hydrodynamical processes change as well. So, the area adjoining the protective forest belt is the area of determined processes, while further from the forest belt the space is open for changes of all the characteristics. While estimating lands geoecology, the agroforest landscape was considered as a modification of agricultural landscape forming and functioning under the influence of protective shelterbelts. The landscape unsimilarity of the territory should be taken into account during the optimum organization of irrigated farming. It was made by means of desiphering space photos. According to bioclimatical zonal indications, the dry steppe and desert steppe agrolandscape types have been determined. The irrigated soils of the Volgograd region are located mainly in dry steppe agroforest landscapes on dark-chestnut and chestnut soils within natural ameliorative areas of Privolzhskaya and Ergeninskaya Hills and partly in Zavolzhskaya river delta plain; in semi-desert agroforest landscapes on light-chestnut soils within Zavolzhskaya river delta plain and Sarpinskaya lowlands. The favourable hydrogeological ameliorative situation on the territory of southern Privolzhskaya Hill gives the opportunity to revive the irrigation in the Volgograd region and therefore to increase the productivity and sustainability of agricultural production on a higher scientific

  4. Water holding effect of subalpine dark coniferous forest soil in Gongga Mountain, China

    Institute of Scientific and Technical Information of China (English)

    CHANG Zhi-hua; LU Zhao-hua; GUAN Wen-bin


    Because of the distinction of soil property and humus content, soil water content is not ideal to indicate whether it is suitable to the growth of plant. Mainly based on the PF-a numerical value denoting the water regime of soil and connected with the growth of plant, the study combined the moisture percentage of soil with PF to research in quantity the interrelation between the moisture percentage and PF in different succession phases of subalpine dark coniferous forest in Gongga Mountain. The results showed that: (1) In the same PF value, the moisture percentage in humus horizon increased gradually with the development of the succession of the dark coniferous forest; The moisture percentage of over-mature forest was the highest and>mature forest>half-mature forest>young growth forest; (2) With the increase of soil depth, the soil bulk density increased and the moisture percentage decreased, but the difference in the percentage of moisture was not notable in different succession phases. (3) In different succession series, the vegetation affected the soil water characteristics by increasing the soil organic matter, improving the soil construction, receding the soil bulk density and enhancing the soil porosity; (4) The humus horizon of the dark coniferous forest soil has the highest water holding capability in this region.

  5. Influence of soil organic matter contents on soil water characteristics of forests on east slope of Gongga Mountain

    Institute of Scientific and Technical Information of China (English)

    ZHANG Bao-hua; WANG Zhen-jian; LIU Zi-ting; HUANG Ai-min; TANG Qing-xin; He Yu-rong


    By testing soil organic matter (SOM) contents, soil water contents (SWC) within low suctions, and saturated infiltration rates of samples taken from east slope of Gongga Mountain of China, the enhancive effects of SOM contents on SWC within low suctions and saturated infiltration rates were quantified. The simulated functions might be applied on regional experience forest-hydrology model. The improving function of protecting forest floor and increasing SOM contents on forest ecosystem hydrological effects were also embodied.

  6. Soil chemical properties affect the reaction of forest soil bacteria to drought and rewetting stress. (United States)

    Chodak, Marcin; Gołębiewski, Marcin; Morawska-Płoskonka, Justyna; Kuduk, Katarzyna; Niklińska, Maria

    Reaction of soil bacteria to drought and rewetting stress may depend on soil chemical properties. The objectives of this study were to test the reaction of different bacterial phyla to drought and rewetting stress and to assess the influence of different soil chemical properties on the reaction of soil bacteria to this kind of stress. The soil samples were taken at ten forest sites and measured for pH and the contents of organic C (Corg) and total N (Nt), Zn, Cu, and Pb. The samples were kept without water addition at 20 - 30 °C for 8 weeks and subsequently rewetted to achieve moisture equal to 50 - 60 % of their maximum water-holding capacity. Prior to the drought period and 24 h after the rewetting, the structure of soil bacterial communities was determined using pyrosequencing of 16S rRNA genes. The drought and rewetting stress altered bacterial community structure. Gram-positive bacterial phyla, Actinobacteria and Firmicutes, increased in relative proportion after the stress, whereas the Gram-negative bacteria in most cases decreased. The largest decrease in relative abundance was for Gammaproteobacteria and Bacteroidetes. For several phyla the reaction to drought and rewetting stress depended on the chemical properties of soils. Soil pH was the most important soil property influencing the reaction of a number of soil bacterial groups (including all classes of Proteobacteria, Bacteroidetes, Acidobacteria, and others) to drought and rewetting stress. For several bacterial phyla the reaction to the stress depended also on the contents of Nt and Corg in soil. The effect of heavy metal pollution was also noticeable, although weaker compared to other chemical soil properties. We conclude that soil chemical properties should be considered when assessing the effect of stressing factors on soil bacterial communities.

  7. The southernmost Andean Mountain soils: a toposequence from Nothofagus Forest to Sub Antarctic Tundra at Ushuaia, Tierra del Fuego (United States)

    Firme Sá, Mariana M.; Schaefer, Carlos E.; Loureiro, Diego C.; Simas, Felipe N.; Francelino, Marcio R.; Senra, Eduardo O.


    Located at the southern tip of the Fuegian Andes Cordilhera, the Martial glacier witnessed a rapid process of retreat in the last century. Up to now little is known about the development and genesis of soils of this region. A toposequence of six soils, ranging from 430-925 m a.s.l, was investigated, with emphasis on genesis, chemical and mineralogical properties. The highest, youngest soil is located just below the Martial Glacier Martial Sur sector, and the lowest soils occur on sloping moraines under Nothofagus pumilio forests. Based on chemical, physical and mineralogical characteristics, the soils were classified according to the Soil taxonomy, being keyed out as Inceptisols and Entisols. Soil parent material of the soil is basically moraines, in which the predominant lithic components dominated by metamorphic rocks, with allochthonous contributions of wind-blown materials (very small fragments of volcanic glass) observed by hand lens in all horizons, except the highest profile under Tundra. In Nothofagus Deciduous Forests at the lowest part of the toposequence, poorly developed Inceptisols occur with Folistic horizons, with mixed "andic" and "spodic" characters, but with a predominance of andosolization (Andic Drystrocryepts). Under Tundra vegetation, Inceptisols are formed under hydromorphism and andosolization processes (Oxiaquic Dystrocrepts and Typic Dystrocrepts). On highland periglacial environments, soils without B horizon with strong evidence of cryoturbation and cryogenesis occur, without present-day permafrost down to 2 meters (Typic Cryorthents and Lithic Haploturbels). The mountain soils of Martial glacier generalize young, stony and rich in organic matter, with the exception of barely vegetated Tundra soils at higher altitudes. The forest soils are more acidic and have higher Al3+activity. All soils are dystrophic, except for the highest profile of the local periglacial environment. The organic carbon amounts are higher in forest soils and

  8. Infiltration characteristics of water in forest soils in the Simian mountains, Chongqing City, southwestern China

    Institute of Scientific and Technical Information of China (English)

    Wei WANG; Hongjiang ZHANG; Meng LI; Jinhua CHENG; Bo WANG; Weili LU


    Spearman rank-correlation analysis and grey relational grade analysis were used to study infiltration characteristics of water in different forest soils in the Simian mountains, Chongqing City. The results indicate that the soil bulk density, contents of coarse sand, and porosity of macropores were significantly correlated with saturated hydraulic conductivity. Porosity of macropores and contents of coarse sand were positively correlated with soil saturated hydraulic conductivity and soil bulk density negatively. Based on the initial infiltration rate, the stable infiltration rate, time required for infiltration to reach a stable state, and cumulative infiltration, all of which are crucial parameters determining soil infiltration capacity, the results of grey relational grade analysis showed that the grey relational grades of the different forest soils were listed from high to low as broad-leaved forest (0.8031) > Phyllostachys pubescens forest (0.7869) > mixed coniferbroadleaf forest (0.4454)>coniferous forest (0.4039). Broadleaf forest had the best ability to be infiltrated among the four soils studied. The square roots of the coefficients of determination obtained from fitting the Horton infiltration equation, simulated in our study of forest soils, were higher than 0.950. We conclude that soils of broad-leaved forests were the best suited for infiltration processes of forestry in the Simian mountains.

  9. Carbon and Nitrogen cycling in a permafrost soil profile (United States)

    Salmon, V. G.; Schaedel, C.; Mack, M. C.; Schuur, E.


    In high latitude ecosystems, active layer soils thaw during the growing season and are situated on top of perennially frozen soils (permafrost). Permafrost affected soil profiles currently store a globally important pool of carbon (1330-1580 PgC) due to cold temperatures constraining the decomposition of soil organic matter. With global warming, however, seasonal thaw is expected to increase in speed and extend to deeper portions of the soil profile. As permafrost soils become part of the active layer, carbon (C) and nitrogen (N) previously stored in soil organic matter will be released via decomposition. In this experiment, the dynamic relationship between N mineralization, C mineralization, and C quality was investigated in moist acidic tundra soils. Soils from the active layer surface down through the permafrost (80cm) were incubated aerobically at 15°C for 225 days. Carbon dioxide fluxes were fit with a two pool exponential decay model so that the size and turnover of both the quickly decomposing C pool (Cfast) and the slowly decomposing C pool (Cslow) could be assessed. Soil extractions with 2M KCl were performed at six time points throughout the incubation so that dissolve inorganic N (DIN) and dissolved organic C (DOC) could be measured. DIN was readily extractable from deep permafrost soils throughout the incubation (0.05 mgN/g dry soil) but in active layer soils DIN was only produced after Cfast had been depleted. In contrast, active layer soils had high levels of DOC (0.65 mgC/g dry soil) throughout the incubation but in permafrost soils, DOC became depleted as Cfast reduced in size. The strong contrasts between the C and N cycling in active layer soils versus permafrost soils suggest that the deeper thaw will dramatically increase N availability in these soil profiles. Plants and soil microbes in the tundra are currently N limited so our findings imply that deepening thaw will 1) provide N necessary for increased plant growth and 2) stimulate losses of

  10. Vertical Soil Profiling Using a Galvanic Contact Resistivity Scanning Approach

    Directory of Open Access Journals (Sweden)

    Luan Pan


    Full Text Available Proximal sensing of soil electromagnetic properties is widely used to map spatial land heterogeneity. The mapping instruments use galvanic contact, capacitive coupling or electromagnetic induction. Regardless of the type of instrument, the geometrical configuration between signal transmitting and receiving elements typically defines the shape of the depth response function. To assess vertical soil profiles, many modern instruments use multiple transmitter-receiver pairs. Alternatively, vertical electrical sounding can be used to measure changes in apparent soil electrical conductivity with depth at a specific location. This paper examines the possibility for the assessment of soil profiles using a dynamic surface galvanic contact resistivity scanning approach, with transmitting and receiving electrodes configured in an equatorial dipole-dipole array. An automated scanner system was developed and tested in agricultural fields with different soil profiles. While operating in the field, the distance between current injecting and measuring pairs of rolling electrodes was varied continuously from 40 to 190 cm. The preliminary evaluation included a comparison of scan results from 20 locations to shallow (less than 1.2 m deep soil profiles and to a two-layer soil profile model defined using an electromagnetic induction instrument.

  11. Vertical soil profiling using a galvanic contact resistivity scanning approach. (United States)

    Pan, Luan; Adamchuk, Viacheslav I; Prasher, Shiv; Gebbers, Robin; Taylor, Richard S; Dabas, Michel


    Proximal sensing of soil electromagnetic properties is widely used to map spatial land heterogeneity. The mapping instruments use galvanic contact, capacitive coupling or electromagnetic induction. Regardless of the type of instrument, the geometrical configuration between signal transmitting and receiving elements typically defines the shape of the depth response function. To assess vertical soil profiles, many modern instruments use multiple transmitter-receiver pairs. Alternatively, vertical electrical sounding can be used to measure changes in apparent soil electrical conductivity with depth at a specific location. This paper examines the possibility for the assessment of soil profiles using a dynamic surface galvanic contact resistivity scanning approach, with transmitting and receiving electrodes configured in an equatorial dipole-dipole array. An automated scanner system was developed and tested in agricultural fields with different soil profiles. While operating in the field, the distance between current injecting and measuring pairs of rolling electrodes was varied continuously from 40 to 190 cm. The preliminary evaluation included a comparison of scan results from 20 locations to shallow (less than 1.2 m deep) soil profiles and to a two-layer soil profile model defined using an electromagnetic induction instrument.

  12. Soil N chemistry in oak forests along a nitrogen deposition gradient

    DEFF Research Database (Denmark)

    Nilsson, Lars Ola; Wallander, Håkan; Bååth, Erland


    ¹³¹³dAnthropogenic N deposition may change soil conditions in forest ecosystems as demonstrated in many studies of coniferous forests, whereas results from deciduous forests are relatively scarce. Therefore the influence of N deposition on several variables was studied in situ in 45 oak-dominated......¹³¹³dAnthropogenic N deposition may change soil conditions in forest ecosystems as demonstrated in many studies of coniferous forests, whereas results from deciduous forests are relatively scarce. Therefore the influence of N deposition on several variables was studied in situ in 45 oak...

  13. Geostatistical Microscale Study of Magnetic Susceptibility in Soil Profile and Magnetic Indicators of Potential Soil Pollution. (United States)

    Zawadzki, Jarosław; Fabijańczyk, Piotr; Magiera, Tadeusz; Rachwał, Marzena

    Directional variograms, along the soil profile, can be useful and precise tool that can be used to increase the precision of the assessment of soil pollution. The detail analysis of spatial variability in the soil profile can be also an important part of the standardization of soil magnetometry as a screening method for an assessment of soil pollution related to the dust deposition. The goal of this study was to investigate the correlation between basic parameters of spatial correlations of magnetic susceptibility in the soil profile, such as a range of correlation and a sill, and selected magnetometric indicators of soil pollution. Magnetic indicators were an area under the curve of magnetic susceptibility versus a depth in the soil profile, values of magnetic susceptibility at depths ranging from 1 to 10 cm, and maximum and background values of magnetic susceptibility in the soil profile. These indicators were previously analyzed in the literature. The results showed that a range of correlation of magnetic susceptibility was significantly correlated with magnetic susceptibility measured at depths 1, 2, and 3 cm. It suggests that a range of correlation is a good measure of pollutants' dispersion in the soil profile. The sill of the variogram of magnetic susceptibility was found to be significantly correlated with the area under the curve of plot of magnetic susceptibility that is related to the soil pollution. In consequence, the parameters of microscale spatial variability of magnetic susceptibility in s soil profile are important measures that take into consideration the spatial aspect of s soil pollution.

  14. Aspen increase soil moisture, nutrients, organic matter and respiration in Rocky Mountain forest communities. (United States)

    Buck, Joshua R; St Clair, Samuel B


    Development and change in forest communities are strongly influenced by plant-soil interactions. The primary objective of this paper was to identify how forest soil characteristics vary along gradients of forest community composition in aspen-conifer forests to better understand the relationship between forest vegetation characteristics and soil processes. The study was conducted on the Fishlake National Forest, Utah, USA. Soil measurements were collected in adjacent forest stands that were characterized as aspen dominated, mixed, conifer dominated or open meadow, which includes the range of vegetation conditions that exist in seral aspen forests. Soil chemistry, moisture content, respiration, and temperature were measured. There was a consistent trend in which aspen stands demonstrated higher mean soil nutrient concentrations than mixed and conifer dominated stands and meadows. Specifically, total N, NO(3) and NH(4) were nearly two-fold higher in soil underneath aspen dominated stands. Soil moisture was significantly higher in aspen stands and meadows in early summer but converged to similar levels as those found in mixed and conifer dominated stands in late summer. Soil respiration was significantly higher in aspen stands than conifer stands or meadows throughout the summer. These results suggest that changes in disturbance regimes or climate scenarios that favor conifer expansion or loss of aspen will decrease soil resource availability, which is likely to have important feedbacks on plant community development.

  15. Soil Properties under Various Stages of Secondary Forests at Sarawak, East Malaysia

    Directory of Open Access Journals (Sweden)

    K Karyati


    Full Text Available Change in the forest community during secondary succession is influencing in various soil properties. However, there is limited information available on the soil properties under different stages of secondary forests in Sarawak. The aims of this study are to clarify the soil morphological and physicochemical properties at secondary forests under different age stands after similar land change (slash and burn. Field surveys were conducted at 3, 5, 10, and 20 years old secondary forests in Sabal, Sarawak. Different fallow time influence changing soil properties in various stage secondary forests. A number of soil properties affected soil development process and land use change. Soil morphological and physicochemical properties differed and varied under different stages of fallow periods. The close relationship can be assumed between soil development process and vegetation succession. The knowledge of forest soil properties is essential to understand the change and development process under various stages secondary forests. The comprehensive understanding about soil properties and development process is important in order to conserve and manage secondary forests.

  16. The characteristics of soil and water loss in Pinus Massoniana forest in Quaternary red soil area of south China (United States)

    Song, Yuejun; Huang, Yanhe; Jie, Yang


    The soil and water loss in Pinus massoniana forests is an urgent environmental problem in the red soil region of southern China.Using the method of field monitoring, by analogy and statistical analysis, The characteristics of soil and water loss of Pinus massoniana forests in Quaternary red soil region under 30 rainfall were analyzed,the results show that the relationship models of rainfall,runoff and sediment of pure Pinus massoniana plot were slightly different from the naked control plot,were all the univariate quadratic linear regression models.the contribution of runoff and sediment in different rain types were different, and the water and soil loss in Pinus massoniana forest was most prominent under moderate rain.The merging effect of sparse Pinus massoniana forest on raindrop, aggravated the degree of soil and water loss to some extent.

  17. Vertical patterns of ecoenzyme activities in forest soils after 20 years of simulated nitrogen deposition (United States)

    Forstner, Stefan J.; Kloss, Stefanie; Keiblinger, Katharina M.; Schleppi, Patrick; Hagedorn, Frank; Gundersen, Per; Wanek, Wolfgang; Gerzabek, Martin H.; Zechmeister-Boltenstern, Sophie


    The below-ground part of terrestrial carbon (C), nitrogen (N) and phosphorus (P) cycles are controlled by soil microorganisms. In order to meet their energy and nutrient requirements, soil microbes produce enzymes which catalyze the release of smaller molecules from decomposing organic matter. Recent work has shown that the potential activities of commonly measured enzymes for C-, N-, and P-acquisition can be related to microbial demand of these elements and link stoichiometry of soil microbes and their resources. Regulation of enzyme production might therefore be an important mechanism for microbes to adapt to different resource regimes. To investigate links between ecoenzyme activities, soil depth and N availability we make use of two long-term experiments where N has been added to two temperate forest stands for over 20 years. At both sites Norway spruce is the dominating tree whereas other site characteristics like soil type, climate, parent material and morphology differ. Increased N deposition was simulated by regularly applying NH4NO3 in the range of 35 kg N ha-1 y-1 (Klosterhede, Denmark; since 1992) and 25 kg N ha-1 y-1 (Alptal, Switzerland; since 1995), respectively. We hypothesize that ecoenzyme activities will decline exponentially with depth reflecting well-established similar trends in organic matter and microbial biomass. However, when normalized to microbial biomass we further hypothesize that activities will not change or even increase down the soil profile. Concerning microbial nutrient limitation, we expect to see a shift from N- to C-limitation with depth which should be reflected in increasing ratios of C- to N-acquiring enzymes. Preliminary results suggest that activity of hydrolytic enzymes generally decreases with depth, although this drop in activity is not so pronounced when normalized to microbial biomass. Oxidative enzymes, on the other hand, do not follow this pattern, often showing increased activities with depth. We further see site

  18. Availability and evaluation of European forest soil monitoring data in the study on the effects of air pollution on forests

    Directory of Open Access Journals (Sweden)

    Cools N


    Full Text Available In the study of air pollution effects on forest ecosystems, solid soil data such as cation exchange capacity, base saturation and other exchangeable cation fractions, soil texture, soil moisture, soil weathering rates, C/N ratio and other variables form an important information base for many air pollution impact models. This paper shows some of the possibilities and the limitations of the soil data that European countries collected on the systematic Level I and on the intensive and permanent Level II monitoring plots within the ICP Forests programme. The soil data date from a first inventory in the 1990s and from a second inventory more than 10 years later. Both surveys were conducted following a common manual on sampling and analysis of soil. An example of the changes in pH(CaCl2 and base saturation in the forest floor and mineral soil on more than 2000 plots till a depth of 80 cm between the two surveys is presented. In this period the pH(CaCl2 significantly increased in the very acid forest soils [with pH(CaCl2 below 4.0] but further decreased in forest soils with pH(CaCl2 above 4.0. Following the trend in pH, the base saturation increased in soils with a very low buffering capacity (soils with a base saturation below 20% in the first inventory and decreased in forest soils with reference base saturation values above 20%. There is both a decrease of soil pH and base saturation in the forest floor of the Arenosols and Podzols. In the Podzols this decreasing trend could not be established in the mineral soil, though this decreasing trend persisted in a number of mineral soil layers of the Arenosols. The only consistent increasing trend of pH and base saturation when stratifying according to the WRB reference soil groups was seen in the forest floor of the Luvisols and Cambisols.

  19. Conversion of Forests to Arable Land and its Effect on Soil Physical ...

    African Journals Online (AJOL)

    Prof. Ogunji

    Physical Properties in Enugu State South Eastern Nigeria ... location specific. ..... of change in soil properties due to cultivation of forest lands was site specific. ... Land use effect an organic matter and physical properties of soil in a southern.

  20. Deciduous Forest Zone of Ghana

    African Journals Online (AJOL)

    Soil Properties of a Toposequence in the Moist Semi-. Deciduous Forest ... paper describes the basic physical and chemical status of the six soil profiles. The soil profiles were ..... jor role of soil organic matter is it serves as a store and slow ...

  1. Comparison of the Chemical Properties of Forest Soil from the Silesian Beskid, Poland

    Directory of Open Access Journals (Sweden)

    Maria Zołotajkin


    Full Text Available There is spruce forests degradation observed in the Silesian Beskid. The aim of the work was the assessment of parameters diversifying organic layers of soils in two forest areas: degraded and healthy spruce forests of Silesian Beskid. 23 soil samples were collected from two fields—14 soil samples from a degraded forest and 9 soil samples from a forest, where pandemic dying of spruce is not observed. Implementation of hierarchical clustering to experimental data analysis allowed drawing a conclusion that the two forest areas vary significantly in terms of content of aluminium extracted with solutions of barium chloride (Alexch, sodium diphosphate (Alpyr, and pHKCl and in the amount of humus in soil.

  2. Early Forest Soils and Their Role in Devonian Global Change (United States)



    A paleosol in the Middle Devonian Aztec Siltstone of Victoria Land, Antarctica, is the most ancient known soil of well-drained forest ecosystems. Clay enrichment and chemical weathering of subsurface horizons in this and other Devonian forested paleosols culminate a long-term increase initiated during the Silurian. From Silurian into Devonian time, red clayey calcareous paleosols show a greater volume of roots and a concomitant decline in the density of animal burrows. These trends parallel the decline in atmospheric carbon dioxide determined from isotopic records of pedogenic carbonate in these same paleosols. The drawdown of carbon dioxide began well before the Devonian appearance of coals, large logs, and diverse terrestrial plants and animals, and it did not correlate with temporal variation in volcanic or metamorphic activity. The early Paleozoic greenhouse may have been curbed by the evolution of rhizospheres with an increased ratio of primary to secondary production and by more effective silicate weathering during Silurian time.

  3. Phosphate addition enhanced soil inorganic nutrients to a large extent in three tropical forests. (United States)

    Zhu, Feifei; Lu, Xiankai; Liu, Lei; Mo, Jiangming


    Elevated nitrogen (N) deposition may constrain soil phosphorus (P) and base cation availability in tropical forests, for which limited evidence have yet been available. In this study, we reported responses of soil inorganic nutrients to full factorial N and P treatments in three tropical forests different in initial soil N status (N-saturated old-growth forest and two less-N-rich younger forests). Responses of microbial biomass, annual litterfall production and nutrient input were also monitored. Results showed that N treatments decreased soil inorganic nutrients (except N) in all three forests, but the underlying mechanisms varied depending on forests: through inhibition on litter decomposition in the old-growth forest and through Al(3+) replacement of Ca(2+) in the two younger forests. In contrast, besides great elevation in soil available P, P treatments induced 60%, 50%, 26% increases in sum of exchangeable (K(+)+Ca(2+)+Mg(2+)) in the old-growth and the two younger forests, respectively. These positive effects of P were closely related to P-stimulated microbial biomass and litter nutrient input, implying possible stimulation of nutrient return. Our results suggest that N deposition may result in decreases in soil inorganic nutrients (except N) and that P addition can enhance soil inorganic nutrients to support ecosystem processes in these tropical forests.

  4. Significant and persistent impact of timber harvesting on soil microbial communities in Northern coniferous forests. (United States)

    Hartmann, Martin; Howes, Charles G; VanInsberghe, David; Yu, Hang; Bachar, Dipankar; Christen, Richard; Henrik Nilsson, Rolf; Hallam, Steven J; Mohn, William W


    Forest ecosystems have integral roles in climate stability, biodiversity and economic development. Soil stewardship is essential for sustainable forest management. Organic matter (OM) removal and soil compaction are key disturbances associated with forest harvesting, but their impacts on forest ecosystems are not well understood. Because microbiological processes regulate soil ecology and biogeochemistry, microbial community structure might serve as indicator of forest ecosystem status, revealing changes in nutrient and energy flow patterns before they have irreversible effects on long-term soil productivity. We applied massively parallel pyrosequencing of over 4.6 million ribosomal marker sequences to assess the impact of OM removal and soil compaction on bacterial and fungal communities in a field experiment replicated at six forest sites in British Columbia, Canada. More than a decade after harvesting, diversity and structure of soil bacterial and fungal communities remained significantly altered by harvesting disturbances, with individual taxonomic groups responding differentially to varied levels of the disturbances. Plant symbionts, like ectomycorrhizal fungi, and saprobic taxa, such as ascomycetes and actinomycetes, were among the most sensitive to harvesting disturbances. Given their significant ecological roles in forest development, the fate of these taxa might be critical for sustainability of forest ecosystems. Although abundant bacterial populations were ubiquitous, abundant fungal populations often revealed a patchy distribution, consistent with their higher sensitivity to the examined soil disturbances. These results establish a comprehensive inventory of bacterial and fungal community composition in northern coniferous forests and demonstrate the long-term response of their structure to key disturbances associated with forest harvesting.

