WorldWideScience

Sample records for forest secondary forest

  1. Secondary Forest Age and Tropical Forest Biomass Estimation Using TM

    Science.gov (United States)

    Nelson, R. F.; Kimes, D. S.; Salas, W. A.; Routhier, M.

    1999-01-01

    The age of secondary forests in the Amazon will become more critical with respect to the estimation of biomass and carbon budgets as tropical forest conversion continues. Multitemporal Thematic Mapper data were used to develop land cover histories for a 33,000 Square kM area near Ariquemes, Rondonia over a 7 year period from 1989-1995. The age of the secondary forest, a surrogate for the amount of biomass (or carbon) stored above-ground, was found to be unimportant in terms of biomass budget error rates in a forested TM scene which had undergone a 20% conversion to nonforest/agricultural cover types. In such a situation, the 80% of the scene still covered by primary forest accounted for over 98% of the scene biomass. The difference between secondary forest biomass estimates developed with and without age information were inconsequential relative to the estimate of biomass for the entire scene. However, in futuristic scenarios where all of the primary forest has been converted to agriculture and secondary forest (55% and 42% respectively), the ability to age secondary forest becomes critical. Depending on biomass accumulation rate assumptions, scene biomass budget errors on the order of -10% to +30% are likely if the age of the secondary forests are not taken into account. Single-date TM imagery cannot be used to accurately age secondary forests into single-year classes. A neural network utilizing TM band 2 and three TM spectral-texture measures (bands 3 and 5) predicted secondary forest age over a range of 0-7 years with an RMSE of 1.59 years and an R(Squared) (sub actual vs predicted) = 0.37. A proposal is made, based on a literature review, to use satellite imagery to identify general secondary forest age groups which, within group, exhibit relatively constant biomass accumulation rates.

  2. Redefining Secondary Forests in the Mexican Forest Code: Implications for Management, Restoration, and Conservation

    Directory of Open Access Journals (Sweden)

    Francisco J. Román-Dañobeytia

    2014-05-01

    Full Text Available The Mexican Forest Code establishes structural reference values to differentiate between secondary and old-growth forests and requires a management plan when secondary forests become old-growth and potentially harvestable forests. The implications of this regulation for forest management, restoration, and conservation were assessed in the context of the Calakmul Biosphere Reserve, which is located in the Yucatan Peninsula. The basal area and stem density thresholds currently used by the legislation to differentiate old-growth from secondary forests are 4 m2/ha and 15 trees/ha (trees with a diameter at breast height of >25 cm; however, our research indicates that these values should be increased to 20 m2/ha and 100 trees/ha, respectively. Given that a management plan is required when secondary forests become old-growth forests, many landowners avoid forest-stand development by engaging slash-and-burn agriculture or cattle grazing. We present evidence that deforestation and land degradation may prevent the natural regeneration of late-successional tree species of high ecological and economic importance. Moreover, we discuss the results of this study in the light of an ongoing debate in the Yucatan Peninsula between policy makers, non-governmental organizations (NGOs, landowners and researchers, regarding the modification of this regulation to redefine the concept of acahual (secondary forest and to facilitate forest management and restoration with valuable timber tree species.

  3. Biomass resilience of Neotropical secondary forests.

    Science.gov (United States)

    Poorter, Lourens; Bongers, Frans; Aide, T Mitchell; Almeyda Zambrano, Angélica M; Balvanera, Patricia; Becknell, Justin M; Boukili, Vanessa; Brancalion, Pedro H S; Broadbent, Eben N; Chazdon, Robin L; Craven, Dylan; de Almeida-Cortez, Jarcilene S; Cabral, George A L; de Jong, Ben H J; Denslow, Julie S; Dent, Daisy H; DeWalt, Saara J; Dupuy, Juan M; Durán, Sandra M; Espírito-Santo, Mario M; Fandino, María C; César, Ricardo G; Hall, Jefferson S; Hernandez-Stefanoni, José Luis; Jakovac, Catarina C; Junqueira, André B; Kennard, Deborah; Letcher, Susan G; Licona, Juan-Carlos; Lohbeck, Madelon; Marín-Spiotta, Erika; Martínez-Ramos, Miguel; Massoca, Paulo; Meave, Jorge A; Mesquita, Rita; Mora, Francisco; Muñoz, Rodrigo; Muscarella, Robert; Nunes, Yule R F; Ochoa-Gaona, Susana; de Oliveira, Alexandre A; Orihuela-Belmonte, Edith; Peña-Claros, Marielos; Pérez-García, Eduardo A; Piotto, Daniel; Powers, Jennifer S; Rodríguez-Velázquez, Jorge; Romero-Pérez, I Eunice; Ruíz, Jorge; Saldarriaga, Juan G; Sanchez-Azofeifa, Arturo; Schwartz, Naomi B; Steininger, Marc K; Swenson, Nathan G; Toledo, Marisol; Uriarte, Maria; van Breugel, Michiel; van der Wal, Hans; Veloso, Maria D M; Vester, Hans F M; Vicentini, Alberto; Vieira, Ima C G; Bentos, Tony Vizcarra; Williamson, G Bruce; Rozendaal, Danaë M A

    2016-02-11

    Land-use change occurs nowhere more rapidly than in the tropics, where the imbalance between deforestation and forest regrowth has large consequences for the global carbon cycle. However, considerable uncertainty remains about the rate of biomass recovery in secondary forests, and how these rates are influenced by climate, landscape, and prior land use. Here we analyse aboveground biomass recovery during secondary succession in 45 forest sites and about 1,500 forest plots covering the major environmental gradients in the Neotropics. The studied secondary forests are highly productive and resilient. Aboveground biomass recovery after 20 years was on average 122 megagrams per hectare (Mg ha(-1)), corresponding to a net carbon uptake of 3.05 Mg C ha(-1) yr(-1), 11 times the uptake rate of old-growth forests. Aboveground biomass stocks took a median time of 66 years to recover to 90% of old-growth values. Aboveground biomass recovery after 20 years varied 11.3-fold (from 20 to 225 Mg ha(-1)) across sites, and this recovery increased with water availability (higher local rainfall and lower climatic water deficit). We present a biomass recovery map of Latin America, which illustrates geographical and climatic variation in carbon sequestration potential during forest regrowth. The map will support policies to minimize forest loss in areas where biomass resilience is naturally low (such as seasonally dry forest regions) and promote forest regeneration and restoration in humid tropical lowland areas with high biomass resilience.

  4. Secondary Forests from Agricultural Abandonment in Amazonia 2000-2009

    Science.gov (United States)

    Morton, Douglas

    2010-01-01

    Ongoing negotiations to include reducing emissions from tropical deforestation and forest degradation (REDD+) in a post-Kyoto climate agreement highlight the critical role of satellite data for accurate and transparent accounting of forest cover changes. In addition to deforestation and degradation, knowledge of secondary forest dynamics is essential for full carbon accounting under REDD+. Land abandonment to secondary forests also frames one of the key tradeoffs for agricultural production in tropical forest countries-whether to incentivize secondary forest growth (for carbon sequestration and biodiversity conservation) or low-carbon expansion of agriculture or biofuels production in areas of secondary forests. We examined patterns of land abandonment to secondary forest across the arc of deforestation in Brazil and Bolivia using time series of annual Landsat and MODIS data from 2000-2009. Rates of land abandonment to secondary forest during 2002-2006 were less than 5% of deforestation rates in these years. Small areas of new secondary forest were scattered across the entire arc of deforestation, rather than concentrated in any specific region of the basin. Taken together, our analysis of the satellite data record emphasizes the difficulties of addressing the pool of new secondary forests in the context of REDD+ in Amazonia. Due to the small total area of secondary forests, land sparing through agricultural intensification will be an important element of efforts to reduce deforestation rates under REDD+ while improving agricultural productivity in Amazonia.

  5. Original Paper Floristic and structural changes in secondary forests ...

    African Journals Online (AJOL)

    Data from the first inventory in secondary and old-growth forests were ... Structural changes in secondary forests are less known in West Africa, and ... temporal succession from one time spatial ..... s = number of species sampled per hectare; S = species richness of the whole forest; NF = the number of taxonomic families,.

  6. Tropical rain-forest matrix quality affects bat assemblage structure in secondary forest patches

    NARCIS (Netherlands)

    Vleut, I.; Levy-Tacher, I.; Galindo-Gonzalez, J.; Boer, de W.F.; Ramirez-Marcial, N.

    2012-01-01

    We studied Phyllostomidae bat assemblage structure in patches of secondary forest dominated by the pioneer tree Ochroma pyramidale, largely (.85%) or partially (,35%) surrounded by a matrix of tropical rain forest, to test 3 hypotheses: the highest bat diversity and richness is observed in the

  7. Contributions of secondary forest and nitrogen dynamics to terrestrial carbon uptake

    Directory of Open Access Journals (Sweden)

    X. Yang

    2010-10-01

    Full Text Available We use a terrestrial carbon-nitrogen cycle component of the Integrated Science Assessment Model (ISAM to investigate the impacts of nitrogen dynamics on regrowing secondary forests over the 20th century. We further examine what the impacts of nitrogen deposition and land use change history are on terrestrial carbon uptake since preindustrial time. Our results suggest that global total net land use emissions for the 1990s associated with changes in cropland, pastureland, and wood harvest are 1.22 GtC/yr. Without considering the secondary forest regrowth, the estimated net global total land use emissions are 1.58 GtC/yr or about 0.36 GtC/yr higher than if secondary forest regrowth is considered. Results also show that without considering the nitrogen dynamics and deposition, the estimated global total secondary forest sink for the 1990s is 0.90 GtC/yr or about 0.54 GtC/yr higher than estimates that include the impacts of nitrogen dynamics and deposition. Nitrogen deposition alone is responsible for about 0.13 GtC/yr of the total secondary forest sink. While nitrogen is not a limiting nutrient in the intact primary forests in tropical regions, our study suggests that nitrogen becomes a limiting nutrient for regrowing secondary forests of the tropical regions, in particular Latin America and Tropical Africa. This is because land use change activities, especially wood harvest, removes large amounts of nitrogen from the system when slash is burnt or wood is removed for harvest. However, our model results show that carbon uptake is enhanced in the tropical secondary forests of the Indian region. We argue that this may be due to enhanced nitrogen mineralization and increased nitrogen availability following land use change in the Indian tropical forest ecosystems. Results also demonstrate that there is a significant amount of carbon accumulating in the Northern Hemisphere where most land use changes and forest regrowth has occurred in recent decades

  8. Soil fauna as an indicator of soil quality in forest stands, pasture and secondary forest

    Directory of Open Access Journals (Sweden)

    Felipe Vieira da Cunha Neto

    2012-11-01

    Full Text Available The interactions between soil invertebrates and environmental variations are relatively unknown in the assessment of soil quality. The objective of this study was to evaluate soil quality in areas with different soil management systems, based on soil fauna as indicator, in Além Paraíba, Minas Gerais, Brazil. The soil invertebrate community was sampled using pitfall traps, in the dry and rainy seasons, from areas with five vegetation types (acacia, mimosa, eucalyptus, pasture, and secondary forest. The abundance of organisms and the total and average richness, Shannon's diversity index, the Pielou uniformity index, and change index V were determined. The fauna was most abundant in the areas of secondary forest and mimosa plantations in the dry season (111.3 and 31.7 individuals per trap per day, respectively. In the rainy season, the abundance of organisms in the three vegetation types did not differ. The highest values of average and total richness were recorded in the secondary forest in the dry season and in the mimosa stand in the rainy season. Shannon's index ranged from 1.57 in areas with acacia and eucalyptus in the rainy season to 3.19 in the eucalyptus area in the dry season. The uniformity index was highest in forest stands (eucalyptus, acacia and mimosa in the dry season, but higher in the rainy season in the pasture and secondary forest than in the forest stands. The change index V indicated that the percentage of extremely inhibited groups was lowest in the area with mimosa, both in the dry and rainy season (36 and 23 %, respectively. Of all forest stands, the mimosa area had the most abundant soil fauna.

  9. Dynamics of secondary forests

    NARCIS (Netherlands)

    Breugel, van M.

    2007-01-01

    The succession of tropical secondary forests on abandoned agricultural fields has been studied since long, most often by comparing stands of different age since abandonment. These so-called chronosequence studies have yielded much insight in general patterns of succession and the constraints and

  10. Secondary forest regeneration benefits old-growth specialist bats in a fragmented tropical landscape.

    Science.gov (United States)

    Rocha, Ricardo; Ovaskainen, Otso; López-Baucells, Adrià; Farneda, Fábio Z; Sampaio, Erica M; Bobrowiec, Paulo E D; Cabeza, Mar; Palmeirim, Jorge M; Meyer, Christoph F J

    2018-02-28

    Tropical forest loss and fragmentation are due to increase in coming decades. Understanding how matrix dynamics, especially secondary forest regrowth, can lessen fragmentation impacts is key to understanding species persistence in modified landscapes. Here, we use a whole-ecosystem fragmentation experiment to investigate how bat assemblages are influenced by the regeneration of the secondary forest matrix. We surveyed bats in continuous forest, forest fragments and secondary forest matrix habitats, ~15 and ~30 years after forest clearance, to investigate temporal changes in the occupancy and abundance of old-growth specialist and habitat generalist species. The regeneration of the second growth matrix had overall positive effects on the occupancy and abundance of specialists across all sampled habitats. Conversely, effects on generalist species were negligible for forest fragments and negative for secondary forest. Our results show that the conservation potential of secondary forests for reverting faunal declines in fragmented tropical landscapes increases with secondary forest age and that old-growth specialists, which are often of most conservation concern, are the greatest beneficiaries of secondary forest maturation. Our findings emphasize that the transposition of patterns of biodiversity persistence in island ecosystems to fragmented terrestrial settings can be hampered by the dynamic nature of human-dominated landscapes.

  11. Ant-diaspore interactions during secondary succession in the Atlantic forest of Brazil

    Directory of Open Access Journals (Sweden)

    Victor P Zwiener

    2012-06-01

    Full Text Available Animal-plant interactions are important for the recovery of diversity and processes in secondary forests, which increasingly dominate the tropical landscape. We used a combination of observational and experimental approaches to study the interactions of ants with diaspores across a successional gradient of forests in Southern Brazil, from August 2007 to April 2008. In addition to diaspore removal rates, we assessed the species richness, diversity and behaviour of ants interacting with diaspores, in three replicated sites of four successional stages of forests. We recorded 22 ant species interacting with diaspores (an estimated 15% of the total species pool in the region. Species richness and diversity did not differ among successional stages but the behaviour of ants towards diaspores changed with the age of secondary forests. In old successional stages the removal of entire diaspores was more common than in young successional stages of forests. Concordantly, diaspore removal rates were lowest in the youngest successional stage of secondary forests and increased with the age of forests. These results indicate that ant-diaspore interactions in secondary forests are disturbed and lower removal rates in secondary forests are likely to constrain the recruitment of plant populations during secondary succession. Rev. Biol. Trop. 60 (2: 933-942. Epub 2012 June 01.

  12. Co-benefits of biodiversity and carbon from regenerating secondary forests after shifting cultivation in the upland Philippines: implications for forest landscape restoration

    Science.gov (United States)

    Mukul, S. A.; Herbohn, J.; Firn, J.; Gregorio, N.

    2017-12-01

    Shifting cultivation is a widespread practice in tropical forest agriculture frontiers that policy makers often regard as the major driver of forest loss and degradation. Secondary forests regrowing after shifting cultivation are generally not viewed as suitable option for biodiversity conservation and carbon retention. Drawing upon our research in the Philippines and other relevant case studies, we compared the biodiversity and carbon sequestration benefits in recovering secondary forests after shifting cultivation to other land uses that commonly follow shifting cultivation. Regenerating secondary forests had higher biodiversity than fast growing timber plantations and other restoration options available in the area. Some old plantations, however, provided carbon benefits comparable the old growth forest, although their biodiversity was less than that of the regenerating forests. Our study demonstrates that secondary forests regrowing after shifting cultivation have a high potential for biodiversity and carbon sequestration co-benefits, representing an effective strategy for forest management and restoration in countries where they are common and where the forest is an integral part of rural people's livelihoods. We discuss the issues and potential mechanisms through which such dynamic land use can be incorporated into development projects that are currently financing the sustainable management, conservation, and restoration of tropical forests.

  13. The examples of forest management in secondary forests of Western Siberia

    Directory of Open Access Journals (Sweden)

    N. M. Debkov

    2017-04-01

    Full Text Available Identifying the best practices of responsible and sustainable forest use is an important aspect for possible learning of experience and replication of the most interesting examples in forestry. Qualitative and timely reforestation of disturbed areas with economically valuable species is the key indicator for the performance of effective forest management. Conservation of rare species of plants and animals in the logged areas is not less important factor. Today the priority is given to natural forest regeneration because it provides the best opportunity to avoid unreasonable financial costs and, as a rule, is more resilient against various natural and anthropogenic factors. The article discusses various examples and logging types in secondary forests in the Tomsk and Omsk Oblast, which allow increasing the economic, environmental, and social importance of forests. On specific examples it is shown that the principle of non-interference in the green zones of settlements is erroneous and may lead to undesirable consequences. The rejection of logging in these stands, as a rule, leads to increases of the fire danger, growth of phyto- and entomological threats, the reduction of recreational appeal, etc. The use of partial logging methods suggested in the papers has allowed solving some of these problems.

  14. Aboveground Biomass and Litterfall Dynamics in Secondary Forest ...

    African Journals Online (AJOL)

    The differences in aboveground biomass, litterfall patterns and the seasonality of litterfall in three secondary forest fields aged 1, 5 and 10 years of age regenerating from degraded abandoned rubber plantation and a mature forest were studied in southern Nigeria. This is with a view to understanding the possibility of ...

  15. Relief influence on tree species richness in secondary forest fragments of Atlantic Forest, SE, Brazil

    OpenAIRE

    Silva,William Goulart da; Metzger,Jean Paul; Bernacci,Luis Carlos; Catharino,Eduardo Luís Martins; Durigan,Giselda; Simões,Sílvio

    2008-01-01

    The aim of this work was to explore the relationship between tree species richness and morphological characteristics of relief at the Ibiúna Plateau (SE Brazil). We sampled 61 plots of 0.30 ha, systematically established in 20 fragments of secondary forest (2-274 ha) and in three areas within a continuous secondary forest site, Morro Grande Reserve (9,400 ha). At each plot, 100 trees with diameter at breast height > 5 cm were sampled by the point centered quarter method, and total richness an...

  16. Long-term monitoring reveals an avian species credit in secondary forest patches of Costa Rica

    Directory of Open Access Journals (Sweden)

    Steven C. Latta

    2017-06-01

    Full Text Available Degraded and secondary forests comprise approximately 50% of remaining tropical forest. Bird community characteristics and population trends in secondary forests are infrequently studied, but secondary forest may serve as a “safety net” for tropical biodiversity. Less understood is the occurrence of time-delayed, community-level dynamics such as an extinction debt of specialist species or a species credit resulting from the recolonization of forest patches by extirpated species. We sought to elucidate patterns and magnitudes of temporal change in avian communities in secondary forest patches in Southern Costa Rica biannually over a 10 year period during the late breeding season and mid-winter. We classified birds caught in mist nets or recorded in point counts by residency status, and further grouped them based on preferred habitat, sensitivity to disturbance, conservation priority, foraging guild, and foraging strata. Using hierarchical, mixed-effects models we tested for trends among species that share traits. We found that permanent-resident species increased over time relative to migrants. In both seasons, primary forest species generally increased while species typical of secondary forest, scrub, or edge declined. Species relatively sensitive to habitat disturbance increased significantly over time, whereas birds less sensitive to disturbance decreased. Similarly, generalists with higher habitat breadth scores declined. Because, we found very few changes in vegetation characteristics in secondary forest patches, shifts in the avian community toward primary forest species represent a species credit and are likely related to vegetation changes in the broader landscape. We suggest that natural regeneration and maturation of secondary forests should be recognized as a positive conservation development of potential benefit even to species typical of primary forest.

  17. [A comparative study on soil fauna in native secondary evergreen broad-leaved forest and Chinese fir plantation forests in subtropics].

    Science.gov (United States)

    Yan, Shaokui; Wang, Silong; Hu, Yalin; Gao, Hong; Zhang, Xiuyong

    2004-10-01

    In this study, we investigated the response of soil animal communities to the replacement of native secondary forest by Chinese fir plantation forest and successive rotation of Chinese fir in subtropics. Three adjacent forest stands, i.e., native secondary evergreen broad-leaved forest stand (control) and Chinese fir plantation stands of first (20 yr) and second (20 yr) rotations were selected for the comparison of soil fauna. All animals were extracted from the floor litter and 0-15 cm soil layer of the stands in Summer, 2003 by using Tullgren method, wet funnel method and hand-sorting method. Compared to two Chinese fir plantation forests, the native secondary evergreen broad-leaved forest had a higher abundance and a higher taxonomic diversity of animals in soil and litter, but there were no significant differences in the biomass and productivity of soil fauna between all study stands. The abundance or diversity did not differ significantly between the first rotation and second rotation stands, too. The results supported that vegetation cover might be one of the main forces driving the development of soil animal communities, and the effect of successive rotation of Chinese fir on the development of soil fauna was a slow-running process.

  18. Tropical secondary forest management influences frugivorous bat composition, abundance and fruit consumption in Chiapas, Mexico

    NARCIS (Netherlands)

    Vleut, I.; Levy-Tacher, S.I.; Boer, de W.F.; Galindo-Gonzalez, J.

    2013-01-01

    Most studies on frugivorous bat assemblages in secondary forests have concentrated on differences among successional stages, and have disregarded the effect of forest management. Secondary forest management practices alter the vegetation structure and fruit availability, important factors associated

  19. Diameter growth performance of tree functional groups in Puerto Rican secondary tropical forests

    Directory of Open Access Journals (Sweden)

    Patricia Adame

    2014-04-01

    Full Text Available Aim of study: Understanding the factors that control tree growth in successional stands is particularly important for quantifying the carbon sequestration potential and timber yield of secondary tropical forests. Understanding the factors that control tree growth in successional stands is particularly important for quantifying the carbon sequestration potential and timber yield of secondary tropical forests. Yet, the high species diversity of mixed tropical forests, including many uncommon species, hinders the development of species-specific diameter growth models.Area of study: In these analyses, we grouped 82 species from secondary forests distributed across 93 permanent plots on the island of Puerto Rico.Material and Methods: Species were classified according to regeneration strategy and adult height into six functional groups. This classification allowed us to develop a robust diameter growth model using growth data collected from 1980-1990. We used mixed linear model regression to analyze tree diameter growth as a function of individual tree characteristics, stand structure, functional group and site factors.Main results: The proportion of variance in diameter growth explained by the model was 15.1%, ranging from 7.9 to 21.7%. Diameter at breast height, stem density and functional group were the most important predictors of tree growth in Puerto Rican secondary forest. Site factors such as soil and topography failed to predict diameter growth.Keywords: Caribbean forests; growth model; tropical forest succession; Puerto Rico.

  20. Diameter growth performance of tree functional groups in Puerto Rican secondary tropical forests

    OpenAIRE

    Adame, Patricia; Brandeis, Thomas J; Uriarte, Maria

    2014-01-01

    Aim of study: Understanding the factors that control tree growth in successional stands is particularly important for quantifying the carbon sequestration potential and timber yield of secondary tropical forests. Understanding the factors that control tree growth in successional stands is particularly important for quantifying the carbon sequestration potential and timber yield of secondary tropical forests. Yet, the high species diversity of mixed tropical forests, including many uncommon sp...

  1. Tropical secondary forests regenerating after shifting cultivation in the Philippines uplands are important carbon sinks.

    Science.gov (United States)

    Mukul, Sharif A; Herbohn, John; Firn, Jennifer

    2016-03-08

    In the tropics, shifting cultivation has long been attributed to large scale forest degradation, and remains a major source of uncertainty in forest carbon accounting. In the Philippines, shifting cultivation, locally known as kaingin, is a major land-use in upland areas. We measured the distribution and recovery of aboveground biomass carbon along a fallow gradient in post-kaingin secondary forests in an upland area in the Philippines. We found significantly higher carbon in the aboveground total biomass and living woody biomass in old-growth forest, while coarse dead wood biomass carbon was higher in the new fallow sites. For young through to the oldest fallow secondary forests, there was a progressive recovery of biomass carbon evident. Multivariate analysis indicates patch size as an influential factor in explaining the variation in biomass carbon recovery in secondary forests after shifting cultivation. Our study indicates secondary forests after shifting cultivation are substantial carbon sinks and that this capacity to store carbon increases with abandonment age. Large trees contribute most to aboveground biomass. A better understanding of the relative contribution of different biomass sources in aboveground total forest biomass, however, is necessary to fully capture the value of such landscapes from forest management, restoration and conservation perspectives.

  2. Non-native Species in Floodplain Secondary Forests in Peninsular Malaysia

    Directory of Open Access Journals (Sweden)

    Nor Rasidah Hashim

    2010-01-01

    Full Text Available There is an increasing concern of alien species invading our tropical ecosystems because anthropogenic land use can create conditions in which non-native species thrive. This study is an assessment of bioinvasion using a quantitative survey of non-native plant species in floodplain secondary forests in Peninsular Malaysia. The study area is known to have a long cultivation and settlement history that provides ample time for non-native species introduction. The survey results showed that introduced species constituted 23% of all the identified species, with seven species unique to riparian forest strips and eleven species unique to abandoned paddy fields and the remaining five species being shared between the two secondary forest types. There existed some habitat preferences amongst the species implying both secondary forests were potentially susceptible to bioinvasion. Fourteen species are also invasive elsewhere (PIER invasives whereas fifteen species have acquired local uses such for traditional medicine and food products. The presence of these non-native species could alter native plant succession trajectory, and eventually leads to native species impoverishment if the exotics managed to outcompete the native species. As such, the findings of this study have a far-reaching application for the national biodiversity conservation efforts because it provides the required information on bioinvasion.

  3. Soil Carbon Stocks Decrease following Conversion of Secondary Forests to Rubber (Hevea brasiliensis) Plantations

    Science.gov (United States)

    de Blécourt, Marleen; Brumme, Rainer; Xu, Jianchu; Corre, Marife D.; Veldkamp, Edzo

    2013-01-01

    Forest-to-rubber plantation conversion is an important land-use change in the tropical region, for which the impacts on soil carbon stocks have hardly been studied. In montane mainland southeast Asia, monoculture rubber plantations cover 1.5 million ha and the conversion from secondary forests to rubber plantations is predicted to cause a fourfold expansion by 2050. Our study, conducted in southern Yunnan province, China, aimed to quantify the changes in soil carbon stocks following the conversion from secondary forests to rubber plantations. We sampled 11 rubber plantations ranging in age from 5 to 46 years and seven secondary forest plots using a space-for-time substitution approach. We found that forest-to-rubber plantation conversion resulted in losses of soil carbon stocks by an average of 37.4±4.7 (SE) Mg C ha−1 in the entire 1.2-m depth over a time period of 46 years, which was equal to 19.3±2.7% of the initial soil carbon stocks in the secondary forests. This decline in soil carbon stocks was much larger than differences between published aboveground carbon stocks of rubber plantations and secondary forests, which range from a loss of 18 Mg C ha−1 to an increase of 8 Mg C ha−1. In the topsoil, carbon stocks declined exponentially with years since deforestation and reached a steady state at around 20 years. Although the IPCC tier 1 method assumes that soil carbon changes from forest-to-rubber plantation conversions are zero, our findings show that they need to be included to avoid errors in estimating overall ecosystem carbon fluxes. PMID:23894456

  4. Geometrid moth assemblages reflect high conservation value of naturally regenerated secondary forests in temperate China

    NARCIS (Netherlands)

    Zou, Yi; Sang, Weiguo; Warren-Thomas, Eleanor; Axmacher, Jan Christoph

    2016-01-01

    The widespread destruction of mature forests in China has led to massive ecological degradation, counteracted in recent decades by substantial efforts to promote forest plantations and protect secondary forest ecosystems. The value of the resulting forests for biodiversity conservation is widely

  5. impact of re-forestation of a re-growth secondary forest with

    African Journals Online (AJOL)

    BIG TIMMY

    In general, the forest stand had more density of trees in each dbh class with a peak in .... Awolowo University Estate, Ile-Ife, Osun state, ... forest sub-type is dry deciduous forest (Onochie, ..... eastern Cascades, USA. .... Agriculture, Washington.

  6. Estimating carbon stock in secondary forests

    DEFF Research Database (Denmark)

    Breugel, Michiel van; Ransijn, Johannes; Craven, Dylan

    2011-01-01

    of trees and species for destructive biomass measurements. We assess uncertainties associated with these decisions using data from 94 secondary forest plots in central Panama and 244 harvested trees belonging to 26 locally abundant species. AGB estimates from species-specific models were used to assess...... is the use of allometric regression models to convert forest inventory data to estimates of aboveground biomass (AGB). The use of allometric models implies decisions on the selection of extant models or the development of a local model, the predictor variables included in the selected model, and the number...... relative errors of estimates from multispecies models. To reduce uncertainty in the estimation of plot AGB, including wood specific gravity (WSG) in the model was more important than the number of trees used for model fitting. However, decreasing the number of trees increased uncertainty of landscape...

  7. Biomass accumulation rates of Amazonian secondary forest and biomass of old-growth forests from Landsat time series and the Geoscience Laser Altimeter System

    Science.gov (United States)

    E. H. Helmer; M. A. Lefsky; D. A. Roberts

    2009-01-01

    We estimate the age of humid lowland tropical forests in Rondônia, Brazil, from a somewhat densely spaced time series of Landsat images (1975–2003) with an automated procedure, the Threshold Age Mapping Algorithm (TAMA), first described here. We then estimate a landscape-level rate of aboveground woody biomass accumulation of secondary forest by combining forest age...

  8. Heterogeneous movement of insectivorous Amazonian birds through primary and secondary forest: A case study using multistate models with radiotelemetry data

    Science.gov (United States)

    Hines, James; Powell, Luke L.; Wolfe, Jared D.; Johnson, Erik l.; Nichols, James D.; Stouffer, Phillip C.

    2015-01-01

    Given rates of deforestation, disturbance, and secondary forest accumulation in tropical rainforests, there is a great need to quantify habitat use and movement among different habitats. This need is particularly pronounced for animals most sensitive to disturbance, such as insectivorous understory birds. Here we use multistate capture–recapture models with radiotelemetry data to determine the successional stage at which within-day movement probabilities of Amazonian birds in secondary forest are similar to those in primary forest. We radio-tracked three common understory insectivore species in primary and secondary forest at the Biological Dynamics of Forest Fragments project near Manaus, Brazil: two woodcreepers, Glyphorynchus spirurus (n = 19) andXiphorhynchus pardalotus (n = 18), and the terrestrial antthrush Formicarius colma(n = 19). Forest age was a strong predictor of fidelity to a given habitat. All three species showed greater fidelity to primary forest than to 8–14-year-old secondary forest, indicating the latter’s relatively poor quality. The two woodcreeper species used 12–18-year-old secondary forest in a manner comparable to continuous forest, but F. colmaavoided moving even to 27–31-year-old secondary forest—the oldest at our site. Our results suggest that managers concerned with less sensitive species can assume that forest reserves connected by 12–18-year-old secondary forest corridors are effectively connected. On the other hand, >30 years are required after land abandonment before secondary forest serves as a primary forest-like conduit for movement by F. colma; more sensitive terrestrial insectivores may take longer still.

  9. Modeling carbon stocks in a secondary tropical dry forest in the Yucatan Peninsula, Mexico

    Science.gov (United States)

    Zhaohua Dai; Richard A. Birdsey; Kristofer D. Johnson; Juan Manuel Dupuy; Jose Luis Hernandez-Stefanoni; Karen. Richardson

    2014-01-01

    The carbon balance of secondary dry tropical forests of Mexico’s Yucatan Peninsula is sensitive to human and natural disturbances and climate change. The spatially explicit process model Forest-DeNitrification-DeComposition (DNDC) was used to estimate forest carbon dynamics in this region, including the effects of disturbance on carbon stocks. Model evaluation using...

  10. Economic Value of the Carbon Sink Services of Tropical Secondary Forests and Its Management Implications

    International Nuclear Information System (INIS)

    Ramirez, O.A.; Carpio, C.E.; Ortiz, R.; Finnegan, B.

    2002-01-01

    This paper explores the economic feasibility of secondary forest regeneration and conservation as an alternative in the campaign addressing the problem of global warming. Detailed measurements of tropical secondary forests over time, in different ecological zones of Costa Rica, are used to evaluate carbon storage models. The paper addresses key issues in the international discussion about cross- and within-country compensation for carbon storage services and illustrates a method to compute/predict their economic value over time under a variety of scenarios. The procedure is applicable to other developing countries where secondary forest growth is increasingly important

  11. Importance of Forest Ecosystem Services to Secondary School Students: a Case from the North-West Slovenia

    Directory of Open Access Journals (Sweden)

    Gregor Torkar

    2014-06-01

    Full Text Available Background and Purpose: Forest managers are facing challenges in balancing the demands for forest social services raised by the general public and forest productive services. Knowing local people’s attitudes, taking into account their needs and respecting their opinions, introducing social aspects should become a management priority to ensure success of conservational activities and sustainable use of natural resources. This study investigates the attitudes of one category from the general public which is secondary school students related to forest ecosystem services in order to determine and present a useful basis for further research of people’s attitudes towards forests and forest management. Materials and Methods: In 2013 and 2014 410 Slovenian students from secondary schools in the Vipava valley and Goriška area in northwestern Slovenia completed a questionnaire testing for the influence of gender and frequency of forest experiences on attitudes to forest ecosystem services. Students’ attitudes to forest ecosystem services were investigated via 15 statements about provisioning, regulating, cultural and supporting services. The gathered data was analysed by the Statistical Package for the Social Sciences (SPSS, using ANOVA, Tukey post-hoc test, Spearman’s product moment correlation and the nonparametric Mann–Whitney (U test. Results and Conclusions: Students acknowledged the high benefits of ecosystem services provided by forests, though not all forest ecosystem services hold the same importance to secondary school students. Students placed the highest importance on supporting services; especially on the value of forests as habitats for animal and plant species. Also the importance of forests for clean air production was emphasized. Students with more frequent experiences in the forest environment placed more importance on cultural services as well as regulating services, especially for clean water and air production. Gender

  12. Epiphytic bromeliad communities in secondary and mature forest in a tropical premontane area

    NARCIS (Netherlands)

    Cascante Marin, A.M.; Wolf, J.H.D.; Oostermeijer, J.G.B.; den Nijs, J.C.M.; Sanahuja, O.; Duran Apuy, A.

    2006-01-01

    We analyzed the differences in species richness, community composition, population structure and within-tree location of epiphytic bromeliads in contiguous secondary and mature forests in a premontane area in Costa Rica. Diversity in the mature forest was highest, and the communities differed in

  13. Estimating Aboveground Biomass and Carbon Stocks in Periurban Andean Secondary Forests Using Very High Resolution Imagery

    Directory of Open Access Journals (Sweden)

    Nicola Clerici

    2016-07-01

    Full Text Available Periurban forests are key to offsetting anthropogenic carbon emissions, but they are under constant threat from urbanization. In particular, secondary Neotropical forest types in Andean periurban areas have a high potential to store carbon, but are currently poorly characterized. To address this lack of information, we developed a method to estimate periurban aboveground biomass (AGB—a proxy for multiple ecosystem services—of secondary Andean forests near Bogotá, Colombia, based on very high resolution (VHR GeoEye-1, Pleiades-1A imagery and field-measured plot data. Specifically, we tested a series of different pre-processing workflows to derive six vegetation indices that were regressed against in situ estimates of AGB. Overall, the coupling of linear models and the Ratio Vegetation Index produced the most satisfactory results. Atmospheric and topographic correction proved to be key in improving model fit, especially in high aerosol and rugged terrain such as the Andes. Methods and findings provide baseline AGB and carbon stock information for little studied periurban Andean secondary forests. The methodological approach can also be used for integrating limited forest monitoring plot AGB data with very high resolution imagery for cost-effective modelling of ecosystem service provision from forests, monitoring reforestation and forest cover change, and for carbon offset assessments.

  14. Succession of Ephemeral Secondary Forests and Their Limited Role for the Conservation of Floristic Diversity in a Human-Modified Tropical Landscape

    DEFF Research Database (Denmark)

    van Breugel, Michiel; Hall, Jefferson S.; Craven, Dylan

    2013-01-01

    of these secondary forests to conserve tree species diversity, we also evaluated the diversity of species that can persist as viable metapopulations in a dynamic patchwork of short-lived successional forests, using different assumptions about the average relative size at reproductive maturity. We found...... niche operate simultaneously and shape successional dynamics of the metacommunity of these early secondary forests. A high diversity of plant species across the metacommunity of early secondary forests shows a potential for restoration of diverse forests through natural succession, when trees....... This implies that ephemeral secondary forests have a limited role in the long-term conservation of tree species diversity in human-modified tropical landscapes....

  15. Diversity patterns of ground beetles and understory vegetation in mature, secondary, and plantation forest regions of temperate northern China.

    Science.gov (United States)

    Zou, Yi; Sang, Weiguo; Wang, Shunzhong; Warren-Thomas, Eleanor; Liu, Yunhui; Yu, Zhenrong; Wang, Changliu; Axmacher, Jan Christoph

    2015-02-01

    Plantation and secondary forests form increasingly important components of the global forest cover, but our current knowledge about their potential contribution to biodiversity conservation is limited. We surveyed understory plant and carabid species assemblages at three distinct regions in temperate northeastern China, dominated by mature forest (Changbaishan Nature Reserve, sampled in 2011 and 2012), secondary forest (Dongling Mountain, sampled in 2011 and 2012), and forest plantation habitats (Bashang Plateau, sampled in 2006 and 2007), respectively. The α-diversity of both taxonomic groups was highest in plantation forests of the Bashang Plateau. Beetle α-diversity was lowest, but plant and beetle species turnover peaked in the secondary forests of Dongling Mountain, while habitats in the Changbaishan Nature Reserve showed the lowest turnover rates for both taxa. Changbaishan Nature Reserve harbored the highest proportion of forest specialists. Our results suggest that in temperate regions of northern China, the protected larch plantation forest established over extensive areas might play a considerable role in maintaining a high biodiversity in relation to understory herbaceous plant species and carabid assemblages, which can be seen as indicators of forest disturbance. The high proportion of phytophagous carabids and the rarity of forest specialists reflect the relatively homogenous, immature status of the forest ecosystems on the Bashang Plateau. China's last remaining large old-growth forests like the ones on Changbaishan represent stable, mature ecosystems which require particular conservation attention.

  16. The impact of forest roads on understory plant diversity in temperate hornbeam-beech forests of Northern Iran.

    Science.gov (United States)

    Deljouei, Azade; Abdi, Ehsan; Marcantonio, Matteo; Majnounian, Baris; Amici, Valerio; Sohrabi, Hormoz

    2017-08-01

    Forest roads alter the biotic and abiotic components of ecosystems, modifying temperature, humidity, wind speed, and light availability that, in turn, cause changes in plant community composition and diversity. We aim at investigating and comparing the diversity of herbaceous species along main and secondary forest roads in a temperate-managed hornbeam-beech forest, north of Iran. Sixteen transects along main and secondary forest roads were established (eight transects along main roads and eight along secondary roads). To eliminate the effect of forest type, all transects were located in Carpinetum-Fagetum forests, the dominant forest type in the study area. The total length of each transect was 200 m (100 m toward up slope and 100 m toward down slope), and plots were established along it at different distances from road edge. The diversity of herbaceous plant species was calculated in each plot using Shannon-Wiener index, species richness, and Pielou's index. The results showed that diversity index decreased when distance from road edge increases. This decreasing trend continued up to 60 m from forest road margin, and after this threshold, the index slightly increased. Depending on the type of road (main or secondary) as well as cut or fill slopes, the area showing a statistical different plant composition and diversity measured through Shannon-Wiener, species richness, and Pielou's index is up to 10 m. The length depth of the road edge effect found in main and secondary forest roads was small, but it could have cumulative effects on forest microclimate and forest-associated biota at the island scale. Forest managers should account for the effect of road buildings on plant communities.

  17. Carbon stocks of three secondary coniferous forests along an altitudinal gradient on Loess Plateau in inland China

    Science.gov (United States)

    Liu, Ning; Nan, Hongwei

    2018-01-01

    Natural forests in inland China are generally distributed in montane area and secondary due to a semi-arid climate and past anthropogenic disturbances. However, quantification of carbon (C) stock in these forests and the role of altitude in determining C storage and its partition among ecosystem components are unclear. We sampled 54 stands of three secondary coniferous forests (Larix principis-rupprechtii (LP) forest, Picea meyerii (PM) forest and Pinus tabulaeformis (PT) forest) on Loess Plateau in an altitudinal range of 1200-2700m a.s.l. C stocks of tree layer, shrub layer, herb layer, coarse wood debris, forest floor and soil were estimated. We found these forests had relatively high total C stocks. Driven by both higher vegetation and soil C stocks, total C stocks of LP and PM forests in the high altitudinal range were 375.0 and 368.4 t C ha-1 respectively, significantly higher than that of PT forest in the low altitudinal range (230.2 t C ha-1). In addition, understory shrubs accounted for about 20% of total biomass in PT forest. The proportions of vegetation to total C stock were similar among in the three forests (below 45%), so were the proportions of soil C stock (over 54%). Necromass C stocks were also similar among these forests, but their proportions to total C stock were significantly lower in LP and PM forests (1.4% and 1.6%) than in PT forest (3.0%). Across forest types, vegetation biomass and soil C stock simultaneously increased with increasing altitude, causing fairly unchanged C partitioning among ecosystem components along the altitudinal gradient. Soil C stock also increased with altitude in LP and PT forests. Forest floor necromass decreased with increasing altitude across the three forests. Our results suggest the important role of the altitudinal gradient in C sequestration and floor necromass of these three forests in terms of alleviated water conditions and in soil C storage of LP and PM forests in terms of temperature change. PMID

  18. Earthworm abundance and species composition in abandoned tropical croplands: comparisons of tree plantations and secondary forests.

    Science.gov (United States)

    G. Gonzalez; X. Zou; S. Borges

    1996-01-01

    We compared patterns of earthworms abundance and species composition in tree plantation and secondary forest of Puerto Rico. Tree plantations included pine (Pinus caribea Morelet) and mahogany (Swietenia macrophylla King) established in the 1930's; 1960's; and 1970's; secondary forests were naturally regenerated in areas adjacent to these plantations. We...

  19. Seed bank composition in a secondary forest in the Lower Delta of the Paraná River (Argentina

    Directory of Open Access Journals (Sweden)

    Fábio Kalesnik

    2013-03-01

    Full Text Available The native forests once occupying the coastal levees of the Lower Delta islands of the Paraná River (in Argentina have been replaced by commercial forests. Many of those forests have been abandoned, resulting in secondary forest formation that is subject to numerous invasive exotic species. A priori observations suggest that successional trends do not lead to recovery of the original forest. The aim of the present study was to analyze the role of invasive exotic species in these environments and the likelihood of recovery of the original forest cover. Therefore, we examined the composition of the seed bank and of the standing vegetation, as well as the population structure of tree species. Secondary forests are described as being in an intermediate successional stage, with few exotic species (mainly trees but with a high abundance of standing vegetation and seed banks. These exotic species will likely continue to successfully predominate in different forest strata over the next stages. Because of the low density of native tree species, it is difficult to predict their future persistence. In conclusion, ecological restoration strategies will be needed in order to increase native tree species richness and biodiversity of the forests in the Lower Delta of the Paraná River.

  20. Changes in Nitrogen Cycling during Tropical Forest Secondary Succession on Abandoned Pastures

    Science.gov (United States)

    Mirza, S.; Rivera, R. J.; Marin-Spiotta, E.

    2017-12-01

    Nitrogen (N) plays two important roles in Earth's climate. As a plant nutrient, the availability of N affects plant growth and the uptake of carbon (C) from the atmosphere into plant biomass. The accumulation of C in long-lived biomass and in soils contributes to reducing the amount of CO2 in the atmosphere. Secondly, excess N can lead to the production of N2O, which is a more potent greenhouse than CO2. Humans have altered the cycling of N in terrestrial ecosystems, affecting their potential to sequester C and help mitigate climate change. Land-use change, specifically deforestation and reforestation, can affect N availability for plant growth and N2O production. Long-term agricultural use can deplete nitrogen sources, even in tropical soils where N is not expected to limit productivity. Secondary succession and reforestation can allow for the recovery of N stocks and fluxes, with implications for C cycling and N2O emissions. N limitation in pastures and early successional forests increases the demand for N-fixing tree species, but previous research has shown that there is a greater abundance of N-fixing species in older forests (Batterman et. al 2013). Successional trends in N mineralization and denitrification vary across studies, with some showing greater rates in agricultural soils or in mature forest soils, compared to early successional sites. Here we examine changes in N-fixing species, above and belowground N pools, and N cycling rates in secondary forests on former pastures on Oxisols in the wet tropical forest life zone of Puerto Rico. The availability of a long-term well-replicated chronosequence provides us with the opportunity to study decadal trends in N processes during forest recovery after agricultural abandonment.

  1. Comparing soil organic carbon dynamics in plantation and secondary forest in wet tropics in Puerto Rico

    Science.gov (United States)

    LI YIQING; MING XU; ZOU XIAOMING; PEIJUN SHI§; YAOQI ZHANG

    2005-01-01

    We compared the soil carbon dynamics between a pine plantation and a secondary forest, both of which originated from the same farmland abandoned in 1976 with the same cropping history and soil conditions, in the wet tropics in Puerto Rico from July 1996 to June 1997. We found that the secondary forest accumulated the heavy-fraction organic carbon (HF-OC) measured by...

  2. Landscape perception based on personal attributes in determining the scenic beauty of in-stand natural secondary forests

    Directory of Open Access Journals (Sweden)

    Yong Chen

    2016-06-01

    Full Text Available The aim of this paper was to validate factors affecting the in-stand landscape quality and how important each factor was in determining scenic beauty of natural secondary forests. The study was limited to 23 stand-level cases of natural secondary forests in Shen Zhen city in southern China. Typical samples of photographs and public estimations were applied to evaluate scenic beauty inside the natural secondary forests. The major factors were then selected by multiple linear-regression analysis and a model between scenic beauty estimation (SBE values and in-stand landscape features was established. Rise in crown density, fall in plant litter, glow in color of trunk, fall in arbor richness, and rise in visible distance increased scenic beauty values of in-stand landscape. These five factors significantly explained the differences in scenic beauty, and together accounted for 45% of total variance in SBEs. Personal factors (e.g. gender, age and education did not significantly affect the ratings of landscape photos, although variations of landscape quality were affected by some personal factors. Results of this study will assist policymakers, silviculturists and planners in landscape design and management of natural secondary forests in Shenzhen city. People can improve the scenic beauty values by pruning branches and clearing plant litter, which subsequently improve the forest health and contribute to forest recreation.

  3. The long-term effects of planting and harvesting on secondary forest dynamics under climate change in northeastern China.

    Science.gov (United States)

    Yao, Jing; He, Xingyuan; He, Hongshi; Chen, Wei; Dai, Limin; Lewis, Bernard J; Yu, Lizhong

    2016-01-04

    Unlike the virgin forest in the Changbaishan Nature Reserve in northeastern China, little research on a landscape scale has been conducted on secondary forests in the region under conditions of a warming climate. This research was undertaken in the upper Hun River region where the vegetation is representative of the typical secondary forest of northeastern China. The spatially explicit forest landscape model LANDIS was utilized to simulate the responses of forest restoration dynamics to anthropogenic disturbance (planting and harvesting) and evaluate the difference of the restoration process under continuation of current climatic conditions and climate warming. The results showed that: (1) The interaction of planting and harvesting has organizational scale effects on the forest. The combination of planting and harvesting policies has significant effects on the overall forest but not on individual species. (2) The area expansion of the historically dominant species Pinus koraiensis is less under climate warming than under continuation of current climatic conditions. These suggests that we should carefully take historically dominant species as the main focus for forest restoration, especially when they are near their natural distribution boundary, because they are probably less capable of successfully adapting to climate change.

  4. Succession of ephemeral secondary forests and their limited role for the conservation of floristic diversity in a human-modified tropical landscape.

    Directory of Open Access Journals (Sweden)

    Michiel van Breugel

    Full Text Available Both local- and landscape-scale processes drive succession of secondary forests in human-modified tropical landscapes. Nonetheless, until recently successional changes in composition and diversity have been predominantly studied at the patch level. Here, we used a unique dataset with 45 randomly selected sites across a mixed-use tropical landscape in central Panama to study forest succession simultaneously on local and landscape scales and across both life stages (seedling, sapling, juvenile and adult trees and life forms (shrubs, trees, lianas, and palms. To understand the potential of these secondary forests to conserve tree species diversity, we also evaluated the diversity of species that can persist as viable metapopulations in a dynamic patchwork of short-lived successional forests, using different assumptions about the average relative size at reproductive maturity. We found a deterministic shift in the diversity and composition of the local plant communities as well as the metacommunity, driven by variation in the rate at which species recruited into and disappeared from the secondary forests across the landscape. Our results indicate that dispersal limitation and the successional niche operate simultaneously and shape successional dynamics of the metacommunity of these early secondary forests. A high diversity of plant species across the metacommunity of early secondary forests shows a potential for restoration of diverse forests through natural succession, when trees and fragments of older forests are maintained in the agricultural matrix and land is abandoned or set aside for a long period of time. On the other hand, during the first 32 years the number of species with mature-sized individuals was a relatively small and strongly biased sub-sample of the total species pool. This implies that ephemeral secondary forests have a limited role in the long-term conservation of tree species diversity in human-modified tropical landscapes.

  5. FORECO. Countermeasures applied in forest ecosystems and their secondary effects. A review of literature

    International Nuclear Information System (INIS)

    Rafferty, B.; Synnot, H.

    1998-01-01

    The present document reports a literature review of the countermeasures applied in forest ecosystems and their secondary effects. The review has been prepared as a deliverable for the FORECO research Project. FORECO (Forest Ecosystems: Classification of Restoration Options, Considering Dose Reduction, Long-Term Ecological Quality and Economic Factors) is a project funded by the European Commission (Research Contract n. ERBIC-CT96-0202) in the frame of the Cooperation with third countries and international organizations (INCO-COPERNICUS) and coordinated by the National Environmental Protection Agency of Italy. The main aim of FORECO activities with respect to forest ecosystems is the classification of countermeasure options in different forest types, considering the balance between dose reduction, long-term ecological quality and economical factors

  6. FORECO. Countermeasures applied in forest ecosystems and their secondary effects: a review of literature

    Energy Technology Data Exchange (ETDEWEB)

    Rafferty, B.; Synnot, H. [Radiological Protection Institute of Ireland, (Ireland)

    1998-12-31

    The present document reports a literature review of the countermeasures applied in forest ecosystems and their secondary effects. The review has been prepared as a deliverable for the FORECO research Project. FORECO (Forest Ecosystems: Classification of Restoration Options, Considering Dose Reduction, Long-Term Ecological Quality and Economic Factors) is a project funded by the European Commission (Research Contract n. ERBIC-CT96-0202) in the frame of the Cooperation with third countries and international organizations (INCO-COPERNICUS) and coordinated by the National Environmental Protection Agency of Italy. The main aim of FORECO activities with respect to forest ecosystems is the classification of countermeasure options in different forest types, considering the balance between dose reduction, long-term ecological quality and economical factors.

  7. Characterization of a large biogenic secondary organic aerosol event from eastern Canadian forests

    Science.gov (United States)

    Slowik, J. G.; Stroud, C.; Bottenheim, J. W.; Brickell, P. C.; Chang, R. Y.-W.; Liggio, J.; Makar, P. A.; Martin, R. V.; Moran, M. D.; Shantz, N. C.; Sjostedt, S. J.; van Donkelaar, A.; Vlasenko, A.; Wiebe, H. A.; Xia, A. G.; Zhang, J.; Leaitch, W. R.; Abbatt, J. P. D.

    2010-03-01

    Measurements of aerosol composition, volatile organic compounds, and CO are used to determine biogenic secondary organic aerosol (SOA) concentrations at a rural site 70 km north of Toronto. These biogenic SOA levels are many times higher than past observations and occur during a period of increasing temperatures and outflow from Northern Ontario and Quebec forests in early summer. A regional chemical transport model approximately predicts the event timing and accurately predicts the aerosol loading, identifying the precursors as monoterpene emissions from the coniferous forest. The agreement between the measured and modeled biogenic aerosol concentrations contrasts with model underpredictions for polluted regions. Correlations of the oxygenated organic aerosol mass with tracers such as CO support a secondary aerosol source and distinguish biogenic, pollution, and biomass burning periods during the field campaign. Using the Master Chemical Mechanism, it is shown that the levels of CO observed during the biogenic event are consistent with a photochemical source arising from monoterpene oxidation. The biogenic aerosol mass correlates with satellite measurements of regional aerosol optical depth, indicating that the event extends across the eastern Canadian forest. This regional event correlates with increased temperatures, indicating that temperature-dependent forest emissions can significantly affect climate through enhanced direct optical scattering and higher cloud condensation nuclei numbers.

  8. How does vegetation structure influence woodpeckers and secondary cavity nesting birds in African cork oak forest?

    Science.gov (United States)

    Segura, Amalia

    2017-08-01

    The Great Spotted Woodpecker provides important information about the status of a forest in terms of structure and age. As a primary cavity creator, it provides small-medium size cavities for passerines. However, despite its interest as an ecosystem engineer, studies of this species in Africa are scarce. Here, spatially explicit predictive models were used to investigate how forest structural variables are related to both the Great Spotted Woodpecker and secondary cavity nesting birds in Maamora cork oak forest (northwest Morocco). A positive association between Great Spotted Woodpecker and both dead-tree density and large mature trees (>60 cm dbh) was found. This study area, Maamora, has an old-growth forest structure incorporating a broad range of size and condition of live and dead trees, favouring Great Spotted Woodpecker by providing high availability of foraging and excavating sites. Secondary cavity nesting birds, represented by Great Tit, African Blue Tit, and Hoopoe, were predicted by Great Spotted Woodpecker detections. The findings suggest that the conservation of the Maamora cork oak forest could be key to maintaining these hole-nesting birds. However, this forest is threatened by forestry practises and livestock overgrazing and the challenge is therefore to find sustainable management strategies that ensure conservation while allowing its exploitation.

  9. [Structural recovering in Andean successional forests from Porce (Antioquia, Colombia)].

    Science.gov (United States)

    Yepes, Adriana P; del Valle, Jorge I; Jaramillo, Sandra L; Orrego, Sergio A

    2010-03-01

    Places subjected to natural or human disturbance can recover forest through an ecological process called secondary succession. Tropical succession is affected by factors such as disturbances, distance from original forest, surface configuration and local climate. These factors determine the composition of species and the time trend of the succession itself. We studied succession in soils used for cattle ranching over various decades in the Porce Region of Colombia (Andean Colombian forests). A set of twenty five permanent plots was measured, including nine plots (20 x 50 m) in primary forests and sixteen (20 x 25 m) in secondary forests. All trees with diameter > or =1.0 cm were measured. We analyzed stem density, basal area, above-ground biomass and species richness, in a successional process of ca. 43 years, and in primary forests. The secondary forests' age was estimated in previous studies, using radiocarbon dating, aerial photographs and a high-resolution satellite image analysis (7 to >43 years). In total, 1,143 and 1,766 stems were measured in primary and secondary forests, respectively. Basal area (5.7 to 85.4 m2 ha(-1)), above-ground biomass (19.1 to 1,011.5 t ha(-1)) and species richness (4 to 69) directly increased with site age, while steam density decreased (3,180 to 590). Diametric distributions were "J-inverted" for primary forests and even-aged size-class structures for secondary forests. Three species of palms were abundant and exclusive in old secondary forests and primary forests: Oenocarpus mapora, Euterpe precatoria and Oenocarpus bataua. These palms happened in cohorts after forest disturbances. Secondary forest structure was 40% in more than 43 years of forest succession and indicate that many factors are interacting and affecting the forests succession in the area (e.g. agriculture, cattle ranching, mining, etc.).

  10. Changes in forest biomass and linkage to climate and forest disturbances over Northeastern China.

    Science.gov (United States)

    Zhang, Yuzhen; Liang, Shunlin

    2014-08-01

    The forests of northeastern China store nearly half of the country's total biomass carbon stocks. In this study, we investigated the changes in forest biomass by using satellite observations and found that a significant increase in forest biomass took place between 2001 and 2010. To determine the possible reasons for this change, several statistical methods were used to analyze the correlations between forest biomass dynamics and forest disturbances (i.e. fires, insect damage, logging, and afforestation and reforestation), climatic factors, and forest development. Results showed that forest development was the most important contributor to the increasing trend of forest biomass from 2001 to 2010, and climate controls were the secondary important factor. Among the four types of forest disturbance considered in this study, forest recovery from fires, and afforestation and reforestation during the past few decades played an important role in short-term biomass dynamics. This study provided observational evidence and valuable information for the relationships between forest biomass and climate as well as forest disturbances. © 2014 John Wiley & Sons Ltd.

  11. Effects of tropical montane forest disturbance on epiphytic macrolichens

    International Nuclear Information System (INIS)

    Benítez, Ángel; Prieto, María; González, Yadira; Aragón, Gregorio

    2012-01-01

    The high diversity of epiphytes typical of undisturbed montane tropical forests has been negatively affected by continuous deforestation and forest conversion to secondary vegetation. Macrolichens are an important component of these epiphytes. Because their physiology is strongly coupled to humidity and solar radiation, we hypothesized that microclimatic changes derived from forest clearing and logging can affect the diversity of these poikilohydric organisms. In southern Ecuador, we examined three types of forests according to a disturbance gradient (primary forests, secondary forests, and monospecific forests of Alnus acuminata) for the presence/absence and coverage of epiphytic macrolichens that we identified on 240 trees. We found that total richness tended to decrease when the range of the disturbance increased. The impoverishment was particularly drastic for “shade-adapted lichens”, while the richness of “heliophytic lichens” increased in the drier conditions of secondary growth. Epiphytic composition also differed significantly among the three types of forests, and the similarity decreased when the range of the disturbance was greater. We concluded that a span of 40 years of recovery by secondary vegetation was not enough to regenerate the diversity of epiphytic macrolichens that was lost due to forest disturbances. -- Highlights: ► Tropical montane forest disturbance drastically reduced macrolichen diversity. ► Species loss was most severe for the “shade-adapted lichens” because high radiation is harmful to them. ► In secondary forests lichen diversity of native forests was not regenerated. ► The protection of remnants of primary tropical forest might help to preserve a diverse community of epiphytic macrolichens.

  12. Recovery of Methane Consumption by Secondary Forests in the Amazon River Basin

    Science.gov (United States)

    Webster, K. D.; Meredith, L. K.; Piccini, W.; Pedrinho, A.; Nüsslein, K.; Van Haren, J. L. M.; Camargo, P. B. D.; Mui, T. S.; Saleska, S. R.

    2017-12-01

    Methane (CH4) is a major greenhouse gas in Earth's atmosphere and its atmospheric global mole fraction has roughly doubled since the start of the industrial revolution. The tropics are thought to be a major CH4 emitter, with the Amazon River Basin estimated to contribute 7 % of the annual flux to the atmosphere. The Amazon has experienced extensive land use change during the past 30 years, but we lack an understanding of the qualitative and quantitative effects of land use change on CH4 flux from the Amazon and the associated reasons. To illuminate the factors controlling CH4 flux across land use gradients in the Amazon we measured the CH4 fluxes and will measure the associated stable isotopic composition from pastures, primary forests, and secondary forests, at Ariquemes (Western Amazon, more deforested), and Santarem (Eastern Amazon, less deforested), Brazil. The sites near Santarem were sampled in June of 2016 and the sites near Ariquemes were sampled in March and April of 2017, both at the end of the wet season. Little difference was observed between land use types in Santarem with each land use type slightly consuming atmospheric CH4. However, pasture fluxes at Ariquemes were higher (+520 μg-C m-2 hr-1) than in primary (0 μg-C m-2 hr-1) and secondary forests (-20 μg-C m-2 hr-1; p = 6*10-4). CH4 flux from individual Santarem sites was not correlated with environmental variables. CH4 flux from Airquemes was correlated with several parameters across all samples including soil temperature (p = 7*10-4), and soil humidity (p = 0.02). Despite the fact that pastures experienced higher soil temperatures than forest soils this appears to be a low predictor of CH4 flux from these environments as it was seen at both Santarem and Ariquemes. The analysis of the stable isotopic composition of CH4 from these chambers will aid in understanding the competing processes of microbial CH4 consumption and production in these soils and why pastures may become CH4 sources and

  13. Impact of Forest Harvesting and Forest Regeneration on Runoff Dynamics at Watersheds of Central Siberia

    Directory of Open Access Journals (Sweden)

    A. A. Onuchin

    2014-02-01

    Full Text Available In the paper disturbance of Angara river region forests were estimated and peculiarities of forest regeneration after logging and wild fires were analyzed. According to the landscape classification of the regional study, three groups of landscapes differencing on types of forest successions were developed. It was shown that water protective and water regulate functions of the Angara river region forests change under commercial forest harvesting. Comparisons of the inventory and hydrological data detected that hydrological consequences of commercial forest harvesting are dependent on climatic parameters and forest regeneration peculiarities. In the continental climate conditions, when forest regeneration is delayed, snow storms are more active, snow evaporation increases and runoff reduces. In the process of logging sites overgrown with secondary small-leaved forest, snow accumulation increases and runoff increases, exceeding the value of annual runoff at undisturbed watersheds.

  14. Carbon storage in old-growth forests of the Mid-Atlantic: toward better understanding the eastern forest carbon sink.

    Science.gov (United States)

    McGarvey, Jennifer C; Thompson, Jonathan R; Epstein, Howard E; Shugart, Herman H

    2015-02-01

    Few old-growth stands remain in the matrix of secondary forests that dominates the eastern North American landscape. These remnant stands offer insight on the potential carbon (C) storage capacity of now-recovering secondary forests. We surveyed the remaining old-growth forests on sites characteristic of the general Mid-Atlantic United States and estimated the size of multiple components of forest C storage. Within and between old-growth stands, variability in C density is high and related to overstory tree species composition. The sites contain 219 ± 46 Mg C/ha (mean ± SD), including live and dead aboveground biomass, leaf litter, and the soil O horizon, with over 20% stored in downed wood and snags. Stands dominated by tulip poplar (Liriodendron tulipifera) store the most live biomass, while the mixed oak (Quercus spp.) stands overall store more dead wood. Total C density is 30% higher (154 Mg C/ha), and dead wood C density is 1800% higher (46 Mg C/ha) in the old-growth forests than in the surrounding younger forests (120 and 5 Mg C/ha, respectively). The high density of dead wood in old growth relative to secondary forests reflects a stark difference in historical land use and, possibly, the legacy of the local disturbance (e.g., disease) history. Our results demonstrate the potential for dead wood to maintain the sink capacity of secondary forests for many decades to come.

  15. Landscape composition influences abundance patterns and habitat use of three ungulate species in fragmented secondary deciduous tropical forests, Mexico

    Directory of Open Access Journals (Sweden)

    G. García-Marmolejo

    2015-01-01

    Full Text Available Secondary forests are extensive in the tropics. Currently, these plant communities are the available habitats for wildlife and in the future they will possibly be some of the most wide-spread ecosystems world-wide. To understand the potential role of secondary forests for wildlife conservation, three ungulate species were studied: Mazama temama, Odocoileus virginianus and Pecari tajacu. We analyzed their relative abundance and habitat use at two spatial scales: (1 Local, where three different successional stages of tropical deciduous forest were compared, and (2 Landscape, where available habitats were compared in terms of landscape composition (proportion of forests, pastures and croplands within 113 ha. To determine the most important habitat-related environmental factors influencing the Sign Encounter Rate (SER of the three ungulate species, 11 physical, anthropogenic and vegetation variables were simultaneously analyzed through model selection using Akaike’s Information Criterion. We found, that P. tajacu and O. virginianus mainly used early successional stages, while M. temama used all successional stages in similar proportions. The latter species, however, used early vegetation stages only when they were located in landscapes mainly covered by forest (97%. P. tajacu and O. virginianus also selected landscapes covered essentially by forests, although they required smaller percentages of forest (86%. All ungulate species avoided landscape fragments covered by pastures. For all three species, landscape composition and human activities were the variables that best explained SER. We concluded that landscape is the fundamental scale for ungulate management, and that secondary forests are potentially important landscape elements for ungulate conservation.

  16. Effects of tropical montane forest disturbance on epiphytic macrolichens

    Energy Technology Data Exchange (ETDEWEB)

    Benitez, Angel [Instituto de Ecologia, Herbario HUTPL, Universidad Tecnica Particular de Loja, San Cayetano s/n, Loja (Ecuador); Prieto, Maria, E-mail: maria.prieto@urjc.es [Area de Biodiversidad y Conservacion, ESCET, Universidad Rey Juan Carlos, Mostoles, E-28933, Madrid (Spain); Gonzalez, Yadira [Instituto de Ecologia, Herbario HUTPL, Universidad Tecnica Particular de Loja, San Cayetano s/n, Loja (Ecuador); Aragon, Gregorio [Area de Biodiversidad y Conservacion, ESCET, Universidad Rey Juan Carlos, Mostoles, E-28933, Madrid (Spain)

    2012-12-15

    The high diversity of epiphytes typical of undisturbed montane tropical forests has been negatively affected by continuous deforestation and forest conversion to secondary vegetation. Macrolichens are an important component of these epiphytes. Because their physiology is strongly coupled to humidity and solar radiation, we hypothesized that microclimatic changes derived from forest clearing and logging can affect the diversity of these poikilohydric organisms. In southern Ecuador, we examined three types of forests according to a disturbance gradient (primary forests, secondary forests, and monospecific forests of Alnus acuminata) for the presence/absence and coverage of epiphytic macrolichens that we identified on 240 trees. We found that total richness tended to decrease when the range of the disturbance increased. The impoverishment was particularly drastic for 'shade-adapted lichens', while the richness of 'heliophytic lichens' increased in the drier conditions of secondary growth. Epiphytic composition also differed significantly among the three types of forests, and the similarity decreased when the range of the disturbance was greater. We concluded that a span of 40 years of recovery by secondary vegetation was not enough to regenerate the diversity of epiphytic macrolichens that was lost due to forest disturbances. -- Highlights: Black-Right-Pointing-Pointer Tropical montane forest disturbance drastically reduced macrolichen diversity. Black-Right-Pointing-Pointer Species loss was most severe for the 'shade-adapted lichens' because high radiation is harmful to them. Black-Right-Pointing-Pointer In secondary forests lichen diversity of native forests was not regenerated. Black-Right-Pointing-Pointer The protection of remnants of primary tropical forest might help to preserve a diverse community of epiphytic macrolichens.

