WorldWideScience

Sample records for forest soil profile

  1. Magnetic Soils Profiles in the Volga-Kama Forest-Steppe Region

    Directory of Open Access Journals (Sweden)

    L.A. Fattakhova

    2016-09-01

    Full Text Available The magnetic properties of virgin forest-steppe soils developed on the originally vertically uniform unconsolidated parent material have been investigated. The profile samples of virgin dark-grey forest light-clayey soil derived from a siltstone of the Kazan layer of the Upper Permian and virgin leached medium-thick fertile light-clayey chernozem derived from a Quaternary heavy deluvial loam have been considered. Both soils are characterized by the accumulative type of magnetic susceptibility and F-factor values distribution patterns with depth. In the humus part of the soil profile, magnetics are present pre-dominantly in the < 2.5 µm fraction. The coercivity spectra allowed to determine the contribution of dia-/paramagnetic and ferromagnetic components to magnetic susceptibility. It has been found that magnetic susceptibility enhancement in the organogenic horizons of virgin forest-steppe soils occurs due to the contribution of ferromagnetic components. The results indicate a strong positive linear correlation between the magnetic susceptibility and oxalate-extractable Fe, as well as between the magnetic susceptibility and Schwertmann’s criterion values. Using the method of thermomagnetic analysis of the < 2.5 µm fraction, it has been found that the magnetic susceptibility enhancement in the profiles of forest-steppe soils took place due to the formation of maghemite-magnetite associations. The predominantly ferromagnetic fraction consists of small single-domain grains.

  2. A Canadian upland forest soil profile and carbon stocks database.

    Science.gov (United States)

    Shaw, Cindy; Hilger, Arlene; Filiatrault, Michelle; Kurz, Werner

    2018-04-01

    "A Canadian upland forest soil profile and carbon stocks database" was compiled in phases over a period of 10 years to address various questions related to modeling upland forest soil carbon in a national forest carbon accounting model. For 3,253 pedons, the SITES table contains estimates for soil organic carbon stocks (Mg/ha) in organic horizons and mineral horizons to a 100-cm depth, soil taxonomy, leading tree species, mean annual temperature, annual precipitation, province or territory, terrestrial ecozone, and latitude and longitude, with an assessment of the quality of information about location. The PROFILES table contains profile data (16,167 records by horizon) used to estimate the carbon stocks that appear in the SITES table, plus additional soil chemical and physical data, where provided by the data source. The exceptions to this are estimates for soil carbon stocks based on Canadian National Forest Inventory data (NFI [2006] in REFERENCES table), where data were collected by depth increment rather than horizon and, therefore, total soil carbon stocks were calculated separately before being entered into the SITES table. Data in the PROFILES table include the carbon stock estimate for each horizon (corrected for coarse fragment content), and the data used to calculate the carbon stock estimate, such as horizon thickness, bulk density, and percent organic carbon. The PROFILES table also contains data, when reported by the source, for percent carbonate carbon, pH, percent total nitrogen, particle size distribution (percent sand, silt, clay), texture class, exchangeable cations, cation and total exchange capacity, and percent Fe and Al. An additional table provides references (REFERENCES table) for the source data. Earlier versions of the database were used to develop national soil carbon modeling categories based on differences in carbon stocks linked to soil taxonomy and to examine the potential of using soil taxonomy and leading tree species to improve

  3. An examination of the spatial variability of CO2 in the profile of managed forest soils

    International Nuclear Information System (INIS)

    Black, M.; Kellman, L.; Beltrami, H.

    2005-01-01

    Soil carbon dioxide (CO 2 ) profiles are typically used in soil-gas exchange studies. Although surface flux measuring methods may be more efficient for deriving surface soil CO 2 exchange budgets, they do not provide enough information about the generation of gas through depth. This poses a challenge in quantifying the CO 2 generated from different zones and soil carbon pools through time. The combination of subsurface concentration profiles and estimates of soil diffusivity reveal where CO 2 is being generated in the soil. This combined approach offers greater awareness into processes controlling CO 2 production in soils through depth, and clarifies how soil CO 2 exchange processes in these ecosystems can be changed by management regimes and climate change. Although information about spatial variability in subsurface concentrations within forested soils is limited, it is assumed to be high because of the high spatial variability in soil CO 2 flux estimates and the large variation in vegetation distribution and topography within sites. In this study, the soil CO 2 profile was monitored during the fall of 2004 at depths of 0, 5, 20 and 35 cm at 10 microsites of a clear-cut and an 80 year old intact mixed forest in Atlantic Canada. Microsites were about 10 meters apart and represented a range of microtopographical conditions that typically encompass extremes in soil CO 2 profile patterns. Preliminary results reveal predictable patterns in concentration profiles through depth, and increasing CO 2 concentration with depth, consistent with a large soil source of CO 2 . The significant variability in the soil carbon profile between microsites in the clear-cut and intact forest sites will be investigated to determine if distinct microsite patterns can be identified. The feasibility of using this method for providing process-based versus soil C exchange budgeting information at forested sites will also be examined

  4. Distribution of some organic components in two forest soils profiles with evidence of soil organic matter leaching.

    Science.gov (United States)

    Álvarez-Romero, Marta; Papa, Stefania; Lozano-García, Beatriz; Parras-Alcántara, Luis; Coppola, Elio

    2015-04-01

    Soil stores organic carbon more often than we can find in living vegetation and atmosphere together. This reservoir is not inert, but it is constantly in a dynamic phase of inputs and losses. Soil organic carbon mainly depends on land cover, environment conditions and soil properties. After soil deposition, the organic residues of different origin and nature, the Soil Organic Matter (SOM) can be seen involved in two different processes during the pedogenesis: mineralization and humification. The transport process along profile happens under certain conditions such as deposition of high organic residues amount on the top soil, high porosity of the soil caused by sand or skeleton particles, that determine a water strong infiltrating capacity, also, extreme temperatures can slow or stop the mineralization and/or humification process in one intermediate step of the degradation process releasing organic metabolites with high or medium solubility and high loads of water percolating in relation to intense rainfall. The transport process along soil profile can take many forms that can end in the formation of Bh horizons (h means accumulation of SOM in depth). The forest cover nature influence to the quantity and quality of the organic materials deposited with marked differences between coniferous and deciduous especially in relation to resistance to degradation. Two soils in the Campania region, located in Lago Laceno (Avellino - Italy) with different forest cover (Pinus sp. and Fagus sp.) and that meets the requirements of the place and pedological formation suitable for the formation and accumulation of SOM in depth (Bh horizon) were studied. The different soil C fractions were determinated and were assessed (Ciavatta C. et al. 1990; Dell'Abate M.T. et al. 2002) for each soil profile the Total Extractable Lipids (TEL). Furthermore, the lignin were considered as a major component of soil organic matter (SOM), influencing its pool-size and its turnover, due to the high

  5. Soils characterisation along ecological forest zones in the Eastern Himalayas

    Science.gov (United States)

    Simon, Alois; Dhendup, Kuenzang; Bahadur Rai, Prem; Gratzer, Georg

    2017-04-01

    Elevational gradients are commonly used to characterise vegetation patterns and, to a lesser extent, also to describe soil development. Furthermore, interactions between vegetation cover and soil characteristics are repeatedly observed. Combining information on soil development and easily to distinguish forest zones along elevational gradients, creates an added value for forest management decisions especially in less studied mountain regions. For this purpose, soil profiles along elevational gradients in the temperate conifer forests of Western and Central Bhutan, ranging from 2600-4000m asl were investigated. Thereby, 82 soil profiles were recorded and classified according to the World Reference Base for Soil Resources. Based on 19 representative profiles, genetic horizons were sampled and analysed. We aim to provide fundamental information on forest soil characteristics along these elevational transects. The results are presented with regard to ecological forest zones. The elevational distribution of the reference soil groups showed distinct distribution ranges for most of the soils. Cambisols were the most frequently recorded reference soil group with 58% of the sampled profiles, followed by Podzols in higher elevations, and Stagnosols, at intermediate elevations. Fluvisols occurred only at the lower end of the elevational transects and Phaeozems only at drier site conditions in the cool conifer dry forest zone. The humus layer thickness differs between forest zones and show a shift towards increased organic layer (O-layer) with increasing elevation. The reduced biomass productivity with increasing elevation and subsequently lower litter input compensates for the slow decomposition rates. The increasing O-layer thickness is an indicator of restrained intermixing of organic and mineral components by soil organisms at higher elevation. Overall, the soil types and soil characteristics along the elevational gradient showed a continuous and consistent change, instead

  6. Specific Features of Profile Distribution and Crystallochemistry of Phyllosilicates in Soils of the Cisbaikal Forest-Steppe

    Science.gov (United States)

    Chizhikova, N. P.; Gamzikov, G. P.; Chechetko, E. S.

    2018-01-01

    The mineralogical composition of agrogray, dark gray, and agro-dark gray soils (Luvic Greyzemic Retic Phaeozems); agro-dark gray residual-calcareous soils (Calcaric Cambic Phaeozems); clay-illuvial agrochernozems (Luvic Chernic Phaeozems); and agrochernozems with migrational-mycelial carbonates (Haplic Chernozems) developed in the forest-steppe of Central Siberia within the Irkutsk Depression has been studied. The clay (smectite, vermiculite, and chlorite; the proportions between them change within the soil profiles. The clay fraction also contains hydromicas, kaolinite, chlorite, and some admixture of the fine-dispersed quartz. Each type of the soils is characterized by its own distribution pattern of clay material with specific alternation of layers in the mixed-layer formations. Mixed-layer minerals of the chlorite-vermiculite type predominate in the upper horizons of texture-differentiated soils. Down the soil profile, the content of mixed-layer mica-smectitic minerals increases. In the clay fraction of arable dark gray-humus soils with residual carbonates, the distribution of the clay fraction and major mineral phases in the soil profile is relatively even. An increased content of well-crystallized kaolinite is typical of these soils. The parent material of agrochernozems has a layered character: the upper horizons are generally depleted of clay, and the middle-profile and lower horizons are characterized by the considerable kaolinite content. In general, the clay material of soils of the Tulun-Irkutsk forest-steppe differs considerably from the clay material of foreststeppe soils developed from loesslike and mantle loams in the European part of Russia. In particular, this difference is seen in the proportions between major mineral phases and between biotitic and muscovitic components, as well as in the degree of crystallinity and behavior of kaolinite and chlorite.

  7. Mercury distribution in the foliage and soil profiles of the Tibetan forest: Processes and implications for regional cycling

    International Nuclear Information System (INIS)

    Gong, Ping; Wang, Xiao-ping; Xue, Yong-gang; Xu, Bai-qing; Yao, Tan-dong

    2014-01-01

    Remote forests are considered a pool of Mercury (Hg) in the global Hg cycle. However, notably few studies have investigated the fate of Hg in the Tibetan forest. In this study, fifty-two foliage samples and seven litter/soil profiles were collected throughout the Tibetan forest. The concentrations of total Hg (THg) in foliage were positively correlated with longitude and negatively correlated with altitude, indicating that the emission of Hg is expected to decrease with increasing distance from emission sources to the Tibetan forest. The deposition flux of THg in the Tibetan forest (with an air-to-forest ground flux of 9.2 μg/m 2 /year) is ∼2 times the flux in clearings, which is suggestive of enhanced Hg deposition by the forest. The depositional Hg is eventually stored in the forest soil, and the soil acts as a net ‘sink’ for Hg. - Highlights: • Foliage can be used as bio-indicator for monitoring the spatial Hg distribution. • The Tibetan forest can enhance the atmospheric Hg deposition to the ground. • The Tibetan forest soil is a pool of Hg that acts to delay the regional cycling of Hg. - The Tibetan forest can accumulate atmospheric Hg, which undergoes long-range transport, and the soil of Tibetan forest acts as the final Hg ‘sink’

  8. Radionuclide fractionation in a forest soil profile

    International Nuclear Information System (INIS)

    Rigol, A.; Vidal, M.; Rauret, G.

    1996-01-01

    Two alternative approaches, a sequential extraction scheme and the calculation of the variation of the distribution coefficient of radiocaesium in different K-Ca N H 4 scenarios, were used to study the behaviour and fractionation of this radionuclide in a forest soil profile. The first approach was applied to samples originating from an experiment in which the original L(litter) layer was replaced by an L layer contaminated with a radioactive aerosol, allowing a downward migration of radiocaesium. The samples belonged to different stages after the contamination. The second approach was applied to samples contaminated with soluble radiocaesium. The results indicate that the mineral matter seems to govern the behaviour of radiocaesium in case of direct condensed deposition or when radiocaesium is released from structural components of the organic matter phase. (author). 16 refs., 2 figs., 1 tab

  9. Forest soils

    Science.gov (United States)

    Charles H. (Hobie) Perry; Michael C. Amacher

    2009-01-01

    Productive soils are the foundation of sustainable forests throughout the United States. Forest soils are generally subjected to fewer disturbances than agricultural soils, particularly those that are tilled, so forest soils tend to have better preserved A-horizons than agricultural soils. Another major contrast between forest and agricultural soils is the addition of...

  10. Taxonomic and functional profiles of soil samples from Atlantic forest and Caatinga biomes in northeastern Brazil.

    Science.gov (United States)

    Pacchioni, Ralfo G; Carvalho, Fabíola M; Thompson, Claudia E; Faustino, André L F; Nicolini, Fernanda; Pereira, Tatiana S; Silva, Rita C B; Cantão, Mauricio E; Gerber, Alexandra; Vasconcelos, Ana T R; Agnez-Lima, Lucymara F

    2014-06-01

    Although microorganisms play crucial roles in ecosystems, metagenomic analyses of soil samples are quite scarce, especially in the Southern Hemisphere. In this work, the microbial diversity of soil samples from an Atlantic Forest and Caatinga was analyzed using a metagenomic approach. Proteobacteria and Actinobacteria were the dominant phyla in both samples. Among which, a significant proportion of stress-resistant bacteria associated to organic matter degradation was found. Sequences related to metabolism of amino acids, nitrogen, and DNA and stress resistance were more frequent in Caatinga soil, while the forest sample showed the highest occurrence of hits annotated in phosphorous metabolism, defense mechanisms, and aromatic compound degradation subsystems. The principal component analysis (PCA) showed that our samples are close to the desert metagenomes in relation to taxonomy, but are more similar to rhizosphere microbiota in relation to the functional profiles. The data indicate that soil characteristics affect the taxonomic and functional distribution; these characteristics include low nutrient content, high drainage (both are sandy soils), vegetation, and exposure to stress. In both samples, a rapid turnover of organic matter with low greenhouse gas emission was suggested by the functional profiles obtained, reinforcing the importance of preserving natural areas. © 2014 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  11. Methane oxidation in soil profiles of Dutch and Finnish coniferous forests with different soil texture and atmospheric nitrogen deposition

    NARCIS (Netherlands)

    Saari, A.; Martikainen, P.J.; Ferm, A.; Ruuskanen, J.; De Boer, W.; Troelstra, S.R.; Laanbroek, H.J.

    1997-01-01

    We studied methane oxidation capacity in soil profiles of Dutch and Finnish coniferous forests. The Finnish sites (n = 9) had nitrogen depositions from 3 to 36 kg N ha(-1) a(-1). The deposition of N on the Dutch sites (n = 13) was higher ranging from 50 to 92 kg N ha(-1) a(-1). The Dutch sites had

  12. Acid-base status and changes in Swedish forest soils

    International Nuclear Information System (INIS)

    Karltun, Erik; Stendahl, Johan; Lundin, Lars

    2003-01-01

    In this paper we use data from the Swedish National Survey of Forest Soils and Vegetation (NSFSV) to evaluate the present acid-base status of forest soils to try to answer the following questions. Which role do anthropogenic and biological acidification play for the present acid-base status of the soil profile? What is the present acid-base status of Swedish forest soils and how large areas may be considered as severely acidified? Do the current tendencies in soil acid-base status correspond with the positive development in surface waters?

  13. Methane oxidation in soil profiles of Dutch and Finnish coniferous forests with different soil texture and atmospheric nitrogen deposition

    NARCIS (Netherlands)

    Saari, A.; Martikainen, P.J.; Ferm, A.; Ruuskanen, J.; Boer, W. de; Troelstra, S.R.; Laanbroek, H.J.

    1997-01-01

    We studied methane oxidation capacity in soil profiles of Dutch and Finnish coniferous forests. The Finnish sites (n = 9) had nitrogen depositions from 3 to 36 kg N ha⁻¹ a⁻¹. The deposition of N on the Dutch sites (n = 13) was higher ranging from 50 to 92 kg N ha⁻¹ a⁻¹. The Dutch sites had also

  14. Forest soil carbon is threatened by intensive biomass harvesting.

    Science.gov (United States)

    Achat, David L; Fortin, Mathieu; Landmann, Guy; Ringeval, Bruno; Augusto, Laurent

    2015-11-04

    Forests play a key role in the carbon cycle as they store huge quantities of organic carbon, most of which is stored in soils, with a smaller part being held in vegetation. While the carbon storage capacity of forests is influenced by forestry, the long-term impacts of forest managers' decisions on soil organic carbon (SOC) remain unclear. Using a meta-analysis approach, we showed that conventional biomass harvests preserved the SOC of forests, unlike intensive harvests where logging residues were harvested to produce fuelwood. Conventional harvests caused a decrease in carbon storage in the forest floor, but when the whole soil profile was taken into account, we found that this loss in the forest floor was compensated by an accumulation of SOC in deeper soil layers. Conversely, we found that intensive harvests led to SOC losses in all layers of forest soils. We assessed the potential impact of intensive harvests on the carbon budget, focusing on managed European forests. Estimated carbon losses from forest soils suggested that intensive biomass harvests could constitute an important source of carbon transfer from forests to the atmosphere (142-497 Tg-C), partly neutralizing the role of a carbon sink played by forest soils.

  15. Isotope geochemistry of sulfur in forest soils and in new groundwater below forest soils

    International Nuclear Information System (INIS)

    Mayer, B.

    1993-04-01

    The isotope geochemistry of sulphur in aerobic forest soils and new groundwater below forest soils was investigated for the purpose of investigating the transport and transformation behaviour of sulfate in the water-unsaturated zone. The effects of hydrodynamic and biogeochemical processes on the development of seepage water sulfate isotopes between depositions and groundwater were investigated by means of laboratory experiments, profile studies, lysimeter experiments, and field studies in order to determine the sulphur conversion processes. Dissolved sulphur from precipitates, seepage water, creek water and groundwater, as well as sulphur extracted from soil samples, were precipitated in the form of BaSO 4 or AgS 2 , decomposed thermally into SO 2 or CO 2 , and the 34 S/ 32 S and 18 O/ 16 O isotope ratios were determined by mass spectrometry. (orig.) [de

  16. Responses of plant available water and forest productivity to variably layered coarse textured soils

    Science.gov (United States)

    Huang, Mingbin; Barbour, Lee; Elshorbagy, Amin; Si, Bing; Zettl, Julie

    2010-05-01

    Reforestation is a primary end use for reconstructed soils following oil sands mining in northern Alberta, Canada. Limited soil water conditions strongly restrict plant growth. Previous research has shown that layering of sandy soils can produce enhanced water availability for plant growth; however, the effect of gradation on these enhancements is not well defined. The objective of this study was to evaluate the effect of soil texture (gradation and layering) on plant available water and consequently on forest productivity for reclaimed coarse textured soils. A previously validated system dynamics (SD) model of soil moisture dynamics was coupled with ecophysiological and biogeochemical processes model, Biome-BGC-SD, to simulate forest dynamics for different soil profiles. These profiles included contrasting 50 cm textural layers of finer sand overlying coarser sand in which the sand layers had either a well graded or uniform soil texture. These profiles were compared to uniform profiles of the same sands. Three tree species of jack pine (Pinus banksiana Lamb.), white spruce (Picea glauce Voss.), and trembling aspen (Populus tremuloides Michx.) were simulated using a 50 year climatic data base from northern Alberta. Available water holding capacity (AWHC) was used to identify soil moisture regime, and leaf area index (LAI) and net primary production (NPP) were used as indices of forest productivity. Published physiological parameters were used in the Biome-BGC-SD model. Relative productivity was assessed by comparing model predictions to the measured above-ground biomass dynamics for the three tree species, and was then used to study the responses of forest leaf area index and potential productivity to AWHC on different soil profiles. Simulated results indicated soil layering could significantly increase AWHC in the 1-m profile for coarse textured soils. This enhanced AWHC could result in an increase in forest LAI and NPP. The increased extent varied with soil

  17. Soil charcoal as long-term pyrogenic carbon storage in Amazonian seasonal forests.

    Science.gov (United States)

    Turcios, Maryory M; Jaramillo, Margarita M A; do Vale, José F; Fearnside, Philip M; Barbosa, Reinaldo Imbrozio

    2016-01-01

    Forest fires (paleo + modern) have caused charcoal particles to accumulate in the soil vertical profile in Amazonia. This forest compartment is a long-term carbon reservoir with an important role in global carbon balance. Estimates of stocks remain uncertain in forests that have not been altered by deforestation but that have been impacted by understory fires and selective logging. We estimated the stock of pyrogenic carbon derived from charcoal accumulated in the soil profile of seasonal forest fragments impacted by fire and selective logging in the northern portion of Brazilian Amazonia. Sixty-nine soil cores to 1-m depth were collected in 12 forest fragments of different sizes. Charcoal stocks averaged 3.45 ± 2.17 Mg ha(-1) (2.24 ± 1.41 Mg C ha(-1) ). Pyrogenic carbon was not directly related to the size of the forest fragments. This carbon is equivalent to 1.40% (0.25% to 4.04%) of the carbon stocked in aboveground live tree biomass in these fragments. The vertical distribution of pyrogenic carbon indicates an exponential model, where the 0-30 cm depth range has 60% of the total stored. The total area of Brazil's Amazonian seasonal forests and ecotones not altered by deforestation implies 65-286 Tg of pyrogenic carbon accumulated along the soil vertical profile. This is 1.2-2.3 times the total amount of residual pyrogenic carbon formed by biomass burning worldwide in 1 year. Our analysis suggests that the accumulated charcoal in the soil vertical profile in Amazonian forests is a substantial pyrogenic carbon pool that needs to be considered in global carbon models. © 2015 John Wiley & Sons Ltd.

  18. The variations of aluminium species in mountainous forest soils and its implications to soil acidification.

    Science.gov (United States)

    Bradová, Monika; Tejnecký, Václav; Borůvka, Luboš; Němeček, Karel; Ash, Christopher; Šebek, Ondřej; Svoboda, Miroslav; Zenáhlíková, Jitka; Drábek, Ondřej

    2015-11-01

    Aluminium (Al) speciation is a characteristic that can be used as a tool for describing the soil acidification process. The question that was answered is how tree species (beech vs spruce) and type of soil horizon affect Al speciation. Our hypotesis is that spruce and beech forest vegetation are able to modify the chemical characteristics of organic horizon, hence the content of Al species. Moreover, these characteristics are seasonally dependent. To answer these questions, a detailed chromatographic speciation of Al in forest soils under contrasting tree species was performed. The Jizera Mountains area (Czech Republic) was chosen as a representative mountainous soil ecosystem. A basic forestry survey was performed on the investigated area. Soil and precipitation samples (throughfall, stemflow) were collected under both beech and spruce stands at monthly intervals from April to November during the years 2008-2011. Total aluminium content and Al speciation, pH, and dissolved organic carbon were determined in aqueous soil extracts and in precipitation samples. We found that the most important factors affecting the chemistry of soils, hence content of the Al species, are soil horizons and vegetation cover. pH strongly affects the amount of Al species under both forests. Fermentation (F) and humified (H) organic horizons contain a higher content of water extractable Al and Al(3+) compared to organo-mineral (A) and mineral horizons (B). With increasing soil profile depth, the amount of water extractable Al, Al(3+) and moisture decreases. The prevailing water-extractable species of Al in all studied soils and profiles under both spruce and beech forests were organically bound monovalent Al species. Distinct seasonal variations in organic and mineral soil horizons were found under both spruce and beech forests. Maximum concentrations of water-extractable Al and Al(3+) were determined in the summer, and the lowest in spring.

  19. Effects of forest conversion on soil microbial communities depend on soil layer on the eastern Tibetan Plateau of China.

    Directory of Open Access Journals (Sweden)

    Ruoyang He

    Full Text Available Forest land-use changes have long been suggested to profoundly affect soil microbial communities. However, how forest type conversion influences soil microbial properties remains unclear in Tibetan boreal forests. The aim of this study was to explore variations of soil microbial profiles in the surface organic layer and subsurface mineral soil among three contrasting forests (natural coniferous forest, NF; secondary birch forest, SF and spruce plantation, PT. Soil microbial biomass, activity and community structure of the two layers were investigated by chloroform fumigation, substrate respiration and phospholipid fatty acid analysis (PLFA, respectively. In the organic layer, both NF and SF exhibited higher soil nutrient levels (carbon, nitrogen and phosphorus, microbial biomass carbon and nitrogen, microbial respiration, PLFA contents as compared to PT. However, the measured parameters in the mineral soils often did not differ following forest type conversion. Irrespective of forest types, the microbial indexes generally were greater in the organic layer than in the mineral soil. PLFAs biomarkers were significantly correlated with soil substrate pools. Taken together, forest land-use change remarkably altered microbial community in the organic layer but often did not affect them in the mineral soil. The microbial responses to forest land-use change depend on soil layer, with organic horizons being more sensitive to forest conversion.

  20. Distribution of yeast complexes in the profiles of different soil types

    Science.gov (United States)

    Glushakova, A. M.; Kachalkin, A. V.; Tiunov, A. V.; Chernov, I. Yu.

    2017-07-01

    The number and taxonomic structure of the yeast complexes were investigated in the full profiles of the soddy-podzolic soil (Central Forest State Nature Biosphere Reserve), dark gray forest soil (Kaluzhskie Zaseki Reserve), and chernozem (Privolzhskaya Forest-Steppe Reserve). In all these soils, the number of yeasts was maximal (104 CFU/g) directly under the litter; it drastically decreased with the depth. However, at the depth of 120-160 cm, the number of yeasts significantly increased in all the soils; their maximum was found in the illuvial horizon of the soddy-podzolic soil. Such a statistically significant increase in the number of yeasts at a considerable depth was found for the first time. Different groups of yeasts were present in the yeast communities of different soils. The species structure of yeast communities changed little in each soil: the same species were isolated both from the soil surface and from the depth of more than 2 m. The results showed that yeasts could be used for soil bioindication on the basis of specific yeast complexes in the profiles of different soil types rather than individual indicative species.

  1. Contrasting the microbiomes from forest rhizosphere and deeper bulk soil from an Amazon rainforest reserve.

    Science.gov (United States)

    Fonseca, Jose Pedro; Hoffmann, Luisa; Cabral, Bianca Catarina Azeredo; Dias, Victor Hugo Giordano; Miranda, Marcio Rodrigues; de Azevedo Martins, Allan Cezar; Boschiero, Clarissa; Bastos, Wanderley Rodrigues; Silva, Rosane

    2018-02-05

    Pristine forest ecosystems provide a unique perspective for the study of plant-associated microbiota since they host a great microbial diversity. Although the Amazon forest is one of the hotspots of biodiversity around the world, few metagenomic studies described its microbial community diversity thus far. Understanding the environmental factors that can cause shifts in microbial profiles is key to improving soil health and biogeochemical cycles. Here we report a taxonomic and functional characterization of the microbiome from the rhizosphere of Brosimum guianense (Snakewood), a native tree, and bulk soil samples from a pristine Brazilian Amazon forest reserve (Cuniã), for the first time by the shotgun approach. We identified several fungi and bacteria taxon significantly enriched in forest rhizosphere compared to bulk soil samples. For archaea, the trend was the opposite, with many archaeal phylum and families being considerably more enriched in bulk soil compared to forest rhizosphere. Several fungal and bacterial decomposers like Postia placenta and Catenulispora acidiphila which help maintain healthy forest ecosystems were found enriched in our samples. Other bacterial species involved in nitrogen (Nitrobacter hamburgensis and Rhodopseudomonas palustris) and carbon cycling (Oligotropha carboxidovorans) were overrepresented in our samples indicating the importance of these metabolic pathways for the Amazon rainforest reserve soil health. Hierarchical clustering based on taxonomic similar microbial profiles grouped the forest rhizosphere samples in a distinct clade separated from bulk soil samples. Principal coordinate analysis of our samples with publicly available metagenomes from the Amazon region showed grouping into specific rhizosphere and bulk soil clusters, further indicating distinct microbial community profiles. In this work, we reported significant shifts in microbial community structure between forest rhizosphere and bulk soil samples from an Amazon

  2. Tree species and soil nutrient profiles in old-growth forests of the Oregon Coast Range

    Science.gov (United States)

    Cross, Alison; Perakis, Steven S.

    2011-01-01

    Old-growth forests of the Pacific Northwest provide a unique opportunity to examine tree species – soil relationships in ecosystems that have developed without significant human disturbance. We characterized foliage, forest floor, and mineral soil nutrients associated with four canopy tree species (Douglas-fir (Pseudotsuga menziesii (Mirbel) Franco), western hemlock (Tsuga heterophylla (Raf.) Sarg.), western redcedar (Thuja plicata Donn ex D. Don), and bigleaf maple (Acer macrophyllum Pursh)) in eight old-growth forests of the Oregon Coast Range. The greatest forest floor accumulations of C, N, P, Ca, Mg, and K occurred under Douglas-fir, primarily due to greater forest floor mass. In mineral soil, western hemlock exhibited significantly lower Ca concentration and sum of cations (Ca + Mg + K) than bigleaf maple, with intermediate values for Douglas-fir and western redcedar. Bigleaf maple explained most species-based differences in foliar nutrients, displaying high concentrations of N, P, Ca, Mg, and K. Foliar P and N:P variations largely reflected soil P variation across sites. The four tree species that we examined exhibited a number of individualistic effects on soil nutrient levels that contribute to biogeochemical heterogeneity in these ecosystems. Where fire suppression and long-term succession favor dominance by highly shade-tolerant western hemlock, our results suggest a potential for declines in both soil Ca availability and soil biogeochemical heterogeneity in old-growth forests.

  3. Hurricane Wilma's impact on overall soil elevation and zones within the soil profile in a mangrove forest

    Science.gov (United States)

    Whelan, K.R.T.; Smith, T. J.; Anderson, G.H.; Ouellette, M.L.

    2009-01-01

    Soil elevation affects tidal inundation period, inundation frequency, and overall hydroperiod, all of which are important ecological factors affecting species recruitment, composition, and survival in wetlands. Hurricanes can dramatically affect a site's soil elevation. We assessed the impact of Hurricane Wilma (2005) on soil elevation at a mangrove forest location along the Shark River in Everglades National Park, Florida, USA. Using multiple depth surface elevation tables (SETs) and marker horizons we measured soil accretion, erosion, and soil elevation. We partitioned the effect of Hurricane Wilma's storm deposit into four constituent soil zones: surface (accretion) zone, shallow zone (0–0.35 m), middle zone (0.35–4 m), and deep zone (4–6 m). We report expansion and contraction of each soil zone. Hurricane Wilma deposited 37.0 (± 3.0 SE) mm of material; however, the absolute soil elevation change was + 42.8 mm due to expansion in the shallow soil zone. One year post-hurricane, the soil profile had lost 10.0 mm in soil elevation, with 8.5 mm of the loss due to erosion. The remaining soil elevation loss was due to compaction from shallow subsidence. We found prolific growth of new fine rootlets (209 ± 34 SE g m−2) in the storm deposited material suggesting that deposits may become more stable in the near future (i.e., erosion rate will decrease). Surficial erosion and belowground processes both played an important role in determining the overall soil elevation. Expansion and contraction in the shallow soil zone may be due to hydrology, and in the middle and bottom soil zones due to shallow subsidence. Findings thus far indicate that soil elevation has made substantial gains compared to site specific relative sea-level rise, but data trends suggest that belowground processes, which differ by soil zone, may come to dominate the long term ecological impact of storm deposit.

  4. Analysis on the influence of forest soil characteristics on radioactive Cs infiltration

    International Nuclear Information System (INIS)

    Mori, Yoshitomo; Yoneda, Minoru; Shimada, Yoko; Shimomura, Ryohei; Fukutani, Satoshi; Ikegami, Maiko

    2017-01-01

    Soil core (0-5 cm and 5-10 cm) was collected in 5 points with different vegetation in Fukushima Prefecture in order to explore the permeability, field capacity and voidage. Depth profiles of radioactive Cs, ignition loss and CEC (Cation Exchange Capacity) in the 5 forest soils were also investigated, using scraper plate (at 0.5 cm intervals for 0-5 cm and at 1.0 cm intervals for 5-10 cm). Depth profiles in soil layers were totally different between forests and did not show explicit correlation with field capacity, voidage or ignition loss. On the other hand, CEC correlated weakly and permeability did strongly with infiltration of radioactive Cs. Compartment modeling was conducted, so as to reproduce the monitored depth profile, taking ignition loss as a parameter, based on the experiment result that ignition loss had positive correlation with CEC, which might influence the adsorption process on radioactive Cs in soil layer. However, the ignition loss alone failed to fully reproduce the depth profile. Considering the present results as well as the fact that permeability might have explicit relation with infiltration of radioactive Cs, factors related with precipitation or water flow in early stage after the accident could influence the depth profile, before adsorbed with negative charge in soil particles. (author)

  5. LBA-ECO ND-11 Soil Properties of Forested Headwater Catchments, Mato Grosso, Brazil

    Data.gov (United States)

    National Aeronautics and Space Administration — The results of the analysis of soil chemical parameters, texture, and color are reported for 185 georeferenced soil profile sample points over four forested...

  6. Methods of soil resampling to monitor changes in the chemical concentrations of forest soils

    Science.gov (United States)

    Lawrence, Gregory B.; Fernandez, Ivan J.; Hazlett, Paul W.; Bailey, Scott W.; Ross, Donald S.; Villars, Thomas R.; Quintana, Angelica; Ouimet, Rock; McHale, Michael; Johnson, Chris E.; Briggs, Russell D.; Colter, Robert A.; Siemion, Jason; Bartlett, Olivia L.; Vargas, Olga; Antidormi, Michael; Koppers, Mary Margaret

    2016-01-01

    Recent soils research has shown that important chemical soil characteristics can change in less than a decade, often the result of broad environmental changes. Repeated sampling to monitor these changes in forest soils is a relatively new practice that is not well documented in the literature and has only recently been broadly embraced by the scientific community. The objective of this protocol is therefore to synthesize the latest information on methods of soil resampling in a format that can be used to design and implement a soil monitoring program. Successful monitoring of forest soils requires that a study unit be defined within an area of forested land that can be characterized with replicate sampling locations. A resampling interval of 5 years is recommended, but if monitoring is done to evaluate a specific environmental driver, the rate of change expected in that driver should be taken into consideration. Here, we show that the sampling of the profile can be done by horizon where boundaries can be clearly identified and horizons are sufficiently thick to remove soil without contamination from horizons above or below. Otherwise, sampling can be done by depth interval. Archiving of sample for future reanalysis is a key step in avoiding analytical bias and providing the opportunity for additional analyses as new questions arise.

  7. Methods of Soil Resampling to Monitor Changes in the Chemical Concentrations of Forest Soils.

    Science.gov (United States)

    Lawrence, Gregory B; Fernandez, Ivan J; Hazlett, Paul W; Bailey, Scott W; Ross, Donald S; Villars, Thomas R; Quintana, Angelica; Ouimet, Rock; McHale, Michael R; Johnson, Chris E; Briggs, Russell D; Colter, Robert A; Siemion, Jason; Bartlett, Olivia L; Vargas, Olga; Antidormi, Michael R; Koppers, Mary M

    2016-11-25

    Recent soils research has shown that important chemical soil characteristics can change in less than a decade, often the result of broad environmental changes. Repeated sampling to monitor these changes in forest soils is a relatively new practice that is not well documented in the literature and has only recently been broadly embraced by the scientific community. The objective of this protocol is therefore to synthesize the latest information on methods of soil resampling in a format that can be used to design and implement a soil monitoring program. Successful monitoring of forest soils requires that a study unit be defined within an area of forested land that can be characterized with replicate sampling locations. A resampling interval of 5 years is recommended, but if monitoring is done to evaluate a specific environmental driver, the rate of change expected in that driver should be taken into consideration. Here, we show that the sampling of the profile can be done by horizon where boundaries can be clearly identified and horizons are sufficiently thick to remove soil without contamination from horizons above or below. Otherwise, sampling can be done by depth interval. Archiving of sample for future reanalysis is a key step in avoiding analytical bias and providing the opportunity for additional analyses as new questions arise.

  8. Mercury loss from soils following conversion from forest to pasture in Rondonia, Western Amazon, Brazil

    International Nuclear Information System (INIS)

    Almeida, Marcelo D.; Lacerda, Luiz D.; Bastos, Wanderley R.; Herrmann, Joao Carlos

    2005-01-01

    This work reports on the effect of land use change on Hg distribution in Amazon soils. It provides a comparison among Hg concentrations and distribution along soil profiles under different land use categories; primary tropical forest, slashed forest prior to burning, a 1-year silviculture plot planted after 4 years of forest removal and a 5-year-old pasture plot. Mercury concentrations were highest in deeper (60-80 cm) layers in all four plots. Forest soils showed the highest Hg concentrations, ranging from 128 ng g -1 at the soil surface to 150 ng g -1 at 60-80 cm of depth. Lower concentrations were found in pasture soils, ranging from 69 ng g -1 at the topsoil to 135 ng g -1 at 60-80 cm of depth. Slashed and silviculture soils showed intermediate concentrations. Differences among plots of different soil-use categories decreased with soil depth, being non-significant below 60 cm of depth. Mercury burdens were only statistically significantly different between pasture and forest soils at the topsoil, due to the large variability of concentrations. Consequently, estimated Hg losses were only significant between these two land use categories, and only for the surface layers. Estimated Hg loss due to forest conversion to pasture ranged from 8.5 mg m -2 to 18.5 mg m -2 , for the first 20 cm of the soil profile. Mercury loss was comparable to loss rates estimated for other Amazon sites and seems to be directly related to Hg concentrations present in soils. - Deforestation can be responsible for maintaining high Hg levels in the Amazon environment, through a grasshopper effect of Hg remobilization from the affected soils

  9. 137Cs in the fungal compartment of Swedish forest soils

    International Nuclear Information System (INIS)

    Vinichuk, Mykhaylo M.; Johanson, Karl J.; Taylor, Andy F.S.

    2004-01-01

    The 137 Cs activities in soil profiles and in the mycelia of four ectomycorrhizal fungi were studied in a Swedish forest in an attempt to understand the mechanisms governing the transfer and retention of 137 Cs in forest soil. The biomass of four species of fungi was determined and estimated to be 16 g m -2 in a peat soil and 47-189 g m -2 in non-peat soil to the depth of 10 cm. The vertical distribution was rather homogeneous for two species (Tylospora spp. and Piloderma fallax) and very superficial for Hydnellum peckii. Most of the 137 Cs activity in mycelium of non-peat soils was found in the upper 5 cm. Transfer factors were quite high even for those species producing resupinate sporocarps. In the peat soil only approximately 0.3% of the total 137 Cs inventory in soil was found in the fungal mycelium. The corresponding values for non-peat soil were 1.3, 1.8 and 1.9%

  10. The influence of pine forests of different ages on the biological activity of layland soils in the middle Angara River basin

    Science.gov (United States)

    Sorokina, O. A.; Sorokin, N. D.

    2007-05-01

    The influence of pine forests of different ages (from 25 to 85 years) restoring on old plow land soils is reflected in the biological processes proceeding in them. The drastic decrease in the absolute and relative number of actinomycetes, along with an increase of the fungal population in the microbial complexes of the soils (within the whole profiles), indicates that the microbocenoses acquire “forest” properties. In the soils under the younger pine forests, the processes of microbiological mineralization and specific respiration activity are more active than in the soils under the older pine forests. With the age of the pine forests, the soil profiles become more differentiated according to the eluvial-illuvial type.

  11. Proceedings of the California Forest Soils Council Conference on Forest Soils Biology and Forest Management

    Science.gov (United States)

    Robert F. Powers; Donald L. Hauxwell; Gary M. Nakamura

    2000-01-01

    Biotic properties of forest soil are the linkages connecting forest vegetation with an inert rooting medium to create a dynamic, functioning ecosystem. But despite the significance of these properties, managers have little awareness of the biotic world beneath their feet. Much of our working knowledge of soil biology seems anchored in myth and misunderstanding. To...

  12. Soil and soil cover changes in spruce forests after final logging

    Directory of Open Access Journals (Sweden)

    E. M. Lapteva

    2015-10-01

    Full Text Available Soil cover transformation and changes of morphological and chemical properties of Albeluvisols in clear-cuttings of middle taiga spruce forests were studied. The observed changes in structure and properties of podzolic texturally-differentiated soils at cuttings of spruce forests in the middle taiga subzone do not cause their transition to any other soil type. Soil cover of secondary deciduous-coniferous forests which replace cut forests are characterized with a varied soil contour and a combination of the main type of podzolic soils under undisturbed spruce forests. The increased surface hydromorphism in cut areas causes formation of complicated sub-types of podzolic texturally differentiated soils (podzolic surface-gley soils with microprofile of podzol and enlarges their ratio (up to 35–38 % in soil cover structure. Temporary soil over-wetting at the initial (5–10 years stage of after-cutting self-restoring vegetation succession provides for soil gleyzation, improves yield and segregation of iron compounds, increases the migratory activity of humic substances. Low content and resources of total nitrogen in forest litters mark anthropogenic transformation processes of podzolic soils at this stage. Later (in 30–40 years after logging, soils in cut areas still retain signs of hydromorphism. Forest litters are denser, less acidic and thick with a low weight ratio of organic carbon as compared with Albeluvisols of undisturbed spruce forest. The upper mineral soil horizons under secondary deciduous-coniferous forests contain larger amounts of total iron, its mobile (oxalate-dissolvable components, and Fe-Mn-concretions.

  13. Digging a Little Deeper: Microbial Communities, Molecular Composition and Soil Organic Matter Turnover along Tropical Forest Soil Depth Profiles

    Science.gov (United States)

    Pett-Ridge, J.; McFarlane, K. J.; Heckman, K. A.; Reed, S.; Green, E. A.; Nico, P. S.; Tfaily, M. M.; Wood, T. E.; Plante, A. F.

    2016-12-01

    Tropical forest soils store more carbon (C) than any other terrestrial ecosystem and exchange vast amounts of CO2, water, and energy with the atmosphere. Much of this C is leached and stored in deep soil layers where we know little about its fate or the microbial communities that drive deep soil biogeochemistry. Organic matter (OM) in tropical soils appears to be associated with mineral particles, suggesting deep soils may provide greater C stabilization. However, few studies have evaluated sub-surface soils in tropical ecosystems, including estimates of the turnover times of deep soil C, the sensitivity of this C to global environmental change, and the microorganisms involved. We quantified bulk C pools, microbial communities, molecular composition of soil organic matter, and soil radiocarbon turnover times from surface soils to 1.5m depths in multiple soil pits across the Luquillo Experimental Forest, Puerto Rico. Soil C, nitrogen, and root and microbial biomass all declined exponentially with depth; total C concentrations dropped from 5.5% at the surface to communities in surface soils (Acidobacteria and Proteobacteria) versus those below the active rooting zone (Verrucomicrobia and Thaumarchaea). High resolution mass spectrometry (FTICR-MS) analyses suggest a shift in the composition of OM with depth (especially in the water soluble fraction), an increase in oxidation, and decreasing H/C with depth (indicating higher aromaticity). Additionally, surface samples were rich in lignin-like compounds of plant origin that were absent with depth. Soil OM 14C and mean turnover times were variable across replicate horizons, ranging from 3-1500 years at the surface, to 5000-40,000 years at depth. In comparison to temperate deciduous forests, these 14C values reflect far older soil C. Particulate organic matter (free light fraction), with a relatively modern 14C was found in low but measureable concentration in even the deepest soil horizons. Our results indicate these

  14. Natural and artificial radionuclides in forest and bog soils: tracers for migration processes and soil development

    International Nuclear Information System (INIS)

    Schleich, N.; Degering, D.; Unterricker, S.

    2000-01-01

    Radionuclide distributions in undisturbed forest and bog soils, mostly situated in Saxony, Germany (Erzgebirge), were studied. Low concentrations of naturally-occurring U and Th decay series nuclides, including 210 Pb, and artificial radioisotopes ( 125 Sb, 134 Cs, 137 Cs, 241 Am) were determined using low-level γ-spectrometry. In addition, the activities of 238 Pu and 239,240 Pu were determined by radiochemical separation and α-spectrometry. 14 C and excess 210 Pb dating methods were used to date the sampled bog profiles. The different radionuclides show characteristic depth distributions in the forest and bog soil horizons, which were sub-sampled as thin slices. 125 Sb, 241 Am, 238 Pu and 239,240 Pu are strongly fixed in soil organic matter. In spruce forest soils, the influence of soil horizons with distinct properties dominates the vertical time-dependent distribution. In ombrotrophic bogs, the peak positions correlated with the year of maximum input of each nuclide. The Sb, Am and Pu ''time markers'' and the 14 C and 210 Pb dating results correspond very well. Although Cs seems to be relatively mobile in organic as well as mineral forest soil horizons, it is enriched in the organic material. In ombrotrophic bogs, Cs is very mobile in the peat deposit. In Sphagnum peat, Cs is translocated continuously towards the growing apices of the Sphagnum mosses, where it is accumulated. (orig.)

  15. Distribution of active organic matter in the soil profiles of natural and agricultural ecosystems

    Science.gov (United States)

    Khodzhaeva, A. K.; Semenov, V. M.

    2015-12-01

    The amount of active (potentially mineralizable) organic carbon (C0) in the 1-m-deep layer of typical chernozem, dark-gray forest soil, and gray forest soil was estimated for virgin plots and arable land. It was shown that C0 is mainly found in the topsoil (0-20 cm), where its pool reaches 32-60% of the total amount of C0 in the layer of 0-100 cm. The C0 content and its portion in the total organic carbon decrease down the soil profiles. The disturbance of the structure of the pool of active organic carbon—the loss of the moderately mineralizable (0.1 > k 2 > 0.1 day-1) fraction—takes place in the upper horizon of plowed soils. The total pool of C0 in the upper meter of typical chernozem under cropland and under meadow-steppe cenosis comprises 2.8 and 5.2 t/ha, respectively; for the dark gray forest soil under cropland and forest, it reaches 5.5 and 9.8 t/ha, respectively; and for the gray forest soil under cropland and forest, 2.4 and 3.4 t/ha, respectively. The pools of C0 in the typical chernozem. dark gray forest, and gray forest soils are comparable with the values of the annual C-CO2 emission from the soils of these zones.

  16. Carbon isotope characterization of vegetation and soil organic matter in subtropical forests in Luquillo, Puerto Rico

    International Nuclear Information System (INIS)

    Fischer, J.C. von; Tieszen, L.L.

    1995-01-01

    We examined natural abundances of 13 C in vegetation and soil organic maner (SOM) of subtropical wet and rain forests to characterize the isotopic enrichment through decomposition that has been reported for temperate forests. Soil cores and vegetative samples from the decomposition continuum (leaves, new litter, old liner, wood, and roots) were taken from each of four forest types in the Luquillo Experimental Forest, Puerto Rico. SOM δ 13 C was enriched 1.60/00 relative to aboveground litter. We found no further enrichment within the soil profile. The carbon isotope ratios of vegetation varied among forests, ranging from -28.20/00 in the Colorado forest to -26.90/00 in the Palm forest. Isotope ratios of SOM differed between forests primarily in the top 20 em where the Colorado forest was again most negative at -28.00/00, and the Palm forest was most positive at -26.50/00. The isotopic differences between forests are likely attributable to differences in light regimes due to canopy density variation, soil moisture regimes, and/or recycling of CO 2 . Our data suggest that recalcitrant SOM is not derived directly from plant lignin since plant lignin is even more 13 C depleted than the bulk vegetation. We hypothesize that the anthropogenic isotopic depletion of atmospheric CO 2 , (ca 1.50/00 in the last 150 years) accounts for some of the enrichment observed in the SOM relative to the more modern vegetation in this study and others. This study also supports other observations that under wet or anaerobic soil environments there is no isotopic enrichment during decomposition or with depth in the active profile. (author)

  17. Carbon isotope characterization of vegetation and soil organic matter in subtropical forests in Luquillo, Puerto Rico

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, J.C. von [Cornell University, Ithaca, NY (United States); Tieszen, L. L.

    1995-06-15

    We examined natural abundances of {sup 13}C in vegetation and soil organic maner (SOM) of subtropical wet and rain forests to characterize the isotopic enrichment through decomposition that has been reported for temperate forests. Soil cores and vegetative samples from the decomposition continuum (leaves, new litter, old liner, wood, and roots) were taken from each of four forest types in the Luquillo Experimental Forest, Puerto Rico. SOM δ{sup 13}C was enriched 1.60/00 relative to aboveground litter. We found no further enrichment within the soil profile. The carbon isotope ratios of vegetation varied among forests, ranging from -28.20/00 in the Colorado forest to -26.90/00 in the Palm forest. Isotope ratios of SOM differed between forests primarily in the top 20 em where the Colorado forest was again most negative at -28.00/00, and the Palm forest was most positive at -26.50/00. The isotopic differences between forests are likely attributable to differences in light regimes due to canopy density variation, soil moisture regimes, and/or recycling of CO{sub 2}. Our data suggest that recalcitrant SOM is not derived directly from plant lignin since plant lignin is even more {sup 13}C depleted than the bulk vegetation. We hypothesize that the anthropogenic isotopic depletion of atmospheric CO{sub 2}, (ca 1.50/00 in the last 150 years) accounts for some of the enrichment observed in the SOM relative to the more modern vegetation in this study and others. This study also supports other observations that under wet or anaerobic soil environments there is no isotopic enrichment during decomposition or with depth in the active profile. (author)

  18. The feature and distribution of 137Cs in the forest soil

    International Nuclear Information System (INIS)

    Narazaki, Yukinori

    2002-01-01

    The 137 Cs concentration in an undisturbed upper layer of naked land in Fukuoka Prefecture decreased exponentially from 1969 to 1999 with the apparent half-life of 7 years. The ratio of 137 Cs concentration in the lower layer of the soil to that in the upper layer was about 1/5. The concentration of 137 Cs, 40 K, and stable Cs and the soil profile consisting of loss on ignition, pH, and electric conductivity were determined in the 48 samples collected in the forests and the neighboring naked land from 1991 to 1998. The 137 Cs concentration in the forest soils ranged from 1 to 424 Bq/kg dry wt, 131 Bq/kg dry wt on average, although 137 Cs was hardly detected in the naked soil around the forest. There was no regional difference in the distribution of the 137 Cs concentration, and it varied with pH and electric conductivity in the soil. Further, it tended to be higher in the deciduous woodland than in the evergreen woodland. (author)

  19. [Soil meso- and micro-fauna community structures in different urban forest types in Shanghai, China.

    Science.gov (United States)

    Jin, Shi Ke; Wang, Juan Juan; Zhu, Sha; Zhang, Qi; Li, Xiang; Zheng, Wen Jing; You, Wen Hui

    2016-07-01

    Soil meso- and micro-fauna of four urban forest types in Shanghai were investigated in four months which include April 2014, July 2014, October 2014 and January 2015. A total of 2190 soil fauna individuals which belong to 6 phyla, 15 classes and 22 groups were collected. The dominant groups were Nematoda and Arcari, accounting for 56.0% and 21.8% of the total in terms of individual numbers respectively. The common groups were Enchytraeidae, Rotatoria, Collembola and Hymenoptera and they accounted for 18.7% of the total in terms of individual numbers. There was a significant difference (PMetasequoia glyptostroboides forest, the smallest in Cinnamomum camphora forest. The largest groupe number was found in near-nature forest, the smallest was found in M. glyptostroboides forest. There was obvious seasonal dynamics in each urban forest type and green space which had larger density in autumn and larger groupe number in summer and autumn. In soil profiles, the degree of surface accumulation of soil meso- and micro-fauna in C. camphora forest was higher than in other forests and the vertical distribution of soil meso- and micro-fauna in near-nature forest was relatively homogeneous in four layers. Density-group index was ranked as: near-nature forest (6.953)> C. camphora forest (6.351)> Platanus forest (6.313)>M. glyptostroboides forest (5.910). The community diversity of soil fauna in each vegetation type could be displayed preferably by this index. It could be inferred through redundancy analysis (RDA) that the soil bulk density, organic matter and total nitrogen were the main environmental factors influencing soil meso- and micro-fauna community structure in urban forest. The positive correlations occurred between the individual number of Arcari, Enchytraeidae and soil organic matter and total nitrogen, as well as between the individual number of Diptera larvae, Rotatoria and soil water content.

  20. Vertical and horizontal differences of soil parameters and radiocaesium contents in soil profiles (dystric cambisol) under spruce

    International Nuclear Information System (INIS)

    Strebl, F.; Gerzabek, M.

    1997-05-01

    In a spruce forest stand 9 pooled soil profiles (ten auger cores each, 4 layers) were collected within a homogeneous area of 200 ha. This sampling technique provides sufficient accuracy for the determination of most physico-chemical soil characteristics as well as for the assessment of vertical gradients and horizontal variability within the investigation area. The results reveal the soils' tendency for podsolization and acidification processes. In spite of the small sample sizes cation wash-out (Ca, Mg) due to differences in the orographic situation was determined with high significance. 86 % of 137 Cs-contamination derived from the Chernobyl-fallout in 1986 are still found in the top-soil (10 cm). Nutrient-cycling and the high binding capacity of soil organic matter retard vertical migration of 137 Cs in forest soils effectively. From the present data sets for different soil parameters the minimum number of soil samples ensuring maximum admissible errors of 10 and 20 % were calculated. (author)

  1. Agrogenic degradation of soils in Krasnoyarsk forest-steppe

    Science.gov (United States)

    Shpedt, A. A.; Trubnikov, Yu. N.; Zharinova, N. Yu.

    2017-10-01

    Agrogenic degradation of soils in Krasnoyarsk forest-steppe was investigated. Paleocryogenic microtopography of microlows and microhighs in this area predetermined the formation of paragenetic soil series and variegated soil cover. Specific paleogeographic conditions, thin humus horizons and soil profiles, and long-term agricultural use of the land resulted in the formation of soils unstable to degradation processes and subjected to active wind and water erosion. Intensive mechanical soil disturbances during tillage and long-term incorporation of the underlying Late Pleistocene (Sartan) calcareous silty and clay loams into the upper soil horizons during tillage adversely affected the soil properties. We determined the contents of total and labile humus and easily decomposable organic matter and evaluated the degree of soil exhaustion. It was concluded that in the case of ignorance of the norms of land use and soil conservation practices, intense soil degradation would continue leading to complete destruction of the soil cover within large areas.

  2. Contributions of Ectomycorrhizal Fungal Mats to Forest Soil Carbon Cycles

    Science.gov (United States)

    Kluber, L. A.; Phillips, C. L.; Myrold, D. D.; Bond, B. J.

    2008-12-01

    Ectomycorrhizal (EM) fungi are a prominent and ubiquitous feature of forest soils, forming symbioses with most tree species, yet little is known about the magnitude of their impact on forest carbon cycles. A subset of EM fungi form dense, perennial aggregations of hyphae, which have elevated respiration rates compared with neighboring non-mat soils. These mats are a foci of EM activity and thereby a natural laboratory for examining how EM fungi impact forest soils. In order to constrain the contributions of EM fungi to forest soil respiration, we quantified the proportion of respiration derived from EM mat soils in an old-growth Douglas-fir stand in western Oregon. One dominant genus of mat-forming fungi, Piloderma, covered 56% of the soil surface area. Piloderma mats were monitored for respiration rates over 15 months and found to have on average 10% higher respiration than non-mat soil. At the stand level, this amounts to roughly 6% of soil respiration due to the presence of Piloderma mats. We calculate that these mats may constitute 27% of autotrophic respiration, based on respiration rates from trenched plots in a neighboring forest stand. Furthermore, enzyme activity and microbial community profiles in mat and non-mat soil provide evidence that specialized communities utilizing chitin contribute to this increased efflux. With 60% higher chitinase activity in mats, the breakdown of chitin is likely an important carbon flux while providing carbon and nitrogen to the microbial communities associated with mats. Quantitative PCR showed similar populations of fungi and bacteria in mat and non-mat soils; however, community analysis revealed distinct fungal and bacterial communities in the two soil types. The higher respiration associated with EM mats does not appear to be due only to a proliferation of EM fungi, but to a shift in overall community composition to organisms that efficiently utilize the unique resources available within the mat, including plant and

  3. Soil fauna as an indicator of soil quality in forest stands, pasture and secondary forest

    Directory of Open Access Journals (Sweden)

    Felipe Vieira da Cunha Neto

    2012-11-01

    Full Text Available The interactions between soil invertebrates and environmental variations are relatively unknown in the assessment of soil quality. The objective of this study was to evaluate soil quality in areas with different soil management systems, based on soil fauna as indicator, in Além Paraíba, Minas Gerais, Brazil. The soil invertebrate community was sampled using pitfall traps, in the dry and rainy seasons, from areas with five vegetation types (acacia, mimosa, eucalyptus, pasture, and secondary forest. The abundance of organisms and the total and average richness, Shannon's diversity index, the Pielou uniformity index, and change index V were determined. The fauna was most abundant in the areas of secondary forest and mimosa plantations in the dry season (111.3 and 31.7 individuals per trap per day, respectively. In the rainy season, the abundance of organisms in the three vegetation types did not differ. The highest values of average and total richness were recorded in the secondary forest in the dry season and in the mimosa stand in the rainy season. Shannon's index ranged from 1.57 in areas with acacia and eucalyptus in the rainy season to 3.19 in the eucalyptus area in the dry season. The uniformity index was highest in forest stands (eucalyptus, acacia and mimosa in the dry season, but higher in the rainy season in the pasture and secondary forest than in the forest stands. The change index V indicated that the percentage of extremely inhibited groups was lowest in the area with mimosa, both in the dry and rainy season (36 and 23 %, respectively. Of all forest stands, the mimosa area had the most abundant soil fauna.

  4. Dependence of Soil Respiration on Soil Temperature and Soil Moisture in Successional Forests in Southern China

    Institute of Scientific and Technical Information of China (English)

    Xu-Li Tang; Guo-Yi Zhou; Shu-Guang Liu; De-Qiang Zhang; Shi-Zhong Liu; Jiong Li; Cun-Yu Zhou

    2006-01-01

    The spatial and temporal variations in soil respiration and its relationship with biophysical factors in forests near the Tropic of Cancer remain highly uncertain. To contribute towards an improvement of actual estimates, soil respiration rates, soil temperature, and soil moisture were measured in three successional subtropical forests at the Dinghushan Nature Reserve (DNR) in southern China from March 2003 to February 2005. The overall objective of the present study was to analyze the temporal variations of soil respiration and its biophysical dependence in these forests. The relationships between biophysical factors and soil respiration rates were compared in successional forests to test the hypothesis that these forests responded similarly to biophysical factors. The seasonality of soil respiration coincided with the seasonal climate pattern, with high respiration rates in the hot humid season (April-September) and with low rates in the cool dry season (October-March). Soil respiration measured at these forests showed a clear increasing trend with the progressive succession. Annual mean (± SD) soil respiration rate in the DNR forests was (9.0±4.6) Mg CO2-C/hm2 per year, ranging from (6.1±3.2) Mg CO2-C/hm2 per year in early successional forests to (10.7±4.9) Mg CO2-C/hm2 per year in advanced successional forests. Soil respiration was correlated with both soil temperature and moisture. The T/M model, where the two biophysical variables are driving factors, accounted for 74%-82% of soil respiration variation in DNR forests. Temperature sensitivity decreased along progressive succession stages, suggesting that advanced-successional forests have a good ability to adjust to temperature. In contrast, moisture increased with progressive succession processes. This increase is caused, in part, by abundant respirators in advanced-successional forest, where more soil moisture is needed to maintain their activities.

  5. Dependence of soil respiration on soil temperature and soil moisture in successional forests in Southern China

    Science.gov (United States)

    Tang, X.-L.; Zhou, G.-Y.; Liu, S.-G.; Zhang, D.-Q.; Liu, S.-Z.; Li, Ji; Zhou, C.-Y.

    2006-01-01

    The spatial and temporal variations in soil respiration and its relationship with biophysical factors in forests near the Tropic of Cancer remain highly uncertain. To contribute towards an improvement of actual estimates, soil respiration rates, soil temperature, and soil moisture were measured in three successional subtropical forests at the Dinghushan Nature Reserve (DNR) in southern China from March 2003 to February 2005. The overall objective of the present study was to analyze the temporal variations of soil respiration and its biophysical dependence in these forests. The relationships between biophysical factors and soil respiration rates were compared in successional forests to test the hypothesis that these forests responded similarly to biophysical factors. The seasonality of soil respiration coincided with the seasonal climate pattern, with high respiration rates in the hot humid season (April-September) and with low rates in the cool dry season (October-March). Soil respiration measured at these forests showed a clear increasing trend with the progressive succession. Annual mean (±SD) soil respiration rate in the DNR forests was (9.0 ± 4.6) Mg CO2-C/hm2per year, ranging from (6.1 ± 3.2) Mg CO2-C/hm2per year in early successional forests to (10.7 ± 4.9) Mg CO2-C/hm2 per year in advanced successional forests. Soil respiration was correlated with both soil temperature and moisture. The T/M model, where the two biophysical variables are driving factors, accounted for 74%-82% of soil respiration variation in DNR forests. Temperature sensitivity decreased along progressive succession stages, suggesting that advanced-successional forests have a good ability to adjust to temperature. In contrast, moisture increased with progressive succession processes. This increase is caused, in part, by abundant respirators in advanced-successional forest, where more soil moisture is needed to maintain their activities.

  6. Soil strength and forest operations

    OpenAIRE

    Beekman, F.

    1987-01-01

    The use of heavy machinery and transport vehicles is an integral part of modern forest operations. This use often causes damage to the standing trees and to the soil. In this study the effects of vehicle traffic on the soil are analysed and the possible consequences for forest management discussed. The study is largely restricted to sandy and loamy soils because of their importance for Dutch forestry.

    Soil strength, defined as the resistance of soil structure against the impa...

  7. Carbon in boreal coniferous forest soil

    Energy Technology Data Exchange (ETDEWEB)

    Westman, C J; Ilvesniemi, H; Liski, J; Mecke, M [Helsinki Univ. (Finland). Dept. of Forest Ecology; Fritze, H; Helmisaari, H S; Pietikaeinen, J; Smolander, A [Finnish Forest Research Inst., Vantaa (Finland)

    1997-12-31

    The working hypothesis of the research was that the soil of boreal forests is a large carbon store and the amount of C is still increasing in young soils, like in the forest soils of Finland, which makes these soils important sinks for atmospheric CO{sub 2}. Since the processes defining the soil C balance, primary production of plants and decomposition, are dependent on environmental factors and site properties, it was assumed that the organic carbon pool in the soil is also dependent on the same factors. The soil C store is therefore likely to change in response to climatic warming. The aim of this research was to estimate the C balance of forest soil in Finland and predict changes in the balance in response to changes in climatic conditions. To achieve the aim (1) intensive empirical experimentation on the density of C in different pools in the soil and on fluxes between the pools was done was done, (2) the effect of site fertility and climate on the amount and properties of organic C in forest soil was investigated and (3) dynamic modelling for investigating dynamics of the soil C storage was used

  8. Carbon in boreal coniferous forest soil

    Energy Technology Data Exchange (ETDEWEB)

    Westman, C.J.; Ilvesniemi, H.; Liski, J.; Mecke, M. [Helsinki Univ. (Finland). Dept. of Forest Ecology; Fritze, H.; Helmisaari, H.S.; Pietikaeinen, J.; Smolander, A. [Finnish Forest Research Inst., Vantaa (Finland)

    1996-12-31

    The working hypothesis of the research was that the soil of boreal forests is a large carbon store and the amount of C is still increasing in young soils, like in the forest soils of Finland, which makes these soils important sinks for atmospheric CO{sub 2}. Since the processes defining the soil C balance, primary production of plants and decomposition, are dependent on environmental factors and site properties, it was assumed that the organic carbon pool in the soil is also dependent on the same factors. The soil C store is therefore likely to change in response to climatic warming. The aim of this research was to estimate the C balance of forest soil in Finland and predict changes in the balance in response to changes in climatic conditions. To achieve the aim (1) intensive empirical experimentation on the density of C in different pools in the soil and on fluxes between the pools was done was done, (2) the effect of site fertility and climate on the amount and properties of organic C in forest soil was investigated and (3) dynamic modelling for investigating dynamics of the soil C storage was used

  9. {sup 137}Cs in the fungal compartment of Swedish forest soils

    Energy Technology Data Exchange (ETDEWEB)

    Vinichuk, Mykhaylo M. [Department of General Ecology, University of Agriculture and Ecology, Stary Blvd. 7, Zhytomyr 10001 (Ukraine); Johanson, Karl J.; Taylor, Andy F.S. [Department of Forest Mycology and Pathology, Swedish University of Agricultural Sciences, P.O. Box 7026, Uppsala S-750 07 (Sweden)

    2004-05-05

    The {sup 137}Cs activities in soil profiles and in the mycelia of four ectomycorrhizal fungi were studied in a Swedish forest in an attempt to understand the mechanisms governing the transfer and retention of {sup 137}Cs in forest soil. The biomass of four species of fungi was determined and estimated to be 16 g m{sup -2} in a peat soil and 47-189 g m{sup -2} in non-peat soil to the depth of 10 cm. The vertical distribution was rather homogeneous for two species (Tylospora spp. and Piloderma fallax) and very superficial for Hydnellum peckii. Most of the {sup 137}Cs activity in mycelium of non-peat soils was found in the upper 5 cm. Transfer factors were quite high even for those species producing resupinate sporocarps. In the peat soil only approximately 0.3% of the total {sup 137}Cs inventory in soil was found in the fungal mycelium. The corresponding values for non-peat soil were 1.3, 1.8 and 1.9%.

  10. The partitioning of mercury in the solids components of forest soils and flooded forest soils in a hydroelectric reservoir, Quebec

    International Nuclear Information System (INIS)

    Dmytriw, R.P.

    1993-11-01

    Upon inundation, the soils in a hydroelection reservoir are subjected to several years of physical, biological and chemical changes as the transition from a terrestrial to an aquatic ecosystem is achieved. Changes in Eh, pH and microbial activity are believed to alter the metal binding capacity of solid substrates (organic matter, reactive Fe and Mn oxides, and clay minerals) within the soil profile, leading to remobilization of mercury associated with these phases. Four cores were collected along a transect from an unflooded forest soil to a pre-impoundment lake bottom sediment in the La-Grande-2 reservoir and watershed. The samples were sequentially extracted to determine the distribution of mercury between three operationally defined solid compartments: organic carbon, reactive Fe and Mn oxides/hydroxides, and the solid clay residue. Results indicate that up to 80% of the mercury in the O-horizon in forest soils and flooded forest soils, and up to 85% of the mercury in the lake sediments is bound to NaOH extractable organic carbon fractions. In the B-horizon podzol where organic content is low, 40-60% of the total mercury was found to be associated with reactive Fe minerals. In contrast, the flooded soil contains very little reactive Fe at any depth and the associated mercury concentrations are low. It is proposed that, upon inundation, oxide minerals are reduced and Hg released to the pore waters where it is immediately bound to an available substrate. Analyses of the residues suggests that there is an enrichment of mercury in the residual fraction immediately above the B-horizon of a flooded soil while the sulfide mineralization appears to play a role in sequestering mercury in lake sediments. 14 refs., 22 figs., 3 tabs

  11. Inversely estimating the vertical profile of the soil CO2 production rate in a deciduous broadleaf forest using a particle filtering method.

    Science.gov (United States)

    Sakurai, Gen; Yonemura, Seiichiro; Kishimoto-Mo, Ayaka W; Murayama, Shohei; Ohtsuka, Toshiyuki; Yokozawa, Masayuki

    2015-01-01

    Carbon dioxide (CO2) efflux from the soil surface, which is a major source of CO2 from terrestrial ecosystems, represents the total CO2 production at all soil depths. Although many studies have estimated the vertical profile of the CO2 production rate, one of the difficulties in estimating the vertical profile is measuring diffusion coefficients of CO2 at all soil depths in a nondestructive manner. In this study, we estimated the temporal variation in the vertical profile of the CO2 production rate using a data assimilation method, the particle filtering method, in which the diffusion coefficients of CO2 were simultaneously estimated. The CO2 concentrations at several soil depths and CO2 efflux from the soil surface (only during the snow-free period) were measured at two points in a broadleaf forest in Japan, and the data were assimilated into a simple model including a diffusion equation. We found that there were large variations in the pattern of the vertical profile of the CO2 production rate between experiment sites: the peak CO2 production rate was at soil depths around 10 cm during the snow-free period at one site, but the peak was at the soil surface at the other site. Using this method to estimate the CO2 production rate during snow-cover periods allowed us to estimate CO2 efflux during that period as well. We estimated that the CO2 efflux during the snow-cover period (about half the year) accounted for around 13% of the annual CO2 efflux at this site. Although the method proposed in this study does not ensure the validity of the estimated diffusion coefficients and CO2 production rates, the method enables us to more closely approach the "actual" values by decreasing the variance of the posterior distribution of the values.

  12. Soil nitrogen dynamics within profiles of a managed moist temperate forest chronosequence consistent with long-term harvesting-induced losses

    Science.gov (United States)

    Kellman, Lisa; Kumar, Sanjeev; Diochon, Amanda

    2014-07-01

    This study investigates whether clear-cut forest harvesting leads to alterations in the decadal-scale biogeochemical nitrogen (N) cycles of moist temperate forest ecosystems. Using a harvested temperate red spruce (Picea rubens Sarg.) forest chronosequence in Nova Scotia, Canada, representing 80 year old postharvest conditions, alongside a reference old-growth (125+ year old) site with no documented history of disturbance, we examine harvesting-related changes in soil N pools and fluxes. Specifically, we quantify soil N storage with depth and age across the forest chronosequence, examine changes in physical fractions and δ15N of soil N through depth and time, and quantify gross soil N transformation rates through depth and time using a 15N isotope dilution technique. Our findings point to a large loss of total N in the soil pool, particularly within the deep soil (>20 cm) and organomineral fractions. A pulse of available mineralized N (as ammonium) was observed following harvesting (mean residence time (MRT) > 6 days), but its MRT dropped to estimates that suggest soil N may not reaccrue for almost a century following this disturbance.

  13. Dynamics of forest soil chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Alveteg, M

    1998-11-01

    Acidification caused by emissions of nitrogen and sulphur and associated adverse effects on forest ecosystems has been an issue on the political agenda for decades. Temporal aspects of soil acidification and/or recovery can be investigated using the soil chemistry model SAFE, a dynamic version of the steady-state model PROFILE used in critical loads assessment on the national level, e.g. for Sweden. In this thesis, possibilities to replace the use of apparent gibbsite solubility coefficients with a more mechanistic Al sub-model are investigated and a reconstruction model, MAKEDEP, is presented which makes hindcasts and forecasts of atmospheric deposition and nutrient uptake and cycling. A regional application of SAFE/MAKEDEP based on 622 sites in Switzerland is also presented. It is concluded that the quantitative information on pools and fluxes of Al in forest ecosystems is very limited and that there currently exists no mechanistic alternative in modelling soil solution Al. MAKEDEP is a valuable and operational tool for deriving input to dynamic soil chemistry models such as SMART, MAGIC and SAFE. For multi-layer models, e.g. the SAFE model, including nutrient cycling in MAKEDEP is shown to be important. The strength of the regional assessment strategy presented in this thesis lies in its transparency and modularity. All sub-modules, including models, transfer functions, assumptions in the data acquisition strategy, etc., can be checked and replaced individually. As the presented assessment strategy is based on knowledge and data from a wide range of scientists and fields it is of vital importance that the research community challenge the assumptions made. The many measurable intermediate results produced by the included models will hopefully encourage scientists to challenge the models through additional measurements at the calculation sites. It is concluded that current reduction plans are not sufficient for all forest ecosystems in Switzerland to recover from

  14. Soil Organic Carbon (SOC) distribution in two differents soil types (Podzol and Andosol) under natural forest cover.

    Science.gov (United States)

    Álvarez-Romero, Marta; Papa, Stefania; Verstraeten, Arne; Cools, Nathalie; Lozano-García, Beatriz; Parras-Alcántara, Luis; Coppola, Elio

    2017-04-01

    Andosols are young soils that shall know a successive evolution towards pedological types where the dominant pedogenetic processes are more evident. Vegetation and climate influence Andosols evolution to other order of soils. In cold and wet climates or on acid vulcanite under heavy leaching young Andosols could change into Podzols (Van Breemn and Buurman, 1998). Were investigated a Podzol soil (World References Base, 2014) at Zoniën (Belgium), were and an Andosol soil (World References Base, 2014) at Lago Laceno (Avellino, Italy). This study shows the data on the SOC (Soil Organic Carbon) fractionation in two profiles from two natural pine forest soils. Together with the conventional activities of sampling and analysis of soil profile were examined surveys meant to fractionation and characterization of SOC, in particular: Total Organic Carbon (TOC) and Total Extractable Carbon (TEC) soil contents were determined by Italian official method of soil analysis (Mi.P.A.F. (2000)). Different soil C fractions were also determined: Humic Acid Carbon (HAC), Fulvic Acid Carbon (FAC), Not Humic Carbon (NHC) and Humin Carbon (Huc) fractions were obtained by difference. In the whole profile, therefore, were also assayed cellulose and lignin contents. The aim of this work was to compare the distribution of different soil organic components in a podzol and a soil with andic properties. The data show great similarity, among the selected profiles, in the organic components distribution estudied. References: - Mi.P.A.F. - Ministero per le Politiche Agricole e Forestali - Osservatorio Nazionale Pedologico e per la Qualità del Suolo (2000): Metodi Ufficiali di Analisi Chimica del Suolo. In: Franco Angeli (Editor), Collana di metodi analitici per l'agricoltura diretta da Paolo Sequi, n. 1124.2, Milano, Italy. - Van Breemn N. and Buurman P. (1998) Chapter 12 Formation of Andisols. In: Soil formation. Kluwer Ed., Wageningen, The Netherlands, 271-289. -Ussiri D.A.N., Johnson C

  15. UNDERSTANDING AND APPLICABILITY OF THE FOREST SOIL CONCEPT

    Directory of Open Access Journals (Sweden)

    Ana Paula Moreira Rovedder

    2013-08-01

    Full Text Available http://dx.doi.org/10.5902/1980509810563The forestry sector plays an important role in the socioeconomic and environmental Brazilian context, therefore the improvement of the knowledge about forest soil becomes essential for its sustainable use as a conservation base of natural heritage as resource for economical development. Forest soil can be characterized by pedogenesis occurred under influence of a forestry typology or under a currently natural or cultivated forest coverage. Differentiating forest soils from those occupied with other uses helps the understanding of possible alterations related to vegetal coverage and the developing of better management strategies to soil and forest use. Nevertheless, there is no consensus about this term because the soils present variations according to the forest characteristics, stimulating the discussion concerning its interpretation and applicability. This review aimed to analyze the utilization of forest soil concept, highlighting the differentiation characteristics and the relation with coverage type, natural or cultivated. Aspects related to deposition, quality and management of residues, nutrients cycling, soil compaction and site productivity are emphasized. The forest soil concept is widely used by specific literature and useful to collect specific information and to plan the sustainable use of soil and forest. The improvement of knowledge about these resources provides the creation of a common identity, supporting comparative studies and consolidating the research regarding to this theme.

  16. Divergent Responses of Forest Soil Microbial Communities under Elevated CO2 in Different Depths of Upper Soil Layers.

    Science.gov (United States)

    Yu, Hao; He, Zhili; Wang, Aijie; Xie, Jianping; Wu, Liyou; Van Nostrand, Joy D; Jin, Decai; Shao, Zhimin; Schadt, Christopher W; Zhou, Jizhong; Deng, Ye

    2018-01-01

    Numerous studies have shown that the continuous increase of atmosphere CO 2 concentrations may have profound effects on the forest ecosystem and its functions. However, little is known about the response of belowground soil microbial communities under elevated atmospheric CO 2 (eCO 2 ) at different soil depth profiles in forest ecosystems. Here, we examined soil microbial communities at two soil depths (0 to 5 cm and 5 to 15 cm) after a 10-year eCO 2 exposure using a high-throughput functional gene microarray (GeoChip). The results showed that eCO 2 significantly shifted the compositions, including phylogenetic and functional gene structures, of soil microbial communities at both soil depths. Key functional genes, including those involved in carbon degradation and fixation, methane metabolism, denitrification, ammonification, and nitrogen fixation, were stimulated under eCO 2 at both soil depths, although the stimulation effect of eCO 2 on these functional markers was greater at the soil depth of 0 to 5 cm than of 5 to 15 cm. Moreover, a canonical correspondence analysis suggested that NO 3 -N, total nitrogen (TN), total carbon (TC), and leaf litter were significantly correlated with the composition of the whole microbial community. This study revealed a positive feedback of eCO 2 in forest soil microbial communities, which may provide new insight for a further understanding of forest ecosystem responses to global CO 2 increases. IMPORTANCE The concentration of atmospheric carbon dioxide (CO 2 ) has continuously been increasing since the industrial revolution. Understanding the response of soil microbial communities to elevated atmospheric CO 2 (eCO 2 ) is important for predicting the contribution of the forest ecosystem to global atmospheric change. This study analyzed the effect of eCO 2 on microbial communities at two soil depths (0 to 5 cm and 5 to 15 cm) in a forest ecosystem. Our findings suggest that the compositional and functional structures of microbial

  17. Levels and patterns of polycyclic aromatic hydrocarbons (PAHs) in soils after forest fires in South Korea.

    Science.gov (United States)

    Kim, Eun Jung; Choi, Sung-Deuk; Chang, Yoon-Seok

    2011-11-01

    To investigate the influence of biomass burning on the levels of polycyclic aromatic hydrocarbons (PAHs) in soils, temporal trends and profiles of 16 US Environmental Protection Agency priority PAHs were studied in soil and ash samples collected 1, 5, and 9 months after forest fires in South Korea. The levels of PAHs in the burnt soils 1 month after the forest fires (mean, 1,200 ng/g dry weight) were comparable with those of contaminated urban soils. However, 5 and 9 months after the forest fires, these levels decreased considerably to those of general forest soils (206 and 302 ng/g, respectively). The burnt soils and ash were characterized by higher levels of light PAHs with two to four rings, reflecting direct emissions from biomass burning. Five and 9 months after the forest fires, the presence of naphthalene decreased considerably, which indicates that light PAHs were rapidly volatilized or degraded from the burnt soils. The temporal trend and pattern of PAHs clearly suggests that soils in the forest-fire region can be contaminated by PAHs directly emitted from biomass burning. However, the fire-affected soils can return to the pre-fire conditions over time through the washout and wind dissipation of the ash with high content of PAHs as well as vaporization or degradation of light PAHs.

  18. Soil strength and forest operations

    NARCIS (Netherlands)

    Beekman, F.

    1987-01-01

    The use of heavy machinery and transport vehicles is an integral part of modern forest operations. This use often causes damage to the standing trees and to the soil. In this study the effects of vehicle traffic on the soil are analysed and the possible consequences for forest management

  19. Nitrous oxide emission inventory of German forest soils

    Science.gov (United States)

    Schulte-Bisping, Hubert; Brumme, Rainer; Priesack, Eckart

    2003-02-01

    Annual fluxes of N2O trace gas emissions were assessed after stratifying German forest soils into Seasonal Emission Pattern (SEP) and Background Emission Pattern (BEP). Broad-leaved forests with soil pH(KCl) ≤ 3.3 were assigned to have SEP, broad-leaved forests with soil pH(KCl) > 3.3 and all needle-leaved forests to have BEP. BEPs were estimated by a relationship between annual N2O emissions and carbon content of the O-horizon. SEPs were primarily controlled by temperature and moisture and simulated by the model Expert-N after calibration to a 9-year record of N2O measurements. Analysis with different climate and soil properties indicated that the model reacts highly sensitive to changes in soil temperature, soil moisture, and soil texture. A geographic information system (ARC/INFO) was used for a spatial resolution of 1 km × 1 km grid where land cover, dominant soil units, and hygro climate classes were combined. The mean annual N2O emission flux from German forest soils was estimated as 0.32 kg ha-1 yr-1. Broad-leaved forests with SEP had the highest emissions (2.05 kg ha-1 yr-1) followed by mixed forests (0.38 kg ha-1 yr-1), broad-leaved forests (0.37 kg ha-1 yr-1), and needle-leaved forests with BEP (0.17 kg ha-1 yr-1). The annual N2O emission from German forest soils was calculated as 3.26 Gg N2O-N yr-1. Although needle-leaved trees cover about 57% of the entire forest area in Germany, their contribution is low (0.96 Gg N2O-N yr-1). Broad-leaved forests cover about 22% of the forest area but have 55% higher emissions (1.49 Gg N2O-N yr-1) than needle-leaved. Mixed forests cover 21% of the area and contribute 0.81 Gg N2O-N yr-1. Compared to the total N2O emissions in Germany of 170 Gg N yr-1, forest soils contribute only 1.9%. However, there are some uncertainties in this emission inventory, which are intensely discussed.