  5. Sorption and speciation of selenium in boreal forest soil. (United States)

    Söderlund, Mervi; Virkanen, Juhani; Holgersson, Stellan; Lehto, Jukka


    Sorption and speciation of selenium in the initial chemical forms of selenite and selenate were investigated in batch experiments on humus and mineral soil samples taken from a 4-m deep boreal forest soil excavator pit on Olkiluoto Island, on the Baltic Sea coast in southwestern Finland. The HPLC-ICP-MS technique was used to monitor any possible transformations in the selenium liquid phase speciation and to determine the concentrations of selenite and selenate in the samples for calculation of the mass distribution coefficient, Kd, for both species. Both SeO3(2-) and SeO4(2-) proved to be resistant forms in the prevailing soil conditions and no changes in selenium liquid phase speciation were seen in the sorption experiments in spite of variations in the initial selenium species, incubation time or conditions, pH, temperature or microbial activity. Selenite sorption on the mineral soil increased with time in aerobic conditions whilst the opposite trend was seen for the anaerobic soil samples. Selenite retention correlated with the contents of organic matter and weakly crystalline oxides of aluminum and iron, solution pH and the specific surface area. Selenate exhibited poorer sorption on soil than selenite and on average the Kd values were 27-times lower. Mineral soil was more efficient in retaining selenite and selenate than humus, implicating the possible importance of weakly crystalline aluminum and iron oxides for the retention of oxyanions in Olkiluoto soil. Sterilization of the soil samples decreased the retention of selenite, thus implying some involvement of soil microbes in the sorption processes or a change in sample composition, but it produced no effect for selenate. There was no sorption of selenite by quartz, potassium feldspar, hornblende or muscovite. Biotite showed the best retentive properties for selenite in the model soil solution at about pH 8, followed by hematite, plagioclase and chlorite. The Kd values for these minerals were 18, 14, 8 and 7

  6. Selected Soil Morphological, Mineralogical and Sesquioxide Properties of Rehabilitated and Secondary Forests

    Directory of Open Access Journals (Sweden)

    B. T. Saga


    Full Text Available Problem statement: The tropical rain forests in Southeast Asia have been characterized by several researchers. However empirical data on soil characteristics under degraded forest land in tropical rain forest and rehabilitated program are limited. A study was conducted to evaluate the soil morphology, mineralogical and sesquioxide properties of a rehabilitated degraded forest land (19 years after it was planted with various indigenous species in comparison with an adjacent secondary forest. Approach: Soil samples were air-dried and pass through a 2 mm sieve. Soil morphology was determined based on field observation. The non-crystalline (amorphous of Al, Fe and Si oxides and hydroxides (Alo, Feo and Sio were extracted with ammonium oxalate while the dithionate-citrate-bicarbonate (DCB method was used for extracting (crystalline the Al, Fe and Si oxides and hydroxides (Ald, Fed and Sid. The concentrations of extracted Al, Fe and Si were determined by atomic absorption spectroscopy. Mineralogical compositions were identified by X-ray diffraction method. Results: The A-horizon of secondary forest was darker and thicker than that of the rehabilitated forest. Root mat at the secondary forest was well-developed compared to the rehabilitated forest. The clay minerals were dominated with kaolinite and illite to a lesser extent of goethite and hematite accompanied with low values of activity ratio of Al and Fe oxides and hydroxides, indicating that the soils were highly weathered. Conclusion/Recommendations: The difference between rehabilitated and secondary forests was root abundance where secondary forest had most. Good root penetration in the secondary forest indicates that the soil texture there was not heavy. Soils in the rehabilitated and secondary forests were strongly weathered (high presence of kaolin minerals, but the low presence of sesquioxides suggests that they are yet to reached the ultimately weathered phase. The soil properties in terms

  7. Invariant community structure of soil bacteria in subtropical coniferous and broadleaved forests. (United States)

    Wang, Xiaoli; Wang, Xiaoling; Zhang, Weixin; Shao, Yuanhu; Zou, Xiaoming; Liu, Tao; Zhou, Lixia; Wan, Songze; Rao, Xingquan; Li, Zhian; Fu, Shenglei


    Soil bacteria may be influenced by vegetation and play important roles in global carbon efflux and nutrient cycling under global changes. Coniferous and broadleaved forests are two phyletically distinct vegetation types. Soil microbial communities in these forests have been extensively investigated but few studies have presented comparable data regarding the characteristics of bacterial communities in subtropical forests. We investigated soil bacterial biomass and community composition in three pairs of coniferous and broadleaved forests across a subtropical climatic gradient. We found that bacterial biomass differed between the coniferous and broadleaved forests across the subtropical climate gradient; however, this difference disappeared at some individual sites. In contrast, the same 90 bacterial genera were found in both forest types, and their relative abundances didn't differ between the forest types, with the exception of one genus that was more abundant in broadleaved forests. Soil nitrogen or moisture was associated with bacterial groups in the coniferous and broadleaved forests, respectively. Thus, we inferred that these forests can respond differently to future changes in nitrogen deposition or precipitation. This study highlights soil bacterial invariant community composition in contrasting subtropical forests and provides a new perspective on the potential response and feedback of forests to global changes.

  8. Impact of ancient charcoal kilns on chemical properties of several forest soils after 2 centuries (United States)

    Dufey, Joseph; Hardy, Brieuc; Cornelis, Jean-Thomas


    Pyrogenic carbon plays a major role in soil biogeochemical processes and carbon budgets. Until the early 19th century, charcoal was the unique combustible used for iron metallurgy in Wallonia (Belgium). Traditional charcoal kilns were built directly in the forest: wood logs were piled into a mound and isolated from air oxygen with a covering of vegetation residues and soil before setting fire, inducing wood pyrolysis. Nowadays, ancient wood-charring platforms are still easy to identify on the forest floor as heightened domes of 10 meters in diameter characterized by a very dark topsoil horizon containing charcoal dust and fragments. Our goal is to assess the effects of wood charring at mound kiln sites on the properties of various forest soil types in Wallonia (Belgium), after two centuries. We sampled soil by horizon in 18 ancient kiln sites to 1.20 meter depth. The adjacent charcoal-unaffected soils were sampled the same way. We also collected recent charcoal fragments and topsoil samples from a still active charcoal kiln located close to Dole (France) to apprehend the evolution of soil properties over time. The pH, total carbon (C) and nitrogen (N) content, available phosphorus (Pav), cation exchange capacity at pH 7 (CEC), exchangeable cations (Ca++, Mg++, K+, Na+) and loss on ignition at 550°C (LI550) were measured on each soil sample. We separated the soil profiles in 5 groups based on the nature of soil substrate and pedogenesis for interpretation of the results. We show that the total carbon stock is significantly increased at kiln sites due to higher C concentrations and greater depth of the organo-mineral horizon. The C/N ratio in charcoal-enriched soil horizons is significantly higher than in the neighboring reference soils but clearly attenuated compared to pure wood-charcoal fragments. The CEC is higher in the charcoal-enriched soil horizons, not only due to higher C concentrations but also to increased CEC by carbon unit at kiln sites. The high

  9. [Dynamic changes of soil ecological factors in Ziwuling secondary forest area under human disturbance]. (United States)

    Zhou, Zhengchao; Shangguan, Zhouping


    As a widespread natural phenomenon, disturbance is considered as a discrete event occurred in natural ecosystems at various spatial and temporal scales. The occurrence of disturbance directly affects the structure, function and dynamics of ecosystems. Forest logging and forestland assart, the common human disturbances in forest area, have caused the dynamic changes of forest soil ecological factors in a relatively consistent environment. A study on the dynamics of soil bulk density, soil organic matter, soil microbes and other soil ecological factors under different human disturbance (logging and assart, logging but without assart, control) were conducted in the Ziwuling secondary forest area. The results indicated that human disturbance had a deep impact on the soil ecological factors, with soil physical and chemical properties become bad, soil organic matter decreased from 2.2% to 0.8%, and soil stable aggregates dropped more than 30%. The quantity of soil microbes decreased sharply with enhanced human disturbance. Soil organic matter and soil microbes decreased more than 50% and 90%, respectively, and soil bulk density increased from 0.9 to 1.21 g x cm(-3) with increasing soil depth. Ditch edge level also affected the dynamics of soil factors under the same disturbance, with a better soil ecological condition at low-than at high ditch edge level.

  10. Calcium weathering in forested soils and the effedt of different tree species

    NARCIS (Netherlands)

    Dijkstra, F.A.; Breemen, van N.; Jongmans, A.G.; Davies, G.R.; Likens, G.E.


    Soil weathering can be an important mechanism to neutralize acidity in forest soils. Tree species may differ in their effect on or response to soil weathering. We used soil mineral data and the natural strontium isotope ratio Sr-87/Sr-86 as a tracer to identify the effect of tree species on the Ca

  11. Calcium weathering in forested soils and the effedt of different tree species

    NARCIS (Netherlands)

    Dijkstra, F.A.; Breemen, van N.; Jongmans, A.G.; Davies, G.R.; Likens, G.E.


    Soil weathering can be an important mechanism to neutralize acidity in forest soils. Tree species may differ in their effect on or response to soil weathering. We used soil mineral data and the natural strontium isotope ratio Sr-87/Sr-86 as a tracer to identify the effect of tree species on the Ca w

  12. Modelling recovery from soil acidification in European forests under climate change

    NARCIS (Netherlands)

    Reinds, G.J.; Posch, M.; Leemans, R.


    A simple soil acidification model was applied to evaluate the effects of sulphur and nitrogen emission reductions on the recovery of acidified European forest soils. In addition we included the effects of climate change on soil solution chemistry, by modelling temperature effects on soil chemical

  13. Low-level gamma spectrometry of forest and moor soils from exposed mountain regions in Saxony (Erzgebirge)

    Energy Technology Data Exchange (ETDEWEB)

    Schleich, N. [Technische Univ. Bergakademie Freiberg (Germany). Inst. of Applied Physics; Preusse, W. [Technische Univ. Bergakademie Freiberg (Germany). Inst. of Applied Physics; Degering, D. [Technische Univ. Bergakademie Freiberg (Germany). Inst. of Applied Physics; Unterricker, S. [Technische Univ. Bergakademie Freiberg (Germany). Inst. of Applied Physics


    In soils with distinct organic and mineral horizons, radionuclides (RN) can be used to understand geochemical migration processes. In the study presented here high sensitivity HPGe-detectors with active and passive shielding were employed to determine the low activity levels of various natural, cosmogenic and artificial RN. Soils of a spruce forest and a moor from exposed mountain regions in Saxony (Erzgebirge) were investigated as they provide a good example of layered soil systems with vertical transfer of chemical elements. Different soil horizons were sub-sampled as thin slices and analysed to examine the migration processes at sub-horizon level. The depth distributions of chemically different RN were studied considering the geochemical and pedological soil characteristics of the profiles. (orig.)

  14. Estimating the sensitivity of forest soils to acid deposition in the Athabasca Oil Sands Region, Alberta

    Directory of Open Access Journals (Sweden)

    Julian AHERNE


    Full Text Available The Athabasca Oil Sands Region of northern Alberta is home to the largest source of S emissions in Canada, and some of the surrounding upland forests are located on acid-sensitive soils. The relative sensitivity of these ecosystems to acidic deposition is largely dependent upon the mineral weathering rate. Weathering rates were evaluated across a range of soils (n = 43 typical of the region using a soil texture approximation (STA and the PROFILE model. The STA was recalibrated for use in the region, and the weathering rates calculated with this method were used to calculate steady-state critical loads of acidity at 333 sites using the Simple Mass Balance (SMB Model and a critical chemical criterion for molar base cation (Ca2+, Mg2+, K+ to aluminium ratio of 10. Soils are dominated by quartz, with small quantities of slowly weatherable minerals, and consequently weathering rates are among the lowest in Canada (median = 11.5 meq m–2 y–1, resulting in very low critical loads. Atmospheric acid (S and N deposition varies considerably across the region, but in general is much lower than impacted areas of central Canada. Under conditions of complete N retention, 34% of the sites receive acid deposition in excess of their critical load; if all N deposition is leached, 62% of the sites are currently exceeded. Acid-sensitive soils in the region are at risk of acidifying due to pressures from industrialization associated with extraction of fossil fuels.

  15. Functional Diversity and Microbial Activity of Forest Soils that Are Heavily Contaminated by Lead and Zinc. (United States)

    Pająk, Marek; Błońska, Ewa; Frąc, Magdalena; Oszust, Karolina

    The objective of this study was to assess the impact of metal contamination on microbial functional diversity and enzyme activity in forest soils. This study involved the evaluation of the influence of the texture, carbon content and distance to the source of contamination on the change in soil microbial activity, which did not investigate in previous studies. The study area is located in southern Poland near the city of Olkusz around the flotation sedimentation pond of lead and zinc at the Mining and Metallurgical Company "ZGH Bolesław, Inc.". The central point of the study area was selected as the middle part of the sedimentation pond. The experiment was conducted over a regular 500 × 500-m grid, where 33 sampling points were established. Contents of organic carbon and trace elements (Zn, Pb and Cd), pH and soil texture were investigated. The study included the determination of dehydrogenase and urease activities and microbial functional diversity evaluation based on the community-level physiological profiling approach by Biolog EcoPlate. The greatest reduction in the dehydrogenase and urease activities was observed in light sandy soils with Zn content >220 mg · kg(-1) and a Pb content > 100 mg · kg(-1). Soils with a higher concentration of fine fraction, despite having the greatest concentrations of metals, were characterized by high rates of Biolog®-derived parameters and a lower reduction of enzyme activity.

  16. Soil morphology of a debris flow chronosequence in a coniferous forest, southern California, USA (United States)

    Turk, J.K.; Goforth, B.R.; Graham, R.C.; Kendrick, K.J.


    Soils on a series of debris flow deposits, ranging from coniferous forest. Ages of the deposits were assessed using dendrochronology. Morphologic trends in the organic horizons included a thickening of the humus form over time, along with the development of Fm and Hr horizons. The humus forms underwent a progression from Mormodors (20??years old), to Hemimors (26-101??years old), and finally Lignomors (163??years old) and Resimors (184-244??years old). Changes in physical properties of the uppermost mineral horizons as a function of increasing age included a decrease in the volume of coarse fragments, a linear decrease in bulk density, and a darkening and reddening of the soil color. No significant soil development took place in the subsoil during the time span of this chronosequence. The soils described were classified as Typic Xerofluvents and Typic Xerorthents (Regosols and Leptosols). Buried A horizons were observed in many of the soils. Where the A horizons could be linked to dendrochronology to assess the age of the buried surface, we found that the properties of the buried A horizons do not serve as a good indicator of the age of the surface. This study suggests rapid development of the humus form profile (organic horizons and A horizon) following debris flow deposition and rapid degradation of these horizons when the debris flow surface is buried. ?? 2008 Elsevier B.V.

  17. Effect of altitude and season on microbial activity, abundance and community structure in Alpine forest soils. (United States)

    Siles, José A; Cajthaml, Tomas; Minerbi, Stefano; Margesin, Rosa


    In the current context of climate change, the study of microbial communities along altitudinal gradients is especially useful. Only few studies considered altitude and season at the same time. We characterized four forest sites located in the Italian Alps, along an altitude gradient (545-2000 m a.s.l.), to evaluate the effect of altitude in spring and autumn on soil microbial properties. Each site in each season was characterized with regard to soil temperature, physicochemical properties, microbial activities (respiration, enzymes), community level physiological profiles (CLPP), microbial abundance and community structure (PLFA). Increased levels of soil organic matter (SOM) and nutrients were found at higher altitudes and in autumn, resulting in a significant increase of (soil dry-mass related) microbial activities and abundance at higher altitudes. Significant site- and season-specific effects were found for enzyme production. The significant interaction of the factors site and incubation temperature for soil microbial activities indicated differences in microbial communities and their responses to temperature among sites. CLPP revealed site-specific effects. Microbial community structure was influenced by altitudinal, seasonal and/or site-specific effects. Correlations demonstrated that altitude, and not season, was the main factor determining the changes in abiotic and biotic characteristics at the sites investigated.

  18. Distribution of {sup 210}Pb and {sup 210}Po in boreal forest soil

    Energy Technology Data Exchange (ETDEWEB)

    Vaaramaa, Kaisa, E-mail: [Laboratory of Radiochemistry, Department of Chemistry, P.O. Box 55, FIN-00014 University of Helsinki (Finland); Aro, Lasse [Finnish Forest Research Institute (METLA), Parkano Research Unit, Kaironiementie 54, 39700 Parkano (Finland); Solatie, Dina [STUK-Radiation and Nuclear Safety Authority, Regional Laboratory in Northern Finland, Laehteentie 2, 96400 Rovaniemi (Finland); Lehto, Jukka [Laboratory of Radiochemistry, Department of Chemistry, P.O. Box 55, FIN-00014 University of Helsinki (Finland)


    Vertical distribution and activity contents of {sup 210}Pb and {sup 210}Po were investigated in forest soils of Scots pine-dominated (Pinus sylvestris L.) stands from seven different locations in Finland. The mean total inventory in the soil profile, up to 20 cm, of {sup 210}Pb was 4.0 kBq m{sup -2} (range 3.1-5.0 kBq m{sup -2}) and {sup 210}Po 5.5 kBq m{sup -2} (range 4.0-7.4 kBq m{sup -2}), the organic soil layer containing 45% of the total inventory of both nuclides. In both the organic and the mineral layers the {sup 210}Po/{sup 210}Pb ratio was close to unity indicating a radioactive equilibrium between them. In the litter layer there was, however, a clear excess of {sup 210}Po suggesting that polonium is recycled via root uptake from the root zone to the ground surface. The activity concentration (Bq kg{sup -1}) of {sup 210}Pb clearly correlated with organic matter and the Fe, Al and Mn concentrations in soil indicating that radioactive lead is associated both with humic substances and the oxides of iron, aluminium and manganese. Radioactive lead was also seen to follow the behavior of stable lead. No systematic correlation between polonium and soil properties was seen.

  19. Changes in soil moisture drive soil methane uptake along a fire regeneration chronosequence in a eucalypt forest landscape. (United States)

    Fest, Benedikt; Wardlaw, Tim; Livesley, Stephen J; Duff, Thomas J; Arndt, Stefan K


    Disturbance associated with severe wildfires (WF) and WF simulating harvest operations can potentially alter soil methane (CH4 ) oxidation in well-aerated forest soils due to the effect on soil properties linked to diffusivity, methanotrophic activity or changes in methanotrophic bacterial community structure. However, changes in soil CH4 flux related to such disturbances are still rarely studied even though WF frequency is predicted to increase as a consequence of global climate change. We measured in-situ soil-atmosphere CH4 exchange along a wet sclerophyll eucalypt forest regeneration chronosequence in Tasmania, Australia, where the time since the last severe fire or harvesting disturbance ranged from 9 to >200 years. On all sampling occasions, mean CH4 uptake increased from most recently disturbed sites (9 year) to sites at stand 'maturity' (44 and 76 years). In stands >76 years since disturbance, we observed a decrease in soil CH4 uptake. A similar age dependency of potential CH4 oxidation for three soil layers (0.0-0.05, 0.05-0.10, 0.10-0.15 m) could be observed on incubated soils under controlled laboratory conditions. The differences in soil CH4 uptake between forest stands of different age were predominantly driven by differences in soil moisture status, which affected the diffusion of atmospheric CH4 into the soil. The observed soil moisture pattern was likely driven by changes in interception or evapotranspiration with forest age, which have been well described for similar eucalypt forest systems in south-eastern Australia. Our results imply that there is a large amount of variability in CH4 uptake at a landscape scale that can be attributed to stand age and soil moisture differences. An increase in severe WF frequency in response to climate change could potentially increase overall forest soil CH4 sinks.

  20. Comparison of soil organic matter dynamics at five temperate deciduous forests with physical fractionation and radiocarbon measurements (United States)

    Karis J. McFarlane; Margaret S. Torn; Paul J. Hanson; Rachel C. Porras; Christopher W. Swanston; Mac A. Callaham; Thomas P. Guilderson


    Forest soils represent a significant pool for carbon sequestration and storage, but the factors controlling soil carbon cycling are not well constrained.We compared soil carbon dynamics at five broadleaf forests in the Eastern US that vary in climate, soil type, and soil ecology: two sites at the University of Michigan Biological Station (MI-Coarse, sandy;MI-Fine,...

  1. Response of soil respiration to acid rain in forests of different maturity in southern China. (United States)

    Liang, Guohua; Liu, Xingzhao; Chen, Xiaomei; Qiu, Qingyan; Zhang, Deqiang; Chu, Guowei; Liu, Juxiu; Liu, Shizhong; Zhou, Guoyi


    The response of soil respiration to acid rain in forests, especially in forests of different maturity, is poorly understood in southern China despite the fact that acid rain has become a serious environmental threat in this region in recent years. Here, we investigated this issue in three subtropical forests of different maturity [i.e. a young pine forest (PF), a transitional mixed conifer and broadleaf forest (MF) and an old-growth broadleaved forest (BF)] in southern China. Soil respiration was measured over two years under four simulated acid rain (SAR) treatments (CK, the local lake water, pH 4.5; T1, water pH 4.0; T2, water pH 3.5; and T3, water pH 3.0). Results indicated that SAR did not significantly affect soil respiration in the PF, whereas it significantly reduced soil respiration in the MF and the BF. The depressed effects on both forests occurred mostly in the warm-wet seasons and were correlated with a decrease in soil microbial activity and in fine root biomass caused by soil acidification under SAR. The sensitivity of the response of soil respiration to SAR showed an increasing trend with the progressive maturity of the three forests, which may result from their differences in acid buffering ability in soil and in litter layer. These results indicated that the depressed effect of acid rain on soil respiration in southern China may be more pronounced in the future in light of the projected change in forest maturity. However, due to the nature of this field study with chronosequence design and the related pseudoreplication for forest types, this inference should be read with caution. Further studies are needed to draw rigorous conclusions regarding the response differences among forests of different maturity using replicated forest types.

  2. Response of soil respiration to acid rain in forests of different maturity in southern China.

    Directory of Open Access Journals (Sweden)

    Guohua Liang

    Full Text Available The response of soil respiration to acid rain in forests, especially in forests of different maturity, is poorly understood in southern China despite the fact that acid rain has become a serious environmental threat in this region in recent years. Here, we investigated this issue in three subtropical forests of different maturity [i.e. a young pine forest (PF, a transitional mixed conifer and broadleaf forest (MF and an old-growth broadleaved forest (BF] in southern China. Soil respiration was measured over two years under four simulated acid rain (SAR treatments (CK, the local lake water, pH 4.5; T1, water pH 4.0; T2, water pH 3.5; and T3, water pH 3.0. Results indicated that SAR did not significantly affect soil respiration in the PF, whereas it significantly reduced soil respiration in the MF and the BF. The depressed effects on both forests occurred mostly in the warm-wet seasons and were correlated with a decrease in soil microbial activity and in fine root biomass caused by soil acidification under SAR. The sensitivity of the response of soil respiration to SAR showed an increasing trend with the progressive maturity of the three forests, which may result from their differences in acid buffering ability in soil and in litter layer. These results indicated that the depressed effect of acid rain on soil respiration in southern China may be more pronounced in the future in light of the projected change in forest maturity. However, due to the nature of this field study with chronosequence design and the related pseudoreplication for forest types, this inference should be read with caution. Further studies are needed to draw rigorous conclusions regarding the response differences among forests of different maturity using replicated forest types.

  3. [Soil microbial functional diversity of different altitude Pinus koraiensis forests]. (United States)

    Han, Dong-xue; Wang, Ning; Wang, Nan-nan; Sun, Xue; Feng, Fu-juan


    In order to comprehensively understand the soil microbial carbon utilization characteristics of Pinus koraiensis forests, we took the topsoil (0-5 cm and 5-10 cm) along the 700-1100 m altitude in Changbai Mountains and analyzed the vertical distributed characteristics and variation of microbial functional diversity along the elevation gradient by Biolog microplate method. The results showed that there were significant differences in functional diversity of microbial communities at different elevations. AWCD increased with the extension of incubation time and AWCD at the same soil depth gradually decreased along with increasing altitude; Shannon, Simpson and McIntosh diversity index also showed the same trend with AWCD and three different diversity indices were significantly different along the elevation gradient; Species diversity and functional diversity showed the same variation. The utilization intensities of six categories carbon sources had differences while amino acids were constantly the most dominant carbon source. Principal component analysis (PCA) identified that soil microbial carbon utilization at different altitudes had obvious spatial differentiation, as reflected in the use of carbohydrates, amino acids and carboxylic acids. In addition, the cluster of the microbial diversity indexes and AWCD values of different altitudes showed that the composition of vegetation had a significant impact on soil microbial composition and functional activity.

  4. Sources of nitrous oxide emitted from European forest soils

    DEFF Research Database (Denmark)

    Ambus, P.; Zechmeister-Boltenstern, S.; Butterbach-Bahl, K.


    significantly higher from the deciduous soils (13 ng N2O-N cm(-3) d(-1)) than from the coniferous soils (4 ng N2O- N cm(-3) d(-1)). Nitrate (NO3-) was the dominant substrate for N2O with an average contribution of 62% and exceeding 50% at least once for all sites. The average contribution of ammonium (NH4......+) to N2O averaged 34%. The N2O emissions were correlated with gross nitrification activities, and as for N2O, gross nitrification was also higher in deciduous soils (3.4 mu gNcm(-3) d(-1)) than in coniferous soils (1.1 mu gNcm(-3) d(-1)). The ratio between N2O production and gross nitrification averaged...... 0.67% (deciduous) and 0.44% (coniferous). Our study suggests that changes in forest composition in response to land use activities and global change may have implications for regional budgets of greenhouse gases. From the study it also became clear that N2O emissions were driven by the nitrification...

  5. Examining moisture and temperature sensitivity of soil organic matter decomposition in a temperate coniferous forest soil

    Directory of Open Access Journals (Sweden)

    C. E. Gabriel


    Full Text Available Temperature and moisture are primary environmental drivers of soil organic matter (SOM decomposition, and the development of a better understanding fo their roles in this process through depth in soils is needed. The objective of this research is to independently assess the roles of temperature and moisture in driving heterotrophic soil respiration for shallow and deep soils in a temperate red spruce forest. Minimally disturbed soil cores from shallow (0–25 cm and deep (25–50 cm layers were extracted from a 20 yr old red spruce stand and were then transferred to a climate chamber where they were incubated for 3 months under constant and diurnal temperature regimes. Soils were subjected to different watering treatments representing a full range of water contents. Temperature, moisture, and CO2 surface flux were assessed daily for all soils and continuously on a subset of the microcosms. The results from this study indicate that shallow soils dominate the contribution to surface flux (90% and respond more predictably to moisture than deep soils. An optimum moisture range of 0.15 to 0.60 water-filled pore space was observed for microbial SOM decomposition in shallow cores across which a relatively invariant temperature sensitivity was observed. For soil moisture conditions experienced by most field sites in this region, flux-temperature relationships alone can be used to reasonably estimate heterotrophic respiration, as in this range moisture does not alter flux, with the exception of rewetting events along the lower part of this optimal range. Outside this range, however, soil moisture determines SOM decomposition rates.

  6. Evidence of climatic effects on soil, vegetation and landform in temperate forests of south-eastern Australia (United States)

    Inbar, Assaf; Nyman, Petter; Lane, Patrick; Sheridan, Gary


    Water and radiation are unevenly distributed across the landscape due to variations in topography, which in turn causes water availability differences on the terrain according to elevation and aspect orientation. These differences in water availability can cause differential distribution of vegetation types and indirectly influence the development of soil and even landform, as expressed in hillslope asymmetry. While most of the research on the effects of climate on the vegetation and soil development and landscape evolution has been concentrated in drier semi-arid areas, temperate forested areas has been poorly studied, particularly in South Eastern Australia. This study uses soil profile descriptions and data on soil depth and landform across climatic gradients to explore the degrees to which coevolution of vegetation, soils and landform are controlled by radiative forcing and rainfall. Soil depth measurements were made on polar and equatorial facing hillslopes located at 3 sites along a climatic gradient (mean annual rainfall between 700 - 1800 mm yr-1) in the Victorian Highlands, where forest types range from dry open woodland to closed temperate rainforest. Profile descriptions were taken from soil pits dag on planar hillslopes (50 m from ridge), and samples were taken from each horizon for physical and chemical properties analysis. Hillslope asymmetry in different precipitation regimes of the study region was quantified from Digital Elevation Models (DEMs). Significant vegetation differences between aspects were noted in lower and intermediate rainfall sites, where polar facing aspects expressed higher overall biomass than the drier equatorial slope. Within the study domain, soil depth was strongly correlated with forest type and above ground biomass. Soil depths and chemical properties varied between topographic aspects and along the precipitation gradient, where wetter conditions facilitate deeper and more weathered soils. Furthermore, soil depths showed

  7. Site-specific critical acid load estimates for forest soils in the Osborn Creek watershed, Michigan (United States)

    Trevor Hobbs; Jason Lynch; Randy. Kolka


    Anthropogenic acid deposition has the potential to accelerate leaching of soil cations, and in turn, deplete nutrients essential to forest vegetation. The critical load concept, employing a simple mass balance (SMB) approach, is often used to model this process. In an evaluation under the U.S. Forest Service Watershed Condition Framework program, soils in all 6th level...

  8. Metabolic diversity and microbial biomass in forest soils across climatic and tree species diversity gradients


    Carnol, Monique; Bosman, Bernard; Vanoppen, Astrid; De Wandeler, Hans; Muys, Bart


    The biogeochemical cycling in forest ecosystems is highly dependent on the interactions between plants and soil. Tree species affect element cycling through deposition in throughfall, litterfall, microbial activities in soil and rhizosphere processes. Tree species diversification has been suggested for maintaining forest ecosystem services and combining provisioning and supporting services within multifunctional and sustainable forestry. However, the understanding of the role of biodiversity ...