  17. Landsat-Based Land Use Change Assessment in the Brazilian Atlantic Forest: Forest Transition and Sugarcane Expansion

    Directory of Open Access Journals (Sweden)

    Alindomar Lacerda Silva

    2018-06-01

    Full Text Available In this study, we examine the hypothesis of a forest transition in an area of early expansion of the agricultural frontier over the Brazilian Atlantic Forest in the south-central part of the State of São Paulo. Large scale land use/cover changes were assessed by integrating Landsat imagery, census data, and landscape metrics. Two Landsat multi-temporal datasets were assembled for two consecutive periods—1995–2006 and 2006–2013—to assess changes in forest cover according to four classes: (i transition from non-forest cover to planted forest (NF-PF; (ii transition from non-forest to secondary (successional forest (NF-SF; (iii conservation of planted forest (PF and (iv conservation of forest remnants (REM. Data from the two most recent, 1995/96 and 2006 agricultural censuses were analyzed to single out major changes in agricultural production. The total area of forest cover, including primary, secondary, and planted forest, increased 30% from 1995 to 2013, whereas forest planted in non-forest areas (NF-PF and conservation of planted forest (PF accounted for 14.1% and 19.6%, respectively, of the total forest area by 2013. Such results showed a relatively important forest transition that would be explained mostly by forest plantations though. Analysis of the landscape metrics indicated an increase in connectivity among forest fragments during the period of study, and revealed that nearly half of the forest fragments were located within 50 m from riverbeds, possibly suggesting some level of compliance with environmental laws. Census data showed an increase in both the area and productivity of sugarcane plantations, while pasture and citrus area decreased by a relatively important level, suggesting that sugarcane production has expanded at the expense of these land uses. Both satellite and census data helped to delineate the establishment of two major production systems, the first one dominated by sugarcane plantations approximately located in

  18. Successional dynamics drive tropical forest nutrient limitation

    Science.gov (United States)

    Chou, C.; Hedin, L. O. O.

    2017-12-01

    It is increasingly recognized that nutrients such as N and P may significantly constrain the land carbon sink. However, we currently lack a complete understanding of these nutrient cycles in forest ecosystems and how to incorporate them into Earth System Models. We have developed a framework of dynamic forest nutrient limitation, focusing on the role of secondary forest succession and canopy gap disturbances as bottlenecks of high plant nutrient demand and limitation. We used succession biomass data to parameterize a simple ecosystem model and examined the dynamics of nutrient limitation throughout tropical secondary forest succession. Due to the patterns of biomass recovery in secondary tropical forests, we found high nutrient demand from rapid biomass accumulation in the earliest years of succession. Depending on previous land use scenarios, soil nutrient availability may also be low in this time period. Coupled together, this is evidence that there may be high biomass nutrient limitation early in succession, which is partially met by abundant symbiotic nitrogen fixation from certain tree species. We predict a switch from nitrogen limitation in early succession to one of three conditions: (i) phosphorus only, (ii) phosphorus plus nitrogen, or (iii) phosphorus, nitrogen, plus light co-limitation. We will discuss the mechanisms that govern the exact trajectory of limitation as forests build biomass. In addition, we used our model to explore scenarios of tropical secondary forest impermanence and the impacts of these dynamics on ecosystem nutrient limitation. We found that secondary forest impermanence exacerbates nutrient limitation and the need for nitrogen fixation early in succession. Together, these results indicate that biomass recovery dynamics early in succession as well as their connection to nutrient demand and limitation are fundamental for understanding and modeling nutrient limitation of the tropical forest carbon sink.

  19. Substantial secondary organic aerosol formation in a coniferous forest: observations of both day- and nighttime chemistry

    OpenAIRE

    A. K. Y. Lee; J. P. D. Abbatt; W. R. Leaitch; S.-M. Li; S. J. Sjostedt; S. J. Sjostedt; J. J. B. Wentzell; J. Liggio; A. M. Macdonald

    2016-01-01

    Substantial biogenic secondary organic aerosol (BSOA) formation was investigated in a coniferous forest mountain region at Whistler, British Columbia. A largely biogenic aerosol growth episode was observed, providing a unique opportunity to investigate BSOA formation chemistry in a forested environment with limited influence from anthropogenic emissions. Positive matrix factorization of aerosol mass spectrometry (AMS) measurement identifie...

  20. Community structure, life histories and secondary production of stoneflies in two small mountain streams with different degree of forest cover

    Directory of Open Access Journals (Sweden)

    Pavel Beracko

    2015-10-01

    Full Text Available Our study examines community structure and nymphal biology (life cycles and secondary production of stoneflies in two adjacent mountain streams with different degree of forest cover in the Prosiečanka River Basin (Chočské Vrchy Mts., West Carpathians. One of the streams has non-forested catchment, converted to meadows and pastures, while the other one has catchment with 60% covered by spruce forest. Differences in forest cover and in thermal regime of the streams were reflected by the difference of stonefly communities at their structural and functional level. Species Nemoura cinerea and Leuctra aurita created stonefly assemblage in non-forested stream, whereas Nemoura cinerea also occurred in naturally forested stream together with species Leuctra armata, Leuctra nigra, Leuctra prima, Siphonoperla neglecta and Arcynopteryx dichroa. All examined species had maximally annual life cycle and in eudominant species Nemoura cinerea one month shift was found in nymphal hatching and adult emergence between streams. Total secondary production of stoneflies in undisturbed stream (126.46 mg DW m-2 y-1 was more than two times higher than the production in non-forested stream (47.39 mg DW m-2 y-1. 

  1. Biodiversity and functional regeneration during secondary succession in a tropical dry forest: from microorganisms to mammals

    Science.gov (United States)

    do Espírito Santo, M. M.; Neves, F. S.; Valério, H. M.; Leite, L. O.; Falcão, L. A.; Borges, M.; Beirão, M.; Reis, R., Jr.; Berbara, R.; Nunes, Y. R.; Silva, A.; Silva, L. F.; Siqueira, P. R.

    2015-12-01

    In this study, we aimed to determine the changes on soil traits, forest structure and species richness and composition of multiple groups of organisms along secondary succession in a tropical dry forest (TDF) in southeastern Brazil. We defined three successional stages based in forest vertical and horizontal structure and age: early (18-25 years), intermediate (50-60 years) and late (no records of clearing). Five plots of 50 x 20 m were established per stage, and the following groups were sampled using specific techniques: rhizobacteria, mycorrhiza, trees and lianas, butterflies, ants, dung beetles, mosquitoes (Culicidae), birds and bats. We also determined soil chemical and physical characteristics and forest structure (tree height, density and basal area). Soil fertility increased along the successional gradient, and the same pattern was observed for all the forest structure variables. However, species richness and composition showed mixed results depending on the organism group. Three groups usually considered as good bioindicators of habitat quality did not differ in species richness and composition between stages: butterflies, ants and dung beetles. On the other hand, rizhobacteria and mycorrhiza differed both in species richness and composition between stages and may be more sensitive to changes in environmental conditions in TDFs. The other five groups differed either in species richness or composition between one or two pairs of successional stages. Although changes in abiotic conditions and forest structure match the predictions of classical successional models, the response of each group of organism is idiosyncratic in terms of diversity and ecological function, as a consequence of specific resource requirements and life-history traits. In general, diversity increased and functional groups changed mostly from early to intermediate-late stages, strengthening the importance of secondary forests to the maintenance of ecosystem integrity of TDFs.

  2. Conservation thinning in secondary forest: negative but mild effect on land molluscs in closed-canopy mixed oak forest in Sweden.

    Directory of Open Access Journals (Sweden)

    Birte Rancka

    Full Text Available Secondary succession is changing the character of many temperate forests and often leads to closed-canopy stands. In such forests set aside for conservation, habitat management alternatives need to be tested experimentally, but this is rarely done. The Swedish Oak Project compares two often debated alternatives: minimal intervention and non-traditional active management (conservation thinning on plots of each type replicated at 25 sites. We study responses of several taxa, and here report results for land molluscs. They are considered to be sensitive to more open, drier forest and we predicted a negative effect of the thinning (26% reduction of the basal area; mean value for 25 experimental forests. We sampled molluscs in the litter in ten 20 x 25 cm subplots, and by standardised visual search, in each plot. In total, we recorded 53 species of snails and slugs (24 369 individuals and the mean species richness in plots was 17. Two seasons after thinning, mean (± SE species richness had decreased by 1.4 (± 0.9 species in thinning plots, but increased by 0.7 (± 1.0 species in minimal intervention plots, a significant but small change with considerable variation among sites. In matched comparisons with minimal intervention, thinning reduced the overall abundance of molluscs. Most species responded negatively to thinning - but only five of the 53 species were significantly affected, and reproduction seemed to be negatively affected in only one species. An ordination analysis did not reveal any particular change in the species community due to thinning. Thus, the negative effect of conservation thinning on land molluscs was apparently mild - one reason was that many trees, shrubs and other forest structures remained after the treatment. Conservation thinning may be recommended, since other taxa are favoured, but minimal intervention is also a useful form of management for molluscs and saproxylic taxa.

  3. The secondary forests of tropical America, Perspectives for their sustainable handling

    International Nuclear Information System (INIS)

    De las salas, Gonzalo

    2000-01-01

    The paper treats about of the enormous benefits of the secondary forests as producer of goods and services, among these they stand out the following ones: Reservoir of organic and nutritious matter, regulation of the hydric flows, maintenance of the biodiversity; drains of carbon, genes reservoir and fruits source, nutritious and medicinal plants, wood and fuel

  4. Gross changes in forest area shape the future carbon balance of tropical forests

    Science.gov (United States)

    Li, Wei; Ciais, Philippe; Yue, Chao; Gasser, Thomas; Peng, Shushi; Bastos, Ana

    2018-01-01

    Bookkeeping models are used to estimate land-use and land-cover change (LULCC) carbon fluxes (ELULCC). The uncertainty of bookkeeping models partly arises from data used to define response curves (usually from local data) and their representativeness for application to large regions. Here, we compare biomass recovery curves derived from a recent synthesis of secondary forest plots in Latin America by Poorter et al. (2016) with the curves used previously in bookkeeping models from Houghton (1999) and Hansis et al. (2015). We find that the two latter models overestimate the long-term (100 years) vegetation carbon density of secondary forest by about 25 %. We also use idealized LULCC scenarios combined with these three different response curves to demonstrate the importance of considering gross forest area changes instead of net forest area changes for estimating regional ELULCC. In the illustrative case of a net gain in forest area composed of a large gross loss and a large gross gain occurring during a single year, the initial gross loss has an important legacy effect on ELULCC so that the system can be a net source of CO2 to the atmosphere long after the initial forest area change. We show the existence of critical values of the ratio of gross area change over net area change (γAnetAgross), above which cumulative ELULCC is a net CO2 source rather than a sink for a given time horizon after the initial perturbation. These theoretical critical ratio values derived from simulations of a bookkeeping model are compared with observations from the 30 m resolution Landsat Thematic Mapper data of gross and net forest area change in the Amazon. This allows us to diagnose areas in which current forest gains with a large land turnover will still result in LULCC carbon emissions in 20, 50 and 100 years.

  5. Spider (Arachnida, Araneae) diversity in secondary and old-growth southern Atlantic forests of Paraná state, Brazil.

    Science.gov (United States)

    Raub, Florian; Höfer, Hubert; Scheuermann, Ludger

    2017-07-01

    The data presented here have been collected in the southern part of the Atlantic Forest (Mata Atlântica) in the state of Paraná, Brazil within a bilateral scientific project (SOLOBIOMA). The project aimed to assess the quality of secondary forests of different regeneration stages in comparison with old-growth forests with regard to diversity of soil animals and related functions. The Atlantic Forest is a hotspot of biological diversity with an exceptionally high degree of endemic species, extending over a range of 3,500 km along the coast of Brazil. The anthropogenic pressure in the region is very high with three of the biggest cities of Brazil (São Paulo, Rio de Janeiro, and Curitiba) lying in its extension. An evaluation of the value of secondary forests for biodiversity conservation is becoming more and more important due to the complete disappearance of primary forests. In 2005, we sampled spiders in 12 sites of three successional stages (5-8, 10-15, 35-50 yr old, three replicates of each forest stage) and old-growth forests (> 100 yr untouched, also three replicates). All sites were inside a private nature reserve (Rio Cachoeira Nature Reserve). We repeated the sampling design and procedure in 2007 in a second private reserve (Itaqui Nature Reserve). The two nature reserves are within about 25 km of each other within a well preserved region of the Mata Atlântica, where the matrix of the landscape mosaic is still forest. A widely accepted standard protocol was used in a replicated sampling design to apply statistical analyses to the resulting data set and allow for comparison with other studies in Brazil. Spiders were sorted to family level and counted; the adult spiders further identified to species if possible or classified as morphospecies with the help of several spider specialists. © 2017 by the Ecological Society of America.

  6. Forest Type and Tree Characteristics Determine the Vertical Distribution of Epiphytic Lichen Biomass in Subtropical Forests

    Directory of Open Access Journals (Sweden)

    Su Li

    2017-11-01

    Full Text Available Epiphytic lichens are an important component in subtropical forests and contribute greatly to forest biodiversity and biomass. However, information on epiphytic lichens still remains scarce in forest conservation owing to the difficulty of accessing all canopy layers for direct observation. Here, epiphytic lichens were quantified on 73 whole trees in five forest types in Southwest China to clarify the vertical stratification of their biomass in subtropical forests. Lichen biomass was significantly influenced by forest type and host attributes, varying from 187.11 to 8.55 g∙tree−1 among forest types and from 289.81 to <0.01 g∙tree−1 among tree species. The vertical stratification of lichen biomass was also determined by forest type, which peaked at the top in primary Lithocarpus forest and middle-aged oak secondary forest and in the middle upper heights in other forests. Overall, the proportion of lichen biomass accounted for 73.17–100.00% of total lichen biomass on branches and 0.00–26.83% on trunks in five forests, and 64.53–100.00% and 0.00–35.47% on eight host species. Seven functional groups showed marked and various responses to tree height between and among forest types. This information improves our understanding of the distribution of epiphytic lichens in forest ecosystems and the promotion of forest management in subtropical China.

  7. Diversity patterns of ground beetles and understory vegetation in mature, secondary, and plantation forest regions of temperate northern China

    NARCIS (Netherlands)

    Zou, Yi; Sang, Weiguo; Wang, Shunzhong; Warren-Thomas, Eleanor; Liu, Yunhui; Yu, Zhenrong; Wang, Changliu; Axmacher, Jan Christoph

    2015-01-01

    Plantation and secondary forests form increasingly important components of the global forest cover, but our current knowledge about their potential contribution to biodiversity conservation is limited. We surveyed understory plant and carabid species assemblages at three distinct regions in

  8. LBA-ECO ND-02 Secondary Forest Tree Heights and Diameters, Para, Brazil: 1999-2005

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set provides tree diameters and heights measured from 1999 to 2005 in plots of a secondary-growth forest fertilization experiment located 6.5-km...

  9. LBA-ECO ND-02 Secondary Forest Tree Heights and Diameters, Para, Brazil: 1999-2005

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides tree diameters and heights measured from 1999 to 2005 in plots of a secondary-growth forest fertilization experiment located 6.5-km northwest...

  10. Assemblages of braconidae (Hymenoptera) at agricultural and secondary forest ecosystem

    Science.gov (United States)

    Razali, Rabibah; Din, Abdullah Muhaimin Mohammad; Yaakop, Salmah

    2016-11-01

    Braconids are parasitoid insects which parasitize other insects by injecting their eggs into the larvae and eventually killing the hosts. Due to this character, braconids play an important role in stabilizing the natural and human-made environment. The objective of this study was to evaluate the diversity and distribution of braconids in two ecosystems. Nine Malaise traps were installed in each ecosystem for 30 days at five sampling sites, namely Bukit Rupa (BR), Bukit Fraser (BF), Ladang Zamrud (LZ), Felda Lui Muda (FLM) and Cherating (Ch). Samples were collected and kept in 75% alcohol for identification process. Two types of ecosystem were selected namely forest (secondary forest) and agricultural (oil palm plantation, star fruit orchard) ecosystems. A total of 1201 individuals were collected in 18 subfamilies and 137 morphospecies. From the results, BR showed the highest H', as it was a natural habitat for the braconids. FLM and LZ also showed high H' values, while Ch was the lowest. Based on the cluster analysis, the clade was divided into two groups; the oil palm plantation (LZ, FLM) and forest ecosystem (BF, BR). Ch was considered an outgroup because the braconid spesies found there were specific to Bactocera spp. Based on the rarefaction curve, LZ had the most stable curve compared to the others due to high sample size.

  11. Ecological and evolutionary variation in community nitrogen use traits during tropical dry forest secondary succession.

    Science.gov (United States)

    Bhaskar, Radika; Porder, Stephen; Balvanera, Patricia; Edwards, Erika J

    2016-05-01

    We assessed the role of ecological and evolutionary processes in driving variation in leaf and litter traits related to nitrogen (N) use among tropical dry forest trees in old-growth and secondary stands in western Mexico. Our expectation was that legumes (Fabaceae), a dominant component of the regional flora, would have consistently high leaf N and therefore structure phylogenetic variation in N-related traits. We also expected ecological selection during succession for differences in nitrogen use strategies, and corresponding shifts in legume abundance. We used phylogenetic analyses to test for trait conservatism in foliar and litter N, C:N, and N resorption. We also evaluated differences in N-related traits between old-growth and secondary forests. We found a weak phylogenetic signal for all traits, partly explained by wide variation within legumes. Across taxa we observed a positive relationship between leaf and litter N, but no shift in resorption strategies along the successional gradient. Despite species turnover, N-resorption, and N-related traits showed little change across succession, suggesting that, at least for these traits, secondary forests rapidly recover ecosystem function. Collectively, our results also suggest that legumes should not be considered a single functional group from a biogeochemical perspective.

  12. Exploring Old Growth Forests: A Teacher's Manual.

    Science.gov (United States)

    Lemieux, Chris; Powers, Jennene; Quinby, Peter; Schultz, Caroline; Stabb, Mark

    "Exploring Old Growth Forests" is an Ontario (Canada) program that provides secondary students with hands-on experiences in old growth forests. Activity-based and student-centered, the program aims to develop student awareness of the importance of old growth forests and the need to conserve them. This manual provides teachers with…

  13. Mapping Forest Inventory and Analysis forest land use: timberland, reserved forest land, and other forest land

    Science.gov (United States)

    Mark D. Nelson; John Vissage

    2007-01-01

    The Forest Inventory and Analysis (FIA) program produces area estimates of forest land use within three subcategories: timberland, reserved forest land, and other forest land. Mapping these subcategories of forest land requires the ability to spatially distinguish productive from unproductive land, and reserved from nonreserved land. FIA field data were spatially...

  14. Remote Sensing of Aboveground Biomass in Tropical Secondary Forests: A Review

    Directory of Open Access Journals (Sweden)

    J. M. Barbosa

    2014-01-01

    Full Text Available Tropical landscapes are, in general, a mosaic of pasture, agriculture, and forest undergoing various stages of succession. Forest succession is comprised of continuous structural changes over time and results in increases in aboveground biomass (AGB. New remote sensing methods, including sensors, image processing, statistical methods, and uncertainty evaluations, are constantly being developed to estimate biophysical forest changes. We review 318 peer-reviewed studies related to the use of remotely sensed AGB estimations in tropical forest succession studies and summarize their geographic distribution, sensors and methods used, and their most frequent ecological inferences. Remotely sensed AGB is broadly used in forest management studies, conservation status evaluations, carbon source and sink investigations, and for studies of the relationships between environmental conditions and forest structure. Uncertainties in AGB estimations were found to be heterogeneous with biases related to sensor type, processing methodology, ground truthing availability, and forest characteristics. Remotely sensed AGB of successional forests is more reliable for the study of spatial patterns of forest succession and over large time scales than that of individual stands. Remote sensing of temporal patterns in biomass requires further study, in particular, as it is critical for understanding forest regrowth at scales useful for regional or global analyses.

  15. Habitat differences in dung beetle assemblages in an African savanna-forest ecotone: implications for secondary seed dispersal.

    Science.gov (United States)

    Kunz, Britta K; Krell, Frank-Thorsten

    2011-06-01

    The probability and pattern of secondary seed dispersal by dung beetles (Scarabaeinae) depend on their community structure and composition at the site of primary deposition, which, in turn, seem to be strongly determined by vegetation. Consequently, we expected pronounced differences in secondary seed dispersal between forest and savanna in the northern Ivory Coast, West Africa. We found 99 dung beetle species at experimentally exposed dung piles of the olive baboon (Papio anubis (Lesson, 1827)), an important primary seed disperser in West Africa. Seventy-six species belonged to the roller and tunneler guilds, which are relevant for secondary seed dispersal. Most species showed a clear habitat preference. Contrary to the Neotropics, species number and abundance were much higher in the savanna than in the forest. Rollers and tunnelers each accounted for approximately 50% of the individuals in the savanna, but in the forest rollers made up only 4%. Seeds deposited into the savanna by an omnivorous primary disperser generally have a higher overall probability of being more rapidly dispersed secondarily by dung beetles than seeds in the forest. Also, rollers disperse seeds over larger distances. In contrast to other studies, small rollers were active in dispersal of large seeds, which were seemingly mistaken for dung balls. Our results suggest that rollers can remove seeds from any plant dispersed in primate dung in this ecosystem. © 2011 ISZS, Blackwell Publishing and IOZ/CAS.

  16. Tropical forests. Nettai no shinrin

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, I [Kyoto Univ., Kyoto (Japan)

    1991-11-05

    It was in 1950s when felling of tropical forests started in earnest, in 1970s felling of forest trees in Southeast Asia reached its peak and the destnation of exportation of most of them was Japan. Besides, among the present overseas development assistance projects (ODA) of Japan, her role to be played in connection with tropical forests is not small and its funds, which surpass by far the budget for forestry of the United Nations Food and Agriculture Organization (FAO), are aiding cooperation projects on forestry in many places in the world. Nevertheless, in Japan, the understanding of tropical forests is insufficient and its realities have not been known. In this article, based on the experience and knowledge of the author who stayed in Kalimantan, various kinds of problems concerning tropical forests are explained, the realities are introduced on information, well trained people, funds and philosophy which are far short in pursuance of the problems of tropical forests. Furthermore, as the issues hereafter, such proposals on tropical forests are made as protection of natural forests, planned operation in respecting self renewal ability of the secondary forests and afforestation of alang-alang grassy plains resulted from the failure of burning felled trees and grasses for making the land arable. 1 ref..

  17. The carbon budget of coarse woody debris in a temperate broad-leafed secondary forest in Japan

    International Nuclear Information System (INIS)

    Jomura, M.; Dannoura, M.; Kanazawa, Y.; Kominami, Y.; Miyama, T.; Goto, Y.; Tamai, K.

    2007-01-01

    We evaluated the carbon budget of coarse woody debris (CWD) in a temperate broad-leafed secondary forest. On the basis of a field survey conducted in 2003, the mass of CWD was estimated at 9.30 tC/ha, with snags amounting to 60% of the total mass. Mean annual CWD input mass was estimated to be 0.61 tC/ha/yr by monitoring tree mortality in the forest from 1999 to 2004. We evaluated the CWD decomposition rate as the CO 2 evolution rate from CWD by measuring CO 2 emissions from 91 CWD samples (RCWD) with a closed dynamic chamber and infrared gas analysis system. The relationships between RCWD and temperature in the chamber, water content of the CWD, and other CWD characteristics were determined. By scaling the measured RCWD to the ecosystem, we estimated that the annual RCWD in the forest in 2003 was 0.50 tC/ha/yr or 10%-16% of the total heterotrophic respiration. Therefore, 0.11 tC/ha/yr or 7% of the forest net ecosystem production was sequestered by CWD. In a young forest, in which CWD input and decomposition are not balanced, the CWD carbon budget needs to be quantified for accurate evaluation of the forest carbon cycle and NEP

  18. Vegetation diversity of the Scots pine stands in different forest sites in the Turawa Forest District

    OpenAIRE

    Stefańska-Krzaczek, Ewa; Pech, Paweł

    2014-01-01

    The utility of phytocenotic indices in the diagnosis and classification of forest sites might be limited because of vegetation degeneration in managed forests. However, even in secondary communities it may be possible to determine indicator species, although these may differ from typical and well known plant indicators. The aim of this work was to assess the vegetation diversity of Scots pine stands in representative forest site types along a moisture and fertility gradient. In total ...

  19. Gross changes in forest area shape the future carbon balance of tropical forests

    Directory of Open Access Journals (Sweden)

    W. Li

    2018-01-01

    Full Text Available Bookkeeping models are used to estimate land-use and land-cover change (LULCC carbon fluxes (ELULCC. The uncertainty of bookkeeping models partly arises from data used to define response curves (usually from local data and their representativeness for application to large regions. Here, we compare biomass recovery curves derived from a recent synthesis of secondary forest plots in Latin America by Poorter et al. (2016 with the curves used previously in bookkeeping models from Houghton (1999 and Hansis et al. (2015. We find that the two latter models overestimate the long-term (100 years vegetation carbon density of secondary forest by about 25 %. We also use idealized LULCC scenarios combined with these three different response curves to demonstrate the importance of considering gross forest area changes instead of net forest area changes for estimating regional ELULCC. In the illustrative case of a net gain in forest area composed of a large gross loss and a large gross gain occurring during a single year, the initial gross loss has an important legacy effect on ELULCC so that the system can be a net source of CO2 to the atmosphere long after the initial forest area change. We show the existence of critical values of the ratio of gross area change over net area change (γAnetAgross, above which cumulative ELULCC is a net CO2 source rather than a sink for a given time horizon after the initial perturbation. These theoretical critical ratio values derived from simulations of a bookkeeping model are compared with observations from the 30 m resolution Landsat Thematic Mapper data of gross and net forest area change in the Amazon. This allows us to diagnose areas in which current forest gains with a large land turnover will still result in LULCC carbon emissions in 20, 50 and 100 years.

  20. Seed regeneration potential of canopy gaps at early formation stage in temperate secondary forests, Northeast China.

    Directory of Open Access Journals (Sweden)

    Qiao-Ling Yan

    Full Text Available Promoting the seed regeneration potential of secondary forests undergoing gap disturbances is an important approach for achieving forest restoration and sustainable management. Seedling recruitment from seed banks strongly determines the seed regeneration potential, but the process is poorly understood in the gaps of secondary forests. The objectives of the present study were to evaluate the effects of gap size, seed availability, and environmental conditions on the seed regeneration potential in temperate secondary forests. It was found that gap formation could favor the invasion of more varieties of species in seed banks, but it also could speed up the turnover rate of seed banks leading to lower seed densities. Seeds of the dominant species, Fraxinus rhynchophylla, were transient in soil and there was a minor and discontinuous contribution of the seed bank to its seedling emergence. For Quercus mongolica, emerging seedling number was positively correlated with seed density in gaps (R = 0.32, P<0.01, especially in medium and small gaps (<500 m(2. Furthermore, under canopies, there was a positive correlation between seedling number and seed density of Acer mono (R = 0.43, P<0.01. Gap formation could promote seedling emergence of two gap-dependent species (i.e., Q. mongolica and A. mono, but the contribution of seed banks to seedlings was below 10% after gap creation. Soil moisture and temperature were the restrictive factors controlling the seedling emergence from seeds in gaps and under canopies, respectively. Thus, the regeneration potential from seed banks is limited after gap formation.

  1. Seed Regeneration Potential of Canopy Gaps at Early Formation Stage in Temperate Secondary Forests, Northeast China

    Science.gov (United States)

    Yan, Qiao-Ling; Zhu, Jiao-Jun; Yu, Li-Zhong

    2012-01-01

    Promoting the seed regeneration potential of secondary forests undergoing gap disturbances is an important approach for achieving forest restoration and sustainable management. Seedling recruitment from seed banks strongly determines the seed regeneration potential, but the process is poorly understood in the gaps of secondary forests. The objectives of the present study were to evaluate the effects of gap size, seed availability, and environmental conditions on the seed regeneration potential in temperate secondary forests. It was found that gap formation could favor the invasion of more varieties of species in seed banks, but it also could speed up the turnover rate of seed banks leading to lower seed densities. Seeds of the dominant species, Fraxinus rhynchophylla, were transient in soil and there was a minor and discontinuous contribution of the seed bank to its seedling emergence. For Quercus mongolica, emerging seedling number was positively correlated with seed density in gaps (R = 0.32, P<0.01), especially in medium and small gaps (<500 m2). Furthermore, under canopies, there was a positive correlation between seedling number and seed density of Acer mono (R = 0.43, P<0.01). Gap formation could promote seedling emergence of two gap-dependent species (i.e., Q. mongolica and A. mono), but the contribution of seed banks to seedlings was below 10% after gap creation. Soil moisture and temperature were the restrictive factors controlling the seedling emergence from seeds in gaps and under canopies, respectively. Thus, the regeneration potential from seed banks is limited after gap formation. PMID:22745771

  2. LBA-ECO ND-02 Secondary Forest Small Stem, Non-Woody Biomass, Para, Brazil: 1999-2005

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set reports biomass from small stems and non-woody vegetation measured from 1999 to 2005 in plots of a secondary-growth forest fertilization experiment....

  3. LBA-ECO ND-02 Secondary Forest Small Stem, Non-Woody Biomass, Para, Brazil: 1999-2005

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set reports biomass from small stems and non-woody vegetation measured from 1999 to 2005 in plots of a secondary-growth forest fertilization...

  4. Key role of symbiotic dinitrogen fixation in tropical forest secondary succession

    DEFF Research Database (Denmark)

    Batterman, Sarah A.; Hedin, Lars O.; Van Breugel, Michiel

    2013-01-01

    Forests contribute a significant portion of the land carbon sink, but their ability to sequester CO 2 may be constrained by nitrogen, a major plant-limiting nutrient. Many tropical forests possess tree species capable of fixing atmospheric dinitrogen (N 2), but it is unclear whether this function...... tree species across the entire forest age sequence. These findings show that symbiotic N 2 fixation can have a central role in nitrogen cycling during tropical forest stand development, with potentially important implications for the ability of tropical forests to sequester CO 2....

  5. Forest Dynamics in the Eastern Ghats of Tamil Nadu, India

    Science.gov (United States)

    Jayakumar, S.; Ramachandran, A.; Bhaskaran, G.; Heo, J.

    2009-02-01

    The primary deciduous forests in the Eastern Ghats (EG) of Tamil Nadu (TN) India have undergone many changes owing to various need-based forest managements, such as timber extraction for industry, railway sleepers, charcoal, and forest clearance for hydroelectric projects and agriculture, during preindependence and postindependence periods (i.e., from 1800 to 1980). The enactment of a forest conservation act during the 1980s changed the perception of forest managers from utilization to conservation. This study was taken up to assess the forests dynamics in the EG of TN spatially between 1990 and 2003 and nonspatially between 1900 and the 1980s. Landsat Thematic Mapper (TM) and Indian Remote Sensing satellite (IRS) 1D Linear Imaging and Self Scanning (LISS III) data were used to assess forests during 1990 and 2003, respectively. Field floristic survey and secondary data (such as published literature, floras, books, and forest working plans) were used to assess the forest dynamics in terms of forest type and species composition among the preindependence period, the postindependence period, and the present (i.e., before and after 1980). The satellite data analysis revealed a considerable amount of changes in all forest types during the 13 years. The comparison of species composition and forest types between the past and present revealed that need-based forest management along with anthropogenic activity have altered the primary deciduous forest in to secondary and postextraction secondary forests such as southern thorn and southern thorn scrub forests in the middle [400-900 m above mean sea level (MSL)] and lower slopes (900 m MSL) and plateau seemed not to be much affected by the forest management. The changes estimated by the satellite data processing in the major forest types such as evergreen, deciduous, southern thorn, and southern thorn scrub are really alarming because these changes have occurred after the implementation of a forest conservation act. The

  6. Forest resources of the Lincoln National Forest

    Science.gov (United States)

    John D. Shaw

    2006-01-01

    The Interior West Forest Inventory and Analysis (IWFIA) program of the USDA Forest Service, Rocky Mountain Research Station, as part of its national Forest Inventory and Analysis (FIA) duties, conducted forest resource inventories of the Southwestern Region (Region 3) National Forests. This report presents highlights of the Lincoln National Forest 1997 inventory...

  7. The Distribution and Population Density of Bornean Tarsier, "Tarsius Bancanus Borneanus (Elliot)" in Secondary and Rehabilitated Forests of Universiti Putra Malaysia, Bintulu Sarawak Campus, Sarawak, Malaysia.

    Science.gov (United States)

    Sahimi, Hani Nabilia Muhd; Chubo, John Keen; Top Mohd Tah, Marina Mohd; Saripuddin, Noor Bahiah; Ab Rahim, Siti Sarah

    2018-03-01

    Tarsius bancanus borneanus was first reported by Elliot in 1990 which an endemic species that can be found on the Island of Borneo consisting of Sabah and Sarawak of Malaysia, Brunei Darussalam and Kalimantan, Indonesia. This sub-species has been listed as a totally protected animal under the Sarawak Wild Life Protection Ordinance (1998) and vulnerable by the International Union for Conservation of Nature (IUCN). The present study was conducted at Universiti Putra Malaysia Bintulu Campus (UPMKB), Sarawak from October 2014 till March 2015. Through mark and recapture sampling covering an area of 37 ha of secondary forest patches and 7.13 ha of rehabilitated forest, a total of 16 tarsiers were captured using mist nets while one tarsier was recapture. The population density was 38 individuals/km 2 was captured using mist nets in the secondary forest while 28 individuals/km 2 was recorded for the rehabilitated forest. Using the catch per unit effort (net hour) method, the average time for capturing tarsiers in the secondary forest patches was 26.6 net hour per animal and 30.0 net hour per animal in the rehabilitated forest. The presented results provides information on the presence of tarsiers in both the secondary and rehabilitated forests of UPMKB, Sarawak, Malaysia which underlines the conservation value of these forested areas.

  8. Plant water use responses along secondary forest succession during the 2015-2016 El Niño drought in Panama.

    Science.gov (United States)

    Bretfeld, Mario; Ewers, Brent E; Hall, Jefferson S

    2018-03-05

    Tropical forests are increasingly being subjected to hotter, drier conditions as a result of global climate change. The effects of drought on forests along successional gradients remain poorly understood. We took advantage of the 2015-2016 El Niño event to test for differences in drought response along a successional gradient by measuring the sap flow in 76 trees, representing 42 different species, in 8-, 25- and 80-yr-old secondary forests in the 15-km 2 'Agua Salud Project' study area, located in central Panama. Average sap velocities and sapwood-specific hydraulic conductivities were highest in the youngest forest. During the dry season drought, sap velocities increased significantly in the 80-yr-old forest as a result of higher evaporative demand, but not in younger forests. The main drivers of transpiration shifted from radiation to vapor pressure deficit with progressing forest succession. Soil volumetric water content was a limiting factor only in the youngest forest during the dry season, probably as a result of less root exploration in the soil. Trees in early-successional forests displayed stronger signs of regulatory responses to the 2015-2016 El Niño drought, and the limiting physiological processes for transpiration shifted from operating at the plant-soil interface to the plant-atmosphere interface with progressing forest succession. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  9. Influences of deforestation on radiation and heat balances in tropical peat swamp forest in Thailand

    International Nuclear Information System (INIS)

    Suzuki, S.; Ishida, T.; Nagano, T.; Matsukawa, S.

    1997-01-01

    The difference of radiation and heat balances between a natural peat swamp forest and a deforested secondary forest has been investigated in Narathiwat Province, Thailand. Micrometeorological measurements were conducted continuously on observation towers 38 m and 4 m in heights in the primary forest and the secondary forest respectively. Results show that the deforestation of peat swamp forest leads to an increase in the sensible heat flux in the secondary forest. The yearly average ratio of the sensible heat flux to the net radiation was 20.9% in the peat swamp forest, and 33.2% in the secondary forest from Aug. 1995 to Jul. 1996. A ratio more than 40% was observed only in the dry season in the secondary forest. The change in sensible heat flux seemed to be influenced by the change in ground water levels. (author)

  10. Changes of forest cover and disturbance regimes in the mountain forests of the Alps☆

    Science.gov (United States)

    Bebi, P.; Seidl, R.; Motta, R.; Fuhr, M.; Firm, D.; Krumm, F.; Conedera, M.; Ginzler, C.; Wohlgemuth, T.; Kulakowski, D.

    2017-01-01

    Natural disturbances, such as avalanches, snow breakage, insect outbreaks, windthrow or fires shape mountain forests globally. However, in many regions over the past centuries human activities have strongly influenced forest dynamics, especially following natural disturbances, thus limiting our understanding of natural ecological processes, particularly in densely-settled regions. In this contribution we briefly review the current understanding of changes in forest cover, forest structure, and disturbance regimes in the mountain forests across the European Alps over the past millennia. We also quantify changes in forest cover across the entire Alps based on inventory data over the past century. Finally, using the Swiss Alps as an example, we analyze in-depth changes in forest cover and forest structure and their effect on patterns of fire and wind disturbances, based on digital historic maps from 1880, modern forest cover maps, inventory data on current forest structure, topographical data, and spatially explicit data on disturbances. This multifaceted approach presents a long-term and detailed picture of the dynamics of mountain forest ecosystems in the Alps. During pre-industrial times, natural disturbances were reduced by fire suppression and land-use, which included extraction of large amounts of biomass that decreased total forest cover. More recently, forest cover has increased again across the entire Alps (on average +4% per decade over the past 25–115 years). Live tree volume (+10% per decade) and dead tree volume (mean +59% per decade) have increased over the last 15–40 years in all regions for which data were available. In the Swiss Alps secondary forests that established after 1880 constitute approximately 43% of the forest cover. Compared to forests established previously, post-1880 forests are situated primarily on steep slopes (>30°), have lower biomass, a more aggregated forest structure (primarily stem-exclusion stage), and have been more

  11. Forest resources of Mississippi’s national forests, 2006

    Science.gov (United States)

    Sonja N. Oswalt

    2011-01-01

    This bulletin describes forest resource characteristics of Mississippi’s national forests, with emphasis on DeSoto National Forest, following the 2006 survey completed by the U.S. Department of Agriculture Forest Service, Forest Inventory and Analysis program. Mississippi’s national forests comprise > 1 million acres of forest land, or about 7 percent of all forest...

  12. Key role of symbiotic dinitrogen fixation in tropical forest secondary succession

    Science.gov (United States)

    Batterman, Sarah A.; Hedin, Lars O.; van Breugel, Michiel; Ransijn, Johannes; Craven, Dylan J.; Hall, Jefferson S.

    2013-10-01

    Forests contribute a significant portion of the land carbon sink, but their ability to sequester CO2 may be constrained by nitrogen, a major plant-limiting nutrient. Many tropical forests possess tree species capable of fixing atmospheric dinitrogen (N2), but it is unclear whether this functional group can supply the nitrogen needed as forests recover from disturbance or previous land use, or expand in response to rising CO2 (refs 6, 8). Here we identify a powerful feedback mechanism in which N2 fixation can overcome ecosystem-scale deficiencies in nitrogen that emerge during periods of rapid biomass accumulation in tropical forests. Over a 300-year chronosequence in Panama, N2-fixing tree species accumulated carbon up to nine times faster per individual than their non-fixing neighbours (greatest difference in youngest forests), and showed species-specific differences in the amount and timing of fixation. As a result of fast growth and high fixation, fixers provided a large fraction of the nitrogen needed to support net forest growth (50,000kg carbon per hectare) in the first 12years. A key element of ecosystem functional diversity was ensured by the presence of different N2-fixing tree species across the entire forest age sequence. These findings show that symbiotic N2 fixation can have a central role in nitrogen cycling during tropical forest stand development, with potentially important implications for the ability of tropical forests to sequester CO2.

  13. Key role of symbiotic dinitrogen fixation in tropical forest secondary succession.

    Science.gov (United States)

    Batterman, Sarah A; Hedin, Lars O; van Breugel, Michiel; Ransijn, Johannes; Craven, Dylan J; Hall, Jefferson S

    2013-10-10

    Forests contribute a significant portion of the land carbon sink, but their ability to sequester CO2 may be constrained by nitrogen, a major plant-limiting nutrient. Many tropical forests possess tree species capable of fixing atmospheric dinitrogen (N2), but it is unclear whether this functional group can supply the nitrogen needed as forests recover from disturbance or previous land use, or expand in response to rising CO2 (refs 6, 8). Here we identify a powerful feedback mechanism in which N2 fixation can overcome ecosystem-scale deficiencies in nitrogen that emerge during periods of rapid biomass accumulation in tropical forests. Over a 300-year chronosequence in Panama, N2-fixing tree species accumulated carbon up to nine times faster per individual than their non-fixing neighbours (greatest difference in youngest forests), and showed species-specific differences in the amount and timing of fixation. As a result of fast growth and high fixation, fixers provided a large fraction of the nitrogen needed to support net forest growth (50,000 kg carbon per hectare) in the first 12 years. A key element of ecosystem functional diversity was ensured by the presence of different N2-fixing tree species across the entire forest age sequence. These findings show that symbiotic N2 fixation can have a central role in nitrogen cycling during tropical forest stand development, with potentially important implications for the ability of tropical forests to sequester CO2.

  14. To Conserve or not to Conserve: A case study of Forest Valuation of Tinderet Natural Forest

    International Nuclear Information System (INIS)

    Lang'at, D.; Cheboieo, J.; Siko, R

    2007-01-01

    Tinderet natural forest is part of the extensive Mau complex and forms an important hydrological system for lake Victoria. Information on on economic values of most forests in Kenya are not available or scanty. This paper aims at estimating the total economic value of Tinderet forest. Surveys were conducted on 109 households sampled from three villages within five kilometers of the forest. Further information/data was to determine direct use values. Other indirect use values (carbon sequestration and soil conservation) were were estimated by use of secondary data where the data not available, benefit transfer method was adopted. It was established that, the annual direct use of value to forest adjacent households is about Ksh. 33 million. The indirect use value is estimated at Ksh. 270 million and this value accrues to global community and not restricted to Kenya. The opportunity cost of conserving the Tinderet natural forest is estimated at Ksh. 210 million and only about Ksh. 33 million per year accrue as direct use values to the whole community. The current benefit from forest is inadequate to offset the community cost of of leaving the forest in it's present state. Based on this analysis, the government and the local communities are subsidizing the retention of the forest and this subsidy is currently estimated at at Ksh. 67 million through lost opportunity in settlement and income. In order to promote positive attitudes of the community adjustment to the forest on sustainable use of the forest, consumptive use of the forest should be encouraged

  15. Forests

    Science.gov (United States)

    Louis R. Iverson; Mark W. Schwartz

    1994-01-01

    Originally diminished by development, forests are coming back: forest biomass is accumulating. Forests are repositories for many threatened species. Even with increased standing timber, however, biodiversity is threatened by increased forest fragmentation and by exotic species.

  16. Forest structure in low-diversity tropical forests: a study of Hawaiian wet and dry forests.

    Science.gov (United States)

    Ostertag, Rebecca; Inman-Narahari, Faith; Cordell, Susan; Giardina, Christian P; Sack, Lawren

    2014-01-01

    The potential influence of diversity on ecosystem structure and function remains a topic of significant debate, especially for tropical forests where diversity can range widely. We used Center for Tropical Forest Science (CTFS) methodology to establish forest dynamics plots in montane wet forest and lowland dry forest on Hawai'i Island. We compared the species diversity, tree density, basal area, biomass, and size class distributions between the two forest types. We then examined these variables across tropical forests within the CTFS network. Consistent with other island forests, the Hawai'i forests were characterized by low species richness and very high relative dominance. The two Hawai'i forests were floristically distinct, yet similar in species richness (15 vs. 21 species) and stem density (3078 vs. 3486/ha). While these forests were selected for their low invasive species cover relative to surrounding forests, both forests averaged 5->50% invasive species cover; ongoing removal will be necessary to reduce or prevent competitive impacts, especially from woody species. The montane wet forest had much larger trees, resulting in eightfold higher basal area and above-ground biomass. Across the CTFS network, the Hawaiian montane wet forest was similar to other tropical forests with respect to diameter distributions, density, and aboveground biomass, while the Hawai'i lowland dry forest was similar in density to tropical forests with much higher diversity. These findings suggest that forest structural variables can be similar across tropical forests independently of species richness. The inclusion of low-diversity Pacific Island forests in the CTFS network provides an ∼80-fold range in species richness (15-1182 species), six-fold variation in mean annual rainfall (835-5272 mm yr(-1)) and 1.8-fold variation in mean annual temperature (16.0-28.4°C). Thus, the Hawaiian forest plots expand the global forest plot network to enable testing of ecological theory for

  17. Forest structure in low-diversity tropical forests: a study of Hawaiian wet and dry forests.

    Directory of Open Access Journals (Sweden)

    Rebecca Ostertag

    Full Text Available The potential influence of diversity on ecosystem structure and function remains a topic of significant debate, especially for tropical forests where diversity can range widely. We used Center for Tropical Forest Science (CTFS methodology to establish forest dynamics plots in montane wet forest and lowland dry forest on Hawai'i Island. We compared the species diversity, tree density, basal area, biomass, and size class distributions between the two forest types. We then examined these variables across tropical forests within the CTFS network. Consistent with other island forests, the Hawai'i forests were characterized by low species richness and very high relative dominance. The two Hawai'i forests were floristically distinct, yet similar in species richness (15 vs. 21 species and stem density (3078 vs. 3486/ha. While these forests were selected for their low invasive species cover relative to surrounding forests, both forests averaged 5->50% invasive species cover; ongoing removal will be necessary to reduce or prevent competitive impacts, especially from woody species. The montane wet forest had much larger trees, resulting in eightfold higher basal area and above-ground biomass. Across the CTFS network, the Hawaiian montane wet forest was similar to other tropical forests with respect to diameter distributions, density, and aboveground biomass, while the Hawai'i lowland dry forest was similar in density to tropical forests with much higher diversity. These findings suggest that forest structural variables can be similar across tropical forests independently of species richness. The inclusion of low-diversity Pacific Island forests in the CTFS network provides an ∼80-fold range in species richness (15-1182 species, six-fold variation in mean annual rainfall (835-5272 mm yr(-1 and 1.8-fold variation in mean annual temperature (16.0-28.4°C. Thus, the Hawaiian forest plots expand the global forest plot network to enable testing of ecological

  18. Tropical dry forest recovery : processes and causes of change

    NARCIS (Netherlands)

    Lebrija Trejos, E.E.

    2009-01-01

    Seasonally dry areas are one of the preferred zones for human inhabitance in the tropics. Large forest areas are converted to other land uses and many are covered by secondary forests that grow naturally after cessation of disturbance. Surprisingly, secondary succession in these strongly seasonal

  19. Forest ownership dynamics of southern forests

    Science.gov (United States)

    Brett J. Butler; David N. Wear

    2013-01-01

    Key FindingsPrivate landowners hold 86 percent of the forest area in the South; two-thirds of this area is owned by families or individuals.Fifty-nine percent of family forest owners own between 1 and 9 acres of forest land, but 60 percent of family-owned forests are in holdings of 100 acres or more.Two-...

  20. Recovery of Biomass Following Shifting Cultivation in Dry Tropical Forests of the Yucatan

    OpenAIRE

    Read, L; Lawrence, Deborah; Foster, David Russell

    2003-01-01

    Land-use change in the tropics is creating secondary forest at an unprecedented rate. In the tropical Americas, mature dry tropical forest is rapidly being converted to secondary forest during the fallow period of shifting cultivation. This study addresses changes in forest biomass during forest recovery following shifting cultivation of maize (corn) in the Southern Yucatan Peninsular Region (SYPR), Mexico. We sampled stems .1 cm diameter at breast height at 36 study sites in t...

  1. Forests

    International Nuclear Information System (INIS)

    Melin, J.

    1997-01-01

    Forests have the capacity to trap and retain radionuclides for a substantial period of time. The dynamic behaviour of nutrients, pollution and radionuclides in forests is complex. The rotation period of a forest stand in the Nordic countries is about 100 years, whilst the time for decomposition of organic material in a forest environment can be several hundred years. This means that any countermeasure applied in the forest environment must have an effect for several decades, or be reapplied continuously for long periods of time. To mitigate the detrimental effect of a contaminated forest environment on man, and to minimise the economic loss in trade of contaminated forest products, it is necessary to understand the mechanisms of transfer of radionuclides through the forest environment. It must also be stressed that any countermeasure applied in the forest environment must be evaluated with respect to long, as well as short term, negative effects, before any decision about remedial action is taken. Of the radionuclides studied in forests in the past, radiocaesium has been the main contributor to dose to man. In this document, only radiocaesium will be discussed since data on the impact of other radionuclides on man are too scarce for a proper evaluation. (EG)

  2. Forests and Forest Cover - MDC_NaturalForestCommunity

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — A point feature class of NFCs - Natural Forest Communities. Natural Forest Community shall mean all stands of trees (including their associated understory) which...

  3. The Distribution and Population Density of Bornean Tarsier, “Tarsius Bancanus Borneanus (Elliot)” in Secondary and Rehabilitated Forests of Universiti Putra Malaysia, Bintulu Sarawak Campus, Sarawak, Malaysia

    Science.gov (United States)

    Sahimi, Hani Nabilia Muhd; Chubo, John Keen; Top @ Mohd. Tah, Marina Mohd.; Saripuddin, Noor Bahiah; Ab Rahim, Siti Sarah

    2018-01-01

    Tarsius bancanus borneanus was first reported by Elliot in 1990 which an endemic species that can be found on the Island of Borneo consisting of Sabah and Sarawak of Malaysia, Brunei Darussalam and Kalimantan, Indonesia. This sub-species has been listed as a totally protected animal under the Sarawak Wild Life Protection Ordinance (1998) and vulnerable by the International Union for Conservation of Nature (IUCN). The present study was conducted at Universiti Putra Malaysia Bintulu Campus (UPMKB), Sarawak from October 2014 till March 2015. Through mark and recapture sampling covering an area of 37 ha of secondary forest patches and 7.13 ha of rehabilitated forest, a total of 16 tarsiers were captured using mist nets while one tarsier was recapture. The population density was 38 individuals/km2 was captured using mist nets in the secondary forest while 28 individuals/km2 was recorded for the rehabilitated forest. Using the catch per unit effort (net hour) method, the average time for capturing tarsiers in the secondary forest patches was 26.6 net hour per animal and 30.0 net hour per animal in the rehabilitated forest. The presented results provides information on the presence of tarsiers in both the secondary and rehabilitated forests of UPMKB, Sarawak, Malaysia which underlines the conservation value of these forested areas. PMID:29644021

  4. Spatial and Temporal Relationships of Old-Growth and Secondary Forests in Indiana, USA

    Science.gov (United States)

    Martin A. Spetich; George R. Parker; Eric J. Gustafson

    1997-01-01

    We examined the spatial pattern of forests in Indiana to: (1) determine the extent, connectivity and percent edge of all forests, (2) examine the change in connectivity among these forests if all riparian zones were replanted to forest or other native vegetation, (3) determine the location, spatial dispersion and percent edge of current old-growth forest remnants, (4)...

  5. Combating Forest Corruption: the Forest Integrity Network

    NARCIS (Netherlands)

    Gupta, A.; Siebert, U.

    2004-01-01

    This article describes the strategies and activities of the Forest Integrity Network. One of the most important underlying causes of forest degradation is corruption and related illegal logging. The Forest Integrity Network is a timely new initiative to combat forest corruption. Its approach is to

  6. Forest resources of the Nez Perce National Forest

    Science.gov (United States)

    Michele Disney

    2010-01-01

    As part of a National Forest System cooperative inventory, the Interior West Forest Inventory and Analysis (IWFIA) Program of the USDA Forest Service conducted a forest resource inventory on the Nez Perce National Forest using a nationally standardized mapped-plot design (for more details see the section "Inventory methods"). This report presents highlights...

  7. The future of tropical forests.

    Science.gov (United States)

    Wright, S Joseph

    2010-05-01

    Five anthropogenic drivers--land use change, wood extraction, hunting, atmospheric change, climate change--will largely determine the future of tropical forests. The geographic scope and intensity of these five drivers are in flux. Contemporary land use change includes deforestation (approximately 64,000 km(2) yr(-1) for the entire tropical forest biome) and natural forests regenerating on abandoned land (approximately 21,500 km(2) yr(-1) with just 29% of the biome evaluated). Commercial logging is shifting rapidly from Southeast Asia to Africa and South America, but local fuelwood consumption continues to constitute 71% of all wood production. Pantropical rates of net deforestation are declining even as secondary and logged forests increasingly replace old-growth forests. Hunters reduce frugivore, granivore and browser abundances in most forests. This alters seed dispersal, seed and seedling survival, and hence the species composition and spatial template of plant regeneration. Tropical governments have responded to these local threats by protecting 7% of all land for the strict conservation of nature--a commitment that is only matched poleward of 40 degrees S and 70 degrees N. Protected status often fails to stop hunters and is impotent against atmospheric and climate change. There are increasing reports of stark changes in the structure and dynamics of protected tropical forests. Four broad classes of mechanisms might contribute to these changes. Predictions are developed to distinguish among these mechanisms.

  8. Root depth and morphology in response to soil drought: comparing ecological groups along the secondary succession in a tropical dry forest.

    Science.gov (United States)

    Paz, Horacio; Pineda-García, Fernando; Pinzón-Pérez, Luisa F

    2015-10-01

    Root growth and morphology may play a core role in species-niche partitioning in highly diverse communities, especially along gradients of drought risk, such as that created along the secondary succession of tropical dry forests. We experimentally tested whether root foraging capacity, especially at depth, decreases from early successional species to old-growth forest species. We also tested for a trade-off between two mechanisms for delaying desiccation, the capacity to forage deeper in the soil and the capacity to store water in tissues, and explored whether successional groups separate along such a trade-off. We examined the growth and morphology of roots in response to a controlled-vertical gradient of soil water, among seedlings of 23 woody species dominant along the secondary succession in a tropical dry forest of Mexico. As predicted, successional species developed deeper and longer root systems than old-growth forest species in response to soil drought. In addition, shallow root systems were associated with high plant water storage and high water content per unit of tissue in stems and roots, while deep roots exhibited the opposite traits, suggesting a trade-off between the capacities for vertical foraging and water storage. Our results suggest that an increased capacity of roots to forage deeper for water is a trait that enables successional species to establish under the warm-dry conditions of the secondary succession, while shallow roots, associated with a higher water storage capacity, are restricted to the old-growth forest. Overall, we found evidence that the root depth-water storage trade-off may constrain tree species distribution along secondary succession.

  9. Fernbank Science Center Forest Teacher's Guide-1967.

    Science.gov (United States)

    Cherry, Jim; And Others

    This guide is designed primarily to familiarize teachers with the types of programs available through the Fernback Science Center. Instructional programs involving the use of the Fernbank Forest are outlined. Programs for secondary students include Plant Taxonomy, Field Ecology, Winter Taxonomy of Plants, and Climax Forest Succession. Elementary…

  10. Forest rights

    DEFF Research Database (Denmark)

    Balooni, Kulbhushan; Lund, Jens Friis

    2014-01-01

    One of the proposed strategies for implementation of reducing emissions from deforestation and forest degradation plus (REDD+) is to incentivize conservation of forests managed by communities under decentralized forest management. Yet, we argue that this is a challenging road to REDD+ because...... conservation of forests under existing decentralized management arrangements toward a push for extending the coverage of forests under decentralized management, making forest rights the hard currency of REDD+....

  11. Forest structure in low diversity tropical forests: a study of Hawaiian wet and dry forests

    Science.gov (United States)

    R. Ostertag; F. Inman-Narahari; S. Cordell; C.P. Giardina; L. Sack

    2014-01-01

    The potential influence of diversity on ecosystem structure and function remains a topic of significant debate, especially for tropical forests where diversity can range widely. We used Center for Tropical Forest Science (CTFS) methodology to establish forest dynamics plots in montane wet forest and lowland dry forest on Hawai‘i Island. We compared the species...

  12. Does participatory forest management promote sustainable forest utilisation in Tanzania?

    DEFF Research Database (Denmark)

    Treue, Thorsten; Ngaga, Y.M.; Meilby, Henrik

    2014-01-01

    Over the past 20 years, Participatory Forest Management (PFM) has become a dominant forest management strategy in Tanzania, covering more than 4.1 million hectares. Sustainable forest use and supply of wood products to local people are major aims of PFM. This paper assesses the sustainability...... of forest utilisation under PFM, using estimates of forest condition and extraction rates based on forest inventories and 480 household surveys from 12 forests; seven under Community Based Forest Management (CBFM), three under Joint Forest Management (JFM) and two under government management (non......-PFM). Extraction of products is intense in forests close to Dar es Salaam, regardless of management regime. Further from Dar es Salaam, harvesting levels in forests under PFM are, with one prominent exception, broadly sustainable. Using GIS data from 116 wards, it is shown that half of the PFM forests in Tanzania...

  13. Urban Forests

    Science.gov (United States)

    David Nowak

    2016-01-01

    Urban forests (and trees) constitute the second forest resource considered in this report. We specifically emphasize the fact that agricultural and urban forests exist on a continuum defined by their relationship (and interrelationship) with a given landscape. These two forest types generally serve different purposes, however. Whereas agricultural forests are...

  14. [Syagrus romanzoffiana (Arecaceae) seed utilization by ants in a secondary forest in South Brazil].

    Science.gov (United States)

    Silva, Fernanda R; Begnini, Romualdo M; Klier, Vinícius A; Scherer, Karla Z; Lopes, Benedito C; Castellani, Tânia T

    2009-01-01

    Ants can nest in a wide variety of substracts. This paper shows Syagrus romanzoffiana seed utilization by ants in an Atlantic secondary forest. We report 29 seeds occupied by small-bodied ants, with 27 of them showing at least two ant development stages. Although a large number of seeds were sampled, a low level of ant occupation was observed.

  15. Phylobetadiversity among forest types in the Brazilian Atlantic Forest complex.

    Science.gov (United States)

    Duarte, Leandro Da Silva; Bergamin, Rodrigo Scarton; Marcilio-Silva, Vinícius; Seger, Guilherme Dubal Dos Santos; Marques, Márcia Cristina Mendes

    2014-01-01

    Phylobetadiversity is defined as the phylogenetic resemblance between communities or biomes. Analyzing phylobetadiversity patterns among different vegetation physiognomies within a single biome is crucial to understand the historical affinities between them. Based on the widely accepted idea that different forest physiognomies within the Southern Brazilian Atlantic Forest constitute different facies of a single biome, we hypothesize that more recent phylogenetic nodes should drive phylobetadiversity gradients between the different forest types within the Atlantic Forest, as the phylogenetic divergence among those forest types is biogeographically recent. We compiled information from 206 checklists describing the occurrence of shrub/tree species across three different forest physiognomies within the Southern Brazilian Atlantic Forest (Dense, Mixed and Seasonal forests). We analyzed intra-site phylogenetic structure (phylogenetic diversity, net relatedness index and nearest taxon index) and phylobetadiversity between plots located at different forest types, using five different methods differing in sensitivity to either basal or terminal nodes (phylogenetic fuzzy weighting, COMDIST, COMDISTNT, UniFrac and Rao's H). Mixed forests showed higher phylogenetic diversity and overdispersion than the other forest types. Furthermore, all forest types differed from each other in relation phylobetadiversity patterns, particularly when phylobetadiversity methods more sensitive to terminal nodes were employed. Mixed forests tended to show higher phylogenetic differentiation to Dense and Seasonal forests than these latter from each other. The higher phylogenetic diversity and phylobetadiversity levels found in Mixed forests when compared to the others likely result from the biogeographical origin of several taxa occurring in these forests. On one hand, Mixed forests shelter several temperate taxa, like the conifers Araucaria and Podocarpus. On the other hand, tropical groups, like

  16. Forest tenure and sustainable forest management

    Science.gov (United States)

    J.P. Siry; K. McGinley; F.W. Cubbage; P. Bettinger

    2015-01-01

    We reviewed the principles and key literature related to forest tenure and sustainable forest management, and then examined the status of sustainable forestry and land ownership at the aggregate national level for major forested countries. The institutional design principles suggested by Ostrom are well accepted for applications to public, communal, and private lands....

  17. Natural forest regeneration in abandoned sugarcane fields in northeastern Brazil: floristic changes

    OpenAIRE

    Nascimento,Ladivania Medeiros do; Sampaio,Everardo Valadares de Sá Barretto; Rodal,Maria Jesus Nogueira; Silva,Suzene Izídio da; Lins e Silva,Ana Carolina Borges

    2012-01-01

    Surveys were undertaken to examine the floristic changes during secondary succession in three areas of 12 and three of 20-year-old secondary forests in Pernambuco State, Brazil. Two hundred and six species were identified, with 136 being found in the 12-year-old secondary forest and 161 species in the 20-year-old forest. Fabaceae and Myrtaceae were the most important families, increasing in species numbers with regeneration age. Of the 216 species, 115 were trees, 48 shrubs, 16 herbaceous pla...

  18. Linking Above- and Belowground Dynamics in Tropical Urban Forests

    Science.gov (United States)

    Atkinson, E. E.; Marin-Spiotta, E.

    2013-12-01

    Secondary forests that emerge after a long history of agriculture can have altered plant community composition and relative abundances of different species. These forests can look and behave differently compared to pre-agricultural forests due changes in primary productivity, resource allocation, and phenology, which can significantly affect processes such as carbon accumulation and nutrient availability. Our research explores how alternative successional trajectories following intensive agricultural use affect linkages among the establishment of novel plant communities, soil nutrient availability and turnover, and soil microbial community composition and function. We hypothesize that different plant species composition due to differing land use legacies and successional trajectories would drive changes in soil microbial community structure and function, affecting soil C and N chemistry and turnover. We conducted this research in the subtropical dry forest life zone of St. Croix, U.S. Virgin Islands where island-wide abandonment of sugarcane resulted in a mosaic of sites in different stages of forest succession. We identified replicate sites with the following post-sugarcane trajectories: 1) natural forest regeneration, 2) low intensity pasture use, followed by reforestation with timber plantation, which are no longer being managed, 3) high intensity pasture use and recent natural forest regeneration, and 4) high intensity pasture use and current active grazing. During 2011-2013, we sampled soils seasonally (0-10 cm) and measured tree species composition. The successional trajectories showed distinct tree species composition. The first two trajectories yielded 40-year old mixed-species secondary forest, dominated by the dry forest tree species Melicoccus bijugatas, Guapira fragrans, Maniklara zapota, and Sideroxylon foetidissimum. The tree species Melicoccus bijugatas primarily drove differences between the first two trajectories (natural forest regeneration vs

  19. Factors influencing density of the Northern Mealy Amazon in three forest types of a modified rainforest landscape in Mesoamerica

    Directory of Open Access Journals (Sweden)

    Miguel Ángel. De Labra-Hernández

    2017-06-01

    Full Text Available The high rate of conversion of tropical moist forest to secondary forest makes it imperative to evaluate forest metric relationships of species dependent on primary, old-growth forest. The threatened Northern Mealy Amazon (Amazona guatemalae is the largest mainland parrot, and occurs in tropical moist forests of Mesoamerica that are increasingly being converted to secondary forest. However, the consequences of forest conversion for this recently taxonomically separated parrot species are poorly understood. We measured forest metrics of primary evergreen, riparian, and secondary tropical moist forest in Los Chimalapas, Mexico. We also used point counts to estimate density of Northern Mealy Amazons in each forest type during the nonbreeding (Sept 2013 and breeding (March 2014 seasons. We then examined how parrot density was influenced by forest structure and composition, and how parrots used forest types within tropical moist forest. Overall, parrot density was high in the breeding season, with few parrots present during the nonbreeding season. During the breeding season, primary forest had significantly greater density of 18.9 parrots/km² in evergreen forest and 35.9 parrots/km² in riparian forest, compared with only 3.4 parrots/km² in secondary forest. Secondary forest had significantly lower tree species richness, density, diameter, total height, and major branch ramification height, as well as distinct tree species composition compared with both types of primary forest. The number of parrots recorded at point counts was related to density of large, tall trees, characteristic of primary forest, and parrots used riparian forest more than expected by availability. Hence, the increased conversion of tropical moist forest to secondary forest is likely to lead to reduced densities of forest-dependent species such as the Northern Mealy Amazon. Furthermore, the species' requirement for primary tropical moist forest highlights the need to reevaluate

  20. Estimating forest conversion rates with annual forest inventory data

    Science.gov (United States)

    Paul C. Van Deusen; Francis A. Roesch

    2009-01-01

    The rate of land-use conversion from forest to nonforest or natural forest to forest plantation is of interest for forest certification purposes and also as part of the process of assessing forest sustainability. Conversion rates can be estimated from remeasured inventory plots in general, but the emphasis here is on annual inventory data. A new estimator is proposed...