  20. STUDY OF SOIL AND LEAF LITTER MICROBIAL FATTY ACID PROFILES IN TABONUCO FOREST IN THE LUQUILLO EXPERIMENTAL FOREST IN PUERTO RICO

    Science.gov (United States)

    The results of this study suggests that there are two significantly distinct microbial communities in the leaf litter and soil components of this tropical forest. Fungi are more abundant in the leaf litter while bacteria are more abundant in the soil.

  1. Soil Organic Matter Stabilization via Mineral Interactions in Forest Soils with Varying Saturation Frequency

    Science.gov (United States)

    Possinger, A. R.; Inagaki, T.; Bailey, S. W.; Kogel-Knabner, I.; Lehmann, J.

    2017-12-01

    Soil carbon (C) interaction with minerals and metals through surface adsorption and co-precipitation processes is important for soil organic C (SOC) stabilization. Co-precipitation (i.e., the incorporation of C as an "impurity" in metal precipitates as they form) may increase the potential quantity of mineral-associated C per unit mineral surface compared to surface adsorption: a potentially important and as yet unaccounted for mechanism of C stabilization in soil. However, chemical, physical, and biological characterization of co-precipitated SOM as such in natural soils is limited, and the relative persistence of co-precipitated C is unknown, particularly under dynamic environmental conditions. To better understand the relationships between SOM stabilization via organometallic co-precipitation and environmental variables, this study compares mineral-SOM characteristics across a forest soil (Spodosol) hydrological gradient with expected differences in co-precipitation of SOM with iron (Fe) and aluminum (Al) due to variable saturation frequency. Soils were collected from a steep, well-drained forest soil transect with low, medium, and high frequency of water table intrusion into surface soils (Hubbard Brook Experimental Forest, Woodstock, NH). Lower saturation frequency soils generally had higher C content, C/Fe, C/Al, and other indicators of co-precipitation interactions resulting from SOM complexation, transport, and precipitation, an important process of Spodosol formation. Preliminary Fe X-ray Absorption Spectroscopic (XAS) characterization of SOM and metal chemistry in low frequency profiles suggest co-precipitation of SOM in the fine fraction (soils showed greater SOC mineralization per unit soil C for low saturation frequency (i.e., higher co-precipitation) soils; however, increased mineralization may be attributed to non-mineral associated fractions of SOM. Further work to identify the component of SOM contributing to rapid mineralization using 13C

  2. Boreal coniferous forest density leads to significant variations in soil physical and geochemical properties

    Science.gov (United States)

    Bastianelli, Carole; Ali, Adam A.; Beguin, Julien; Bergeron, Yves; Grondin, Pierre; Hély, Christelle; Paré, David

    2017-07-01

    At the northernmost extent of the managed forest in Quebec, Canada, the boreal forest is currently undergoing an ecological transition between two forest ecosystems. Open lichen woodlands (LW) are spreading southward at the expense of more productive closed-canopy black spruce-moss forests (MF). The objective of this study was to investigate whether soil properties could distinguish MF from LW in the transition zone where both ecosystem types coexist. This study brings out clear evidence that differences in vegetation cover can lead to significant variations in soil physical and geochemical properties.Here, we showed that soil carbon, exchangeable cations, and iron and aluminium crystallinity vary between boreal closed-canopy forests and open lichen woodlands, likely attributed to variations in soil microclimatic conditions. All the soils studied were typical podzolic soil profiles evolved from glacial till deposits that shared a similar texture of the C layer. However, soil humus and the B layer varied in thickness and chemistry between the two forest ecosystems at the pedon scale. Multivariate analyses of variance were used to evaluate how soil properties could help distinguish the two types at the site scale. MF humus (FH horizons horizons composing the O layer) showed significantly higher concentrations of organic carbon and nitrogen and of the main exchangeable base cations (Ca, Mg) than LW soils. The B horizon of LW sites held higher concentrations of total Al and Fe oxides and particularly greater concentrations of inorganic amorphous Fe oxides than MF mineral soils, while showing a thinner B layer. Overall, our results show that MF store three times more organic carbon in their soils (B+FH horizons, roots apart) than LW. We suggest that variations in soil properties between MF and LW are linked to a cascade of events involving the impacts of natural disturbances such as wildfires on forest regeneration that determines the vegetation structure (stand density

  3. Acidification and Nitrogen Eutrophication of Austrian Forest Soils

    Directory of Open Access Journals (Sweden)

    Robert Jandl

    2012-01-01

    Full Text Available We evaluated the effect of acidic deposition and nitrogen on Austrian forests soils. Until thirty years ago air pollution had led to soil acidification, and concerns on the future productivity of forests were raised. Elevated rates of nitrogen deposition were believed to cause nitrate leaching and imbalanced forest nutrition. We used data from a soil monitoring network to evaluate the trends and current status of the pH and the C : N ratio of Austrian forest soils. Deposition measurements and nitrogen contents of Norway spruce needles and mosses were used to assess the nitrogen supply. The pH values of soils have increased because of decreasing proton depositions caused by reduction of emissions. The C : N ratio of Austrian forest soils is widening. Despite high nitrogen deposition rates the increase in forest stand density and productivity has increased the nitrogen demand. The Austrian Bioindicator Grid shows that forest ecosystems are still deficient in nitrogen. Soils retain nitrogen efficiently, and nitrate leaching into the groundwater is presently not a large-scale problem. The decline of soil acidity and the deposition of nitrogen together with climate change effects will further increase the productivity of the forests until a limiting factor such as water scarcity becomes effective.

  4. Soil moisture in sessile oak forest gaps

    Science.gov (United States)

    Zagyvainé Kiss, Katalin Anita; Vastag, Viktor; Gribovszki, Zoltán; Kalicz, Péter

    2015-04-01

    By social demands are being promoted the aspects of the natural forest management. In forestry the concept of continuous forest has been an accepted principle also in Hungary since the last decades. The first step from even-aged stand to continuous forest can be the forest regeneration based on gap cutting, so small openings are formed in a forest due to forestry interventions. This new stand structure modifies the hydrological conditions for the regrowth. Without canopy and due to the decreasing amounts of forest litter the interception is less significant so higher amount of precipitation reaching the soil. This research focuses on soil moisture patterns caused by gaps. The spatio-temporal variability of soil water content is measured in gaps and in surrounding sessile oak (Quercus petraea) forest stand. Soil moisture was determined with manual soil moisture meter which use Time-Domain Reflectometry (TDR) technology. The three different sizes gaps (G1: 10m, G2: 20m, G3: 30m) was opened next to Sopron on the Dalos Hill in Hungary. First, it was determined that there is difference in soil moisture between forest stand and gaps. Second, it was defined that how the gap size influences the soil moisture content. To explore the short term variability of soil moisture, two 24-hour (in growing season) and a 48-hour (in dormant season) field campaign were also performed in case of the medium-sized G2 gap along two/four transects. Subdaily changes of soil moisture were performed. The measured soil moisture pattern was compared with the radiation pattern. It was found that the non-illuminated areas were wetter and in the dormant season the subdaily changes cease. According to our measurements, in the gap there is more available water than under the forest stand due to the less evaporation and interception loss. Acknowledgements: The research was supported by TÁMOP-4.2.2.A-11/1/KONV-2012-0004 and AGRARKLIMA.2 VKSZ_12-1-2013-0034.

  5. Soil and vegetation dynamics in a forest-savannah boundary in Southern Amazon state during the holocene, using 14C dating and stable carbon isotopes of soil organic matter

    International Nuclear Information System (INIS)

    Vidotto, Elaine; Pessenda, Luiz Carlos Ruiz; Ribeiro, Adauto de Souza; Bendassolli, Jose Albertino

    2005-01-01

    This work presents a comparative study between organic soil horizons formed in depressions, distant ca. 500 meters from each sampling site, in a forest/savannah boundary in the Southern Amazon Basin. The influence of the paleovegetation and soil dynamics, based on carbon isotope ( 12 C, 13 C, 14 C) data of soil organic matter (SOM) was evaluated. The soils were classified as Dystropept (Cambissolo) and were considered as clayey. The total organic carbon contents decreased from the surface to deeper parts of the soils profiles. At deeper parts of the soil profiles in the savannah site, between 100 cm and 30 cm, the δ 13 C values characterized the influence of C 4 plants (around -18,0 per mille). From about 20 cm to the surface the δ 13 C values characterized the mixture of C 3 and C 4 plants. The soil δ 13 C values in the forest site ranged from -25,0 per mille at deeper parts of the profile to -26,0 per mille in the surface, characterizing the dominance of C 3 plants in this location. 13 C and 14 C data from soil samples indicated a predominance of C 3 plants in the early Holocene. From ca. 7000 to 3000 years BP the influence of C 4 plants increased, characterizing a savannah expansion probably related to a drier climate in the region. Since 3000 years 14 C BP, the carbon isotope data suggest the forest expansion, probably due to a return to wetter climate. 14 C data in the 40-50 cm and 100 cm soil depth were contemporary, showing no difference on the soil organic matter deposition in the savannah and in the forest locations. (author)

  6. The soil indicator of forest health in the Forest Inventory and Analysis Program

    Science.gov (United States)

    Michael C. Amacher; Charles H. Perry

    2010-01-01

    Montreal Process Criteria and Indicators (MPCI) were established to monitor forest conditions and trends to promote sustainable forest management. The Soil Indicator of forest health was developed and implemented within the USFS Forest Inventory and Analysis (FIA) program to assess condition and trends in forest soil quality in U.S. forests regardless of ownership. The...

  7. Boreal coniferous forest density leads to significant variations in soil physical and geochemical properties

    Directory of Open Access Journals (Sweden)

    C. Bastianelli

    2017-07-01

    Full Text Available At the northernmost extent of the managed forest in Quebec, Canada, the boreal forest is currently undergoing an ecological transition between two forest ecosystems. Open lichen woodlands (LW are spreading southward at the expense of more productive closed-canopy black spruce–moss forests (MF. The objective of this study was to investigate whether soil properties could distinguish MF from LW in the transition zone where both ecosystem types coexist. This study brings out clear evidence that differences in vegetation cover can lead to significant variations in soil physical and geochemical properties.Here, we showed that soil carbon, exchangeable cations, and iron and aluminium crystallinity vary between boreal closed-canopy forests and open lichen woodlands, likely attributed to variations in soil microclimatic conditions. All the soils studied were typical podzolic soil profiles evolved from glacial till deposits that shared a similar texture of the C layer. However, soil humus and the B layer varied in thickness and chemistry between the two forest ecosystems at the pedon scale. Multivariate analyses of variance were used to evaluate how soil properties could help distinguish the two types at the site scale. MF humus (FH horizons horizons composing the O layer showed significantly higher concentrations of organic carbon and nitrogen and of the main exchangeable base cations (Ca, Mg than LW soils. The B horizon of LW sites held higher concentrations of total Al and Fe oxides and particularly greater concentrations of inorganic amorphous Fe oxides than MF mineral soils, while showing a thinner B layer. Overall, our results show that MF store three times more organic carbon in their soils (B+FH horizons, roots apart than LW. We suggest that variations in soil properties between MF and LW are linked to a cascade of events involving the impacts of natural disturbances such as wildfires on forest regeneration that determines the vegetation

  8. [Accumulation of soil organic carbon and total nitrogen in Pinus yunnanensis forests at different age stages].

    Science.gov (United States)

    Miao, Juan; Zhou, Chuan-Yan; Li, Shi-Jie; Yan, Jun-Hua

    2014-03-01

    Taking three Pinus yunnanensis forests at different ages (19, 28 and 45 a) in Panxian County of Guizhou Province as test objects, we investigated vertical distributions and accumulation rates of soil organic carbon (SOC) and total nitrogen (TN), as well as their relationships with soil bulk density. For the three forests at different age stages, SOC and TN changed consistently along the soil profile, declining with the soil depth. Both SOC and TN storage increased with the forest age. The SOC and TN storage amounts were 96.24, 121.65 and 148.13 t x hm(-2), and 10.76, 12.96 and 13.08 t x hm(-2) for the forest stands with 19 a, 28 a and 45 a, respectively. SOC had a significant positive correlation with soil TN, while both of them had a significant negative relationship with the soil bulk density. The accumulation rates of both SOC and TN storage at different growth periods were different, and the rate in the period from age 19 to 28 was higher than in the period from age 28 to 45.

  9. Small scale temporal distribution of radiocesium in undisturbed coniferous forest soil: Radiocesium depth distribution profiles.

    Science.gov (United States)

    Teramage, Mengistu T; Onda, Yuichi; Kato, Hiroaki

    2016-04-01

    The depth distribution of pre-Fukushima and Fukushima-derived (137)Cs in undisturbed coniferous forest soil was investigated at four sampling dates from nine months to 18 months after the Fukushima nuclear power plant accident. The migration rate and short-term temporal variability among the sampling profiles were evaluated. Taking the time elapsed since the peak deposition of pre-Fukushima (137)Cs and the median depth of the peaks, its downward displacement rates ranged from 0.15 to 0.67 mm yr(-1) with a mean of 0.46 ± 0.25 mm yr(-1). On the other hand, in each examined profile considerable amount of the Fukushima-derived (137)Cs was found in the organic layer (51%-92%). At this moment, the effect of time-distance on the downward distribution of Fukushima-derived (137)Cs seems invisible as its large portion is still found in layers where organic matter is maximal. This indicates that organic matter seems the primary and preferential sorbent of radiocesium that could be associated with the physical blockage of the exchanging sites by organic-rich dusts that act as a buffer against downward propagation of radiocesium, implying radiocesium to be remained in the root zone for considerable time period. As a result, this soil section can be a potential source of radiation dose largely due to high radiocesium concentration coupled with its low density. Generally, such kind of information will be useful to establish a dynamic safety-focused decision support system to ease and assist management actions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Revegetation of coal mine soil with forest litter

    Energy Technology Data Exchange (ETDEWEB)

    Day, A.D.; Ludeke, K.L.; Thames, J.L.

    1986-11-01

    Forest litter, a good source of organic matter and seeds, was applied on undisturbed soil and on coal mine (spoils) in experiments conducted on the Black Mesa Coal Mine near Kayenta, Arizona over a 2-year period (1977-1978). Germination, seedling establishment, plant height and ground cover were evaluated for two seeding treatments (forest litter and no forest litter) and two soil moisture treatments (natural rainfall and natural rainfall plus irrigation). The forest litter was obtained at random from the Coconino National Forest, broadcast over the surface of the soil materials and incorporated into the surface 5 cm of each soil material. Germination, seedling establishment, plant height and ground cover on undisturbed soil and coal mine soil were higher when forest litter was applied than when it was not applied and when natural rainfall was supplemented with sprinkler irrigation than when rainfall was not supplemented with irrigation. Applications of forest litter and supplemental irrigation may ensure successful establishment of vegetation on areas disturbed by open-pit coal mining.

  11. Soil properties and understory herbaceous biomass in forests of three species of Quercus in Northeast Portugal

    Directory of Open Access Journals (Sweden)

    Marina Castro

    2014-12-01

    Full Text Available Aim of study: This paper aims to characterize some soil properties within the first 25 cm of the soil profile and the herbaceous biomass in Quercus forests, and the possible relationships between soil properties and understory standing biomass.Area of study: Three monoespecific Quercus forests (Q. suber L., Q. ilex subsp. rotundifolia Lam. and Q. pyrenaica Willd in NE Portugal.Material and methods: During 1999 and 2000 soil properties (pH-KCl, total soil nitrogen (N, soil organic carbon (SOC, C/N ratio, available phosphorus (P, and available potassium (K and herbaceous biomass production of three forest types: Quercus suber L., Quercus ilex subsp. rotundifolia Lam. and Quercus pyrenaica Willd were studied.Main results: The results showed a different pattern of soil fertility (N, SOC, P, K in Quercus forests in NE of Portugal. The C/N ratio and the herbaceous biomass confirmed this pattern. Research highlights: There is a pattern of Quercus sp. distribution that correlates with different soil characteristics by soil characteristics in NE Portugal. Q. pyrenaica ecosystems were found in more favoured areas (mesic conditions; Q. rotundifolia developed in nutrient-poor soils (oligotrophic conditions; and Q. suber were found in intermediate zones.Keywords: fertility; biomass; C/N ratio; cork oak; holm oak; pyrenean oak.

  12. Specific features of 137Cs migration and accumulation in chernozem soils of forest ecosystems in the zone contaminated due to the Chornobyl accident

    International Nuclear Information System (INIS)

    Tsvetnova, O.B.; Shcheglov, A.I.; Orlov, A.A.

    2005-01-01

    A number of factors influencing 137 Cs fate and biological availability in chernozem soils under the forest vegetation were assessed for various climatic zones. The migration rates of 137 Cs in the profile of chernozem soils were shown to depend primary on forest litter composition and structure. In the absence of forest litter the soil mineralogical composition and humus content become the most influential factors of caesium mobility

  13. [Soil hydrolase characteristics in late soil-thawing period in subalpine/alpine forests of west Sichuan].

    Science.gov (United States)

    Tan, Bo; Wu, Fu-Zhong; Yang, Wan-Qin; Yu, Sheng; Yang, Yu-Lian; Wang, Ao

    2011-05-01

    Late soil-thawing period is a critical stage connecting winter and growth season. The significant temperature fluctuation at this stage might have strong effects on soil ecological processes. In order to understand the soil biochemical processes at this stage in the subalpine/alpine forests of west Sichuan, soil samples were collected from the representative forests including primary fir forest, fir and birch mixed forest, and secondary fir forest in March 5-April 25, 2009, with the activities of soil invertase, urease, and phosphatase (neutral, acid and alkaline phosphatases) measured. In soil frozen period, the activities of the three enzymes in test forests still kept relatively higher. With the increase of soil temperature, the activities of hydrolases at the early stage of soil-thawing decreased rapidly after a sharp increase, except for neutral phosphatease. Thereafter, there was an increase in the activities of urease and phosphatase. Relative to soil mineral layer, soil organic layer had higher hydrolase activity in late soil-thawing period, and showed more obvious responses to the variation of soil temperature.

  14. Unravelling the importance of forest age stand and forest structure driving microbiological soil properties, enzymatic activities and soil nutrients content in Mediterranean Spanish black pine(Pinus nigra Ar. ssp. salzmannii) Forest.

    Science.gov (United States)

    Lucas-Borja, M E; Hedo, J; Cerdá, A; Candel-Pérez, D; Viñegla, B

    2016-08-15

    This study aimed to investigate the effects that stand age and forest structure have on microbiological soil properties, enzymatic activities and nutrient content. Thirty forest compartments were randomly selected at the Palancares y Agregados managed forest area (Spain), supporting forest stands of five ages; from 100 to 80years old to compartments with trees that were 19-1years old. Forest area ranging from 80 to 120years old and without forest intervention was selected as the control. We measured different soil enzymatic activities, soil respiration and nutrient content (P, K, Na, Mg, Cr, Mn, Fe, Co, Ni, Cu, Zn, Pb and Ca) in the top cm of 10 mineral soils in each compartment. Results showed that the lowest forest stand age and the forest structure created by management presented lower values of organic matter, soil moisture, water holding capacity and litterfall and higher values of C/N ratio in comparison with the highest forest stand age and the related forest structure, which generated differences in soil respiration and soil enzyme activities. The forest structure created by no forest management (control plot) presented the highest enzymatic activities, soil respiration, NH4(+) and NO3(-). Results did not show a clear trend in nutrient content comparing all the experimental areas. Finally, the multivariate PCA analysis clearly clustered three differentiated groups: Control plot; from 100 to 40years old and from 39 to 1year old. Our results suggest that the control plot has better soil quality and that extreme forest stand ages (100-80 and 19-1years old) and the associated forest structure generates differences in soil parameters but not in soil nutrient content. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Impact of ecosystem management on microbial community level physiological profiles of postmining forest rehabilitation.

    Science.gov (United States)

    Cookson, W R; O'Donnell, A J; Grant, C D; Grierson, P F; Murphy, D V

    2008-02-01

    We investigated the impacts of forest thinning, prescribed fire, and contour ripping on community level physiological profiles (CLPP) of the soil microbial population in postmining forest rehabilitation. We hypothesized that these management practices would affect CLPP via an influence on the quality and quantity of soil organic matter. The study site was an area of Jarrah (Eucalyptus marginata Donn ex Sm.) forest rehabilitation that had been mined for bauxite 12 years previously. Three replicate plots (20 x 20 m) were established in nontreated forest and in forest thinned from 3,000-8,000 stems ha(-1) to 600-800 stems ha(-1) in April (autumn) of 2003, followed either by a prescribed fire in September (spring) of 2003 or left nonburned. Soil samples were collected in August 2004 from two soil depths (0-5 cm and 5-10 cm) and from within mounds and furrows caused by postmining contour ripping. CLPP were not affected by prescribed fire, although the soil pH and organic carbon (C), total C and total nitrogen (N) contents were greater in burned compared with nonburned plots, and the coarse and fine litter mass lower. However, CLPP were affected by forest thinning, as were fine litter mass, soil C/N ratio, and soil pH, which were all higher in thinned than nonthinned plots. Furrow soil had greater coarse and fine litter mass, and inorganic phosphorous (P), organic P, organic C, total C, total N, ammonium, microbial biomass C contents, but lower soil pH and soil C/N ratio than mound soil. Soil pH, inorganic P, organic P, organic C, total C and N, ammonium, and microbial biomass C contents also decreased with depth, whereas soil C/N ratio increased. Differences in CLPP were largely (94%) associated with the relative utilization of gluconic, malic (greater in nonthinned than thinned soil and mound than furrow soil), L-tartaric, succinic, and uric acids (greater in thinned than nonthinned, mound than furrow, and 5-10 cm than 0-5 cm soil). The relative utilization of amino

  16. Mechanisms controlling radionuclide mobility in forest soils

    International Nuclear Information System (INIS)

    Delvaux, B.; Kruyts, N.; Maes, E.; Agapkina, G.I.; Kliashtorin, A.; Bunzl, K.; Rafferty, B.

    1996-01-01

    Soil processes strongly influence the radionuclide mobility in soils. The mobility of radionuclides in forest soils is governed by several processes involving both abiotic and biotic factors. The sorption-desorption process chiefly governs the activity of radionuclides in the soil solution, hence thereby their mobility and biological availability. Radiocaesium exhibits a very low mobility in mineral soils. Both mobility and bioavailability however increase as the thickness of organic layers and their content in organic matter increases. Clay minerals of micaceous origin strongly act as slinks for radiocaesium in forest soils. The magnitude of cesium mineral fixation in topsoils is expected to be the highest in mineral soils of Eutric cambisol type, and, to a lesser extent, of type of Distric cambisol and Podzoluvisol. A low mobility of radiocaesium in the surface horizons of forest soils may also be partially explained by a biological mobilization: fungi absorb radiocaesium and transport it to upper layers, thereby contributing to constantly recycle the radioelement in the organic horizons. This mechanism is probably important in soils with thick organic layers (Podsol, Histosol, and, to a lesser extent, Distric cambisol and Podzoluvisol). Radionuclides can be associated with soluble organic anions in the soil solution of forest acid soils. Such associations are highly mobile: they are stable in conditions of poor biological activity (low temperatures, acid soil infertility, water excess, etc.). Their magnitude is expected to be the highest in thick acid organic layers (soils of type Podzol and Histosol)

  17. Soil organic matter regulates molybdenum storage and mobility in forests

    Science.gov (United States)

    Marks, Jade A; Perakis, Steven; King, Elizabeth K.; Pett-Ridge, Julie

    2015-01-01

    The trace element molybdenum (Mo) is essential to a suite of nitrogen (N) cycling processes in ecosystems, but there is limited information on its distribution within soils and relationship to plant and bedrock pools. We examined soil, bedrock, and plant Mo variation across 24 forests spanning wide soil pH gradients on both basaltic and sedimentary lithologies in the Oregon Coast Range. We found that the oxidizable organic fraction of surface mineral soil accounted for an average of 33 %of bulk soil Mo across all sites, followed by 1.4 % associated with reducible Fe, Al, and Mn-oxides, and 1.4 % in exchangeable ion form. Exchangeable Mo was greatest at low pH, and its positive correlation with soil carbon (C) suggests organic matter as the source of readily exchangeable Mo. Molybdenum accumulation integrated over soil profiles to 1 m depth (τMoNb) increased with soil C, indicating that soil organic matter regulates long-term Mo retention and loss from soil. Foliar Mo concentrations displayed no relationship with bulk soil Mo, and were not correlated with organic horizon Mo or soil extractable Mo, suggesting active plant regulation of Mo uptake and/or poor fidelity of extractable pools to bioavailability. We estimate from precipitation sampling that atmospheric deposition supplies, on average, over 10 times more Mo annually than does litterfall to soil. In contrast, bedrock lithology had negligible effects on foliar and soil Mo concentrations and on Mo distribution among soil fractions. We conclude that atmospheric inputs may be a significant source of Mo to forest ecosystems, and that strong Mo retention by soil organic matter limits ecosystem Mo loss via dissolution and leaching pathways.

  18. Soil mineralogy and microbes determine forest life history strategy and carbon cycling in humid tropical forests

    Science.gov (United States)

    Soong, J.; Verbruggen, E.; Peñuelas, J.; Janssens, I. A.; Grau, O.

    2017-12-01

    Tropical forests account for over one third of global terrestrial gross primary productivity and cycle more C than any other ecosystem on Earth. However, we still lack a mechanistic understanding of how such high productivity is maintained on the old, highly weathered and phosphorus depleted soils in the tropics. We hypothesized that heterogeneity in soil texture, mineralogy and microbial community composition may be the major drivers of differences in soil C storage and P limitation across tropical forests. We sampled 12 forest sites across a 200 km transect in the humid neo-tropics of French Guiana that varied in soil texture, precipitation and mineralogy. We found that soil texture was a major driver of soil carbon stocks and forest life history strategy, where sandy forests have lower soil C stocks, slower turnover and decomposition and a more closed nutrient cycle while clayey forests have higher soil C stocks, faster turnover and a more leaky nutrient cycle (using natural abundance stable isotope evidence). We found that although the presence of Al and Fe oxides in the clayey soils occludes soil organic matter and P, a greater abundance of arbuscular mycorrhizal fungi help forests to access occluded P in clayey soils fueling higher turnover and faster decomposition rates. Evidence from a laboratory incubation of tropical soils with nutrient additions further demonstrates the de-coupling of microbial P demands from C:N limitations providing further evidence for the need to examine microbial stoichiometry to explain C cycling in the P-limited tropics. We argue that microbial community composition and physiological demands, constrained within the limitations of soil mineralogical reactivity, largely controls nutrient and C cycling in tropical forest soils. Together our observational field study and laboratory incubation provide a unique dataset to shed light on the mineralogical and microbial controls on C and nutrient cycling in tropical soils. By integrating

  19. Determination and Distribution of Critical Loads: Application to the Forest Soils in the Autonomous Region of Madrid

    International Nuclear Information System (INIS)

    Sousa, M.; Schmid, T.; Rabago, I.

    2000-01-01

    The critical loads of acidity and sulphur have been determined for forest soils within the north and northwest of the Autonomous Region of Madrid. The SMB-CCE and SMB-PROFILE steady state models have been applied using a 1 km x 1 km resolution. The forest ecosystems have been characterised according to the soil and forest type, slope and climatic data using a Geographic Information System. In order to estimate the critical loads, processes such as weathering rate of the parent material, atmospheric deposition. critical alkalinity leaching rate and nutrients absorbed by the vegetation have been considered. In general the forest soils present high critical load values for acidity and sulphur. The more sensitive zones are found in the north of the Sierra of Guadarrama. Independent of the applied methods, the results are associated to the types of soils where Leptosols have the lowest, Cambisoles and Regosoles intermediate and Luvisoles the most elevated values. (Author) 40 refs

  20. Ecological factors governing the distribution of soil microfungi in some forest soils of Pachmarhi Hills, India

    Directory of Open Access Journals (Sweden)

    Shashi Chauhan

    2014-01-01

    Full Text Available An ecological study of the microfungi occurring in the various forest soils of Pachmarhi Hills, India has been carried-out by the soil plate technique. Soil samples from 5 different forest communities viz., moist deciduous forest dominated by tree ferns, Diospyros forest, Terminalia forest, Shorea forest and scrub forest dominated by Acacia and Dalbergia sp. were collected during October, 1983. Some physico-chemical characteristics of the soil were analysed and their role in distribution of fungi in 5 soil types was studied and discussed. 43 fungal species were isolated, of which Asperigillus niger I and Penicillium janthinellum occurred in all the 5 soil types. Statistically, none of the edaphic factors showed positive significant correlation with the number of fungi.

  1. Soil depth profiles and radiological assessment of natural radionuclides in forest ecosystem

    International Nuclear Information System (INIS)

    Manigandan, P.K.; Chandar Shekar, B.

    2017-01-01

    We measured the distribution of three naturally occurring radionuclides, "2"3"8U, "2"3"2Th, and "4"0K, in soil samples collected from a rainforest in the Western Ghats of India. For each surface sample, we calculated average activity concentration, outdoor terrestrial γ dose rate, annual effective dose equivalent (AEDE), and radiation hazard index. The activity concentrations of surface samples were randomly distributed over space, but differed slightly with different soil depths. The concentration of "2"3"2Th and the average terrestrial γ dose rates were slightly higher than the world averages, so slightly high γ radiation appears to be a general characteristic of the Western Ghats. However, all radiological hazard indices were within the limits proposed by the International Commission on Radiological Protection. The results reported here indicate that, except for "2"3"2Th, the naturally occurring radionuclides in the forest soils of the Western Ghats were within the ranges specified by United Nations Scientific Committee on the Effects of Atomic Radiation for undisturbed virgin soils.

  2. Soil depth profiles and radiological assessment of natural radionuclides in forest ecosystem

    Energy Technology Data Exchange (ETDEWEB)

    Manigandan, P.K. [Al Musanna College of Technology, Muscat (Oman); Chandar Shekar, B. [Bharathiar Univ., Coimbatore (India). Kongunadu Arts and Science College

    2017-08-01

    We measured the distribution of three naturally occurring radionuclides, {sup 238}U, {sup 232}Th, and {sup 40}K, in soil samples collected from a rainforest in the Western Ghats of India. For each surface sample, we calculated average activity concentration, outdoor terrestrial γ dose rate, annual effective dose equivalent (AEDE), and radiation hazard index. The activity concentrations of surface samples were randomly distributed over space, but differed slightly with different soil depths. The concentration of {sup 232}Th and the average terrestrial γ dose rates were slightly higher than the world averages, so slightly high γ radiation appears to be a general characteristic of the Western Ghats. However, all radiological hazard indices were within the limits proposed by the International Commission on Radiological Protection. The results reported here indicate that, except for {sup 232}Th, the naturally occurring radionuclides in the forest soils of the Western Ghats were within the ranges specified by United Nations Scientific Committee on the Effects of Atomic Radiation for undisturbed virgin soils.

  3. Soil carbon storage estimation in a forested watershed using quantitative soil-landscape modeling

    Science.gov (United States)

    James A. Thompson; Randall K. Kolka

    2005-01-01

    Carbon storage in soils is important to forest ecosystems. Moreover, forest soils may serve as important C sinks for ameliorating excess atmospheric CO2. Spatial estimates of soil organic C (SOC) storage have traditionally relied upon soil survey maps and laboratory characterization data. This approach does not account for inherent variability...

  4. Dynamic of radionuclides behaviour in forest soils

    International Nuclear Information System (INIS)

    Ruehm, W.; Steiner, M.; Wirth, E.; Dvornik, A.; Zhuchenko, T.A.; Kliashtorin, A.; Rafferty, B.; Shaw, G.; Kuchma, N.

    1996-01-01

    Within the research project ECP-5, the dynamics of radionuclides in automorphic forest soils within the 30-km-zone of Chernobyl and of hydromorphic forest soils in Belarus have been investigated. In upland forest soils, the lower layers of the organic horizons are characterized by the highest residence times for radiocesium and represent the largest pool for all radionuclides investigated. According to a preliminary estimate, radiocesium is more mobile compared to 125 Sb, which in turn migrates faster than 60 Co, 144 Ce, and 154 Eu. 106 Ru shows the lowest mobility. With regard to radiocesium, hydromorphic soils exhibit migration rates and transfer factors from soil to trees, which by far exceed those in automorphic soils. Based on a two-component quasi-diffusional model the average bias of 137 Cs in mesotrophic swamp soils was predicted. The activity concentrations of U, Pu, and Cs suggest that U and Pu were originally deposited as hot particles and that U is naturally accumulated in organic horizons

  5. Soil Effects on Forest Structure and Diversity in a Moist and a Dry Tropical Forest

    NARCIS (Netherlands)

    Peña-Claros, M.; Poorter, L.; Alarcon, A.; Blate, G.; Choque, U.; Fredericksen, T.S.; Justiniano, J.; Leaño, C.; Licona, J.C.; Pariona, W.; Putz, F.E.; Quevedo, L.; Toledo, M.

    2012-01-01

    Soil characteristics are important drivers of variation in wet tropical forest structure and diversity, but few studies have evaluated these relationships in drier forest types. Using tree and soil data from 48 and 32 1 ha plots, respectively, in a Bolivian moist and dry forest, we asked how soil

  6. Gaseous mercury fluxes from forest soils in response to forest harvesting intensity: A field manipulation experiment

    Science.gov (United States)

    M. Mazur; C.P.J. Mitchell; C.S. Eckley; S.L. Eggert; R.K. Kolka; S.D. Sebestyen; E.B. Swain

    2014-01-01

    Forest harvesting leads to changes in soil moisture, temperature and incident solar radiation, all strong environmental drivers of soil-air mercury (Hg) fluxes. Whether different forest harvesting practices significantly alter Hg fluxes from forest soils is unknown.We conducted a field-scale experiment in a northern Minnesota deciduous forest wherein gaseous Hg...

  7. Benchmark values for forest soil carbon stocks in Europe

    DEFF Research Database (Denmark)

    De Vos, Bruno; Cools, Nathalie; Ilvesniemi, Hannu

    2015-01-01

    Soil organic carbon (SOC) stocks in forest floors and in mineral and peat forest soils were estimated at the European scale. The assessment was based on measured C concentration, bulk density, coarse fragments and effective soil depth data originating from 4914 plots in 22 EU countries belonging...... to the UN/ECE ICP Forests 16 × 16 km Level I network. Plots were sampled and analysed according to harmonized methods during the 2nd European Forest Soil Condition Survey. Using continuous carbon density depth functions, we estimated SOC stocks to 30-cm and 1-m depth, and stratified these stocks according...... to 22 WRB Reference Soil Groups (RSGs) and 8 humus forms to provide European scale benchmark values. Average SOC stocks amounted to 22.1 t C ha− 1 in forest floors, 108 t C ha− 1 in mineral soils and 578 t C ha− 1 in peat soils, to 1 m depth. Relative to 1-m stocks, the vertical SOC distribution...

  8. Changes in microbial community structure following herbicide (glyphosate) additions to forest soils

    Science.gov (United States)

    Alice W. Ratcliff; Matt D. Busse; Carol J. Shestak

    2006-01-01

    Glyphosate applied at the recommended field rate to a clay loam and a sandy loam forest soil resulted in few changes in microbial community structure. Total and culturable bacteria, fungal hyphal length, bacterial:fungal biomass, carbon utilization profiles (BIOLOG), and bacterial and fungal phospholipid fatty acids (PLFA) were unaffected 1, 3, 7, or 30 days...

  9. SOIL QUALITY CHANGES FOLLOWING FOREST CLEARANCE IN BENGKULU, SUMATRA

    Directory of Open Access Journals (Sweden)

    I.P. HANDAYANI

    2004-01-01

    Full Text Available Intense destruction and degradation of tropical forests is recognized as one of the environmental threats and tragedies. These have increased the need to assess the effects of subsequent land-use following forest extraction on soil quality. Therefore, the objective of this study is to evaluate the impacts of land-use type on soil quality properties in Bengkulu Province, Sumatra. Soil samples were collected from adjacent sites including natural secondary forest, bare land, cultivated land and grassland. The results show that land-use following forest clearance lowered saturated hydraulic conductivity (85%, porosity (10.50%, soil water content at field capacity (34%,C organic (27%, N total (26%, inorganic N (37%, soil microbial biomass C (32%, mineralizable C (22%, and particulate organic matter (50%, but slightly increased water soluble organic C. Specific respiration activi ty rates increased about 14% in cultivated soils compared to natural forest soils, indicating greater C turnover per labile C pool in the form of soil microbial biomass, thus decreased biologically active soil organic matter. Forest conversion tends to reduce the C,ffg/Crer for all deforested sites. All of deforested areas relatively have infertile soil, with the worst case found in cultivated field. The C^g/Crd of cultivated field s was about 24% less than that of remnant fo rest (1.07. Grassland apparently mainta ins only slightly higher soil C levels than the bare land. On average, degradation index of so il following forest clearance was 35% with the highest deterioration occurred in the bare land (38%. Fallowing the fields by naturally growth of Imperata cylindrica for about 15 yr in abandoned land after 3-5 years of cultivation did not improve the soil quality. Moreover, forest clearance has an impact on soil quality as resulted in the loss of a physically protected organic matter and reduction in some labile C pools, thus declined biological activity at disturbed

  10. AirMOSS P-Band Radar Retrieval of Subcanopy Soil Moisture Profile

    Science.gov (United States)

    Tabatabaeenejad, A.; Burgin, M. S.; Duan, X.; Moghaddam, M.

    2013-12-01

    Knowledge of soil moisture, as a key variable of the Earth system, plays an important role in our under-standing of the global water, energy, and carbon cycles. The importance of such knowledge has led NASA to fund missions such as Soil Moisture Active and Passive (SMAP) and Airborne Microwave Observatory of Subcanopy and Subsurface (AirMOSS). The AirMOSS mission seeks to improve the estimates of the North American Net Ecosystem Exchange (NEE) by providing high-resolution observations of the root zone soil moisture (RZSM) over regions representative of the major North American biomes. AirMOSS flies a P-band SAR to penetrate vegetation and into the root zone to provide estimates of RZSM. The flights cover areas containing flux tower sites in regions from the boreal forests in Saskatchewan, Canada, to the tropical forests in La Selva, Costa Rica. The radar snapshots are used to generate estimates of RZSM via inversion of a scattering model of vegetation overlying soils with variable moisture profiles. These retrievals will be used to generate a time record of RZSM, which will be integrated with an ecosystem demography model in order to estimate the respiration and photosynthesis carbon fluxes. The aim of this work is the retrieval of the moisture profile over AirMOSS sites using the collected P-band radar data. We have integrated layered-soil scattering models into a forest scattering model; for the backscattering from ground and for the trunk-ground double-bounce mechanism, we have used a layered small perturbation method and a coherent scattering model of layered soil, respectively. To estimate the soil moisture profile, we represent it as a second-order polynomial in the form of az2 + bz + c, where z is the depth and a, b, and c are the coefficients to be retrieved from radar measurements. When retrieved, these coefficients give us the soil moisture up to a prescribed depth of validity. To estimate the unknown coefficients of the polynomial, we use simulated

  11. Migration and bioavailability of 137Cs in forest soil of southern Germany

    International Nuclear Information System (INIS)

    Konopleva, I.; Klemt, E.; Konoplev, A.; Zibold, G.

    2009-01-01

    To give a quantitative description of the radiocaesium soil-plant transfer for fern (Dryopteris carthusiana) and blackberry (Rubus fruticosus), physical and chemical properties of soils in spruce and mixed forest stands were investigated. Of special interest was the selective sorption of radiocaesium, which was determined by measuring the Radiocaesium Interception Potential (RIP). Forest soil and plants were taken at 10 locations of the Altdorfer Wald (5 sites in spruce forest and 5 sites in mixed forest). It was found that the bioavailability of radiocaesium in spruce forest was on average seven times higher than in mixed forest. It was shown that important factors determining the bioavailability of radiocaesium in forest soil were its exchangeability and the radiocaesium interception potential (RIP) of the soil. Low potassium concentration in soil solution of forest soils favors radiocaesium soil-plant transfer. Ammonium in forest soils plays an even more important role than potassium as a mobilizer of radiocaesium. The availability factor - a function of RIP, exchangeability and cationic composition of soil solution - characterized reliably the soil-plant transfer in both spruce and mixed forest. For highly organic soils in coniferous forest, radiocaesium sorption at regular exchange sites should be taken into account when its bioavailability is considered

  12. Trophic conditions of forest soils of the Pieniny National Park, southern Poland

    Directory of Open Access Journals (Sweden)

    Wanic Tomasz

    2017-12-01

    Full Text Available The primary objective of this study was to characterise the edaphic conditions of forest areas in the Pieniny National Park (PNP, and to describe the dependencies between properties of forest soils and types of forest plant communities. The “Soil Trophic Index” (SIGg for mountainous areas was applied. The evaluation of the trophism for 74 forest monitoring employed the soil trophic index for mountainous areas SIGg or SIGgo. Plant communities in the forest monitoring areas were classified according to the Braun-Blanquet’s phytosociological method. Soils of PNP present in the forest monitoring areas were mostly classified as eutrophic brown soils (72.9%, rendzinas (10.8%, brown rendzinas (5.41%, and rubble initial soils (5.41%. Pararendzinas, dystrophic brown soils, and gley soils were less common (total below 5.5%. In the forest monitoring areas of PNP, eutrophic soils predominate over mesotrophic soils. High SIGg index of the soils is caused by high values of acidity and nitrogen content. The Carpathian beech forest Dentario glandulosae-Fagetum and thermophilic beech forest Carici albae-Fagetum associations are characterised by high naturalness and compatibility of theoretical habitats. The soils of the Carpathian fir forest Dentario glandulosae-Fagetum abietetosum subcommunity is characterised by a higher share of silt and clay particles and lower acidity as compared to the Carpathian beech forest Dentario glandulosae-Fagetum typicum subcommunity. The soils of the forest monitoring areas in PNP stand out in terms of their fertility against forest soils in other mountainous areas in Poland.

  13. Soil heat flux measurements in an open forest

    NARCIS (Netherlands)

    vanderMeulen, MJW; Klaassen, W; Kiely, G

    1996-01-01

    The soil surface heat flux in an open oak forest was determined at four locations to account for the heterogeneity of the forest. Soil temperatures and soil water content were measured at several depths and an integration method with three layers was used. The thickness of the bottom layer was

  14. Soil Heat Flux Measurements in an Open Forest

    NARCIS (Netherlands)

    Meulen, M.W.J. van der; Klaassen, W.

    1996-01-01

    The soil surface heat flux in an open oak forest was determined at four locations to account for the heterogeneity of the forest. Soil temperatures and soil water content were measured at several depths and an integration method with three layers was used. The thickness of the bottom layer was

  15. VARIABILITY OF ARABLE AND FOREST SOILS PROPERTIES ON ERODED SLOPES

    Directory of Open Access Journals (Sweden)

    Paweł Wiśniewski

    2014-10-01

    Full Text Available The basic method of reducing soil and land erosion is a change of land use, for example, from arable to forest. Particularly effective as a protective role – according to the Polish law – soil-protecting forests. The thesis presents differences in the deformation of the basic soil properties on moraine slopes, depending on land use. There has been presented the function and the efficiency of the soil-protecting forests in erosion control. The soil cross section transects and soil analysis displayed that soil-protecting forests are making an essential soil cover protection from degradation, inter alia, limiting the decrease of humus content, reduction of upper soil horizons and soil pedons layer. On the afforested slopes it was stated some clear changes of grain size and chemical properties of soils in relation to adjacent slopes agriculturally used.

  16. Carbon and nitrogen dynamics of soil and litter along an altitudinal gradient in Atlantic Forest

    Science.gov (United States)

    Piccolo, M. D.; Martins, S. C.; Camargo, P. B.; Carmo, J. B.; Sousa Neto, E.; Martinelli, L. A.

    2008-12-01

    The Ombrophylus Dense Forest or Atlantic Forest is the second most important Biome in extension of Brazil, and it is considered a hot-spot in terms of biodiversity. It is localized in Brazilian Coast, and it covered originally 1.2 million km2, but currently only 8% of the original forest remains. The study was carried out in Sao Paulo State, Brazil (23° 24' S and 45° 11' W). The studied areas were: Restinga Vegetation (RV), 5 m above sea level; Low Altitude Ombrophylus Dense Forest (LAODF), 100 m asl; Submontane Ombrophylus Dense Forest (SODF), 600m asl and; Montane Ombrophylus Dense Forest (MODF), 1000 m asl. The aim of this study was to evaluate the effect of altitudinal gradient, with specific phytophysiognomies, on C and N dynamics in the soil and litter at Atlantic Forest. A sampling area of 1 ha was subdivided in contiguous sub- parcels (10 x 10 m). The forest floor litter accumulated (0.06 m2) was collected monthly (n=60), during 12 months, in each phytophysiognomies. Soils samples (0-0.05m depth) were collected (n=32) from square regular grids, 30 m away from each other. Changes in litter contents of C and N were not detected along the altitudinal gradient, and the values observed were 400 and 15g kg-1 for C and N, respectively. Litter ä13C values did not change significantly with the altitudinal gradient and were represented by C3 plants values. The C and N stocks were high in the clay soils (LAODF, SODF and MODF) when compared to sandy soil (RV). The soil C stocks (24 to 30 Mg ha-1) were similar among the altitudinal gradients, except RV (16 Mg ha-1). The areas of elevated altitude (MODF and SODF) showed high N stocks (2.3 Mg ha-1), followed by LAODF (1.8Mg ha-1) and RV (0.9Mg ha-1). In all altitudes there was 13C enrichment with soil depth, and it can be explained by the different fractions of the organic matter distributed along the soil profile, and also due the effect of the isotopic dilution between the forest floor litter and the soil.

  17. Advances of study on atmospheric methane oxidation (consumption) in forest soil

    Institute of Scientific and Technical Information of China (English)

    WANG Chen-rui; SHI Yi; YANG Xiao-ming; WU Jie; YUE Jin

    2003-01-01

    Next to CO2, methane (CH4) is the second important contributor to global warming in the atmosphere and global atmospheric CH4 budget depends on both CH4 sources and sinks. Unsaturated soil is known as a unique sink for atmospheric CH4 in terrestrial ecosystem. Many comparison studies proved that forest soil had the biggest capacity of oxidizing atmospheric CH4 in various unsaturated soils. However, up to now, there is not an overall review in the aspect of atmospheric CH4 oxidation (consumption) in forest soil. This paper analyzed advances of studies on the mechanism of atmospheric CH4 oxidation, and related natural factors (Soil physical and chemical characters, temperature and moisture, ambient main greenhouse gases concentrations, tree species, and forest fire) and anthropogenic factors (forest clear-cutting and thinning, fertilization, exogenous aluminum salts and atmospheric deposition, adding biocides, and switch of forest land use) in forest soils. It was believed that CH4 consumption rate by forest soil was limited by diffusion and sensitive to changes in water status and temperature of soil. CH4 oxidation was also particularly sensitive to soil C/N, Ambient CO2, CH4 and N2O concentrations, tree species and forest fire. In most cases, anthropogenic disturbances will decrease atmospheric CH4 oxidation, thus resulting in the elevating of atmospheric CH4. Finally, the author pointed out that our knowledge of atmospheric CH4 oxidation (consumption) in forest soil was insufficient. In order to evaluate the contribution of forest soils to atmospheric CH4 oxidation and the role of forest played in the process of global environmental change, and to forecast the trends of global warming exactly, more researchers need to studies further on CH4 oxidation in various forest soils of different areas.

  18. BOREAS TGB-1 Soil CH4 and CO2 Profile Data from NSA Tower Sites

    Science.gov (United States)

    Crill, Patrick; Varner, Ruth K.; Hall, Forrest G. (Editor); Conrad, Sara K. (Editor)

    2000-01-01

    The BOREAS TGB-1 team made numerous measurements of trace gas concentrations and fluxes at various NSA sites. This data set contains methane (CH4) and carbon dioxide (CO2) concentrations in soil profiles from the NSA-OJP, NSA-OBS, NSA-YJP, and NSA-BP sites during the period of 23-May to 20-Sep-1994. The soil gas sampling profiles of CH 4 and CO 2 were completed to quantify controls on CO2 and CH4 fluxes in the boreal forest. The data are provided in tabular ASCII files.

  19. Soil does not explain monodominance in a Central African tropical forest.

    Directory of Open Access Journals (Sweden)

    Kelvin S-H Peh

    2011-02-01

    Full Text Available Soil characteristics have been hypothesised as one of the possible mechanisms leading to monodominance of Gilbertiodendron dewerei in some areas of Central Africa where higher-diversity forest would be expected. However, the differences in soil characteristics between the G. dewevrei-dominated forest and its adjacent mixed forest are still poorly understood. Here we present the soil characteristics of the G. dewevrei forest and quantify whether soil physical and chemical properties in this monodominant forest are significantly different from the adjacent mixed forest.We sampled top soil (0-5, 5-10, 10-20, 20-30 cm and subsoil (150-200 cm using an augur in 6 × 1 ha areas of intact central Africa forest in SE Cameroon, three independent patches of G. dewevrei-dominated forest and three adjacent areas (450-800 m apart, all chosen to be topographically homogeneous. Analysis--subjected to Bonferroni correction procedure--revealed no significant differences between the monodominant and mixed forests in terms of soil texture, median particle size, bulk density, pH, carbon (C content, nitrogen (N content, C:N ratio, C:total NaOH-extractable P ratio and concentrations of labile phosphorous (P, inorganic NaOH-extractable P, total NaOH-extractable P, aluminium, barium, calcium, copper, iron, magnesium, manganese, molybdenum, nickel, potassium, selenium, silicon, sodium and zinc. Prior to Bonferroni correction procedure, there was a significant lower level of silicon concentration found in the monodominant than mixed forest deep soil; and a significant lower level of nickel concentration in the monodominant than mixed forest top soil. Nevertheless, these were likely to be the results of multiple tests of significance.Our results do not provide clear evidence of soil mediation for the location of monodominant forests in relation to adjacent mixed forests. It is also likely that G. dewevrei does not influence soil chemistry in the monodominant forests.

  20. Soil does not explain monodominance in a Central African tropical forest.

    Science.gov (United States)

    Peh, Kelvin S-H; Sonké, Bonaventure; Lloyd, Jon; Quesada, Carlos A; Lewis, Simon L

    2011-02-10

    Soil characteristics have been hypothesised as one of the possible mechanisms leading to monodominance of Gilbertiodendron dewerei in some areas of Central Africa where higher-diversity forest would be expected. However, the differences in soil characteristics between the G. dewevrei-dominated forest and its adjacent mixed forest are still poorly understood. Here we present the soil characteristics of the G. dewevrei forest and quantify whether soil physical and chemical properties in this monodominant forest are significantly different from the adjacent mixed forest. We sampled top soil (0-5, 5-10, 10-20, 20-30 cm) and subsoil (150-200 cm) using an augur in 6 × 1 ha areas of intact central Africa forest in SE Cameroon, three independent patches of G. dewevrei-dominated forest and three adjacent areas (450-800 m apart), all chosen to be topographically homogeneous. Analysis--subjected to Bonferroni correction procedure--revealed no significant differences between the monodominant and mixed forests in terms of soil texture, median particle size, bulk density, pH, carbon (C) content, nitrogen (N) content, C:N ratio, C:total NaOH-extractable P ratio and concentrations of labile phosphorous (P), inorganic NaOH-extractable P, total NaOH-extractable P, aluminium, barium, calcium, copper, iron, magnesium, manganese, molybdenum, nickel, potassium, selenium, silicon, sodium and zinc. Prior to Bonferroni correction procedure, there was a significant lower level of silicon concentration found in the monodominant than mixed forest deep soil; and a significant lower level of nickel concentration in the monodominant than mixed forest top soil. Nevertheless, these were likely to be the results of multiple tests of significance. Our results do not provide clear evidence of soil mediation for the location of monodominant forests in relation to adjacent mixed forests. It is also likely that G. dewevrei does not influence soil chemistry in the monodominant forests.

  1. Soil-plant transfer factors in forest ecosystems

    International Nuclear Information System (INIS)

    Strebl, F.; Gerzabek, M.H.

    1995-04-01

    Within scope of an extended study about 137 Cs behaviour in forest ecosystems several parameters were found to influence soil-plant transfer factors. TF-values of different plant species cover a range of two magnitudes. This is partly due to variations in rooting depth of plants and specific physiological adaptations of nutrient supply. Perrenial plants like trees (Picea abies) and dwarf shrubs (Vaccinium myrtillus) showed a distinct age - dependency of 137 Cs - transfer factors. In young plant parts caesium concentration is higher than in old, more signified twigs. A correlation analysis of physico-chemical soil parameters and TF-values to forest vegetation showed, that soil organic matter, especially the degree of humification and the ratio between extractable fulvic to humic acids are important influencing factors of 137 Cs transfer from forest soils to plants. (author)

  2. Soil Quality Index Determination Models for Restinga Forest

    Science.gov (United States)

    Bonilha, R. M.; Casagrande, J. C.; Soares, R. M.

    2012-04-01

    The Restinga Forest is a set of plant communities in mosaic, determined by the characteristics of their substrates as a result of depositional processes and ages. In this complex mosaic are the physiognomies of restinga forests of high-stage regeneration (high restinga) and middle stage of regeneration (low restinga), each with its plant characteristics that differentiate them. Located on the coastal plains of the Brazilian coast, suffering internal influences both the continental slopes, as well as from the sea. Its soils come from the Quaternary and are subject to constant deposition of sediments. The climate in the coastal type is tropical (Köppen). This work was conducted in four locations: (1) Anchieta Island, Ubatuba, (2) Juréia-Itatins Ecological Station, Iguape, (3) Vila das Pedrinhas, Comprida Island; and (4) Cardoso Island, Cananeia. The soil samples were collect at a depths of 0 to 5, 0-10, 0-20, 20-40 and 40 to 60cm for the chemical and physical analysis. Were studied the additive and pondering additive models to evaluate soil quality. It was concluded: a) the comparative additive model produces quantitative results and the pondering additive model quantitative results; b) as the pondering additive model, the values of Soil Quality Index (SQI) for soils under forest of restinga are low and realistic, demonstrating the small plant biomass production potential of these soils, as well as their low resilience; c) the values of SQI similar to areas with and without restinga forest give quantitative demonstration of the restinga be considered as soil phase; d) restinga forest, probably, is maintained solely by the cycling of nutrients in a closed nutrient cycling; e) for the determination of IQS for soils under restinga vegetation the use of routine chemical analysis is adequate. Keywords: Model, restinga forest, Soil Quality Index (SQI).

  3. Forest harvesting reduces the soil metagenomic potential for biomass decomposition.

    Science.gov (United States)

    Cardenas, Erick; Kranabetter, J M; Hope, Graeme; Maas, Kendra R; Hallam, Steven; Mohn, William W

    2015-11-01

    Soil is the key resource that must be managed to ensure sustainable forest productivity. Soil microbial communities mediate numerous essential ecosystem functions, and recent studies show that forest harvesting alters soil community composition. From a long-term soil productivity study site in a temperate coniferous forest in British Columbia, 21 forest soil shotgun metagenomes were generated, totaling 187 Gb. A method to analyze unassembled metagenome reads from the complex community was optimized and validated. The subsequent metagenome analysis revealed that, 12 years after forest harvesting, there were 16% and 8% reductions in relative abundances of biomass decomposition genes in the organic and mineral soil layers, respectively. Organic and mineral soil layers differed markedly in genetic potential for biomass degradation, with the organic layer having greater potential and being more strongly affected by harvesting. Gene families were disproportionately affected, and we identified 41 gene families consistently affected by harvesting, including families involved in lignin, cellulose, hemicellulose and pectin degradation. The results strongly suggest that harvesting profoundly altered below-ground cycling of carbon and other nutrients at this site, with potentially important consequences for forest regeneration. Thus, it is important to determine whether these changes foreshadow long-term changes in forest productivity or resilience and whether these changes are broadly characteristic of harvested forests.

  4. Anthropic changes to the biotic factor of soil formation from forests to managed grasslands along summits of the western Pyrenees Mountains, France

    Science.gov (United States)

    Leigh, David; Gragson, Theodore

    2017-04-01

    Mounting evidence indicates that highland pastures of the humid-temperate western Pyrenees were converted from mixed forests to managed grasslands thousands of years ago, as early as during the late Neolithic and Bronze age by human actions including use of fire. We observe pronounced differences between soil profiles of ancient pastures and old-growth forests in otherwise similar landscape positions. In order to test physical and chemical differences, we collected paired samples of forest versus grassland soils at four separate hillslope sites where there was a clear boundary between the two vegetation types. Animal trails were excluded from sampling. Factors of climate, topography, parent material, and time of soil formation were essentially identical in the forests and pastures of each site, but the time of soil under grassland vegetation may have varied. Each paired hillslope site included five core samples (7.6 cm diameter) from the upper 7.6 cm of the mineral soil within each vegetation type, and the A horizon thickness was recorded at each core hole site. In addition, one complete soil profile was sampled in each vegetation type at each site, making a total of 20 core samples and 4 complete profiles from each respective vegetation type. In addition, we measured the magnetic susceptibility of the mineral soil surface on two transects crossing the vegetation boundary. Core samples have been measured for bulk density, pH, plant-available nutrients, and organic matter; and tests for total carbon and nitrogen, amorphous silica, charcoal, and other forms of black carbon are ongoing. Preliminary results indicate pastured A horizons are about three times as thick as forested soils, contain more organic matter, have lower soil bulk densities, have much finer and stronger structural development of soil aggregates. These traits favor much greater infiltration and water holding capacities of the pastured soils, which we have validated with saturated hydraulic

  5. Transport of fallout radiocesium in the soil by bioturbation. A random walk model and application to a forest soil with a high abundance of earthworms

    International Nuclear Information System (INIS)

    Bunzl, K.

    2002-01-01

    It is well known that bioturbation can contribute significantly to the vertical transport of fallout radionuclides in grassland soils. To examine this effect also for a forest soil, activity-depth profiles of Chernobyl-derived 134Cs from a limed plot (soil, hapludalf under spruce) with a high abundance of earthworms (Lumbricus rubellus) in the Olu horizon (thickness=3.5 cm) were evaluated and compared with the corresponding depth profiles from an adjacent control plot. For this purpose, a random-walk based transport model was developed, which considers (1) the presence of an initial activity-depth distribution, (2) the deposition history of radiocesium at the soil surface, (3) individual diffusion/dispersion coefficients and convection rates for the different soil horizons, and (4) mixing by bioturbation within one soil horizon. With this model, the observed 134Cs-depth distribution at the control site (no bioturbation) and at the limed site could be simulated quite satisfactorily. It is shown that the observed, substantial long-term enrichment of 134Cs in the bioturbation horizon can be modeled by an exceptionally effective diffusion process, combined with a partial reflection of the randomly moving particles at the two borders of the bioturbation zone. The present model predicts significantly longer residence times of radiocesium in the organic soil layer of the forest soil than obtained from a first-order compartment model, which does not consider bioturbation explicitly

  6. Modelling trends in soil solution concentrations under five forest-soil combinations in the Netherlands

    NARCIS (Netherlands)

    Salm, van der C.; Vries, de W.; Kros, J.

    1996-01-01

    The influence of forest and soil properties on changes in soil solution concentration upon a reduction deposition was examined for five forest-soil combinations with the dynamic RESAM model. Predicted concentrations decreased in the direction Douglas fir - Scotch pine - oak, due to decreased

  7. Exotic Earthworms Decrease Cd, Hg, and Pb Pools in Upland Forest Soils of Vermont and New Hampshire USA.

    Science.gov (United States)

    Richardson, J B; Görres, J H; Friedland, A J

    2017-10-01

    Exotic earthworms are present in the forests of northeastern USA, yet few studies have documented their effects on pollutant metals in soil. The objective of this study was to identify if Cd, Hg, and Pb strong-acid extractable concentrations and pools (bulk inventories) in forest soils decreased with the presence of exotic earthworms. We compared 'Low Earthworm Abundance' (LEA) sites (≤10 g m -2 earthworms, n = 13) and 'High Earthworm Abundance' (HEA) (>10 g m -2 earthworms, n = 17) sites at five watersheds across Vermont and New Hampshire. Organic horizon Cd, Hg, and Pb concentrations were lower at HEA than LEA sites. Organic horizon and total soil pools of Cd and Hg were negatively correlated with earthworm biomass. Soil profile Cd and Hg concentrations were lower at HEA than LEA sites. Our results suggest earthworms are decreasing accumulation of Cd, Hg, and Pb in forest soils, potentially via greater mobilization through organic matter disruption or bioaccumulation.

  8. Losses of soil carbon by converting tropical forest to plantations: erosion and decomposition estimated by δ(13) C.

    Science.gov (United States)

    Guillaume, Thomas; Damris, Muhammad; Kuzyakov, Yakov

    2015-09-01

    Indonesia lost more tropical forest than all of Brazil in 2012, mainly driven by the rubber, oil palm, and timber industries. Nonetheless, the effects of converting forest to oil palm and rubber plantations on soil organic carbon (SOC) stocks remain unclear. We analyzed SOC losses after lowland rainforest conversion to oil palm, intensive rubber, and extensive rubber plantations in Jambi Province on Sumatra Island. The focus was on two processes: (1) erosion and (2) decomposition of soil organic matter. Carbon contents in the Ah horizon under oil palm and rubber plantations were strongly reduced up to 70% and 62%, respectively. The decrease was lower under extensive rubber plantations (41%). On average, converting forest to plantations led to a loss of 10 Mg C ha(-1) after about 15 years of conversion. The C content in the subsoil was similar under the forest and the plantations. We therefore assumed that a shift to higher δ(13) C values in plantation subsoil corresponds to the losses from the upper soil layer by erosion. Erosion was estimated by comparing the δ(13) C profiles in the soils under forest and under plantations. The estimated erosion was the strongest in oil palm (35 ± 8 cm) and rubber (33 ± 10 cm) plantations. The (13) C enrichment of SOC used as a proxy of its turnover indicates a decrease of SOC decomposition rate in the Ah horizon under oil palm plantations after forest conversion. Nonetheless, based on the lack of C input from litter, we expect further losses of SOC in oil palm plantations, which are a less sustainable land use compared to rubber plantations. We conclude that δ(13) C depth profiles may be a powerful tool to disentangle soil erosion and SOC mineralization after the conversion of natural ecosystems conversion to intensive plantations when soils show gradual increase of δ(13) C values with depth. © 2015 The Authors. Global Change Biology published by John Wiley & Sons Ltd.

  9. The impact of nitrogen deposition on carbon sequestration in European forests and forest soils

    DEFF Research Database (Denmark)

    de Vries, Wim; Reinds, Gert Jan; Gundersen, Per

    2006-01-01

    for CO2 emissions because of harvest and forest fires, was assumed 33% of the overall C pool changes by growth. C sequestration in the soil were based on calculated nitrogen (N) retention (N deposition minus net N uptake minus N leaching) rates in soils, multiplied by the C/N ratio of the forest soils......An estimate of net carbon (C) pool changes and long-term C sequestration in trees and soils was made at more than 100 intensively monitored forest plots (level II plots) and scaled up to Europe based on data for more than 6000 forested plots in a systematic 16 km x 16 km grid (level I plots). C...... pool changes in trees at the level II plots were based on repeated forest growth surveys At the level I plots, an estimate of the mean annual C pool changes was derived from stand age and available site quality characteristics. C sequestration, being equal to the long-term C pool changes accounting...

  10. Assessment of winter fluxes of CO2 and CH4 in boreal forest soils of central Alaska estimated by the profile method and the chamber method: a diagnosis of methane emission and implications for the regional carbon budget

    International Nuclear Information System (INIS)

    Kim, Yongwon; Ueyama, Masahito; Harazono, Yoshinobu; Tanaka, Noriyuki; Nakagawa, Fumiko; Tsunogai, Urumu

    2007-01-01

    This research was carried out to estimate the winter fluxes of CO 2 and CH 4 using the concentration profile method and the chamber method in black spruce forest soils in central Alaska during the winter of 2004/5. The average winter fluxes of CO 2 and CH 4 by chamber and profile methods were 0.24 ± 0.06 (SE; standard error) and 0.21 ± 0.06 gCO 2 -C/m2/d, and 21.4 ± 5.6 and 21.4 ± 14 μgCH 4 -C/m2/hr. This suggests that the fluxes estimated by the two methods are not significantly different based on a one-way ANOVA with a 95% confidence level. The hypothesis on the processes of CH 4 transport/production/emission in underlying snow-covered boreal forest soils is proven by the pressure differences between air and in soil at 30 cm depth. The winter CO 2 emission corresponds to 23% of the annual CO 2 emitted from Alaska black spruce forest soils, which resulted in the sum of mainly root respiration and microbial respiration during the winter based on the (delta) 13 CO 2 of -2.25%. The average wintertime emissions of CO 2 and CH 4 were 49 ± 13 gCO 2 -C/m 2 /season and 0.11 ± 0.07 gCH 4 -C/m 2 /season, respectively. This implies that winter emissions of CO 2 and CH 4 are an important part of the annual carbon budget in seasonally snow-covered terrain of typical boreal forest soils

  11. Migration and bioavailability of {sup 137}Cs in forest soil of southern Germany

    Energy Technology Data Exchange (ETDEWEB)

    Konopleva, I.; Klemt, E. [Hochschule Ravensburg-Weingarten, University of Applied Sciences, 88250 Weingarten (Germany); Konoplev, A. [Scientific Production Association ' TYPHOON' , Obninsk (Russian Federation); Zibold, G. [Hochschule Ravensburg-Weingarten, University of Applied Sciences, 88250 Weingarten (Germany)], E-mail: zibold@hs-weingarten.de

    2009-04-15

    To give a quantitative description of the radiocaesium soil-plant transfer for fern (Dryopteris carthusiana) and blackberry (Rubus fruticosus), physical and chemical properties of soils in spruce and mixed forest stands were investigated. Of special interest was the selective sorption of radiocaesium, which was determined by measuring the Radiocaesium Interception Potential (RIP). Forest soil and plants were taken at 10 locations of the Altdorfer Wald (5 sites in spruce forest and 5 sites in mixed forest). It was found that the bioavailability of radiocaesium in spruce forest was on average seven times higher than in mixed forest. It was shown that important factors determining the bioavailability of radiocaesium in forest soil were its exchangeability and the radiocaesium interception potential (RIP) of the soil. Low potassium concentration in soil solution of forest soils favors radiocaesium soil-plant transfer. Ammonium in forest soils plays an even more important role than potassium as a mobilizer of radiocaesium. The availability factor - a function of RIP, exchangeability and cationic composition of soil solution - characterized reliably the soil-plant transfer in both spruce and mixed forest. For highly organic soils in coniferous forest, radiocaesium sorption at regular exchange sites should be taken into account when its bioavailability is considered.

  12. Differential controls on soil carbon density and mineralization among contrasting forest types in a temperate forest ecosystem

    Science.gov (United States)

    You, Ye-Ming; Wang, Juan; Sun, Xiao-Lu; Tang, Zuo-Xin; Zhou, Zhi-Yong; Sun, Osbert Jianxin

    2016-01-01

    Understanding the controls on soil carbon dynamics is crucial for modeling responses of ecosystem carbon balance to global change, yet few studies provide explicit knowledge on the direct and indirect effects of forest stands on soil carbon via microbial processes. We investigated tree species, soil, and site factors in relation to soil carbon density and mineralization in a temperate forest of central China. We found that soil microbial biomass and community structure, extracellular enzyme activities, and most of the site factors studied varied significantly across contrasting forest types, and that the associations between activities of soil extracellular enzymes and microbial community structure appeared to be weak and inconsistent across forest types, implicating complex mechanisms in the microbial regulation of soil carbon metabolism in relation to tree species. Overall, variations in soil carbon density and mineralization are predominantly accounted for by shared effects of tree species, soil, microclimate, and microbial traits rather than the individual effects of the four categories of factors. Our findings point to differential controls on soil carbon density and mineralization among contrasting forest types and highlight the challenge to incorporate microbial processes for constraining soil carbon dynamics in global carbon cycle models. PMID:26925871

  13. Genesis of Soils Formed from Mafic Igneous Rock in the Atlantic Forest Environment

    Directory of Open Access Journals (Sweden)

    Adailde do Carmo Santos

    2016-01-01

    Full Text Available ABSTRACT Different parent materials participate in the formation of soils in the hilly landscape of “Mar de Morros” in the Atlantic Forest environment. Those derived from mafic igneous rock (gabbro frequently show erosion problems because of land use, which is aggravated by the mountainous relief and soil attributes. This study evaluated the main pedogenic processes of soils formed from mafic igneous rock (gabbro in a toposequence in Pinheiral (RJ by characterizing physical, chemical, mineralogical and micromorphological attributes. The profiles are located at different sections in the toposequence: summit (P1, shoulder (P2, backslope (P3 and footslope (P4.They were classified according to the Brazilian System of Soil Classification (SiBCS and correlated to Soil Taxonomy. The soil morphology of profiles P2, P3 and P4 is expressed by a brownish-red color, blocky structure with high to moderate development, clay films and clay loam to clay texture, with a textural B horizon. P1 shows less development, with a shallow profile and the sequence of horizons A-C-Cr. The soils have a slightly low degree of weathering, identified by the presence of pyroxenes and feldspars in the sand fraction and montorillonite in the clay fraction; the sum of bases is from 15 to 24 cmolc kg-1; and cation exchange capacity (CEC is from 12 to 22 cmolc kg-1. A significant presence of clay skins was observed in the field and was confirmed by thin section analysis, which showed features such as argillans, ferriargillans and iron nodules. The soil profile at the summit (P1 was classified as Neossolo Regolítico Órtico (Typic Udorthents, and the other profiles as Chernossolo Argilúvicos Órticos (Typic Argiudolls.

  14. Mineral Soil Carbon in Managed Hardwood Forests of the Northeastern US

    Science.gov (United States)

    Vario, C.; Friedland, A.; Hornig, C.

    2013-12-01

    New England is characterized by extensive forest cover and large reservoirs of soil carbon (C). In northern hardwood forests, mineral soil C can account for up to 50% of total ecosystem C. There has been an increasing demand for forests to serve both as a C sink and a renewable energy source, and effective management of the ecosystem C balance relies on accurate modeling of each compartment of the ecosystem. However, the dynamics of soil C storage with respect to forest use are variable and poorly understood, particularly in mineral soils. For example, current regional models assume C pools after forest harvesting do not change, while some studies suggest that belowground mineral soil C pools can be affected by disturbances at the soil surface. We quantified mineral soil C pools in previously clear-cut stands in seven research or protected forests across New York, New Hampshire, Massachusetts, and Vermont. The ages of the sites sampled ranged from recently cleared to those with no disturbance history, with 21 forest stands represented in the study. Within each research forest studied, physical parameters such as soil type, forest type, slope and land-use history (aside from forest harvest) did not vary between the stands of different ages. Soil samples were collected to a depth of 60 cm below the mineral-organic boundary using a gas-powered augur and 9.5-cm diameter drill bit. Samples were collected in 10-cm increments in shallow mineral soil and 15-cm increments from 30-60 cm depth. Carbon, nitrogen (N), pH, texture and soil mineralogy were measured across the regional sites. At Bartlett Experimental Forest (BEF) in New Hampshire, mineral soil biogeochemistry in cut and uncut sites was studied at a finer scale. Measurements included soil temperature to 55 cm depth, carbon compound analyses using Py-GCMS and soil microbial messenger RNA extractions from mineral soil. Finally, we simulated C dynamics after harvesting by building a model in Stella, with a particular

  15. Effect of soil compaction and biomass removal on soil CO2 efflux in a Missouri forest

    Science.gov (United States)

    Felix, Jr. Ponder

    2005-01-01

    Forest disturbances associated with harvesting activities can affect soil properties and soil respiration. A soda-lime technique was used to measure soil carbon dioxide (CO2) efflux rates in clearcut plots of a Missouri oak-hickory (Quercus spp. L.-Carya spp. Nutt.) forest 4 years after being treated with two levels of forest...

  16. Soil Organic Carbon Responses to Forest Expansion on Mountain Grasslands

    DEFF Research Database (Denmark)

    Guidi, Claudia

    . Changes in labile soil C were assessed by carbohydrate and thermal analyses of soil samples and fractions. Forest expansion on mountain grasslands caused a decrease in SOC stocks within the mineral soil. The SOC accumulation within the organic layers following forest establishment could not fully...... and thermally labile to resistant components decreased from grassland to forest successional stages, and corresponded to decreased SOC protection within stable aggregates. This PhD thesis showed that mineral SOC stocks and physically protected SOC fractions decreased following forest expansion on mountain......Grassland abandonment followed by progressive forest expansion is the dominant land-use change in the European Alps. Contrasting trends in soil organic carbon (SOC) stocks have been reported for mountainous regions following forest expansion on grasslands. Moreover, its effects on SOC properties...

  17. Bioecology of pear thrips: distribution in forest soils

    Science.gov (United States)

    Margaret Skinner; Bruce L. Parker

    1991-01-01

    The vertical and horizontal distribution of pear thrips in Vermont sugar maple forest soils was investigated. In the fall, about 86% of the thrips were found in the upper 10 cm of soil, though a few were found as deep as 20 cm. No thrips were found in the leaf litter. Soil sampling tools to determine thrips populations within an entire forest were tested and a standard...

  18. Linkages between forest soils and water quality and quantity

    Science.gov (United States)

    Daniel G. Neary; George G. Ice; C. Rhett Jackson

    2009-01-01

    The most sustainable and best quality fresh water sources in the world originate in forest ecosystems. The biological, chemical, and physical characteristics of forest soils are particularly well suited to delivering high quality water to streams, moderating stream hydrology, and providing diverse aquatic habitat. Forest soils feature litter layers and...

  19. Granulated wood ash to forest soil - Ecological effects

    International Nuclear Information System (INIS)

    Rosen, K.; Eriksson, H.; Clarholm, M.; Lundkvist, H.; Rudebeck, A.

    1993-01-01

    This report describes research concerning ecological effects of wood ash recycling to forest soils. The main part of the minerals in the wood fuels are retained in the ashes after combustion. By returning the ashes back to the cleared forest areas, the mineral losses can be reduced. Adding ashes and limestone is a method to vitalize acidified forest soils and restore the production capacity. 48 refs, 26 figs, 8 tabs

  20. Coastal Plain Soil Fertility Degradation And Natural Forest Ecosystem Regeneration

    Science.gov (United States)

    Casagrande, J. C.; Sato, C. A.; Reis-Duarte, R. M.; Soares, M. R.; Galvão Bueno, M. S.

    2009-04-01

    The sand coastal plain vegetation (Restinga Forest) has been described as an ecosystem associated with the Atlantic Forest, constituted of mosaics, which occur in areas of great ecological diversity, particularly the features of the soil which mostly influence the forest, therefore assigned as edaphic community. The Restinga forest is one of the most fragile, showing low resilience to human damage This work was carried out in several points (14) of Restinga Forest (six low - trees from 3 to 10 m high - and eight high forest - trees from 10 to 15 m high) in the litoral coast of the state of São Paulo. Each sample was made of 15 subsamples of each area collected in each depth (one in 0 - 5, 5 - 10, 10 - 15, 15 - 20, and another in 0 - 20, 20 - 40, 40 and 60 cm). Soil characteristics analyzed were pH, P, Na, K, Ca, Mg, S, H + Al, Al, B, Cu, Fe, Mn, Zn contents and base saturation, cation exchange capacity and aluminum saturation. The vegetation physiognomies of Restinga forest (low and high) were associated with soil results and with the history of human occupation. The soils are sandy (2 to 4% of clay), resulting in a low capacity of nutrient retention. Soil fertility analysis to low and high Restinga forest were similar and showed very low contents of phosphorous, calcium and magnesium in all areas investigated. The base saturation was low due to low amounts of Na, K, Ca and Mg. Base saturation presents low level in all cases, less than 10, indicating low nutritional reserve in the soil. The aluminum saturation values varied from 58 to 69%. The level of calcium and magnesium were low in the subsurface soil layer mainly, associate with high aluminum saturation, representing an limiting factor for the root system development in depth. If soil fertility parameters do not show any significant difference between low and high Restinga physiognomy, what make distinction is the recuperation time. In the areas of high Forest can be note a too long time of recuperation

  1. Sources of nitrous oxide emitted from European forest soils

    DEFF Research Database (Denmark)

    Ambus, P.; Zechmeister-Boltenstern, S.; Butterbach-Bahl, K.

    2006-01-01

    Forest ecosystems may provide strong sources of nitrous oxide (N2O), which is important for atmospheric chemical and radiative properties. Nonetheless, our understanding of controls on forest N2O emissions is insufficient to narrow current flux estimates, which still are associated with great...... uncertainties. In this study, we have investigated the quantitative and qualitative relationships between N-cycling and N2O production in European forests in order to evaluate the importance of nitrification and denitrification for N2O production. Soil samples were collected in 11 different sites characterized...... by variable climatic regimes and forest types. Soil N-cycling and associated production of N2O was assessed following application of 15N-labeled nitrogen. The N2O emission varied significantly among the different forest soils, and was inversely correlated to the soil C: N ratio. The N2O emissions were...

  2. Radon levels and transport parameters in Atlantic Forest soils

    International Nuclear Information System (INIS)

    Farias, E.E.G. de; Silva Neto, P.C. da; Souza, E.M. de; De Franca, E.J.; Hazin, C.A.

    2016-01-01

    In natural forest soils, the radon transport processes can be significantly intensified due to the contribution of living organism activities to soil porosity. In this paper, the first results of the radon concentrations were obtained for soil gas from the Atlantic Forest, particularly in the Refugio Ecologico Charles Darwin, Brazil. The estimation of permeability and radon exhalation rate were carried out in this conservation unit. For forested soils, radon concentrations as high as 40 kBq m -3 were found. Based on the radon concentrations and on the permeability parameter, the results indicated considerable radon hazard for human occupation in the neighborhood. (author)

  3. Carbon stocks in tree biomass and soils of German forests

    Directory of Open Access Journals (Sweden)

    Wellbrock Nicole

    2017-06-01

    Full Text Available Close to one third of Germany is forested. Forests are able to store significant quantities of carbon (C in the biomass and in the soil. Coordinated by the Thünen Institute, the German National Forest Inventory (NFI and the National Forest Soil Inventory (NFSI have generated data to estimate the carbon storage capacity of forests. The second NFI started in 2002 and had been repeated in 2012. The reporting time for the NFSI was 1990 to 2006. Living forest biomass, deadwood, litter and soils up to a depth of 90 cm have stored 2500 t of carbon within the reporting time. Over all 224 t C ha-1 in aboveground and belowground biomass, deadwood and soil are stored in forests. Specifically, 46% stored in above-ground and below-ground biomass, 1% in dead wood and 53% in the organic layer together with soil up to 90 cm. Carbon stocks in mineral soils up to 30 cm mineral soil increase about 0.4 t C ha-1 yr-1 stocks between the inventories while the carbon pool in the organic layers declined slightly. In the living biomass carbon stocks increased about 1.0 t C ha-1 yr-1. In Germany, approximately 58 mill. tonnes of CO2 were sequestered in 2012 (NIR 2017.

  4. Acidification of forest soil in Russia: From 1893 to present

    Science.gov (United States)

    Lapenis, A.G.; Lawrence, G.B.; Andreev, A.A.; Bobrov, A.A.; Torn, M.S.; Harden, J.W.

    2004-01-01

    It is commonly believed that fine-textured soils developed on carbonate parent material are well buffered from possible acidification. There are no data, however, that document resistance of such soils to acidic deposition exposure on a timescale longer than 30-40 years. In this paper, we report on directly testing the long-term buffering capacity of nineteenth century forest soils developed on calcareous silt loam. In a chemical analysis comparing archived soils with modern soils collected from the same locations ???100 years later, we found varying degrees of forest-soil acidification in the taiga and forest steppe regions. Land-use history, increases in precipitation, and acidic deposition were contributing factors in acidification. The acidification of forest soil was documented through decreases in soil pH and changes in concentrations of exchangeable calcium and aluminum, which corresponded with changes in communities of soil microfauna. Although acidification was found at all three analyzed locations, the trends in soil chemistry were most pronounced where the highest loading of acidic deposition had taken place. Copyright 2004 by the American Geophysical Union.

