WorldWideScience

Sample records for forest region fids

  1. Forest insect and disease conditions, Vancouver forest region, 1987. Annual publication

    Energy Technology Data Exchange (ETDEWEB)

    Humphreys, N; Ferris, R L

    1988-01-01

    The Forest Insect and Disease Survey (FIDS) is a nation-wide network within Forestry Canada with the responsibility of producing an overview of forest pest conditions and their implications; maintaining records and surveys to support quarantine and facilitate predictions; supporting forestry research with records, insect collections and herbaria; providing advice on forest insect and disease conditions; developing and testing survey techniques; and conducting related biological studies. This report outlines the status of forest pest conditions in the Vancouver Forest Region, and forecasts population trends of some potentially damaging pests. Pests are listed by host in order of importance.

  2. FID Statutes, Rules of Procedures, Terms of Reference.

    Science.gov (United States)

    International Federation for Documentation, The Hague (Netherlands).

    Following a brief historical chronology of the International Federation for Documentation (FID), the organization's statutes are presented in the original French text and in English. The rules of procedures outline membership policy, conduct of technical bodies, FID conferences, publications, and regional commissions. Terms of reference are…

  3. GC/FID-based authentication of Baccharis trimera: a quality control study of products commercialized in Curitiba and metropolitan region (Brazil

    Directory of Open Access Journals (Sweden)

    Lia M. S. de Ferrante

    Full Text Available Baccharis trimera (carqueja is a medicinal plant used for stomach pain, bad digestion, heart bum, kidney problems and constipation. The objective of the present work was a quality study of carqueja commercialized in Curitiba and metropolitan region (Paraná-Brazil using gas chromatography techniques (GC/FID for analyses of the essential oil, which was extracted through hydrodistillation using a Clevenger system. Macro and microscopic analyses were also done. Some samples were contaminated by other species of plants, fungi and small insects, some of them could be identified. Among all samples, 21 showed similar chromatographic profile to the standard oil, and 7 had different profile in relation to the standard. The chromatogram analyses showed that most of the analyzed samples had the similar profile as the standard oil of Baccharis trimera. GC/FID-based authentication of Baccharis trimera may be useful as a rapid tool to ensure quality control and safety monitoring of this kind of herbal pharmaceuticals.

  4. Biogenic volatile organic compounds from the urban forest of the Metropolitan Region, Chile

    International Nuclear Information System (INIS)

    Préndez, Margarita; Carvajal, Virginia; Corada, Karina; Morales, Johanna; Alarcón, Francis; Peralta, Hugo

    2013-01-01

    Tropospheric ozone is a secondary pollutant whose primary sources are volatile organic compounds and nitrogen oxides. The national standard is exceeded on a third of summer days in some areas of the Chilean Metropolitan Region (MR). This study reports normalized springtime experimental emissions factors (EF) for biogenic volatile organic compounds from tree species corresponding to approximately 31% of urban trees in the MR. A Photochemical Ozone Creation Index (POCI) was calculated using Photochemical Ozone Creation Potential of quantified terpenes. Ten species, natives and exotics, were analysed using static enclosure technique. Terpene quantification was performed using GC-FID, thermal desorption, cryogenic concentration and automatic injection. Observed EF and POCI values for terpenes from exotic species were 78 times greater than native values; within the same family, exotic EF and POCI values were 28 and 26 times greater than natives. These results support reforestation with native species for improved urban pollution management. -- First experimental determination of the emission factors of biogenic volatile organic compounds in the urban forest of the Metropolitan Region, Chile

  5. Forest regions of Montana

    Science.gov (United States)

    Stephen F. Arno

    1979-01-01

    In this paper, Montana is divided into eight geographic subdivisions called "forest regions," based on distributions of tree and undergrowth species and the relationship of these patterns to climate and topography. The regions serve as a geographic reference for describing patterns of forest vegetation across the State. Data on the distributions of plant...

  6. Advanced processing and simulation of MRS data using the FID appliance (FID-A)-An open source, MATLAB-based toolkit.

    Science.gov (United States)

    Simpson, Robin; Devenyi, Gabriel A; Jezzard, Peter; Hennessy, T Jay; Near, Jamie

    2017-01-01

    To introduce a new toolkit for simulation and processing of magnetic resonance spectroscopy (MRS) data, and to demonstrate some of its novel features. The FID appliance (FID-A) is an open-source, MATLAB-based software toolkit for simulation and processing of MRS data. The software is designed specifically for processing data with multiple dimensions (eg, multiple radiofrequency channels, averages, spectral editing dimensions). It is equipped with functions for importing data in the formats of most major MRI vendors (eg, Siemens, Philips, GE, Agilent) and for exporting data into the formats of several common processing software packages (eg, LCModel, jMRUI, Tarquin). This paper introduces the FID-A software toolkit and uses examples to demonstrate its novel features, namely 1) the use of a spectral registration algorithm to carry out useful processing routines automatically, 2) automatic detection and removal of motion-corrupted scans, and 3) the ability to perform several major aspects of the MRS computational workflow from a single piece of software. This latter feature is illustrated through both high-level processing of in vivo GABA-edited MEGA-PRESS MRS data, as well as detailed quantum mechanical simulations to generate an accurate LCModel basis set for analysis of the same data. All of the described processing steps resulted in a marked improvement in spectral quality compared with unprocessed data. Fitting of MEGA-PRESS data using a customized basis set resulted in improved fitting accuracy compared with a generic MEGA-PRESS basis set. The FID-A software toolkit enables high-level processing of MRS data and accurate simulation of in vivo MRS experiments. Magn Reson Med 77:23-33, 2017. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  7. Regulating different trading venues: The European experience based on MiFID

    DEFF Research Database (Denmark)

    Clausen, Nis Jul; Sørensen, Karsten Engsig

    2012-01-01

    a legal analysis of the changes in trading pattern for securities that had accured sind the implementation of MiFID in 2007......a legal analysis of the changes in trading pattern for securities that had accured sind the implementation of MiFID in 2007...