  1. No signs of soil organic matter accumulation and of changes in nutrient (N-P) limitation during tropical secondary forest succession in the wet tropics of Southwest Costa Rica

    Science.gov (United States)

    Wanek, Wolfgang; Oberdorfer, Sarah; Oberleitner, Florian; Hietz, Peter; Dullinger, Stefan; Zehetner, Franz

    2017-04-01

    Secondary forests comprise large tracts of the tropical land area, due to ongoing changes in land-use, including selective logging and agricultural land abandonment. Recent meta-analyses demonstrated that temperature and precipitation are key drivers of forest ecosystem recovery, particularly of soil organic carbon (SOC) build-up, where losses of SOC after deforestation and cultivation (and its recovery after abandonment) were largest in the wet tropical lowlands. However, wet lowland tropical chronosequences are strongly underrepresented (4000 mm) and the large variance in this group may be explained by soil type and soil nutrients. Moreover strong effects of (and changes in) nutrient limitation, with an intermittent change from P to N limitation of plant production in young tropical secondary forests, have been identified in a few studies. For this study we established a tropical secondary forest chronosequence, identifying old pastures (>40 years), young to old secondary forests (1-55 years) and old-growth forests based on aerial photographs and satellite images dating from the 1960s to the 2010s in SW Costa Rica, a region where mean annual temperature is 27°C and mean annual precipitation between 5000 and 6000 mm. Soil samples were taken incrementally to 45 cm depth, sieved and soils and roots collected and analysed. Bulk density decreased and SOC content increased from pastures to secondary forests and old-growth forests, with the net effect on soil C stocks (between 63 and 92 Mg ha-1 (0-45 cm)) being neutral. SOC stocks were generally high, due to high fine root densities and associated high root inputs to mineral soils in pastures and forests. SOC showed relatively slow turnover times, based on root and soil delta13C values, with turnover times of 120 and 210 years in topsoils and subsoils, indicating strong stabilization of SOM due to mineral binding and high aggregate stability (>80%). At the same time we found no change in soil N and P availability, but

  2. [Prediction and spatial distribution of recruitment trees of natural secondary forest based on geographically weighted Poisson model].

    Science.gov (United States)

    Zhang, Ling Yu; Liu, Zhao Gang

    2017-12-01

    Based on the data collected from 108 permanent plots of the forest resources survey in Maoershan Experimental Forest Farm during 2004-2016, this study investigated the spatial distribution of recruitment trees in natural secondary forest by global Poisson regression and geographically weighted Poisson regression (GWPR) with four bandwidths of 2.5, 5, 10 and 15 km. The simulation effects of the 5 regressions and the factors influencing the recruitment trees in stands were analyzed, a description was given to the spatial autocorrelation of the regression residuals on global and local levels using Moran's I. The results showed that the spatial distribution of the number of natural secondary forest recruitment was significantly influenced by stands and topographic factors, especially average DBH. The GWPR model with small scale (2.5 km) had high accuracy of model fitting, a large range of model parameter estimates was generated, and the localized spatial distribution effect of the model parameters was obtained. The GWPR model at small scale (2.5 and 5 km) had produced a small range of model residuals, and the stability of the model was improved. The global spatial auto-correlation of the GWPR model residual at the small scale (2.5 km) was the lowe-st, and the local spatial auto-correlation was significantly reduced, in which an ideal spatial distribution pattern of small clusters with different observations was formed. The local model at small scale (2.5 km) was much better than the global model in the simulation effect on the spatial distribution of recruitment tree number.

  3. Use of tree species by White-throated treerunner (Pygarrhichas albogularis King) in a secondary native forest of southern Chile

    OpenAIRE

    Gantz, Alberto; Yañez, Miguel; Orellana, José I.; Sade, Soraya; Valdivia, Carlos E.

    2015-01-01

    ABSTRACT In forest ecosystems, numerous species of insectivorous birds use certain tree species as feeding and nesting substrates. Between 2009 and 2010, the use of different floristic components as feeding substrate by the Pygarrhichas albogularis King, 1831 was evaluated in a southern Chilean secondary native forest. From a total of 13 trees and bush species, six tree species were used by P. albogularis as a feeding substrate. Tree use was limited to intermediate heights (11-20 m) and, main...

  4. Forest Classification Based on Forest texture in Northwest Yunnan Province

    Science.gov (United States)

    Wang, Jinliang; Gao, Yan; Wang, Xiaohua; Fu, Lei

    2014-03-01

    Forest texture is an intrinsic characteristic and an important visual feature of a forest ecological system. Full utilization of forest texture will be a great help in increasing the accuracy of forest classification based on remote sensed data. Taking Shangri-La as a study area, forest classification has been based on the texture. The results show that: (1) From the texture abundance, texture boundary, entropy as well as visual interpretation, the combination of Grayscale-gradient co-occurrence matrix and wavelet transformation is much better than either one of both ways of forest texture information extraction; (2) During the forest texture information extraction, the size of the texture-suitable window determined by the semi-variogram method depends on the forest type (evergreen broadleaf forest is 3×3, deciduous broadleaf forest is 5×5, etc.). (3)While classifying forest based on forest texture information, the texture factor assembly differs among forests: Variance Heterogeneity and Correlation should be selected when the window is between 3×3 and 5×5 Mean, Correlation, and Entropy should be used when the window in the range of 7×7 to 19×19 and Correlation, Second Moment, and Variance should be used when the range is larger than 21×21.

  5. Forest Classification Based on Forest texture in Northwest Yunnan Province

    International Nuclear Information System (INIS)

    Wang, Jinliang; Gao, Yan; Fu, Lei; Wang, Xiaohua

    2014-01-01

    Forest texture is an intrinsic characteristic and an important visual feature of a forest ecological system. Full utilization of forest texture will be a great help in increasing the accuracy of forest classification based on remote sensed data. Taking Shangri-La as a study area, forest classification has been based on the texture. The results show that: (1) From the texture abundance, texture boundary, entropy as well as visual interpretation, the combination of Grayscale-gradient co-occurrence matrix and wavelet transformation is much better than either one of both ways of forest texture information extraction; (2) During the forest texture information extraction, the size of the texture-suitable window determined by the semi-variogram method depends on the forest type (evergreen broadleaf forest is 3×3, deciduous broadleaf forest is 5×5, etc.). (3)While classifying forest based on forest texture information, the texture factor assembly differs among forests: Variance Heterogeneity and Correlation should be selected when the window is between 3×3 and 5×5; Mean, Correlation, and Entropy should be used when the window in the range of 7×7 to 19×19; and Correlation, Second Moment, and Variance should be used when the range is larger than 21×21

  6. Simulation of Forest Cover Dynamics for Eastern Eurasian Boreal Forests

    Science.gov (United States)

    Shugart, H. H.; Yan, X.; Zhang, N.; Isaev, A. S.; Shuman, J. K.

    2006-12-01

    We are developing and testing a boreal zone forest dynamics model capable of simulating the forest cover dynamics of the Eurasian boreal forest, a major biospheric ecosystem with potentially large roles in the planetary carbon cycle and in the feedback between terrestrial surface and the atmosphere. In appreciating the role of this region in the coupling between atmosphere and terrestrial surface, on must understand the interactions between CO2 source/sink relationships (associated with growing or clearing forests) and the albedo effects (from changes in terrestrial surface cover). There is some evidence that in the Eurasian Boreal zone, the Carbon budget effects from forest change may oppose the albedo changes. This creates complex feedbacks between surface and atmosphere and motivates the need for a forest dynamics model that simultaneous represents forest vegetation and carbon storage and release. A forest dynamics model applied to Eastern Eurasia, FAREAST, has been tested using three types of information: 1. Direct species composition comparisons between simulated and observed mature forests at the same locations; 2. Forest type comparisons between simulated and observed forests along altitudinal gradients of several different mountains; 3. Comparison with forest stands in different succession stages of simulated forests. Model comparisons with independent data indicate the FAREAST model is capable of representing many of the broad features of the forests of Northeastern China. After model validation in the Northeast China region, model applications were developed for the forests of the Russian Far East. Continental-scale forest cover can be simulated to a relatively realistic degree using a forest gap model with standard representations of individual-plant processes. It appears that such a model, validated relatively locally in this case, in Northeastern China, can then be applied over a much larger region and under conditions of climatic change.

  7. European mixed forests

    DEFF Research Database (Denmark)

    Bravo-Oviedo, Andres; Pretzsch, Hans; Ammer, Christian

    2014-01-01

    Aim of study: We aim at (i) developing a reference definition of mixed forests in order to harmonize comparative research in mixed forests and (ii) review the research perspectives in mixed forests. Area of study: The definition is developed in Europe but can be tested worldwide. Material...... and Methods: Review of existent definitions of mixed forests based and literature review encompassing dynamics, management and economic valuation of mixed forests. Main results: A mixed forest is defined as a forest unit, excluding linear formations, where at least two tree species coexist at any...... density in mixed forests, (iii) conversion of monocultures to mixed-species forest and (iv) economic valuation of ecosystem services provided by mixed forests. Research highlights: The definition is considered a high-level one which encompasses previous attempts to define mixed forests. Current fields...

  8. Community-weighted mean of leaf traits and divergence of wood traits predict aboveground biomass in secondary subtropical forests.

    Science.gov (United States)

    Ali, Arshad; Yan, En-Rong; Chang, Scott X; Cheng, Jun-Yang; Liu, Xiang-Yu

    2017-01-01

    Subtropical forests are globally important in providing ecological goods and services, but it is not clear whether functional diversity and composition can predict aboveground biomass in such forests. We hypothesized that high aboveground biomass is associated with high functional divergence (FDvar, i.e., niche complementarity) and community-weighted mean (CWM, i.e., mass ratio; communities dominated by a single plant strategy) of trait values. Structural equation modeling was employed to determine the direct and indirect effects of stand age and the residual effects of CWM and FDvar on aboveground biomass across 31 plots in secondary forests in subtropical China. The CWM model accounted for 78, 20, 6 and 2% of the variation in aboveground biomass, nitrogen concentration in young leaf, plant height and specific leaf area of young leaf, respectively. The FDvar model explained 74, 13, 7 and 0% of the variation in aboveground biomass, plant height, twig wood density and nitrogen concentration in young leaf, respectively. The variation in aboveground biomass, CWM of leaf nitrogen concentration and specific leaf area, and FDvar of plant height, twig wood density and nitrogen concentration in young leaf explained by the joint model was 86, 20, 13, 7, 2 and 0%, respectively. Stand age had a strong positive direct effect but low indirect positive effects on aboveground biomass. Aboveground biomass was negatively related to CWM of nitrogen concentration in young leaf, but positively related to CWM of specific leaf area of young leaf and plant height, and FDvar of plant height, twig wood density and nitrogen concentration in young leaf. Leaf and wood economics spectra are decoupled in regulating the functionality of forests, communities with diverse species but high nitrogen conservative and light acquisitive strategies result in high aboveground biomass, and hence, supporting both the mass ratio and niche complementarity hypotheses in secondary subtropical forests

  9. Management Effectiveness of a Secondary Coniferous Forest for Landscape Appreciation and Psychological Restoration.

    Science.gov (United States)

    Takayama, Norimasa; Fujiwara, Akio; Saito, Haruo; Horiuchi, Masahiro

    2017-07-18

    We investigated the influence of forest management on landscape appreciation and psychological restoration in on-site settings by exposing respondents to an unmanaged, dense coniferous (crowding) forest and a managed (thinned) coniferous forest; we set the two experimental settings in the forests of the Fuji Iyashinomoroi Woodland Study Center. The respondents were individually exposed to both settings while sitting for 15 min and were required to answer three questionnaires to analyze the psychological restorative effects before and after the experiment (feeling (the Profile of Mood States), affect (the Positive and Negative Affect Schedule), and subjective restorativeness (the Restorative Outcome Scale). To compare landscape appreciation, they were required to answer another two questionnaires only after the experiment, for scene appreciation (the semantic differential scale) and for the restorative properties of each environment (the Perceived Restorativeness Scale). Finally, we obtained these findings: (1) the respondents evaluated each forest environment highly differently and evaluated the thinned forest setting more positively; (2) the respondents' impressions of the two physical environments did not appear to be accurately reflected in their evaluations; (3) forest environments have potential restorative effects whether or not they are managed, but these effects can be partially enhanced by managing the forests.

  10. Forest crimes as a threat to sustainable forest management

    Directory of Open Access Journals (Sweden)

    S. Özden

    2016-08-01

    Full Text Available From ancient times to the present day, forest public relations has been an issue on the agenda. This relationship’s purpose was initially needed for shelter and nutrition; however today this process has changed with urbanization, overpopulation and understanding the new functions of forests. When land ownership became a tool of production, offenses occurred in order to convert forestlands to agricultural lands. So the vast majority of the world’s forests have been lost for this reason. Today, deforestation is occurring in tropical countries that are expecting to gain agricultural area. The purpose of this study is to investigate the relationship between urbanization and the qualitative and quantitative characteristics of forest crimes, which are a major obstacle for sustainable forestry. Although forests cover about 27 % of Turkey’s territory, the forests are losing viability; the status of wood raw material per unit area and the total area of the country in the ratio of productive forests are becoming critical in Turkey. Turkey’s rugged terrain and factors such as human interventions, fires, deforestation for agriculture, illegal cuttings, or improper grazing reduce existing forests or cause deterioration of their structure. In the past, deforestation, as a result of human interventions in Turkey, was done by forest villagers who live in rural areas. The forest crimes depend on various socio-economic reasons and have many adverse effects on the sustainability of forest and forest existence. In developed countries, illegal interventions such as opening, grazing, cutting, occupation, use, settlement, or hunting crimes have been largely eliminated because of the absence of cadastral problems, the existence of more responsive people to protect the environment and forests and a rural population, which has a higher standard of living. In the last 20 years, there has been both a dramatic decrease in the population living in rural areas and a

  11. The Bonobo Pan paniscus (Mammalia: Primates: Hominidae nesting patterns and forest canopy layers in the Lake Tumba forests and Salonga National Park, Democratic Republic of Congo

    Directory of Open Access Journals (Sweden)

    Bila-Isia Inogwabini

    2015-10-01

    Full Text Available The description and differentiation of habitat types is a major concern in ecology.  This study examined relationships between Bonobo Pan paniscus nesting patterns and forest structure in the Lake Tumba Swampy Forests. Data on presence of fresh Bonobo nests, canopy cover, canopy structure, tree densities and tree basal areas were collected systematically along 134 transects at 400m and 800m intervals, and the leaf-covered area (LCA was calculated for each of seven forest types. I observed a significant correlation between bonobo nests and mixed mature forest/closed understory forest type (r=-0.730, df = 21, p <0.05, but not mixed mature forest/open understory, old secondary forest and young secondary forest.  Basal areas of non-nesting trees along transects did not differ significantly from those in sites where bonobos nested.  Higher LCA (55% and 55% occurred in nesting sites when compared with non-nesting sites (39% and 42% at elevations 4–8 m and 8–16 m above the soil.  There was greater leaf cover in the understorey at sites where bonobos did not nest, while there was greater leaf cover in the mid-storey at sites where bonobos did nest.  

  12. [Diversity of soil nematode communities in the subalpine and alpine forests of western Sichuan, China.

    Science.gov (United States)

    Chen, Ya; Yang, Wan Qin; Wu, Fu Zhong; Yang, Fan; Lan, Li Ying; Liu, Yu Wei; Guo, Cai Hong; Tan, Bo

    2017-10-01

    In order to understand the diversity of soil nematodes in the subalpine/alpine forests of the eastern Qinghai-Tibet Plateau, soil nematodes in the primary forest, mixed forest and secondary forest of Abies faxoniana were extracted by elutriation and sugar-centrifugation method in July 2015, and the composition and structure characteristics of soil nematode communities were studied in the three forests at different altitudes. A total of 37950 soil nematodes were collected, which belonged to 20 families and 27 genera, and the mean density was 4217 ind·100 g -1 dry soil. Filenchus was the dominant genus in the primary forest, and Filenchus and Pararotylenchus in the mixed forest and secondary forest, respectively. The individual number of each dominant genus was significantly affected by forest type. All nematode individuals were classified into the four trophic groups of bacterivores, fungivores, plant-parasites and omnivore-predators. The fungivores were dominant in the primary and secondary forest and the bacterivores in the mixed forest. The number of soil nematode c-p (colonizer-persister) groups of c-p 1, c-p 2, c-p 3 and c-p 4 accounted for 6.1%, 51.1%, 30.0% and 12.7% of the total nematode abundance, respectively. The maturity index (MI), the total maturity index (∑MI) and the plant parasitic index (PPI) of soil nematodes decreased gradually with the increase of altitude. The nematode channel ratio in the mixed forest was higher than 0.5, but that in the primary forest and secondary forest was below 0.5. The forest type significantly affected the soil nematode maturity index and channel ratio, but the forest type, soil layer and their interaction had no significant effect on the diversity index. There were obvious diffe-rences in the composition, nutrient structure and energy flow channel of soil nematodes in the subalpine/alpine forests of western Sichuan, providing an important reference for understanding the function of soil nematodes in soil processes

  13. Modelling mixed forest growth : a review of models for forest management

    NARCIS (Netherlands)

    Porte, A.; Bartelink, H.H.

    2002-01-01

    Most forests today are multi-specific and heterogeneous forests (`mixed forests'). However, forest modelling has been focusing on mono-specific stands for a long time, only recently have models been developed for mixed forests. Previous reviews of mixed forest modelling were restricted to certain

  14. Forest Stakeholder Participation in Improving Game Habitat in Swedish Forests

    Directory of Open Access Journals (Sweden)

    Eugene E. Ezebilo

    2012-07-01

    Full Text Available Although in Sweden the simultaneous use of forests for timber production and game hunting are both of socioeconomic importance it often leads to conflicting interests. This study examines forest stakeholder participation in improving game habitat to increase hunting opportunities as well as redistribute game activities in forests to help reduce browsing damage in valuable forest stands. The data for the study were collected from a nationwide survey that involved randomly selected hunters and forest owners in Sweden. An ordered logit model was used to account for possible factors influencing the respondents’ participation in improving game habitat. The results showed that on average, forest owning hunters were more involved in improving game habitat than non-hunting forest owners. The involvement of non-forest owning hunters was intermediate between the former two groups. The respondents’ participation in improving game habitat were mainly influenced by factors such as the quantity of game meat obtained, stakeholder group, forests on hunting grounds, the extent of risk posed by game browsing damage to the economy of forest owners, importance of bagging game during hunting, and number of hunting days. The findings will help in designing a more sustainable forest management strategy that integrates timber production and game hunting in forests.

  15. Effects of Deforestation and Forest Degradation on Forest Carbon Stocks in Collaborative Forests, Nepal

    Directory of Open Access Journals (Sweden)

    Ram Asheshwar MANDAL

    2012-12-01

    Full Text Available There are some key drivers that favor deforestation and forest degradation. Consequently, levels of carbon stock are affected in different parts of same forest types. But the problem lies in exploring the extent of the effects on level of carbon stocking. This paper highlights the variations in levels of carbon stocks in three different collaborative forests of same forest type i.e. tropical sal (Shorea robusta forest in Mahottari district of the central Terai in Nepal. Three collaborative forests namely Gadhanta-Bardibas Collaborative Forest (CFM, Tuteshwarnath CFM and Banke- Maraha CFM were selected for research site. Interview and workshops were organized with the key informants that include staffs, members and representatives of CFMs to collect the socio-economic data and stratified random sampling was applied to collect the bio-physical data to calculate the carbon stocks. Analysis was carried out using statistical tools. It was found five major drivers namely grazing, fire, logging, growth of invasive species and encroachment. It was found highest carbon 269.36 ton per ha in Gadhanta- Bardibash CFM. The findings showed that the levels of carbon stocks in the three studied CFMs are different depending on how the drivers of deforestation and forest degradation influence over them.

  16. Forest soils

    Science.gov (United States)

    Charles H. (Hobie) Perry; Michael C. Amacher

    2009-01-01

    Productive soils are the foundation of sustainable forests throughout the United States. Forest soils are generally subjected to fewer disturbances than agricultural soils, particularly those that are tilled, so forest soils tend to have better preserved A-horizons than agricultural soils. Another major contrast between forest and agricultural soils is the addition of...

  17. Forest Management

    Science.gov (United States)

    S. Hummel; K. L. O' Hara

    2008-01-01

    Global variation in forests and in human cultures means that a single method for managing forests is not possible. However, forest management everywhere shares some common principles because it is rooted in physical and biological sciences like chemistry and genetics. Ecological forest management is an approach that combines an understanding of universal processes with...

  18. Forest hydrology

    Science.gov (United States)

    Ge Sun; Devendra Amatya; Steve McNulty

    2016-01-01

    Forest hydrology studies the distribution, storage, movement, and quality of water and the hydrological processes in forest-dominated ecosystems. Forest hydrological science is regarded as the foundation of modern integrated water¬shed management. This chapter provides an overview of the history of forest hydrology and basic principles of this unique branch of...

  19. Texas' forests, 2008

    Science.gov (United States)

    James W. Bentley; Consuelo Brandeis; Jason A. Cooper; Christopher M. Oswalt; Sonja N. Oswalt; KaDonna Randolph

    2014-01-01

    This bulletin describes forest resources of the State of Texas at the time of the 2008 forest inventory. This bulletin addresses forest area, volume, growth, removals, mortality, forest health, timber product output, and the economy of the forest sector.

  20. Illinois' Forests 2005

    Science.gov (United States)

    Susan J. Crocker; Gary J. Brand; Brett J. Butler; David E. Haugen; Dick C. Little; Dacia M. Meneguzzo; Charles H. Perry; Ronald J. Piva; Barry T. Wilson; Christopher W. Woodall

    2009-01-01

    The first full, annualized inventory of Illinois' forests reports more than 4.5 million acres of forest land with an average of 459 trees per acre. Forest land is dominated by oak/hickory forest types, which occupy 65 percent of total forest land area. Seventy-two percent of forest land consists of sawtimber, 20 percent contains poletimber, and 8 percent contains...

  1. Minnesota's Forests 2008

    Science.gov (United States)

    Patrick D. Miles; David Heinzen; Manfred E. Mielke; Christopher W. Woodall; Brett J. Butler; Ron J. Piva; Dacia M. Meneguzzo; Charles H. Perry; Dale D. Gormanson; Charles J. Barnett

    2011-01-01

    The second full annual inventory of Minnesota's forests reports 17 million acres of forest land with an average volume of more than 1,000 cubic feet per acre. Forest land is dominated by the aspen forest type, which occupies nearly 30 percent of the total forest land area. Twenty-eight percent of forest land consists of sawtimber, 35 percent poletimber, 35 percent...

  2. A tale of two "forests": random forest machine learning AIDS tropical forest carbon mapping.

    Science.gov (United States)

    Mascaro, Joseph; Asner, Gregory P; Knapp, David E; Kennedy-Bowdoin, Ty; Martin, Roberta E; Anderson, Christopher; Higgins, Mark; Chadwick, K Dana

    2014-01-01

    Accurate and spatially-explicit maps of tropical forest carbon stocks are needed to implement carbon offset mechanisms such as REDD+ (Reduced Deforestation and Degradation Plus). The Random Forest machine learning algorithm may aid carbon mapping applications using remotely-sensed data. However, Random Forest has never been compared to traditional and potentially more reliable techniques such as regionally stratified sampling and upscaling, and it has rarely been employed with spatial data. Here, we evaluated the performance of Random Forest in upscaling airborne LiDAR (Light Detection and Ranging)-based carbon estimates compared to the stratification approach over a 16-million hectare focal area of the Western Amazon. We considered two runs of Random Forest, both with and without spatial contextual modeling by including--in the latter case--x, and y position directly in the model. In each case, we set aside 8 million hectares (i.e., half of the focal area) for validation; this rigorous test of Random Forest went above and beyond the internal validation normally compiled by the algorithm (i.e., called "out-of-bag"), which proved insufficient for this spatial application. In this heterogeneous region of Northern Peru, the model with spatial context was the best preforming run of Random Forest, and explained 59% of LiDAR-based carbon estimates within the validation area, compared to 37% for stratification or 43% by Random Forest without spatial context. With the 60% improvement in explained variation, RMSE against validation LiDAR samples improved from 33 to 26 Mg C ha(-1) when using Random Forest with spatial context. Our results suggest that spatial context should be considered when using Random Forest, and that doing so may result in substantially improved carbon stock modeling for purposes of climate change mitigation.

  3. A tale of two "forests": random forest machine learning AIDS tropical forest carbon mapping.

    Directory of Open Access Journals (Sweden)

    Joseph Mascaro

    Full Text Available Accurate and spatially-explicit maps of tropical forest carbon stocks are needed to implement carbon offset mechanisms such as REDD+ (Reduced Deforestation and Degradation Plus. The Random Forest machine learning algorithm may aid carbon mapping applications using remotely-sensed data. However, Random Forest has never been compared to traditional and potentially more reliable techniques such as regionally stratified sampling and upscaling, and it has rarely been employed with spatial data. Here, we evaluated the performance of Random Forest in upscaling airborne LiDAR (Light Detection and Ranging-based carbon estimates compared to the stratification approach over a 16-million hectare focal area of the Western Amazon. We considered two runs of Random Forest, both with and without spatial contextual modeling by including--in the latter case--x, and y position directly in the model. In each case, we set aside 8 million hectares (i.e., half of the focal area for validation; this rigorous test of Random Forest went above and beyond the internal validation normally compiled by the algorithm (i.e., called "out-of-bag", which proved insufficient for this spatial application. In this heterogeneous region of Northern Peru, the model with spatial context was the best preforming run of Random Forest, and explained 59% of LiDAR-based carbon estimates within the validation area, compared to 37% for stratification or 43% by Random Forest without spatial context. With the 60% improvement in explained variation, RMSE against validation LiDAR samples improved from 33 to 26 Mg C ha(-1 when using Random Forest with spatial context. Our results suggest that spatial context should be considered when using Random Forest, and that doing so may result in substantially improved carbon stock modeling for purposes of climate change mitigation.

  4. Forest and water relationships: hydrologic implications of forestation campaigns in China

    Science.gov (United States)

    Ge Sun; Guoyi Zhou; Zhiqiang Zhang; Xiaohua Wei; Steven G. McNulty; James Vose

    2005-01-01

    Reforestation and afforestation (referred to forestation thereafter) campaigns in the past two decades have resulted in great increases in both forest land area and forest ecosystem productivity in China. Although the ecological benefits of forests are well accepted, the hydrologic consequences of man-made forests by forestation are unclear. Debate and confusion on the...

  5. Distinctive tropical forest variants have unique soil microbial communities, but not always low microbial diversity

    Directory of Open Access Journals (Sweden)

    Binu M Tripathi

    2016-04-01

    Full Text Available There has been little study of whether different variants of tropical rainforest have distinct soil microbial communities and levels of diversity. We compared bacterial and fungal community composition and diversity between primary mixed dipterocarp, secondary mixed dipterocarp, white sand heath, inland heath, and peat swamp forests in Brunei Darussalam, northwest Borneo by analyzing Illumina Miseq sequence data of 16S rRNA gene and ITS1 region. We hypothesized that white sand heath, inland heath and peat swamp forests would show lower microbial diversity and relatively distinct microbial communities (compared to MDF primary and secondary forests due to their distinctive environments. We found that soil properties together with bacterial and fungal communities varied significantly between forest types. Alpha and beta-diversity of bacteria was highest in secondary dipterocarp and white sand heath forests. Also, bacterial alpha diversity was strongly structured by pH, adding another instance of this widespread pattern in nature. The alpha diversity of fungi was equally high in all forest types except peat swamp forest, although fungal beta-diversity was highest in primary and secondary mixed dipterocarp forests. The relative abundance of ectomycorrhizal (EcM fungi varied significantly between forest types, with highest relative abundance observed in MDF primary forest. Overall, our results suggest that the soil bacterial and fungal communities in these forest types are to a certain extent predictable and structured by soil properties, but that diversity is not determined by how distinctive the conditions are. This contrasts with the diversity patterns seen in rainforest trees, where distinctive soil conditions have consistently lower tree diversity.

  6. Potential of the Russian forests and forest industries

    Energy Technology Data Exchange (ETDEWEB)

    Anttonen, T.; Petrov, A.P. [eds.

    1997-12-31

    The publication contains the proceedings of the seminar `Potential of the Russian Forests and Forest Industries` held in Moscow, May 14-16, 1997. The seminar was one step along the road to spread knowledge and become acquainted with forestry and forest industries in northern Europe and Russia. The seminar proceedings contain a lot of fresh information concerning forestry and forest industries in Russia. Both have undergone many changes and reforms during the last few years

  7. Ecological consequences of forest elephant declines for Afrotropical forests.

    Science.gov (United States)

    Poulsen, John R; Rosin, Cooper; Meier, Amelia; Mills, Emily; Nuñez, Chase L; Koerner, Sally E; Blanchard, Emily; Callejas, Jennifer; Moore, Sarah; Sowers, Mark

    2017-10-27

    Poaching is rapidly extirpating African forest elephants (Loxodonta cyclotis) from most of their historical range, leaving vast areas of elephant-free tropical forest. Elephants are ecological engineers that create and maintain forest habitat; thus, their loss will have large consequences for the composition and structure of Afrotropical forests. Through a comprehensive literature review, we evaluated the roles of forest elephants in seed dispersal, nutrient recycling, and herbivory and physical damage to predict the cascading ecological effects of their population declines. Loss of seed dispersal by elephants will favor tree species dispersed abiotically and by smaller dispersal agents, and tree species composition will depend on the downstream effects of changes in elephant nutrient cycling and browsing. Loss of trampling and herbivory of seedlings and saplings will result in high tree density with release from browsing pressures. Diminished seed dispersal by elephants and high stem density are likely to reduce the recruitment of large trees and thus increase homogeneity of forest structure and decrease carbon stocks. The loss of ecological services by forest elephants likely means Central African forests will be more like Neotropical forests, from which megafauna were extirpated thousands of years ago. Without intervention, as much as 96% of Central African forests will have modified species composition and structure as elephants are compressed into remaining protected areas. Stopping elephant poaching is an urgent first step to mitigating these effects, but long-term conservation will require land-use planning that incorporates elephant habitat into forested landscapes that are being rapidly transformed by industrial agriculture and logging. © 2017 Society for Conservation Biology.

  8. SAR data for the analysis of forest features: current Brazilian experiences

    OpenAIRE

    Fábio Guimarães Gonçalves; Fábio Furlan Gama; João Roberto dos Santos

    2006-01-01

    This article presents some applications of airborne polarimetric and/or interferometric microwave data to improve the knowledge of forest structures. Three airborne SAR (Synthetic Aperture Radar) experiments were done in the Amazon tropical forest: (a) to study the spatial distribution of very large trees (VLTs) in the primary forest using local maximum filtering and a series of Markov processes; (b) to model the estimation of biomass variations in primary and secondary forests; (c) to analyz...

  9. Indiana's Forests 2008

    Science.gov (United States)

    Christopher W. Woodall; Mark N. Webb; Barry T. Wilson; Jeff Settle; Ron J. Piva; Charles H. Perry; Dacia M. Meneguzzo; Susan J. Crocker; Brett J. Butler; Mark Hansen; Mark Hatfield; Gary Brand; Charles. Barnett

    2011-01-01

    The second full annual inventory of Indiana's forests reports more than 4.75 million acres of forest land with an average volume of more than 2,000 cubic feet per acre. Forest land is dominated by the white oak/red oak/hickory forest type, which occupies nearly a third of the total forest land area. Seventy-six percent of forest land consists of sawtimber, 16...

  10. Mixed-Forest Species Establishment in a Monodominant Forest in Central Africa: Implications for Tropical Forest Invasibility

    Science.gov (United States)

    Peh, Kelvin S.-H.; Sonké, Bonaventure; Séné, Olivier; Djuikouo, Marie-Noël K.; Nguembou, Charlemagne K.; Taedoumg, Hermann; Begne, Serge K.; Lewis, Simon L.

    2014-01-01

    Background Traits of non-dominant mixed-forest tree species and their synergies for successful co-occurrence in monodominant Gilbertiodendron dewevrei forest have not yet been investigated. Here we compared the tree species diversity of the monodominant forest with its adjacent mixed forest and then determined which fitness proxies and life history traits of the mixed-forest tree species were most associated with successful co-existence in the monodominant forest. Methodology/Principal Findings We sampled all trees (diameter in breast height [dbh]≥10 cm) within 6×1 ha topographically homogenous areas of intact central African forest in SE Cameroon, three independent patches of G. dewevrei-dominated forest and three adjacent areas (450–800 m apart). Monodominant G. dewevrei forest had lower sample-controlled species richness, species density and population density than its adjacent mixed forest in terms of stems with dbh≥10 cm. Analysis of a suite of population-level characteristics, such as relative abundance and geographical distribution, and traits such as wood density, height, diameter at breast height, fruit/seed dispersal mechanism and light requirement–revealed after controlling for phylogeny, species that co-occur with G. dewevrei tend to have higher abundance in adjacent mixed forest, higher wood density and a lower light requirement. Conclusions/Significance Our results suggest that certain traits (wood density and light requirement) and population-level characteristics (relative abundance) may increase the invasibility of a tree species into a tropical closed-canopy system. Such knowledge may assist in the pre-emptive identification of invasive tree species. PMID:24844914

  11. Mixed-forest species establishment in a monodominant forest in central Africa: implications for tropical forest invasibility.

    Directory of Open Access Journals (Sweden)

    Kelvin S-H Peh

    Full Text Available BACKGROUND: Traits of non-dominant mixed-forest tree species and their synergies for successful co-occurrence in monodominant Gilbertiodendron dewevrei forest have not yet been investigated. Here we compared the tree species diversity of the monodominant forest with its adjacent mixed forest and then determined which fitness proxies and life history traits of the mixed-forest tree species were most associated with successful co-existence in the monodominant forest. METHODOLOGY/PRINCIPAL FINDINGS: We sampled all trees (diameter in breast height [dbh]≥10 cm within 6×1 ha topographically homogenous areas of intact central African forest in SE Cameroon, three independent patches of G. dewevrei-dominated forest and three adjacent areas (450-800 m apart. Monodominant G. dewevrei forest had lower sample-controlled species richness, species density and population density than its adjacent mixed forest in terms of stems with dbh≥10 cm. Analysis of a suite of population-level characteristics, such as relative abundance and geographical distribution, and traits such as wood density, height, diameter at breast height, fruit/seed dispersal mechanism and light requirement-revealed after controlling for phylogeny, species that co-occur with G. dewevrei tend to have higher abundance in adjacent mixed forest, higher wood density and a lower light requirement. CONCLUSIONS/SIGNIFICANCE: Our results suggest that certain traits (wood density and light requirement and population-level characteristics (relative abundance may increase the invasibility of a tree species into a tropical closed-canopy system. Such knowledge may assist in the pre-emptive identification of invasive tree species.

  12. Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics

    NARCIS (Netherlands)

    Chazdon, R.L.; Broadbent, E.N.; Rozendaal, Danae; Bongers, F.; Jakovac, A.C.; Braga Junqueira, A.; Lohbeck, M.W.M.; Pena Claros, M.; Poorter, L.

    2016-01-01

    Regrowth of tropical secondary forests following complete or nearly complete removal of forest vegetation actively stores carbon in aboveground biomass, partially counterbalancing carbon emissions from deforestation, forest degradation, burning of fossil fuels, and other anthropogenic sources. We

  13. Forest owners' perceptions of ecotourism: Integrating community values and forest conservation.

    Science.gov (United States)

    Rodríguez-Piñeros, Sandra; Mayett-Moreno, Yesica

    2015-03-01

    The use of forest land for ecotourism has been well accepted due to its ability to provide income to local people and to conserve the forest. Preparing the forest with infrastructure to attract and educate visitors has been reported of importance. This study applied Q methodology in a small rural community of the State of Puebla, Mexico, to reveal forest owners' perceptions to build infrastructure in their forest as part of their ecotourism project. It also discloses forest owners' underlying motives to use their forest for ecotourism. Ecotourism is perceived as a complementary activity to farming that would allow women to be involved in community development. Low impact infrastructure is desired due to forest owners' perception to preserve the forest for the overall community well-being.

  14. Photosynthesis of seedlings of Otoba novogranatensis (Myristicaceae and Ruagea glabra (Meliaceae in abandoned pasture, secondary forest and plantation habitats in Costa Rica

    Directory of Open Access Journals (Sweden)

    Michael E. Loik

    2013-09-01

    Full Text Available Enrichment planting in naturally recovering secondary forests or in tree plantations is increasingly being used as strategy to restore later-successional, large-seeded tropical forest trees. We seeded two tree species (Otoba novogranatensis and Ruagea glabra in three agricultural sites in Southern Costa Rica: abandoned pastures, eight to ten year old secondary forests and three year old tree plantations (containing two N-fixing of four total tree species. We measured micrometeorological conditions, soil water content, plant water potential, leaf area, foliar C and N, and photosynthesis to better understand mechanistic responses of seedlings to conditions in the different successional habitats. Micrometeorological conditions, soil water content, and plant water potential were generally similar across habitats. Certain aspects of leaves (such as Specific Leaf Area and foliar N content, and photosynthesis (e.g. quantum yield and electron transport rate were highest in the plantations, intermediate in the secondary forests, and lowest in abandoned pastures. Enhanced rates of photosynthetic biochemistry (such as Vcmax and Jmax and Photosystem II efficiency (e.g. thermal energy dissipation occurred in leaves from the plantations compared to the abandoned pastures, which may be related to higher leaf %N content. Results suggest that foliar N may be of greater importance than soil water content and micrometeorological factors in driving differences in photosynthetic processes across planting habitats. Planting seeds of these two species in plantations containing three year old trees (including two N-fixing species enhances certain aspects of their photosynthesis and growth, compared to seedlings in abandoned pastures with non-native grasses, and thus can help increase forest recovery on abandoned agricultural lands.

  15. Forest inventory: role in accountability for sustainable forest management

    Science.gov (United States)

    Lloyd C. Irland

    2007-01-01

    Forest inventory can play several roles in accountability for sustainable forest management. A first dimension is accountability for national performance. The new field of Criteria and Indicators is an expression of this need. A more familiar role for the U.S. Department of Agriculture Forest Service Forest Inventory and Analysis (FIA) program is for assessment and...

  16. Tree species diversity and distribution patterns in tropical forests of Garo Hills.

    Science.gov (United States)

    A. Kumar; B.G. Marcot; A. Saxena

    2006-01-01

    We analyzed phytosociological characteristics and diversity patterns of tree species of tropical forests of Garo Hills, western Meghalaya, northeast India. The main vegetation of the region included primary forests, secondary forests, and sal (Shorea robusta) plantations, with 162, 132, and 87 tree species, respectively. The Shannon-Wiener...

  17. Tropical Forest Gain and Interactions amongst Agents of Forest Change

    Directory of Open Access Journals (Sweden)

    Sean Sloan

    2016-02-01

    Full Text Available The tropical deforestation literature advocates multi-agent enquiry in recognition that key dynamics arise from inter-agent interactions. Studies of tropical forest-cover gain have lagged in this respect. This article explores the roles and key aspects of interactions shaping natural forest regeneration and active reforestation in Eastern Panama since 1990. It employs household surveys of agricultural landholders, interviews with community forest-restoration organisations, archival analysis of plantation reforestation interests, satellite image analysis of forest-cover change, and the consideration of State reforestation policies. Forest-cover gain reflected a convergence of interests and land-use trends amongst agents. Low social and economic costs of sustained interaction and organisation enabled extensive forest-cover gain, but low transaction costs did not. Corporate plantation reforestation rose to the fore of regional forest-cover gain via opportunistic land sales by ranchers and economic subsidies indicative of a State preference for autonomous, self-organising forest-cover gain. This reforestation follows a recent history of neoliberal frontier development in which State-backed loggers and ranchers similarly displaced agriculturalists. Community institutions, long neglected by the State, struggled to coordinate landholders and so effected far less forest-cover gain. National and international commitments to tropical forest restoration risk being similarly characterised as ineffective by a predominance of industrial plantation reforestation without greater State support for community forest management.

  18. Non-timber forest products of the North-West District of Guyana

    OpenAIRE

    Andel, T.R. van

    2000-01-01

    This thesis describes the use of non-timber forest products (NTFPs) by indigenous peoples of northwest Guyana. Part I contains a general analysis of NTFP harvesting in northwest Guyana Part II is an illustrated field guide of the useful plants encountered. Chapter 1: introduction Chapter 2: floristic composition and vegetation structure of well-drained mixed forest and 20- and 60-year old secondary forests. Previous forest inventories predicted a general low diversity for the North-West Distr...

  19. Forest insect pest management and forest management in China: an overview.

    Science.gov (United States)

    Ji, Lanzhu; Wang, Zhen; Wang, Xiaowei; An, Linli

    2011-12-01

    According to the Seventh National Forest Inventory (2004-2008), China's forests cover an area of 195.45 million ha, or 20.36% of the total land area. China has the most rapidly increasing forest resources in the world. However, China is also a country with serious forest pest problems. There are more than 8,000 species of potential forest pests in China, including insects, plant diseases, rodents and lagomorphs, and hazardous plants. Among them, 300 species are considered as economically or ecologically important, and half of these are serious pests, including 86 species of insects. Forest management and utilization have a considerable influence on the stability and sustainability of forest ecosystems. At the national level, forestry policies always play a major role in forest resource management and forest health protection. In this paper, we present a comprehensive overview of both achievements and challenges in forest management and insect pest control in China. First, we summarize the current status of forest resources and their pests in China. Second, we address the theories, policies, practices and major national actions on forestry and forest insect pest management, including the Engineering Pest Management of China, the National Key Forestry Programs, the Classified Forest Management system, and the Collective Forest Tenure Reform. We analyze and discuss three representative plantations-Eucalyptus, poplar and Masson pine plantations-with respect to their insect diversity, pest problems and pest management measures.

  20. Forest Insect Pest Management and Forest Management in China: An Overview

    Science.gov (United States)

    Ji, Lanzhu; Wang, Zhen; Wang, Xiaowei; An, Linli

    2011-12-01

    According to the Seventh National Forest Inventory (2004-2008), China's forests cover an area of 195.45 million ha, or 20.36% of the total land area. China has the most rapidly increasing forest resources in the world. However, China is also a country with serious forest pest problems. There are more than 8,000 species of potential forest pests in China, including insects, plant diseases, rodents and lagomorphs, and hazardous plants. Among them, 300 species are considered as economically or ecologically important, and half of these are serious pests, including 86 species of insects. Forest management and utilization have a considerable influence on the stability and sustainability of forest ecosystems. At the national level, forestry policies always play a major role in forest resource management and forest health protection. In this paper, we present a comprehensive overview of both achievements and challenges in forest management and insect pest control in China. First, we summarize the current status of forest resources and their pests in China. Second, we address the theories, policies, practices and major national actions on forestry and forest insect pest management, including the Engineering Pest Management of China, the National Key Forestry Programs, the Classified Forest Management system, and the Collective Forest Tenure Reform. We analyze and discuss three representative plantations— Eucalyptus, poplar and Masson pine plantations—with respect to their insect diversity, pest problems and pest management measures.

  1. Key role of symbiotic dinitrogen fixation in tropical forest secondary succession

    NARCIS (Netherlands)

    Batterman, S.A.; Hedin, L.O.; Breugel, van M.; Ransijn, J.; Craven, D.J.; Hall, J.S.

    2013-01-01

    Forests contribute a significant portion of the land carbon sink, but their ability to sequester CO2 may be constrained by nitrogen1, 2, 3, 4, 5, 6, a major plant-limiting nutrient. Many tropical forests possess tree species capable of fixing atmospheric dinitrogen (N2)7, but it is unclear whether

  2. Restoring forest structure and process stabilizes forest carbon in wildfire-prone southwestern ponderosa pine forests.

    Science.gov (United States)

    Hurteau, Matthew D; Liang, Shuang; Martin, Katherine L; North, Malcolm P; Koch, George W; Hungate, Bruce A

    2016-03-01

    Changing climate and a legacy of fire-exclusion have increased the probability of high-severity wildfire, leading to an increased risk of forest carbon loss in ponderosa pine forests in the southwestern USA. Efforts to reduce high-severity fire risk through forest thinning and prescribed burning require both the removal and emission of carbon from these forests, and any potential carbon benefits from treatment may depend on the occurrence of wildfire. We sought to determine how forest treatments alter the effects of stochastic wildfire events on the forest carbon balance. We modeled three treatments (control, thin-only, and thin and burn) with and without the occurrence of wildfire. We evaluated how two different probabilities of wildfire occurrence, 1% and 2% per year, might alter the carbon balance of treatments. In the absence of wildfire, we found that thinning and burning treatments initially reduced total ecosystem carbon (TEC) and increased net ecosystem carbon balance (NECB). In the presence of wildfire, the thin and burn treatment TEC surpassed that of the control in year 40 at 2%/yr wildfire probability, and in year 51 at 1%/yr wildfire probability. NECB in the presence of wildfire showed a similar response to the no-wildfire scenarios: both thin-only and thin and burn treatments increased the C sink. Treatments increased TEC by reducing both mean wildfire severity and its variability. While the carbon balance of treatments may differ in more productive forest types, the carbon balance benefits from restoring forest structure and fire in southwestern ponderosa pine forests are clear.

  3. Tenure and forest income

    DEFF Research Database (Denmark)

    Jagger, Pamela; Luckert, Martin K.; Duchelle, Amy E.

    2014-01-01

    We explore the relationship between tenure and forest income in 271 villages throughout the tropics. We find that state-owned forests generate more forest income than private and community-owned forests both per household and per hectare. We explore whether forest income varies according...... to the extent of rule enforcement, and congruence (i.e., overlap of user rights between owners and users). We find negative associations between enforcement and smallholder forest income for state-owned and community forests, and positive associations for privately owned forests. Where user rights are limited...... to formal owners we find negative associations for state-owned forests. Overlapping user rights are positively associated with forest income for community forests. Our findings suggest that policy reforms emphasizing enforcement and reducing overlapping claims to forest resources should consider possible...

  4. Forest Loss in Protected Areas and Intact Forest Landscapes: A Global Analysis.

    Science.gov (United States)

    Heino, Matias; Kummu, Matti; Makkonen, Marika; Mulligan, Mark; Verburg, Peter H; Jalava, Mika; Räsänen, Timo A

    2015-01-01

    In spite of the high importance of forests, global forest loss has remained alarmingly high during the last decades. Forest loss at a global scale has been unveiled with increasingly finer spatial resolution, but the forest extent and loss in protected areas (PAs) and in large intact forest landscapes (IFLs) have not so far been systematically assessed. Moreover, the impact of protection on preserving the IFLs is not well understood. In this study we conducted a consistent assessment of the global forest loss in PAs and IFLs over the period 2000-2012. We used recently published global remote sensing based spatial forest cover change data, being a uniform and consistent dataset over space and time, together with global datasets on PAs' and IFLs' locations. Our analyses revealed that on a global scale 3% of the protected forest, 2.5% of the intact forest, and 1.5% of the protected intact forest were lost during the study period. These forest loss rates are relatively high compared to global total forest loss of 5% for the same time period. The variation in forest losses and in protection effect was large among geographical regions and countries. In some regions the loss in protected forests exceeded 5% (e.g. in Australia and Oceania, and North America) and the relative forest loss was higher inside protected areas than outside those areas (e.g. in Mongolia and parts of Africa, Central Asia, and Europe). At the same time, protection was found to prevent forest loss in several countries (e.g. in South America and Southeast Asia). Globally, high area-weighted forest loss rates of protected and intact forests were associated with high gross domestic product and in the case of protected forests also with high proportions of agricultural land. Our findings reinforce the need for improved understanding of the reasons for the high forest losses in PAs and IFLs and strategies to prevent further losses.

  5. Illinois' Forests 2010

    Science.gov (United States)

    Susan J. Crocker; Mark D. Nelson; Charles J. Barnett; Brett J. Butler; Grant M. Domke; Mark H. Hansen; Mark A. Hatfield; Tonya W. Lister; Dacia M. Meneguzzo; Ronald J. Piva; Barry T. Wilson; Christopher W. Woodall

    2013-01-01

    The second full annual inventory of Illinois' forests, completed in 2010, reports more than 4.8 million acres of forest land and 97 tree species. Forest land is dominated by oak/hickory and elm/ash/cottonwood forest-type groups, which occupy 93 percent of total forest land area. The volume of growing stock on timberland totals 7.2 billion cubic feet. The average...

  6. Nebraska's Forests 2010

    Science.gov (United States)

    Dacia M Meneguzzo; Susan J. Crocker; Mark D. Nelson; Charles J. Barnett; Brett J. Butler; Grant M. Domke; Mark H. Hansen; Mark A. Hatfield; Greg C. Liknes; Andrew J. Lister; Tonya W. Lister; Ronald J. Piva; Barry T. (Ty) Wilson; Christopher W. Woodall

    2012-01-01

    The second full annual inventory of Nebraska's forests reports more than 1.5 million acres of forest land and 39 tree species. Forest land is dominated by the elm/ash/cottonwood and oak/hickory forest types, which occupy nearly half of the total forest land area. The volume of growing stock on timberland currently totals 1.1 billion cubic feet. The average annual...

  7. Forest report 2016

    International Nuclear Information System (INIS)

    2016-01-01

    This forest condition report of Hesse (Germany) includes the following topics: forest condition survey for all tree species, forest in the in the Rhine-Main area, weather and climate, soil water balance and drought stress, insects and fungi, Forestry Environment Monitoring, infiltrated substances, main results of Forest soil survey in Hesse (BZE II), the substrate group red sandstone, heavy metal contamination of forests.

  8. Michigan's Forests 2009

    Science.gov (United States)

    Scott A. Pugh; Lawrence D. Pedersen; Douglas C. Heym; Ronald J. Piva; Christopher W. Woodall; Charles J. Barnett; Cassandra M. Kurtz; W. Keith. Moser

    2012-01-01

    The seventh inventory of Michigan's forests, completed in 2009, describes more than 19.9 million acres of forest land. The data in this report are based on visits to 7,516 forested plots from 2005 to 2009. Timberland accounts for 97 percent of this forest land, and 62 percent is privately owned. The sugar maple/beech/yellow birch forest type accounts for 18...

  9. Michigan's forests 2004

    Science.gov (United States)

    Scott A. Pugh; Mark H. Hansen; Lawrence D. Pedersen; Douglas C. Heym; Brett J. Butler; Susan J. Crocker; Dacia Meneguzzo; Charles H. Perry; David E. Haugen; Christopher Woodall; Ed Jepsen

    2009-01-01

    The first annual inventory of Michigan's forests, completed in 2004, covers more than 19.3 million acres of forest land. The data in this report are based on visits to 10,355 forested plots from 2000 to 2004. In addition to detailed information on forest attributes, this report includes data on forest health, biomass, land-use change, and timber-product outputs....

  10. Size of forest holdings and family forests: implications for forest management in South Carolina.

    Science.gov (United States)

    Brian Williams; Thomas Straka; Richard Harper

    2012-01-01

    There are about 11.3 million private forest owners in the United States; of those, 10.4 million are family forest owners who control 62% of the nation's private timberland. South Carolina has about 262,000 family forest owners who control almost two-thirds of the state's private timberland (Butler, 2008). In the recent past, these ownerships were generally...

  11. Analysis of Expectations of Forest Products Industry from Forest Industry Engineering Education

    OpenAIRE

    GEDİK, Tarık; ÇİL, Muhammet; SEVİM KORKUT, Derya; CEMİL AKYÜZ, Kadri; KOŞAR, Gökşen; BEKAR, İlter

    2016-01-01

    Forest industry engineers, representing the qualified labor within the forest products industry, choose their field of study either deliberately or by chance. This study explores the main skill sets of forest industry engineers required by forest products industry. As representatives of forest industry owner of forest products companies were surveyed about their views on the qualifications a forest industry engineer must have.This study covered total 7111 companies registered to TOBB as a for...

  12. Household Land Management and Biodiversity: Secondary Succession in a Forest-Agriculture Mosaic in Southern Mexico

    Directory of Open Access Journals (Sweden)

    Rinku Roy Chowdhury

    2007-12-01

    Full Text Available This study evaluates anthropogenic and ecological dimensions of secondary forest succession in Mexico's southern Yucatán peninsular region, a hotspot of biodiversity and tropical deforestation. Secondary succession in particular constitutes an ecologically and economically important process, driven by and strongly influencing land management and local ecosystem structure and dynamics. As agents of local land management, smallholding farmers in communal, i.e., ejido lands affect rates of forest change, biodiversity, and sustainability within and beyond their land parcels. This research uses household surveys and land parcel mapping in two ejidos located along the buffer of the Calakmul Biosphere Reserve to analyze how household socioeconomics and policy institutions drive allocations to successional forests in traditional crop fallows and in enriched fallows. Results indicate that household tenancy, livestock holdings, labor-consumer ratios, and receipts of agricultural subsidies are the strongest determinants of traditional fallow areas. Whereas the latter two factors also influence enriched successions, local agroforestry and reforestation programs were the strongest drivers of fallow enrichment. Additionally, the study conducts field vegetation sampling in a nested design within traditional and enriched fallow sites to comparatively assess biodiversity consequences of fallow management. Although enriched fallows display greater species richness in 10x10 m plots and 2x2 m quadrats, plot-scale data reveal no significant differences in Shannon-Wiener or Simpson's diversity indices. Traditional fallows display greater species heterogeneity at the quadrat scale, however, indicating a complex relationship of diversity to fallow management over time. The article discusses the implications of the social and ecological analyses for land change research and conservation policies.

  13. Soil-mediated filtering organizes tree assemblages in regenerating tropical forests

    NARCIS (Netherlands)

    Pinho, Bruno Ximenes; Melo, de Felipe Pimentel Lopes; Arroyo-Rodríguez, Víctor; Pierce, Simon; Lohbeck, Madelon; Tabarelli, Marcelo

    2018-01-01

    Secondary forests are increasingly dominant in human-modified tropical landscapes, but the drivers of forest recovery remain poorly understood. Soil conditions influence plant community composition, and are expected to change over a gradient of succession. However, the role of soil conditions as

  14. Net aboveground biomass declines of four major forest types with forest ageing and climate change in western Canada's boreal forests.

    Science.gov (United States)

    Chen, Han Y H; Luo, Yong

    2015-10-01

    Biomass change of the world's forests is critical to the global carbon cycle. Despite storing nearly half of global forest carbon, the boreal biome of diverse forest types and ages is a poorly understood component of the carbon cycle. Using data from 871 permanent plots in the western boreal forest of Canada, we examined net annual aboveground biomass change (ΔAGB) of four major forest types between 1958 and 2011. We found that ΔAGB was higher for deciduous broadleaf (DEC) (1.44 Mg ha(-1)  year(-1) , 95% Bayesian confidence interval (CI), 1.22-1.68) and early-successional coniferous forests (ESC) (1.42, CI, 1.30-1.56) than mixed forests (MIX) (0.80, CI, 0.50-1.11) and late-successional coniferous (LSC) forests (0.62, CI, 0.39-0.88). ΔAGB declined with forest age as well as calendar year. After accounting for the effects of forest age, ΔAGB declined by 0.035, 0.021, 0.032 and 0.069 Mg ha(-1)  year(-1) per calendar year in DEC, ESC, MIX and LSC forests, respectively. The ΔAGB declines resulted from increased tree mortality and reduced growth in all forest types except DEC, in which a large biomass loss from mortality was accompanied with a small increase in growth. With every degree of annual temperature increase, ΔAGB decreased by 1.00, 0.20, 0.55 and 1.07 Mg ha(-1)  year(-1) in DEC, ESC, MIX and LSC forests, respectively. With every cm decrease of annual climatic moisture availability, ΔAGB decreased 0.030, 0.045 and 0.17 Mg ha(-1)  year(-1) in ESC, MIX and LSC forests, but changed little in DEC forests. Our results suggest that persistent warming and decreasing water availability have profound negative effects on forest biomass in the boreal forests of western Canada. Furthermore, our results indicate that forest responses to climate change are strongly dependent on forest composition with late-successional coniferous forests being most vulnerable to climate changes in terms of aboveground biomass. © 2015 John Wiley & Sons Ltd.

  15. A model of forest floor carbon mass for United States forest types

    Science.gov (United States)

    James E. Smith; Linda S. Heath

    2002-01-01

    Includes a large set of published values of forest floor mass and develop large-scale estimates of carbon mass according to region and forest type. Estimates of average forest floor carbon mass per hectare of forest applied to a 1997 summary forest inventory, sum to 4.5 Gt carbon stored in forests of the 48 contiguous United States.

  16. Nutrient Cycling in Primary, Secondary Forests and Cocoa ...

    African Journals Online (AJOL)

    USER

    -bolic processes, assimilation, maintenance and reproduction for sustainability. ... The leaf portion was sorted out from the total trapped litter, dried in the oven at 60 oC ..... Comparative productivity and biomass relations of forest ecosystems.

  17. Impacts of Tropical Forest Disturbance Upon Avifauna on a Small Island with High Endemism: Implications for Conservation

    Directory of Open Access Journals (Sweden)

    Martin Thomas

    2010-01-01

    Full Text Available Tropical forests are rapidly being lost across Southeast Asia and this is predicted to have severe implications for many of the region′s bird species. However, relationships between forest disturbance and avifaunal assemblages remain poorly understood, particularly on small island ecosystems such as those found in the biodiversity ′hotspot′ of Wallacea. This study examines how avifaunal richness varies across a disturbance gradient in a forest reserve on Buton Island, southeast Sulawesi. Particular emphasis is placed upon examining responses in endemic and red-listed species with high conservation importance. Results indicate that overall avian richness increases between primary and 30-year-old regenerating secondary forest and then decreases through disturbed secondary forest, but is highest in cleared farmland. However, high species richness in farmland does not signify high species distinctiveness; bird community composition here differs significantly from that found in forest sites, and is poor in supporting forest specialists and endemic species. Certain large-bodied endemics such as the Knobbed Hornbill (Rhyticeros cassidix appear to be sensitive to moderate disturbance, with populations occurring at greatest density within primary forest. However, overall endemic species richness, as well as that of endemic frugivores and insectivores, is similar in primary and secondary forest types. Results indicate that well-established secondary forest in particular has an important role in supporting species with high conservational importance, possessing community composition similar to that found in primary forest and supporting an equally high richness of endemic species.

  18. Forest Grammar(Ⅰ)

    Institute of Scientific and Technical Information of China (English)

    张松懋

    1994-01-01

    Forest grammar,a new type of high-dimensional grammar,is proposed in this paper,of which both the left and the right parts of every production are concatenations of tree structures.A classification of forest grammar is studied,especially,a subclass of the forest grammar,i.e.the context-sensitive forest grammar,and one of its subclasses is defined,called the weak precedence forest grammar.

  19. Temporal Forest Change Detection and Forest Health Assessment using Remote Sensing

    International Nuclear Information System (INIS)

    Ya'acob, Norsuzila; Azize, Aziean Binti Mohd; Mahmon, Nur Anis; Yusof, Azita Laily; Azmi, Nor Farhana; Mustafa, Norfazira

    2014-01-01

    This paper presents the detection of Angsi and Berembun Reserve Forest change for years 1996 and 2013. Forest is an important part of our ecosystem. The main function is to absorb carbon oxide and produce oxygen in their cycle of photosynthesis to maintain a balance and healthy atmosphere. However, forest changes as time changes. Some changes are necessary as to give way for economic growth. Nevertheless, it is important to monitor forest change so that deforestation and development can be planned and the balance of ecosystem is still preserved. It is important because there are number of unfavorable effects of deforestation that include environmental and economic such as erosion of soil, loss of biodiversity and climate change. The forest change detection can be studied with reference of several satellite images using remote sensing application. Forest change detection is best done with remote sensing due to large and remote study area. The objective of this project is to detect forest change over time and to compare forest health indicated by Normalized Difference Vegetation Index (NDVI) using remote sensing and image processing. The forest under study shows depletion of forest area by 12% and 100% increment of deforestation activities. The NDVI value which is associated with the forest health also shows 13% of reduction

  20. Forest Islands and Castaway Communities: REDD+ and Forest Restoration in Prey Lang Forest

    Directory of Open Access Journals (Sweden)

    Courtney Work

    2017-02-01

    Full Text Available Climate Change policies are playing an ever-increasing role in global development strategies and their implementation gives rise to often-unforeseen social conflicts and environmental degradations. A landscape approach to analyzing forest-based Climate Change Mitigation policies (CCM and land grabs in the Prey Lang Forest landscape, Cambodia revealed two Korea-Cambodia partnership projects designed to increase forest cover that are juxtaposed in this paper. Case study data revealed a REDD+ project with little negative impact or social conflict in the project area and an Afforestation/Reforestation (A/R project that created both social and ecological conflicts. The study concludes that forest-based CCM policies can reduce conflict through efforts at minimal transformation of local livelihoods, maximal attention to the tenure rights, responsibilities, and authority of citizens, and by improving, not degrading, the project landscapes. The paper presents the circumstances under which these guidelines are sidestepped by the A/R project, and importantly reveals that dramatic forest and livelihood transformation had already affected the community and environment in the REDD+ project site. There are deep contradictions at the heart of climate change policies toward which attention must be given, lest we leave our future generations with nothing but forest islands and castaway communities.

  1. Non-timber forest products: alternative multiple-uses for sustainable forest management

    Science.gov (United States)

    James L. Chamberlain; Mary Predny

    2003-01-01

    Forests of the southern United States are the source of a great diversity of flora, much of which is gathered for non-timber forest products (NTFPs). These products are made from resources that grow under the forest canopy as trees, herbs, shrubs, vines, moss and even lichen. They occur naturally in forests or may be cultivated under the forest canopy or in...

  2. Private forest owners of the Central Hardwood Forest

    Science.gov (United States)

    Thomas W. Birch

    1997-01-01

    A recently completed survey of woodland owners provides insight into the owners of private forest lands in the Central Hardwood Region. There is increasing parcelization of forested lands and an increase in the numbers of nonindustrial private forest-land owners. Over half of the private owners have harvested timber from their holdings at some time in the past, they...

  3. INDICATED SPECIES TO RESTORATION OF RIPARIAN FORESTS IN SUBWATERSHED OF PEIXE-BOI RIVER, PARÁ STATE

    Directory of Open Access Journals (Sweden)

    Igor do Vale

    2014-09-01

    Full Text Available http://dx.doi.org/10.5902/1980509815736This study aims to indicate native species to be used in the restoration of degraded riparian forests in the subwatershed of Peixe-Boi river. All trees and shrubs with diameter at breast height (DBH > 5 cm were inventoried in ten areas of secondary forest and six areas of igapó forest. The results were analyzed by Principal Component Analysis and the silviculture of the species was assessed by literature review. In Igapó areas 66 species were found; the areas had low richness and low diversity index of Shannon, when compared with data from the secondary forests. The floristic composition was heterogeneous, and the floristic similarity is higher between areas that are closer geographically. In the secondary forests were found 175 species; the areas showed high abundance of individuals, high species richness, diversity and evenness. Secondary forests were separated according to geographic proximity and age, which is directly linked to the successional stage. The PCA analysis established the ecological importance of 29 tree species; however only ten species had enough silvicultural information. Due to a greater ecological importance and viable silvicultural techniques available in the literature, Carapa guianensis, Pachira aquatica, Spondias mombin, Tapirira guianensis and Virola guianensis are the most suitable species to restore the degraded areas, in association with Inga edulis, Jacaranda copaia, Pseudopiptadenia psilostachya, Simarouba amara and Vismia guianensis of the secondary forests, that can be planted in the borders and in the nearby areas of igapó forests.

  4. Effects of national forest-management regimes on unprotected forests of the Himalaya.

    Science.gov (United States)

    Brandt, Jodi S; Allendorf, Teri; Radeloff, Volker; Brooks, Jeremy

    2017-12-01

    Globally, deforestation continues, and although protected areas effectively protect forests, the majority of forests are not in protected areas. Thus, how effective are different management regimes to avoid deforestation in non-protected forests? We sought to assess the effectiveness of different national forest-management regimes to safeguard forests outside protected areas. We compared 2000-2014 deforestation rates across the temperate forests of 5 countries in the Himalaya (Bhutan, Nepal, China, India, and Myanmar) of which 13% are protected. We reviewed the literature to characterize forest management regimes in each country and conducted a quasi-experimental analysis to measure differences in deforestation of unprotected forests among countries and states in India. Countries varied in both overarching forest-management goals and specific tenure arrangements and policies for unprotected forests, from policies emphasizing economic development to those focused on forest conservation. Deforestation rates differed up to 1.4% between countries, even after accounting for local determinants of deforestation, such as human population density, market access, and topography. The highest deforestation rates were associated with forest policies aimed at maximizing profits and unstable tenure regimes. Deforestation in national forest-management regimes that emphasized conservation and community management were relatively low. In India results were consistent with the national-level results. We interpreted our results in the context of the broader literature on decentralized, community-based natural resource management, and our findings emphasize that the type and quality of community-based forestry programs and the degree to which they are oriented toward sustainable use rather than economic development are important for forest protection. Our cross-national results are consistent with results from site- and regional-scale studies that show forest-management regimes that

  5. 78 FR 38287 - Bitterroot National Forest, Darby Ranger District, Como Forest Health Project

    Science.gov (United States)

    2013-06-26

    ... DEPARTMENT OF AGRICULTURE Forest Service Bitterroot National Forest, Darby Ranger District, Como Forest Health Project AGENCY: Forest Service. ACTION: Notice; Correction. SUMMARY: The Department of Agriculture (USDA), Forest Service, Bitterroot National Forest, Darby Ranger District published a document in...

  6. Forest Resources

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-06-01

    Forest biomass is an abundant biomass feedstock that complements the conventional forest use of wood for paper and wood materials. It may be utilized for bioenergy production, such as heat and electricity, as well as for biofuels and a variety of bioproducts, such as industrial chemicals, textiles, and other renewable materials. The resources within the 2016 Billion-Ton Report include primary forest resources, which are taken directly from timberland-only forests, removed from the land, and taken to the roadside.

  7. Mean latitudinal range sizes of bird assemblages in six Neotropical forest chronosequences

    DEFF Research Database (Denmark)

    Dunn, Robert R.; Romdal, Tom Skovlund

    2005-01-01

    Aim The geographical range size frequency distributions of animal and plant assemblages are among the most important factors affecting large-scale patterns of diversity. Nonetheless, the relationship between habitat type and the range size distributions of species forming assemblages remains poorly...... towards more small ranged species occurs. Even relatively old secondary forests have bird species with larger average ranges than mature forests. As a consequence, conservation of secondary forests alone will miss many of the species most at risk of extinction and most unlikely to be conserved in other...