  9. Upland soil charcoal in the wet tropical forests of central Guyana

    NARCIS (Netherlands)

    Hammond, D.S.; ter Steege, H.|info:eu-repo/dai/nl/075217120; van der Borg, K.|info:eu-repo/dai/nl/067895298


    A soil charcoal survey was undertaken across 60,000 ha of closed-canopy tropical forest in central Guyana to determine the occurrence, ubiquity, and age of past forest fires across a range of terra firme soil types. Samples were clustered around six centers consisting of spatially nested sample stat

  10. Soil fractal features of typical forest stands in Jinyun Mountain, Chongqing City, Southwest China

    Institute of Scientific and Technical Information of China (English)

    CHENG Chen; WANG Yujie; WANG Yunqi; PAN Yujuan


    In order to explore the forest soil physical property in the Three Gorges Reservoir areas,the fractal theory was adopted to study the soil fractal features of the four typical forest stands(mixed Pinus massoniana-broadleaf forests,evergreen broadleaved forests,Phyllostachyspubescens forests and evergreen broadleaved shrub forests)in Jinyun Mountain,Chongqing City,and they were compared with arable land.It has been proposed that the model can be used for the analysis of the relationship between the fractal dimensions and the properties of forest soil.The impacts of fractal dimensions on the soil properties were analyzed with the elasticity analysis and marginal yield analysis.Results showed that the fractal dimension of particle size distribution(PSD),the micro-aggregate size distribution(ASD)and the soil pore size distribution(SPD)can be used as the indices to evaluate the soil structure.In the typical stands of Jinyun Mountain,the fractal dimension of PSD is 2.7-2.9,the ASD is 2.5-2.8,and the SPD is 2.3-2.8.The soil structure of evergreen broadleaved shrub forests performed best in PSD,ASD and SPD,and the soil of P.pubescens forests is the worst.There were some relationships among the PSD,ASD,SPD and some soil properties in the different forests and farmland.The related coefficients are over 0.5.Based on the elasticity analysis and marginal yield analysis,the effect of PSD was more than those of ASD and SPD.Obviously,the further study on the fractal theory application in soil structure and soil properties has important significance.

  11. Wettability, soil organic matter and structure-properties of typical chernozems under the forest and under the arable land (United States)

    Bykova, Galina; Umarova, Aminat; Tyugai, Zemfira; Milanovskiy, Evgeny; Shein, Evgeny


    Intensive tillage affects the properties of soil: decrease in content of soil organic matter and in hydrophobicity of the soil's solid phase, the reduction of amount of water stable aggregates - all this leads to deterioration of the structure of the soil and affects the process of movement of moisture in the soil profile. One of the hypotheses of soil's structure formation ascribes the formation of water stable aggregates with the presence of hydrophobic organic substances on the surface of the soil's solid phase. The aim of this work is to study the effect of tillage on properties of typical chernozems (pachic Voronic Chernozems, Haplic Chernozems) (Russia, Kursk region), located under the forest and under the arable land. The determination of soil-water contact angle was performed by a Drop Shape Analyzer DSA100 (Krüss GmbH, Germany) by the static sessile drop method. For all samples the content of total and organic carbon by dry combustion in oxygen flow and the particle size distribution by the laser diffraction method on the device Analysette 22 comfort, FRITCH, Germany were determined. The estimation of aggregate composition was performed by dry sieving (AS 200, Retsch, Germany), the content of water stable aggregates was estimated by the Savvinov method. There was a positive correlation between the content of organic matter and soil's wettability in studied soils, a growth of contact angle with the increasing the content of organic matter. Under the forest the content of soil organic matter was changed from 6,41% on the surface up to 1,9% at the depth of 100 cm. In the Chernozem under the arable land the organic carbon content in arable horizon is almost two times less. The maximum of hydrophobicity (78.1o) was observed at the depth of 5 cm under the forest. In the profile under the arable land the contact angle value at the same depth was 50o. The results of the structure analysis has shown a decrease in the content of agronomically valuable and water

  12. Study on the Value of Forest to Conserve Soil and Water in Beijing

    Institute of Scientific and Technical Information of China (English)


    Forest has a strongfunction in storing water, conserving soil and protecting farmland. In the study, based on fleld management and survey, these effects of forest in Beijing were determined and quantified. According to the principles and methodology of environment economics, the values of forest to conserve soil and water were accounted. The result shows that the total value of forest to conserve soil and water in Beijing is as much as 1129.58×10~8 yuan, in which the value of water storage is 1107.92×10...

  13. Effect of Converting Secondary Tropical Peat Swamp Forest into Oil Palm Plantation on Selected Peat Soil Physical Properties


    Mohd S. Firdaus; Seca Gandaseca; Ahmed, Osumanu H.; Nik M.A. Majid


    Problem statement: The conversion of forest land into oil palm plantation is considered to be one of the causes of soil degradation and loss of tropical land forest in Southeast Asia. The objective of this study was to compare selected peat soil physical properties of secondary tropical peat swamp forest and oil palm plantation to determine the effect of forest conversion. Approach: Peat soil samples were collected from secondary tropical peat swamp forest and oil palm pla...

  14. The effect of fire intensity on soil respiration in Siberia boreal forest (United States)

    S. Baker; A. V. Bogorodskaya


    Russian boreal forests have an annual wildfire activity averaging 10 to 20 million ha, which has increased in recent years. This wildfire activity, in response to changing climate has the potential to significantly affect the carbon storage capacity of Siberian forests. A better understanding of the effect of fire on soil respiration rates in the boreal forest of...

  15. Impact of biomass harvesting on forest soil productivity in the northern Rocky Mountains (United States)

    Woongsoon Jang; Christopher R. Keyes; Deborah Page-Dumroese


    Biomass harvesting extracts an increased amount of organic matter from forest ecosystems over conventional harvesting. Since organic matter plays a critical role in forest productivity, concerns of potential negative long-term impacts of biomass harvesting on forest productivity (i.e., changing nutrient/water cycling, aggravating soil properties, and compaction) have...

  16. Factors for Microbial Carbon Sources in Organic and Mineral Soils from Eastern United States Deciduous Forests

    Energy Technology Data Exchange (ETDEWEB)

    Stitt, Caroline R. [Mills College, Oakland, CA (United States)


    Forest soils represent a large portion of global terrestrial carbon; however, which soil carbon sources are used by soil microbes and respired as carbon dioxide (CO2) is not well known. This study will focus on characterizing microbial carbon sources from organic and mineral soils from four eastern United States deciduous forests using a unique radiocarbon (14C) tracer. Results from the dark incubation of organic and mineral soils are heavily influenced by site characteristics when incubated at optimal microbial activity temperature. Sites with considerable differences in temperature, texture, and location differ in carbon source attribution, indicating that site characteristics play a role in soil respiration.

  17. Soil actinomycetes in the National Forest Park in northeastern China (United States)

    Shirokikh, I. G.; Shirokikh, A. A.


    The taxonomic and functional structure of actinomycete complexes in the litters and upper horizons of the soils under an artificial coniferous-broad-leaved forest located around the town of Chanchun (Tszilin province, PRC). The complex of actinomycetes included representatives of the Streptomyces, Micromonospora, Streptosporangium, and Streptoverticillium genera and oligosporous forms. In the actinomycete complexes, streptomycetes prevailed in the abundance (61-95%) and frequency of occurrence (100%). In the parcels of Korean pine ( Pinus koraiensis) and Mongolian oak ( Quercus mongolica), streptomycetes of 19 species from 8 series and 4 sections were isolated. The most representative, as in European forest biomes, was the Cinereus Achromogenes series. A distinguishing feature of the streptomycete complex in the biomes studied was the high participation of species from the Imperfectus series. The verification of the functional activity of natural isolates made it possible to reveal strains with high antagonistic and cellulolytic abilities. A high similarity of actinomycete complexes was found in Eurasian forest ecosystems remote from each other, probably due to the similarity of plant polymers decomposable by actinomycetes.

  18. Rainfall event profiles: importance in ecohydrology, geomorphology, and soil management (United States)

    Dunkerley, D.


    The importance of the temporal structure of rainfall events is widely, but not universally, recognised. In agricultural research, the role of event structure has been quite well explored (e.g. in relation to leachates from manure, or in agrochemical washoff). However, in dryland hydrology, and in soil erosion research, much less attention has been paid to the role of aspects such as intensity variations or rain intermittency. Moreover, changes in rainfall event profiles form a little-explored aspect of ongoing climatic change, but one that may have great significance in ecohydrology and in geomorphology. The importance of rain event structure is clearly demonstrated from rainfall simulation experiments on dryland soils in arid NSW Australia. A series of small plot experiments using drop-forming rainfall simulation was established in order to explore the effects of varying event profiles on infiltration and the generation of runoff. Experiments all had the same rain event duration, the same mean rain rate, and the same total event depth. However, event profile, including peak intensity, and intermittency, were varied by using computer-controlled pumps. The rain rates and event profiles were designed to mimic the character of natural rainfall events in the study area. Results show that events with uniform rainfall rates, as widely used in rainfall simulations in soil erosion research and in hydrology, yield the highest apparent soil infiltrability and the least runoff volume. Events with peak intensity late in the event, when soils are already wet, yield the lowest apparent infiltrability and the highest runoff volume, as well as the highest runoff intensity. These results need to be confirmed for other soil types, but suggest that event profile is an important determinant of soil hydraulic behaviour that warrants increased attention in many fields, including ecohydrology, geomorphology, and soil management.

  19. Effects of Different Logging Techniques on Forest Soil Compaction at Mountainous Terrain

    Directory of Open Access Journals (Sweden)

    Habip Eroğlu


    Full Text Available In this study, it was investigated that the effects of different logging techniques on forest soil compaction in the Artvin region. For this purpose, soil penetration resistance was measured in a total of 12 experimental areas where each with 3 pieces, including logging with forest skyline, forest tractor, manpower and chute systems using penetrologger. As a result, changes of penetration resistances values at where logging with manpower and forest tractor according to control points were higher than logging with forest skyline and chute systems.

  20. Microwave Measurements of Moisture Distributions in the Upper Soil Profile (United States)

    Sadeghi, A. M.; Hancock, G. D.; Waite, W. P.; Scott, H. D.; Rand, J. A.


    Laboratory and field experiments were conducted to investigate the ability of microwave remote sensing systems to detect the moisture status of a silt loam soil exhibiting abrupt changes in moisture content near the surface. Laboratory soil profiles were prepared with a discontinuous moisture boundary in the subsurface. Reflectivity measurements of these profiles were made with a bistatic reflectometer operating over the frequency ranges of 1-2 and 4-8 GHz (wavelength ranges of 30-15 and 7.5-3.75 cm, respectively). These measurements exhibited a well-developed coherent interference pattern in good agreement with a simple two-layer reflectivity model. Field measurements of bare soil surfaces were conducted for initially saturated profiles and continued for extended periods of drying. During drying, coherent interference patterns similar to those observed in the laboratory were detected. These appear to be due to steep moisture gradients occurring between drying layers near the surface. The field results were modeled by a five-segment linear moisture profile with one or two steep segments and a multilayer reflectivity program. Agreement between model and field response over the frequency range was used to estimate the depth of drying layers within the soil. These depths were monitored over the second and third drying cycles. Formation of the drying layers under field conditions appears to be influenced by drying time, tillage, and evaporative demand. In any case, it appears that the coherent effects caused by nonuniform moisture profiles may substantially affect the reflectivity of even rough soil surfaces.

  1. Radionuclide transport along a boreal hill slope - elevated soil water concentrations in riparian forest soils

    Energy Technology Data Exchange (ETDEWEB)

    Lidman, Fredrik; Boily, Aasa; Laudon, Hjalmar [Dept. of Forest Ecology and Management, Swedish University of Agricultural Sciences, 901 83 Umeaa (Sweden); Koehler, Stephan J. [Dept. of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, P.O. 7050, 750 07 Uppsala (Sweden)


    The transport of radionuclides from forest ecosystems and out into surface waters is a crucial process for understanding the long-term fate of radionuclides in the boreal landscape. Boreal forests are typically dominated by podzol soils, but the streams draining the forests are often lined by highly organic, often peat-like soils, which the radionuclides must pass through in order to reach the stream. This so-called riparian zone therefore represents a fundamentally different biogeochemical environment than ordinary forest soils, e.g. by exhibiting significantly lower pH and higher concentrations of organic colloids, which significantly can affect the mobility of many radionuclides. Since the riparian zone is the last terrestrial environment that the groundwater is in contact with before it enters the stream, previous research has demonstrated its profound impact on the stream water chemistry. Hence, the riparian soils should also be important for the transport and accumulation of radionuclides. Therefore, soil water was sampled using suction lysimeters installed at different depths along a 22 m long forested hill slope transect in northern Sweden, following the flow pathway of the groundwater from the uphill podzol to the riparian zone near the stream channel. The analyses included a wide range of hydrochemical parameters and many radiologically important elements, e.g. U, Th, Ni, C, Sr, Cs, REEs and Cl. The sampling was repeated ten times throughout a year in order to also capture the temporal variability of the soil water chemistry. The water chemistry of the investigated transect displayed a remarkable change as the groundwater approached the stream channel. Strongly increased concentrations of many elements were observed in the riparian soils. For instance, the concentrations of Th were more than 100 times higher than in the riparian zone than in the uphill forest, suggesting that the riparian zone may be a hotspot for radionuclide accumulation. The reason

  2. Soil susceptibility to accelerated hydric erosion: geotechnical evaluation of cut slopes in residual soil profiles

    Directory of Open Access Journals (Sweden)

    Taciano Oliveira da Silva


    Full Text Available The experimental research program was developed in the Alto Paraopeba region, state of Minas Gerais, Southeastern Brazil. The main objective was to promote the geotechnical evaluation of soil samples from four cut slopes in residual soil profiles of highways and local secondary roads in order to assess the potential of the anthropic impact on the soil susceptibility to accelerated erosion processes. Soil samples were named: red residual soil (RRS; pink residual soil (PRS; yellow residual soil (YRS; and white residual soil (WRS. The methodology used consisted of geotechnical characterization tests, infiltration rate and modified mass loss by immersion tests performed on soil samples from these profiles, using the physical parameters and indirect assessment of erodibility proposed in 2000 by Bastos et al. The results of indirect assessment of erodibility, which were derived from tests based on the MCT methodology, highlighted the different susceptibility of the investigated soils to hydric erosion. The parameters proposed by the referred authors were complementary to conventional criteria for an adequate classification of tropical soils into their respective classes of erodibility. Among the tested soil samples, the highest erodibility was associated with the YRS and PRS, respectively, in the natural and pre-moistened conditions, as well as it was not detected erodibility in the RRS and WRS.

  3. Vertical and horizontal distribution of radiocesium around trees in forest soil of deciduous forests, Fukushima, Japan

    Energy Technology Data Exchange (ETDEWEB)

    Takada, Mono; Oba, Yurika; Nursal, Wim I.; Yamada, Toshihiro; Okuda, Toshinori [Graduate School of Integrated Arts and Sciences, Hiroshima University, 1-7-1 Kagamiyama, Higashi- Hiroshima 739-8521 (Japan); Shizuma, Kiyoshi [Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527 (Japan)


    After the 2011 Nuclear Power Plant accident in Japan, large amount of radionuclides were deposited and remains in the forest land of Fukushima region, yet still uncertain how much deposition stays in the forest. This region is mostly covered by the secondary deciduous forest which sporadically includes Japanese fir (Abies firma). As the leaves of all deciduous trees were shed, we hypothesized that the amounts of deposition radionuclides will be exhibit difference between the conifer trees (Japanese fir) and the other deciduous trees. As these trees inhabit on steep slopes, we also hypothesized there are differences in the radionuclides deposition in soils in relation to the position around tree trunk base (upper side, lower side and mid side at the foot of trees), tree species and slope angles. Study site and method: our study was conducted in deciduous forest of Fukushima region in August 2013, two and a half years after the accident. Samples of litter layer and two soil layers (0 - 5, 5 - 10 cm) were collected under Abies firma and eight deciduous tree species. In total 23 trees in eight forest stands were investigated. Under one tree, samples were taken from four pints (upper side, lower side and mid sides at the foot of trees) around a tree trunk within a radius of one meter from the base of tree trunks. Angle of slope at each tree was also checked. The samples were dried (70 deg. C, 48 hr) and radiocesium and potassium-40 was determined by a germanium detector (GEM Series HPGe Coaxial Detector System) (measurement time 300 - 30000 sec). Results and discussion: we found that radiocesium contained in litter layer accounts for more than 80% of total amount (within litter layer to 10 cm depth from the surface), and almost all the radiocesium exists within litter layer up to 5 cm depth. Although it is well known that cesium shows similar movement to potassium in a plant body, soil contained much more amount of potassium-40 than litter layer. We predicted that

  4. From solid to liquid: Assessing the release of carbon from soil into solution in response to forest management (United States)

    James, J. N.; Gross, C. D.; Butman, D. E.; Harrison, R. B.


    Dissolved organic matter (DOM) is a crucial conduit for internal cycling of carbon within soils as well as for the transfer of organic matter out of soil and into aquatic systems. Little is known about how the quantity, quality, lability and chemical characteristics of DOM changes in response to human management of forest soils. To examine the processes that release soil organic matter (SOM) into solution, we gathered samples from adjacent native and industrially managed Eucalyptus grandis plantation forests across Sao Paulo State, Brazil and from adjacent old-growth and Douglas-fir (Pseudotsuga menzisii) plantation forests in the coastal Pacific Northwest. Samples from each soil horizon were taken from soil profiles excavated to at least 1.5 m at each site. Water extractable organic matter (WEOM) was extracted twice from each sample using 0.5 M K2SO4 and Milli-Q water to quantify both dissolved and exchange phase organic matter. These extracts were measured for total organic carbon (TOC), 13C and 14C, and chemical characteristics were assessed by fluorescence spectroscopy (EEMs and SUVA254). At the same time, solid phase characteristics of the soil samples were quantified, including bulk density, pH, total carbon and nitrogen, microbial biomass, and 13C and 14C. Characterization of bulk SOM was undertaken by Fourier Transform Infrared Spectroscopy (FTIR) by subtracting mineral matrix spectra of each sample from the bulk spectra. Organic matter lability was assessed by incubations using difference in TOC for WEOM extracts and repeated measurement of CO2 efflux for bulk SOM. All together, these analyses permit a unique snapshot of the natural separation of organic matter from solid into liquid phase through the entire soil profile. Initial results reveal that small but measureable quantities of WEOM may be released from deep B and C horizons in soil, and that this material is labile to microbial decomposition. By identifying differences in SOM and DOM cycling due to

  5. Soil carbon and nitrogen stocks following forest conversion to pasture in the Western Brazilian Amazon Basin



    We examined two chronosequences of forest, 8-and 20-year-old pasture in Rondônia-Brazil, to investigate how land use change affects the soil carbon and nitrogen stocks and organic matter dynamics of surface soil (0 to 30 cm). Soil total carbon and nitrogen stocks increased in 20-year-old pasture compared with the original forest in one chronosequence but no changes were detected in the other chronosequence. Calculations of the contributions of forest - and pasture-derived carbon from soil &et...

  6. Distinguishing features of forest species on nutrient-poor soils in the Southern Cape

    Directory of Open Access Journals (Sweden)

    J. C. Daalen


    Full Text Available Soils of the indigenous forest-fynbos interface in the Southern Cape were sampled for chemical and physical analyses and compared by means of anlyses of variance. Correlations among soil variables were investigated by subjecting the correlation matrices to cluster analysis. Soil data were compared with that of fynbos and tropical forest areas. Morphological and physiological features of the forest vegetation, such as evergreenness, sclerophylly, phenolic compounds in the leaves, mast fruiting (i.e. gregarious fruiting and root mat, were correlated with the soil nutritional status.

  7. Quantification of soil fauna metabolites and dead mass as humification sources in forest soils (United States)

    Chertov, O. G.


    The analysis of publications on soil food webs (FWs) allowed calculation of the contents of soil fauna metabolites and dead mass, which can serve as materials for humification. Excreta production of FWmicrofauna reaches 570 kg/ha annually, but the liquid excreta of protozoa and nematodes compose about 25%. The soil fauna dead mass can be also maximally about 580 kg/ha per year. However, up to 70% of this material is a dead mass of bacteria, protozoa, and nematodes. The undecomposed forest floor (L) has low values of these metabolites in comparison with the raw humus organic layer (F + H). The mass of these metabolites is twice lower in Ah. Theoretical assessment of earthworms' role in SOM formation shows that the SOM amount in fresh coprolites can be 1.4 to 4.5-fold higher than SOM in the bulk soil in dependence on food assimilation efficiency, the soil: litter ratio in the earthworms' ration, and SOM quantity in the bulk soil. Excreta production varies from 0.2 to 1.9% of the total SOM pool annually, including 0.15-1.5% of excrements of arthropods and enchytraeidae, but the amount of arthropods' dead mass comprises 0.2-0.4%. The calculated values of the SOM increase due to earthworms' coprolites are of the same order (0.9-2.7% of SOM pool annually). These values of SOM-forming biota metabolites and dead mass are close to the experimental and simulated data on labile and stable SOM fractions decomposition in forest soils (about 2% annually). Therefore, these biota's products can play a role to restock SOM decrease due to mineralization.

  8. The impact of clearcutting in boreal forests of Russia on soils: A review (United States)

    Dymov, A. A.


    Data on the impact of tree logging in boreal forests of Russia on soils are systematized. Patterns of soil disturbances and transformation of microclimatic parameters within clearcutting areas are discussed. Changes in the conditions of pedogenesis in secondary forests are analyzed. It is suggested that the changes in forest soils upon reforestation of clearcutting areas might be considered as specific post-logging soil successions. Data characterizing changes in the thickness of litter horizons and in the intensity of elementary pedogenic processes, acidity, and the content of exchangeable bases in soils of clearcutting areas in the course of their natural reforestation are considered. The examples of human-disturbed (turbated) soil horizons and newly formed anthropogenic soils on clearcutting areas are described. It is suggested that the soils on mechanically disturbed parts of clearcutting areas can be separated as a specific group of detritus turbozems.

  9. Soil development in OSL dated sandy dune substrates under Quercus robur Forest (Netherlands) (United States)

    van Mourik, J. M.; Nierop, Ir. K.; Verstraten, J. M.


    observed palynological traces of a former dune landscape with grasses and typical dune land shrubs. The F and H horizons were dominated by Quercus pollen. In thin sections we found that in the upper part of the F horizons the soil skeleton was formed by leaf litter fragments that were fragmented and decomposed by fungi and micro arthropods. The soil skeleton of the lower part of the F horizons consisted of a mixture of leaf litter fragments and (dead) root fragments. In this part of the profile, fungi and micro arthropods were also responsible for the physical and chemical organic matter decomposition. The soil skeleton of the Ah horizons was formed by mineral grains in which small sized organic aggregates occurred. These aggregates may have four possible sources: (1) sinsedimentary aggregates, involved in sand drifting, (2) fecal relicts from decomposed (older) roots of a former dune land vegetation, (2) fecal relicts from decomposed (younger) roots of the forest and its understory, and (3) infiltrated parts of fecal pallets from the overlying F horizons. The calibrated radiocarbon dates of organic matter from the upper 5 cm of the Ah horizons go back to around 1960 AD. This points to a 45 year period for the development of the ectorganic horizons, assuming that fresh organic matter did not ‘contaminate' the radiocarbon dating. The OSL the ages of quartz grains from the upper 5 cm of the Ah horizons indicate landscape stabilization around 1800AD implying that two centuries were available for vegetation and soil development. There seems to be a significant difference between the OSL and 14C ages of the top of the Ah horizon. The OSL dates are very reliable. They indicate the correct time of the transformation of drift sand into stable, vegetated landscape. The pollen spectra of the Ah horizon show traces of dune grass and shrub landscape, but probably these pollen grains originate from sinsedimentary organic aggregates. And during the juvenile phase of a quercus forest

  10. Soil CO2 efflux of a larch forest in northern Japan

    Directory of Open Access Journals (Sweden)

    Y. Fujinuma


    Full Text Available We had continuously measured soil CO2 efflux (Rs in a larch forest in northern Japan at hourly intervals for the snow-free period in 2003 with an automated chamber system and partitioned Rs into heterotrophic respiration (Rh and autotrophic respiration (Rr by using the trench method. In addition, we applied the soil CO2 concentration gradients method to continuously measure soil CO2 profiles under snowpack in the snowy period and to partition Rs into topsoil (Oa and A horizons CO2 efflux (Ft with a depth of 0.13 m and sub-soil (C horizon CO2 efflux (Fc. We found that soil CO2 effluxes were strongly affected by the seasonal variation of soil temperature but weakly correlated with soil moisture, probably because the volumetric soil moisture (30–40% at 95% confidence interval was within a plateau region for root and microbial activities. The soil CO2 effluxes changed seasonally in parallel with soil temperature in topsoil with the peak in late summer. On the other hand, the contribution of Rr to Rs was the largest at about 50% in early summer, when canopy photosynthesis and plant growth were more active. The temperature sensitivity (Q10 of Rr peaked in June. Under snowpack, Rs was stable until mid-March and then gradually increased with snow melting. Rs summed up to 79 gC m−2 during the snowy season for 4 months. The annual Rs was determined at 934 gC m−2 y−1 in 2003, which accounted for 63% of ecosystem respiration. The annual contributions of Rh and Rs to Rs were 57% and 43%, respectively. Based on the gradient approach, Rs was partitioned vertically into litter (Oi and Oe horizons with a depth of 0.01–0.02 m, topsoil and sub-soil respirations with proportions of 6, 72 and 22%, respectively, on an annual basis. The vertical distribution of CO2 efflux was consistent with those of soil carbon and root biomass.

  11. Assessment of Soil Organic Carbon Stock of Temperate Coniferous Forests in Northern Kashmir

    Directory of Open Access Journals (Sweden)

    Davood A. Dar


    Full Text Available  Soil organic carbon (SOC estimation in temperate forests of the Himalaya is important to estimate their contribution to regional, national and global carbon stocks. Physico chemical properties of soil were quantified to assess soil organic carbon density (SOC and SOC CO2 mitigation density at two soil depths (0-10 and 10-20 cms under temperate forest in the Northern region of Kashmir Himalayas India. The results indicate that conductance, moisture content, organic carbon and organic matter were significantly higher while as pH and bulk density were lower at Gulmarg forest site. SOC % was ranging from 2.31± 0.96 at Gulmarg meadow site to 2.31 ± 0.26 in Gulmarg forest site. SOC stocks in these temperate forests were from 36.39 ±15.40 to 50.09 ± 15.51 Mg C ha-1. The present study reveals that natural vegetation is the main contributor of soil quality as it maintained the soil organic carbon stock. In addition, organic matter is an important indicator of soil quality and environmental parameters such as soil moisture and soil biological activity change soil carbon sequestration potential in temperate forest ecosystems.DOI: Journal of Environment Volume-4, Issue-1, Dec-Feb 2014/15; page: 161-178

  12. Aluminum dynamics in forest soil waters in Norway. (United States)

    Lange, Holger; Solberg, Svein; Clarke, Nicholas


    We report on weekly aluminum (Al) concentration measurements in soil water from forested catchments monitored throughout Norway since 1986. Originating in acidification research, and thus accompanied by many other chemical variables, they constitute a comprehensive data set suited for analysis of short- as well as long-term variations in a geographic perspective. The Al time series at 21 sites are characterized by high temporal variability, seasonal behavior, and episodic events with peak values in the range 200-800 micromol/l, mostly caused by sea salts blown inland in storms, with a subsequent release of Al after cation exchange. Despite a clear south-north gradient in possible acidification over Norway, we found no indication of such south-north trends in Al chemistry, neither in mean values, maximum values, nor time trends. We identified two main drivers for variation in Al concentrations. The first one was sea salts, where Al was released to the soil solution after cation exchange. The second driver was high production of DOC, where Al was driven into the soil solution by complexation with DOC. There appears to be little risk for aluminum toxicity to trees in Norwegian forests. Except during occasional episodes, aluminum concentrations generally lay far below the supposed threshold values for toxic effects on Norway spruce, Scots pine and birch. Much dissolved aluminum was non-labile, and thus relatively non-toxic. Although the Ca2+/labile Al ratio was often below 1.0, considerable doubt exists as to the applicability of this variable in the field.

  13. Calibration of effective soil hydraulic parameters of heterogeneous soil profiles

    NARCIS (Netherlands)

    Jhorar, R.K.; Dam, van J.C.; Bastiaanssen, W.G.M.; Feddes, R.A.


    Distributed hydrological models are useful tools to analyse the performance of irrigation systems at different levels. For the successful application of these models, it is imperative that effective soil hydraulic parameters at the scale of model application are known. The majority of previous

  14. Diversity of soil microorganisms in natural Populus euphratica forests in Xinjiang, northwestern China

    Institute of Scientific and Technical Information of China (English)

    Haili QIAO; Chengming TIAN; Youqing LUO; Jianhua SUN; Xiaofeng FENG


    To better understand the distribution of soil microorganisms in Populus euphratica forests in Xin-jiang, northwestern China, we studied and compared the populations and numbers of bacteria, fungi and actino-mycetes in the soil at four different age stages of natural P. euphratica forests, i.e., juvenile forests, middle-aged for-ests, over-mature forests and degraded forests. Results showed that there were clear differences in the amount of microorganism biomass and composition rates across the four forest stages. Dominant and special microorgan-isms were present in each of the four different soil layers.The vertical distribution showed that the microorganism biomass decreased with increasing soil depth. The popu-lation of microorganisms was the lowest at 31-40 cm of soil depth. The microorganisms consisted of bacteria, actinomycetes, as well as fungi. Bacteria were the chief component of microorganisms and were widely distribu-ted, but fungi were scarce in some soil layers. Aspergillus was the dominant genus among the 11 genera of fungi isolated from the soil in different age stages of P. euphra-tica forests.