  8. Middle distillates hydrogen content via GC×GC-FID.

    Science.gov (United States)

    Vozka, Petr; Mo, Huaping; Šimáček, Pavel; Kilaz, Gozdem

    2018-08-15

    Liquid transportation fuels in the middle distillate range contain thousands of hydrocarbons making the predictions and calculations of properties from composition a challenging process. We present a new approach of hydrogen content determination by comprehensive two-dimensional gas chromatography with flame ionization detector (GC×GC-FID) using a weighted average method. GC×GC-FID hydrogen determination precision was excellent (0.005 wt% repeatability). The method accuracy was evaluated by high-resolution nuclear magnetic resonance (NMR) technique, which is non-biased, measures the H signal directly and was independently validated by controls in the current study. The hydrogen content (in the range of 12.72-15.54 wt%) in 28 fuel samples were determined using GC×GC-FID. Results were within ± 2% of those obtained via NMR. Owing to the fact that NMR is accepted as an accurate technique for hydrogen content determination, the GC×GC method proposed in this study can be considered precise and accurate. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. 36 CFR 223.110 - Delegation to regional forester.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false Delegation to regional forester. 223.110 Section 223.110 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF... § 223.110 Delegation to regional forester. The Chief, Forest Service, after approval of conditions of...

  10. FID GEO: Digital transformation and Open Access in Germany's geoscience research community

    Science.gov (United States)

    Hübner, Andreas; Martinson, Guntars; Bertelmann, Roland; Elger, Kirsten; Pfurr, Norbert; Schüler, Mechthild

    2017-04-01

    The 'Specialized Information Service for Solid Earth Sciences' (FID GEO) supports Germany's geoscience research community in 1) electronic publishing of i) institutional and "grey" literature not released in publishing houses and ii) pre- and postprints of research articles 2) digitising geoscience literature and maps and 3) addressing the publication of research data associated with peer-reviewed research articles (data supplements). Established in 2016, FID GEO is funded by the German Research Foundation (DFG) and is run by the Göttingen State and University Library (SUB Göttingen) and the GFZ German Research Centre for Geosciences. Here we present recent success stories and lessons learned. With regard to digitisation, FID GEO received a request from one of the most prestigious geoscience societies in Germany to digitise back-issues of its journals that are so far only available in print. Aims are to ensure long-term availability in Open Access and high visibility by DOI-referenced electronic publication via the FID GEO repository. While digitisation will be financed by FID GEO funds, major challenges are to identify the copyright holders (journals date back to 1924) and negotiate digitisation and publication rights. With respect to research data publishing, we present how we target scientists to integrate the publication of research data into their workflows and institutions to promote the topic. For the latter, we successfully take advantage of existing networks as entry points to the community, like the research network Geo.X in the Berlin-Brandenburg area, individual learned societies as well as their overarching structures DV Geo and GeoUnion. FID GEO promotes the Statement of Commitment of the Coalition for Publishing Data in the Earth and Space Sciences (COPDESS) as well as the FAIR Data Principles in presentations to the above-mentioned groups and institutions. Our aim is to eventually transfer the positive feedback from the geoscience community into

  11. Forest fire occurrence and silvicultural-economic prerequisites for protection improvement in forest regions of Krasnoyarsk Krai

    Directory of Open Access Journals (Sweden)

    V. V. Furyaev

    2017-10-01

    Full Text Available The territory of the Krasnoyarsk Krai is substantially diverse in terms of climatic, silvicultural and economic conditions owing to its sufficient spread from the North to the South. These differences were to some extent taken into account when the forest fund of the Krasnoyarsk Krai was divided into seven forest regions: forest tundra of Central Siberia, highland taiga of Central Siberia, plain taiga of West Siberia, Angara region, subtaiga forest steppe of Central Siberia, Altai-Sayanskiy highland, Altai-Sayanskiy highland forest steppe. The regions show different levels of fire occurrence and different fire effects that require different levels of protection from forest fires. Optimization of the protection is based on activities that combine prevention and timely detection of fires depending on development of forest regions and intensity of forest management. The main focus of the paper is on possibility or inadvisability of prescribed fires, fire-use fires (fires that started naturally but were then managed for their beneficial effects and the system of activities increasing fire resistance of the most valuable forests. It is justified that taking into account the effects of forest fires, selective protection of forests is expedient in forest-tundra Middle Siberia and highland taiga of Middle Siberia regions. The whole area of plain taiga of West Siberia region should be subject to protection but with various levels of intensity in different parts of it. The forest fund of Angara, subtaiga forest steppe of Middle Siberia, Altai-Sayanskiy highland, Altai-Sayanskiy highland forest steppe regions should be protected on the whole area. Application of prescribed fires is relevant in the subzone of South taiga, in the forest steppe zone as well as in the submontane and lowland taiga belts. Fire-use fires are admissible on limited areas in the subzones of Middle and North taiga.

  12. Forest insect and disease conditions, Vancouver forest region, 1986. Annual publication

    Energy Technology Data Exchange (ETDEWEB)

    Humphreys, N; Ferris, R L

    1987-01-01

    This report outlines the status of forest pest conditions in the Vancouver Forest Region, and forecasts population trends of some potentially damaging pests. Pests are listed by host in order of importance.