  8. Soil and soil cover changes in spruce forests after final logging

    Directory of Open Access Journals (Sweden)

    E. M. Lapteva

    2015-10-01

    Full Text Available Soil cover transformation and changes of morphological and chemical properties of Albeluvisols in clear-cuttings of middle taiga spruce forests were studied. The observed changes in structure and properties of podzolic texturally-differentiated soils at cuttings of spruce forests in the middle taiga subzone do not cause their transition to any other soil type. Soil cover of secondary deciduous-coniferous forests which replace cut forests are characterized with a varied soil contour and a combination of the main type of podzolic soils under undisturbed spruce forests. The increased surface hydromorphism in cut areas causes formation of complicated sub-types of podzolic texturally differentiated soils (podzolic surface-gley soils with microprofile of podzol and enlarges their ratio (up to 35–38 % in soil cover structure. Temporary soil over-wetting at the initial (5–10 years stage of after-cutting self-restoring vegetation succession provides for soil gleyzation, improves yield and segregation of iron compounds, increases the migratory activity of humic substances. Low content and resources of total nitrogen in forest litters mark anthropogenic transformation processes of podzolic soils at this stage. Later (in 30–40 years after logging, soils in cut areas still retain signs of hydromorphism. Forest litters are denser, less acidic and thick with a low weight ratio of organic carbon as compared with Albeluvisols of undisturbed spruce forest. The upper mineral soil horizons under secondary deciduous-coniferous forests contain larger amounts of total iron, its mobile (oxalate-dissolvable components, and Fe-Mn-concretions.

  9. Productivity assessment of timber harvesting techniques for supporting sustainable forest management of secondary Atlantic Forests in southern Brazil

    Directory of Open Access Journals (Sweden)

    Pedro Caldas Britto

    2017-12-01

    Full Text Available The Atlantic Forest in southern Brazil has been subject to overexploitation in the past prompting the formulation of a rigorous conservation orientated policy by the government including a strict ban of timber harvesting. In the region, the forestland is owned by farmers. The economic value of the forest is rather limited for those farmers, because of the prohibition of commercial timber harvesting as a source of income. Sustainable forest management systems can offer great potential as new income opportunities for land holders, and further actively support the process of ecosystem rehabilitation and protection for these ecosystems. Yet, successful implementation of such sustainable management systems requires feasible and adapted timber harvesting systems. In order to develop such harvesting systems, a regional comparative case study was conducted at a typical smallholder forestry venture with the objective to analyze and evaluate harvesting methods supporting sustainable management of the Atlantic Forest. This study assessed production rates and associated costs of a common conventional timber harvesting method (CM and a proposed alternative method (AM. CM was performed by a selected, typical forest landowner who had only basic training in chainsaw operations, but 20 years of experience at the wood yard of his small sawmill. In contrast, the AM employed a professional chainsaw operator from the Amazon forest, trained and experienced in reduced impact logging techniques using state of the art equipment, supplemented by a snatch block and a skidding cone for improved extraction. Time study based models identified tree volume, winching distance and skidding distance to the landing as the most significant independent variables affecting productivity. Total net productivity ranged from 4.9 m³ PMH0-1 for CM to 3.1 m³ PMH0-1 for AM. Corresponding gross-productivity ranged from 3.0 m³ SMH-1 to 1.9 m³ SMH-1 with an overall mean utilization rate of

  10. Organization of private forest sector in Timok forest area

    Directory of Open Access Journals (Sweden)

    Vojislav Milijic

    2010-06-01

    Full Text Available Today, private forest owners (PFOs in Serbia cooperate in form of private forest owners associations (PFOAs. Currently, there are 20 PFOAs, of which 15 are in Timok region. Initiatives of PFOs from Timok forest area, animated the owners from other parts of the country and led to foundation of Serbian Federation of Forest Owners' Associations. Twelve of PFOAs from Timok forest area are the founders of Serbian private forest owners' umbrella organization. Restructuring of Public Enterprise (PE "Srbijasume", which started in 2001, led to development of private small and medium forest enterprises, engaged as contractors of PE for harvesting, timber transport and construction of forest roads. The objectives of this paper are to elaborate if there are differences between PFOs in Serbia and Timok region and to analyze organization of private forest owners in Timok forest area. In order to reach these objectives, results of PRIFORT project were used. This project focused on four countries of Western Balkans region: Bosnia and Herzegovina, Croatia, Serbia and Macedonia. The aim of this project was to explore precondition for formation of PFOs in this region. Quantitative survey (n = 350 of randomly selected PFOs was conducted in nine municipalities in Serbia, of which two were in Timok region (n = 100. The results show that there are differences between PFOs in Serbia and Timok region in number of PFOs, size of private property and in additional incentives. These results also indicate that economic interest is a motive for establishment of PFOAs and that state support is very important for their development. Since a number of PFOs are entrepreneurs, it can be assumed that, further development of theirs organizations could lead to development of SMEs clusters. 

  11. Impacts of participatory forest management on species composition and forest structure in Ethiopia

    DEFF Research Database (Denmark)

    Yietagesu, Aklilu Ameha; Meilby, Henrik; Feyisa, Gudina Legese

    2016-01-01

    The present study assesses the impacts of decentralized forest management on forest conditions in Ethiopian Montane forests. We compared observed densities of different tree species and size categories in forests managed by local forest user groups (FUGs) and the government. We used forest...

  12. Dipterocarpaceae: forest fires and forest recovery

    NARCIS (Netherlands)

    Priadjati, A.

    2002-01-01

    One of the serious problems Indonesia is facing today is deforestation. Forests have been playing a very important role in Indonesia as the main natural resources for the economic growth of the country. Large areas of tropical forests, worldwide

  13. Zoning of the Russian Federation territory based on forest management and forest use intensity

    Directory of Open Access Journals (Sweden)

    A. A. Маrtynyuk

    2016-02-01

    Full Text Available Over extended periods issues of forest management intensification are important in all aspects of Russian forest sector development. Sufficient research has been done in silviculture, forest planning and forest economics to address forest management intensification targets. Systems of our national territory forest management and forest economics zoning due to specifics of timber processing and forest area infrastructure have been developed. Despite sufficient available experience in sustainable forest management so far intensification issues were addressed due to development of new woodlands without proper consideration of forest regeneration and sustainable forest management operations. It resulted in forest resource depletion and unfavorable substitution of coniferous forests with less valuable softwood ones in considerable territories (especially accessible for transport. The situation is complicated since degree of forest ecosystem changes is higher in territories with high potential productivity. Ongoing changes combined with the present effective forest management system resulted in a situation where development of new woodlands is impossible without heavy investments in road construction; meanwhile road construction is unfeasible due to distances to timber processing facilities. In the meantime, changes in forest legislation, availability of forest lease holding, and promising post-logging forest regeneration technologies generate new opportunities to increase timber volumes due to application of other procedures practically excluding development of virgin woodlands. With regard to above, the Russian territory was zoned on a basis of key factors that define forest management and forest use intensification based on forest ecosystem potential productivity and area transport accessibility. Based on available data with GIS analysis approach (taking into consideration value of various factors the Russian Federation forest resources have been

  14. Local and landscape factors determining occurrence of phyllostomid bats in tropical secondary forests.

    Directory of Open Access Journals (Sweden)

    Luis Daniel Avila-Cabadilla

    Full Text Available Neotropical forests are being increasingly replaced by a mosaic of patches of different successional stages, agricultural fields and pasture lands. Consequently, the identification of factors shaping the performance of taxa in anthropogenic landscapes is gaining importance, especially for taxa playing critical roles in ecosystem functioning. As phyllostomid bats provide important ecological services through seed dispersal, pollination and control of animal populations, in this study we assessed the relationships between phyllostomid occurrence and the variation in local and landscape level habitat attributes caused by disturbance. We mist-netted phyllostomids in 12 sites representing 4 successional stages of a tropical dry forest (initial, early, intermediate and late. We also quantitatively characterized the habitat attributes at the local (vegetation structure complexity and the landscape level (forest cover, area and diversity of patches. Two focal scales were considered for landscape characterization: 500 and 1000 m. During 142 sampling nights, we captured 606 individuals representing 15 species and 4 broad guilds. Variation in phyllostomid assemblages, ensembles and populations was associated with variation in local and landscape habitat attributes, and this association was scale-dependent. Specifically, we found a marked guild-specific response, where the abundance of nectarivores tended to be negatively associated with the mean area of dry forest patches, while the abundance of frugivores was positively associated with the percentage of riparian forest. These results are explained by the prevalence of chiropterophilic species in the dry forest and of chiropterochorous species in the riparian forest. Our results indicate that different vegetation classes, as well as a multi-spatial scale approach must be considered for evaluating bat response to variation in landscape attributes. Moreover, for the long-term conservation of phyllostomids in

  15. Local and landscape factors determining occurrence of phyllostomid bats in tropical secondary forests.

    Science.gov (United States)

    Avila-Cabadilla, Luis Daniel; Sanchez-Azofeifa, Gerardo Arturo; Stoner, Kathryn Elizabeth; Alvarez-Añorve, Mariana Yolotl; Quesada, Mauricio; Portillo-Quintero, Carlos Alonso

    2012-01-01

    Neotropical forests are being increasingly replaced by a mosaic of patches of different successional stages, agricultural fields and pasture lands. Consequently, the identification of factors shaping the performance of taxa in anthropogenic landscapes is gaining importance, especially for taxa playing critical roles in ecosystem functioning. As phyllostomid bats provide important ecological services through seed dispersal, pollination and control of animal populations, in this study we assessed the relationships between phyllostomid occurrence and the variation in local and landscape level habitat attributes caused by disturbance. We mist-netted phyllostomids in 12 sites representing 4 successional stages of a tropical dry forest (initial, early, intermediate and late). We also quantitatively characterized the habitat attributes at the local (vegetation structure complexity) and the landscape level (forest cover, area and diversity of patches). Two focal scales were considered for landscape characterization: 500 and 1000 m. During 142 sampling nights, we captured 606 individuals representing 15 species and 4 broad guilds. Variation in phyllostomid assemblages, ensembles and populations was associated with variation in local and landscape habitat attributes, and this association was scale-dependent. Specifically, we found a marked guild-specific response, where the abundance of nectarivores tended to be negatively associated with the mean area of dry forest patches, while the abundance of frugivores was positively associated with the percentage of riparian forest. These results are explained by the prevalence of chiropterophilic species in the dry forest and of chiropterochorous species in the riparian forest. Our results indicate that different vegetation classes, as well as a multi-spatial scale approach must be considered for evaluating bat response to variation in landscape attributes. Moreover, for the long-term conservation of phyllostomids in anthropogenic

  16. The implications of new forest tenure reforms and forestry property markets for sustainable forest management and forest certification in China.

    Science.gov (United States)

    Chen, Juan; Innes, John L

    2013-11-15

    This study examines issues existing in the southern collective forests in China, particularly prior to the implementation of new forest tenure reforms, such as continued illegal logging and timber theft, inadequate availability of finance and inconsistent forest-related policies. Such problems are believed to be hindering the adoption of sustainable forest management (SFM) and forest certification by forest farmers in China. Two strategies were introduced by the Chinese government with the purpose of addressing these issues, namely forest tenure reforms and their associated supporting mechanism, forestry property markets. Through two case studies in southern China, we investigated the effectiveness of the two strategies as well as their implications for the adoption of SFM and forest certification. The two cases were Yong'an in Fujian province and Tonggu in Jiangxi province. Personal interviews with open-ended questions were conducted with small-scale forest farmers who had already benefited from the two strategies as well as market officers working for the two selected forestry property markets. The study identified eight issues constraining the potential adoption of SFM and certification in China, including limited finance, poorly developed infrastructure and transport systems, insecure forest tenures, inconsistent forest policies, low levels of awareness, illegal forest management practices, lack of local cooperative organizations, and inadequate knowledge and technical transfer. We found that the new forest tenure reforms and forestry property markets had generally fulfilled their original objectives and had the capacity to assist in addressing many of the issues facing forests prior to the reforms. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Humus layer is the main locus of secondary SO4 production in boreal forests

    Science.gov (United States)

    Houle, Daniel; Marty, Charles; Duchesne, Louis; Gagnon, Christian

    2014-02-01

    Identifying the sources of S exported from catchments and the reactivity of the large soil organic S pool is crucial to understand the mid- or long-term response of forested catchments to decreasing atmospheric S deposition and global warming. Sulfur fluxes as well as S and O isotopes of SO4 were measured in precipitation, throughfall, soil solutions and streams at two boreal forest catchments respectively dominated by black spruce (BS) and balsam fir (BF) in Quebec, Canada. Overall, δ34S-SO4 signature showed relatively small variations among various solution types. However, at both sites, δ18O-SO4 in precipitation (averages of 10.5-11.1‰) was decreased by 3.5-3.6‰ in throughfall because of the production of secondary SO4 through oxidation of SO2 deposited on the canopy. Throughfall δ18O-SO4 was decreased by a further 5.4-6.6‰ in the solution leaving the humus layer which was attributed to the production of secondary SO4 under the action of soil microorganisms through the oxidation of organic S during which the S atom acquired O from water and gaseous O2 present in the soil. A mixing equation based on known isotopic signature of each source suggested that ˜67-81% of the S-SO4 leaving the catchments had interacted with the canopy and the humus layer. The stability of δ18O-SO4 in the mineral soil solution and in the stream of both sites, suggests that SO4 does not undergo reduction-oxidation cycles after its passage through the humus layer. Despite its huge size, the organic S reservoir within the mineral soil would be largely inert. Given the chemical nature of SO4 transformation in the canopy, the humus layer would be responsible for nearly 100% of the biological production of secondary SO4 in the whole watershed at both sites. Taking into account the substantial production of dissolved organic S in the humus layer further emphasizes the crucial importance of the latter in the S cycling of boreal forests.

  18. Non-timber forest products and forest stewardship plans

    Science.gov (United States)

    Becky Barlow; Tanner Filyaw; Sarah W. Workman

    2015-01-01

    To many woodland owners “harvesting” typically means the removal of timber from forests. In recent years many landowners have become aware of the role non-timber forest products (NTFPs) can play in supplemental management strategies to produce income while preserving other forest qualities. NTFPs are a diverse group of craft, culinary, and medicinal products that have...

  19. Tropical forest transitions: structural changes in forest area, composition and landscape

    NARCIS (Netherlands)

    Wiersum, K.F.

    2014-01-01

    Most studies on tropical forest dynamics focus on the processes of deforestation and forest degradation and its associated ecological impacts; comparatively little attention is given to the emergence of forest transitions. This review gives an overview of forest transitions in the tropics as

  20. Monitoring forest/non-forest land use conversion rates with annual inventory data

    Science.gov (United States)

    Francis A. Roesch; Paul C. Van Deusen

    2012-01-01

    The transitioning of land from forest to other uses is of increasing interest as urban areas expand and the world’s population continues to grow. Also of interest, but less recognized, is the transitioning of land from other uses into forest. In this paper, we show how rates of conversion from forest to non-forest and non-forest to forest can be estimated in the US...

  1. EUFODOS: European Forest Downstream Services - Improved Information on Forest Structure and Damage

    Science.gov (United States)

    Hirschmugl, M.; Gallaun, H.; Wack, R.; Granica, K.; Schardt, M.

    2013-05-01

    Forests play a key role in the European economy and environment. This role incorporates ecological functions which can be affected by the occurrence of insect infestations, forest fire, heavy snowfall or windfall events. Local or Regional Authorities (LRAs) thus require detailed information on the degradation status of their forests to be able to take appropriate measures for their forest management plans. In the EUFODOS project, state-of-the-art satellite and laser scanning technologies are used to provide forest authorities with cost-effective and comprehensive information on forest structure and damage. One of the six test sites is located in the Austrian province of Styria where regional forest authorities have expressed a strong need for detailed forest parameters in protective forest. As airborne laser-scanning data is available, it will be utilized to derive detailed forest parameters such as the upper forest border line, tree height, growth classes, forest density, vertical structure or volume. At the current project status, the results of (i) the forest border line, (ii) the segmentation of forest stands and (iii) the tree top detection are available and presented including accuracy assessment and interim results are shown for timber volume estimations. The final results show that the forest border can be mapped operationally with an overall accuracy of almost 99% from LiDAR data. For the segmentation of forest stands, a comparison of the automatically derived result with visual-manual delineation showed in general a more detailed segmentation result, but for all visual-manual segments a congruence of 87% within a 4 m buffer. Tree top detections were compared to stem numbers estimated based on angle-count samplings in a field campaign, which led to a correlation coefficient (R) of 0.79.

  2. Forest loss in protected areas and intact forest landscapes : A global analysis

    NARCIS (Netherlands)

    Heino, Matias; Kummu, Matti; Makkonen, Marika; Mulligan, Mark; Verburg, Peter H.; Jalava, Mika; Räsänen, Timo A.

    2015-01-01

    In spite of the high importance of forests, global forest loss has remained alarmingly high during the last decades. Forest loss at a global scale has been unveiled with increasingly finer spatial resolution, but the forest extent and loss in protected areas (PAs) and in large intact forest

  3. Forested wetland habitat

    Science.gov (United States)

    Duberstein, Jamie A.; Krauss, Ken W.; Kennish, Michael J.

    2015-01-01

    A forested wetland (swamp) is a forest where soils are saturated or flooded for at least a portion of the growing season, and vegetation, dominated by trees, is adapted to tolerate flooded conditions. A tidal freshwater forested wetland is a forested wetland that experiences frequent but short-term surface flooding via tidal action, with average salinity of soil porewater less than 0.5 g/l. It is known locally as tidal várzea in the Amazon delta, Brazil. A tidal saltwater forested wetland (mangrove forest) is a forested wetland that experiences frequent but short-term surface flooding via tidal action, with average salinity often exceeding 3 g/l and reaching levels that can exceed seawater. Mangrove ecosystems are composed of facultative halophytes that generally experience better growth at moderate salinity concentrations.

  4. Repeated insect outbreaks promote multi-cohort aspen mixedwood forests in Northern Minnesota, USA

    Science.gov (United States)

    Michael Reinikainen; Anthony W. D' Amato; Shawn. Fraver

    2012-01-01

    Characterizing the timing, severity, and agents of historic forest disturbances is critical to developing management and conservation strategies based on natural processes. Typically such information is derived from retrospective studies of remnant old-growth forests; however, this approach has limited application in regions dominated by secondary forests heavily...

  5. Hydrologic influences of forest vegetation in a changing world: Learning from Forest Service experimental forests, ranges, and watersheds

    Science.gov (United States)

    Thomas E. Lisle; Mary Beth Adams; Leslie M. Reid; Kelly Elder

    2010-01-01

    The importance of forests in providing reliable sources of clean water cannot be underestimated. Therefore, there is a pressing need to understand how hydrologic systems function in forested ecosystems, in response to a variety of traditional and novel stressors and environments. Long-term watershed research on Experimental Forests and Ranges (EFRs) of the Forest...

  6. Foreign capital, forest change and regulatory compliance in Congo Basin forests

    International Nuclear Information System (INIS)

    Brandt, Jodi S; Nolte, Christoph; Agrawal, Arun; Steinberg, Jessica

    2014-01-01

    Tropical forest change is driven by demand in distant markets. Equally, investments in tropical forest landscapes by capital originating from distant emerging economies are on the rise. Understanding how forest outcomes vary by investment source is therefore becoming increasingly important. We empirically evaluate the relationship between investment source and deforestation from 2000 to 2010 in the Republic of Congo. A Congolese forestry code was implemented in 2000 to mitigate degradation of production forests by standardizing all logging in the country according to sustainable forest management (SFM) guidelines. Following the implementation of this law, the majority (73%) of Congo’s production forests were managed by European (40%) and Asian (33%) companies. European concessions had the highest rates of total and core deforestation, followed by Asian concessions, indicating that the fragmentation of intact forests in Congo is strongly associated with industrial logging fueled by foreign capital. European concession holders were also far more likely to comply with SFM policies, followed by Asian concessions, suggesting that compliance with Sustainable Forest Management policies may not mitigate degradation in tropical production forests. Further evaluation of the relationship between investment source, regulatory compliance, and outcomes in tropical countries is essential for effective conservation of tropical forest ecosystems. (paper)

  7. Foreign capital, forest change and regulatory compliance in Congo Basin forests

    Science.gov (United States)

    Brandt, Jodi S.; Nolte, Christoph; Steinberg, Jessica; Agrawal, Arun

    2014-04-01

    Tropical forest change is driven by demand in distant markets. Equally, investments in tropical forest landscapes by capital originating from distant emerging economies are on the rise. Understanding how forest outcomes vary by investment source is therefore becoming increasingly important. We empirically evaluate the relationship between investment source and deforestation from 2000 to 2010 in the Republic of Congo. A Congolese forestry code was implemented in 2000 to mitigate degradation of production forests by standardizing all logging in the country according to sustainable forest management (SFM) guidelines. Following the implementation of this law, the majority (73%) of Congo’s production forests were managed by European (40%) and Asian (33%) companies. European concessions had the highest rates of total and core deforestation, followed by Asian concessions, indicating that the fragmentation of intact forests in Congo is strongly associated with industrial logging fueled by foreign capital. European concession holders were also far more likely to comply with SFM policies, followed by Asian concessions, suggesting that compliance with Sustainable Forest Management policies may not mitigate degradation in tropical production forests. Further evaluation of the relationship between investment source, regulatory compliance, and outcomes in tropical countries is essential for effective conservation of tropical forest ecosystems.

  8. The Missouri Ozark Forest Ecosystem Project: the effects of forest management on the forest ecosystem

    Science.gov (United States)

    Brian Brookshire; Carl Hauser

    1993-01-01

    The effects of forest management on non-timber resources are of growing concern to forest managers and the public. While many previous studies have reported effects of stand-level treatments (less than 15 ha) on various stand-level attributes, few studies have attempted to document the influence of forest management on the biotic and abiotic characteristics of entire...

  9. Forest Health Detectives

    Science.gov (United States)

    Bal, Tara L.

    2014-01-01

    "Forest health" is an important concept often not covered in tree, forest, insect, or fungal ecology and biology. With minimal, inexpensive equipment, students can investigate and conduct their own forest health survey to assess the percentage of trees with natural or artificial wounds or stress. Insects and diseases in the forest are…

  10. Sustaining Urban Forests

    Science.gov (United States)

    John F. Dwyer; David J. Nowak

    2003-01-01

    The significance of the urban forest resource and the powerful forces for change in the urban environment make sustainability a critical issue in urban forest management. The diversity, connectedness, and dynamics of the urban forest establish the context for management that will determine the sustainability of forest structure, health, functions, and benefits. A...

  11. The soil indicator of forest health in the Forest Inventory and Analysis Program

    Science.gov (United States)

    Michael C. Amacher; Charles H. Perry

    2010-01-01

    Montreal Process Criteria and Indicators (MPCI) were established to monitor forest conditions and trends to promote sustainable forest management. The Soil Indicator of forest health was developed and implemented within the USFS Forest Inventory and Analysis (FIA) program to assess condition and trends in forest soil quality in U.S. forests regardless of ownership. The...

  12. Separating the effects of forest type and elevation on the diversity of litter invertebrate communities in a humid tropical forest in Puerto Rico.

    Science.gov (United States)

    BARBARA A. RICHARDSON; MICHAEL J. RICHARDSON; FELIPE N. SOTO-ADAMES

    2005-01-01

    1. The primary effects of climatic conditions on invertebrate litter communities, and the secondary effects of different forest types, were distinguished by using the sierra palm as a control in a natural experiment along an elevational gradient in the Luquillo Mountains. These mountains have three well-defined forest types along the gradient, with the palm occurring...

  13. Dynamics of Mixed Dipterocarps Forests in Wanariset Semboja, East Kalimantan after Three Times of Forest Fires within the Periods of 1980-2003

    Directory of Open Access Journals (Sweden)

    HERWINT SIMBOLON

    2005-04-01

    Full Text Available A plot of 150x700 m2 was established in a mixed dipterocarps of Wanariset Semboja, East Kalimantan during the periods of 1979-1981. The forest was dominated by Eusideroxylon zwageri (Lauraceae, Dipterocarpus cornutus (Dipterocarpaceae, Pholidocarpus majadum (Arecaceae, and Diospyros borneensis (Ebenaceae. Since the plot establishment, the forests then had experienced three times of forest fires, those were in 1982-1983, 1994-1995 and 1997-1998. The present paper reports the results of re-measurement of some 150x110 m2 parts of the plot in August 2003, about 23 years after plot establishment. Micro topographically, the studied plot was relatively undulating in higher parts and relatively flat in the lower parts of the plot, while the differences between lowest sub-plot and higher sub-plot of the re-measured plot was 26 m. Forest floor of the lower parts of the plot were humid to wet during rainy season and still humid during dry season. Almost all of the trees within lower parts of the plot were escaped from these three times of forest fires; hence these sub-plots were dominated by the trees of primary species that enumerated in 1980. Those sub-plots in the higher parts were burnt during the past forest fires indicated by the charcoal of standing trees and remaining felling logs in the forest floor. These burnt sub-plots were dominated by pioneer or secondary tree species, such as: Mallotus spp., Macaranga spp., Ficus spp. and Vernonia arborea. Local distribution of some indicator species (such as primary tree species: Pholidocarpus majadum, Diospyros spp., Eusideroxylon zwageri and species of Dipterocarpaceae; pioneer or secondary tree species Vernonia arborea, Macaranga spp., Mallotus spp., Ficus uncinulata, Piper aduncum, Peronema canescens within the plot were figured. Mortality, recruitment and growth rate during the period of 1980-2003 were also discussed.

  14. Monitoring of Slovakian forests, Report of Forest Focus and CMS Forest, 2006

    International Nuclear Information System (INIS)

    Pavlenda, P.; Durkovicova, J.; Istona, J.; Leontovyc, R.; Longauerova, V.; Mindas, J.; Pajtik, J.; Priwitzer, T.; Rasi, R.; Stancikova, A.; Tothova, S.; Stancikova, A.; Tothova, S.; Vodalova, A.

    2007-01-01

    The report presents current information and results from monitoring of forest issues ecosystems. The results of a survey of defoliation and plant health status, crowns and pest factors on permanent observation areas are summarized. In addition to data from representative network of sites, data from areas of intensive monitoring are analyzed, related to air quality and atmospheric deposition, soil solution, gain, lose surveys, vegetation, phonologic observations and soil moisture regime in 2006 and 2005, respectively. In connection with other activities under the Forest Focus scheme also the basic information about Forest Fire in Slovakia and the demonstration project BioSoil are included.

  15. Forest diversity and disturbance: changing influences and the future of Virginia's Forests

    Science.gov (United States)

    Christine J. Small; James L. Chamberlain

    2015-01-01

    The Virginia landscape supports a remarkable diversity of forests, from maritime dunes, swamp forests, and pine savannas of the Atlantic coastal plain, to post-agricultural pine-hardwood forests of the piedmont, to mixed oak, mixed-mesophytic, northern hardwood, and high elevation conifer forests in Appalachian mountain provinces. Virginia’s forests also have been...

  16. Mapping Forest Cover and Forest Cover Change with Airborne S-Band Radar

    Directory of Open Access Journals (Sweden)

    Ramesh K. Ningthoujam

    2016-07-01

    Full Text Available Assessments of forest cover, forest carbon stocks and carbon emissions from deforestation and degradation are increasingly important components of sustainable resource management, for combating biodiversity loss and in climate mitigation policies. Satellite remote sensing provides the only means for mapping global forest cover regularly. However, forest classification with optical data is limited by its insensitivity to three-dimensional canopy structure and cloud cover obscuring many forest regions. Synthetic Aperture Radar (SAR sensors are increasingly being used to mitigate these problems, mainly in the L-, C- and X-band domains of the electromagnetic spectrum. S-band has not been systematically studied for this purpose. In anticipation of the British built NovaSAR-S satellite mission, this study evaluates the benefits of polarimetric S-band SAR for forest characterisation. The Michigan Microwave Canopy Scattering (MIMICS-I radiative transfer model is utilised to understand the scattering mechanisms in forest canopies at S-band. The MIMICS-I model reveals strong S-band backscatter sensitivity to the forest canopy in comparison to soil characteristics across all polarisations and incidence angles. Airborne S-band SAR imagery over the temperate mixed forest of Savernake Forest in southern England is analysed for its information content. Based on the modelling results, S-band HH- and VV-polarisation radar backscatter and the Radar Forest Degradation Index (RFDI are used in a forest/non-forest Maximum Likelihood classification at a spatial resolution of 6 m (70% overall accuracy, κ = 0.41 and 20 m (63% overall accuracy, κ = 0.27. The conclusion is that S-band SAR such as from NovaSAR-S is likely to be suitable for monitoring forest cover and its changes.

  17. Can Forest Transformation Help Reducing Floods in Forested Watersheds?

    DEFF Research Database (Denmark)

    Wahl, Niels Arne; Wöllecke, B.; Benz, O.

    2005-01-01

    of the management practice of forest transformation in forested areas on soil hydraulic properties is presented and discussed as a means of preventing such disasters at a reasonable cost and during a foreseeable period. Investigations were carried out in northeastern Germany on forest stands differing in tree...... populations and stand structure. It was found that infiltration capacity and hydraulic conductivity K exhibit overall low values nevertheless the tree species. This finding appears to be related to water repellency, the predominating texture, and a poor macroporosity. During the different stages of forest...

  18. Rehabilitation of a secondary network of forest traffic infrastructure (skid roads - skid trails

    Directory of Open Access Journals (Sweden)

    Bajrić Muhamed

    2015-01-01

    Full Text Available Forest transport infrastructure is the key segment of rational forest resource management. One of its constituent and inseparable segments are skid roads and skid trails whose network density significantly exceeds the primary network, i.e. truck roads. Skid road -skid trail network density in high economic forests of FB&H is most often between 40 and 100 m/ha. Simplified way of construction, non-existence of road construction, objects for surface water drainage as well as significant longitudinal inclination (up to 50% in which they are constructed, makes them subject to erosion processes. The lack of rehabilitation measures on skid roads - skid trails causes significant damages in post-exploitation period, and very often to the extent that the ones in the following exploitation round are unusable for skidding. Utilization of skid roads - skid trails damaged by erosion processes for forest operations often represents a significant expense. This paper considers rehabilitation measures efficient from the point of remedying erosion processes, and at the same time, acceptable from the point of financial expenditure for forest operations.

  19. South Dakota's forests 2005

    Science.gov (United States)

    Ronald J. Piva; W. Keith Moser; Douglas D. Haugan; Gregory J. Josten; Gary J. Brand; Brett J. Butler; Susan J. Crocker; Mark H. Hansen; Dacia M. Meneguzzo; Charles H. Perry; Christopher W. Woodall

    2009-01-01

    The first completed annual inventory of South Dakota's forests reports almost 1.7 million acres of forest land. Softwood forests make up 74 percent of the total forest land area; the ponderosa pine forest type by itself accounts for 69 percent of the total.

  20. Human-Forest Relationships

    DEFF Research Database (Denmark)

    Ritter, Eva; Dauksta, D.

    2012-01-01

    The relationship between human beings and forests has been important for the development of society. It is based on various productive, ecological, social and cultural functions of forests. The cultural functions, including the spiritual and symbolic role of forests, are often not addressed...... with the same attention as the other functions. The aim of this paper is to put a stronger emphasis on the fact that the acknowledgement of cultural bonds is needed in the discussion of sustainable development. Forest should not only be considered as a technical means to solve environmental and economic...... problems. To achieve a deeper understanding of the dependency of society on forests, it is necessary to recognise the role of forests in our consciousness of being human. Giving a historical overview about the cultural bonds between people and forests, the first part of the paper puts focus on non...

  1. Above Ground Biomass-carbon Partitioning, Storage and Sequestration in a Rehabilitated Forest, Bintulu, Sarawak, Malaysia

    International Nuclear Information System (INIS)

    Kueh, J.H.R.; Majid, N.M.A.; Seca, G.; Ahmed, O.H.

    2013-01-01

    Forest degradation and deforestation are some of the major global concerns as it can reduce forest carbon storage and sequestration capacity. Forest rehabilitation on degraded forest areas has the potential to improve carbon stock, hence mitigate greenhouse gases emission. However, the carbon storage and sequestration potential in a rehabilitated tropical forest remains unclear due to the lack of information. This paper reports an initiative to estimate biomass-carbon partitioning, storage and sequestration in a rehabilitated forest. The study site was at the UPM-Mitsubishi Corporation Forest Rehabilitation Project, UPM Bintulu Sarawak Campus, Bintulu, Sarawak. A plot of 20 x 20 m 2 was established each in site 1991 (Plot 1991), 1999 (Plot 1999) and 2008 (Plot 2008). An adjacent natural regenerating secondary forest plot (Plot NF) was also established for comparison purposes. The results showed that the contribution of tree component biomass/ carbon to total biomass/ carbon was in the order of main stem > branch > leaf. As most of the trees were concentrated in diameter size class = 10 cm for younger rehabilitated forests, the total above ground biomass/ carbon was from this class. These observations suggest that the forests are in the early successional stage. The total above ground biomass obtained for the rehabilitated forest ranged from 4.3 to 4,192.3 kg compared to natural regenerating secondary forest of 3,942.3 kg while total above ground carbon ranged from 1.9 to 1,927.9 kg and 1,820.4 kg, respectively. The mean total above ground biomass accumulated ranged from 1.3 x 10 -2 to 20.5 kg/ 0.04 ha and mean total carbon storage ranged from 5.9 x 10 -3 to 9.4 kg/ 0.04 ha. The total CO 2 sequestrated in rehabilitated forest ranged from 6.9 to 7,069.1 kg CO 2 / 0.04 ha. After 19 years, the rehabilitated forest had total above ground biomass and carbon storage comparable to the natural regeneration secondary forest. The forest rehabilitated activities have the

  2. 76 FR 70955 - Helena Nation Forest: Dalton Mountain Forest Restoration & Fuels Reduction Project

    Science.gov (United States)

    2011-11-16

    ... DEPARTMENT OF AGRICULTURE Forest Service Helena Nation Forest: Dalton Mountain Forest Restoration & Fuels Reduction Project AGENCY: Forest Service, USDA. ACTION: Notice of intent to prepare an environmental impact statement. SUMMARY: The Helena National Forest (HNF) is proposing on the Lincoln Ranger...

  3. Changes in Species Composition in Alder Swamp Forest Following Forest Dieback

    Directory of Open Access Journals (Sweden)

    Remigiusz Pielech

    2018-06-01

    Full Text Available It is generally hypothesized that forest dieback is a characteristic of alder swamp forests (alder carrs, Alnion glutinosae alliance. Different internal and external factors may trigger this process, including human disturbance, changes in river discharge, unusually severe and prolonged flooding, terminal age of an even-aged alder forest (ca. 100–150 years and others. Although forest dieback in this type of forest may cause major changes in environmental conditions, the influence of this change on the floristic composition has not been well recognized. The study aimed to detect any possible changes in floristic variation in alder swamp forest following forest dieback. Vegetation plots in alder swamp forests affected by forest dieback were resurveyed 20 years after a previous study. PERMANOVA was used to test the significance of the compositional change and nonmetric multidimensional scaling (NMDS with passively fitted means of the Ellenberg’s Indicator Values were used to interpret its ecological meaning. In addition, different structural and diversity indices were compared, including species richness, percentage cover of vegetation layers, Shannon and Simpson diversity and evenness. Finally, we analyzed changes in the frequency of vascular plant species using Chi square tests. We recorded clear and significant compositional changes following alder swamp forest dieback. This change was most related to the gradient of moisture, followed by the gradients of light and temperature. The analysis of the individual species showed that the species of hummocks declined, while the species of hollows increased. Moreover, the current communities are dominated by some hydrophytes that were not recorded 20 years ago. Forest dieback resulted in profound changes in the hydrological regime. The observed changes are consistent with a model of cyclic succession as proposed for alder swamps. In addition, we conclude that the natural forest dynamics have to be

  4. Creation of forest edges has a global impact on forest vertebrates

    Science.gov (United States)

    Pfeifer, M.; Lefebvre, V.; Peres, C. A.; Banks-Leite, C.; Wearn, O. R.; Marsh, C. J.; Butchart, S. H. M.; Arroyo-Rodríguez, V.; Barlow, J.; Cerezo, A.; Cisneros, L.; D'Cruze, N.; Faria, D.; Hadley, A.; Harris, S. M.; Klingbeil, B. T.; Kormann, U.; Lens, L.; Medina-Rangel, G. F.; Morante-Filho, J. C.; Olivier, P.; Peters, S. L.; Pidgeon, A.; Ribeiro, D. B.; Scherber, C.; Schneider-Maunoury, L.; Struebig, M.; Urbina-Cardona, N.; Watling, J. I.; Willig, M. R.; Wood, E. M.; Ewers, R. M.

    2017-11-01

    Forest edges influence more than half of the world’s forests and contribute to worldwide declines in biodiversity and ecosystem functions. However, predicting these declines is challenging in heterogeneous fragmented landscapes. Here we assembled a global dataset on species responses to fragmentation and developed a statistical approach for quantifying edge impacts in heterogeneous landscapes to quantify edge-determined changes in abundance of 1,673 vertebrate species. We show that the abundances of 85% of species are affected, either positively or negatively, by forest edges. Species that live in the centre of the forest (forest core), that were more likely to be listed as threatened by the International Union for Conservation of Nature (IUCN), reached peak abundances only at sites farther than 200-400 m from sharp high-contrast forest edges. Smaller-bodied amphibians, larger reptiles and medium-sized non-volant mammals experienced a larger reduction in suitable habitat than other forest-core species. Our results highlight the pervasive ability of forest edges to restructure ecological communities on a global scale.

  5. Mapping Forest Biomass Using Remote Sensing and National Forest Inventory in China

    Directory of Open Access Journals (Sweden)

    Ling Du

    2014-06-01

    Full Text Available Quantifying the spatial pattern of large-scale forest biomass can provide a general picture of the carbon stocks within a region and is of great scientific and political importance. The combination of the advantages of remote sensing data and field survey data can reduce uncertainty as well as demonstrate the spatial distribution of forest biomass. In this study, the seventh national forest inventory statistics (for the period 2004–2008 and the spatially explicit MODIS Land Cover Type product (MCD12C1 were used together to quantitatively estimate the spatially-explicit distribution of forest biomass in China (with a resolution of 0.05°, ~5600 m. Our study demonstrated that the calibrated forest cover proportion maps allow proportionate downscaling of regional forest biomass statistics to forest cover pixels to produce a relatively fine-resolution biomass map. The total stock of forest biomass in China was 11.9 Pg with an average of 76.3 Mg ha−1 during the study period; the high values were located in mountain ranges in northeast, southwest and southeast China and were strongly correlated with forest age and forest density.

  6. Forest health conditions on the Allegheny National Forest (1989-1999): Analysis of forest health monitoring surveys

    Science.gov (United States)

    R.S. Morin; A.M. Liebhold; K.W. Gottschalk; D.B. Twardus; R.E. Acciavatti; R.L. White; S.B. Horsley; W.D. Smith; E.R. Luzader

    2001-01-01

    This publication describes the forest vegetation and health conditions of the Allegheny National Forest (ANF). During the past 15 years, the ANF has experienced four severe droughts, several outbreaks of exotic and native insect defoliators, and the effects of other disturbance agents. An increase in tree mortality has raised concerns about forest health. Historical...

  7. Disentangling the diversity of arboreal ant communities in tropical forest trees.

    Science.gov (United States)

    Klimes, Petr; Fibich, Pavel; Idigel, Cliffson; Rimandai, Maling

    2015-01-01

    Tropical canopies are known for their high abundance and diversity of ants. However, the factors which enable coexistence of so many species in trees, and in particular, the role of foragers in determining local diversity, are not well understood. We censused nesting and foraging arboreal ant communities in two 0.32 ha plots of primary and secondary lowland rainforest in New Guinea and explored their species diversity and composition. Null models were used to test if the records of species foraging (but not nesting) in a tree were dependent on the spatial distribution of nests in surrounding trees. In total, 102 ant species from 389 trees occurred in the primary plot compared with only 50 species from 295 trees in the secondary forest plot. However, there was only a small difference in mean ant richness per tree between primary and secondary forest (3.8 and 3.3 sp. respectively) and considerably lower richness per tree was found only when nests were considered (1.5 sp. in both forests). About half of foraging individuals collected in a tree belonged to species which were not nesting in that tree. Null models showed that the ants foraging but not nesting in a tree are more likely to nest in nearby trees than would be expected at random. The effects of both forest stage and tree size traits were similar regardless of whether only foragers, only nests, or both datasets combined were considered. However, relative abundance distributions of species differed between foraging and nesting communities. The primary forest plot was dominated by native ant species, whereas invasive species were common in secondary forest. This study demonstrates the high contribution of foragers to arboreal ant diversity, indicating an important role of connectivity between trees, and also highlights the importance of primary vegetation for the conservation of native ant communities.

  8. Wisconsin's forests, 2004

    Science.gov (United States)

    Charles H. (Hobie) Perry; Vern A. Everson; Ian K. Brown; Jane Cummings-Carlson; Sally E. Dahir; Edward A. Jepsen; Joe Kovach; Michael D. Labissoniere; Terry R. Mace; Eunice A. Padley; Richard B. Rideout; Brett J. Butler; Susan J. Crocker; Greg C. Liknes; Randall S. Morin; Mark D. Nelson; Barry T. (Ty) Wilson; Christopher W. Woodall

    2008-01-01

    The first full, annualized inventory of Wisconsin's forests was completed in 2004 after 6,478 forested plots were visited. There are more than 16.0 million acres of forest land in the Wisconsin, nearly half of the State's land area; 15.8 million acres meet the definition of timberland. The total area of both forest land and timberland continues an upward...

  9. Maine's forests 2008

    Science.gov (United States)

    George L. McCaskill; William H. McWilliams; Charles J. Barnett; Brett J. Butler; Mark A. Hatfield; Cassandra M. Kurtz; Randall S. Morin; W. Keith Moser; Charles H. Perry; Christopher W. Woodall

    2011-01-01

    The second annual inventory of Maine's forests was completed in 2008 after more than 3,160 forested plots were measured. Forest land occupies almost 17.7 million acres, which represents 82 percent of the total land area of Maine. The dominant forest-type groups are maple/beech/yellow birch, spruce/fir, white/red/jack pine, and aspen/white birch. Statewide volume...

  10. Role of Forest Resources to Local Livelihoods: The Case of East Mau Forest Ecosystem, Kenya

    Directory of Open Access Journals (Sweden)

    D. K. Langat

    2016-01-01

    Full Text Available Forests in Kenya are threatened by unsustainable uses and conversion to alternative land uses. In spite of the consequences of forest degradation and biodiversity loss and reliance of communities on forests livelihoods, there is little empirical data on the role of forest resources in livelihoods of the local communities. Socioeconomic, demographic, and forest use data were obtained by interviewing 367 households. Forest product market survey was undertaken to determine prices of various forest products for valuation of forest use. Forest income was significant to households contributing 33% of total household income. Fuel wood contributed 50%, food (27%, construction material (18%, and fodder, and thatching material 5% to household forest income. Absolute forest income and relative forest income (% were not significantly different across study locations and between ethnic groups. However, absolute forest income and relative forest income (% were significantly different among wealth classes. Poor households were more dependent on forests resources. However, in absolute terms, the rich households derived higher forest income. These results provide valuable information on the role of forest resources to livelihoods and could be applied in developing forest conservation policies for enhanced ecosystem services and livelihoods.

  11. Characterizing Virginia's private forest owners and their forest lands.

    Science.gov (United States)

    Thomas W. Birch; Sandra S. Hodge; Michael T. Thompson

    1998-01-01

    A recently completed forest inventory and two woodland owner surveys have given us insight about the owners of private forest lands in Virginia. There is increasing parcelization of forested lands and an increase in the number of nonindustrial private (NIPF) landowners in Virginia. More than half of the private owners have harvested timber from their holdings at some...

  12. Forest edge disturbance increases rattan abundance in tropical rain forest fragments.

    Science.gov (United States)

    Campbell, Mason J; Edwards, Will; Magrach, Ainhoa; Laurance, Susan G; Alamgir, Mohammed; Porolak, Gabriel; Laurance, William F

    2017-07-20

    Human-induced forest fragmentation poses one of the largest threats to global diversity yet its impact on rattans (climbing palms) has remained virtually unexplored. Rattan is arguably the world's most valuable non-timber forest product though current levels of harvesting and land-use change place wild populations at risk. To assess rattan response to fragmentation exclusive of harvesting impacts we examined rattan abundance, demography and ecology within the forests of northeastern, Australia. We assessed the community abundance of rattans, and component adult (>3 m) and juvenile (≤3 m) abundance in five intact forests and five fragments (23-58 ha) to determine their response to a range of environmental and ecological parameters. Fragmented forests supported higher abundances of rattans than intact forests. Fragment size and edge degradation significantly increased adult rattan abundance, with more in smaller fragments and near edges. Our findings suggest that rattan increase within fragments is due to canopy disturbance of forest edges resulting in preferential, high-light habitat. However, adult and juvenile rattans may respond inconsistently to fragmentation. In managed forest fragments, a rattan abundance increase may provide economic benefits through sustainable harvesting practices. However, rattan increases in protected area forest fragments could negatively impact conservation outcomes.

  13. Forest and climate change

    International Nuclear Information System (INIS)

    2009-01-01

    After having recalled the challenges the French forest has to face, and a brief overview of the status of forests in the world, this report proposes an overview of actions which are implemented to strengthen the carbon sequestration role of forests, at the international level and in France. It discusses the distribution of carbon, the forest carbon stocks (in the world, Europe and France), the actions against climate change, the costs and financing of the reduction of greenhouse gas emissions in the forest sector. It comments the status of international negotiations and how forests are taken into account. It presents the French forest and wood sector (characteristics of the forest in metropolitan France and overseas, wood as material and as energy). It recalls the commitment of the Grenelle de l'Environnement, and indicates the current forest studies

  14. Comparison of butterfly diversity in forested area and oil palm plantation

    Directory of Open Access Journals (Sweden)

    YANTO SANTOSA

    2017-03-01

    Full Text Available Abstrak. Santosa Y, Purnamasari I, Wahyuni I. 2017. Comparison of butterfly diversity in forested area and oil palm plantation. Pros Sem Nas Masy Biodiv Indon 7: 104-109. Land use change from the forested area into oil palm monoculture plantations was suspected to have reduced the number of biodiversities, including butterfly. In addressing such issues, this research was conducted from March to April 2016 in PT. Mitra Unggul Pusaka oil palm plantation of Riau Province and the forest area around the plantation. Data were collected from secondary forest and High Conservation Value representing forest areas, and oil palm plantations representing non-forest areas (young-growth oil palm and old-growth oil palm simultaneously using 3 repetitions with time search method for 3 hours (8-10 pm. The results showed that there were 30 species (117 individuals found belonging to five families, i.e.: Papilionidae (3 species, Nymphalidae (17 species, Pieridae (5 species, Lycaenidae (4 species, and Hesperidae (1 species. Species richness was greater in a forested area (Dmg=7.35 than in non-forested areas (Dmg=3.16. Based on the Similarity Index, 50% of the species in forested area were also found in non-forested areas. Therefore, it could be concluded that butterfly diversity in forested areas was higher than non-forested areas (oil palms.

  15. The Diversity and Abundance of Springtail (Collembola on Forests and Smallholder in Jambi

    Directory of Open Access Journals (Sweden)

    Widrializa

    2015-09-01

    Full Text Available Harapan forests is the first restoration forest in Indonesia, includes several different ecosystems. Different ecosystems have different characteristic to affect the diversity and abundance of Collembola. In the ecosystem, Collembola have an important role in biocontrol, decomposition, soil nutrient distribution, stimulation of soil microbial activity and as an alternative feed for predators. This study was aimed to investigate the diversity and abundance of Collembola in four ecosystems at Harapan forest, i.e. secondary forest, rubber forest, rubber smallholder and oil palm smallholder. To achieve the objective, soil samples were taken at 48 observation points in the four ecosystem. The soil samples were then extracted by Kempson Extractor. The diversity and abundance of Collembola in four ecosystems were categorized as medium to high. The total of individual and population of Collembola in the secondary and rubber forest ecosystems were likely to be higher than in the rubber and oil palm smallholders. This study had also identified four orders, 14 families and 31 genera of Collembola, where Isotomiella and Proisotoma dominated the genus of Collembola in the four ecosystems.

  16. Boreal forests

    International Nuclear Information System (INIS)

    Essen, P.A.; Ericson, L.; Ehnstroem, B.; Sjoeberg, K.

    1997-01-01

    We review patterns and processes important for biodiversity in the Fennoscandian boreal forest, describe man's past and present impact and outline a strategy for conservation. Natural disturbances, particularly forest fire and gap formation, create much of the structural and functional diversity in forest ecosystems. Several boreal plants and animals are adapted to fire regimes. In contrast, many organisms (epiphytic lichens, fungi, invertebrates) require stable conditions with long continuity in canopy cover. The highly mechanized and efficient Fennoscandian forest industry has developed during the last century. The result is that most natural forest has been lost and that several hundreds of species, mainly cryptograms and invertebrates, are threatened. The forestry is now in a transition from exploitation to sustainable production and has recently incorporated some measures to protect the environment. Programmes for maintaining biodiversity in the boreal forest should include at least three parts. First, the system of forest reserves must be significantly improved through protection of large representative ecosystems and key biotopes that host threatened species. Second, we must restore ecosystem properties that have been lost or altered. Natural disturbance regimes must be allowed to operate or be imitated, for example by artificial fire management. Stand-level management should particularly increase the amount of coarse woody debris, the number of old deciduous trees and large, old conifers, by using partial cutting. Third, natural variation should also be mimicked at the landscape level, for example, by reducing fragmentation and increasing links between landscape elements. Long-term experiments are required to evaluate the success of different management methods in maintaining biodiversity in the boreal forest. (au) 260 refs

  17. EUFODOS: European Forest Downstream Services – Improved Information on Forest Structure and Damage

    Directory of Open Access Journals (Sweden)

    M. Hirschmugl

    2013-05-01

    Full Text Available Forests play a key role in the European economy and environment. This role incorporates ecological functions which can be affected by the occurrence of insect infestations, forest fire, heavy snowfall or windfall events. Local or Regional Authorities (LRAs thus require detailed information on the degradation status of their forests to be able to take appropriate measures for their forest management plans. In the EUFODOS project, state-of-the-art satellite and laser scanning technologies are used to provide forest authorities with cost-effective and comprehensive information on forest structure and damage. One of the six test sites is located in the Austrian province of Styria where regional forest authorities have expressed a strong need for detailed forest parameters in protective forest. As airborne laser-scanning data is available, it will be utilized to derive detailed forest parameters such as the upper forest border line, tree height, growth classes, forest density, vertical structure or volume. At the current project status, the results of (i the forest border line, (ii the segmentation of forest stands and (iii the tree top detection are available and presented including accuracy assessment and interim results are shown for timber volume estimations. The final results show that the forest border can be mapped operationally with an overall accuracy of almost 99% from LiDAR data. For the segmentation of forest stands, a comparison of the automatically derived result with visual-manual delineation showed in general a more detailed segmentation result, but for all visual-manual segments a congruence of 87% within a 4 m buffer. Tree top detections were compared to stem numbers estimated based on angle-count samplings in a field campaign, which led to a correlation coefficient (R of 0.79.

  18. Vegetation carbon sequestration in Chinese forests from 2010 to 2050.

    Science.gov (United States)

    He, Nianpeng; Wen, Ding; Zhu, Jianxing; Tang, Xuli; Xu, Li; Zhang, Li; Hu, Huifeng; Huang, Mei; Yu, Guirui

    2017-04-01

    Forests store a large part of the terrestrial vegetation carbon (C) and have high C sequestration potential. Here, we developed a new forest C sequestration (FCS) model based on the secondary succession theory, to estimate vegetation C sequestration capacity in China's forest vegetation. The model used the field measurement data of 3161 forest plots and three future climate scenarios. The results showed that logistic equations provided a good fit for vegetation biomass with forest age in natural and planted forests. The FCS model has been verified with forest biomass data, and model uncertainty is discussed. The increment of vegetation C storage in China's forest vegetation from 2010 to 2050 was estimated as 13.92 Pg C, while the average vegetation C sequestration rate was 0.34 Pg C yr -1 with a 95% confidence interval of 0.28-0.42 Pg C yr -1 , which differed significantly between forest types. The largest contributor to the increment was deciduous broadleaf forest (37.8%), while the smallest was deciduous needleleaf forest (2.7%). The vegetation C sequestration rate might reach its maximum around 2020, although vegetation C storage increases continually. It is estimated that vegetation C sequestration might offset 6-8% of China's future emissions. Furthermore, there was a significant negative relationship between vegetation C sequestration rate and C emission rate in different provinces of China, suggesting that developed provinces might need to compensate for undeveloped provinces through C trade. Our findings will provide valuable guidelines to policymakers for designing afforestation strategies and forest C trade in China. © 2016 John Wiley & Sons Ltd.

  19. Iowa Forests, 2013

    Science.gov (United States)

    Mark D. Nelson; Charles J. Barnett; Matt Brewer; Brett J. Butler; Susan J. Crocker; Grant M. Domke; Dale D. Gormanson; Cassandra M. Kurtz; Tonya W. Lister; Stephen Matthews; William H. McWilliams; Dacia M. Meneguzzo; Patrick D. Miles; Randall S. Morin; Ronald J. Piva; Rachel Riemann; James E. Smith; Brian F. Walters; Jim Westfall; Christopher W. Woodall

    2016-01-01

    The third full annual inventory of Iowa's forests (2009-2013) indicates that just under 3 million acres of forest land exists in the State, 81 percent of which is in family forest ownership. Almost all of Iowa's forest land is timberland (96 percent), with an average volume of more than 1,000 cubic feet of growing stock per acre on timberland and more than 1,...

  20. Impact of professional foresters on timber harvests on West Virginia nonindustrial private forests

    Science.gov (United States)

    Stuart A. Moss; Eric. Heitzman

    2013-01-01

    Timber harvests conducted on 90 nonindustrial private forest properties in West Virginia were investigated to determine the effects that professional foresters have on harvest and residual stand attributes. Harvests were classified based on the type of forester involved: (1) consulting/state service foresters representing landowners, (2) industry foresters representing...

  1. CTFS-ForestGEO: a worldwide network monitoring forests in an era of global change

    Science.gov (United States)

    Kristina J. Anderson-Teixeira; Stuart J. Davies; Amy C. Bennett; Erika B. Gonzalez-Akre; Helene C. Muller-Landau; S. Joseph Wright; Kamariah Abu Salim; Angélica M. Almeyda Zambrano; Alfonso Alonso; Jennifer L. Baltzer; Yves Basset; Norman A. Bourg; Eben N. Broadbent; Warren Y. Brockelman; Sarayudh Bunyavejchewin; David F. R. P. Burslem; Nathalie Butt; Min Cao; Dairon Cardenas; George B. Chuyong; Keith Clay; Susan Cordell; Handanakere S. Dattaraja; Xiaobao Deng; Matteo Detto; Xiaojun Du; Alvaro Duque; David L. Erikson; Corneille E.N. Ewango; Gunter A. Fischer; Christine Fletcher; Robin B. Foster; Christian P. Giardina; Gregory S. Gilbert; Nimal Gunatilleke; Savitri Gunatilleke; Zhanqing Hao; William W. Hargrove; Terese B. Hart; Billy C.H. Hau; Fangliang He; Forrest M. Hoffman; Robert W. Howe; Stephen P. Hubbell; Faith M. Inman-Narahari; Patrick A. Jansen; Mingxi Jiang; Daniel J. Johnson; Mamoru Kanzaki; Abdul Rahman Kassim; David Kenfack; Staline Kibet; Margaret F. Kinnaird; Lisa Korte; Kamil Kral; Jitendra Kumar; Andrew J. Larson; Yide Li; Xiankun Li; Shirong Liu; Shawn K.Y. Lum; James A. Lutz; Keping Ma; Damian M. Maddalena; Jean-Remy Makana; Yadvinder Malhi; Toby Marthews; Rafizah Mat Serudin; Sean M. McMahon; William J. McShea; Hervé R. Memiaghe; Xiangcheng Mi; Takashi Mizuno; Michael Morecroft; Jonathan A. Myers; Vojtech Novotny; Alexandre A. de Oliveira; Perry S. Ong; David A. Orwig; Rebecca Ostertag; Jan den Ouden; Geoffrey G. Parker; Richard P. Phillips; Lawren Sack; Moses N. Sainge; Weiguo Sang; Kriangsak Sri-ngernyuang; Raman Sukumar; I-Fang Sun; Witchaphart Sungpalee; Hebbalalu Sathyanarayana Suresh; Sylvester Tan; Sean C. Thomas; Duncan W. Thomas; Jill Thompson; Benjamin L. Turner; Maria Uriarte; Renato Valencia; Marta I. Vallejo; Alberto Vicentini; Tomáš Vrška; Xihua Wang; Xugao Wang; George Weiblen; Amy Wolf; Han Xu; Sandra Yap; Jess Zimmerman

    2014-01-01

    Global change is impacting forests worldwide, threatening biodiversity and ecosystem services including climate regulation. Understanding how forests respond is critical to forest conservation and climate protection. This review describes an international network of 59 long-term forest dynamics research sites (CTFS-ForestGEO) useful for characterizing forest responses...

  2. Forests on the edge: housing development on America’s private forests.

    Science.gov (United States)

    Ronald E. McRoberts; Ralph J. Alig; Mark D. Nelson; David M. Theobald; Mike Eley; Mike Dechter; Mary. Carr

    2005-01-01

    The private working land base of America’s forests is being converted to developed uses, with implications for the condition and management of affected private forests and the watersheds in which they occur. The Forests on the Edge project seeks to improve understanding of the processes and thresholds associated with increases in housing density in private forests and...

  3. THE PLANNING OF WOOD TRANSPORT ON THE FOREST ROADS

    Directory of Open Access Journals (Sweden)

    H. Hulusi Acar

    2001-04-01

    Full Text Available Nowadays, needs for forest and raw wood materials has been increasing with the economic developments of the societies. But, the forest areas have been decreasing because of the pressures of the societies on forest especially in developing countries. In such regions, forest areas were on high mountainous areas. This situation is the same in Turkey, especially east Black Sea region. In Turkey, forest roads are still B forms of secondary roads. The wide of these roads are minimum 4 meters, generally minimum curve radius of them are 10 meters, and some times less then that. These roads do not have pavement and maintenance works were not made there too. And these roads are not suitable for transportation with truck-trailer. The transhipment problems form a typical example of the linear programming method. When this method applied, as well as solving transportation problems, distribution problems are solved related to transhipment.

  4. The role of novel forest ecosystems in the conservation of wood-inhabiting fungi in boreal broadleaved forests.

    Science.gov (United States)

    Juutilainen, Katja; Mönkkönen, Mikko; Kotiranta, Heikki; Halme, Panu

    2016-10-01

    The increasing human impact on the earth's biosphere is inflicting changes at all spatial scales. As well as deterioration and fragmentation of natural biological systems, these changes also led to other, unprecedented effects and emergence of novel habitats. In boreal zone, intensive forest management has negatively impacted a multitude of deadwood-associated species. This is especially alarming given the important role wood-inhabiting fungi have in the natural decay processes. In the boreal zone, natural broad-leaved-dominated, herb-rich forests are threatened habitats which have high wood-inhabiting fungal species richness. Fungal diversity in other broadleaved forest habitat types is poorly known. Traditional wood pastures and man-made afforested fields are novel habitats that could potentially be important for wood-inhabiting fungi. This study compares species richness and fungal community composition across the aforementioned habitat types, based on data collected for wood-inhabiting fungi occupying all deadwood diameter fractions. Corticioid and polyporoid fungi were surveyed from 67 130 deadwood particles in four natural herb-rich forests, four birch-dominated wood pastures, and four birch-dominated afforested field sites in central Finland. As predicted, natural herb-rich forests were the most species-rich habitat. However, afforested fields also had considerably higher overall species richness than wood pastures. Many rare or rarely collected species were detected in each forest type. Finally, fungal community composition showed some divergence not only among the different habitat types, but also among deadwood diameter fractions. Synthesis and applications : In order to maintain biodiversity at both local and regional scales, conserving threatened natural habitat types and managing traditional landscapes is essential. Man-made secondary woody habitats could provide the necessary resources and serve as surrogate habitats for many broadleaved deadwood

  5. Disturbance history and stand dynamics in secondary and old-growth forests of the Southern Appalachian Mountains, USA

    Science.gov (United States)

    Sarah M. Butler; Alan S. White; Katherine J. Elliott; Robert S Seymour

    2014-01-01

    BUTLER, S. M. (Family Forest Research Center, University of Massachusetts, Amherst, MA 01003), A. S. WHITE (School of Forest Resources, University of Maine, Orono, ME 04469-5755), K. J. ELLIOTT (Coweeta Hydrologic Laboratory, Center for Forest Watershed Science, Southern Research Station, USDA Forest Service, Otto, NC 28763) AND R. S. SEYMOUR (School of Forest...

  6. Invasion by native tree species prevents biotic homogenization in novel forests of Puerto Rico

    Science.gov (United States)

    Oscar J. Abelleira Martinez

    2010-01-01

    There is concern that secondary forests dominated by introduced species, known as novel forests, increase taxonomical similarity between localities and lead to biotic homogenization in human dominated landscapes. In Puerto Rico, agricultural abandonment has given way to novel forests dominated by the introduced African tulip tree Spathodea campanulata Beauv. (...

  7. Forest biomass carbon sinks in East Asia, with special reference to the relative contributions of forest expansion and forest growth.

    Science.gov (United States)

    Fang, Jingyun; Guo, Zhaodi; Hu, Huifeng; Kato, Tomomichi; Muraoka, Hiroyuki; Son, Yowhan

    2014-06-01

    Forests play an important role in regional and global carbon (C) cycles. With extensive afforestation and reforestation efforts over the last several decades, forests in East Asia have largely expanded, but the dynamics of their C stocks have not been fully assessed. We estimated biomass C stocks of the forests in all five East Asian countries (China, Japan, North Korea, South Korea, and Mongolia) between the 1970s and the 2000s, using the biomass expansion factor method and forest inventory data. Forest area and biomass C density in the whole region increased from 179.78 × 10(6) ha and 38.6 Mg C ha(-1) in the 1970s to 196.65 × 10(6) ha and 45.5 Mg C ha(-1) in the 2000s, respectively. The C stock increased from 6.9 Pg C to 8.9 Pg C, with an averaged sequestration rate of 66.9 Tg C yr(-1). Among the five countries, China and Japan were two major contributors to the total region's forest C sink, with respective contributions of 71.1% and 32.9%. In China, the areal expansion of forest land was a larger contributor to C sinks than increased biomass density for all forests (60.0% vs. 40.0%) and for planted forests (58.1% vs. 41.9%), while the latter contributed more than the former for natural forests (87.0% vs. 13.0%). In Japan, increased biomass density dominated the C sink for all (101.5%), planted (91.1%), and natural (123.8%) forests. Forests in South Korea also acted as a C sink, contributing 9.4% of the total region's sink because of increased forest growth (98.6%). Compared to these countries, the reduction in forest land in both North Korea and Mongolia caused a C loss at an average rate of 9.0 Tg C yr(-1), equal to 13.4% of the total region's C sink. Over the last four decades, the biomass C sequestration by East Asia's forests offset 5.8% of its contemporary fossil-fuel CO2 emissions. © 2014 John Wiley & Sons Ltd.

  8. Creation of forest edges has a global impact on forest vertebrates

    Science.gov (United States)

    Peres, CA; Banks-Leite, C; Wearn, OR; Marsh, CJ; Butchart, SHM; Arroyo-Rodríguez, V; Barlow, J; Cerezo, A; Cisneros, L; D’Cruze, N; Faria, D; Hadley, A; Harris, S; Klingbeil, BT; Kormann, U; Lens, L; Medina-Rangel, GF; Morante-Filho, JC; Olivier, P; Peters, SL; Pidgeon, A; Ribeiro, DB; Scherber, C; Schneider-Maunory, L; Struebig, M; Urbina-Cardona, N; Watling, JI; Willig, MR; Wood, EM; Ewers, RM

    2017-01-01

    Summary Forest edges influence more than half the world’s forests and contribute to worldwide declines in biodiversity and ecosystem functions. However, predicting these declines is challenging in heterogeneous fragmented landscapes. We assembled an unmatched global dataset on species responses to fragmentation and developed a new statistical approach for quantifying edge impacts in heterogeneous landscapes to quantify edge-determined changes in abundance of 1673 vertebrate species. We show that 85% of species’ abundances are affected, either positively or negatively, by forest edges. Forest core species, which were more likely to be listed as threatened by the IUCN, only reached peak abundances at sites farther than 200-400 m from sharp high-contrast forest edges. Smaller-bodied amphibians, larger reptiles and medium-sized non-volant mammals experienced a larger reduction in suitable habitat than other forest core species. Our results highlight the pervasive ability of forest edges to restructure ecological communities on a global scale. PMID:29088701

  9. Multiple constraint modeling of nutrient cycling stoichiometry following forest clearing and pasture abandonment in the Eastern Amazon

    Science.gov (United States)

    Davidson, Eric; Nifong, Rachel

    2017-04-01

    While deforestation has declined since its peak, land-use change continues to modify Amazonian landscapes. The responses and feedbacks of biogeochemical cycles to these changes play an important role in determining possible future trajectories of ecosystem function and for land stewardship through effects on rates of secondary forest regrowth, soil emissions of greenhouse gases, inputs of nutrients to groundwater and streamwater, and nutrient management in agroecosystems. Here we present a new synthetic analyses of data from the NASA-supported LBA-ECO project and others datasets on nutrient cycling in cattle pastures, secondary forests, and mature forests at Paragominas, Pará, Brazil. We have developed a stoichiometric model relating C-N-P interactions during original forest clearing, extensive and intensive pasture management, and secondary forest regrowth, constrained by multiple observations of ecosystem stocks and fluxes in each land use. While P is conservatively cycled in all land uses, we demonstrate that pyrolyzation of N during pasture formation and during additional burns for pasture management depletes available-N pools, consistent with observations of lower rates of N leaching and trace gas emission and consistent with secondary forest growth responses to experimental N amendments. The soils store large stocks of N and P, and our parameterization of available forms of these nutrients for steady-state dynamics in the mature forest yield reasonable estimates of net N and P mineralization available for grasses and secondary forest species at rates consistent with observed biomass accumulation and productivity in these modified ecosystems. Because grasses and forests have much different demands for N relative to P, the land use has important biogeochemical impacts. The model demonstrates the need for periodic P inputs for sustainable pasture management and for a period of significant biological N fixation for early-to-mid-successional secondary forest

  10. Impacts of climate change on Ontario's forests. Forest research information paper number 143

    International Nuclear Information System (INIS)

    Buse, L.J.; Colombo, S.J.