  15. [137Cs profile distribution character and its implication for soil erosion on Karst slopes of northwest Guangxi]. (United States)

    Feng, Teng; Chen, Hong-song; Zhang, Wei; Nie, Yun-peng; Wang, Ke-lin


    This paper studied the profile distribution characters of 137Cs and soil organic carbon (SOC) on the Karst slopes and in the fissures in typical peak-cluster depression in Northwest Guangxi, aimed to approach the applicability of 137Cs method on Karst slopes and the implication of 37Cs for the characteristics of slope soil erosion. In all test profiles, there was a significant correlation between 137Cs and SOC, indicating that both of them might have the same loss pathway. On the slopes under secondary forests, 137Cs mainly existed within the depth 0-24 cm. On the upper middle and middle slope sites, 137Cs had an exponential decrease with depth, indicating no or slight surface erosion; while on the foot slope site, the distribution pattern of 137Cs indicated severer erosion. On the slopes with cultivated lands, 137Cs distributed uniformly within the plough layer. In the upper middle and middle slopes profiles, 137Cs mainly existed in the depth around 15 cm and far less than the background value, indicating severe soil erosion; while in foot slope profiles, 137Cs was aggraded to the depth 45 cm. A discontinuous distribution of 137Cs in the profiles was detected on the foot slopes under secondary forests, on the upper middle and foot slopes of cultivated lands, and in the fissures, indicating that the soil particles on Karst slopes had a trend of losing with rainwater to the underground, but the loss quantity was negligible, compared with surface erosion.

  16. Effect of vegetation on soil profile formation: results of a 47-years experiment (United States)

    Gunina, Anna; Ryzhova, Irina; Kuzyakov, Yakov


    Typical soil formation period in boreal ecosystems takes over centuries or longer. However, the rates of individual processes vary and consequently soil horizons and properties have different development periods. To evaluate the effect of vegetation, as a single factor, on the development of organic horizons, we used the soils of the lysimeters at Moscow State University. We generalized own results and long-term observations published before. In 1965 the lysimeters (S=9 m2, depth=1.5 m) were filled with carbonate free clay loam taken in Moscow region and originated from the Valday glaciation. The initial pH was 5.7, and Corg 0.07%. The following plant communities were created in the lysimeters: 1) Picea abies, 2) Picea abies + Quercus robur + Acer platanoides, 3) Quercus robur + Acer platanoides, 4) grasses (10 species with domination of Lolium and Trifolium) and 5) agricultural crops (9-field rotation). After 20, 33 and 47 years the morphological description of soil profiles was done and Corg was measured in the upper horizons. Additionally, the combined density and aggregate fractionation (>2000 µm, 250-2000 µm and coniferous and broadleaf forests and consisted of L and H layers. Under mixed forest however, it comprised 0-0.5 cm and consisted of moss litter permeated with fungi hyphens. Mineral part of profiles was slightly colored with organic matter, whereas under grassland the Ah horizon (0-5 cm) was developed. After 33 years under forest, the Ah horizons (0-5 cm) were already developed and had a lot of roots and organic residues. The rates of Corg accumulation were different with the values varying between 0.08 and 0.38% Corg year-1. After 47 years of soil formation, the Corg in 0-5 of Ah reached 5.3%, 2.93%, 8.2%, 2.1% and 0.9% for coniferous, mixed, deciduous, grassland and agricultural crops respectively. The depth distribution of Corg is sharply decreases in all soil profiles. The combined aggregate-density fractionation had shown, that 30-74% of Corg

  17. Nitrification and denitrification as sources of gaseous nitrogen emission from different forest soils in Changbai Mountain

    Institute of Scientific and Technical Information of China (English)


    The contributions of nitrification and denitrification to N2O and N2 emissions from four forest soils on northern slop of Changbai Mountain were measured with acetylene inhibition methods. In incubation experiments, 0.06% and 3% C2H2 were used to inhibit nitrification and denitrification in these soils, respectively. Both nitrification and denitification existed in these soils except tundra soil, where only denitrification was found. The annually averaged rates of nitrification and denitrification in mountain dark brown forest soil were much higher than that in other three soils. In mountain brown coniferous soil, contributions of different processes to gaseous nitrogen emissions were Denitrification N2O > Nitrification N2O > Denitrification N2. The same sequence exists in mountain soddy soil as that in the mountain brown coniferous soil. The sequence in mountain tundra soil was Denitrification N2O > Denitrification N2.

  18. Soil Organic Carbon assessment on two different forest management (United States)

    Fernández Minguillón, Alex; Sauras Yera, Teresa; Vallejo Calzada, Ramón


    Soil Organic Carbon assessment on two different forest management. A.F. Minguillón1, T. Sauras1, V.R: Vallejo1. 1 Departamento de Biología Evolutiva, Ecología y Ciencias Ambientales, Universidad de Barcelona, Avenida Diagonal 643, 03080 Barcelona, Spain. Soils from arid and semiarid zones are characterized by a low organic matter content from scarce plant biomass and it has been proposed that these soils have a big capacity to carbon sequestration. According to IPCC ARS WG2 (2014) report and WG3 draft, increase carbon storage in terrestrial ecosystems has been identified such a potential tool for mitigation and adaptation to climate change. In ecological restoration context improve carbon sequestration is considered a management option with multiple benefits (win-win-win). Our work aims to analyze how the recently developed restoration techniques contributed to increases in terrestial ecosystem carbon storage. Two restoration techniques carried out in the last years have been evaluated. The study was carried out in 6 localities in Valencian Community (E Spain) and organic horizons of two different restoration techniques were evaluated; slash brush and thinning Aleppo pine stands. For each technique, carbon stock and its physical and chemical stability has been analysed. Preliminary results point out restoration zones acts as carbon sink due to (1) the relevant necromass input produced by slash brush increases C stock on the topsoil ;(2) Thinning increase carbon accumulation in vegetation.

  19. Microelement contents of litter, soil fauna and soil in Pinus koralensis and mixed broad-leaved forest

    Institute of Scientific and Technical Information of China (English)

    LI Jinxia; YIN Xiuqin; DONG Weihua


    The Mn,Zn and Cu contents of litter,soil fauna and soil in Pinus koraiensis and mixed broad-leaved forest in Liangshui Nature Reserve of Xiaoxing'an Mountains were analyzed in this paper,results showed that the tested microelement contents in the litter,soil fauna and soil followed the order:Mn>Zn>Cu,but varied with environmental components,for Mn the order is soil>litter>soil fauna,for Zn is soil fauna>litter and soil,and for Cu is soil fauna>soil>litter.The change range of the tested microelement contents in litter was larger in broad-leaved forest than those in coniferous forest.Different soil fauna differed in their microelementenrichment capability,the highest content of Mn,Zn and Cu existed in earthworm,centipede and diplopod,respectively.The contents of the tested microelements in soil fauna had significant correlations with their environmental background values,litter decomposition rate,food habit of soil fauna,and its absorbing selectively and enrichment to microelements.The microelements contained in 5-20 cm soil horizon were more than those in 0-5 cm humus layer,and their dynamics differed in various horizons.

  20. Climate response of the soil nitrogen cycle in three forest types of a headwater Mediterranean catchment (United States)

    Lupon, Anna; Gerber, Stefan; Sabater, Francesc; Bernal, Susana


    Future changes in climate may affect soil nitrogen (N) transformations, and consequently, plant nutrition and N losses from terrestrial to stream ecosystems. We investigated the response of soil N cycling to changes in soil moisture, soil temperature, and precipitation across three Mediterranean forest types (evergreen oak, beech, and riparian) by fusing a simple process-based model (which included climate modifiers for key soil N processes) with measurements of soil organic N content, mineralization, nitrification, and concentration of ammonium and nitrate. The model describes sources (atmospheric deposition and net N mineralization) and sinks (plant uptake and hydrological losses) of inorganic N from and to the 0-10 cm soil pool as well as net nitrification. For the three forest types, the model successfully recreated the magnitude and temporal pattern of soil N processes and N concentrations (Nash-Sutcliffe coefficient = 0.49-0.96). Changes in soil water availability drove net N mineralization and net nitrification at the oak and beech forests, while temperature and precipitation were the strongest climatic factors for riparian soil N processes. In most cases, net N mineralization and net nitrification showed a different sensitivity to climatic drivers (temperature, soil moisture, and precipitation). Our model suggests that future climate change may have a minimal effect on the soil N cycle of these forests (soil N cycle may counterbalance each other.

  1. Impact of Logging and Forest Conversion to Oil Palm Plantations on Soil Bacterial Communities in Borneo (United States)

    Lee-Cruz, Larisa; Edwards, David P.; Tripathi, Binu M.


    Tropical forests are being rapidly altered by logging and cleared for agriculture. Understanding the effects of these land use changes on soil bacteria, which constitute a large proportion of total biodiversity and perform important ecosystem functions, is a major conservation frontier. Here we studied the effects of logging history and forest conversion to oil palm plantations in Sabah, Borneo, on the soil bacterial community. We used paired-end Illumina sequencing of the 16S rRNA gene, V3 region, to compare the bacterial communities in primary, once-logged, and twice-logged forest and land converted to oil palm plantations. Bacteria were grouped into operational taxonomic units (OTUs) at the 97% similarity level, and OTU richness and local-scale α-diversity showed no difference between the various forest types and oil palm plantations. Focusing on the turnover of bacteria across space, true β-diversity was higher in oil palm plantation soil than in forest soil, whereas community dissimilarity-based metrics of β-diversity were only marginally different between habitats, suggesting that at large scales, oil palm plantation soil could have higher overall γ-diversity than forest soil, driven by a slightly more heterogeneous community across space. Clearance of primary and logged forest for oil palm plantations did, however, significantly impact the composition of soil bacterial communities, reflecting in part the loss of some forest bacteria, whereas primary and logged forests did not differ in composition. Overall, our results suggest that the soil bacteria of tropical forest are to some extent resilient or resistant to logging but that the impacts of forest conversion to oil palm plantations are more severe. PMID:24056463

  2. Soil Nematode Responses to Increases in Nitrogen Deposition and Precipitation in a Temperate Forest


    Xiaoming Sun; Xiaoke Zhang; Shixiu Zhang; Guanhua Dai; Shijie Han; Wenju Liang


    The environmental changes arising from nitrogen (N) deposition and precipitation influence soil ecological processes in forest ecosystems. However, the corresponding effects of environmental changes on soil biota are poorly known. Soil nematodes are the important bioindicator of soil environmental change, and their responses play a key role in the feedbacks of terrestrial ecosystems to climate change. Therefore, to explore the responsive mechanisms of soil biota to N deposition and precipitat...

  3. Copper level and distribution in soils of forest ecosystems of Samara river region

    Directory of Open Access Journals (Sweden)

    A. A. Dubina


    Full Text Available The level and regularities of distribution of the copper in the soils of steppe and forest ecosystems of Samara river region were determined. The data on general and mobile forms of copper combination in soils of the studied ecosystems are presented. The interval of copper variation in the soils is indicated. The distribution of copper in soil genetic horizons is shown. The distinction in the copper content in soils of different types of the landscape was revealed.

  4. Effects of fire and harvest on soil respiration in a mixed-conifer forest (United States)

    Dore, S.; Fry, D.; Stephens, S.


    Forest ecosystems, and in particular forest soils, constitute a major reservoir of global terrestrial carbon and soil respiration is the largest carbon loss from these ecosystems. Disturbances can affect soil respiration, causing physical and chemical changes in soil characteristics, adding both, above and belowground necromass, and changing microclimatic conditions. This could signify an important and long term carbon loss, even higher than the carbon directly removed by the harvest or during fire. These losses need to be included when quantifying the net carbon balance of forests. We measured the impacts of prescribed fire and clear-cut tree harvest on soil respiration in a mixed-conifer forest in the central Sierra Nevada. The prescribed fire treatment was implemented in 2002 and again in 2009. Four areas were clear-cut harvested in 2010. In half of these units the soils were mechanically ripped to reduce soil compaction, a common practice in the Sierra Nevada industrial forest lands. Soil respiration was measured using two different techniques: the chamber method and the gradient method. Soil respiration was affected by treatments in two different ways. First, treatments changed soil temperature and soil water content, the main abiotic factors controlling soil respiration. The clear cut and the prescribed fire treatments created higher maximum soil temperature and more available soil water content, environmental conditions favorable to soil respiration. However, the loss of trees and thus fine roots, and the decrease of soil litter and organic layers, because of their combustion or removal, had a negative effect on soil respiration that was stronger than the positive effect due to more favorable post disturbance environmental conditions. Soil respiration rates remained steady 1-2 years after treatments and no increase or spikes of soil respiration were measured after treatments. Continuous measurements of CO2 concentrations at different soil depths improved our

  5. [Characteristics of soil macrofaunal community structure in secondary forest and forest plantations in western Qinling Mountains of Northwest China]. (United States)

    Liu, Ji-Liang; Cao, Jing; Li, Shi-Jie; Pan, Chun-Lin; Pan, Cheng-Chen


    Long-term disturbance of human beings on secondary forest ecosystem would have profound impacts on belowground ecological processes, whereas the community structure and functional diversity of soil fauna would be sensitive to the changes of belowground ecological processes, with significance as an indicator of the changes. In this study, the method of hand-sorting was adopted to investigate the density of soil macrofaunal community in a secondary forest and the Pinus tabulaeformis, Larix kaempferi, Picea abie, and Picea asperata plantations of nearly 30 years old in Xiaolongshan forest area of western Qinling Mountains, and the PCA ordination and one-way ANOVA analysis were applied to analyze the community structure and trophic group composition of soil macrofauna in the five forest types. In the P. tabulaeformis and L. kaempferi plantations, the density of soil macrofaunal community was 3.0 and 2.1 times of that in the secondary forest, respectively, and the consumers/decomposers ratio of the community was obviously higher than that in the secondary forest. Among the plantations, P. tabulaeformis and L. kaempferi plantations had a significantly higher consumers/decomposers ratio of soil macrofaunal community than P. abies and P. asperata plantations. There was an obvious difference in community structure of soil macrofauna among the four plantations. The density of soil macrofaunal community in P. tabulaeformis and L. kaempferi plantations was 3.5 and 2.1 times higher than that in P. asperata plantation, respectively, whereas the group richness of soil macrofaunal community in P. tabulaeformis plantation was 1.5 times of that in P. abies and P. asperata plantations.

  6. The Influence of Typical Forest Types on Soil Erosion Resistance in the Water Source Areas of Central Yunnan

    Institute of Scientific and Technical Information of China (English)

    Yangyi; ZHAO; Xu; DUAN; Shumiao; SHU


    In order to clarify the influence of different forest types on soil erosion resistance in water source area of Central Yunnan,with the soils under three different kinds of typical forest in Yizhe watershed as the research object,this paper uses field simulation method and principal component analysis to analyze the soil erosion resistance of three kinds of soils. The results show that there is a significant difference in the shear strength of soil among three types of typical forest,and the size of soil shear strength is in the order of Pinus yunnanensis forest land >mixed broadleaf-conifer forest land > eucalyptus forest land. The difference in the soil erosion coefficient among different forests is not significant,and the soil erosion resistance is highest in mixed broadleaf-conifer forest land( 39. 0%),followed by eucalyptus woodland( 37. 0%)and Pinus yunnanensis forest land( 24. 0%). Under heavy rain intensity and long duration of rainfall,the ability of soil under eucalyptus ×Pinus yunnanensis mixed forests to resist disintegration is more obvious. Using principal component analysis to analyze soil erosion resistance of soils under three different forests,we get the comprehensive evaluation model for soil erosion resistance: Y = 0. 763Y1+ 0. 236Y2. The soil erosion resistance is in the order of mixed broadleaf-conifer forest land( 0. 150) > eucalyptus forest land( 0. 127) > Pinus yunnanensis forest land(-0. 079),indicating that the mixed forests have better water loss and soil erosion control effect than pure forests.

  7. DRAINMOD-FOREST: Integrated Modeling of Hydrology, Soil Carbon and Nitrogen Dynamics, and Plant Growth for Drained Forests. (United States)

    Tian, Shiying; Youssef, Mohamed A; Skaggs, R Wayne; Amatya, Devendra M; Chescheir, G M


    We present a hybrid and stand-level forest ecosystem model, DRAINMOD-FOREST, for simulating the hydrology, carbon (C) and nitrogen (N) dynamics, and tree growth for drained forest lands under common silvicultural practices. The model was developed by linking DRAINMOD, the hydrological model, and DRAINMOD-N II, the soil C and N dynamics model, to a forest growth model, which was adapted mainly from the 3-PG model. The forest growth model estimates net primary production, C allocation, and litterfall using physiology-based methods regulated by air temperature, water deficit, stand age, and soil N conditions. The performance of the newly developed DRAINMOD-FOREST model was evaluated using a long-term (21-yr) data set collected from an artificially drained loblolly pine ( L.) plantation in eastern North Carolina, USA. Results indicated that the DRAINMOD-FOREST accurately predicted annual, monthly, and daily drainage, as indicated by Nash-Sutcliffe coefficients of 0.93, 0.87, and 0.75, respectively. The model also predicted annual net primary productivity and dynamics of leaf area index reasonably well. Predicted temporal changes in the organic matter pool on the forest floor and in forest soil were reasonable compared to published literature. Both predicted annual and monthly nitrate export were in good agreement with field measurements, as indicated by Nash-Sutcliffe coefficients above 0.89 and 0.79 for annual and monthly predictions, respectively. This application of DRAINMOD-FOREST demonstrated its capability for predicting hydrology and C and N dynamics in drained forests under limited silvicultural practices.

  8. Daily variation of carbon flux in soils of Populus euphratica forests in the middle and lower reaches of the Tarim River

    Institute of Scientific and Technical Information of China (English)

    Huang Xiang; Chen Yaning; Li Weihong; Ma Jianxin; Chen Yapeng


    In order to lucubrate the daily variation of respiration in soils of Populus euphratica forests and analyze its relationship with environmental factors in the middle and lower reaches of the Tarim River, the LI-8100 instrument of soil CO2 flux system was used to measure the parameters of soil carbon flux and air temperature 10 cm above ground surface along the profiles of Usyman, Archy River,Yengisu and Karday, and the relationships between the soil carbon flux and the soil moisture content were analyzed. The nonlinear regression analysis was carried out with the software SPSS13.0. We observed that: ( 1 ) soil respiration began to be restrained when the air temperature was up to 30℃ 10 cm above the ground surface; (2) the rates of soil respiration under the forests of Populus euphratica were significantly different at various moisture contents, the soil carbon flux was high along the Usyman profile, which has a high soil moisture content, and it was low along the profiles of Archy River, Yengisu and Karday, which has a low soil moisture content; (3) the exponential model can be used to explain the relationship between soil respiration and air temperature 10 cm above the ground surface. The average Q10 values along the profiles of Usyman, Archy River, Yengisu and Karday are 0.61, 0.16, 0.22 and 0.35 respectively, much lower than the average of the world; (4) there is a positive correlation between the soil carbon flux and the soil moisture content.

  9. Effect of tree species on carbon stocks in forest floor and mineral soil and implications for soil carbon inventories

    NARCIS (Netherlands)

    Schulp, C.J.E.; Nabuurs, G.J.; Verburg, P.H.; Waal, de R.W.


    Forest soil organic carbon (SOC) and forest floor carbon (FFC) stocks are highly variable. The sampling effort required to assess SOC and FFC stocks is therefore large, resulting in limited sampling and poor estimates of the size, spatial distribution, and changes in SOC and FFC stocks in many count

  10. Effects of forest road amelioration techniques on soil bulk density, surface runoff, sediment transport, soil moisture and seedling growth (United States)

    Randy K. Kolka; Mathew F. Smidt


    Although numerous methods have been used to retire roads, new technologies have evolved that can potentially ameliorate soil damage, lessen ,the generation of nonpoint source pollution and increase tree productivity on forest roads. In this study we investigated the effects of three forest road amelioration techniques, subsoiling, recontouring and traditional...

  11. Effect of Logging Operation on Soil Carbon Storage of a Tropical Peat Swamp Forest

    Directory of Open Access Journals (Sweden)

    Anton E. Satrio


    Full Text Available Problem statement: Since heavy machinery are used in the logging operation activity for extracting the logs on sensitive forest site with peat soil, environment destruction should be the other concern during its processes especially on its important function as soil carbon storage. The objective of this study was to determine whether logging operation affect soil carbon storage of a tropical peat swamp forest. Approach: Soil sampling was conducted before and after logging operation in a 0.3 ha plot to a depth of 15 cm. The soil samples were analyzed for acidity, organic matter content, total carbon, total nitrogen and total phosphorus. The humic acid extraction was also done and soil carbon storage values were obtained by calculation. Paired t-test was used to compare variables under the two treatments (before and after logging and correlation analysis was used to correlate variables such as soil pH, soil organic matter, total carbon, total nitrogen, total phosphorus, C/N ratio, C/P ratio, humic acid yield, unstable carbon and stable carbon. Results: The availability of unstable carbon and stable carbon controlled by soil acidity on undisturbed peat swamp forest as a result, the accumulation of unstable carbon as well as stable carbon occurred even if the soil pH declines and vice versa. However, stable carbon associated well with soil acidity. It was found that the C/P ratio positively correlated with humic acid and stable carbon of both before and after logging conditions. Nevertheless, that association was prominent on logged peat swamp forest. An indication that even though this peat swamp forest had been logged, humification was strongly maintained. However, the similarity of stable carbon of the logged peat swamp forest with stable carbon of undisturbed peat swamp forest indicate an ineffectiveness humification of logged peat swamp forest. Conclusion: Logging operation on sensitive forest with peat soil using heavy machinery increased the

  12. Diversity and dynamics of rhizobial populations in acidic soils with aluminum and manganese toxicities in forest zones

    Directory of Open Access Journals (Sweden)

    Linda Manet


    Full Text Available Soil acidity in the humid forest zones of Cameroon is one of the major constraints to agricultural productivity. This study was carried out to assess the rhizobial communities of two acidic soils; with aluminum toxicity (Nkoemvone and manganese toxicity (Nkolbisson for their potential to improve soil fertility in Cameroon. These two soils were used to inoculate to the host plants cowpea and siratro. At harvest, 120 rhizobacterial isolates were extracted from the nodules of these two hosts and subjected to morphological characterization. Twenty isolates per site were selected and analyzed for their 16S rDNA genetic profile following restrictions with endonucleases of PCR products and electrophoresis. The restriction patterns of the 16S rDNA of the 40 isolates showed 12 different profiles. Eight occurred in both types of soils, where as 4 were specific to the manganese-toxic-acidic soil. While the Al toxicity reduced the nodulation and growth of both plants, the Mn toxicity mostly affect the cowpea. This study ascertained the distribution of rhizobia based on soil characteristics. Further molecular analyses would allow the identification of the isolates recovered as well as their phylogenetical relationships.

  13. Soil fauna abundance and diversity in a secondary semi-evergreen forest in Guadeloupe (Lesser Antilles): influence of soil type and dominant tree species


    Loranger-Merciris, Gladys; Imbert, Daniel; Bernhard-Reversat, France; Ponge, Jean-François; Lavelle,Patrick


    International audience; The importance of secondary tropical forests regarding the maintenance of soil fauna abundance and diversity is poorly known. The aims of this study were (1) to describe soil fauna abundance and diversity and (2) to assess the determinants of soil fauna abundance and diversity in two stands of a tropical semi-evergreen secondary forest. Soil macrofauna and microarthropod abundance and soil macrofauna diversity were described at two sites developed on different soils an...

  14. Digging Deeper: controls and response of decomposition in the full soil profile (United States)

    Torn, M. S.; Pries, C.; Zhu, B.; Castanha, C.; Curtis, J. B.; Brodie, E.; Jansson, J.; Nico, P. S.


    Recent research syntheses demonstrate that molecular structure alone does not control soil organic matter (SOM) stability, rather that environmental and biological controls--and their interactions with molecular structure--dominate. These insights have implications for predictions of ecosystem feedbacks to climate change. In particular, they pose a challenge to prevailing approaches to projecting the temperature response of SOM decomposition in different ecosystems, in different soil fractions, and at different soil depths. It has been proposed that older SOM (a major fraction of total stocks) is made up of compounds with high activation energies for decomposition and which would therefore have higher temperature sensitivity than more simple compounds (the carbon-quality-temperature hypothesis, CQT). We investigated the temperature response of older soil organic carbon and of slowly decomposing substrates (biochar, wood) using isotopically (13C, 14C) identifiable material in two laboratory incubation experiments, using temperate and tropical soils, surface and deep horizons. In both incubation studies, the temperature sensitivity of slowly decomposing (i.e., older SOC) was less than or equal to that of more decomposable material. This challenge to the quality-control theory suggests that factors other than carbon quality determine the temperature response of decomposition rates in these systems, and more complex model approaches may be needed to predict response. Globally, most SOM is found in the subsoil and most subsoil SOM has very slow decomposition rates. Thus predicting the temperature response of subsoil decomposition is critical. To address uncertainty about the rates and controls on inputs, transport, and persistence of SOM below the A horizon, we are launching a new warming field experiment in the field. We are warming a whole soil profile (to 1.3 m) in a temperate conifer forest, to study the effects of warming and plant inputs on SOC dynamics in surface

  15. Four decades of post-agricultural forest development have caused major redistributions of soil phosphorus fractions

    DEFF Research Database (Denmark)

    Schrijver, An De; Vesterdal, Lars; Hansen, Karin Irene


    Fertilisation of agricultural land causes an accumulation of nutrients in the top soil layer, among which phosphorus (P) is particularly persistent. Changing land use from farmland to forest affects soil properties, but changes in P pools have rarely been studied despite their importance to forest...... ecosystem development. Here, we describe the redistributions of the P pools in a four-decadal chronosequence of post-agricultural common oak (Quercus robur L.) forests in Belgium and Denmark. The aim was to assess whether forest age causes a repartitioning of P throughout the various soil P pools (labile P...... inorganic P fractions significantly decreased with forest age, the organic fractions significantly increased. The labile P pool (inorganic ? organic), which is considered to be the pool of P most likely to contribute to plant-available P, significantly decreased with forest age (from[20 to\\10% of total P...

  16. Solute flow in extremely stony forest soil: case study in Russian Far East (United States)

    Gerke, K.; Gartsman, B.; Bugayets, A.; Korost, D.


    Large impermeable objects like stones can drastically affect numerous soil properties. This contribution is mainly focused on hydrological issues. The original idea of series of field experiments was to visualize and quantify preferential flow paths in extremely stony forest soils on natural hillslopes in Vladivostok region, Russian Federation. This region is known for its intensive rain seasons (monsoon climate). For the purpose mentioned above two large-scale staining tracer experiments were carried out. Up to 200 l of dye solution were uniformly sprinkled over the area of 1 square meter using industrial pressure-calibrated nozzles. Two different tracers were utilized: common staining dye Brilliant Blue FCF and fluorescent dye Uranine. These substances were chosen due to their different staining mechanisms. First common dye solution (100 l) was applied, followed by the same amount of fluorescent dye solution. After full infiltration sequential upslope soil profiles were cut and flow patterns examined using common light for Brilliant Blue FCF and UV light for Uranine. Flow patterns showed unexpected homogeneity, e.g., quite uniform staining profiles and absence of pronounced bundle-like preferential flow paths. Also, no biomat flow (upper layer) was observed. Excavation resulted in quite rough profiles due to large amount of stones; stone positions were reconstructed using shades obtained using digital photos obtained using angled lightening. All infiltration occurred via gaps between stones. Some funneled flow between huge boulders was observed in some cases. Minor differences were observed between two dyes patterns which suggest that infiltration paths were stable. Unfortunately, all observations were not possible for the deepest infiltrations parts because of excavation difficulties increasing with depth (maximum depth reached was around 1.2 m). Undisturbed soil samples were taken from these conducting zones, both stained and unstained portions of soil. However

  17. Testing Yasso07 and CENTURY soil C models with boreal forest soil C stocks and CO2 efflux measurements (United States)

    Tupek, Boris; Peltoniemi, Mikko; Launiainen, Samuli; Kulmala, Liisa; Penttilä, Timo; Lehtonen, Aleksi


    Soil C models need further development, especially in terms of factors influencing spatial variability of soil C stocks and soil C stock changes. In this study we tested the estimates of soil C stocks and C stock changes of two widely used soil C models (Yasso07 and CENTURY) against measurements of the boreal forest soil C stock and CO2 efflux at four forest sites in Finland. In addition we evaluated the effects of using coarse versus detailed meteorological, soil, and plant litter input data on modeled monthly CO2 estimates. We found out that CO2 estimates of both models showed similar seasonal CO2 efflux pattern as the upscaled monthly measurements regardless of the fact whether the models used soil properties as input data. Winter and early summer CO2 fluxes agreed somewhat better between estimates and measurements than summer CO2 peaks and autumn CO2 levels, which were underestimated by models. Both models also underestimated equilibrium soil carbon (SOC) stocks, although SOC of CENTURY were larger than SOCs of Yasso07. CENTURY was more sensitive to variation in meteorological input data than Yasso07 and also to functional form of temperature response to decomposition. In conclusion, for modeling boreal forest soil C Yasso07 would benefit from including soil properties in the model structure, while Century would benefit from reformulation of temperature and moisture functions.