  13. Development and Validation of a GC-FID Method for Diagnosis of Methylmalonic Acidemia

    Directory of Open Access Journals (Sweden)

    Fatemeh Keyfi

    2016-05-01

    Full Text Available Background: Urinary organic acids are water-soluble intermediates and end products of the metabolism of amino acids, carbohydrates, lipids, and a number of other metabolic processes. In the hereditary diseases known as organic acidurias, an enzyme or co-factor defect in a metabolic pathway leads to the accumulation and increased excretion of one or more of these acidic metabolites. Gas chromatography is the most commonly-used technology to separate and identify these metabolites. In this report the analytical conditions for the determination of methylmalonic acid using a gas chromatography/flame ionization detector (GC-FID are studied with the aim to establish a method to analyze organic acids in human urine. Methods: Studies included the GC-FID method development, the conditions of the derivatization (trimethylsilylation reaction, and the stability of the methylmalonic acid standard solution and trimethylsilyl derivatives during storage. Also, a systematic comparison between GC-FID and gas chromatography/mass spectrometry (GC-MS was performed. Results: The highest resolution and sensitivity were obtained at 60 oC with a 30 min reaction time. Standard solutions and derivatized samples were stable for 7 days at 4-8 oC. Relative standard deviations of within-day and day-to-day assay results were less than 5%. Methylmalonic acid was detected in thirty human urine samples by the proposed GC-FID, and the results were compared with gold standard technique GC-MS. The correlation coefficient between GC-MS and GC-FID was obtained with R2= 0.997. Conclusions: The developed method was applied to the quantitative analysis of methylmalonic acid in urine from hospitalized children with methylmalonic acidemia. With this method we aim to support pediatric clinics in Iran and assist in clinical diagnostics.

  14. Point Climat no. 16 'Applying MiFID to the EU ETS: what are the implications?'

    International Nuclear Information System (INIS)

    Patay, Magali; Alberola, Emilie

    2012-01-01

    Among the publications of CDC Climat Research, 'Climate Briefs' presents, in a few pages, hot topics in climate change policy. This issue addresses the following points: The European Union is moving ahead with a proposal to regulate trading in carbon assets under the revised Markets in Financial Instruments Directive (MiFID). This would mean that all trading in such assets, from the European Union Emissions Trading System (EU ETS) to international carbon credits from Kyoto project-based mechanisms eligible for the EU ETS would be covered by the existing EU regulatory framework for financial markets. Allowance spot and derivative markets are set to be supervised by a single oversight authority, and the MiFID and Market Abuse Directive will apply. While this will bring benefits in terms of improved security, transparency and protections for market participants in the carbon market, future challenges for the EU ETS will involve the proper coordination of MiFID with the Auctioning Regulation, and ensuring that the ad hoc treatment of emission allowances is maintained within the MiFID legislation

  15. Fidélisation et personnalisation

    OpenAIRE

    Bernard, Françoise; Boli, Claude; Cordelier, Benoit; Cova, Bernard; Deley, Nathalie; Desjeux, Dominique; De Crescenzo, Jean-Claude; Floris, Bernard; Gardère, Élizabeth; Hardy, Laurence; Laborde, Aurélie; Le Fournier, Viviane; Mesnil, Christian; Montety, Caroline de; Nguyen, Céline

    2012-01-01

    Depuis les années 1990 les entreprises sont progressivement passées de stratégies de marketing dit « transactionnel » ou « centré produit ». à des stratégies de marketing dit « relationnel » ou « orienté client » les politiques de « fidélisation clients » participent pleinement de celle évolution. Sans pour autant négliger les formes plus traditionnelles de la communication et du marketing. les entreprises misent ainsi largement sur le développement de relations pérennes et étroites avec les...

  16. Silvicultural and classificatory analysis of forests of Dnipropetrovsk region

    Directory of Open Access Journals (Sweden)

    S. A. Sytnik

    2013-11-01

    Full Text Available The total forest area of Dnipropetrovsk Region is 198,600 ha, of which 90,800 ha, 45.7% of the total area, comes under the administration of the Forestry and Hunting Department of Dnipropetrovsk Region. 65,700 haor 72.4% of the total surface of the area under the region’s Forestry and Hunting Administration is actually covered by forest vegetation. The most prevalent types of forests in the territory of the Forestry and Hunting Department of Dnipropetrovsk Region (FHDDR are SD1H (dry pine-oak halogenic type, which takes up 13.1% of the forested area of Dnipropetrovsk region, D1H (dry oak halogenic forest – 11.6%, D1BP (dry elm-maple-oak – 10.7%, SB1OP (dry oak-pine – 7.6% D2BP (mesophilous elm-maple-oak – 7.8%, SD1P (dry maple-pine-oak – 6.5%. Forests of the region are classified under environmental, scientific, historical, cultural, recreational and health, protection (erosion control designations. Forests classified as having conservation, scientific, historical and cultural significance cover an area of 13,410 ha (14.8% of the area under Dnipropetrovsk Region’s Forestry and Hunting Administration; recreational forests cover 45,841.5 ha (50.5%. One third of the forests under FHDDR are classified as protective forests. These are anti-erosion forests which cover an area of 31,478.5 ha (34.7%. Commercially exploitable forests do not exist in the region. According to forest regulations the total area protected by the Nature Reserve Fund of Ukraine subordinate to FHDDR is 12,952.6 ha. Objects of state importance are the Dnipro-Oril’ Nature Reserve (3,759.4 ha, wildlife reserves (4,903.1 ha and natural monuments (8,718.5 ha. Areas and sites of local importance include regional landscape parks (2,157.0 ha, wildlife reserves (1,730.0 ha, natural monuments (105.3 ha, park monuments of landscape architecture (208.0 ha, nature reserve boundaries (33.8 ha. The dominant species of conifer is the pine with a total stand area of 16