  5. Basidiomycete fungal communities in Australian sclerophyll forest soil are altered by repeated prescribed burning.

    Science.gov (United States)

    Anderson, Ian C; Bastias, Brigitte A; Genney, David R; Parkin, Pamela I; Cairney, John W G

    2007-04-01

    Soil basidiomycetes play key roles in forest nutrient and carbon cycling processes, yet the diversity and structure of below ground basidiomycete communities remain poorly understood. Prescribed burning is a commonly used forest management practice and there is evidence that single fire events can have an impact on soil fungal communities but little is known about the effects of repeated prescribed burning. We have used internal transcribed spacer (ITS) terminal restriction fragment length polymorphism (T-RFLP) analysis to investigate the impacts of repeated prescribed burning every two or four years over a period of 30 years on soil basidiomycete communities in an Australian wet sclerophyll forest. Detrended correspondence analysis of ITS T-RFLP profiles separated basidiomycete communities in unburned control plots from those in burned plots, with those burned every two years being the most different from controls. Burning had no effect on basidiomycete species richness, thus these differences appear to be due to changes in community structure. Basidiomycete communities in the unburned control plots were vertically stratified in the upper 20 cm of soil, but no evidence was found for stratification in the burned plots, suggesting that repeated prescribed burning results in more uniform basidiomycete communities. Overall, the results demonstrate that repeated prescribed burning alters soil basidiomycete communities, with the effect being greater with more frequent burning.

  6. Soil amendments effects on radiocesium translocation in forest soils.

    Science.gov (United States)

    Sugiura, Yuki; Ozawa, Hajime; Umemura, Mitsutoshi; Takenaka, Chisato

    2016-12-01

    We conducted an experiment to investigate the potential of phytoremediation by soil amendments in a forest area. To desorb radiocesium ( 137 Cs) from variable charges in the soil, ammonium sulfate (NH 4 + ) and elemental sulfur (S) (which decrease soil pH) were applied to forest soil collected from contaminated area at a rate of 40 and 80 g/m 2 , respectively. A control condition with no soil treatment was also considered. We defined four groups of aboveground conditions: planted with Quercus serrata, planted with Houttuynia cordata, covered with rice straw as litter, and unplanted/uncovered (control). Cultivation was performed in a greenhouse with a regular water supply for four months. Following elemental sulfur treatment, soil pH values were significantly lower than pH values following ammonium sulfate treatment and no treatment. During cultivation, several plant species germinated from natural seeds. No clear differences in aboveground tissue 137 Cs concentrations in planted Q. serrata and H. cordata were observed among the treatments. However, aboveground tissue 137 Cs concentration values in the germinated plants following elemental sulfur treatment were higher than the values following the ammonium sulfate treatment and no treatment. Although biomass values for Q. serrata, H. cordata, and germinated plants following elemental sulfur treatment tended to be low, the total 137 Cs activities in the aboveground tissue of germinated plants were higher than those following ammonium sulfate treatment and no treatment in rice straw and unplanted conditions. Although no significant differences were observed, 137 Cs concentrations in rice straw following ammonium sulfate and elemental sulfur treatments tended to be higher than those in the control case. The results of this study indicate that elemental sulfur lowers the soil pH for a relatively long period and facilitates 137 Cs translocation to newly emerged and settled plants or litter, but affects plant growth in

  7. Effect of variable soil texture, metal saturation of soil organic matter (SOM) and tree species composition on spatial distribution of SOM in forest soils in Poland.

    Science.gov (United States)

    Gruba, Piotr; Socha, Jarosław; Błońska, Ewa; Lasota, Jarosław

    2015-07-15

    In this study we investigated the effect of fine (ϕclay (FF) content in soils, site moisture, metal (Al and Fe) of soil organic matter (SOM) and forest species composition on the spatial distribution of carbon (C) pools in forest soils at the landscape scale. We established 275 plots in regular 200×200m grid in a forested area of 14.4km(2). Fieldwork included soil sampling of the organic horizon, mineral topsoil and subsoil down to 40cm deep. We analysed the vertical and horizontal distribution of soil organic carbon (SOC) stocks, as well as the quantity of physically separated fractions including the free light (fLF), occluded light (oLF) and mineral associated fractions (MAF) in the mineral topsoil (A, AE) horizons. Distribution of C in soils was predominantly affected by the variation in the FF content. In soils richer in the FF more SOC was accumulated in mineral horizons and less in the organic horizons. Accumulation of SOC in mineral soil was also positively affected by the degree of saturation of SOM with Al and Fe. The increasing share of beech influenced the distribution of C stock in soil profiles by reducing the depth of O horizon and increasing C stored in mineral soil. The content of FF was positively correlated with the content of C in MAF and fLF fractions. The content of oLF and MAF fractions was also positively influenced by a higher degree of metal saturation, particularly Al. Our results confirmed that Al plays an important role in the stabilization of SOM inside aggregates (CoLF) and as in CMAF fractions. We also found a significant, positive effect of beech on the CfLF and fir on the CoLF content. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Forest management type influences diversity and community composition of soil fungi across temperate forest ecosystems

    Directory of Open Access Journals (Sweden)

    Kezia eGoldmann

    2015-11-01

    Full Text Available Fungal communities have been shown to be highly sensitive towards shifts in plant diversity and species composition in forest ecosystems. However, little is known about the impact of forest management on fungal diversity and community composition of geographically separated sites. This study examined the effects of four different forest management types on soil fungal communities. These forest management types include age class forests of young managed beech (Fagus sylvatica L., with beech stands age of approximately 30 years, age class beech stands with an age of approximately 70 years, unmanaged beech stands, and coniferous stands dominated by either pine (Pinus sylvestris L. or spruce (Picea abies Karst. which are located in three study sites across Germany. Soil were sampled from 48 study plots and we employed fungal ITS rDNA pyrotag sequencing to assess the soil fungal diversity and community structure.We found that forest management type significantly affects the Shannon diversity of soil fungi and a significant interaction effect of study site and forest management on the fungal OTU richness. Consequently distinct fungal communities were detected in the three study sites and within the four forest management types, which were mainly related to the main tree species. Further analysis of the contribution of soil properties revealed that C/N ratio being the most important factor in all the three study sites whereas soil pH was significantly related to the fungal community in two study sites. Functional assignment of the fungal communities indicated that 38% of the observed communities were Ectomycorrhizal fungi (ECM and their distribution is significantly influenced by the forest management. Soil pH and C/N ratio were found to be the main drivers of the ECM fungal community composition. Additional fungal community similarity analysis revealed the presence of study site and management type specific ECM genera.This study extends our knowledge

  9. Forest Management Type Influences Diversity and Community Composition of Soil Fungi across Temperate Forest Ecosystems.

    Science.gov (United States)

    Goldmann, Kezia; Schöning, Ingo; Buscot, François; Wubet, Tesfaye

    2015-01-01

    Fungal communities have been shown to be highly sensitive toward shifts in plant diversity and species composition in forest ecosystems. However, little is known about the impact of forest management on fungal diversity and community composition of geographically separated sites. This study examined the effects of four different forest management types on soil fungal communities. These forest management types include age class forests of young managed beech (Fagus sylvatica L.), with beech stands age of approximately 30 years, age class beech stands with an age of approximately 70 years, unmanaged beech stands, and coniferous stands dominated by either pine (Pinus sylvestris L.) or spruce (Picea abies Karst.) which are located in three study sites across Germany. Soil were sampled from 48 study plots and we employed fungal ITS rDNA pyrotag sequencing to assess the soil fungal diversity and community structure. We found that forest management type significantly affects the Shannon diversity of soil fungi and a significant interaction effect of study site and forest management on the fungal operational taxonomic units richness. Consequently distinct fungal communities were detected in the three study sites and within the four forest management types, which were mainly related to the main tree species. Further analysis of the contribution of soil properties revealed that C/N ratio being the most important factor in all the three study sites whereas soil pH was significantly related to the fungal community in two study sites. Functional assignment of the fungal communities indicated that 38% of the observed communities were Ectomycorrhizal fungi (ECM) and their distribution is significantly influenced by the forest management. Soil pH and C/N ratio were found to be the main drivers of the ECM fungal community composition. Additional fungal community similarity analysis revealed the presence of study site and management type specific ECM genera. This study extends our

  10. Molecular characterization of soil bacterial community in a perhumid, low mountain forest.

    Science.gov (United States)

    Lin, Yu-Te; Whitman, William B; Coleman, David C; Chih-Yu, Chiu

    2011-01-01

    Forest disturbance often results in changes in soil properties and microbial communities. In the present study, we characterized a soil bacterial community subjected to disturbance using 16S rRNA gene clone libraries. The community was from a disturbed broad-leaved, low mountain forest ecosystem at Huoshaoliao (HSL) located in northern Taiwan. This locality receives more than 4,000 mm annual precipitation, one of the highest precipitations in Taiwan. Based on the Shannon diversity index, Chao1 estimator, richness and rarefaction curve analysis, the bacterial community in HSL forest soils was more diverse than those previously investigated in natural and disturbed forest soils with colder or less humid weather conditions. Analysis of molecular variance also revealed that the bacterial community in disturbed soils significantly differed from natural forest soils. Most of the abundant operational taxonomic units (OTUs) in the disturbed soil community at HSL were less abundant or absent in other soils. The disturbances influenced the composition of bacterial communities in natural and disturbed forests and increased the diversity of the disturbed forest soil community. Furthermore, the warmer and humid weather conditions could also increase community diversity in HSL soils.

  11. Production and reduction of nitrous oxide in agricultural and forest soils.

    Science.gov (United States)

    Yu, K; Chen, G; Struwe, S; Kjøller, A

    2000-06-01

    A soil-water slurry experiment was conducted to study the potentials of N2O production and reduction in denitrification of agricultural and beech forest soils in Denmark. The effects of nitrate and ammonium additions on denitrification were also investigated. The forest soil showed a higher denitrification potential than the agricultural soil. However, N2O reduction potential of the agricultural soil was higher than the beech forest soil, shown by the ratio of N2O/N2 approximately 0.11 and 3.65 in the agricultural and the beech forest soils, respectively. Both nitrate and ammonium additions stimulated the N2O production in the two soils, but reduced the N2O reduction rates in the agricultural soil slurries. In contrast to the effect on the agricultural soil, nitrate reduced the N2O reduction rate in the beech forest soil, while ammonium showed a stimulating effect on the N2O reduction activity. After one week incubation, all of the N2O produced was reduced to N2 in the agricultural soil when nitrate was still present. Nitrous oxide reduction in the beech forest soil occurred only when nitrate almost disappeared. The different nitrate inhibitory effect on the N2O reduction activity in the two soils was due to the difference in soil pH. Inhibition of nitrate on N2O reduction was significant under acidic condition. Consequently, soil could serve as a sink of atmospheric N2O under the conditions of anaerobic, pH near neutral and low nitrate content.

  12. Long-Term Soil Chemistry Changes in Aggrading Forest Ecosystems

    Science.gov (United States)

    Jennifer D. Knoepp; Wayne T. Swank

    1994-01-01

    Assessing potential long-term forest productivity requires identification of the processes regulating chemical changes in forest soils. We resampled the litter layer and upper two mineral soil horizons, A and AB/BA, in two aggrading southern Appalachian watersheds 20 yr after an earlier sampling. Soils from a mixed-hardwood watershed exhibited a small but significant...

  13. Development of generic soil profiles and soil data development for SSI analyses

    Energy Technology Data Exchange (ETDEWEB)

    Parker, Josh, E-mail: jparker@nuscalepower.com [NuScale Power, 1000 NE Circle Boulevard, Suite 10310, Corvallis, OR 97330 (United States); Khan, Mohsin; Rajagopal, Raj [ARES Corporation, 1990N California Boulevard, Suite 500, Walnut Creek, CA 94596 (United States); Groome, John [NuScale Power, 1000 NE Circle Boulevard, Suite 10310, Corvallis, OR 97330 (United States)

    2014-04-01

    This paper presents the approach to developing generic soil profiles for the design of reactor building for small modular reactor (SMR) nuclear power plant developed by NuScale Power. The reactor building is a deeply embedded structure. In order to perform soil structure interaction (SSI) analyses, generic soil profiles are required to be defined for the standardized Nuclear Power Plant (NPP) designs for the United States Nuclear Regulatory Commission (NRC) in a design control document (DCD). The development of generic soil profiles is based on utilization of information on generic soil profiles from the new standardized nuclear power plant designs already submitted to the NRC for license certification. Eleven generic soil profiles have been recommended, and those profiles cover a wide range of parameters such as soil depth, shear wave velocity, unit weight, Poisson's ratio, water table, and depth to rock strata. The soil profiles are developed for a range of shear wave velocities between bounds of 1000 fps and 8000 fps as inferred from NRC Standard Review Plan (NUREG 0800) Sections 3.7.1 and 3.7.2. To account for the soil degradation due to seismic events, the strain compatible soil properties are based on the EPRI generic soil degradation curves. In addition, one dimensional soil dynamic response analyses were performed to study the soil layer input motions for performing the SSI analyses.

  14. Transforming Pinus pinaster forest to recreation site: preliminary effects on LAI, some forest floor, and soil properties.

    Science.gov (United States)

    Öztürk, Melih; Bolat, İlyas

    2014-04-01

    This study investigates the effects of forest transformation into recreation site. A fragment of a Pinus pinaster plantation forest was transferred to a recreation site in the city of Bartın located close to the Black Sea coast of northwestern Turkey. During the transformation, some of the trees were selectively removed from the forest to generate more open spaces for the recreationists. As a result, Leaf Area Index (LAI) decreased by 0.20 (about 11%). Additionally, roads and pathways were introduced into the site together with some recreational equipment sealing parts of the soil surface. Consequently, forest environment was altered with a semi-natural landscape within the recreation site. The purpose of this study is to assess the effects of forest transformation into recreation site particularly in terms of the LAI parameter, forest floor, and soil properties. Preliminary monitoring results indicate that forest floor biomass is reduced by 26% in the recreation site compared to the control site. Soil temperature is increased by 15% in the recreation site where selective removal of trees expanded the gaps allowing more light transmission. On the other hand, the soil bulk density which is an indicator of soil compaction is unexpectedly slightly lower in the recreation site. Organic carbon (C(org)) and total nitrogen (N(total)) together with the other physical and chemical parameter values indicate that forest floor and soil have not been exposed to much disturbance. However, subsequent removal of trees that would threaten the vegetation, forest floor, and soil should not be allowed. The activities of the recreationists are to be concentrated on the paved spaces rather than soil surfaces. Furthermore, long-term monitoring and management is necessary for both the observation and conservation of the site.

  15. Effects of exotic plantation forests on soil edaphon and organic matter fractions.

    Science.gov (United States)

    Xu, Gang; Liu, Yao; Long, Zhijian; Hu, Shanglian; Zhang, Yuanbin; Jiang, Hao

    2018-06-01

    There is uncertainty and limited knowledge regarding soil microbial properties and organic matter fractions of natural secondary forest accompanying chemical environmental changes of replacement by pure alien plantation forests in a hilly area of southwest of Sichuan province China. The aim of this study was to evaluate the impact of natural secondary forest (NSF) to pure Cryptomeria fortunei forest (CFF) and Cunninghamia lanceolata forest (CLF) on soil organic fractions and microbial communities. The results showed that the soil total phospholipid fatty acids (PLFAs), total bacteria and fungi, microbial carbon pool, organic recalcitrant carbon (C) and (N) fractions, soil microbial quotient and labile and recalcitrant C use efficiencies in each pure plantation were significantly decreased, but their microbial N pool, labile C and N pools, soil carbon dioxide efflux, soil respiratory quotient and recalcitrant N use efficiency were increased. An RDA analysis revealed that soil total PLFAs, total bacteria and fungi and total Gram-positive and Gram-negative bacteria were significantly associated with exchangeable Al 3+ , exchangeable acid, Al 3+ , available P and Mg 2+ and pH, which resulted into microbial functional changes of soil labile and recalcitrant substrate use efficiencies. Modified microbial C- and N-use efficiency due to forest conversion ultimately meets those of rapidly growing trees in plantation forests. Enlarged soil labile fractions and soil respiratory quotients in plantation forests would be a potential positive effect for C source in the future forest management. Altogether, pure plantation practices could provoke regulatory networks and functions of soil microbes and enzyme activities, consequently leading to differentiated utilization of soil organic matter fractions accompanying the change in environmental factors. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Texture-contrast profile development across the prairie-forest ecotone in northern Minnesota, USA, and its relation to soil aggregation and clay dispersion.

    Science.gov (United States)

    Kasmerchak, C. S.; Mason, J. A.

    2016-12-01

    Along the prairie-forest ecotone, Alfisols with distinct clay-enriched B horizons are found under forest, established only within the past 4 ka, including outlying patches of prairie groves surrounded by prairie. Grassland soils only 5-10 km away from the vegetation boundary show much weaker texture-contrast. In order for clay to be dispersed it must first be released from aggregates upper horizons, which occurs when exposed top soil undergoes wetting and mechanical stress. The relationship between physiochemical soil characteristics and soil aggregation/clay dispersion is of particular interest in explaining texture-contrast development under forest. Soil samples were collected along a transect in northern Minnesota on gentle slopes in similar glacial sediment. Aggregate stability experiments show Mollisol A and B horizons have the most stable aggregates, while Alfisol E horizons have the weakest aggregates and disintegrate rapidly. This demonstrates the strong influence of OM and exchange chemistry on aggregation. Analysis of other physiochemical soil characteristics such as base saturation and pH follow a gradual decreasing eastward trend across the study sites, and do not abruptly change at the prairie-forest boundary like soil morphology does. Linear models show the strongest relationship between rapid aggregate disintegration and ECEC, although they only explain 47-50% of the variance. Higher surface charge enhances aggregation by allowing for greater potential of cation bridging between OM and clay particles. ECEC also represents multiple soil characteristics such as OC, clay, mineralogy, and carbonate presence, suggesting the relationship between aggregation stability and soil characteristics is not simple. Given the parent material consists of calcareous glacial sediment, abundant Ca2+ and Mg2+ from carbonates weathering also contributes to enhanced aggregation in upper horizons. Differences in the rates of bioturbation, most likely also contribute

  17. Litter input controls on soil carbon in a temperate deciduous forest

    DEFF Research Database (Denmark)

    Bowden, Richard D.; Deem, Lauren; Plante, Alain F.

    2014-01-01

    Above- and belowground litter inputs in a temperate deciduous forest were altered for 20 yr to determine the importance of leaves and roots on soil C and soil organic matter (SOM) quantity and quality. Carbon and SOM quantity and quality were measured in the O horizon and mineral soil to 50 cm...... soil C, but decreases in litter inputs resulted in rapid soil C declines. Root litter may ultimately provide more stable sources of soil C. Management activities or environmental alterations that decrease litter inputs in mature forests can lower soil C content; however, increases in forest...

  18. 137Cs vertical migration in a deciduous forest soil following the Fukushima Dai-ichi Nuclear Power Plant accident

    International Nuclear Information System (INIS)

    Nakanishi, Takahiro; Matsunaga, Takeshi; Koarashi, Jun; Atarashi-Andoh, Mariko

    2014-01-01

    The large amount of 137 Cs deposited on the forest floor because of the Fukushima Dai-ichi Nuclear Power Plant accident represents a major potential long-term source for mobile 137 Cs. To investigate 137 Cs mobility in forest soils, we investigated the vertical migration of 137 Cs through seepage water, using a lysimetric method. The study was conducted in a deciduous forest soil over a period spanning 2 month to 2 y after the Fukushima nuclear accident. Our observations demonstrated that the major part of 137 Cs in the litter layer moved into the mineral soil within one year after the accident. On the other hand, the topsoil prevented migration of 137 Cs, and only 2% of 137 Cs in the leachate from litter and humus layer penetrated below a 10 cm depth. The annual migration below a 10 cm depth accounted for 0.1% of the total 137 Cs inventory. Therefore, the migration of 137 Cs by seepage water comprised only a very small part of the total 137 Cs inventory in the mineral soil, which was undetectable from the vertical distribution of 137 Cs in the soil profile. In the present and immediate future, most of the 137 Cs deposited on the forest floor will probably remain in the topsoil successively, although a small but certain amount of bioavailable 137 Cs exists in forest surface soil. -- Highlights: • Lysimeter captured 137 Cs mobility in a forest soil after the Fukushima accident. • Major part of 137 Cs in the litter layer moved into the mineral soil within a year. • Litter-leachate 137 Cs was predominantly adsorbed within the topsoil. • The annual migration below a 10 cm depth was 0.1% of the total 137 Cs inventory

  19. ORCHIDEE-SOM: modeling soil organic carbon (SOC) and dissolved organic carbon (DOC) dynamics along vertical soil profiles in Europe

    Science.gov (United States)

    Camino-Serrano, Marta; Guenet, Bertrand; Luyssaert, Sebastiaan; Ciais, Philippe; Bastrikov, Vladislav; De Vos, Bruno; Gielen, Bert; Gleixner, Gerd; Jornet-Puig, Albert; Kaiser, Klaus; Kothawala, Dolly; Lauerwald, Ronny; Peñuelas, Josep; Schrumpf, Marion; Vicca, Sara; Vuichard, Nicolas; Walmsley, David; Janssens, Ivan A.

    2018-03-01

    Current land surface models (LSMs) typically represent soils in a very simplistic way, assuming soil organic carbon (SOC) as a bulk, and thus impeding a correct representation of deep soil carbon dynamics. Moreover, LSMs generally neglect the production and export of dissolved organic carbon (DOC) from soils to rivers, leading to overestimations of the potential carbon sequestration on land. This common oversimplified processing of SOC in LSMs is partly responsible for the large uncertainty in the predictions of the soil carbon response to climate change. In this study, we present a new soil carbon module called ORCHIDEE-SOM, embedded within the land surface model ORCHIDEE, which is able to reproduce the DOC and SOC dynamics in a vertically discretized soil to 2 m. The model includes processes of biological production and consumption of SOC and DOC, DOC adsorption on and desorption from soil minerals, diffusion of SOC and DOC, and DOC transport with water through and out of the soils to rivers. We evaluated ORCHIDEE-SOM against observations of DOC concentrations and SOC stocks from four European sites with different vegetation covers: a coniferous forest, a deciduous forest, a grassland, and a cropland. The model was able to reproduce the SOC stocks along their vertical profiles at the four sites and the DOC concentrations within the range of measurements, with the exception of the DOC concentrations in the upper soil horizon at the coniferous forest. However, the model was not able to fully capture the temporal dynamics of DOC concentrations. Further model improvements should focus on a plant- and depth-dependent parameterization of the new input model parameters, such as the turnover times of DOC and the microbial carbon use efficiency. We suggest that this new soil module, when parameterized for global simulations, will improve the representation of the global carbon cycle in LSMs, thus helping to constrain the predictions of the future SOC response to global

  20. Human impacts on soil carbon dynamics of deep-rooted Amazonian forests

    Science.gov (United States)

    Nepstad, Daniel C.; Stone, Thomas A.; Davidson, Eric A.

    1994-01-01

    Deforestation and logging degrade more forest in eastern and southern Amazonia than in any other region of the world. This forest alteration affects regional hydrology and the global carbon cycle, but our current understanding of these effects is limited by incomplete knowledge of tropical forest ecosystems. It is widely agreed that roots are concentrated near the soil surface in moist tropical forests, but this generalization incorrectly implies that deep roots are unimportant in water and C budgets. Our results indicate that half of the closed-canopy forests of Brazilian Amazonic occur where rainfall is highly seasonal, and these forests rely on deeply penetrating roots to extract soil water. Pasture vegetation extracts less water from deep soil than the forest it replaces, thus increasing rates of drainage and decreasing rates of evapotranspiration. Deep roots are also a source of modern carbon deep in the soil. The soils of the eastern Amazon contain more carbon below 1 m depth than is present in above-ground biomass. As much as 25 percent of this deep soil C could have annual to decadal turnover times and may be lost to the atmosphere following deforestation. We compared the importance of deep roots in a mature, evergreen forest with an adjacent man-made pasture, the most common type of vegetation on deforested land in Amazonia. The study site is near the town of Paragominas, in the Brazilian state of Para, with a seasonal rainfall pattern and deeply-weathered, kaolinitic soils that are typical for large portions of Amazonia. Root distribution, soil water extraction, and soil carbon dynamics were studied using deep auger holes and shafts in each ecosystem, and the phenology and water status of the leaf canopies were measured. We estimated the geographical distribution of deeply-rooting forests using satellite imagery, rainfall data, and field measurements.

  1. Modeling soil erosion and transport on forest landscape

    Science.gov (United States)

    Ge Sun; Steven G McNulty

    1998-01-01

    Century-long studies on the impacts of forest management in North America suggest sediment can cause major reduction on stream water quality. Soil erosion patterns in forest watersheds are patchy and heterogeneous. Therefore, patterns of soil erosion are difficult to model and predict. The objective of this study is to develop a user friendly management tool for land...

  2. Factors of influencing dissolved organic carbon stabilization in two cambic forest soils with contrasting soil-forming processes

    Science.gov (United States)

    Kawasaki, M.; Ohte, N.; Asano, Y.; Uchida, T.; Kabeya, N.; Kim, S.

    2004-05-01

    Stabilization of Dissolved Organic Carbon (DOC) in forest soil is a major process of soil organic carbon formation. However, the factors influencing DOC stabilization are poorly understood. To clarify the factors that affect the stabilization of DOC in forest soil mantle, we measured DOC concentrations and soil properties which were DOC adsorption efficiency at two adjacent cambic forest soils with contrasting forest management histories in Tanakami Mountains, central Japan. Matsuzawa was devastated about 1,200 years ago by excessive timber use and remained denuded for a long period. Hillside restoration and reforestation work have been carried out over the last 100 years and soil loss has been reduced. Fudoji is covered with undisturbed forest (mixed stands of cypress and oaks) with developed forest soils (more than 2,600 years old). There was no apparent seasonal variation in DOC concentration in the soil solution in either catchment. In addition, there were no significant relationships between the DOC concentration, soil temperature, and new water ratio. These results indicate that temporal variation in biological activity and rainfall-runoff process have little effect on temporal variation in DOC. The vertical variation in the DOC adsorption efficiency and DOC concentration differed between Matsuzawa and Fudoji, and the highest DOC removal rate occurred at the lowest DOC adsorption efficiency in the 0 to 10-cm soil layer at Fudoji. These results suggest that DOC removal rate is independent of DOC adsorption efficiency. Below 60 cm soil depth, DOC fluxes were constant and dissolved organic Al concentrations were little or zero in either catchment. These results suggest that abiotic precipitation of DOC is a major mechanism for stabilization of DOC. Therefore, DOC content which is able to form metal complexes may be the most important factor of influencing DOC stabilization in cambic forest soil.

  3. CO2 deficit in temperate forest soils receiving high atmospheric N-deposition.

    Science.gov (United States)

    Fleischer, Siegfried

    2003-02-01

    Evidence is provided for an internal CO2 sink in forest soils, that may have a potential impact on the global CO2-budget. Lowered CO2 fraction in the soil atmosphere, and thus lowered CO2 release to the aboveground atmosphere, is indicated in high N-deposition areas. Also at forest edges, especially of spruce forest, where additional N-deposition has occurred, the soil CO2 is lowered, and the gradient increases into the closed forest. Over the last three decades the capacity of the forest soil to maintain the internal sink process has been limited to a cumulative supply of approximately 1000 and 1500 kg N ha(-1). Beyond this limit the internal soil CO2 sink becomes an additional CO2 source, together with nitrogen leaching. This stage of "nitrogen saturation" is still uncommon in closed forests in southern Scandinavia, however, it occurs in exposed forest edges which receive high atmospheric N-deposition. The soil CO2 gradient, which originally increases from the edge towards the closed forest, becomes reversed.

  4. Sources of nitrous oxide emitted from European forest soils

    Directory of Open Access Journals (Sweden)

    P. Ambus

    2006-01-01

    Full Text Available Forest ecosystems may provide strong sources of nitrous oxide (N2O, which is important for atmospheric chemical and radiative properties. Nonetheless, our understanding of controls on forest N2O emissions is insufficient to narrow current flux estimates, which still are associated with great uncertainties. In this study, we have investigated the quantitative and qualitative relationships between N-cycling and N2O production in European forests in order to evaluate the importance of nitrification and denitrification for N2O production. Soil samples were collected in 11 different sites characterized by variable climatic regimes and forest types. Soil N-cycling and associated production of N2O was assessed following application of 15N-labeled nitrogen. The N2O emission varied significantly among the different forest soils, and was inversely correlated to the soil C:N ratio. The N2O emissions were significantly higher from the deciduous soils (13 ng N2O-N cm-3 d-1 than from the coniferous soils (4 ng N2O-N cm-3 d-1. Nitrate (NO3- was the dominant substrate for N2O with an average contribution of 62% and exceeding 50% at least once for all sites. The average contribution of ammonium (NH4+ to N2O averaged 34%. The N2O emissions were correlated with gross nitrification activities, and as for N2O, gross nitrification was also higher in deciduous soils (3.4 µg N cm-3 d-1 than in coniferous soils (1.1 µg N cm-3 d-1. The ratio between N2O production and gross nitrification averaged 0.67% (deciduous and 0.44% (coniferous. Our study suggests that changes in forest composition in response to land use activities and global change may have implications for regional budgets of greenhouse gases. From the study it also became clear that N2O emissions were driven by the nitrification activity, although the N2O was produced per se mainly from denitrification. Increased nitrification in response to accelerated N inputs predicted for forest ecosystems in Europe may

  5. Effects of fine root length density and root biomass on soil preferential flow in forest ecosystems

    Directory of Open Access Journals (Sweden)

    Yinghu Zhang

    2015-04-01

    Full Text Available Aim of study: The study was conducted to characterize the impacts of plant roots systems (e.g., root length density and root biomass on soil preferential flow in forest ecosystems. Area of study: The study was carried out in Jiufeng National Forest Park, Beijing, China. Material and methods: The flow patterns were measured by field dye tracing experiments. Different species (Sophora japonica Linn,Platycladus orientalis Franco, Quercus dentata Thunbwere quantified in two replicates, and 12 soil depth were applied. Plant roots were sampled in the sieving methods. Root length density and root biomass were measured by WinRHIZO. Dye coverage was implied in the image analysis, and maximum depth of dye infiltration by direct measurement. Main results: Root length density and root biomass decreased with the increasing distance from soil surface, and root length density was 81.6% higher in preferential pathways than in soil matrix, and 66.7% for root biomass with respect to all experimental plots. Plant roots were densely distributed in the upper soil layers. Dye coverage was almost 100% in the upper 5-10 cm, but then decreased rapidly with soil depth. Root length density and root biomass were different from species: Platycladus orientalis Franco > Quercus dentata Thunb > Sophora japonica Linn. Research highlights: The results indicated that fine roots systems had strong effects on soil preferential flow, particularly root channels enhancing nutrition transport across soil profiles in forest dynamics.

  6. Complementary models of tree species-soil relationships in old-growth temperate forests

    Science.gov (United States)

    Cross, Alison; Perakis, Steven S.

    2011-01-01

    Ecosystem level studies identify plant soil feed backs as important controls on soil nutrient availability,particularly for nitrogen and phosphorus. Although site and species specific studies of tree species soil relationships are relatively common,comparatively fewer studies consider multiple coexisting speciesin old-growth forests across a range of sites that vary underlying soil fertility. We characterized patterns in forest floor and mineral soil nutrients associated with four common tree species across eight undisturbed old-growth forests in Oregon, USA, and used two complementary conceptual models to assess tree species soil relationships. Plant soil feedbacks that could reinforce sitelevel differences in nutrient availability were assessed using the context dependent relationships model, where by relative species based differences in each soil nutrient divergedorconvergedas nutrient status changed across sites. Tree species soil relationships that did not reflect strong feedbacks were evaluated using a site independent relationships model, where by forest floor and surface mineral soil nutrient tools differed consistently by tree species across sites,without variation in deeper mineral soils. We found that theorganically cycled elements carbon, nitrogen, and phosphorus exhibited context-dependent differences among species in both forest floor and mineral soil, and most of ten followed adivergence model,where by species differences were greatest at high-nutrient sites. These patterns are consistent with the oryemphasizing biotic control of these elements through plant soil feedback mechanisms. Site independent species differences were strongest for pool so if the weather able cations calcium, magnesium, potassium,as well as phosphorus, in mineral soils. Site independent species differences in forest floor nutrients we reattributable too nespecies that displayed significant greater forest floor mass accumulation. Our finding confirmed that site-independent and

  7. Plant Community and Nitrogen Deposition as Drivers of Alpha and Beta Diversities of Prokaryotes in Reconstructed Oil Sand Soils and Natural Boreal Forest Soils

    Science.gov (United States)

    Prescott, Cindy E.; Renaut, Sébastien; Terrat, Yves; Grayston, Sue J.

    2017-01-01

    ABSTRACT The Athabasca oil sand deposit is one of the largest single oil deposits in the world. Following surface mining, companies are required to restore soil-like profiles that can support the previous land capabilities. The objective of this study was to assess whether the soil prokaryotic alpha diversity (α-diversity) and β-diversity in oil sand soils reconstructed 20 to 30 years previously and planted to one of three vegetation types (coniferous or deciduous trees and grassland) were similar to those found in natural boreal forest soils subject to wildfire disturbance. Prokaryotic α-diversity and β-diversity were assessed using massively parallel sequencing of 16S rRNA genes. The β-diversity, but not the α-diversity, differed between reconstructed and natural soils. Bacteria associated with an oligotrophic lifestyle were more abundant in natural forest soils, whereas bacteria associated with a copiotrophic lifestyle were more abundant in reconstructed soils. Ammonia-oxidizing archaea were most abundant in reconstructed soils planted with grasses. Plant species were the main factor influencing α-diversity in natural and in reconstructed soils. Nitrogen deposition, pH, and plant species were the main factors influencing the β-diversity of the prokaryotic communities in natural and reconstructed soils. The results highlight the importance of nitrogen deposition and aboveground-belowground relationships in shaping soil microbial communities in natural and reconstructed soils. IMPORTANCE Covering over 800 km2, land disturbed by the exploitation of the oil sands in Canada has to be restored. Here, we take advantage of the proximity between these reconstructed ecosystems and the boreal forest surrounding the oil sand mining area to study soil microbial community structure and processes in both natural and nonnatural environments. By identifying key characteristics shaping the structure of soil microbial communities, this study improved our understanding of

  8. Plant effects on soil carbon storage and turnover in montane beech (Nothofagus) forest and adjacent tussock grassland in New Zealand

    International Nuclear Information System (INIS)

    Tate, K.R.; Scott, N.A.; Ross, D.J.; Parshotam, A.; Claydon, J.J.

    2000-01-01

    Land cover is a critical factor that influences, and is influenced by, atmospheric chemistry and potential climate changes. As considerable uncertainty exists about the effects of differences in land cover on below-ground carbon (C) storage, we have compared soil C contents and turnover at adjacent, unmanaged, indigenous forest (Nothofagus solandri var. cliffortiodes) and grassland (Chionochloa pallens) sites near the timberline in the same climo-edaphic environment in Craigieburn Forest Park, Canterbury, New Zealand. Total soil profile C was 13% higher in the grassland than in the forest ( 19.9 v. 16.7 kg/m 2 ), and based on bomb 14 C measurements, the differences mainly resulted from more recalcitrant soil C in the grassland (5.3 v. 3.0 kg/m 2 ). Estimated annual net primary production was about 0.4 kg C/m 2 for the forest and 0.5 kg C/m 2 for the grassland; estimated annual root production was about 0.2 and 0.4 kg C/m 2 , respectively. In situ soil surface CO 2 -C production was similar in the grassland and the forest. The accumulation of recalcitrant soil C was unrelated to differences in mineral weathering or soil texture, but was apparently enhanced by greater soil water retention in the grassland ecosystem. Thus, contrary to model (ROTHC) predictions, this soil C fraction could be expected to respond to the effects of climate change on precipitation patterns. Overall, our results suggest that the different patterns of soil C accumulation in these ecosystems have resulted from differences in plant C inputs, soil aluminium, and soil physical characteristics, rather than from differences in soil mineral weathering or texture. Copyright (2000) CSIRO Australia

  9. Wettability, soil organic matter and structure-properties of typical chernozems under the forest and under the arable land

    Science.gov (United States)

    Bykova, Galina; Umarova, Aminat; Tyugai, Zemfira; Milanovskiy, Evgeny; Shein, Evgeny

    2017-04-01

    Intensive tillage affects the properties of soil: decrease in content of soil organic matter and in hydrophobicity of the soil's solid phase, the reduction of amount of water stable aggregates - all this leads to deterioration of the structure of the soil and affects the process of movement of moisture in the soil profile. One of the hypotheses of soil's structure formation ascribes the formation of water stable aggregates with the presence of hydrophobic organic substances on the surface of the soil's solid phase. The aim of this work is to study the effect of tillage on properties of typical chernozems (pachic Voronic Chernozems, Haplic Chernozems) (Russia, Kursk region), located under the forest and under the arable land. The determination of soil-water contact angle was performed by a Drop Shape Analyzer DSA100 (Krüss GmbH, Germany) by the static sessile drop method. For all samples the content of total and organic carbon by dry combustion in oxygen flow and the particle size distribution by the laser diffraction method on the device Analysette 22 comfort, FRITCH, Germany were determined. The estimation of aggregate composition was performed by dry sieving (AS 200, Retsch, Germany), the content of water stable aggregates was estimated by the Savvinov method. There was a positive correlation between the content of organic matter and soil's wettability in studied soils, a growth of contact angle with the increasing the content of organic matter. Under the forest the content of soil organic matter was changed from 6,41% on the surface up to 1,9% at the depth of 100 cm. In the Chernozem under the arable land the organic carbon content in arable horizon is almost two times less. The maximum of hydrophobicity (78.1o) was observed at the depth of 5 cm under the forest. In the profile under the arable land the contact angle value at the same depth was 50o. The results of the structure analysis has shown a decrease in the content of agronomically valuable and water

  10. Soil Respiration of Three Mangrove Forests on Sanibel Island, Florida

    Science.gov (United States)

    Cartwright, F.; Bovard, B. D.

    2011-12-01

    Carbon cycling studies conducted in mangrove forests have typically focused on aboveground processes. Our understanding of carbon storage in these systems is therefore limited by the lack information on belowground processes such as fine root production and soil respiration. To our knowledge there exist no studies investigating temporal patterns in and environmental controls on soil respiration in multiple types of mangrove ecosystems concurrently. This study is part of a larger study on carbon storage in three mangrove forests on Sanibel Island, Florida. Here we report on eight months of soil respiration data within these forests that will ultimately be incorporated into an annual carbon budget for each habitat type. Soil respiration was monitored in the following three mangrove habitat types: a fringe mangrove forest dominated by Rhizophora mangle, a basin mangrove forest dominated by Avicennia germinans, and a higher elevation forest comprised of a mix of Avicennia germinans and Laguncularia racemosa, and non-woody salt marsh species. Beginning in June of 2010, we measured soil emissions of carbon dioxide at 5 random locations within three-100 m2 plots within each habitat type. Sampling was performed at monthly intervals and conducted over the course of three days. For each day, one plot from each habitat type was measured. In addition to soil respiration, soil temperature, salinity and gravimetric moisture content were also measured. Our data indicate the Black mangrove forest, dominated by Avicennia germinans, experiences the highest rates of soil respiration with a mean rate of 4.61 ± 0.60 μmol CO2 m-2 s-1. The mixed mangrove and salt marsh habitat has the lowest soil carbon emission rates with a mean of 2.78 ± 0.40 μmol CO2 m-2 s-1. Soil carbon effluxes appear to peak in the early part of the wet season around May to June and are lower and relatively constant the remainder of the year. Our data also suggest there are important but brief periods where

  11. [Effects of climate change on forest soil organic carbon storage: a review].

    Science.gov (United States)

    Zhou, Xiao-yu; Zhang, Cheng-yi; Guo, Guang-fen

    2010-07-01

    Forest soil organic carbon is an important component of global carbon cycle, and the changes of its accumulation and decomposition directly affect terrestrial ecosystem carbon storage and global carbon balance. Climate change would affect the photosynthesis of forest vegetation and the decomposition and transformation of forest soil organic carbon, and further, affect the storage and dynamics of organic carbon in forest soils. Temperature, precipitation, atmospheric CO2 concentration, and other climatic factors all have important influences on the forest soil organic carbon storage. Understanding the effects of climate change on this storage is helpful to the scientific management of forest carbon sink, and to the feasible options for climate change mitigation. This paper summarized the research progress about the distribution of organic carbon storage in forest soils, and the effects of elevated temperature, precipitation change, and elevated atmospheric CO2 concentration on this storage, with the further research subjects discussed.

  12. The microbiology of forest soils: a literature review

    Energy Technology Data Exchange (ETDEWEB)

    Hendrickson, O; Robinson, J B

    1982-01-01

    This report discusses the activities of two major groups of forest soil microorganisms, the bacteria and the fungi. Special attention is paid to their participation in the decay of major forest litter substrates, including leaves, branches and roots. The influence of bacteria and fungi in symbiotic associations with woody plant roots upon the cycles of carbon and nitrogen is described. The impacts of certain forest mamagement alternatives are assessed in terms of the creation of elimination of suitable environments for the activity of soil microorganisms. A bibliography is included. 507 refs., 1 tab.

  13. Nitrogen Deposition Effects on Soil Carbon Dynamics in Temperate Forests

    DEFF Research Database (Denmark)

    Ginzburg Ozeri, Shimon

    Soils contain the largest fraction of terrestrial carbon (C). Understanding the factors regulating the decomposition and storage of soil organic matter (SOM) is essential for predictions of the C sink strength of the terrestrial environment in the light of global change. Elevated long-term nitrog...... implications for modelling the carbon sink-strength of temperate forests under global change.......Soils contain the largest fraction of terrestrial carbon (C). Understanding the factors regulating the decomposition and storage of soil organic matter (SOM) is essential for predictions of the C sink strength of the terrestrial environment in the light of global change. Elevated long-term nitrogen...... (N) deposition into forest ecosystems has been increasing globally and was hypothesized to raise soil organic C (SOC) stocks by increasing forest productivity and by reducing SOM decomposition. Yet, these effects of N deposition on forest SOC stocks are uncertain and largely based on observations...

  14. Using synthetic polymers to reduce soil erosion after forest fires in Mediterranean soils

    Science.gov (United States)

    Lado, Marcos; Ben-Hur, Meni; Inbar, Assaf

    2010-05-01

    Forest fires are a major environmental problem in the Mediterranean region because they result in a loss of vegetation cover, changes in biodiversity, increases in greenhouse gasses emission and a potential increase of runoff and soil erosion. The large increases in runoff and sediment yields after high severity fires have been attributed to several factors, among them: increase in soil water repellency; soil sealing by detached particles and by ash particles, and the loss of a surface cover. The presence of a surface cover increases infiltration, and decreases runoff and erosion by several mechanisms which include: rainfall interception, plant evapotranspiration, preservation of soil structure by increasing soil organic matter, and increasing surface roughness. The loss of vegetation cover as a result of fire leaves the surface of the soil exposed to the direct impact of the raindrops, and therefore the sensitivity of the soil to runoff generation and soil loss increases. In this work, we propose a new method to protect soils against post-fire erosion based on the application of synthetic polymers to the soil. Laboratory rainfall simulations and field runoff plots were used to analyze the suitability of the application of synthetic polymers to reduce soil erosion and stabilize soil structure in Mediterranean soils. The combination of these two processes will potentially favor a faster recovery of the vegetation structure. This method has been successfully applied in arable land, however it has not been tested in burnt forests. The outcome of this study may provide important managerial tools for forest management following fires.

  15. Methane production potential and microbial community structure for different forest soils

    Science.gov (United States)

    Matsumoto, Y.; Ueyama, M.; Kominami, Y.; Endo, R.; Tokumoto, H.; Hirano, T.; Takagi, K.; Takahashi, Y.; Iwata, H.; Harazono, Y.

    2017-12-01

    Forest soils are often considered as a methane (CH4) sink, but anaerobic microsites potentially decrease the sink at the ecosystem scale. In this study, we measured biological CH4 production potential of soils at various ecosystems, including upland forests, a lowland forest, and a bog, and analyzed microbial community structure using 16S ribosomal RNA (rRNA) genes. Three different types of soil samples (upland, bank of the stream, and center of the stream) were collected from Yamashiro forest meteorology research site (YMS) at Kyoto, Japan, on 11 May 2017. The soils were incubated at dark and anaerobic conditions under three different temperatures (37°C, 25°C, and 10°C) from 9 June 2017. The upland soils emitted CH4 with largest yields among the three soils at 37°C and 25°C, although no CH4 emission was observed at 10°C. For all temperature ranges, the emission started to increase with a 14- to 20-days lag after the start of the incubation. The lag indicates a slow transition to anaerobic conditions; as dissolved oxygen in water decreased, the number and/or activity of anaerobic bacteria like methanogens increased. The soils at the bank and center of the stream emitted CH4 with smaller yields than the upland soils in the three temperature ranges. The microbial community analyses indicate that methanogenic archaea presented at the three soils including the aerobic upland soil, but compositions of methanogenic archaea were different among the soils. In upland soils, hydrogenotrophic methanogens, such as Methanobacterium and Methanothermobacter, consisted almost all of the total methanogen detected. In the bank and center of the stream, soils contained approximately 10-25% of acetoclastic methanogens, such as Methanosarcina and Methanosaeta, among the total methanogen detected. Methanotrophs, a genus of Methanobacteriaceae, was appeared in the all types of soils. We will present results from same incubation and 16S rRNA analyses for other ecosystems, including

  16. Seasonal dynamics of soil CO2 efflux and soil profile CO2 concentrations in arboretum of Moscow botanical garden

    Science.gov (United States)

    Goncharova, Olga; Udovenko, Maria; Matyshak, Georgy

    2016-04-01

    To analyse and predict recent and future climate change on a global scale exchange processes of greenhouse gases - primarily carbon dioxide - over various ecosystems are of rising interest. In order to upscale land-use dependent sources and sinks of CO2, knowledge of the local variability of carbon fluxes is needed. Among terrestrial ecosystems, urban areas play an important role because most of anthropogenic emissions of carbon dioxide originate from these areas. On the other hand, urban soils have the potential to store large amounts of soil organic carbon and, thus, contribute to mitigating increases in atmospheric CO2 concentrations. Research objectives: 1) estimate the seasonal dynamics of carbon dioxide production (emission - closed chamber technique and profile concentration - soil air sampling tubes method) by soils of Moscow State University Botanical Garden Arboretum planted with Picea obovata and Pinus sylvestris, 1) identification the factors that control CO2 production. The study was conducted with 1-2 weeks intervals between October 2013 and November 2015 at two sites. Carbon dioxide soil surface efflux during the year ranged from 0 to 800 mgCO2/(m2hr). Efflux values above 0 mgCO2/(m2hr) was observed during the all cold period except for only 3 weeks. Soil CO2 concentration ranged from 1600-3000 ppm in upper 10-cm layer to 10000-40000 ppm at a depth of 60 cm. The maximum concentrations of CO2 were recorded in late winter and late summer. We associate it with high biological activity (both heterotrophic and autotrophic) during the summer, and with physical gas jamming in the winter. The high value of annual CO2 production of the studied soils is caused by high organic matter content, slightly alkaline reaction, good structure and texture of urban soils. Differences in soil CO2 production by spruce and pine urban forest soils (in the pine forest 1.5-2.0 times higher) are caused by urban soil profiles construction, but not temperature regimes. Seasonal

  17. Disentangling the long-term effects of disturbance on soil biogeochemistry in a wet tropical forest ecosystem.

    Science.gov (United States)

    Gutiérrez Del Arroyo, Omar; Silver, Whendee L

    2018-04-01

    Climate change is increasing the intensity of severe tropical storms and cyclones (also referred to as hurricanes or typhoons), with major implications for tropical forest structure and function. These changes in disturbance regime are likely to play an important role in regulating ecosystem carbon (C) and nutrient dynamics in tropical and subtropical forests. Canopy opening and debris deposition resulting from severe storms have complex and interacting effects on ecosystem biogeochemistry. Disentangling these complex effects will be critical to better understand the long-term implications of climate change on ecosystem C and nutrient dynamics. In this study, we used a well-replicated, long-term (10 years) canopy and debris manipulation experiment in a wet tropical forest to determine the separate and combined effects of canopy opening and debris deposition on soil C and nutrients throughout the soil profile (1 m). Debris deposition alone resulted in higher soil C and N concentrations, both at the surface (0-10 cm) and at depth (50-80 cm). Concentrations of NaOH-organic P also increased significantly in the debris deposition only treatment (20-90 cm depth), as did NaOH-total P (20-50 cm depth). Canopy opening, both with and without debris deposition, significantly increased NaOH-inorganic P concentrations from 70 to 90 cm depth. Soil iron concentrations were a strong predictor of both C and P patterns throughout the soil profile. Our results demonstrate that both surface- and subsoils have the potential to significantly increase C and nutrient storage a decade after the sudden deposition of disturbance-related organic debris. Our results also show that these effects may be partially offset by rapid decomposition and decreases in litterfall associated with canopy opening. The significant effects of debris deposition on soil C and nutrient concentrations at depth (>50 cm), suggest that deep soils are more dynamic than previously believed, and can serve as

  18. Sewage sludge fertiliser use: implications for soil and plant copper evolution in forest and agronomic soils.

    Science.gov (United States)

    Ferreiro-Domínguez, Nuria; Rigueiro-Rodríguez, Antonio; Mosquera-Losada, M Rosa

    2012-05-01

    Fertilisation with sewage sludge may lead to crop toxicity and environmental degradation. This study aims to evaluate the effects of two types of soils (forest and agronomic), two types of vegetation (unsown (coming from soil seed bank) and sown), and two types of fertilisation (sludge fertilisation and mineral fertilisation, with a no fertiliser control) in afforested and treeless swards and in sown and unsown forestlands on the total and available Cu concentration in soil, the leaching of this element and the Cu levels in plant. The experimental design was completely randomised with nine treatments and three replicates. Fertilisation with sewage sludge increased the concentration of Cu in soil and plant, but the soil values never exceeded the maximum set by Spanish regulations. Sewage sludge inputs increased both the total and Mehlich 3 Cu concentrations in agronomic soils and the Cu levels in plant developed in agronomic and forest soils, with this effect pronounced in the unsown swards of forest soils. Therefore, the use of high quality sewage sludge as fertiliser may improve the global productivity of forest, agronomic and silvopastoral systems without creating environmental hazards. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Old-growth forests can accumulate carbon in soils

    Science.gov (United States)

    Zhou, G.; Liu, S.; Li, Z.; Zhang, Dongxiao; Tang, X.; Zhou, C.; Yan, J.; Mo, J.

    2006-01-01

    Old-growth forests have traditionally been considered negligible as carbon sinks because carbon uptake has been thought to be balanced by respiration. We show that the top 20-centimeter soil layer in preserved old-growth forests in southern China accumulated atmospheric carbon at an unexpectedly high average rate of 0.61 megagrams of carbon hectare-1 year-1 from 1979 to 2003. This study suggests that the carbon cycle processes in the belowground system of these forests are changing in response to the changing environment. The result directly challenges the prevailing belief in ecosystem ecology regarding carbon budget in old-growth forests and supports the establishment of a new, nonequilibrium conceptual framework to study soil carbon dynamics.

  20. [Microelement contents of litter, soil fauna and soil in Pinus koraiensis and broad-leaved mixed forest].

    Science.gov (United States)

    Yin, Xiu-qin; Li, Jin-xia; Dong, Wei-hua

    2007-02-01

    The analysis on the Mn, Zn and Cu contents of litter, soil fauna and soil in Pinus korazenszis and broad-leaved mixed forest in Liangshui Natural Reserve of Xiaoxing' an Mountains showed that the test microelement contents in the litter, soil fauna and soil all followed the sequence of Mn > Zn > Cu, but varied with these environmental components, being in the sequence of soil > litter > soil fauna for Mn, soil fauna > litter and soil for Zn, and soil fauna > soil > litter for Cu. The change range of test microelement contents in litter was larger in broad-leaved forest than in coniferous forest. Different soil fauna differed in their microelement-enrichment capability, e. g. , earthworm, centipede, diplopod had the highest content of Mn, Zn and Cu, respectively. The contents of test microelements in soil fauna had significant correlations with their environmental background values, litter decomposition rate, food habit of soil fauna, and its absorbing selectivity and enrichment to microelements. The microelements contained in 5-20 cm soil layer were more than those in 0-5 cm soil layer, and their dynamics differed in various soil layers.

  1. Soil organic matter status in forest soils - possible indicators for climate change induced site shifts

    Science.gov (United States)

    Koch, Nadine; Thiele-Bruhn, Sören

    2010-05-01

    The quantity and quality of soil organic matter (SOM) and SOM pools and thus the soil properties related to carbon sequestration and water retention are not constant but exhibit considerable variation through changing climate. In total changes in soil fertility and an increase in plant stress are expected. This is relevant for northwest Europe as well and may have economic and social impacts since functions of forests for wood production, groundwater recharge, soil protection and recreation might be affected. The study is done by comparative investigation of selected sites at four watersheds that represent typical forest stands in the region of Luxembourg and South West Germany. The aim is to identify SOM storage and stability in forest soils and its dependence on site properties and interaction with tree stand conditions. According to state of the art fractionation schemes functional C pools in forest soils and their stabilization mechanisms are investigated. In particular, distribution patterns are determined depending on location, tree stand and climatic conditions. Aim is to identify characteristics of SOM stability through fractionation of SOM according to density, particle size and chemical extractability and their subsequent analytical characterization. So far, reasons about the origin, composition and stabilization mechanisms underlying the different SOM pools are not fully understood. Presented are different patterns of distribution of SOM in relation to land use and site conditions, as well as similarities and differences between the different forest soils and results in addition to passive OM pool, which is mainly responsible for long-term stabilization of carbon in soils. These are aligned with selected general' soil properties such as pH, CEC and texture.

  2. Evidence of climatic effects on soil, vegetation and landform in temperate forests of south-eastern Australia

    Science.gov (United States)

    Inbar, Assaf; Nyman, Petter; Lane, Patrick; Sheridan, Gary

    2016-04-01

    Water and radiation are unevenly distributed across the landscape due to variations in topography, which in turn causes water availability differences on the terrain according to elevation and aspect orientation. These differences in water availability can cause differential distribution of vegetation types and indirectly influence the development of soil and even landform, as expressed in hillslope asymmetry. While most of the research on the effects of climate on the vegetation and soil development and landscape evolution has been concentrated in drier semi-arid areas, temperate forested areas has been poorly studied, particularly in South Eastern Australia. This study uses soil profile descriptions and data on soil depth and landform across climatic gradients to explore the degrees to which coevolution of vegetation, soils and landform are controlled by radiative forcing and rainfall. Soil depth measurements were made on polar and equatorial facing hillslopes located at 3 sites along a climatic gradient (mean annual rainfall between 700 - 1800 mm yr-1) in the Victorian Highlands, where forest types range from dry open woodland to closed temperate rainforest. Profile descriptions were taken from soil pits dag on planar hillslopes (50 m from ridge), and samples were taken from each horizon for physical and chemical properties analysis. Hillslope asymmetry in different precipitation regimes of the study region was quantified from Digital Elevation Models (DEMs). Significant vegetation differences between aspects were noted in lower and intermediate rainfall sites, where polar facing aspects expressed higher overall biomass than the drier equatorial slope. Within the study domain, soil depth was strongly correlated with forest type and above ground biomass. Soil depths and chemical properties varied between topographic aspects and along the precipitation gradient, where wetter conditions facilitate deeper and more weathered soils. Furthermore, soil depths showed

  3. Sand and clay mineralogy of sal forest soils of the Doon Siwalik ...

    Indian Academy of Sciences (India)

    3Forest Soil & Land Reclamation Division, Forest Research Institute, Dehradun 248 006, India. .... also helps in characterizing the soil mineralogical make-up in relation to the growth and develop- ment of the species essential for sustainable forest management. ...... and Weed S B (Madison: Soil Science Society of America).

  4. Soil Taxonomy and land evaluation for forest establishment

    Science.gov (United States)

    Haruyoshi Ikawa

    1992-01-01

    Soil Taxonomy, the United States system of soil classification, can be used for land evaluation for selected purposes. One use is forest establishment in the tropics, and the soil family category is especially functional for this purpose. The soil family is a bionomial name with descriptions usually of soil texture, mineralogy, and soil temperature classes. If the...

  5. The vulnerability of organic matter in Swiss forest soils

    Science.gov (United States)

    González Domínguez, Beatriz; Niklaus, Pascal A.; Studer, Mirjam S.; Hagedorn, Frank; Wacker, Lukas; Haghipour, Negar; Zimmermann, Stephan; Walthert, Lorenz; Abiven, Samuel; McIntyre, Cameron

    2017-04-01

    Soils contain more carbon than atmosphere and terrestrial vegetation combined [1], and thus are key players in the carbon cycle. With climate change, the soil organic carbon (SOC) pool is vulnerable to loss through increased CO2 emissions, which in turn can amplify changes with this carbon feedback [2]. The objective of this study is to investigate the variation of indicators of SOC vulnerability (e.g. SOC mineralisation, turnover time, bulk soil and mineralised 14C signatures) and to evaluate climate, soil and terrain variables as primary drivers. To choose the study locations we used a statistics-based approach to select a balanced combination of 54 forest sites with de-correlated drivers of SOC vulnerability (i.e. proxies for soil temperature and moisture, pH, % clay, slope gradient and orientation). Sites were selected from the forest soil database of the Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), which in May 2014, contained data from 1,050 soil profiles spread across Switzerland. We re-sampled soils at the 54 locations during summer 2014. With these samples we run a standardized laboratory soil incubation (i.e. 25°C; soils moisture -20kPa; sieved to ≤ 2 mm; 40 g equivalent dry mass; adjusted to 0.8 g cm-3 bulk density) and measured SOC mineralisation on days 4, 13, 30, 63, 121 and 181 by trapping the CO2 evolved from soils in sodium hydroxide traps [3]. Additionally, we measured the 14C signature of the carbon trapped during last stage of the incubation, and compare it to the 14C signature of the bulk soil. Based on the cumulative SOC mineralised, we found that despite the well-studied relationship between climate and SOC dynamics [4], temperature did not emerge as a predictor of SOC vulnerability. In parallel, moisture only had a minor role, with soils from drier sites being the most vulnerable. This indicates a possible limitation of heterotrophic activity due to water shortage. On the other hand, soil pH raised as the driver

  6. Distribution of black carbon in ponderosa pine forest floor and soils following the High Park wildfire

    Science.gov (United States)

    Boot, C. M.; Haddix, M.; Paustian, K.; Cotrufo, M. F.

    2015-05-01

    Biomass burning produces black carbon (BC), effectively transferring a fraction of the biomass C from an actively cycling pool to a passive C pool, which may be stored in the soil. Yet the timescales and mechanisms for incorporation of BC into the soil profile are not well understood. The High Park fire (HPF), which occurred in northwestern Colorado in the summer of 2012, provided an opportunity to study the effects of both fire severity and geomorphology on properties of carbon (C), nitrogen (N) and BC in the Cache La Poudre River drainage. We sampled montane ponderosa pine forest floor (litter plus O-horizon) and soils at 0-5 and 5-15 cm depth 4 months post-fire in order to examine the effects of slope and burn severity on %C, C stocks, %N and BC. We used the benzene polycarboxylic acid (BPCA) method for quantifying BC. With regard to slope, we found that steeper slopes had higher C : N than shallow slopes but that there was no difference in BPCA-C content or stocks. BC content was greatest in the forest floor at burned sites (19 g BPCA-C kg-1 C), while BC stocks were greatest in the 5-15 cm subsurface soils (23 g BPCA-C m-2). At the time of sampling, unburned and burned soils had equivalent BC content, indicating none of the BC deposited on the land surface post-fire had been incorporated into either the 0-5 or 5-15 cm soil layers. The ratio of B6CA : total BPCAs, an index of the degree of aromatic C condensation, suggested that BC in the 5-15 cm soil layer may have been formed at higher temperatures or experienced selective degradation relative to the forest floor and 0-5 cm soils. Total BC soil stocks were relatively low compared to other fire-prone grassland and boreal forest systems, indicating most of the BC produced in this system is likely lost, either through erosion events, degradation or translocation to deeper soils. Future work examining mechanisms for BC losses from forest soils will be required for understanding the role BC plays in the global

  7. A comparison of soil-moisture loss from forested and clearcut areas in West Virginia

    Science.gov (United States)

    Charles A. Troendle

    1970-01-01

    Soil-moisture losses from forested and clearcut areas were compared on the Fernow Experimental Forest. As expected, hardwood forest soils lost most moisture while revegetated clearcuttings, clearcuttings, and barren areas lost less, in that order. Soil-moisture losses from forested soils also correlated well with evapotranspiration and streamflow.

  8. Comparison of the Chemical Properties of Forest Soil from the Silesian Beskid, Poland

    Directory of Open Access Journals (Sweden)

    Maria Zołotajkin

    2014-01-01

    Full Text Available There is spruce forests degradation observed in the Silesian Beskid. The aim of the work was the assessment of parameters diversifying organic layers of soils in two forest areas: degraded and healthy spruce forests of Silesian Beskid. 23 soil samples were collected from two fields—14 soil samples from a degraded forest and 9 soil samples from a forest, where pandemic dying of spruce is not observed. Implementation of hierarchical clustering to experimental data analysis allowed drawing a conclusion that the two forest areas vary significantly in terms of content of aluminium extracted with solutions of barium chloride (Alexch, sodium diphosphate (Alpyr, and pHKCl and in the amount of humus in soil.

  9. Drivers of methane uptake by montane forest soils in the Peruvian Andes

    Science.gov (United States)

    Jones, Sam; Diem, Torsten; Huaraca Quispe, Lidia; Cahuana, Adan; Meir, Patrick; Teh, Yit

    2016-04-01

    The exchange of methane between the soils of humid tropical forests and the atmosphere is relatively poorly documented. This is particularly true of montane settings where variations between uptake and emission of atmospheric methane have been observed. Whilst most of these ecosystems appear to function as net sinks for atmospheric methane, some act as considerable sources. In regions like the Andes, humid montane forests are extensive and a better understanding of the magnitude and controls on soil-atmosphere methane exchange is required. We report methane fluxes from upper montane cloud forest (2811 - 2962 m asl), lower montane cloud forest (1532 - 1786 m asl), and premontane forest (1070 - 1088 m asl) soils in south-eastern Peru. Between 1000 and 3000 m asl, mean annual air temperature and total annual precipitation decrease from 24 ° C and 5000 mm to 12 ° C and 1700 mm. The study region experiences a pronounced wet season between October and April. Monthly measurements of soil-atmosphere gas exchange, soil moisture, soil temperature, soil oxygen concentration, available ammonium and available nitrate were made from February 2011 in the upper and lower montane cloud forests and July 2011 in the premontane forest to June 2013. These soils acted as sinks for atmospheric methane with mean net fluxes for wet and dry season, respectively, of -2.1 (0.2) and -1.5 (0.1) mg CH4 m-2 d-1 in the upper montane forest; -1.5 (0.2) and -1.4 (0.1) mg CH4 m-2 d-1in the lower montane forest; and -0.3 (0.2) and -0.2 (0.2) mg CH4 m-2 d-1 in the premontane forest. Spatial variations among forest types were related to available nitrate and water-filled pore space suggesting that nitrate inhibition of oxidation or constraints on the diffusional supply of methane to methanotrophic communities may be important controls on methane cycling in these soils. Seasonality in methane exchange, with weaker uptake related to increased water-filled pore space and soil temperature during the wet

  10. Fumigant distribution in forest nursery soils

    Science.gov (United States)

    Dong Wang; Stephen W. Fraedrich; Jennifer Juzwik; Kurt Spokas; Yi Zhang; William C. Koskinen

    2006-01-01

    Adequate concentration, exposure time and distribution uniformity of activated fumigant gases are prerequisites for successful soil fumigation. Field experiments were conducted to evaluate gas phase distributions of methyl isothiocyanate (MITC) and chloropicrin (CP) in two forest-tree nurseries. Concentrations of MITC and CP in soil air were measured from replicated...

  11. A three-dimensional stochastic model of the behavior of radionuclides in forests. Part 2. Cs-137 behavior in forest soils

    International Nuclear Information System (INIS)

    Berg, Mitchell T.; Shuman, Larry J.

    1995-01-01

    Using a three-dimensional stochastic model of radionuclides in forests developed in Part 1, this work simulates the long-term behavior of Cs-137 in forest soil. It is assumed that the behavior of Cs-137 in soils is driven by its advection and dispersion due to the infiltration of the soil solution, and its sorption to the soil matrix. As Cs-137 transport through soils is affected by its uptake and release by forest vegetation, a model of radiocesium behavior in forest vegetation is presented in Part 3 of this paper. To estimate the rate of infiltration of water through the soil, models are presented to estimate the hydrological cycle of the forest including infiltration, evapotranspiration, and the root uptake of water. The state transition probabilities for the random walk model of Cs-137 transport are then estimated using the models developed to predict the distribution of water in the forest. The random walk model is then tested using a base line scenario in which Cs-137 is deposited into a coniferous forest ecosystem

  12. Soil, plant, and transport influences on methane in a subalpine forest under high ultraviolet irradiance

    Directory of Open Access Journals (Sweden)

    D. Baer

    2009-07-01

    Full Text Available Recent studies have demonstrated direct methane emission from plant foliage under aerobic conditions, particularly under high ultraviolet (UV irradiance. We examined the potential importance of this phenomenon in a high-elevation conifer forest using micrometeorological techniques. Vertical profiles of methane and carbon dioxide in forest air were monitored every 2 h for 6 weeks in summer 2007. Day to day variability in above-canopy CH4 was high, with observed values in the range 1790 to 1910 nmol mol−1. High CH4 was correlated with high carbon monoxide and related to wind direction, consistent with pollutant transport from an urban area by a well-studied mountain-plain wind system. Soils were moderately dry during the study. Vertical gradients of CH4 were small but detectable day and night, both near the ground and within the vegetation canopy. Gradients near the ground were consistent with the forest soil being a net CH4 sink. Using scalar similarity with CO2, the magnitude of the summer soil CH4 sink was estimated at ~1.7 mg CH4 m−2 h−1, which is similar to other temperate forest upland soils. The high-elevation forest was naturally exposed to high UV irradiance under clear sky conditions, with observed peak UVB irradiance >2 W m−2. Gradients and means of CO2 within the canopy under daytime conditions showed net uptake of CO2 due to photosynthetic drawdown as expected. No evidence was found for a significant foliar CH4 source in the vegetation canopy, even under high UV conditions. While the possibility of a weak foliar source cannot be excluded given the observed soil sink, overall this subalpine forest was a net sink for atmospheric methane during the growing season.

  13. Characterizations of Soil Profiles Through Electric Resistivity Ratio

    Directory of Open Access Journals (Sweden)

    Chik Z

    2015-04-01

    Full Text Available This paper presents how near surface soil characteristics are obtained through soil electric resistivity ratio from soil apparent resistivity profile. In recent advances of electrical sensors, soil apparent resistivity is implemented as nondestructive method for obtaining near surface soil profile. Although geo-electric techniques offer an improvement to traditional soil sampling methods, the resulting data are still often misinterpreted for obtaining soil characteristics through apparent electrical resistivity in the field. Because, soil resistivity as before rain and after rain are changeable due to the presence of more moisture contents in field investigations. In this study, the parameter of soil electric resistivity ratio is incorporated to obtain reliable near surface soil profiles from apparent resistivity of adjacent two layers in soil. The variations of potential differences are taken into account for using four probes method to get the soil apparent resistivity profile. The research is significant for simpler and faster soil characterizations using resistivity ratio of apparent resistivity in soil investigations.

  14. Fine root dynamics for forests on contrasting soils in the Colombian Amazon

    Directory of Open Access Journals (Sweden)

    E. M. Jiménez

    2009-12-01

    Full Text Available It has been hypothesized that as soil fertility increases, the amount of carbon allocated to below-ground production (fine roots should decrease. To evaluate this hypothesis, we measured the standing crop fine root mass and the production of fine roots (<2 mm by two methods: (1 ingrowth cores and, (2 sequential soil coring, during 2.2 years in two lowland forests growing on different soils types in the Colombian Amazon. Differences of soil resources were defined by the type and physical and chemical properties of soil: a forest on clay loam soil (Endostagnic Plinthosol at the Amacayacu National Natural Park and, the other on white sand (Ortseinc Podzol at the Zafire Biological Station, located in the Forest Reservation of the Calderón River. We found that the standing crop fine root mass and the production was significantly different between soil depths (0–10 and 10–20 cm and also between forests. The loamy sand forest allocated more carbon to fine roots than the clay loam forest with the production in loamy sand forest twice (mean±standard error=2.98±0.36 and 3.33±0.69 Mg C ha−1 yr−1, method 1 and 2, respectively as much as for the more fertile loamy soil forest (1.51±0.14, method 1, and from 1.03±0.31 to 1.36±0.23 Mg C ha−1 yr−1, method 2. Similarly, the average of standing crop fine root mass was higher in the white-sands forest (10.94±0.33 Mg C ha−1 as compared to the forest on the more fertile soil (from 3.04±0.15 to 3.64±0.18 Mg C ha−1. The standing crop fine root mass also showed a temporal pattern related to rainfall, with the production of fine roots decreasing substantially in the dry period of the year 2005. These results suggest that soil resources may play an important role in patterns of carbon allocation to the production of fine roots in these forests as the proportion of carbon allocated to above- and below-ground organs is different

  15. Modeling the vertical soil organic matter profile using Bayesian parameter estimation

    Directory of Open Access Journals (Sweden)

    M. C. Braakhekke

    2013-01-01

    Full Text Available The vertical distribution of soil organic matter (SOM in the profile may constitute an important factor for soil carbon cycling. However, the formation of the SOM profile is currently poorly understood due to equifinality, caused by the entanglement of several processes: input from roots, mixing due to bioturbation, and organic matter leaching. In this study we quantified the contribution of these three processes using Bayesian parameter estimation for the mechanistic SOM profile model SOMPROF. Based on organic carbon measurements, 13 parameters related to decomposition and transport of organic matter were estimated for two temperate forest soils: an Arenosol with a mor humus form (Loobos, the Netherlands, and a Cambisol with mull-type humus (Hainich, Germany. Furthermore, the use of the radioisotope 210Pbex as tracer for vertical SOM transport was studied. For Loobos, the calibration results demonstrate the importance of organic matter transport with the liquid phase for shaping the vertical SOM profile, while the effects of bioturbation are generally negligible. These results are in good agreement with expectations given in situ conditions. For Hainich, the calibration offered three distinct explanations for the observations (three modes in the posterior distribution. With the addition of 210Pbex data and prior knowledge, as well as additional information about in situ conditions, we were able to identify the most likely explanation, which indicated that root litter input is a dominant process for the SOM profile. For both sites the organic matter appears to comprise mainly adsorbed but potentially leachable material, pointing to the importance of organo-mineral interactions. Furthermore, organic matter in the mineral soil appears to be mainly derived from root litter, supporting previous studies that highlighted the importance of root input for soil carbon sequestration. The 210

  16. A Comparative Study of the Soil Fauna in forests and cultivated land on sandy soils in Suriname

    NARCIS (Netherlands)

    Drift, van der J.

    1963-01-01

    1. In the coastal area of Suriname the soil and surface fauna were studied in various types of agricultural land, and compared with the fauna in the adjacent forests. 2. In primeval forest the soil macroarthropods are less numerous than in secondary forest (Formicidae excluded). They range generally

  17. Mapping Soil Properties of Africa at 250 m Resolution: Random Forests Significantly Improve Current Predictions.

    Directory of Open Access Journals (Sweden)

    Tomislav Hengl

    Full Text Available 80% of arable land in Africa has low soil fertility and suffers from physical soil problems. Additionally, significant amounts of nutrients are lost every year due to unsustainable soil management practices. This is partially the result of insufficient use of soil management knowledge. To help bridge the soil information gap in Africa, the Africa Soil Information Service (AfSIS project was established in 2008. Over the period 2008-2014, the AfSIS project compiled two point data sets: the Africa Soil Profiles (legacy database and the AfSIS Sentinel Site database. These data sets contain over 28 thousand sampling locations and represent the most comprehensive soil sample data sets of the African continent to date. Utilizing these point data sets in combination with a large number of covariates, we have generated a series of spatial predictions of soil properties relevant to the agricultural management--organic carbon, pH, sand, silt and clay fractions, bulk density, cation-exchange capacity, total nitrogen, exchangeable acidity, Al content and exchangeable bases (Ca, K, Mg, Na. We specifically investigate differences between two predictive approaches: random forests and linear regression. Results of 5-fold cross-validation demonstrate that the random forests algorithm consistently outperforms the linear regression algorithm, with average decreases of 15-75% in Root Mean Squared Error (RMSE across soil properties and depths. Fitting and running random forests models takes an order of magnitude more time and the modelling success is sensitive to artifacts in the input data, but as long as quality-controlled point data are provided, an increase in soil mapping accuracy can be expected. Results also indicate that globally predicted soil classes (USDA Soil Taxonomy, especially Alfisols and Mollisols help improve continental scale soil property mapping, and are among the most important predictors. This indicates a promising potential for transferring

  18. Soil carbon storage following road removal and timber harvesting in redwood forests

    Science.gov (United States)

    Seney, Joseph; Madej, Mary Ann

    2015-01-01

    Soil carbon storage plays a key role in the global carbon cycle and is important for sustaining forest productivity. Removal of unpaved forest roads has the potential for increasing carbon storage in soils on forested terrain as treated sites revegetate and soil properties improve on the previously compacted road surfaces. We compared soil organic carbon (SOC) content at several depths on treated roads to SOC in adjacent second-growth forests and old-growth redwood forests in California, determined whether SOC in the upper 50 cm of soil varies with the type of road treatment, and assessed the relative importance of site-scale and landscape-scale variables in predicting SOC accumulation in treated road prisms and second-growth redwood forests. Soils were sampled at 5, 20, and 50 cm depths on roads treated by two methods (decommissioning and full recontouring), and in adjacent second-growth and old-growth forests in north coastal California. Road treatments spanned a period of 32 years, and covered a range of geomorphic and vegetative conditions. SOC decreased with depth at all sites. Treated roads on convex sites exhibited higher SOC than on concave sites, and north aspect sites had higher SOC than south aspect sites. SOC at 5, 20, and 50 cm depths did not differ significantly between decommissioned roads (treated 18–32 years previous) and fully recontoured roads (treated 2–12 years previous). Nevertheless, stepwise multiple regression models project higher SOC developing on fully recontoured roads in the next few decades. The best predictors for SOC on treated roads and in second-growth forest incorporated aspect, vegetation type, soil depth, lithology, distance from the ocean, years since road treatment (for the road model) and years since harvest (for the forest model). The road model explained 48% of the variation in SOC in the upper 50 cm of mineral soils and the forest model, 54%

  19. Characteristics of labile organic carbon fractions in reclaimed mine soils: Evidence from three reclaimed forests in the Pingshuo opencast coal mine, China.

    Science.gov (United States)

    Yuan, Ye; Zhao, Zhongqiu; Li, Xuezhen; Wang, Yangyang; Bai, Zhongke

    2018-02-01

    The reclamation of discarded spoils has the potential to stimulate carbon (C) sequestration in reclaimed mine soils (RMSs). Nevertheless, to date the temporal dynamics of labile organic C fractions have not been sufficiently elucidated in RMSs. In this study, soil organic carbon (SOC) and labile organic C fractions, including microbial biomass organic C (MBC), easily oxidizable organic C (EOC) and dissolved organic C (DOC), were determined in Robinia pseudoacacia monoculture forests (reclamation periods of 0, 8, 10, 13, 15, 18 and 30years), Pinus tabuliformis forests (reclamation periods of 0, 10, 19, 23 and 25years) and Ulmus pumila forests (reclamation periods of 0, 18, 20 and 22years) situated on RMSs in the Pingshuo opencast coal mine, China. Changes in labile organic C fractions within the soil profiles (0-100cm) were also identified at the 18- or 19-year plots under the three monoculture forests. Our results showed that, SOC and labile organic C fractions, together with soil microbial quotient (SMQ) and C management index (CMI), increased with time since reclamation, indicating that the quality of RMSs improved over time after initial reclamation under the three forest types. R. pseudoacacia significantly increased the accretion of SOC and EOC in the early stage of reclamation while P. tabuliformis accelerated the accumulation of the MBC fraction. Results for U. pumila indicated that this species had a better ability to store C in RMSs 10years or more after reclamation. SOC and labile organic C fractions both had S-shaped distributions within the soil profiles (0-100cm), with the 0-20cm layer recording the highest values (Pfractions were closely associated and correlated with soil physicochemical properties; our results also showed that nitrogen played an important role in the development of labile organic C fractions. Overall, reclamation accelerated the accretion of both SOC and labile organic C fractions, results of which varied among the reclaimed forests

  20. Changes in soil moisture drive soil methane uptake along a fire regeneration chronosequence in a eucalypt forest landscape.

    Science.gov (United States)

    Fest, Benedikt; Wardlaw, Tim; Livesley, Stephen J; Duff, Thomas J; Arndt, Stefan K

    2015-11-01

    Disturbance associated with severe wildfires (WF) and WF simulating harvest operations can potentially alter soil methane (CH4 ) oxidation in well-aerated forest soils due to the effect on soil properties linked to diffusivity, methanotrophic activity or changes in methanotrophic bacterial community structure. However, changes in soil CH4 flux related to such disturbances are still rarely studied even though WF frequency is predicted to increase as a consequence of global climate change. We measured in-situ soil-atmosphere CH4 exchange along a wet sclerophyll eucalypt forest regeneration chronosequence in Tasmania, Australia, where the time since the last severe fire or harvesting disturbance ranged from 9 to >200 years. On all sampling occasions, mean CH4 uptake increased from most recently disturbed sites (9 year) to sites at stand 'maturity' (44 and 76 years). In stands >76 years since disturbance, we observed a decrease in soil CH4 uptake. A similar age dependency of potential CH4 oxidation for three soil layers (0.0-0.05, 0.05-0.10, 0.10-0.15 m) could be observed on incubated soils under controlled laboratory conditions. The differences in soil CH4 uptake between forest stands of different age were predominantly driven by differences in soil moisture status, which affected the diffusion of atmospheric CH4 into the soil. The observed soil moisture pattern was likely driven by changes in interception or evapotranspiration with forest age, which have been well described for similar eucalypt forest systems in south-eastern Australia. Our results imply that there is a large amount of variability in CH4 uptake at a landscape scale that can be attributed to stand age and soil moisture differences. An increase in severe WF frequency in response to climate change could potentially increase overall forest soil CH4 sinks. © 2015 John Wiley & Sons Ltd.

  1. Accumulation of soil organic C and N in planted forests fostered by tree species mixture

    Science.gov (United States)

    Liu, Yan; Lei, Pifeng; Xiang, Wenhua; Yan, Wende; Chen, Xiaoyong

    2017-09-01

    With the increasing trend of converting monocultures into mixed forests, more and more studies have been carried out to investigate the admixing effects on tree growth and aboveground carbon storage. However, few studies have considered the impact of mixed forests on belowground carbon sequestration, particularly changes in soil carbon and nitrogen stocks as a forest grows. In this study, paired pure Pinus massoniana plantations, Cinnamomum camphora plantations and mixed Pinus massoniana-Cinnamomum camphora plantations at ages of 10, 24 and 45 years were selected to test whether the mixed plantations sequestrate more organic carbon (OC) and nitrogen (N) in soils and whether this admixing effect becomes more pronounced with stand ages. The results showed that tree species identification, composition and stand age significantly affected soil OC and N stocks. The soil OC and N stocks were the highest in mixed Pinus-Cinnamomum stands compared to those in counterpart monocultures with the same age in the whole soil profile or specific soil depth layers (0-10, 10-20 and 20-30 cm) for most cases, followed by Cinnamomum stands and Pinus stands with the lowest. These positive admixing effects were mostly nonadditive. Along the chronosequence, the soil OC stock peaked in the 24-year-old stand and was maintained as relatively stable thereafter. The admixing effects were also the highest at this stage. However, in the topsoil layer, the admixing effects increased with stand ages in terms of soil OC stocks. When comparing mixed Pinus-Cinnamomum plantations with corresponding monocultures within the same age, the soil N stock in mixed stands was 8.30, 11.17 and 31.45 % higher than the predicted mean value estimated from counterpart pure species plantations in 10-, 24- and 45-year-old stands, respectively. This suggests that these admixing effects were more pronounced along the chronosequence.