    1998-01-01

    Reviews literature concerning the effects of global climate change on forest plants and communities, and provides opinions on the potential impacts that climate change may have on Ontario forests. Sections of the review discuss the following: The climate of Ontario in the 21st century as predicted by climate models; forest hydrology in relation to climate change; insects and climate change; impacts on fungi in the forest ecosystem; impacts on forest fires and their management; plant physiological responses; genetic implications of climate change; forest vegetation dynamics; the use of models in global climate change studies; and forest management responses to climate change

  11. Forest inventory in Myanmar

    Energy Technology Data Exchange (ETDEWEB)

    Bo, Sit [Forest Resource Div., Forest Department (Myanmar)

    1993-10-01

    Forest inventory in Myanmar started in 1850s. Up till 1975, Myanmar Forest Department conducted forest inventories covering approximately one forest division every year. The National Forest Survey and Inventory Project funded by UNDP and assisted by FAO commenced in 1981 and the National Forest Management and Inventory project followed in 1986. Up till end March 1993, pre-investment inventory has covered 26.7 million acres, reconnaissance inventory 5.4 million acres and management inventory has carried out in 12 townships

  12. Forest inventory in Myanmar

    International Nuclear Information System (INIS)

    Sit Bo

    1993-01-01

    Forest inventory in Myanmar started in 1850s. Up till 1975, Myanmar Forest Department conducted forest inventories covering approximately one forest division every year. The National Forest Survey and Inventory Project funded by UNDP and assisted by FAO commenced in 1981 and the National Forest Management and Inventory project followed in 1986. Up till end March 1993, pre-investment inventory has covered 26.7 million acres, reconnaissance inventory 5.4 million acres and management inventory has carried out in 12 townships

  13. dwindling ethiopian forests

    African Journals Online (AJOL)

    eliasn

    1999-05-26

    May 26, 1999 ... Shelter for animals: Forests are natural “habitats for many wild animals. .... nificance of forest conservation and development in Ethiopia's combat ...... of forests are not, unfortunately, analogues to traffic lights where the impact.

  14. A note on high discount rates and depletion of primary forests

    NARCIS (Netherlands)

    Bulte, E; vanSoest, D

    1996-01-01

    Conventional wisdom implies that high discount rates accelerate depletion of tropical forests. As shown in this article, this result does not necessarily hold in a two-state variable model that distinguishes between primary and secondary forest stocks. In the context of a fixed concession period and

  15. The relative importance of community forests, government forests, and private forests for household-level incomes in the Middle Hills of Nepal

    DEFF Research Database (Denmark)

    Oli, Bishwa Nath; Treue, Thorsten; Smith-Hall, Carsten

    2016-01-01

    To investigate the household-level economic importance of income from forests under different tenure arrangements, data were collected from 304 stratified randomly sampled households within 10 villages with community forest user groups in Tanahun District, Western Nepal. We observed that forest...... realisation of community forestry's poverty reduction and income equalizing potential requires modifications of rules that govern forest extraction and pricing at community forest user group level....

  16. Tropical Deforestation, Community Forests, and Protected Areas in the Maya Forest

    Directory of Open Access Journals (Sweden)

    David Barton. Bray

    2008-12-01

    Full Text Available Community forests and protected areas have each been proposed as strategies to stop deforestation. These management strategies should be regarded as hypotheses to be evaluated for their effectiveness in particular places. We evaluated the community-forestry hypothesis and the protected-area hypothesis in community forests with commercial timber production and strict protected areas in the Maya Forest of Guatemala and Mexico. From land-use and land cover change (LUCC maps derived from satellite images, we compared deforestation in 19 community forests and 11 protected areas in both countries in varying periods from 1988 to 2005. Deforestation rates were higher in protected areas than in community forests, but the differences were not significant. An analysis of human presence showed similar deforestation rates in inhabited protected areas and recently inhabited community forests, but the differences were not significant. There was also no significant difference in deforestation between uninhabited protected areas, uninhabited community forests, and long-inhabited community forests. A logistic regression analysis indicated that the factors correlated with deforestation varied by country. Distance to human settlements, seasonal wetlands, and degree and length of human residence were significant in Guatemala, and distance to previous deforestation and tropical semideciduous forest were significant in Mexico. Varying contexts and especially colonization histories are highlighted as likely factors that influence different outcomes. Poorly governed protected areas perform no better as a conservation strategy than poorly governed community forests with recent colonists in active colonization fronts. Long-inhabited extractive communities perform as well as uninhabited strict protected areas under low colonization pressure. A review of costs and benefits suggests that community forests may generate more local income with lower costs. Small sample sizes

  17. Forest insect and disease conditions, Vancouver forest region, 1987. Annual publication

    Energy Technology Data Exchange (ETDEWEB)

    Humphreys, N; Ferris, R L

    1988-01-01

    The Forest Insect and Disease Survey (FIDS) is a nation-wide network within Forestry Canada with the responsibility of producing an overview of forest pest conditions and their implications; maintaining records and surveys to support quarantine and facilitate predictions; supporting forestry research with records, insect collections and herbaria; providing advice on forest insect and disease conditions; developing and testing survey techniques; and conducting related biological studies. This report outlines the status of forest pest conditions in the Vancouver Forest Region, and forecasts population trends of some potentially damaging pests. Pests are listed by host in order of importance.

  18. CTFS-ForestGEO: a worldwide network monitoring forests in an era of global change

    Energy Technology Data Exchange (ETDEWEB)

    Anderson-Teixeira, Kristina J. [Smithsonian Tropical Research Inst. (STRI), Panama (Panama). Center for Tropical Forest Science. Forest Global Earth Observatory; Smithsonian Conservation Biology Inst. (SCBI), Front Royal, VA (United States). National Zoological Park. Conservation Ecology Center; Davies, Stuart J. [Smithsonian Tropical Research Inst. (STRI), Panama (Panama). Center for Tropical Forest Science. Forest Global Earth Observatory; National Museum of Natural History, Washington, DC (United States). Dept. of Botany; Bennett, Amy C. [Smithsonian Conservation Biology Inst. (SCBI), Front Royal, VA (United States). National Zoological Park. Conservation Ecology Center; Gonzalez-Akre, Erika B. [Smithsonian Conservation Biology Inst. (SCBI), Front Royal, VA (United States). National Zoological Park. Conservation Ecology Center; Muller-Landau, Helene C. [Smithsonian Tropical Research Inst. (STRI), Panama (Panama). Center for Tropical Forest Science. Forest Global Earth Observatory; Joseph Wright, S. [Smithsonian Tropical Research Inst. (STRI), Panama (Panama). Center for Tropical Forest Science. Forest Global Earth Observatory; Abu Salim, Kamariah [Univ. of Brunei Darussalam, Bandar Seri Begawan (Brunei). Faculty of Science. Environmental and Life Sciences; Almeyda Zambrano, Angélica M. [Smithsonian Conservation Biology Inst. (SCBI), Front Royal, VA (United States). National Zoological Park. Conservation Ecology Center; Stanford Univ., CA (United States). Stanford Woods Inst. for the Environment; Univ. of Alabama, Tuscaloosa, AL (United States). Dept. of Geography; Alonso, Alfonso [Smithsonian Conservation Biology Inst., Washington, DC (United States). National Zoological Park. Center for Conservation Education and Sustainability; Baltzer, Jennifer L. [Wilfrid Laurier Univ., Waterloo, ON (Canada). Dept. of Biology; Basset, Yves [Smithsonian Tropical Research Inst. (STRI), Panama (Panama). Center for Tropical Forest Science. Forest Global Earth Observatory; Bourg, Norman A. [Smithsonian Conservation Biology Inst. (SCBI), Front Royal, VA (United States). National Zoological Park. Conservation Ecology Center; Broadbent, Eben N. [Smithsonian Conservation Biology Inst. (SCBI), Front Royal, VA (United States). National Zoological Park. Conservation Ecology Center; Stanford Univ., CA (United States). Stanford Woods Inst. for the Environment; Univ. of Alabama, Tuscaloosa, AL (United States). Dept. of Geography; Brockelman, Warren Y. [Mahidol Univ., Bangkok (Thailand). Dept. of Biology; Bunyavejchewin, Sarayudh [Dept. of National Parks, Wildlife and Plant Conservation, Bangkok (Thailand). Research Office; Burslem, David F. R. P. [Univ. of Aberdeen (United Kingdom). School of Biological Sciences; Butt, Nathalie [Univ. of Queensland, St. Lucia (Australia). School of Biological Sciences; Univ. of Oxford (United Kingdom). School of Geography and the Environment. Environmental Change Inst.; Cao, Min [Chinese Academy of Sciences (CAS), Kunming (China). Xishuangbanna Tropical Botanical Garden. Key Lab. of Tropical Forest Ecology; Cardenas, Dairon [Sinchi Amazonic Inst. of Scientific Research, Bogota (Colombia); Chuyong, George B. [Univ. of Buea (Cameroon). Dept. of Botany and Plant Physiology; Clay, Keith [Indiana Univ., Bloomington, IN (United States). Dept. of Biology; Cordell, Susan [USDA Forest Service, Hilo, HI (United States). Inst. of Pacific Islands Forestry; Dattaraja, Handanakere S. [Indian Inst. of Science, Bangalore (India). Centre for Ecological Sciences; Deng, Xiaobao [Chinese Academy of Sciences (CAS), Kunming (China). Xishuangbanna Tropical Botanical Garden. Key Lab. of Tropical Forest Ecology; Detto, Matteo [Smithsonian Tropical Research Inst. (STRI), Panama (Panama). Center for Tropical Forest Science. Forest Global Earth Observatory; Du, Xiaojun [Chinese Academy of Sciences (CAS), Beijing (China). Inst. of Botany; Duque, Alvaro [Univ. Nacional de Colombia, Medellin (Colombia). Dept. de Ciencias Forestales; Erikson, David L. [National Museum of Natural History, Washington, DC (United States). Dept. of Botany; Ewango, Corneille E. N. [Okapi Wildlife Reserve, Epulu (Democratic Republic of the Congo). Centre de Formation et de Recherche en Conservation Forestiere (CEFRECOF); Fischer, Gunter A. [Kadoorie Farm and Botanic Garden, Tai Po, Hong Kong (China); Fletcher, Christine [Forest Research Inst. Malaysia (FRIM), Selangor (Malaysia); Foster, Robin B. [The Field Museum, Chicago, IL (United States). Botany Dept.; Giardina, Christian P. [USDA Forest Service, Hilo, HI (United States). Inst. of Pacific Islands Forestry; Gilbert, Gregory S. [Smithsonian Tropical Research Inst. (STRI), Panama (Panama). Center for Tropical Forest Science. Forest Global Earth Observatory; Univ. of California, Santa Cruz, CA (United States). Environmental Studies Dept.; Gunatilleke, Nimal [Univ. of Peradeniya (Sri Lanka). Faculty of Science. Dept. of Botany; Gunatilleke, Savitri [Univ. of Peradeniya (Sri Lanka). Faculty of Science. Dept. of Botany; Hao, Zhanqing [Chinese Academy of Sciences (CAS), Shenyang (China). State Key Lab. of Forest and Soil Ecology. Inst. of Applied Ecology; Hargrove, William W. [USDA-Forest Service Station Headquarters, Asheville, NC (United States). Eastern Forest Environmental Threat Assessment Center; Hart, Terese B. [Lukuru Wildlife Research Foundation, Kinshasa (Democratic Republic of the Congo). Tshuapa-Lomami-Lualaba Project; Hau, Billy C. H. [Univ. of Hong Kong (China). School of Biological Sciences. Kadoorie Inst.; He, Fangliang [Univ. of Alberta, Edmonton, AB (Canada). Dept. of Renewable Resources; Hoffman, Forrest M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Computational Earth Sciences Group; Howe, Robert W. [Univ. of Wisconsin, Green Bay, WI (United States). Dept. of Natural and Applied Sciences; Hubbell, Stephen P. [Smithsonian Tropical Research Inst. (STRI), Panama (Panama). Center for Tropical Forest Science. Forest Global Earth Observatory; Univ. of California, Los Angeles, CA (United States). Dept. of Ecology and Evolutionary Biology; Inman-Narahari, Faith M. [Univ. of Hawaii, Honolulu, HI (United States). College of Tropical Agriculture and Human Resources; Jansen, Patrick A. [Smithsonian Tropical Research Inst. (STRI), Panama (Panama). Center for Tropical Forest Science. Forest Global Earth Observatory; Wageningen Univ. (Netherlands). Resource Ecology Group; Jiang, Mingxi [Chinese Academy of Sciences (CAS), Wuhan (China). Wuhan Botanical Garden; Johnson, Daniel J. [Indiana Univ., Bloomington, IN (United States). Dept. of Biology; Kanzaki, Mamoru [Kyoto Univ. (Japan). Graduate School of Agriculture; Kassim, Abdul Rahman [Forest Research Inst. Malaysia (FRIM), Selangor (Malaysia); Kenfack, David [Smithsonian Tropical Research Inst. (STRI), Panama (Panama). Center for Tropical Forest Science. Forest Global Earth Observatory; National Museum of Natural History, Washington, DC (United States). Dept. of Botany; Kibet, Staline [National Museums of Kenya, Nairobi (Kenya); Univ. of Nairobi (Kenya). Land Resource Management and Agricultural Technology Dept.; Kinnaird, Margaret F. [Mpala Research Centre, Nanyuki (Kenya); Wildlife Conservation Society, New York, NY (United States). Global Conservation Programs; Korte, Lisa [Smithsonian Conservation Biology Inst., Washington, DC (United States). National Zoological Park. Center for Conservation Education and Sustainability; Kral, Kamil [Silva Tarouca Research Inst., Brno (Czech Republic). Dept. of Forest Ecology; Kumar, Jitendra [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Computational Earth Sciences Group; Larson, Andrew J. [Univ. of Montana, Missoula, MT (United States). College of Forestry and Conservation. Dept. of Forest Management; Li, Yide [Chinese Academy of Forestry, Guangzhou (China). Research Inst. of Tropical Forestry; Li, Xiankun [Chinese Academy of Sciences (CAS), Guilin (China). Guangxi Inst. of Botany; Liu, Shirong [Chinese Academy of Forestry, Beijing (China). Research Inst. of Forest Ecology, Environment and Protection; Lum, Shawn K. Y. [Nanyang Technological Univ. (Singapore). National Inst. of Education. Natural Sciences and Science Education Academic Group; Lutz, James A. [Utah State Univ., Logan, UT (United States). Wildland Resources Dept.; Ma, Keping [Chinese Academy of Sciences (CAS), Beijing (China). Inst. of Botany; Maddalena, Damian M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Computational Earth Sciences Group; Makana, Jean-Remy [Wildlife Conservation Society, Brazzaville (Democratic Republic of the Congo); Malhi, Yadvinder [Univ. of Oxford (United Kingdom). School of Geography and the Environment. Environmental Change Inst.; Marthews, Toby [Univ. of Oxford (United Kingdom). School of Geography and the Environment. Environmental Change Inst.; Mat Serudin, Rafizah [Univ. of Brunei Darussalam, Bandar Seri Begawan (Brunei). Faculty of Science. Environmental and Life Sciences; McMahon, Sean M. [Smithsonian Tropical Research Inst. (STRI), Panama (Panama). Center for Tropical Forest Science. Forest Global Earth Observatory; Smithsonian Environmental Research Center, Edgewater, MD (United States). Forest Ecology Group; McShea, William J. [Smithsonian Conservation Biology Inst., Front Royal, VA (United States). National Zoological Park. Conservation Ecology Center; Memiaghe, Hervé R. [Inst. de Recherche en Ecologie Tropicale, Libreville (Gabon). Centre National de la Recherche Scientifique et Technologique; Mi, Xiangcheng [Chinese Academy of Sciences (CAS), Beijing (China). Inst. of Botany; Mizuno, Takashi [Kyoto Univ. (Japan). Graduate School of Agriculture; Morecroft, Michael [Natural England, Sheffield (United Kingdom); Myers, Jonathan A. [Washington Univ., St. Louis, MO (United States). Dept. of Biology; Novotny, Vojtech [New Guinea Binatang Research Centre, Madang (Papua New Guinea); Univ. of South Bohemia, Ceske Budejovice (Czech Republic). Academy of Sciences of the Czech Republic. Faculty of Science. Biology Centre; de Oliveira, Alexandre A. [Univ. of Sao Paulo (Brazil). Inst. of Biosciences. Ecology Dept.; Ong, Perry S. [Univ. of the Philippines Diliman, Quezon City (Philippines). Inst. of Biology; Orwig, David A. [Harvard Univ., Petersham, MA (United States). Harvard Forest; Ostertag, Rebecca [Univ. of Hawaii, Hilo, HI (United States). Dept. of Biology; den Ouden, Jan [Wageningen Univ. (Netherlands). Forest Ecology and Forest Management Group; Parker, Geoffrey G. [Smithsonian Environmental Research Center, Edgewater, MD (United States). Forest Ecology Group; Phillips, Richard P. [Indiana Univ., Bloomington, IN (United States). Dept. of Biology; Sack, Lawren [Univ. of California, Los Angeles, CA (United States). Dept. of Ecology and Evolutionary Biology; Sainge, Moses N. [Tropical Plant Exploration Group (TroPEG), Mundemba (Cameroon); Sang, Weiguo [Chinese Academy of Sciences (CAS), Beijing (China). Inst. of Botany; Sri-ngernyuang, Kriangsak [Maejo Univ., Chiang Mai (Thailand). Faculty of Architecture and Environmental Design; Sukumar, Raman [Indian Inst. of Science, Bangalore (India). Centre for Ecological Sciences; Sun, I-Fang [National Dong Hwa Univ., Hualian (Taiwan). Dept. of Natural Resources and Environmental Studies; Sungpalee, Witchaphart [Maejo Univ., Chiang Mai (Thailand). Faculty of Architecture and Environmental Design; Suresh, Hebbalalu Sathyanarayana [Indian Inst. of Science, Bangalore (India). Centre for Ecological Sciences; Tan, Sylvester [Sarawak Forest Dept., Kuching (Malaysia); Thomas, Sean C. [Univ. of Toronto, ON (Canada). Faculty of Forestry; Thomas, Duncan W. [Washington State Univ., Vancouver, WA (United States). School of Biological Sciences; Thompson, Jill [Centre for Ecology and Hydrology, Penicuik, Scotland (United Kingdom); Univ. of Puerto Rico Rio Pedras, San Juan (Puerto Rico). Dept. of Environmental Science. Inst. for Tropical Ecosystem Studies; Turner, Benjamin L. [Smithsonian Tropical Research Inst. (STRI), Panama (Panama). Center for Tropical Forest Science. Forest Global Earth Observatory; Uriarte, Maria [Columbia Univ., New York, NY (United States). Dept. of Ecology, Evolution and Environmental Biology; Valencia, Renato [Pontifical Catholic Univ. of Ecuador, Quito (Ecuador). Dept. of Biological Sciences; Vallejo, Marta I. [Inst. Alexander von Humboldt, Bogota (Colombia); Vicentini, Alberto [National Inst. of Amazonian Research (INPA), Manaus (Brazil); Vrška, Tomáš [Silva Tarouca Research Inst., Brno (Czech Republic). Dept. of Forest Ecology; Wang, Xihua [East China Normal Univ. (ECNU), Shanghai (China). School of Ecological and Environmental Sciences; Wang, Xugao [Lukuru Wildlife Research Foundation, Kinshasa (Democratic Republic of the Congo). Tshuapa-Lomami-Lualaba Project; Weiblen, George [Univ. of Minnesota, St. Paul, MN (United States). Dept. of Plant Biology; Wolf, Amy [Univ. of Wisconsin, Green Bay, WI (United States). Dept. of Biology. Dept. of Natural and Applied Sciences; Xu, Han [Chinese Academy of Forestry, Guangzhou (China). Research Inst. of Tropical Forestry; Yap, Sandra [Univ. of the Philippines Diliman, Quezon City (Philippines). Inst. of Biology; Zimmerman, Jess [Univ. of Puerto Rico Rio Piedras, San Juan (Puerto Rico). Dept. of Environmental Science. Inst. for Tropical Ecosystem Studies

    2014-09-25

    Global change is impacting forests worldwide, threatening biodiversity and ecosystem services, including climate regulation. Understanding how forests respond is critical to forest conservation and climate protection. This review describes an international network of 59 long-term forest dynamic research sites useful for characterizing forest responses to global change. The broad suite of measurements made at the CTFS-ForestGEO sites make it possible to investigate the complex ways in which global change is impacting forest dynamics. ongoing research across the network is yielding insights into how and why the forests are changing, and continued monitoring will provide vital contributions to understanding worldwide forest diversity and dynamics in a era of global change

  19. Dispersal of forest insects

    Science.gov (United States)

    Mcmanus, M. L.

    1979-01-01

    Dispersal flights of selected species of forest insects which are associated with periodic outbreaks of pests that occur over large contiguous forested areas are discussed. Gypsy moths, spruce budworms, and forest tent caterpillars were studied for their massive migrations in forested areas. Results indicate that large dispersals into forested areas are due to the females, except in the case of the gypsy moth.

  20. Degraded tropical rain forests possess valuable carbon storage opportunities in a complex, forested landscape.

    Science.gov (United States)

    Alamgir, Mohammed; Campbell, Mason J; Turton, Stephen M; Pert, Petina L; Edwards, Will; Laurance, William F

    2016-07-20

    Tropical forests are major contributors to the terrestrial global carbon pool, but this pool is being reduced via deforestation and forest degradation. Relatively few studies have assessed carbon storage in degraded tropical forests. We sampled 37,000 m(2) of intact rainforest, degraded rainforest and sclerophyll forest across the greater Wet Tropics bioregion of northeast Australia. We compared aboveground biomass and carbon storage of the three forest types, and the effects of forest structural attributes and environmental factors that influence carbon storage. Some degraded forests were found to store much less aboveground carbon than intact rainforests, whereas others sites had similar carbon storage to primary forest. Sclerophyll forests had lower carbon storage, comparable to the most heavily degraded rainforests. Our findings indicate that under certain situations, degraded forest may store as much carbon as intact rainforests. Strategic rehabilitation of degraded forests could enhance regional carbon storage and have positive benefits for tropical biodiversity.

  1. Vulnerability of tropical forest ecosystems and forest dependent communities to droughts.

    Science.gov (United States)

    Vogt, D J; Vogt, K A; Gmur, S J; Scullion, J J; Suntana, A S; Daryanto, S; Sigurðardóttir, R

    2016-01-01

    Energy captured by and flowing through a forest ecosystem can be indexed by its total Net Primary Productivity (NPP). This forest NPP can also be a reflection of its sensitivity to, and its ability to adapt to, any climate change while also being harvested by humans. However detecting and identifying the vulnerability of forest and human ecosystems to climate change requires information on whether these coupled social and ecological systems are able to maintain functionality while responding to environmental variability. To better understand what parameters might be representative of environmental variability, we compiled a metadata analysis of 96 tropical forest sites. We found that three soil textural classes (i.e., sand, sandy loam and clay) had significant but different relationships between NPP and precipitation levels. Therefore, assessing the vulnerability of forests and forest dependent communities to drought was carried out using data from those sites that had one of those three soil textural classes. For example, forests growing on soil textures of sand and clay had NPP levels decreasing as precipitation levels increased, in contrast to those forest sites that had sandy loam soils where NPP levels increased. Also, forests growing on sandy loam soil textures appeared better adapted to grow at lower precipitation levels compared to the sand and clay textured soils. In fact in our tropical database the lowest precipitation level found for the sandy loam soils was 821 mm yr(-1) compared to sand at 1739 mm yr(-1) and clay at 1771 mm yr(-1). Soil texture also determined the level of NPP reached by a forest, i.e., forest growing on sandy loam and clay reached low-medium NPP levels while higher NPP levels (i.e., medium, high) were found on sand-textured soils. Intermediate precipitation levels (>1800-3000 mm yr(-1)) were needed to grow forests at the medium and high NPP levels. Low thresholds of NPP were identified at both low (∼750 mm) and high precipitation

  2. The relative contributions of forest growth and areal expansion to forest biomass carbon

    Science.gov (United States)

    P. Li; J. Zhu; H. Hu; Z. Guo; Y. Pan; R. Birdsey; J. Fang

    2016-01-01

    Forests play a leading role in regional and global terrestrial carbon (C) cycles. Changes in C sequestration within forests can be attributed to areal expansion (increase in forest area) and forest growth (increase in biomass density). Detailed assessment of the relative contributions of areal expansion and forest growth to C sinks is crucial to reveal the mechanisms...

  3. An economic model of international wood supply, forest stock and forest area change

    Science.gov (United States)

    James A. Turner; Joseph Buongiorno; Shushuai Zhu

    2006-01-01

    Wood supply, the link between roundwood removals and forest resources, is an important component of forest sector models. This paper develops a model of international wood supply within the structure of the spatial equilibrium Global Forest Products Model. The wood supply model determines, for each country, the annual forest harvest, the annual change of forest stock...

  4. Forest litter stocks in Korean pine-broad-leaved forests of the southern Sikhote Alin

    Directory of Open Access Journals (Sweden)

    A. V. Ivanov

    2015-10-01

    Full Text Available The article presents the data on the forest litter of the Korean pine-broad-leaved forests of the South of Primorsky krai. The focus of the research is plantations dominated by Korean pine; areas of the main tree species with ages of 50, 80, 130 and 200 years were selected. The dynamics of the forest litter stock in the pine and broadleaved forests of different ages according to the measurement results for the season in 2014 is stated. In the studied plantation, the forest litter stock varies between 9.7–20.3 t ha-1. The greatest value of the forest litter stock is recorded in old-growth cedar forest (200 years. Relatively high power and the stock of litter are typical for young Korean pine forest that can explain the lower speed of the litter properties change against the dynamics of taxation indicators of the forest stand. The difference between the amount of the litter in the 200-year-old and remaining pine trees are statistically significant at p = 0.05. The dependence of the litter power on the age is not revealed. The coefficient of the forest litter decomposition ranges from 2.55–10.60 that characterizes the high speed of its rotting. The highest coefficient of the litter decomposition has an old-growing pine forest. The schedule of seasonal humidity fluctuations of the forest litter on the chosen plot is made; with increasing cedar forest age, the volumetric moisture content of the forest litter increases; volumetric moisture content on the plots remain relatively unchanged during the season. The area of the Korean pine forests of Primorsky State Academy of Agriculture is 6835 ha. The amount of carbon stock in the forest litter is 38.7 thousand tons C. in this area, while the system of regional assessment of the forest carbon balance estimates this index as 24.3 tons С. The data obtained can be used to adjust the coefficients of regional assessment of the forest carbon balance for cedar forests of Primorsky krai.

  5. Use of tree species by White-throated treerunner (Pygarrhichas albogularis King in a secondary native forest of southern Chile

    Directory of Open Access Journals (Sweden)

    Alberto Gantz

    2015-06-01

    Full Text Available ABSTRACT In forest ecosystems, numerous species of insectivorous birds use certain tree species as feeding and nesting substrates. Between 2009 and 2010, the use of different floristic components as feeding substrate by the Pygarrhichas albogularis King, 1831 was evaluated in a southern Chilean secondary native forest. From a total of 13 trees and bush species, six tree species were used by P. albogularis as a feeding substrate. Tree use was limited to intermediate heights (11-20 m and, mainly, to the trunk (40% of observations and secondary branches (26%. Pygarrhichas albogularis showed a disproportionated use of N. dombeyi and an important use of trees with a greater age structure (DBH 81-100 cm. Nothofagus dombeyi presented a significantly greater tree bark crevice depth than E. cordifolia. In turn, covariance between crevice depth and invertebrate supply in tree bark was positive and significant. We consider bark depth and invertebrate supply to be the proximate causes explaining P. albogularis disproportionated use of Nothofagus dombeyi.

  6. West Virginia Forests 2013

    Science.gov (United States)

    Randall S. Morin; Gregory W. Cook; Charles J. Barnett; Brett J. Butler; Susan J. Crocker; Mark A. Hatfield; Cassandra M. Kurtz; Tonya W. Lister; William G. Luppold; William H. McWilliams; Patrick D. Miles; Mark D. Nelson; Charles H. (Hobie) Perry; Ronald J. Piva; James E. Smith; Jim Westfall; Richard H. Widmann; Christopher W. Woodall

    2016-01-01

    The annual inventory of West Virginia's forests, completed in 2013, covers nearly 12.2 million acres of forest land with an average volume of more than 2,300 cubic feet per acre. This report is based data collected from 2,808 plots located across the State. Forest land is dominated by the oak/hickory forest-type group, which occupies 74 percent of total forest...

  7. New Jersey's forests, 2008

    Science.gov (United States)

    Susan J. Crocker; Mark D. Nelson; Charles J. Barnett; Gary J. Brand; Brett J. Butler; Grant M. Domke; Mark H. Hansen; Mark A. Hatfield; Tonya W. Lister; Dacia M. Meneguzzo; Charles H. Perry; Ronald J. Piva; Barry T. Wilson; Christopher W. Woodall; Bill. Zipse

    2011-01-01

    The first full annual inventory of New Jersey's forests reports more than 2.0 million acres of forest land and 83 tree species. Forest land is dominated by oak-hickory forest types in the north and pitch pine forest types in the south. The volume of growing stock on timberland has been rising since 1956 and currently totals 3.4 billion cubic feet. The average...

  8. Managing the world's forests.

    Science.gov (United States)

    Sharma, N; Rowe, R

    1992-06-01

    Forests play a vital role in balancing natural systems: the stabilization of global climate and the management of water and land. 30% of the earth's total land area is forested. 66% of the tropical moist forests are in Latin America and the remainder in Africa and Asia. 75% of tropical dry forests are in Africa. Temperate forests are primarily in developed countries. Deforestation and misuse of forests occurs primarily in developing countries at significant social, economic, and environmental costs. Losses have occurred in fuelwood, fodder, timber, forest products, biological diversity, habitats, genetic materials for food and medicine. The World Bank's evolving role in forestry is briefly described. Agreement has not been reached among people or nations about the most appropriate means to balance conservation and development goals. The challenge is to stabilize existing forests and increase forest planting. The causes of forest degradation must be understood. Direct causes include agricultural encroachment, cattle ranching, fuelwood gathering, commercial logging, and infrastructure development. These direct causes are driven by economic, social, and political forces: market and policy failures, population growth, and poverty. The market failures include: 1) the lack of clearly defined property rights on forest resources for now and the future, 2) the conflict between individual and societal needs, 3) the difficulty in placing a value on nonmarket environmental services and joint products, and 4) the separation between private and social costs. The solution is action at the local, national, and global levels. Countries must establish forest policy. The existing government incentives which promote deforestation must be changed. For example, concession policy and royalty systems must be corrected; explicit and implicit export subsidies on timber and forest products must be stopped. Private incentives must be established to promote planting of trees, practicing

  9. Effects of exotic plantation forests on soil edaphon and organic matter fractions.

    Science.gov (United States)

    Xu, Gang; Liu, Yao; Long, Zhijian; Hu, Shanglian; Zhang, Yuanbin; Jiang, Hao

    2018-06-01

    There is uncertainty and limited knowledge regarding soil microbial properties and organic matter fractions of natural secondary forest accompanying chemical environmental changes of replacement by pure alien plantation forests in a hilly area of southwest of Sichuan province China. The aim of this study was to evaluate the impact of natural secondary forest (NSF) to pure Cryptomeria fortunei forest (CFF) and Cunninghamia lanceolata forest (CLF) on soil organic fractions and microbial communities. The results showed that the soil total phospholipid fatty acids (PLFAs), total bacteria and fungi, microbial carbon pool, organic recalcitrant carbon (C) and (N) fractions, soil microbial quotient and labile and recalcitrant C use efficiencies in each pure plantation were significantly decreased, but their microbial N pool, labile C and N pools, soil carbon dioxide efflux, soil respiratory quotient and recalcitrant N use efficiency were increased. An RDA analysis revealed that soil total PLFAs, total bacteria and fungi and total Gram-positive and Gram-negative bacteria were significantly associated with exchangeable Al 3+ , exchangeable acid, Al 3+ , available P and Mg 2+ and pH, which resulted into microbial functional changes of soil labile and recalcitrant substrate use efficiencies. Modified microbial C- and N-use efficiency due to forest conversion ultimately meets those of rapidly growing trees in plantation forests. Enlarged soil labile fractions and soil respiratory quotients in plantation forests would be a potential positive effect for C source in the future forest management. Altogether, pure plantation practices could provoke regulatory networks and functions of soil microbes and enzyme activities, consequently leading to differentiated utilization of soil organic matter fractions accompanying the change in environmental factors. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. A synthesis of the science on forests and carbon for U.S. Forests

    Science.gov (United States)

    Michael G. Ryan; Mark E. Harmon; Richard A. Birdsey; Christian P. Giardina; Linda S. Heath; Richard A. Houghton; Robert B. Jackson; Duncan C. McKinley; James F. Morrison; Brian C. Murray; Diane E. Pataki; Kenneth E. Skog

    2010-01-01

    Forests play an important role in the U.S. and global carbon cycle, and carbon sequestered by U.S. forest growth and harvested wood products currently offsets 12-19% of U.S. fossil fuel emissions. The cycle of forest growth, death, and regeneration and the use of wood removed from the forest complicate efforts to understand and measure forest carbon pools and flows....

  11. [Soil organic carbon pools and their turnover under two different types of forest in Xiao-xing'an Mountains, Northeast China].

    Science.gov (United States)

    Gao, Fei; Jiang, Hang; Cui, Xiao-yang

    2015-07-01

    Soil samples collected from virgin Korean pine forest and broad-leaved secondary forest in Xiaoxing'an Mountains, Northeast China were incubated in laboratory at different temperatures (8, 18 and 28 °C) for 160 days, and the data from the incubation experiment were fitted to a three-compartment, first-order kinetic model which separated soil organic carbon (SOC) into active, slow, and resistant carbon pools. Results showed that the soil organic carbon mineralization rates and the cumulative amount of C mineralized (all based on per unit of dry soil mass) of the broad-leaved secondary forest were both higher than that of the virgin Korean pine forest, whereas the mineralized C accounted for a relatively smaller part of SOC in the broad-leaved secondary forest soil. Soil active and slow carbon pools decreased with soil depth, while their proportions in SOC increased. Soil resistant carbon pool and its contribution to SOC were both greater in the broad-leaved secondary forest soil than in the virgin Korean pine forest soil, suggesting that the broad-leaved secondary forest soil organic carbon was relatively more stable. The mean retention time (MRT) of soil active carbon pool ranged from 9 to 24 d, decreasing with soil depth; while the MRT of slow carbon pool varied between 7 and 24 a, increasing with soil depth. Soil active carbon pool and its proportion in SOC increased linearly with incubation temperature, and consequently, decreased the slow carbon pool. Virgin Korean pine forest soils exhibited a higher increasing rate of active carbon pool along temperature gradient than the broad-leaved secondary forest soils, indicating that the organic carbon pool of virgin Korean pine forest soil was relatively more sensitive to temperature change.

  12. Rare Plants of the Redwood Forest and Forest Management Effects

    Science.gov (United States)

    Teresa Sholars; Clare Golec

    2007-01-01

    Coast redwood forests are predominantly a timber managed habitat type, subjected to repeated disturbances and short rotation periods. What does this repeated disturbance mean for rare plants associated with the redwood forests? Rare plant persistence through forest management activities is influenced by many factors. Persistence of rare plants in a managed landscape is...

  13. Ecological modeling for forest management in the Shawnee National Forest

    Science.gov (United States)

    Richard G. Thurau; J.F. Fralish; S. Hupe; B. Fitch; A.D. Carver

    2008-01-01

    Land managers of the Shawnee National Forest in southern Illinois are challenged to meet the needs of a diverse populace of stakeholders. By classifying National Forest holdings into management units, U.S. Forest Service personnel can spatially allocate resources and services to meet local management objectives. Ecological Classification Systems predict ecological site...

  14. Fighting over forest: interactive governance of conflicts over forest and tree resources in Ghana’s high forest zone

    NARCIS (Netherlands)

    Derkyi, M.A.A.

    2012-01-01

    Based on eight case studies, this book analyses conflicts over forests and trees in Ghana’s high forest zone and ways of dealing with them. It thereby addresses the full range of forest and tree-based livelihoods. Combining interactive governance theory with political ecology and conflict theories,

  15. Disturbing forest disturbances

    Energy Technology Data Exchange (ETDEWEB)

    Volney, W.J.A.; Hirsch, K.G. [Natural Resources Canada, Canadian Forest Service, Northern Forestry Centre, Edmonton, AB (Canada)

    2005-10-01

    This paper described the role that disturbances play in maintaining the ecological integrity of Canadian boreal forests. Potential adaptation options to address the challenges that these disturbances present were also examined. Many forest ecosystems need fire for regeneration, while other forests rely on a cool, wet disintegration process driven by insects and commensal fungi feeding on trees to effect renewal. While there are characteristic natural, temporal and spatial patterns to these disturbances, recent work has demonstrated that the disturbances are being perturbed by climatic change that has been compounded by anthropogenic disturbances in forests. Fire influences species composition and age structure, regulates forest insects and diseases, affects nutrient cycling and energy fluxes, and maintains the productivity of different habitats. Longer fire seasons as a result of climatic change will lead to higher intensity fires that may more easily evade initial attacks and become problematic. Fire regimes elevated beyond the range of natural variation will have a dramatic effect on the regional distribution and functioning of forest ecosystems and pose a threat to the safety and prosperity of people. While it was acknowledged that if insect outbreaks were to be controlled on the entire forest estate, the productivity represented by dead wood would be lost, it was suggested that insects such as the forest tent caterpillar and the spruce bud worm may also pose a greater threat as the climate gets warmer and drier. Together with fungal associates, saproxylic arthropods are active in nutrient cycling and ultimately determine the fertility of forest sites. It was suggested that the production of an age class structure and forest mosaic would render the forest landscape less vulnerable to the more negative aspects of climate change on vegetation response. It was concluded that novel management design paradigms are needed to successfully reduce the risk from threats

  16. Forest structure and downed woody debris in boreal, temperate, and tropical forest fragments.

    Science.gov (United States)

    Gould, William A; González, Grizelle; Hudak, Andrew T; Hollingsworth, Teresa Nettleton; Hollingsworth, Jamie

    2008-12-01

    Forest fragmentation affects the heterogeneity of accumulated fuels by increasing the diversity of forest types and by increasing forest edges. This heterogeneity has implications in how we manage fuels, fire, and forests. Understanding the relative importance of fragmentation on woody biomass within a single climatic regime, and along climatic gradients, will improve our ability to manage forest fuels and predict fire behavior. In this study we assessed forest fuel characteristics in stands of differing moisture, i.e., dry and moist forests, structure, i.e., open canopy (typically younger) vs. closed canopy (typically older) stands, and size, i.e., small (10-14 ha), medium (33 to 60 ha), and large (100-240 ha) along a climatic gradient of boreal, temperate, and tropical forests. We measured duff, litter, fine and coarse woody debris, standing dead, and live biomass in a series of plots along a transect from outside the forest edge to the fragment interior. The goal was to determine how forest structure and fuel characteristics varied along this transect and whether this variation differed with temperature, moisture, structure, and fragment size. We found nonlinear relationships of coarse woody debris, fine woody debris, standing dead and live tree biomass with mean annual median temperature. Biomass for these variables was greatest in temperate sites. Forest floor fuels (duff and litter) had a linear relationship with temperature and biomass was greatest in boreal sites. In a five-way multivariate analysis of variance we found that temperature, moisture, and age/structure had significant effects on forest floor fuels, downed woody debris, and live tree biomass. Fragment size had an effect on forest floor fuels and live tree biomass. Distance from forest edge had significant effects for only a few subgroups sampled. With some exceptions edges were not distinguishable from interiors in terms of fuels.

  17. ForestCrowns: a transparency estimation tool for digital photographs of forest canopies

    Science.gov (United States)

    Matthew Winn; Jeff Palmer; S.-M. Lee; Philip Araman

    2016-01-01

    ForestCrowns is a Windows®-based computer program that calculates forest canopy transparency (light transmittance) using ground-based digital photographs taken with standard or hemispherical camera lenses. The software can be used by forest managers and researchers to monitor growth/decline of forest canopies; provide input for leaf area index estimation; measure light...

  18. Selection of roosting habitat by forest bats in a diverse forested landscape

    Science.gov (United States)

    Roger W. Perry; Ronald E. Thill; David M. Leslie

    2007-01-01

    Many studies of roost selection by forest-dwelling bats have concentrated on microhabitat surrounding roosts without providing forest stand level preferences of bats; thus, those studies have provided only part of the information needed by managers. We evaluated diurnal summer roost selection by the bat community at the forest-stand level in a diversely forested...

  19. Forest Disturbance Across the Conterminous United States from 1985-2012: The Emerging Dominance of Forest Decline

    Science.gov (United States)

    Cohen, Warren B.; Yang, Zhiqiang; Stehman, Stephen; Schroeder, Todd; Bell, David M.; Masek, Jeffrey; Huang, Chengquan; Meigs, Garrett W.

    2015-01-01

    Evidence of shifting dominance among major forest disturbance agent classes regionally to globally has been emerging in the literature. For example, climate-related stress and secondary stressors on forests (e.g., insect and disease, fire) have dramatically increased since the turn of the century globally, while harvest rates in the western US and elsewhere have declined. For shifts to be quantified, accurate historical forest disturbance estimates are required as a baseline for examining current trends. We report annual disturbance rates (with uncertainties) in the aggregate and by major change causal agent class for the conterminous US and five geographic subregions between 1985 and 2012. Results are based on human interpretations of Landsat time series from a probability sample of 7200 plots (30 m) distributed throughout the study area. Forest disturbance information was recorded with a Landsat time series visualization and data collection tool that incorporates ancillary high-resolution data. National rates of disturbance varied between 1.5% and 4.5% of forest area per year, with trends being strongly affected by shifting dominance among specific disturbance agent influences at the regional scale. Throughout the time series, national harvest disturbance rates varied between one and two percent, and were largely a function of harvest in the more heavily forested regions of the US (Mountain West, Northeast, and Southeast). During the first part of the time series, national disturbance rates largely reflected trends in harvest disturbance. Beginning in the mid-90s, forest decline-related disturbances associated with diminishing forest health (e.g., physiological stress leading to tree canopy cover loss, increases in tree mortality above background levels), especially in the Mountain West and Lowland West regions of the US, increased dramatically. Consequently, national disturbance rates greatly increased by 2000, and remained high for much of the decade. Decline

  20. Ground Monitoring Neotropical Dry Forests: A Sensor Network for Forest and Microclimate Dynamics in Semi-Arid Environments (Enviro-Net°)

    Science.gov (United States)

    Rankine, C. J.; Sánchez-Azofeifa, G.

    2011-12-01

    In the face of unprecedented global change driven by anthropogenic pressure on natural systems it has become imperative to monitor and better understand potential shifts in ecosystem functioning and services from local to global scales. The utilization of automated sensors technologies offers numerous advantages over traditional on-site ecosystem surveying techniques and, as a result, sensor networks are becoming a powerful tool in environmental monitoring programs. Tropical forests, renowned for their biodiversity, are important regulators of land-atmosphere fluxes yet the seasonally dry tropical forests, which account for 40% of forested ecosystems in the American tropics, have been severely degraded over the past several decades and not much is known of their capacity to recover. With less than 1% of these forests protected, our ability to monitor the dynamics and quantify changes in the remaining primary and recovering secondary tropical dry forests is vital to understanding mechanisms of ecosystem stress responses and climate feedback with respect to annual productivity and desertification processes in the tropics. The remote sensing component of the Tropi-Dry: Human and Biophysical Dimensions of Tropical Dry Forests in the Americas research network supports a network of long-term tropical ecosystem monitoring platforms which focus on the dynamics of seasonally dry tropical forests in the Americas. With over 25 sensor station deployments operating across a latitudinal gradient in Mexico, Costa Rica, Brazil, and Argentina continuously collecting hyper-temporal sensory input based on standardized deployment parameters, this monitoring system is unique among tropical environments. Technologies used in the network include optical canopy phenology towers, understory wireless sensing networks, above and below ground microclimate stations, and digital cameras. Sensory data streams are uploaded to a cyber-infrastructure initiative, denominated Enviro-Net°, for data

  1. New Jersey Forests 2013

    Science.gov (United States)

    Susan J. Crocker; Charles J. Barnett; Brett J. Butler; Mark A. Hatfield; Cassandra M. Kurtz; Tonya W. Lister; Dacia M. Meneguzzo; Patrick D. Miles; Randall S. Morin; Mark D. Nelson; Ronald J. Piva; Rachel Riemann; James E. Smith; Christopher W. Woodall; William. Zipse

    2017-01-01

    The second full annual inventory of New Jersey’s forests reports more than 2.0 million acres of forest land and 77 tree species. Forest land is dominated by oak/hickory forest types in the north and pitch pine forest types in the south. The volume of growing stock on timberland has been rising since 1956 and currently totals 3.3 billion cubic feet. Average annual net...

  2. The Challenge of Forest Diagnostics

    Directory of Open Access Journals (Sweden)

    Harini Nagendra

    2011-06-01

    Full Text Available Ecologists and practitioners have conventionally used forest plots or transects for monitoring changes in attributes of forest condition over time. However, given the difficulty in collecting such data, conservation practitioners frequently rely on the judgment of foresters and forest users for evaluating changes. These methods are rarely compared. We use a dataset of 53 forests in five countries to compare assessments of forest change from forest plots, and forester and user evaluations of changes in forest density. We find that user assessments of changes in tree density are strongly and significantly related to assessments of change derived from statistical analyses of randomly distributed forest plots. User assessments of change in density at the shrub/sapling level also relate to assessments derived from statistical evaluations of vegetation plots, but this relationship is not as strong and only weakly significant. Evaluations of change by professional foresters are much more difficult to acquire, and less reliable, as foresters are often not familiar with changes in specific local areas. Forester evaluations can instead better provide valid single-time comparisons of a forest with other areas in a similar ecological zone. Thus, in forests where local forest users are present, their evaluations can be used to provide reliable assessments of changes in tree density in the areas they access. However, assessments of spatially heterogeneous patterns of human disturbance and regeneration at the shrub/sapling level are likely to require supplemental vegetation analysis.

  3. Temporal mapping of deforestation and forest degradation in Nepal: Applications to forest conservation

    NARCIS (Netherlands)

    Panta, M.; Kim, K.; Joshi, C.

    2008-01-01

    Deforestation and forest degradation are associated and progressive processes resulting in the conversion of forest area into a mosaic of mature forest fragments, pasture, and degraded habitat. Monitoring of forest landscape spatial structures has been recommended to detect degenerative trends in

  4. Diversity and population characteristics of terrestrial isopods (Crustacea, Oniscidea across three forest environments in southern Brazil

    Directory of Open Access Journals (Sweden)

    Priscila da Silva Bugs

    2014-09-01

    Full Text Available Terrestrial isopods are important and dominant component of meso and macrodecomposer soil communities. The present study investigates the diversity and species composition of terrestrial isopods on three forests on the Serra Geral of the state of Rio Grande do Sul, Brazil. The area has two natural formations (Primary Woodland and Secondary Woodland and one plantation of introduced Pinus. The pitfall traps operated from March 2001 to May 2002, with two summer periods and one winter. There were 14 sampling dates overall. Of the five species found: Alboscia silveirensis Araujo, 1999, Atlantoscia floridana (van Name, 1940, Benthana araucariana Araujo & Lopes, 2003 (Philoscidae, Balloniscus glaber Araujo & Zardo, 1995 (Balloniscidae and Styloniscus otakensis (Chilton, 1901 (Styloniscidae; only A. floridana is abundant on all environments and B. glaber is nearly exclusive for the native forests. The obtained data made it possible to infer about population characteristics of this species. The Similarity Analysis showed a quantitative difference among the Secondary forest and Pinus plantation, but not a qualitative one. The operational sex ratio (OSR analysis for A. floridana does not reveal significant differences in male and female proportions among environments. The reproductive period identified in the present study for A. floridana was from spring to autumn in the primary forest and Pinus plantation and during all year for the secondary forest. The OSR analysis for B. glaber reveals no significant differences in abundance between males and females for secondary forest, but the primary forest was a significant difference. The reproductive period for B. glaber extended from summer to autumn (for primary and secondary forest. This is the first record for Brazil of an established terrestrial isopod population in a Pinus sp. plantation area, evidenced by the presence of young, adults and ovigerous females, balanced sex ratio, expected fecundity and

  5. Perceptions about Forest Schools: Encouraging and Promoting Archimedes Forest Schools

    Science.gov (United States)

    Nawaz, Haq; Blackwell, Sarah

    2014-01-01

    The aim of this study was to find out parents' and children's perception of outdoor learning programmes with specific reference to Archimedes Forest Schools, known as Forest Schools. A review of existing research showed that there had been no rigorous evaluation of perception of forest schools. The study was conducted in the UK and mixed method…

  6. Correlation between soil physicochemical properties and vegetation parameters in secondary tropical forest in Sabal, Sarawak, Malaysia

    Science.gov (United States)

    Karyati, K.; Ipor, I. B.; Jusoh, I.; Wasli, M. E.

    2018-04-01

    The tree growth is influenced by soil morphological and physicochemical properties in the site. The purpose of this study was to describe correlation between soil properties under various stage secondary forests and vegetation parameters, such as floristic structure parameters and floristic diversity indices. The vegetation surveys were conducted in 5, 10, and 20 years old at secondary tropical forests in Sarawak, Malaysia. Nine sub plots sized 20 m × 20 m were established within each study site. The Pearson analysis showed that soil physicochemical properties were significantly correlated to floristic structure parameters and floristic diversity indices. The result of PCA clarified the correlation among most important soil properties, floristic structure parameters, and floristic diversity indices. The PC1 represented cation retention capacity and soil texture which were little affected by the fallow age and its also were correlated by floristic structure and diversity. The PC2 was linked to the levels of soil acidity. This property reflected the remnant effects of ash addition and fallow duration, and the significant correlation were showed among pH (H2O), floristic structure and diversity. The PC3 represented the soil compactness. The soil hardness could be influenced by fallow period and it was also correlated by floristic structure.

  7. Community of male Euglossini bees (Hymenoptera: Apidae in a secondary forest, Alcântara, MA, Brazil

    Directory of Open Access Journals (Sweden)

    BRITO C. M. S. de

    2001-01-01

    Full Text Available From September, 92 to August, 93 bee sampling was done in a secondary forest near the Pepital River, in Alcântara, MA, in order to study the local Euglossini fauna. Five aromatic compounds were used: eucaliptol, eugenol, methyl salicylate, vanillin, and benzoate. Four hundred sixty-seven male Euglossini bees were captured, distributed in 4 genus and 19 species. Euglossa was the most abundant and with high diversity (302 specimens and 14 species, followed by Eulaema (121; 3, Eufriesea (41; 1, and Exaerete (3; 1. The species which more frequently visited the bait were Euglossa piliventris (141 specimens; 30.19%, Euglossa cingulata (113; 24.21%, Euglossa ignita (45; 9.64%, Eufriesea pulchra (41; 8.78%, and Euglossa gaianii (33; 7.07% corresponding to 79.88% of the sampling universe. The bees were active throught the year, however during the rainy season more activity and diversity were observed. The most attractive essence was eucaliptol (44.32% specimens and 84.21% species. In spite of this study having been done in a forest fragment, a secondary vegetation area smaller than other areas studied in Maranhão, it showed a significant diversity rate. This result reinforces the importance of fragments in the conservation of local bee communities.

  8. Substantial secondary organic aerosol formation in a coniferous forest: observations of both day- and nighttime chemistry

    Directory of Open Access Journals (Sweden)

    A. K. Y. Lee

    2016-06-01

    Full Text Available Substantial biogenic secondary organic aerosol (BSOA formation was investigated in a coniferous forest mountain region in Whistler, British Columbia. A largely biogenic aerosol growth episode was observed, providing a unique opportunity to investigate BSOA formation chemistry in a forested environment with limited influence from anthropogenic emissions. Positive matrix factorization of aerosol mass spectrometry (AMS measurement identified two types of BSOA (BSOA-1 and BSOA-2, which were primarily generated by gas-phase oxidation of monoterpenes and perhaps sesquiterpenes. The temporal variations of BSOA-1 and BSOA-2 can be explained by gas–particle partitioning in response to ambient temperature and the relative importance of different oxidation mechanisms between day and night. While BSOA-1 arises from gas-phase ozonolysis and nitrate radical chemistry at night, BSOA-2 is likely less volatile than BSOA-1 and consists of products formed via gas-phase oxidation by OH radical and ozone during the day. Organic nitrates produced through nitrate radical chemistry can account for 22–33 % of BSOA-1 mass at night. The mass spectra of BSOA-1 and BSOA-2 have higher values of the mass fraction of m/z 91 (f91 compared to the background organic aerosol. Using f91 to evaluate BSOA formation pathways in this unpolluted, forested region, heterogeneous oxidation of BSOA-1 is a minor production pathway of BSOA-2.

  9. Influence of microhabitats on the performance of herbaceous species in areas of mature and secondary forest in the semiarid region of Brazil

    Directory of Open Access Journals (Sweden)

    Juliana Ramos de Andrade

    2015-06-01

    Full Text Available The conditions for plant establishment in mature forest are different from those found in disturbed areas. In dry environments, the herbaceous cover is the most important in the recolonization of deforested areas. It can, therefore, act as an ideal biological group for assessing how changes in habitat heterogeneity affect the resilience of dry forests. The aim of this research was to evaluate whether natural regeneration of the herbaceous stratum differed between areas of mature and secondary forest of Caatinga and to describe this process. The study took place in the Brazilian semiarid region during the rainy season 2011 (January to August, where fifty 1m² plots were set up, 25 allocated to the microhabitat established as “between canopies” and 25 to the microhabitat “under the canopy”. The herbaceous species selected for the study were Delilia biflora (Asteraceae, Gomphrena vaga (Amaranthaceae and Pseudabutilon spicatum (Malvaceae, abundant species occurring in both areas. All individuals from the selected populations were counted, marked with sequential numbers, and the height of the stem was measured. Differences between areas, and in size and survival between microhabitats, were found only for the first two species. Fruit production was higher in the mature forest for the three species. The study concluded that: 1. The effect of the microhabitats “between canopies” and “under the canopy” in mature and secondary forest areas depends on the species considered; 2. Populations sensitive to light intensity differ in number of individuals, height and fruit production; and 3. The resilience of anthropogenic areas in semiarid environments can be characterized by the presence of spatial heterogeneity with regard to the emergence and survival of herbaceous seedlings, suggesting that the regeneration of disturbed areas may occur in patches. Rev. Biol. Trop. 63 (2: 357-368. Epub 2015 June 01.

  10. Functional trait strategies of trees in dry and wet tropical forests are similar but differ in their consequences for succession.

    Science.gov (United States)

    Lohbeck, Madelon; Lebrija-Trejos, Edwin; Martínez-Ramos, Miguel; Meave, Jorge A; Poorter, Lourens; Bongers, Frans

    2014-01-01

    Global plant trait studies have revealed fundamental trade-offs in plant resource economics. We evaluated such trait trade-offs during secondary succession in two species-rich tropical ecosystems that contrast in precipitation: dry deciduous and wet evergreen forests of Mexico. Species turnover with succession in dry forest largely relates to increasing water availability and in wet forest to decreasing light availability. We hypothesized that while functional trait trade-offs are similar in the two forest systems, the successful plant strategies in these communities will be different, as contrasting filters affect species turnover. Research was carried out in 15 dry secondary forest sites (5-63 years after abandonment) and in 17 wet secondary forest sites (dry and wet forest and compare trait trade-offs. We evaluated whether multivariate plant strategies changed during succession, by calculating a 'Community-Weighted Mean' plant strategy, based on species scores on the first two PCA-axes. Trait spectra reflected two main trade-off axes that were similar for dry and wet forest species: acquisitive versus conservative species, and drought avoiding species versus evergreen species with large animal-dispersed seeds. These trait associations were consistent when accounting for evolutionary history. Successional changes in the most successful plant strategies reflected different functional trait spectra depending on the forest type. In dry forest the community changed from having drought avoiding strategies early in succession to increased abundance of evergreen strategies with larger seeds late in succession. In wet forest the community changed from species having mainly acquisitive strategies to those with more conservative strategies during succession. These strategy changes were explained by increasing water availability during dry forest succession and increasing light scarcity during wet forest succession. Although similar trait spectra were observed among dry and

  11. Persistent Soil Seed Banks for Natural Rehabilitation of Dry Tropical Forests in Northern Ethiopia

    OpenAIRE

    Gebrehiwot, K.; Heyn, M.; Reubens, B.; Hermy, M.; Muys, B.

    2007-01-01

    Dry tropical forests are threatened world-wide by conversion to grazing land, secondary forest, savannah or arable land. In Ethiopia, natural dry forest cover has been decreasing at an alarming rate over the last decennia and has reached a critical level. Efforts like the rehabilitation of dry forests to curb this ecological degradation, need a stronger scientific basis than currently available. The aim of the present research was to test the hypothesis whether soil seed banks can contribute ...

  12. Mapping Russian forest biomass with data from satellites and forest inventories

    International Nuclear Information System (INIS)

    Houghton, R A; Butman, D; Bunn, A G; Krankina, O N; Schlesinger, P; Stone, T A

    2007-01-01

    The forests of Russia cover a larger area and hold more carbon than the forests of any other nation and thus have the potential for a major role in global warming. Despite a systematic inventory of these forests, however, estimates of total carbon stocks vary, and spatial variations in the stocks within large aggregated units of land are unknown, thus hampering measurement of sources and sinks of carbon. We mapped the distribution of living forest biomass for the year 2000 by developing a relationship between ground measurements of wood volume at 12 sites throughout the Russian Federation and data from the MODIS satellite bidirectional reflectance distribution function (BRDF) product (MOD43B4). Based on the results of regression-tree analyses, we used the MOD43B4 product to assign biomass values to individual 500 m x 500 m cells in areas identified as forest by two satellite-based maps of land cover. According to the analysis, the total living biomass varied between 46 and 67 Pg, largely because of different estimates of forest area. Although optical data are limited in distinguishing differences in biomass in closed canopy forests, the estimates of total living biomass obtained here varied more in response to different definitions of forest than to saturation of the optical sensing of biomass

  13. Mapping Russian forest biomass with data from satellites and forest inventories

    Energy Technology Data Exchange (ETDEWEB)

    Houghton, R A [Woods Hole Research Center, 149 Woods Hole Road, Falmouth, MA 02540 (United States); Butman, D [Yale School of Forestry and Environmental Science, Yale University, New Haven, CT 06511 (United States); Bunn, A G [Department of Environmental Sciences, Huxley College of the Environment, Western Washington University, 516 High Street, Bellingham, WA 98225-9181 (United States); Krankina, O N [Department of Forest Science, Oregon State University, 202 Richardson Hall, Corvallis, OR 97331-5752 (United States); Schlesinger, P [Woods Hole Research Center, 149 Woods Hole Road, Falmouth, MA 02540 (United States); Stone, T A [Woods Hole Research Center, 149 Woods Hole Road, Falmouth, MA 02540 (United States)

    2007-10-15

    The forests of Russia cover a larger area and hold more carbon than the forests of any other nation and thus have the potential for a major role in global warming. Despite a systematic inventory of these forests, however, estimates of total carbon stocks vary, and spatial variations in the stocks within large aggregated units of land are unknown, thus hampering measurement of sources and sinks of carbon. We mapped the distribution of living forest biomass for the year 2000 by developing a relationship between ground measurements of wood volume at 12 sites throughout the Russian Federation and data from the MODIS satellite bidirectional reflectance distribution function (BRDF) product (MOD43B4). Based on the results of regression-tree analyses, we used the MOD43B4 product to assign biomass values to individual 500 m x 500 m cells in areas identified as forest by two satellite-based maps of land cover. According to the analysis, the total living biomass varied between 46 and 67 Pg, largely because of different estimates of forest area. Although optical data are limited in distinguishing differences in biomass in closed canopy forests, the estimates of total living biomass obtained here varied more in response to different definitions of forest than to saturation of the optical sensing of biomass.

  14. Travel adaptations of Bornean Agile Gibbons Hylobates albibarbis (Primates: Hylobatidaein a degraded secondary forest, Indonesia

    Directory of Open Access Journals (Sweden)

    S.M. Cheyne

    2013-03-01

    Full Text Available Data are presented on the locomotion of Bornean Agile Gibbons (Hylobatesalbibarbis in a disturbed peat-swamp forest. Our results indicate that gibbons favour continuous-canopy forest, higher canopy heights and trees with a larger diameter at breast height. Gibbons select these trees despite the study site being dominated by broken-canopy forest and small trees. Gibbons also change frequently between brachiation, climbing, clambering and bipedal walking in this disturbed forest depending on the size of gap to be crossed. Gibbons are shown to be capable of adapting to some human-induced disturbances in forest continuity and canopy height, and to the presence of smaller trees, e.g., after selective logging. Despite this, gibbons are still limited to crossing gaps of =12m in a single movement, and more research is needed to quantify levels of disturbance gibbons can tolerate.

  15. North Dakota's forests 2005

    Science.gov (United States)

    David E. Haugen; Michael Kangas; Susan J. Crocker; Charles H. Perry; Christopher W. Woodall; Brett J. Butler; Barry T. Wilson; Dan J. Kaisershot

    2009-01-01

    The first completed annual inventory of North Dakota's forests reports estimates of more than 724,000 acres of forest land. Information about forest attributes and forest health is presented along with information on agents of change including changing land use patterns and the introduction of nonnative plants, insects, and disease.

  16. Vulnerability of the boreal forest to climate change: are managed forests more susceptible?

    International Nuclear Information System (INIS)

    Leduc, A.; Gauthier, S.

    2004-01-01

    This paper postulates that forests dominated by younger seral stages are less vulnerable to climate change that those composed of mature and overmature stands. To support this analysis, an overview of expected changes in climate conditions was provided. Expected changes include higher maximum temperatures, higher minimum temperatures and a decrease in periods of intense cold and fewer frost days; reduction in the diurnal temperature range; an increase in the apparent heat index; greater numbers of intense precipitation; and, increased risk of drought associated with air mass movements. A comparison between conditions in a managed forest mosaic and natural forests was made, with managed forests differing due to efforts to regulate the age structure. The inversion in the age structure of forest mosaics creates significant changes in structural characteristics and composition, including greater hardwood components and more even-aged stands. It was concluded that in Canada, managed boreal forests are younger and have less black spruce and more hardwoods and fir, making younger forests less vulnerable to fire and more amenable to fire control due to increased accessibility. It was also noted that because of their relative youth, managed forests are more vulnerable to regeneration failure and that managed forests with more balsam fir and trembling aspen are at greater risk for insect outbreaks. In addition, wind throw, a threat to older forests, is not significant in managed forests. 15 refs., 1 tab., 2 figs

  17. Forest meteorology research within the Oak Ridge site, eastern deciduous forest biome, USIBP

    International Nuclear Information System (INIS)

    Hutchison, B.A.; Matt, D.R.

    1977-01-01

    The data presented here indicate that the diurnal trends in forest microclimate are dominated by the diurnal trend in incident solar radiation amounts and the diurnal changes in solar elevations. Absolute values of these microclimatic variables, on the other hand, reflect strongly, the synoptic climatic conditions present and, to a lesser degree, the interactions among synoptic climatic parameters, forest structure, forest physiology, and soil moisture conditions. The seasonal changes in forest microclimate are the result of changes in incident radiation amounts, earth-sun geometry, and phenological change in forest structure along with seasonal changes in synoptic climatic parameters. The temporal and spatial variations of solar radiation within and above a deciduous forest composed predominately of tulip poplar (biriodendron tulipifera) were documented and on attempt was made to relate the variations to forest structure

  18. Uncertainty in future water supplies from forests: hydrologic effects of a changing forest landscape

    Science.gov (United States)

    Jones, J. A.; Achterman, G. L.; Alexander, L. E.; Brooks, K. N.; Creed, I. F.; Ffolliott, P. F.; MacDonald, L.; Wemple, B. C.