  17. Forest diversity, climate change and forest fires in the Mediterranean region of Turkey.

    Science.gov (United States)

    Ozturk, Munir; Gucel, Salih; Kucuk, Mahir; Sakcali, Serdal

    2010-01-01

    This paper reviews the forest resources in Turkey in the light of published literature and summarises extensive fieldwork undertaken in the Mediterranean phytogeograhical region of Turkey. The issues of landscape change and the associated drivers are addressed and the threats to the forest diversity are considered. It notes the impacts of climate change and forest fires and attemepts have been made to put forth future options for sustainable forest development.

  18. Analysis of long-term forest bird monitoring data from national forests of the western Great Lakes Region

    Science.gov (United States)

    Gerald J. Niemi; Robert W. Howe; Brian R. Sturtevant; Linda R. Parker; Alexis R. Grinde; Nicholas P. Danz; Mark D. Nelson; Edmund J. Zlonis; Nicholas G. Walton; Erin E. Gnass Giese; Sue M. Lietz

    2016-01-01

    Breeding bird communities in forests of the western Great Lakes region are among the most diverse in North America, but the forest environment in this region has changed dramatically during the past 150 years. To address concerns about loss of biodiversity due to ongoing forest harvesting and to better inform forest planning, researchers have systematically monitored...

  19. Plausibility of Individual Decisions from Random Forests in Clinical Predictive Modelling Applications.

    Science.gov (United States)

    Hayn, Dieter; Walch, Harald; Stieg, Jörg; Kreiner, Karl; Ebner, Hubert; Schreier, Günter

    2017-01-01

    Machine learning algorithms are a promising approach to help physicians to deal with the ever increasing amount of data collected in healthcare each day. However, interpretation of suggestions derived from predictive models can be difficult. The aim of this work was to quantify the influence of a specific feature on an individual decision proposed by a random forest (RF). For each decision tree within the RF, the influence of each feature on a specific decision (FID) was quantified. For each feature, changes in outcome value due to the feature were summarized along the path. Results from all the trees in the RF were statistically merged. The ratio of FID to the respective feature's global importance was calculated (FIDrel). Global feature importance, FID and FIDrel significantly differed, depending on the individual input data. Therefore, we suggest to present the most important features as determined for FID and for FIDrel, whenever results of a RF are visualized. Feature influence on a specific decision can be quantified in RFs. Further studies will be necessary to evaluate our approach in a real world scenario.

  20. [Carbon sequestration status of forest ecosystems in Ningxia Hui Autonomous Region].

    Science.gov (United States)

    Gao, Yang; Jin, Jing-Wei; Cheng, Ji-Min; Su, Ji-Shuai; Zhu, Ren-Bin; Ma, Zheng-Rui; Liu, Wei

    2014-03-01

    Based on the data of Ningxia Hui Autonomous Region forest resources inventory, field investigation and laboratory analysis, this paper studied the carbon sequestration status of forest ecosystems in Ningxia region, estimated the carbon density and storage of forest ecosystems, and analyzed their spatial distribution characteristics. The results showed that the biomass of each forest vegetation component was in the order of arbor layer (46.64 Mg x hm(-2)) > litterfall layer (7.34 Mg x hm(-2)) > fine root layer (6.67 Mg x hm(-2)) > shrub-grass layer (0.73 Mg x hm(-2)). Spruce (115.43 Mg x hm(-2)) and Pinus tabuliformis (94.55 Mg x hm(-2)) had higher vegetation biomasses per unit area than other tree species. Over-mature forest had the highest arbor carbon density among the forests with different ages. However, the young forest had the highest arbor carbon storage (1.90 Tg C) due to its widest planted area. Overall, the average carbon density of forest ecosystems in Ningxia region was 265.74 Mg C x hm(-2), and the carbon storage was 43.54 Tg C. Carbon density and storage of vegetation were 27.24 Mg C x hm(-2) and 4.46 Tg C, respectively. Carbon storage in the soil was 8.76 times of that in the vegetation. In the southern part of Ningxia region, the forest carbon storage was higher than in the northern part, where the low C storage was mainly related to the small forest area and young forest age structure. With the improvement of forest age structure and the further implementation of forestry ecoengineering, the forest ecosystems in Ningxia region would achieve a huge carbon sequestration potential.

  1. State of mid-atlantic region forests in 2000

    Science.gov (United States)

    Kenneth W. Stolte; Barbara L. Conkling; Stephanie Fulton; M. Patricia Bradley

    2012-01-01

    Wet and warm climate, mountainous topography, and deep rich soils produced one of the most magnificent and diverse temperate forests in the world. In 1650 the Mid-Atlantic forests covered 95 percent of the region, but were greatly reduced in 1900 by extensive tree harvesting, and conversion to farms and pastures. Settlement of forests also led to severe wildfires, soil...

  2. MiFID a jeho aplikace na kapitálovém trhu v ČR

    OpenAIRE

    Janeček, Petr

    2008-01-01

    Application of MiFID on the czech capital market In this work we describe and analyze evolution of Czech capital market and crucial changes which are caused by implementation of Markets in Financial Instruments Directive (MiFID) to the Czech legal system. We use the interdisciplinary (legal and economic) approach when studying this subject. Firstly, we discuss the relation and difference between definitions "capital market" and "financial market". The interest is also focused on use of this t...