  2. SOM storage and pool distribution in forest soils along climatic and altitudinal gradients across Switzerland

    Science.gov (United States)

    Gosheva, Sia; Müller, Mirjam; Walthert, Lorenz; Zimmermann, Stephan; Niklaus, Pascal A.; González Domínguez, Beatriz R.; Abiven, Samuel; Hagedorn, Frank

    2016-04-01

    Soil organic matter (SOM) plays a key role for a number of soil and ecosystem functions. Yet our quantitative understanding of the main driving factors is uncertain. SOM consists of a continuum of compounds ranging from slightly altered plant residues, known as particulate OM (POM) to mineral-associated OM (mOM). POM is the most rapidly cycling and hence vulnerable fraction of SOM. Therefore, it might respond particularly sensitive to climate change. In grassland soils, SOM content as well as the contribution of POM was found to increase with increasing elevation, which suggests that climate exerts a major control on SOM stability and storage. Little is known, however, for forest soils where a substantial fraction of POM is stored in the organic layer. In our study based on 1000 soil profiles, we explore the controlling factors of SOM stocks and the distribution of POM in the organic layer as well as within mineral soils in forests across Switzerland. We hypothesize that (i) elevation and hence climate have rather negligible effects on carbon (C) stocks, but exert large effects on SOM quality (contribution of POM, SOM depth distribution, and C/N ratio); (ii) furthermore, we postulate to find an elevational effect on C stocks in the organic layer but not in the mineral soil. We examined SOM stocks in the organic layer and the mineral soil of 1000 soil profiles. Mineral soils (0-20cm) from a subset of 54 sites were separated into free light fraction and occluded light fraction, representing POM, while fine heavy fraction and coarse heavy fraction represented the mineral-associated OM. The sites, all located in Swiss forests, were distributed along a great elevational gradient ranging between 277 and 2207 m a.s.l., and spanning a gradient in mean annual temperatures (MAT) from 0.6 to 11.9 °C, and mean annual precipitation (MAP) from 704 to 2340 mm. Our results indicate that POM and C/N ratio are more closely related to elevation and climate compared to mOM. For C

  3. Ectomycorrhizal mats alter forest soil biogeochemistry

    Science.gov (United States)

    Laurel A. Kluber; Kathryn M. Tinnesand; Bruce A. Caldwell; Susie M. Dunham; Rockie R. Yarwood; Peter J. Bottomley; David D. Myrold

    2010-01-01

    Dense hyphal mats formed by ectomycorrhizal (EcM) fungi are prominent features in Douglas-fir forest ecosystems, and have been estimated to cover up to 40% of the soil surface in some forest stands. Two morphotypes of EcM mats have been previously described: rhizomorphic mats, which have thick hyphal rhizomorphs and are found primarily in the organic horizon, and...

  4. Soil-mediated filtering organizes tree assemblages in regenerating tropical forests

    NARCIS (Netherlands)

    Pinho, Bruno Ximenes; Melo, de Felipe Pimentel Lopes; Arroyo-Rodríguez, Víctor; Pierce, Simon; Lohbeck, Madelon; Tabarelli, Marcelo

    2018-01-01

    Secondary forests are increasingly dominant in human-modified tropical landscapes, but the drivers of forest recovery remain poorly understood. Soil conditions influence plant community composition, and are expected to change over a gradient of succession. However, the role of soil conditions as

  5. Water repellency of two forest soils after biochar addition

    Science.gov (United States)

    D. S. Page-Dumroese; P. R. Robichaud; R. E. Brown; J. M. Tirocke

    2015-01-01

    Practical application of black carbon (biochar) to improve forest soil may be limited because biochar is hydrophobic. In a laboratory, we tested the water repellency of biochar application (mixed or surface applied) to two forest soils of varying texture (a granitic coarse-textured Inceptisol and an ash cap fine-textured Andisol) at four different application rates (0...

  6. Soil evolution in spruce forest ecosystems: role and influence of humus studied by morphological approach

    Directory of Open Access Journals (Sweden)

    Chersich S

    2007-01-01

    Full Text Available In order to understand the role and the mutual influences of humus and soil in alpine spruce forest ecosystems we studied and classified 7 soil - humic profiles on the 4 main forestry dynamics: open canopy, regeneration, young stand, tree stage. We studied the role of humification process in the pedologic process involving soils and vegetations studing humic and soil horizons. Study sites are located at an altitude of 1740 m a.s.l near Pellizzano (TN, and facing to the North. The parent soil material is predominantly composed of morenic sediments, probably from Cevedale glacier lying on a substrate of tonalite from Presanella (Adamello Tertiary pluton. The soil temperature regime is frigid, while the moisture regime is udic. The characteristics observed in field were correlated with classical chemical and physical soil analyses (MIPAF 2000. In order to discriminate the dominant soil forming process, the soils were described and classified in each site according to the World Reference Base (FAO-ISRIC-ISSS 1998. Humus was described and classified using the morphological-genetic approach (Jabiol et al. 1995. The main humus forms are acid and they are for the greater part Dysmoder on PODZOLS. The main pedogenetic processes is the podzolization, locally there are also hydromorphic processes. We associate a definite humus form with a pedological process at a particular step of the forest evolution. We concluded thath the soil study for a correct pedological interpretation must take count of the characteristics of the humic epipedon.

  7. Effects of acacia senegal (L.,Willd.) on sandy soils: A case study of El damokeya forest, Northern Kordofan State

    International Nuclear Information System (INIS)

    Ahmed, D. M; Nimer, A. M.

    2002-01-01

    Soil properties were studied in El Damokeya forest, located at 30 km east of Elobeid town, Northern Kordofan State, during the rainy season of 1998. The aim was to characterize the soils of the area and to examine the effects of Acacia senegal plantations on the soils physical and chemical properties. The results showed that the soils were sandy, weakly structured, yellowish-red, neutral and poor in nutrient content, and that Acacia senegal plantations had induced considerable changes in the soil morphological, physical and chemical properties. The soil became more differentiated, with a third layer clearly discernible. No change had occurred in the soil texture. But, it became well structured with stable aggregates. Its organic matter content had been augmented to about one and half times, deeply incorporated and stained the whole profile with darker hues. The soil reaction became slightly acidic (ph 6.3). The exchange capacity was improved qualitatively and quantitatively. Thus, cation exchange capacity values increased from 2.8 in the bare land to 4.0 meq/100g soil under the forest, and the soil was saturated to 98% with base cations. The major nutrient elements (N,P, K, Ca, Mg, Fe) had generally increased with various proportions ranging from 10% to more than 130%, but only Ca showed significant difference at P=0.05. Among the trace elements, Cu and Co had significantly decreased in the forest soil, but Zn and Mn had increased to about 100%.(Author)

  8. Forest Soil Bacteria: Diversity, Involvement in Ecosystem Processes, and Response to Global Change.

    Science.gov (United States)

    Lladó, Salvador; López-Mondéjar, Rubén; Baldrian, Petr

    2017-06-01

    The ecology of forest soils is an important field of research due to the role of forests as carbon sinks. Consequently, a significant amount of information has been accumulated concerning their ecology, especially for temperate and boreal forests. Although most studies have focused on fungi, forest soil bacteria also play important roles in this environment. In forest soils, bacteria inhabit multiple habitats with specific properties, including bulk soil, rhizosphere, litter, and deadwood habitats, where their communities are shaped by nutrient availability and biotic interactions. Bacteria contribute to a range of essential soil processes involved in the cycling of carbon, nitrogen, and phosphorus. They take part in the decomposition of dead plant biomass and are highly important for the decomposition of dead fungal mycelia. In rhizospheres of forest trees, bacteria interact with plant roots and mycorrhizal fungi as commensalists or mycorrhiza helpers. Bacteria also mediate multiple critical steps in the nitrogen cycle, including N fixation. Bacterial communities in forest soils respond to the effects of global change, such as climate warming, increased levels of carbon dioxide, or anthropogenic nitrogen deposition. This response, however, often reflects the specificities of each studied forest ecosystem, and it is still impossible to fully incorporate bacteria into predictive models. The understanding of bacterial ecology in forest soils has advanced dramatically in recent years, but it is still incomplete. The exact extent of the contribution of bacteria to forest ecosystem processes will be recognized only in the future, when the activities of all soil community members are studied simultaneously. Copyright © 2017 American Society for Microbiology.

  9. Winter climate controls soil carbon dynamics during summer in boreal forests

    International Nuclear Information System (INIS)

    Haei, Mahsa; Öquist, Mats G; Ilstedt, Ulrik; Laudon, Hjalmar; Kreyling, Juergen

    2013-01-01

    Boreal forests, characterized by distinct winter seasons, store a large proportion of the global terrestrial carbon (C) pool. We studied summer soil C-dynamics in a boreal forest in northern Sweden using a seven-year experimental manipulation of soil frost. We found that winter soil climate conditions play a major role in controlling the dissolution/mineralization of soil organic-C in the following summer season. Intensified soil frost led to significantly higher concentrations of dissolved organic carbon (DOC). Intensified soil frost also led to higher rates of basal heterotrophic CO 2 production in surface soil samples. However, frost-induced decline in the in situ soil CO 2 concentrations in summer suggests a substantial decline in root and/or plant associated rhizosphere CO 2 production, which overrides the effects of increased heterotrophic CO 2 production. Thus, colder winter soils, as a result of reduced snow cover, can substantially alter C-dynamics in boreal forests by reducing summer soil CO 2 efflux, and increasing DOC losses. (letter)

  10. Contributions of water supply from the weathered bedrock zone to forest soil quality

    Science.gov (United States)

    James H. Witty; Robert C. Graham; Kenneth R. Hubbert; James A. Doolittle; Jonathan A. Wald

    2003-01-01

    One measure of forest soil quality is the ability of the soil to support tree growth. In mediterranean-type ecosystems, such as most of California's forests, there is virtually no rainfall during the summer growing season, so trees must rely on water stored within the substrate. Water is the primary limitation to productivity in these forests. Many forest soils in...

  11. Modeling soil CO2 production and transport to investigate the intra-day variability of surface efflux and soil CO2 concentration measurements in a scots pine forest (Pinus Sylvestris, L.)

    OpenAIRE

    Goffin, Stéphanie; Wylock, Christophe; Haut, Benoît; Maier, Martin; Longdoz, Bernard; Aubinet, Marc

    2015-01-01

    Aimed:The main aim of this study is to improve the mechanistic understanding of soil CO2 efflux (Fs), especially its temporal variation at short-time scales, by investigating, through modeling, which underlying process among CO2 production and its transport up to the atmosphere is responsible for observed intra-day variation of Fs and soil CO2 concentration [CO2].Methods:In this study, a measurement campaign of Fs and vertical soil [CO2] profiles was conducted in a Scots Pine Forest soil in H...

  12. [Diversity of soil nematode communities in the subalpine and alpine forests of western Sichuan, China.

    Science.gov (United States)

    Chen, Ya; Yang, Wan Qin; Wu, Fu Zhong; Yang, Fan; Lan, Li Ying; Liu, Yu Wei; Guo, Cai Hong; Tan, Bo

    2017-10-01

    In order to understand the diversity of soil nematodes in the subalpine/alpine forests of the eastern Qinghai-Tibet Plateau, soil nematodes in the primary forest, mixed forest and secondary forest of Abies faxoniana were extracted by elutriation and sugar-centrifugation method in July 2015, and the composition and structure characteristics of soil nematode communities were studied in the three forests at different altitudes. A total of 37950 soil nematodes were collected, which belonged to 20 families and 27 genera, and the mean density was 4217 ind·100 g -1 dry soil. Filenchus was the dominant genus in the primary forest, and Filenchus and Pararotylenchus in the mixed forest and secondary forest, respectively. The individual number of each dominant genus was significantly affected by forest type. All nematode individuals were classified into the four trophic groups of bacterivores, fungivores, plant-parasites and omnivore-predators. The fungivores were dominant in the primary and secondary forest and the bacterivores in the mixed forest. The number of soil nematode c-p (colonizer-persister) groups of c-p 1, c-p 2, c-p 3 and c-p 4 accounted for 6.1%, 51.1%, 30.0% and 12.7% of the total nematode abundance, respectively. The maturity index (MI), the total maturity index (∑MI) and the plant parasitic index (PPI) of soil nematodes decreased gradually with the increase of altitude. The nematode channel ratio in the mixed forest was higher than 0.5, but that in the primary forest and secondary forest was below 0.5. The forest type significantly affected the soil nematode maturity index and channel ratio, but the forest type, soil layer and their interaction had no significant effect on the diversity index. There were obvious diffe-rences in the composition, nutrient structure and energy flow channel of soil nematodes in the subalpine/alpine forests of western Sichuan, providing an important reference for understanding the function of soil nematodes in soil processes

  13. Organic carbon stocks and sequestration rates of forest soils in Germany.

    Science.gov (United States)

    Grüneberg, Erik; Ziche, Daniel; Wellbrock, Nicole

    2014-08-01

    The National Forest Soil Inventory (NFSI) provides the Greenhouse Gas Reporting in Germany with a quantitative assessment of organic carbon (C) stocks and changes in forest soils. Carbon stocks of the organic layer and the mineral topsoil (30 cm) were estimated on the basis of ca. 1.800 plots sampled from 1987 to 1992 and resampled from 2006 to 2008 on a nationwide grid of 8 × 8 km. Organic layer C stock estimates were attributed to surveyed forest stands and CORINE land cover data. Mineral soil C stock estimates were linked with the distribution of dominant soil types according to the Soil Map of Germany (1 : 1 000 000) and subsequently related to the forest area. It appears that the C pool of the organic layer was largely depending on tree species and parent material, whereas the C pool of the mineral soil varied among soil groups. We identified the organic layer C pool as stable although C was significantly sequestered under coniferous forest at lowland sites. The mineral soils, however, sequestered 0.41 Mg C ha(-1) yr(-1) . Carbon pool changes were supposed to depend on stand age and forest transformation as well as an enhanced biomass input. Carbon stock changes were clearly attributed to parent material and soil groups as sandy soils sequestered higher amounts of C, whereas clayey and calcareous soils showed small gains and in some cases even losses of soil C. We further showed that the largest part of the overall sample variance was not explained by fine-earth stock variances, rather by the C concentrations variance. The applied uncertainty analyses in this study link the variability of strata with measurement errors. In accordance to other studies for Central Europe, the results showed that the applied method enabled a reliable nationwide quantification of the soil C pool development for a certain period. © 2014 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  14. A meta-analysis of soil microbial biomass responses to forest disturbances

    Directory of Open Access Journals (Sweden)

    Sandra Robin Holden

    2013-06-01

    Full Text Available Climate warming is likely to increase the frequency and severity of forest disturbances, with uncertain consequences for soil microbial communities and their contribution to ecosystem C dynamics. To address this uncertainty, we conducted a meta-analysis of 139 published soil microbial responses to forest disturbances. These disturbances included abiotic (fire, harvesting, storm and biotic (insect, pathogen disturbances. We hypothesized that soil microbial biomass would decline following forest disturbances, but that abiotic disturbances would elicit greater reductions in microbial biomass than biotic disturbances. In support of this hypothesis, across all published studies, disturbances reduced soil microbial biomass by an average of 29.4%. However, microbial responses differed between abiotic and biotic disturbances. Microbial responses were significantly negative following fires, harvest, and storms (48.7%, 19.1%, and 41.7% reductions in microbial biomass, respectively. In contrast, changes in soil microbial biomass following insect infestation and pathogen-induced tree mortality were non-significant, although biotic disturbances were poorly represented in the literature. When measured separately, fungal and bacterial responses to disturbances mirrored the response of the microbial community as a whole. Changes in microbial abundance following disturbance were significantly positively correlated with changes in microbial respiration. We propose that the differential effect of abiotic and biotic disturbances on microbial biomass may be attributable to differences in soil disruption and organic C removal from forests among disturbance types. Altogether, these results suggest that abiotic forest disturbances may significantly decrease soil microbial abundance, with corresponding consequences for microbial respiration. Further studies are needed on the effect of biotic disturbances on forest soil microbial communities and soil C dynamics.

  15. Climate Warming Can Increase Soil Carbon Fluxes Without Decreasing Soil Carbon Stocks in Boreal Forests

    Science.gov (United States)

    Ziegler, S. E.; Benner, R. H.; Billings, S. A.; Edwards, K. A.; Philben, M. J.; Zhu, X.; Laganiere, J.

    2016-12-01

    Ecosystem C fluxes respond positively to climate warming, however, the net impact of changing C fluxes on soil organic carbon (SOC) stocks over decadal scales remains unclear. Manipulative studies and global-scale observations have informed much of the existing knowledge of SOC responses to climate, providing insights on relatively short (e.g. days to years) and long (centuries to millennia) time scales, respectively. Natural climate gradient studies capture integrated ecosystem responses to climate on decadal time scales. Here we report the soil C reservoirs, fluxes into and out of those reservoirs, and the chemical composition of inputs and soil organic matter pools along a mesic boreal forest climate transect. The sites studied consist of similar forest composition, successional stage, and soil moisture but differ by 5.2°C mean annual temperature. Carbon fluxes through these boreal forest soils were greatest in the lowest latitude regions and indicate that enhanced C inputs can offset soil C losses with warming in these forests. Respiration rates increased by 55% and the flux of dissolved organic carbon from the organic to mineral soil horizons tripled across this climate gradient. The 2-fold increase in litterfall inputs to these soils coincided with a significant increase in the organic horizon C stock with warming, however, no significant difference in the surface mineral soil C stocks was observed. The younger mean age of the mineral soil C ( 70 versus 330 YBP) provided further evidence for the greater turnover of SOC in the warmer climate soils. In spite of these differences in mean radiocarbon age, mineral SOC exhibited chemical characteristics of highly decomposed material across all regions. In contrast with depth trends in soil OM diagenetic indices, diagenetic shifts with latitude were limited to increases in C:N and alkyl to O-alkyl ratios in the overlying organic horizons in the warmer relative to the colder regions. These data indicate that the

  16. Soil Temperature and Moisture Profile (STAMP) System Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Cook, David R. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-11-01

    The soil temperature and moisture profile system (STAMP) provides vertical profiles of soil temperature, soil water content (soil-type specific and loam type), plant water availability, soil conductivity, and real dielectric permittivity as a function of depth below the ground surface at half-hourly intervals, and precipitation at one-minute intervals. The profiles are measured directly by in situ probes at all extended facilities of the SGP climate research site. The profiles are derived from measurements of soil energy conductivity. Atmospheric scientists use the data in climate models to determine boundary conditions and to estimate the surface energy flux. The data are also useful to hydrologists, soil scientists, and agricultural scientists for determining the state of the soil. The STAMP system replaced the SWATS system in early 2016.

  17. [The concentration and distribution of 137Cs in soils of forest and agricultural ecosystems of Tula Region].

    Science.gov (United States)

    Lipatov, D N; Shcheglov, A I; Tsvetnova, O B

    2007-01-01

    The paper deals with a comparative study of 137Cs contamination in forest, old arable and cultivated soils of Tula Region. Initial interception of Chernobyl derived 137Cs is higher in forest ecosystems: oak-forest > birch-forest > pine-forest > agricultural ecosystems. Vertical migration of 137Cs in deeper layers of soils was intensive in agricultural ecosystems: cultivated soils > old arable soils > birch-forest soils > oak-forest soils > pine-forest soils. In study have been evaluated spatial variability of 137Cs in soil and asymmetrical distribution, that is a skew to the right. Spatial heterogeneity of 137Cs in agricultural soils is much lower than in forest soils. For cultivated soil are determined the rate of resuspension, which equal to 6.1 x 10(-4) day(-1). For forest soils are described the 137Cs concentration in litter of different ecosystems. The role of main accumulation and barrier of 137Cs retain higher layers of soils (horizon A1(A1E) in forest, horizon Ap in agricultural ecosystems) in long-term forecast after Chernobyl accident.

  18. Forest soil biology-timber harvesting relationships: a perspective

    Science.gov (United States)

    M. F. Jurgensen; M. J. Larsen; A. E. Harvey

    1979-01-01

    Timber harvesting has a pronounced effect on the soil microflora by wood removal and changing properties. This paper gives a perspective on soil biology-harvesting relationships with emphasis on the northern Rocky Mountain region. Of special significance to forest management operations are the effects of soil micro-organisms on: the availability of soil nutrients,...

  19. Low-level gamma spectrometry of forest and moor soils from exposed mountain regions in Saxony (Erzgebirge)

    Energy Technology Data Exchange (ETDEWEB)

    Schleich, N [Technische Univ. Bergakademie Freiberg (Germany). Inst. of Applied Physics; Preusse, W [Technische Univ. Bergakademie Freiberg (Germany). Inst. of Applied Physics; Degering, D [Technische Univ. Bergakademie Freiberg (Germany). Inst. of Applied Physics; Unterricker, S [Technische Univ. Bergakademie Freiberg (Germany). Inst. of Applied Physics

    1997-03-01

    In soils with distinct organic and mineral horizons, radionuclides (RN) can be used to understand geochemical migration processes. In the study presented here high sensitivity HPGe-detectors with active and passive shielding were employed to determine the low activity levels of various natural, cosmogenic and artificial RN. Soils of a spruce forest and a moor from exposed mountain regions in Saxony (Erzgebirge) were investigated as they provide a good example of layered soil systems with vertical transfer of chemical elements. Different soil horizons were sub-sampled as thin slices and analysed to examine the migration processes at sub-horizon level. The depth distributions of chemically different RN were studied considering the geochemical and pedological soil characteristics of the profiles. (orig.)

  20. Hyperspectral remote sensing of postfire soil properties

    Science.gov (United States)

    Sarah A. Lewis; Peter R. Robichaud; William J. Elliot; Bruce E. Frazier; Joan Q. Wu

    2004-01-01

    Forest fires may induce changes in soil organic properties that often lead to water repellent conditions within the soil profile that decrease soil infiltration capacity. The remote detection of water repellent soils after forest fires would lead to quicker and more accurate assessment of erosion potential. An airborne hyperspectral image was acquired over the Hayman...

  1. Thermal Characteristics and Bacterial Diversity of Forest Soil in the Haean Basin of Korea

    OpenAIRE

    Kim, Heejung; Lee, Jin-Yong; Lee, Kang-Kun

    2014-01-01

    To predict biotic responses to disturbances in forest environments, it is important to examine both the thermophysical properties of forest soils and the diversity of microorganisms that these soils contain. To predict the effects of climate change on forests, in particular, it is essential to understand the interactions between the soil surface, the air, and the biological diversity in the soil. In this study, the temperature and thermal properties of forest soil at three depths at a site in...

  2. Plant Community and Nitrogen Deposition as Drivers of Alpha and Beta Diversities of Prokaryotes in Reconstructed Oil Sand Soils and Natural Boreal Forest Soils.

    Science.gov (United States)

    Masse, Jacynthe; Prescott, Cindy E; Renaut, Sébastien; Terrat, Yves; Grayston, Sue J

    2017-05-01

    The Athabasca oil sand deposit is one of the largest single oil deposits in the world. Following surface mining, companies are required to restore soil-like profiles that can support the previous land capabilities. The objective of this study was to assess whether the soil prokaryotic alpha diversity (α-diversity) and β-diversity in oil sand soils reconstructed 20 to 30 years previously and planted to one of three vegetation types (coniferous or deciduous trees and grassland) were similar to those found in natural boreal forest soils subject to wildfire disturbance. Prokaryotic α-diversity and β-diversity were assessed using massively parallel sequencing of 16S rRNA genes. The β-diversity, but not the α-diversity, differed between reconstructed and natural soils. Bacteria associated with an oligotrophic lifestyle were more abundant in natural forest soils, whereas bacteria associated with a copiotrophic lifestyle were more abundant in reconstructed soils. Ammonia-oxidizing archaea were most abundant in reconstructed soils planted with grasses. Plant species were the main factor influencing α-diversity in natural and in reconstructed soils. Nitrogen deposition, pH, and plant species were the main factors influencing the β-diversity of the prokaryotic communities in natural and reconstructed soils. The results highlight the importance of nitrogen deposition and aboveground-belowground relationships in shaping soil microbial communities in natural and reconstructed soils. IMPORTANCE Covering over 800 km 2 , land disturbed by the exploitation of the oil sands in Canada has to be restored. Here, we take advantage of the proximity between these reconstructed ecosystems and the boreal forest surrounding the oil sand mining area to study soil microbial community structure and processes in both natural and nonnatural environments. By identifying key characteristics shaping the structure of soil microbial communities, this study improved our understanding of how

  3. Combining hyperspectral imagery and legacy measured soil profiles to map subsurface soil properties in a Mediterranean area (Cap-Bon, Tunisia)

    Science.gov (United States)

    Lagacherie, Philippe; Sneep, Anne-Ruth; Gomez, Cécile

    2013-04-01

    Previous studies have demonstrated that Visible Near InfraRed (Vis-NIR) Hyperspectral imagery is a cost-efficient way for mapping soil properties at fine resolutions (~5m) over large areas. However, such mapping is only feasible for soil surface since the effective penetration depths of optical sensors do not exceed several millimetres. This study aimed to extend the use of Vis-NIR hyperspectral imagery to the mapping of subsurface properties at three intervals of depth (15-30 cm, 30-60 cm and 60-100 cm) as specified by the GlobalSoilMap project. To avoid additional data collection, our basic idea was to develop an original Digital Soil Mapping approach that combines the digital maps of surface soil properties obtained from Vis-NIR hyperspectral imagery with legacy soil profiles of the region and with easily available images of DEM-derived parameters. The study was conducted in a pedologically-contrasted 300km² cultivated area located in the Cap Bon region (Northern Tunisia). AISA-Dual Vis-NIR hyperspectral airborne data were acquired over the studied area with a fine spatial resolution (5 m) and fine spectral resolution (260 spectral bands from 450 to 2500nm). Vegetated surfaces were masked to conserve only bare soil surface which represented around 50% of the study area. Three soil surface properties (clay and sand contents, Cation Exchange Capacity) were successfully mapped over the bare soils, from these data using Partial Least Square Regression models (R2 > 0.7). We used as additional data a set of images of landscape covariates derived from a 30 meter DEM and a local database of 152 legacy soil profiles from which soil properties values at the required intervals of depths were computed using an equal-area-spline algorithm. Our Digital Soil Mapping approach followed two steps: i) the development of surface-subsurface functions - linear models and random forests - that estimates subsurface property values from surface ones and landscape covariates and that

  4. Retention of available P in acid soils of tropical and subtropical evergreen broad-leaved forests

    Institute of Scientific and Technical Information of China (English)

    CHEN Jianhui; ZOU Xiaoming; YANG Xiaodong

    2007-01-01

    Precipitation of mineral phosphate is often recognized as a factor of limiting the availability of P in acidic soils of tropical and subtropical forests.For this paper,we studied the extractable P pools and their transformation rates in soils of a tropical evergreen forest at Xishuangbanna and a subtropical montane wet forest at the Ailao Mountains in order to understand the biogeochemical processes regulating P availability in acidic soils.The two forests differ in forest humus layer;it is deep in the Ailao forest while little is present in the Xishuangbanna forest.The extractable P pools by resin and sodium-bicarbonate decreased when soil organic carbon content was reduced.The lowest levels of extractable P pools occurred in the surface (0-10 era) mineral soils of the Xishuangbanna forest.However,microbial P in the mineral soil of the Xishuangbauna forest was twice that in the Ailao forest.Potential rates of microbial P immobilization were greater than those of organic P mineralization in mineral soils for both forests.We suggest that microbial P immobilization plays an essential role in avoiding mineral P precipitation and retaining available P of plant in tropical acidic soils,whereas both floor mass accumulation and microbial P immobilization function benefit retaining plant available P in subtropical montane wet forests.

  5. Forest structure, diversity and soil properties in a dry tropical forest in Rajasthan, Western India

    Directory of Open Access Journals (Sweden)

    J. I. Nirmal Kumar

    2011-06-01

    Full Text Available Structure, species composition, and soil properties of a dry tropical forest in Rajasthan Western India, were examined by establishment of 25 plots. The forest was characterized by a relatively low canopy and a large number of small-diameter trees. Mean canopy height for this forest was 10 m and stands contained an average of 995 stems ha-1 (= 3.0 cm DBH; 52% of those stems were smaller than 10 cm DBH. The total basal area was 46.35 m2ha-1, of which Tectona grandis L. contributed 48%. The forest showed high species diversity of trees. 50 tree species (= 3.0 cm DBH from 29 families were identified in the 25 sampling plots. T. grandis (20.81% and Butea monosperma (9% were the dominant and subdominant species in terms of importance value. The mean tree species diversity indices for the plots were 1.08 for Shannon diversity index (H´, 0.71 for equitability index (J´ and 5.57 for species richness index (S´, all of which strongly declined with the increase of importance value of the dominant, T. grandis. Measures of soil nutrients indicated low fertility, extreme heterogeneity. Regression analysis showed that stem density and the dominant tree height were significantly correlated with soil pH. There was a significant positive relationship between species diversity index and soil available P, exchangeable K+, Ca2+ (all p values < 0.001 and a negative relationship with N, C, C:N and C:P ratio. The results suggest that soil properties are major factors influencing forest composition and structure within the dry tropical forest in Rajasthan.

  6. Assessment of carbon pools in two soils from the Campania region (Southwest, Italy) under different forest types

    Science.gov (United States)

    Álvarez-Romero, Marta; Papa, Stefania; Lozano-García, Beatriz; Parras-Alcántara, Luis; González-Pérez, José A.; Jordán, Antonio; Zavala, Lorena M.; González-Vila, Francisco J.; Coppola, Elio

    2014-05-01

    Soil is the largest carbon reservoir of terrestrial ecosystems, this reservoir is not inert, but it is constantly in a dynamic phase of accumulation an depletion. After the addition, in the soil, of organic residues of different origin and nature, two processes can occur in charge of SOM (Soil Organic Matter) during the pedogenesis: mineralization and humification. The accumulation of SOM in soil is controlled by the balance between carbon inputs and losses through mineralization and/or leaching. In particular the humification process leads to the formation of organic compounds (in some cases even complex organo-mineral) chemically stable able to distribute itself in the soil second rules of site-specific pedogenesis. The transport process along the profile can take very different forms which may extend in the formation of Bh horizons of accumulation in depth also strongly cemented (so-called ortstein). The transport process along the profile occurs for the occurrence of certain conditions such as deposition of high amounts of organic residues on the top of the profile, high porosity of the soil for the presence of coarse solid fractions (coarse sands or skeleton) that determinate a strong infiltrating capacity of the circulating waters, extreme temperatures can slow or stop the process of mineralization and/or humification in one intermediate step of the degradation process releasing organic metabolites with high or medium solubility and high loads of percolating water related to intense rainfall. The nature of the forest cover influence the quantity and quality of the organic materials deposited with marked differences between coniferous and deciduous especially in relation to resistance to degradation and production of intermediate metabolites. Two soils from Campania region located in Monte Santa Croce (Caserta, Italy) with andic properties, different forest cover (pine and chestnut) and that meets the requirements of the place and pedological formation

  7. Aspen increase soil moisture, nutrients, organic matter and respiration in Rocky Mountain forest communities.

    Science.gov (United States)

    Buck, Joshua R; St Clair, Samuel B

    2012-01-01

    Development and change in forest communities are strongly influenced by plant-soil interactions. The primary objective of this paper was to identify how forest soil characteristics vary along gradients of forest community composition in aspen-conifer forests to better understand the relationship between forest vegetation characteristics and soil processes. The study was conducted on the Fishlake National Forest, Utah, USA. Soil measurements were collected in adjacent forest stands that were characterized as aspen dominated, mixed, conifer dominated or open meadow, which includes the range of vegetation conditions that exist in seral aspen forests. Soil chemistry, moisture content, respiration, and temperature were measured. There was a consistent trend in which aspen stands demonstrated higher mean soil nutrient concentrations than mixed and conifer dominated stands and meadows. Specifically, total N, NO(3) and NH(4) were nearly two-fold higher in soil underneath aspen dominated stands. Soil moisture was significantly higher in aspen stands and meadows in early summer but converged to similar levels as those found in mixed and conifer dominated stands in late summer. Soil respiration was significantly higher in aspen stands than conifer stands or meadows throughout the summer. These results suggest that changes in disturbance regimes or climate scenarios that favor conifer expansion or loss of aspen will decrease soil resource availability, which is likely to have important feedbacks on plant community development.

  8. An inverse analysis reveals limitations of the soil-CO2 profile method to calculate CO2 production and efflux for well-structured soils

    Directory of Open Access Journals (Sweden)

    M. D. Corre

    2010-08-01

    Full Text Available Soil respiration is the second largest flux in the global carbon cycle, yet the underlying below-ground process, carbon dioxide (CO2 production, is not well understood because it can not be measured in the field. CO2 production has frequently been calculated from the vertical CO2 diffusive flux divergence, known as "soil-CO2 profile method". This relatively simple model requires knowledge of soil CO2 concentration profiles and soil diffusive properties. Application of the method for a tropical lowland forest soil in Panama gave inconsistent results when using diffusion coefficients (D calculated based on relationships with soil porosity and moisture ("physically modeled" D. Our objective was to investigate whether these inconsistencies were related to (1 the applied interpolation and solution methods and/or (2 uncertainties in the physically modeled profile of D. First, we show that the calculated CO2 production strongly depends on the function used to interpolate between measured CO2 concentrations. Secondly, using an inverse analysis of the soil-CO2 profile method, we deduce which D would be required to explain the observed CO2 concentrations, assuming the model perception is valid. In the top soil, this inversely modeled D closely resembled the physically modeled D. In the deep soil, however, the inversely modeled D increased sharply while the physically modeled D did not. When imposing a constraint during the fit parameter optimization, a solution could be found where this deviation between the physically and inversely modeled D disappeared. A radon (Rn mass balance model, in which diffusion was calculated based on the physically modeled or constrained inversely modeled D, simulated observed Rn profiles reasonably well. However, the CO2 concentrations which corresponded to the constrained inversely modeled D were too small compared to the measurements. We suggest that, in well-structured soils, a missing description of steady state CO2

  9. Anoxic conditions drive phosphorus limitation in humid tropical forest soil microorganisms

    Science.gov (United States)

    Gross, A.; Pett-Ridge, J.; Weber, P. K.; Blazewicz, S.; Silver, W. L.

    2017-12-01

    The elemental stoichiometry of carbon (C), nitrogen (N) and phosphorus (P) of soil microorganisms (C:N:P ratios) regulates transfers of energy and nutrients to higher trophic levels. In humid tropical forests that grow on P-depleted soils, the ability of microbes to concentrate P from their surroundings likely plays a critical role in P-retention and ultimately in forest productivity. Models predict that climate change will cause dramatic changes in rainfall patterns in the humid tropics and field studies have shown these changes can affect the redox state of tropical forest soils, influencing soil respiration and biogeochemical cycling. However, the responses of soil microorganisms to changing environmental conditions are not well known. Here, we incubated humid tropical soils under oxic or anoxic conditions with substrates differing in both C:P stoichiometry and lability, to assess how soil microorganisms respond to different redox regimes. We found that under oxic conditions, microbial C:P ratios were similar to the global optimal ratio (55:1), indicating most microbial cells can adapt to persistent aerated conditions in these soils. However, under anoxic conditions, the ability of soil microbes to acquire soil P declined and their C:P ratios shifted away from the optimal ratio. NanoSIMS elemental imaging of single cells extracted from soil revealed that under anoxic conditions, C:P ratios were above the microbial optimal value in 83% of the cells, in comparison to 41% under oxic conditions. These data suggest microbial growth efficiency switched from being energy limited under oxic conditions to P-limited under anoxic conditions, indicating that, microbial growth in low P humid tropical forests soils may be most constrained by P-limitation when conditions are oxygen-limited. We suggest that differential microbial responses to soil redox states could have important implications for productivity of humid tropical forests under future climate scenarios.

  10. Spatial and vertical distribution of mercury in upland forest soils across the northeastern United States

    International Nuclear Information System (INIS)

    Richardson, Justin B.; Friedland, Andrew J.; Engerbretson, Teresa R.; Kaste, James M.; Jackson, Brian P.

    2013-01-01

    Assessing current Hg pools in forest soils of the northeastern U.S. is important for monitoring changes in Hg cycling. The forest floor, upper and lower mineral horizons were sampled at 17 long-term upland forest sites across the northeastern U.S. in 2011. Forest floor Hg concentration was similar across the study region (274 ± 13 μg kg −1 ) while Hg amount at northern sites (39 ± 6 g ha −1 ) was significantly greater than at western sites (11 ± 4 g ha −1 ). Forest floor Hg was correlated with soil organic matter, soil pH, latitude and mean annual precipitation and these variables explained approximately 70% of the variability when multiple regressed. Mercury concentration and amount in the lower mineral soil was correlated with Fe, soil organic matter and latitude, corresponding with Bs horizons of Spodosols (Podzols). Our analysis shows the importance of regional and soil properties on Hg accumulation in forest soils. -- Highlights: •Mercury in the forest floor and mineral soil was quantified at 17 sites. •Concentrations and amounts were regressed with regional factors and soil properties. •Forest floor Hg was most explained by soil organic matter, pH, and precipitation. •Mineral soil Hg was explained by latitude, Fe concentration, and soil organic matter. •Mineral soil Hg was greatest in Bs horizons of Spodosols due to podzolization. -- Forest floor Hg was correlated with soil organic matter, pH, latitude, and mean annual precipitation. Mineral soil Hg was greatest in Bs horizons of Spodosols

  11. DRAINMOD-FOREST: Integrated Modeling of Hydrology, Soil Carbon and Nitrogen Dynamics, and Plant Growth for Drained Forests.

    Science.gov (United States)

    Tian, Shiying; Youssef, Mohamed A; Skaggs, R Wayne; Amatya, Devendra M; Chescheir, G M

    2012-01-01

    We present a hybrid and stand-level forest ecosystem model, DRAINMOD-FOREST, for simulating the hydrology, carbon (C) and nitrogen (N) dynamics, and tree growth for drained forest lands under common silvicultural practices. The model was developed by linking DRAINMOD, the hydrological model, and DRAINMOD-N II, the soil C and N dynamics model, to a forest growth model, which was adapted mainly from the 3-PG model. The forest growth model estimates net primary production, C allocation, and litterfall using physiology-based methods regulated by air temperature, water deficit, stand age, and soil N conditions. The performance of the newly developed DRAINMOD-FOREST model was evaluated using a long-term (21-yr) data set collected from an artificially drained loblolly pine ( L.) plantation in eastern North Carolina, USA. Results indicated that the DRAINMOD-FOREST accurately predicted annual, monthly, and daily drainage, as indicated by Nash-Sutcliffe coefficients of 0.93, 0.87, and 0.75, respectively. The model also predicted annual net primary productivity and dynamics of leaf area index reasonably well. Predicted temporal changes in the organic matter pool on the forest floor and in forest soil were reasonable compared to published literature. Both predicted annual and monthly nitrate export were in good agreement with field measurements, as indicated by Nash-Sutcliffe coefficients above 0.89 and 0.79 for annual and monthly predictions, respectively. This application of DRAINMOD-FOREST demonstrated its capability for predicting hydrology and C and N dynamics in drained forests under limited silvicultural practices. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  12. Assessment of Soil Organic Carbon Stock of Temperate Coniferous Forests in Northern Kashmir

    Directory of Open Access Journals (Sweden)

    Davood A. Dar

    2015-02-01

    Full Text Available  Soil organic carbon (SOC estimation in temperate forests of the Himalaya is important to estimate their contribution to regional, national and global carbon stocks. Physico chemical properties of soil were quantified to assess soil organic carbon density (SOC and SOC CO2 mitigation density at two soil depths (0-10 and 10-20 cms under temperate forest in the Northern region of Kashmir Himalayas India. The results indicate that conductance, moisture content, organic carbon and organic matter were significantly higher while as pH and bulk density were lower at Gulmarg forest site. SOC % was ranging from 2.31± 0.96 at Gulmarg meadow site to 2.31 ± 0.26 in Gulmarg forest site. SOC stocks in these temperate forests were from 36.39 ±15.40 to 50.09 ± 15.51 Mg C ha-1. The present study reveals that natural vegetation is the main contributor of soil quality as it maintained the soil organic carbon stock. In addition, organic matter is an important indicator of soil quality and environmental parameters such as soil moisture and soil biological activity change soil carbon sequestration potential in temperate forest ecosystems.DOI: http://dx.doi.org/10.3126/ije.v4i1.12186International Journal of Environment Volume-4, Issue-1, Dec-Feb 2014/15; page: 161-178

  13. Bryophyte-dominated biological soil crusts mitigate soil erosion in an early successional Chinese subtropical forest

    Directory of Open Access Journals (Sweden)

    S. Seitz

    2017-12-01

    Full Text Available This study investigated the development of biological soil crusts (biocrusts in an early successional subtropical forest plantation and their impact on soil erosion. Within a biodiversity and ecosystem functioning experiment in southeast China (biodiversity and ecosystem functioning (BEF China, the effect of these biocrusts on sediment delivery and runoff was assessed within micro-scale runoff plots under natural rainfall, and biocrust cover was surveyed over a 5-year period. Results showed that biocrusts occurred widely in the experimental forest ecosystem and developed from initial light cyanobacteria- and algae-dominated crusts to later-stage bryophyte-dominated crusts within only 3 years. Biocrust cover was still increasing after 6 years of tree growth. Within later-stage crusts, 25 bryophyte species were determined. Surrounding vegetation cover and terrain attributes significantly influenced the development of biocrusts. Besides high crown cover and leaf area index, the development of biocrusts was favoured by low slope gradients, slope orientations towards the incident sunlight and the altitude of the research plots. Measurements showed that bryophyte-dominated biocrusts strongly decreased soil erosion, being more effective than abiotic soil surface cover. Hence, their significant role in mitigating sediment delivery and runoff generation in mesic forest environments and their ability to quickly colonise soil surfaces after disturbance are of particular interest for soil erosion control in early-stage forest plantations.

  14. Bryophyte-dominated biological soil crusts mitigate soil erosion in an early successional Chinese subtropical forest

    Science.gov (United States)

    Seitz, Steffen; Nebel, Martin; Goebes, Philipp; Käppeler, Kathrin; Schmidt, Karsten; Shi, Xuezheng; Song, Zhengshan; Webber, Carla L.; Weber, Bettina; Scholten, Thomas

    2017-12-01

    This study investigated the development of biological soil crusts (biocrusts) in an early successional subtropical forest plantation and their impact on soil erosion. Within a biodiversity and ecosystem functioning experiment in southeast China (biodiversity and ecosystem functioning (BEF) China), the effect of these biocrusts on sediment delivery and runoff was assessed within micro-scale runoff plots under natural rainfall, and biocrust cover was surveyed over a 5-year period. Results showed that biocrusts occurred widely in the experimental forest ecosystem and developed from initial light cyanobacteria- and algae-dominated crusts to later-stage bryophyte-dominated crusts within only 3 years. Biocrust cover was still increasing after 6 years of tree growth. Within later-stage crusts, 25 bryophyte species were determined. Surrounding vegetation cover and terrain attributes significantly influenced the development of biocrusts. Besides high crown cover and leaf area index, the development of biocrusts was favoured by low slope gradients, slope orientations towards the incident sunlight and the altitude of the research plots. Measurements showed that bryophyte-dominated biocrusts strongly decreased soil erosion, being more effective than abiotic soil surface cover. Hence, their significant role in mitigating sediment delivery and runoff generation in mesic forest environments and their ability to quickly colonise soil surfaces after disturbance are of particular interest for soil erosion control in early-stage forest plantations.

  15. Physical soil properties and slope treatments effects on hydraulic excavator productivity for forest road construction.

    Science.gov (United States)

    Parsakho, Aidin; Hosseini, Seyed Ataollah; Jalilvand, Hamid; Lotfalian, Majid

    2008-06-01

    Effects of moisture, porosity and soil bulk density properties, grubbing time and terrain side slopes on pc 220 komatsu hydraulic excavator productivity were investigated in Miana forests road construction project which located in the northern forest of Iran. Soil moisture and porosity determined by samples were taken from undisturbed soil. The elements of daily works were measured with a digital stop watch and video camera in 14 observations (days). The road length and cross section profiles after each 20 m were selected to estimate earthworks volume. Results showed that the mean production rates for the pc 220 komatsu excavators were 60.13 m3 h(-1) and earthwork 14.76 m h(-1) when the mean depth of excavation or cutting was 4.27 m3 m(-1), respectively. There was no significant effects (p = 0.5288) from the slope classes' treatments on productivity, whereas grubbing time, soil moisture, bulk density and porosity had significantly affected on excavator earthworks volume (p < 0.0001). Clear difference was showed between the earthwork length by slope classes (p = 0.0060). Grubbing time (p = 0.2180), soil moisture (p = 0.1622), bulk density (p = 0.2490) and porosity (p = 0.2159) had no significant effect on the excavator earthworks length.

  16. Forest Structure Affects Soil Mercury Losses in the Presence and Absence of Wildfire.

    Science.gov (United States)

    Homann, Peter S; Darbyshire, Robyn L; Bormann, Bernard T; Morrissette, Brett A

    2015-11-03

    Soil is an important, dynamic component of regional and global mercury (Hg) cycles. This study evaluated how changes in forest soil Hg masses caused by atmospheric deposition and wildfire are affected by forest structure. Pre and postfire soil Hg measurements were made over two decades on replicate experimental units of three prefire forest structures (mature unthinned, mature thinned, clear-cut) in Douglas-fir dominated forest of southwestern Oregon. In the absence of wildfire, O-horizon Hg decreased by 60% during the 14 years after clearcutting, possibly the result of decreased atmospheric deposition due to the smaller-stature vegetative canopy; in contrast, no change was observed in mature unthinned and thinned forest. Wildfire decreased O-horizon Hg by >88% across all forest structures and decreased mineral-soil (0 to 66 mm depth) Hg by 50% in thinned forest and clear-cut. The wildfire-associated soil Hg loss was positively related to the amount of surface fine wood that burned during the fire, the proportion of area that burned at >700 °C, fire severity as indicated by tree mortality, and soil C loss. Loss of soil Hg due to the 200,000 ha wildfire was more than four times the annual atmospheric Hg emissions from human activities in Oregon.

  17. Soil-water contact angle of some soils of the Russian Plane

    Science.gov (United States)

    Bykova, Galina; Tyugai, Zemfira; Milanovskiy, Evgeny; Shein, Evgeny

    2016-04-01

    INTRODUCTION Soil wettability affects the aggregate water resistance, the movement of moisture and dissolved substances, preferential flows, etc. There are many factors affecting the soil's wettability (the content of organic matter (OM), soil's mineralogical composition, particle size distribution), so it can reflect changes in the soil, including results of human impact. The quantitative characteristic of soil wettability is a contact angle (CA), its measurement is a new and difficult problem because of the complexity, heterogeneity and polydispersity of the object of investigation. The aim of this work is to study soil-water CA of some soils of the Russian Plane. MATERIALS AND METHODS The objects of study were sod-podzolic (Umbric Albeluvisols Abruptic, Eutric Podzoluvisols), grey forest non-podzolised (Greyic Phaeozems Albic, Haplic Greyzems), typical Chernozems (Voronic Chernozems pachic, Haplic Chernozems) - profiles under the forest and the arable land, and the chestnut (Haplic Kastanozems Chromic, Haplic Kastanozems) soils. The CA's determination was performed by a Drop Shape Analyzer DSA100 by the static sessile drop method. For all samples was determined the content of total and organic carbon (OC and TC) by dry combustion in oxygen flow. RESULTS AND DISCUSSION There is CA increasing from 85,1° (5 cm) to 40-45° (deeper, than 45 cm) in the sod-podzolic soil; OC content is changed at the same depths from 1,44 to 0.22%. We can see the similar picture in profiles of chernozems. In the forest profile the highest OC content and CA value are achieved on the surface of profile (6,41% and 78,1°), and by 90 cm these values are 1.9% and 50.2°. In the chernozem under the arable land the OC content is almost two times less and the profile is more wettable (from 50° to 19° at 5 and 100 cm). Corresponding with the OC content, the curve describing changes of CA in the profile of grey forest soil is S-shaped with peaks at 20 and 150 cm (81,3° and 70° respectively

  18. Study on the effect of organic fertilizers on soil organic matter and enzyme activities of soil in forest nursery

    Directory of Open Access Journals (Sweden)

    Piaszczyk Wojciech

    2017-09-01

    Full Text Available The aim of the study was to assess the effects of organic fertilization on selected chemical properties of the soil and the activity of dehydrogenase and β-glucosidase in the soil of forest nursery. The main goal was to evaluate the role of organic fertilizers in carbon storage in the forest nursery soil. Sample plots were located in northern Poland in the Polanów Forest District on a forest nursery. Soil samples were collected from horizon 0–20 cm for laboratory analyzes. In soil samples pH, soil texture, and organic carbon, nitrogen, base cation contents, dehydrogenase activity and β-glucosidase activity were determined. The obtained results were used to evaluate the carbon storage. The results confirm the beneficial effect of the applied organic fertilizer on chemical properties of the soils under study and their biological activity. The applied organic fertilizers had an impact on increased accumulation of soil organic matter. In the soils investigated, there was an increase in the activity of such enzymes as dehydrogenases and β-glucosidase.

  19. Contributions of ectomycorrhizal fungal mats to forest soil respiration

    Science.gov (United States)

    C. Phillips; L.A. Kluber; J.P. Martin; B.A. Caldwell; B.J. Bond

    2012-01-01

    Distinct aggregations of fungal hyphae and rhizomorphs, or “mats”, formed by some genera of ectomycorrhizal (EcM) fungi are common features of soils in coniferous forests of the Pacific Northwest. We measured in situ respiration rates of Piloderma mats and neighboring non-mat soils in an old-growth Douglas-fir forest in western Oregon to investigate whether there was...

  20. Observing and modeling links between soil moisture, microbes and CH4 fluxes from forest soils

    Science.gov (United States)

    Christiansen, Jesper; Levy-Booth, David; Barker, Jason; Prescott, Cindy; Grayston, Sue

    2017-04-01

    Soil moisture is a key driver of methane (CH4) fluxes in forest soils, both of the net uptake of atmospheric CH4 and emission from the soil. Climate and land use change will alter spatial patterns of soil moisture as well as temporal variability impacting the net CH4 exchange. The impact on the resultant net CH4 exchange however is linked to the underlying spatial and temporal distribution of the soil microbial communities involved in CH4 cycling as well as the response of the soil microbial community to environmental changes. Significant progress has been made to target specific CH4 consuming and producing soil organisms, which is invaluable in order to understand the microbial regulation of the CH4 cycle in forest soils. However, it is not clear as to which extent soil moisture shapes the structure, function and abundance of CH4 specific microorganisms and how this is linked to observed net CH4 exchange under contrasting soil moisture regimes. Here we report on the results from a research project aiming to understand how the CH4 net exchange is shaped by the interactive effects soil moisture and the spatial distribution CH4 consuming (methanotrophs) and producing (methanogens). We studied the growing season variations of in situ CH4 fluxes, microbial gene abundances of methanotrophs and methanogens, soil hydrology, and nutrient availability in three typical forest types across a soil moisture gradient in a temperate rainforest on the Canadian Pacific coast. Furthermore, we conducted laboratory experiments to determine whether the net CH4 exchange from hydrologically contrasting forest soils responded differently to changes in soil moisture. Lastly, we modelled the microbial mediation of net CH4 exchange along the soil moisture gradient using structural equation modeling. Our study shows that it is possible to link spatial patterns of in situ net exchange of CH4 to microbial abundance of CH4 consuming and producing organisms. We also show that the microbial

  1. Nitrogen dynamics in oak forest soils along a historical deposition gradient

    Science.gov (United States)

    Ralph E. J. Boerner; Elaine Kennedy Sutherland

    1995-01-01

    This study quantified soil nutrient status and N mineralization/nitrification potentials in soils of oakdominated, unmanaged forest stands in seven experimental forests ranging along a historical and current acidic deposition gradient from southern Illinois to central West Virginia, U.S.A. Among these seven sites (that spanned 8.5º of longitude) soil pH and Ca...

  2. [A comparative study on soil fauna in native secondary evergreen broad-leaved forest and Chinese fir plantation forests in subtropics].

    Science.gov (United States)

    Yan, Shaokui; Wang, Silong; Hu, Yalin; Gao, Hong; Zhang, Xiuyong

    2004-10-01

    In this study, we investigated the response of soil animal communities to the replacement of native secondary forest by Chinese fir plantation forest and successive rotation of Chinese fir in subtropics. Three adjacent forest stands, i.e., native secondary evergreen broad-leaved forest stand (control) and Chinese fir plantation stands of first (20 yr) and second (20 yr) rotations were selected for the comparison of soil fauna. All animals were extracted from the floor litter and 0-15 cm soil layer of the stands in Summer, 2003 by using Tullgren method, wet funnel method and hand-sorting method. Compared to two Chinese fir plantation forests, the native secondary evergreen broad-leaved forest had a higher abundance and a higher taxonomic diversity of animals in soil and litter, but there were no significant differences in the biomass and productivity of soil fauna between all study stands. The abundance or diversity did not differ significantly between the first rotation and second rotation stands, too. The results supported that vegetation cover might be one of the main forces driving the development of soil animal communities, and the effect of successive rotation of Chinese fir on the development of soil fauna was a slow-running process.

  3. Alkali metals in fungi of forest soil

    International Nuclear Information System (INIS)

    Vinichuk, M.; Taylor, A.; Rosen, K.; Nikolova, I.; Johanson, K.J.

    2009-01-01

    The high affinity of forest soil fungi for alkali metals such as potassium, rubidium, caesium as well as radiocaesium is shown and discussed. Good positive correlation was found between K: Rb concentration ratios in soil and in fungi, when correlation between K: Cs concentration ratios was less pronounced. (LN)

  4. Nitrogen release from forest soils containing sulfide-bearing sediments

    Science.gov (United States)

    Maileena Nieminen, Tiina; Merilä, Päivi; Ukonmaanaho, Liisa

    2014-05-01

    Soils containing sediments dominated by metal sulfides cause high acidity and release of heavy metals, when excavated or drained, as the aeration of these sediments causes formation of sulfuric acid. Consequent leaching of acidity and heavy metals can kill tree seedlings and animals such as fish, contaminate water, and corrode concrete and steel. These types of soils are called acid sulfate soils. Their metamorphic equivalents, such as sulfide rich black shales, pose a very similar risk of acidity and metal release to the environment. Until today the main focus in treatment of the acid sulfate soils has been to prevent acidification and metal toxicity to agricultural crop plants, and only limited attention has been paid to the environmental threat caused by the release of acidity and heavy metals to the surrounding water courses. Even less attention is paid on release of major nutrients, such as nitrogen, although these sediments are extremely rich in carbon and nitrogen and present a potentially high microbiological activity. In Europe, the largest cover of acid sulfate soils is found in coastal lowlands of Finland. Estimates of acid sulfate soils in agricultural use range from 1 300 to 3 000 km2, but the area in other land use classes, such as managed peatland forests, is presumably larger. In Finland, 49 500 km2 of peatlands have been drained for forestry, and most of these peatland forests will be at the regeneration stage within 10 to 30 years. As ditch network maintenance is often a prerequisite for a successful establishment of the following tree generation, the effects of maintenance operations on the quality of drainage water should be under special control in peatlands underlain by sulfide-bearing sediments. Therefore, identification of risk areas and effective prevention of acidity and metal release during drain maintenance related soil excavating are great challenges for forestry on coastal lowlands of Finland. The organic and inorganic nitrogen

  5. Erosi Tanah Akibat Operasi Pemanenan Hutan (Soil Erosion Caused by Forest Harvesting Operations

    Directory of Open Access Journals (Sweden)

    Ujang Suwarna

    2011-05-01

    Full Text Available Forest harvesting operation has been known as an activity that should be considered as the main cause of soil erosion. Indonesia, the second largest owner of tropical forest, should have a serious consideration to the operation.  Therefore, the study was conducted in logged over area of a natural production forest.  The objectives of the study was to examine level of soil erosion caused by forest harvesting operations and to analyze a strategy to control level of the erosion based on its influencing factors. The study showed that forest harvesting operations caused soil erosion.  Factors that influenced the high level of the erosion were high level of precipitation, lack on planning of forest harvesting operations, no applying treatment of cross drain and cover crop in the new skidding roads, no culture of carefulness in the operations, and low human resource capacity in applying environmentally friendly forest harvesting techniques. Keywords: soil erosion, forest harvesting, logged over area, skidding road

  6. Maximum temperature accounts for annual soil CO2 efflux in temperate forests of Northern China

    Science.gov (United States)

    Zhou, Zhiyong; Xu, Meili; Kang, Fengfeng; Jianxin Sun, Osbert

    2015-01-01

    It will help understand the representation legality of soil temperature to explore the correlations of soil respiration with variant properties of soil temperature. Soil temperature at 10 cm depth was hourly logged through twelve months. Basing on the measured soil temperature, soil respiration at different temporal scales were calculated using empirical functions for temperate forests. On monthly scale, soil respiration significantly correlated with maximum, minimum, mean and accumulated effective soil temperatures. Annual soil respiration varied from 409 g C m−2 in coniferous forest to 570 g C m−2 in mixed forest and to 692 g C m−2 in broadleaved forest, and was markedly explained by mean soil temperatures of the warmest day, July and summer, separately. These three soil temperatures reflected the maximum values on diurnal, monthly and annual scales. In accordance with their higher temperatures, summer soil respiration accounted for 51% of annual soil respiration across forest types, and broadleaved forest also had higher soil organic carbon content (SOC) and soil microbial biomass carbon content (SMBC), but a lower contribution of SMBC to SOC. This added proof to the findings that maximum soil temperature may accelerate the transformation of SOC to CO2-C via stimulating activities of soil microorganisms. PMID:26179467

  7. Using soil quality indicators for monitoring sustainable forest management

    Science.gov (United States)

    James A. Burger; Garland Gray; D. Andrew Scott

    2010-01-01

    Most private and public forest land owners and managers are compelled to manage their forests sustainably, which means management that is economically viable,environmentally sound, and socially acceptable. To meet this mandate, the USDA Forest Service protects the productivity of our nation’s forest soils by monitoring and evaluating management activities to ensure...

  8. Molecular distributions of phospholipid ester-linked fatty acids in a soil profile of the Dinghushan Biosphere Reserve

    Directory of Open Access Journals (Sweden)

    Shengyi Mao

    2018-01-01

    Full Text Available Phospholipid ester-linked fatty acids (PLFA were used to investigate the microbial ecology and its association with carbon accumulation in one soil profile from the Dinghushan Biosphere Preserve in south China, in order to probe the mechanisms that control the carbon accumulation at the depth of 0 - 20 cm in the Dinghushan forest soil profile. The data show that sulfate reducing bacteria (SRB occur in the top 10 cm, and methanotrophic bacteria and fungi are not present below 10 cm, and the gram-negative bacteria are reduced with gram-positive bacteria dominating at that depth; all of which indicated that the activities of some of the microorganisms were inhibited, from which we infer that the available carbon source and oxygen content of micro environment may be reduced below 10 cm of the profile. The shallow depth (top 10 cm of the soil anaerobic zone at the Wukesong profile, compared to the normal soil anaerobic zone (top 20 - 30 cm, is considered to be mainly the result of the high precipitation of acidic rain. The physicochemical reactions caused by acid rain in the soil system result in a decreased soil porosity, and a correspondingly decreased porosity-dependent oxygen concentration, leading to the thriving of SRB in the shallow depth. Although the increase of soil organic carbon stock is attributed to numerous factors, the decreasing rate of litter decomposition in the topsoil layer, together with the rise of the depth of the anaerobic zone, may play key roles in the carbon accumulation in the depth of 0 - 20 cm in the soil profile from the Dinghushan Biosphere Preserve.

  9. Aggregate Stability in Soil with Humic and Histic Horizons in a Toposequence under Araucaria Forest

    Directory of Open Access Journals (Sweden)

    Daniel Hanke

    Full Text Available ABSTRACT Aggregate stability is one of the most important factors in soil conservation and maintenance of soil environmental functions. The objective of this study was to investigate the aggregate stability mechanisms related to chemical composition of organic matter in soil profiles with humic and histic horizons in a toposequence under Araucaria moist forest in southern Brazil. The soils sampled were classified as Humic Hapludox (highest position, Fluvaquentic Humaquepts (lowest slope position, and Typic Haplosaprists (floodplain. The C and N contents were determined in bulk soil samples. The chemical composition of soil organic matter was evaluated by infrared spectroscopy. Aggregate stability was determined by applying increasing levels of ultrasound energy. Carbon content increased from the top of the slope to the alluvial plain. Higher ultrasonic energy values for clay dispersion were observed in the C-rich soils in the lower landscape positions, indicating that organic compounds play an important role in the structural stabilization of these profiles. Both aliphatic and carbohydrate-like structures were pertinent to aggregate stability. In the Oxisol, organo-mineral interaction between carbohydrates and the clay mineral surface was the most important mechanism affecting aggregation. In soils with a higher C content (Humaquepts and Haplosaprists, stabilization is predominantly conferred by the aliphatic groups, which is probably due to the structural protection offered by these hydrophobic organic groups.

  10. Soil microbial community successional patterns during forest ecosystem restoration.

    Science.gov (United States)

    Banning, Natasha C; Gleeson, Deirdre B; Grigg, Andrew H; Grant, Carl D; Andersen, Gary L; Brodie, Eoin L; Murphy, D V

    2011-09-01

    Soil microbial community characterization is increasingly being used to determine the responses of soils to stress and disturbances and to assess ecosystem sustainability. However, there is little experimental evidence to indicate that predictable patterns in microbial community structure or composition occur during secondary succession or ecosystem restoration. This study utilized a chronosequence of developing jarrah (Eucalyptus marginata) forest ecosystems, rehabilitated after bauxite mining (up to 18 years old), to examine changes in soil bacterial and fungal community structures (by automated ribosomal intergenic spacer analysis [ARISA]) and changes in specific soil bacterial phyla by 16S rRNA gene microarray analysis. This study demonstrated that mining in these ecosystems significantly altered soil bacterial and fungal community structures. The hypothesis that the soil microbial community structures would become more similar to those of the surrounding nonmined forest with rehabilitation age was broadly supported by shifts in the bacterial but not the fungal community. Microarray analysis enabled the identification of clear successional trends in the bacterial community at the phylum level and supported the finding of an increase in similarity to nonmined forest soil with rehabilitation age. Changes in soil microbial community structure were significantly related to the size of the microbial biomass as well as numerous edaphic variables (including pH and C, N, and P nutrient concentrations). These findings suggest that soil bacterial community dynamics follow a pattern in developing ecosystems that may be predictable and can be conceptualized as providing an integrated assessment of numerous edaphic variables.

  11. Fifteen-year patterns of soil carbon and nitrogen following biomass harvesting

    Science.gov (United States)

    Kurth, Valerie J.; D'Amato, Anthony W.; Palik, Brian J.; Bradford, John B.

    2014-01-01

    The substitution of forest-derived woody biofuels for fossil fuel energy has garnered increasing attention in recent years, but information regarding the mid- and long-term effects on soil productivity is limited. We investigated 15-yr temporal trends in forest floor and mineral soil (0–30 cm) C and N pools in response to organic matter removal treatments (OMR; stem-only harvest, SOH; whole-tree harvest, WTH; and whole-tree plus forest floor removal, FFR) at three edaphically distinct aspen (Populus tremuloides Michx. and P. grandidentata Michx.) forests in the Great Lakes region. The OMR and temporal effects were generally site specific, and both were most evident in the forest floor and combined profile (mineral soil and forest floor) compared with the mineral soil alone. Forest floor and combined profile C and N pools were generally similar in the SOH and WTH treatments, suggesting that slash retention has little impact on soil C and N in this time frame. Temporal changes in C and N at one of the three sites were consistent with patterns documented following exotic earthworm invasion, but mineral soil pools at the other two sites were stable over time. Power analyses demonstrated that significant effects were more likely to be detected for temporal differences than the effects of OMR and in the combined profile than in the mineral soil. Our findings are consistent with previous work demonstrating that OMR effects on soil C and N pools are site specific and more apparent in the forest floor than the mineral soil.

  12. Associations between soil variables and vegetation structure and composition of Caribbean dry forests

    Science.gov (United States)

    Elvia M. Melendez-Ackerman; Julissa Rojas-Sandoval; Danny S. Fernandez; Grizelle Gonzalez; Hana Lopez; Jose Sustache; Mariely Morales; Miguel Garcia-Bermudez; Susan Aragon

    2016-01-01

    Soil–vegetation associations have been understudied in tropical dry forests when compared to the amount of extant research on this issue in tropical wet forests. Recent studies assert that vegetation in tropical dry forests is highly heterogeneous and that soil variability may be a contributing factor. In this study, we evaluated the relationship between soil variables...

  13. Influence of drainage status on soil and water chemistry, litter decomposition and soil respiration in central Amazonian forests on sandy soils

    Directory of Open Access Journals (Sweden)

    Antônio Ocimar Manzi

    2011-04-01

    Full Text Available Central Amazonian rainforest landscape supports a mosaic of tall terra firme rainforest and ecotone campinarana, riparian and campina forests, reflecting topography-induced variations in soil, nutrient and drainage conditions. Spatial and temporal variations in litter decomposition, soil and groundwater chemistry and soil CO2 respiration were studied in forests on sandy soils, whereas drought sensitivity of poorly-drained valley soils was investigated in an artificial drainage experiment. Slightly changes in litter decomposition or water chemistry were observed as a consequence of artificial drainage. Riparian plots did experience higher litter decomposition rates than campina forest. In response to a permanent lowering of the groundwater level from 0.1 m to 0.3 m depth in the drainage plot, topsoil carbon and nitrogen contents decreased substantially. Soil CO2 respiration decreased from 3.7±0.6 µmol m-2 s-1 before drainage to 2.5±0.2 and 0.8±0.1 µmol m-2 s-1 eight and 11 months after drainage, respectively. Soil respiration in the control plot remained constant at 3.7±0.6 µmol m-2 s-1. The above suggests that more frequent droughts may affect topsoil carbon and nitrogen content and soil respiration rates in the riparian ecosystem, and may induce a transition to less diverse campinarana or short-statured campina forest that covers areas with strongly-leached sandy soil.

  14. Depth-Dependent Mineral Soil CO2 Production Processes: Sensitivity to Harvesting-Induced Changes in Soil Climate.

    Science.gov (United States)

    Kellman, Lisa; Myette, Amy; Beltrami, Hugo

    2015-01-01

    Forest harvesting induces a step change in the climatic variables (temperature and moisture), that control carbon dioxide (CO2) production arising from soil organic matter decomposition within soils. Efforts to examine these vertically complex relationships in situ within soil profiles are lacking. In this study we examined how the climatic controls on CO2 production change within vertically distinct layers of the soil profile in intact and clearcut forest soils of a humid temperate forest system of Atlantic Canada. We measured mineral soil temperature (0, 5, 10, 20, 50 and 100 cm depth) and moisture (0-15 cm and 30-60 cm depth), along with CO2 surface efflux and subsurface concentrations (0, 2.5, 5, 10, 20, 35, 50, 75 and 100 cm depth) in 1 m deep soil pits at 4 sites represented by two forest-clearcut pairs over a complete annual cycle. We examined relationships between surface efflux at each site, and soil heat, moisture, and mineral soil CO2 production. Following clearcut harvesting we observed increases in temperature through depth (1-2°C annually; often in excess of 4°C in summer and spring), alongside increases in soil moisture (30%). We observed a systematic breakdown in the expected exponential relationship between CO2 production and heat with mineral soil depth, consistent with an increase in the role moisture plays in constraining CO2 production. These findings should be considered in efforts to model and characterize mineral soil organic matter decomposition in harvested forest soils.

  15. Diversity and dynamics of rhizobial populations in acidic soils with aluminum and manganese toxicities in forest zones

    Directory of Open Access Journals (Sweden)

    Linda Manet

    2016-12-01

    Full Text Available Soil acidity in the humid forest zones of Cameroon is one of the major constraints to agricultural productivity. This study was carried out to assess the rhizobial communities of two acidic soils; with aluminum toxicity (Nkoemvone and manganese toxicity (Nkolbisson for their potential to improve soil fertility in Cameroon. These two soils were used to inoculate to the host plants cowpea and siratro. At harvest, 120 rhizobacterial isolates were extracted from the nodules of these two hosts and subjected to morphological characterization. Twenty isolates per site were selected and analyzed for their 16S rDNA genetic profile following restrictions with endonucleases of PCR products and electrophoresis. The restriction patterns of the 16S rDNA of the 40 isolates showed 12 different profiles. Eight occurred in both types of soils, where as 4 were specific to the manganese-toxic-acidic soil. While the Al toxicity reduced the nodulation and growth of both plants, the Mn toxicity mostly affect the cowpea. This study ascertained the distribution of rhizobia based on soil characteristics. Further molecular analyses would allow the identification of the isolates recovered as well as their phylogenetical relationships.

  16. Soil seed banks along elevational gradients in tropical, subtropical and subalpine forests in Yunnan Province, southwest China

    Institute of Scientific and Technical Information of China (English)

    Xiaqin Luo; Min Cao; Min Zhang; Xiaoyang Song; Jieqiong Li; Akihiro Nakamura; Roger Kitching

    2017-01-01

    Soil seed banks are a vital part of ecosystems and influence community dynamics and regeneration.Although soil seed banks in different habitats have been reported,how soil seed banks vary with elerational gradients in different climatic zones is still unknown.This paper investigates seed density,species composition and nonconstituent species of forest soil seed banks in Yunnan Province,southwest China.Similarity between the soil seed bank and standing vegetation was also examined.We collected soil samples from sites spanning 12 elevations in tropical rain forests,subtropical evergreen broadleaved forests and subalpine coniferous forests,and transported them to a glasshouse for germination trials for species identification.The soil seed banks of tropical and subtropical forests had much higher seed densities and species richness than those of subalpine forests.Seeds of woody species dominated the soil seed banks of tropical and subtropical forests,while herbs dominated those of subalpine forests.The nonconstituent species in the soil seed banks were all herbs and were most abundant in tropical forests,followed by subtropical forests but were completely absent from subalpine forests.

  17. Soil seed banks along elevational gradients in tropical, subtropical and subalpine forests in Yunnan Province, southwest China

    Directory of Open Access Journals (Sweden)

    Xiaqin Luo

    2017-10-01

    Full Text Available Soil seed banks are a vital part of ecosystems and influence community dynamics and regeneration. Although soil seed banks in different habitats have been reported, how soil seed banks vary with elevational gradients in different climatic zones is still unknown. This paper investigates seed density, species composition and nonconstituent species of forest soil seed banks in Yunnan Province, southwest China. Similarity between the soil seed bank and standing vegetation was also examined. We collected soil samples from sites spanning 12 elevations in tropical rain forests, subtropical evergreen broad-leaved forests and subalpine coniferous forests, and transported them to a glasshouse for germination trials for species identification. The soil seed banks of tropical and subtropical forests had much higher seed densities and species richness than those of subalpine forests. Seeds of woody species dominated the soil seed banks of tropical and subtropical forests, while herbs dominated those of subalpine forests. The nonconstituent species in the soil seed banks were all herbs and were most abundant in tropical forests, followed by subtropical forests but were completely absent from subalpine forests.

  18. Effect of N and P addition on soil organic C potential mineralization in forest soils in South China

    Institute of Scientific and Technical Information of China (English)

    OUYANG Xuejun; ZHOU Guoyi; HUANG Zhongliang; ZHOU Cunyu; LI Jiong; SHI Junhui; ZHANG Deqiang

    2008-01-01

    Atmospheric nitrogen deposition is at a high level in some forests of South China. The effects of addition of exogenous N and P on soil organic carbon mineralization were studied to address: (1) if the atmospheric N deposition promotes soil C storage through decreasing mineralization; (2) if the soil available P is a limitation to organic carbon mineralization. Soils (0-10 cm) was sampled from monsoon evergreen broad-leaved forest (MEBF), coniferous and broad-leaved mixed forest (CBMF), and Pinus massoniana forest (PMF) in Dinghushan Biosphere Reserve (located in Gnangdong Province, China). The soils were incubated at 25℃ for 45 weeks, with addition of N (NH4NO3 solution) or P (KH2PO4 solution). CO2-C emission and the inorganic N (NH4+-N and NO3--N) of the soils were determined during the incubation. The results showed that CO2-C emission decreased with the N addition. The addition of P led to a short-term sharp increase in CO2 emission after P application, and the responses of CO2-C evolution to P addition in the later period of incubation related to forest types. Strong P inhibition to CO2 emission occurred in both PMF and CBMF soils in the later incubation. The two-pool kinetic model was fitted well to the data for C turnover in this experiment. The model analysis demonstrated that the addition of N and P changed the distribution of soil organic C between the labile and recalcitrant pool, as well as their mineralization rates. In our experiment, soil pH can not completely explain the negative effect of N addition on CO2-C emission. The changes of soil inorganic N during incubation seemed to support the hypothesis that the polymerization of added nitrogen with soil organic compound by abiotic reactions during incubation made the added nitrogen retard the soil organic carbon mineralization. We conclude that atmospheric N deposition contributes to soil C accretion in the three subtropical forest ecosystems, however, the shortage of soil available P in CBMF and

  19. UAV-Borne Profiling Radar for Forest Research

    Directory of Open Access Journals (Sweden)

    Yuwei Chen

    2017-01-01

    Full Text Available Microwave Radar is an attractive solution for forest mapping and inventories because microwave signals penetrates into the forest canopy and the backscattering signal can provide information regarding the whole forest structure. Satellite-borne and airborne imaging radars have been used in forest resources mapping for many decades. However, their accuracy with respect to the main forest inventory attributes substantially varies depending on the wavelength and techniques used in the estimation. Systems providing canopy backscatter as a function of canopy height are, practically speaking, missing. Therefore, there is a need for a radar system that would enable the scientific community to better understand the radar backscatter response from the forest canopy. Consequently, we undertook a research study to develop an unmanned aerial vehicle (UAV-borne profiling (i.e., waveform radar that could be used to improve the understanding of the radar backscatter response for forestry mapping and inventories. A frequency modulation continuous waveform (FMCW profiling radar, termed FGI-Tomoradar, was introduced, designed and tested. One goal is the total weight of the whole system is less than 7 kg, including the radar system and georeferencing system, with centimetre-level positioning accuracy. Achieving this weight goal would enable the FGI-Tomoradar system to be installed on the Mini-UAV platform. The prototype system had all four linear polarization measuring capabilities, with bistatic configuration in Ku-band. In system performance tests in this study, FGI-Tomoradar was mounted on a manned helicopter together with a Riegl VQ-480-U laser scanner and tested in several flight campaigns performed at the Evo site, Finland. Airborne laser scanning data was simultaneously collected to investigate the differences and similarities of the outputs for the same target area for better understanding the penetration of the microwave signal into the forest canopy

  20. Transfer of radio-cesium from forest soil to woodchips using fungal activities

    Science.gov (United States)

    Kaneko, Nobuhiro; Huang, Yao; Tanaka, Yoichiro; Fujiwara, Yoshihiro; Sasaki, Michiko; Toda, Hiroto; Takahashi, Terumasa; Kobayashi, Tatsuaki; Harada, Naoki; Nonaka, Masahiro

    2014-05-01

    Raido-cesium released to terrestrial ecosystems by nuclear accidents is know to accumulate forest soil and organic layer on the soil. Forests in Japan are not exceptions. Practically it is impossible to decontaminate large area of forests. However, there is a strong demand from local people, who has been using secondary forests (Satoyama) around croplands in hilly areas, to decontaminate radio-cesium, because those people used to collect wild mushrooms and edible plants, and there are active cultures of mushrooms using logs and sawdusts. These natural resource uses consist substantial part of their economical activities, Therefore it is needed to decontaminate some selected part of forests in Japan to local economy. Clear cutting and scraping surface soil and organic matter are common methods of decontamination. However the efficiency of decontamination is up to 30% reduction of aerial radiation, and the cost to preserve contaminated debris is not affordable. In this study we used wood chips as a growth media for saprotrophic fungi which are known to accumulate redio-cesium. There are many studies indicated that mushrooms accumulated redio-cesium from forest soil and organic layer. It is not practical to collect mushrooms to decontaminate redio-cesium, because biomass of mushrooms are not enough to collect total contaminants. Mushrooms are only minor part of saprotrophic fungi. Fungal biomass in forest soil is about 1% of dead organic matter on forest floor. Our previous study to observe Cs accumulation to decomposing leaf litter indicated 18% absorption of total soil radio-Cs to litter during one year field incubation (Kaneko et al., 2013), and Cs concentration was proportional to fungal biomass on litter. This result indicated that fungi transferred radio-cesium around newly supplied leaf litter free of contamination. Therefore effective decontamination will be possible if we can provide large amount of growth media for saprotrophic fungi, and the media can be

  1. Nematodes inhabit soils of forest and clear-cut areas

    Science.gov (United States)

    Alex L. Shigo; George Yelenosky

    1960-01-01

    Nematodes are present in all forest soils, but their effects on forest trees are not known. The known destructive nature of these worms on other woody crops suggests that they may also be involved in causing some of the unexplainable losses in vigor and mortality of forest trees.

  2. Tropical forest soil microbes and climate warming: An Andean-Amazon gradient and `SWELTR'

    Science.gov (United States)

    Nottingham, A.; Turner, B. L.; Fierer, N.; Whitaker, J.; Ostle, N. J.; McNamara, N. P.; Bardgett, R.; Silman, M.; Bååth, E.; Salinas, N.; Meir, P.

    2017-12-01

    Climate warming predicted for the tropics in the coming century will result in average temperatures under which no closed canopy forest exists today. There is, therefore, great uncertainty associated with the direction and magnitude of feedbacks between tropical forests and our future climate - especially relating to the response of soil microbes and the third of global soil carbon contained in tropical forests. While warming experiments are yet to be performed in tropical forests, natural temperature gradients are powerful tools to investigate temperature effects on soil microbes. Here we draw on studies from a 3.5 km elevation gradient - and 20oC mean annual temperature gradient - in Peruvian tropical forest, to investigate how temperature affects the structure of microbial communities, microbial metabolism, enzymatic activity and soil organic matter cycling. With decreased elevation, soil microbial diversity increased and community composition shifted, from taxa associated with oligotrophic towards copiotrophic traits. A key role for temperature in shaping these patterns was demonstrated by a soil translocation experiment, where temperature-manipulation altered the relative abundance of specific taxa. Functional implications of these community composition shifts were indicated by changes in enzyme activities, the temperature sensitivity of bacterial and fungal growth rates, and the presence of temperature-adapted iso-enzymes at different elevations. Studies from a Peruvian elevation transect indicated that soil microbial communities are adapted to long-term (differences with elevation) and short-term (translocation responses) temperature changes. These findings indicate the potential for adaptation of soil microbes in tropical soils to future climate warming. However, in order to evaluate the sensitivity of these processes to climate warming in lowland forests, in situ experimentation is required. Finally, we describe SWELTR (Soil Warming Experiment in Lowland

  3. N2O production pathways in the subtropical acid forest soils in China

    International Nuclear Information System (INIS)

    Zhang Jinbo; Cai Zucong; Zhu Tongbin

    2011-01-01

    To date, N 2 O production pathways are poorly understood in the humid subtropical and tropical forest soils. A 15 N-tracing experiment was carried out under controlled laboratory conditions to investigate the processes responsible for N 2 O production in four subtropical acid forest soils (pH 2 O emission in the subtropical acid forest soils, being responsible for 56.1%, 53.5%, 54.4%, and 55.2% of N 2 O production, in the GC, GS, GB, and TC soils, respectively, under aerobic conditions (40%-52%WFPS). The heterotrophic nitrification (recalcitrant organic N oxidation) accounted for 27.3%-41.8% of N 2 O production, while the contribution of autotrophic nitrification was little in the studied subtropical acid forest soils. The ratios of N 2 O-N emission from total nitrification (heterotrophic+autotrophic nitrification) were higher than those in most previous references. The soil with the lowest pH and highest organic-C content (GB) had the highest ratio (1.63%), suggesting that soil pH-organic matter interactions may exist and affect N 2 O product ratios from nitrification. The ratio of N 2 O-N emission from heterotrophic nitrification varied from 0.02% to 25.4% due to soil pH and organic matter. Results are valuable in the accurate modeling of N2O production in the subtropical acid forest soils and global budget. - Highlights: → We studied N 2 O production pathways in subtropical acid forest soil under aerobic conditions. → Denitrification was the main source of N 2 O production in subtropical acid forest soils. → Heterotrophic nitrification accounted for 27.3%-41.8% of N 2 O production. → While, contribution of autotrophic nitrification to N 2 O production was little. → Ratios of N 2 O-N emission from nitrification were higher than those in most previous references.

  4. Preliminary study of prairies forested with Eucalyptus sp. at the northwestern Uruguayan soils

    International Nuclear Information System (INIS)

    Carrasco-Letelier, L.; Eguren, G.; Castineira, C.; Parra, O.; Panario, D.