  18. Forest cockchafer larvae as methane production hotspots in soils and their importance for net soil methane fluxes (United States)

    Görres, Carolyn-Monika; Kammann, Claudia; Murphy, Paul; Müller, Christoph


    Certain groups of soil invertebrates, namely scarab beetles and millipedes, are capable of emitting considerable amounts of methane due to methanogens inhabiting their gut system. It was already pointed out in the early 1990's, that these groups of invertebrates may represent a globally important source of methane. However, apart from termites, the importance of invertebrates for the soil methane budget is still unknown. Here, we present preliminary results of a laboratory soil incubation experiment elucidating the influence of forest cockchafer larvae (Melolontha hippocastani FABRICIUS) on soil methane cycling. In January/February 2016, two soils from two different management systems - one from a pine forest (extensive use) and one from a vegetable field (intensive use) - were incubated for 56 days either with or without beetle larvae. Net soil methane fluxes and larvae methane emissions together with their stable carbon isotope signatures were quantified at regular intervals to estimate gross methane production and gross methane oxidation in the soils. The results of this experiment will contribute to testing the hypothesis of whether methane production hotspots can significantly enhance the methane oxidation capacity of soils. Forest cockchafer larvae are only found in well-aerated sandy soils where one would usually not suspect relevant gross methane production. Thus, besides quantifying their contribution to net soil methane fluxes, they are also ideal organisms to study the effect of methane production hotspots on overall soil methane cycling. Funding support: Reintegration grant of the German Academic Exchange Service (DAAD) (#57185798).

  19. Soil Biological Changes for a Natural Forest and Two Plantations in Subtropical China

    Institute of Scientific and Technical Information of China (English)

    CHEN Guang-Shui; YANG Yu-Sheng; XIE Jin-Sheng; LI Ling; GAO Ren


    Conversion of natural forests into pure plantation forests is a common management practice in subtropical China.To evaluate the effects of forest conversion on soil fertility, microbe numbers and enzyme activities in topsoils (0-10 cm)were quantified in two 33-year-old monoculture plantations of Castanopsis kawakamii Hayata (CK) and Cunninghamia lanceolata Lamb. (Chinese fir) (CF), and compared to a neighboring relict natural C. kawakamii forest (NF), in Sanming,Fujian. Five soil samples were collected once each in January, April, July, September and November in 2000 in each forest for laboratory analysis. Over the sampling year, there were significant differences for bacteria, fungi and actinomycetes between forests and between seasons (P < 0.05). The largest bacteria and fungi populations were in NF, while CF contained the greatest number of actinomycetes. There were also significant differences (P < 0.05) with microbial respiration for forests and seasons. Additionally, compared with NF, urease and acid phosphatase were significantly lower (P < 0.05)in CK and CF. Also, the correlations of soil hydrolysable N and available P to soil microbial and enzymatic activities were highly significant (P < 0.01). Thus, to alter the traditional Chinese fir monoculture so as to mimic the natural forest conditions, managing mixed stands of Chinese fir and broadleaf trees or conducting crop rotation of conifers and broadleaf trees as well as minimizing forest disturbances like clear-cutting, slash burning and soil preparing, could be utilized.

  20. Effect of Simulated N Deposition on Soil Exchangeable Cations in Three Forest Types of Subtropical China

    Institute of Scientific and Technical Information of China (English)

    LU Xian-Kai; MO Jiang-Ming; P.GUNDERSERN; ZHU Wei-Xing; ZHOU Guo-Yi; LI De-Jun; ZHANG Xu


    The effects of simulated nitrogen (N) deposition on soil exchangeable cations were studied in three forest types of subtropical China.Four N treatments with three replications were designed for the monsoon evergreen broadleaf forest (mature forest):control (0 kg N ha-1 year-1),low N (50 kg N ha-1 year-1),medium N (100 kg N ha-1 year-1) and high N (150 kg N ha-1 ycar-1),and only three treatments (i.e.,control,low N,medium N) were established for the pine and mixed forests.Nitrogen had been applied continuously for 26 months before the measurement.The mature forest responded more rapidly and intensively to N additions than the pine and mixed forests,and exhibited some significant negative symptoms,e.g.,soil acidification,Al mobilization and leaching of base cations from soil.The pine and mixed forests responded slowly to N additions and exhibited no significant response of soil cations.Response of soil exchangeable cations to N deposition varied in the forests of subtropical China,depending on soil N status and land-nse history.

  1. An inverse analysis reveals limitations of the soil-CO2 profile method to calculate CO2 production and efflux for well-structured soils

    Directory of Open Access Journals (Sweden)

    M. D. Corre


    Full Text Available Soil respiration is the second largest flux in the global carbon cycle, yet the underlying below-ground process, carbon dioxide (CO2 production, is not well understood because it can not be measured in the field. CO2 production has frequently been calculated from the vertical CO2 diffusive flux divergence, known as "soil-CO2 profile method". This relatively simple model requires knowledge of soil CO2 concentration profiles and soil diffusive properties. Application of the method for a tropical lowland forest soil in Panama gave inconsistent results when using diffusion coefficients (D calculated based on relationships with soil porosity and moisture ("physically modeled" D. Our objective was to investigate whether these inconsistencies were related to (1 the applied interpolation and solution methods and/or (2 uncertainties in the physically modeled profile of D. First, we show that the calculated CO2 production strongly depends on the function used to interpolate between measured CO2 concentrations. Secondly, using an inverse analysis of the soil-CO2 profile method, we deduce which D would be required to explain the observed CO2 concentrations, assuming the model perception is valid. In the top soil, this inversely modeled D closely resembled the physically modeled D. In the deep soil, however, the inversely modeled D increased sharply while the physically modeled D did not. When imposing a constraint during the fit parameter optimization, a solution could be found where this deviation between the physically and inversely modeled D disappeared. A radon (Rn mass balance model, in which diffusion was calculated based on the physically modeled or constrained inversely modeled D, simulated observed Rn profiles reasonably well. However, the CO2 concentrations which corresponded to the constrained inversely modeled D were too small compared to the measurements. We suggest that, in well-structured soils, a missing description of steady state CO2

  2. The effect of increasing salinity and forest mortality on soil nitrogen and phosphorus mineralization in tidal freshwater forested wetlands (United States)

    Noe, Gregory B.; Krauss, Ken W.; Lockaby, B. Graeme; Conner, William H.; Hupp, Cliff R.


    Tidal freshwater wetlands are sensitive to sea level rise and increased salinity, although little information is known about the impact of salinification on nutrient biogeochemistry in tidal freshwater forested wetlands. We quantified soil nitrogen (N) and phosphorus (P) mineralization using seasonal in situ incubations of modified resin cores along spatial gradients of chronic salinification (from continuously freshwater tidal forest to salt impacted tidal forest to oligohaline marsh) and in hummocks and hollows of the continuously freshwater tidal forest along the blackwater Waccamaw River and alluvial Savannah River. Salinification increased rates of net N and P mineralization fluxes and turnover in tidal freshwater forested wetland soils, most likely through tree stress and senescence (for N) and conversion to oligohaline marsh (for P). Stimulation of N and P mineralization by chronic salinification was apparently unrelated to inputs of sulfate (for N and P) or direct effects of increased soil conductivity (for N). In addition, the tidal wetland soils of the alluvial river mineralized more P relative to N than the blackwater river. Finally, hummocks had much greater nitrification fluxes than hollows at the continuously freshwater tidal forested wetland sites. These findings add to knowledge of the responses of tidal freshwater ecosystems to sea level rise and salinification that is necessary to predict the consequences of state changes in coastal ecosystem structure and function due to global change, including potential impacts on estuarine eutrophication.

  3. Uncertainties in forest soil carbon and nitrogen estimates related to soil sampling methods in the Delaware River Basin (United States)

    Xu, B.; Plante, A. F.; Johnson, A. H.; Pan, Y.


    Estimating forest soil carbon and nitrogen (CN) is critical to understanding ecosystem responses to changing climate, disturbance and forest management practices. Most of the uncertainty in soil CN cycling is associated with the difficulty in characterizing soil properties in field sampling because forest soils can be rocky, inaccessible and spatially heterogeneous. A composite coring technique is broadly applied as the standard FIA soil sampling protocol. However, the accuracy of this method might be limited by soil compaction, rock obstruction and plot selection problems during sampling. In contrast, the quantitative soil pit sampling method may avoid these problems and provides direct measurements of soil mass, rock volume and CN concentration representative of a larger ground surface area. In this study, the two sampling methods were applied in 60 forest plots, randomly located in three research areas in the Delaware River Basin in the U.S. Mid-Atlantic region. In each of the plots, one quantitative soil pit was excavated and three soil cores were collected. Our results show that average soil bulk density in the top 20 cm mineral soil measured from the soil cores was consistently lower than bulk density measured by soil pits. However, the volume percentage of coarse fragments measured by the core method was also significantly lower than the pit method. Conversely, CN concentrations were greater in core samples compared to pit samples. The resulting soil carbon content (0-20 cm) was estimated to be 4.1 ± 0.4 kg m-2 in the core method compared to 4.5 ± 0.4 kg m-2 in the pit method. Lower bulk density but higher CN concentration and lower coarse fragments content from the cores have offset each other, resulting in no significant differences in CN content from the soil pit method. Deeper soil (20-40 cm), which is not accessible in the core method, accounted for 29% of the total soil carbon stock (0-40 cm) in the pit method. Our results suggest that, although soil

  4. Activities of five enzymes following soil disturbance and weed control in a Missouri forest (United States)

    Felix, Jr. Ponder; Frieda Eivazi


    Forest disturbances associated with harvesting activities can affect soil properties including enzyme activity and overall soil quality. The activities of five enzymes (acid and alkaline phosphatases, betaglucosidase, aryl-sulfatase, and beta-glucosominidase) were measured after 8 years in soil from clearcut and uncut control plots of a Missouri oak-hickory (...

  5. Effects of tree species on soil properties in a forest of the Northeastern United States

    NARCIS (Netherlands)

    Dijkstra, F.A.


    Large differences in soil pH and available Ca in the surface soil exist among tree species growing in a mixed hardwood forest in northwestern Connecticut. The observed association between tree species and specific soil chemical properties within mixed-species stands implies that changes in

  6. Community composition, diversity and metabolic footprints of soil nematodes in differently-aged temperate forests

    NARCIS (Netherlands)

    Zhang, Xiaoke; Guan, Pingting; Wang, Yaolei; Li, Qi; Zhang, Shixiu; Zhang, Zhiyong; Bezemer, T. Martijn; Liang, Wenju


    Abstract Soil nematode communities can provide important information about soil food web structure and function. However, how soil nematode communities and their metabolic footprints change over time in temperate forests is not well known. We examined the changes in the composition, diversity and me

  7. Assessment of soil properties under degraded forests: Javor mountain in Republic of Srpska - a case study

    Directory of Open Access Journals (Sweden)

    Kapović Marijana


    Full Text Available This paper presents the main characteristics of soils under degraded beech forests on Mt. Javor and the possibility of the reintroduction of the spruce and fir that had been cut during previous negative human activity. Research into forest soil characteristics before reforestation is not common practice in the Republic of Srpska, and very often is not successful because it has not been established which soil environment conditions are most appropriate for a particular tree species. Soil degradation has been attributed to improper management and the unplanned deforestation of some parts of the Javor Mountain. Degraded parts were initially colonized by bushes and herbaceous vegetation, but despite this and due to the steep slopes, soil erosion has occurred. The restoration of degraded forests usually requires reforestation in order to reduce soil erosion and convert low to high forests. The aim of this study was the assessment of soil properties for the reintroduction of Picea abies (Karst. and Abies alba (Mill. on degraded parts of Mt. Javor, as one of the ways to protect the forest soil from erosion. According to the World Reference Base we determined the following soil types: Albic Acrisol, Dystric Cambisol and Mollic Leptosol. All analyzed soils can meet the demands of fir and spruce due to their characteristics.

  8. Forest Structure Affects Soil Mercury Losses in the Presence and Absence of Wildfire. (United States)

    Homann, Peter S; Darbyshire, Robyn L; Bormann, Bernard T; Morrissette, Brett A


    Soil is an important, dynamic component of regional and global mercury (Hg) cycles. This study evaluated how changes in forest soil Hg masses caused by atmospheric deposition and wildfire are affected by forest structure. Pre and postfire soil Hg measurements were made over two decades on replicate experimental units of three prefire forest structures (mature unthinned, mature thinned, clear-cut) in Douglas-fir dominated forest of southwestern Oregon. In the absence of wildfire, O-horizon Hg decreased by 60% during the 14 years after clearcutting, possibly the result of decreased atmospheric deposition due to the smaller-stature vegetative canopy; in contrast, no change was observed in mature unthinned and thinned forest. Wildfire decreased O-horizon Hg by >88% across all forest structures and decreased mineral-soil (0 to 66 mm depth) Hg by 50% in thinned forest and clear-cut. The wildfire-associated soil Hg loss was positively related to the amount of surface fine wood that burned during the fire, the proportion of area that burned at >700 °C, fire severity as indicated by tree mortality, and soil C loss. Loss of soil Hg due to the 200,000 ha wildfire was more than four times the annual atmospheric Hg emissions from human activities in Oregon.

  9. Soil organic matter quantity and quality shape microbial community compositions of subtropical broadleaved forests. (United States)

    Ding, Junjun; Zhang, Yuguang; Wang, Mengmeng; Sun, Xin; Cong, Jing; Deng, Ye; Lu, Hui; Yuan, Tong; Van Nostrand, Joy D; Li, Diqiang; Zhou, Jizhong; Yang, Yunfeng


    As two major forest types in the subtropics, broadleaved evergreen and broadleaved deciduous forests have long interested ecologists. However, little is known about their belowground ecosystems despite their ecological importance in driving biogeochemical cycling. Here, we used Illumina MiSeq sequencing targeting 16S rRNA gene and a microarray named GeoChip targeting functional genes to analyse microbial communities in broadleaved evergreen and deciduous forest soils of Shennongjia Mountain of Central China, a region known as 'The Oriental Botanic Garden' for its extraordinarily rich biodiversity. We observed higher plant diversity and relatively richer nutrients in the broadleaved evergreen forest than the deciduous forest. In odds to our expectation that plant communities shaped soil microbial communities, we found that soil organic matter quantity and quality, but not plant community parameters, were the best predictors of microbial communities. Actinobacteria, a copiotrophic phylum, was more abundant in the broadleaved evergreen forest, while Verrucomicrobia, an oligotrophic phylum, was more abundant in the broadleaved deciduous forest. The density of the correlation network of microbial OTUs was higher in the broadleaved deciduous forest but its modularity was smaller, reflecting lower resistance to environment changes. In addition, keystone OTUs of the broadleaved deciduous forest were mainly oligotrophic. Microbial functional genes associated with recalcitrant carbon degradation were also more abundant in the broadleaved deciduous forests, resulting in low accumulation of organic matters. Collectively, these findings revealed the important role of soil organic matter in shaping microbial taxonomic and functional traits.

  10. Responses of soil fungi to logging and oil palm agriculture in Southeast Asian tropical forests. (United States)

    McGuire, K L; D'Angelo, H; Brearley, F Q; Gedallovich, S M; Babar, N; Yang, N; Gillikin, C M; Gradoville, R; Bateman, C; Turner, B L; Mansor, P; Leff, J W; Fierer, N


    Human land use alters soil microbial composition and function in a variety of systems, although few comparable studies have been done in tropical forests and tropical agricultural production areas. Logging and the expansion of oil palm agriculture are two of the most significant drivers of tropical deforestation, and the latter is most prevalent in Southeast Asia. The aim of this study was to compare soil fungal communities from three sites in Malaysia that represent three of the most dominant land-use types in the Southeast Asia tropics: a primary forest, a regenerating forest that had been selectively logged 50 years previously, and a 25-year-old oil palm plantation. Soil cores were collected from three replicate plots at each site, and fungal communities were sequenced using the Illumina platform. Extracellular enzyme assays were assessed as a proxy for soil microbial function. We found that fungal communities were distinct across all sites, although fungal composition in the regenerating forest was more similar to the primary forest than either forest community was to the oil palm site. Ectomycorrhizal fungi, which are important associates of the dominant Dipterocarpaceae tree family in this region, were compositionally distinct across forests, but were nearly absent from oil palm soils. Extracellular enzyme assays indicated that the soil ecosystem in oil palm plantations experienced altered nutrient cycling dynamics, but there were few differences between regenerating and primary forest soils. Together, these results show that logging and the replacement of primary forest with oil palm plantations alter fungal community and function, although forests regenerating from logging had more similarities with primary forests in terms of fungal composition and nutrient cycling potential. Since oil palm agriculture is currently the mostly rapidly expanding equatorial crop and logging is pervasive across tropical ecosystems, these findings may have broad applicability.

  11. AirMOSS P-Band Radar Retrieval of Subcanopy Soil Moisture Profile (United States)

    Tabatabaeenejad, A.; Burgin, M. S.; Duan, X.; Moghaddam, M.


    Knowledge of soil moisture, as a key variable of the Earth system, plays an important role in our under-standing of the global water, energy, and carbon cycles. The importance of such knowledge has led NASA to fund missions such as Soil Moisture Active and Passive (SMAP) and Airborne Microwave Observatory of Subcanopy and Subsurface (AirMOSS). The AirMOSS mission seeks to improve the estimates of the North American Net Ecosystem Exchange (NEE) by providing high-resolution observations of the root zone soil moisture (RZSM) over regions representative of the major North American biomes. AirMOSS flies a P-band SAR to penetrate vegetation and into the root zone to provide estimates of RZSM. The flights cover areas containing flux tower sites in regions from the boreal forests in Saskatchewan, Canada, to the tropical forests in La Selva, Costa Rica. The radar snapshots are used to generate estimates of RZSM via inversion of a scattering model of vegetation overlying soils with variable moisture profiles. These retrievals will be used to generate a time record of RZSM, which will be integrated with an ecosystem demography model in order to estimate the respiration and photosynthesis carbon fluxes. The aim of this work is the retrieval of the moisture profile over AirMOSS sites using the collected P-band radar data. We have integrated layered-soil scattering models into a forest scattering model; for the backscattering from ground and for the trunk-ground double-bounce mechanism, we have used a layered small perturbation method and a coherent scattering model of layered soil, respectively. To estimate the soil moisture profile, we represent it as a second-order polynomial in the form of az2 + bz + c, where z is the depth and a, b, and c are the coefficients to be retrieved from radar measurements. When retrieved, these coefficients give us the soil moisture up to a prescribed depth of validity. To estimate the unknown coefficients of the polynomial, we use simulated

  12. Soil carbon storage following road removal and timber harvesting in redwood forests (United States)

    Seney, Joseph; Madej, Mary Ann


    Soil carbon storage plays a key role in the global carbon cycle and is important for sustaining forest productivity. Removal of unpaved forest roads has the potential for increasing carbon storage in soils on forested terrain as treated sites revegetate and soil properties improve on the previously compacted road surfaces. We compared soil organic carbon (SOC) content at several depths on treated roads to SOC in adjacent second-growth forests and old-growth redwood forests in California, determined whether SOC in the upper 50 cm of soil varies with the type of road treatment, and assessed the relative importance of site-scale and landscape-scale variables in predicting SOC accumulation in treated road prisms and second-growth redwood forests. Soils were sampled at 5, 20, and 50 cm depths on roads treated by two methods (decommissioning and full recontouring), and in adjacent second-growth and old-growth forests in north coastal California. Road treatments spanned a period of 32 years, and covered a range of geomorphic and vegetative conditions. SOC decreased with depth at all sites. Treated roads on convex sites exhibited higher SOC than on concave sites, and north aspect sites had higher SOC than south aspect sites. SOC at 5, 20, and 50 cm depths did not differ significantly between decommissioned roads (treated 18–32 years previous) and fully recontoured roads (treated 2–12 years previous). Nevertheless, stepwise multiple regression models project higher SOC developing on fully recontoured roads in the next few decades. The best predictors for SOC on treated roads and in second-growth forest incorporated aspect, vegetation type, soil depth, lithology, distance from the ocean, years since road treatment (for the road model) and years since harvest (for the forest model). The road model explained 48% of the variation in SOC in the upper 50 cm of mineral soils and the forest model, 54%


    Directory of Open Access Journals (Sweden)

    Elcio Liborio Balota


    Full Text Available Many forested areas have been converted to intensive agricultural use to satisfy food, fiber, and forage production for a growing world population. There is great interest in evaluating forest conversion to cultivated land because this conversion adversely affects several soil properties. We examined soil microbial, physical, and chemical properties in an Oxisol (Latossolo Vermelho distrófico of southern Brazil 24 years after forest conversion to a perennial crop with coffee or annual grain crops (maize and soybeans in conventional tillage or no-tillage. One goal was to determine which soil quality parameters seemed most sensitive to change. A second goal was to test the hypothesis that no-tillage optimized preservation of soil quality indicators in annual cropping systems on converted land. Land use significantly affected microbial biomass and its activity, C and N mineralization, and aggregate stability by depth. Cultivated sites had lower microbial biomass and mineralizable C and N than a forest used as control. The forest and no-tillage sites had higher microbial biomass and mineralizable C and N than the conventional tillage site, and the metabolic quotient was 65 and 43 % lower, respectively. Multivariate analysis of soil microbial properties showed a clear separation among treatments, displaying a gradient from conventional tillage to forest. Although the soil at the coffee site was less disturbed and had a high organic C content, the microbial activity was low, probably due to greater soil acidity and Al toxicity. Under annual cropping, microbial activity in no-tillage was double that of the conventional tillage management. The greater microbial activity in forest and no-tillage sites may be attributed, at least partially, to lower soil disturbance. Reducing soil disturbance is important for soil C sequestration and microbial activity, although control of soil pH and Al toxicity are also essential to maintain the soil microbial activity

  14. Prediction of Soil Erosion Rates in Japan where Heavily Forested Landscape with Unstable Terrain (United States)

    Nanko, K.; Oguro, M.; Miura, S.; Masaki, T.


    Soil is fundamental for plant growth, water conservation, and sustainable forest management. Multidisciplinary interest in the role of the soil in areas such as biodiversity, ecosystem services, land degradation, and water security has been growing (Miura et al., 2015). Forest is usually protective land use from soil erosion because vegetation buffers rainfall power and erosivity. However, some types of forest in Japan show high susceptibility to soil erosion due to little ground cover and steep slopes exceeding thirty degree, especially young Japanese cypress (Chamaecyparis obtusa) plantations (Miura et al., 2002). This is a critical issue for sustainable forest management because C. obtusaplantations account for 10% of the total forest coverage in Japan (Forestry Agency, 2009). Prediction of soil erosion rates on nationwide scale is necessary to make decision for future forest management plan. To predict and map soil erosion rates across Japan, we applied three soil erosion models, RUSLE (Revised Universal Soil Loss Equation, Wischmeier and Smith, 1978), PESERA (Pan-European Soil Erosion Risk Assessment, Kirkby et al., 2003), and RMMF (Revised Morgan-Morgan-Finney, Morgan, 2001). The grid scale is 1-km. RUSLE and PESERA are most widely used erosion models today. RMMF includes interactions between rainfall and vegetation, such as canopy interception and ratio of canopy drainage in throughfall. Evaporated rainwater by canopy interception, generally accounts for 15-20% in annual rainfall, does not contribute soil erosion. Whereas, larger raindrops generated by canopy drainage produced higher splash erosion rates than gross rainfall (Nanko et al., 2008). Therefore, rainfall redistribution process in canopy should be considered to predict soil erosion rates in forested landscape. We compared the results from three erosion models and analyze the importance of environmental factors for the prediction of soil erosion rates. This research was supported by the Environment

  15. Final Progress Report on Model-Based Diagnosis of Soil Limitations to Forest Productivity

    Energy Technology Data Exchange (ETDEWEB)

    Luxmoore, R.J.


    This project was undertaken in support of the forest industry to link modeling of nutrients and productivity with field research to identify methods for enhancing soil quality and forest productivity and for alleviating soil limitations to sustainable forest productivity. The project consisted of a series of related tasks, including (1) simulation of changes in biomass and soil carbon with nitrogen fertilization, (2) development of spreadsheet modeling tools for soil nutrient availability and tree nutrient requirements, (3) additional modeling studies, and (4) evaluation of factors involved in the establishment and productivity of southern pine plantations in seasonally wet soils. This report also describes the two Web sites that were developed from the research to assist forest managers with nutrient management of Douglas-fir and loblolly pine plantations.

  16. Human impacts on soil carbon dynamics of deep-rooted Amazonian forests (United States)

    Nepstad, Daniel C.; Stone, Thomas A.; Davidson, Eric A.


    Deforestation and logging degrade more forest in eastern and southern Amazonia than in any other region of the world. This forest alteration affects regional hydrology and the global carbon cycle, but our current understanding of these effects is limited by incomplete knowledge of tropical forest ecosystems. It is widely agreed that roots are concentrated near the soil surface in moist tropical forests, but this generalization incorrectly implies that deep roots are unimportant in water and C budgets. Our results indicate that half of the closed-canopy forests of Brazilian Amazonic occur where rainfall is highly seasonal, and these forests rely on deeply penetrating roots to extract soil water. Pasture vegetation extracts less water from deep soil than the forest it replaces, thus increasing rates of drainage and decreasing rates of evapotranspiration. Deep roots are also a source of modern carbon deep in the soil. The soils of the eastern Amazon contain more carbon below 1 m depth than is present in above-ground biomass. As much as 25 percent of this deep soil C could have annual to decadal turnover times and may be lost to the atmosphere following deforestation. We compared the importance of deep roots in a mature, evergreen forest with an adjacent man-made pasture, the most common type of vegetation on deforested land in Amazonia. The study site is near the town of Paragominas, in the Brazilian state of Para, with a seasonal rainfall pattern and deeply-weathered, kaolinitic soils that are typical for large portions of Amazonia. Root distribution, soil water extraction, and soil carbon dynamics were studied using deep auger holes and shafts in each ecosystem, and the phenology and water status of the leaf canopies were measured. We estimated the geographical distribution of deeply-rooting forests using satellite imagery, rainfall data, and field measurements.

  17. Assessing Bioenergy Harvest Risks: Geospatially Explicit Tools for Maintaining Soil Productivity in Western US Forests

    Directory of Open Access Journals (Sweden)

    Deborah Page-Dumroese


    Full Text Available Biomass harvesting for energy production and forest health can impact the soil resource by altering inherent chemical, physical and biological properties. These impacts raise concern about damaging sensitive forest soils, even with the prospect of maintaining vigorous forest growth through biomass harvesting operations. Current forest biomass harvesting research concurs that harvest impacts to the soil resource are region- and site-specific, although generalized knowledge from decades of research can be incorporated into management activities. Based upon the most current forest harvesting research, we compiled information on harvest activities that decrease, maintain or increase soil-site productivity. We then developed a soil chemical and physical property risk assessment within a geographic information system for a timber producing region within the Northern Rocky Mountain ecoregion. Digital soil and geology databases were used to construct geospatially explicit best management practices to maintain or enhance soil-site productivity. The proposed risk assessments could aid in identifying resilient soils for forest land managers considering biomass operations, policy makers contemplating expansion of biomass harvesting and investors deliberating where to locate bioenergy conversion facilities.