  3. Sustainable management of natural forests in pantanal region, Brazil.

    Directory of Open Access Journals (Sweden)

    Patricia Póvoa de Mattos

    2010-08-01

    Full Text Available The Pantanal region in Brazil has an area of 140,000 km², with approximately 30 % of natural forests distributed as deciduous, semideciduous, and forested savannas. The subregion of Nhecolandia represents 19 % of this area. There is constant concern about the sustainability of these forested areas, as there is a constant demand for wood for farm maintenance, mainly for making fence poles. The objective of this article is to indicate sustainable forest management practices in the Pantanal region of Nhecolandia. The methodology of this novel approach consisted of the recovery and organization of the available information to calculate the sustainable allowable cut per hectare, considering: cutting cycle, wood stock, periodic annual increment (PAI in percentage of volume from the commercial or interesting species and the stand structure. For forested savannas, the diameter at breast height (DBH of 529 trees per hectare were estimated as follows: 28 % with a DBH lower than 10 cm, 36 % from 10 to 20 cm, 21 % from 20 to 30 cm, 10 % from 30 to 40 cm and only 4 % greater than 40 cm. The estimated total volume per hectare was 84.2 m³ and the estimated basal area was 18.6 m². The forested areas of the Pantanal region present potential for sustainable use. However, due to regional characteristics and the lack of available information, an enhancement in research is recommended to establish a basic management guide to ensure its perpetuation for future generations.

  4. RegionsТ Competition for Investment Projects in Forest Development

    Directory of Open Access Journals (Sweden)

    Valentina Fedorovna Lapo

    2014-06-01

    Full Text Available The author considers the problem of competition between regions for investments. It is hypothesized that the presence of legislative stimulating benefits in a particular region, ceteris paribus, promotes investment flows in forest projects from other regions and is an instrumentl of inter-regional competition. To test the hypotheses the researcher uses a modified model with spatial weighted exogenous variables in order to assess the spatial effects. The obtained estimates indicate the presence of spatial effects, both negative (an inter-regional competition for investment and positive (agglomeration effects. The author argues that the process of inter-regional competition for investment in projects on forest development is caused by benefits under taxes and payments into the regional budget, regulation of pricing (including actions by natural and local monopolies and depreciation policy and solutions to put some forest projects in the list of priority ones. Along with this, the paper identifies agglomeration effects induced by a number of benefits: direct dealings in investment by financing or property contribution, subsidies, state guarantees, credit security and partial payment of interest

  5. Development of a spatial forest data base for the eastern boreal forest region of Ontario. Forest fragmentation and biodiversity project technical report No. 14

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    In 1991, a spatial forest database over large regions of Ontario was initiated as the basis for research into forest fragmentation and biodiversity using data generated from the digital analysis of LANDSAT thematic mapper satellite data integrated into a geographic information system (GIS). The project was later extended into the eastern segment of the Boreal forest system. This report describes preparation of the spatial forest data base over the eastern Boreal Forest Region that extends from the northern boundary of the Great Lakes-St. Lawrence Forest Region and the southern margin of the James Bay Lowland, between the Ontario-Quebec border and a point west of Michipicoten on Lake Superior. The report describes the methodology used to produce the data base and results, including mapping of water, dense and sparse conifer forest, mixed forest, dense and sparse deciduous forest, poorly vegetated areas, recent cutovers of less than 10 years, old cutovers and burns, recent burns of less than 10 years, wetlands, bedrock outcrops, agriculture, built-up areas, and mine tailings.

  6. GC-FID coupled with chemometrics for quantitative and chemical fingerprinting analysis of Alpinia oxyphylla oil.

    Science.gov (United States)

    Miao, Qing; Kong, Weijun; Zhao, Xiangsheng; Yang, Shihai; Yang, Meihua

    2015-01-01

    Analytical methods for quantitative analysis and chemical fingerprinting of volatile oils from Alpinia oxyphylla were established. The volatile oils were prepared by hydrodistillation, and the yields were between 0.82% and 1.33%. The developed gas chromatography-flame ionization detection (GC-FID) method showed good specificity, linearity, reproducibility, stability and recovery, and could be used satisfactorily for quantitative analysis. The results showed that the volatile oils contained 2.31-77.30 μL/mL p-cymene and 12.38-99.34 mg/mL nootkatone. A GC-FID fingerprinting method was established, and the profiles were analyzed using chemometrics. GC-MS was used to identify the principal compounds in the GC-FID profiles. The profiles of almost all the samples were consistent and stable. The harvesting time and source were major factors that affected the profile, while the volatile oil yield and the nootkatone content had minor secondary effects. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Remote Sensing Techniques in Monitoring Post-Fire Effects and Patterns of Forest Recovery in Boreal Forest Regions: A Review

    Directory of Open Access Journals (Sweden)