    2004-01-01

    The forestation of Uruguayan natural prairie soil does not always ensure an increase of soil carbon sink. - The land cover change of Uruguayan Forestal Plan provoked biogeochemical changes on horizon Au 1 of Argiudols; in native prairies which were replaced by monoculture Eucalyptus sp. plantation with 20 year rotations as trees. Five fields forested and six natural prairies were compared. The results not only show a statistical significant soil acidification, diminution of soil organic carbon, increase of aliphaticity degree of humic substances, and increase of affinity and capacity of hydrolytic activity from soil microbial communities for forested sites with Eucalyptus sp. but also, a tendency of podzolization and/or mineralization by this kind of land cover changes, with a net soil organic lost of 16.6 tons ha -1 in the horizon Au 1 of soil under Eucalyptus sp. plantation compared with prairie. Besides, these results point out the necessity of correction of the methodology used by assigned Uruguayan commission to assess the national net emission of greenhouse gases, since the mineralization and/or podzolization process detected in forested soil imply a overestimation of soil organic carbon. The biochemical parameters show a statistical significant correlation between the soil organic carbon status and these parameters which were presented as essential for the correct evaluation of Uruguayan soil carbon sink

  5. Mineralogical composition changes of postagrogenic soils under different plant communities.

    Science.gov (United States)

    Churilin, Nikita; Chizhikova, Natalia; Varlamov, Evgheni; Churilina, Alexandra

    2017-04-01

    Plant communities play the leading role in transformation of soil. The need of studying former arable lands increases due to large number of abandoned lands in Russia. It is necessary to study mineralogical composition of soils involved into natural processes to understand the trends of their development after agricultural activities in the past. The aim of the study is to identify changes in mineralogical composition of soils under the influence of different plant communities. Soils were sampled in the south of Arkhangelsk region, Ustyansky district, near Akichkin Pochinok village. Soils are formed on clay moraine of Moscow glaciation. Soil profiles were dug on interfluve. We selected 4 plant communities on different stages of succession: upland meadow with domination of sod grasses (Phleum pratense, Agrostis tenuis), 16-year-old birch forest where dominants are herbaceous plants such as Poa sp., Chamerion angustiflium, Agrostis tenuis, 16-year-old spruce forest with no herbaceous vegetation and 70-year-old bilberry spruce forest with domination of Vaccinium myrtillus and Vaccinium vitis-idaea. To separate soil fractions mineral content. We noticed a clear differentiation of studied soils both in the content of fraction and composition of minerals. Mineralogical composition and major mineral phases correlation of profiles under 70 years and 16 years of spruce forests are different. Mineralogical content in upper part of profile under the young spruce is more differentiated than in old spruce forest: the amount of quartz and kaolinite increases in upper horizon, although in this case the overall pattern of profile formation of clay material during podzolization remains unchanged. There is more substantial desilting under the birch forest, compared with profile under the spruce of same age within top 50 cm. Under the meadow vegetation we've discovered differentiation in mineral composition. Upper horizons contain smectite phase and differ from the underlying

  6. Palaeovegetation dynamics of an ecotone forest-savanna in southern Brazilian Amazon during the late Pleistocene and Holocene based on carbon isotopes of soil organic matter

    International Nuclear Information System (INIS)

    Pessenda, L.C.R.; Gouveia, S.E.M.; Freitas, H.A. de; Bendassoli, J.A.; Gomes, B.M.; Aravena, R.; Ribeiro, A.S.; Boulet, R.

    2002-01-01

    This study was carried out in the Brazilian southern Amazon region (Rondonia state and Humaita, southern Amazon state). Carbon isotope data on soil organic matter have been collected along an ecosystem transect of about 750 km that includes a savanna, a wooded savanna (cerrado), a tropical semideciduous forest (cerradao), a forest transition type and a tropical forest. The main objective is to evaluate the expansion-regression dynamics of these vegetation units in relation to climate changes during the Late Pleistocene (Late Glacial) and Holocene. Large ranges in δ 13 values were observed in soil organic matter collected from profiles in the savanna (-27 to -14 per mille and forest regions (-26 to -19 per mille) reflecting changing distribution of 13 C-depleted C 3 forest and 13 C enriched C 4 savanna vegetation in response to climate change. 14 C data of humin fraction and buried charcoal indicate that the organic matter in these soils is at least 17,000 years BP at 300-cm depth. In this period, the entire ecosystem transect are characterized by δ 13 C soil depth profiles, generated typically by C 3 plants (forest), inferring a humid climate in the southern Amazon region after the end of last glaciation. 13 C data also indicate that C 4 plants (grasses) have influenced significantly the vegetation at the transitional forest and the cerrado sites of southern Rondonia state and two distinct points in the forest ecosystem in the southern Amazon state. These typical C 4 type isotopic signatures probably reflect a drier climate during about 9000-8000 yr BP to 3000 yr BP and the savanna and wooded savanna expansion in distinct points of the transect. The 13 C records representing the 3000 yr show an expansion of the forest, due to a climatic improvement, in areas previously occupied by savanna vegetation. This study adds to the mounting evidence that extensive forested areas existed in the Amazon during the last glacial and that savanna vegetation expanded in response

  7. Landscape heterogeneity, soil climate, and carbon exchange in a boreal black spruce forest.

    Science.gov (United States)

    Dunn, Allison L; Wofsy, Steven C; v H Bright, Alfram

    2009-03-01

    We measured soil climate and the turbulent fluxes of CO2, H2O, heat, and momentum on short towers (2 m) in a 160-yr-old boreal black spruce forest in Manitoba, Canada. Two distinct land cover types were studied: a Sphagnum-dominated wetland, and a feathermoss (Pleurozium and Hylocomium)-dominated upland, both lying within the footprint of a 30-m tower, which has measured whole-forest carbon exchange since 1994. Peak summertime uptake of CO2, was higher in the wetland than for the forest as a whole due to the influence of deciduous shrubs. Soil respiration rates in the wetland were approximately three times larger than in upland soils, and 30% greater than the mean of the whole forest, reflecting decomposition of soil organic matter. Soil respiration rates in the wetland were regulated by soil temperature, which was in turn influenced by water table depth through effects on soil heat capacity and conductivity. Warmer soil temperatures and deeper water tables favored increased heterotrophic respiration. Wetland drainage was limited by frost during the first half of the growing season, leading to high, perched water tables, cool soil temperatures, and much lower respiration rates than observed later in the growing season. Whole-forest evapotranspiration increased as water tables dropped, suggesting that photosynthesis in this forest was rarely subject to water stress. Our data indicate positive feedback between soil temperature, seasonal thawing, heterotrophic respiration, and evapotranspiration. As a result, climate warming could cause covariant changes in soil temperature and water table depths that may stimulate photosynthesis and strongly promote efflux of CO2 from peat soils in boreal wetlands.

  8. Final Progress Report on Model-Based Diagnosis of Soil Limitations to Forest Productivity

    Energy Technology Data Exchange (ETDEWEB)

    Luxmoore, R.J.

    2004-08-30

    This project was undertaken in support of the forest industry to link modeling of nutrients and productivity with field research to identify methods for enhancing soil quality and forest productivity and for alleviating soil limitations to sustainable forest productivity. The project consisted of a series of related tasks, including (1) simulation of changes in biomass and soil carbon with nitrogen fertilization, (2) development of spreadsheet modeling tools for soil nutrient availability and tree nutrient requirements, (3) additional modeling studies, and (4) evaluation of factors involved in the establishment and productivity of southern pine plantations in seasonally wet soils. This report also describes the two Web sites that were developed from the research to assist forest managers with nutrient management of Douglas-fir and loblolly pine plantations.

  9. SOIL QUALITY AND YIELD OF PINUS TAEDA IN THE PLANALTO CATARINENSE REGION

    Directory of Open Access Journals (Sweden)

    Cedinara Arruda Santana Morales

    2010-12-01

    Full Text Available In forest areas, the continual use of the soil alters its physical attributes and deteriorates its quality, in consequence of the traffic of machines used in forest operations, resulting in lower yields of crops. The relationship between soil quality at different sites and the production of Pinus taeda was evaluated in soils of the Planalto Catarinense region. Four farms were used, with two sites on each farm, chosen for the soil type and yield of the forest. The soil morphology was described and samples were collected in each pedogenetic horizon for physical and chemical analyses. Great variation exists in the physical attributes of the profiles, especially in the sequence and thickness of the horizons. Compaction was verified in the surface layer of the shallow profiles, evidenced by the higher bulk density and, or, soil resistance to penetration. In these profiles, the yield was reduced by between 14 and 36%, compared to the deeper profiles with a smaller degree of compaction.

  10. Land use, forest density, soil mapping, erosion, drainage, salinity limitations

    Science.gov (United States)

    Yassoglou, N. J. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. The results of analyses show that it is possible to obtain information of practical significance as follows: (1) A quick and accurate estimate of the proper use of the valuable land can be made on the basis of temporal and spectral characteristics of the land features. (2) A rather accurate delineation of the major forest formations in the test areas was achieved on the basis of spatial and spectral characteristics of the studied areas. The forest stands were separated into two density classes; dense forest, and broken forest. On the basis of ERTS-1 data and the existing ground truth information a rather accurate mapping of the major vegetational forms of the mountain ranges can be made. (3) Major soil formations are mapable from ERTS-1 data: recent alluvial soils; soil on quarternary deposits; severely eroded soil and lithosol; and wet soils. (4) An estimation of cost benefits cannot be made accurately at this stage of the investigation. However, a rough estimate of the ratio of the cost for obtaining the same amount information from ERTS-1 data and from conventional operations would be approximately 1:6 to 1:10, in favor of the ERTS-1.

  11. Forest Soil Productivity on the Southern Long-Term Soil Productivity Sites at Age 5

    Science.gov (United States)

    D. Andrew Scott; Allan E. Tiarks; Felipe G. Sanchez; Michael Elliott-Smith; Rick Stagg

    2004-01-01

    Forest management operations have the potential to reduce soil productivity through organic matter and nutrient removal and soil compaction. We measured pine volume, bulk density, and soil and foliar nitrogen and phosphorus at age 5 on the 13 southern Long-Term Soil Productivity study sites. The treatments were organic matter removal [bole only (BO), whole tree (WT),...

  12. Relative nitrogen mineralization and nitrification potentials in relation to soil chemistry in oak forest soils along a historical deposition gradient

    Science.gov (United States)

    Ralph E. J. Boerner; Elaine Kennedy Sutherland

    1996-01-01

    This study quantified soil nutrient status and N mineralization/nitrification potentials in soils of oak-dominated, unmanaged forest stands in seven USDA Forest Service experimental forests (EF) ranging along a historical and current acidic deposition gradient from southern Illinois to central West Virginia.

  13. Seasonal dynamics of soil CO2 emission in the boreal forests in Central Siberia

    Science.gov (United States)

    Makhnykina, A. V.; Prokishkin, A. S.; Zyryanov, V.; Verkhovets, S. V.

    2016-12-01

    A large amount of carbon in soil is released to the atmosphere through soil respiration, which is the main pathway of transferring carbon from terrestrial ecosystems (Comstedt et al., 2011). Considering that boreal forests is a large terrestrial sink (Tans et al., 1990) and represent approximately 11 % of the Earth's total land area (Gower et al., 2001), even a small change in soil respiration could significantly intensify - or mitigate - current atmospheric increases of CO2, with potential feedbacks to climate change. The objectives of the present study are: (a) to study the dynamic of CO2emission from the soil surface during summer season (from May to October); (b) to identify the reaction of soil respiration to different amount of precipitation as the main limiting factor in the region. The research was carried out in the pine forests in Central Siberia (60°N, 90°E), Russia. Sample plots were represented by the lichen pine forest, moss pine forest, mixed forest and anthropogenic destroyed area. We used the automated soil CO2 flux system based on the infrared gas analyzer LI-8100 for measuring the soil efflux. Soil temperature was measured with Soil Temperature Probe Type E in three depths 5, 10, 15 cm. Volumetric soil moisture was measured with Theta Probe Model ML2. The presence and type of ground cover substantially affects the value of soil respiration fluxes. The carbon dioxide emission from the soil surface averaged was 5.4 ±2.3 μmol CO2 m-2 s-1. The destroyed area without plant cover demonstrated the lowest soil respiration (0.1-5.6 μmol CO2 m-2 s-1). The lowest soil respiration among forested areas was observed in the feathermoss pine forest. The lichen pine forest soil respiration was characterized by averages values. The maximum soil respiration values and seasonal fluctuations were obtained in the mixed forest (2.3-29.3 μmol CO2 m-2 s-1). The analysis of relation between soil CO2 efflux and amount of precipitation showed that the site without any

  14. Response of soil respiration to acid rain in forests of different maturity in southern China.

    Directory of Open Access Journals (Sweden)

    Guohua Liang

    Full Text Available The response of soil respiration to acid rain in forests, especially in forests of different maturity, is poorly understood in southern China despite the fact that acid rain has become a serious environmental threat in this region in recent years. Here, we investigated this issue in three subtropical forests of different maturity [i.e. a young pine forest (PF, a transitional mixed conifer and broadleaf forest (MF and an old-growth broadleaved forest (BF] in southern China. Soil respiration was measured over two years under four simulated acid rain (SAR treatments (CK, the local lake water, pH 4.5; T1, water pH 4.0; T2, water pH 3.5; and T3, water pH 3.0. Results indicated that SAR did not significantly affect soil respiration in the PF, whereas it significantly reduced soil respiration in the MF and the BF. The depressed effects on both forests occurred mostly in the warm-wet seasons and were correlated with a decrease in soil microbial activity and in fine root biomass caused by soil acidification under SAR. The sensitivity of the response of soil respiration to SAR showed an increasing trend with the progressive maturity of the three forests, which may result from their differences in acid buffering ability in soil and in litter layer. These results indicated that the depressed effect of acid rain on soil respiration in southern China may be more pronounced in the future in light of the projected change in forest maturity. However, due to the nature of this field study with chronosequence design and the related pseudoreplication for forest types, this inference should be read with caution. Further studies are needed to draw rigorous conclusions regarding the response differences among forests of different maturity using replicated forest types.

  15. Response of soil respiration to acid rain in forests of different maturity in southern China.

    Science.gov (United States)

    Liang, Guohua; Liu, Xingzhao; Chen, Xiaomei; Qiu, Qingyan; Zhang, Deqiang; Chu, Guowei; Liu, Juxiu; Liu, Shizhong; Zhou, Guoyi

    2013-01-01

    The response of soil respiration to acid rain in forests, especially in forests of different maturity, is poorly understood in southern China despite the fact that acid rain has become a serious environmental threat in this region in recent years. Here, we investigated this issue in three subtropical forests of different maturity [i.e. a young pine forest (PF), a transitional mixed conifer and broadleaf forest (MF) and an old-growth broadleaved forest (BF)] in southern China. Soil respiration was measured over two years under four simulated acid rain (SAR) treatments (CK, the local lake water, pH 4.5; T1, water pH 4.0; T2, water pH 3.5; and T3, water pH 3.0). Results indicated that SAR did not significantly affect soil respiration in the PF, whereas it significantly reduced soil respiration in the MF and the BF. The depressed effects on both forests occurred mostly in the warm-wet seasons and were correlated with a decrease in soil microbial activity and in fine root biomass caused by soil acidification under SAR. The sensitivity of the response of soil respiration to SAR showed an increasing trend with the progressive maturity of the three forests, which may result from their differences in acid buffering ability in soil and in litter layer. These results indicated that the depressed effect of acid rain on soil respiration in southern China may be more pronounced in the future in light of the projected change in forest maturity. However, due to the nature of this field study with chronosequence design and the related pseudoreplication for forest types, this inference should be read with caution. Further studies are needed to draw rigorous conclusions regarding the response differences among forests of different maturity using replicated forest types.

  16. Forest harvesting effects on soil temperature, moisture, and respiration in a bottomland hardwood forest

    International Nuclear Information System (INIS)

    Londo, A.J.; Messina, M.G.; Schoenholtz, S.H.

    1999-01-01

    The effect of forest disturbance on C cycling has become an issue, given concerns about escalating atmospheric C content. The authors examined the effects of harvest intensity on in situ and laboratory mineral soil respiration in an East Texas bottomland hardwood forest between 6 and 22 mo after harvesting. Treatments included a clearcut, a partial cut wherein approximately 58% of the basal area was removed, and an unharvested control. The soda-lime absorption technique was used for in situ respiration (CO 2 efflux) and the wet alkali method (NaOH) was used for laboratory mineral soil respiration. Soil temperature and moisture content were also measured. Harvesting significantly increased in situ respiration during most sampling periods. This effect was attributed to an increase in live root and microflora activity associated with postharvesting revegetation. In situ respiration increased exponentially (Q 10 relationship) as treatment soil temperatures increased, but followed a parabolic-type pattern through the range of soil moisture measured (mean range 10.4--31.5%). Mean rates of laboratory mineral soil respiration measured during the study were unaffected by cutting treatment for most sampling sessions. Overall, the mean rate of CO 2 efflux in the clearcuts was significantly higher than that in the partial cuts, which in turn was significantly higher than that in the controls. Mass balance estimates indicate that these treatment differences will have little or no long-term effect on C sequestration of these managed forests

  17. Soil microbial diversity, site conditions, shelter forest land, saline water drip-irrigation, drift desert.

    Science.gov (United States)

    Jin, Zhengzhong; Lei, Jiaqiang; Li, Shengyu; Xu, Xinwen

    2013-10-01

    Soil microbes in forest land are crucial to soil development in extreme areas. In this study, methods of conventional culture, PLFA and PCR-DGGE were utilized to analyze soil microbial quantity, fatty acids and microbial DNA segments of soils subjected to different site conditions in the Tarim Desert Highway forest land. The main results were as follows: the soil microbial amount, diversity indexes of fatty acid and DNA segment differed significantly among sites with different conditions (F 84%), followed by actinomycetes and then fungi (<0.05%). Vertical differences in the soil microbial diversity were insignificant at 0-35 cm. Correlation analysis indicated that the forest trees grew better as the soil microbial diversity index increased. Therefore, construction of the Tarim Desert Highway shelter-forest promoted soil biological development; however, for enhancing sand control efficiency and promoting sand development, we should consider the effects of site condition in the construction and regeneration of shelter-forest ecological projects. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Feedback of global warming to soil carbon cycling in forest ecosystems

    International Nuclear Information System (INIS)

    Nakane, Kaneyuki

    1993-01-01

    Thus in this study the simulation of soil carbon cycling and dynamics of its storage in several types of mature forests developed from the cool-temperate to the tropics was carried out for quantitatively assessing carbon loss from the soil under several scenarios of global warming, based on the model of soil carbon cycling in forest ecosystems (Nakane et al. 1984, 1987 and Nakane 1992). (J.P.N.)

  19. Soil quality standards and guidelines for forest sustainability in northwestern North America

    Science.gov (United States)

    Deborah Page-Dumroese; Martin Jurgensen; William Elliot; Thomas Rice; John Nesser; Thomas Collins; Robert. Meurisse

    2000-01-01

    Soil quality standards and guidelines of the USDA Forest Service were some of the first in the world to be developed to evaluate changes in forest soil productivity and sustainability after harvesting and site preparation. International and national development of criteria and indicators for maintenance of soil productivity make it imperative to have adequate threshold...

  20. Soil Respiration Declines Following Beetle - Induced Forest Mortality in a Lodgepole Pine Forest

    Science.gov (United States)

    Borkhuu, B.; Peckham, S. D.; Norton, U.; Ewers, B. E.; Pendall, E.

    2014-12-01

    Lodgepole pine (Pinus contorta var. latifolia) forests in northern Colorado and southeast Wyoming have been undergoing a major mortality event owing to mountain pine beetle (Dendroctonus ponderosae) infestation since 2007. We studied biotic and abiotic drivers of growing season soil respiration in four mature stands experiencing different levels of mortality between 2008 and 2012 in the Medicine Bow Mountains, southeastern Wyoming, USA. For five years, beetle infestation significantly altered forest structure. Stand mortality was 30% and more than 80% in stands with the lowest and highest mortality, respectively. Understory vegetation cover increased by 50% for five years following beetle infestation. Needlefall was increased by more than 50% during first two years of beetle infestation compared to the pre-disturbance period. We did not observe an immediate increase in soil respiration following beetle infestation as suggested by some researchers. Soil respiration rates in midsummer ranged from 1.4 ± 0.1 μmol m-2 s-1 in stands with highest mortality to 3.1 ± 0.2 μmol m-2s-1 in uninfested stand. Live tree basal area was the dominant factor controlling soil respiration, explaining more than 60% of the interannual and spatial variations in response to the disturbance. In addition, soil respiration was significantly correlated with fine root biomass, which explained 55% of variations, providing strong evidence that autotrophic respiration dominated the forest soil respiration flux. Furthermore, the seasonality of soil respiration was controlled mainly by mean monthly precipitation and mid-day photosynthetically active radiation. Each factor predicted from 30% to 50% of seasonal soil respiration variability with the highest correlation coefficients in stand with the lowest mortality. Our results clearly indicate that the reduction of photosynthesis in trees over the infestation period significantly reduced soil respiration. The remaining activity in dead stands may

  1. Assessing Bioenergy Harvest Risks: Geospatially Explicit Tools for Maintaining Soil Productivity in Western US Forests

    Directory of Open Access Journals (Sweden)

    Deborah Page-Dumroese

    2011-09-01

    Full Text Available Biomass harvesting for energy production and forest health can impact the soil resource by altering inherent chemical, physical and biological properties. These impacts raise concern about damaging sensitive forest soils, even with the prospect of maintaining vigorous forest growth through biomass harvesting operations. Current forest biomass harvesting research concurs that harvest impacts to the soil resource are region- and site-specific, although generalized knowledge from decades of research can be incorporated into management activities. Based upon the most current forest harvesting research, we compiled information on harvest activities that decrease, maintain or increase soil-site productivity. We then developed a soil chemical and physical property risk assessment within a geographic information system for a timber producing region within the Northern Rocky Mountain ecoregion. Digital soil and geology databases were used to construct geospatially explicit best management practices to maintain or enhance soil-site productivity. The proposed risk assessments could aid in identifying resilient soils for forest land managers considering biomass operations, policy makers contemplating expansion of biomass harvesting and investors deliberating where to locate bioenergy conversion facilities.

  2. Short-term effects of forest disturbances on soil nematode communities in European mountain spruce forests.

    Science.gov (United States)

    Čerevková, A; Renčo, M; Cagáň, L

    2013-09-01

    The nematode communities in spruce forests were compared with the short-term effects of forest damage, caused by windstorm, wildfire and management practices of forest soils. Soil samples were collected in June and October from 2006 to 2008 in four different sites: (1) forest unaffected by the wind (REF); (2) storm-felled forest with salvaged timber (EXT); (3) modified forest affected by timber salvage (wood removal) and forest fire (FIR); and (4) storm-felled forest where timber had been left unsalvaged (NEX). Nematode analysis showed that the dominant species in all four investigated sites were Acrobeloides nanus and Eudorylaimus silvaticus. An increase of A. nanus (35% of the total nematode abundance) in the first year in the FIR site led to the highest total abundance of nematodes compared with other sites, where nematode abundance reached the same level in the third year. In the FIR site bacterial feeders appeared to be the most representative trophic group, although in the second and third year, after disturbance, the abundance of this trophic group gradually decreased. In the NEX site, the number of nematode species, population densities and Maturity Index were similar to that recorded for the FIR site. In EXT and NEX sites, the other dominant species was the plant parasitic nematode Paratylenchus microdorus. Analyses of nematodes extracted from different forest soil samples showed that the highest number of species and diversity index for species (H'spp) were in the REF site. Differences between the nematode fauna in REF and other localities were clearly depicted by cluster analysis. The greatest Structure Index and Enrichment Index values were also in REF. In the EXT site, the number of nematode species, their abundance, H'spp and Maturity Index were not significantly different from those recorded in the reference site.

  3. Magnetic minerals in soils across the forest-prairie ecotone in NW Minnesota

    Science.gov (United States)

    Maxbauer, D.; Feinberg, J. M.; Fox, D. L.; Nater, E. A.

    2016-12-01

    Soil pedogenesis results in a complex assemblage of iron oxide minerals that can be disentangled successfully using sensitive magnetic techniques to better delineate specific soil processes. Here, we evaluate the variability in soil processes within forest, prairie, and transitional soils along an 11 km transect of anthropogenically unaltered soils that span the forest-to-prairie ecotone in NW Minnesota. All soils in this study developed on relatively uniform topography, similar glacial till parent material, under a uniform climate, and presumably over similar time intervals. The forest-to-prairie transition zone in this region is controlled by naturally occurring fires, affording the opportunity to evaluate differences in soil processes related to vegetation (forest versus prairie) and burning (prairie and transitional soils). Results suggest that the pedeogenic fraction of magnetite/maghemite in soils is similar in all specimens and is independent of soil type, vegetation, and any effects of burning. Magnetically enhanced horizons have 45% of remanence held by a low-coercivity pedogenic component (likely magnetite/maghemite) regardless of vegetation cover and soil type. Enhancement ratios for magnetic susceptibility and low-field remanences, often used as indicators of pedogenic magnetic minerals, are more variable but remain statistically equivalent across the transect. These results support the hypothesis that pedogenic magnetic minerals in soils mostly reflect ambient climatic conditions regardless of the variability in soil processes related to vegetation and soil type. The non-pedogenic magnetic mineral assemblage shows clear distinctions between the forest, prairie, and transitional soils in hysteresis properties (remanence and coercivity ratios; Mr/Ms and Bc/Bcr, respectively), suggesting that variable processes in these settings influence the local magnetic mineral assemblage, and that it may be possible to use magnetic minerals in paleosols to constrain

  4. Prediction of Soil Erosion Rates in Japan where Heavily Forested Landscape with Unstable Terrain

    Science.gov (United States)

    Nanko, K.; Oguro, M.; Miura, S.; Masaki, T.

    2016-12-01

    Soil is fundamental for plant growth, water conservation, and sustainable forest management. Multidisciplinary interest in the role of the soil in areas such as biodiversity, ecosystem services, land degradation, and water security has been growing (Miura et al., 2015). Forest is usually protective land use from soil erosion because vegetation buffers rainfall power and erosivity. However, some types of forest in Japan show high susceptibility to soil erosion due to little ground cover and steep slopes exceeding thirty degree, especially young Japanese cypress (Chamaecyparis obtusa) plantations (Miura et al., 2002). This is a critical issue for sustainable forest management because C. obtusaplantations account for 10% of the total forest coverage in Japan (Forestry Agency, 2009). Prediction of soil erosion rates on nationwide scale is necessary to make decision for future forest management plan. To predict and map soil erosion rates across Japan, we applied three soil erosion models, RUSLE (Revised Universal Soil Loss Equation, Wischmeier and Smith, 1978), PESERA (Pan-European Soil Erosion Risk Assessment, Kirkby et al., 2003), and RMMF (Revised Morgan-Morgan-Finney, Morgan, 2001). The grid scale is 1-km. RUSLE and PESERA are most widely used erosion models today. RMMF includes interactions between rainfall and vegetation, such as canopy interception and ratio of canopy drainage in throughfall. Evaporated rainwater by canopy interception, generally accounts for 15-20% in annual rainfall, does not contribute soil erosion. Whereas, larger raindrops generated by canopy drainage produced higher splash erosion rates than gross rainfall (Nanko et al., 2008). Therefore, rainfall redistribution process in canopy should be considered to predict soil erosion rates in forested landscape. We compared the results from three erosion models and analyze the importance of environmental factors for the prediction of soil erosion rates. This research was supported by the Environment

  5. Radiocarbon and stable carbon isotope compositions of chemically fractionated soil organic matter in a temperate-zone forest

    International Nuclear Information System (INIS)

    Koarashi, Jun; Iida, Takao; Asano, Tomohiro

    2005-01-01

    To better understand the role of soil organic matter in terrestrial carbon cycle, carbon isotope compositions in soil samples from a temperate-zone forest were measured for bulk, acid-insoluble and base-insoluble organic matter fractions separated by a chemical fractionation method. The measurements also made it possible to estimate indirectly radiocarbon ( 14 C) abundances of acid- and base-soluble organic matter fractions, through a mass balance of carbon among the fractions. The depth profiles of 14 C abundances showed that (1) bomb-derived 14 C has penetrated the first 16 cm mineral soil at least; (2) Δ 14 C values of acid-soluble organic matter fraction are considerably higher than those of other fractions; and (3) a significant amount of the bomb-derived 14 C has been preserved as the base-soluble organic matter around litter-mineral soil boundary. In contrast, no or little bomb-derived 14 C was observed for the base-insoluble fraction in all sampling depths, indicating that this recalcitrant fraction, accounting for approximately 15% of total carbon in this temperate-zone forest soil, plays a role as a long-term sink in the carbon cycle. These results suggest that bulk soil organic matter cannot provide a representative indicator as a source or a sink of carbon in soil, particularly on annual to decadal timescales

  6. Moss-nitrogen input to boreal forest soils

    DEFF Research Database (Denmark)

    Rousk, Kathrin; Jones, Davey; DeLuca, Thomas

    2014-01-01

    Cyanobacteria living epiphytically on mosses in pristine, unpolluted areas fix substantial amounts of atmospheric nitrogen (N) and therefore represent a primary source of N in N-limited boreal forests. However, the fate of this N is unclear, in particular, how the fixed N2 enters the soil and bec...... and that transfer of N to the soil is not facilitated by fungal hyphae....

  7. Nitrate Sorption in an Agricultural Soil Profile

    Directory of Open Access Journals (Sweden)

    Wissem Hamdi

    2013-01-01

    Full Text Available Increasing concentrations of in surface water and groundwater can cause ecological and public health effects and has come under increased scrutiny by both environmental scientists and regulatory agencies. For many regions though, including the Sahel of Tunisia, little is known about the sorption capacity of soils. In this project we measured sorption by a profile of an iso-humic soil from Chott Meriem, Tunisia. Soil samples were collected from four soil depths (0–25, 25–60, 60–90, and 90–120 cm on 1 June 2011, and their sorption capacity was determined using batch experiments under laboratory conditions. The effects of contact time, the initial concentration, and the soil-solution ratio on sorption were investigated. In general, the results suggested that was weakly retained by the Chott Meriem soil profile. The quantity of sorption increased with depth, contact time, initial concentration, and soil-solution ratios. To evaluate the sorption capacities of the soil samples at concentrations ranging between 25 and 150 mg L−1 experimental data were fitted to both Freundlich and Langmuir isotherm sorption models. The results indicated that Freundlich model was better for describing sorption in this soil profile.

  8. Preliminary assessment of soil erosion impact during forest restoration process

    Science.gov (United States)

    Lai, Yen-Jen; Chang, Cheng-Sheng; Tsao, Tsung-Ming; Wey, Tsong-Huei; Chiang, Po-Neng; Wang, Ya-Nan

    2014-05-01

    Taiwan has a fragile geology and steep terrain. The 921 earthquake, Typhoon Toraji, Typhoon Morakot, and the exploitation and use of the woodland by local residents have severely damaged the landscape and posed more severe challenges to the montane ecosystem. A land conservation project has been implemented by the Experimental Forest of National Taiwan University which reclaimed approximately 1,500 hectares of leased woodland from 2008 to 2010, primarily used to grow bamboo, tea trees, betel nut, fruit, and vegetable and about 1,298 hectares have been reforested. The process of forest restoration involves clear cutting, soil preparation and a six-year weeding and tending period which may affect the amount of soil erosion dramatically. This study tried to assess the impact of forest restoration from the perspective of soil erosion through leased-land recovery periods and would like to benefit the practical implementation of reforestation in the future. A new plantation reforested in the early 2013 and a nearby 29-year-old mature forest were chosen as experimental and comparison sites. A self-designed weir was set up in a small watershed of each site for the runoff and sediment yield observation. According to the observed results from May to August 2013, a raining season in Taiwan, the runoff and erosion would not as high as we expected, because the in-situ soil texture of both sites is sandy loam to sandy with high percentage of coarse fragment which increased the infiltration. There were around 200 kg to 250 kg of wet sand/soil yielded in mature forest during the hit of Typhoon Soulik while the rest of the time only suspended material be yielded at both sites. To further investigate the influence of the six-year weeding and tending period, long term observations are needed for a more completed assessment of soil erosion impact.

  9. The impact of clearcutting in boreal forests of Russia on soils: A review

    Science.gov (United States)

    Dymov, A. A.

    2017-07-01

    Data on the impact of tree logging in boreal forests of Russia on soils are systematized. Patterns of soil disturbances and transformation of microclimatic parameters within clearcutting areas are discussed. Changes in the conditions of pedogenesis in secondary forests are analyzed. It is suggested that the changes in forest soils upon reforestation of clearcutting areas might be considered as specific post-logging soil successions. Data characterizing changes in the thickness of litter horizons and in the intensity of elementary pedogenic processes, acidity, and the content of exchangeable bases in soils of clearcutting areas in the course of their natural reforestation are considered. The examples of human-disturbed (turbated) soil horizons and newly formed anthropogenic soils on clearcutting areas are described. It is suggested that the soils on mechanically disturbed parts of clearcutting areas can be separated as a specific group of detritus turbozems.

  10. Combining soil and tree-stem flux measurements and soil gas profiles to understand CH4 pathways in Fagus sylvatica forests

    Czech Academy of Sciences Publication Activity Database

    Maier, M.; Macháčová, Kateřina; Lang, F.; Svobodová, Kateřina; Urban, Otmar

    2018-01-01

    Roč. 181, č. 1 (2018), s. 31-35 ISSN 1436-8730 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:86652079 Keywords : ch4 * soil gas profile * gas flux * co2 * methanogenesis Subject RIV: ED - Physiology OBOR OECD: Plant sciences, botany Impact factor: 2.102, year: 2016

  11. Biological properties of soils of former forest fires in Samosir Regency of North Sumatera

    Directory of Open Access Journals (Sweden)

    D. Elfiati

    2016-04-01

    Full Text Available A study that was aimed to identify the impact of forest fires on the biological properties of soils was carried out at former forest fire areas in Samosir Regency of North Sumatera. Soil samples were collected from former forest fire areas of 2014, 2013, 2012, 2011, 2010. The composite soil samples were collected systematically using diagonal method as much as 5 points in each period of fire. The soil samples were taken at three plots measuring 20 x 20 m 0-20 cm depth. Soil biological properties observed were soil organic C content, total number of microbes, abundance of arbuscular mycorrhizal fungi, phosphate solubilizing microbes, and soil microbial activity. The results showed that organic C content ranged from 0.75 to 2.47% which included criteria for very low to moderate. Arbuscular mycorrhizal fungi spores were found belonging to the genus of Glomus and Acaulospora. Spore number increased with the fire period ranging from 45 spores (forest fire in 2014 to 152 spores (forest fire in 2010. The total number of microbes obtained ranged from 53.78 x 107 cfu/mL (forest fire in 2010 to 89.70 x107 cfu/mL (forest fire in 2013. It was found 29 isolates of phosphate solubilizing microbes that consisted of 14 bacterial isolates and 15 fungi isolates with densities ranging from 27.642 x105 cfu/mL (forest fires in 2014 to 97.776 x 105 cfu/ mL (forest fires in 2011. The isolates of phosphate solubilizing bacteria identified consisted of Pseudomonas, Flavobacterium, Staphylococcus, and Mycobacterium genus, whereas the isolates of phosphate solubilizing fungi obtained consisted of Aspergillus and Penicillium genus. Soil respiration ranged from 2.14 kg / day (forest fire in 2010 up to 3.71 kg / day (forest fire in 2013. The varied results were greatly influenced by the type or form of the fires and intensity of fires. In the study area the type or form of the fires were canopy fires with low intensity.

  12. Urbanization in China drives soil acidification of Pinus massoniana forests

    Science.gov (United States)

    Huang, Juan; Zhang, Wei; Mo, Jiangming; Wang, Shizhong; Liu, Juxiu; Chen, Hao

    2015-09-01

    Soil acidification instead of alkalization has become a new environmental issue caused by urbanization. However, it remains unclear the characters and main contributors of this acidification. We investigated the effects of an urbanization gradient on soil acidity of Pinus massoniana forests in Pearl River Delta, South China. The soil pH of pine forests at 20-cm depth had significantly positive linear correlations with the distance from the urban core of Guangzhou. Soil pH reduced by 0.44 unit at the 0-10 cm layer in urbanized areas compared to that in non-urbanized areas. Nitrogen deposition, mean annual temperature and mean annual precipitation were key factors influencing soil acidification based on a principal component analysis. Nitrogen deposition showed significant linear relationships with soil pH at the 0-10 cm (for ammonium N (-N), P greatly contributed to a significant soil acidification occurred in the urbanized environment.

  13. Divergence of dominant factors in soil microbial communities and functions in forest ecosystems along a climatic gradient

    Science.gov (United States)

    Xu, Zhiwei; Yu, Guirui; Zhang, Xinyu; He, Nianpeng; Wang, Qiufeng; Wang, Shengzhong; Xu, Xiaofeng; Wang, Ruili; Zhao, Ning

    2018-03-01

    Soil microorganisms play an important role in regulating nutrient cycling in terrestrial ecosystems. Most of the studies conducted thus far have been confined to a single forest biome or have focused on one or two controlling factors, and few have dealt with the integrated effects of climate, vegetation, and soil substrate availability on soil microbial communities and functions among different forests. In this study, we used phospholipid-derived fatty acid (PLFA) analysis to investigate soil microbial community structure and extracellular enzymatic activities to evaluate the functional potential of soil microbes of different types of forests in three different climatic zones along the north-south transect in eastern China (NSTEC). Both climate and forest type had significant effects on soil enzyme activities and microbial communities with considerable interactive effects. Except for soil acid phosphatase (AP), the other three enzyme activities were much higher in the warm temperate zone than in the temperate and the subtropical climate zones. The soil total PLFAs and bacteria were much higher in the temperate zone than in the warm temperate and the subtropical zones. The soil β-glucosidase (BG) and N-acetylglucosaminidase (NAG) activities were highest in the coniferous forest. Except for the soil fungi and fungi-bacteria (F/B), the different groups of microbial PLFAs were much higher in the conifer broad-leaved mixed forests than in the coniferous forests and the broad-leaved forests. In general, soil enzyme activities and microbial PLFAs were higher in primary forests than in secondary forests in temperate and warm temperate regions. In the subtropical region, soil enzyme activities were lower in the primary forests than in the secondary forests and microbial PLFAs did not differ significantly between primary and secondary forests. Different compositions of the tree species may cause variations in soil microbial communities and enzyme activities. Our results

  14. Sample sizes to control error estimates in determining soil bulk density in California forest soils

    Science.gov (United States)

    Youzhi Han; Jianwei Zhang; Kim G. Mattson; Weidong Zhang; Thomas A. Weber

    2016-01-01

    Characterizing forest soil properties with high variability is challenging, sometimes requiring large numbers of soil samples. Soil bulk density is a standard variable needed along with element concentrations to calculate nutrient pools. This study aimed to determine the optimal sample size, the number of observation (n), for predicting the soil bulk density with a...

  15. Assessing soil quality: practicable standards for sustainable forest productivity in the United States

    Science.gov (United States)

    Robert F. Powers; Allan E. Tiarks; James R. Boyle

    1998-01-01

    Productive soils form the foundation for productive forests. But unfortunately, the significance of soil seems lost to modem society. Most of us are too far removed from the natural factors of production to appreciate the multiple roles of soil. Nor is its worth recognized well by many forest managers who too often see soil only in its capacity for logging roads and...

  16. Tropical forest response to a drier future: Measurement and modeling of soil organic matter stocks and turnover

    Science.gov (United States)

    Finstad, K. M.; Campbell, A.; Pett-Ridge, J.; Zhang, N.; McFarlane, K. J.

    2017-12-01

    Tropical forests account for over 50% of the global terrestrial carbon sink and 29% of global soil carbon, but the stability of carbon in these ecosystems under a changing climate is unknown. Recent work suggests moisture may be more important than temperature in driving soil carbon storage and emissions in the tropics. However, data on belowground carbon cycling in the tropics is sparse, and the role of moisture on soil carbon dynamics is underrepresented in current land surface models limiting our ability to extrapolate from field experiments to the entire region. We measured radiocarbon (14C) and calculated turnover rates of organic matter from 37 soil profiles from the Neotropics including sites in Mexico, Brazil, Costa Rica, Puerto Rico, and Peru. Our sites represent a large range of moisture, spanning 710 to 4200 mm of mean annual precipitation, and include Andisols, Oxisols, Inceptisols, and Ultisols. We found a large range in soil 14C profiles between sites, and in some locations, we also found a large spatial variation within a site. We compared measured soil C stocks and 14C profiles to data generated from the Community Land Model (CLM) v.4.5 and have begun to generate data from the ACME Land Model (ALM) v.1. We found that the CLM consistently overestimated carbon stocks and the mean age of soil carbon at the surface (upper 50 cm), and underestimated the mean age of deep soil carbon. Additionally, the CLM did not capture the variation in 14C and C stock profiles that exists between and within the sites across the Neotropics. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-736060.

  17. Soil carbon and soil physical properties response to incorporating mulched forest slash

    Science.gov (United States)

    Felipe G. Sanchez; Emily A. Carter; John. F. Klepac

    2000-01-01

    A study was installed in the Lower Coastal Plain near Washington, NC, to test the hypothesis that incorporating organic matter in the form of comminuted forest slash would increase soil carbon and nutrient pools, and alter soil physical properties to favor pine growth. Two sites were selected, an organic and a mineral site, to compare the treatment effects on...

  18. Urbanization Effects on the Vertical Distribution of Soil Microbial Communities and Soil C Storage across Edge-to-Interior Urban Forest Gradients

    Science.gov (United States)

    Rosier, C. L.; Van Stan, J. T., II; Trammell, T. L.

    2017-12-01

    Urbanization alters environmental conditions such as temperature, moisture, carbon (C) and nitrogen (N) deposition affecting critical soil processes (e.g., C storage). Urban soils experience elevated N deposition (e.g., transportation, industry) and decreased soil moisture via urban heat island that can subsequently alter soil microbial community structure and activity. However, there is a critical gap in understanding how increased temperatures and pollutant deposition influences soil microbial community structure and soil C/N cycling in urban forests. Furthermore, canopy structural differences between individual tree species is a potentially important mechanism facilitating the deposition of pollutants to the soil. The overarching goal of this study is to investigate the influence of urbanization and tree species structural differences on the bacterial and fungal community and C and N content of soils experiencing a gradient of urbanization pressures (i.e., forest edge to interior; 150-m). Soil cores (1-m depth) were collected near the stem (urban pressure (i.e., forest edge). We further expect trees located on the edge of forest fragments will maintain greater surface soil (urbanization alters soil microbial community composition via reduced soil moisture and carbon storage potential via deposition gradients. Further analyses will answer important questions regarding how individual tree species alters urban soil C storage, N retention, and microbial dynamics.

  19. Contribution of fine tree roots to the silicon cycle in a temperate forest ecosystem developed on three soil types

    Science.gov (United States)

    Turpault, Marie-Pierre; Calvaruso, Christophe; Kirchen, Gil; Redon, Paul-Olivier; Cochet, Carine

    2018-04-01

    .5-2.0 times higher in the Si-rich DC compared to the Si-poor RL. In terms of the DSi budget, DSi production was large in the three plots in the forest floor (9.9 to 12.7 kg ha-1 yr-1), as well as in the superficial soil layer (5.3 to 14.5 kg ha-1 yr-1), and decreased with soil depth. An immobilization of DSi was even observed at 90 cm depth in plot DC (-1.7 kg ha-1 yr-1). The amount of Si leached from the soil profile was relatively low compared to the annual uptake by trees (13 % in plot DC to 29 % in plot RL). The monthly measurements demonstrated that the seasonal dynamics of the DSi budget were mainly linked to biological activity. Notably, the peak of dissolved Si production in the superficial soil layer occurred during winter and probably resulted from fine-root decomposition. Our study reveals that biological processes, particularly those involving fine roots, play a predominant role in the Si cycle in temperate forest ecosystems, while the geochemical processes appear to be limited.

  20. Changes in soil respiration after thinning activities in dense Aleppo pine forests

    Science.gov (United States)

    Llovet, Joan; Alonso, Macià; Cerdà, Artemi

    2015-04-01

    Forest fires are a widespread perturbation in Mediterranean areas, and they have tended to increase during the last decades (Pausas, 2004; Moreno et al, 1998). Aleppo pine (Pinus halepensis Mill) is dominant specie in some forest landscapes of western Mediterranean Basin, due to its capacity to colonize abandoned fields, and also due to afforestation practices mainly performed during the 20th century (Ruiz Navarro et al., 2009). Aleppo pine tends to die as consequence of forest fires, although it is able to disperse a high quantity of seeds which easily germinates. These dispersion and germination can result in dense forests with high inter and intra-specific competition, low diversity, low growth, and high fuel accumulation, increasing the risk of new forest fires. These forests of high density present ecological problems and management difficulties that require preventive treatments. Thinning treatments are common in these types of communities, but the management has to be oriented towards strengthening their functions. In the context of global change, better understandings of the implications of forest management practices in the carbon cycle are necessary. The objective of this study was to examine the evolution of seasonal soil respiration after treatment of selective thinning in dense Aleppo pine forests. The study area covers three localities placed in the Valencian Community (E Spain) affected by a forest fire in 1994. Thinning activities were done 16 years after the fire, reducing pine density from around 100,000 individuals per hectare to around 900 individuals per hectare. Soil respiration was measured in situ with a portable soil respiration instrument (LI-6400, LiCor, Lincoln, NB, USA) fitted with a soil respiration chamber (6400-09, LiCor, Lincoln, NB, USA). We installed 12 plots per treatment (control and thinned) and locality, being a total of 72 plots. We carried out 13 measurements covering a period of one year. We also estimated other related

  1. The relation between forest structure and soil burn severity

    Science.gov (United States)

    Theresa B. Jain; Russell T. Graham; David S. Pilliod

    2006-01-01

    A study funded through National Fire Plan evaluates the relation between pre-wildfire forest structure and post-wildfire soil burn severity across three forest types: dry, moist, and cold forests. Over 73 wildfires were sampled in Idaho, Oregon, Montana, Colorado, and Utah, which burned between 2000 and 2003. Because of the study’s breadth, the results are applicable...

  2. Clay minerals, metallic oxides and oxy-hydroxides and soil organic carbon distribution within soil aggregates in temperate forest soils

    Science.gov (United States)

    Gartzia-Bengoetxea, Nahia; Fernández-Ugalde, Oihane; Virto, Iñigo; Arias-González, Ander

    2017-04-01

    Soil mineralogy is of primary importance for key environmental services provided by soils like carbon sequestration. However, current knowledge on the effects of clay mineralogy on soil organic carbon (SOC) stabilization is based on limited and conflicting data. In this study, we investigated the relationship between clay minerals, metallic oxides and oxy-hydroxides and SOC distribution within soil aggregates in mature Pinus radiata D.Don forest plantations. Nine forest stands located in the same geographical area of the Basque Country (North of Spain) were selected. These stands were planted on different parent material (3 on each of the following: sandstone, basalt and trachyte). There were no significant differences in climate and forest management among them. Moreover, soils under these plantations presented similar content of clay particles. We determined bulk SOC storage, clay mineralogy, the content of Fe-Si-Al-oxides and oxyhydroxides and the distribution of organic C in different soil aggregate sizes at different soil depths (0-5 cm and 5-20 cm). The relationship between SOC and abiotic factors was investigated using a factor analysis (PCA) followed by stepwise regression analysis. Soils developed on sandstone showed significantly lower concentration of SOC (29 g C kg-1) than soils developed on basalts (97 g C kg-1) and trachytes (119 g C kg-1). The soils on sandstone presented a mixed clay mineralogy dominated by illite, with lesser amounts of hydroxivermiculite, hydrobiotite and kaolinite, and a total absence of interstratified chlorite/vermiculite. In contrast, the major crystalline clay mineral identified in the soils developed on volcanic rocks was interstratified chlorite/vermiculite. Nevertheless, no major differences were observed between basaltic and trachytic soils in the clay mineralogy. The selective extraction of Fe showed that the oxalate extractable iron was significantly lower in soils on sandstone (3.7%) than on basalts (11.2%) and

  3. Soil-leaf transfer of chemical elements for the Atlantic Forest

    International Nuclear Information System (INIS)

    Joacir De Franca, E.; De Nadai Fernandes, E.A.; Bacchi, M.A.; Tagliaferro, F.S.

    2007-01-01

    Soil analysis could improve environmental studies since soil is the main source of chemical elements for plants. In this study, soil samples collected at 0-10 cm depth under tree crown projection were analyzed by INAA. Using the chemical composition of the leaf previously determined, the leaf-soil transfer factors of chemical elements could be estimated for the Atlantic Forest. Despite the variability of the intra-species, the transfer factors were specific for some plant species due to their element accumulation in the leaves. Similar Br-Zn combined transfer factors were obtained for the species grouped according to habitats in relation to their position (understory or dominant species) in the forest canopy. (author)

  4. Algological and Mycological Characterization of Soils under Pine and Birch Forests in the Pasvik Reserve

    Science.gov (United States)

    Korneikova, M. V.; Redkina, V. V.; Shalygina, R. R.

    2018-02-01

    The structure of algological and mycological complexes in Al-Fe-humus podzols (Albic Podzols) under pine and birch forests of the Pasvik Reserve is characterized. The number of micromycetes is higher in more acid soils of the pine forest, while the species diversity is greater under the birch forest. The genus Penicillium includes the largest number of species. The greatest abundance and occurrence frequency are typical for Penicillium spinulosum, P. glabrum, and Trichoderma viride in pine forest and for Umbelopsis isabellina, Mucor sp., Mortierella alpina, P. glabrum, Aspergillus ustus, Trichoderma viride, and T. koningii in birch forest. Cyanobacteria-algal cenoses of the investigated soils are predominated by green algae. Soils under birch forest are distinguished by a greater diversity of algal groups due to the presence of diatoms and xanthophytes. Species of frequent occurrence are represented by Pseudococcomyxa simplex and Parietochloris alveolaris in soils of the pine forest and by Tetracystis cf. aplanospora, Halochlorella rubescens, Pseudococcomyxa simplex, Fottea stichococcoides, Klebsormidium flaccidum, Hantzschia amphioxys, Microcoleus vaginatus, and Aphanocapsa sp. in soils under birch forest

  5. Soil solution and extractable soil nitrogen response to climate change in two boreal forest ecosystems

    NARCIS (Netherlands)

    Verburg, P.H.

    2005-01-01

    Several studies show that increases in soil temperature result in higher N mineralization rates in soils. It is, however, unclear if additional N is taken up by the vegetation or accumulates in the soil. To address this question two small, forested catchments in southern Norway were experimentally

  6. Influence of root-water-uptake parameterization on simulated heat transport in a structured forest soil

    Science.gov (United States)

    Votrubova, Jana; Vogel, Tomas; Dohnal, Michal; Dusek, Jaromir

    2015-04-01

    Coupled simulations of soil water flow and associated transport of substances have become a useful and increasingly popular tool of subsurface hydrology. Quality of such simulations is directly affected by correctness of its hydraulic part. When near-surface processes under vegetation cover are of interest, appropriate representation of the root water uptake becomes essential. Simulation study of coupled water and heat transport in soil profile under natural conditions was conducted. One-dimensional dual-continuum model (S1D code) with semi-separate flow domains representing the soil matrix and the network of preferential pathways was used. A simple root water uptake model based on water-potential-gradient (WPG) formulation was applied. As demonstrated before [1], the WPG formulation - capable of simulating both the compensatory root water uptake (in situations when reduced uptake from dry layers is compensated by increased uptake from wetter layers), and the root-mediated hydraulic redistribution of soil water - enables simulation of more natural soil moisture distribution throughout the root zone. The potential effect on heat transport in a soil profile is the subject of the present study. [1] Vogel T., M. Dohnal, J. Dusek, J. Votrubova, and M. Tesar. 2013. Macroscopic modeling of plant water uptake in a forest stand involving root-mediated soil-water redistribution. Vadose Zone Journal, 12, 10.2136/vzj2012.0154. The research was supported by the Czech Science Foundation Project No. 14-15201J.

  7. Calculating wind profiles above a pine forest

    International Nuclear Information System (INIS)

    Murphy, C.E.; Dexter, A.H.

    1978-01-01

    A major part of the environmental transport work at the Savannah River Laboratory (SRL) involves the dispersion of airborne pollutants (aerosols and gases). A major part of the Savannah River Plant (SRP) site is covered with pine forests. Because forests are ''rough'' surfaces which increase turbulence and surface shear stress and, hence, alter the dispersion patterns, the nature of the wind profiles above the forests is being investigated. Two methods for determining the surface shear caused by the atmospheric wind field over a pine plantation were compared. Friction velocity [the square root of the ratio of shearing stress over the density of air; U/sub */ = (stress/density)1/2] calculated by eddy correlation was compared with friction velocity calculated from wind profiles. Data from the first five meters above the pine forest were compared. The data indicated that there was no significant difference in the mean friction velocity measured by each method. However, there were large differences in individual values calculated by the two methods for many of the measurement periods. An attempt was made to reconcile the differences in the measured values, but no satisfactory method was found

  8. Methods of soil resampling to monitor changes in the chemical concentrations of forest soils

    Science.gov (United States)

    Gregory B. Lawrence; Ivan J. Fernandez; Paul W. Hazlett; Scott W. Bailey; Donald S. Ross; Thomas R. Villars; Angelica Quintana; Rock Ouimet; Michael R. McHale; Chris E. Johnson; Russell D. Briggs; Robert A. Colter; Jason Siemion; Olivia L. Bartlett; Olga Vargas; Michael R. Antidormi; Mary M. Koppers

    2016-01-01

    Recent soils research has shown that important chemical soil characteristics can change in less than a decade, often the result of broad environmental changes. Repeated sampling to monitor these changes in forest soils is a relatively new practice that is not well documented in the literature and has only recently been broadly embraced by the scientific community. The...

  9. Experimental soil warming effects on C, N, and major element cycling in a low elevation spruce-fir forest soil

    Science.gov (United States)

    Lindsey E. Rustad; Ivan J. Fernandez; Stephanie Arnold

    1996-01-01

    The effect of global warming on north temperate and boreal forest soils has been the subject of much recent debate. These soils serve as major reservoirs for C, N, and other nutrients necessary for forest growth and productivity. Given the uncertainties in estimates of organic matter turnover rates and storage, it is unclear whether these soils will serve as short or...

  10. Temporal and spatial variation of nitrogen transformations in a coniferous forest soils.

    NARCIS (Netherlands)

    Laverman, A.M.; Zoomer, H.R.; van Verseveld, H.W.; Verhoef, H.A.

    2000-01-01

    Forest soils show a great degree of temporal and spatial variation of nitrogen mineralization. The aim of the present study was to explain temporal variation in nitrate leaching from a nitrogen-saturated coniferous forest soil by potential nitrification, mineralization rates and nitrate uptake by

  11. Effect of Simulated N Deposition on Soil Exchangeable Cations in Three Forest Types of Subtropical China

    Institute of Scientific and Technical Information of China (English)

    LU Xian-Kai; MO Jiang-Ming; P.GUNDERSERN; ZHU Wei-Xing; ZHOU Guo-Yi; LI De-Jun; ZHANG Xu

    2009-01-01

    The effects of simulated nitrogen (N) deposition on soil exchangeable cations were studied in three forest types of subtropical China.Four N treatments with three replications were designed for the monsoon evergreen broadleaf forest (mature forest):control (0 kg N ha-1 year-1),low N (50 kg N ha-1 year-1),medium N (100 kg N ha-1 year-1) and high N (150 kg N ha-1 ycar-1),and only three treatments (i.e.,control,low N,medium N) were established for the pine and mixed forests.Nitrogen had been applied continuously for 26 months before the measurement.The mature forest responded more rapidly and intensively to N additions than the pine and mixed forests,and exhibited some significant negative symptoms,e.g.,soil acidification,Al mobilization and leaching of base cations from soil.The pine and mixed forests responded slowly to N additions and exhibited no significant response of soil cations.Response of soil exchangeable cations to N deposition varied in the forests of subtropical China,depending on soil N status and land-nse history.

  12. Microbial activities in forest soils exposed to chronic depositions from a lignite power plant

    Energy Technology Data Exchange (ETDEWEB)

    Klose, S.; Wernecke, K.D.; Makeschin, F. [Technical University of Dresden, Tharandt (Germany)

    2004-12-01

    Atmospheric emissions of fly ash and SO{sub 2} from lignite-fired power plants strongly affect large forest areas in Germany. The impact of different deposition loads on the microbial biomass and enzyme activities was studied at three forest sites (Picea abies (L.) Karst.) along an emission gradient of 3, 6, and 15 km downwind of a coal-fired power plant, representing high, moderate and low emission rates. An additional site at a distance of 3 km from the power plant was chosen to study the influence of forest type on microbial parameters in coniferous forest soils under fly ash and SO{sub 2} emissions. Soil microbial biomass C and N, CO{sub 2} evolved and activities of L-asparaginase, L-glutaminase, beta-glucosidase, acid phosphatase and arylsulfatase (expressed on dry soil and organic C basis) were determined in the forest floor (L, Of and Oh horizon) and mineral top soil (0-10 cm). It is concluded that chronic fly ash depositions decrease litter decomposition by influencing specific microbial and enzymatic processes in forest soils.

  13. Soil carbon sequestration and changes in fungal and bacterial biomass following incorporation of forest residues

    Science.gov (United States)

    Matt D. Busse; Felipe G. Sanchez; Alice W. Ratcliff; John R. Butnor; Emily A. Carter; Robert F. Powers

    2009-01-01

    Sequestering carbon (C) in forest soils can benefit site fertility and help offset greenhouse gas emissions. However, identifying soil conditions and forest management practices which best promote C accumulation remains a challenging task. We tested whether soil incorporation of masticated woody residues alters short-term C storage at forested sites in western and...

  14. Thermal characteristics and bacterial diversity of forest soil in the Haean basin of Korea.

    Science.gov (United States)

    Kim, Heejung; Lee, Jin-Yong; Lee, Kang-Kun

    2014-01-01

    To predict biotic responses to disturbances in forest environments, it is important to examine both the thermophysical properties of forest soils and the diversity of microorganisms that these soils contain. To predict the effects of climate change on forests, in particular, it is essential to understand the interactions between the soil surface, the air, and the biological diversity in the soil. In this study, the temperature and thermal properties of forest soil at three depths at a site in the Haean basin of Korea were measured over a period of four months. Metagenomic analyses were also carried out to ascertain the diversity of microorganisms inhabiting the soil. The thermal diffusivity of the soil at the study site was 5.9 × 10(-8) m(2) · s(-1). The heat flow through the soil resulted from the cooling and heating processes acting on the surface layers of the soils. The heat productivity in the soil varied through time. The phylum Proteobacteria predominated at all three soil depths, with members of Proteobacteria forming a substantial fraction (25.64 to 39.29%). The diversity and richness of microorganisms in the soil were both highest at the deepest depth, 90 cm, where the soil temperature fluctuation was the minimum.

  15. Thermal Characteristics and Bacterial Diversity of Forest Soil in the Haean Basin of Korea

    Directory of Open Access Journals (Sweden)

    Heejung Kim

    2014-01-01

    Full Text Available To predict biotic responses to disturbances in forest environments, it is important to examine both the thermophysical properties of forest soils and the diversity of microorganisms that these soils contain. To predict the effects of climate change on forests, in particular, it is essential to understand the interactions between the soil surface, the air, and the biological diversity in the soil. In this study, the temperature and thermal properties of forest soil at three depths at a site in the Haean basin of Korea were measured over a period of four months. Metagenomic analyses were also carried out to ascertain the diversity of microorganisms inhabiting the soil. The thermal diffusivity of the soil at the study site was 5.9 × 10−8 m2·s−1. The heat flow through the soil resulted from the cooling and heating processes acting on the surface layers of the soils. The heat productivity in the soil varied through time. The phylum Proteobacteria predominated at all three soil depths, with members of Proteobacteria forming a substantial fraction (25.64 to 39.29%. The diversity and richness of microorganisms in the soil were both highest at the deepest depth, 90 cm, where the soil temperature fluctuation was the minimum.

  16. Diversity of herbaceous plants and bacterial communities regulates soil resistome across forest biomes.

    Science.gov (United States)

    Hu, Hang-Wei; Wang, Jun-Tao; Singh, Brajesh K; Liu, Yu-Rong; Chen, Yong-Liang; Zhang, Yu-Jing; He, Ji-Zheng

    2018-04-24

    Antibiotic resistance is ancient and prevalent in natural ecosystems and evolved long before the utilization of synthetic antibiotics started, but factors influencing the large-scale distribution patterns of natural antibiotic resistance genes (ARGs) remain largely unknown. Here, a large-scale investigation over 4000 km was performed to profile soil ARGs, plant communities and bacterial communities from 300 quadrats across five forest biomes with minimal human impact. We detected diverse and abundant ARGs in forests, including over 160 genes conferring resistance to eight major categories of antibiotics. The diversity of ARGs was strongly and positively correlated with the diversity of bacteria, herbaceous plants and mobile genetic elements (MGEs). The ARG composition was strongly correlated with the taxonomic structure of bacteria and herbs. Consistent with this strong correlation, structural equation modelling demonstrated that the positive effects of bacterial and herb communities on ARG patterns were maintained even when simultaneously accounting for multiple drivers (climate, spatial predictors and edaphic factors). These findings suggest a paradigm that the interactions between aboveground and belowground communities shape the large-scale distribution of soil resistomes, providing new knowledge for tackling the emerging environmental antibiotic resistance. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.

  17. Redox potential characterization and soil greenhouse gas concentration across a hydrological gradient in a Gulf coast forest

    Science.gov (United States)

    Yu, K.; Faulkner, S.P.; Patrick, W.H.

    2006-01-01

    Soil redox potential (Eh), concentrations of oxygen (O2) and three greenhouse gases (CO2, CH4, and N2O) were measured in the soil profile of a coastal forest at ridge, transition, and swamp across a hydrological gradient. The results delineated a distinct boundary in soil Eh and O2 concentration between the ridge and swamp with essentially no overlap between the two locations. Critical soil Eh to initiate significant CH4 production under this field conditions was about +300 mV, much higher than in the homogenous soils (about -150 mV). The strength of CH4 source to the atmosphere was strong for the swamp, minor for the transition, and negligible or even negative (consumption) for the ridge. Maximum N2O concentration in the soils was found at about Eh +250 mV, and the soil N2O emission was estimated to account for less than 4% for the ridge and transition, and almost negligible for the swamp in the cumulative global warming potential (GWP) of these three gases. The dynamic nature of this study site in response to water table fluctuations across a hydrological gradient makes it an ideal model of impact of future sea level rise to coastal ecosystems. Soil carbon (C) sequestration potential due to increasing soil water content upon sea level rise and subsidence in this coastal forest was likely limited and temporal, and at the expense of increasing soil CH4 production and emission. ?? 2005 Elsevier Ltd. All rights reserved.

  18. Isolation and identification of soil fungi isolates from forest soil for flooded soil recovery

    Science.gov (United States)

    Hazwani Aziz, Nor; Zainol, Norazwina

    2018-04-01

    Soil fungi have been evaluated for their ability in increasing and recovering nitrogen, phosphorus and potassium content in flooded soil and in promoting the growth of the host plant. Host plant was cultivated in a mixture of fertile forest soil (nutrient-rich soil) and simulated flooded soil (nutrient-poor soil) in an optimized soil condition for two weeks. The soil sample was harvested every day until two weeks of planting and was tested for nitrogen, phosphorus and potassium concentration. Soil fungi were isolated by using dilution plating technique and was identified by Biolog’s Microbial Systems. The concentration of nitrogen, phosphorus, and potassium was found to be increasing after two weeks by two to three times approximately from the initial concentration recorded. Two fungi species were identified with probability more than 90% namely Aspergillus aculeatus and Paecilomyces lilacinus. Both identified fungi were found to be beneficial in enhancing plant growth and increasing the availability of nutrient content in the soil and thus recovering the nutrient content in the flooded soil.

  19. Nature and Properties of Some Forest Soils in the Mhite Mountains of New Hampshire

    Science.gov (United States)

    M.C. Hoyle; M.C. Hoyle

    1973-01-01

    Forested, podzol soils in the White Mountains of New Hampshire have developed in granitic, glacial material. They are coarse textured, acidic, and infertile. As a result of the latter condition, these soils can sustain a forest, but that forest is not healthy and vigorous.

  20. Species richness and soil properties in Pinus ponderosa forests: A structural equation modeling analysis

    Science.gov (United States)

    Laughlin, D.C.; Abella, S.R.; Covington, W.W.; Grace, J.B.

    2007-01-01

    Question: How are the effects of mineral soil properties on understory plant species richness propagated through a network of processes involving the forest overstory, soil organic matter, soil nitrogen, and understory plant abundance? Location: North-central Arizona, USA. Methods: We sampled 75 0.05-ha plots across a broad soil gradient in a Pinus ponderosa (ponderosa pine) forest ecosystem. We evaluated multivariate models of plant species richness using structural equation modeling. Results: Richness was highest at intermediate levels of understory plant cover, suggesting that both colonization success and competitive exclusion can limit richness in this system. We did not detect a reciprocal positive effect of richness on plant cover. Richness was strongly related to soil nitrogen in the model, with evidence for both a direct negative effect and an indirect non-linear relationship mediated through understory plant cover. Soil organic matter appeared to have a positive influence on understory richness that was independent of soil nitrogen. Richness was lowest where the forest overstory was densest, which can be explained through indirect effects on soil organic matter, soil nitrogen and understory cover. Finally, model results suggest a variety of direct and indirect processes whereby mineral soil properties can influence richness. Conclusions: Understory plant species richness and plant cover in P. ponderosa forests appear to be significantly influenced by soil organic matter and nitrogen, which are, in turn, related to overstory density and composition and mineral soil properties. Thus, soil properties can impose direct and indirect constraints on local species diversity in ponderosa pine forests. ?? IAVS; Opulus Press.

  1. Comparison of vegetation patterns and soil nutrient relations in an oak-pine forest and a mixed deciduous forest on Long Island, New York

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, S.C.; Curtis, P.S.

    1980-11-01

    An analysis of soil nutrient relations in two forest communities on Long Island, NY, yielded a correlation between the fertility of the top-soil and vegetational composition. The oak-pine forest soils at Brookhaven National Laboratory contain lower average concentrations of NH/sub 3/, Ca, K, and organic matter than the mixed deciduous forest soils in the Stony Brook area. The pH of the topsoil is also more acidic at Brookhaven. The observed differences between localities are greater than within-locality differences between the two soil series tested (Plymouth and Riverhead), which are common to both localities. Nutrient concentrations in the subsoil are not consistently correlated with either locality or soil series, although organic matter and NH/sub 3/ show significantly higher concentrations at Stony Brook. Supporting data on density and basal area of trees and coverage of shrubs and herbs also reveals significant variation between the two forest communities. An ordination of the vegetation data shows higher similarity within than between localities, while no obvious pattern of within-locality variation due to soil series treatments is apparent. These data support the hypothesis that fertility gradients may influence forest community composition and structure. This hypothesis is discussed with reference to vegetation-soil interactions and other factors, such as frequency of burning, which may direct the future development of the Brookhaven oak-pine forest.

  2. Estimating the collapse of aggregated fine soil structure in a mountainous forested catchment.

    Science.gov (United States)

    Mouri, Goro; Shinoda, Seirou; Golosov, Valentin; Chalov, Sergey; Shiiba, Michiharu; Hori, Tomoharu; Oki, Taikan

    2014-06-01

    This paper describes the relationship of forest soil dryness and antecedent rainfall with suspended sediment (SS) yield due to extreme rainfall events and how this relationship affects the survival of forest plants. Several phenomena contribute to this relationship: increasing evaporation (amount of water vapour discharged from soil) due to increasing air temperature, decreasing moisture content in the soil, the collapse of aggregates of fine soil particles, and the resulting effects on forest plants. To clarify the relationships among climate variation, the collapse of soil particle aggregates, and rainfall-runoff processes, a numerical model was developed to reproduce such aggregate collapse in detail. The validity of the numerical model was confirmed by its application to the granitic mountainous catchment of the Nagara River basin in Japan and by comparison with observational data. The simulation suggests that important problems, such as the collapse of forest plants in response to decreases in soil moisture content and antecedent rainfall, will arise if air temperature continues to increase. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. [Effects of forest regeneration patterns on the quantity and chemical structure of soil solution dissolved organic matter in a subtropical forest.

    Science.gov (United States)

    Yuan, Xiao Chun; Lin, Wei Sheng; Pu, Xiao Ting; Yang, Zhi Rong; Zheng, Wei; Chen, Yue Min; Yang, Yu Sheng

    2016-06-01

    Using the negative pressure sampling method, the concentrations and spectral characte-ristics of dissolved organic matter (DOM) of soil solution were studied at 0-15, 15-30, 30-60 cm layers in Castanopsis carlesii forest (BF), human-assisted naturally regenerated C. carlesii forest (RF), C. carlesii plantation (CP) in evergreen broad-leaved forests in Sanming City, Fujian Pro-vince. The results showed that the overall trend of dissolved organic carbon (DOC) concentrations in soil solution was RF>CP>BF, and the concentration of dissolved organic nitrogen (DON) was highest in C. carlesii plantation. The concentrations of DOC and DON in surface soil (0-15 cm) were all significantly higher than in the subsurface (30-60 cm). The aromatic index (AI) was in the order of RF>CP>BF, and as a whole, the highest AI was observed in the surface soil. Higher fluorescence intensity and a short wave absorption peak (320 nm) were observed in C. carlesii plantation, suggesting the surface soil of C. carlesii plantation was rich in decomposed substance content, while the degree of humification was lower. A medium wave absorption peak (380 nm) was observed in human-assisted naturally regenerated C. carlesii forest, indicating the degree of humification was higher which would contribute to the storage of soil fertility. In addition, DOM characte-ristics in 30-60 cm soil solution were almost unaffected by forest regeneration patterns.

  4. Radionuclide transport along a boreal hill slope - elevated soil water concentrations in riparian forest soils

    Energy Technology Data Exchange (ETDEWEB)

    Lidman, Fredrik; Boily, Aasa; Laudon, Hjalmar [Dept. of Forest Ecology and Management, Swedish University of Agricultural Sciences, 901 83 Umeaa (Sweden); Koehler, Stephan J. [Dept. of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, P.O. 7050, 750 07 Uppsala (Sweden)

    2014-07-01

    The transport of radionuclides from forest ecosystems and out into surface waters is a crucial process for understanding the long-term fate of radionuclides in the boreal landscape. Boreal forests are typically dominated by podzol soils, but the streams draining the forests are often lined by highly organic, often peat-like soils, which the radionuclides must pass through in order to reach the stream. This so-called riparian zone therefore represents a fundamentally different biogeochemical environment than ordinary forest soils, e.g. by exhibiting significantly lower pH and higher concentrations of organic colloids, which significantly can affect the mobility of many radionuclides. Since the riparian zone is the last terrestrial environment that the groundwater is in contact with before it enters the stream, previous research has demonstrated its profound impact on the stream water chemistry. Hence, the riparian soils should also be important for the transport and accumulation of radionuclides. Therefore, soil water was sampled using suction lysimeters installed at different depths along a 22 m long forested hill slope transect in northern Sweden, following the flow pathway of the groundwater from the uphill podzol to the riparian zone near the stream channel. The analyses included a wide range of hydrochemical parameters and many radiologically important elements, e.g. U, Th, Ni, C, Sr, Cs, REEs and Cl. The sampling was repeated ten times throughout a year in order to also capture the temporal variability of the soil water chemistry. The water chemistry of the investigated transect displayed a remarkable change as the groundwater approached the stream channel. Strongly increased concentrations of many elements were observed in the riparian soils. For instance, the concentrations of Th were more than 100 times higher than in the riparian zone than in the uphill forest, suggesting that the riparian zone may be a hotspot for radionuclide accumulation. The reason

  5. Overcoming of Soil Contamination with Pesticides in Forest Nurseries Using the Activity of Microorganisms

    Directory of Open Access Journals (Sweden)

    Irina A. Freiberg

    2010-01-01

    Full Text Available The use of pesticides during cultivation of pine seedlings in forest nurseries resultsin the formation two phenotypes of teratomorph seedlings – conditionally normal andabnormal. Growing forest cultures from teratomorph seedlings leads to their low survivalrate. It is known that pesticides and their metabolic products can remain in soil for manyyears. It is therefore impossible to rely only on natural degradation of pesticides in soil. Apromising way of removing pesticides from soil is their microbiological decomposition.This method is preferable because there is a meliorative organic substance not far from forestnurseries – i.e. forest litter rich in microorganisms. The purpose of these experimentswas to examine the influence of forest litter applied on pesticide decomposition in soil andmorphology of pine seedlings. The rates of forest litter that were most effective in decompositionof pesticides and the activity of microbial communities in litter, depending on foreststand structure, were determined. Estimation of that action was based on the morphologyof seedlings (rate of pine seedlings with normal, conditionally normal and abnormalphenotypes, intensity of CO2 emission from soil and catalase activity, which correlates withthe number of soil microorganisms. The results of these experiments showed the mosteffective activity of forest litter at the application rate of 20 kg/m2. The number of seedlingswith normal phenotype rose from 32% up to 40%. Besides, it was noted that saprophyteswere most effective in pine forest litter, which is characterized by a more acid reaction ofsoil solution, while most others were rich in fungi. The highest number of normal phenotypeseedlings, intensity of CO2 emission and activity of soil catalase were correlated withthe microbiological activity of the applied pine forest litter.

  6. Evidence that soil aluminum enforces site fidelity of southern New England forest trees

    Science.gov (United States)

    S. W. Bigelow; C. D. Canham

    2010-01-01

    Tree species composition of hardwood forests of the northeastern United States corresponds with soil chemistry, and differential performance along soil calcium (Ca) gradients has been proposed as a mechanism for enforcing this fidelity of species to site. We conducted studies in a southern New England forest to test if surface-soil Ca is more important than other...

  7. Responses of soil fungi to logging and oil palm agriculture in Southeast Asian tropical forests.

    Science.gov (United States)

    McGuire, K L; D'Angelo, H; Brearley, F Q; Gedallovich, S M; Babar, N; Yang, N; Gillikin, C M; Gradoville, R; Bateman, C; Turner, B L; Mansor, P; Leff, J W; Fierer, N

    2015-05-01

    Human land use alters soil microbial composition and function in a variety of systems, although few comparable studies have been done in tropical forests and tropical agricultural production areas. Logging and the expansion of oil palm agriculture are two of the most significant drivers of tropical deforestation, and the latter is most prevalent in Southeast Asia. The aim of this study was to compare soil fungal communities from three sites in Malaysia that represent three of the most dominant land-use types in the Southeast Asia tropics: a primary forest, a regenerating forest that had been selectively logged 50 years previously, and a 25-year-old oil palm plantation. Soil cores were collected from three replicate plots at each site, and fungal communities were sequenced using the Illumina platform. Extracellular enzyme assays were assessed as a proxy for soil microbial function. We found that fungal communities were distinct across all sites, although fungal composition in the regenerating forest was more similar to the primary forest than either forest community was to the oil palm site. Ectomycorrhizal fungi, which are important associates of the dominant Dipterocarpaceae tree family in this region, were compositionally distinct across forests, but were nearly absent from oil palm soils. Extracellular enzyme assays indicated that the soil ecosystem in oil palm plantations experienced altered nutrient cycling dynamics, but there were few differences between regenerating and primary forest soils. Together, these results show that logging and the replacement of primary forest with oil palm plantations alter fungal community and function, although forests regenerating from logging had more similarities with primary forests in terms of fungal composition and nutrient cycling potential. Since oil palm agriculture is currently the mostly rapidly expanding equatorial crop and logging is pervasive across tropical ecosystems, these findings may have broad applicability.

  8. [Species composition and diversity of soil mesofauna in the 'Holy Hills' fragmentary tropical rain forest of Xishuangbanna, China].

    Science.gov (United States)

    Yang, X; Sha, L

    2001-04-01

    The species composition and diversity of soil mesofauna were examined in fragmented dry tropical seasonal rainforest of tow 'Holy Hills' of Dai nationality, compared with the continuous moist tropical seasonal rain forest of Nature Reserve in Xishuangbanna area. 5 sample quadrats were selected along the diagonal of 20 m x 20 m sampling plot, and the samples of litterfall and 0-3 cm soil were collected from each 50 cm x 10 cm sample quadrat. Animals in soil sample were collected by using dry-funnel(Tullgren's), were identified to their groups according to the order. The H' index, D.G index and the pattern of relative abundance of species were used to compare the diversity of soil mesofauna. The results showed that the disturbance of vegetation and soil resulted by tropical rainforest fragmentation was the major factor affecting the diversity of soil mesofauna. Because the fragmented forest was intruded by some pioneer tree species and the "dry and warm" effect operated, this forest had more litterfall on the floor and more humus in the soil than the continuous moist rain forest. The soil condition with more soil organic matter, total N and P, higher pH value and lower soil bulk density became more favorable to the soil mesofauna. Therefore, the species richness, abundance and diversity of soil mesofauna in fragmented forests were higher than those in continuous forest, but the similarity of species composition in fragmented forest to the continuous forest was minimal. Soil mesofauna diversity in fragmented forests did not change with decreasing fragmented area, indicating that there was no species-area effect operation in this forest. The pattern of relative abundance of species in these forest soils was logarithmic series distribution.

  9. Visually Determined Soil Disturbance Classes Used as Indices of Forest Harvesting Disturbance

    Science.gov (United States)

    W. Michael Aust; James A. Burger; Emily A. Carter; David P. Preston; Steven C. Patterson

    1998-01-01

    Visual estimates of soil and site disturbances are used by foresters, soil scientists, logging supervisors. and machinery operators to minimize harvest disturbances to forest sites, to evaluate compliance with forestry Best Management Practices (BMPs), and to determine the need for ameliorative practices such as tnechanical site preparation. Although estimates are...

  10. The effect of increasing salinity and forest mortality on soil nitrogen and phosphorus mineralization in tidal freshwater forested wetlands

    Science.gov (United States)

    Noe, Gregory B.; Krauss, Ken W.; Lockaby, B. Graeme; Conner, William H.; Hupp, Cliff R.

    2013-01-01

    Tidal freshwater wetlands are sensitive to sea level rise and increased salinity, although little information is known about the impact of salinification on nutrient biogeochemistry in tidal freshwater forested wetlands. We quantified soil nitrogen (N) and phosphorus (P) mineralization using seasonal in situ incubations of modified resin cores along spatial gradients of chronic salinification (from continuously freshwater tidal forest to salt impacted tidal forest to oligohaline marsh) and in hummocks and hollows of the continuously freshwater tidal forest along the blackwater Waccamaw River and alluvial Savannah River. Salinification increased rates of net N and P mineralization fluxes and turnover in tidal freshwater forested wetland soils, most likely through tree stress and senescence (for N) and conversion to oligohaline marsh (for P). Stimulation of N and P mineralization by chronic salinification was apparently unrelated to inputs of sulfate (for N and P) or direct effects of increased soil conductivity (for N). In addition, the tidal wetland soils of the alluvial river mineralized more P relative to N than the blackwater river. Finally, hummocks had much greater nitrification fluxes than hollows at the continuously freshwater tidal forested wetland sites. These findings add to knowledge of the responses of tidal freshwater ecosystems to sea level rise and salinification that is necessary to predict the consequences of state changes in coastal ecosystem structure and function due to global change, including potential impacts on estuarine eutrophication.

  11. Soil changes in forest ecosystems: evidence for and probable causes

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D W [Nevada Univ., Reno, NV (United States). Desert Research Inst. Nevada Univ., Reno, NV (US). Dept. of Range, Wildlife and Forestry; Cresser, M S [Aberdeen Univ. (GB). Dept. of Soil Science; Nilsson, S I [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Ecology and Environmental Research; Turner, John [New South Wales Forestry Commission, Sydney (AU). Wood Technology and Forest Research Div.; Ulrich, Bernhard [Goettingen Univ. (Germany). Inst. fuer Bodenkunde und Waldernaehrung; Binkley, Dan [Colorado State Univ., Fort Collins, CO (United States). Dept. of Forest and Wood Sciences; Cole, D W [Washington Univ., Seattle, WA (United States). Coll. of Forest Resources

    1990-01-01

    A review of the literature on forest soil change in North America, Central Europe, Sweden, U.K., and Australia reveals that changes are occurring in both polluted and unpolluted sites at a greater rate than previously suspected. Acid deposition has played a major role in recent acidification in some areas of Europe and, to a more limited extent, in Sweden and eastern North America. However, rapid rates of soil acidification are occurring in western North America and Australia due to internal processes such as tree uptake and nitrification associated with excessive nitrogen fixation. The presence of extremely acid soils is not necessarily an indicator of significant acidic deposition, as evidenced by their presence in unpolluted, even pristine forests of the north-western U.S.A. and Alaska. Numerous studies in Sweden, Australia, and North America show the important effects of tree uptake and harvesting upon soil acidification in managed forests. Furthermore, arguments can be presented that harvesting takes a greater toll upon the pools of potentially limiting cations than leaching. The rate at which soils are changing in some instances calls for re-evaluation of the budget analyses used to predict soil change. Specifically, inter-horizon changes due to uptake and recycling by vegetation, the interactions of such changes with naturally-and anthropogenically-produced acids, and the effects of aluminium uptake and recycling need further evaluation and study. (Author).

  12. 137Cs profiles in erosion plots with different soil cultivation

    International Nuclear Information System (INIS)

    Andrello, A.C.; Appoloni, C.R.; Cassol, E.A.; Melquiades, F.L.

    2006-01-01

    Cesium-137 methodology has been successfully used to assess soil erosion. Seven erosion plots were sampled to determine the 137 Cs profile and to assess the erosion rates. Cesium-137 profile for native pasture plot showed an exponential decline below 5 cm depth, with little 137 Cs activity in the superficial layer (0-5 cm). Cesium-137 profile for wheat-soybean rotation plot in conventional tillage showed a uniform distribution with depth. For this plot, the soil loss occurs more in middle than upper and lower level. Cesium-137 profile for wheat-soybean rotation and wheat-maize rotation plots in no-tillage showed a similar result to the native pasture, with a minimum soil loss in the superficial layer. Cesium-137 profile for bare soil and cultivated pasture plots are similar, with a soil erosion rate of 229 t ha -1 year -1 . In the plots with a conventional tillage a greater soil loss occur in middle than upper and lower level. In no-tillage cultivation plots occurs soil loss in lower level, but no sign of soil loss neither gain in the upper level is observed. Cesium-137 methodology is a good tool to assess soil erosion and the 137 Cs profile gives a possibility to understand the soil erosion behavior in erosion plots. (author)

  13. Drift and transmission FT-IR spectroscopy of forest soils: an approach to determine decomposition processes of forest litter

    International Nuclear Information System (INIS)

    Haberhauer, G.; Gerzabek, M.H.