    2008-12-01

    Forests account for 33 percent of the U.S. land area, process nearly two-thirds of the fresh water supply, and provide water to 40 percent of all municipalities or about 180 million people. Water supply management is becoming more difficult given the increasing demand for water, climate change, increasing development, changing forest ownership, and increasingly fragmented laws governing forest and watershed management. In 2006, the US National Research Council convened a study on the present understanding of forest hydrology, the hydrologic effects of a changing forest landscape, and research and management needs for sustaining water resources from forested landscapes. The committee concluded that while it is possible to generate short-term water yield increases by timber harvesting, there are a variety of reasons why active forest management has only limited potential to sustainably increase water supplies. These include the short-term nature of the increases in most environments, the timing of the increases, the need for downstream storage, and that continuing ground- based timber harvest can reduce water quality. At the same time, past and continuing changes in forest structure and management may be altering water supplies at the larger time and space scales that are of most interest to forest and water managers. These changes include the legacy of past forest management practices, particularly fire suppression and clearcutting; exurban sprawl, which permanently converts forest land to nonforest uses; effects of climate change on wildfires, insect outbreaks, forest structure, forest species composition, snowpack depth and snowmelt; road networks; and changes in forest land ownership. All of these changes have the potential to alter water quantity and quality from forests. Hence, the baseline conditions that have been used to estimate sustained water yields from forested watersheds may no longer be applicable. Stationarity also can no longer be assumed for the

  19. 78 FR 18307 - Forest Service

    Science.gov (United States)

    2013-03-26

    ... DEPARTMENT OF AGRICULTURE Forest Service Forest Resource Coordinating Committee AGENCY: Forest Service, USDA. ACTION: Notice of meeting; Correction. SUMMARY: The Forest Service published a document in the Federal Register of January 31, 2013, concering a notice of meeting for the Forest Resource...

  20. Composition and Elevation of Spruce Forests Affect Susceptibility to Bark Beetle Attacks: Implications for Forest Management

    Directory of Open Access Journals (Sweden)

    Massimo Faccoli

    2014-01-01

    Full Text Available The spruce bark beetle, Ips typographus (L. (Coleoptera: Curculionidae, Scolytinae, is one of the most destructive insects infesting spruce forests in Europe. Data concerning infestations of I. typographus occurring over the last 19 years (1994–2012 on the Southern Alps were analyzed in seven spruce forest types: (1 pure spruce plantations; (2 pure spruce reforestations; (3 pure spruce mountain forests; (4 pure spruce alpine forests; (5 spruce-conifer mixed forests; (6 spruce-broadleaf mixed forests; and (7 spruce-conifer-broadleaf mixed forests. The collected data included the amount of I. typographus damage and the location and composition of the infested forests. The results indicate that different forest types are differently susceptible to I. typographus. Plantations, reforestations and mountain spruce forests show mean damage and mean number of infestations higher than other forest types. Within pure spruce forests, alpine forests growing at high elevations (>1300 m suffer low damage. Furthermore, the mean number of infestation spots recorded annually in the different spruce forest types is negatively correlated with a Naturality Index value. The results suggest that forest composition and elevation are the main factors driving the risk of I. typographus damage. A new management strategy for some spruce forest types is needed, with a progressive reduction of pure spruce forests at low altitude and an increase of broadleaf composition.

  1. Public acceptability of forest management practices at Morgan-Monroe State Forest

    Science.gov (United States)

    Shannon C. Rogers; William L. Hoover; Shorna B. Allred

    2013-01-01

    Forest management practices on public forests are controversial with many organizational and individual stakeholders. Forest managers' understanding of the attitudes of stakeholders is necessary to honor statutory requirements and the social contract under which they operate. The human dimension component of the Hardwood Ecosystem Experiment (HEE) in Indiana...

  2. A large-scale field assessment of carbon stocks in human-modified tropical forests.

    Science.gov (United States)

    Berenguer, Erika; Ferreira, Joice; Gardner, Toby Alan; Aragão, Luiz Eduardo Oliveira Cruz; De Camargo, Plínio Barbosa; Cerri, Carlos Eduardo; Durigan, Mariana; Cosme De Oliveira Junior, Raimundo; Vieira, Ima Célia Guimarães; Barlow, Jos

    2014-12-01

    Tropical rainforests store enormous amounts of carbon, the protection of which represents a vital component of efforts to mitigate global climate change. Currently, tropical forest conservation, science, policies, and climate mitigation actions focus predominantly on reducing carbon emissions from deforestation alone. However, every year vast areas of the humid tropics are disturbed by selective logging, understory fires, and habitat fragmentation. There is an urgent need to understand the effect of such disturbances on carbon stocks, and how stocks in disturbed forests compare to those found in undisturbed primary forests as well as in regenerating secondary forests. Here, we present the results of the largest field study to date on the impacts of human disturbances on above and belowground carbon stocks in tropical forests. Live vegetation, the largest carbon pool, was extremely sensitive to disturbance: forests that experienced both selective logging and understory fires stored, on average, 40% less aboveground carbon than undisturbed forests and were structurally similar to secondary forests. Edge effects also played an important role in explaining variability in aboveground carbon stocks of disturbed forests. Results indicate a potential rapid recovery of the dead wood and litter carbon pools, while soil stocks (0-30 cm) appeared to be resistant to the effects of logging and fire. Carbon loss and subsequent emissions due to human disturbances remain largely unaccounted for in greenhouse gas inventories, but by comparing our estimates of depleted carbon stocks in disturbed forests with Brazilian government assessments of the total forest area annually disturbed in the Amazon, we show that these emissions could represent up to 40% of the carbon loss from deforestation in the region. We conclude that conservation programs aiming to ensure the long-term permanence of forest carbon stocks, such as REDD+, will remain limited in their success unless they effectively

  3. Forest Restoration Carbon Analysis of Baseline Carbon Emissions and Removal in Tropical Rainforest at La Selva Central, Peru

    Energy Technology Data Exchange (ETDEWEB)

    Patrick Gonzalez; Benjamin Kroll; Carlos R. Vargas

    2006-01-10

    Conversion of tropical forest to agricultural land and pasture has reduced forest extent and the provision of ecosystem services, including watershed protection, biodiversity conservation, and carbon sequestration. Forest conservation and reforestation can restore those ecosystem services. We have assessed forest species patterns, quantified deforestation and reforestation rates, and projected future baseline carbon emissions and removal in Amazon tropical rainforest at La Selva Central, Peru. The research area is a 4800 km{sup 2} buffer zone around the Parque Nacional Yanachaga-Chemillen, Bosque de Proteccion San Matias-San Carlos, and the Reserva Comunal Yanesha. A planned project for the period 2006-2035 would conserve 4000 ha of forest in a proposed 7000 ha Area de Conservacion Municipale de Chontabamba and establish 5600 ha of natural regeneration and 1400 ha of native species plantations, laid out in fajas de enriquecimiento (contour plantings), to reforest 7000 ha of agricultural land. Forest inventories of seven sites covering 22.6 ha in primary forest and 17 sites covering 16.5 ha in secondary forest measured 17,073 trees of diameter {ge} 10 cm. The 24 sites host trees of 512 species, 267 genera, and 69 families. We could not identify the family of 7% of the trees or the scientific species of 21% of the trees. Species richness is 346 in primary forest and 257 in the secondary forest. In primary forest, 90% of aboveground biomass resides in old-growth species. Conversely, in secondary forest, 66% of aboveground biomass rests in successional species. The density of trees of diameter {ge} 10 cm is 366 trees ha{sup -1} in primary forest and 533 trees ha{sup -1} in secondary forest, although the average diameter is 24 {+-} 15 cm in primary forest and 17 {+-} 8 cm in secondary forest. Using Amazon forest biomass equations and wood densities for 117 species, aboveground biomass is 240 {+-} 30 t ha{sup -1} in the primary sites and 90 {+-} 10 t ha{sup -1} in the

  4. Reassuring livelihood functions of the forests to their dependents: Adoption of collaborative forest management system over Joint forest management regime in India

    Directory of Open Access Journals (Sweden)

    Narendra Kumar Bhatia

    2013-12-01

    Full Text Available With regard to forest management, rural livelihood, and poverty in India, it is often debated that JFM regime is not delivering livelihood functions of the forests to their dependents. This paper examines the state and scale of two decades old people-centric JFM system of India, and analyses the reasons with their indicators to shade off its shine in reducing povertyamong forest dependent people in several parts of the country. Paper also iscuss, how and to what extent, adoption of a multi-agency linked Collaborative Forest Management (CFM system could be a better strategy over JFM regime to reassure delivery of livelihood functions of the forests to their dependents in rural India. Arguments in this communication are intended to provide forest managers and policy-makers with necessary input to consider some location specific forest based entrepreneurial activities in CFM mode to provide a continuous source of small income to forest dependent people to ensure long lasting success of their forest management endeavours. Paper concludes with a recommendation to convert unviable JFM areas of India into a multiagency linked CFM system in a phased manner.

  5. WET AND DRY SEASON ECOSYSTEM LEVEL FLUXES OF ISOPRENE AND MONOTERPENES FROM A SOUTHEAST ASIAN SECONDARY FOREST AND RUBBER TREE PLANTATION

    Science.gov (United States)

    Canopy scale fluxes of isoprene and monoterpenes were investigated in both wet and dry seasons above a rubber tree (Hevea brasiliensis)/secondary tropical forest in the Yunnan province of southwestern China. Drought conditions were unusually high during the dry season experiment....

  6. Uncertain Emission Reductions from Forest Conservation: REDD in the Bale Mountains, Ethiopia

    Directory of Open Access Journals (Sweden)

    Charlene Watson

    2013-09-01

    Full Text Available The environmental integrity of a mechanism rewarding Reduced Emissions from Deforestation and Degradation (REDD depends on appropriate accounting for emission reductions. Largely stemming from a lack of forest data in developing countries, emission reductions accounting contains substantial uncertainty as a result of forest carbon stock estimates, where the application of biome-averaged data over large forest areas is commonplace. Using a case study in the Bale Mountains in Ethiopia, we exemplify the implications of primary and secondary forest carbon stock estimates on predicted REDD project emission reductions and revenues. Primary data estimate area-weighted mean forest carbon stock of 195 tC/ha ± 81, and biome-averaged data reported by the Intergovernmental Panel on Climate Change underestimate forest carbon stock in the Bale Mountains by as much as 63% in moist forest and 58% in dry forest. Combining forest carbon stock estimates and uncertainty in voluntary carbon market prices demonstrates the financial impact of uncertainty: potential revenues over the 20-year project ranged between US$9 million and US$185 million. Estimated revenues will influence decisions to implement a project or not and may have profound implications for the level of benefit sharing that can be supported. Strong financial incentives exist to improve forest carbon stock estimates in tropical forests, as well as the environmental integrity of REDD projects.

  7. Forest - added Turbulence: A parametric study on Turbulence intensity in and around forests

    International Nuclear Information System (INIS)

    Pedersen, Henrik Sundgaard; Langreder, Wiebke

    2007-01-01

    The scope of the investigation is to take on-site measured wind data from a number of sites inside and close to forests. From the collected on-site data the ambient turbulence intensity is calculated and analysed depending on the distance to the forest and height above the forest. From this forest turbulence intensity database it is possible to get an overview of the general behaviour of the turbulence above and down stream from the forest. The database currently consists of 65 measurements points from around the globe, and it will be continually updated as relevant sites are made available. Using the database a number of questions can be answered. How does the ambient turbulence intensity decay with height? What does the turbulence profile look like according to wind speed? Is it the general situation that high wind speeds are creating movement in the canopy tops, resulting in higher turbulence? How does the ambient turbulence intensity decay at different height as a function of distance to the forest? From the forest turbulence database it can be seen that in general, the majority of the turbulence intensity created by the forest is visible within a radius of 5 times the forest height in vertical and 500 meters downstream from the forest edge in horizontal direction. Outside these boundaries the ambient turbulence intensity is rapidly approaching normal values

  8. Forest dynamics in a forest-tundra ecotone, Medicine Bow Mountains, Wyoming

    Science.gov (United States)

    Christopher J. Earle

    1993-01-01

    The alpine timberline in much of western North America is characterized by a structurally complex transition from subalpine forest to alpine tundra, the forest-tundra ecotone. Trees within the ecotone are typically arrayed across the landscape within clumps or "ribbon forests," elongated strips oriented perpendicular to the prevailing winds. This study...

  9. 77 FR 18997 - Rim Lakes Forest Restoration Project; Apache-Sitgreavese National Forest, Black Mesa Ranger...

    Science.gov (United States)

    2012-03-29

    ... DEPARTMENT OF AGRICULTURE Forest Service Rim Lakes Forest Restoration Project; Apache-Sitgreavese National Forest, Black Mesa Ranger District, Coconino County, AZ AGENCY: Forest Service, USDA. ACTION: Notice of intent to prepare an environmental impact statement. SUMMARY: The U.S. Forest Service (FS) will...

  10. Managing Sierra Nevada forests

    Science.gov (United States)

    Malcolm North

    2012-01-01

    There has been widespread interest in applying new forest practices based on concepts presented in U.S. Forest Service General Technical Report PSW-GTR-220, "An Ecosystem Management Strategy for Sierran Mixed-Conifer Forests." This collection of papers (PSW-GTR-237) summarizes the state of the science in some topics relevant to this forest management approach...

  11. Forest Policy: Theory and Application

    Directory of Open Access Journals (Sweden)

    Antonova N. E.

    2010-06-01

    Full Text Available Based on summarizing the experiences of countries with the developed forest sector (Finland, Sweden, Japan, Germany, Canada, USA, and Russia the forest policy concept, objectives, and tools are viewed. Types of forest users- recipients of the forest policy are singled out in order to form a rational structure of the forest industry on the basis of the society’s priorities in forest management by means of institutional measures

  12. Forest Roadidentification and Extractionof Through Advanced Log Matching Techniques

    Science.gov (United States)

    Zhang, W.; Hu, B.; Quist, L.

    2017-10-01

    A novel algorithm for forest road identification and extraction was developed. The algorithm utilized Laplacian of Gaussian (LoG) filter and slope calculation on high resolution multispectral imagery and LiDAR data respectively to extract both primary road and secondary road segments in the forest area. The proposed method used road shape feature to extract the road segments, which have been further processed as objects with orientation preserved. The road network was generated after post processing with tensor voting. The proposed method was tested on Hearst forest, located in central Ontario, Canada. Based on visual examination against manually digitized roads, the majority of roads from the test area have been identified and extracted from the process.

  13. FOREST ROADIDENTIFICATION AND EXTRACTIONOF THROUGH ADVANCED LOG MATCHING TECHNIQUES

    Directory of Open Access Journals (Sweden)

    W. Zhang

    2017-10-01

    Full Text Available A novel algorithm for forest road identification and extraction was developed. The algorithm utilized Laplacian of Gaussian (LoG filter and slope calculation on high resolution multispectral imagery and LiDAR data respectively to extract both primary road and secondary road segments in the forest area. The proposed method used road shape feature to extract the road segments, which have been further processed as objects with orientation preserved. The road network was generated after post processing with tensor voting. The proposed method was tested on Hearst forest, located in central Ontario, Canada. Based on visual examination against manually digitized roads, the majority of roads from the test area have been identified and extracted from the process.

  14. Species composition and forest structure explain the temperature sensitivity patterns of productivity in temperate forests

    Directory of Open Access Journals (Sweden)

    F. J. Bohn

    2018-03-01

    Full Text Available Rising temperatures due to climate change influence the wood production of forests. Observations show that some temperate forests increase their productivity, whereas others reduce their productivity. This study focuses on how species composition and forest structure properties influence the temperature sensitivity of aboveground wood production (AWP. It further investigates which forests will increase their productivity the most with rising temperatures. We described forest structure by leaf area index, forest height and tree height heterogeneity. Species composition was described by a functional diversity index (Rao's Q and a species distribution index (ΩAWP. ΩAWP quantified how well species are distributed over the different forest layers with regard to AWP. We analysed 370 170 forest stands generated with a forest gap model. These forest stands covered a wide range of possible forest types. For each stand, we estimated annual aboveground wood production and performed a climate sensitivity analysis based on 320 different climate time series (of 1-year length. The scenarios differed in mean annual temperature and annual temperature amplitude. Temperature sensitivity of wood production was quantified as the relative change in productivity resulting from a 1 °C rise in mean annual temperature or annual temperature amplitude. Increasing ΩAWP positively influenced both temperature sensitivity indices of forest, whereas forest height showed a bell-shaped relationship with both indices. Further, we found forests in each successional stage that are positively affected by temperature rise. For such forests, large ΩAWP values were important. In the case of young forests, low functional diversity and small tree height heterogeneity were associated with a positive effect of temperature on wood production. During later successional stages, higher species diversity and larger tree height heterogeneity were an advantage. To achieve such a

  15. Species composition and forest structure explain the temperature sensitivity patterns of productivity in temperate forests

    Science.gov (United States)

    Bohn, Friedrich J.; May, Felix; Huth, Andreas

    2018-03-01

    Rising temperatures due to climate change influence the wood production of forests. Observations show that some temperate forests increase their productivity, whereas others reduce their productivity. This study focuses on how species composition and forest structure properties influence the temperature sensitivity of aboveground wood production (AWP). It further investigates which forests will increase their productivity the most with rising temperatures. We described forest structure by leaf area index, forest height and tree height heterogeneity. Species composition was described by a functional diversity index (Rao's Q) and a species distribution index (ΩAWP). ΩAWP quantified how well species are distributed over the different forest layers with regard to AWP. We analysed 370 170 forest stands generated with a forest gap model. These forest stands covered a wide range of possible forest types. For each stand, we estimated annual aboveground wood production and performed a climate sensitivity analysis based on 320 different climate time series (of 1-year length). The scenarios differed in mean annual temperature and annual temperature amplitude. Temperature sensitivity of wood production was quantified as the relative change in productivity resulting from a 1 °C rise in mean annual temperature or annual temperature amplitude. Increasing ΩAWP positively influenced both temperature sensitivity indices of forest, whereas forest height showed a bell-shaped relationship with both indices. Further, we found forests in each successional stage that are positively affected by temperature rise. For such forests, large ΩAWP values were important. In the case of young forests, low functional diversity and small tree height heterogeneity were associated with a positive effect of temperature on wood production. During later successional stages, higher species diversity and larger tree height heterogeneity were an advantage. To achieve such a development, one could plant

  16. CTFS-ForestGEO: A worldwide network monitoring forests in an era of global change

    NARCIS (Netherlands)

    Anderson-Teixeira, K.J.; Davies, S.J.; Bennett, A.C.; Gonzalez-Akre, E.B.; Muller-Landau, H.C.; Wright, S.J.; Abu Salim, K.; Almeyda Zambrano, A.M.; Jansen, P.A.; Ouden, den J.

    2015-01-01

    Global change is impacting forests worldwide, threatening biodiversity and ecosystem services including climate regulation. Understanding how forests respond is critical to forest conservation and climate protection. This review describes an international network of 59 long-term forest dynamics

  17. Forest-fire models

    Science.gov (United States)

    Haiganoush Preisler; Alan Ager

    2013-01-01

    For applied mathematicians forest fire models refer mainly to a non-linear dynamic system often used to simulate spread of fire. For forest managers forest fire models may pertain to any of the three phases of fire management: prefire planning (fire risk models), fire suppression (fire behavior models), and postfire evaluation (fire effects and economic models). In...

  18. Reviewing efforts in global forest conservation for sustainable forest ...

    African Journals Online (AJOL)

    Reviewing efforts in global forest conservation for sustainable forest management: The World Wide Fund (WWF) case study. ... Global Journal of Pure and Applied Sciences. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current ...

  19. Negative emissions from stopping deforestation and forest degradation, globally.

    Science.gov (United States)

    Houghton, Richard A; Nassikas, Alexander A

    2018-01-01

    Forest growth provides negative emissions of carbon that could help keep the earth's surface temperature from exceeding 2°C, but the global potential is uncertain. Here we use land-use information from the FAO and a bookkeeping model to calculate the potential negative emissions that would result from allowing secondary forests to recover. We find the current gross carbon sink in forests recovering from harvests and abandoned agriculture to be -4.4 PgC/year, globally. The sink represents the potential for negative emissions if positive emissions from deforestation and wood harvest were eliminated. However, the sink is largely offset by emissions from wood products built up over the last century. Accounting for these committed emissions, we estimate that stopping deforestation and allowing secondary forests to grow would yield cumulative negative emissions between 2016 and 2100 of about 120 PgC, globally. Extending the lifetimes of wood products could potentially remove another 10 PgC from the atmosphere, for a total of approximately 130 PgC, or about 13 years of fossil fuel use at today's rate. As an upper limit, the estimate is conservative. It is based largely on past and current practices. But if greater negative emissions are to be realized, they will require an expansion of forest area, greater efficiencies in converting harvested wood to long-lasting products and sources of energy, and novel approaches for sequestering carbon in soils. That is, they will require current management practices to change. © 2017 John Wiley & Sons Ltd.

  20. Data base for early postfire succession in Northern Rocky Mountain forests

    Science.gov (United States)

    Peter F. Stickney; Robert B. Campbell

    2000-01-01

    Web site and CD-ROM include 21 pages of text plus electronic data for 55 succession sites including color plates, tables, and figures. Provides data on quantitative postfire changes of plant species and forest vegetation components for up to the first 25 years of secondary plant succession for 55 forest sites in northern Idaho and northwestern Montana. Cover (aerial...

  1. Design of forest rent accounting

    Directory of Open Access Journals (Sweden)

    T.S. Osadcha

    2016-12-01

    Full Text Available The urgent task for the effective functioning of the national economy is the need to reflect income from the use of forest resources in accounting, which will allow management personnel to prove the effectiveness of environmental protection measures, to assess the amount of expenses taken during restoration and protection of forest resources. The study aims at identifying characteristics of forest rent to determine the amount and its reflection in the accounting for its management. The author understands a forest rent as the income received from the owner of forest resources. The above procedure for determining the amount of forest rent can be used to display it in the accounting. A forest rent is a type of business income, so for its reflection in the accounting it is proposed to open the analytical accounts to account 79 named «Financial results». To determine the amount of forest rent and its reflection in the accounting the author suggests the calculation form of a forest rent. In order to manage the size of a forest rent and expenses incurred to obtain it the author proposes to use the information from the developed report about the forest rent formation. The displaying forest rents in accounting will provide accurate and deep information to the management about the revenue and assets of a company. The rational use of forest resources and accounting reflection of a forest rent will strengthen control over the influence of human activity on natural resources and keep the conception of sustainable development.

  2. Where do forests influence rainfall?

    Science.gov (United States)

    Wang-Erlandsson, Lan; van der Ent, Ruud; Fetzer, Ingo; Keys, Patrick; Savenije, Hubert; Gordon, Line

    2017-04-01

    Forests play a major role in hydrology. Not only by immediate control of soil moisture and streamflow, but also by regulating climate through evaporation (i.e., transpiration, interception, and soil evaporation). The process of evaporation travelling through the atmosphere and returning as precipitation on land is known as moisture recycling. Whether evaporation is recycled depends on wind direction and geography. Moisture recycling and forest change studies have primarily focused on either one region (e.g. the Amazon), or one biome type (e.g. tropical humid forests). We will advance this via a systematic global inter-comparison of forest change impacts on precipitation depending on both biome type and geographic location. The rainfall effects are studied for three contemporary forest changes: afforestation, deforestation, and replacement of mature forest by forest plantations. Furthermore, as there are indications in the literature that moisture recycling in some places intensifies during dry years, we will also compare the rainfall impacts of forest change between wet and dry years. We model forest change effects on evaporation using the global hydrological model STEAM and trace precipitation changes using the atmospheric moisture tracking scheme WAM-2layers. This research elucidates the role of geographical location of forest change driven modifications on rainfall as a function of the type of forest change and climatic conditions. These knowledge gains are important at a time of both rapid forest and climate change. Our conclusions nuance our understanding of how forests regulate climate and pinpoint hotspot regions for forest-rainfall coupling.

  3. 75 FR 16719 - Information Collection; Forest Landscape Value and Special Place Mapping for National Forest...

    Science.gov (United States)

    2010-04-02

    ... Collection; Forest Landscape Value and Special Place Mapping for National Forest Planning AGENCY: Forest... on the new information collection, Forest Landscape Value and Special Place Mapping for National Forest Planning. DATES: Comments must be received in writing on or before June 1, 2010 to be assured of...

  4. FLORULA URBAN FRAGMENT OF TROPICAL DRY FOREST

    Directory of Open Access Journals (Sweden)

    Willington Barranco-Pérez

    2016-01-01

    Full Text Available The aim of this study was to record the composition of plant species in an urban fragment of tropical dry forest of secondary regeneration (bs-T to generate information that can be used in the planning and management of green spaces in the city of Santa Marta. Transects of 2 x 50 m were established equivalent to 0.1 ha and all species were counted >1.0 cm DBH (Diameter at Breast Height: 1.3m. 100 species of angiosperms were recorded of which 47% have herbaceous habit. The number of species recorded in this study represents 39.6% of the species reported for the hills of Santa Marta and 3.8% for the dry forests of Colombia. It is suggested to isolate this type of secondary formations of any intervention and contemplate the reintroduction of individuals and conservation strategies.

  5. Forest biomass carbon stocks and variation in Tibet's carbon-dense forests from 2001 to 2050.

    Science.gov (United States)

    Sun, Xiangyang; Wang, Genxu; Huang, Mei; Chang, Ruiying; Ran, Fei

    2016-10-05

    Tibet's forests, in contrast to China's other forests, are characterized by primary forests, high carbon (C) density and less anthropogenic disturbance, and they function as an important carbon pool in China. Using the biomass C density data from 413 forest inventory sites and a spatial forest age map, we developed an allometric equation for the forest biomass C density and forest age to assess the spatial biomass C stocks and variation in Tibet's forests from 2001 to 2050. The results indicated that the forest biomass C stock would increase from 831.1 Tg C in 2001 to 969.4 Tg C in 2050, with a net C gain of 3.6 Tg C yr -1 between 2001 and 2010 and a decrease of 1.9 Tg C yr -1 between 2040 and 2050. Carbon tends to allocate more in the roots of fir forests and less in the roots of spruce and pine forests with increasing stand age. The increase of the biomass carbon pool does not promote significant augmentation of the soil carbon pool. Our findings suggest that Tibet's mature forests will remain a persistent C sink until 2050. However, afforestation or reforestation, especially with the larger carbon sink potential forest types, such as fir and spruce, should be carried out to maintain the high C sink capacity.

  6. Role of the USDA Forest Service experimental forest: an extension point of view

    Science.gov (United States)

    Eric L. Taylor; C. Darwin Foster; Diomy Zamora

    2013-01-01

    The expansive network of experimental forests (EF) facilitated by the U.S. Forest Service (Forest Service) encompasses a fairly complete representation of the forest ecotypes in the nation. The network, 101 years old this year (2009), has provided researchers with a wealth of long-term data on silviculture, watershed protection, and restoration. However, our nation’s...

  7. Size and frequency of natural forest disturbances and the Amazon forest carbon balance

    Science.gov (United States)

    F.D.B. Espirito-Santo; M. Gloor; M. Keller; Y. Malhi; S. Saatchi; B. Nelson; R.C. Oliveira Junior; C. Pereira; J. Lloyd; S. Frolking; M. Palace; Y.E. Shimabukuro; V. Duarte; A. Monteagudo Mendoza; G. Lopez-Gonzalez; T.R. Baker; T.R. Feldpausch; R.J.W. Brienen; G.P. Asner; D.S. Boyd; O.L. Phillips

    2014-01-01

    Forest inventory studies in the Amazon indicate a large terrestrial carbon sink. However, field plots may fail to represent forest mortality processes at landscape-scales of tropical forests. Here we characterize the frequency distribution of disturbance events in natural forests from 0.01 ha to 2,651 ha size throughout Amazonia using a novel...

  8. Forest health from different perspectives

    Science.gov (United States)

    T. E. Kolb; M. R. Wagner; W. W. Covington

    1995-01-01

    Forest health is an increasingly important concept in natural resource management. However, definition of forest health is difficult and dependent on human perspective. From a utilitarian perspective, forest health has been defined by the production of forest conditions which directly satisfy human needs. From an ecosystem-centered perspective, forest health has been...

  9. Woody species diversity in forest plantations in a mountainous region of Beijing, China: effects of sampling scale and species selection.

    Directory of Open Access Journals (Sweden)

    Yuxin Zhang

    Full Text Available The role of forest plantations in biodiversity conservation has gained more attention in recent years. However, most work on evaluating the diversity of forest plantations focuses only on one spatial scale; thus, we examined the effects of sampling scale on diversity in forest plantations. We designed a hierarchical sampling strategy to collect data on woody species diversity in planted pine (Pinus tabuliformis Carr., planted larch (Larix principis-rupprechtii Mayr., and natural secondary deciduous broadleaf forests in a mountainous region of Beijing, China. Additive diversity partition analysis showed that, compared to natural forests, the planted pine forests had a different woody species diversity partitioning pattern at multi-scales (except the Simpson diversity in the regeneration layer, while the larch plantations did not show multi-scale diversity partitioning patterns that were obviously different from those in the natural secondary broadleaf forest. Compare to the natural secondary broadleaf forests, the effects of planted pine forests on woody species diversity are dependent on the sampling scale and layers selected for analysis. Diversity in the planted larch forest, however, was not significantly different from that in the natural forest for all diversity components at all sampling levels. Our work demonstrated that the species selected for afforestation and the sampling scales selected for data analysis alter the conclusions on the levels of diversity supported by plantations. We suggest that a wide range of scales should be considered in the evaluation of the role of forest plantations on biodiversity conservation.

  10. Interpreting Sustainability for Urban Forests

    Directory of Open Access Journals (Sweden)

    Camilo Ordóñez

    2010-06-01

    Full Text Available Incisive interpretations of urban-forest sustainability are important in furthering our understanding of how to sustain the myriad values associated with urban forests. Our analysis of earlier interpretations reveals conceptual gaps. These interpretations are attached to restrictive definitions of a sustainable urban forest and limited to a rather mechanical view of maintaining the biophysical structure of trees. The probing of three conceptual domains (urban forest concepts, sustainable development, and sustainable forest management leads to a broader interpretation of urban-forest sustainability as the process of sustaining urban forest values through time and across space. We propose that values—and not services, benefits, functions or goods—is a superior concept to refer to what is to be sustained in and by an urban forest.

  11. Securing tropical forest carbon

    DEFF Research Database (Denmark)

    Scharlemann, Jörn P. W.; Kapos, Valerie; Campbell, Alison

    2010-01-01

    Forest loss and degradation in the tropics contribute 6-17% of all greenhouse gas emissions. Protected areas cover 217.2 million ha (19.6%) of the world's humid tropical forests and contain c. 70.3 petagrams of carbon (Pg C) in biomass and soil to 1 m depth. Between 2000 and 2005, we estimate...... that 1.75 million ha of forest were lost from protected areas in humid tropical forests, causing the emission of 0.25-0.33 Pg C. Protected areas lost about half as much carbon as the same area of unprotected forest. We estimate that the reduction of these carbon emissions from ongoing deforestation...... in protected sites in humid tropical forests could be valued at USD 6,200-7,400 million depending on the land use after clearance. This is >1.5 times the estimated spending on protected area management in these regions. Improving management of protected areas to retain forest cover better may be an important...

  12. Improving estimates of forest disturbance by combining observations from Landsat time series with U.S. Forest Service Forest Inventory and Analysis data

    Science.gov (United States)

    Todd A. Schroeder; Sean P. Healey; Gretchen G. Moisen; Tracey S. Frescino; Warren B. Cohen; Chengquan Huang; Robert E. Kennedy; Zhiqiang Yang

    2014-01-01

    With earth's surface temperature and human population both on the rise a new emphasis has been placed on monitoring changes to forested ecosystems the world over. In the United States the U.S. Forest Service Forest Inventory and Analysis (FIA) program monitors the forested land base with field data collected over a permanent network of sample plots. Although these...

  13. High-resolution forest carbon stocks and emissions in the Amazon.

    Science.gov (United States)

    Asner, Gregory P; Powell, George V N; Mascaro, Joseph; Knapp, David E; Clark, John K; Jacobson, James; Kennedy-Bowdoin, Ty; Balaji, Aravindh; Paez-Acosta, Guayana; Victoria, Eloy; Secada, Laura; Valqui, Michael; Hughes, R Flint

    2010-09-21

    Efforts to mitigate climate change through the Reduced Emissions from Deforestation and Degradation (REDD) depend on mapping and monitoring of tropical forest carbon stocks and emissions over large geographic areas. With a new integrated use of satellite imaging, airborne light detection and ranging, and field plots, we mapped aboveground carbon stocks and emissions at 0.1-ha resolution over 4.3 million ha of the Peruvian Amazon, an area twice that of all forests in Costa Rica, to reveal the determinants of forest carbon density and to demonstrate the feasibility of mapping carbon emissions for REDD. We discovered previously unknown variation in carbon storage at multiple scales based on geologic substrate and forest type. From 1999 to 2009, emissions from land use totaled 1.1% of the standing carbon throughout the region. Forest degradation, such as from selective logging, increased regional carbon emissions by 47% over deforestation alone, and secondary regrowth provided an 18% offset against total gross emissions. Very high-resolution monitoring reduces uncertainty in carbon emissions for REDD programs while uncovering fundamental environmental controls on forest carbon storage and their interactions with land-use change.

  14. Rehabilitation of radioactive contaminated forests

    International Nuclear Information System (INIS)

    Panfilov, A.V.; Uspenskaya, E.Ju.

    2002-01-01

    As a result of radiation accidents and nuclear-weapon tests at the territory of the former USSR a part of the Forest Fund of 23 subjects of the Russian Federation has been contaminated by radionuclides. The contaminated forests, which are included in a structure of more than 130 forest management units (leskhozes) and more then 330 local forest management units, as a rule, are located in highly inhabited regions with traditionally intensive forestry management and high level of forest resources use. To provide radiologically safe forest management in the contaminated areas, the Federal Forest Service has developed and validated a special system of countermeasures. Use of this system makes it possible to diminish significantly the dose to personnel, to exclude the use of forest products with contamination exceeding radiological standards and to provide protection of the forest as a biogeochemical barrier to radionuclide migration from contaminated areas to human habitat. (author)

  15. [Comparison of heavy metal elements between natural and plantation forests in a subtropical Montane forest].

    Science.gov (United States)

    Nie, Ming; Wan, Jia-Rong; Chen, Xiao-Feng; Wang, Li; Li, Bo; Chen, Jia-Kuan

    2011-11-01

    Heavy metals as one of major pollutants is harmful to the health of forest ecosystems. In the present paper, the concentrations of thirteen heavy metals (Fe, Al, Ti, Cr, Cu, Mn, V, Zn, Ni, Co, Pb, Se and Cd) were compared between natural and plantation forests in the Mt. Lushan by ICP-AES and atomic absorption spectroscopy. The results suggest that the soil of natural forest had higher concentrations of Fe, Al, Ti, Cu, Mn, V, Zn, Ni, Co, Pb, Se, and Cd than the plantation forest except for Cr. The soil of natural forest had a higher level of heavy metals than that of the plantation forest as a whole. This might be due to that the natural forest has longer age than the plantation forest, and fixed soil heavy metals take a longer period of time than the plantation forest.

  16. Pennsylvania forests 2014

    Science.gov (United States)

    Thomas A. Albright; William H. McWilliams; Richard H. Widmann; Brett J. Butler; Susan J. Crocker; Cassandra M. Kurtz; Shawn Lehman; Tonya W. Lister; Patrick D. Miles; Randall S. Morin; Rachel Riemann; James E. Smith

    2017-01-01

    This report summarizes the third cycle of annualized inventory of Pennsylvania with field data collected from 2009 through 2014. Pennsylvania has 16.9 million acres of forest land dominated by sawtimber stands of oak/hickory and maple/beech/birch forest-type groups. Volumes continue to increase as the forests age with an average of 2,244 cubic feet per acre on...

  17. Kentucky's forests, 2004

    Science.gov (United States)

    Jeffery A. Turner; Christopher M. Oswalt; James L. Chamberlain; Roger C. Conner; Tony G. Johnson; Sonja N. Oswalt; KaDonna C. Randolph

    2008-01-01

    Forest land area in the Commonwealth of Kentucky amounted to 11.97 million acres, including 11.6 million acres of timberland. Over 110 different species, mostly hardwoods, account for an estimated 21.2 billion cubic feet of all live tree volume. Hardwood forest types occupy 85 percent of Kentucky’s timberland, and oak-hickory is the dominant forest-type group...

  18. Forests and water cycle

    Directory of Open Access Journals (Sweden)

    Iovino F

    2009-06-01

    Full Text Available Based on a comprehensive literature analysis, a review on factors that control water cycle and water use in Mediterranean forest ecosystems is presented, including environmental variables and silvicultural treatments. This important issue is considered in the perspective of sustainable forest management of Mediterranean forests, with special regard to crucial environmental hazards such as forest fires and desertification risks related to climate change.

  19. West Virginia's Forests 2008

    Science.gov (United States)

    Richard H. Widmann; Gregory W. Cook; Charles J. Barnett; Brett J. Butler; Douglas M. Griffith; Mark A. Hatfield; Cassandra M. Kurtz; Randall S. Morin; W. Keith Moser; Charles H. Perry; Ronald J. Piva; Rachel Riemann; Christopher W. Woodall

    2012-01-01

    The first full annual inventory of West Virginia's forests reports 12.0 million acres of forest land or 78 percent of the State's land area. The area of forest land has changed little since 2000. Of this land, 7.2 million acres (60 percent) are held by family forest owners. The current growing-stock inventory is 25 billion cubic feet--12 percent more than in...

  20. H.J. Andrews Experimental Forest.

    Science.gov (United States)

    Art McKee; Pamela. Druliner

    1998-01-01

    The H.J. Andrews Experimental Forest is a world renowned center for research and education about the ecology and management of forests and streams. Located about 50 miles (80 km) east of Eugene, Oregon, the Andrews Experimental Forest lies in the Blue River Ranger District of the Willamette National Forest. Established in 1948, the Experimental Forest is administered...

  1. Forests of east Texas, 2013

    Science.gov (United States)

    K.J.W. Dooley; T.J. Brandeis

    2014-01-01

    This resource update provides an overview of forest resources in east Texas based on an inventory conducted by the U.S. Forest Service, Forest Inventory and Analysis (FIA) program at the Southern Research Station in cooperation with the Texas A&M Forest Service. Forest resource estimates are based on field data collected using the FIA annualized sample design and...

  2. Invasive plants found in east Texas forests, 2009 forest inventory and analysis factsheet

    Science.gov (United States)

    Sonja N. Oswalt; Christopher M. Oswalt

    2011-01-01

    This science update provides information on the presence and cover of nonnative invasive plants found in forests of the eastern region of the State of Texas based on an annual inventory conducted by the Forest Inventory and Analysis (FIA) Program at the Southern Research Station of the U.S. Department of Agriculture Forest Service in cooperation with the Texas Forest...

  3. Distribution of bioluminescent fungi across old-growth and secondary tropical rain forest in Costa Rica

    Directory of Open Access Journals (Sweden)

    Carolina Seas-Carvajal

    2013-06-01

    Full Text Available Most research on bioluminescent fungi is concentrated on their taxonomic relationships, while the basics of their natural history and ecological relationships are poorly understood. In this study, we compared the distribution of bioluminescent fungi between old-growth and secondary forest as related to four different soil types at the tropical rainforest of La Selva Biological Station in Costa Rica. The study was conducted during the wet season of 2009. Bioluminescent fungi were sought following eight different transects distributed evenly in old-growth and secondary forests across four different soil types, covering an area of 9 420m². We found fungi in four different substrates: litter, fallen branches, dead trunks, and roots, for a total of 61 samples. Correspondence analysis showed that the occurrence of fungi and soil types were related (inertia=0.21, p=0.071. We found a significant relationship between the presence of fungi and the distribution of soil types (X²=18.89, df=9, p=0.026. We found only three samples with fruiting bodies, two of which had Mycena and the other had one fungus of the order Xylariales (possibly Hypoxylon sp., Kretzschmariella sp., Xylaria sp.. Future work will concentrate on exploring other aspects of their ecology, such as their dispersal and substrate preference. This information will facilitate field identification and will foster more research on the distribution, seasonality, reproductive phenology and ecological requirements of this group of Fungi.

  4. Identifying tropical dry forests extent and succession via the use of machine learning techniques

    Science.gov (United States)

    Li, Wei; Cao, Sen; Campos-Vargas, Carlos; Sanchez-Azofeifa, Arturo

    2017-12-01

    Information on ecosystem services as a function of the successional stage for secondary tropical dry forests (TDFs) is scarce and limited. Secondary TDFs succession is defined as regrowth following a complete forest clearance for cattle growth or agriculture activities. In the context of large conservation initiatives, the identification of the extent, structure and composition of secondary TDFs can serve as key elements to estimate the effectiveness of such activities. As such, in this study we evaluate the use of a Hyperspectral MAPper (HyMap) dataset and a waveform LIDAR dataset for characterization of different levels of intra-secondary forests stages at the Santa Rosa National Park (SRNP) Environmental Monitoring Super Site located in Costa Rica. Specifically, a multi-task learning based machine learning classifier (MLC-MTL) is employed on the first shortwave infrared (SWIR1) of HyMap in order to identify the variability of aboveground biomass of secondary TDFs along a successional gradient. Our paper recognizes that the process of ecological succession is not deterministic but a combination of transitional forests types along a stochastic path that depends on ecological, edaphic, land use, and micro-meteorological conditions, and our results provide a new way to obtain the spatial distribution of three main types of TDFs successional stages.

  5. Hyperspectral sensing of forests

    Science.gov (United States)

    Goodenough, David G.; Dyk, Andrew; Chen, Hao; Hobart, Geordie; Niemann, K. Olaf; Richardson, Ash

    2007-11-01

    Canada contains 10% of the world's forests covering an area of 418 million hectares. The sustainable management of these forest resources has become increasingly complex. Hyperspectral remote sensing can provide a wealth of new and improved information products to resource managers to make more informed decisions. Research in this area has demonstrated that hyperspectral remote sensing can be used to create more accurate products for forest inventory, forest health, foliar biochemistry, biomass, and aboveground carbon than are currently available. This paper surveys recent methods and results in hyperspectral sensing of forests and describes space initiatives for hyperspectral sensing.

  6. Avian diversity and feeding guilds in a secondary forest, an oil palm plantation and a paddy field in riparian areas of the kerian river basin, perak, malaysia.

    Science.gov (United States)

    Azman, Nur Munira; Latip, Nurul Salmi Abdul; Sah, Shahrul Anuar Mohd; Akil, Mohd Abdul Muin Md; Shafie, Nur Juliani; Khairuddin, Nurul Liyana

    2011-12-01

    The diversity and the feeding guilds of birds in three different habitats (secondary forest, oil palm plantation and paddy field) were investigated in riparian areas of the Kerian River Basin (KRB), Perak, Malaysia. Point-count observation and mist-netting methods were used to determine bird diversity and abundance. A total of 132 species of birds from 46 families were recorded in the 3 habitats. Species diversity, measured by Shannon's diversity index, was 3.561, 3.183 and 1.042 in the secondary forest, the paddy field and the oil palm plantation, respectively. The vegetation diversity and the habitat structure were important determinants of the number of bird species occurring in an area. The relative abundance of the insectivore, insectivore-frugivore and frugivore guilds was greater in the forest than in the monoculture plantation. In contrast, the relative abundance of the carnivore, granivore and omnivore guilds was higher in the plantation. The results of the study show that the conversion of forest to either oil palm plantation or paddy fields produced a decline in bird diversity and changes in the distribution of bird feeding guilds.

  7. Forest production dynamics along a wood density spectrum in eastern US forests

    Science.gov (United States)

    C.W. Woodall; M.B. Russell; B.F. Walters; A.W. D' Amato; K. Zhu; S.S. Saatchi

    2015-01-01

    Emerging plant economics spectrum theories were confirmed across temperate forest systems of the eastern US where the use of a forest stand's mean wood density elucidated forest volume and biomass production dynamics integrating aspects of climate, tree mortality/growth, and rates of site occupancy.

  8. Carbonizing forest governance: analyzing the consequences of REDD+ for multilevel forest governance

    NARCIS (Netherlands)

    Vijge, M.J.

    2016-01-01

    Carbonizing forest governance:

    Analyzing the consequences of REDD+ for multilevel forest governance

    Marjanneke J. Vijge

    Despite the fifty years of global action to combat deforestation and forest degradation, the world is still

  9. Forest composition modifies litter dynamics and decomposition in regenerating tropical dry forest.

    Science.gov (United States)

    Schilling, Erik M; Waring, Bonnie G; Schilling, Jonathan S; Powers, Jennifer S

    2016-09-01

    We investigated how forest composition, litter quality, and rainfall interact to affect leaf litter decomposition across three successional tropical dry forests in Costa Rica. We monitored litter stocks and bulk litter turnover in 18 plots that exhibit substantial variation in soil characteristics, tree community structure, fungal communities (including forests dominated by ecto- or arbuscular mycorrhizal host trees), and forest age. Simultaneously, we decomposed three standard litter substrates over a 6-month period spanning an unusually intense drought. Decay rates of standard substrates depended on the interaction between litter identity and forest type. Decomposition rates were correlated with tree and soil fungal community composition as well as soil fertility, but these relationships differed among litter types. In low fertility soils dominated by ectomycorrhizal oak trees, bulk litter turnover rates were low, regardless of soil moisture. By contrast, in higher fertility soils that supported mostly arbuscular mycorrhizal trees, bulk litter decay rates were strongly dependent on seasonal water availability. Both measures of decomposition increased with forest age, as did the frequency of termite-mediated wood decay. Taken together, our results demonstrate that soils and forest age exert strong control over decomposition dynamics in these tropical dry forests, either directly through effects on microclimate and nutrients, or indirectly by affecting tree and microbial community composition and traits, such as litter quality.

  10. Making Forest Values Work: Enhancing Multi-Dimensional Perspectives towards Sustainable Forest Management

    Directory of Open Access Journals (Sweden)

    Doni Blagojević

    2016-06-01

    Full Text Available Background and Purpose: Sustainability, sustainable development and sustainable forest management are terms that are commonly, and interchangeably used in the forest industry, however their meaning take on different connotations, relative to varying subject matter. The aim of this paper is to look at these terms in a more comprehensive way, relative to the current ideology of sustainability in forestry. Materials and Methods: This paper applies a literature review of the concepts of: i sustainable development; ii sustainable forest management; and iii economic and non-economic valuation. The concepts are viewed through a historical dimension of shifting paradigms, originating from production- to service-based forestry. Values are discussed through a review of general value theory and spatial, cultural and temporal differences in valuation. Along the evolution of these concepts, we discuss their applicability as frameworks to develop operational guidelines for forest management, relative to the multi-functionality of forests. Results and Conclusions: Potential discrepancies between the conceptual origins of sustainable development and sustainable forest management are highlighted, relative to how they have been interpreted and diffused as new perceptions on forest value for the human society. We infer the current paradigm may not reflect the various dimensions adequately as its implementation is likely to be more related to the distribution of power between stakeholders, rather than the value stakeholders’ place on the various forest attributes.

  11. Functional trait strategies of trees in dry and wet tropical forests are similar but differ in their consequences for succession.

    Directory of Open Access Journals (Sweden)

    Madelon Lohbeck

    Full Text Available Global plant trait studies have revealed fundamental trade-offs in plant resource economics. We evaluated such trait trade-offs during secondary succession in two species-rich tropical ecosystems that contrast in precipitation: dry deciduous and wet evergreen forests of Mexico. Species turnover with succession in dry forest largely relates to increasing water availability and in wet forest to decreasing light availability. We hypothesized that while functional trait trade-offs are similar in the two forest systems, the successful plant strategies in these communities will be different, as contrasting filters affect species turnover. Research was carried out in 15 dry secondary forest sites (5-63 years after abandonment and in 17 wet secondary forest sites (<1-25 years after abandonment. We used 11 functional traits measured on 132 species to make species-trait PCA biplots for dry and wet forest and compare trait trade-offs. We evaluated whether multivariate plant strategies changed during succession, by calculating a 'Community-Weighted Mean' plant strategy, based on species scores on the first two PCA-axes. Trait spectra reflected two main trade-off axes that were similar for dry and wet forest species: acquisitive versus conservative species, and drought avoiding species versus evergreen species with large animal-dispersed seeds. These trait associations were consistent when accounting for evolutionary history. Successional changes in the most successful plant strategies reflected different functional trait spectra depending on the forest type. In dry forest the community changed from having drought avoiding strategies early in succession to increased abundance of evergreen strategies with larger seeds late in succession. In wet forest the community changed from species having mainly acquisitive strategies to those with more conservative strategies during succession. These strategy changes were explained by increasing water availability during

  12. Unearthing Secrets of the Forest

    Science.gov (United States)

    Beldin, Sarah I.; Perakis, Steven S.

    2009-01-01

    Forests are a defining feature for large areas of the Pacific northwestern United States from northern California to Alaska. Coniferous temperate rainforests in the western Cascade and coastal mountain ranges are appreciated for their aesthetic value and abundant natural resources. Few people recognize the riches beneath the forest floor; yet, soil is a key ecosystem component that makes each type of forest unique. Soils harbor immense biological diversity and control the release of water and nutrients that support life above ground. Understanding how carbon and nutrients cycle in forests, known as forest biogeochemistry, is crucial for evaluating forest productivity, composition, diversity, and change. At the U.S. Geological Survey (USGS) Forest and Rangeland Ecosystem Science Center, research in the Terrestrial Ecosystems Laboratory focuses on nutrient cycling in five themes: climate change, nutrition and sustainability, fire effects, restoration, and forest-stream linkages. This research is essential to understand the entire forest ecosystem and to use the best science available to make informed policy and management decisions.

  13. Satellite-Based Derivation of High-Resolution Forest Information Layers for Operational Forest Management

    Directory of Open Access Journals (Sweden)

    Johannes Stoffels

    2015-06-01

    Full Text Available A key factor for operational forest management and forest monitoring is the availability of up-to-date spatial information on the state of forest resources. Earth observation can provide valuable contributions to these information needs. The German federal state of Rhineland-Palatinate transferred its inherited forest information system to a new architecture that is better able to serve the needs of centralized inventory and planning services, down to the level of forest districts. During this process, a spatially adaptive classification approach was developed to derive high-resolution forest information layers (e.g., forest type, tree species distribution, development stages based on multi-temporal satellite data. This study covers the application of the developed approach to a regional scale (federal state level and the further adaptation of the design to meet the information needs of the state forest service. The results confirm that the operational requirements for mapping accuracy can, in principle, be fulfilled. However, the state-wide mapping experiment also revealed that the ability to meet the required level of accuracy is largely dependent on the availability of satellite observations within the optimum phenological time-windows.

  14. Climate change impacts on forest fires: the stakeholders' perspective

    Science.gov (United States)

    Giannakopoulos, C.; Roussos, A.; Karali, A.; Hatzaki, M.; Xanthopoulos, G.; Chatzinikos, E.; Fyllas, N.; Georgiades, N.; Karetsos, G.; Maheras, G.; Nikolaou, I.; Proutsos, N.; Sbarounis, T.; Tsaggari, K.; Tzamtzis, I.; Goodess, C.

    2012-04-01

    In this work, we present a synthesis of the presentations and discussions which arose during a workshop on 'Impacts of climate change on forest fires' held in September 2011 at the National Observatory of Athens, Greece in the framework of EU project CLIMRUN. At first, a general presentation about climate change and extremes in the Greek territory provided the necessary background to the audience and highlighted the need for data and information exchange between scientists and stakeholders through climate services within CLIMRUN. Discussions and presentations that followed linked climate with forest science through the use of a meteorological index for fire risk and future projections of fire danger using regional climate models. The current situation on Greek forests was also presented, as well as future steps that should be taken to ameliorate the situation under a climate change world. A time series analysis of changes in forest fires using available historical data on forest ecosystems in Greece was given in this session. This led to the topic of forest fire risk assessment and fire prevention, stating all actions towards sustainable management of forests and effective mechanisms to control fires under climate change. Options for a smooth adaptation of forests to climate change were discussed together with the lessons learned on practical level on prevention, repression and rehabilitation of forest fires. In between there were useful interventions on sustainable hunting and biodiversity protection and on climate change impacts on forest ecosystems dynamics. The importance of developing an educational program for primary/secondary school students on forest fire management was also highlighted. The perspective of forest stakeholders on climate change and how this change can affect their current or future activities was addressed through a questionnaire they were asked to complete. Results showed that the majority of the participants consider climate variability

  15. Modeling impacts of fire severity on successional trajectories and future fire behavior in Alaskan boreal forests

    Science.gov (United States)

    Jill F. Johnstone; T. Scott Rupp; Mark Olson; David. Verbyla

    2011-01-01

    Much of the boreal forest in western North America and Alaska experiences frequent, stand-replacing wildfires. Secondary succession after fire initiates most forest stands and variations in fire characteristics can have strong effects on pathways of succession. Variations in surface fire severity that influence whether regenerating forests are dominated by coniferous...

  16. Forest report 2016; Waldzustandsbericht 2016

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-07-01

    This forest condition report of Hesse (Germany) includes the following topics: forest condition survey for all tree species, forest in the in the Rhine-Main area, weather and climate, soil water balance and drought stress, insects and fungi, Forestry Environment Monitoring, infiltrated substances, main results of Forest soil survey in Hesse (BZE II), the substrate group red sandstone, heavy metal contamination of forests.

  17. Ecosystemic forest management approach to ensure forest sustainability and socio-economic development of forest dependent communities: Evidence from Southeast Cameroon

    Directory of Open Access Journals (Sweden)

    J. Mbairamadji

    2010-09-01

    Full Text Available Forests provide a full spectrum of goods and services that contribute to the socio-economic development of forest dependent communities. In tropical countries, the diversity of stakeholders depending on forests with their divergent interests and expectations, make sustainable forest management (SFM difficult to achieve. Although several studies advocate the decentralization of forest management and public participation as important processes for SFM, little has been done to demonstrate how these processes could contribute to forest sustainability and socioeconomic development of forest dependent communities. Moreover, almost no seminal paper has demonstrated how to integrate the ecological, economical and social issues of forest management, which have nevertheless been recognized as essential for sustainable forest management. This study develops an ecosystemic forest management approach based on “Stakeholder-Resource-Usage-Institution” dynamics as an appropriate framework for ensuring forest sustainability and socio-economic development. This approach is supported with lessons drawn on the limitations and pitfalls of the traditional forest management approach in Southeast Cameroon.Les forêts fournissent toute une gamme de biens et de services qui contribuent au développement socio-économique des communautés dépendantes de la forêt. Dans les régions tropicales, la diversité des parties prenantes qui dépendent des forêts rend la gestion durable des forêts difficile du fait d’attentes et d’intérêts divergents. Bien que plusieurs études estiment la décentralisation de la gestion des forêts et la participation publique comme importantes pour la gestion durable des forêts, peu d’initiatives ont été prises pour démontrer la manière dont ces actions pourraient contribuer à la durabilité de la forêt et au développement socio-économique des communautés dépendant de la forêt. En outre, aucun article majeur n’a d

  18. Missouri Forests 2013

    Science.gov (United States)

    Ronald J. Piva; Thomas B. Treiman; Brett J. Butler; Susan J. Crocker; Dale D. Gormanson; Douglas M. Griffith; Cassandra M. Kurtz; Tonya W. Lister; William G. Luppold; William H. McWilliams; Patrick D. Miles; Randall S. Morin; Mark D. Nelson; Charles H. (Hobie) Perry; Rachel Riemann; James E. Smith; Brian F. Walters; Christopher W. Woodall

    2016-01-01

    The third full cycle of annual inventories (2009-2013) of Missouri's forests, completed in 2013, reports that there are an estimated 15.5 million acres of forest land in the State. An estimated 60 percent of the forest land area is in sawtimber size stands, 30 percent are pole timber size, and 10 percent are seedling/sapling size or nontstocked. The net volume of...

  19. Maine Forests 2013

    Science.gov (United States)

    George L. McCaskill; Thomas Albright; Charles J. Barnett; Brett J. Butler; Susan J. Crocker; Cassandra M. Kurtz; William H. McWilliams; Patrick D. Miles; Randall S. Morin; Mark D. Nelson; Richard H. Widmann; Christopher W. Woodall

    2016-01-01

    The third 5-year annualized inventory of Maine's forests was completed in 2013 after more than 3170 forested plots were measured. Maine contains more than 17.6 million acres of forest land, an area that has been quite stable since 1960, covering more than 82 percent of the total land area. The number of live trees greater than 1 inch in diameter are approaching 24...

  20. Development of a spatial forest data base for the eastern boreal forest region of Ontario. Forest fragmentation and biodiversity project technical report No. 14

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    In 1991, a spatial forest database over large regions of Ontario was initiated as the basis for research into forest fragmentation and biodiversity using data generated from the digital analysis of LANDSAT thematic mapper satellite data integrated into a geographic information system (GIS). The project was later extended into the eastern segment of the Boreal forest system. This report describes preparation of the spatial forest data base over the eastern Boreal Forest Region that extends from the northern boundary of the Great Lakes-St. Lawrence Forest Region and the southern margin of the James Bay Lowland, between the Ontario-Quebec border and a point west of Michipicoten on Lake Superior. The report describes the methodology used to produce the data base and results, including mapping of water, dense and sparse conifer forest, mixed forest, dense and sparse deciduous forest, poorly vegetated areas, recent cutovers of less than 10 years, old cutovers and burns, recent burns of less than 10 years, wetlands, bedrock outcrops, agriculture, built-up areas, and mine tailings.

  1. Forest vegetation simulation tools and forest health assessment

    Science.gov (United States)

    Richard M. Teck; Melody Steele

    1995-01-01

    A Stand Hazard Rating System for Central ldaho forests has been incorporated into the Central ldaho Prognosis variant of the Forest Vegetation Simulator to evaluate how insects, disease and fire hazards within the Deadwood River Drainage change over time. A custom interface, BOISE.COMPUTE.PR, has been developed so hazard ratings can be electronically downloaded...

  2. Influence of Forest-Canopy Morphology and Relief on Spectral Characteristics of Taiga Forests

    Science.gov (United States)

    Zhirin, V. M.; Knyazeva, S. V.; Eydlina, S. P.

    2017-12-01

    The article deals with the results of a statistical analysis reflecting tendencies (trends) of the relationship between spectral characteristics of taiga forests, indicators of the morphological structure of forest canopy and illumination of the territory. The study was carried out on the example of the model forest territory of the Priangarskiy taiga region of Eastern Siberia (Krasnoyarsk krai) using historical data (forest inventory 1992, Landsat 5 TM 16.06.1989) and the digital elevation model. This article describes a method for determining the quantitative indicator of morphological structure of forest canopy based on taxation data, and the authors propose to subdivide the morphological structure into high complexity, medium complexity, and relatively simple. As a result of the research, dependences of average values of spectral brightness in near and short-wave infrared channels of a Landsat 5 TM image for dark-coniferous, light-coniferous and deciduous forests from the degree of complexity of the forest-canopy structure are received. A high level of variance and maximum brightness average values are marked in green moss (hilocominosa) dark-coniferous and various-grass (larioherbosa) dark-coniferous forests and light-coniferous forests with a complex structure of canopy. The parvifoliate forests are characterized by high values of brightness in stands with a relatively simple structure of the canopy and by a small variance in brightness of any degree of the structure of the canopy complexity. The increase in brightness for the lit slopes in comparison with shaded ones in all stands with a difficult morphological canopy structure is revealed. However, the brightness values of the lit and shaded slopes do not differ for stands with a medium complexity of the structure. It is noted that, in addition to the indicator of the forest-canopy structure, the possible impact on increasing the variance of spectral brightness for the taxation plot has a variability of the

  3. The Influence of Forest Management Regimes on Deforestation in a Central Indian Dry Deciduous Forest Landscape

    OpenAIRE

    Shivani Agarwal; Harini Nagendra; Rucha Ghate

    2016-01-01

    This research examines the impact of forest management regimes, with various degrees of restriction, on forest conservation in a dry deciduous Indian forest landscape. Forest change is mapped using Landsat satellite images from 1977, 1990, 1999, and 2011. The landscape studied has lost 1478 km2 of dense forest cover between 1977 and 2011, with a maximum loss of 1002 km2 of dense forest between 1977 and 1990. The number of protected forest areas has increased, concomitant with an increase in r...

  4. Changes in forest cover in the Foresta della Lama (Casentino Forests National Park from Karl Siemon’s and Anton Seeland’s 1837 forest management plan

    Directory of Open Access Journals (Sweden)

    Vazzano E

    2011-05-01

    Full Text Available Forest estates with a long history of forest management plans are quite rare in Italy. In such cases, the analysis of historical documents combined with the use of GIS technology, can provide useful information on the evolution of forest cover and silvicultural and management techniques. Based on two unpublished documents by Karl Siemon and Anton Seeland dating back to 1837 and 1850, an archive of historical maps for the Lama Forest (Foreste Casentinesi, Monte Falterona and Campigna National Park was created using GIS techniques. This archive outlines the evolution of the Lama Forest over the last 170 years. Particular attention was given to silver fir plantations, which have strongly characterized silviculture and local economics in the Foreste Casentinesi area. The results of our analysis show that changes in different historical periods have been caused both by silvicultural interventions prescribed by the management plans and by external causes such as changes in forest property or war periods, which have markedly influenced forest area and stand characteristics. Furthermore, our analysis confirms that the work of Karl Siemon and Anton Seeland, carried out between 1835 and 1837, is the oldest forest management plan for an Italian forest. It is interesting to note that the aim of the plan, i.e., a regulated (or “normal” even-aged forest, and the way the plan was laid out, typical of classic forest management originated in Germany at the end of the XVIIIth century, served as model for the forest management plans drawn out by the Florence Forestry School almost until the end of the XXth century.

  5. Managing Forests for Water in the Anthropocene—The Best Kept Secret Services of Forest Ecosystems

    Directory of Open Access Journals (Sweden)

    Irena F. Creed

    2016-03-01

    Full Text Available Water and forests are inextricably linked. Pressures on forests from population growth and climate change are increasing risks to forests and their aquatic ecosystem services (AES. There is a need to incorporate AES in forest management but there is considerable uncertainty about how to do so. Approaches that manage forest ecosystem services such as fiber, water and carbon sequestration independently ignore the inherent complexities of ecosystem services and their responses to management actions, with the potential for unintended consequences that are difficult to predict. The ISO 31000 Risk Management Standard is a standardized framework to assess risks to forest AES and to prioritize management strategies to manage risks within tolerable ranges. The framework consists of five steps: establishing the management context, identifying, analyzing, evaluating and treating the risks. Challenges to implementing the framework include the need for novel models and indicators to assess forest change and resilience, quantification of linkages between forest practice and AES, and the need for an integrated systems approach to assess cumulative effects and stressors on forest ecosystems and AES. In the face of recent international agreements to protect forests, there are emerging opportunities for international leadership to address these challenges in order to protect both forests and AES.

  6. Forest report 2013; Waldzustandsbericht 2013

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-07-01

    This forest report of Lower Saxony (Germany) contains the following topics: weather and climate, forest protection, crown defoliation, infiltrated substances, environmental monitoring, insects and fungi, forest soil survey and forest site mapping, and nutritional status of beech on loess.

  7. Forecasting Areas Vulnerable to Forest Conversion in the Tam Dao National Park Region, Vietnam

    Directory of Open Access Journals (Sweden)

    Duong Dang Khoi

    2010-04-01

    Full Text Available Tam Dao National Park (TDNP is a remaining primary forest that supports some of the highest levels of biodiversity in Vietnam. Forest conversion due to illegal logging and agricultural expansion is a major problem that is hampering biodiversity conservation efforts in the TDNP region. Yet, areas vulnerable to forest conversion are unknown. In this paper, we predicted areas vulnerable to forest changes in the TDNP region using multi-temporal remote sensing data and a multi-layer perceptron neural network (MLPNN with a Markov chain model (MLPNN-M. The MLPNN-M model predicted increasing pressure in the remaining primary forest within the park as well as on the secondary forest in the surrounding areas. The primary forest is predicted to decrease from 18.03% in 2007 to 15.10% in 2014 and 12.66% in 2021. Our results can be used to prioritize locations for future biodiversity conservation and forest management efforts. The combined use of remote sensing and spatial modeling techniques provides an effective tool for monitoring the remaining forests in the TDNP region.

  8. Forest Cover Estimation in Ireland Using Radar Remote Sensing: A Comparative Analysis of Forest Cover Assessment Methodologies

    Science.gov (United States)

    Devaney, John; Barrett, Brian; Barrett, Frank; Redmond, John; O`Halloran, John

    2015-01-01

    Quantification of spatial and temporal changes in forest cover is an essential component of forest monitoring programs. Due to its cloud free capability, Synthetic Aperture Radar (SAR) is an ideal source of information on forest dynamics in countries with near-constant cloud-cover. However, few studies have investigated the use of SAR for forest cover estimation in landscapes with highly sparse and fragmented forest cover. In this study, the potential use of L-band SAR for forest cover estimation in two regions (Longford and Sligo) in Ireland is investigated and compared to forest cover estimates derived from three national (Forestry2010, Prime2, National Forest Inventory), one pan-European (Forest Map 2006) and one global forest cover (Global Forest Change) product. Two machine-learning approaches (Random Forests and Extremely Randomised Trees) are evaluated. Both Random Forests and Extremely Randomised Trees classification accuracies were high (98.1–98.5%), with differences between the two classifiers being minimal (forest area and an increase in overall accuracy of SAR-derived forest cover maps. All forest cover products were evaluated using an independent validation dataset. For the Longford region, the highest overall accuracy was recorded with the Forestry2010 dataset (97.42%) whereas in Sligo, highest overall accuracy was obtained for the Prime2 dataset (97.43%), although accuracies of SAR-derived forest maps were comparable. Our findings indicate that spaceborne radar could aid inventories in regions with low levels of forest cover in fragmented landscapes. The reduced accuracies observed for the global and pan-continental forest cover maps in comparison to national and SAR-derived forest maps indicate that caution should be exercised when applying these datasets for national reporting. PMID:26262681

  9. 77 FR 13625 - Notice of Inventory Completion: USDA Forest Service, Daniel Boone National Forest, Winchester, KY

    Science.gov (United States)

    2012-03-07

    ... Forest Service, Daniel Boone National Forest, Winchester, KY AGENCY: National Park Service, Interior. ACTION: Notice. SUMMARY: The U.S. Department of Agriculture, Forest Service, Daniel Boone National Forest... culturally affiliated with the human remains may contact the Daniel Boone National Forest, Winchester, KY...