    Thuan Chu

    2013-12-01

    Full Text Available The frequency and severity of forest fires, coupled with changes in spatial and temporal precipitation and temperature patterns, are likely to severely affect the characteristics of forest and permafrost patterns in boreal eco-regions. Forest fires, however, are also an ecological factor in how forest ecosystems form and function, as they affect the rate and characteristics of tree recruitment. A better understanding of fire regimes and forest recovery patterns in different environmental and climatic conditions will improve the management of sustainable forests by facilitating the process of forest resilience. Remote sensing has been identified as an effective tool for preventing and monitoring forest fires, as well as being a potential tool for understanding how forest ecosystems respond to them. However, a number of challenges remain before remote sensing practitioners will be able to better understand the effects of forest fires and how vegetation responds afterward. This article attempts to provide a comprehensive review of current research with respect to remotely sensed data and methods used to model post-fire effects and forest recovery patterns in boreal forest regions. The review reveals that remote sensing-based monitoring of post-fire effects and forest recovery patterns in boreal forest regions is not only limited by the gaps in both field data and remotely sensed data, but also the complexity of far-northern fire regimes, climatic conditions and environmental conditions. We expect that the integration of different remotely sensed data coupled with field campaigns can provide an important data source to support the monitoring of post-fire effects and forest recovery patterns. Additionally, the variation and stratification of pre- and post-fire vegetation and environmental conditions should be considered to achieve a reasonable, operational model for monitoring post-fire effects and forest patterns in boreal regions.

  8. Canadian forest service. Science and sustainable development directorate: Arnews: Annual report 1992. Information report No. 7

    Energy Technology Data Exchange (ETDEWEB)

    Van Sickle, J.P.; Hall, J.P.

    1993-01-01

    ARNEWS is a program managed by FIDS (Forest Insect and Disease Survey). It has been in place since 1984 to detect early signs of damage to Canadian forests. ARNEWS (Acid Rain National Early Warning System) is a long-term biomonitoring program designed to detect changes in forest vegetation and soils. ARNEWS consists of 103 permanent sample plots located in all 10 provinces. The health of 18 conifer and 9 hardwood species is described. This document presents methods used, the health of Canada's forests, discussion and conclusions.

  9. Regional forest and non-forest mapping using Envisat ASAR data

    NARCIS (Netherlands)

    Ling, F.; Li, Z.Y.; Chen, E.X.; Huang, Y.P.; Tian, X.; Schmullius, C.; Leiterer, R.; Reiche, J.; Maurizio, S.

    2012-01-01

    Envisat Advanced Synthetic Aperture Radar (ASAR) dual-polarization data are shown to be effective for regional forest monitoring. To this scope, an automatic SAR image preprocessing procedure was developed using SRTM DEM and Landsat TM image for geocoding in rugged terrain and smooth terrain areas,

  10. Non-water-suppressed 1 H FID-MRSI at 3T and 9.4T.

    Science.gov (United States)

    Chang, Paul; Nassirpour, Sahar; Avdievitch, Nikolai; Henning, Anke

    2018-08-01

    This study investigates metabolite concentrations using metabolite-cycled 1 H free induction decay (FID) magnetic resonance spectroscopic imaging (MRSI) at ultra-high fields. A non-lipid-suppressed and slice-selective ultra-short echo time (TE) 1 H FID MRSI sequence was combined with a low-specific absorption rate (SAR) asymmetric inversion adiabatic pulse to enable non-water-suppressed metabolite mapping using metabolite-cycling at 9.4T. The results were compared to a water-suppressed FID MRSI sequence, and the same study was performed at 3T for comparison. The scan times for performing single-slice metabolite mapping with a nominal voxel size of 0.4 mL were 14 and 17.5 min on 3T and 9.4T, respectively. The low-SAR asymmetric inversion adiabatic pulse enabled reliable non-water-suppressed metabolite mapping using metabolite cycling at both 3T and 9.4T. The spectra and maps showed good agreement with the water-suppressed FID MRSI ones at both field strengths. A quantitative analysis of metabolite ratios with respect to N-acetyl aspartate (NAA) was performed. The difference in Cre/NAA was statistically significant, ∼0.1 higher for the non-water-suppressed case than for water suppression (from 0.73 to 0.64 at 3T and from 0.69 to 0.59 at 9.4T). The difference is likely because of chemical exchange effects of the water suppression pulses. Small differences in mI/NAA were also statistically significant, however, are they are less reliable because the metabolite peaks are close to the water peak that may be affected by the water suppression pulses or metabolite-cycling inversion pulse. We showed the first implementation of non-water-suppressed metabolite-cycled 1 H FID MRSI at ultra-high fields. An increase in Cre/NAA was seen for the metabolite-cycled case. The same methodology was further applied at 3T and similar results were observed. Magn Reson Med 80:442-451, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society

  11. Monitoring Regional Forest Disturbances across the US with Near Real Time MODIS NDVI Products included in the ForWarn Forest Threat Early Warning System

    Science.gov (United States)

    Spruce, Joseph; Hargrove, William W.; Gasser, Gerald; Norman, Steve

    2013-01-01

    U.S. forests occupy approx.1/3 of total land area (approx. 304 million ha). Since 2000, a growing number of regionally evident forest disturbances have occurred due to abiotic and biotic agents. Regional forest disturbances can threaten human life and property, bio-diversity and water supplies. Timely regional forest disturbance monitoring products are needed to aid forest health management work. Near Real Time (NRT) twice daily MODIS NDVI data provide a means to monitor U.S. regional forest disturbances every 8 days. Since 2010, these NRT forest change products have been produced and posted on the US Forest Service ForWarn Early Warning System for Forest Threats.

  12. Reforming the Regulation of Trading Venues in the EU under the Proposed MiFID II – Levelling the Playing Field and Overcoming Fragmentation?