    1999-06-01

    A method is described to characterize organic soil layers using Fourier transformed infrared spectroscopy. The applicability of FT-IR, either dispersive or transmission, to investigate decomposition processes of spruce litter in soil originating from three different forest sites in two climatic regions was studied. Spectral information of transmission and diffuse reflection FT-IR spectra was analyzed and compared. For data evaluation Kubelka Munk (KM) transformation was applied to the DRIFT spectra. Sample preparation for DRIFT is simpler and less time consuming in comparison to transmission FT-IR, which uses KBr pellets. A variety of bands characteristics of molecular structures and functional groups has been identified for these complex samples. Analysis of both transmission FT-IR and DRIFT, showed that the intensity of distinct bands is a measure of the decomposition of forest litter. Interferences due to water adsorption spectra were reduced by DRIFT measurement in comparison to transmission FT-IR spectroscopy. However, data analysis revealed that intensity changes of several bands of DRIFT and transmission FT-IR were significantly correlated with soil horizons. The application of regression models enables identification and differentiation of organic forest soil horizons and allows to determine the decomposition status of soil organic matter in distinct layers. On the basis of the data presented in this study, it may be concluded that FT-IR spectroscopy is a powerful tool for the investigation of decomposition dynamics in forest soils. (author)

  14. Soil changes induced by rubber and tea plantation establishment: comparison with tropical rain forest soil in Xishuangbanna, SW China.

    Science.gov (United States)

    Li, Hongmei; Ma, Youxin; Liu, Wenjie; Liu, Wenjun

    2012-11-01

    Over the past thirty years, Xishuangbanna in Southwestern China has seen dramatic changes in land use where large areas of tropical forest and fallow land have been converted to rubber and tea plantations. In this study we evaluated the effects of land use and slope on soil properties in seven common disturbed and undisturbed land-types. Results indicated that all soils were acidic, with pH values significantly higher in the 3- and 28-year-old rubber plantations. The tropical forests had the lowest bulk densities, especially significantly lower from the top 10 cm of soil, and highest soil organic matter concentrations. Soil moisture content at topsoil was highest in the mature rubber plantation. Soils in the tropical forests and abandoned cultivated land had inorganic N (IN) concentrations approximately equal in NH(4) (+)-N and NO(3) (-)-N. However, soil IN pools were dominated by NH(4) (+)-N in the rubber and tea plantations. This trend suggests that conversion of tropical forest to rubber and tea plantations increases NH(4) (+)-N concentration and decreases NO(3) (-)-N concentration, with the most pronounced effect in plantations that are more frequently fertilized. Soil moisture content, IN, NH(4) (+)-N and NO(3) (-)-N concentrations within all sites were higher in the rainy season than in the dry season. Significant differences in the soil moisture content, and IN, NH(4) (+)-N and NO(3) (-)-N concentration was detected for both land uses and sampling season effects, as well as interactions. Higher concentrations of NH(4) (+)-N were measured at the upper slopes of all sites, but NO(3) (-)-N concentrations were highest at the lower slope in the rubber plantations and lowest at the lower slopes at all other. Thus, the conversion of tropical forests to rubber and tea plantations can have a profound effect on soil NH(4) (+)-N and NO(3) (-)-N concentrations. Options for improved soil management in plantations are discussed.

  15. Preliminary Response of Soil Fauna to Simulated N Deposition in Three Typical Subtropical Forests

    Institute of Scientific and Technical Information of China (English)

    XU Guo-Liang; MO Jiang-Ming; ZHOU Guo-Yi; FU Sheng-Lei

    2006-01-01

    A field-scale experiment arranged in a complete randomized block design with three N addition treatments including a control (no addition of N), a low N (5 g m-2 year-1), and a medium N (10 g m-2 year-1) was performed in each of the three typical forests, a pine (Pinus massoniana Lamb.) forest (PF), a pine-broadleaf mixed forest (MF) and a mature monsoon evergreen broadleaf forest (MEBF), of the Dinghushan Biosphere Reserve in subtropical China to study the response of soil fauna community to additions of N. Higher NH4+ and NO3- concentrations and a lower soil pH occurred in the medium N treatment of MEBF, whereas the NO3- concentration was the lowest in PF after the additions of N. The response of the density, group abundance and diversity index of soil fauna to addition of N varied with the forest type,and all these variables decreased with increasing N under MEBF but the trend was opposite under PF. The N treatments had no significant effects on these variables under MF. Compared with the control plots, the medium N treatment had significant negative effect on soil fauna under MEBF. The group abundance of soil fauna increased significantly with additions of higher N rates under PF. These results suggested that the response of soil fauna to N deposition varied with the forest type and N deposition rate, and soil N status is one of the important factors affecting the response of soil fauna to N deposition.

  16. Soil-plant transfer of radiocaesium in slightly contaminated forest ecosystems

    International Nuclear Information System (INIS)

    Lamarque, S.; Lucot, E.; Badot, P.M.

    2004-01-01

    During Chernobyl's accident, large areas of Western European countries, particularly forests, were contaminated with radiocaesium fallouts. Soil-plant transfer is often the first step by which 137 Cs enters the food chains and flows through the biogeochemical cycle. The present work is devoted to document the soil-plant transfer of radiocaesium in slightly contaminated forest areas. Twelve sites, representative of the various functional features and great diversity of ecological contexts of Franche-Comte region (France), were selected to sample soils and forest trees: three species (Picea abies, Fagus sylvatica, Corylus avellana) and two organs (leaves or needles and young branches) were measured. Radiocaesium activities in soils have been observed to vary in range of 61 to 280 Bq.kg -1 DW at 0-5 cm depth (8500 to 14280 Bq.m -2 ). A great correlation exists between organic carbon content and soil total radiocaesium concentration (r 2 = 0,60). The studied soils have large organic carbon contents (2,7 to 28%) and large water pH values (3,1 to 6,1). Radiocaesium activities in leaves, needles and branches varied in range of 0 to 128 Bq.kg -1 DW, 0 to 163 Bq.kg -1 DW and 0 to 180 Bq.kg -1 DW respectively. We reported a large variability of Transfer Factors, TFs (0.02 to 0.58) with respect to vegetation type, organ type and soil features. The activity concentration in the leaves and needles were generally found to be greater than those measured in the branches. No correlation was found between soil radiocaesium activity and vegetation radiocaesium activity. TFs values could be related to variations in the radiocaesium bioavailability function of the soil features. (author)

  17. Management impacts on forest floor and soil organic carbon in northern temperate forests of the US

    Science.gov (United States)

    Coeli M. Hoover

    2011-01-01

    The role of forests in the global carbon cycle has been the subject of a great deal of research recently, but the impact of management practices on forest soil dynamics at the stand level has received less attention. This study used six forest management experimental sites in five northern states of the US to investigate the effects of silvicultural treatments (light...

  18. Dynamics of Carbonates in Soils under Different Land Use in Forest-Steppe Area of Russia Using Stable and Radiogenic Carbon Isotope Data

    Directory of Open Access Journals (Sweden)

    Olga Khokhlova

    2018-04-01

    Full Text Available The work is aimed at the analysis of carbonate dynamics in soils under different land use. The studied area is located in the forest steppe - of the Central Russian Upland. Soils were sampled at four sites: a broadleaf forest, an adjacent 50-year continuously cropped field including plots under a corn monoculture, bare fallow, and a crop rotation area with a clean fallow every fourth year. The carbonates’ morphology, their chemical composition, as well as their stable and radiogenic isotopes of carbon were studied. Clear-cut distinctions were found in the carbonate distribution throughout the profiles in the microstructure of carbonate pedofeatures, carbon isotopic composition, and radiocarbon age of carbonates between the pairs of the plots as follows: the bare fallow and the crop rotation on the one hand, and the corn monoculture and forest on the other. The distinctions are commonly assumed to result from repeating upward water fluxes, which are different in the bare soils and those with plant cover. A clear difference occurred in the hydrothermal regime for soils with and without plant cover, and was found to be the key factor of the observed differences. In addition, in soils under plant cover, the carbonate migration upward occurs due to process of transpiration, whereas in soils devoid of plants, it occurs due to physical evaporation.

  19. Using advanced surface complexation models for modelling soil chemistry under forests: Solling forest, Germany

    Energy Technology Data Exchange (ETDEWEB)

    Bonten, Luc T.C., E-mail: luc.bonten@wur.nl [Alterra-Wageningen UR, Soil Science Centre, P.O. Box 47, 6700 AA Wageningen (Netherlands); Groenenberg, Jan E. [Alterra-Wageningen UR, Soil Science Centre, P.O. Box 47, 6700 AA Wageningen (Netherlands); Meesenburg, Henning [Northwest German Forest Research Station, Abt. Umweltkontrolle, Sachgebiet Intensives Umweltmonitoring, Goettingen (Germany); Vries, Wim de [Alterra-Wageningen UR, Soil Science Centre, P.O. Box 47, 6700 AA Wageningen (Netherlands)

    2011-10-15

    Various dynamic soil chemistry models have been developed to gain insight into impacts of atmospheric deposition of sulphur, nitrogen and other elements on soil and soil solution chemistry. Sorption parameters for anions and cations are generally calibrated for each site, which hampers extrapolation in space and time. On the other hand, recently developed surface complexation models (SCMs) have been successful in predicting ion sorption for static systems using generic parameter sets. This study reports the inclusion of an assemblage of these SCMs in the dynamic soil chemistry model SMARTml and applies this model to a spruce forest site in Solling Germany. Parameters for SCMs were taken from generic datasets and not calibrated. Nevertheless, modelling results for major elements matched observations well. Further, trace metals were included in the model, also using the existing framework of SCMs. The model predicted sorption for most trace elements well. - Highlights: > Surface complexation models can be well applied in field studies. > Soil chemistry under a forest site is adequately modelled using generic parameters. > The model is easily extended with extra elements within the existing framework. > Surface complexation models can show the linkages between major soil chemistry and trace element behaviour. - Surface complexation models with generic parameters make calibration of sorption superfluous in dynamic modelling of deposition impacts on soil chemistry under nature areas.

  20. Using advanced surface complexation models for modelling soil chemistry under forests: Solling forest, Germany

    International Nuclear Information System (INIS)

    Bonten, Luc T.C.; Groenenberg, Jan E.; Meesenburg, Henning; Vries, Wim de

    2011-01-01

    Various dynamic soil chemistry models have been developed to gain insight into impacts of atmospheric deposition of sulphur, nitrogen and other elements on soil and soil solution chemistry. Sorption parameters for anions and cations are generally calibrated for each site, which hampers extrapolation in space and time. On the other hand, recently developed surface complexation models (SCMs) have been successful in predicting ion sorption for static systems using generic parameter sets. This study reports the inclusion of an assemblage of these SCMs in the dynamic soil chemistry model SMARTml and applies this model to a spruce forest site in Solling Germany. Parameters for SCMs were taken from generic datasets and not calibrated. Nevertheless, modelling results for major elements matched observations well. Further, trace metals were included in the model, also using the existing framework of SCMs. The model predicted sorption for most trace elements well. - Highlights: → Surface complexation models can be well applied in field studies. → Soil chemistry under a forest site is adequately modelled using generic parameters. → The model is easily extended with extra elements within the existing framework. → Surface complexation models can show the linkages between major soil chemistry and trace element behaviour. - Surface complexation models with generic parameters make calibration of sorption superfluous in dynamic modelling of deposition impacts on soil chemistry under nature areas.

  1. Tree species is the major factor explaining C:N ratios in European forest soils

    DEFF Research Database (Denmark)

    Cools, Nathalie; Vesterdal, Lars; De Vos, Bruno

    2014-01-01

    The C:N ratio is considered as an indicator of nitrate leaching in response to high atmospheric nitrogen (N) deposition. However, the C:N ratio is influenced by a multitude of other site-related factors. This study aimed to unravel the factors determining C:N ratios of forest floor, mineral soil...... mineral soil layers it was the humus type. Deposition and climatic variables were of minor importance at the European scale. Further analysis for eight main forest tree species individually, showed that the influence of environmental variables on C:N ratios was tree species dependent. For Aleppo pine...... and peat top soils in more than 4000 plots of the ICP Forests large-scale monitoring network. The first objective was to quantify forest floor, mineral and peat soil C:N ratios across European forests. Secondly we determined the main factors explaining this C:N ratio using a boosted regression tree...

  2. Comparison of Organic Matter Dynamics in Soil between Japanese Cedar (Cryptomeria japonica) Forest and Adjacent Japanese Red Pine (Pinus densiflora) Forest Established on Flatland

    OpenAIRE

    Terumasa, Takahashi; Akiko, Minami; Yoshito, Asano; Tatsuaki, Kobayashi; Faculty of Horticulture, Chiba Universit; Faculty of Horticulture, Chiba University:(Present)Hashikami town office; Faculty of Horticulture, Chiba University; Faculty of Horticulture, Chiba University

    1999-01-01

    In order to clarify the effects of tree species on organic matter dynamics in soil, we investigated the amount of forest floor material, leaf litter decomposition rate, soil chemical characteristics, soil respiration rate and cellulose decomposition rate in a Japanese cedar forest (cedar plot) and an adjacent Japanese red pine forest (pine plot) established on a flatland. The amount of forest floor material in the cedar plot was 34.5 Mg ha^ which was greater than that in the pine plot. Becaus...

  3. Phosphorus accumulation and spatial distribution in agricultural soils in Denmark

    DEFF Research Database (Denmark)

    Rubæk, Gitte Holton; Kristensen, Kristian; Olesen, S E

    2013-01-01

    Over the past century, phosphorus (P) has accumulated in Danish agricultural soils. We examined the soil P content and the degree of P saturation in acid oxalate (DPS) in 337 agricultural soil profiles and 32 soil profiles from deciduous forests sampled at 0–0.25, 0.25–0.50, 0.50–0.75 and 0...

  4. Soil C and N storage and microbial biomass in US southern pine forests: Influence of forest management

    Science.gov (United States)

    J.A. Foote; T.W. Boutton; D.A. Scott

    2015-01-01

    Land management practices have strong potential to modify the biogeochemistry of forest soils, with implications for the long-term sustainability and productivity of forestlands. The Long-Term Soil Productivity (LTSP) program, a network of 62 sites across the USA and Canada, was initiated to address concerns over possible losses of soil productivity due to soil...

  5. Atmospheric deposition of mercury in Atlantic Forest and ecological risk to soil fauna

    Science.gov (United States)

    Cristhy Buch, Andressa; Cabral Teixeira, Daniel; Fernandes Correia, Maria Elizabeth; Vieira Silva-Filho, Emmanoel

    2014-05-01

    The increasing levels of mercury (Hg) found in the atmosphere nowadays has a great contribution from anthropogenic sources and has been a great concern in the past two decades in industrialized countries. Brazil is the seventh country with the highest rate of mercury in the atmosphere. Certainly, the petroleum refineries have significant contribution, seen that 100 million m3 of crude oil are annually processed. These refineries contribute with low generation of solid waste; however, a large fraction of Hg can be emitted to the atmosphere. There are sixteen refineries in Brazil, three of them located in the state of Rio de Janeiro. The Hg is a toxic and hazardous trace element, naturally found in the earth crust. The major input of Hg to ecosystems is through atmospheric deposition (wet and dry), being transported in the atmosphere over large distances. The forest biomes are of great importance in the atmosphere/soil cycling of elemental Hg through foliar uptake and subsequent transfer to the soil through litterfall, which play an important role as Hg sink. The Atlantic Forest of Brazil is the greater contributor of fauna and flora biodiversity in the world and, according to recent studies, this biome has the highest concentrations of mercury in litter in the world, as well as in China, at Subtropical Forest. Ecotoxicological assessments can predict the potential ecological risk of Hg toxicity in the soil can lead to impact the soil fauna and indirectly other trophic levels of the food chain within one or more ecosystems. This study aims to determine mercury levels that represent risks to diversity and functioning of soil fauna in tropical forest soils. The study is conducted in two forest areas inserted into conservation units of Rio de Janeiro state. One area is located next to an important petroleum refinery in activity since fifty-two years ago, whereas the other one is located next to other refinery under construction (beginning activities in 2015), which will

  6. Soil CO2 efflux among four coniferous forest types of Kashmir Himalaya, India.

    Science.gov (United States)

    Dar, Javid Ahmad; Ganie, Khursheed Ahmad; Sundarapandian, Somaiah

    2015-11-01

    Soil CO2 efflux was measured in four different coniferous forest types (Cedrus deodara (CD), Pinus wallichiana (PW), mixed coniferous (MC), and Abies pindrow (AP)) for a period of 2 years (April 2012 to December 2013). The monthly soil CO2 efflux ranged from 0.8 to 4.1 μmoles CO2 m(-2) s(-1) in 2012 and 1.01 to 5.48 μmoles CO2 m(-2) s(-1) in 2013. The soil CO2 efflux rate was highest in PW forest type in both the years, while it was lowest in MC and CD forest types during 2012 and 2013, respectively. Soil temperature (TS) at a depth of 10 cm ranged from 3.8 to 19.4 °C in 2012 and 3.5 to 19.1 °C in 2013 in all the four forest types. Soil moisture (MS) ranged from 19.8 to 58.6% in 2012 and 18.5 to 58.6% in 2013. Soil CO2 efflux rate was found to be significantly higher in summer than the other seasons and least during winter. Soil CO2 efflux showed a significant positive relationship with TS (R2=0.52 to 0.74), SOC% (R2=0.67), pH (R2=0.68), and shrub biomass (R2=0.51), whereas, only a weak positive relationship was found with soil moisture (R2=0.16 to 0.41), tree density (R2=0.25), tree basal area (R2=0.01), tree biomass (R2=0.07), herb biomass (R2=0.01), and forest floor litter (R2=0.02). Thus, the study indicates that soil CO2 efflux in high mountainous areas is greatly influenced by seasons, soil temperature, and other environmental factors.

  7. Organotin compounds in precipitation, fog and soils of a forested ecosystem in Germany

    International Nuclear Information System (INIS)

    Huang, J.-H.; Schwesig, David; Matzner, Egbert

    2004-01-01

    Organotin compounds (OTC) are highly toxic pollutants and have been mostly investigated so far in aquatic systems and sediments. The concentrations and fluxes of different organotin compounds, including methyl-, butyl-, and octyltin species in precipitation and fog were investigated in a forested catchment in NE Bavaria, Germany. Contents, along with the vertical distribution and storages in two upland and two wetland soils were determined. During the 1-year monitoring, the OTC concentrations in bulk deposition, throughfall and fog ranged from 1 ng Sn l -1 to several ten ng Sn l -1 , but never over 200 ng Sn l -1 . The OTC concentrations in fog were generally higher than in throughfall and bulk deposition. Mono-substituted species were the dominant Sn species in precipitation (up to 190 ng Sn l -1 ) equaling a flux of up to 70 mg Sn ha -1 a -1 . In upland soils, OTC contents peaked in the forest floor (up to 30 ng Sn g -1 ) and decreased sharply with the depth. In wetland soils, OTC had slightly higher contents in the upper horizons. The dominance of mono-substituted species in precipitation is well reflected in the contents and storages of OTC in both upland and wetland soils. The ratios of OTC soil storages to the annual throughfall flux ranged from 20 to 600 years. These high ratios are probably due to high stability and low mobility of OTC in soils. No evidence was found for methylation of tin in the wetland soils. In comparison with sediments, concentrations and contents of organotin in forest soils are considerably lower, and the dominant species are less toxic. It is concluded that forested soils may act as sinks for OTC deposited from the atmosphere. - Forested soils may act as sinks for atmospherically deposited organotin compounds

  8. Experimental Evidence that Hemlock Mortality Enhances Carbon Stabilization in Southern Appalachian Forest Soils

    Science.gov (United States)

    Fraterrigo, J.; Ream, K.; Knoepp, J.

    2017-12-01

    Forest insects and pathogens (FIPs) can cause uncertain changes in forest carbon balance, potentially influencing global atmospheric carbon dioxide (CO2) concentrations. We quantified the effects of hemlock (Tsuga canadensis L. Carr.) mortality on soil carbon fluxes and pools for a decade following either girdling or natural infestation by hemlock woolly adelgid (HWA; Adelges tsugae) to improve mechanistic understanding of soil carbon cycling response to FIPs. Although soil respiration (Rsoil) was similar among reference plots and plots with hemlock mortality, both girdled and HWA-infested plots had greater activities of β-glucosidase, a cellulose-hydrolyzing extracellular enzyme, and decreased O-horizon mass and fine root biomass from 2005 to 2013. During this period, total mineral soil carbon accumulated at a higher rate in disturbed plots than in reference plots in both the surface (0-10 cm) and subsurface (10-30 cm); increases were predominantly in the mineral-associated fraction of the soil organic matter. In contrast, particulate organic matter carbon accrued slowly in surface soils and declined in the subsurface of girdled plots. δ13C values of this fraction demonstrate that particulate organic matter carbon in the surface soil has become more microbially processed over time, suggesting enhanced decomposition of organic matter in this pool. Together, these findings indicate that hemlock mortality and subsequent forest regrowth has led to enhanced soil carbon stabilization in southern Appalachian forests through the translocation of carbon from detritus and particulate soil organic matter pools to the mineral-associated organic matter pool. These findings have implications for ecosystem management and modeling, demonstrating that forests may tolerate moderate disturbance without diminishing soil carbon storage when there is a compensatory growth response by non-host trees.

  9. Climate change impairs processes of soil and plant N cycling in European beech forests on marginal soil

    Science.gov (United States)

    Tejedor, Javier; Gasche, Rainer; Gschwendtner, Silvia; Leberecht, Martin; Bimüller, Carolin; Kögel-Knabner, Ingrid; Pole, Andrea; Schloter, Michael; Rennenberg, Heinz; Simon, Judy; Hanewinkel, Marc; Baltensweiler, Andri; Bilela, Silvija; Dannenmann, Michael

    2014-05-01

    Beech forests of Central Europe are covering large areas with marginal calcareous soils, but provide important ecological services and represent a significant economical value. The vulnerability of these ecosystems to projected climate conditions (higher temperatures, increase of extreme drought and precipitation events) is currently unclear. Here we present comprehensive data on the influence of climate change conditions on ecosystem performance, considering soil nitrogen biogeochemistry, soil microbiology, mycorrhiza ecology and plant physiology. We simultaneously quantified major plant and soil gross N turnover processes by homogenous triple 15N isotope labeling of intact beech natural regeneration-soil-microbe systems. This isotope approach was combined with a space for time climate change experiment, i.e. we transferred intact beech seedling-soil-microbe mesocosms from a slope with N-exposure (representing present day climate conditions) to a slope with S exposure (serving as a warmer and drier model climate for future conditions). Transfers within N slope served as controls. After an equilibration period of 1 year, three isotope labeling/harvest cycles were performed. Reduced soil water content resulted in a persistent decline of ammonia oxidizing bacteria in soil (AOB). Consequently, we found a massive five-fold reduction of gross nitrification in the climate change treatment and a subsequent strong decline in soil nitrate concentrations as well as nitrate uptake by microorganisms and beech. Because nitrate was the major nutrient for beech in this forest type with little importance of ammonium and amino acids, this resulted in a strongly reduced performance of beech natural regeneration with reduced N content, N metabolite concentrations and plant biomass. These findings provided an explanation for a large-scale decline of distribution of beech forests on calcareous soils in Europe by almost 80% until 2080 predicted by statistical modeling. Hence, we

  10. The accumulation of 137Cs in the biological compartment of forest soils

    International Nuclear Information System (INIS)

    Nikolova, Ivanka; Johanson, Karl J.; Clegg, Stephen

    2000-01-01

    Soil samples were collected in various forest stands, located about 40 km north-west from Uppsala. The various stands were: (1) Clear cut area made in 1987, (2) Normal forest with 50-100 old Norway spruce and Scots pine and with a thick humic layer of about 10 cm; (3) Raised bog with 50-year-old Scots pine and Sphagnum moss layer over peat soil. (4) Rocky area with old Scots pine, growing on a shallow soil, mainly of organic origin. (5) Normal forest with nearly 100-year-old spruce and pine, growing a shallow humic layer over sandy soil. Soil blocks of about 20x20 cm and down to a depth of 10-15 cm were collected on each site. The soil samples were mechanically separated into various fractions: bulk, rhizosphere and soil-root interface. The results showed that 137 Cs was unevenly distributed between the three soil fractions. The highest activity concentrations -- 3-4 times higher than in the other two fractions -- as well as the highest organic content -- usually more than 95% -- were found in the soil-root interface fraction. Of the total 137 Cs activity in the soil, 18% as a mean value was found in the soil-root interface fraction. The results thus show that a substantial fraction of the 137 Cs in the soils in some way associated with the biological part of the soil, probably with the fungal component

  11. Modelling root reinforcement in shallow forest soils

    Science.gov (United States)

    Skaugset, Arne E.

    1997-01-01

    A hypothesis used to explain the relationship between timber harvesting and landslides is that tree roots add mechanical support to soil, thus increasing soil strength. Upon harvest, the tree roots decay which reduces soil strength and increases the risk of management -induced landslides. The technical literature does not adequately support this hypothesis. Soil strength values attributed to root reinforcement that are in the technical literature are such that forested sites can't fail and all high risk, harvested sites must fail. Both unstable forested sites and stable harvested sites exist, in abundance, in the real world thus, the literature does not adequately describe the real world. An analytical model was developed to calculate soil strength increase due to root reinforcement. Conceptually, the model is composed of a reinforcing element with high tensile strength, i.e. a conifer root, embedded in a material with little tensile strength, i.e. a soil. As the soil fails and deforms, the reinforcing element also deforms and stretches. The lateral deformation of the reinforcing element is treated analytically as a laterally loaded pile in a flexible foundation and the axial deformation is treated as an axially loaded pile. The governing differential equations are solved using finite-difference approximation techniques. The root reinforcement model was tested by comparing the final shape of steel and aluminum rods, parachute cord, wooden dowels, and pine roots in direct shear with predicted shapes from the output of the root reinforcement model. The comparisons were generally satisfactory, were best for parachute cord and wooden dowels, and were poorest for steel and aluminum rods. A parameter study was performed on the root reinforcement model which showed reinforced soil strength increased with increasing root diameter and soil depth. Output from the root reinforcement model showed a strain incompatibility between large and small diameter roots. The peak

  12. Do agricultural terraces and forest fires recurrence in Mediterranean afforested micro-catchments alter soil quality and soil nutrient content?

    Science.gov (United States)

    E Lucas-Borja, Manuel; Calsamiglia, Aleix; Fortesa, Josep; García-Comendador, Julián; Gago, Jorge; Estrany, Joan

    2017-04-01

    Bioclimatic characteristics and intense human pressure promote Mediterranean ecosystems to be fire-prone. Afforestation processes resulting from the progressive land abandonment during the last decades led to greater biomass availability increasing the risk of large forest fires. Likewise, the abandonment and lack of maintenance in the terraced lands constitute a risk of land degradation in terms of soil quantity and quality. Despite the effects of fire and the abandonment of terraced lands on soil loss and physico-chemical properties are identified, it is not clearly understood how wildfires and abandonment of terraces affect soil quality and nutrients content. Microbiological soil parameters and soil enzymes activities are biomarkers of the soil microbial communitýs functional ability, which potentially enables them as indicators of change, disturbance or stress within the soil community. The objective of this study was to investigate the effects of terracing (abandoned and non-abandoned) on the soil enzyme activities, microbiological soil parameters and soil nutrients dynamics in three Mediterranean afforested micro-catchments (i.e., fire recurrence in the last 20 years; i.e., unburned areas, burned once and burned twice. The combination of the presence of terraces and the recurrence of forest fire, thirty-six plots of 25 m2 were sampled along the these three micro-catchments collecting four replicas at the corners of each plot. The results elucidated how non-terraced and unburned plots presented the highest values of soil respiration rate and extracellular soil enzymes. Differences between experimental plots with different forest fire recurrence or comparing terraced and unburned plots with burned plots were weaker in relation to biochemical and microbiological parameters. Soil nutrient content showed an opposite trend with higher values in terraced plots, although differences were weaker. We conclude that terraced landscapes present poorer soil quality

  13. Arbuscular-mycorrhizal networks inhibit Eucalyptus tetrodonta seedlings in rain forest soil microcosms.

    Directory of Open Access Journals (Sweden)

    David P Janos

    Full Text Available Eucalyptus tetrodonta, a co-dominant tree species of tropical, northern Australian savannas, does not invade adjacent monsoon rain forest unless the forest is burnt intensely. Such facilitation by fire of seedling establishment is known as the "ashbed effect." Because the ashbed effect might involve disruption of common mycorrhizal networks, we hypothesized that in the absence of fire, intact rain forest arbuscular mycorrhizal (AM networks inhibit E. tetrodonta seedlings. Although arbuscular mycorrhizas predominate in the rain forest, common tree species of the northern Australian savannas (including adult E. tetrodonta host ectomycorrhizas. To test our hypothesis, we grew E. tetrodonta and Ceiba pentandra (an AM-responsive species used to confirm treatments separately in microcosms of ambient or methyl-bromide fumigated rain forest soil with or without severing potential mycorrhizal fungus connections to an AM nurse plant, Litsea glutinosa. As expected, C. pentandra formed mycorrhizas in all treatments but had the most root colonization and grew fastest in ambient soil. E. tetrodonta seedlings also formed AM in all treatments, but severing hyphae in fumigated soil produced the least colonization and the best growth. Three of ten E. tetrodonta seedlings in ambient soil with intact network hyphae died. Because foliar chlorosis was symptomatic of iron deficiency, after 130 days we began to fertilize half the E. tetrodonta seedlings in ambient soil with an iron solution. Iron fertilization completely remedied chlorosis and stimulated leaf growth. Our microcosm results suggest that in intact rain forest, common AM networks mediate belowground competition and AM fungi may exacerbate iron deficiency, thereby enhancing resistance to E. tetrodonta invasion. Common AM networks-previously unrecognized as contributors to the ashbed effect-probably help to maintain the rain forest-savanna boundary.

  14. Soil Properties in Natural Forest Destruction and Conversion to Agricultural Land,in Gunung Leuser National Park, North Sumatera Province

    Directory of Open Access Journals (Sweden)

    Basuki Wasis

    2012-12-01

    Full Text Available Destruction of the Gunung Leuser National Park area of North Sumatera Province through land clearing and land cover change from natural forest to agricultural land. Less attention to land use and ecosystem carrying capacity of the soil can cause soil degradation and destruction of flora, fauna, and wildlife habitat destruction. Environmental damage will result in a national park wild life will come out of the conservation area and would damage the agricultural community. Soil sampling conducted in purposive sampling in natural forest and agricultural areas.  Observation suggest that damage to the natural forest vegetation has caused the soil is not protected so that erosion has occurred. Destruction of natural forest into agricultural are as has caused damage to soil physical properties, soil chemical properties, and biological soil properties significantly. Forms of soil degradation caused by the destruction of natural forests, which is an increase in soil density (density Limbak by 103%, a decrease of 93% organic C and soil nitrogen decreased by 81%. The main factors causing soil degradation is the reduction of organic matter and soil erosion due to loss of natural forest vegetation.  Criteria for soil degradation in Governance Regulation Number 150/2000 can be used to determine the extent of soil degradation in natural forest ecosystems.Keywords: Gunung Leuser National Park, natural forest, agricultural land, land damage, soil properties

  15. Production of nitrous oxide and consumption of methane by forest soils

    Science.gov (United States)

    Keller, M.; Wofsy, S. C.; Kaplan, W. A.; Mcelroy, M. B.; Goreau, T. J.

    1983-01-01

    Soils in an Amazonian rainforest are observed to release N2O at a rate larger than the global mean by about a factor of 20. Emissions from a New England hardwood forest are approximately 30 times smaller then Brazilian values. Atmospheric methane is consumed by soils in both systems. Tropical forests would provide a major source of atmospheric N2O if the Brazilian results are representative.

  16. Soil CO2, CH4 and N2O effluxes and concentrations in soil profiles down to 15.5m depth in eucalypt plantations under contrasted rainfall regimes

    Science.gov (United States)

    Germon, A.; Nouvellon, Y.; Christophe, J.; Chapuis-Lardy, L.; Robin, A.; Rosolem, C. A.; Gonçalves, J. L. D. M.; Guerrini, I. A.; Laclau, J. P.

    2017-12-01

    Silvicultural practices in planted forests affect the fluxes of greenhouse gases at the soil surface and the major factors driving greenhouse gas production in forest soils (substrate supply, temperature, water content,…) vary with soil depth. Our study aimed to assess the consequences of drought on the temporal variability of CO2, CH4 and N2O fluxes throughout very deep soil profiles in Eucalyptus grandis plantations 3 months before the harvest then in coppice, the first 18 months after clear-cutting. Two treatments were compared: one with 37% of throughfall excluded by plastic sheets (TE), and one without rainfall exclusion (WE). Measurements of soil CO2 efflux were made every two weeks for 30 months using a closed-path Li8100 system in both treatment. Every two weeks for 21 months, CO2, CH4 and N2O surface effluxes were measured using the closed-chamber method and concentrations in the soil were measured at 7 depths down to 15.5 m in both TE and WE. At most measurement dates, soil CO2 efflux were significantly higher in TE than in WE. Across the two treatments and the measurement dates, CO2 concentrations increased from 4446 ± 2188 ppm at 10 cm deep to 15622 ± 3523 ppm at 15.5 m, CH4 concentrations increased from 0.41 ± 0.17 ppm at 10 cm deep to 0.77 ± 0.24 ppm at 15.5 m and N2O concentrations remained roughly constant and were on average 478 ± 55 ppb between soil surface and 15.5 m deep. CO2 and N2O concentrations were on average 20.7 and 7.6% lower in TE than in WE, respectively, across the sampling depths. However, CH4 concentrations in TE were on average 44.4% higher than in WE, throughout the soil profile. Those results suggest that extended drought periods might reduce the production of CO2 and N2O but increase the accumulation of CH4 in eucalypt plantations established in deep tropical soils. Very deep tropical soils cover huge areas worldwide and improving our understanding of the spatiotemporal dynamics of gas concentrations in deep soil layers

  17. Sewage Effluent Infiltrates Frozen Forest Soil

    Science.gov (United States)

    Alfred Ray Harris

    1976-01-01

    Secondarily treated sewage effluent, applied at the rate of 1 and 2 inches per week, infiltrated a frozen Sparta sand soil forested with jack pine and scrub oak. Maximum frost depth in treated plots averaged 60 cm and in check plots averages 35 cm. Nitrogen was mobile with some accumulation. Phosphorus was absorbed.

  18. Soil Carbon Stocks Decrease following Conversion of Secondary Forests to Rubber (Hevea brasiliensis) Plantations

    Science.gov (United States)

    de Blécourt, Marleen; Brumme, Rainer; Xu, Jianchu; Corre, Marife D.; Veldkamp, Edzo

    2013-01-01

    Forest-to-rubber plantation conversion is an important land-use change in the tropical region, for which the impacts on soil carbon stocks have hardly been studied. In montane mainland southeast Asia, monoculture rubber plantations cover 1.5 million ha and the conversion from secondary forests to rubber plantations is predicted to cause a fourfold expansion by 2050. Our study, conducted in southern Yunnan province, China, aimed to quantify the changes in soil carbon stocks following the conversion from secondary forests to rubber plantations. We sampled 11 rubber plantations ranging in age from 5 to 46 years and seven secondary forest plots using a space-for-time substitution approach. We found that forest-to-rubber plantation conversion resulted in losses of soil carbon stocks by an average of 37.4±4.7 (SE) Mg C ha−1 in the entire 1.2-m depth over a time period of 46 years, which was equal to 19.3±2.7% of the initial soil carbon stocks in the secondary forests. This decline in soil carbon stocks was much larger than differences between published aboveground carbon stocks of rubber plantations and secondary forests, which range from a loss of 18 Mg C ha−1 to an increase of 8 Mg C ha−1. In the topsoil, carbon stocks declined exponentially with years since deforestation and reached a steady state at around 20 years. Although the IPCC tier 1 method assumes that soil carbon changes from forest-to-rubber plantation conversions are zero, our findings show that they need to be included to avoid errors in estimating overall ecosystem carbon fluxes. PMID:23894456

  19. Forest floor and mineral soil respiration rates in a northern Minnesota red pine chronosequence

    Science.gov (United States)

    Powers, Matthew; Kolka, Randall; Bradford, John B.; Palik, Brian J.; Jurgensen, Martin

    2018-01-01

    We measured total soil CO2 efflux (RS) and efflux from the forest floor layers (RFF) in red pine (Pinus resinosaAit.) stands of different ages to examine relationships between stand age and belowground C cycling. Soil temperature and RS were often lower in a 31-year-old stand (Y31) than in 9-year-old (Y9), 61-year-old (Y61), or 123-year-old (Y123) stands. This pattern was most apparent during warm summer months, but there were no consistent differences in RFF among different-aged stands. RFF represented an average of 4–13% of total soil respiration, and forest floor removal increased moisture content in the mineral soil. We found no evidence of an age effect on the temperature sensitivity of RS, but respiration rates in Y61 and Y123 were less sensitive to low soil moisture than RS in Y9 and Y31. Our results suggest that soil respiration’s sensitivity to soil moisture may change more over the course of stand development than its sensitivity to soil temperature in red pine, and that management activities that alter landscape-scale age distributions in red pine forests could have significant impacts on rates of soil CO2 efflux from this forest type.

  20. Sand and clay mineralogy of sal forest soils of the Doon Siwalik ...

    Indian Academy of Sciences (India)

    3Forest Soil & Land Reclamation Division, Forest Research Institute, Dehradun 248 006, India. ∗ e-mail: ... understanding the distribution of forest types and ... Material and methods. 2.1 Study area .... Finally, for the qualitative and quan-.

  1. Nitrogen fertilization decreases forest soil fungal and bacterial biomass in three long-term experiments

    Science.gov (United States)

    Matthew D. Wallenstein; Steven McNulty; Ivan J. Fernandez; Johnny Boggs; William H. Schlesinger

    2006-01-01

    We examined the effects of N fertilization on forest soil fungal and bacterial biomass at three long-term experiments in New England (Harvard Forest, MA; Mt. Ascutney, VT; Bear Brook, ME). At Harvard Forest, chronic N fertilization has decreased organic soil microbial biomass C (MBC) by an average of 54% and substrate induced respiration (SIR) was decreased by an...

  2. Element cycling in forest soils - modelling the effects of a changing environment

    Energy Technology Data Exchange (ETDEWEB)

    Walse, C.

    1998-11-01

    Element cycling and nutrient supply in forest ecosystems are of vital importance for short-term productivity and for longer-term land management in terms of nutrient leaching and CO{sub 2} fixation. This thesis includes a series of studies with the objective of modelling some aspects of the effect of acidification and climate change on element cycling and nutrient supply in forest soil. A reconstruction model of atmospheric deposition and nutrient uptake and cycling, MAKEDEP, was developed. An existing model of soil chemistry, SAFE, was analyzed and applied. SAFE+MAKEDEP were then applied in combination with the RAINS model to perform scenario analyses of soil acidification/recovery for six European forest sites. A decomposition model intended to run in conjunction with the SAFE model was developed. Key elements were N, Ca, K, Mg, S and Al. In the decomposition model, only carbon release was included to date.The results show, that understanding the history of soil geochemistry is important for modelling the system and for projecting the future impact of acidification on nutrient supply in forest soils. The applied reconstruction models of acid deposition (MAKEDEP, RAINS) seem to generate reasonable and consistent estimates of historic acid deposition, so that present day conditions can be simulated starting from pre-acidification conditions. From applications of the SAFE model to large-scale forest manipulation experiments, we conclude that the geochemical processes and the degree of detail in process descriptions included in SAFE are adequate to capture the most important aspects of soil solution dynamics of forest soils in northern and central Europe. Therefore, SAFE is appropriate for the simulation of acidification and recovery scenarios for these soils. The precision in model prediction on a more general scale is often limited by factors other than model formulation, such as consistency and representativity of input data. It is shown that the physical

  3. Distinctive tropical forest variants have unique soil microbial communities, but not always low microbial diversity

    Directory of Open Access Journals (Sweden)

    Binu M Tripathi

    2016-04-01

    Full Text Available There has been little study of whether different variants of tropical rainforest have distinct soil microbial communities and levels of diversity. We compared bacterial and fungal community composition and diversity between primary mixed dipterocarp, secondary mixed dipterocarp, white sand heath, inland heath, and peat swamp forests in Brunei Darussalam, northwest Borneo by analyzing Illumina Miseq sequence data of 16S rRNA gene and ITS1 region. We hypothesized that white sand heath, inland heath and peat swamp forests would show lower microbial diversity and relatively distinct microbial communities (compared to MDF primary and secondary forests due to their distinctive environments. We found that soil properties together with bacterial and fungal communities varied significantly between forest types. Alpha and beta-diversity of bacteria was highest in secondary dipterocarp and white sand heath forests. Also, bacterial alpha diversity was strongly structured by pH, adding another instance of this widespread pattern in nature. The alpha diversity of fungi was equally high in all forest types except peat swamp forest, although fungal beta-diversity was highest in primary and secondary mixed dipterocarp forests. The relative abundance of ectomycorrhizal (EcM fungi varied significantly between forest types, with highest relative abundance observed in MDF primary forest. Overall, our results suggest that the soil bacterial and fungal communities in these forest types are to a certain extent predictable and structured by soil properties, but that diversity is not determined by how distinctive the conditions are. This contrasts with the diversity patterns seen in rainforest trees, where distinctive soil conditions have consistently lower tree diversity.

  4. Charcoal Increases Microbial Activity in Eastern Sierra Nevada Forest Soils

    Directory of Open Access Journals (Sweden)

    Zachary W. Carter

    2018-02-01

    Full Text Available Fire is an important component of forests in the western United States. Not only are forests subjected to wildfires, but fire is also an important management tool to reduce fuels loads. Charcoal, a product of fire, can have major impacts on carbon (C and nitrogen (N cycling in forest soils, but it is unclear how these effects vary by dominant vegetation. In this study, soils collected from Jeffrey pine (JP or lodgepole pine (LP dominated areas and amended with charcoal derived from JP or LP were incubated to assess the importance of charcoal on microbial respiration and potential nitrification. In addition, polyphenol sorption was measured in unamended and charcoal-amended soils. In general, microbial respiration was highest at the 1% and 2.5% charcoal additions, but charcoal amendment had limited effects on potential nitrification rates throughout the incubation. Microbial respiration rates decreased but potential nitrification rates increased over time across most treatments. Increased microbial respiration may have been caused by priming of native organic matter rather than the decomposition of charcoal itself. Charcoal had a larger stimulatory effect on microbial respiration in LP soils than JP soils. Charcoal type had little effect on microbial processes, but polyphenol sorption was higher on LP-derived than JP-derived charcoal at higher amendment levels despite surface area being similar for both charcoal types. The results from our study suggest that the presence of charcoal can increase microbial activity in soils, but the exact mechanisms are still unclear.

  5. Characteristics of CO2 release from forest soil in the mountains near Beijing.

    Science.gov (United States)

    Sun, Xiang Yang; Gao, Cheng Da; Zhang, Lin; Li, Su Yan; Qiao, Yong

    2011-04-01

    CO2 release from forest soil is a key driver of carbon cycling between the soil and atmosphere ecosystem. The rate of CO2 released from soil was measured in three forest stands (in the mountainous region near Beijing, China) by the alkaline absorption method from 2004 to 2006. The rate of CO2 released did not differ among the three stands. The CO2 release rate ranged from - 341 to 1,193 mg m(-2) h(-1), and the mean value over all three forests and sampling times was 286 mg m(-2) h(-1). CO2 release was positively correlated with soil water content and the soil temperature. Diurnally, CO2 release was higher in the day than at night. Seasonally, CO2 release was highest in early autumn and lowest in winter; in winter, negative values of CO2 release suggested that CO2 was absorbed by soil.

  6. Geographical variation in soil bacterial community structure in tropical forests in Southeast Asia and temperate forests in Japan based on pyrosequencing analysis of 16S rRNA.

    Science.gov (United States)

    Ito, Natsumi; Iwanaga, Hiroko; Charles, Suliana; Diway, Bibian; Sabang, John; Chong, Lucy; Nanami, Satoshi; Kamiya, Koichi; Lum, Shawn; Siregar, Ulfah J; Harada, Ko; Miyashita, Naohiko T

    2017-09-12

    Geographical variation in soil bacterial community structure in 26 tropical forests in Southeast Asia (Malaysia, Indonesia and Singapore) and two temperate forests in Japan was investigated to elucidate the environmental factors and mechanisms that influence biogeography of soil bacterial diversity and composition. Despite substantial environmental differences, bacterial phyla were represented in similar proportions, with Acidobacteria and Proteobacteria the dominant phyla in all forests except one mangrove forest in Sarawak, although highly significant heterogeneity in frequency of individual phyla was detected among forests. In contrast, species diversity (α-diversity) differed to a much greater extent, being nearly six-fold higher in the mangrove forest (Chao1 index = 6,862) than in forests in Singapore and Sarawak (~1,250). In addition, natural mixed dipterocarp forests had lower species diversity than acacia and oil palm plantations, indicating that aboveground tree composition does not influence soil bacterial diversity. Shannon and Chao1 indices were correlated positively, implying that skewed operational taxonomic unit (OTU) distribution was associated with the abundance of overall and rare (singleton) OTUs. No OTUs were represented in all 28 forests, and forest-specific OTUs accounted for over 70% of all detected OTUs. Forests that were geographically adjacent and/or of the same forest type had similar bacterial species composition, and a positive correlation was detected between species divergence (β-diversity) and direct distance between forests. Both α- and β-diversities were correlated with soil pH. These results suggest that soil bacterial communities in different forests evolve largely independently of each other and that soil bacterial communities adapt to their local environment, modulated by bacterial dispersal (distance effect) and forest type. Therefore, we conclude that the biogeography of soil bacteria communities described here is non

  7. Simulation of Soil Quality with Riparian Forests and Cultivated with Sugarcane

    Science.gov (United States)

    da Silva, Luiz Gabriel; Colato, Alexandre; Casagrande, José Carlos; Soares, Marcio Roberto; Perissatto Meneghin, Silvana

    2013-04-01

    Riparian forests are entrusted with important hydrological functions, such as riparian zone protection, filtering sediments and nutrients and mitigation of the amount of nutrients and xenobiotic molecules from the surrounding agro ecosystems. The soil was sampled in the depths of 0-0,2 and 0.2-0.4 m and its chemical (nutrient content and organic matter, cationic exchange capacity - CEC, sum of bases-SB, bases saturation, V%, and aluminum saturation, m%); physical (particle size distribution, density and porosity) and microbiological attributes (basal respiration and microbial biomass) were determined. This work aimed to study the liner method of combining data, figures of merit (FoM), weighing process and the scoring functions developed by Wymore and asses the quality of the soil (SQI) by means of chemical, physical and microbiological soil attributes, employing the additive pondered model for two areas of riparian forest at different stages of ecological succession and an adjacent area cultivated with sugar cane, located on the dam shores of Sugar Mill Saint Lucia-Araras/SP. Some hierarchical functions containing FoMs and their parameters were constructed, and from them weights were assigned to each FoM and parameter, in a way that cluster of structures with the same FoMs and parameters with different weights were formed. These clusters were used to calculate the SQI for all vegetal formations considering two types of soil (Oxisol and Podzol), in that way, the SQI was calculated for each combination of vegetation and soil. The SQIs values were usually higher in the oldest riparian forest, while the recent riparian forest showed the smallest SQI values, for both types of soil. The variation of values within a combination vegetation/soil was also different between all combinations, being that the set of values from the oldest riparian forest presented the lowest amplitude. It was also observed that the Oxisols, regardless of the vegetation, presented higher SQIs

  8. Soil compaction during harvest operations in five tropical soils with different textures under eucalyptus forests

    Directory of Open Access Journals (Sweden)

    Paula Cristina Caruana Martins

    Full Text Available ABSTRACT Traffic of farm machinery during harvest and logging operations has been identified as the main source of soil structure degradation in forestry activity. Soil susceptibility to compaction and the amount of compaction caused by each forest harvest operation differs according to a number of factors (such as soil strength, soil texture, kind of equipment, traffic intensity, among many others, what requires the adequate assessment of soil compaction under different traffic conditions. The objectives of this study were to determine the susceptibility to compaction of five soil classes with different textures under eucalyptus forests based on their load bearing capacity models; and to determine, from these models and the precompression stresses obtained after harvest operations, the effect of traffic intensity with different equipment in the occurrence of soil compaction. Undisturbed soil samples were collected before and after harvest operations, being then subjected to uniaxial compression tests to determine their precompression stress. The coarse-textured soils were less resistant and endured greater soil compaction. In the clayey LVd2, traffic intensity below four Forwarder passes limited compaction to a third of the samples, whereas in the sandy loam PVd all samples from the 0-3 cm layer were compacted regardless of traffic intensity. The Feller Buncher and the Clambunk presented a high potential to cause soil compaction even with only one or two passes. The use of soil load bearing capacity models and precompression stress determined after harvest and logging operations allowed insight into the soil compaction process in forestry soils.

  9. Effects of native forest restoration on soil hydraulic properties, Auwahi, Maui, Hawaiian Islands

    Science.gov (United States)

    Perkins, Kimberlie S.; Nimmo, John R.; Medeiros, Arthur C.

    2012-01-01

    Over historic time Hawai'i's dryland forests have been largely replaced by grasslands for grazing livestock. On-going efforts have been undertaken to restore dryland forests to bring back native species and reduce erosion. The reestablishment of native ecosystems on land severely degraded by long-term alternative use requires reversal of the impacts of erosion, organic-matter loss, and soil structural damage on soil hydraulic properties. This issue is perhaps especially critical in dryland forests where the soil must facilitate native plants' optimal use of limited water. These reforestation efforts depend on restoring soil ecological function, including soil hydraulic properties. We hypothesized that reforestation can measurably change soil hydraulic properties over restoration timescales. At a site on the island of Maui (Hawai'i, USA), we measured infiltration capacity, hydrophobicity, and abundance of preferential flow channels in a deforested grassland and in an adjacent area where active reforestation has been going on for fourteen years. Compared to the nearby deforested rangeland, mean field-saturated hydraulic conductivity in the newly restored forest measured by 55 infiltrometer tests was greater by a factor of 2.0. Hydrophobicity on an 8-point scale increased from average category 6.0 to 6.9. A 4-point empirical categorization of preferentiality in subsurface wetting patterns increased from an average 1.3 in grasslands to 2.6 in the restored forest. All of these changes act to distribute infiltrated water faster and deeper, as appropriate for native plant needs. This study indicates that vegetation restoration can lead to ecohydrologically important changes in soil hydraulic properties over decadal time scales.

  10. Dynamics of soil inorganic nitrogen and their responses to nitrogen additions in three subtropical forests, south China

    Institute of Scientific and Technical Information of China (English)

    FANG Yun-ting; ZHU Wei-xing; MO Jiang-ming; ZHOU Guo-yi; GUNDERSEN Per

    2006-01-01

    Three forests with different historical land-use, forest age, and species assemblages in subtropical China were selected to evaluate current soil N status and investigate the responses of soil inorganic N dynamics to monthly ammonium nitrate additions.Results showed that the mature monsoon evergreen broadleaved forest that has been protected for more than 400 years exhibited an advanced soil N status than the pine (Pinus massoniana) and pine-broadleaf mixed forests, both originated from the 1930's clear-cut and pine plantation. Mature forests had greater extractable inorganic N pool, lower N retention capacity, higher inorganic N leaching,and higher soil C/N ratios. Mineral soil extractable NH4+-N and NO3--N concentrations were significantly increased by experimental N additions on several sampling dates, but repeated ANOVA showed that the effect was not significant over the whole year except NH4+-N in the mature forest. In contrast, inorganic N (both NH4+-N and NO3--N) in soil 20-cm below the surface was significantly elevated by the N additions. From 42% to 74% of N added was retained by the upper 20 cm soils in the pine and mixed forests, while 0%-70% was retained in the mature forest. Our results suggest that land-use history, forest age and species composition were likely to be some of the important factors that determine differing forest N retention responses to elevated N deposition in the study region.

  11. Modeling Soil Organic Carbon Turnover in Four Temperate Forests Based on Radiocarbon Measurements of Heterotrophic Respiration and Soil Organic Carbon

    Science.gov (United States)

    Ahrens, B.; Borken, W.; Muhr, J.; Schrumpf, M.; Savage, K. E.; Wutzler, T.; Trumbore, S.; Reichstein, M.

    2011-12-01

    Soils of temperate forests store significant amounts of soil organic matter and are considered to be net sinks of atmospheric CO2. Soil organic carbon (SOC) dynamics have been studied using the Δ14C signature of bulk SOC or different SOC fractions as observational constraints in SOC models. Further, the Δ14C signature of CO2 evolved during the incubation of soil and roots has been widely used together with Δ14C of total soil respiration to partition soil respiration into heterotrophic respiration (Rh) and root respiration. However, these data have rarely been used together as observational constraints to determine SOC turnover times. Here, we present a multiple constraints approach, where we used SOC stock and its Δ14C signature, and heterotrophic respiration and its Δ14C signature to estimate SOC turnover times of a simple serial two-pool model via Bayesian optimization. We used data from four temperate forest ecosystems in Germany and the USA with different disturbance and management histories from selective logging to afforestation in the late 19th and early 20th century. The Δ14C signature of the atmosphere with its prominent bomb peak was used as a proxy for the Δ14C signature of aboveground and belowground litterfall. The Δ14C signature of litterfall was lagged behind the atmospheric signal to account for the period between photosynthetic fixation of carbon and its addition to SOC pools. We showed that the combined use of Δ14C measurements of Rh and SOC stocks helped to better constrain turnover times of the fast pool (primarily by Δ14C of Rh) and the slow pool (primarily by Δ14C of SOC). In particular, by introducing two additional parameters that describe the deviation from steady state of the fast and slow cycling pool for both SOC and SO14C, we were able to demonstrate that we cannot maintain the often used steady-state assumption of SOC models in general. Furthermore, a new transport version of our model, including SOC transport via

  12. Soil Stabilization with Lime for the Construction of Forest Roads

    Directory of Open Access Journals (Sweden)

    Reginaldo Sérgio Pereira

    2018-02-01

    Full Text Available ABSTRACT The mechanical performance of soil stabilization using lime to improve forest roads was assessed. This study was conducted with lateritic soil (LVAd30 using lime content of 2% in the municipality of Niquelândia, Goiás state, Brazil. Geotechnical tests of soil characterization, compaction, and mechanical strength were performed applying different compaction efforts and curing periods. The results showed that lime content significantly changed the mechanical performance of natural soil, increasing its mechanical strength and load-carrying capacity. Compaction effort and curing time provided different responses in the unconfined compressive strength (UCS and California Bearing Ratio (CBR tests. The best UCS value (786.59 kPa for the soil-lime mixture was achieved with modified compaction effort and curing time of 28 days. In the CBR test, soil-lime mixtures compacted at intermediate and modified efforts and cured for 28 days were considered for application as subbase material of flexible road pavements, being a promising alternative for use in layers of forest roads.

  13. [Soil organic carbon pools and their turnover under two different types of forest in Xiao-xing'an Mountains, Northeast China].

    Science.gov (United States)

    Gao, Fei; Jiang, Hang; Cui, Xiao-yang

    2015-07-01

    Soil samples collected from virgin Korean pine forest and broad-leaved secondary forest in Xiaoxing'an Mountains, Northeast China were incubated in laboratory at different temperatures (8, 18 and 28 °C) for 160 days, and the data from the incubation experiment were fitted to a three-compartment, first-order kinetic model which separated soil organic carbon (SOC) into active, slow, and resistant carbon pools. Results showed that the soil organic carbon mineralization rates and the cumulative amount of C mineralized (all based on per unit of dry soil mass) of the broad-leaved secondary forest were both higher than that of the virgin Korean pine forest, whereas the mineralized C accounted for a relatively smaller part of SOC in the broad-leaved secondary forest soil. Soil active and slow carbon pools decreased with soil depth, while their proportions in SOC increased. Soil resistant carbon pool and its contribution to SOC were both greater in the broad-leaved secondary forest soil than in the virgin Korean pine forest soil, suggesting that the broad-leaved secondary forest soil organic carbon was relatively more stable. The mean retention time (MRT) of soil active carbon pool ranged from 9 to 24 d, decreasing with soil depth; while the MRT of slow carbon pool varied between 7 and 24 a, increasing with soil depth. Soil active carbon pool and its proportion in SOC increased linearly with incubation temperature, and consequently, decreased the slow carbon pool. Virgin Korean pine forest soils exhibited a higher increasing rate of active carbon pool along temperature gradient than the broad-leaved secondary forest soils, indicating that the organic carbon pool of virgin Korean pine forest soil was relatively more sensitive to temperature change.

  14. Soil respiration response to prescribed burning and thinning in mixed-conifer and hardwood forests

    Science.gov (United States)

    Amy Concilio; Siyan Ma; Qinglin Li; James LeMoine; Jiquan Chen; Malcolm North; Daryl Moorhead; Randy Jensen

    2005-01-01

    The effects of management on soil carbon efflux in different ecosystems are still largely unknown yet crucial to both our understanding and management of global carbon flux. To compare the effects of common forest management practices on soil carbon cycling, we measured soil respiration rate (SRR) in a mixed-conifer and hardwood forest that had undergone various...

  15. Soil properties and aspen development five years after compaction and forest floor removal

    Science.gov (United States)

    Douglas M. Stone; John D. Elioff

    1998-01-01

    Forest management activities that decrease soil porosity and remove organic matter have been associated with declines in site productivity. In the northern Lake States region, research is in progress in the aspen (Populus tremuloides Michx. and P. grandidentata Michx.) forest type to determine effects of soil compaction and organic...

  16. Soil Microbial Community Successional Patterns during Forest Ecosystem Restoration ▿†

    Science.gov (United States)

    Banning, Natasha C.; Gleeson, Deirdre B.; Grigg, Andrew H.; Grant, Carl D.; Andersen, Gary L.; Brodie, Eoin L.; Murphy, D. V.

    2011-01-01

    Soil microbial community characterization is increasingly being used to determine the responses of soils to stress and disturbances and to assess ecosystem sustainability. However, there is little experimental evidence to indicate that predictable patterns in microbial community structure or composition occur during secondary succession or ecosystem restoration. This study utilized a chronosequence of developing jarrah (Eucalyptus marginata) forest ecosystems, rehabilitated after bauxite mining (up to 18 years old), to examine changes in soil bacterial and fungal community structures (by automated ribosomal intergenic spacer analysis [ARISA]) and changes in specific soil bacterial phyla by 16S rRNA gene microarray analysis. This study demonstrated that mining in these ecosystems significantly altered soil bacterial and fungal community structures. The hypothesis that the soil microbial community structures would become more similar to those of the surrounding nonmined forest with rehabilitation age was broadly supported by shifts in the bacterial but not the fungal community. Microarray analysis enabled the identification of clear successional trends in the bacterial community at the phylum level and supported the finding of an increase in similarity to nonmined forest soil with rehabilitation age. Changes in soil microbial community structure were significantly related to the size of the microbial biomass as well as numerous edaphic variables (including pH and C, N, and P nutrient concentrations). These findings suggest that soil bacterial community dynamics follow a pattern in developing ecosystems that may be predictable and can be conceptualized as providing an integrated assessment of numerous edaphic variables. PMID:21724890

  17. Pollutant deposition in forest ecosystems and characteristics of chemical properties of soils in the environs of the Temelin nuclear power plant

    International Nuclear Information System (INIS)

    Lochman, V.; Bucek, J.; Biba, M.

    1994-01-01

    neighboring Bavaria. Particularly in the periods with low atmospheric precipitation low N dynamics and its transport to the soil profile can be observed in forest stands. Although the fallout of protons and pollutants potentially causing soil acidification is low on the investigated plots in the years of observation, low pH values are determined in the upper soil horizons in spruce stands, while the saturation of the soil sorption complex with Mg and Ca cations as well as Mn cations is low is the rhizosphere. Deeper horizons with admixtures of weathering parent rock are richer in these cations. Root distribution and ion supply are more uniform in the soil profile in beech stands. In keeping with the low deposition of nitrogen compounds there was an adverse ratio of soil C and N (C-ox/N-t) on the plots in the environs of Temelin, and N deficit was observed in the foliage of spruce stands. In beech stands pollutant deposition is lower and the biological activity of soil is more intensive, so con tributing to the better biological circulation of elements. The described research activities are in progress in 1994

  18. Fast changes in seasonal forest communities due to soil moisture increase after damming

    Directory of Open Access Journals (Sweden)

    Vagner Santiago do Vale

    2013-12-01

    Full Text Available Local changes caused by dams can have drastic consequences for ecosystems, not only because they change the water regime but also the modification on lakeshore areas. Thus, this work aimed to determine the changes in soil moisture after damming, to understand the consequences of this modification on the arboreal community of dry forests, some of the most endangered systems on the planet. We studied these changes in soil moisture and the arboreal community in three dry forests in the Araguari River Basin, after two dams construction in 2005 and 2006, and the potential effects on these forests. For this, plots of 20m x10m were distributed close to the impoundment margin and perpendicular to the dam margin in two deciduous dry forests and one semi-deciduous dry forest located in Southeastern Brazil, totaling 3.6ha sampled. Besides, soil analysis were undertaken before and after impoundment at three different depths 0-10, 20-30 and 40-50cm. A tree minimum DBH of 4.77cm community inventory was made before T0 and at two T2 and four T4 years after damming. Annual dynamic rates of all communities were calculated, and statistical tests were used to determine changes in soil moisture and tree communities. The analyses confirmed soil moisture increases in all forests, especially during the dry season and at sites closer to the reservoir; besides, an increase in basal area due to the fast growth of many trees was observed. The highest turnover occurred in the first two years after impoundment, mainly due to the higher tree mortality especially of those closer to the dam margin. All forests showed reductions in dynamic rates for subsequent years T2-T4, indicating that these forests tended to stabilize after a strong initial impact. The modifications were more extensive in the deciduous forests, probably because the dry period resulted more rigorous in these forests when compared to semideciduous forest. The new shorelines created by damming increased soil

  19. Carbon content of forest floor and mineral soil in Mediterranean Pinus spp. and Oak stands in acid soils in Northern Spain

    Energy Technology Data Exchange (ETDEWEB)

    Herrero, C.; Turrión, M.B.; Pando, V.; Bravo, F.

    2016-07-01

    Aim of the study: The aim of the study was to determine the baseline carbon stock in forest floor and mineral soils in pine and oak stands in acid soils in Northern Spain. Area of study: The study area is situated in northern Spain (42° N, 4° W) on “Paramos y Valles” region of Palencia. aterial and methods: An extensive monitoring composed of 48 plots (31 in pine and 17 in oak stands) was carried out. Litter layers and mineral soil samples, at depths of 0-30 cm and 30-60 cm, were taken in each plot. An intensive monitoring was also performed by sampling 12 of these 48 plots selected taken in account species forest composition and their stand development stage. Microbial biomass C (CMB), C mineralization (CRB), and soil organic C balance at stand level were determined in surface soil samples of intensive monitoring. Main results: No differences in soil C content were detected in the two forest ecosystems up to 60 cm depth (53.0±25.8 Mg C ha-1 in Pinus spp. plantations and 60.3±43.8 Mg C ha-1 in oak stands). However, differences in total C (CT), CMB and CRB were found in the upper 10 cm of the soils depending on the stand development stage in each species forest composition (Pinus nigra, Pinus pinaster, Pinus sylvestris and Quercus pyrenaica). Plots with high development stage exhibited significant lower metabolic quotient (qCO2), so, meant more efficient utilization of C by the microbial community. The C content in the forest floor was higher in pine stands (13.7±0.9 Mg C ha-1) than in oak stands (5.4±0.7 Mg C ha-1). A greater turnover time was found in pine ecosystems vs. oak stands. In contrast, forest floor H layer was nonexistent in oak stands. Research highlights: Results about litterfall, forest floor and mineral soil dynamics in this paper can be used strategically to reach environmental goals in new afforestation programs and sustainable forest management approaches. (Author)

  20. Biologically Active Organic Matter in Soils of European Russia

    Science.gov (United States)

    Semenov, V. M.; Kogut, B. M.; Zinyakova, N. B.; Masyutenko, N. P.; Malyukova, L. S.; Lebedeva, T. N.; Tulina, A. S.

    2018-04-01

    Experimental and literature data on the contents and stocks of active organic matter in 200 soil samples from the forest-tundra, southern-taiga, deciduous-forest, forest-steppe, dry-steppe, semidesert, and subtropical zones have been generalized. Natural lands, agrocenoses, treatments of long-term field experiments (bare fallow, unfertilized and fertilized crop rotations, perennial plantations), and different layers of soil profile are presented. Sphagnum peat and humus-peat soil in the tundra and forest-tundra zones are characterized by a very high content of active organic matter (300-600 mg C/100 g). Among the zonal soils, the content of active organic matter increases from the medium (75-150 mg C/100 g) to the high (150-300 mg C/100 g) level when going from soddy-podzolic soil to gray forest and dark-gray forest soils and then to leached chernozem. In the series from typical chernozem to ordinary and southern chernozem and chestnut and brown semidesert soils, a decrease in the content of active organic matter to the low (35-75 mg C/100 g) and very low (organic matter. Most arable soils are mainly characterized by low or very low contents of active organic matter. In the upper layers of soils, active organic matter makes up 1.2-11.1% of total Corg. The profile distribution of active organic matter in the studied soils coincides with that of Corg: their contents appreciably decrease with depth, except for brown semidesert soil. The stocks of active organic matter vary from 0.4 to 5.4 t/ha in the layer of 0-20 cm and from 1.0 to 12.4/ha in the layer of 0-50 cm of different soil types.

  1. Responses of Soil Acid Phosphomonoesterase Activity to Simulated Nitrogen Deposition in Three Forests of Subtropical China

    Institute of Scientific and Technical Information of China (English)

    HUANG Wen-Juan; LIU Shi-Zhong; CHU Guo-Wei; ZHANG De-Qiang; LI Yue-Lin; LU Xian-Kai; ZHANG Wei; HUANG Juan; D. OTIENO; Z. H. XU; LIU Ju-Xiu

    2012-01-01

    Soil acid phosphomonoesterase activity (APA) plays a vital role in controlling phosphorus (P) cycling and reflecting the current degree of P limitation Responses of soil APA to elevating nitrogen (N) deposition are important because of their potential applications in addressing the relationship between N and P in forest ecosystems.A study of responses of soll APA to simulated N deposition was conducted in three succession forests of subtropical China.The three forests include a Masson pine (Pinus massoniana) forest (MPF)—pioneer community,a coniferous and broad-leaved mixed forest (MF)—transition community and a monsoon evergreen broadleaved forest (MEBF)—climax community.Four N treatments were designed for MEBF:control (without N added),low-N (50 kg N ha-1 year-1),and medium-N (100 kg N ha-1 year-1) and high-N (150 kg N ha-1 year-1),and only three N treatments (i.e.,control,low-N,mediun-N) were established for MPF and MF.Results showed that soil APA was highest in MEBF.followed by MPF and MF.Soil APAs in both MPF and MF were not influenced by low-N treatments but depressed in medium-N trcatments.However,soil APA in MEBF exhibited negative responses to high N additions,indicating that the environment of enhanced N depositions would reduce P supply for the mature forest ecosystem.Soil APA and its responses to N additions in subtropical forests were closely related to the succession stages in the forests.

  2. Validating visual disturbance types and classes used for forest soil monitoring protocols

    Science.gov (United States)

    D. S. Page-Dumroese; A. M. Abbott; M. P. Curran; M. F. Jurgensen

    2012-01-01

    We describe several methods for validating visual soil disturbance classes used during forest soil monitoring after specific management operations. Site-specific vegetative, soil, and hydrologic responses to soil disturbance are needed to identify sensitive and resilient soil properties and processes; therefore, validation of ecosystem responses can provide information...

  3. Long term effects of ash recycling on soil and water chemistry in forests

    International Nuclear Information System (INIS)

    Westling, Olle; Kronnaes, Veronika

    2006-02-01

    IVL Swedish Environmental Research Institute has studied the long-term need of compensatory fertilisation (e.g. wood ash recycling) after whole tree harvest in coniferous forests in Sweden. The study is based on dynamic model calculations with scenarios including reduced atmospheric deposition of air pollutants and different intensity of forest management. The possibilities to counteract acidification in soil and water with application of stabilised wood ash are discussed. The reduction in deposition of acidifying air pollutants in Sweden up to 2010 is expected to contribute to a significant recovery from acidification in soil- and runoff water in forests. The recovery of the forest soil (e.g. base saturation ) will, however, be slow according to the model calculations, especially if compensatory fertilisation is not carried out in managed areas. The model calculations indicate that the harvest of stemwood will have limited impact on the future acidity of soil and run off water from well drained forest soils. This conclusion is based on a comparison with a scenario where no harvest is assumed. More important for recovery from acidification is further reduction of acidifying air pollutants, even after 2010. Harvest of stemwood in combination with extraction of harvest residues has the potential to cause significant and long term acidification of soils in the future, especially in areas with high forest production and slow weathering rate. The results of the study indicate a need of compensatory fertilisation in these areas if whole tree harvest is applied, especially if the deposition of air pollutants have been high in the past. Field studies have shown that acidification effects of whole tree harvest can be counteracted by wood ash recycling to forest soils, due to the high content of calcium- and magnesium-rich minerals in the ashes. However, the dose should be adjusted to the need of increasing the acid neutralising capacity in the soil and runoff and the actual

  4. Soil water storage, rainfall and runoff relationships in a tropical dry forest catchment

    Science.gov (United States)

    Farrick, Kegan K.; Branfireun, Brian A.

    2014-12-01

    In forested catchments, the exceedance of rainfall and antecedent water storage thresholds is often required for runoff generation, yet to our knowledge these threshold relationships remain undescribed in tropical dry forest catchments. We, therefore, identified the controls of streamflow activation and the timing and magnitude of runoff in a tropical dry forest catchment near the Pacific coast of central Mexico. During a 52 day transition phase from the dry to wet season, soil water movement was dominated by vertical flow which continued until a threshold soil moisture content of 26% was reached at 100 cm below the surface. This satisfied a 162 mm storage deficit and activated streamflow, likely through lateral subsurface flow pathways. High antecedent soil water conditions were maintained during the wet phase but had a weak influence on stormflow. We identified a threshold value of 289 mm of summed rainfall and antecedent soil water needed to generate >4 mm of stormflow per event. Above this threshold, stormflow response and magnitude was almost entirely governed by rainfall event characteristics and not antecedent soil moisture conditions. Our results show that over the course of the wet season in tropical dry forests the dominant controls on runoff generation changed from antecedent soil water and storage to the depth of rainfall.

  5. Exotic grasses and nitrate enrichment alter soil carbon cycling along an urban-rural tropical forest gradient.

    Science.gov (United States)

    Cusack, Daniela F; Lee, Joseph K; McCleery, Taylor L; LeCroy, Chase S

    2015-12-01

    Urban areas are expanding rapidly in tropical regions, with potential to alter ecosystem dynamics. In particular, exotic grasses and atmospheric nitrogen (N) deposition simultaneously affect tropical urbanized landscapes, with unknown effects on properties like soil carbon (C) storage. We hypothesized that (H1) soil nitrate (NO3 (-) ) is elevated nearer to the urban core, reflecting N deposition gradients. (H2) Exotic grasslands have elevated soil NO3 (-) and decreased soil C relative to secondary forests, with higher N promoting decomposer activity. (H3) Exotic grasslands have greater seasonality in soil NO3 (-) vs. secondary forests, due to higher sensitivity of grassland soil moisture to rainfall. We predicted that NO3 (-) would be positively related to dissolved organic C (DOC) production via changes in decomposer activity. We measured six paired grassland/secondary forest sites along a tropical urban-to-rural gradient during the three dominant seasons (hurricane, dry, and early wet). We found that (1) soil NO3 (-) was generally elevated nearer to the urban core, with particularly clear spatial trends for grasslands. (2) Exotic grasslands had lower soil C than secondary forests, which was related to elevated decomposer enzyme activities and soil respiration. Unexpectedly, soil NO3 (-) was negatively related to enzyme activities, and was lower in grasslands than forests. (3) Grasslands had greater soil NO3 (-) seasonality vs. forests, but this was not strongly linked to shifts in soil moisture or DOC. Our results suggest that exotic grasses in tropical regions are likely to drastically reduce soil C storage, but that N deposition may have an opposite effect via suppression of enzyme activities. However, soil NO3 (-) accumulation here was higher in urban forests than grasslands, potentially related to of aboveground N interception. Net urban effects on C storage across tropical landscapes will likely vary depending on the mosaic of grass cover, rates of N

  6. The impact of tropical forest logging and oil palm agriculture on the soil microbiome.

    Science.gov (United States)

    Tripathi, Binu M; Edwards, David P; Mendes, Lucas William; Kim, Mincheol; Dong, Ke; Kim, Hyoki; Adams, Jonathan M

    2016-05-01

    Selective logging and forest conversion to oil palm agriculture are rapidly altering tropical forests. However, functional responses of the soil microbiome to these land-use changes are poorly understood. Using 16S rRNA gene and shotgun metagenomic sequencing, we compared composition and functional attributes of soil biota between unlogged, once-logged and twice-logged rainforest, and areas converted to oil palm plantations in Sabah, Borneo. Although there was no significant effect of logging history, we found a significant difference between the taxonomic and functional composition of both primary and logged forests and oil palm. Oil palm had greater abundances of genes associated with DNA, RNA, protein metabolism and other core metabolic functions, but conversely, lower abundance of genes associated with secondary metabolism and cell-cell interactions, indicating less importance of antagonism or mutualism in the more oligotrophic oil palm environment. Overall, these results show a striking difference in taxonomic composition and functional gene diversity of soil microorganisms between oil palm and forest, but no significant difference between primary forest and forest areas with differing logging history. This reinforces the view that logged forest retains most features and functions of the original soil community. However, networks based on strong correlations between taxonomy and functions showed that network complexity is unexpectedly increased due to both logging and oil palm agriculture, which suggests a pervasive effect of both land-use changes on the interaction of soil microbes. © 2016 John Wiley & Sons Ltd.

  7. Heavy metal movement in metal-contaminated soil profiles

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhenbin; Shuman, L.M. [Univ. of Georgia, Griffin, GA (United States)

    1996-10-01

    Heavy metal movement in soil profiles is a major environmental concern because even slow transport through the soil may eventually lead to deterioration of groundwater quality. In this study, three metal-contaminated soil (Fuquay, Dothan, and Clarendon) were selected from cropland were a high-metal flue dust had been applied annually for 6 years to raise soil pH, with application ending 4 years before sampling. One uncontaminated soil (Tifton) from the same physiographic area was also sampled as a control. Soil samples were collected in 15-cm increments from the surface to 105 cm in depth. Total contents of Zn, Cd, and Pb in the soils samples were determined. To better understand metal movement in relation to metal fractions in the soil profile, soil samples were also extracted sequentially for exchangeable (EXC), organic matter (OM), Mn oxide (MNO), amorphous Fe oxide (AFEO), crystalline Fe oxide (CFEO), and residual (RES) fractions. 35 refs., 6 figs., 2 tabs.

  8. Vertical Soil Profiling Using a Galvanic Contact Resistivity Scanning Approach

    Directory of Open Access Journals (Sweden)

    Luan Pan

    2014-07-01

    Full Text Available Proximal sensing of soil electromagnetic properties is widely used to map spatial land heterogeneity. The mapping instruments use galvanic contact, capacitive coupling or electromagnetic induction. Regardless of the type of instrument, the geometrical configuration between signal transmitting and receiving elements typically defines the shape of the depth response function. To assess vertical soil profiles, many modern instruments use multiple transmitter-receiver pairs. Alternatively, vertical electrical sounding can be used to measure changes in apparent soil electrical conductivity with depth at a specific location. This paper examines the possibility for the assessment of soil profiles using a dynamic surface galvanic contact resistivity scanning approach, with transmitting and receiving electrodes configured in an equatorial dipole-dipole array. An automated scanner system was developed and tested in agricultural fields with different soil profiles. While operating in the field, the distance between current injecting and measuring pairs of rolling electrodes was varied continuously from 40 to 190 cm. The preliminary evaluation included a comparison of scan results from 20 locations to shallow (less than 1.2 m deep soil profiles and to a two-layer soil profile model defined using an electromagnetic induction instrument.

  9. 137Cs-migration in soils and its transfer to roe deer in an Austrian forest stand

    International Nuclear Information System (INIS)

    Strebl, F.; Gerzabek, M.H.; Karg, V.; Tataruch, F.

    1996-01-01

    The depth distribution of 137 Cs in an Austrian spruce forest stand was investigated in soil profiles sampled in thin layers (2 cm) and in pooled soil samples over an area of 200 ha. The 137 Cs concentrations both from Chernobyl and global fallout decrease exponentially with depth. Forty-six percent of Chernobyl-derived caesium and 26% from global fallout are still to be found in the litter layer; 137 Cs content in samples on organic matter as well as cation exchange capacity. Using a compartment model, average residence half-times of 5.3, 9.9, 1.78 and 0.8 years were calculated for the layers litter, 0-5 (Ah 1 ), 5-10 (Ah 2 ) and 10-20 cm (A/B) of mineral soil, respectively. Using the model predictions of soil contamination as a basis and considering that roe deer forage plants' rooting depths, the development of 137 Cs contamination of roe deer (Capreolus capreolus) (1987-1993) was well described by applying an aggregated transfer factor

  10. Assessment of Soil Protection to Support Forest Planning: an Experience in Southern Italy

    Directory of Open Access Journals (Sweden)

    Fabrizio Ferretti

    2014-04-01

    Full Text Available Aim of study: to support landscape planning when soil-erosion control and water cycle regulation represent relevant issues for forest management. A methodological approach - based on simplified index – is proposed in order to assess the protective efficacy of forests on soils (indirect protection. This method is aimed at supporting technicians who are requested to define the most suitable management guidelines and silvicultural treatments.Area of study: Southern Apennines (Alto Agri district – Basilicata Region - Italy, where a landscape planning experimentation was implemented. Material and Methods: The data to estimate the parameters used for the simplified index calculation are retrieved from a non aligned systematic forest inventory. The method considers: 1 the tendency towards instability, 2 the protective action of forest cover and 3 different silvicultural options.Main results: For the analysed forest categories, the results indicate the situations in which hydrogeological hazard is high. The cross-reading of these data with the values based on years of partial and total uncovering of the ground according to different silvicultural options (for each forest category in the reference period of 100 years has supported the definition of silviculture treatments and management options suitable for the considered forest formations.Research highlights: The proposed method can effectively support technicians in the field by highlighting situations of major hazard risk. Thanks to the joined assessment of different silvicultural options for each forest category, a series of silvicultural treatments, capable of better protecting the soil, can be already defined in the field survey phase.Key words: Alto Agri district (Italy; Forest Landscape Management Planning (FLMP; management; silvicultural treatment; protective function and soil erosion.

  11. Assessment of Soil Protection to Support Forest Planning: an Experience in Southern Italy

    Energy Technology Data Exchange (ETDEWEB)

    Ferreti, F.; Cantiani, P.; Meo, I. de; Paletto, A.

    2014-06-01

    Aim of study: To support landscape planning when soil-erosion control and water cycle regulation represent relevant issues for forest management. A methodological approach -based on simplified index- is proposed in order to assess the protective efficacy of forests on soils (indirect protection). This method is aimed at supporting technicians who are requested to define the most suitable management guidelines and silviculture treatments. Area of study: Southern Apennines (Alto Agri district -Basilicata Region- Italy), where a landscape planning experimentation was implemented. Material and methods: The data to estimate the parameters used for the simplified index calculation are retrieved from a non aligned systematic forest inventory. The method considers: 1) the tendency towards instability, 2) the protective action of forest cover and 3) different silviculture options. Main results: For the analysed forest categories, the results indicate the situations in which hydrogeological hazard is high. The cross-reading of these data with the values based on years of partial and total uncovering of the ground according to different silviculture options (for each forest category in the reference period of 100 years) has supported the definition of silviculture treatments and management options suitable for the considered forest formations. Research highlights The proposed method can effectively support technicians in the field by highlighting situations of major hazard risk. Thanks to the joined assessment of different silviculture options for each forest category, a series of silviculture treatments, capable of better protecting the soil, can be already defined in the field survey phase. Key words: Alto Agri district (Italy); Forest Landscape Management Planning (FLMP); management; silviculture treatment; protective function e soil erosion. (Author)

  12. Influence of environmental factors on the spatial distribution and diversity of forest soil in Latvia

    Directory of Open Access Journals (Sweden)

    Raimonds Kasparinskis

    2012-02-01

    Full Text Available This study was carried out to determine the spatial relationships between environmental factors (Quaternary deposits, topographical situation, land cover, forest site types, tree species, soil texture and soil groups, and their prefix qualifiers (according to the international Food and Agricultural Organization soil classification system World Reference Base for Soil Resources [FAO WRB]. The results show that it is possible to establish relationships between the distribution of environmental factors and soil groups by applying the generalized linear models in data statistical analysis, using the R 2.11.1 software for processing data from 113 sampling plots throughout the forest territory of Latvia.A very high diversity of soil groups in a relatively similar geological structure was revealed. For various reasons there is not always close relationship between the soil group, their prefix qualifiers and Quaternary deposits, as well as between forest site types, the dominant tree species and specific soil group and its prefix qualifiers. Close correlation was established between Quaternary deposits, forest site types, dominant tree species and soil groups within nutrient-poor sediments and very rich deposits containing free carbonates. No significant relationship was detected between the CORINE Land Cover 2005 classes, topographical situation and soil group.