  18. Do agricultural terraces and forest fires recurrence in Mediterranean afforested micro-catchments alter soil quality and soil nutrient content? (United States)

    E Lucas-Borja, Manuel; Calsamiglia, Aleix; Fortesa, Josep; García-Comendador, Julián; Gago, Jorge; Estrany, Joan


    Bioclimatic characteristics and intense human pressure promote Mediterranean ecosystems to be fire-prone. Afforestation processes resulting from the progressive land abandonment during the last decades led to greater biomass availability increasing the risk of large forest fires. Likewise, the abandonment and lack of maintenance in the terraced lands constitute a risk of land degradation in terms of soil quantity and quality. Despite the effects of fire and the abandonment of terraced lands on soil loss and physico-chemical properties are identified, it is not clearly understood how wildfires and abandonment of terraces affect soil quality and nutrients content. Microbiological soil parameters and soil enzymes activities are biomarkers of the soil microbial communitýs functional ability, which potentially enables them as indicators of change, disturbance or stress within the soil community. The objective of this study was to investigate the effects of terracing (abandoned and non-abandoned) on the soil enzyme activities, microbiological soil parameters and soil nutrients dynamics in three Mediterranean afforested micro-catchments (i.e., trend with higher values in terraced plots, although differences were weaker. We conclude that terraced landscapes present poorer soil quality parameters due to land abandonment and the lack of terraced management. In addition, forest fire recurrence exacerbates soil degradation processes due to the direct effects on vegetation and soil properties.

  19. Speciation and migration of 129I in soil profiles

    DEFF Research Database (Denmark)

    Luo, Maoyi; Hou, Xiaolin; Zhou, Weijian;


    A method has been developed for speciation analysis of ultra low level 129I in soil using sequential extraction combined with coprecipitation for separation of carrier free iodine and AMS measurement of 129I. Two loess profiles collected from northwest China were analyzed for species of 129I...

  20. Soil changes induced by rubber and tea plantation establishment: comparison with tropical rain forest soil in Xishuangbanna, SW China. (United States)

    Li, Hongmei; Ma, Youxin; Liu, Wenjie; Liu, Wenjun


    Over the past thirty years, Xishuangbanna in Southwestern China has seen dramatic changes in land use where large areas of tropical forest and fallow land have been converted to rubber and tea plantations. In this study we evaluated the effects of land use and slope on soil properties in seven common disturbed and undisturbed land-types. Results indicated that all soils were acidic, with pH values significantly higher in the 3- and 28-year-old rubber plantations. The tropical forests had the lowest bulk densities, especially significantly lower from the top 10 cm of soil, and highest soil organic matter concentrations. Soil moisture content at topsoil was highest in the mature rubber plantation. Soils in the tropical forests and abandoned cultivated land had inorganic N (IN) concentrations approximately equal in NH(4) (+)-N and NO(3) (-)-N. However, soil IN pools were dominated by NH(4) (+)-N in the rubber and tea plantations. This trend suggests that conversion of tropical forest to rubber and tea plantations increases NH(4) (+)-N concentration and decreases NO(3) (-)-N concentration, with the most pronounced effect in plantations that are more frequently fertilized. Soil moisture content, IN, NH(4) (+)-N and NO(3) (-)-N concentrations within all sites were higher in the rainy season than in the dry season. Significant differences in the soil moisture content, and IN, NH(4) (+)-N and NO(3) (-)-N concentration was detected for both land uses and sampling season effects, as well as interactions. Higher concentrations of NH(4) (+)-N were measured at the upper slopes of all sites, but NO(3) (-)-N concentrations were highest at the lower slope in the rubber plantations and lowest at the lower slopes at all other. Thus, the conversion of tropical forests to rubber and tea plantations can have a profound effect on soil NH(4) (+)-N and NO(3) (-)-N concentrations. Options for improved soil management in plantations are discussed.

  1. Soil fractal features of subalpine coniferous forests in western Sichuan under different anthropogenic disturbances

    Institute of Scientific and Technical Information of China (English)

    LIAO Yongmei; CHEN Jingsong


    Fractal theory,used to study natural figures and images with self-similarity but without characteristic lengths,offers an effective tool to investigate quantitatively the complex systems such as soil.In this paper,we have discussed about our study of the fractal features of the subalpine coniferous forests,soil particles,and microaggregates under different intensities of anthropogenic disturbances in the Miyaluo area of west Sichuan and investigated the effects of the disturbances on the forest soils attributed to different fractal dimensions.The study introduces a new way to investigate the recovery and reestablishment of subalpine coniferous forests.

  2. Drivers of methane uptake by montane forest soils in the Peruvian Andes (United States)

    Jones, Sam; Diem, Torsten; Huaraca Quispe, Lidia; Cahuana, Adan; Meir, Patrick; Teh, Yit


    The exchange of methane between the soils of humid tropical forests and the atmosphere is relatively poorly documented. This is particularly true of montane settings where variations between uptake and emission of atmospheric methane have been observed. Whilst most of these ecosystems appear to function as net sinks for atmospheric methane, some act as considerable sources. In regions like the Andes, humid montane forests are extensive and a better understanding of the magnitude and controls on soil-atmosphere methane exchange is required. We report methane fluxes from upper montane cloud forest (2811 - 2962 m asl), lower montane cloud forest (1532 - 1786 m asl), and premontane forest (1070 - 1088 m asl) soils in south-eastern Peru. Between 1000 and 3000 m asl, mean annual air temperature and total annual precipitation decrease from 24 ° C and 5000 mm to 12 ° C and 1700 mm. The study region experiences a pronounced wet season between October and April. Monthly measurements of soil-atmosphere gas exchange, soil moisture, soil temperature, soil oxygen concentration, available ammonium and available nitrate were made from February 2011 in the upper and lower montane cloud forests and July 2011 in the premontane forest to June 2013. These soils acted as sinks for atmospheric methane with mean net fluxes for wet and dry season, respectively, of -2.1 (0.2) and -1.5 (0.1) mg CH4 m-2 d-1 in the upper montane forest; -1.5 (0.2) and -1.4 (0.1) mg CH4 m-2 d-1in the lower montane forest; and -0.3 (0.2) and -0.2 (0.2) mg CH4 m-2 d-1 in the premontane forest. Spatial variations among forest types were related to available nitrate and water-filled pore space suggesting that nitrate inhibition of oxidation or constraints on the diffusional supply of methane to methanotrophic communities may be important controls on methane cycling in these soils. Seasonality in methane exchange, with weaker uptake related to increased water-filled pore space and soil temperature during the wet

  3. Does nitrogen saturation theory apply to unpolluted temperate forests? A test along a forest soil nitrogen gradient in Oregon (United States)

    Perakis, S. S.; Sinkhorn, E. R.


    Natural gradients of soil nitrogen (N) can be used to evaluate the consequences of long-term ecosystem N enrichment, and to test the applicability of N saturation theory as a general framework for understanding ecosystem N dynamics. Temperate forest soils of the Oregon Coast Range experience low rates of atmospheric N deposition, yet display among the highest soil N accumulations ever reported worldwide. We measured plant and soil (0-1m) N stocks and natural abundance delta15N, plant production, N uptake and return in litterfall, soil gross and net N mineralization rates, and hydrologic N losses of nine Douglas-fir forests growing across an exceptionally wide soil N gradient in the Oregon Coast Range. Ecosystem N content ranged from 8,788 to 22,667 kg N/ha across sites, with highest N accumulations near the coast, and 96-98% of total ecosystem N residing in mineral soil. Ecosystem delta15N displayed a curvilinear relationship with ecosystem N content that reflected competing influences of N input from biological fixation at low-N sites and fractionating N losses at high-N sites. Simulation modeling of ecosystem N and delta15N mass balance suggest that cycles of wildfire can promote unusually high natural N accumulation by fostering early successional biological nitrogen fixation. Surface mineral soil (0 - 10 cm) N concentrations were tightly correlated to total soil N stocks to 1 m depth, and in contrast to predictions of N saturation theory, were linearly related to 10-fold variation in net N mineralization from 8 - 82 kg N/ha-yr. Net N mineralization was unrelated to soil C:N, soil texture, precipitation and temperature differences among sites. Net nitrification accounted for forest N cycles suggests that where future reductions in deposition to polluted sites do occur, symptoms of N saturation are most likely to persist where soil N content remains elevated.

  4. Soils (United States)

    Emily Moghaddas; Ken Hubbert


    When managing for resilient forests, each soil’s inherent capacity to resist and recover from changes in soil function should be evaluated relative to the anticipated extent and duration of soil disturbance. Application of several key principles will help ensure healthy, resilient soils: (1) minimize physical disturbance using guidelines tailored to specific soil types...

  5. Forest thinning and soil respiration in a ponderosa pine plantation in the Sierra Nevada. (United States)

    Tang, Jianwu; Qi, Ye; Xu, Ming; Misson, Laurent; Goldstein, Allen H


    Soil respiration is controlled by soil temperature, soil water, fine roots, microbial activity, and soil physical and chemical properties. Forest thinning changes soil temperature, soil water content, and root density and activity, and thus changes soil respiration. We measured soil respiration monthly and soil temperature and volumetric soil water continuously in a young ponderosa pine (Pinus ponderosa Dougl. ex P. Laws. & C. Laws.) plantation in the Sierra Nevada Mountains in California from June 1998 to May 2000 (before a thinning that removed 30% of the biomass), and from May to December 2001 (after thinning). Thinning increased the spatial homogeneity of soil temperature and respiration. We conducted a multivariate analysis with two independent variables of soil temperature and water and a categorical variable representing the thinning event to simulate soil respiration and assess the effect of thinning. Thinning did not change the sensitivity of soil respiration to temperature or to water, but decreased total soil respiration by 13% at a given temperature and water content. This decrease in soil respiration was likely associated with the decrease in root density after thinning. With a model driven by continuous soil temperature and water time series, we estimated that total soil respiration was 948, 949 and 831 g C m(-2) year(-1) in the years 1999, 2000 and 2001, respectively. Although thinning reduced soil respiration at a given temperature and water content, because of natural climate variability and the thinning effect on soil temperature and water, actual cumulative soil respiration showed no clear trend following thinning. We conclude that the effect of forest thinning on soil respiration is the combined result of a decrease in root respiration, an increase in soil organic matter, and changes in soil temperature and water due to both thinning and interannual climate variability.

  6. Organic carbon stocks and sequestration rates of forest soils in Germany. (United States)

    Grüneberg, Erik; Ziche, Daniel; Wellbrock, Nicole


    The National Forest Soil Inventory (NFSI) provides the Greenhouse Gas Reporting in Germany with a quantitative assessment of organic carbon (C) stocks and changes in forest soils. Carbon stocks of the organic layer and the mineral topsoil (30 cm) were estimated on the basis of ca. 1.800 plots sampled from 1987 to 1992 and resampled from 2006 to 2008 on a nationwide grid of 8 × 8 km. Organic layer C stock estimates were attributed to surveyed forest stands and CORINE land cover data. Mineral soil C stock estimates were linked with the distribution of dominant soil types according to the Soil Map of Germany (1 : 1 000 000) and subsequently related to the forest area. It appears that the C pool of the organic layer was largely depending on tree species and parent material, whereas the C pool of the mineral soil varied among soil groups. We identified the organic layer C pool as stable although C was significantly sequestered under coniferous forest at lowland sites. The mineral soils, however, sequestered 0.41 Mg C ha(-1) yr(-1) . Carbon pool changes were supposed to depend on stand age and forest transformation as well as an enhanced biomass input. Carbon stock changes were clearly attributed to parent material and soil groups as sandy soils sequestered higher amounts of C, whereas clayey and calcareous soils showed small gains and in some cases even losses of soil C. We further showed that the largest part of the overall sample variance was not explained by fine-earth stock variances, rather by the C concentrations variance. The applied uncertainty analyses in this study link the variability of strata with measurement errors. In accordance to other studies for Central Europe, the results showed that the applied method enabled a reliable nationwide quantification of the soil C pool development for a certain period.

  7. Wildfire mitigation strategies affect soil enzyme activity and soil organic carbon in loblolly pine (Pinus taeda) forests (United States)

    R.E.J. Boerner; T.A. Waldrop; V.B. Shelburne


    We quantified the effects of three wildfire hazard reduction treatments (prescribed fire, thinning from below, and the combination of fire and thinning), and passive management (control) on mineral soil organic C, and enzyme activity in loblolly pine (Pinus taeda L.) forests on the Piedmont of South Carolina. Soil organic C was reduced by thinning,...

  8. Soil Properties in Natural Forest Destruction and Conversion to Agricultural Land,in Gunung Leuser National Park, North Sumatera Province

    Directory of Open Access Journals (Sweden)

    Basuki Wasis


    Full Text Available Destruction of the Gunung Leuser National Park area of North Sumatera Province through land clearing and land cover change from natural forest to agricultural land. Less attention to land use and ecosystem carrying capacity of the soil can cause soil degradation and destruction of flora, fauna, and wildlife habitat destruction. Environmental damage will result in a national park wild life will come out of the conservation area and would damage the agricultural community. Soil sampling conducted in purposive sampling in natural forest and agricultural areas.  Observation suggest that damage to the natural forest vegetation has caused the soil is not protected so that erosion has occurred. Destruction of natural forest into agricultural are as has caused damage to soil physical properties, soil chemical properties, and biological soil properties significantly. Forms of soil degradation caused by the destruction of natural forests, which is an increase in soil density (density Limbak by 103%, a decrease of 93% organic C and soil nitrogen decreased by 81%. The main factors causing soil degradation is the reduction of organic matter and soil erosion due to loss of natural forest vegetation.  Criteria for soil degradation in Governance Regulation Number 150/2000 can be used to determine the extent of soil degradation in natural forest ecosystems.Keywords: Gunung Leuser National Park, natural forest, agricultural land, land damage, soil properties

  9. Assessment of carbon pools in two soils from the Campania region (Southwest, Italy) under different forest types (United States)

    Álvarez-Romero, Marta; Papa, Stefania; Lozano-García, Beatriz; Parras-Alcántara, Luis; González-Pérez, José A.; Jordán, Antonio; Zavala, Lorena M.; González-Vila, Francisco J.; Coppola, Elio


    Soil is the largest carbon reservoir of terrestrial ecosystems, this reservoir is not inert, but it is constantly in a dynamic phase of accumulation an depletion. After the addition, in the soil, of organic residues of different origin and nature, two processes can occur in charge of SOM (Soil Organic Matter) during the pedogenesis: mineralization and humification. The accumulation of SOM in soil is controlled by the balance between carbon inputs and losses through mineralization and/or leaching. In particular the humification process leads to the formation of organic compounds (in some cases even complex organo-mineral) chemically stable able to distribute itself in the soil second rules of site-specific pedogenesis. The transport process along the profile can take very different forms which may extend in the formation of Bh horizons of accumulation in depth also strongly cemented (so-called ortstein). The transport process along the profile occurs for the occurrence of certain conditions such as deposition of high amounts of organic residues on the top of the profile, high porosity of the soil for the presence of coarse solid fractions (coarse sands or skeleton) that determinate a strong infiltrating capacity of the circulating waters, extreme temperatures can slow or stop the process of mineralization and/or humification in one intermediate step of the degradation process releasing organic metabolites with high or medium solubility and high loads of percolating water related to intense rainfall. The nature of the forest cover influence the quantity and quality of the organic materials deposited with marked differences between coniferous and deciduous especially in relation to resistance to degradation and production of intermediate metabolites. Two soils from Campania region located in Monte Santa Croce (Caserta, Italy) with andic properties, different forest cover (pine and chestnut) and that meets the requirements of the place and pedological formation

  10. Soil water repellency characteristic curves for soil profiles with natural organic carbon gradients (United States)

    Kawamoto, Ken; Müller, Karin; Moldrup, Per; de Jonge, Lis; Clothier, Brent; Hiradate, Syuntaro; Komatsu, Toshiko


    Soil water repellency (SWR) is a phenomenon that influences many soil hydrologic processes such as reduction of infiltration, increase in overland flow, and enhanced preferential flow. SWR has been observed in various soil types and textures, and the degree of SWR is greatly controlled by soil moisture content and levels of organic matter and clay. One of the key topics in SWR research is how to describe accurately the seasonal and temporal variation of SWR with the controlling factors such as soil moisture, organic matter, and clay contents for soil profiles with natural organic carbon gradients. In the present study, we summarize measured SWR data for soil profiles under different land uses and vegetation in Japan and New Zealand, and compared these with literature data. We introduce the contact angle-based evaluation of SWR and predictive models for soil water repellency characteristic curves, in which the contact angle is a function of the moisture content. We also discuss a number of novel concepts, including i) the reduction in the contact angle with soil-water contact time to describe the time dependence of SWR, ii) the relationship between the contact angles from the measured scanning curves under controlled wetting and drying cycles, and iii) the initial contact angles measured by the sessile drop method.

  11. Solvent-extractable lipids in an acid andic forest soil; variations with dept and season

    NARCIS (Netherlands)

    Naafs, Derck Ferdinand Werner; Bergen, P.F. van; Boogert, S.J.; Leeuw, J.W. de


    Total lipid extracts from an acid andic soil profile located on Madeira Island (Portugal) were analysed using gas chromatography (GC) and GC–mass spectrometry (GC/MS). The profile was covered mainly by grass. Bulk soil characteristics determined included soil pH (H2O) ranging from 4.5 to 4.0 and TOC

  12. Effect of soil carbohydrates on nutrient availability in natural forests and cultivated lands in Sri Lanka (United States)

    Ratnayake, R. R.; Seneviratne, G.; Kulasooriya, S. A.


    Carbohydrates supply carbon sources for microbial activities that contribute to mineral nutrient production in soil. Their role on soil nutrient availability has not yet been properly elucidated. This was studied in forests and cultivated lands in Sri Lanka. Soil organic matter (SOM) fractions affecting carbohydrate availability were also determined. Soil litter contributed to sugars of plant origin (SPO) in croplands. The negative relationship found between clay bound organic matter (CBO) and glucose indicates higher SOM fixation in clay that lower its availability in cultivated lands. In forests, negative relationships between litter and sugars of microbial origin (SMO) showed that litter fuelled microbes to produce sugars. Fucose and glucose increased the availability of Cu, Zn and Mn in forests. Xylose increased Ca availability in cultivated lands. Arabinose, the main carbon source of soil respiration reduced the P availability. This study showed soil carbohydrates and their relationships with mineral nutrients could provide vital information on the availability of limiting nutrients in tropical ecosystems.

  13. Geochemistry of vanadium in soils of forest ecosystems of the Prysamar’ja Dniprovske region

    Directory of Open Access Journals (Sweden)

    N. N. Tsvetkova


    Full Text Available Content and distribution of total and mobile forms of trace element Vanadium in the soils of forest and forb-fescue-stipa steppe ecosystems within the Prysamar’ja Dniprovske were studied. It was ascertained, that the gross content of Vanadium in these soils vary from 49 in the pinery-sod soil to 210 mg×kg–1 in chernozem improved by forest.The conent of mobile forms vary from 3 in chernozem to 20 mg×kg–1 in flood pratal-forest soil. Percentage of Vanadium mobility in studied soils was from 1.6 in top horizon of chernozem to 30 % in the mother rock of pinery-sod soil.

  14. Use of mathematical models for assessing the pool and dynamics of carbon in forest soils (United States)

    Komarov, A. S.


    The contribution of forest soils to the total carbon budget and to the emission of greenhouse gases is an important problem involved in many international programs, including the Kyoto Protocol. Direct measurements of the carbon pool in forest soils and its changes are slow and expensive; therefore, mathematical models are proposed in different countries for describing the dynamics of soil organic matter (SOM). The models differ in complexity and consider different processes of SOM mineralization and humification. The input parameters include model coefficients (these are usually the rates of decomposition and humification of different SOM compartments) and the initial values for different SOM pools. The coefficients can be estimated in special laboratory and field experiments, but the characteristics of the initial values for different SOM pools are usually absent. In this case, some assumptions about the character of SOM accumulation, which depends on forest vegetation, are used. The most realistic is the use of databases on the pools of carbon and other elements related to the types of forest or habitat conditions, including the primarily water regime and soil fertility. Under some suppositions, the agreement conditions between the main parameters of the SOM and forest vegetation can be formulated to assess the initial SOM pools in the forest litter and mineral horizons of the soil. An example of assessing the prediction of forest soil dynamics in Leningrad oblast was considered.

  15. Relationships between spruce plantation age, solute and soil chemistry in Hafren forest

    Directory of Open Access Journals (Sweden)

    P. A. Stevens


    Full Text Available Rain, throughfall, soil waters from surface peaty O horizon and deeper mineral B horizon, and stream water, were collected every four weeks for one year in a moorland catchment, and in four forested catchments. The four forested catchments represented an age sequence of first rotation Sitka spruce plantations, aged 14, 28, 37 and 53 years. All water samples were analysed for all major solutes, including dissolved organic nitrogen (DON-N; stream water and B horizon soil waters were also subjected to aluminium speciation. In each catchment, soil samples were collected on one occasion and pH was measured. Concentrations of most solutes were substantially higher in the 37 year old forest stand than in the moorland catchment, with intermediate concentrations in the two younger stands and 53 year old stand. In particular, higher nitrate-N concentrations were found in the soils and streams of the older forests, although these concentrations tended to be highest in the 37 year old stand. Acid neutralizing capacity (ANC of soil waters was lower in the B horizon of the forest stands than in the moorland, and tended to decline with increasing forest age. Soil water from both O and B horizons was most acid in the 37 year old stand, and the water from the soil O horizon in all four forest stands was more acid than that in moorland sites. The pH of the soil itself (as measured in a deionised water slurry was lower in the forest stands than in moorland, although trends with forest age were complex.

  16. Fine root dynamics for forests on contrasting soils in the colombian Amazon

    Directory of Open Access Journals (Sweden)

    E. M. Jiménez


    Full Text Available It has been hypothesized that in a gradient of increase of soil resources carbon allocated to belowground production (fine roots decreases. To evaluate this hypothesis, we measured the mass and production of fine roots (<2 mm by two methods: 1 ingrowth cores and, 2 sequential soil coring, during 2.2 years in two lowland forests with different soils in the colombian Amazon. Differences of soil resources were determined by the type and physical and chemical properties of soil: a forest on loamy soil (Ultisol at the Amacayacu National Natural Park and, the other on white sands (Spodosol at the Zafire Biological Station, located in the Forest Reservation of the Calderón River. We found that mass and production of fine roots was significantly different between soil depths (0–10 and 10–20 cm and also between forests. White-sand forest allocated more carbon to fine roots than the clayey forest; the production in white-sand forest was twice (2.98 and 3.33 Mg C ha−1 year−1, method 1 and 2, respectively as much as in clayey forest (1.51 and 1.36–1.03 Mg C ha−1 year−1, method 1 and 2, respectively; similarly, the average of fine root mass was higher in the white-sand forest (10.94 Mg C ha−1 than in the forest on clay soils (3.04–3.64 Mg C ha−1. The mass of fine roots also showed a temporal variation related to rainfall, such that production of fine roots decreased substantially in the dry period of the year 2005. Our results suggest that soil resources play an important role in patterns of carbon allocation in these forests; carbon allocated to above-and belowground organs is different between forest types, in such a way that a trade-off above/belowground seems to exist; as a result, it is probable that there are not differences in total net primary productivity between these two forests: does belowground offset lower aboveground production in poorer soils?

  17. An appraisal of physico-chemical and microbiological characteristics of Nanmangalam Reserve Forest soil. (United States)

    Radhapriya, P; Ramachandran, A; Dhanya, P; Remya, K; Malini, P


    A detailed evaluation was performed on the soils of Nanmangalam Reserve Forest (NRF) in order to understand its physico-chemical, microbiological and enzymatic characteristics. The results of analysis showed that soil pH was directly proportional to the soil depth and the soil moisture content was irreversibly related to varying soil depth. Soil organic carbon was positively correlated with (p activity and soil respiration. During summer, microbial population in the organic layer was more diverse than in the deepest layer. Analysis showed that NRF had low organic carbon content (less than 1%), microbial biomass, nutrient and functional microbes. The overall results of the analysis reinstate that Nanmangalam forest soil is undergoing degradation.

  18. Effects of nitrogen and phosphorus additions on soil methane uptake in disturbed forests (United States)

    Zheng, Mianhai; Zhang, Tao; Liu, Lei; Zhang, Wei; Lu, Xiankai; Mo, Jiangming


    Atmospheric nitrogen (N) deposition is generally thought to suppress soil methane (CH4) uptake in natural forests, and phosphorus (P) input may alleviate this negative effect. However, it remains unclear how N and P inputs control soil CH4 uptake in disturbed forests. In this study, soil CH4 uptake rates were measured in two disturbed forests, including a secondary forest (with previous, but not recent, disturbance) and a plantation forest (with recent continuous disturbance), in southern China for 34 months of N and/or P additions: control, N addition (150 kg N ha-1 yr-1), P addition (150 kg P ha-1 yr-1), and NP addition (150 kg N ha-1 yr-1 plus 150 kg P ha-1 yr-1). Mean CH4 uptake rate in control plots was significantly higher in the secondary forest (24.40 ± 0.81 µg CH4-C m-2 h-1) than in the plantation forest (17.07 ± 0.70 µg CH4-C m-2 h-1). CH4 uptake rate had negative relationships with soil water-filled pore space in both forests. In the secondary forest, N, P, and NP additions significantly decreased CH4 uptake by 39.7%, 27.8%, and 37.6%, respectively, but had no significant effects in the plantation forest, indicating that P input does not alleviate the suppression of CH4 uptake by N deposition. Taken together, our findings suggest that reducing anthropogenic disturbance, including harvesting of forest floor, and anthropogenic N and P inputs will increase soil CH4 uptake in disturbed forests, which is important in view of the increased trends in global warming during recent decades.

  19. Litter production, soil organic matter dynamics and microbial activity in two coeval forest stands on Mount Vesuvius (United States)

    de Marco, Anna; Esposito, Fabrizio; Giordano, Maria; Vittozzi, Paola; Virzo de Santo, Amalia


    Forest ecosystems in different climatic zones may accumulate different amounts of soil organic matter (SOM) with different chemical-physical properties. C inputs to SOM are related to net primary production, however C accumulation in the soil largely depends on the balance between net primary production and decomposition. On the other side rates of SOM decomposition are the major control over the supply of mineral nutrients to vegetation and thus over primary production. This study was performed in two coeval (36 years old), adjacent forest stands, a Corsican pine (Pinus nigra Arn.) and a Black locust (Robinia pseudoacacia L.) forest (Atrio del Cavallo, 40° 49'N, 14° 26'E; 810 a.s.l.). The two forests were implanted in 1970 on piroclastic material of the last eruption of Mount Vesuvius (1944). We assessed the quantity and the quality of SOM in a vertical gradient in the continuum of the litter layer, humus layer and mineral soil for the whole soil profile. Moreover we estimated litter production and decomposition, litter and mineral soil (0-5cm) respiration as well as microbial biomass and total and active fungal biomass. Litter fall (measured throughout the years 2006-2008) was higher in the Corsican pine than in the Black locust stand (5234 vs. 2396 g/m2/y). Black locust leaf litter and Corsican pine needle litter reached respectively 60 % and 50% of initial mass after 600 days in situ decomposition. Consistently with the lower litter input and the higher decomposition of black locust, the amount of organic C in the organic soil layers (litter + humus), was significantly higher in the Corsican pine as compared to the Black locust stand (2702 vs. 1636 g/m2). In contrast, in the mineral layers (0-15 cm) the amount of soil organic C was slightly higher in Black locust than in Corsican pine stand (136 vs. 116 g/m2). Litter quality, decomposition dynamics, and SOM quality and activity may help to understand the reason for the uneven distribution of organic carbon

  20. Calculating soil gas fluxes from gas concentration profiles: can we use standard DS models or should we use site-specific DS models? (United States)

    Paulus, Sinikka; Jochheim, Hubert; Wirth, Stephan; Maier, Martin


    The apparent gas diffusion coefficient in soil (DS) is an important parameter describing soil aeration. It also links the profiles of soil gas concentration and soil gas flux using Fick's law. Soil gas diffusivity depends mainly on the structure of the pore system and the soil moisture status. There are several standard DS-models available that can easily be used for calculating DS. Another, more laborious option is to calibrate site specific DS models on soil core samples from the respective profile. We tested 4 standard DS models and a site-specific model and compared the resulting soil gas fluxes in two forest soils. Differences between the models were substantial. Another very important effect, however, is that standard DS models are usually derived from a single soil moisture measurement (device), that can result in an substantial offset in soil moisture estimation. The mean soil moisture content at a depth can be addressed more accurately by taking several soil cores. As a consequence, using standard DS models in combination with a single soil moisture measurement is less reliable than using site-specific models based on several soil samples.