    DEFF Research Database (Denmark)

    Clausen, Nis Jul; Sørensen, Karsten Engsig

    2012-01-01

    The Directive on Markets in Financial Instruments (MiFID 2004), adopted in 2004, brought about substantial changes in the market. Competition between trading venues has increased and a substantial portion of trade in financial instruments has moved from regulated markets to other trading venues....... This has created an unlevel playing field between regulated markets on the one hand and other trading venues on the other. At the same time, the fragmentation of trade has led to problems for ensuring investor protection and market surveillance. The Commission has recently proposed a reform of the Mi......FID regime (MiFID II) to address these two problems. In this article there is an analysis of how and to what extent the proposed MiFID II will solve these problems. It is concluded that MiFID II will solve the problem of the unlevel playing field between regulated markets and multilateral trading facilities...

  13. From sink to source: Regional variation in U.S. forest carbon futures.

    Science.gov (United States)

    Wear, David N; Coulston, John W

    2015-11-12

    The sequestration of atmospheric carbon (C) in forests has partially offset C emissions in the United States (US) and might reduce overall costs of achieving emission targets, especially while transportation and energy sectors are transitioning to lower-carbon technologies. Using detailed forest inventory data for the conterminous US, we estimate forests' current net sequestration of atmospheric C to be 173 Tg yr(-1), offsetting 9.7% of C emissions from transportation and energy sources. Accounting for multiple driving variables, we project a gradual decline in the forest C emission sink over the next 25 years (to 112 Tg yr(-1)) with regional differences. Sequestration in eastern regions declines gradually while sequestration in the Rocky Mountain region declines rapidly and could become a source of atmospheric C due to disturbances such as fire and insect epidemics. C sequestration in the Pacific Coast region stabilizes as forests harvested in previous decades regrow. Scenarios simulating climate-induced productivity enhancement and afforestation policies increase sequestration rates, but would not fully offset declines from aging and forest disturbances. Separating C transfers associated with land use changes from sequestration clarifies forests' role in reducing net emissions and demonstrates that retention of forest land is crucial for protecting or enhancing sink strength.

  14. ORGEST: Regional guidelines and silvicultural models for sustainable forest management

    Energy Technology Data Exchange (ETDEWEB)

    Piqué, Míriam; Vericat, Pau; Beltrán, Mario

    2017-11-01

    Aim of the study: To develop regional guidelines for sustainable forest management. Area of the study: Forests of Catalonia (NE Spain). Material and methods: The process of developing the forest management guidelines (FMG) started by establishing a thorough classification of forest types at stand level. This classification hinges on two attributes: tree species composition and site quality based on ecological variables, which together determine potential productivity. From there, the management guidelines establish certain objectives and silvicultural models for each forest type. The forest type classifications, like the silvicultural models, were produced using both existing and newly-built growth models based on data from the National Forest Inventory (NFI) and expert knowledge. The effort involved over 20 expert working groups in order to better integrate the expertise and vision of different sectorial agents. Main results: The FMG consist in quantitative silvicultural models that include typical silvicultural variables, technical descriptions of treatments and codes of good practice. Guidelines now cover almost all forest types in Catalonia (spanning up to 90% of the Catalan forest area). Different silvicultural models have been developed for pure and mixed stands, different site quality classes (2–3 classes per species), and even- and multi-aged stands. Research highlights: FMG: i) orient the management of private and public forests, (ii) provide a technical scaffold for efficient allocation/investment of public subsidies in forest management, and (iii) bridge forest planning instruments at regional (strategic-tactical) and stand (operational) level.

  15. ORGEST: Regional guidelines and silvicultural models for sustainable forest management

    International Nuclear Information System (INIS)

    Piqué, Míriam; Vericat, Pau; Beltrán, Mario

    2017-01-01

    Aim of the study: To develop regional guidelines for sustainable forest management. Area of the study: Forests of Catalonia (NE Spain). Material and methods: The process of developing the forest management guidelines (FMG) started by establishing a thorough classification of forest types at stand level. This classification hinges on two attributes: tree species composition and site quality based on ecological variables, which together determine potential productivity. From there, the management guidelines establish certain objectives and silvicultural models for each forest type. The forest type classifications, like the silvicultural models, were produced using both existing and newly-built growth models based on data from the National Forest Inventory (NFI) and expert knowledge. The effort involved over 20 expert working groups in order to better integrate the expertise and vision of different sectorial agents. Main results: The FMG consist in quantitative silvicultural models that include typical silvicultural variables, technical descriptions of treatments and codes of good practice. Guidelines now cover almost all forest types in Catalonia (spanning up to 90% of the Catalan forest area). Different silvicultural models have been developed for pure and mixed stands, different site quality classes (2–3 classes per species), and even- and multi-aged stands. Research highlights: FMG: i) orient the management of private and public forests, (ii) provide a technical scaffold for efficient allocation/investment of public subsidies in forest management, and (iii) bridge forest planning instruments at regional (strategic-tactical) and stand (operational) level.

  16. 40 CFR 1065.362 - Non-stoichiometric raw exhaust FID O2 interference verification.

    Science.gov (United States)

    2010-07-01

    ...-stoichiometric mode of combustion (e.g., compression-ignition, lean-burn), verify the amount of FID O2 interference upon initial installation and after major maintenance. (b) Measurement principles. Changes in O2...