  13. Gaseous mercury fluxes from forest soils in response to forest harvesting intensity: A field manipulation experiment

    International Nuclear Information System (INIS)

    Mazur, M.; Mitchell, C.P.J.; Eckley, C.S.; Eggert, S.L.; Kolka, R.K.; Sebestyen, S.D.; Swain, E.B.

    2014-01-01

    Forest harvesting leads to changes in soil moisture, temperature and incident solar radiation, all strong environmental drivers of soil–air mercury (Hg) fluxes. Whether different forest harvesting practices significantly alter Hg fluxes from forest soils is unknown. We conducted a field-scale experiment in a northern Minnesota deciduous forest wherein gaseous Hg emissions from the forest floor were monitored after two forest harvesting prescriptions, a traditional clear-cut and a clearcut followed by biomass harvest, and compared to an un-harvested reference plot. Gaseous Hg emissions were measured in quadruplicate at four different times between March and November 2012 using Teflon dynamic flux chambers. We also applied enriched Hg isotope tracers and separately monitored their emission in triplicate at the same times as ambient measurements. Clearcut followed by biomass harvesting increased ambient Hg emissions the most. While significant intra-site spatial variability was observed, Hg emissions from the biomass harvested plot (180 ± 170 ng m −2 d −1 ) were significantly greater than both the traditional clearcut plot (− 40 ± 60 ng m −2 d −1 ) and the un-harvested reference plot (− 180 ± 115 ng m −2 d −1 ) during July. This difference was likely a result of enhanced Hg 2+ photoreduction due to canopy removal and less shading from downed woody debris in the biomass harvested plot. Gaseous Hg emissions from more recently deposited Hg, as presumably representative of isotope tracer measurements, were not significantly influenced by harvesting. Most of the Hg tracer applied to the forest floor became sequestered within the ground vegetation and debris, leaf litter, and soil. We observed a dramatic lessening of tracer Hg emissions to near detection levels within 6 months. As post-clearcutting residues are increasingly used as a fuel or fiber resource, our observations suggest that gaseous Hg emissions from forest soils will increase, although it

  14. Soils of Mountainous Forests and Their Transformation under the Impact of Fires in Baikal Region

    Science.gov (United States)

    Krasnoshchekov, Yu. N.

    2018-04-01

    Data on postpyrogenic dynamics of soils under mountainous taiga cedar ( Pinus sibirica) and pine ( Pinus sylvestris) forests and subtaiga-forest-steppe pine ( Pinus sylvestris) forests in the Baikal region are analyzed. Ground litter-humus fires predominating in this region transform the upper diagnostic organic soil horizons and lead to the formation of new pyrogenic organic horizons (Opir). Adverse effects of ground fires on the stock, fractional composition, and water-physical properties of forest litters are shown. Some quantitative parameters of the liquid and solid surface runoff in burnt areas related to the slope gradient, fire intensity, and the time passed after the fire are presented. Pyrogenic destruction of forest ecosystems inevitably induces the degradation of mountainous soils, whose restoration after fires takes tens of years. The products of soil erosion from the burnt out areas complicate the current situation with the pollution of coastal waters of Lake Baikal.

  15. Meteoric 10Be in soil profiles - A global meta-analysis

    Science.gov (United States)

    Graly, Joseph A.; Bierman, Paul R.; Reusser, Lucas J.; Pavich, Milan J.

    2010-01-01

    In order to assess current understanding of meteoric 10Be dynamics and distribution in terrestrial soils, we assembled a database of all published meteoric 10Be soil depth profiles, including 104 profiles from 27 studies in globally diverse locations, collectively containing 679 individual measurements. This allows for the systematic comparison of meteoric 10Be concentration to other soil characteristics and the comparison of profile depth distributions between geologic settings. Percent clay, 9Be, and dithionite-citrate extracted Al positively correlate to meteoric 10Be in more than half of the soils where they were measured, but the lack of significant correlation in other soils suggests that no one soil factor controls meteoric 10Be distribution with depth. Dithionite-citrate extracted Fe and cation exchange capacity are only weakly correlated to meteoric 10Be. Percent organic carbon and pH are not significantly related to meteoric 10Be concentration when all data are complied.The compilation shows that meteoric 10Be concentration is seldom uniform with depth in a soil profile. In young or rapidly eroding soils, maximum meteoric 10Be concentrations are typically found in the uppermost 20 cm. In older, more slowly eroding soils, the highest meteoric 10Be concentrations are found at depth, usually between 50 and 200 cm. We find that the highest measured meteoric 10Be concentration in a soil profile is an important metric, as both the value and the depth of the maximum meteoric 10Be concentration correlate with the total measured meteoric 10Be inventory of the soil profile.In order to refine the use of meteoric 10Be as an estimator of soil erosion rate, we compare near-surface meteoric 10Be concentrations to total meteoric 10Be soil inventories. These trends are used to calibrate models of meteoric 10Be loss by soil erosion. Erosion rates calculated using this method vary based on the assumed depth and timing of erosional events and on the reference data selected.

  16. Winter forest soil respiration controlled by climate and microbial community composition.

    Science.gov (United States)

    Monson, Russell K; Lipson, David L; Burns, Sean P; Turnipseed, Andrew A; Delany, Anthony C; Williams, Mark W; Schmidt, Steven K

    2006-02-09

    Most terrestrial carbon sequestration at mid-latitudes in the Northern Hemisphere occurs in seasonal, montane forest ecosystems. Winter respiratory carbon dioxide losses from these ecosystems are high, and over half of the carbon assimilated by photosynthesis in the summer can be lost the following winter. The amount of winter carbon dioxide loss is potentially susceptible to changes in the depth of the snowpack; a shallower snowpack has less insulation potential, causing colder soil temperatures and potentially lower soil respiration rates. Recent climate analyses have shown widespread declines in the winter snowpack of mountain ecosystems in the western USA and Europe that are coupled to positive temperature anomalies. Here we study the effect of changes in snow cover on soil carbon cycling within the context of natural climate variation. We use a six-year record of net ecosystem carbon dioxide exchange in a subalpine forest to show that years with a reduced winter snowpack are accompanied by significantly lower rates of soil respiration. Furthermore, we show that the cause of the high sensitivity of soil respiration rate to changes in snow depth is a unique soil microbial community that exhibits exponential growth and high rates of substrate utilization at the cold temperatures that exist beneath the snow. Our observations suggest that a warmer climate may change soil carbon sequestration rates in forest ecosystems owing to changes in the depth of the insulating snow cover.

  17. Tropical forest soil microbial communities couple iron and carbon biogeochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Dubinsky, E.A.; Silver, W.L.; Firestone, M.K.

    2009-10-15

    We report that iron-reducing bacteria are primary mediators of anaerobic carbon oxidation in upland tropical soils spanning a rainfall gradient (3500 - 5000 mm yr-1) in northeast Puerto Rico. The abundant rainfall and high net primary productivity of these tropical forests provide optimal soil habitat for iron-reducing and iron-oxidizing bacteria. Spatially and temporally dynamic redox conditions make iron-transforming microbial communities central to the belowground carbon cycle in these wet tropical forests. The exceedingly high abundance of iron-reducing bacteria (up to 1.2 x 10{sup 9} cells per gram soil) indicated that they possess extensive metabolic capacity to catalyze the reduction of iron minerals. In soils from the higher rainfall sites, measured rates of ferric iron reduction could account for up to 44 % of organic carbon oxidation. Iron reducers appeared to compete with methanogens when labile carbon availability was limited. We found large numbers of bacteria that oxidize reduced iron at sites with high rates of iron reduction and large numbers of iron-reducers. the coexistence of large populations of ironreducing and iron-oxidizing bacteria is evidence for rapid iron cycling between its reduced and oxidized states, and suggests that mutualistic interactions among these bacteria ultimately fuel organic carbon oxidation and inhibit CH4 production in these upland tropical forests.

  18. [Early responses of soil fauna in three typical forests of south subtropical China to simulated N deposition addition].

    Science.gov (United States)

    Xu, Guolian; Mo, Jiangming; Zhou, Guoyi

    2005-07-01

    In this paper, simulated N deposition addition (0, 50, 100 and 150 kg x hm(-2) x yr(-1)) by spreading water or NH4NO3 was conducted to study the early responses of soil fauna in three typical native forests (monsoon evergreen broadleaf forest, pine forest, and broadleaf-pine mixed forest) of subtropical China. The results showed that in monsoon evergreen broadleaf forest, N deposition addition had an obviously negative effect on the three indexes for soil fauna, but in pine forest, the positive effect was significant (P soil fauna community could reach the level in mixed forest, even that in monsoon evergreen broadleaf forest at sometime. The responses in mixed forest were not obvious. In monsoon evergreen broadleaf forest, the negative effects were significant (P soil fauna groups. The results obtained might imply the N saturation-response mechanisms of forest ecosystems in subtropical China, and the conclusions from this study were also consisted with some related researches.

  19. Dynamics of soil organic matter in primary and secondary forest succession on sandy soils in The Netherlands: An application of the ROMUL model

    NARCIS (Netherlands)

    Nadporozhskaya, M.A.; Mohren, G.M.J.; Chertov, O.G.; Komarov, A.S.; Mikhailov, A.V.

    2006-01-01

    We applied the simulation model ROMUL of soil organic matter dynamics in order to analyse and predict forest soil organic matter (SOM) changes following stand growth and also to identify gaps of data and modelling problems. SOM build-up was analysed (a) from bare sand to forest soil during a primary

  20. Influence of drainage status on soil and water chemistry, litter decomposition and soil respiration in central Amazonian forests on sandy soils

    NARCIS (Netherlands)

    Berton Zanchi, F.; Waterloo, M.J.; Dolman, A.J.; Groenendijk, M.; Kruijt, B.

    2011-01-01

    Central Amazonian rainforest landscape supports a mosaic of tall terra firme rainforest and ecotone campinarana, riparian and campina forests, reflecting topography-induced variations in soil, nutrient and drainage conditions. Spatial and temporal variations in litter decomposition, soil and

  1. Chemical composition of the humus layer, mineral soil and soil solution of 200 forest stands in the Netherlands in 1995

    NARCIS (Netherlands)

    Leeters, E.E.J.M.; Vries, de W.

    2001-01-01

    A nationwide assessment of the chemical composition of the soil solid phase and the soil solution in the humus layer and two mineral layers (0-10 cm and 10-30 cm) was made for 200 forest stands in the year 1995. The stands were part of the national forest inventory on vitality, included seven tree

  2. Comparison of regression coefficient and GIS-based methodologies for regional estimates of forest soil carbon stocks

    International Nuclear Information System (INIS)

    Elliott Campbell, J.; Moen, Jeremie C.; Ney, Richard A.; Schnoor, Jerald L.

    2008-01-01

    Estimates of forest soil organic carbon (SOC) have applications in carbon science, soil quality studies, carbon sequestration technologies, and carbon trading. Forest SOC has been modeled using a regression coefficient methodology that applies mean SOC densities (mass/area) to broad forest regions. A higher resolution model is based on an approach that employs a geographic information system (GIS) with soil databases and satellite-derived landcover images. Despite this advancement, the regression approach remains the basis of current state and federal level greenhouse gas inventories. Both approaches are analyzed in detail for Wisconsin forest soils from 1983 to 2001, applying rigorous error-fixing algorithms to soil databases. Resulting SOC stock estimates are 20% larger when determined using the GIS method rather than the regression approach. Average annual rates of increase in SOC stocks are 3.6 and 1.0 million metric tons of carbon per year for the GIS and regression approaches respectively. - Large differences in estimates of soil organic carbon stocks and annual changes in stocks for Wisconsin forestlands indicate a need for validation from forthcoming forest surveys

  3. Restinga forests of the Brazilian coast: richness and abundance of tree species on different soils.

    Science.gov (United States)

    Magnago, Luiz F S; Martins, Sebastião V; Schaefer, Carlos E G R; Neri, Andreza V

    2012-09-01

    The aim of this study was to determine changes in composition, abundance and richness of species along a forest gradient with varying soils and flood regimes. The forests are located on the left bank of the lower Jucu River, in Jacarenema Natural Municipal Park, Espírito Santo. A survey of shrub/tree species was done in 80 plots, 5x25 m, equally distributed among the forests studied. We included in the sampling all individuals with >3.2 cm diameter at breast height (1.30 m). Soil samples were collected from the surface layer (0-10 cm) in each plot for chemical and physical analysis. The results indicate that a significant pedological gradient occurs, which is influenced by varying seasonal groundwater levels. Restinga forest formations showed significant differences in species richness, except for Non-flooded Forest and Non-flooded Forest Transition. The Canonical Correlation Analysis (CCA) showed that some species are distributed along the gradient under the combined influence of drainage, nutrient concentration and physical characteristics of the soil. Regarding the variables tested, flooding seems to be a more limiting factor for the establishment of plant species in Restinga forests than basic soil fertility attributes.

  4. The role of forest stand density in controlling soil erosion: implications to sediment-related disasters in Japan.

    Science.gov (United States)

    Razafindrabe, Bam H N; He, Bin; Inoue, Shoji; Ezaki, Tsugio; Shaw, Rajib

    2010-01-01

    The role of forest stand density in controlling soil erosion was investigated in Ehime Prefecture, Japan. The main objective was to compare soil erosion under different forest conditions including forest type, species composition, and stand density as influenced by thinning operations. Relative yield index (Ry) was used as an indicator of stand density to reflect the degree of management operations in the watershed. Eleven treatments were established based on the above forest conditions. Soil loss was collected in each of the 11 treatments after each rainfall event for a period of 1 year. The paper presents summary data on soil loss as affected by forest conditions and rainfall patterns. Findings showed that an appropriate forest management operation, which can be insured by stand density control, is needed to reduce soil loss. The present study plays an important role in clarifying technical processes related to soil erosion, while it helps linking these elements to current Japanese forestry issues and bringing new inputs to reducing sediment-related disasters in Japan.

  5. Invasive and exotic earthworms: an unaccounted change to mercury cycling in northeastern US forest soils

    Science.gov (United States)

    Richardson, J. B.; Friedland, A. J.; Görres, J. H.; Renock, D. J.; Jackson, B. P.

    2014-12-01

    Invasive and exotic earthworms are now present in many forested areas of the northeastern US with currently unquantified consequences to abiotic and biotic Hg cycling. To quantify these effects, we measured Hg concentrations (mg kg-1) and amounts (μg m-2) in earthworms and soil horizons at 45 soil pits from 9 sites in northern New England. Seven earthworm species were observed in varying assemblages. Most earthworm species attained concentrations of Hg potentially hazardous to wildlife that may ingest them, with highest concentrations found in shallow-burrowing, litter-feeders. Specifically, Aporrectodea rosea and Amynthas agrestis had the greatest Hg concentrations (0.9 ± 0.1) and Hg amounts (8 ± 2) μg m-2. Aporrectodea rosea and Amynthas agrestis were found to inhabit the forest floor and the top 5 cm of the mineral horizons in high abundance, potentially making it a readily accessible prey species. Bioaccumulation of Hg by invasive and exotic earthworms may be an important mechanism that transfers Hg to ground foraging predators, such as thrushes, red-backed salamanders and foxes, which is generally unaccounted for in terrestrial food chains. Earthworm Hg concentrations were poorly correlated with their respective soil Hg concentrations, suggesting a species dependence for Hg bioaccumulation rather than site effects. We observed that forest floor Hg concentrations and amounts were 23% and 57% lower, respectively, at soil pits with earthworms compared to those without. Moreover, Hg amounts in forest floor-feeding earthworms exceeded the remaining forest floor Hg pools. Mercury concentrations and pools in the mineral soil were 21% and 33% lower, respectively, for soil pits with earthworms compared to those without. We hypothesize that enhanced decomposition, horizon disturbance and bioaccumulation by earthworms has decreased Hg amounts in the forest floor and mineral soil. Our results suggest that earthworms are decreasing Hg storage in forest soils with

  6. Physicochemical Properties of the Soils of Wassaniya Forest ...

    African Journals Online (AJOL)

    1 Department of Forestry and Fisheries, Kebbi State University of Science and Technology, Aliero. 2 Department ... Forest Reserve in Tangaza Local Government Area of Sokoto State, Nigeria. ... Increase in organic carbon content of the soil is.

  7. Soil-Water Repellency Characteristic Curves for Soil Profiles with Organic Carbon Gradients

    DEFF Research Database (Denmark)

    Wijewardana, Nadeeka Senani; Muller, Karin; Moldrup, Per

    2016-01-01

    Soil water repellency (SWR) of soils is a property with significant consequences for agricultural water management, water infiltration, contaminant transport, and for soil erosion. It is caused by the presence of hydrophobic agents on mineral grain surfaces. Soils were samples in different depths......, and the sessile drop method (SDM). The aim to (i) compare the methods, (ii) characterize the soil-water repellency characteristic curves (SWRCC) being SWR as a function of the volumetric soil-water content (θ) or matric potential (ψ), and (iii) find relationships between SWRCC parameters and SOC content. The WDPT...... at three forest sites in Japan and three pasture sites in New Zealand, covering soil organic carbon (SOC) contents between 1 and 26%. The SWR was measured over a range of water contents by three common methods; the water drop penetration time (WDPT) test, the molarity of an ethanol droplet (MED) method...

  8. Assessment of soil acidification effects on forest growth in Sweden

    International Nuclear Information System (INIS)

    Sverdrup, H.; Warfvinge, P.; Nihlgaard, B.

    1994-01-01

    The results of mapping critical loads, areas where they have been exceeded and steady state (Ca+Mg+K)/Al ratios of soils in Sweden, has been used to assess the order of magnitude of the ecological and economic risks involved with acid deposition for Swedish forests. The results of the calculations indicate that 81% of the Swedish forested area received acid deposition in excess of the critical load at present. Under continued deposition at 1990 level, forest die-back is predicted to occur on approximately 1% of the forested area, and significant growth rate reductions are predicted for 80% of the Swedish forested area. For Sweden, growth losses in the order of 17.5 million m -3 yr -1 are predicted, equivalent to approximately 19% of current growth. Comparable losses can be predicted for other Nordic countries. The soil acidification situation is predicted to deteriorate significantly during the next 5-15 years, unless rapid emission reductions can be achieved. A minimum deposition reduction over Sweden of 95% on sulphur deposition and 30% on the N deposition in relation to 1990 level is required in order to protect 95% of the Swedish forest ecosystems from adverse effects of acidification. A minimum reduction of 60% on sulphur deposition and 30% on the N deposition is required to keep forest harvest at planned levels. 148 refs., 9 figs., 9 tabs

  9. Change in Soil and Forest Floor Carbon after Shelterwood Harvests in a New England Oak-Hardwood Forest, USA

    Directory of Open Access Journals (Sweden)

    Kayanna L. Warren

    2014-01-01

    Full Text Available There has been effort worldwide to quantify how much carbon forests contain in order to designate appropriate offset credits to forest carbon climate mitigation. Carbon pools on or immediately below the soil surface are understood to be very active in response to environmental change but are not well understood. Our study focused on the effects of shelterwood regeneration harvests in New England on the carbon stored in litter, woody debris, and surface soil carbon. Results demonstrate significant difference in surface (0–10 cm soil carbon between control (nonharvested and harvested sites, with higher carbon percentage on control sites. Results showed a significant difference in coarse woody debris with higher amounts of carbon per area on harvested sites. No significant difference in litter mass was recorded between harvested and control sites. When coarse woody debris and litter are included with soil carbon, total carbon did not have a significant decline over 20 years following shelterwood treatment to the forest to secure regeneration, but there was considerable variability among sites. When taking all surface soil carbon measurements together, our results suggest that for accounting purposes the measurement of below-ground carbon after shelterwood harvests is not necessary for the southern New England region.

  10. Resobio. Management of forest residues: preserving soils and biodiversity

    International Nuclear Information System (INIS)

    Rantien, Caroline; Charasse, Laurent; Wlerick, Lise; Landmann, Guy; Nivet, Cecile; Jallais, Anais; Augusto, Laurent; Bigot, Maryse; Thivolle Cazat, Alain; Bouget, Christophe; Brethes, Alain; Boulanger, Vincent; Richter, Claudine; Cornu, Sophie; Rakotoarison, Hanitra; Ulrich, Erwin; Deleuze, Christine; Michaud, Daniel; Cacot, Emmanuel; Pousse, Noemie; Ranger, Jacques; Saint-Andre, Laurent; Zeller, Bernd; Achat, David; Cabral, Anne-Sophie; Akroume, Emila; Aubert, Michael; Bailly, Alain; Fraysse, Jean-Yves; Fraud, Benoit; Gardette, Yves-Marie; Gibaud, Gwenaelle; Helou, Tammouz-Enaut; Pitocchi, Sophie; Vivancos, Caroline

    2014-03-01

    The Resobio project (management of forest slash: preservation of soils and biodiversity) aimed at updating knowledge available at the international level (with a focus on temperate areas) on the potential consequences of forest slash sampling on fertility and on biodiversity, and at identifying orientations for recommendations for a revision of the ADEME guide of 2006 on wise collecting of forest slash. The first part of this report is a synthesis report which gives an overview of results about twenty issues dealing with the nature of wood used for energy production and the role of slash, about the consequences of this type of collecting for soil fertility and species productivity, and about impacts on biodiversity. Based on these elements, recommendations are made for slash management and for additional follow-up and research. The second part contains five scientific and technical reports which more deeply analyse the issue of fertility, and technical documents on slash management (guides) published in various countries

  11. Biogeography and organic matter removal shape long-term effects of timber harvesting on forest soil microbial communities

    Science.gov (United States)

    Roland C Wilhelm; Erick Cardenas; Kendra R Maas; Hilary Leung; Larisa McNeil; Shannon Berch; William Chapman; Graeme Hope; J M Kranabetter; Stephane Dubé; Matt Busse; Robert Fleming; Paul Hazlett; Kara L Webster; David Morris; D Andrew Scott; William W Mohn

    2017-01-01

    The growing demand for renewable, carbon-neutral materials and energy is leading to intensified forest land-use. The long-term ecological challenges associated with maintaining soil fertility in managed forests are not yet known, in part due to the complexity of soil microbial communities and the heterogeneity of forest soils. This study determined the long-term...

  12. Do forest soil microbes have the potential to resist plant invasion? A case study in Dinghushan Biosphere Reserve (South China)

    Science.gov (United States)

    Chen, Bao-Ming; Li, Song; Liao, Hui-Xuan; Peng, Shao-Lin

    2017-05-01

    Successful invaders must overcome biotic resistance, which is defined as the reduction in invasion success caused by the resident community. Soil microbes are an important source of community resistance to plant invasions, and understanding their role in this process requires urgent investigation. Therefore, three forest communities along successional stages and four exotic invasive plant species were selected to test the role of soil microbes of three forest communities in resisting the exotic invasive plant. Our results showed that soil microbes from a monsoon evergreen broadleaf forest (MEBF) (late-successional stage) had the greatest resistance to the invasive plants. Only the invasive species Ipomoea triloba was not sensitive to the three successional forest soils. Mycorrhizal fungi in early successional forest Pinus massonina forest (PMF) or mid-successional forest pine-broadleaf mixed forest (PBMF) soil promoted the growth of Mikania micrantha and Eupatorium catarium, but mycorrhizal fungi in MEBF soil had no significant effects on their growth. Pathogens plus other non-mycorrhizal microbes in MEBF soil inhibited the growth of M. micrantha and E. catarium significantly, and only inhibited root growth of E. catarium when compared with those with mycorrhizal fungi addition. The study suggest that soil mycorrhizal fungi of early-mid-successional forests benefit invasive species M. micrantha and E. catarium, while soil pathogens of late-successional forest may play an important role in resisting M. micrantha and E. catarium. The benefit and resistance of the soil microbes are dependent on invasive species and related to forest succession. The study gives a possible clue to control invasive plants by regulating soil microbes of forest community to resist plant invasion.

  13. Soil respiration patterns and rates at three Taiwanese forest plantations: dependence on elevation, temperature, precipitation, and litterfall

    OpenAIRE

    Huang, Yu-Hsuan; Hung, Chih-Yu; Lin, I-Rhy; Kume, Tomonori; Menyailo, Oleg V.; Cheng, Chih-Hsin

    2017-01-01

    Background Soil respiration contributes to a large quantity of carbon emissions in the forest ecosystem. In this study, the soil respiration rates at three Taiwanese forest plantations (two lowland and one mid-elevation) were investigated. We aimed to determine how soil respiration varies between lowland and mid-elevation forest plantations and identify the relative importance of biotic and abiotic factors affecting soil respiration. Results The results showed that the temporal patterns of so...

  14. A conceptual framework: redifining forests soil's critical acid loads under a changing climate

    Science.gov (United States)

    Steven G. McNulty; Johnny L. Boggs

    2010-01-01

    Federal agencies of several nations have or are currently developing guidelines for critical forest soil acid loads. These guidelines are used to establish regulations designed to maintain atmospheric acid inputs below levels shown to damage forests and streams. Traditionally, when the critical soil acid load exceeds the amount of acid that the ecosystem can absorb, it...

  15. Effects of Successive Harvests on Soil Nutrient Stocks in Established Tropical Plantation Forests

    Science.gov (United States)

    Mendoza, L.; McMahon, D.; Jackson, R. B.

    2017-12-01

    Large-scale plantation forests in tropical regions alter biogeochemical processes, raising concerns about the long-term sustainability of this land use. Current commercial practices result in nutrient export with removed biomass that may not be balanced by fertilizer application. Consequent changes in a landscape's nutrient distributions can affect the growth of future plantations or other vegetation. Prior studies have reported changes in soil chemical and physical properties when plantation forests replace pastures or native vegetation, but few have examined the impacts of multiple harvest cycles following plantation establishment. This study analyzed macronutrient and carbon content of soil samples from the world's most productive plantation forests, in southeastern Brazil, to understand the long-term effects of plantation forests on soil nutrient stocks and soil fertility. Soil was collected from Eucalyptus plantation sites and adjacent vegetation in 2004 and again in 2016, after at least one full cycle of harvesting and replanting. We found that within surface soil (0-10 cm) Mg and N did not change significantly and C, P, K and Ca concentrations generally increased, but to varying extents within individual management units. This trend of increasing nutrient concentrations suggests that additional harvests do not result in cumulative nutrient depletion. However, large changes in Ca and K concentrations in individual plantation units indicate that added fertilizer does not consistently accumulate in the surface soil. Analysis of deeper soil layers and comparison to unfertilized vegetation will help to determine the fate of fertilizers and native soil nutrients in repeatedly harvested plantations. These results address the necessity of long-term investigation of nutrient changes to better understand and determine the impacts of different types of land use in the tropics.

  16. [Effect of pine plantations on soil arthropods in a high Andean forest].

    Science.gov (United States)

    León-Gamboa, Alba Lucía; Ramos, Carolina; García, Mary Ruth

    2010-09-01

    One of the most common problems in the Colombian mountains has been the replacement of native vegetation by pine plantations. Soil arthropods are a fundamental component of forest ecosystem, since they participate in the organic matter fragmentation, previous to decomposition. This role is more valuable in high altitude environments, where low temperatures limit the dynamics of biological processes, where the effects of pine plantations on soil arthropods are still not well-known. In a remnant of high-andean forest (Neusa - Colombia) and a pine plantation of about 50 years-old, it was evaluated the composition, richness and abundance of arthropods at surface (S), organic horizon (O) and mineral horizon (A) of soil, to establish the differences associated to the soil use transformation. It was used "Pitfall" sampling to register the movement of the epigeous fauna, and extraction by funnel Berlese for determining the fauna density from O and A horizons. The Shannon and Simpson indexes estimated the diversity at different places and horizons, and the trophic structure of the community was evaluated. Overall, there were collected 38 306 individuals from forest and 17 386 individuals from pine plantation, mainly distributed in Collembola (42.4%), Acari (27%), Diptera (17.6%) and Coleoptera (4.6%). The most important differences were given in the surface, where the mobilization in forest (86 individuals/day) almost triplicates the one in pine plantation (33 individuals/day). The differences in composition were given in Collembola, Araneae, Hemiptera, Homoptera and Hymenoptera. The dynamics of richness and abundance along the year had significant high values in the native forest than in the pine plantation. The general trophic structure was dominated by saprophagous (75%), followed by predators (14%) and phytophagous (9%), but in two layers of the pine plantation soil (S and O) this structural pattern was not given. Based on the results, it was concluded that pine

  17. Tree species distribution in temperate forests is more influenced by soil than by climate.

    Science.gov (United States)

    Walthert, Lorenz; Meier, Eliane Seraina

    2017-11-01

    Knowledge of the ecological requirements determining tree species distributions is a precondition for sustainable forest management. At present, the abiotic requirements and the relative importance of the different abiotic factors are still unclear for many temperate tree species. We therefore investigated the relative importance of climatic and edaphic factors for the abundance of 12 temperate tree species along environmental gradients. Our investigations are based on data from 1,075 forest stands across Switzerland including the cold-induced tree line of all studied species and the drought-induced range boundaries of several species. Four climatic and four edaphic predictors represented the important growth factors temperature, water supply, nutrient availability, and soil aeration. The climatic predictors were derived from the meteorological network of MeteoSwiss, and the edaphic predictors were available from soil profiles. Species cover abundances were recorded in field surveys. The explanatory power of the predictors was assessed by variation partitioning analyses with generalized linear models. For six of the 12 species, edaphic predictors were more important than climatic predictors in shaping species distribution. Over all species, abundances depended mainly on nutrient availability, followed by temperature, water supply, and soil aeration. The often co-occurring species responded similar to these growth factors. Drought turned out to be a determinant of the lower range boundary for some species. We conclude that over all 12 studied tree species, soil properties were more important than climate variables in shaping tree species distribution. The inclusion of appropriate soil variables in species distribution models allowed to better explain species' ecological niches. Moreover, our study revealed that the ecological requirements of tree species assessed in local field studies and in experiments are valid at larger scales across Switzerland.

  18. The influence of site factors on nitrogen mineralization in forest soils ...

    African Journals Online (AJOL)

    The influence of site factors on nitrogen mineralization in forest soils of the ... on N mineralization, as well as the effect of N mineralization on forest productivity. ... of the natural log of mean annual temperature, geological substrate and total N ...

  19. Soil CO2 efflux of a larch forest in northern Japan

    Directory of Open Access Journals (Sweden)

    Y. Fujinuma

    2010-11-01

    Full Text Available We had continuously measured soil CO2 efflux (Rs in a larch forest in northern Japan at hourly intervals for the snow-free period in 2003 with an automated chamber system and partitioned Rs into heterotrophic respiration (Rh and autotrophic respiration (Rr by using the trench method. In addition, we applied the soil CO2 concentration gradients method to continuously measure soil CO2 profiles under snowpack in the snowy period and to partition Rs into topsoil (Oa and A horizons CO2 efflux (Ft with a depth of 0.13 m and sub-soil (C horizon CO2 efflux (Fc. We found that soil CO2 effluxes were strongly affected by the seasonal variation of soil temperature but weakly correlated with soil moisture, probably because the volumetric soil moisture (30–40% at 95% confidence interval was within a plateau region for root and microbial activities. The soil CO2 effluxes changed seasonally in parallel with soil temperature in topsoil with the peak in late summer. On the other hand, the contribution of Rr to Rs was the largest at about 50% in early summer, when canopy photosynthesis and plant growth were more active. The temperature sensitivity (Q10 of Rr peaked in June. Under snowpack, Rs was stable until mid-March and then gradually increased with snow melting. Rs summed up to 79 gC m−2 during the snowy season for 4 months. The annual Rs was determined at 934 gC m−2 y−1 in 2003, which accounted for 63% of ecosystem respiration. The annual contributions of Rh and Rs to Rs were 57% and 43%, respectively. Based on the gradient approach, Rs was partitioned vertically into litter (Oi and Oe horizons with a depth of 0.01–0.02 m, topsoil and sub-soil respirations with proportions of 6, 72 and 22%, respectively, on an annual basis. The vertical distribution of CO2 efflux was consistent with those of soil carbon and root biomass.

  20. Effect of National-Scale Afforestation on Forest Water Supply and Soil Loss in South Korea, 1971–2010

    Directory of Open Access Journals (Sweden)

    Gang Sun Kim

    2017-06-01

    Full Text Available Afforestation of forests in South Korea may provide an example of the benefit of afforestation on precipitation storage and erosion control. In this study, we presented the effects of afforestation on water supply and soil loss prevention. A spatio-temporal simulation of forest water yield and soil loss was performed from 1971–2010 using InVEST water yield and SWAT models. A forest stock change map was produced by combining land cover data and National Forest Inventory data. The forest water yield increased about twice with changes in forest stock and climate from 1971–2010 and showed a spatially homogeneous water supply capacity. In the same period, the soil loss decreased more than three times, and the volatility of soil loss, in the 2010s, was smaller than before. The analysis of the change in forest stock without considering climate change showed an increase of 43% in forest water yield and a decrease of 87% in soil loss. An increase in precipitation increased the water yield, but also increased the soil loss volume. A change in forest stock led to positive changes in both. This study presents functional positive effects of the afforestation program in South Korea that can be useful in various afforestation programs in other countries.

  1. Liming with powdered oil-shale ash in a heavily damaged forest ecosystem. 1.The effect on forest soil in a pine stand

    International Nuclear Information System (INIS)

    Terasmaa, T.; Sepp, S.

    1994-01-01

    A fertilization and liming experiment with mineral fertilizers and powdered oil-shale ash was carried out in a heavily damaged 50-year-old Scots pine ecosystem in South Estonia. In Estonia, where electric power is produced mainly in big oil-shale-fired power plants, huge quantities of SO 2 are flying into the atmosphere through the chimneys of the plants. However, it is characteristic of Estonia that simultaneously with comparatively high SO 2 pollution the proton load has been quite low because of big amounts of alkali c ash emitted together with SO 2 into the atmosphere through the chimneys of the thermal power plants. Therefore, acid rains are not frequent in Estonia. Acid precipitation here is caused mainly by SO 2 released in the central part of Europe. In Estonia acid rains are most frequently registered in the southern area of the country. At times rains with pH values below 5.1 (even 4.0 and lower) have been registered there. This is also the region where quite severely damaged pine forests can be found. As a rule, these forests grow on acid sandy soils poor in nutrients and bases. The aim of the present study was to investigate the possibility of using oil shale ash as a liming agent in a forest ecosystem for protecting forest soils from acidification and, together with some mineral fertilizers, for improving the health of injured pine stands. In Estonia the most easily available liming agent is powdered oil-shale ash, which has been widely used as a lime fertilizer for agricultural crops but so far has not been tested for liming forests on mineral soils. The comparison of the present study with the liming experiments carried out with limestone in Finland shows that the effect of oil-shale ash treatment of acid sandy soils to raise pH values and to reduce other characteristics of soil acidity was more effective than limestone liming of mineral soils in Finnish forests. The present study demonstrates that powdered oil-shale ash is highly effective in short

  2. Copper, zinc, and cadmium in various fractions of soil and fungi in a Swedish forest.

    Science.gov (United States)

    Vinichuk, Mykhailo M

    2013-01-01

    Ectomycorrhizal fungi profoundly affect forest ecosystems through mediating nutrient uptake and maintaining forest food webs. The accumulation of metals in each transfer step from bulk soil to fungal sporocarps is not well known. The accumulation of three metals copper (Cu), zinc (Zn) and cadmium (Cd) in bulk soil, rhizosphere, soil-root interface, fungal mycelium and sporocarps of mycorrhizal fungi in a Swedish forest were compared. Concentrations of all three metals increased in the order: bulk soil soil-root interface (or rhizosphere) soil and sporocarps occurred against a concentration gradient. In fungal mycelium, the concentration of all three metals was about three times higher than in bulk soil, and the concentration in sporocarps was about two times higher than in mycelium. In terms of accumulation, fungi (mycelium and sporocarps) preferred Cd to Zn and Cu. Zinc concentration in sporocarps and to a lesser extent in mycelium depended on the concentration in soil, whereas, the uptake of Cu and Cd by both sporocarps and mycelium did not correlate with metal concentration in soil. Heavy metal accumulation within the fungal mycelium biomass in the top forest soil layer (0-5 cm) might account for ca. 5-9% of the total amount of Cu, 5-11% of Zn, and 16-32% of Cd. As the uptake of zinc and copper by fungi may be balanced, this implied similarities in the uptake mechanism.

  3. Local climatic conditions constrain soil yeast diversity patterns in Mediterranean forests, woodlands and scrub biome.

    Science.gov (United States)

    Yurkov, Andrey M; Röhl, Oliver; Pontes, Ana; Carvalho, Cláudia; Maldonado, Cristina; Sampaio, José Paulo

    2016-02-01

    Soil yeasts represent a poorly known fraction of the soil microbiome due to limited ecological surveys. Here, we provide the first comprehensive inventory of cultivable soil yeasts in a Mediterranean ecosystem, which is the leading biodiversity hotspot for vascular plants and vertebrates in Europe. We isolated and identified soil yeasts from forested sites of Serra da Arrábida Natural Park (Portugal), representing the Mediterranean forests, woodlands and scrub biome. Both cultivation experiments and the subsequent species richness estimations suggest the highest species richness values reported to date, resulting in a total of 57 and 80 yeast taxa, respectively. These values far exceed those reported for other forest soils in Europe. Furthermore, we assessed the response of yeast diversity to microclimatic environmental factors in biotopes composed of the same plant species but showing a gradual change from humid broadleaf forests to dry maquis. We observed that forest properties constrained by precipitation level had strong impact on yeast diversity and on community structure and lower precipitation resulted in an increased number of rare species and decreased evenness values. In conclusion, the structure of soil yeast communities mirrors the environmental factors that affect aboveground phytocenoses, aboveground biomass and plant projective cover. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Environmental parameters regulating sulfur retention in a variety of forest soils

    International Nuclear Information System (INIS)

    Watwood, M.E.

    1987-01-01

    Field incubations utilizing 35 S-labelled sulfate were conducted in a white pine and a hardwood forest. The A horizon soil formed approximately 3.0 nmol of organic S g -1 dry weight, which did not differ significantly from results obtained in similarly designed laboratory incubations. Total intrinsic S in this horizon contained substantial amounts of sulfonate S and ester sulfate, and organic 35 S fractions in several linkage groups were found to predominate following field incubation. Capacities for sulfate adsorption, organic S formation and organic S mineralization were assayed for 01/02, A1, E2 and Bh horizons of a coastal pine forest. A1 horizon soil from various locations within New Mexico National Forests adsorbed 1.2 to 4.9 nmol g -1 of added sulfate and formed between 1.6 and 4.8 nmol g -1 of added sulfate and formed between 1.6 and 4.8 nmol g -1 of organic S during 48h. Methionine mineralization and the fate of both mineralization-derived and added sulfate were examined in hardwood forest soils which had been suction dried to contain between 2 and 80% moisture. Incubation of 35 S-methionine with organic matter extracted from the 02 litter layer of a hardwood forest, resulted in the formation of 35 S-methionine-labelled organic component

  5. Forest structure, diversity and soil properties in a dry tropical forest in Rajasthan, Western India

    OpenAIRE

    J. I. Nirmal Kumar,; Kanti Patel,; Rohit Bhoi Kumar

    2011-01-01

    Structure, species composition, and soil properties of a dry tropical forest in Rajasthan Western India, were examined by establishment of 25 plots. The forest was characterized by a relatively low canopy and a large number of small-diameter trees. Mean canopy height for this forest was 10 m and stands contained an average of 995 stems ha-1 (≥ 3.0 cm DBH); 52% of those stems were smaller than 10 cm DBH. The total basal area was 46.35 m2ha-1, of which Tectona grandis L. contributed 48%. The fo...

  6. Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate

    Science.gov (United States)

    Quesada, C. A.; Phillips, O. L.; Schwarz, M.; Czimczik, C. I.; Baker, T. R.; Patiño, S.; Fyllas, N. M.; Hodnett, M. G.; Herrera, R.; Almeida, S.; Alvarez Dávila, E.; Arneth, A.; Arroyo, L.; Chao, K. J.; Dezzeo, N.; Erwin, T.; di Fiore, A.; Higuchi, N.; Honorio Coronado, E.; Jimenez, E. M.; Killeen, T.; Lezama, A. T.; Lloyd, G.; López-González, G.; Luizão, F. J.; Malhi, Y.; Monteagudo, A.; Neill, D. A.; Núñez Vargas, P.; Paiva, R.; Peacock, J.; Peñuela, M. C.; Peña Cruz, A.; Pitman, N.; Priante Filho, N.; Prieto, A.; Ramírez, H.; Rudas, A.; Salomão, R.; Santos, A. J. B.; Schmerler, J.; Silva, N.; Silveira, M.; Vásquez, R.; Vieira, I.; Terborgh, J.; Lloyd, J.

    2012-06-01

    Forest structure and dynamics vary across the Amazon Basin in an east-west gradient coincident with variations in soil fertility and geology. This has resulted in the hypothesis that soil fertility may play an important role in explaining Basin-wide variations in forest biomass, growth and stem turnover rates. Soil samples were collected in a total of 59 different forest plots across the Amazon Basin and analysed for exchangeable cations, carbon, nitrogen and pH, with several phosphorus fractions of likely different plant availability also quantified. Physical properties were additionally examined and an index of soil physical quality developed. Bivariate relationships of soil and climatic properties with above-ground wood productivity, stand-level tree turnover rates, above-ground wood biomass and wood density were first examined with multivariate regression models then applied. Both forms of analysis were undertaken with and without considerations regarding the underlying spatial structure of the dataset. Despite the presence of autocorrelated spatial structures complicating many analyses, forest structure and dynamics were found to be strongly and quantitatively related to edaphic as well as climatic conditions. Basin-wide differences in stand-level turnover rates are mostly influenced by soil physical properties with variations in rates of coarse wood production mostly related to soil phosphorus status. Total soil P was a better predictor of wood production rates than any of the fractionated organic- or inorganic-P pools. This suggests that it is not only the immediately available P forms, but probably the entire soil phosphorus pool that is interacting with forest growth on longer timescales. A role for soil potassium in modulating Amazon forest dynamics through its effects on stand-level wood density was also detected. Taking this into account, otherwise enigmatic variations in stand-level biomass across the Basin were then accounted for through the

  7. Nitrate concentrations in soil solutions below Danish forests

    DEFF Research Database (Denmark)

    Callesen, Ingeborg; Raulund-Rasmussen, Karsten; Gundersen, Per

    1999-01-01

    leaching in relation to land-use, a national monitoring programme has established sampling routines in a 7x7 km grid including 111 points in forests. During winters of 1986-1993, soil samples were obtained from a depth of 0-25, 25-50, 50-75 and 75-100 cm. Nitrate concentrations in soil solutions were...... species. A few sites deviated radically from the general pattern of low concentrations. The elevated concentrations recorded there were probably caused by high levels of N deposition due to emission from local sources or temporal disruptions of the N cycle. The nitrate concentration in the soil solution...

  8. Riparian soil development linked to forest succession above and below dams along the Elwha River, Washington, USA

    Science.gov (United States)

    Perry, Laura G; Shafroth, Patrick B.; Perakis, Steven

    2017-01-01

    Riparian forest soils can be highly dynamic, due to frequent fluvial disturbance, erosion, and sediment deposition, but effects of dams on riparian soils are poorly understood. We examined soils along toposequences within three river segments located upstream, between, and downstream of two dams on the Elwha River to evaluate relationships between riparian soil development and forest age, succession, and channel proximity, explore dam effects on riparian soils, and provide a baseline for the largest dam removal in history. We found that older, later-successional forests and geomorphic surfaces contained soils with finer texture and greater depth to cobble, supporting greater forest floor mass, mineral soil nutrient levels, and cation exchange. Forest stand age was a better predictor than channel proximity for many soil characteristics, though elevation and distance from the channel were often also important, highlighting how complex interactions between fluvial disturbance, sediment deposition, and biotic retention regulate soil development in this ecosystem. Soils between the dams, and to a lesser extent below the lower dam, had finer textures and higher mineral soil carbon, nitrogen, and cation exchange than above the dams. These results suggested that decreased fluvial disturbance below the dams, due to reduced sediment supply and channel stabilization, accelerated soil development. In addition, reduced sediment supply below the dams may have decreased soil phosphorus. Soil δ15N suggested that salmon exclusion by the dams had no discernable effect on nitrogen inputs to upstream soils. Recent dam removal may alter riparian soils further, with ongoing implications for riparian ecosystems.

  9. Experimental soil warming effects on CO2 and CH4 flux from a low elevation spruce-fir forest soil in Maine, USA

    Science.gov (United States)

    Lindsey E. Rustad; Ivan J. Fernandez

    1998-01-01

    The effect of soil warming on CO2 and CH4 flux from a spruce-fir forest soil was evaluated at the Howland Integrated Forest Study site in Maine, USA from 1993 to 1995. Elevated soil temperatures (~5 °C) were maintained during the snow-free season (May-November) in replicated 15 × 15-m plots using electric cables buried 1-2...

  10. Reduction of soil erosion on forest roads

    Science.gov (United States)

    Edward R. Burroughs; John G. King

    1989-01-01

    Presents the expected reduction in surface erosion from selected treatments applied to forest road traveledways, cutslopes, fillslopes, and ditches. Estimated erosion reduction is expressed as functions of ground cover, slope gradient, and soil properties whenever possible. A procedure is provided to select rock riprap size for protection of the road ditch.

  11. Fate of nitrogenous fertilizers in forest soil

    International Nuclear Information System (INIS)

    Pang, P.C.K.

    1984-01-01

    The fate of the nitrogenous fertilizers through the processes of denitrification, ammonia volatilization, immobilization and uptake by a conifer is determined, with the aid of 15 N-labelled fertizers. The foliage of Douglas-fir was able to absorb gaseous ammonia under optimal conditions. Denitrification and immobilization of fertilizer-N by forest soil were highest with forest floor samples and decreased with depth. Laboratory studies with four-year-old Douglas-fir demostrated that a higher quantity of fertilizer-N was utilized by trees when the nitrogen was supplied as NO 3 - rather than NH 4 + . (M.A.C.) [pt

  12. Determination and Distribution of Critical Loads: Application to the Forest Soils in the Autonomous Region of Madrid; Determinacion y Distribucion de Cargas Criticas: Aplicacion a los Suelos forestales de la comunidad Autonoma de Madrid

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, M.; Schmid, T.; Rabago, I. [Ciemat, Madrid (Spain)

    2000-07-01

    The critical loads of acidity and sulphur have been determined for forest soils within the north and north-west of the Autonomous Region of Madrid. The SMB-CCE and SMB-PROFILE Steady state models have been applied using a 1 km x 1 km resolution. the forest ecosystems have been characterised according to the soil and forest type, slope and climatic data using a Geographic Information System. In order to estimate the critical loads, processes such as weathering rate of the parent material, atmospheric deposition, critical alkalinity leaching rate and nutrients absorbed by the vegetation have been considered. In general the forest soils present high critical load values for acidity and sulphur. The more sensitive zones are found in the north of the Sierra of Guadarrama. Independent of the applied methods, the results are associated to the types of soils where Leptosols have the lowest. Cambisoles and Regosoles intermediate and luvisoles the most elevated values. (Author) 40 refs.

  13. Climate response of the soil nitrogen cycle in three forest types of a headwater Mediterranean catchment

    Science.gov (United States)

    Lupon, Anna; Gerber, Stefan; Sabater, Francesc; Bernal, Susana

    2015-05-01

    Future changes in climate may affect soil nitrogen (N) transformations, and consequently, plant nutrition and N losses from terrestrial to stream ecosystems. We investigated the response of soil N cycling to changes in soil moisture, soil temperature, and precipitation across three Mediterranean forest types (evergreen oak, beech, and riparian) by fusing a simple process-based model (which included climate modifiers for key soil N processes) with measurements of soil organic N content, mineralization, nitrification, and concentration of ammonium and nitrate. The model describes sources (atmospheric deposition and net N mineralization) and sinks (plant uptake and hydrological losses) of inorganic N from and to the 0-10 cm soil pool as well as net nitrification. For the three forest types, the model successfully recreated the magnitude and temporal pattern of soil N processes and N concentrations (Nash-Sutcliffe coefficient = 0.49-0.96). Changes in soil water availability drove net N mineralization and net nitrification at the oak and beech forests, while temperature and precipitation were the strongest climatic factors for riparian soil N processes. In most cases, net N mineralization and net nitrification showed a different sensitivity to climatic drivers (temperature, soil moisture, and precipitation). Our model suggests that future climate change may have a minimal effect on the soil N cycle of these forests (warming and negative drying effects on the soil N cycle may counterbalance each other.

  14. Effects of reforestation on ammonia-oxidizing microbial community composition and abundance in subtropical acidic forest soils.

    Science.gov (United States)

    Wu, Ruo-Nan; Meng, Han; Wang, Yong-Feng; Gu, Ji-Dong

    2018-06-01

    Forest ecosystems have great ecological values in mitigation of climate change and protection of biodiversity of flora and fauna; re-forestry is commonly used to enhance the sequestration of atmospheric CO 2 into forest storage biomass. Therefore, seasonal and spatial dynamics of the major microbial players in nitrification, ammonia-oxidizing archaea (AOA) and bacteria (AOB), in acidic soils of young and matured revegetated forests were investigated to elucidate the changes of microbial communities during forest restoration, and compared to delineate the patterns of community shifts under the influences of environmental factors. AOA were more abundant than AOB in both young and matured revegetated forest soils in both summer and winter seasons. In summer, however, the abundance of amoA-AOA decreased remarkably (p < 0.01), ranging from 1.90 (± 0.07) × 10 8 copies per gram dry soil in matured forest to 5.04 (± 0.43) × 10 8 copies per gram dry soil in young forest, and amoA-AOB was below detection limits to obtain any meaningful values. Moreover, exchangeable Al 3+ and organic matter were found to regulate the physiologically functional nitrifiers, especially AOA abundance in acidic forest soils. AOB community in winter showed stronger correlation with the restoration status of revegetated forests and AOA community dominated by Nitrosotalea devanaterra, in contrast, was more sensitive to the seasonal and spatial variations of environmental factors. These results enrich the current knowledge of nitrification during re-forestry and provide valuable information to developmental status of revegetated forests for management through microbial analysis.

  15. Comparison of the composition of forest soil litter derived from three different sites at various decompositional stages using FTIR spectroscopy

    International Nuclear Information System (INIS)

    Haberhauer, G.; Rafferty, B.; Strebl, F.; Gerzabek, M. H.

    1998-06-01

    Transmission Fourier transformed infrared spectroscopy was used to compare organic soil layers originating from three different sites in two climatic regions. A variety of bands characteristic of molecular structures and functional groups have been identified for these samples from a humic podsol, a dystric cambisol and a spodo dystric cambisol. Similar results were obtained for all three soils. From L to H soil horizons, an increase of the band at 1630 cm -1 and decrease of bands in the region from 1510 cm -1 to 1230 cm -1 were observed. The band at 1630 cm -1 can be assigned to carboxylic and aromatic groups. The decline of the peak intensity at 1510 cm -1 is significantly correlated to the total carbon content and C/N ratio. The mineral material of the Ah horizons leads to an increase of the band at 1050 cm -1 due to IR-absorbance of the Si-O bond and to an appearance of bands in the region from 900 to 400 cm -1 , which are characteristic for clay and quartz minerals. Analysis of the FTIR absorbance showed that intensities of distinct peaks (e.g., at 1510 cm -1 ) can be a measure of decomposition of forest litter. Therefore, the proposed simple FTIR method has potential for identification and differentiation of organic soil horizons originating from known tree litter. The similarity of the characteristics of the spectra of the three soil profiles investigated suggests a broad applicability of this method to distinguish organic forest soil horizons. On the basis of the data presented in this study, it may be concluded that FTIR spectroscopy offers a simple, powerful, non-destructive tool for the investigation of decomposition of L to H horizons in forest soils. (author)

  16. Factors controlling regional differences in forest soil emission of nitrogen oxides (NO and N2O

    Directory of Open Access Journals (Sweden)

    K. Pilegaard

    2006-01-01

    Full Text Available Soil emissions of NO and N2O were measured continuously at high frequency for more than one year at 15 European forest sites as part of the EU-funded project NOFRETETE. The locations represent different forest types (coniferous/deciduous and different nitrogen loads. Geographically they range from Finland in the north to Italy in the south and from Hungary in the east to Scotland in the west. The highest NO emissions were observed from coniferous forests, whereas the lowest NO emissions were observed from deciduous forests. The NO emissions from coniferous forests were highly correlated with N-deposition. The site with the highest average annual emission (82 μg NO-N m−2 h−1 was a spruce forest in South-Germany (Höglwald receiving an annual N-deposition of 2.9 g m−2. NO emissions close to the detection limit were observed from a pine forest in Finland where the N-deposition was 0.2 g N m−2 a−1. No significant correlation between N2O emission and N-deposition was found. The highest average annual N2O emission (20 μg N2O-N m−2 h−1 was found in an oak forest in the Mátra mountains (Hungary receiving an annual N-deposition of 1.6 g m−2. N2O emission was significantly negatively correlated with the C/N ratio. The difference in N-oxide emissions from soils of coniferous and deciduous forests may partly be explained by differences in N-deposition rates and partly by differences in characteristics of the litter layer and soil. NO was mainly derived from nitrification whereas N2O was mainly derived from denitrification. In general, soil moisture is lower at coniferous sites (at least during spring time and the litter layer of coniferous forests is thick and well aerated favouring nitrification and thus release of NO. Conversely, the higher rates of denitrification in deciduous forests due to a compact and moist litter layer lead to N2O production and NO consumption in the soil. The two factors soil moisture and soil temperature are

  17. Acidification-induced chemical changes in coniferous forest soils in southern Sweden 1988-1999

    Energy Technology Data Exchange (ETDEWEB)

    Joensson, U.; Rosengren, U.; Thelin, G.; Nihlgaard, B

    2003-05-01

    Acidification of south-Swedish coniferous forest soils continues and soil nutrient status is no longer sustainable in a long-term perspective. - Thirty-two Norway spruce [Picea abies (L.) Karst.] and Scots pine (Pinus sylvestris L.) stands in southern Sweden were studied for a period of 12 years to evaluate acidification-induced chemical changes in the soil. Soil, at 20-30 cm depth in the mineral layer, was sampled three times during this period (1988, 1993 and 1999). The results show that pH(BaCl{sub 2}) in mineral soil decreased by, on average, 0.17 units between 1988 and 1999, accompanied by an increase in aluminium (Al) concentration and a decrease in base saturation in the soil. In 1999, the base saturation was below 5% in 58% of the 32 sites compared with 16% in 1988 and 7% in 1993. Concentrations of calcium (Ca), potassium (K) and magnesium (Mg) are low and decreasing. Based on C/N ratios in humus, 45% of the sites may be subjected to leaching of considerable amounts of nitrate. The results show that the acidification of coniferous forest soils in southern Sweden is continuing, and that the negative effects on the nutrient status in soil are extensive. The results are compared with reference values for productive, long-term sustainably managed boreal coniferous or mixed forest soils and implications for long-term sustainability are discussed.

  18. Long-term changes in soil pH across major forest ecosystems in China

    Science.gov (United States)

    Yang, Yuanhe; Li, Pin; He, Honglin; Zhao, Xia; Datta, Arindam; Ma, Wenhong; Zhang, Ying; Liu, Xuejun; Han, Wenxuan; Wilson, Maxwell C.; Fang, Jingyun

    2015-02-01

    Atmospheric acidic deposition has been a major environmental problem since the industrial revolution. However, our understanding of the effect of acidic deposition on soil pH is inconclusive. Here we examined temporal variations in topsoil pH and their relationships with atmospheric sulfur and nitrogen deposition across China's forests from the 1980s to the 2000s. To accomplish this goal, we conducted artificial neural network simulations using historical soil inventory data from the 1980s and a data set synthesized from literature published after 2000. Our results indicated that significant decreases in soil pH occurred in broadleaved forests, while minor changes were observed in coniferous and mixed coniferous and broadleaved forests. The magnitude of soil pH change was negatively correlated with atmospheric sulfur and nitrogen deposition. This relationship highlights the need for stringent measures that reduce sulfur and nitrogen emissions so as to maintain ecosystem structure and function.

  19. Distribution of 90Sr and 137Cs in Arctic soil profiles polluted by heavy metals

    International Nuclear Information System (INIS)

    Puhakainen, M.; Heikkinen, T.; Steinnes, E.; Thorring, H.; Outola, I.

    2005-01-01

    Effects of industrial pollution on the behaviour of radionuclides in spruce forest ecosystems were studied along a gradient from of a copper-nickel smelter in Monchegorsk, NW Russia. A reference site was situated in Lapland, Finland, 152 km west of Monchegorsk. Most of the total 137 Cs activity in soil was in mineral (E and B) horizons, except at the reference site where the major part was still in the organic surface layer. Most of the total 90 Sr activity still remaining in the soil profile was found in the surface layer, but the relative amount decreased with increasing level of industrial pollution. Pollutants from the smelter clearly affected the chemical speciation of radionuclides. Smaller amounts of exchangeable radionuclides were present in the organic surface layer at the most polluted sites. The decline of 137 Cs with decreasing distance from the smelter correlated strongly with a similar depletion in exchangeable K and Mg. Total concentrations of 137 Cs and 90 Sr showed high correlations with exchangeable cations, particularly in the E and upper B horizon. A sudden change in behaviour of 137 Cs in the lower B horizon may be associated with changes in clay mineralogy along the soil profile caused by weathering

  20. Windthrow and fallow-forest successions impacts in soil carbon stocks and GHG fluxes spatial variability and dynamics in the Central Russia' reserve spruce ecosystems

    Science.gov (United States)

    Vasenev, Ivan; Ivanov, Alexey; Komarova, Tatyana; Valentini, Riccardo

    2015-04-01

    High spatial and temporal variability is mutual feature for most forest soils that is especially obvious in case of their carbon stocks and GHG fluxes. This phenomenon is generally well-known but not so often becomes the object of special precision investigation in detail and small scales so there are still serious gaps in its principal factors understanding due to their high bioclimatic, regional, landscape, tree species and temporal variability. Southern taiga is one of the most environmentally important world zonal forest ecosystems due to its still comparatively intensive carbon biogeochemical cycle and huge area in the northern Eurasia with strong anthropogenic impacts by Western & Central European and Southern & Eastern Asian regions. Central Forest Biospheric Reserve (Tver region, 360 km to North-West from Moscow) is the principal southern-taiga reserve in the European territory of Russia. Since start of its research activity in 1939 the reserve became the regional center of mature spruce ecosystem structure and dynamics investigation. In 1970-1980-s there have been done complex investigations of windthrow soil patterns and fallow-forest successions. Since middle of 1990-s the ecosystem-level GHG fluxes have been observed by eddy covariance method. Since 2012 the detailed year-round monitoring is running in the southern-taiga zonal station of the regional system RusFluxNet with especial attention on the soil carbon stocks and GHG fluxes spatial variability and dynamics due to windthrow and fallow-forest successions (in frame of RF Governmental projects #11.G34.31.0079 and #14.120.14.4266). Soil carbon dynamics is investigated in decades-hundred-year chronosequences of dominated parcels and different-size windthrow soil cover patterns, including direct investigation during last 33 years with detailed mapping, soil profile morphometrics and bulk density, morphogenetic and statistical analysis of mass data. Morphogenetic analysis of microrelief, soil profile

  1. A Dataset for Three-Dimensional Distribution of 39 Elements Including Plant Nutrients and Other Metals and Metalloids in the Soils of a Forested Headwater Catchment.

    Science.gov (United States)

    Wu, B; Wiekenkamp, I; Sun, Y; Fisher, A S; Clough, R; Gottselig, N; Bogena, H; Pütz, T; Brüggemann, N; Vereecken, H; Bol, R

    2017-11-01

    Quantification and evaluation of elemental distribution in forested ecosystems are key requirements to understand element fluxes and their relationship with hydrological and biogeochemical processes in the system. However, datasets supporting such a study on the catchment scale are still limited. Here we provide a dataset comprising spatially highly resolved distributions of 39 elements in soil profiles of a small forested headwater catchment in western Germany () to gain a holistic picture of the state and fluxes of elements in the catchment. The elements include both plant nutrients and other metals and metalloids that were predominately derived from lithospheric or anthropogenic inputs, thereby allowing us to not only capture the nutrient status of the catchment but to also estimate the functional development of the ecosystem. Soil samples were collected at high lateral resolution (≤60 m), and element concentrations were determined vertically for four soil horizons (L/Of, Oh, A, B). From this, a three-dimensional view of the distribution of these elements could be established with high spatial resolution on the catchment scale in a temperate natural forested ecosystem. The dataset can be combined with other datasets and studies of the TERENO (Terrestrial Environmental Observatories) Data Discovery Portal () to reveal elemental fluxes, establish relations between elements and other soil properties, and/or as input for modeling elemental cycling in temperate forested ecosystems. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  2. Limited carbon storage in soil and litter of experimental forest plots under increased atmospheric CO2

    International Nuclear Information System (INIS)

    Schlesinger, W.H.; Lichter, J.

    2001-01-01

    The current rise in atmospheric CO 2 concentration is thought to be mitigated in part by carbon sequestration within forest ecosystems, where carbon can be stored in vegetation or soils. The storage of carbon in soils is determined by the fraction that is sequestered in persistent organic materials, such as humus. In experimental forest plots of loblolly pine (Pinus taeda) exposed to high CO 2 concentrations, nearly half of the carbon uptake is allocated to short-lived tissues, largely foliage. These tissues fall to the ground and decompose, normally contributing only a small portion of their carbon content to refractory soil humic materials. Such findings call into question the role of soils as long-term carbon sinks, and show the need for a better understanding of carbon cycling in forest soils. Here we report a significant accumulation of carbon in the litter layer of experimental forest plots after three years of growth at increased CO 2 concentrations (565 μ l 1 ). But fast turnover times of organic carbon in the litter layer (of about three years) appear to constrain the potential size of this carbon sink. Given the observation that carbon accumulation in the deeper mineral soil layers was absent, we suggest that significant, long-term net carbon sequestration in forest soils is unlikely. (author)

  3. Nutrient additions to a tropical rain forest drive substantial soil carbon dioxide losses to the atmosphere

    OpenAIRE

    Cleveland, Cory C.; Townsend, Alan R.

    2006-01-01

    Terrestrial biosphere–atmosphere carbon dioxide (CO2) exchange is dominated by tropical forests, where photosynthetic carbon (C) uptake is thought to be phosphorus (P)-limited. In P-poor tropical forests, P may also limit organic matter decomposition and soil C losses. We conducted a field-fertilization experiment to show that P fertilization stimulates soil respiration in a lowland tropical rain forest in Costa Rica. In the early wet season, when soluble organic matter inputs to soil are hig...

  4. Soil Chemical Weathering and Nutrient Budgets along an Earthworm Invasion Chronosequence in a Northern Minnesota Forest

    Science.gov (United States)

    Resner, K. E.; Yoo, K.; Sebestyen, S. D.; Aufdenkampe, A. K.; Lyttle, A.; Weinman, B. A.; Blum, A.; Hale, C. M.

    2011-12-01

    We are investigating the impact of exotic earthworms on the rate of nutrient and ion release from soil chemical weathering along an ~200 m invasion chronosequence in a northern Minnesota sugar maple forest. The earthworms belong to three ecological groups that represent different feeding and burrowing behaviors, all of which were introduced from Europe to the previously earthworm-free Great Lakes Region through fishing and agricultural activities. As earthworms digest and mix the soil, we hypothesize that they significantly alter chemical weathering processes by incorporating mineral surfaces to new geochemical environments in their intestines and at different soil depths. The effect of mixing on soil morphology is dramatic, but biogeochemical changes remain largely unknown and therefore are poorly coupled to the current and potential changes in forest ecosystems under the threat of exotic earthworms. We analyze the activities of short-lived isotopes 137-Cs and 210-Pb along with the inorganic chemistry of soil, water, and leaf litter across an invasion transect and link these measurements to the biomass and species composition of exotic earthworms. Earthworms vertically relocate minerals and organic matter largely within the top ~10 cm, which is reflected in the depth profiles of the short-lived isotopes. Among the inorganic nutrients analyzed, Ca is of particular interest due to sugar maple's aptitude for recycling Ca. Fractional mass loss values (tau) of Ca, relative to the soil's parent material, show an enrichment factor of 14 in the least invaded A horizon soils. However, such a high enrichment factor declines dramatically in the heavily invaded soils, suggesting that earthworm activities contribute to leaching Ca. In contrast, the enrichment factor of Fe increases with greater degrees of earthworm invasion, which is consistent with the extraction chemistry data showing greater quantities of pedogenic crystalline iron oxides and greater mineral specific

  5. Calcium weathering in forested soils and the effedt of different tree species

    NARCIS (Netherlands)

    Dijkstra, F.A.; Breemen, van N.; Jongmans, A.G.; Davies, G.R.; Likens, G.E.

    2003-01-01

    Soil weathering can be an important mechanism to neutralize acidity in forest soils. Tree species may differ in their effect on or response to soil weathering. We used soil mineral data and the natural strontium isotope ratio Sr-87/Sr-86 as a tracer to identify the effect of tree species on the Ca

  6. Nutrient additions to a tropical rain forest drive substantial soil carbon dioxide losses to the atmosphere.

    Science.gov (United States)

    Cleveland, Cory C; Townsend, Alan R

    2006-07-05

    Terrestrial biosphere-atmosphere carbon dioxide (CO(2)) exchange is dominated by tropical forests, where photosynthetic carbon (C) uptake is thought to be phosphorus (P)-limited. In P-poor tropical forests, P may also limit organic matter decomposition and soil C losses. We conducted a field-fertilization experiment to show that P fertilization stimulates soil respiration in a lowland tropical rain forest in Costa Rica. In the early wet season, when soluble organic matter inputs to soil are high, P fertilization drove large increases in soil respiration. Although the P-stimulated increase in soil respiration was largely confined to the dry-to-wet season transition, the seasonal increase was sufficient to drive an 18% annual increase in CO(2) efflux from the P-fertilized plots. Nitrogen (N) fertilization caused similar responses, and the net increases in soil respiration in response to the additions of N and P approached annual soil C fluxes in mid-latitude forests. Human activities are altering natural patterns of tropical soil N and P availability by land conversion and enhanced atmospheric deposition. Although our data suggest that the mechanisms driving the observed respiratory responses to increased N and P may be different, the large CO(2) losses stimulated by N and P fertilization suggest that knowledge of such patterns and their effects on soil CO(2) efflux is critical for understanding the role of tropical forests in a rapidly changing global C cycle.

  7. Microbial chlorination of organic matter in forest soil: investigation using 36Cl-chloride and its methodology.

    Science.gov (United States)

    Rohlenová, J; Gryndler, M; Forczek, S T; Fuksová, K; Handova, V; Matucha, M

    2009-05-15

    Chloride, which comes into the forest ecosystem largely from the sea as aerosol (and has been in the past assumed to be inert), causes chlorination of soil organic matter. Studies of the chlorination showed that the content of organically bound chlorine in temperate forest soils is higher than that of chloride, and various chlorinated compounds are produced. Our study of chlorination of organic matter in the fermentation horizon of forest soil using radioisotope 36Cl and tracer techniques shows that microbial chlorination clearly prevails over abiotic, chlorination of soil organic matter being enzymatically mediated and proportional to chloride content and time. Long-term (>100 days) chlorination leads to more stable chlorinated substances contained in the organic layer of forest soil (overtime; chlorine is bound progressively more firmly in humic acids) and volatile organochlorines are formed. Penetration of chloride into microorganisms can be documented by the freezing/thawing technique. Chloride absorption in microorganisms in soil and in litter residues in the fermentation horizon complicates the analysis of 36Cl-chlorinated soil. The results show that the analytical procedure used should be tested for every soil type under study.

  8. [Soil propagule bank of ectomycorrhizal fungi in natural forest of Pinus bungeana].

    Science.gov (United States)

    Zhao, Nan Xing; Han, Qi Sheng; Huang, Jian

    2017-12-01

    To conserve and restore the forest of Pinu bungeana, we investigated the soil propagule bank of ectomycorrhizal (ECM) fungi in a severely disturbed natural forest of P. bungeana in Shaanxi Province, China. We used a seedling-bioassay method to bait the ECM fungal propagules in the soils collected from the forest site. ECM was identified by combining morph typing with ITS-PCR-sequencing. We obtained 73 unique sequences from the ECM associated with P. bungeana seedlings, and assigned them into 12 ECM fungal OTUs at the threshold of 97% based on the sequence similarity. Rarefaction curve displayed almost all ECM fungi in the propagule bank were detected. The most frequent OTU (80%) showed poor similarity (75%) with existing sequences in the online database, which suggested it might be a new species. Cenococcum geophilum, Tomentella sp., Tuber sp. were common species in the propagule bank. Although C. geophilum and Tomentella sp. were frequently detected in other soil propagule banks of pine forest, the most frequent OTU was not assigned to known genus or family, which indicated the host-specif of ECM propagule banks associa-ted with P. bungeana. This result confirmed the importance of the special ECM propagule banks associated with P. bungeana for natural forest restoration.

  9. Microwave remote sensing of soil moisture for estimation of profile soil property

    International Nuclear Information System (INIS)

    Mattikalli, N.M.; Engman, E.T.; Ahuja, L.R.; Jackson, T.J.

    1998-01-01

    Multi-temporal microwave remotely-sensed soil moisture has been utilized for the estimation of profile soil property, viz. the soil hydraulic conductivity. Passive microwave remote sensing was employed to collect daily soil moisture data across the Little Washita watershed, Oklahoma, during 10-18 June 1992. The ESTAR (Electronically Steered Thin Array Radiometer) instrument operating at L -band was flown on a NASA C-130 aircraft. Brightness temperature (TB) data collected at a ground resolution of 200m were employed to derive spatial distribution of surface soil moisture. Analysis of spatial and temporal soil moisture information in conjunction with soils data revealed a direct relation between changes in soil moisture and soil texture. A geographical information system (GIS) based analysis suggested that 2-days initial drainage of soil, measured from remote sensing, was related to an important soil hydraulic property viz. the saturated hydraulic conductivity (Ksat). A hydrologic modelling methodology was developed for estimation of Ksat of surface and sub-surface soil layers. Specifically, soil hydraulic parameters were optimized to obtain a good match between model estimated and field measured soil moisture profiles. Relations between 2-days soil moisture change and Ksat of 0-5 cm, 0-30 cm and 0-60cm depths yielded correla tions of 0.78, 0.82 and 0.71, respectively. These results are comparable to the findings of previous studies involving laboratory-controlled experiments and numerical simulations, and support their extension to the field conditions of the Little Washita watershed. These findings have potential applications of microwave remote sensing to obtain 2-days of soil moisture and then to quickly estimate the spatial distribution of Ksat over large areas. (author)

  10. More an Exception Than the Rule: Fire has Little Effect on the Magnetic Properties of Loessic Soils Along the Prairie - Forest Ecotone in the Midwestern United States

    Science.gov (United States)

    Geiss, C. E.

    2016-12-01

    The analysis of a soil profile in western Iowa suggests that forest fires along the prairie-forest ecotone have little effect on the overall magnetic properties of the soil. The studied soil profile is located at Hitchcock Nature Center near Honey Creek, Iowa (41°25'15"N, -95°51'56"W) and developed in a narrow ravine in the Iowa Loess Hills. The surrounding vegetation consists of hardwoods, while the surrounding ridges are vegetated by oak savanna. The area has been subjected to prescribed fires for almost 20 years and is estimated to have burned approximately every 5 years in pre-European times [Stambaugh et al., 2006]. The profile contains several buried soils interspersed by often rapidly deposited loess. Paleosols consist of strongly developed A-horizons but show only weak magnetic enhancement in terms of magnetic susceptibility or ARM/IRM ratios. In a plot of χARM/χFD vs. χARM/χ, all but one sample plot far from the region that is generally associated with past burning [Oldfield and Crowther, 2007]. As shown earlier for prairie environments, fires in oak savanna do not seem to burn hot enough to cause widespread magnetic mineral transformations. Oldfield, F., and J. Crowther (2007), Establishing fire incidence in temperate soils using magnetic measurements, Paleogeogr. Paleoclim. Paleoecol., 249, 362-369. Stambaugh, M. C., R. P. Guyette, E. R. McMurry, and D. C. Dey (2006), Fire history at the eastern Great Plains margin, Missouri River Loess Hills, Great Plains Research, 16, 149-159.

  11. Prediction of soil CO2 flux in sugarcane management systems using the Random Forest approach

    Directory of Open Access Journals (Sweden)

    Rose Luiza Moraes Tavares

    Full Text Available ABSTRACT: The Random Forest algorithm is a data mining technique used for classifying attributes in order of importance to explain the variation in an attribute-target, as soil CO2 flux. This study aimed to identify prediction of soil CO2 flux variables in management systems of sugarcane through the machine-learning algorithm called Random Forest. Two different management areas of sugarcane in the state of São Paulo, Brazil, were selected: burned and green. In each area, we assembled a sampling grid with 81 georeferenced points to assess soil CO2 flux through automated portable soil gas chamber with measuring spectroscopy in the infrared during the dry season of 2011 and the rainy season of 2012. In addition, we sampled the soil to evaluate physical, chemical, and microbiological attributes. For data interpretation, we used the Random Forest algorithm, based on the combination of predicted decision trees (machine learning algorithms in which every tree depends on the values of a random vector sampled independently with the same distribution to all the trees of the forest. The results indicated that clay content in the soil was the most important attribute to explain the CO2 flux in the areas studied during the evaluated period. The use of the Random Forest algorithm originated a model with a good fit (R2 = 0.80 for predicted and observed values.

  12. Soil organic matter degradation and enzymatic profiles of intertidal and subaqueous soils

    Science.gov (United States)

    Ferronato, Chiara; Marinari, Sara; Bello, Diana; Vianello, Gilmo; Trasar-Cepeda, Carmen; Vittori Antisari, Livia

    2017-04-01

    The interest on intertidal and subaqueous soils has recently arisen because of the climate changes forecasts. The preservation of these habitats represents an important challenge for the future of humanity, because these systems represent an important global C sink since soil organic matter (SOM) on intertidal and subaqueous soils undergoes very slow degradation rates due to oxygen limitation. Publications on SOM cycle in saltmarshes are very scarce because of the difficulties involved on those studies i.e. the interaction of many abiotic and biotic factors (e.g., redox changes, water and bio-turbation processes, etc) and stressors (e.g., salinity and anoxia). However, saltmarshes constitute an unique natural system to observe the influence of anoxic conditions on SOM degradation, because the tide fluctuations on the soil surface allow the formation of provisionally or permanently submerged soils. With the aim to investigate the quality of SOM in subaqueous soils, triplicates of subaqueous soils (SASs), intertidal soils (ITSs) and terrestrial soils (TESs) were collected in the saltmarshes of the Baiona Lagoon (Northern Italy) and classified according to their pedogenetic horizons. The SOM quality on each soil horizon was investigated by quantifying SOM, total and water-soluble organic carbon (TOC, WSC) and microbial biomass carbon (MBC). Given the contribution of soil enzymes to the degradation of SOM, some enzymatic assays were also performed. Thereafter, soil classification and humus morpho-functional classification were used to join together similar soil profiles to facilitate the description and discussion of results. Soils were ranked as Aquent or Wassent Entisols, with an A/AC/C pedosequence. SOM, TOC and MBC were statistically higher in A than in AC and C horizons. Among the A horizons, ITSs were those showing the highest values for these parameters (11% TOC, 1.6 mg kg-1 MBC, 0.9 mg kg-1 WSC). These results, combined with the morpho-functional classification

  13. Polychlorinated naphthalenes (PCNs) in Chinese forest soil: Will combustion become a major source?

    International Nuclear Information System (INIS)

    Xu, Yue; Li, Jun; Zheng, Qian; Pan, Suhong; Luo, Chunling; Zhu, Haolin; Nizzetto, Luca; Zhang, Gan

    2015-01-01

    We collected O- and A-horizon soil samples in 26 Chinese mountainous forests to investigate the content, spatial pattern, and potential sources of polychlorinated naphthalenes (PCNs). Spatial patterns were influenced mainly by the approximation to sources and soil organic contents. High concentrations often occurred close to populated or industrialized areas. Combustion-related activities contributed to PCN pollution. Relatively high proportions of CN-73 in northern China may be attributed to coke consumption, while CN-51 could be an indicator of biomass burning in Southwest China. There are evidences that PCNs may largely derived from unintentional production. If uncontrolled, UP-PCN (unintentionally produced PCNs) emissions could increase with industrial development. The abnormally high concentrations at Gongga and Changbai Mountains appear to be associated with the high efficient of forest filter of atmospheric contaminants at these densely forested sites. We question whether this is caused by ecotones between forests, and raise additional questions for future analyses. - Highlights: • PCNs were measured in the O- and A-horizon soil of Chinese mountainous forests. • SOC and source emissions are mainly responsible for PCN pollution. • Thermal processes may contribute to PCN pollution on a regional scale. • CN-73 could be an indicator of coke consumption in northern China. - Combustion-related activities may contributed to a major part of PCN pollution in Chinese background soil

  14. Impact of forested fallows on fertility and mercury content in soils of the Tapajós River region, Brazilian Amazon.

    Science.gov (United States)

    Patry, Cynthia; Davidson, Robert; Lucotte, Marc; Béliveau, Annie

    2013-08-01

    Recent research on slash-and-burn agriculture conducted in the Amazonian basin has suggested that soils must be left under forested fallows for at least 10 to 15 years to regain fertility levels comparable to non-disturbed forests in order to allow for short cycle crop cultivation. However, small scale farmers tend nowadays to re-burn secondary forests as soon as after 3 to 5 years, thus could contribute to further reduce soil fertility and could enhance the transfer of mercury (Hg) naturally present in soils of the region towards water courses. The present research project sets out to characterize the impact of forested fallows of differing age and land-use history on soils properties (fertility and Hg contents) in the region of the Tapajós River, an active pioneer front of the Brazilian Amazon. To do this, soil samples in forested fallows of variable age and in control primary forests were retrieved. In general, soil fertility of grouped forested fallows of different ages was similar to that of the primary forests. But when discriminating soils according to their texture, forested fallows on coarse grained soils still had much higher NH4/NO3 ratios, NH4 and Ca contents than primary forests, this even 15 years after burning. The impact of repeated burnings was also assessed. Fallows on coarse grained soils showed an impoverishment for all variables related to fertility when the number of burnings was 5 or more. For fallows on fine grained soils that underwent 5 or more burnings, NO3 contents were low although a cation enrichment was observed. Total soil Hg content was also sensitive to repeated burnings, showing similar losses for forested fallows established on both types of soil. However, Hg linked to coarse particles appeared to migrate back towards fine particles at the surface of coarse grained soils in fallows older than 7 years. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. The forest ecosystem of southeast Alaska: 5. Soil mass movement.

    Science.gov (United States)

    Douglas N. Swanston

    1974-01-01

    Research in southeast Alaska has identified soil mass movement as the dominant erosion process, with debris avalanches and debris flows the most frequent events on characteristically steep, forested slopes. Periodically high soil water levels and steep slopes are controlling factors. Bedrock structure and the rooting characteristics of trees and other vegetation exert...

  16. Natural and artificial radioactivity in soils of forests

    International Nuclear Information System (INIS)

    Alvarado, E.; Segovia, N.; Gaso P, M.I.; Pena, P.; Morton, O.; Armienta, M.A.

    2001-01-01

    Levels of 222 Rn, 40 K, 235 U, 226 Ra and 137 Cs were studied in soils of a forest zone located at 3000 m altitude in the central portion of Mexico. the radon concentrations in different soil horizons were determined with solid state nuclear track detectors and the concentrations of 40 K, 235 U, 226 Ra and 137 Cs in soil samples were measured with a gamma spectrometer at low level coupled to a High purity Ge detector. The results indicate differences of a magnitude order in the radon concentrations inside the studied area. The levels of 40 K, 235 U, 226 Ra and 137 Cs are discussed as function of the perturbation grade of the soil and atmospheric pollution. (Author)

  17. Calcium mineralization in the forest floor and surface soil beneath different tree species in the northeastern US

    NARCIS (Netherlands)

    Dijkstra, F.A.