  10. Forest vegetation of Xishuangbanna, south China

    Institute of Scientific and Technical Information of China (English)

    Zhu Hua

    2006-01-01

    Xishuangbanna of southern Yunnan is biogeographically located at a transitional zone from tropical southeast (SE) Asia to subtropical east Asia and is at the junction of the Indian and Burmese plates of Gondwana and the Eurasian plate of Laurasia. The region, though surprisingly far from the equator and at a relatively high altitude, has a rich tropical flora and a typical tropical rain forest in the lowland areas. Based on physiognomic and ecological characteristics, floristic composition and habitats combined, the primary vegetation in Xishuangbanna can be organized into four main vegetation types: tropical rain forest, tropical seasonal moist forest, tropical montane evergreen broad-leaved forest and tropical monsoon forest. The tropical rain forest can be classified into two subtypes, i.e. a tropical seasonal rain forest in the lowlands and a tropical montane rain forest at higher elevations. The tropical seasonal rain forest has almost the same forest profile and physiognomic characteristics as equatorial lowland rain forests and is a type of truly tropical rain forest. Because of conspicuous similarity on ecological and floristic characteristics, the tropical rain forest in Xishuangbanna is a type of tropical Asian rain forest. However, since the tropical rain forest of Xishuangbanna occurs at the northern edge of tropical SE Asia, it differs from typical lowland rain forests in equatorial areas in having some deciduous trees in the canopy layer, fewer megaphanerophytes and epiphytes but more abundant lianas and more plants with microphyll. It is a type of semi-evergreen rain forest at the northern edge of the tropical zone. The tropical montane rain forest occurs at wet montane habitats and is similar to the lower montane rain forest in equatorial Asia in floristic composition and physiognomy. It is a type of lower montane rain forests within the broader category of tropical rain forests. The tropical seasonal moist forest occurs on middle and upper

  11. Economics of forest and forest carbon projects. Translating lessons learned into national REDD+ implementation

    Energy Technology Data Exchange (ETDEWEB)

    Zaballa Romero, M.; Traerup, S.; Wieben, E.; Ravnkilde Moeller, L.; Koch, A.

    2013-01-15

    The financial implications of implementing a new forest management paradigm have not been well understood and have often been underestimated. Resource needs for e.g., stakeholder consultation, capacity building and addressing the political economy are seldom fully accounted for in the resource needs estimates put forward in connection to REDD+. This report investigates the economics of implementing forest and REDD+ projects through eight case studies from Africa, Latin America and Asia, analyzing real forest and REDD+ investments. The report is part of efforts to share financial experiences and lessons learned with policymakers, project developers and stakeholders, with the objective to inform forest project and strategy development. It presents experiences and advice on the risks, costs and revenues of forest projects, thereby informing not only the development of future REDD+ initiatives but also the testing of advanced market commitments as a finance option for sustainable forest management. The findings in the report underline the fact that only through sound and transparent financial information will forest projects and national forest initiatives become interesting for private financial institutions and comparable with other investment opportunities. It is therefore important to include robust analysis of the operations business case and its financial attractiveness to commercial investors, early in the design process. As for the economics of forest and forest carbon projects, it appears that REDD+ payments alone, especially at current prices, will not deliver the revenues that cover all expenses of transparent and long-term mitigation of forest carbon emissions. Instead the findings underline the importance of building up forest operations which effectively manages risk and delivers several revenue streams. These findings are aligned with the advocacy efforts of UNEP and the UN-REDD Programme on multiple benefits and the combination of various funding and

  12. 78 FR 23903 - Forest Service

    Science.gov (United States)

    2013-04-23

    ... DEPARTMENT OF AGRICULTURE Forest Service Dixie Resource Advisory Committee AGENCY: Forest Service... and to provide advice and recommendations to the Forest Service concerning projects and funding... review proposals for forest projects and recommending funding. DATES: The meeting will be held Thursday...

  13. Complexity of Forest Management: Exploring Perceptions of Dutch Forest Managers

    Directory of Open Access Journals (Sweden)

    Jilske O. de Bruin

    2015-09-01

    Full Text Available Challenges of contemporary forest management are frequently referred to as complex. This article empirically studies complexity in forest management decision-making. In contrast to what is often assumed in the literature, this article starts by assuming that complexity does not just consist of an external descriptive element, but also depends on how decision-makers perceive the system at hand. This “perceived complexity” determines decision-making. We used a straightforward interpretation of perceived complexity using two criteria: the number of factors considered and the uncertainty perceived about these factors. The results show that Dutch forest managers generally consider forest management decision-making to be complicated (many factors to consider rather than complex (many uncertain factors to consider. Differences in sources of complexity confirm the individual character of perceived complexity. The factors perceived to be most relevant for decision-making (the forest itself, the organization’s objective, the cost of management, public opinion, national policies and laws, and new scientific insights and ideas are generally seen as rather certain, although “complexity reduction” may play a role that can adversely affect the quality of decision-making. Additional use of more open-ended, forward-looking methods, such as qualitative foresight tools, might enable addressing uncertainty and complexity, and thereby enhance decision-making in forest management to prepare for increasing complexity in the future.

  14. Forest diversity, climate change and forest fires in the Mediterranean region of Turkey.

    Science.gov (United States)

    Ozturk, Munir; Gucel, Salih; Kucuk, Mahir; Sakcali, Serdal

    2010-01-01

    This paper reviews the forest resources in Turkey in the light of published literature and summarises extensive fieldwork undertaken in the Mediterranean phytogeograhical region of Turkey. The issues of landscape change and the associated drivers are addressed and the threats to the forest diversity are considered. It notes the impacts of climate change and forest fires and attemepts have been made to put forth future options for sustainable forest development.

  15. Late-successional forests and northern spotted owls: how effective is the Northwest Forest Plan?

    Science.gov (United States)

    Miles Hemstrom; Martin G. Raphael

    2000-01-01

    This paper describes the late-successional and old-growth forest and the northern spotted owl effectiveness monitoring plans for the Northwest Forest Plan. The effectiveness monitoring plan for late-successional and old-growth forests will track changes in forest spatial distribution, and within-stand structure and composition, and it will predict future trends.

  16. Conversion of natural forest to managed forest plantations decreases tree resistance to prolonged droughts

    Science.gov (United States)

    Jean-Christophe Domec; John S. King; Eric Ward; A. Christopher Oishi; Sari Palmroth; Andrew Radecki; Dave M. Bell; Guofang Miao; Michael Gavazzi; Daniel M. Johnson; Steve G. McNulty; Ge Sun; Asko. Noormets

    2015-01-01

    Throughout the southern US, past forest management practices have replaced large areas of native forests with loblolly pine plantations and have resulted in changes in forest response to extreme weather conditions. However, uncertainty remains about the response of planted versus natural species to drought across the geographical range of these forests. Taking...

  17. [Dynamics of Amomum villosum growth and its fruit yield cultivated under tropical forests].

    Science.gov (United States)

    Zheng, Zheng; Gan, Jianmin; Feng, Zhili; Meng, Ying

    2004-01-01

    Investigations on the dynamics of Amomum villosum growth and its fruit yield cultivated under tropical ravine rainforest and secondary forest at different elevations in Xishuangbanna showed that the yield of A. villosum was influenced by the site age, sun light level of understorey, and water stress in dry season. The fruit yield and mature plant density decreased with increasing age of the A. villosum site. The fruit yield increased with sun light level when the light level in understorey was under 35% of full sun light (P forest was not significant. Planned cultivation of A. villosum in the secondary forest of the shifting cultivation land by ravine from 800-1000 m elevation instead of customary cultivation in the ravine rainforest, could not only resolve the problem of the effect of light deficiency in understorey and water stress in the dry season on A. villosum fruit yield, but also be useful to protect the tropical ravine rain forest.

  18. Forest Plant and Bird Communities in the Lau Group, Fiji

    Science.gov (United States)

    Franklin, Janet; Steadman, David W.

    2010-01-01

    Background We examined species composition of forest and bird communities in relation to environmental and human disturbance gradients on Lakeba (55.9 km2), Nayau (18.4 km2), and Aiwa Levu (1.2 km2), islands in the Lau Group of Fiji, West Polynesia. The unique avifauna of West Polynesia (Fiji, Tonga, Samoa) has been subjected to prehistoric human-caused extinctions but little was previously known about this topic in the Lau Group. We expected that the degree of human disturbance would be a strong determinant of tree species composition and habitat quality for surviving landbirds, while island area would be unrelated to bird diversity. Methodology/Principal Findings All trees >5 cm diameter were measured and identified in 23 forest plots of 500 m2 each. We recognized four forest species assemblages differentiated by composition and structure: coastal forest, dominated by widely distributed species, and three forest types with differences related more to disturbance history (stages of secondary succession following clearing or selective logging) than to environmental gradients (elevation, slope, rockiness). Our point counts (73 locations in 1 or 2 seasons) recorded 18 of the 24 species of landbirds that exist on the three islands. The relative abundance and species richness of birds were greatest in the forested habitats least disturbed by people. These differences were due mostly to increased numbers of columbid frugivores and passerine insectivores in forests on Lakeba and Aiwa Levu. Considering only forested habitats, the relative abundance and species richness of birds were greater on the small but completely forested (and uninhabited) island of Aiwa Levu than on the much larger island of Lakeba. Conclusions/Significance Forest disturbance history is more important than island area in structuring both tree and landbird communities on remote Pacific islands. Even very small islands may be suitable for conservation reserves if they are protected from human

  19. Forests of Virginia, 2016

    Science.gov (United States)

    T.J. Brandeis; A.J. Hartsell; K.C. Randolph; C.M. Oswalt

    2018-01-01

    This resource update provides an overview of forest resources in Virginia based on an inventory conducted by the U.S. Forest Service, Forest Inventory and Analysis (FIA) program at the Southern Research Station in cooperation with the Virginia Department of Forestry.

  20. Large-scale indicators for monitoring forest diversity of the main forest types in Calabria (Italy

    Directory of Open Access Journals (Sweden)

    Infusino M

    2017-02-01

    Full Text Available Recently, the Society’s perception of forest resources has gone through significant changes. Forest ecosystems play a multifunctional role and host an important portion of the whole biodiversity, particularly in the Mediterranean area. Remote sensing technologies provide a unique way to obtain spatially extensive information on forest ecosystems, but relatively few studies used such information to evaluate forest habitat and biotic diversity. In this paper we evaluate the effectiveness of remote sensing to predict forest diversity by linking remotely sensed information with diversity metrics obtained from ground measurements of butterfly diversity. The field work was carried out in Calabria in four different forest types (beech, chestnut, black pine and silver fir forests. The sampling of Lepidoptera was carried out by LED light traps. We positioned 9 traps per forest type, for a total of 36 sites chosen to sample the different stages of forest succession in each forest type. Samples were carried out once a month from May to November 2015. Data from in situ butterfly measurements were compared with above ground forest biomass estimated from airborne LiDAR with NDVI estimated from Landsat 8. Results indicated that the Geometridae/Noctuideae ratio of lepidopteran communities was significantly correlated with the tree biomass, its distribution among tree size classes and the NDVI. The Geometridae/Noctuidae ratio, therefore, represents an index easy to calculate, which can be employed to integrate data acquired from remote sensing in order to obtain continuous spatial estimates of forest naturalness.

  1. Managing Forest Conflicts: Perspectives of Indonesia’s Forest Management Unit Directors

    Directory of Open Access Journals (Sweden)

    Larry A. Fisher

    2017-04-01

    Full Text Available Recent expansion of the forestry and plantation sectors in Indonesia has intensified agrarian and natural resource conflicts, and created increased awareness of the social, economic and environmental impacts of these disputes. Addressing these disputes is a critical issue in advancing Indonesia’s commitment to sustainable forest management. The Forest Management Units (Kesatuan Pengelolaan Hutan, or KPH, have become the pivotal structural element for managing all state forests at the local level, with responsibility for conventional forest management and policy implementation (establishing management boundaries, conducting forest inventory, and developing forest management plans, as well as the legal mandate to communicate and work with indigenous people and local communities. This paper presents the results of a national survey of all currently functioning KPH units, the first of its kind ever conducted with KPH leadership, to obtain a system-wide perspective of the KPHs’ role, mandate, and capacity for serving as effective intermediaries in managing forest conflicts in Indonesia. The survey results show that the KPHs are still in a very initial stage of development, and are struggling with a complex and rapidly evolving policy and institutional framework. The most common conflicts noted by respondents included forest encroachment, tenure disputes, boundary conflicts, and illegal logging and land clearing. KPH leadership views conflict resolution as among their primary duties and functions, and underscored the importance of more proactive and collaborative approaches for addressing conflict, many seeing themselves as capable facilitators and mediators. Overall, these results juxtapose a generally constructive view by KPH leadership over their role and responsibility in addressing forest management conflicts, with an extremely challenging social, institutional, and political setting. The KPHs can certainly play an important role as local

  2. US forest carbon calculation tool: forest-land carbon stocks and net annual stock change

    Science.gov (United States)

    James E. Smith; Linda S. Heath; Michael C. Nichols

    2007-01-01

    The Carbon Calculation Tool 4.0, CCTv40.exe, is a computer application that reads publicly available forest inventory data collected by the U.S. Forest Service's Forest Inventory and Analysis Program (FIA) and generates state-level annualized estimates of carbon stocks on forest land based on FORCARB2 estimators. Estimates can be recalculated as...

  3. Forest cover change and fragmentation using Landsat data in Maçka State Forest Enterprise in Turkey.

    Science.gov (United States)

    Cakir, Günay; Sivrikaya, Fatih; Keleş, Sedat

    2008-02-01

    Monitoring forest cover change and understanding the dynamic of forest cover is increasingly important in sustainable development and management of forest ecosystems. This paper uses remote sensing (RS) techniques to monitor forest cover change in Maçka State Forest Enterprise (MSFE) located in NE of Turkey through 1975 to 2000 and then analyses spatial and temporal changes in forest cover by Geographical Information Systems (GIS) and FRAGSTATStrade mark. Forest cover changes were detected from a time series of satellite images of Landsat MSS in 1975, Landsat TM in 1987, and Landsat ETM+ in 2000 using RS and GIS. The results showed that total forest area, productive forest area and degraded forest area increased while broadleaf forest area and non forest area decreased. Mixed forest and degraded forest increased during the first (1975-1987) period, but decreased during the second (1987-2000) period. During the whole study period, the annual forestation rate was 152 ha year(-1), equivalent to 0.27% year(-1) using the compound-interest-rate formula. The total number of patches increased from 36,204 to 48,092 (33%), and mean size of forest patch (MPS) decreased from 2.8 ha to 2.1 ha during a 25 year period. Number of smaller patches (patches in 0-100 ha size class) increased, indicating more fragmented landscape over time that might create a risk for the maintenance of biodiversity of the area. While total population increased from 1975 to 2000 (3.7%), rural population constantly decreased. The increase of forest areas may well be explained by the fact that demographic movement of rural areas concentrated into Maçka City Center. These figures also indicated that decrease in the rural population might likely lead to the release of human pressure to forest areas, probably resulting in a positive development of forest areas.

  4. An analysis of forest land use, forest land cover, and change at policy-relevant scales

    Science.gov (United States)

    John W. Coulston; Greg Reams; Dave N. Wear; C. Kenneth Brewer

    2014-01-01

    Quantifying the amount of forest and change in the amount of forest are key to ensure that appropriate management practices and policies are in place to maintain the array of ecosystem services provided by forests. There are a range of analytical techniques and data available to estimate these forest parameters, however, not all ‘forest’ is the same and various...

  5. Forest biomass carbon stocks and variation in Tibet’s carbon-dense forests from 2001 to 2050

    Science.gov (United States)

    Sun, Xiangyang; Wang, Genxu; Huang, Mei; Chang, Ruiying; Ran, Fei

    2016-01-01

    Tibet’s forests, in contrast to China’s other forests, are characterized by primary forests, high carbon (C) density and less anthropogenic disturbance, and they function as an important carbon pool in China. Using the biomass C density data from 413 forest inventory sites and a spatial forest age map, we developed an allometric equation for the forest biomass C density and forest age to assess the spatial biomass C stocks and variation in Tibet’s forests from 2001 to 2050. The results indicated that the forest biomass C stock would increase from 831.1 Tg C in 2001 to 969.4 Tg C in 2050, with a net C gain of 3.6 Tg C yr−1 between 2001 and 2010 and a decrease of 1.9 Tg C yr−1 between 2040 and 2050. Carbon tends to allocate more in the roots of fir forests and less in the roots of spruce and pine forests with increasing stand age. The increase of the biomass carbon pool does not promote significant augmentation of the soil carbon pool. Our findings suggest that Tibet’s mature forests will remain a persistent C sink until 2050. However, afforestation or reforestation, especially with the larger carbon sink potential forest types, such as fir and spruce, should be carried out to maintain the high C sink capacity. PMID:27703215

  6. Forest fire occurrence and silvicultural-economic prerequisites for protection improvement in forest regions of Krasnoyarsk Krai

    Directory of Open Access Journals (Sweden)

    V. V. Furyaev

    2017-10-01

    Full Text Available The territory of the Krasnoyarsk Krai is substantially diverse in terms of climatic, silvicultural and economic conditions owing to its sufficient spread from the North to the South. These differences were to some extent taken into account when the forest fund of the Krasnoyarsk Krai was divided into seven forest regions: forest tundra of Central Siberia, highland taiga of Central Siberia, plain taiga of West Siberia, Angara region, subtaiga forest steppe of Central Siberia, Altai-Sayanskiy highland, Altai-Sayanskiy highland forest steppe. The regions show different levels of fire occurrence and different fire effects that require different levels of protection from forest fires. Optimization of the protection is based on activities that combine prevention and timely detection of fires depending on development of forest regions and intensity of forest management. The main focus of the paper is on possibility or inadvisability of prescribed fires, fire-use fires (fires that started naturally but were then managed for their beneficial effects and the system of activities increasing fire resistance of the most valuable forests. It is justified that taking into account the effects of forest fires, selective protection of forests is expedient in forest-tundra Middle Siberia and highland taiga of Middle Siberia regions. The whole area of plain taiga of West Siberia region should be subject to protection but with various levels of intensity in different parts of it. The forest fund of Angara, subtaiga forest steppe of Middle Siberia, Altai-Sayanskiy highland, Altai-Sayanskiy highland forest steppe regions should be protected on the whole area. Application of prescribed fires is relevant in the subzone of South taiga, in the forest steppe zone as well as in the submontane and lowland taiga belts. Fire-use fires are admissible on limited areas in the subzones of Middle and North taiga.

  7. Variable effects of climate on forest growth in relation to climate extremes, disturbance, and forest dynamics.

    Science.gov (United States)

    Itter, Malcolm S; Finley, Andrew O; D'Amato, Anthony W; Foster, Jane R; Bradford, John B

    2017-06-01

    Changes in the frequency, duration, and severity of climate extremes are forecast to occur under global climate change. The impacts of climate extremes on forest productivity and health remain difficult to predict due to potential interactions with disturbance events and forest dynamics-changes in forest stand composition, density, size and age structure over time. Such interactions may lead to non-linear forest growth responses to climate involving thresholds and lag effects. Understanding how forest dynamics influence growth responses to climate is particularly important given stand structure and composition can be modified through management to increase forest resistance and resilience to climate change. To inform such adaptive management, we develop a hierarchical Bayesian state space model in which climate effects on tree growth are allowed to vary over time and in relation to past climate extremes, disturbance events, and forest dynamics. The model is an important step toward integrating disturbance and forest dynamics into predictions of forest growth responses to climate extremes. We apply the model to a dendrochronology data set from forest stands of varying composition, structure, and development stage in northeastern Minnesota that have experienced extreme climate years and forest tent caterpillar defoliation events. Mean forest growth was most sensitive to water balance variables representing climatic water deficit. Forest growth responses to water deficit were partitioned into responses driven by climatic threshold exceedances and interactions with insect defoliation. Forest growth was both resistant and resilient to climate extremes with the majority of forest growth responses occurring after multiple climatic threshold exceedances across seasons and years. Interactions between climate and disturbance were observed in a subset of years with insect defoliation increasing forest growth sensitivity to water availability. Forest growth was particularly

  8. Variable effects of climate on forest growth in relation to climate extremes, disturbance, and forest dynamics

    Science.gov (United States)

    Itter, Malcolm S.; Finley, Andrew O.; D'Amato, Anthony W.; Foster, Jane R.; Bradford, John B.

    2017-01-01

    Changes in the frequency, duration, and severity of climate extremes are forecast to occur under global climate change. The impacts of climate extremes on forest productivity and health remain difficult to predict due to potential interactions with disturbance events and forest dynamics—changes in forest stand composition, density, size and age structure over time. Such interactions may lead to non-linear forest growth responses to climate involving thresholds and lag effects. Understanding how forest dynamics influence growth responses to climate is particularly important given stand structure and composition can be modified through management to increase forest resistance and resilience to climate change. To inform such adaptive management, we develop a hierarchical Bayesian state space model in which climate effects on tree growth are allowed to vary over time and in relation to past climate extremes, disturbance events, and forest dynamics. The model is an important step toward integrating disturbance and forest dynamics into predictions of forest growth responses to climate extremes. We apply the model to a dendrochronology data set from forest stands of varying composition, structure, and development stage in northeastern Minnesota that have experienced extreme climate years and forest tent caterpillar defoliation events. Mean forest growth was most sensitive to water balance variables representing climatic water deficit. Forest growth responses to water deficit were partitioned into responses driven by climatic threshold exceedances and interactions with insect defoliation. Forest growth was both resistant and resilient to climate extremes with the majority of forest growth responses occurring after multiple climatic threshold exceedances across seasons and years. Interactions between climate and disturbance were observed in a subset of years with insect defoliation increasing forest growth sensitivity to water availability. Forest growth was particularly

  9. Heterogeneous movement of insectivorous Amazonian birds through primary and secondary forest: A case study using multistate models with radiotelemetry data

    Science.gov (United States)

    Luke L. Powell; Jared D. Wolfe; Erik I. Johnson; James E. Hines; James D. Nichols; Philip C Stouffer

    2015-01-01

    Given rates of deforestation, disturbance, and secondary forest accumulation in tropical rainforests, there is a great need to quantify habitat use and movement among different habitats. This need is particularly pronounced for animals most sensitive to disturbance, such as insectivorous understory birds. Here we use multistate capture–recapture models with...

  10. Percent Forest Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — Forests provide economic and ecological value. High percentages of forest cover (FORPCT) generally indicate healthier ecosystems and cleaner surface water. More...

  11. Forest health conditions in North America

    International Nuclear Information System (INIS)

    Tkacz, Borys; Moody, Ben; Castillo, Jaime Villa; Fenn, Mark E.

    2008-01-01

    Some of the greatest forest health impacts in North America are caused by invasive forest insects and pathogens (e.g., emerald ash borer and sudden oak death in the US), by severe outbreaks of native pests (e.g., mountain pine beetle in Canada), and fires exacerbated by changing climate. Ozone and N and S pollutants continue to impact the health of forests in several regions of North America. Long-term monitoring of forest health indicators has facilitated the assessment of forest health and sustainability in North America. By linking a nationwide network of forest health plots with the more extensive forest inventory, forest health experts in the US have evaluated current trends for major forest health indicators and developed assessments of future risks. Canada and Mexico currently lack nationwide networks of forest health plots. Development and expansion of these networks is critical to effective assessment of future forest health impacts. - The forests of North America continue to face many biotic and abiotic stressors including fragmentation, fires, native and invasive pests, and air pollution

  12. Monitoring nontimber forest products using forest inventory data: an example with slippery elm bark

    Science.gov (United States)

    Jobriath S. Kauffman; Stephen P. Prisley; James L. Chamberlain

    2015-01-01

    The USDA Forest Service Forest Inventory and Analysi (FIA) program collects data on a wealth of variables related to trees in forests. Some of these trees produce nontimber forest products (NTFPs) (e.g., fruit, bark and sap) that are harvested for culinary, decorative, building, and medicinal purposes. At least 11 tree species inventoried by FIA are valued for their...

  13. Taboos and forest governance: informal protection of hot spot dry forest in southern Madagascar.

    Science.gov (United States)

    Tengö, Maria; Johansson, Kristin; Rakotondrasoa, Fanambinantsoa; Lundberg, Jakob; Andriamaherilala, Jean-Aimé; Rakotoarisoa, Jean-Aimé; Elmqvist, Thomas

    2007-12-01

    In the dry forest of southern Madagascar, a region of global conservation priority, formally protected areas are nearly totally absent. We illustrate how the continued existence of unique forest habitats in the Androy region is directly dependent on informal institutions, taboos, regulating human behavior. Qualitative interviews to map and analyze the social mechanisms underlying forest protection have been combined with vegetation analyses of species diversity and composition. Of 188 forest patches, 93% were classified as protected, and in Southern Androy all remaining forest patches larger than 5 ha were protected. Eight different types of forests, with a gradient of social fencing from open access to almost complete entry prohibitions, were identified. Transgressions were well enforced with strong sanctions of significant economic as well as religious importance. Analyses of species diversity between protected and unprotected forests were complicated because of size differences and access restrictions. However, since, for example, in southern Androy >90% of the total remaining forest cover is protected through taboos, these informal institutions represent an important, and presently the only, mechanism for conservation of the highly endemic forest species. We conclude that social aspects, such as local beliefs and legitimate sanctioning systems, need to be analyzed and incorporated along with biodiversity studies for successful conservation.

  14. Acceleration and novelty: community restoration speeds recovery and transforms species composition in Andean cloud forest.

    Science.gov (United States)

    Wilson, Sarah Jane; Rhemtulla, Jeanine M

    2016-01-01

    Community-based tropical forest restoration projects, often promoted as a win-win solution for local communities and the environment, have increased dramatically in number in the past decade. Many such projects are underway in Andean cloud forests, which, given their extremely high biodiversity and history of extensive clearing, are understudied. This study investigates the efficacy of community-based tree-planting projects to accelerate cloud forest recovery, as compared to unassisted natural regeneration. This study takes place in northwest Andean Ecuador, where the majority of the original, highly diverse cloud forests have been cleared, in five communities that initiated tree-planting projects to restore forests in 2003. In 2011, we identified tree species along transects in planted forests (n = 5), naturally regenerating forests (n = 5), and primary forests (n = 5). We also surveyed 120 households about their restoration methods, tree preferences, and forest uses. We found that tree diversity was higher in planted than in unplanted secondary forest, but both were less diverse than primary forests. Ordination analysis showed that all three forests had distinct species compositions, although planted forests shared more species with primary forests than did unplanted forests. Planted forests also contained more animal-dispersed species in both the planted canopy and in the unplanted, regenerating understory than unplanted forests, and contained the highest proportion of species with use value for local people. While restoring forest increased biodiversity and accelerated forest recovery, restored forests may also represent novel ecosystems that are distinct from the region's previous ecosystems and, given their usefulness to people, are likely to be more common in the future.

  15. Post-Fire Restoration Plan for Sustainable Forest Management in South Korea

    Directory of Open Access Journals (Sweden)

    Soung-Ryoul Ryu

    2017-05-01

    Full Text Available This review was to determine a standard post-fire restoration strategy for use in South Korea according to the magnitude of the damage and the condition of the affected site. The government has strongly enforced reforestation in deforested areas as well as fire prevention and suppression since the 1960s. These efforts have successfully recovered dense even-aged forests over the last five decades. However, high fuel loading and the homogeneous structure have made forests vulnerable to large fires. In recent years, large forest fires have occurred in the eastern coastal region of Korea. Forest fires can significantly influence the economic and social activities of the residents of such affected forest regions. Burned areas may require urgent and long-term restoration strategies, depending on the condition of the affected site. Erosion control is the most important component of an urgent restoration and should be completed before a rainy season to prevent secondary damage such as landslides and sediment runoff in burned areas. Long-term restoration is necessary to renew forest functions such as timber production, water conservation, ecosystem conservation, and recreation for residents. Sound restoration for burned areas is critical for restoring healthy ecological functions of forests and providing economic incentives to local residents.

  16. Forest bioenergy or forest carbon? Assessing trade-offs in greenhouse gas mitigation with wood-based fuels.

    Science.gov (United States)

    McKechnie, Jon; Colombo, Steve; Chen, Jiaxin; Mabee, Warren; MacLean, Heather L

    2011-01-15

    The potential of forest-based bioenergy to reduce greenhouse gas (GHG) emissions when displacing fossil-based energy must be balanced with forest carbon implications related to biomass harvest. We integrate life cycle assessment (LCA) and forest carbon analysis to assess total GHG emissions of forest bioenergy over time. Application of the method to case studies of wood pellet and ethanol production from forest biomass reveals a substantial reduction in forest carbon due to bioenergy production. For all cases, harvest-related forest carbon reductions and associated GHG emissions initially exceed avoided fossil fuel-related emissions, temporarily increasing overall emissions. In the long term, electricity generation from pellets reduces overall emissions relative to coal, although forest carbon losses delay net GHG mitigation by 16-38 years, depending on biomass source (harvest residues/standing trees). Ethanol produced from standing trees increases overall emissions throughout 100 years of continuous production: ethanol from residues achieves reductions after a 74 year delay. Forest carbon more significantly affects bioenergy emissions when biomass is sourced from standing trees compared to residues and when less GHG-intensive fuels are displaced. In all cases, forest carbon dynamics are significant. Although study results are not generalizable to all forests, we suggest the integrated LCA/forest carbon approach be undertaken for bioenergy studies.

  17. A Comparative Study of the Soil Fauna in forests and cultivated land on sandy soils in Suriname

    NARCIS (Netherlands)

    Drift, van der J.

    1963-01-01

    1. In the coastal area of Suriname the soil and surface fauna were studied in various types of agricultural land, and compared with the fauna in the adjacent forests. 2. In primeval forest the soil macroarthropods are less numerous than in secondary forest (Formicidae excluded). They range generally

  18. Variation of biomass and carbon pools with forest type in temperate forests of Kashmir Himalaya, India.

    Science.gov (United States)

    Dar, Javid Ahmad; Sundarapandian, Somaiah

    2015-02-01

    An accurate characterization of tree, understory, deadwood, floor litter, and soil organic carbon (SOC) pools in temperate forest ecosystems is important to estimate their contribution to global carbon (C) stocks. However, this information on temperate forests of the Himalayas is lacking and fragmented. In this study, we measured C stocks of tree (aboveground and belowground biomass), understory (shrubs and herbaceous), deadwood (standing and fallen trees and stumps), floor litter, and soil from 111 plots of 50 m × 50 m each, in seven forest types: Populus deltoides (PD), Juglans regia (JR), Cedrus deodara (CD), Pinus wallichiana (PW), mixed coniferous (MC), Abies pindrow (AP), and Betula utilis (BU) in temperate forests of Kashmir Himalaya, India. The main objective of the present study is to quantify the ecosystem C pool in these seven forest types. The results showed that the tree biomass ranged from 100.8 Mg ha(-1) in BU forest to 294.8 Mg ha(-1) for the AP forest. The understory biomass ranged from 0.16 Mg ha(-1) in PD forest to 2.36 Mg ha(-1) in PW forest. Deadwood biomass ranged from 1.5 Mg ha(-1) in PD forest to 14.9 Mg ha(-1) for the AP forest, whereas forest floor litter ranged from 2.5 Mg ha(-1) in BU and JR forests to 3.1 Mg ha(-1) in MC forest. The total ecosystem carbon stocks varied from 112.5 to 205.7 Mg C ha(-1) across all the forest types. The C stocks of tree, understory, deadwood, litter, and soil ranged from 45.4 to 135.6, 0.08 to 1.18, 0.7 to 6.8, 1.1 to 1.4, and 39.1-91.4 Mg ha(-1), respectively, which accounted for 61.3, 0.2, 1.4, 0.8, and 36.3 % of the total carbon stock. BU forest accounted 65 % from soil C and 35 % from biomass, whereas PD forest contributed only 26 % from soil C and 74 % from biomass. Of the total C stock in the 0-30-cm soil, about 55 % was stored in the upper 0-10 cm. Soil C stocks in BU forest were significantly higher than those in other forests. The variability of C pools of different ecosystem components is

  19. Proceedings of the California Forest Soils Council Conference on Forest Soils Biology and Forest Management

    Science.gov (United States)

    Robert F. Powers; Donald L. Hauxwell; Gary M. Nakamura

    2000-01-01

    Biotic properties of forest soil are the linkages connecting forest vegetation with an inert rooting medium to create a dynamic, functioning ecosystem. But despite the significance of these properties, managers have little awareness of the biotic world beneath their feet. Much of our working knowledge of soil biology seems anchored in myth and misunderstanding. To...

  20. How to restore dry forest ecosystems

    OpenAIRE

    Nalvarte, Jaime

    2012-01-01

    AIDER is a Peruvian non-governmental organization working since 1992 on forest management activities, watershed management and urban forest management on tropical humid and dry forest at a national level. AIDER and the José Ignacio Távara Pasapera rural community have been working on dry forest management and recovery since 1992. This paper summarizes the activity of AIDER in the dry forests for the purpose of recovering degraded forest areas and conserve existing forests by developing sustai...

  1. Forests growing under dry conditions have higher hydrological resilience to drought than do more humid forests.

    Science.gov (United States)

    Helman, David; Lensky, Itamar M; Yakir, Dan; Osem, Yagil

    2017-07-01

    More frequent and intense droughts are projected during the next century, potentially changing the hydrological balances in many forested catchments. Although the impacts of droughts on forest functionality have been vastly studied, little attention has been given to studying the effect of droughts on forest hydrology. Here, we use the Budyko framework and two recently introduced Budyko metrics (deviation and elasticity) to study the changes in the water yields (rainfall minus evapotranspiration) of forested catchments following a climatic drought (2006-2010) in pine forests distributed along a rainfall gradient (P = 280-820 mm yr -1 ) in the Eastern Mediterranean (aridity factor = 0.17-0.56). We use a satellite-based model and meteorological information to calculate the Budyko metrics. The relative water yield ranged from 48% to 8% (from the rainfall) in humid to dry forests and was mainly associated with rainfall amount (increasing with increased rainfall amount) and bedrock type (higher on hard bedrocks). Forest elasticity was larger in forests growing under drier conditions, implying that drier forests have more predictable responses to drought, according to the Budyko framework, compared to forests growing under more humid conditions. In this context, younger forests were shown more elastic than older forests. Dynamic deviation, which is defined as the water yield departure from the Budyko curve, was positive in all forests (i.e., less-than-expected water yields according to Budyko's curve), increasing with drought severity, suggesting lower hydrological resistance to drought in forests suffering from larger rainfall reductions. However, the dynamic deviation significantly decreased in forests that experienced relatively cooler conditions during the drought period. Our results suggest that forests growing under permanent dry conditions might develop a range of hydrological and eco-physiological adjustments to drought leading to higher hydrological

  2. Ghana's high forests

    OpenAIRE

    Oduro, K.A.

    2016-01-01

    Deforestation and forest degradation in the tropics have been receiving both scientific and political attention in recent decades due to its impacts on the environment and on human livelihoods. In Ghana, the continuous decline of forest resources and the high demand for timber have raised stakeholders concerns about the future timber production prospects in the country. The principal drivers of deforestation and forest degradation in Ghana are agricultural expansion (50%), wood harvesting (35...

  3. Non-timber forest products in sustainable forest management

    Science.gov (United States)

    James L. Chamberlain; A.L. Hammett; Philip A. Araman

    2001-01-01

    The forests of Southern United States are the source of many non-timber forest products (NTFPs). The collection, trade and use of these products have been important to rural economies since Europeans settled in this country. At the same time the plants from which these products originate are crucial to healthy ecosystems. Over the last decade, the market demand and the...

  4. Forest owners' timber sales satisfaction

    International Nuclear Information System (INIS)

    Pammo, R.; Ripatti, P.

    2003-01-01

    The TTS Institute has carried out a study concerning forest owners' timber sales. The material was collected in 2002 via a mail inquiry that targeted forest owners who sold timber during the years 1997-1999 and 1999-2002. Three quarters of the forest owners sold timber to the same timber buying company during both periods of 1997-1999 and 1999-2002. The most important reasons for selling to the same buyer were that they purchased all timber assortments, reliability and good timber price. Mainly the same reasons also applied when changing the timber buying company. The most sensitive groups to changing timber buyer were 60-69 year old, entrepreneurs, men, and owners of forest holdings between 20-29 hectares, owners of inherited forests and joint forest ownerships. The forest owners assessed the timber buying company's operations and its staff on the basis of the last timber sale. The forest owners gave best values for the timber buyer's reliability, the purchase of all timber assortments and the timber buyers' reputation. The worst values were given for cross-cutting and response to complaints. No less than 95 percent of forest owners were prepared to recommend their timber trade partner to acquaintances, friends or other forest owners. Yet only half of the forest owners recognized that their last timber sale experience would not affect which company will be selected for the nest timber sale process

  5. Forest owners as fuelwood sellers

    International Nuclear Information System (INIS)

    Ripatti, P.

    2003-01-01

    Background features, goals of forest ownership, and forestry behaviour of forest owners who sell fuelwood are considered. The study is based on a sample of 4819 forest holdings collected by mail-inquiry in the 1999. The fuelwood assortments have not been segmented in the data, but fuelwood rerers to chopped firewood, poles, split firewood and chips sold during the period 1994-98. Also, the data does not bring out whether the forest owner has sold his or hers fuelwood straight to the end-user or to a professional trading merchant. The amount of forest owners who sold fuelwood at least once in the years 1994-98 was 33 000, i.e., 11 per cent of all private forest owners. The average sale quantity of fuelwood was 27 stacked cubic metres. The total amount sold fuelwood was 0.9 million stacked cubic metres or approximately 0.6 million solid cubic metres per year. The average size of forest holdings of forest owners who sell firewood was 59 hectares, so they clearly owned larger holdings than on average. The proportion farmers, men and owners who live in rural areas more often were also greater than on average. In addition, proportions of multiobjective, owners who underline both monetary and amenity benefits of their forest ownership, and self-employed forest owners, owners who underline timber sale revenues and self-employment opportunities in their forests, were greater than on average. As a timber sellers and as a silvicultural actors owners who sold fuelwood can be described as a self-initiating and active group of private forest owners. No less than 90 per cent of them made at least one commercial timber sale, and two-thirds at least one delivery sale in the years 1994-98. In addition, 58 per cent of forest holdings owned by fuelwood sellers carried out tending of young stands, and 60 per cent had harvested energy wood. These proportions were clearly greater than for forest holdings as an average. (orig.)

  6. The Impact of Forest Density on Forest Height Inversion Modeling from Polarimetric InSAR Data

    Directory of Open Access Journals (Sweden)

    Changcheng Wang

    2016-03-01

    Full Text Available Forest height is of great significance in analyzing the carbon cycle on a global or a local scale and in reconstructing the accurate forest underlying terrain. Major algorithms for estimating forest height, such as the three-stage inversion process, are depending on the random-volume-over-ground (RVoG model. However, the RVoG model is characterized by a lot of parameters, which influence its applicability in forest height retrieval. Forest density, as an important biophysical parameter, is one of those main influencing factors. However, its influence to the RVoG model has been ignored in relating researches. For this paper, we study the applicability of the RVoG model in forest height retrieval with different forest densities, using the simulated and real Polarimetric Interferometric SAR data. P-band ESAR datasets of the European Space Agency (ESA BioSAR 2008 campaign were selected for experiments. The test site was located in Krycklan River catchment in Northern Sweden. The experimental results show that the forest density clearly affects the inversion accuracy of forest height and ground phase. For the four selected forest stands, with the density increasing from 633 to 1827 stems/Ha, the RMSEs of inversion decrease from 4.6 m to 3.1 m. The RVoG model is not quite applicable for forest height retrieval especially in sparsely vegetated areas. We conclude that the forest stand density is positively related to the estimation accuracy of the ground phase, but negatively correlates to the ground-to-volume scattering ratio.

  7. Birds in Anthropogenic Landscapes: The Responses of Ecological Groups to Forest Loss in the Brazilian Atlantic Forest.

    Directory of Open Access Journals (Sweden)

    José Carlos Morante-Filho

    Full Text Available Habitat loss is the dominant threat to biodiversity and ecosystem functioning in terrestrial environments. In this study, we used an a priori classification of bird species based on their dependence on native forest habitats (forest-specialist and habitat generalists and specific food resources (frugivores and insectivores to evaluate their responses to forest cover reduction in landscapes in the Brazilian Atlantic Forest. From the patch-landscapes approach, we delimited 40 forest sites, and quantified the percentage of native forest within a 2 km radius around the center of each site (from 6 - 85%. At each site, we sampled birds using the point-count method. We used a null model, a generalized linear model and a four-parameter logistic model to evaluate the relationship between richness and abundance of the bird groups and the native forest amount. A piecewise model was then used to determine the threshold value for bird groups that showed nonlinear responses. The richness and abundance of the bird community as a whole were not affected by changes in forest cover in this region. However, a decrease in forest cover had a negative effect on diversity of forest-specialist, frugivorous and insectivorous birds, and a positive effect on generalist birds. The species richness and abundance of all ecological groups were nonlinearly related to forest reduction and showed similar threshold values, i.e., there were abrupt changes in individuals and species numbers when forest amount was less than approximately 50%. Forest sites within landscapes with forest cover that was less than 50% contained a different bird species composition than more extensively forested sites and had fewer forest-specialist species and higher beta-diversity. Our study demonstrated the pervasive effect of forest reduction on bird communities in one of the most important hotspots for bird conservation and shows that many vulnerable species require extensive forest cover to persist.

  8. Birds in Anthropogenic Landscapes: The Responses of Ecological Groups to Forest Loss in the Brazilian Atlantic Forest.

    Science.gov (United States)

    Morante-Filho, José Carlos; Faria, Deborah; Mariano-Neto, Eduardo; Rhodes, Jonathan

    2015-01-01

    Habitat loss is the dominant threat to biodiversity and ecosystem functioning in terrestrial environments. In this study, we used an a priori classification of bird species based on their dependence on native forest habitats (forest-specialist and habitat generalists) and specific food resources (frugivores and insectivores) to evaluate their responses to forest cover reduction in landscapes in the Brazilian Atlantic Forest. From the patch-landscapes approach, we delimited 40 forest sites, and quantified the percentage of native forest within a 2 km radius around the center of each site (from 6 - 85%). At each site, we sampled birds using the point-count method. We used a null model, a generalized linear model and a four-parameter logistic model to evaluate the relationship between richness and abundance of the bird groups and the native forest amount. A piecewise model was then used to determine the threshold value for bird groups that showed nonlinear responses. The richness and abundance of the bird community as a whole were not affected by changes in forest cover in this region. However, a decrease in forest cover had a negative effect on diversity of forest-specialist, frugivorous and insectivorous birds, and a positive effect on generalist birds. The species richness and abundance of all ecological groups were nonlinearly related to forest reduction and showed similar threshold values, i.e., there were abrupt changes in individuals and species numbers when forest amount was less than approximately 50%. Forest sites within landscapes with forest cover that was less than 50% contained a different bird species composition than more extensively forested sites and had fewer forest-specialist species and higher beta-diversity. Our study demonstrated the pervasive effect of forest reduction on bird communities in one of the most important hotspots for bird conservation and shows that many vulnerable species require extensive forest cover to persist.

  9. Forest management in India. Local versus state control of forest resources

    Energy Technology Data Exchange (ETDEWEB)

    Wilk, J

    1998-12-31

    Degradation and substantial losses to India`s forests have prompted a change in existing forestry management strategy. The new approach includes recognition of local participation in forestry management schemes but state control over most decisions is still dominant. Seen in terms of a common property resource system, India`s forests lack many of the factors usually considered inherent to successful management programs. Though India`s latest Forest Act affords more local involvement in forestry management, there continues to be an apparent lack of rights for local management groups over decision-making and the resource itself. Can this system enable the required balance between state and local management of India`s forests? 24 refs, 1 tab

  10. Forest management in India. Local versus state control of forest resources

    Energy Technology Data Exchange (ETDEWEB)

    Wilk, J.

    1997-12-31

    Degradation and substantial losses to India`s forests have prompted a change in existing forestry management strategy. The new approach includes recognition of local participation in forestry management schemes but state control over most decisions is still dominant. Seen in terms of a common property resource system, India`s forests lack many of the factors usually considered inherent to successful management programs. Though India`s latest Forest Act affords more local involvement in forestry management, there continues to be an apparent lack of rights for local management groups over decision-making and the resource itself. Can this system enable the required balance between state and local management of India`s forests? 24 refs, 1 tab

  11. Adaptation and mitigation options for forests and forest management in a changing climate

    NARCIS (Netherlands)

    Johnston, M.; Lindner, M.; Parotta, J.; Giessen, L.

    2012-01-01

    Climate change is now accepted as an important issue for forests and forest management around the world. Climate change will affect forests' ability to provide ecosystem goods and services on which human communities depend: biodiversity, carbon sequestration, regulation of water quality and

  12. Visualizing the Forest in a Boreal Forest Landscape—The Perspective of Swedish Municipal Comprehensive Planning

    Directory of Open Access Journals (Sweden)

    Camilla Thellbro

    2017-05-01

    Full Text Available At the international policy level, there is a clear link between access to information about forests and the work towards sustainable land use. However, involving forests in planning for sustainable development (SuD at the Swedish local level, by means of municipal comprehensive planning (MCP, is complicated by sector structure and legislation. Currently, there is a gap or hole in the MCP process when it comes to use and access to knowledge about forest conditions and forest land use. This hole limits the possibilities to formulate well-informed municipal visions and goals for sustainable forest land use as well as for overall SuD. Here we introduce an approach for compilation and presentation of geographic information to increase the preconditions for integrating forest information into Swedish MCP. We produce information about forest ownership patterns and forest conditions in terms of age and significant ecological and social values in forests for a case study municipality. We conclude that it is possible to effectively compile geographic and forest-related information to fill the hole in the municipal land use map. Through our approach, MCP could be strengthened as a tool for overall land use planning and hence as a base in SuD planning.

  13. Leaching of nitrate from temperate forests - effects of air pollution and forest management

    DEFF Research Database (Denmark)

    Gundersen, Per; Schmidt, Inger Kappel; Raulund-Rasmussen, Karsten

    2006-01-01

    deposition (> 8-10 kg ha(-1) a(-1)). We synthesized the current understanding of factors controlling N leaching in relation to three primary causes of N cycle disruption: (i) Increased N input (air pollution, fertilization, N-2 fixing plants). In European forests, elevated N deposition explains approximately...... half of the variability in N leaching, some of the remaining variability could be explained by differences in N availability or "N status". For coniferous forests, needle N content above 1.4% and (or) forest floor C:N ratio lower than 25 were thresholds for elevated nitrate leaching. At adjacent sites...... conifer forests receive higher N deposition and exhibit higher nitrate loss than deciduous forests; an exception is alder that shows substantial nitrate leaching through N fixation input. Fertilization with N poses limited risk to water quality, when applied to N-limited forests. (ii) Reduced plant uptake...

  14. Secondary forest succession and tree planting at the Laguna Cartagena and Cabo Rojo wildlife refuges in southwestern Puerto Rico

    Science.gov (United States)

    P.L. Weaver; J.J. Schwagerl

    2008-01-01

    Secondary forest succession and tree planting are contributing to the recovery of the Cabo Rojo refuge (Headquarters and Salinas tracts) and Laguna Cartagena refuge (Lagoon and Tinaja tracts) of the Fish and Wildlife Service in southwestern Puerto Rico. About 80 species, mainly natives, have been planted on 44 ha during the past 25 y in an effort to reduce the threat...

  15. Effect of industrial pollution on behaviour of radionuclides in forest ecosystems; Forests ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Outola, I. (STUK-Radiation and Nuclear Safety Authority, Helsinki (Finland))

    2009-06-15

    To investigate how and to what extent industrial pollution affects the behaviour of radionuclides in forest ecosystems, studies were conducted in the vicinity of two Cu-Ni smelters: one in a pine forest at Harjavalta, Finland, and the other in a spruce forest at Monchegorsk, Russia. Industrial pollution had significant effects on the distribution of radionuclides in soil horizons. With the increase in pollution towards the smelter, radionuclides were accumulated more in the litter layer because the conversion of litter into organic material was diminished due to inhibited microbial activity. As a result, the organic layer contained less radionuclides towards the smelter. The effect of industrial pollution on soil-to-plant transfer was complex. The effect varied with radionuclide, plant species and also on forest type. For 137Cs, soil-to-plant transfer decreased significantly as industrial pollution increased in pine forest, whereas the decrease was less pronounced in spruce forest. Root uptake of 239,240Pu by plants is extremely small, and plant contamination by resuspended soil is an important factor in considering the soil-to-plant transfer of this radionuclide. In spruce forest, more plutonium was transferred into plants when pollution load increased due to resuspension of litter particles, which contained higher concentrations of plutonium in the vicinity of the smelter. Soil-to-plant transfer of plutonium was much less affected in pine forests contaminated with industrial pollution. This research clearly indicates the sensitivity of the northern forest ecosystem to inorganic pollutants. Prediction of the soil-to-plant transfer of radionuclides in industrially polluted forest ecosystems requires detailed information on the total deposition, vertical distribution of radionuclides in soil, soil microbiological factors, other soil parameters as well as the rooting depths of the plants. (LN)

  16. Price of forest chips decreasing

    International Nuclear Information System (INIS)

    Hakkila, P.

    2001-01-01

    Use of forest chips was studied in 1999 in the national Puuenergia (Wood Energy) research program. Wood combusting heating plants were questioned about are the main reasons restricting the increment of the use of forest chips. Heating plants, which did not use forest chips at all or which used less than 250 m 3 (625 bulk- m 3 ) in 1999 were excluded. The main restrictions for additional use of forest chips were: too high price of forest chips; lack of suppliers and/or uncertainty of deliveries; technical problems of reception and processing of forest chips; insufficiency of boiler output especially in winter; and unsatisfactory quality of chips. The price of forest chips becomes relatively high because wood biomass used for production of forest chips has to be collected from wide area. Heavy equipment has to be used even though small fragments of wood are processed, which increases the price of chips. It is essential for forest chips that the costs can be pressed down because competition with fossil fuels, peat and industrial wood residues is hard. Low market price leads to the situation in which forest owner gets no price of the raw material, the entrepreneurs operate at the limit of profitability and renovation of machinery is difficult, and forest chips suppliers have to sell the chips at prime costs. Price of forest chips has decreased significantly during the past decade. Nominal price of forest chips is now lower than two decades ago. The real price of chips has decreased even more than the nominal price, 35% during the past decade and 20% during the last five years. Chips, made of small diameter wood, are expensive because the price includes the felling costs and harvesting is carried out at thinning lots. Price is especially high if chips are made of delimbed small diameter wood due to increased the work and reduced amount of chips. The price of logging residue chips is most profitable because cutting does not cause additional costs. Recovery of chips is

  17. forest birds in the Ongoye Forest Reserve, KwaZulu-Natal

    African Journals Online (AJOL)

    1997-02-03

    Feb 3, 1997 ... Amazonian Peru to support the edge-effect principle. By choosing a large forest and ... rodents, anurans; see Laurance 1990) is overdue. We also agree with .... Edge and other effects of isolation on Amazon forest fragments.

  18. Conservation of forest birds: evidence of a shifting baseline in community structure.

    Science.gov (United States)

    Rittenhouse, Chadwick D; Pidgeon, Anna M; Albright, Thomas P; Culbert, Patrick D; Clayton, Murray K; Flather, Curtis H; Huang, Chengquan; Masek, Jeffrey G; Stewart, Susan I; Radeloff, Volker C

    2010-08-02

    Quantifying changes in forest bird diversity is an essential task for developing effective conservation actions. When subtle changes in diversity accumulate over time, annual comparisons may offer an incomplete perspective of changes in diversity. In this case, progressive change, the comparison of changes in diversity from a baseline condition, may offer greater insight because changes in diversity are assessed over longer periods of times. Our objectives were to determine how forest bird diversity has changed over time and whether those changes were associated with forest disturbance. We used North American Breeding Bird Survey data, a time series of Landsat images classified with respect to land cover change, and mixed-effects models to associate changes in forest bird community structure with forest disturbance, latitude, and longitude in the conterminous United States for the years 1985 to 2006. We document a significant divergence from the baseline structure for all birds of similar migratory habit and nest location, and all forest birds as a group from 1985 to 2006. Unexpectedly, decreases in progressive similarity resulted from small changes in richness (<1 species per route for the 22-year study period) and modest losses in abundance (-28.7 - -10.2 individuals per route) that varied by migratory habit and nest location. Forest disturbance increased progressive similarity for Neotropical migrants, permanent residents, ground nesting, and cavity nesting species. We also documented highest progressive similarity in the eastern United States. Contemporary forest bird community structure is changing rapidly over a relatively short period of time (e.g., approximately 22 years). Forest disturbance and forest regeneration are primary factors associated with contemporary forest bird community structure, longitude and latitude are secondary factors, and forest loss is a tertiary factor. Importantly, these findings suggest some regions of the United States may

  19. Land-use poverty traps identified in shifting cultivation systems shape long-term tropical forest cover

    Science.gov (United States)

    Coomes, Oliver T.; Takasaki, Yoshito; Rhemtulla, Jeanine M.

    2011-01-01

    In this article we illustrate how fine-grained longitudinal analyses of land holding and land use among forest peasant households in an Amazonian village can enrich our understanding of the poverty/land cover nexus. We examine the dynamic links in shifting cultivation systems among asset poverty, land use, and land cover in a community where poverty is persistent and primary forests have been replaced over time—with community enclosure—by secondary forests (i.e., fallows), orchards, and crop land. Land cover change is assessed using aerial photographs/satellite imagery from 1965 to 2007. Household and plot level data are used to track land holding, portfolios, and use as well as land cover over the past 30 y, with particular attention to forest status (type and age). Our analyses find evidence for two important types of “land-use” poverty traps—a “subsistence crop” trap and a “short fallow” trap—and indicate that the initial conditions of land holding by forest peasants have long-term effects on future forest cover and household welfare. These findings suggest a new mechanism driving poverty traps: insufficient initial land holdings induce land use patterns that trap households in low agricultural productivity. Path dependency in the evolution of household land portfolios and land use strategies strongly influences not only the wellbeing of forest people but also the dynamics of tropical deforestation and secondary forest regrowth. PMID:21873179

  20. Forest pathology and entomology at Fort Valley Experimental Forest

    Science.gov (United States)

    Brian W. Geils

    2008-01-01

    Forest pathology and entomology have been researched at Fort Valley Experimental Forest throughout its history. The pathogens and insects of particular interest are mistletoes, decay and canker fungi, rusts, bark beetles, and various defoliators. Studies on life history, biotic interactions, impacts, and control have been published and incorporated into silvicultural...

  1. Divergence of dominant factors in soil microbial communities and functions in forest ecosystems along a climatic gradient

    Science.gov (United States)

    Xu, Zhiwei; Yu, Guirui; Zhang, Xinyu; He, Nianpeng; Wang, Qiufeng; Wang, Shengzhong; Xu, Xiaofeng; Wang, Ruili; Zhao, Ning

    2018-03-01

    Soil microorganisms play an important role in regulating nutrient cycling in terrestrial ecosystems. Most of the studies conducted thus far have been confined to a single forest biome or have focused on one or two controlling factors, and few have dealt with the integrated effects of climate, vegetation, and soil substrate availability on soil microbial communities and functions among different forests. In this study, we used phospholipid-derived fatty acid (PLFA) analysis to investigate soil microbial community structure and extracellular enzymatic activities to evaluate the functional potential of soil microbes of different types of forests in three different climatic zones along the north-south transect in eastern China (NSTEC). Both climate and forest type had significant effects on soil enzyme activities and microbial communities with considerable interactive effects. Except for soil acid phosphatase (AP), the other three enzyme activities were much higher in the warm temperate zone than in the temperate and the subtropical climate zones. The soil total PLFAs and bacteria were much higher in the temperate zone than in the warm temperate and the subtropical zones. The soil β-glucosidase (BG) and N-acetylglucosaminidase (NAG) activities were highest in the coniferous forest. Except for the soil fungi and fungi-bacteria (F/B), the different groups of microbial PLFAs were much higher in the conifer broad-leaved mixed forests than in the coniferous forests and the broad-leaved forests. In general, soil enzyme activities and microbial PLFAs were higher in primary forests than in secondary forests in temperate and warm temperate regions. In the subtropical region, soil enzyme activities were lower in the primary forests than in the secondary forests and microbial PLFAs did not differ significantly between primary and secondary forests. Different compositions of the tree species may cause variations in soil microbial communities and enzyme activities. Our results

  2. Forest disturbance by an ecosystem engineer: beaver in boreal forest landscapes

    OpenAIRE

    Nummi, Petri; Kuuluvainen, Timo

    2013-01-01

    Natural disturbances are important for forest ecosystem dynamics and maintenance of biodiversity. In the boreal forest, large-scale disturbances such as wildfires and windstorms have been emphasized, while disturbance agents acting at smaller scales have received less attention. Especially in Europe beavers have long been neglected as forest disturbance agents because they were extirpated from most of their range centuries ago. However, now they are returning to many parts of their former dis...

  3. Advances of Air Pollution Science: From Forest Decline to Multiple-Stress Effects on Forest Ecosystem Services

    Science.gov (United States)

    E. Paoletti; M. Schaub; R. Matyssek; G. Wieser; A. Augustaitis; A. M. Bastrup-Birk; A. Bytnerowicz; M. S. Gunthardt-Goerg; G. Muller-Starck; Y. Serengil

    2010-01-01

    Over the past 20 years, the focus of forest science on air pollution has moved from forest decline to a holistic framework of forest health, and from the effects on forest production to the ecosystem services provided by forest ecosystems. Hence, future research should focus on the interacting factorial impacts and resulting antagonistic and synergistic responses of...

  4. Climatology and forest decay - stresses caused by dry periods

    International Nuclear Information System (INIS)

    Havlik, D.

    1991-01-01

    In the discussion of forest decline in the Eighties, stresses due to dry weather is often named as a secondary cause. The concept of 'climatological dry periods' is introduced in this article and applied to records for the Basel and Aachen regions. The time distribution of dry periods of different length and different water deficiency (40 mm, 60 mm, 100 mm) is analyzed. In the case of the Basel data, the dry periods are related to the 'forest damage caused by draught' recorded for the Basel region since 1930. The results support the theory that increasingly larger and more frequent dry periods with water shortage have contributed significantly to forest damage in the last 15 years. Apart from the 'dry stress' itself, also the enhanced production of photooxidants is a damaging mechanism. (orig.) [de

  5. African savanna-forest boundary dynamics

    DEFF Research Database (Denmark)

    Cuni Sanchez, Aida; White, Lee J. T.; Calders, Kim

    2016-01-01

    -term inventory plots we quantify changes in vegetation structure, above-ground biomass (AGB) and biodiversity of trees ≥10 cm diameter over 20 years for five vegetation types: savanna; colonising forest (F1), monodominant Okoume forest (F2); young Marantaceae forest (F3); and mixed Marantaceae forest (F4...... substantially in structure, AGB or diversity. Critically, the stability of the F3 stage implies that this stage may be maintained for long periods. Soil carbon was low, and did not show a successional gradient as for AGB and diversity. TLS vertical plant profiles showed distinctive differences amongst...... the vegetation types, indicating that this technique can improve ecological understanding. We highlight two points: (i) as forest colonises, changes in biodiversity are much slower than changes in forest structure or AGB; and (ii) all forest types store substantial quantities of carbon. Multidecadal monitoring...

  6. Are forest disturbances amplifying or canceling out climate change-induced productivity changes in European forests?

    Science.gov (United States)

    Reyer, Christopher P. O.; Bathgate, Stephen; Blennow, Kristina; Borges, Jose G.; Bugmann, Harald; Delzon, Sylvain; Faias, Sonia P.; Garcia-Gonzalo, Jordi; Gardiner, Barry; Gonzalez-Olabarria, Jose Ramon; Gracia, Carlos; Guerra Hernández, Juan; Kellomäki, Seppo; Kramer, Koen; Lexer, Manfred J.; Lindner, Marcus; van der Maaten, Ernst; Maroschek, Michael; Muys, Bart; Nicoll, Bruce; Palahi, Marc; Palma, João HN; Paulo, Joana A.; Peltola, Heli; Pukkala, Timo; Rammer, Werner; Ray, Duncan; Sabaté, Santiago; Schelhaas, Mart-Jan; Seidl, Rupert; Temperli, Christian; Tomé, Margarida; Yousefpour, Rasoul; Zimmermann, Niklaus E.; Hanewinkel, Marc

    2017-03-01

    Recent studies projecting future climate change impacts on forests mainly consider either the effects of climate change on productivity or on disturbances. However, productivity and disturbances are intrinsically linked because 1) disturbances directly affect forest productivity (e.g. via a reduction in leaf area, growing stock or resource-use efficiency), and 2) disturbance susceptibility is often coupled to a certain development phase of the forest with productivity determining the time a forest is in this specific phase of susceptibility. The objective of this paper is to provide an overview of forest productivity changes in different forest regions in Europe under climate change, and partition these changes into effects induced by climate change alone and by climate change and disturbances. We present projections of climate change impacts on forest productivity from state-of-the-art forest models that dynamically simulate forest productivity and the effects of the main European disturbance agents (fire, storm, insects), driven by the same climate scenario in seven forest case studies along a large climatic gradient throughout Europe. Our study shows that, in most cases, including disturbances in the simulations exaggerate ongoing productivity declines or cancel out productivity gains in response to climate change. In fewer cases, disturbances also increase productivity or buffer climate-change induced productivity losses, e.g. because low severity fires can alleviate resource competition and increase fertilization. Even though our results cannot simply be extrapolated to other types of forests and disturbances, we argue that it is necessary to interpret climate change-induced productivity and disturbance changes jointly to capture the full range of climate change impacts on forests and to plan adaptation measures.

  7. Are forest disturbances amplifying or canceling out climate change-induced productivity changes in European forests?

    Science.gov (United States)

    Reyer, Christopher P O; Bathgate, Stephen; Blennow, Kristina; Borges, Jose G; Bugmann, Harald; Delzon, Sylvain; Faias, Sonia P; Garcia-Gonzalo, Jordi; Gardiner, Barry; Gonzalez-Olabarria, Jose Ramon; Gracia, Carlos; Hernández, Juan Guerra; Kellomäki, Seppo; Kramer, Koen; Lexer, Manfred J; Lindner, Marcus; van der Maaten, Ernst; Maroschek, Michael; Muys, Bart; Nicoll, Bruce; Palahi, Marc; Palma, João HN; Paulo, Joana A; Peltola, Heli; Pukkala, Timo; Rammer, Werner; Ray, Duncan; Sabaté, Santiago; Schelhaas, Mart-Jan; Seidl, Rupert; Temperli, Christian; Tomé, Margarida; Yousefpour, Rasoul; Zimmermann, Niklaus E; Hanewinkel, Marc

    2017-01-01

    Recent studies projecting future climate change impacts on forests mainly consider either the effects of climate change on productivity or on disturbances. However, productivity and disturbances are intrinsically linked because 1) disturbances directly affect forest productivity (e.g. via a reduction in leaf area, growing stock or resource-use efficiency), and 2) disturbance susceptibility is often coupled to a certain development phase of the forest with productivity determining the time a forest is in this specific phase of susceptibility. The objective of this paper is to provide an overview of forest productivity changes in different forest regions in Europe under climate change, and partition these changes into effects induced by climate change alone and by climate change and disturbances. We present projections of climate change impacts on forest productivity from state-of-the-art forest models that dynamically simulate forest productivity and the effects of the main European disturbance agents (fire, storm, insects), driven by the same climate scenario in seven forest case studies along a large climatic gradient throughout Europe. Our study shows that, in most cases, including disturbances in the simulations exaggerate ongoing productivity declines or cancel out productivity gains in response to climate change. In fewer cases, disturbances also increase productivity or buffer climate-change induced productivity losses, e.g. because low severity fires can alleviate resource competition and increase fertilization. Even though our results cannot simply be extrapolated to other types of forests and disturbances, we argue that it is necessary to interpret climate change-induced productivity and disturbance changes jointly to capture the full range of climate change impacts on forests and to plan adaptation measures. PMID:28855959

  8. Carabid beetle assemblages in three environments in the Araucaria humid forest of southern Brazil

    Directory of Open Access Journals (Sweden)

    Rodrigo Milton Moraes

    2013-03-01

    Full Text Available Carabid beetle assemblages in three environments in the Araucaria humid forest of southern Brazil. Carabidae is composed mainly by ground-dwelling predator beetles. It is the fourth most diverse group within Coleoptera, but its diversity in the Neotropical region is understudied. Here we describe and analyze the diversity of carabid beetles in a region of subtropical rain forest dominated by Araucaria angustifolia with different landscapes. Three areas were chosen in an environmental integrity gradient: primary forests, secondary forests and old Pinus plantations. Pitfall traps were taken monthly, in a total of 14 samples per area. 1733 adult carabid beetles, belonging to 18 species, were sampled. There were differences in richness and abundance between the sampled areas. The total scores followed the same tendency: primary forests (14 species/747 individuals, secondary forests (13/631 and Pinus forests (10/355. An analysis of similarity shows differences in species composition, for both areas and seasons. Galerita lacordarei was the most abundant species for all samples and seasons. Carabid species show similar responses in accordance with habitat heterogeneity and disturbance. The abundance of Galerita lacordarei was influenced by temperature, for all sampled sites. Environmental changes affect the carabid assemblages and decrease diversity, possibly interfering in local dynamics. Seasonality patterns seem to indicate an increase in individual movement during summer, probably in search of resources. It is suggested that microhabitat patchiness is probably an important factor affecting carabid beetle diversity at small spatial scales.