  1. Lead forms in urban turfgrass and forest soils as related to organic matter content and pH (United States)

    Ian D. Yesilonis; Bruce R. James; Richard V. Pouyat; Bahram Momen


    Soil pH may influence speciation and extractability of Pb, depending on type of vegetation in urban soil environments. We investigated the relationship between soil pH and Pb extractability at forest and turf grass sites in Baltimore, Maryland. Our two hypotheses were: (1) due to lower pH values in forest soils, more Pb will be in exchangeable forms in forested than in...

  2. Carbon and Nitrogen Transformations in Surface Soils Under Ermans Birch and Dark Coniferous Forests

    Institute of Scientific and Technical Information of China (English)

    DENG Xiao-Wen; HAN Shi-Jie; HU Yan-Ling; ZHOU Yu-Mei


    Soil samples were taken from an Ermans birch (Betula ermanii)-dark coniferous forest (Picea jezoensis and Abies nephrolepis) ecotone growing on volcanic ejecta in the northern slopc of Changbai Mountains of Northeast China,to compare soil carbon (C) and nitrogen (N) transformations in the two forests.The soil type is Umbri-Gelic Cambosols in Chinese Soil Taxonomy.Soil samples were incubated aerobically at 20 ℃ and field capacity of 700 g kg-1 over a period of 27 weeks.The amount of soil microbial biomass and net N mineralization were higher in the Ermans birch than the dark coniferous forest (P<0.05),whereas the cumulative C mineralization (as CO2 emission) in the dark coniferous forest exceeded that in the Ermans birch (P<0.05).Release of the cumulative dissolved organic C and dissolved organic N were greater in the Ermans birch than the dark coniferous forest (P<0.05).The results suggested that differences of forest types could result in considerable change in soil C and N transformations.

  3. Effect of N and P addition on soil organic C potential mineralization in forest soils in South China

    Institute of Scientific and Technical Information of China (English)

    OUYANG Xuejun; ZHOU Guoyi; HUANG Zhongliang; ZHOU Cunyu; LI Jiong; SHI Junhui; ZHANG Deqiang


    Atmospheric nitrogen deposition is at a high level in some forests of South China. The effects of addition of exogenous N and P on soil organic carbon mineralization were studied to address: (1) if the atmospheric N deposition promotes soil C storage through decreasing mineralization; (2) if the soil available P is a limitation to organic carbon mineralization. Soils (0-10 cm) was sampled from monsoon evergreen broad-leaved forest (MEBF), coniferous and broad-leaved mixed forest (CBMF), and Pinus massoniana forest (PMF) in Dinghushan Biosphere Reserve (located in Gnangdong Province, China). The soils were incubated at 25℃ for 45 weeks, with addition of N (NH4NO3 solution) or P (KH2PO4 solution). CO2-C emission and the inorganic N (NH4+-N and NO3--N) of the soils were determined during the incubation. The results showed that CO2-C emission decreased with the N addition. The addition of P led to a short-term sharp increase in CO2 emission after P application, and the responses of CO2-C evolution to P addition in the later period of incubation related to forest types. Strong P inhibition to CO2 emission occurred in both PMF and CBMF soils in the later incubation. The two-pool kinetic model was fitted well to the data for C turnover in this experiment. The model analysis demonstrated that the addition of N and P changed the distribution of soil organic C between the labile and recalcitrant pool, as well as their mineralization rates. In our experiment, soil pH can not completely explain the negative effect of N addition on CO2-C emission. The changes of soil inorganic N during incubation seemed to support the hypothesis that the polymerization of added nitrogen with soil organic compound by abiotic reactions during incubation made the added nitrogen retard the soil organic carbon mineralization. We conclude that atmospheric N deposition contributes to soil C accretion in the three subtropical forest ecosystems, however, the shortage of soil available P in CBMF and

  4. Biological soil crusts reduce soil erosion in early successional subtropical forests in PR China (United States)

    Seitz, Steffen; Goebes, Philipp; Käppeler, Kathrin; Nebel, Martin; Webber, Carla; Scholten, Thomas


    Biological soil crusts (BSCs) have major influences on terrestrial ecosystems and play significant functional roles in soil systems, such as accelerating soil formation, changing water flows or enhancing soil stability. By that, they have the potential to protect soil surfaces against erosive forces by wind or water. However, the effect of BSCs on erosion processes is rarely mentioned in literature and most of the work done focused on arid and semi-arid environments. Furthermore, compared to the structure and function of BSCs, less attention was paid to their temporal and topographical distribution. This study aims to investigate the influence of BSCs on initial soil erosion, and their topographical development over time in initial subtropical forest ecosystems. Therefore, measurements have been conducted within a biodiversity and ecosystem functioning experiment (BEF China) near Xingangshan, Jiangxi Province, PR China. Interrill erosion was measured on 220 microscale run-off plots (ROPs, 0.4 m × 0.4 m) and the occurrence, distribution and development of BSCs within the measuring setup were recorded. BSC cover in each ROP was determined photogrammetrically in four time steps (autumn 2011, summer 2012, summer 2013 and summer 2014). BSC species were identified by morphological characteristics and classified to higher taxonomic levels. Higher BSC cover led to reduced sediment discharge and runoff volume due to its protection against splash energy, the adherence of soil particles and enhanced infiltration. Canopy ground cover and leaf area index had a positive effect on the development of BSC cover at this initial stage of the forest ecosystem. Moreover, BSC cover decreased with increasing slope, as we presume that developing BSCs are washed away more easily at steep gradients. Elevation and aspect did not show an influence. BSCs in this study were moss-dominated and 26 different moos species were found. Mean BSC cover on ROPs was 14 % in the 3rd year of the tree

  5. Methyl Mercury Formation in Hillslope Soils of Boreal Forests: The Role of Forest Harvest and Anaerobic Microbes. (United States)

    Kronberg, Rose-Marie; Jiskra, Martin; Wiederhold, Jan G; Björn, Erik; Skyllberg, Ulf


    Final harvest (clear-cutting) of coniferous boreal forests has been shown to increase streamwater concentrations and export of the neurotoxin methyl mercury (MeHg) to freshwater ecosystems. Here, the spatial distribution of inorganic Hg and MeHg in soil as a consequence of clear-cutting is reported. A comparison of soils at similar positions along hillslopes in four 80 years old Norway spruce (Picea abies) stands (REFs) with those in four similar stands subjected to clear-cutting (CCs) revealed significantly (p forest harvest.

  6. Influence of environmental factors on the spatial distribution and diversity of forest soil in Latvia


    Raimonds Kasparinskis; Olgerts Nikodemus


    This study was carried out to determine the spatial relationships between environmental factors (Quaternary deposits, topographical situation, land cover, forest site types, tree species, soil texture) and soil groups, and their prefix qualifiers (according to the international Food and Agricultural Organization soil classification system World Reference Base for Soil Resources [FAO WRB]). The results show that it is possible to establish relationships between the distribution of environmenta...

  7. Litter input decreased the response of soil organic matter decomposition to warming in two subtropical forest soils (United States)

    Wang, Qingkui; He, Tongxin; Liu, Jing


    Interaction effect of temperature and litter input on SOM decomposition is poor understood, restricting accurate prediction of the dynamics and stocks of soil organic carbon under global warming. To address this knowledge gap, we conducted an incubation experiment by adding 13C labeled leaf-litter into a coniferous forest (CF) soil and a broadleaved forest (BF) soil. In this experiment, response of the temperature sensitivity (Q10) of SOM decomposition to the increase in litter input was investigated. The temperature dependences of priming effect (PE) and soil microbial community were analyzed. The Q10 for CF soil significantly decreased from 2.41 in no-litter treatment to 2.05 in litter-added treatment and for BF soil from 2.14 to 1.82, suggesting that litter addition decreases the Q10. PE in the CF soil was 24.9% at 20 °C and 6.2% at 30 °C, and in the BF soil the PE was 8.8% at 20 °C and ‑7.0% at 30 °C, suggesting that PE decreases with increasing temperature. Relative PE was positively related to the concentrations of Gram-negative bacterial and fungal PLFAs. This study moves a step forward in understanding warming effect on forest carbon cycling by highlighting interaction effect of litter input and warming on soil carbon cycling.

  8. Litter input decreased the response of soil organic matter decomposition to warming in two subtropical forest soils (United States)

    Wang, Qingkui; He, Tongxin; Liu, Jing


    Interaction effect of temperature and litter input on SOM decomposition is poor understood, restricting accurate prediction of the dynamics and stocks of soil organic carbon under global warming. To address this knowledge gap, we conducted an incubation experiment by adding 13C labeled leaf-litter into a coniferous forest (CF) soil and a broadleaved forest (BF) soil. In this experiment, response of the temperature sensitivity (Q10) of SOM decomposition to the increase in litter input was investigated. The temperature dependences of priming effect (PE) and soil microbial community were analyzed. The Q10 for CF soil significantly decreased from 2.41 in no-litter treatment to 2.05 in litter-added treatment and for BF soil from 2.14 to 1.82, suggesting that litter addition decreases the Q10. PE in the CF soil was 24.9% at 20 °C and 6.2% at 30 °C, and in the BF soil the PE was 8.8% at 20 °C and −7.0% at 30 °C, suggesting that PE decreases with increasing temperature. Relative PE was positively related to the concentrations of Gram-negative bacterial and fungal PLFAs. This study moves a step forward in understanding warming effect on forest carbon cycling by highlighting interaction effect of litter input and warming on soil carbon cycling. PMID:27644258

  9. Influence of environmental factors on the spatial distribution and diversity of forest soil in Latvia

    Directory of Open Access Journals (Sweden)

    Raimonds Kasparinskis


    Full Text Available This study was carried out to determine the spatial relationships between environmental factors (Quaternary deposits, topographical situation, land cover, forest site types, tree species, soil texture and soil groups, and their prefix qualifiers (according to the international Food and Agricultural Organization soil classification system World Reference Base for Soil Resources [FAO WRB]. The results show that it is possible to establish relationships between the distribution of environmental factors and soil groups by applying the generalized linear models in data statistical analysis, using the R 2.11.1 software for processing data from 113 sampling plots throughout the forest territory of Latvia.A very high diversity of soil groups in a relatively similar geological structure was revealed. For various reasons there is not always close relationship between the soil group, their prefix qualifiers and Quaternary deposits, as well as between forest site types, the dominant tree species and specific soil group and its prefix qualifiers. Close correlation was established between Quaternary deposits, forest site types, dominant tree species and soil groups within nutrient-poor sediments and very rich deposits containing free carbonates. No significant relationship was detected between the CORINE Land Cover 2005 classes, topographical situation and soil group.

  10. Influence of different tree-harvesting intensities on forest soil carbon stocks in boreal and northern temperate forest ecosystems

    DEFF Research Database (Denmark)

    Clarke, Nicholas; Gundersen, Per; Jönsson-Belyazid, Ulrika;


    Effective forest governance measures are crucial to ensure sustainable management of forests, but so far there has been little specific focus in boreal and northern temperate forests on governance measures in relation to management effects, including harvesting effects, on soil organic carbon (SOC......) stocks. This paper reviews the findings in the scientific literature concerning the effects of harvesting of different intensities on SOC stocks and fluxes in boreal and northern temperate forest ecosystems to evaluate the evidence for significant SOC losses following biomass removal. An overview...... of existing governance measures related to SOC is given, followed by a discussion on how scientific findings could be incorporated in guidelines and other governance measures. The currently available information does not support firm conclusions about the long-term impact of intensified forest harvesting...

  11. Factors controlling regional differences in forest soil emission of nitrogen oxides (NO and N2O)

    DEFF Research Database (Denmark)

    Pilegaard, K.; Skiba, U.; Ambus, P.;


    Soil emissions of NO and N2O were measured continuously at high frequency for more than one year at 15 European forest sites as part of the EU-funded project NOFRETETE. The locations represent different forest types (coniferous/deciduous) and different nitrogen loads. Geoaphically they range from...... to a compact and moist litter layer lead to N2O production and NO consumption in the soil. The two factors soil moisture and soil temperature are often explaining most of the temporal variation within a site. When comparing annual emissions on a regional scale, however, factors such as nitrogen deposition...

  12. The Research of Forest Soil Organic Carbon Accumulation in Dabie Mountain

    Institute of Scientific and Technical Information of China (English)


    In subtropical to warm temperate transitional zone of the Dabie Mountains hinterland forest topsoil as the research object this text,through the different levels of soil bulk density,organic carbon content of the determination of analytical studies in the area of forest surface soil organic carbon density.Because of the ecological role of small environment,the study area within the soil bulk density increased with depth,surface soil porosity,and bulk density from top to bottom in 0.8.All measuring points ar...

  13. Interpreting δ15N in Soil Profiles: Insights From the N-Isotopes of Amino Acids (United States)

    Philben, M. J.; Edwards, K. A.; Billings, S. A.; Van Biesen, G.; Podrebarac, F. A.; Ziegler, S. E.


    The δ15N of soil organic matter is consistently enriched with depth in soil profiles, although the magnitude of enrichment appears to vary with latitude. This could provide important insights on differences in N cycling among ecosystems, but the mechanism responsible for the depth trend remains controversial. Hypothesized explanations are (1) selective loss of depleted N during decomposition; (2) accumulation of 15N-enriched biomass of decomposers at depth; and (3) transfer of depleted N from depth to the soil surface by mycorrhizal fungi. To constrain these possible mechanisms, we analyzed the δ15N of hydrolyzable amino acids in the L, F, and H soil horizons of 2 boreal forests in southeast Labrador and southwest Newfoundland, Canada, before and after 480-day laboratory incubations of the soils. Most amino acids are both produced and degraded by microbes, but some are not resynthesized. The difference between these groups can be used to isolate the effects of decomposition from other fractionating processes. The amino acid δ15N did not change during the soil incubations, indicating peptide depolymerization does not fractionate N isotopes. This is consistent with a previously conducted fallow experiment in which amino acid δ15N remained unchanged after 68 years of decomposition in the absence of plant inputs. In contrast, the δ15N of most amino acids were enriched by 3-7‰ from the L to the H horizon, similar to the enrichment of bulk δ15N with depth. This pattern suggests these amino acids were resynthesized deeper in the soil profile where the bulk δ15N was more enriched. The δ15N amino acids phenylalanine and hydroxyproline, which are not resynthesized by the microbial community with decomposition, did not change with depth, indicating the depth trend was not due to temporal change in the δ15N of plant inputs to the soil. The enrichment of amino acid δ15N with depth in the soil profiles but not in the incubations or the fallow experiment indicates

  14. Natural attenuation is enhanced in previously contaminated and coniferous forest soils. (United States)

    Kauppi, Sari; Romantschuk, Martin; Strömmer, Rauni; Sinkkonen, Aki


    Prevalence of organic pollutants or their natural analogs in soil is often assumed to lead to adaptation in the bacterial community, which results in enhanced bioremediation if the soil is later contaminated. In this study, the effects of soil type and contamination history on diesel oil degradation and bacterial adaptation were studied. Mesocosms of mineral and organic forest soil (humus) were artificially treated with diesel oil, and oil hydrocarbon concentrations (GC-FID), bacterial community composition (denaturing gradient gel electrophoresis, DGGE), and oil hydrocarbon degraders (DGGE + sequencing of 16S rRNA genes) were monitored for 20 weeks at 16°C. Degradation was advanced in previously contaminated soils as compared with pristine soils and in coniferous organic forest soil as compared with mineral soil. Contamination affected bacterial community composition especially in the pristine mineral soil, where diesel addition increased the number of strong bands in the DGGE gel. Sequencing of cloned 16S rRNA gene fragments and DGGE bands showed that potential oil-degrading bacteria were found in mineral and organic soils and in both pristine and previously contaminated mesocosms. Fast oil degradation was not associated with the presence of any particular bacterial strain in soil. We demonstrate at the mesocosm scale that previously contaminated and coniferous organic soils are superior environments for fast oil degradation as compared with pristine and mineral soil environments. These results may be utilized in preventing soil pollution and planning soil remediation.

  15. Effect of forest and soil type on microbial biomass carbon and respiration (United States)

    Habashi, Hashem


    The aim of study was to evaluate the variation of soil microbial biomass carbon (Cmic) and microbial respiration (MR) in three types soil (Chromic Cambisols, Chromic Luvisols and Eutric Leptosols) of mixed beech forest (Beech- Hornbeam and Beech- Maple). Soil was randomly sampled from 0-10 cm layer (plant litter removed), 90 soil samples were taken. Cmic determined by the fumigation-extraction method and MR by closed bottle method. Soil Corg, Ntot and pH were measured. There are significant differences between the soil types concerning the Cmic content and MR. These parameters were highest in Chromic Cambisols following Chromic Luvisols, while the lowest were in Eutric Leptosols. A similar trend of Corg and Ntot was observed in studied soils. Two-way ANOVA indicated that soil type and forest type have significantly effect on the most soil characteristics. Chromic Cambisols shows a productive soil due to have the maximum Cmic, MR, Corg and Ntot. In Cambisols under Beech- Maple forest the Cmic value and soil C/N ratio were higher compared to Beech-Hornbeam (19.5 and 4.1 mg C g-1, and 16.3 and 3.3, respectively). This fact might be indicated that Maple litter had more easy decomposable organic compounds than Hornbeam. According to regression analysis, 89 and 68 percentage of Cmic variability could explain by soil Corg and Ntot respectively.

  16. Dynamics of soil organic matter in primary and secondary forest succession on sandy soils in The Netherlands: An application of the ROMUL model

    NARCIS (Netherlands)

    Nadporozhskaya, M.A.; Mohren, G.M.J.; Chertov, O.G.; Komarov, A.S.; Mikhailov, A.V.


    We applied the simulation model ROMUL of soil organic matter dynamics in order to analyse and predict forest soil organic matter (SOM) changes following stand growth and also to identify gaps of data and modelling problems. SOM build-up was analysed (a) from bare sand to forest soil during a primary

  17. Dynamics of soil organic matter in primary and secondary forest succession on sandy soils in The Netherlands: An application of the ROMUL model

    NARCIS (Netherlands)

    Nadporozhskaya, M.A.; Mohren, G.M.J.; Chertov, O.G.; Komarov, A.S.; Mikhailov, A.V.


    We applied the simulation model ROMUL of soil organic matter dynamics in order to analyse and predict forest soil organic matter (SOM) changes following stand growth and also to identify gaps of data and modelling problems. SOM build-up was analysed (a) from bare sand to forest soil during a primary

  18. Three new species of Collembola from soils of Mediterranean cork-oak forests of Sicily (Italy). (United States)

    Giuga, Luca; Jordana, Rafael


    Three new species of soil Collembola from cork-oak (Quercus suber) forests located in eastern Sicily (Italy) are described Neonaphorura alicatai sp. nov., Friesea guarinoi sp. nov. and Arrhopalites antonioi sp. nov..

  19. Coupling of soil prokaryotic diversity and plant diversity across latitudinal forest ecosystems (United States)

    Wang, Jun-Tao; Zheng, Yuan-Ming; Hu, Hang-Wei; Li, Jing; Zhang, Li-Mei; Chen, Bao-Dong; Chen, Wei-Ping; He, Ji-Zheng


    The belowground soil prokaryotic community plays a cardinal role in sustaining the stability and functions of forest ecosystems. Yet, the nature of how soil prokaryotic diversity co-varies with aboveground plant diversity along a latitudinal gradient remains elusive. By establishing three hundred 400-m2 quadrats from tropical rainforest to boreal forest in a large-scale parallel study on both belowground soil prokaryote and aboveground tree and herb communities, we found that soil prokaryotic diversity couples with the diversity of herbs rather than trees. The diversity of prokaryotes and herbs responds similarly to environmental factors along the latitudinal gradient. These findings revealed that herbs provide a good predictor of belowground biodiversity in forest ecosystems, and provide new perspective on the aboveground and belowground interactions in forest ecosystems.

  20. A simple model of carbon in the soil profile for agricultural soils in Northwestern Europe (United States)

    Taghizadeh-Toosi, Arezoo; Hutchings, Nicholas J.; Vejlin, Jonas; Christensen, Bent T.; Olesen, Jørgen E.


    World soil carbon (C) stocks are second to those in the ocean, and represent three times as much C as currently present in the atmosphere. The amount of C in soil may play a significant role in carbon exchanges between the atmosphere and the terrestrial environment. The C-TOOL model is a three-pool linked soil organic carbon (SOC) model in well-drained mineral soils under agricultural land management to allow generalized parameterization for estimating effects of management measures at medium to long time scales for the entire soil profile (0-100 cm). C-TOOL has been developed to enable simulations of SOC turnover in soil using temperature dependent first order kinetics for describing decomposition. Compared with many other SOC models, C-TOOL applies a less complicated structure, which facilitates easier calibration, and it requires only few inputs (i.e., average monthly air temperature, soil clay content,soil carbon-to-nitrogen ratio, and C inputs to the soil from plants and other sources). C-TOOL was parameterized using SOC and radiocarbon data from selected long-term field treatments in United Kingdom, Sweden and Denmark. However, less data were available for evaluation of subsoil C (25-100 cm) from the long-term experiments applied. In Denmark a national 7×7 km grid net was established in 1986 for soil C monitoring down to 100 cm depth. The results of SOC showed a significant decline from 1997 to 2009 in the 0-50 cm soil layer. This was mainly attributed to changes in the 25-50 cm layer, where a decline in SOC was found for all soil texture types. Across the period 1986 to 2009 there was clear tendency for increasing SOC on the sandy soils and reductions on the loamy soils. This effect is linked to land use, since grasslands and dairy farms are more abundant in the western parts of Denmark, where most of the sandy soils are located. The results and the data from soil monitoring have been used to validate the C-TOOL modelling approach used for accounting of

  1. Small scale spatial heterogeneity of soil respiration in an old growth temperate deciduous forest

    Directory of Open Access Journals (Sweden)

    A. Jordan


    Full Text Available The large scale spatial heterogeneity of soil respiration caused by differences in site conditions is quite well understood. However, comparably little is known about the micro scale heterogeneity within forest ecosystems on homogeneous soils. Forest age, soil texture, topographic position, micro topography and stand structure may influence soil respiration considerably within short distance. In the present study within site spatial heterogeneity of soil respiration has been evaluated. To do so, an improvement of available techniques for interpolating soil respiration data via kriging was undertaken.

    Soil respiration was measured with closed chambers biweekly from April 2005 to April 2006 using a nested design (a set of stratified random plots, supplemented by 2 small and 2 large nested groupings in an unmanaged, beech dominated old growth forest in Central Germany (Hainich, Thuringia. A second exclusive randomized design was established in August 2005 and continually sampled biweekly until July 2007.

    The average soil respiration values from the random plots were standardized by modeling soil respiration data at defined soil temperature and soil moisture values. By comparing sampling points as well as by comparing kriging results based on various sampling point densities, we found that the exclusion of local outliers was of great importance for the reliability of the estimated fluxes. Most of this information would have been missed without the nested groupings. The extrapolation results slightly improved when additional parameters like soil temperature and soil moisture were included in the extrapolation procedure. Semivariograms solely calculated from soil respiration data show a broad variety of autocorrelation distances (ranges from a few centimeters up to a few tens of meters.

    The combination of randomly distributed plots with nested groupings plus the inclusion of additional relevant parameters like soil

  2. soil carbon pools within oak forest is endangered by global climate change in central mexico (United States)

    García-Oliva, Felipe; Merino, Agustín; González-Rodriguez, Antonio; Chávez-Vergara, Bruno; Tapia-Torres, Yunuen; Oyama, Ken


    Forest soil represents the main C pool in terrestrial ecosystems. In particular, temperate forest ecosystems play an important role in the C budget among tropical countries, such as Mexico. For example, the temperate forest ecosystem contains higher C contents on average (295 Mg C ha-1) than the soil C associated with other ecosystems in Mexico (between 56 to 287 Mg C ha-1). At a regional scale, oak forest has the highest C content (460 Mg C ha-1) among the forest ecosystem in Michoacán State at Central Mexico. At the local scale, the soil C content is strongly affected by the composition of organic matter produced by the plant species. The oak species are very diverse in Mexico, distributed within two sections: Quercus sensu stricto and Lobatae. The oak species from Quercus s.s. section produced litterfall with lower concentrations of recalcitrant and thermostable compounds than oak species from Lobatae section, therefore the soil under the former species had higher microbial activity and nutrient availability than the soil under the later species. However, the forest fragment with higher amount of oak species from Quercus s.s. section increases the amount of soil C contents. Unfortunately, Quercus species distribution models for the central western region of Mexico predict a decrease of distribution area of the majority of oak species by the year 2080, as a consequence of higher temperatures and lower precipitation expected under climate change scenarios. Additionally to these scenarios, the remnant oak forest fragments suffer strong degradation due to uncontrolled wood extraction and deforestation. For this reason, the conservation of oak forest fragments is a priority to mitigate the greenhouse gases emission to the atmosphere. In order to enhance the protection of these forest fragments it is required that the society identify the ecosystem services that are provided by these forest fragments.

  3. Soil fertility and the impact of exotic invasion on microbial communities in Hawaiian forests. (United States)

    Kao-Kniffin, Jenny; Balser, Teri C


    Exotic plant invasions into Hawaiian montane forests have altered many important nutrient cycling processes and pools. Across different ecosystems, researchers are uncovering the mechanisms involved in how invasive plants impact the soil microbial community-the primary mediator of soil nutrient cycling. We examined whether the invasive plant, Hedychium gardnerianum, altered microbial community composition in forests dominated by a native tree, Metrosideros polymorpha, under varying soil nutrient limitations and soil fertility properties within forest plots of the Hawaii long-term substrate age gradient (LSAG). Microbial community lipid analysis revealed that when nutrient limitation (as determined by aboveground net primary production [ANPP]) and soil fertility were taken into account, plant species differentially altered soil microbial community composition. Microbial community characteristics differed under invasive and native plants primarily when N or P was added to the older, highly weathered, P-limited soils. Long-term fertilization with N or P at the P-limited site led to a significant increase in the relative abundance of the saprophytic fungal indicator (18:2 omega 6c,9c) under the invasive plant. In the younger, N-limited soils, plant species played a minor role in influencing soil microbial community composition. We found that the general rhizosphere microbial community structure was determined more by soil fertility than by plant species. This study indicates that although the aggressive invasion of a nutrient-demanding, rapidly decomposable, and invasive plant into Hawaiian forests had large impacts on soil microbial decomposers, relatively little impact occurred on the overall soil microbial community structure. Instead, soil nutrient conditions were more important determinants of the overall microbial community structure within Hawaii's montane forests.

  4. Species richness and soil properties in Pinus ponderosa forests: A structural equation modeling analysis (United States)

    Laughlin, D.C.; Abella, S.R.; Covington, W.W.; Grace, J.B.


    Question: How are the effects of mineral soil properties on understory plant species richness propagated through a network of processes involving the forest overstory, soil organic matter, soil nitrogen, and understory plant abundance? Location: North-central Arizona, USA. Methods: We sampled 75 0.05-ha plots across a broad soil gradient in a Pinus ponderosa (ponderosa pine) forest ecosystem. We evaluated multivariate models of plant species richness using structural equation modeling. Results: Richness was highest at intermediate levels of understory plant cover, suggesting that both colonization success and competitive exclusion can limit richness in this system. We did not detect a reciprocal positive effect of richness on plant cover. Richness was strongly related to soil nitrogen in the model, with evidence for both a direct negative effect and an indirect non-linear relationship mediated through understory plant cover. Soil organic matter appeared to have a positive influence on understory richness that was independent of soil nitrogen. Richness was lowest where the forest overstory was densest, which can be explained through indirect effects on soil organic matter, soil nitrogen and understory cover. Finally, model results suggest a variety of direct and indirect processes whereby mineral soil properties can influence richness. Conclusions: Understory plant species richness and plant cover in P. ponderosa forests appear to be significantly influenced by soil organic matter and nitrogen, which are, in turn, related to overstory density and composition and mineral soil properties. Thus, soil properties can impose direct and indirect constraints on local species diversity in ponderosa pine forests. ?? IAVS; Opulus Press.

  5. Trends in soil-vegetation dynamics in burned Mediterranean pine forests: the effects of soil properties (United States)

    Wittenberg, L.; Malkinson, D.