    2003-01-01

    Calcium (Ca) is an important element for neutralizing soil acidity in temperate forests. The immediate availability of Ca in forested acid soils is largely dependent on mineralization of organic Ca, which may differ significantly among tree species. I estimated net Ca mineralization in the forest

  18. Analyses of soil microbial community compositions and functional genes reveal potential consequences of natural forest succession.

    Science.gov (United States)

    Cong, Jing; Yang, Yunfeng; Liu, Xueduan; Lu, Hui; Liu, Xiao; Zhou, Jizhong; Li, Diqiang; Yin, Huaqun; Ding, Junjun; Zhang, Yuguang

    2015-05-06

    The succession of microbial community structure and function is a central ecological topic, as microbes drive the Earth's biogeochemical cycles. To elucidate the response and mechanistic underpinnings of soil microbial community structure and metabolic potential relevant to natural forest succession, we compared soil microbial communities from three adjacent natural forests: a coniferous forest (CF), a mixed broadleaf forest (MBF) and a deciduous broadleaf forest (DBF) on Shennongjia Mountain in central China. In contrary to plant communities, the microbial taxonomic diversity of the DBF was significantly (P the DBF. Furthermore, a network analysis of microbial carbon and nitrogen cycling genes showed the network for the DBF samples was relatively large and tight, revealing strong couplings between microbes. Soil temperature, reflective of climate regimes, was important in shaping microbial communities at both taxonomic and functional gene levels. As a first glimpse of both the taxonomic and functional compositions of soil microbial communities, our results suggest that microbial community structure and function potentials will be altered by future environmental changes, which have implications for forest succession.

  19. Laboratory Assessment of Forest Soil Respiration Affected by Wildfires under Various Environments of Russia

    Directory of Open Access Journals (Sweden)

    Evgeny Abakumov

    2017-01-01

    Full Text Available Pyrogenic carbon emission rates were estimated in the soils of three natural zones in Russia: forest-tundra, south-taiga, and forest-steppe. Postfire soils were found to be characterized by essential losses of soil C due to the combustion fire effect. Soils lost 3 or 5 parts of initial carbon content and showed an essential decrease in the C/N ratio during the fire effect. The pH values increased due to soil enrichment by ash during the fire events. CO2 emission rates were highest in natural soil samples, because the amount of organic matter affected by mineralization in those soils was higher than in natural ones. Simultaneously, the total values of mineralized carbon were higher in postfire soils because the SOM quality and composition were altered due to the fire effect. The only exception was in forest-tundra soils, where a high portion of dissolved organic compounds was released during the surface fire. The quality of initial SOM and intensity of the wildfire play the most important roles in the fate of SOM in postfire environments. Further study of CO2 emissions is needed to better characterize postfire SOM dynamics and develop an approach to model this process.

  20. Seasonal variation in soil and plant water potentials in a Bolivian tropical moist and dry forest

    NARCIS (Netherlands)

    Markesteijn, L.; Iraipi, J.; Bongers, F.; Poorter, L.

    2010-01-01

    We determined seasonal variation in soil matric potentials (¿soil) along a topographical gradient and with soil depth in a Bolivian tropical dry (1160 mm y-1 rain) and moist forest (1580 mm y-1). In each forest we analysed the effect of drought on predawn leaf water potentials (¿pd) and drought

  1. Soil map disaggregation improved by soil-landscape relationships, area-proportional sampling and random forest implementation

    DEFF Research Database (Denmark)

    Møller, Anders Bjørn; Malone, Brendan P.; Odgers, Nathan

    implementation generally improved the algorithm’s ability to predict the correct soil class. The implementation of soil-landscape relationships and area-proportional sampling generally increased the calculation time, while the random forest implementation reduced the calculation time. In the most successful......Detailed soil information is often needed to support agricultural practices, environmental protection and policy decisions. Several digital approaches can be used to map soil properties based on field observations. When soil observations are sparse or missing, an alternative approach...... is to disaggregate existing conventional soil maps. At present, the DSMART algorithm represents the most sophisticated approach for disaggregating conventional soil maps (Odgers et al., 2014). The algorithm relies on classification trees trained from resampled points, which are assigned classes according...

  2. Inoculum production of arbuscular mycorrhizal fungi native to soils under different forest covers

    Directory of Open Access Journals (Sweden)

    Renata Soares dos Santos

    Full Text Available ABSTRACT The low natural fertility of Brazilian soils requires the use of inoculants that facilitate the absorption of nutrients by plants. Arbuscular mycorrhizal fungi such as obligatory biotrophics of active roots perform this function, but access to this resource is limited by the difficulty in producing inoculants. The objective of this study was to investigate the production of AMF inoculants native of soils under different forest covers in Vitória da Conquista, BA, by means of spore quantification, colonization rate and species identification. For this purpose, soils were collected from sites under Mata Nativa (native forest and plantations of Madeira Nova (Pterogyne nitens and Eucalyptus, placed into separate 500 mL disposable cups with seeds of Brachiaria sp. and cultivated for five months. Spores were quantified and the AMF species identified in the control soil (without brachiaria and in the cups cultivated with brachiaria at each month. From the first month, the colonization rate of brachiaria roots was evaluated. The inoculants produced showed differences in the number of spores and species, in the AMF species identified, and in the root colonization rate as a function of the forest cover. Thus, considering the increase in the number of spores, species and colonization over time, the inoculant produced from the soil under native forest was more promising for utilization.

  3. [Soil soluble organic matter, microbial biomass, and enzyme activities in forest plantations in degraded red soil region of Jiangxi Province, China].

    Science.gov (United States)

    Jiang, Yu-mei; Chen, Cheng-long; Xu, Zhi-hong; Liu, Yuan-qiu; Ouyang, Jing; Wang, Fang

    2010-09-01

    Taking the adjacent 18-year-old pure Pinus massoniana pure forest (I), P. massoniana, Liquidamber fomosana, and Schima superba mixed forest (II), S. superba pure forest (III), L. fomosana (IV) pure forest, and natural restoration fallow land (CK) in Taihe County of Jiangxi Province as test sites, a comparative study was made on their soil soluble organic carbon (SOC) and nitrogen (SON), soil microbial biomass C (MBC) and N (MBN), and soil urease and asparaginase activities. In 0-10 cm soil layer, the pool sizes of SOC, SON, MBC, and MBN at test sites ranged in 354-1007 mg x kg(-1), 24-73 mg x kg(-1), 203-488 mg x kg(-1), and 24-65 mg x kg(-1), and the soil urease and asparaginase activities were 95-133 mg x kg(-1) x d(-1) and 58-113 mg x kg(-1) x d(-1), respectively. There were significant differences in the pool sizes of SOC, SON, MBC, and MBN and the asparaginase activity among the test sites, but no significant difference was observed in the urease activity. The pool sizes of SOC and SON were in the order of IV > CK > III > I > II, those of MBC and MBN were in the order of CK > IV > III > I > II, and asparaginase activity followed the order of IV > CK > III > II > I. With the increase of soil depth, the pool sizes of SOC, SON, MBC, and MBN and the activities of soil asparaginase and urease decreased. In 0-20 cm soil layer, the SOC, SON, MBC, MBN, total C, and total N were highly correlated with each other, soil asparaginase activity was highly correlated with SOC, SON, TSN, total C, total N, MBC, and MBN, and soil urease activity was highly correlated with SON, TSN, total C, MBC and MBN.

  4. Total belowground carbon flux in subalpine forests is related to leaf area index, soil nitrogen, and tree height

    Science.gov (United States)

    Berryman, Erin Michele; Ryan, Michael G.; Bradford, John B.; Hawbaker, Todd J.; Birdsey, R.

    2016-01-01

    In forests, total belowground carbon (C) flux (TBCF) is a large component of the C budget and represents a critical pathway for delivery of plant C to soil. Reducing uncertainty around regional estimates of forest C cycling may be aided by incorporating knowledge of controls over soil respiration and TBCF. Photosynthesis, and presumably TBCF, declines with advancing tree size and age, and photosynthesis increases yet C partitioning to TBCF decreases in response to high soil fertility. We hypothesized that these causal relationships would result in predictable patterns of TBCF, and partitioning of C to TBCF, with natural variability in leaf area index (LAI), soil nitrogen (N), and tree height in subalpine forests in the Rocky Mountains, USA. Using three consecutive years of soil respiration data collected from 22 0.38-ha locations across three 1-km2 subalpine forested landscapes, we tested three hypotheses: (1) annual soil respiration and TBCF will show a hump-shaped relationship with LAI; (2) variability in TBCF unexplained by LAI will be related to soil nitrogen (N); and (3) partitioning of C to TBCF (relative to woody growth) will decline with increasing soil N and tree height. We found partial support for Hypothesis 1 and full support for Hypotheses 2 and 3. TBCF, but not soil respiration, was explained by LAI and soil N patterns (r2 = 0.49), and the ratio of annual TBCF to TBCF plus aboveground net primary productivity (ANPP) was related to soil N and tree height (r2 = 0.72). Thus, forest C partitioning to TBCF can vary even within the same forest type and region, and approaches that assume a constant fraction of TBCF relative to ANPP may be missing some of this variability. These relationships can aid with estimates of forest soil respiration and TBCF across landscapes, using spatially explicit forest data such as national inventories or remotely sensed data products.

  5. 137Cs-migration in soils and its transfer to roe deer in an Austrian forest stand

    International Nuclear Information System (INIS)

    Strebl, F.; Gerzabek, M. H.; Karg, V.; Tataruch, F.

    1996-03-01

    The depth distribution of 137 Cs in an Austrian spruce forest stand was investigated in soil profiles sampled in thin layers (2 cm) and in pooled soil samples over an area of 200 ha. The 137 Cs concentrations both from Chernobyl and global fallout decrease exponentially with depth. Forty-six percent of Chernobyl-derived cesium and 26 % from global fallout are still to be found in the litter layer; 137 Cs content in samples on organic matter as well as cation exchange capacity. Using a compartment model, average residence half-times of 5.3, 9.9, 1.78 and 0.8 years were calculated for the layers litter, 0-5 (Ah 1 ), 5-10 (Ah 2 ) and 10-20 cm (A/B) of mineral soil, respectively. Using the model predictions of soil contamination as a basis and considering the roe deer forage plants' rooting depths, the development of 137 Cs contamination of roe deer (Capreolus capreolus) (1987 - 1993) was well described by applying an aggregated transfer factor. (author)

  6. Soil biogeochemistry properties vary between two boreal forest ecosystems in Quebec: significant differences in soil carbon, available nutrients and iron and aluminium crystallinity

    Science.gov (United States)

    Bastianelli, Carole; Ali, Adam A.; Beguin, Julien; Bergeron, Yves; Grondin, Pierre; Hély, Christelle; Paré, David

    2017-04-01

    At the northernmost extent of the managed forest in Quebec, the boreal forest is currently undergoing an ecological transition from closed-canopy black spruce-moss forests towards open-canopy lichen woodlands, which spread southward. Our study aim was to determine whether this shift could impact soil properties on top of its repercussions on forest productivity or carbon storage. We studied the soil biogeochemical composition of three pedological layers in moss forests (MF) and lichen woodlands (LW) north of the Manicouagan crater in Quebec. The humus layer (FH horizons) was significantly thicker and held more carbon, nitrogen and exchangeable Ca and Mg in MF plots than in LW plots. When considering mineral horizons, we found that the deep C horizon had a very close composition in both ecosystem plots, suggesting that the parent material was of similar geochemical nature. This was expected as all selected sites developed from glacial deposit. Multivariate analysis of surficial mineral B horizon showed however that LW B horizon displayed higher concentrations of Al and Fe oxides than MF B horizon, particularly for inorganic amorphous forms. Conversely, main exchangeable base cations (Ca, Mg) were higher in B horizon of MF than that of LW. Ecosystem types explained much of the variations in the B horizon geochemical composition. We thus suggest that the differences observed in the geochemical composition of the B horizon have a biological origin rather than a mineralogical origin. We also showed that total net stocks of carbon stored in MF soils were three times higher than in LW soils (FH + B horizons, roots apart). Altogether, we suggest that variations in soil properties between MF and LW are linked to a cascade of events involving the impacts of natural disturbances such as wildfires on forest regeneration that determines the of vegetation structure (stand density) and composition (ground cover type) and their subsequent consequences on soil environmental

  7. Soil organic carbon stocks assessment in Mediterranean natural areas: a comparison of entire soil profiles and soil control sections.

    Science.gov (United States)

    Parras-Alcántara, L; Lozano-García, B; Brevik, E C; Cerdá, A

    2015-05-15

    Soil organic carbon (SOC) is an important part of the global carbon (C) cycle. In addition, SOC is a soil property subject to changes and highly variable in space and time. Over time, some researches have analyzed entire soil profile (ESP) by pedogenetic horizons and other researches have analyzed soil control sections (SCS) to different thickness. However, very few studies compare both methods (ESP versus SCS). This research sought to analyze the SOC stock (SOCS) variability using both methods (ESP and SCS) in The Despeñaperros Natural Park, a nature reserve that consists of a 76.8 km(2) forested area in southern Spain. Thirty-four sampling points were selected in the study zone. Each sampling point was analyzed in two different ways, as ESP (by horizons) and as SCS with different depth increments (0-25, 25-50, 50-75 and 75-100 cm). The major goal of this research was to study the SOCS variability at regional scale. The soils investigated in this study included Phaeozems, Cambisols, Regosols and Leptosols. Total SOCS in the Despeñaperros Natural Park was over 28.2% greater when SCS were used compared to ESP, ranging from 0.8144 Tg C (10,604.2 Mg km(-2)) to 0.6353 Tg C (8272.1 Mg km(-2)) respectively (1 Tg = 10(12) g). However, when the topsoil (surface horizon and superficial section control) was analyzed, this difference increased to 59.8% in SCS compared to ESP. The comparison between ESP and SCS showed the effect of mixing pedogenetic horizons when depth increments were analyzed. This indicates an overestimate of T-SOCS when sampling by SCS. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Factors affecting vertical distribution of Fukushima accident-derived radiocesium in soil under different land-use conditions

    International Nuclear Information System (INIS)

    Koarashi, Jun; Atarashi-Andoh, Mariko; Matsunaga, Takeshi; Sato, Tsutomu; Nagao, Seiya; Nagai, Haruyasu

    2012-01-01

    The Fukushima Dai-ichi nuclear power plant accident in Japan, triggered by a big earthquake and the resulting tsunami on 11 March 2011, caused a substantial release of radiocesium ( 137 Cs and 134 Cs) and a subsequent contamination of soils in a range of terrestrial ecosystems. Identifying factors and processes affecting radiocesium retention in these soils is essential to predict how the deposited radiocesium will migrate through the soil profile and to other biological components. We investigated vertical distributions of radiocesium and physicochemical properties in soils (to 20 cm depth) at 15 locations under different land-use types (croplands, grasslands, and forests) within a 2 km × 2 km mesh area in Fukushima city. The total 137 Cs inventory deposited onto and into soil was similar (58.4 ± 9.6 kBq m −2 ) between the three different land-use types. However, aboveground litter layer at the forest sites and herbaceous vegetation at the non-forested sites contributed differently to the total 137 Cs inventory. At the forest sites, 50–91% of the total inventory was observed in the litter layer. The aboveground vegetation contribution was in contrast smaller ( 137 Cs in mineral soil layers; 137 Cs penetrated deeper in the forest soil profiles than in the non-forested soil profiles. We quantified 137 Cs retention at surface soil layers, and showed that higher 137 Cs retention can be explained in part by larger amounts of silt- and clay-sized particles in the layers. More importantly, the 137 Cs retention highly and negatively correlated with soil organic carbon content divided by clay content across all land-use types. The results suggest that organic matter inhibits strong adsorption of 137 Cs on clay minerals in surface soil layers, and as a result affects the vertical distribution and thus the mobility of 137 Cs in soil, particularly in the forest ecosystems. - Highlights: ► Vertical distribution of radiocesium was investigated for 15 soils. ► Forest

  9. Critical Analysis of Forest Degradation in the Southern Eastern Ghats of India: Comparison of Satellite Imagery and Soil Quality Index

    Science.gov (United States)

    Ramachandran, Andimuthu; Radhapriya, Parthasarathy; Jayakumar, Shanmuganathan; Dhanya, Praveen; Geetha, Rajadurai

    2016-01-01

    India has one of the largest assemblages of tropical biodiversity, with its unique floristic composition of endemic species. However, current forest cover assessment is performed via satellite-based forest surveys, which have many limitations. The present study, which was performed in the Eastern Ghats, analysed the satellite-based inventory provided by forest surveys and inferred from the results that this process no longer provides adequate information for quantifying forest degradation in an empirical manner. The study analysed 21 soil properties and generated a forest soil quality index of the Eastern Ghats, using principal component analysis. Using matrix modules and geospatial technology, we compared the forest degradation status calculated from satellite-based forest surveys with the degradation status calculated from the forest soil quality index. The Forest Survey of India classified about 1.8% of the Eastern Ghats’ total area as degraded forests and the remainder (98.2%) as open, dense, and very dense forests, whereas the soil quality index results found that about 42.4% of the total area is degraded, with the remainder (57.6%) being non-degraded. Our ground truth verification analyses indicate that the forest soil quality index along with the forest cover density data from the Forest Survey of India are ideal tools for evaluating forest degradation. PMID:26812397

  10. Critical Analysis of Forest Degradation in the Southern Eastern Ghats of India: Comparison of Satellite Imagery and Soil Quality Index.

    Science.gov (United States)

    Ramachandran, Andimuthu; Radhapriya, Parthasarathy; Jayakumar, Shanmuganathan; Dhanya, Praveen; Geetha, Rajadurai

    2016-01-01

    India has one of the largest assemblages of tropical biodiversity, with its unique floristic composition of endemic species. However, current forest cover assessment is performed via satellite-based forest surveys, which have many limitations. The present study, which was performed in the Eastern Ghats, analysed the satellite-based inventory provided by forest surveys and inferred from the results that this process no longer provides adequate information for quantifying forest degradation in an empirical manner. The study analysed 21 soil properties and generated a forest soil quality index of the Eastern Ghats, using principal component analysis. Using matrix modules and geospatial technology, we compared the forest degradation status calculated from satellite-based forest surveys with the degradation status calculated from the forest soil quality index. The Forest Survey of India classified about 1.8% of the Eastern Ghats' total area as degraded forests and the remainder (98.2%) as open, dense, and very dense forests, whereas the soil quality index results found that about 42.4% of the total area is degraded, with the remainder (57.6%) being non-degraded. Our ground truth verification analyses indicate that the forest soil quality index along with the forest cover density data from the Forest Survey of India are ideal tools for evaluating forest degradation.

  11. Changes in faunal and vegetation communities along a soil calcium gradient in northern hardwood forests

    Science.gov (United States)

    Beier, Colin M.; Woods, Anne M.; Hotopp, Kenneth P.; Gibbs, James P.; Mitchell, Myron J.; Dovciak, Martin; Leopold, Donald J.; Lawrence, Gregory B.; Page, Blair D.

    2012-01-01

    Depletion of Ca from forest soils due to acidic deposition has had potentially pervasive effects on forest communities, but these impacts remain largely unknown. Because snails, salamanders, and plants play essential roles in the Ca cycle of northern hardwood forests, we hypothesized that their community diversity, abundance, and structure would vary with differences in biotic Ca availability. To test this hypothesis, we sampled 12 upland hardwood forests representing a soil Ca gradient in the Adirondack Mountains, New York (USA), where chronic deposition has resulted in acidified soils but where areas of well-buffered soils remain Ca rich due to parent materials. Along the gradient of increasing soil [Ca2+], we observed increasing trends in snail community richness and abundance, live biomass of redback salamanders (Plethodon cinereus (Green, 1818)), and canopy tree basal area. Salamander communities were dominated by mountain dusky salamanders (Desmognathus ochrophaeus Cope, 1859) at Ca-poor sites and changed continuously along the Ca gradient to become dominated by redback salamanders at the Ca-rich sites. Several known calciphilic species of snails and plants were found only at the highest-Ca sites. Our results indicated that Ca availability, which is shaped by geology and acidic deposition inputs, influences northern hardwood forest ecosystems at multiple trophic levels, although the underlying mechanisms require further study.

  12. Soil Moisture Estimate under Forest using a Semi-empirical Model at P-Band

    Science.gov (United States)

    Truong-Loi, M.; Saatchi, S.; Jaruwatanadilok, S.

    2013-12-01

    In this paper we show the potential of a semi-empirical algorithm to retrieve soil moisture under forests using P-band polarimetric SAR data. In past decades, several remote sensing techniques have been developed to estimate the surface soil moisture. In most studies associated with radar sensing of soil moisture, the proposed algorithms are focused on bare or sparsely vegetated surfaces where the effect of vegetation can be ignored. At long wavelengths such as L-band, empirical or physical models such as the Small Perturbation Model (SPM) provide reasonable estimates of surface soil moisture at depths of 0-5cm. However for densely covered vegetated surfaces such as forests, the problem becomes more challenging because the vegetation canopy is a complex scattering environment. For this reason there have been only few studies focusing on retrieving soil moisture under vegetation canopy in the literature. Moghaddam et al. developed an algorithm to estimate soil moisture under a boreal forest using L- and P-band SAR data. For their studied area, double-bounce between trunks and ground appear to be the most important scattering mechanism. Thereby, they implemented parametric models of radar backscatter for double-bounce using simulations of a numerical forest scattering model. Hajnsek et al. showed the potential of estimating the soil moisture under agricultural vegetation using L-band polarimetric SAR data and using polarimetric-decomposition techniques to remove the vegetation layer. Here we use an approach based on physical formulation of dominant scattering mechanisms and three parameters that integrates the vegetation and soil effects at long wavelengths. The algorithm is a simplification of a 3-D coherent model of forest canopy based on the Distorted Born Approximation (DBA). The simplified model has three equations and three unknowns, preserving the three dominant scattering mechanisms of volume, double-bounce and surface for three polarized backscattering

  13. Effect of land-use practice on soil moisture variability for soils covered with dense forest vegetation of Puerto Rico

    Science.gov (United States)

    Tsegaye, T.; Coleman, T.; Senwo, Z.; Shaffer, D.; Zou, X.

    1998-01-01

    Little is known about the landuse management effect on soil moisture and soil pH distribution on a landscape covered with dense tropical forest vegetation. This study was conducted at three locations where the history of the landuse management is different. Soil moisture was measured using a 6-cm three-rod Time Domain Reflectometery (TDR) probe. Disturbed soil samples were taken from the top 5-cm at the up, mid, and foothill landscape position from the same spots where soil moisture was measured. The results showed that soil moisture varies with landscape position and depth at all three locations. Soil pH and moisture variability were found to be affected by the change in landuse management and landscape position. Soil moisture distribution usually expected to be relatively higher in the foothill (P3) area of these forests than the uphill (P1) position. However, our results indicated that in the Luquillo and Guanica site the surface soil moisture was significantly higher for P1 than P3 position. These suggest that the surface and subsurface drainage in these two sites may have been poor due to the nature of soil formation and type.

  14. Soil Microbial Biomass, Basal Respiration and Enzyme Activity of Main Forest Types in the Qinling Mountains

    Science.gov (United States)

    Cheng, Fei; Peng, Xiaobang; Zhao, Peng; Yuan, Jie; Zhong, Chonggao; Cheng, Yalong; Cui, Cui; Zhang, Shuoxin

    2013-01-01

    Different forest types exert essential impacts on soil physical-chemical characteristics by dominant tree species producing diverse litters and root exudates, thereby further regulating size and activity of soil microbial communities. However, the study accuracy is usually restricted by differences in climate, soil type and forest age. Our objective is to precisely quantify soil microbial biomass, basal respiration and enzyme activity of five natural secondary forest (NSF) types with the same stand age and soil type in a small climate region and to evaluate relationship between soil microbial and physical-chemical characters. We determined soil physical-chemical indices and used the chloroform fumigation-extraction method, alkali absorption method and titration or colorimetry to obtain the microbial data. Our results showed that soil physical-chemical characters remarkably differed among the NSFs. Microbial biomass carbon (Cmic) was the highest in wilson spruce soils, while microbial biomass nitrogen (Nmic) was the highest in sharptooth oak soils. Moreover, the highest basal respiration was found in the spruce soils, but mixed, Chinese pine and spruce stands exhibited a higher soil qCO2. The spruce soils had the highest Cmic/Nmic ratio, the greatest Nmic/TN and Cmic/Corg ratios were found in the oak soils. Additionally, the spruce soils had the maximum invertase activity and the minimum urease and catalase activities, but the maximum urease and catalase activities were found in the mixed stand. The Pearson correlation and principle component analyses revealed that the soils of spruce and oak stands obviously discriminated from other NSFs, whereas the others were similar. This suggested that the forest types affected soil microbial properties significantly due to differences in soil physical-chemical features. PMID:23840671

  15. The effect of fire intensity on soil respiration in Siberia boreal forest

    Science.gov (United States)

    S. Baker; A. V. Bogorodskaya

    2010-01-01

    Russian boreal forests have an annual wildfire activity averaging 10 to 20 million ha, which has increased in recent years. This wildfire activity, in response to changing climate has the potential to significantly affect the carbon storage capacity of Siberian forests. A better understanding of the effect of fire on soil respiration rates in the boreal forest of...

  16. Nitrogen and phosphorus resorption in a neotropical rain forest of a nutrient-rich soil.

    Science.gov (United States)

    Martínez-Sánchez, José Luis

    2005-01-01

    In tropical forests with nutrient-rich soil tree's nutrient resorption from senesced leaves has not always been observed to be low. Perhaps this lack of consistence is partly owing to the nutrient resorption methods used. The aim of the study was to analyse N and P resorption proficiency from tropical rain forest trees in a nutrient-rich soil. It was hypothesised that trees would exhibit low nutrient resorption in a nutrient-rich soil. The soil concentrations of total N and extractable P, among other physical and chemical characteristics, were analysed in 30 samples in the soil surface (10 cm) of three undisturbed forest plots at 'Estaci6n de Biologia Los Tuxtlas' on the east coast of Mexico (18 degrees 34' - 18 degrees 36' N, 95 degrees 04' - 95 degrees 09' W). N and P resorption proficiency were determined from senescing leaves in 11 dominant tree species. Nitrogen was analysed by microkjeldahl digestion with sulphuric acid and distilled with boric acid, and phosphorus was analysed by digestion with nitric acid and perchloric acid. Soil was rich in total N (0.50%, n = 30) and extractable P (4.11 microg g(-1) n = 30). As expected, trees showed incomplete N (1.13%, n = 11) and P (0.11%, n = 1) resorption. With a more accurate method of nutrient resorption assessment, it is possible to prove that a forest community with a nutrient-rich soil can have low levels of N and P resorption.

  17. Availability and immobilization of 137Cs in subtropical high mountain forest and grassland soils

    International Nuclear Information System (INIS)

    Chiu, C.-Y.; Wang, C.-J.; Huang, C.-C.

    2008-01-01

    To understand the behavior of 137 Cs in undisturbed soils after nuclear fallout deposition between the 1940s and 1980s, we investigated the speciation of 137 Cs in soils in forest and its adjacent grassland from a volcano and subalpine area in Taiwan. We performed sequential extraction of 137 Cs (i.e., fractions readily exchangeable, bound to microbial biomass, bound to Fe-Mn oxides, bound to organic matter, persistently bound and residual). For both the forest and grassland soils, 137 Cs was mainly present in the persistently bound (31-41%) and residual (22-62%) fractions. The proportions of 137 Cs labile fractions - bound to exchangeable sites, microbial biomass, Mn-Fe oxides, and organic matter - were lower than those of the recalcitrant fractions. The labile fractions in the forest soils were also higher than those in the grassland soils, especially in the volcanic soil. The results suggest that the labile form of 137 Cs was mostly transferred to the persistently bound and resistant fractions after long-term deposition of fallout. The readily exchangeable 137 Cs fraction was higher in soils with higher organic matter content or minor amounts of 2:1 silicate clay minerals

  18. The behavior of 137Cs in the soil-forest plants system

    International Nuclear Information System (INIS)

    Spiridonov, S.; Fesenko, S.; Avila, R.

    1999-01-01

    A model has been developed which simulates the behavior of 137 Cs in forest litter and soil, as well as seasonal and long-term dynamics of 137 CS content in forest plants. The long-term cycles of 137 CS migration are described as an integrated result of multiple annual cycles. The model results demonstrate a satisfactory coincidence with the experimental data. A set of model parameters is provided for each of four different types of forest (coniferous and deciduous forest; automorphic and semi-hydromorphic landscapes). The model allows an evaluation of the effects of countermeasures implemented in the contaminated forest. Refs. 1 (author)

  19. Wildfire and forest disease interaction lead to greater loss of soil nutrients and carbon.

    Science.gov (United States)

    Cobb, Richard C; Meentemeyer, Ross K; Rizzo, David M

    2016-09-01

    Fire and forest disease have significant ecological impacts, but the interactions of these two disturbances are rarely studied. We measured soil C, N, Ca, P, and pH in forests of the Big Sur region of California impacted by the exotic pathogen Phytophthora ramorum, cause of sudden oak death, and the 2008 Basin wildfire complex. In Big Sur, overstory tree mortality following P. ramorum invasion has been extensive in redwood and mixed evergreen forests, where the pathogen kills true oaks and tanoak (Notholithocarpus densiflorus). Sampling was conducted across a full-factorial combination of disease/no disease and burned/unburned conditions in both forest types. Forest floor organic matter and associated nutrients were greater in unburned redwood compared to unburned mixed evergreen forests. Post-fire element pools were similar between forest types, but lower in burned-invaded compared to burned-uninvaded plots. We found evidence disease-generated fuels led to increased loss of forest floor C, N, Ca, and P. The same effects were associated with lower %C and higher PO4-P in the mineral soil. Fire-disease interactions were linear functions of pre-fire host mortality which was similar between the forest types. Our analysis suggests that these effects increased forest floor C loss by as much as 24.4 and 21.3 % in redwood and mixed evergreen forests, respectively, with similar maximum losses for the other forest floor elements. Accumulation of sudden oak death generated fuels has potential to increase fire-related loss of soil nutrients at the region-scale of this disease and similar patterns are likely in other forests, where fire and disease overlap.

  20. Soil Fertility and Radicular System Depth of Sand Coastal Plain Forest

    Science.gov (United States)

    Casagrande, José Carlos; Akemi Sato, Claudia; Reis-Duarte, Rose Mary; Soares, Marcio Roberto; Sérgio Galvão Bueno, Mário

    2010-05-01

    The sand coastal plain vegetation (Restinga Forest) is a type of ecosystem associated with the Atlantic Forest constituted of mosaics, which occur in areas of great ecological diversity. This vegetation is currently assigned as edaphic communities. In this study we present data on soil fertility in different vegetation physiognomies to discuss on abiotic factors related to Restinga Forest stability and recovery potential. This work was carried out in several points of Restinga Forest in the litoral coast of the state of São Paulo, namely: State Park of the Serra do Mar, Picinguaba, in the city of Ubatuba (23°20' e 23°22' S / 44°48' e 44°52' W); State Park of Anchieta Island, in the city of Ubatuba (45°02' e 45°05' W / 23°31' e 23° 45' S); Restinga Forest in the residential joint ownership Riviera of São Lourenço, in the city of Bertioga (46°08' W e 23°51' S); Ecological Station Juréia-Itatins, Ecological Station of Chauas , in the city of Iguape (24°45' S e 47°33' W) and State Park of Cardoso Island, Pereirinha Restinga Forest, in the city of Cananéia (25°03'05" e 25°18'18" S / 47°53'48" e 48° 05'42" W), Brazil. Sampling was carried out as follows in every area above mentioned. One sample was made of 15 subsamples of each area collected in each depth (one in 0 - 5, 5 - 10, 10 - 15, 15 - 20, and another in 0 - 20, 20 - 40, 40 and 60 cm). Soil characteristics analyzed were pH, P, Na, K, Ca, Mg, S, H + Al, Al, B, Cu, Fe, Mn, Zn contents and base saturation, cation exchange capacity and aluminum saturation. All areas investigated showed very low contents of phosphorous, calcium and magnesium. The base saturation, less than 10, was low due to low amounts of Na, K, Ca and Mg, indicating low nutritional reserve into the soil. The nutritional reserve is present primarily in a depth of 15 cm, although mainly in the vegetable biomass. The level of calcium and magnesium were mainly low in the subsurface soil layer, associate with high concentration of

  1. Rates of Litter Decomposition and Soil Respiration in Relation to Soil Temperature and Water in Different-Aged Pinus massoniana Forests in the Three Gorges Reservoir Area, China

    Science.gov (United States)

    Zeng, Lixiong; Huang, Zhilin; Lei, Jingpin; Zhou, Benzhi; Li, Maihe

    2014-01-01

    To better understand the soil carbon dynamics and cycling in terrestrial ecosystems in response to environmental changes, we studied soil respiration, litter decomposition, and their relations to soil temperature and soil water content for 18-months (Aug. 2010–Jan. 2012) in three different-aged Pinus massoniana forests in the Three Gorges Reservoir Area, China. Across the experimental period, the mean total soil respiration and litter respiration were 1.94 and 0.81, 2.00 and 0.60, 2.19 and 0.71 µmol CO2 m−2 s−1, and the litter dry mass remaining was 57.6%, 56.2% and 61.3% in the 20-, 30-, and 46-year-old forests, respectively. We found that the temporal variations of soil respiration and litter decomposition rates can be well explained by soil temperature at 5 cm depth. Both the total soil respiration and litter respiration were significantly positively correlated with the litter decomposition rates. The mean contribution of the litter respiration to the total soil respiration was 31.0%–45.9% for the three different-aged forests. The present study found that the total soil respiration was not significantly affected by forest age when P. masonniana stands exceed a certain age (e.g. >20 years old), but it increased significantly with increased soil temperature. Hence, forest management strategies need to protect the understory vegetation to limit soil warming, in order to reduce the CO2 emission under the currently rapid global warming. The contribution of litter decomposition to the total soil respiration varies across spatial and temporal scales. This indicates the need for separate consideration of soil and litter respiration when assessing the climate impacts on forest carbon cycling. PMID:25004164

  2. Microbiomes structure and diversity in different horizons of full soil profiles

    Science.gov (United States)

    Chernov, Timofey; Tkhakakhova, Azida; Zhelezova, Alena; Semenov, Mikhail; Kutovaya, Olga

    2017-04-01

    Topsoil is a most common object for soil metagenomic studies; sometimes soil profile is being formally split in layers by depth. However, Russian Soil Science School formulated the idea of soil profile as a complex of soil horizons, which can differ in their properties and genesis. In this research we analyzed 57 genetic soil horizons of 8 different soils from European part of Russia: Albeluvisol, Greyzemic Phaeozem, three Chermozems (different land use - till, fallow, wind-protecting tree line), Rhodic Cambisol, Haplic Kastanozem and Salic Solonetz (WRB classification). Sampling was performed from all genetic horizons in each soil profile starting from topsoil until subsoil. Total DNA was extracted and 16S rRNA sequencing was provided together with chemical analysis of soil (pH measurement, C and N contents, etc.). Structure and diversity of prokaryotic community are significantly different in those soil horizons, which chemical properties and processes of origin are contrasting with nearest horizons: Na-enriched horizon of Solonetz, eluvial horizon of Albeluvisol, plough pan of Agrochernozem. Actinobacteria were abundant in top horizons of soils in warm and dry climate, while Acidobacteria had the highest frequency in soils of moist and cold regions. Concerning Archaea, Thaumarchaeota prevailed in all studied soils. Their rate was higher in microbiomes of upper horizons of steppe soils and it was reducing with depth down the profile. Prokaryotic communities in Chernozems were clustered by soil horizons types: microbiomes of A (organic topsoil) and B (mineral) horizons formed non-overlapping clusters by principal component analysis, cluster formed by prokaryotic communities of transitional soil horizons (AB) take place between clusters of A and B horizons. Moreover, prokaryotic communities of A horizons differ from each other strongly, while microbiomes of B horizons formed a narrow small cluster. It must be explaned by more diverse conditions in upper A horizons

  3. Quantifying Components of Soil Respiration and Their Response to Abiotic Factors in Two Typical Subtropical Forest Stands, Southwest China

    Science.gov (United States)

    Yu, Lei; Wang, Yujie; Wang, Yunqi; Sun, Suqi; Liu, Liziyuan

    2015-01-01

    Separating the components of soil respiration and understanding the roles of abiotic factors at a temporal scale among different forest types are critical issues in forest ecosystem carbon cycling. This study quantified the proportions of autotrophic (R A) and heterotrophic (R H) in total soil (R T) respiration using trenching and litter removal. Field studies were conducted in two typical subtropical forest stands (broadleaf and needle leaf mixed forest; bamboo forest) at Jinyun Mountain, near the Three Georges Reservoir in southwest China, during the growing season (Apr.–Sep.) from 2010 to 2012. The effects of air temperature (AT), soil temperature (ST) and soil moisture (SM) at 6cm depth, solar radiation (SR), pH on components of soil respiration were analyzed. Results show that: 1) SR, AT, and ST exhibited a similar temporal trend. The observed abiotic factors showed slight interannual variability for the two forest stands. 2) The contributions of R H and R A to R T for broadleaf and needle leaf mixed forest were 73.25% and 26.75%, respectively, while those for bamboo forest were 89.02% and 10.98%, respectively; soil respiration peaked from June to July. In both stands, CO2 released from the decomposition of soil organic matter (SOM), the strongest contributor to R T, accounted for over 63% of R H. 3) AT and ST were significantly positively correlated with R T and its components (psoil respiration. 4) Components of soil respiration were significantly different between two forest stands (psoil respiration and its components. PMID:25680112

  4. Formation of chloroform in spruce forest soil - results from laboratory incubation studies

    DEFF Research Database (Denmark)

    Haselmann, K.F.; Laturnus, F.; Svensmark, B.

    2000-01-01

    The release of chloroform, 1,1,1-trichloroethane, tetrachloromethane, trichloroethene and tetrachloroethene from an organic rich spruce forest soil was studied in laboratory incubation experiments by dynamic headspace analysis, thermodesorption and gas chromatography. Performance parameters...... are presented for the dynamic headspace system. For spruce forest soil, the results showed a significant increase in chloroform concentration in the headspace under aerobic conditions over a period of seven days, whereas the concentration of the other compounds remained fairly constant. A biogenic formation...

  5. Temporal change in soil carbon stability at a paired old-growth douglas-fir forest/clear-cut site

    Science.gov (United States)

    Forest ecosystems are estimated to contain one-half of the total terrestrial carbon (C) pool (1146 Pg), with two-thirds of this C (787 Pg) residing in forest soils. Given the magnitude of this C pool, it is critical to understand the effects of forest management practices on soil...

  6. Vertical distribution of 137Cs in the native forest soil at Londrina region (Parana, Brazil)

    International Nuclear Information System (INIS)

    Andrello, Avacir Casanova; Appolono, Carlos Roberto; Nascimento Filho, Virgilio Franco do

    2002-01-01

    The 137 Cs depth distribution has been studied in several areas in the world and its knowledge is very important to verify its behavior in the soil matrix. The form of 137 Cs depth distribution more observed in an undisturbed soil it is exponential type. In this work, the study of 137 Cs depth distribution was accomplished at three native forests and a coffee yard, built before the 137 Cs fallout, in the region of Londrina (Parana). The sampling was conducted in 1 cm, 2 cm, 4 cm and 5 cm increment depth. The 137 Cs inventory observed for the forests was 248 Bq m -2 (Mata1), 338 Bq m -2 (Mata2) and 325 Bq m -2 (MataUEL). No 137 Cs activity was detected in the coffee yard. The 137 Cs depth distribution for the three forests presented the exponential type. For the soil class of the forests, 137 Cs adsorbed on the soil particles can be considered fixed or slowly exchangeable. (author)

  7. Spatial patterns of soil pH and the factors that influence them in plantation forests of northern China

    Science.gov (United States)

    Hong, Songbai; Liu, Yongwen; Piao, Shilong

    2017-04-01

    Climate and anthropogenic activities such as afforestation and nitrogen deposition all impact soil pH. Understanding the spatial pattern of soil pH and the factors that influence it can provide basic information for generating appropriate strategies for soil resource management and protection, especially in light of increasing anthropogenic influences and climate change. In this study, we investigated the spatial and vertical pattern of soil pH and evaluated the influence of climate and nitrogen deposition using 1647 soil profiles 1 meter in depth from 549 plots in plantation forests of northern China. We found that soil pH decreased from the southwest to the northeast in the study region and had a similar spatial pattern before and after afforestation. Furthermore, our results show that climate and nitrogen deposition fundamentally influence the pattern of soil pH. Specifically, increasing precipitation significantly decreased soil pH (with a mean rate of 0.3 for every 100 mm rainfall, ppH (0.13 for every degree centigrade, ppH (ppH directly and indirectly through climate-plant-soil interactions. As the risks from both climate change and nitrogen deposition increase, there is an urgent need to further understanding of soil pH dynamics and to develop informed policies to protect soil resources.

  8. The formation and fate of chlorinated organic substances in temperate and boreal forest soils.

    Science.gov (United States)

    Clarke, Nicholas; Fuksová, Kvetoslava; Gryndler, Milan; Lachmanová, Zora; Liste, Hans-Holger; Rohlenová, Jana; Schroll, Reiner; Schröder, Peter; Matucha, Miroslav

    2009-03-01

    Chlorine is an abundant element, commonly occurring in nature either as chloride ions or as chlorinated organic compounds (OCls). Chlorinated organic substances were long considered purely anthropogenic products; however, they are, in addition, a commonly occurring and important part of natural ecosystems. Formation of OCls may affect the degradation of soil organic matter (SOM) and thus the carbon cycle with implications for the ability of forest soils to sequester carbon, whilst the occurrence of potentially toxic OCls in groundwater aquifers is of concern with regard to water quality. It is thus important to understand the biogeochemical cycle of chlorine, both inorganic and organic, to get information about the relevant processes in the forest ecosystem and the effects on these from human activities, including forestry practices. A survey is given of processes in the soil of temperate and boreal forests, predominantly in Europe, including the participation of chlorine, and gaps in knowledge and the need for further work are discussed. Chlorine is present as chloride ion and/or OCls in all compartments of temperate and boreal forest ecosystems. It contributes to the degradation of SOM, thus also affecting carbon sequestration in the forest soil. The most important source of chloride to coastal forest ecosystems is sea salt deposition, and volcanoes and coal burning can also be important sources. Locally, de-icing salt can be an important chloride input near major roads. In addition, anthropogenic sources of OCls are manifold. However, results also indicate the formation of chlorinated organics by microorganisms as an important source, together with natural abiotic formation. In fact, the soil pool of OCls seems to be a result of the balance between chlorination and degradation processes. Ecologically, organochlorines may function as antibiotics, signal substances and energy equivalents, in descending order of significance. Forest management practices can affect

  9. Distribution of cesium-137 in Japanese forest soils. Correlation with the contents of organic carbon

    International Nuclear Information System (INIS)

    Takenaka, Chisato; Onda, Yuichi; Hamajima, Yasunori

    1998-01-01

    The spatial and vertical distributions of 137 Cs in surface soils were surveyed and analyzed then correlated with the contents of organic carbon in the hinoki (Chamaecyparis obtusa Sieb. et Zucc.) plantation forest and secondary forest dominated by red pine (Pinus densiflora Sieb. et Zucc.) in Japan. The spatial variation of 137 Cs activity was observed in the surface soil around the red pine. The average activity of 16 samples around the tree is 42.4 Bq/kg and the standard deviation is 25.9 Bq/kg. This finding indicates the importance in the selection of a sampling site and the number of samples from the surface soils especially around a tree. For the vertical distribution of 137 Cs activity, it was found that the concentration in the surface soil is highest, 149 Bq/kg in the hinoki stand and 101 Bq/kg in the red pine stand, and decreases with depth. The relationship between 137 Cs activity and carbon content in the forest soil was investigated in two undisturbed forest stands. The relations were more precisely expressed using an exponential equation than by a linear equation. From the same forest, similar regression equations were obtained. This indicates that the distribution of 137 Cs could be characterized by the organic carbon content in an undisturbed forest. It is also suggested that the coefficient values in the regression equation help to define the movement of 137 Cs accompanying the decomposition of organic matter

  10. Conversion of Forests to Arable Land and its Effect on Soil Physical ...

    African Journals Online (AJOL)

    Prof. Ogunji

    Conversion of Forests to Arable Land and its Effect on Soil ... greater hydraulic conductivity than those under cultivation and this may indicate greater pore ... stability and clay dispersion index were 10% higher and 28% lower in the .... degraded the physical properties, making the soil more prone to soil erosion by water.

  11. Incorporating microbial dormancy dynamics into soil decomposition models to improve quantification of soil carbon dynamics of northern temperate forests

    Science.gov (United States)

    He, Yujie; Yang, Jinyan; Zhuang, Qianlai; Harden, Jennifer W.; McGuire, A. David; Liu, Yaling; Wang, Gangsheng; Gu, Lianhong

    2015-01-01

    Soil carbon dynamics of terrestrial ecosystems play a significant role in the global carbon cycle. Microbial-based decomposition models have seen much growth recently for quantifying this role, yet dormancy as a common strategy used by microorganisms has not usually been represented and tested in these models against field observations. Here we developed an explicit microbial-enzyme decomposition model and examined model performance with and without representation of microbial dormancy at six temperate forest sites of different forest types. We then extrapolated the model to global temperate forest ecosystems to investigate biogeochemical controls on soil heterotrophic respiration and microbial dormancy dynamics at different temporal-spatial scales. The dormancy model consistently produced better match with field-observed heterotrophic soil CO2 efflux (RH) than the no dormancy model. Our regional modeling results further indicated that models with dormancy were able to produce more realistic magnitude of microbial biomass (analysis showed that soil organic carbon content was the dominating factor (correlation coefficient = 0.4–0.6) in the simulated spatial pattern of soil RHwith both models. In contrast to strong temporal and local controls of soil temperature and moisture on microbial dormancy, our modeling results showed that soil carbon-to-nitrogen ratio (C:N) was a major regulating factor at regional scales (correlation coefficient = −0.43 to −0.58), indicating scale-dependent biogeochemical controls on microbial dynamics. Our findings suggest that incorporating microbial dormancy could improve the realism of microbial-based decomposition models and enhance the integration of soil experiments and mechanistically based modeling.

  12. Long-term persistence of pioneer species in tropical forest soil seed banks

    Energy Technology Data Exchange (ETDEWEB)

    Dalling, J W; Brown, T A

    2008-10-05

    In tropical forests, pioneer species regenerate from seeds dispersed directly into canopy gaps, and from seeds that persisted in soil seed banks before gap formation. However, life-history models suggest that selection for long-term persistence of seeds in soil should be weak, as persistence incurs a fitness cost resulting from prolonged generation time. We use a carbon dating technique to provide the first direct measurements of seed persistence in undisturbed tropical forest seed banks. We show that seeds germinate successfully from surface soil microsites up to 38 years after dispersal. Decades-long persistence may be common in pioneers with relatively large mass, and appears to be unrelated to specific regeneration requirements. In Croton billbergianus, a sub-canopy tree that recruits in abundant small gaps, long-term persistence is associated with short-distance ballistic seed dispersal. In Trema micrantha, a canopy tree with widespread dispersal, persistence is associated with a requirement for large gaps that form infrequently in old-growth forest.

  13. Pyrosequencing reveals changes in soil bacterial communities after conversion of Yungas forests to agriculture.

    Directory of Open Access Journals (Sweden)

    Marcela S Montecchia

    Full Text Available The Southern Andean Yungas in Northwest Argentina constitute one of the main biodiversity hotspots in the world. Considerable changes in land use have taken place in this ecoregion, predominantly related to forest conversion to croplands, inducing losses in above-ground biodiversity and with potential impact on soil microbial communities. In this study, we used high-throughput pyrosequencing of the 16S ribosomal RNA gene to assess whether land-use change and time under agriculture affect the composition and diversity of soil bacterial communities. We selected two areas dedicated to sugarcane and soybean production, comprising both short- and long-term agricultural sites, and used the adjacent native forest soils as a reference. Land-use change altered the composition of bacterial communities, with differences between productive areas despite the similarities between both forests. At the phylum level, only Verrucomicrobia and Firmicutes changed in abundance after deforestation for sugarcane and soybean cropping, respectively. In cultivated soils, Verrucomicrobia decreased sharply (~80%, while Firmicutes were more abundant. Despite the fact that local diversity was increased in sugarcane systems and was not altered by soybean cropping, phylogenetic beta diversity declined along both chronosequences, evidencing a homogenization of soil bacterial communities over time. In spite of the detected alteration in composition and diversity, we found a core microbiome resistant to the disturbances caused by the conversion of forests to cultivated lands and few or none exclusive OTUs for each land-use type. The overall changes in the relative abundance of copiotrophic and oligotrophic taxa may have an impact in soil ecosystem functionality. However, communities with many taxa in common may also share many functional attributes, allowing to maintain at least some soil ecosystem services after forest conversion to croplands.

  14. Evaluation of the behavior of water in soil under eucalipto and native forest covers

    Directory of Open Access Journals (Sweden)

    Geberson Ricardo de Paula

    2013-12-01

    Full Text Available Areas occupied by grasslands have been replaced by eucalyptus plantations, which modifies the landscape, the regional economy, and water dynamics in soils. Thus, this study aimed to evaluate the behavior of water in Oxisol in two vegetation land covers, a six years old eucalyptus plantation, and a native forest in regeneration process for twenty years. The study was developed in the Una River Basin from June 2009 to April 2011. Ninety six moisture sensors were installed (Watermark™ at depths of 20, 60, and 120 cm. It was observed that, upon the occurrence of rainfall, the superficial and intermediate layers had increased humidity, which did not occur in the deepest layer. It was found that there were differences in soil moisture measured in the areas of eucalyptus and native forest and throughout the study period humidity was maintained between field capacity and permanent wilting point, with no water restriction. Canopy temperature of the eucalyptus plantation remained lower, indicating that its evapotranspiration was higher than in the forest area. The differences in moisture can be explained by the difference between the physical properties of soils in the study areas, because although they have the same slope, receive the same insolation and are close to each other, soil covered by eucalyptus presented a water storage capacity 63% above the area with native forest. It was also observed that all rainfall reaching the soil surface infiltrated and there was no runoff in the two areas studied. It was concluded that the results of this research provide important insights about differences in the behavior of water in the soil when covered by eucalyptus or native forest. For this reason, we suggest further studies with greater geographic reach in paired areas with different slopes, aspects and soil types.

  15. Carbon and nitrogen in forest floor and mineral soil under six common European tree species

    DEFF Research Database (Denmark)

    Vesterdal, Lars; Schmidt, Inger K.; Callesen, Ingeborg

    2007-01-01

    The knowledge of tree species effects on soil C and N pools is scarce, particularly for European deciduous tree species. We studied forest floor and mineral soil carbon and nitrogen under six common European tree species in a common garden design replicated at six sites in Denmark. Three decades...... on forest floor C and N content was primarily attributed to large differences in turnover rates as indicated by fractional annual loss of forest floor C and N. The C/N ratio of foliar litterfall was a good indicator of forest floor C and N contents, fractional annual loss of forest floor C and N...

  16. Determining soil hydrologic characteristics on a remote forest watershed by continuous monitoring of soil water pressures, rainfall and runoff.

    Science.gov (United States)

    L.R. Ahuja; S. A. El-Swaify

    1979-01-01

    Continuous monitoring of soil-water pressures, rainfall and runoff under natural conditions was tested as a technique for determining soil hydrologic characteristics of a remote forest watershed plot. A completely battery-powered (and thus portable) pressure transducer–scanner–recorder system was assembled for monitoring of soil-water pressures in...

  17. Hypholoma lateritium isolated from coarse woody debris, the forest floor, and mineral soil in a deciduous forest in New Hampshire

    Science.gov (United States)

    Therese A. Thompson; R. Greg Thorn; Kevin T. Smith

    2012-01-01

    Fungi in the Agaricomycetes (Basidiomycota) are the primary decomposers in temperate forests of dead wood on and in the forest soil. Through the use of isolation techniques selective for saprotrophic Agaricomycetes, a variety of wood decay fungi were isolated from a northern hardwood stand in the Bartlett Experimental Forest, New Hampshire, USA. In particular,

  18. High heterogeneity in soil composition and quality in different mangrove forests of Venezuela.

    Science.gov (United States)

    Otero, X L; Méndez, A; Nóbrega, G N; Ferreira, T O; Meléndez, W; Macías, F

    2017-09-18

    Mangrove forests play an important role in biogeochemical cycles of metals, nutrients, and C in coastal ecosystems. However, these functions could be strongly affected by the mangrove soil degradation. In this study, we performed an intensive sampling characterizing mangrove soils under different types of environment (lagoon/gulf) and vegetation (Rhizophora/Avicennia/dead mangrove) in the Venezuelan coast. To better understand the spatial heterogeneity of the composition and characteristics of the soils, a wide range of the soil attributes were analyzed. In general, the soils were anoxic (Eh mangroves presented a low Fe Pyrite content due to a limitation in the Fe oxyhydroxide contents, especially in soils with higher organic C content (TOC > 15%). Finally, the dead mangrove showed significantly lower amounts of TOC and fibers (in comparison to the well-preserved mangrove forest), which indicates that the C pools in mangrove soils are highly sensitive also to natural impact, such as ENSO.

  19. The response of soil solution chemistry in European forests to decreasing acid deposition

    DEFF Research Database (Denmark)

    Johnson, James; Pannatier, Elisabeth Graf; Carnicelli, Stefano

    2018-01-01

    to emissions controls. In this study, we assessed the response of soil solution chemistry in mineral horizons of European forests to these changes. Trends in pH, acid neutralizing capacity (ANC), major ions, total aluminium (Altot) and dissolved organic carbon were determined for the period 1995–2012. Plots...... with at least 10 years of observations from the ICP Forests monitoring network were used. Trends were assessed for the upper mineral soil (10–20 cm, 104 plots) and subsoil (40–80 cm, 162 plots). There was a large decrease in the concentration of sulphate () in soil solution; over a 10‐year period (2000...... over the entire dataset. The response of soil solution acidity was nonuniform. At 10–20 cm, ANC increased in acid‐sensitive soils (base saturation ≤10%) indicating a recovery, but ANC decreased in soils with base saturation >10%. At 40–80 cm, ANC remained unchanged in acid‐sensitive soils (base...

  20. Effects of elevated nitrogen deposition on soil microbial biomass carbon in major subtropical forests of southern China

    Institute of Scientific and Technical Information of China (English)

    Hui WANG; Jiangming MO; Xiankai LU; Jinghua XUE; Jiong LI; Yunting FANG

    2009-01-01

    The effects of elevated nitrogen deposition on soil microbial biomass carbon (C) and extractable dissolved organic carbon (DOC) in three types of forest of southern China were studied in November, 2004 and June, 2006. Plots were established in a pine forest (PF), a mixed pine and broad-leaved forest (MF) and monsoon evergreen broad-leaved forest (MEBF) in the Dinghushan Nature Reserve. Nitrogen treatments included a control (no N addition), low N (50 kg N/(hm2.a)), medium N (100 kg N/ (hm2. a)) and high N (150 kg N/(hm2. a)). Microbial biomass C and extractable DOC were determined using a chloro-form fumigation-extraction method. Results indicate that microbial biomass C and extractable DOC were higher in June, 2006 than in November, 2004 and higher in the MEBF than in the PF or the MF. The response of soil microbial biomass C and extractable DOC to nitrogen deposition varied depending on the forest type and the level of nitrogen treatment. In the PF or MF forests, no significantly different effects of nitrogen addition were found on soil microbial biomass C and extractable DOC. In the MEBF, however, the soil microbial biomass C generally decreased with increased nitrogen levels and high nitrogen addition significantly reduced soil microbial biomass C. The response of soil extractable DOC to added nitrogen in the MEBF shows the opposite trend to soil microbial biomass C. These results suggest that nitrogen deposition may increase the accumulation of soil organic carbon in the MEBF in the study region.

  1. Influence of soil fungi (basidiomycetes) on the migration of Cs 134 + 137 and Sr 90 in coniferous forest soils

    International Nuclear Information System (INIS)

    Roemmelt, R.; Hiersche, L.; Schaller, G.; Wirth, E.

    1990-01-01

    During the first three years after the Chernobyl event high Cs 134 + 137 activities in fruitbodies of basidiomycetes have been measured. A decline of activities with time has not yet been observed. The activities are considerably higher compared to agricultural products from the same area. In order to study the movement of radiocesium in coniferous forest sites, the activities in soil, fungi, and plants have been measured. Based on these results a model to describe the cesium cycling in coniferous forest ecosystems is proposed with special emphasis on the influence of soil fungi and plants on the migration of cesium. As measurements of Sr 90 in forest ecosystems are rare this nuclide has been included in the investigations. (author)

  2. [Characteristics of floor litter and soil arthropod community in different types ot subtropical forest in Ailao Mountain of Yunnan, Southwest China].

    Science.gov (United States)

    Yang, Zhao; Yang, Xiao-Dong

    2011-11-01

    By using line transect method, an investigation was conducted on the floor litter and soil arthropod community in a mid mountain wet evergreen broad-leaved forest, a mossy dwarf forest, and a Populus bonatii forest in Ailao Mountain of Yunnan in April (dry and hot season), June (rainy season), and December (dry and cold season), 2005. In both dry and rainy seasons, the existing floor litter mass, C storage, and C/N ratio in the three forests all increased in the order of mossy dwarf forest > P. bonatii forest > evergreen broad-leaved forest, but the N storage had less difference. In the floor litter layer of the forests, Acari and Collembola were the dominant groups of soil arthropod community, while Diptera larvae, Coleoptera, ants, and Homoptera were the common groups. The Sorenson coefficients of soil arthropod community in the three forests were extremely great. No significant differences were observed in the soil arthropod density (ind x m(-2)) in the floor litter layer among the three forests, but the relative density (ind x g(-1)) of soil arthropods was higher in the evergreen broad-leaved forest and P. bonatii forest than in the mossy dwarf forest. In the three forests, the density of soil arthropods was significantly higher in dry season than in rainy season, but the Shannon diversity index had less difference. There were significant positive correlations between the existing floor litter mass and the individual density (ind x m(-2)) and dominant groups of soil arthropod communities in dry and hot season (April), but negative correlations between the existing floor litter mass and the relative density (ind x g(-1)) of soil arthropod communities and Acari in dry and cold season (December). The individual densities of Collembola and Coleoptera also had positive correlations with the N storage of the existing floor litter mass in the three forests. It was considered that the floor litter and the development of soil arthropod community in the litter layer of

  3. Soil heating during burning of forest slash piles and wood piles

    Science.gov (United States)

    Matt D. Busse; Carol J. Shestak; Ken R. Hubbert

    2013-01-01

    Pile burning of conifer slash is a common fuel reduction practice in forests of the western United States that has a direct, yet poorly quantified effect on soil heating. To address this knowledge gap, we measured the heat pulse beneath hand-built piles ranging widely in fuel composition and pile size in sandy-textured soils of the Lake Tahoe Basin. The soil heat pulse...

  4. LBA-ECO TG-07 Soil Trace Gas Flux and Root Mortality, Tapajos National Forest

    Science.gov (United States)

    R.K. Varner; M.M. Keller

    2009-01-01

    This data set reports the results of an experiment that tested the short-term effects of root mortality on the soil-atmosphere fluxes of nitrous oxide, nitric oxide, methane, and carbon dioxide in a tropical evergreen forest. Weekly trace gas fluxes are provided for treatment and control plots on sand and clay tropical forest soils in two comma separated ASCII files....

  5. Analysis on the influence of forest soil characteristics on radioactive Cs infiltration and evaluation of residual radioactive Cs on surfaces.

    Science.gov (United States)

    Mori, Yoshitomo; Yoneda, Minoru; Shimada, Yoko; Fukutani, Satoshi; Ikegami, Maiko; Shimomura, Ryohei

    2018-03-29

    We investigated the depth profiles of radioactive Cs, ignition loss, and cation exchange capacity (CEC) in five types of forest soils sampled using scraper plates. We then simulated the monitored depth profiles in a compartment model, taking ignition loss as a parameter based on experimental results showing a positive correlation between ignition loss and the CEC. The calculated values were comparable with the monitored values, though some discrepancy was observed in the middle of the soil layer. Based on decontamination data on the surface dose rate and surface contamination concentration, we newly defined a surface residual index (SRI) to evaluate the residual radioactive Cs on surfaces. The SRI value tended to gradually decrease in forests and unpaved roads and was much smaller in forests and on unpaved roads than on paved roads. The radioactive Cs was assumed to have already infiltrated underground 18 months after the nuclear power plant accident, and the sinking was assumed to be ongoing. The SRI values measured on paved roads suggested that radioactive Cs remained on the surfaces, though a gradual infiltration was observed towards the end of the monitoring term. The SRI value is thought to be effective in grasping the rough condition of residual radioactive Cs quickly at sites of decontamination activity in the field. The SRI value may be serviceable for actual contamination works after further research is done to elucidate points such as the relation between the SRI and the infiltration of radioactive Cs in various types of objects.

  6. Manganese Driven Carbon Oxidation along Oxic-Anoxic Interfaces in Forest Soils

    Science.gov (United States)

    Jones, M. E.; Keiluweit, M.

    2017-12-01

    Soils are the largest and most dynamic terrestrial carbon pool, storing a total of 3000 Pg of C - more than the atmosphere and biosphere combined. Because microbial oxidation determines the proportion of carbon that is either stored in the soil or emitted as climate active CO2, its rate directly impacts the global carbon cycle. Recently, a strong correlation between oxidation rates and manganese (Mn) content has been observed in forest soils globally, leading researchers conclude that Mn "is the single main factor governing" the oxidation of plant-derived particulate organic carbon (POC). Many soils are characterized by steep oxygen gradients, forming oxic-anoxic transitions that enable rapid redox cycling of Mn. Oxic-anoxic interfaces have been shown to promote fungal Mn oxidation and the formation of ligand-stabilized Mn(III), which ranks second only to superoxide as the most powerful oxidizing agent in the environment. Here we examined fungal Mn(III) formation along redox gradients in forest soils and their impact on POC oxidation rates. In both field and laboratory settings, oxic-anoxic transition zones showed the greatest Mn(III) concentrations, along with enhanced fungal growth, oxidative potential, production of soluble oxidation products, and CO2 production. Additional electrochemical and X-ray (micro)spectroscopic analyses indicated that oxic-anoxic interfaces represent ideal niches for fungal Mn(III) formation, owing to the ready supply of Mn(II), ligands and O2. Combined, our results suggest that POC oxidation relies on fungal Mn cycling across oxic-anoxic interfaces to produce Mn(III) based oxidants. Because predicted changes in the frequency and timing of precipitation dramatically alter soil moisture regimes in forest soils, understanding the mechanistic link between Mn cycling and carbon oxidation along oxic-anoxic interfaces is becoming increasingly important.

  7. Natural 15N abundance of soil N pools and N2O reflect the nitrogen dynamics of forest soils

    DEFF Research Database (Denmark)

    Pörtl, K.; Zechmeister-Boltenstern, S.; Wanek, W.

    2007-01-01

    Natural N-15 abundance measurements of ecosystem nitrogen (N) pools and N-15 pool dilution assays of gross N transformation rates were applied to investigate the potential of delta N-15 signatures of soil N pools to reflect the dynamics in the forest soil N cycle. Intact soil cores were collected...

  8. Incorporating microbial dormancy dynamics into soil decomposition models to improve quantification of soil carbon dynamics of northern temperate forests

    Energy Technology Data Exchange (ETDEWEB)

    He, Yujie [Purdue Univ., West Lafayette, IN (United States). Dept. of Earth, Atmospheric, and Planetary Sciences; Yang, Jinyan [Univ. of Georgia, Athens, GA (United States). Warnell School of Forestry and Natural Resources; Northeast Forestry Univ., Harbin (China). Center for Ecological Research; Zhuang, Qianlai [Purdue Univ., West Lafayette, IN (United States). Dept. of Earth, Atmospheric, and Planetary Sciences; Purdue Univ., West Lafayette, IN (United States). Dept. of Agronomy; Harden, Jennifer W. [U.S. Geological Survey, Menlo Park, CA (United States); McGuire, Anthony D. [Alaska Cooperative Fish and Wildlife Research Unit, U.S. Geological Survey, Univ. of Alaska, Fairbanks, AK (United States). U.S. Geological Survey, Alaska Cooperative Fish and Wildlife Research Unit; Liu, Yaling [Purdue Univ., West Lafayette, IN (United States). Dept. of Earth, Atmospheric, and Planetary Sciences; Wang, Gangsheng [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Climate Change Science Inst. and Environmental Sciences Division; Gu, Lianhong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Environmental Sciences Division

    2015-11-20

    Soil carbon dynamics of terrestrial ecosystems play a significant role in the global carbon cycle. Microbial-based decomposition models have seen much growth recently for quantifying this role, yet dormancy as a common strategy used by microorganisms has not usually been represented and tested in these models against field observations. Here in this study we developed an explicit microbial-enzyme decomposition model and examined model performance with and without representation of microbial dormancy at six temperate forest sites of different forest types. We then extrapolated the model to global temperate forest ecosystems to investigate biogeochemical controls on soil heterotrophic respiration and microbial dormancy dynamics at different temporal-spatial scales. The dormancy model consistently produced better match with field-observed heterotrophic soil CO2 efflux (RH) than the no dormancy model. Our regional modeling results further indicated that models with dormancy were able to produce more realistic magnitude of microbial biomass (<2% of soil organic carbon) and soil RH (7.5 ± 2.4 PgCyr-1). Spatial correlation analysis showed that soil organic carbon content was the dominating factor (correlation coefficient = 0.4-0.6) in the simulated spatial pattern of soil RH with both models. In contrast to strong temporal and local controls of soil temperature and moisture on microbial dormancy, our modeling results showed that soil carbon-to-nitrogen ratio (C:N) was a major regulating factor at regional scales (correlation coefficient = -0.43 to -0.58), indicating scale-dependent biogeochemical controls on microbial dynamics. Our findings suggest that incorporating microbial dormancy could improve the realism of microbial-based decomposition models and enhance the integration of soil experiments and mechanistically based modeling.

  9. Abiotic and Biotic Soil Characteristics in Old Growth Forests and Thinned or Unthinned Mature Stands in Three Regions of Oregon

    Directory of Open Access Journals (Sweden)

    David A. Perry

    2012-09-01

    Full Text Available We compared forest floor depth, soil organic matter, soil moisture, anaerobic mineralizable nitrogen (a measure of microbial biomass, denitrification potential, and soil/litter arthropod communities among old growth, unthinned mature stands, and thinned mature stands at nine sites (each with all three stand types distributed among three regions of Oregon. Mineral soil measurements were restricted to the top 10 cm. Data were analyzed with both multivariate and univariate analyses of variance. Multivariate analyses were conducted with and without soil mesofauna or forest floor mesofauna, as data for those taxa were not collected on some sites. In multivariate analysis with soil mesofauna, the model giving the strongest separation among stand types (P = 0.019 included abundance and richness of soil mesofauna and anaerobic mineralizable nitrogen. The best model with forest floor mesofauna (P = 0.010 included anaerobic mineralizable nitrogen, soil moisture content, and richness of forest floor mesofauna. Old growth had the highest mean values for all variables, and in both models differed significantly from mature stands, while the latter did not differ. Old growth also averaged higher percent soil organic matter, and analysis including that variable was significant but not as strong as without it. Results of the multivariate analyses were mostly supported by univariate analyses, but there were some differences. In univariate analysis, the difference in percent soil organic matter between old growth and thinned mature was due to a single site in which the old growth had exceptionally high soil organic matter; without that site, percent soil organic matter did not differ between old growth and thinned mature, and a multivariate model containing soil organic matter was not statistically significant. In univariate analyses soil mesofauna had to be compared nonparametrically (because of heavy left-tails and differed only in the Siskiyou Mountains, where

  10. Role of soil acidification in forest decline: Long-term consequences and silvicultural possibilities

    Energy Technology Data Exchange (ETDEWEB)

    Ulrich, B

    1986-10-01

    The causes of soil acidification are discussed. The strong and deep reaching acidification which has been found in case studies on all sites (with the exception of soils containing limestone or marl) is traced back to acid deposition. The possibilities of forest management to reduce eco-system-internal acid production, to eliminate acute malnutrition, to increase deep rooting, and to establish forest ecosystems which can be stable with high elasticity without acid deposition, are discussed.

  11. Impact of biomass harvesting on forest soil productivity in the northern Rocky Mountains

    Science.gov (United States)

    Woongsoon Jang; Christopher R. Keyes; Deborah Page-Dumroese

    2015-01-01

    Biomass harvesting extracts an increased amount of organic matter from forest ecosystems over conventional harvesting. Since organic matter plays a critical role in forest productivity, concerns of potential negative long-term impacts of biomass harvesting on forest productivity (i.e., changing nutrient/water cycling, aggravating soil properties, and compaction) have...

  12. Effects of a Wildfire on Selected Physical, Chemical and Biochemical Soil Properties in a Pinus massoniana Forest in South China

    Directory of Open Access Journals (Sweden)

    Li Xue

    2014-11-01

    Full Text Available Pinus massoniana forests bordering South China are often affected by wildfires. Fires cause major changes in soil properties in many forest types but little is known about the effects of fire on soil properties in these P. massoniana forests. Such knowledge is important for providing a comprehensive understanding of wildfire effects on soil patterns and for planning appropriate long-term forest management in these forests. Changes in soil physical properties, carbon, nutrients, and enzymes were investigated in a P. massoniana forest along a wildfire-induced time span consisting of an unburned soil, and soils 0, one, four, and seven years post-fire. Soil (0–10 cm was collected from burned and unburned sites immediately and one, four, and seven years after a wildfire. The wildfire effects on soil physical and chemical properties and enzyme activities were significantly different among treatment variation, time variation, and treatment-by-time interaction. Significant short-term effects on soil physical, chemical, and biological properties were found, which resulted in a deterioration of soil physical properties by increasing soil bulk density and decreasing macropores and capillary moisture. Soil pH increased significantly in the soil one-year post-fire. Carbon, total nitrogen (N and phosphorus (P, and available N and P increased significantly immediately and one year after the wildfire and decreased progressively to concentrations lower than in the unburned soil. Total potassium (K and exchangeable K increased immediately after the wildfire and then continuously decreased along the burned time-span. Urease, acid phosphatase, and catalase activities significantly decreased compared to those in the unburned soil. In fire-prone P. massoniana forests, wildfires may significantly influence soil physical properties, carbon, nutrients, and enzyme activity.

  13. Coarse woody debris and soil respiration 6 years post-tornado in a Piedmont forest blowdown

    Science.gov (United States)

    Oldfield, C.; Peterson, C. J.

    2017-12-01

    Severe wind disturbances can rapidly change carbon pools and fluxes in forests, causing a site to switch from a carbon sink to a source in a matter of minutes. Moreover, salvage logging after a disturbance can result in disturbed and compacted soil, altered woody debris carbon pools, and seedling mortality, all of which may further alter carbon dynamics beyond that caused by the disturbance itself. We measured down dead wood and soil respiration in the summer of 2017 at Boggs Creek Recreation Area in the Piedmont of northeast Georgia, the site of a severe tornado in 2011. Down dead wood and soil respiration were compared in control (intact forest), salvaged, and unsalvaged areas. Megagrams per hectare of down dead wood was significantly higher in the unsalvaged condition than the control or salvage logging condition (ANOVAs, pdead wood was not significantly different in the control when compared to the salvage logging condition (p=0.99). Soil respiration was significantly higher in the salvage logged condition than the control (pdead wood in a forest, and salvage logging may lead to greater soil respiration years after the initial disturbance, both of which will influence the time elapsed before a disturbed forest switches from carbon source to carbon sink. Further research is needed to determine the duration of these effects, along with the carbon consequences for other forest carbon pools.

  14. [Temperature sensitivity of soil organic carbon mineralization and β-glucosidase enzymekinetics in the northern temperate forests at different altitudes, China].

    Science.gov (United States)

    Fan, Jin-juan; Li, Dan-dan; Zhang, Xin-yu; He, Nian-peng; Bu, Jin-feng; Wang, Qing; Sun, Xiao-min; Wen, Xue-fa

    2016-01-01

    Soil samples, which were collected from three typical forests, i.e., Betula ermanii forest, coniferous mixed broad-leaved forest, and Pinus koraiensis forest, at different altitudes along the southern slope of Laotuding Mountain of Changbai Mountain range in Liaoning Province of China, were incubated over a temperature gradient in laboratory. Soil organic carbon mineralization rates (Cmin), soil β-1,4-glucosidase (βG) kinetics and their temperature sensitivity (Q₁₀) were measured. The results showed that both altitude and temperature had significant effects on Cmin · Cmin increased with temperature and was highest in the B. ermanii forest. The temperature sensitivity of Cmin [Q₁₀(Cmin)] ranked in order of B. ermanii forest > P. koraiensis forest > coniferous mixed broad-leaved forest, but did not differ significantly among the three forests. Both the maximum activity (Vmax) and the Michaelis constant (Km) of the βG responded positively to temperature for all the forests. The temperature sensitivity of Vmax [Q₁₀(Vmax)] ranged from 1.78 to 1.90, and the temperature sensitivity of Km [Q₁₀(Km)] ranged from 1.79 to 2.00. The Q₁₀(Vmax)/Q10(Km) ratios were significantly greater in the B. ermanii soil than in the other two forest soils, suggesting that the βG kinetics-dependent impacts of the global warming or temperature increase on the decomposition of soil organic carbon were temperature sensitive for the forests at the higher altitudes.

  15. Soil aggregation under different management systems

    Directory of Open Access Journals (Sweden)

    Cibele Mascioli Rebello Portella

    2012-12-01

    Full Text Available Considering that the soil aggregation reflects the interaction of chemical, physical and biological soil factors, the aim of this study was evaluate alterations in aggregation, in an Oxisol under no-tillage (NT and conventional tillage (CT, since over 20 years, using as reference a native forest soil in natural state. After analysis of the soil profile (cultural profile in areas under forest management, samples were collected from the layers 0-5, 5-10, 10-20 and 20-40 cm, with six repetitions. These samples were analyzed for the aggregate stability index (ASI, mean weighted diameter (MWD, mean geometric diameter (MGD in the classes > 8, 8-4, 4-2, 2-1, 1-0.5, 0.5-0.25, and < 0.25 mm, and for physical properties (soil texture, water dispersible clay (WDC, flocculation index (FI and bulk density (Bd and chemical properties (total organic carbon - COT, total nitrogen - N, exchangeable calcium - Ca2+, and pH. The results indicated that more intense soil preparation (M < NT < PC resulted in a decrease in soil stability, confirmed by all stability indicators analyzed: MWD, MGD, ASI, aggregate class distribution, WDC and FI, indicating the validity of these indicators in aggregation analyses of the studied soil.

  16. Emission and soil distribution of fumigants in forest tree nurseries

    Science.gov (United States)

    Dong Wang; Jennifer Juzwik; Stephen Fraedrich

    2005-01-01

    Production of tree seedlings in the majority of forest nurseries in the USA has relied on soil fumigation with methyl bromide (MeBr) to control soil-borne plant pathogens, weeds, parasitic nematodes and insects. Since the announcement of the scheduled MeBr phase-out, a number of nurseries throughout the United States have participated in research programs on MeBr...

  17. Soil trace gas fluxes along orthogonal precipitation and soil fertility gradients in tropical lowland forests of Panama

    Directory of Open Access Journals (Sweden)

    A. L. Matson

    2017-07-01

    Full Text Available Tropical lowland forest soils are significant sources and sinks of trace gases. In order to model soil trace gas flux for future climate scenarios, it is necessary to be able to predict changes in soil trace gas fluxes along natural gradients of soil fertility and climatic characteristics. We quantified trace gas fluxes in lowland forest soils at five locations in Panama, which encompassed orthogonal precipitation and soil fertility gradients. Soil trace gas fluxes were measured monthly for 1 (NO or 2 (CO2, CH4, N2O years (2010–2012 using vented dynamic (for NO only or static chambers with permanent bases. Across the five sites, annual fluxes ranged from 8.0 to 10.2 Mg CO2-C, −2.0 to −0.3 kg CH4-C, 0.4 to 1.3 kg N2O-N and −0.82 to −0.03 kg NO-N ha−1 yr−1. Soil CO2 emissions did not differ across sites, but they did exhibit clear seasonal differences and a parabolic pattern with soil moisture across sites. All sites were CH4 sinks; within-site fluxes were largely controlled by soil moisture, whereas fluxes across sites were positively correlated with an integrated index of soil fertility. Soil N2O fluxes were low throughout the measurement years, but the highest emissions occurred at a mid-precipitation site with high soil N availability. Net negative NO fluxes at the soil surface occurred at all sites, with the most negative fluxes at the low-precipitation site closest to Panama City; this was likely due to high ambient NO concentrations from anthropogenic sources. Our study highlights the importance of both short-term (climatic and long-term (soil and site characteristics factors in predicting soil trace gas fluxes.

  18. Abundance and potential metabolic activity of methanogens in well-aerated forest and grassland soils of an alpine region.

    Science.gov (United States)

    Hofmann, Katrin; Praeg, Nadine; Mutschlechner, Mira; Wagner, Andreas O; Illmer, Paul

    2016-02-01

    Although methanogens were recently discovered to occur in aerated soils, alpine regions have not been extensively studied for their presence so far. Here, the abundance of archaea and the methanogenic guilds Methanosarcinales, Methanococcales, Methanobacteriales, Methanomicrobiales and Methanocella spp. was studied at 16 coniferous forest and 14 grassland sites located at the montane and subalpine belts of the Northern Limestone Alps (calcareous) and the Austrian Central Alps (siliceous) using quantitative real-time PCR. Abundance of archaea, methanogens and the methanogenic potentials were significantly higher in grasslands than in forests. Furthermore, methanogenic potentials of calcareous soils were higher due to pH. Methanococcales, Methanomicrobiales and Methanocella spp. were detected in all collected samples, which indicates that they are autochthonous, while Methanobacteriales were absent from 4 out of 16 forest soils. Methanosarcinales were absent from 10 out of 16 forest soils and 2 out of 14 grassland soils. Nevertheless, together with Methanococcales they represented the majority of the 16S rRNA gene copies quantified from the grassland soils. Contrarily, forest soils were clearly dominated by Methanococcales. Our results indicate a higher diversity of methanogens in well-aerated soils than previously believed and that pH mainly influences their abundances and activities. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Forest soil microbial communities: Using metagenomic approaches to survey permanent plots

    Science.gov (United States)

    Amy L. Ross-Davis; Jane E. Stewart; John W. Hanna; John D. Shaw; Andrew T. Hudak; Theresa B. Jain; Robert J. Denner; Russell T. Graham; Deborah S. Page-Dumroese; Joanne M. Tirocke; Mee-Sook Kim; Ned B. Klopfenstein

    2014-01-01

    Forest soil ecosystems include some of the most complex microbial communities on Earth (Fierer et al. 2012). These assemblages of archaea, bacteria, fungi, and protists play essential roles in biogeochemical cycles (van der Heijden et al. 2008) and account for considerable terrestrial biomass (Nielsen et al. 2011). Yet, determining the microbial composition of forest...

  20. Soil respiration patterns and rates at three Taiwanese forest plantations: dependence on elevation, temperature, precipitation, and litterfall.

    Science.gov (United States)

    Huang, Yu-Hsuan; Hung, Chih-Yu; Lin, I-Rhy; Kume, Tomonori; Menyailo, Oleg V; Cheng, Chih-Hsin

    2017-11-15

    Soil respiration contributes to a large quantity of carbon emissions in the forest ecosystem. In this study, the soil respiration rates at three Taiwanese forest plantations (two lowland and one mid-elevation) were investigated. We aimed to determine how soil respiration varies between lowland and mid-elevation forest plantations and identify the relative importance of biotic and abiotic factors affecting soil respiration. The results showed that the temporal patterns of soil respiration rates were mainly influenced by soil temperature and soil water content, and a combined soil temperature and soil water content model explained 54-80% of the variation. However, these two factors affected soil respiration differently. Soil temperature positively contributed to soil respiration, but a bidirectional relationship between soil respiration and soil water content was revealed. Higher soil moisture content resulted in higher soil respiration rates at the lowland plantations but led to adverse effects at the mid-elevation plantation. The annual soil respiration rates were estimated as 14.3-20.0 Mg C ha -1  year -1 at the lowland plantations and 7.0-12.2 Mg C ha -1  year -1 at the mid-elevation plantation. When assembled with the findings of previous studies, the annual soil respiration rates increased with the mean annual temperature and litterfall but decreased with elevation and the mean annual precipitation. A conceptual model of the biotic and abiotic factors affecting the spatial and temporal patterns of the soil respiration rate was developed. Three determinant factors were proposed: (i) elevation, (ii) stand characteristics, and (iii) soil temperature and soil moisture. The results indicated that changes in temperature and precipitation significantly affect soil respiration. Because of the high variability of soil respiration, more studies and data syntheses are required to accurately predict soil respiration in Taiwanese forests.