  9. Productivity and Cost Analysis of Forest Harvesting Operation in Matang Mangrove Forest, Perak, Malaysia

    Directory of Open Access Journals (Sweden)

    Albert Empawi Tindit

    2017-04-01

    Full Text Available Matang Mangrove Forest is under systematic management since 1902 and still considered as the best managed mangrove forest in the world. This research was conducted to measure the time and productivity of forest harvesting operation and also to analyze the cost and revenue of mangrove forest harvesting operation at Matang mangrove forest. This project had been carried out in cooperation with Seri Sepetang Enterprise, one of the harvesting licenses in Kuala Sepetang, Perak. Data collections were taken in every station starting from standing tree until to the Kiln-Drying jetty. The data then calculated by using the formulas of productivity and cost analysis. As the result, the productivity for felling, bucking and debarking, the manual skidding using wheel-barrow and the water transportation are 1.84 tan/hour, 3.82 tan/hour and 4.64 tan/hour respectively. The cost for each operation of 9 tan log volume for felling, bucking and debarking, the manual skidding using wheel-barrow and the water transportation are RM 56.88, RM 10.80 and RM 36.72 respectively. As the revenue, the company paid RM 260 per 9 tan of log for the in-forest operation (felling, manual skidding and loading to the ship and pay RM 80 per 9 tan for the water transportation, and they gained the net profit of RM 192.32 and RM 43.28 respectively. The average of forest harvesting operation is twice operation in a day (equal with 2 x 9-ton volume of log production a day, so they will gain a double profit. In conclusion, the forest harvesting operation is sustainably managed for supplying the raw material of charcoal industries in Matang mangrove forest. Since, they work manually and spend much energy in this forest harvesting operation, so for further study it recommends to conduct the ergonomics evaluation during forest harvesting operation at Matang Mangrove Forest.

  10. Forecasting forest development through modeling based on the legacy of forest structure over the past 43 years

    Directory of Open Access Journals (Sweden)

    E.Z. Baskent

    2013-07-01

    Full Text Available Aim of study: Sustainable management of forest ecosystems requires comprehensive coverage of data to reflect both the historical legacy and the future development of forests.  This study focuses on analyzing the spatio-temporal dynamics of forests over the past 43 years to help better forecast the future development of forest under various management strategies.Area of study: The area is situated in Karaisalı district of Adana city in the southeastern corner of Turkey.Material and methods: The historical pattern from 1969 to 2012 was assessed with digital forest cover type maps, produced with high resolution aerial photo interpretation using Geographic Information Systems (GIS. The forest development over the next 120 years was forecasted using ecosystem-based multiple use forest management model (ETÇAP to understand the cause-effect relationships under various management strategies.Main results: The result showed that over the past 43 years while total forest areas decreased about 1194 ha (4%, the productive forest areas increased about 5397 ha (18% with a decrease of degraded forest (5824 ha, 20% and increase of maquis areas (2212 ha, 7%.The forecast of forest development under traditional management strategy resulted in an unsustainable forest due to broken initial age class structure, yet generated more total harvest (11% due to 88% relaxing of even timber flow constraint. While more volume could be harvested under traditional management conditions, the sustainability of future forest is significantly jeopardized.Research highlights: This result trongly implies that it is essential adopting modeling techniques to understand forest dynamics and forecast the future development comprehensively.Keywords: Forest management; simulation; optimization; forest dynamics; land use change.

  11. Estimating the aboveground biomass in an old secondary forest on limestone in the Moluccas, Indonesia

    NARCIS (Netherlands)

    Stas, Suzanne M.; Rutishauser, Ervan; Chave, Jérôme; Anten, Niels P.R.; Laumonier, Yves

    2017-01-01

    Deforestation and forest degradation are widespread in Indonesia and pose serious threats to biodiversity and other ecosystem services. The Indonesian government is implementing several Reduction of Emissions from Deforestation and Forest Degradation (REDD+) initiatives to help support the

  12. BASIC CONCEPTS AND METHODS OF RESTORATION OF NATURAL FORESTS IN EASTERN EUROPE

    Directory of Open Access Journals (Sweden)

    V. N. Korotkov

    2017-03-01

    Full Text Available The modern forest in coniferous-broadleaf (hemiboreal and broadleaf zones of Eastern Europe were formed as a result of long-term human impact. This led to the loss of natural forests and total dominance of secondary forests combined with monocultures of spruce and pine that were created in clearings, burned areas and fallow lands. The reforestation model that was common in the late XIX and first half of the XX century and that was focused on the establishment of monocultures commercially valuable coniferous tree species (spruce and pine over large areas has resulted in declining biological diversity, increasing risk of tree damage due to outbreaks of pathogens and phytophagous insects, decreasing soil fertility, worsening soil and water conservation functions of forests. When restoring the prototypes of natural forests it is necessary to be guided by the modern concepts of synecology and model reconstructions of forest cover in pre-anthropogenic period that are briefly discussed in the paper. Based on the analysis of literature and research experience the author proposes the concept of natural forest restoration that can be applied primarily to the coniferous-broadleaf and broadleaf forests. The main goal is to create multiple-aged and polydominant near-natural forest ecosystems with higher resistance to fungal diseases and outbreaks of phytophagous insects. The field of concept application is specially protected natural areas (national parks, natural parks, wildlife sanctuaries, etc., different categories of protective forests located within the zones of coniferous-broadleaf and broadleaf forests on the East European Plain. The formation of multiple-aged forests is possible when group felling and group-clear felling that largely imitate the natural gap-mosaic stand are implemented. The formation of new generations of trees is possible both due to the natural regeneration and the development of forest cultures. The article provides the full set

  13. Conserving forest biodiversity across multiple land ownerships: lessons from the Northwest Forest Plan and the Southeast Queensland Regional Forests Agreement (Australia).

    Science.gov (United States)

    C.A. McAlpine; T.A. Spies; P. Norman; A. Peterson

    2007-01-01

    As the area of the world's forests shrinks, the management of production forests is becoming increasingly paramount for biodiversity conservation. In the United States and Australia, public debate and controversy about the management of production forests during the later decades of the 20th century resulted in governments adopting sweeping top-down changes to...

  14. Forest ecosystem services: Provisioning of non-timber forest products

    Science.gov (United States)

    James L. Chamberlain; Gregory E. Frey; C. Denise Ingram; Michael G. Jacobson; Cara Meghan Starbuck Downes

    2017-01-01

    The purpose of this chapter is to describe approaches to calculate a conservative and defensible estimate of the marginal value of forests for non-timber forest products (NTFPs). 'Provisioning" is one of four categories of benefits, or services that ecosystems provide to humans and was described by the Millennium Ecosystem Assessment as 'products...

  15. Tranquilidad and hardship in the forest : livelihoods and perceptions of Camba forest dwellers in the northern Bolivian Amazon

    NARCIS (Netherlands)

    Henkemans, A.B.

    2001-01-01

    Sustainable management of tropical forests relies largely on the interest of forest dwelling people in long-term forest extraction and their capacity to prevent forest degradation by other forest users. This study discusses the role of the forest in the livelihoods and perceptions of Camba

  16. Forest Policy Scenario Analysis: Sensitivity of Songbird Community to Changes in Forest Cover Amount and Configuration

    Directory of Open Access Journals (Sweden)

    Robert S. Rempel

    2007-06-01

    Full Text Available Changes in mature forest cover amount, composition, and configuration can be of significant consequence to wildlife populations. The response of wildlife to forest patterns is of concern to forest managers because it lies at the heart of such competing approaches to forest planning as aggregated vs. dispersed harvest block layouts. In this study, we developed a species assessment framework to evaluate the outcomes of forest management scenarios on biodiversity conservation objectives. Scenarios were assessed in the context of a broad range of forest structures and patterns that would be expected to occur under natural disturbance and succession processes. Spatial habitat models were used to predict the effects of varying degrees of mature forest cover amount, composition, and configuration on habitat occupancy for a set of 13 focal songbird species. We used a spatially explicit harvest scheduling program to model forest management options and simulate future forest conditions resulting from alternative forest management scenarios, and used a process-based fire-simulation model to simulate future forest conditions resulting from natural wildfire disturbance. Spatial pattern signatures were derived for both habitat occupancy and forest conditions, and these were placed in the context of the simulated range of natural variation. Strategic policy analyses were set in the context of current Ontario forest management policies. This included use of sequential time-restricted harvest blocks (created for Woodland caribou (Rangifer tarandus conservation and delayed harvest areas (created for American marten (Martes americana atrata conservation. This approach increased the realism of the analysis, but reduced the generality of interpretations. We found that forest management options that create linear strips of old forest deviate the most from simulated natural patterns, and had the greatest negative effects on habitat occupancy, whereas policy options

  17. Economics of forest and forest carbon projects. Translating lessons learned into national REDD+ implementation

    DEFF Research Database (Denmark)

    Zaballa Romero, Mauricio Ernesto; Trærup, Sara Lærke Meltofte; Wieben, Emilie

    The financial implications of implementing a new forest management paradigm have not been well understood and have often been underestimated. Resource needs for e.g., stakeholder consultation, capacity building and addressing the political economy are seldom fully accounted for in the resource...... but also the testing of advanced market commitments as a finance option for sustainable forest management. The findings in the report underline the fact that only through sound and transparent financial information will forest projects and national forest initiatives become interesting for private...... needs estimates put forward in connection to REDD+. This report investigates the economics of implementing forest and REDD+ projects through eight case studies from Africa, Latin America and Asia, analyzing real forest and REDD+ investments. The report is part of efforts to share financial experiences...

  18. MILDLY-DAMAGED FOREST AREAS IN BOREAL FORESTS OF THE WORLD. THE ORIGIN, DEVELOPMENT, IMPOTANCE AND PROBABLE FUTURE OF THE CONCEPT OF MILDLY-DAMAGED FOREST AREAS WITH REGARD TO BOREAL FORESTS

    Directory of Open Access Journals (Sweden)

    I.V. Zhuravleva

    2016-03-01

    Full Text Available The most important environmental goals at the global level, relating to forests, are conservation of biological diversity in the natural environment of its habitat and preservation of the environmental role (especially regarding the climate of forests. Major forest areas, not fragmented by infrastructure and preserving the diversity of relationships between landscape elements, are of crucial importance for solution of both these problems. Since many decisions, concerning conservation and management, are taken at inter-regional and inter-state levels or within the framework of various international processes, it is important to have clear and uniform criteria for identification of such areas. The article deals with occurrence, development and current state of the most common concepts of allocation thereof – the concept of mildly-damaged forest areas, based on the use of remote sensing data, especially images from Landsat satellites. The article substantiates a necessity of further development and update of the concept of intact forest landscapes: unification of approaches to their identification near northern boundaries of forests, adjustment of approaches to registering impacts of forest fires in the context of global climate change and land-use practices, adaption to new public data of remote sensing of the Earth.

  19. National Forest Boundaries

    Data.gov (United States)

    Minnesota Department of Natural Resources — This theme shows the USFS national forest boundaries in the state. This data was acquired from the GIS coordinators at both the Chippewa National Forest and the...

  20. Non-timber forest products enterprises in the south: perceived distribution and implications for sustainable forest management

    Science.gov (United States)

    J.L. Chamberlain; M. Predny

    2003-01-01

    Forests of the southern United States are the source of a great diversity of flora, much of which is gathered to produce non-timber forest products (NTFPs). These products are made from resources that grow under the forest canopy as trees, herbs, shrubs, vines, moss and even lichen. They occur naturally in forests or may be cultivated under the forest canopy or in...

  1. SAR data for the analysis of forest features: current Brazilian experiences

    Directory of Open Access Journals (Sweden)

    Fábio Guimarães Gonçalves

    2007-06-01

    Full Text Available This article presents some applications of airborne polarimetric and/or interferometric microwave data to improve the knowledge of forest structures. Three airborne SAR (Synthetic Aperture Radar experiments were done in the Amazon tropical forest: (a to study the spatial distribution of very large trees (VLTs in the primary forest using local maximum filtering and a series of Markov processes; (b to model the estimation of biomass variations in primary and secondary forests; (c to analyze the retrieval timber volume over selective logging areas. Another experiment (d was to investigate the relation among SAR data and the volumetric configuration in stands of Eucalyptus sp done by an airborne SAR imaging mission in SE-Brazil. To perform the objectives (b, (c and (d we carry out regression techniques, using variables got from multipolarimetric and/or interferometric SAR attributes and biophysical parameters from the forest cover. All data from the experiments were calibrated radiometrically to extract information during digital processing, besides an exhaustive field survey which was done simultaneously to SAR imaging, to know the physiognomy/structure of forest typology and to support the models produced for each case. The results of this series of experiments show advances at the techniques to treat SAR data, focusing on models of stand architecture and forest stock density. This will be helpful to increase the regional inventory and surveying procedures of forest conversion in the Brazilian territory in the near future.

  2. SAR data for the analysis of forest features: current Brazilian experiences

    Directory of Open Access Journals (Sweden)

    Fábio Guimarães Gonçalves

    2006-12-01

    Full Text Available This article presents some applications of airborne polarimetric and/or interferometric microwave data to improve the knowledge of forest structures. Three airborne SAR (Synthetic Aperture Radar experiments were done in the Amazon tropical forest: (a to study the spatial distribution of very large trees (VLTs in the primary forest using local maximum filtering and a series of Markov processes; (b to model the estimation of biomass variations in primary and secondary forests; (c to analyze the retrieval of timber volume over selective logging areas. Another experiment (d was to investigate the relation among SAR data and the volumetric configuration in stands of Eucalyptus sp. done by an airborne SAR imaging mission in SE-Brazil. To perform the objectives (b, (c and (d we carry out regression techniques, using variables got from multipolarimetric and/or interferometric SAR attributes and biophysical parameters from the forest cover. All data from the experiments were calibrated radiometrically to extract information during digital processing, besides an exhaustive field survey which was done simultaneously to SAR imaging, to know the physiognomy/structure of forest typology and to support the models produced for each case. The results of this series of experiments show advances at the techniques to treat SAR data, focusing on models of stand architecture and forest stock density. This will be helpful to increase the regional inventory and surveying procedures of forest conversion in the Brazilian territory in the near future.

  3. Forests and Forest Cover - DCNR - State Forest Lands 2015

    Data.gov (United States)

    NSGIC Education | GIS Inventory — The state forest boundry coverage is being updated frequently. It is derived from survey descriptions and will be, and has been in certain areas, adjusted to GPS...

  4. Automatic structure classification of small proteins using random forest

    Directory of Open Access Journals (Sweden)

    Hirst Jonathan D

    2010-07-01

    Full Text Available Abstract Background Random forest, an ensemble based supervised machine learning algorithm, is used to predict the SCOP structural classification for a target structure, based on the similarity of its structural descriptors to those of a template structure with an equal number of secondary structure elements (SSEs. An initial assessment of random forest is carried out for domains consisting of three SSEs. The usability of random forest in classifying larger domains is demonstrated by applying it to domains consisting of four, five and six SSEs. Results Random forest, trained on SCOP version 1.69, achieves a predictive accuracy of up to 94% on an independent and non-overlapping test set derived from SCOP version 1.73. For classification to the SCOP Class, Fold, Super-family or Family levels, the predictive quality of the model in terms of Matthew's correlation coefficient (MCC ranged from 0.61 to 0.83. As the number of constituent SSEs increases the MCC for classification to different structural levels decreases. Conclusions The utility of random forest in classifying domains from the place-holder classes of SCOP to the true Class, Fold, Super-family or Family levels is demonstrated. Issues such as introduction of a new structural level in SCOP and the merger of singleton levels can also be addressed using random forest. A real-world scenario is mimicked by predicting the classification for those protein structures from the PDB, which are yet to be assigned to the SCOP classification hierarchy.

  5. The formation of dense understory layers in forests worldwide: consequences and implications for forest dynamics, biodiversity, and succession

    Science.gov (United States)

    Alejandro A. Royo; Walter P. Carson

    2010-01-01

    Alterations to natural herbivore and disturbance regimes often allow a select suite of forest understory plant species to dramatically spread and form persistent, mono-dominant thickets. Following their expansion, this newly established understory canopy can alter tree seedling recruitment rates and exert considerable control over the rate and direction of secondary...

  6. Higher stability in forest-atmosphere exchange observed in a structurally diverse forest.

    Science.gov (United States)

    Tamrakar, R.; Rayment, M.; Moyano, F.; Herbst, M.; Mund, M.; Knohl, A.

    2016-12-01

    We tested the hypothesis that structurally diverse forests have greater stability on exchange processes with the atmosphere compared to forests with less diverse structure. In a case study, we assessed how net ecosystem exchange (NEE) and normalized maximum assimilation (Amax) varied over time in two forests in Germany based on 11 years of continuous eddy flux measurements. The two sites differ in structure as well as in species composition: one (Hainich) is an unmanaged, uneven-aged and heterogeneous mixed beech forest (65% beech), the other (Leinefelde) is a managed, even-aged and homogeneous pure beech stand. The two selected forests are of similar mean ages (about 130 years old) and exposed to similar air temperatures and vapour pressure deficits. Even though Hainich (the unmanaged forest) received higher rainfall (720 ± 134 mm vs 599±166 mm), the soil water availability showed no significant difference between both sites. Based on detailed biomass inventory, trees in Hainich are well distributed in all diameter at breast height (dbh) classes (10 to 90cm dbh) whereas in Leinefelde (the managed forest) trees are mostly confined to dbh classes of 40 to 55 cm. Our results showed a strong difference in inter-annual variability of NEE, which was lower in the unmanaged than in the managed site (coefficient of variation (CV) of 0.13 and 0.27, respectively). The lowest NEE was observed in both sites in 2004, a mast year and a year after the strong summer drought of 2003. The variation in the inter-annual normalized maximum assimilation (Amax) was lower in Hainich (standard deviation of 2.5 compared to 3.9 µmol m-2 s-1). Also, the seasonal course of Amax differed between the two forests which could explain why the mixed forest was more affected by the late summer drought of 2003, despite showing a more conservative carbon budget than the pure stand in the long term. The interannual anomaly in Amax was correlated with fruit production, the latter being larger in

  7. Forests of North Dakota, 2017

    Science.gov (United States)

    Charles S. Paulson

    2018-01-01

    This resource update provides an overview of forest resources in North Dakota based on an inventory conducted by the USDA Forest Service, Forest Inventory and Analysis (FIA) program within the Northern Research Station in cooperation with the North Dakota Forest Service. Estimates are based on field data collected using the FIA annualized sample design and are updated...

  8. Forests of North Dakota, 2015

    Science.gov (United States)

    David E. Haugen

    2016-01-01

    This resource update provides an overview of forest resources in North Dakota based on an inventory conducted by the U.S. Forest Service, Forest Inventory and Analysis (FIA) program at the Northern Research Station in cooperation with the North Dakota Forest Service. Estimates are based on field data collected using the FIA annualized sample design and are updated...

  9. Forests of North Dakota, 2013

    Science.gov (United States)

    David E. Haugen

    2014-01-01

    This resource update provides an overview of forest resources in North Dakota based on an inventory conducted by the U.S. Forest Service, Forest Inventory and Analysis (FIA) program at the Northern Research Station in cooperation with the North Dakota Forest Service. Estimates are based on field data collected using the FIA annualized sample design and are updated...

  10. Forests of North Carolina, 2013

    Science.gov (United States)

    Mark J. Brown

    2015-01-01

    This periodic resource update provides an overview of forest resources in North Carolina based on an inventory conducted by the U.S. Forest Service, Forest Inventory and Analysis (FIA) program at the Southern Research Station in cooperation with the North Carolina Forest Service. Data estimates are based on field data collected using the FIA annualized sample design...

  11. Forests of North Dakota, 2014

    Science.gov (United States)

    D.E. Haugen; S.A. Pugh

    2014-01-01

    This resource update provides an overview of forest resources in North Dakota based on an inventory conducted by the U.S. Forest Service, Forest Inventory and Analysis (FIA) program at the Northern Research Station in cooperation with the North Dakota Forest Service. Estimates are based on field data collected using the FIA annualized sample design and are updated...

  12. Forests of North Carolina, 2014

    Science.gov (United States)

    Mark Brown; Samuel Lambert

    2016-01-01

    This periodic resource update provides an overview of forest resources in North Carolina based on an inventory conducted by the U.S. Forest Service, Forest Inventory and Analysis (FIA) program at the Southern Research Station in cooperation with the North Carolina Forest Service. Data estimates are based on field data collected using the FIA annualized sample design...

  13. Climate change and forest diseases

    Science.gov (United States)

    R.N. Sturrock; Susan Frankel; A. V. Brown; Paul Hennon; J. T. Kliejunas; K. J. Lewis; J. J. Worrall; A. J. Woods

    2011-01-01

    As climate changes, the effects of forest diseases on forest ecosystems will change. We review knowledge of relationships between climate variables and several forest diseases, as well as current evidence of how climate, host and pathogen interactions are responding or might respond to climate change. Many forests can be managed to both adapt to climate change and...

  14. International Trade In Forest Products

    Science.gov (United States)

    Jeffrey P. Prestemon; Joseph Buongiomo; David N. Wear; Jacek P. Siry

    2003-01-01

    The 21st century continues a trend of rapid growth in both international trade of forest products and a concern for forests. These two trends are connected. Forces causing trade growth are linked to the loss of native forest resources in some countries and the accumulation of nonnative forest resources in other countries. Factors increasing trade...

  15. Forests of East Texas, 2014

    Science.gov (United States)

    Thomas J. Brandeis

    2015-01-01

    This resource update provides an overview of forest resources in east Texas derived from an inventory conducted by the U.S. Forest Service, Forest Inventory and Analysis (FIA) Program at the Southern Research Station in cooperation with the Texas A&M Forest Service. These estimates are based on field data collected using the FIA annualized sample design and are...

  16. Forest pathology in Hawaii

    Science.gov (United States)

    Gardner, D.E.

    2003-01-01

    Native Hawaiian forests are characterised by a high degree of endemism, including pathogens as well as their hosts. With the exceptions of koa (Acacia koa Gray), possibly maile (Alyxia oliviformis Gaud.), and, in the past, sandalwood (Santalum spp.), forest species are of little commercial value. On the other hand, these forests are immensely important from a cultural, ecological, and evolutionary standpoint. Forest disease research was lacking during the mid-twentieth century, but increased markedly with the recognition of ohia (Metrosideros polymorpha Gaud.) decline in the 1970s. Because many pathogens are themselves endemic, or are assumed to be, having evolved with their hosts, research emphasis in natural areas is on understanding host-parasite interactions and evolutionary influences, rather than disease control. Aside from management of native forests, attempts at establishing a commercial forest industry have included importation of several species of pine, Araucaria, and Eucalyptus as timber crops, and of numerous ornamentals. Diseases of these species have been introduced with their hosts. The attacking of native species by introduced pathogens is problematic - for example, Armillaria mellea (Vahl ex Fr.) Que??l. on koa and mamane (Sophora chrysophylla (Salisb.) Seem.). Much work remains to be done in both native and commercial aspects of Hawaiian forest pathology.

  17. Monitoring Forest Recovery Following Wildfire and Harvest in Boreal Forests Using Satellite Imagery

    Directory of Open Access Journals (Sweden)

    Amar Madoui

    2015-11-01

    Full Text Available In the managed boreal forest, harvesting has become a disturbance as important as fire. To assess whether forest recovery following both types of disturbance is similar, we compared post-disturbance revegetation rates of forests in 22 fire events and 14 harvested agglomerations (harvested areas over 5–10 years in the same vicinity in the western boreal forest of Quebec. Pre-disturbance conditions were first compared in terms of vegetation cover types and surficial deposit types using an ordination technique. Post-disturbance changes over 30 years in land cover types were characterized by vectors of succession in an ordination. Four post-disturbance stages were identified from the 48 land thematic classes in the Landsat images: “S0” stand initiation phase; “S1” early regeneration phase; “S2” stem exclusion phase; and “S3” the coniferous forest. Analyses suggest that fire occurs in both productive and unproductive forests, which is not the case for harvesting. Revegetation rates (i.e., rapidity with which forest cover is re-established appeared to be more advanced in harvested agglomerations when compared with entire fire events. However, when considering only the productive forest fraction of each fire, the revegetation rates are comparable between the fire events and the harvested agglomerations. The S0 is practically absent from harvested agglomerations, which is not the case in the fire events. The difference in revegetation rates between the two disturbance types could therefore be attributed mostly to the fact that fire also occurs in unproductive forest, a factor that has to be taken into account in such comparisons.

  18. Geospatial technology applications in forest hydrology

    Science.gov (United States)

    S.S. Panda; E. Masson; S. Sen; H.W. Kim; Devendra Amatya

    2016-01-01

    Two separate disciplines, hydrology and forestry, together constitute forest hydrology. It is obvious that forestry and forest hydrology disciplines are spatial entities. Forestry is the science that seeks to understand the nature of forests throygh their life cycle and interactions with the surrounding environment. Forest hydrology includes forest soil water, streams...

  19. The Effect of Land-use Change and Management on Free-living N2 fixation in the Brazilian Atlantic Forest

    Science.gov (United States)

    De Oliveira Bomfim, B.; Silva, L. C. R.; Horwath, W. R.; Hello, J.; Doane, T. A.

    2016-12-01

    Globally, primary tropical forests are increasingly disturbed by deforestation, urbanization, agriculture, and cattle ranching. It has been recognized that the resulting (secondary) forests now play a key role in global biogeochemical cycles; however, little is known about alterations in forest function caused by the combination of disturbance and land use change. Fire, deforestation, and forest-to-monocrop conversion are all likely to affect biotic N inputs, yet our understanding of how free-living N2 fixation influences ecosystem response after disturbance remains poorly understood. Our research is assessing the role of asymbiotic (free-living) biological nitrogen fixation (BNF), a microbially-mediated process responsible for providing N inputs across terrestrial ecosystems and modulating the effect of fire and land cover in secondary forest succession. Free-living BNF is being quantified through incubations using stable isotope (15N2 labeling experiment) in different substrates (soil and leaf litter) under contrasting land use and management in the Brazilian Atlantic Forest, the most deforested Biome in Brazil with only 7% of its original cover. Soil and litter samples were collected in primary forests, 12-year secondary forests, Eucalyptus spp. plantations and 10-year Brachiaria brizantha pastures. Preliminary results indicate that free-living BNF rates did not vary significantly between either secondary land use (0.02 to 0.46 µg N2 fixed gDW-1 h-1), but rates were significantly higher in the litter layer (0.32 to 3.8 µg N2 fixed gDW-1 h-1) than in the surface soil (0 - 10 cm and 10 - 30 cm). Free-living BNF in this stretch of the Brazilian Atlantic Forest seems not to be significantly affected by contrasting land use and management.

  20. Proceedings of the 1999 Sustainable Forest Management Network conference: science and practice : sustaining the boreal forest

    Energy Technology Data Exchange (ETDEWEB)

    Veeman, S.; Smith, D.W.; Purdy, B.G.; Salkie, F.J.; Larkin, G.A. [eds.

    1999-05-01

    The wide range and complex nature of research in sustainable forest management, supported cooperatively by the forest products industry, governments, the universities, First Nations and other groups, is reflected in the 128 papers presented at this conference. The range of topics discussed include historical perspectives of forest disturbances, including fires and harvesting, biological diversity, gaseous, liquid and solid wastes, community sustainability, public involvement, land aquatic interfaces, forest management planning tools, contaminant transfer, First Nations issues, certification, monitoring and resource trade-offs. The theme of the conference {sup S}cience and practice: sustaining the boreal forest` was selected to identify the key efforts of the Sustainable Forest Management (SFM) Network on boreal forest research. The objective of the conference was to exchange knowledge and integrate participants into a better working network for the improvement of forest management. refs., tabs., figs.

  1. Forest insect and disease conditions, Vancouver forest region, 1986. Annual publication

    Energy Technology Data Exchange (ETDEWEB)

    Humphreys, N; Ferris, R L

    1987-01-01

    This report outlines the status of forest pest conditions in the Vancouver Forest Region, and forecasts population trends of some potentially damaging pests. Pests are listed by host in order of importance.

  2. Governance of private forests in Eastern and Central Europe: An analysis of forest harvesting and management rights

    Directory of Open Access Journals (Sweden)

    Laura Bouriaud

    2013-05-01

    Full Text Available A property rights-based approach is proposed in the paper to underlinethe common characteristics of the forest property rights specificationin ten ECE countries, the specific patterns governing the harvesting of timber in private forestry and the role of the forest management planning in determining the content of the property rights. The analysis deals with the private forests of the individuals (non industrial ownership from ten countries, covering 7.3 million ha and producing yearly some 25 million timber. The study shows that the forest management rights in private forests belong to the State and that the withdrawal rights on timber, yet recognized in the forest management plans, are in reality strongly restricted from aneconomic viewpoint. The forest management planning is the key instrument of the current forest governance system, based on top-down, hierarchically imposed and enforced set of compulsory rules on timber harvesting. With few exceptions, the forest owners’ have little influence in the forest planning and harvesting. The rational and State-lead approach of the private forest management has serious implications not only on the economic content of the property rights, but also on the learning and adaptive capacity of private forestry to cope with current challenges such the climate change, the increased industry needs for wood as raw material, or the marketingof innovative non wood forest products and services. The study highlights that understanding and comparing the regime of the forest ownership require a special analysis of the economic rights attached to each forest attribute; and that the evolution towards more participatory decision-making in the local forest governance can not be accurately assessed in ECE region without a proper understanding of the forest management planning process.

  3. Governance of private forests in Eastern and Central Europe: An analysis of forest harvesting and management rights

    Directory of Open Access Journals (Sweden)

    Laura Bouriaud

    2013-07-01

    Full Text Available A property rights-based approach is proposed in the paper to underline the common characteristics of the forest property rights specification in ten ECE countries, the specific patterns governing the harvesting of timber in private forestry and the role of the forest management planning in determining the content of the property rights. The analysis deals with the private forests of the individuals (non industrial ownership from ten countries, covering 7.3 million ha and producing yearly some 25 million m3 timber. The study shows that the forest management rights in private forests belong to the State and that the withdrawal rights on timber, yet recognised in the forest management plans, are in reality strongly restricted from an economic viewpoint. The forest management planning is the key instrument of the current forest governance system, based on top-down, hierarchically imposed and enforced set of compulsory rules on timber harvesting. With few exceptions, the forest owners’ have little influence in the forest planning and harvesting. The rational and State-lead approach of the private forest management has serious implications not only on the economic content of the property rights, but also on the learning and adaptive capacity of private forestry to cope with current challenges such the climate change, the increased industry needs for wood as raw material, or the marketing of innovative non wood forest products and services. The study highlights that understanding and comparing the regime of the forest ownership require a special analysis of the economic rights attached to each forest attribute; and that the evolution towards more participatory decision-making in the local forest governance can not be accurately assessed in ECE region without a proper understanding of the forest management planning process. 

  4. Above Canopy Emissions of Isoprene and Monoterpenes from a Southeast Asian Tropical Forest

    Science.gov (United States)

    Baker, B.; Johnson, C.; Cai, Z.; Guenther, A.; Greenberg, J.; Bai, J.; Li, Q.

    2003-12-01

    Fluxes of isoprene were measured using the eddy covariance technique and an ozone chemiluminescence isoprene sensor above a secondary tropical forest/rubber tree plantation located in the Xishuangbanna region of southern China during the wet and dry seasons. Fluxes of monoterpenes were inferred from ambient boundary layer concentrations (wet season) and from relaxed eddy accumulation measurements (dry season). Isoprene emissions were comparable to what has been observed from other tropical forests in Africa and South America. In this forest, monoterpene emissions were much higher during the wet season due to the senescence of the rubber trees during the dry season. These flux measurements represent the first ecosystem level flux measurements reported from Southeast Asian tropical forests.

  5. Forests and Phenology: Designing the Early Warning System to Understand Forest Change

    Science.gov (United States)

    Pierce, T.; Phillips, M. B.; Hargrove, W. W.; Dobson, G.; Hicks, J.; Hutchins, M.; Lichtenstein, K.

    2010-12-01

    Vegetative phenology is the study of plant development and changes with the seasons, such as the greening-up and browning-down of forests, and how these events are influenced by variations in climate. A National Phenology Data Set, based on Moderate Resolution Imaging Spectroradiometer satellite images covering 2002 through 2009, is now available from work by NASA, the US Forest Service, and Oak Ridge National Laboratory. This new data set provides an easily interpretable product useful for detecting changes to the landscape due to long-term factors such as climate change, as well as finding areas affected by short-term forest threats such as insects or disease. The Early Warning System (EWS) is a toolset being developed by the US Forest Service and the University of North Carolina-Asheville to support distribution and use of the National Phenology Data Set. The Early Warning System will help research scientists, US Forest Service personnel, forest and natural resources managers, decision makers, and the public in the use of phenology data to better understand unexpected change within our nation’s forests. These changes could have multiple natural sources such as insects, disease, or storm damage, or may be due to human-induced events, like thinning, harvest, forest conversion to agriculture, or residential and commercial use. The primary goal of the Early Warning System is to provide a seamless integration between monitoring, detection, early warning and prediction of these forest disturbances as observed through phenological data. The system consists of PC and web-based components that are structured to support four user stages of increasing knowledge and data sophistication. Building Literacy: This stage of the Early Warning System educates potential users about the system, why the system should be used, and the fundamentals about the data the system uses. The channels for this education include a website, interactive tutorials, pamphlets, and other technology

  6. Timber resource statistics for all forest land, except national forests, in eastern Oregon.

    Science.gov (United States)

    Donald R. Gedney; Patricia M. Bassett; Mary A. Mei

    1989-01-01

    This report summarizes a 1987 timber resource inventory of all forest land, except National Forests, in the 17 counties (Baker, Crook, Deschutes, Gilliam, Grant, Harney, Jefferson, Klamath, Lake, Malheur, Morrow, Sherman, Umatilla, Union, Wallowa, Wasco, and Wheeler Counties) in eastern Oregon. Detailed tables of forest area, timber volume, growth, mortality, and...

  7. Thermokarst rates intensify due to climate change and forest fragmentation in an Alaskan boreal forest lowland

    Science.gov (United States)

    Lara, M.; Genet, Helene; McGuire, A. David; Euskirchen, Eugénie S.; Zhang, Yujin; Brown, Dana R. N.; Jorgenson, M.T.; Romanovsky, V.; Breen, Amy L.; Bolton, W.R.

    2016-01-01

    Lowland boreal forest ecosystems in Alaska are dominated by wetlands comprised of a complex mosaic of fens, collapse-scar bogs, low shrub/scrub, and forests growing on elevated ice-rich permafrost soils. Thermokarst has affected the lowlands of the Tanana Flats in central Alaska for centuries, as thawing permafrost collapses forests that transition to wetlands. Located within the discontinuous permafrost zone, this region has significantly warmed over the past half-century, and much of these carbon-rich permafrost soils are now within ~0.5 °C of thawing. Increased permafrost thaw in lowland boreal forests in response to warming may have consequences for the climate system. This study evaluates the trajectories and potential drivers of 60 years of forest change in a landscape subjected to permafrost thaw in unburned dominant forest types (paper birch and black spruce) associated with location on elevated permafrost plateau and across multiple time periods (1949, 1978, 1986, 1998, and 2009) using historical and contemporary aerial and satellite images for change detection. We developed (i) a deterministic statistical model to evaluate the potential climatic controls on forest change using gradient boosting and regression tree analysis, and (ii) a 30 × 30 m land cover map of the Tanana Flats to estimate the potential landscape-level losses of forest area due to thermokarst from 1949 to 2009. Over the 60-year period, we observed a nonlinear loss of birch forests and a relatively continuous gain of spruce forest associated with thermokarst and forest succession, while gradient boosting/regression tree models identify precipitation and forest fragmentation as the primary factors controlling birch and spruce forest change, respectively. Between 1950 and 2009, landscape-level analysis estimates a transition of ~15 km² or ~7% of birch forests to wetlands, where the greatest change followed warm periods. This work highlights that the vulnerability and resilience of

  8. Gainesville's urban forest structure and composition

    Science.gov (United States)

    Francisco Francisco Escobedo; Jennifer A. Seitz; Wayne Zipperer

    2009-01-01

    The urban forest provides a community numerous benefits. The urban forest is composed of a mix of native and non-native species introduced by people managing this forest and by residents. Because they usually contain non-native species, many urban forests often have greater species diversity than forests in the surrounding natural...

  9. Participatory forest management in Ethiopia

    DEFF Research Database (Denmark)

    Yietagesu, Aklilu Ameha; Larsen, Helle Overgaard; Lemenih, Mulugeta

    2014-01-01

    Different arrangements of decentralized forest management have been promoted as alternatives to centralized and top down approaches to halt tropical deforestation and forest degradation. Ethiopia is one of the countries piloting one of these approaches. To inform future programs and projects...... it is essential to learn from existing pilots and experiences. This paper analyses five of the pilot participatory forest management (PFM) programs undertaken in Ethiopia. The study is based on the Forest User Group (FUG) members’ analyses of the programs using selected outcome variables: forest income, change...

  10. Forests of Kentucky, 2012

    Science.gov (United States)

    C.M. Oswalt

    2015-01-01

    This resource update provides an overview of forest resource attributes for the Commonwealth of Kentucky based on an annual inventory conducted by the Forest Inventory and Analysis (FIA) Program at the Southern Research Station of the Forest Service, U.S. Department of Agriculture in cooperation with the Kentucky Department of Natural Resources Division of Forestry....

  11. Mapping Global Forest Aboveground Biomass with Spaceborne LiDAR, Optical Imagery, and Forest Inventory Data

    Directory of Open Access Journals (Sweden)

    Tianyu Hu

    2016-07-01

    Full Text Available As a large carbon pool, global forest ecosystems are a critical component of the global carbon cycle. Accurate estimations of global forest aboveground biomass (AGB can improve the understanding of global carbon dynamics and help to quantify anthropogenic carbon emissions. Light detection and ranging (LiDAR techniques have been proven that can accurately capture both horizontal and vertical forest structures and increase the accuracy of forest AGB estimation. In this study, we mapped the global forest AGB density at a 1-km resolution through the integration of ground inventory data, optical imagery, Geoscience Laser Altimeter System/Ice, Cloud, and Land Elevation Satellite data, climate surfaces, and topographic data. Over 4000 ground inventory records were collected from published literatures to train the forest AGB estimation model and validate the resulting global forest AGB product. Our wall-to-wall global forest AGB map showed that the global forest AGB density was 210.09 Mg/ha on average, with a standard deviation of 109.31 Mg/ha. At the continental level, Africa (333.34 ± 63.80 Mg/ha and South America (301.68 ± 67.43 Mg/ha had higher AGB density. The AGB density in Asia, North America and Europe were 172.28 ± 94.75, 166.48 ± 84.97, and 132.97 ± 50.70 Mg/ha, respectively. The wall-to-wall forest AGB map was evaluated at plot level using independent plot measurements. The adjusted coefficient of determination (R2 and root-mean-square error (RMSE between our predicted results and the validation plots were 0.56 and 87.53 Mg/ha, respectively. At the ecological zone level, the R2 and RMSE between our map and Intergovernmental Panel on Climate Change suggested values were 0.56 and 101.21 Mg/ha, respectively. Moreover, a comprehensive comparison was also conducted between our forest AGB map and other published regional AGB products. Overall, our forest AGB map showed good agreements with these regional AGB products, but some of the regional

  12. When you cannot see the forest for the trees: Effect of forest monocultures on biodiversity conservation

    International Nuclear Information System (INIS)

    Cordero Rivera, Adolfo

    2011-01-01

    Human population is growing at rates that were unimaginable only a century ago, creating such pressure on resources, which will only decrease when the decline in birth rate stabilizes population. Among these resources, wood is one of the most demanded. Global consumption of wood is currently more than 3500 million m 3, a rate multiplied by six since 1950. To meet this demand, we manage millions of hectares of forests and forest plantations, part of which are cut down each year. This logging determines drastic effects on forests, affecting the biodiversity associated and the ecosystems services provided to society. This work is a review of the structural and functional characteristics that differentiate forests and forest plantations, in spite of the confusion between both ecosystems by FAO and the forest sector companies, which have coined the oxymoron planted forests. Forest plantations are more productive than forests from the point of view of the volume of wood that can be obtained from them, and if well managed, could minimize the pressure on forests. However, they do not provide many services that forests do provide, especially in the case of monospecific plantations consisting of even aged individuals of exotic species that are managed intensively. Some of the many techniques that combine the production of wood with the conservation of biodiversity are reviewed.

  13. Southern Forests: a Journal of Forest Science - Vol 198 (2003)

    African Journals Online (AJOL)

    Reverting urban exotic pine forests to Macchia and indigenous forest vegetation, using cable-yarders on the slopes of Table Mountain, South Africa: management paper · EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. Pierre Ackerman, Bruce Talbot, 35-44 ...

  14. Biomass carbon stocks in China's forests between 2000 and 2050: a prediction based on forest biomass-age relationships.

    Science.gov (United States)

    Xu, Bing; Guo, ZhaoDi; Piao, ShiLong; Fang, JingYun

    2010-07-01

    China's forests are characterized by young forest age, low carbon density and a large area of planted forests, and thus have high potential to act as carbon sinks in the future. Using China's national forest inventory data during 1994-1998 and 1999-2003, and direct field measurements, we investigated the relationships between forest biomass density and forest age for 36 major forest types. Statistical approaches and the predicted future forest area from the national forestry development plan were applied to estimate the potential of forest biomass carbon storage in China during 2000-2050. Under an assumption of continuous natural forest growth, China's existing forest biomass carbon (C) stock would increase from 5.86 Pg C (1 Pg=10(15) g) in 1999-2003 to 10.23 Pg C in 2050, resulting in a total increase of 4.37 Pg C. Newly planted forests through afforestation and reforestation will sequestrate an additional 2.86 Pg C in biomass. Overall, China's forests will potentially act as a carbon sink for 7.23 Pg C during the period 2000-2050, with an average carbon sink of 0.14 Pg C yr(-1). This suggests that China's forests will be a significant carbon sink in the next 50 years.

  15. Forest report 2014; Waldzustandsbericht 2014

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-07-01

    This forest report of Hesse (Germany) contains the following topics: weather and climate, forest protection, crown defoliation, infiltrated substances, environmental monitoring, insects and fungi, and water quality of forest streams.

  16. Forest fuel characterization using direct sampling in forest plantations

    Science.gov (United States)

    Eva Reyna Esmeralda Díaz García; Marco Aurelio González Tagle; Javier Jiménez Pérez; Eduardo JavierTreviño Garza; Diana Yemilet Ávila Flores

    2013-01-01

    One of the essential elements for a fire to occur is the flammable material. This is defined as the total biomass that has the ability to ignite and burn when exposed to a heat source. Fuel characterization in Mexican forest ecosystems is very scarce. However, this information is very important for estimating flammability and forest fire risk, fire behavior,...

  17. The assessment of environmentally sensitive forest road construction in Calabrian pine forest areas of Turkey.

    Science.gov (United States)

    Tunay, Metin

    2006-07-01

    Forest road construction by bulldozers in Calabrian Pine (Pinus brutia Ten.) forests on mountainous terrain of Turkey causes considerable damage to the environment and the forest standing alongside the road. This situation obliges a study of environmentally sound road construction in Turkey. This study was carried out in 4 sample sites of Antalya Forest Directorate in steep (34-50% gradient) and very steep terrain (51-70% gradient) conditions with bulldozer and excavator machine and direct damages to forest during road construction was determined, including forest area losses and damages to downhill trees in mountainous areas. It was determined that in steep terrain when excavators were used, less forest area (22.16%) was destroyed compared to bulldozers and 26.54% less area in very steep terrain. The proportion of damage on trees where bulldozer worked was nearly twofold higher than excavator was used. The results of this research show that the environmentally sensitive techniques applied for the road construction projects are considerably superior to the traditional use of bulldozers on steep slopes. The environmentally sound forest road construction by use of excavator must be considered an appropriate and reliable solution for mountainous terrain where areas of sensitive forest ecosystems are to be opened up.

  18. Forests as landscapes of social inequality: tropical forest cover and land distribution among shifting cultivators

    Directory of Open Access Journals (Sweden)

    Oliver T. Coomes

    2016-09-01

    Full Text Available Can social inequality be seen imprinted in a forest landscape? We studied the relationship between land holding, land use, and inequality in a peasant community in the Peruvian Amazon where farmers practice swidden-fallow cultivation. Longitudinal data on land holding, land use, and land cover were gathered through field-level surveys (n = 316 and household interviews (n = 51 in 1994/1995 and 2007. Forest cover change between 1965 and 2007 was documented through interpretation of air photos and satellite imagery. We introduce the concept of "land use inequality" to capture differences across households in the distribution of forest fallowing and orchard raising as key land uses that affect household welfare and the sustainability of swidden-fallow agriculture. We find that land holding, land use, and forest cover distribution are correlated and that the forest today reflects social inequality a decade prior. Although initially land-poor households may catch up in terms of land holdings, their use and land cover remain impoverished. Differential land use investment through time links social inequality and forest cover. Implications are discussed for the study of forests as landscapes of inequality, the relationship between social inequality and forest composition, and the forest-poverty nexus.

  19. Mapping of forest disturbance magnitudes across the US National Forest System

    Science.gov (United States)

    Hernandez, A. J.; Healey, S. P.; Ramsey, R. D.; McGinty, C.; Garrard, C.; Lu, N.; Huang, C.

    2013-12-01

    A precise record in conjunction with ongoing monitoring of carbon pools constitutes essentials inputs for the continuous modernization of an ever- dynamic science such as climate change. This is particularly important in forested ecosystems for which accurate field archives are available and can be used in combination with historic satellite imagery to obtain spatially explicit estimates of several indicators that can be used in the assessment of said carbon pools. Many forest disturbance processes limit storage of carbon in forested ecosystems and thereby reduce those systems' capacity to mitigate changes in the global climate system. A component of the US National Forest System's (NFS) comprehensive plan for carbon monitoring includes accounting for mapped disturbances, such as fires, harvests, and insect activity. A long-term time series of maps that show the timing, extent, type, and magnitude of disturbances going back to 1990 has been prepared for the United States Forest Service (USFS) Northern Region, and is currently under preparation for the rest of the NFS regions covering more than 75 million hectares. Our mapping approach starts with an automated initial detection of annual disturbances using imagery captured within the growing season from the Landsat archive. Through a meticulous process, the initial detections are then visually inspected, manually corrected and labeled using various USFS ancillary datasets and Google Earth high-resolution historic imagery. We prepared multitemporal models of percent canopy cover and live tree carbon (T/ha) that were calibrated with extensive (in excess of 2000 locations) field data from the US Forest Service Forest Inventory and Analysis program (FIA). The models were then applied to all the years of the radiometrically corrected and normalized Landsat time series in order to provide annual spatially explicit estimates of the magnitude of change in terms of these two attributes. Our results provide objective, widely

  20. Puerto Rico’s forests, 2009

    Science.gov (United States)

    Thomas J. Brandeis; Jeffery A. Turner; NO-VALUE

    2013-01-01

    This report presents the results of the fourth forest inventory of the islands of the Commonwealth of Puerto Rico. Forest area on mainland Puerto Rico held steady, or increased slightly, from 2004 to 2009. This change would seem to indicate that the rate of forest cover increase on mainland Puerto Rico has slowed since the forest inventory began in 1980. But the...

  1. Forest report 2017; Waldzustandsbericht 2017

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2017-11-01

    This forest condition report of Hesse (Germany) includes the following topics: forest condition survey for all tree species, forest in the in the Rhine-Main area, weather and climate, insects and fungi, forestry environment monitoring, site information for the Federal Forest Inventory in Hesse, infiltrated substances, development of soil acidification on intensive monitoring areas in northwestern Germany, and the substrate group basalt/diabase.

  2. Forests of east Texas, 2016

    Science.gov (United States)

    Kerry Dooley

    2018-01-01

    This resource update provides an overview of forest resources in east Texas based on an inventory conducted by the U.S. Forest Service, Forest Inventory and Analysis (FIA) program at the Southern Research Station (SRS) in cooperation with Texas A&M Forest Service. The 254 counties of Texas are consolidated into seven FIA survey units—Southeast (unit 1),...

  3. Governmental Forest Policy for Sustainable Forest Management in Costa Rica, Guatemala, and Nicaragua: Regulation, Implementation, and Impact

    Science.gov (United States)

    Kathleen A. McGinley; Frederick W. Cubbage

    2012-01-01

    We evaluated how governmental forest regulation in Costa Rica, Guatemala, and Nicaragua has succeeded or failed in fostering changes in forest owner and user behavior that enhance the sustainability of tropical forest management. As expected, sufficient resources and capacity for forest policy implementation are crucial for attaining governmental forest policy...

  4. Spatio-temporal change in forest cover and carbon storage considering actual and potential forest cover in South Korea.

    Science.gov (United States)

    Nam, Kijun; Lee, Woo-Kyun; Kim, Moonil; Kwak, Doo-Ahn; Byun, Woo-Hyuk; Yu, Hangnan; Kwak, Hanbin; Kwon, Taesung; Sung, Joohan; Chung, Dong-Jun; Lee, Seung-Ho

    2015-07-01

    This study analyzes change in carbon storage by applying forest growth models and final cutting age to actual and potential forest cover for six major tree species in South Korea. Using National Forest Inventory data, the growth models were developed to estimate mean diameter at breast height, tree height, and number of trees for Pinus densiflora, Pinus koraiensis, Pinus rigida, Larix kaempferi, Castanea crenata and Quercus spp. stands. We assumed that actual forest cover in a forest type map will change into potential forest covers according to the Hydrological and Thermal Analogy Groups model. When actual forest cover reaches the final cutting age, forest volume and carbon storage are estimated by changed forest cover and its growth model. Forest volume between 2010 and 2110 would increase from 126.73 to 157.33 m(3) hm(-2). Our results also show that forest cover, volume, and carbon storage could abruptly change by 2060. This is attributed to the fact that most forests are presumed to reach final cutting age. To avoid such dramatic change, a regeneration and yield control scheme should be prepared and implemented in a way that ensures balance in forest practice and yield.

  5. Promoting Sustainable Forest Management Among Stakeholders in the Prince Albert Model Forest, Canada

    Directory of Open Access Journals (Sweden)

    Glen T Hvenegaard

    2015-01-01

    Full Text Available Model Forests are partnerships for shared decision-making to support social, environmental, and economic sustainability in forest management. Relationships among sustainable forest management partners are often strained, but the Prince Albert Model Forest (PAMF represents a process of effective stakeholder involvement, cooperative relationships, visionary planning, and regional landscape management. This article seeks to critically examine the history, drivers, accomplishments, and challenges associated with the PAMF. Four key phases are discussed, representing different funding levels, planning processes, research projects, and partners. Key drivers in the PAMF were funding, urgent issues, provincial responsibility, core of committed people, evolving governance, desire for a neutral organisation, role of protected areas, and potential for mutual benefits. The stakeholders involved in the Model Forest, including the forest industry and associated groups, protected areas, Aboriginal groups, local communities, governments, and research groups, were committed to the project, cooperated on many joint activities, provided significant staffing and financial resources, and gained many benefits to their own organisations. Challenges included declining funding, changing administrative structures, multiple partners, and rotating representatives. The PAMF process promoted consultative and integrated land resource management in the region, and demonstrated the positive results of cooperation between stakeholders interested in sustainable forest management.

  6. Forecasting forest development through modeling based on the legacy of forest structure over the past 43 years

    Energy Technology Data Exchange (ETDEWEB)

    Baskent, E. Z.; Celik, D. A.

    2013-09-01

    Aim of study: Sustainable management of forest ecosystems requires comprehensive coverage of data to reflect both the historical legacy and the future development of forests. This study focuses on analyzing the spatio-temporal dynamics of forests over the past 43 years to help better forecast the future development of forest under various management strategies. Area of study: The area is situated in Karaisalt district of Adana city in the southeastern corner of Turkey. Material and methods: The historical pattern from 1969 to 2012 was assessed with digital forest cover type maps, produced with high resolution aerial photo interpretation using Geographic Information Systems (GIS). The forest development over the next 120 years was forecasted using ecosystem-based multiple use forest management model (ETCAP) to understand the cause-effect relationships under various management strategies. Main results: The result showed that over the past 43 years while total forest areas decreased about 1,194 ha (4%), the productive forest areas increased about 5,397 ha (18%) with a decrease of degraded forest (5,824 ha, 20%) and increase of maquis areas (2,212 ha, 7%).The forecast of forest development under traditional management strategy resulted in an unsustainable forest due to broken initial age class structure, yet generated more total harvest (11%) due to 88% relaxing of even timber flow constraint. While more volume could be harvested under traditional management conditions, the sustainability of future forest is significantly jeopardized. Research highlights: This result trongly implies that it is essential adopting modeling techniques to understand forest dynamics and forecast the future development comprehensively. (Author)

  7. Alpine forest-tundra ecotone response to temperature change,Sayan Mountains, Siberia

    Science.gov (United States)

    Ranson, K Jon; Kharuk, Vyetcheslav I.

    2007-01-01

    Models of climate change predict shifts of vegetation zones. Tree response to climate trends is most likely observable in the forest-tundra ecotone, where temperature mainly limits tree growth. There is evidence of vegetation change on the northern treeline However, observations on alpine tree line response are controversial. In this NEESPI related study we show that during the past three decades in the forest-tundra ecotone of the Sayan Mountains, Siberia, there was an increase in forest stand crown closure, regeneration propagation into the alpine tundra, and transformation of prostrate Siberian pine and fir into arboreal forms. We found that these changes occurred since the mid 1980s, and strongly correlates with positive temperature (and to a lesser extent, precipitation) trends. Improving climate for forest growth( i.e., warmer temperatures and increased precipitation) provides competitive advantages to Siberian pine in the alpine forest-tundra ecotone, as well as in areas typically dominated by larch, where it has been found to be forming a secondary canopy layer. Substitution of deciduous conifer, larch, for evergreen conifers, decreases albedo and provides positive feedback for temperature increase.

  8. Evaluating the quality of riparian forest vegetation: the Riparian Forest Evaluation (RFV index

    Directory of Open Access Journals (Sweden)

    Fernando Magdaleno

    2014-08-01

    Full Text Available Aim of study: This paper presents a novel index, the Riparian Forest Evaluation (RFV index, for assessing the ecological condition of riparian forests. The status of riparian ecosystems has global importance due to the ecological and social benefits and services they provide. The initiation of the European Water Framework Directive (2000/60/CE requires the assessment of the hydromorphological quality of natural channels. The Directive describes riparian forests as one of the fundamental components that determine the structure of riverine areas. The RFV index was developed to meet the aim of the Directive and to complement the existing methodologies for the evaluation of riparian forests.Area of study: The RFV index was applied to a wide range of streams and rivers (170 water bodies inSpain.Materials and methods: The calculation of the RFV index is based on the assessment of both the spatial continuity of the forest (in its three core dimensions: longitudinal, transversal and vertical and the regeneration capacity of the forest, in a sampling area related to the river hydromorphological pattern. This index enables an evaluation of the quality and degree of alteration of riparian forests. In addition, it helps to determine the scenarios that are necessary to improve the status of riparian forests and to develop processes for restoring their structure and composition.Main results: The results were compared with some previous tools for the assessment of riparian vegetation. The RFV index got the highest average scores in the basins of northernSpain, which suffer lower human influence. The forests in central and southern rivers got worse scores. The bigger differences with other tools were found in complex and partially altered streams and rivers.Research highlights: The study showed the index’s applicability under diverse hydromorphological and ecological conditions and the main advantages of its application. The utilization of the index allows a

  9. Information system of forest growth and productivity by site quality type and elements of forest

    Science.gov (United States)

    Khlyustov, V.

    2012-04-01

    Information system of forest growth and productivity by site quality type and elements of forest V.K. Khlustov Head of the Forestry Department of Russian State Agrarian University named after K.A.Timiryazev doctor of agricultural sciences, professor The efficiency of forest management can be improved substantially by development and introduction of principally new models of forest growth and productivity dynamics based on regionalized site specific parameters. Therefore an innovative information system was developed. It describes the current state and gives a forecast for forest stand parameters: growth, structure, commercial and biological productivity depend on type of site quality. In contrast to existing yield tables, the new system has environmental basis: site quality type. The information system contains set of multivariate statistical models and can work at the level of individual trees or at the stand level. The system provides a graphical visualization, as well as export of the emulation results. The System is able to calculate detailed description of any forest stand based on five initial indicators: site quality type, site index, stocking, composition, and tree age by elements of the forest. The results of the model run are following parameters: average diameter and height, top height, number of trees, basal area, growing stock (total, commercial with distribution by size, firewood and residuals), live biomass (stem, bark, branches, foliage). The system also provides the distribution of mentioned above forest stand parameters by tree diameter classes. To predict the future forest stand dynamics the system require in addition the time slot only. Full set of forest parameters mention above will be provided by the System. The most conservative initial parameters (site quality type and site index) can be kept in the form of geo referenced polygons. In this case the system would need only 3 dynamic initial parameters (stocking, composition and age) to

  10. Advances of air pollution science: from forest decline to multiple-stress effects on forest ecosystem services.

    Science.gov (United States)

    Paoletti, E; Schaub, M; Matyssek, R; Wieser, G; Augustaitis, A; Bastrup-Birk, A M; Bytnerowicz, A; Günthardt-Goerg, M S; Müller-Starck, G; Serengil, Y

    2010-06-01

    Over the past 20 years, the focus of forest science on air pollution has moved from forest decline to a holistic framework of forest health, and from the effects on forest production to the ecosystem services provided by forest ecosystems. Hence, future research should focus on the interacting factorial impacts and resulting antagonistic and synergistic responses of forest trees and ecosystems. The synergistic effects of air pollution and climatic changes, in particular elevated ozone, altered nitrogen, carbon and water availability, must be key issues for research. Present evidence suggests air pollution will become increasingly harmful to forests under climate change, which requires integration amongst various stressors (abiotic and biotic factors, including competition, parasites and fire), effects on forest services (production, biodiversity protection, soil protection, sustained water balance, socio-economical relevance) and assessment approaches (research, monitoring, modeling) to be fostered. Copyright 2009 Elsevier Ltd. All rights reserved.

  11. Fragmentation, topography, and forest age modulate impacts of drought on a tropical forested landscape in eastern Puerto Rico

    Science.gov (United States)

    Uriarte, M.; Schwartz, N.; Budsock, A.

    2017-12-01

    Naturally regenerating second-growth forests account for ca. 50% of tropical forest cover and provide key ecosystem services. Understanding climate impacts on these ecosystems is critical for developing effective mitigation programs. Differences in environmental conditions and landscape context from old-growth forests may exacerbate climate impacts on second-growth stands. Nearly 70% of forest regeneration is occurring in hilly, upland, or mountain regions; a large proportion of second-growth forests are also fragmented. The effects of drought at the landscape scale, however, and the factors that modulate landscape heterogeneity in drought impacts remain understudied. Heterogeneity in soil moisture, light, and temperature in fragmented, topographically complex landscapes is likely to influence climate impacts on these forests. We examine impacts of a severe drought in 2015 on a forested landscape in Puerto Rico using two anomalies in vegetation indices. The study landscape is fragmented and topographically complex and includes old- and second-growth forests. We consider how topography (slope, aspect), fragmentation (distance to forest edge, patch size), and forest age (old- vs second-growth) modulate landscape heterogeneity of drought impacts and recovery from drought. Drought impacts were more severe in second-growth forests than in old-growth stands. Both topography and forest fragmentation influences the magnitude of drought impacts. Forest growing in steep areas, south facing slopes, small patches, and closer to forest edges exhibited more marked responses to drought. Forest recovery from drought was greater in second-growth forests and south facing slopes but slower in small patches and closer to forest edges. These findings are congruent with studies of drought impacts on tree growth in the study region. Together these results demonstrate the need for a multi-scalar approach to the study of drought impacts on tropical forests.

  12. Effects of rapid urban sprawl on urban forest carbon stocks: integrating remotely sensed, GIS and forest inventory data.

    Science.gov (United States)

    Ren, Yin; Yan, Jing; Wei, Xiaohua; Wang, Yajun; Yang, Yusheng; Hua, Lizhong; Xiong, Yongzhu; Niu, Xiang; Song, Xiaodong

    2012-12-30

    Research on the effects of urban sprawl on carbon stocks within urban forests can help support policy for sustainable urban design. This is particularly important given climate change and environmental deterioration as a result of rapid urbanization. The purpose of this study was to quantify the effects of urban sprawl on dynamics of forest carbon stock and density in Xiamen, a typical city experiencing rapid urbanization in China. Forest resource inventory data collected from 32,898 patches in 4 years (1972, 1988, 1996 and 2006), together with remotely sensed data (from 1988, 1996 and 2006), were used to investigate vegetation carbon densities and stocks in Xiamen, China. We classified the forests into four groups: (1) forest patches connected to construction land; (2) forest patches connected to farmland; (3) forest patches connected to both construction land and farmland and (4) close forest patches. Carbon stocks and densities of four different types of forest patches during different urbanization periods in three zones (urban core, suburb and exurb) were compared to assess the impact of human disturbance on forest carbon. In the urban core, the carbon stock and carbon density in all four forest patch types declined over the study period. In the suburbs, different urbanization processes influenced forest carbon density and carbon stock in all four forest patch types. Urban sprawl negatively affected the surrounding forests. In the exurbs, the carbon stock and carbon density in all four forest patch types tended to increase over the study period. The results revealed that human disturbance played the dominant role in influencing the carbon stock and density of forest patches close to the locations of human activities. In forest patches far away from the locations of human activities, natural forest regrowth was the dominant factor affecting carbon stock and density. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Global-Scale Patterns of Forest Fragmentation

    Directory of Open Access Journals (Sweden)

    Kurt Riitters

    2000-12-01

    Full Text Available We report an analysis of forest fragmentation based on 1-km resolution land-cover maps for the globe. Measurements in analysis windows from 81 km 2 (9 x 9 pixels, "small" scale to 59,049 km 2 (243 x 243 pixels, "large" scale were used to characterize the fragmentation around each forested pixel. We identified six categories of fragmentation (interior, perforated, edge, transitional, patch, and undetermined from the amount of forest and its occurrence as adjacent forest pixels. Interior forest exists only at relatively small scales; at larger scales, forests are dominated by edge and patch conditions. At the smallest scale, there were significant differences in fragmentation among continents; within continents, there were significant differences among individual forest types. Tropical rain forest fragmentation was most severe in North America and least severe in Europe-Asia. Forest types with a high percentage of perforated conditions were mainly in North America (five types and Europe-Asia (four types, in both temperate and subtropical regions. Transitional and patch conditions were most common in 11 forest types, of which only a few would be considered as "naturally patchy" (e.g., dry woodland. The five forest types with the highest percentage of interior conditions were in North America; in decreasing order, they were cool rain forest, coniferous, conifer boreal, cool mixed, and cool broadleaf.

  14. Global-scale patterns of forest fragmentation

    Science.gov (United States)

    Riitters, K.; Wickham, J.; O'Neill, R.; Jones, B.; Smith, E.

    2000-01-01

    We report an analysis of forest fragmentation based on 1-km resolution land-cover maps for the globe. Measurements in analysis windows from 81 km 2 (9 ?? 9 pixels, "small" scale) to 59,049 km 2 (243 ?? 243 pixels, "large" scale) were used to characterize the fragmentation around each forested pixel. We identified six categories of fragmentation (interior, perforated, edge, transitional, patch, and undetermined) from the amount of forest and its occurrence as adjacent forest pixels. Interior forest exists only at relatively small scales; at larger scales, forests are dominated by edge and patch conditions. At the smallest scale, there were significant differences in fragmentation among continents; within continents, there were significant differences among individual forest types. Tropical rain forest fragmentation was most severe in North America and least severe in Europe - Asia. Forest types with a high percentage of perforated conditions were mainly in North America (five types) and Europe - Asia (four types), in both temperate and subtropical regions. Transitional and patch conditions were most common in 11 forest types, of which only a few would be considered as "naturally patchy" (e.g., dry woodland). The five forest types with the highest percentage of interior conditions were in North America; in decreasing order, they were cool rain forest, coniferous, conifer boreal, cool mixed, and cool broadleaf. Copyright ?? 2000 by The Resilience Alliance.

  15. Forest Grammar (Ⅱ)

    Institute of Scientific and Technical Information of China (English)

    张松懋

    1994-01-01

    The syntactic parsing algorithm of weak precedence forest grammar has been introduced and the correctness and unambiguity of this algorithm have been proved. An example is given to the syntactic parsing procedure of weak precedence forest grammar.

  16. Vermont's Forest Resources, 2006

    Science.gov (United States)

    R.S. Morin; R. De Geus

    2008-01-01

    This publication provides an overview of forest resource attributes for Vermont based on an annual inventory conducted by the Forest Inventory and Analysis (FIA) program at the Northern Research Station of the U.S. Forest Service. These annual estimates, along with web-posted core tables, will be updated annually. For more information regarding past inventory reports...

  17. Forests of Alabama, 2014

    Science.gov (United States)

    Andy Hartsell

    2016-01-01

    This resource update provides an overview of forest resources in Alabama based on an inventory conducted by the U.S. Forest Service, Forest Inventory and Analysis (FIA) program at the Southern Research Station in cooperation with the Alabama Forestry Commission. Estimates are based on field data collected using the FIA annualized sample design and are updated yearly....

  18. Forests of Wisconsin, 2013

    Science.gov (United States)

    Charles H. Perry

    2014-01-01

    This resource update provides an overview of forest resources in Wisconsin based on an inventory conducted by the U.S. Forest Service, Forest Inventory and Analysis (FIA) program at the Northern Research Station in cooperation with the Wisconsin Department of Natural Resources. Data estimates are based on field data collected using the FIA annualized sample design and...

  19. Connecticut's forest resources, 2010

    Science.gov (United States)

    Brett J. Butler; Cassandra Kurtz; Christopher Martin; W. Keith Moser

    2011-01-01

    This publication provides an overview of forest resource attributes for Connecticut based on an annual inventory conducted by the Forest Inventory and Analysis (FIA) program at the Northern Research Station of the U.S. Forest Service. These estimates, along with web-posted core tables, will be updated annually. For more information please refer to page 4 of this report...

  20. Connecticut's forest resources, 2009

    Science.gov (United States)

    Brett J. Butler; Christopher Martin

    2011-01-01

    This publication provides an overview of forest resource attributes for Connecticut based on an annual inventory conducted by the Forest Inventory and Analysis (FIA) program at the Northern Research Station of the U.S. Forest Service. These estimates, along with web-posted core tables, will be updated annually. For more information please refer to page 4 of this report...