    Fire can impact a variety of soil physical and chemical properties. These changes may result, given the fire severity and the local conditions, in decreased infiltration and increased runoff and erosion rates. Most of these changes are caused by complex interactions among eco-geomorphic processes which affect, in turn, the rehabilitation dynamics of the soil and the regeneration of the burnt vegetation. Following wildfire events in two forests growing on different soil types, we investigated runoff, erosion, nutrient export (specifically nitrogen and phosphorous) and vegetation recovery dynamics. The Biriya forest site, burned during the 2006 summer, is composed of two dominant lithological types: soft chalk and marl which are relatively impermeable. The rocks are usually overlain by relatively thick, up of to 80 cm, grayish-white Rendzina soil, which contains large amounts of dissolved carbonate. These carbonates serve as a limiting factor for vegetation growth. The planted forest in Biriya is comprised of monospecific stands of Pinus spp. and Cupressus spp. The Mt. Carmel area, which was last burned in the 2005 spring, represents a system of varied Mediterranean landscapes, differentiated by lithology, soils and vegetation. Lithology is mainly composed of limestone, dolomite, and chalk. The dominant soil is Brown Rendzina whilst in some locations Grey Rendzina and Terra Rossa can be found. The local vegetation is composed mainly of a complex of pine (Pinus halepensis), oak (Quercus calliprinos), Pistacia lentiscus and associations At each site several 3X3 m monitoring plots were established to collect runoff and sediment. In-plot vegetation changes were monitored by a sequence of aerial photographs captured using a 6 m pole-mounted camera. At the terra-rosa sites (Mt. Carmel) mean runoff coefficients were 2.18% during the first year after the fire and 1.6% in the second. Mean erosion rates also decreased, from 42 gr/m2 to 4 gr/m2. The recovering vegetation was

  6. A climate sensitive model of carbon transfer through atmosphere, vegetation and soil in managed forest ecosystems (United States)

    Loustau, D.; Moreaux, V.; Bosc, A.; Trichet, P.; Kumari, J.; Rabemanantsoa, T.; Balesdent, J.; Jolivet, C.; Medlyn, B. E.; Cavaignac, S.; Nguyen-The, N.


    For predicting the future of the forest carbon cycle in forest ecosystems, it is necessary to account for both the climate and management impacts. Climate effects are significant not only at a short time scale but also at the temporal horizon of a forest life cycle e.g. through shift in atmospheric CO2 concentration, temperature and precipitation regimes induced by the enhanced greenhouse effect. Intensification of forest management concerns an increasing fraction of temperate and tropical forests and untouched forests represents only one third of the present forest area. Predicting tools are therefore needed to project climate and management impacts over the forest life cycle and understand the consequence of management on the forest ecosystem carbon cycle. This communication summarizes the structure, main components and properties of a carbon transfer model that describes the processes controlling the carbon cycle of managed forest ecosystems. The model, GO+, links three main components, (i) a module describing the vegetation-atmosphere mass and energy exchanges in 3D, (ii) a plant growth module and a (iii) soil carbon dynamics module in a consistent carbon scheme of transfer from atmosphere back into the atmosphere. It was calibrated and evaluated using observed data collected on coniferous and broadleaved forest stands. The model predicts the soil, water and energy balance of entire rotations of managed stands from the plantation to the final cut and according to a range of management alternatives. It accounts for the main soil and vegetation management operations such as soil preparation, understorey removal, thinnings and clearcutting. Including the available knowledge on the climatic sensitivity of biophysical and biogeochemical processes involved in atmospheric exchanges and carbon cycle of forest ecosystems, GO+ can produce long-term backward or forward simulations of forest carbon and water cycles under a range of climate and management scenarios. This

  7. Distinctive tropical forest variants have unique soil microbial communities, but not always low microbial diversity

    Directory of Open Access Journals (Sweden)

    Binu M Tripathi


    Full Text Available There has been little study of whether different variants of tropical rainforest have distinct soil microbial communities and levels of diversity. We compared bacterial and fungal community composition and diversity between primary mixed dipterocarp, secondary mixed dipterocarp, white sand heath, inland heath, and peat swamp forests in Brunei Darussalam, northwest Borneo by analyzing Illumina Miseq sequence data of 16S rRNA gene and ITS1 region. We hypothesized that white sand heath, inland heath and peat swamp forests would show lower microbial diversity and relatively distinct microbial communities (compared to MDF primary and secondary forests due to their distinctive environments. We found that soil properties together with bacterial and fungal communities varied significantly between forest types. Alpha and beta-diversity of bacteria was highest in secondary dipterocarp and white sand heath forests. Also, bacterial alpha diversity was strongly structured by pH, adding another instance of this widespread pattern in nature. The alpha diversity of fungi was equally high in all forest types except peat swamp forest, although fungal beta-diversity was highest in primary and secondary mixed dipterocarp forests. The relative abundance of ectomycorrhizal (EcM fungi varied significantly between forest types, with highest relative abundance observed in MDF primary forest. Overall, our results suggest that the soil bacterial and fungal communities in these forest types are to a certain extent predictable and structured by soil properties, but that diversity is not determined by how distinctive the conditions are. This contrasts with the diversity patterns seen in rainforest trees, where distinctive soil conditions have consistently lower tree diversity.

  8. Calcium mineralization in the forest floor and surface soil beneath different tree species in the northeastern US

    NARCIS (Netherlands)

    Dijkstra, F.A.


    Calcium (Ca) is an important element for neutralizing soil acidity in temperate forests. The immediate availability of Ca in forested acid soils is largely dependent on mineralization of organic Ca, which may differ significantly among tree species. I estimated net Ca mineralization in the forest

  9. Soil organic matter composition and quality across fire severity gradients in coniferous and deciduous forests of the southern boreal region (United States)

    Jessica R. Miesel; William C. Hockaday; Randy Kolka; Philip A. Townsend


    Recent patterns of prolonged regional drought in southern boreal forests of the Great Lakes region, USA, suggest that the ecological effects of disturbance by wildfire may become increasingly severe. Losses of forest soil organic matter (SOM) during fire can limit soil nutrient availability and forest regeneration. These processes are also influenced by the composition...

  10. Diversity did not influence soil water use of tree clusters in a temperate mixed forest


    Meißner, M; Köhler, M; D. Hölscher


    Compared to monocultures, diverse ecosystems are often expected to show more comprehensive resource use. However, with respect to diversity–soil-water-use relationships in forests, very little information is available. We analysed soil water uptake in 100 tree clusters differing in tree species diversity and species composition in the Hainich forest in central Germany. The clusters contained all possible combinations of five broadleaved tree species in one-, two- and t...

  11. Soil attributes under agroecosystems and forest vegetationin the coastal tablelands of Northestern Brazil.


    João Bosco Vasconcellos Gomes; Marcelo Ferreira Fernandes; Antonio Carlos Barreto; José Coelho de Araújo Filho; Nilton Curi


    This study evaluated the changes occurred in a set of soil attributes, particularly those related to the dynamics of soil organic carbon (SOC), as a function of the replacement of native forest for agricultural ecosystems of regional importance in the coastal tablelands of Northeastern Brazil (orange, coconut, eucalyptus and sugarcane). Six commercial sites under these agroecosystems were compared to neighboring areas of native forest in five areas along this region (Coruripe, Umbaúba, Acajut...

  12. Appropriate density of water and soil conservation of Pinus tabulaeformis and Robinia pseudoacacia forests in loess area, North China

    Institute of Scientific and Technical Information of China (English)

    Jianjun ZHANG; Chengliang ZHANG; Wei HE; Lei NA


    In this paper, based on a long-term monitor-ing of water cycle in the water and soil conservation forest stands of Pinus tabulaeformis and Robinia pseu-doacacia, the soil moisture deficit is calculated. Following the principles of runoff-collecting forestry and applying the forest structure investigation results, the authors developed a formula to calculate appropriate density for forests on the basis of different diameters at breast height (DBH). Using this method to manage forests, the natural water requirement of forests can be met and soil drought can be avoided. In addition, with long-term monitoring of soil moisture in stands, the authors also give an appropriate managing density specifically for the water and soil conservation forests of P.tabulaeformis and R.pseudoacacia in the loess area which is according to soil moisture content,or with the lowest soil moisture content and invalid moisture frequency as the indexes.

  13. Forest structure, productivity and soil properties in a subtropical evergreen broad-leaved forest in Okinawa, Japan

    Institute of Scientific and Technical Information of China (English)

    XU Xiao-niu; WANG Qin; Hideaki SHIBATA


    Structure,species composition,and soil properties of a subtropical evergreen broad-leaved forest in Okinawa,Japan,were examined by establishment of plots at thirty sites.The forest was characterized by a relatively low canopy and a large number of small-diameter trees.Mean canopy height for this forest was 10 m and stands contained an average of 5400 stems·ha-1 (≧ 3.0 cm DBH); 64% of those stems were smaller than 10 cm DBH.The total basal area was 54.4 m 2·ha-1,of which Castanopsis sieboldii contributed 48%.The forest showed high species diversity of trees.80 tree species (≧ 3.0 cm DBH) from 31 families was identified in the thirty sampling plots.C.sieboldii and Schima wallichii were the dominant and subdominant species in terms of importance value.The mean tree species diversity indices for the plots were,3.36 for Diversity index (H'),0.71 for Equitability index (J') and 4.72 for Species richness index (S'),all of which strongly declined with the increase of importance value of the dominant,C.sieboldii.Measures of soil nutrients indicated low fertility,extreme heterogeneity and possible Al toxicity.Regression analysis showed that stem density and the dominant tree height were significantly correlated with soil pH.There was a significant positive relationship between species diversity index and soil exchangeable K+,Ca2+,and Ca2+/Al3+ ratio (all p values <0.001) and a negative relationship with N,C and P.The results suggest that soil property is a major factor influencing forest composition and structure within the subtropical forest in Okinawa.

  14. Asticcacaulis solisilvae sp. nov., isolated from forest soil. (United States)

    Kim, Seil; Gong, Gyeongtaek; Park, Tai Hyun; Um, Youngsoon


    An obligately aerobic, chemoheterotrophic, mesophilic prosthecate bacterium, designated strain CGM1-3EN(T), was isolated from the enrichment cultures of forest soil from Cheonggyesan Mountain, Republic of Korea. Cells were Gram-reaction-negative, motile rods (1.3-2.4 µm long by 0.30-0.75 µm wide) with single flagella. The strain grew at 10-37 °C (optimum 25-30 °C) and at pH 4.5-9.5 (optimum 5.0-7.0). The major cellular fatty acids were C16 : 0, C18 : 1ω7c 11-methyl, C12 : 1 3-OH and summed feature 8 (comprising C18 : 1ω7c/C18 : 1ω6c). The genomic DNA G+C content of strain CGM1-3EN(T) was 63.7 mol%. The closest phylogenetic neighbour to strain CGM1-3EN(T) was identified as Asticcacaulis biprosthecium DSM 4723(T) (97.2 % 16S rRNA gene sequence similarity) and the DNA-DNA hybridization value between strain CGM1-3EN(T) and A. biprosthecium DSM 4723(T) was less than 24.5 %. Strain CGM1-3EN(T) used d-glucose, d-fructose, sucrose, maltose, trehalose, d-mannose, d-mannitol, d-sorbitol, d-galactose, cellobiose, lactose, raffinose, fumarate, pyruvate, dl-alanine and glycerol as carbon sources. Based on data from the present polyphasic study, the forest soil isolate CGM1-3EN(T) is considered to represent a novel species of the genus Asticcacaulis, for which the name Asticcacaulis solisilvae sp. nov. is proposed. The type strain is CGM1-3EN(T) ( = AIM0088(T) = KCTC 32102(T) = JCM 18544(T)).

  15. The impact of tropical forest logging and oil palm agriculture on the soil microbiome. (United States)

    Tripathi, Binu M; Edwards, David P; Mendes, Lucas William; Kim, Mincheol; Dong, Ke; Kim, Hyoki; Adams, Jonathan M


    Selective logging and forest conversion to oil palm agriculture are rapidly altering tropical forests. However, functional responses of the soil microbiome to these land-use changes are poorly understood. Using 16S rRNA gene and shotgun metagenomic sequencing, we compared composition and functional attributes of soil biota between unlogged, once-logged and twice-logged rainforest, and areas converted to oil palm plantations in Sabah, Borneo. Although there was no significant effect of logging history, we found a significant difference between the taxonomic and functional composition of both primary and logged forests and oil palm. Oil palm had greater abundances of genes associated with DNA, RNA, protein metabolism and other core metabolic functions, but conversely, lower abundance of genes associated with secondary metabolism and cell-cell interactions, indicating less importance of antagonism or mutualism in the more oligotrophic oil palm environment. Overall, these results show a striking difference in taxonomic composition and functional gene diversity of soil microorganisms between oil palm and forest, but no significant difference between primary forest and forest areas with differing logging history. This reinforces the view that logged forest retains most features and functions of the original soil community. However, networks based on strong correlations between taxonomy and functions showed that network complexity is unexpectedly increased due to both logging and oil palm agriculture, which suggests a pervasive effect of both land-use changes on the interaction of soil microbes.

  16. Detrimental Influence of Invasive Earthworms on North American Cold-Temperate Forest Soils (United States)

    Enerson, Isabel


    The topic of invasive earthworms is a timely concern that goes against many preconceived notions regarding the positive benefits of all worms. In the cold-temperate forests of North America invasive worms are threatening forest ecosystems, due to the changes they create in the soil, including decreases in C:N ratios and leaf litter, disruption of…

  17. Forest soil microbial communities: Using metagenomic approaches to survey permanent plots (United States)

    Amy L. Ross-Davis; Jane E. Stewart; John W. Hanna; John D. Shaw; Andrew T. Hudak; Theresa B. Jain; Robert J. Denner; Russell T. Graham; Deborah S. Page-Dumroese; Joanne M. Tirocke; Mee-Sook Kim; Ned B. Klopfenstein


    Forest soil ecosystems include some of the most complex microbial communities on Earth (Fierer et al. 2012). These assemblages of archaea, bacteria, fungi, and protists play essential roles in biogeochemical cycles (van der Heijden et al. 2008) and account for considerable terrestrial biomass (Nielsen et al. 2011). Yet, determining the microbial composition of forest...

  18. Chemical, physical and biological factors affecting wood decomposition in forest soils (United States)

    Martin Jurgensen; Peter Laks; David Reed; Anne Collins; Deborah Page-Dumroese; Douglas Crawford


    Organic matter (OM) decomposition is an important variable in forest productivity and determining the potential of forest soils to sequester atmospheric CO2 (Grigal and Vance 2000; Kimble et al. 2003). Studies using OM from a particular location gives site-specific decomposition information, but differences in OM type and quality make it difficult to compare results...

  19. Detrimental Influence of Invasive Earthworms on North American Cold-Temperate Forest Soils (United States)

    Enerson, Isabel


    The topic of invasive earthworms is a timely concern that goes against many preconceived notions regarding the positive benefits of all worms. In the cold-temperate forests of North America invasive worms are threatening forest ecosystems, due to the changes they create in the soil, including decreases in C:N ratios and leaf litter, disruption of…

  20. A sampling strategy for estimating plot average annual fluxes of chemical elements from forest soils

    NARCIS (Netherlands)

    Brus, D.J.; Gruijter, de J.J.; Vries, de W.


    A sampling strategy for estimating spatially averaged annual element leaching fluxes from forest soils is presented and tested in three Dutch forest monitoring plots. In this method sampling locations and times (days) are selected by probability sampling. Sampling locations were selected by

  1. Soil Heterogeneity Reflected in Biogeography of Beech Forests in the Borderland Between the Bohemian Massif and the Outer Western Carpathians

    Directory of Open Access Journals (Sweden)

    Samec Pavel


    Full Text Available Soil environment characteristics naturally affect the biogeographical classification of forests in central Europe. However, even on the same localities, different systems of vegetation classification de-scribe the forest types according to the naturally dominant tree species with different accuracy. A set of 20 representative natural beech stands in the borderland between the Bohemian Massif (Hercyni-an biogeographical subprovince and the Outer Western Carpathians (Westcarpathian subprovince was selected in order to compare textural, hydrostatic, physico-chemical and chemical properties of soils between the included geomorphological regions, bioregions and biotopes. Differences in the soils of the surveyed beech stands were mainly due to volume weight and specific weight, maximum capillary capacity (MCC, porosity, base saturation (BS, total soil nitrogen (Nt and fulvic acids. Specifics in the relations between these soil characteristics indicated that transient trans-Hercynian beech forests developed in the borderland between the two compared subprovinces. Soils of the investigated Hercynian beech forests were generally characterized by lower BS and lower Nt. Soils of the trans-Hercynian beech forests were more similar to the Carpathian beech forest soils than soils in the other Hercynian beech forests. Soils of the trans-Hercynian and Carpathian beech forests showed similarly higher BS, deeper occurrence of humic substances, lower specific weight and also higher MCC. Higher content of humic substances as well as MCC indicated an equal effect on forest ecology, which may contribute to more accurate classification of forests.

  2. Microbial Biomass C,N and P in Disturbed Dry Tropical Forest Soils, India

    Institute of Scientific and Technical Information of China (English)



    Variations in microbial biomass C(MB-C),N(MB-N)and P(MB-P)along a gradient of different dominant vegetation covers(natural forest,mixed deciduous forest,disturbed savanna and grassland ecosystems)in dry tropical soils of Vindhyan Plateau,India were studied from January 2005 to December 2005.The water holding capacity,organic C,total N,total P and soil moisture content were comparatively higher in forest soils than in the savanna and grassland sites.Across different study sites the mean annual MB-C,MB-N and MB-P at 0-15 cm soil depth varied from 312.05 ± 4.22to 653.40 ± 3.17,32.16 ± 6.25 to 75.66 ± 7.21 and 18.94 ± 2.94 to 30.83 ± 23.08 μg g-1 dry soil,respectively.At all the investigated sites,the maximum MB-C,MB-N and MB-P occurred during the dry period(summer season)and the minimum in wet period(rainy season).In the present study,soil MB-C,MB-N and MB-P were higher at the forest sites compared to savanna and grassland sites.The differences in MB-C,MB-N and MB-P were significant(P mixed deciduous forest > savanna > grassland.The results suggested that deforestation and land use practices(conversion of forest into savanna and grassland)caused the alterations in soil properties,which as a consequence,led to reduction in soil nutrients and MB-C,MB-N and MB-P in the soil of disturbed sites(grassland and savanna)compared to undisturbed forest ecosystems.

  3. Biomechanical effects of trees in a mountain temperate forest: implications for biogeomorphology, soil science, and forest dynamics (United States)

    Šamonil, Pavel; Daněk, Pavel; Senecká, Anna; Adam, Dušan; Phillips, Jonathan D.


    Biomechanical effects of trees in forest soils represent a potentially significant factor in hillslope processes, pedocomplexity, and forest dynamics. However, these processes have been only rarely studied so far. Within this study we aim (i) to elaborate a detailed and widely applicable methodology of quantification of the main biomechanical effects of trees in soil, (ii) to reveal actual (minimal) frequencies, areas and volumes related to these effects in a mountain temperate old-growth forest. The research took place in the Boubín Primeval Forest in the Czech Republic. The fir-spruce-beech forest reserve belongs among the oldest protected areas in Europe. The reserve occupies NE slopes of an average inclination of about 14˚ on gneiss at an altitude of 930-1110 m a.s.l. We evaluated effects of all standing or lying trees of diameter at breast height (DBH) ≥ 10 cm in an area of 10.2 ha. In total, 4000 trees were studied from viewpoint of following features: treethrow, root mound, bioprotective function of standing as well as lying tree, baumstein, root baumstein, infilling stump, hole after trunk fall, stemwash, trunkwash. Any biomechanical phenomena were recorded in 59% of standing and 51% of lying dead trees (excluding the pervasive soil displacement by thickening trunk and roots and the converse infilling of the space freed during their decay with surrounding soil). Approximately one tenth of the trees expressed simultaneously opposing phenomena such as blocking of slope processes and their intensification. Different tree species and DBH categories exhibited significantly different structure of biomechanical effects in soil. Bioprotective function represented the most frequent process. However, concerning area and volume of affected soil, treethrows were an even more important phenomenon. Total area influenced by the studied biomechanical effects of current generation of trees was 343 m2ha-1. Additional 774 m2ha-1 were occupied by older treethrow pit

  4. Abundance and stratification of soil macroarthropods in a Caatinga Forest in Northeast Brazil. (United States)

    Araújo, V F P; Bandeira, A G; Vasconcellos, A


    In arid and semiarid environments, seasonality usually exerts a strong influence on the composition and dynamics of the soil community. The soil macroarthropods were studied in a Caatinga forest located in the Reserva Particular do Patrimônio Natural (RPPN) Fazenda Almas, São José dos Cordeiros, Paraíba, Brazil. Samples were collected during the dry and rainy seasons following the method proposed by the Tropical Soil Biology and Fertility Program (TSBF), with minor modifications. At each station, 15 soil blocks (20 × 20 × 30 cm: 12 L) were extracted and divided into three layers: A (0-10 cm), B (10-20 cm), and C (20-30 cm). In the rainy and dry seasons 1,306 ± 543(se) and 458 ± 212 ind.m-2 macroarthropods were found, respectively, with 35 and 18 respective taxa recorded. The abundance of individuals and taxa were significantly higher in the rainy season. Isoptera (57.8%) was the most abundant taxon, followed by Hymenoptera: Formicidae (17.2%), Coleoptera larvae (7.3%), and Araneae (3.5%). In the rainy season, abundance in layer A (576 ± 138 ind.m-2) was significantly higher than that of layer C (117 ± 64 ind.m-2), but was not different from layer B (613 ± 480 ind.m-2). There was also no difference between the layer B and C abundances. In the dry season, abundance in layer B (232 ± 120 ind.m-2) was not significantly different compared to layer A (182 ± 129 ind.m-2), but was significantly higher than abundance in layer C (44 ± 35 ind.m-2). During the rainy season, layer A (34 taxa) was significantly richer in taxa than layers B (19 taxa) and C (11 taxa). On the other hand, during the dry season the richness of layers A (12 taxa) and B (12 taxa) was equal, but significantly higher than that of layer C (6 taxa). Richness of taxa and abundance were positively correlated with soil organic matter and negatively correlated with soil temperature. The community of soil macroarthropods in the area of Caatinga studied has taxonomic and functional structures that

  5. Biological and physical influences on soil 14CO2 seasonal dynamics in a temperate hardwood forest

    Directory of Open Access Journals (Sweden)

    C. L. Phillips


    Full Text Available While radiocarbon (14C abundance in standing stocks of soil carbon has been used to evaluate rates of soil carbon turnover on timescales of several years to centuries, soil-respired 14CO2 measurements are an important tool for identifying more immediate responses to disturbance and climate change. Soil 14CO2 data are often temporally sparse, however, and could be interpreted better with more context for typical seasonal ranges and trends. We report on a semi-high-frequency sampling campaign to distinguish physical and biological drivers of soil 14CO2 at a temperate forest site in Northern Wisconsin, USA. We sampled 14CO2 profiles every three weeks during snow-free months through 2012, in three intact plots and one trenched plot that excluded roots. Respired 14CO2 declined through the summer in intact plots, shifting from an older C composition that contained more bomb 14C, to a younger composition more closely resembling present 14C levels in the atmosphere. In the trenched plot respired 14C was variable but remained comparatively higher than in intact plots, reflecting older bomb-enriched 14C sources. Although respired 14CO2 from intact plots correlated with soil moisture, related analyses did not support a clear cause-and-effect relationship with moisture. The initial decrease in 14CO2 from spring to midsummer could be explained by increases in 14C-deplete root respiration; however, 14CO2 continued to decline in late summer after root activity decreased. We also investigated whether soil moisture impacted vertical partitioning of CO2 production, but found this had little effect on respired 14CO2 because CO2 contained modern bomb-C at depth, even in the trenched plot. This surprising result contrasted with decades to centuries-old pre-bomb CO2 produced in lab incubations of the same soils. Our results suggest that root-derived C and other recent C sources had dominant impacts on 14CO2 in situ, even at depth. We propose that 14CO2 may have

  6. Profiles and Geotechnical Properties for some Basra Soils

    Directory of Open Access Journals (Sweden)

    Abbas J. Al-Taie


    Full Text Available Basra province is known for its logistic location for trading activity and oil industry. By geological point of view, Basra areas are believed to consist mainly of alternation of (clay, silty clay, clayey silt, silt and sand type of soil. Any development of industry in this area should be affected by the occurrence of the clay soil. That is why the investigation to the soil is more than necessary. In this case, a vast testing program was carried out by the author to evaluate the various formations constituting the of some Basra soils. An attempt to characterize and discuss the nature, minerals, engineering behavior and field properties of soil samples extracted from more than one thousand and one hundred boring liner meters of three sites was performed. The average values of various geotechnical design properties are calculated and plotted with depth. A preview of climate, geology, seismicity and earthquakes of the study area was conducted. Finally, the typical soil profiles were prepared.

  7. Influence of drainage status on soil and water chemistry, litter decomposition and soil respiration in central Amazonian forests on sandy soils

    Directory of Open Access Journals (Sweden)

    Antônio Ocimar Manzi


    Full Text Available Central Amazonian rainforest landscape supports a mosaic of tall terra firme rainforest and ecotone campinarana, riparian and campina forests, reflecting topography-induced variations in soil, nutrient and drainage conditions. Spatial and temporal variations in litter decomposition, soil and groundwater chemistry and soil CO2 respiration were studied in forests on sandy soils, whereas drought sensitivity of poorly-drained valley soils was investigated in an artificial drainage experiment. Slightly changes in litter decomposition or water chemistry were observed as a consequence of artificial drainage. Riparian plots did experience higher litter decomposition rates than campina forest. In response to a permanent lowering of the groundwater level from 0.1 m to 0.3 m depth in the drainage plot, topsoil carbon and nitrogen contents decreased substantially. Soil CO2 respiration decreased from 3.7±0.6 µmol m-2 s-1 before drainage to 2.5±0.2 and 0.8±0.1 µmol m-2 s-1 eight and 11 months after drainage, respectively. Soil respiration in the control plot remained constant at 3.7±0.6 µmol m-2 s-1. The above suggests that more frequent droughts may affect topsoil carbon and nitrogen content and soil respiration rates in the riparian ecosystem, and may induce a transition to less diverse campinarana or short-statured campina forest that covers areas with strongly-leached sandy soil.

  8. Growth of Fagus in transition zones of forest and soil on the western slope of Mt. Chokai, northern Japan (United States)

    Kato, S.; Watanabe, M.


    A wide transition zone for forest structure is expected to distribute on the gentle slope of western side of Mt. Chokai ,Yamagata prefecture, northern Japan (N39° 05'57", E140°02'55"). The annual mean temperature and total precipitation at summit (2,059 m asl.) are 0.5° C and 3,285mm, respectively. The parent materials of the soils are weathered Andesite associated with non-tephric loess deposits transported from continental China. Representative sites were selected in forests of Quercus mongolica and Fagus crenata to examine characteristics of transition zones of vegetation and soil in the western slope of Mt. Chokai with concern on the growth of Fagus in transition zones. Surveys on vegetation profile and projection diagram of canopy for each site (10-10m plots) were carried out in 7 sites selected along altitudinal sequence on the western slope of Mt. Chokai; Ch1-7: 550-1,100m asl.. Growth rate of Fagus was estimated by the measurement of tree rings from increment core samples. Timber volume of Fagus at each point was calculated based on diameter of breast height; DBH as an indicator of tree biomass. Soil profiles were observed at the above 7 sites and soil samples were collected from each horizon. As for soil analyses, soil pH (H2O, KCl, NaF) values were measured by the glass electrode method in the suspension mixture of soil with a 2.5 times volume of H2O or 1N KCl and 50 times volume of 4% NaF. Pyrophosphate, acid oxalate and dithionite-citrate extractable Al (Alp, Alo, Ald), Fe (Feo, Fed) and Si (Sio, Sid) were measured by ICP-AES. The content of exchangeable Al (AlEX) was obtained by titration of extract with 1N KCl. Sclerotia formed by species of Cenococcum, ectomycorrhizal fungi, were collected for grains of diameter larger than 0.5mm from wet samples. Sclerotia content was obtained by weight (mg g-1 soil). Due to intensive base leaching under extremely high precipitation and the mineralogical properties, Ah and Ae horizons of all profiles had low soil

  9. Soil organic matter degradation and enzymatic profiles of intertidal and subaqueous soils (United States)

    Ferronato, Chiara; Marinari, Sara; Bello, Diana; Vianello, Gilmo; Trasar-Cepeda, Carmen; Vittori Antisari, Livia


    The interest on intertidal and subaqueous soils has recently arisen because of the climate changes forecasts. The preservation of these habitats represents an important challenge for the future of humanity, because these systems represent an important global C sink since soil organic matter (SOM) on intertidal and subaqueous soils undergoes very slow degradation rates due to oxygen limitation. Publications on SOM cycle in saltmarshes are very scarce because of the difficulties involved on those studies i.e. the interaction of many abiotic a