  17. Interactive effects of environmental change and management strategies on regional forest carbon emissions.

    Science.gov (United States)

    Hudiburg, Tara W; Luyssaert, Sebastiaan; Thornton, Peter E; Law, Beverly E

    2013-11-19

    Climate mitigation activities in forests need to be quantified in terms of the long-term effects on forest carbon stocks, accumulation, and emissions. The impacts of future environmental change and bioenergy harvests on regional forest carbon storage have not been quantified. We conducted a comprehensive modeling study and life-cycle assessment of the impacts of projected changes in climate, CO2 concentration, and N deposition, and region-wide forest management policies on regional forest carbon fluxes. By 2100, if current management strategies continue, then the warming and CO2 fertilization effect in the given projections result in a 32-68% increase in net carbon uptake, overshadowing increased carbon emissions from projected increases in fire activity and other forest disturbance factors. To test the response to new harvesting strategies, repeated thinnings were applied in areas susceptible to fire to reduce mortality, and two clear-cut rotations were applied in productive forests to provide biomass for wood products and bioenergy. The management strategies examined here lead to long-term increased carbon emissions over current harvesting practices, although semiarid regions contribute little to the increase. The harvest rates were unsustainable. This comprehensive approach could serve as a foundation for regional place-based assessments of management effects on future carbon sequestration by forests in other locations.

  18. Sustaining Productivity of Planted Forests in the Gulf Coast Region

    Science.gov (United States)

    James P. Bamett; Allan E. Tiarks; Mary Anne Sword

    2000-01-01

    The forests of the Gulf Coastal Region provide the basis for its economic well-being. Because of the semitropical climate, abundant rainfall and availing topography, the nation's richest plant communities thrive. These forests are predominately privately owned. Millions of private landowners are committed to managing their forests for a broad array of values which...

  19. Effects of forest fires in southern and central of Zabaykal region

    Directory of Open Access Journals (Sweden)

    L. V. Buryak

    2016-12-01

    Full Text Available The fire frequency situation in Zabaykal region from 1964 to 2015 is evaluated and discussed in the paper. The main reasons of decadal increase of fire numbers and the area burned are revealed. The main reasons of high fire frequency and the increase of fire activity in the last decades are shown. The characteristics of the weather conditions in the years of high fire frequency are presented. Fire activity was found to increase not only because of the droughts in the last decades but also due to forest disturbances in Zabaykalsky Krai by illegal logging. Based on the data from 170 sample sites laid out with the use of satellite images, forest inventory data and results of ground sample transects, the impact of the wildfires of different type, form and severity on tree mortality in the light-coniferous forests was estimated, as well as the amount of tree regeneration in the forest areas disturbed by fires, logged sites (both burned and unburned, and sites burned repeatedly was evaluated. Wildfires in the Zabaykal region were found to be strong ecological factor influencing on the probability of existence of many forest ecosystems. In case of further climate warming and repeated fires, the part of the forests may transform to the non forest areas. The steppification of the burned sites in the southern forest-steppe regions and in the low parts of the southern slopes at the border with steppe landscapes as well as desertification in the central parts of the region and swamping of burned sites located in the wet soils are observed. Wind and water soil erosion happens at the large burned sites.

  20. LCA of forest chips versus diesel boilers in the Mediterranean region

    OpenAIRE

    Esteban Dalmau, Bernat; Baquero Armans, Grau; Puig Vidal, Rita; Riba Ruiz, Jordi-Roger; Rius Carrasco, Antoni

    2011-01-01

    ABSTRACT: Obtaining energy from forest chips is a technology widely used in many regions. There are currently many studies and applications on the use of forest biomass [1,2], mainly promoted by policies aimed to reduce greenhouse gases. The forests of the Mediterranean area are characterized by a mountain relief. This orography makes difficult the selective biomass extraction from the forest. Thus, the biomass is accumulated in the forest and becomes a serious danger for wildfires. Forest fi...

  1. 78 FR 5165 - First Phase of the Forest Planning Process for the Bio-Region

    Science.gov (United States)

    2013-01-24

    ... DEPARTMENT OF AGRICULTURE Forest Service First Phase of the Forest Planning Process for the Bio... initiating the first phase of the forest planning process for the Bio-Region. SUMMARY: Come gather 'round... phase of the Bio-Regional Assessment has begun. DATES: The Bio-Regional Assessment Report will be...

  2. State of mid-atlantic region forests in 2000-Summary Report

    Science.gov (United States)

    Kenneth W. Stolte

    2012-01-01

    Wet and warm climate, mountainous topography, and deep rich soils produced one of the most magnificent and diverse temperate forests in the world. In 1650 the Mid-Atlantic forests covered 95 percent of the region, but were greatly reduced in 1900 by extensive tree harvesting, and conversion to farms and pastures. Settlement of forests also led to severe wildfires, soil...

  3. Sustainable Forest Management in a Mediterranean region: social preferences

    Energy Technology Data Exchange (ETDEWEB)

    Maroto, C.; Segura, M.; Ginestar, C.; Uriol, J.; Segura, B.

    2013-07-01

    Aim of study: There is a lack of empirical research that deals with sustainable forest management in Mediterranean regions, among the most vulnerable ecosystems. The main purpose of this work is to define the strategic criteria and objectives for sustainable forest management and aggregate the preferences of stake holders in a Mediterranean region, using AHP and Goal Programming. Area of study: Valencian Community (Spain). Material and Methods: Firstly, we identified forest stake holders and structured a decision hierarchy. Then a workshop was carried out to test and validate the proposed criteria and objectives, as well as a survey to determine social preferences. Secondly, another survey was conducted amongst experts to prioritize action plans. Main results: Stake holders preferences gave the greatest importance to the environmental criteria (hydrological regulation and erosion, climate change mitigation and biodiversity) with an average weight of 40%. Social criteria (employment, recreational activities and landscape) had a weight of 38% and 22% the economic criteria case (wood, hunting and fishing, livestock, renewable energies, rural tourism and mining). The results showed that new products and services such as tourism, renewable energies, landscape, hydrological regulation and erosion control, biodiversity or climate change mitigation are very relevant objectives. We also prioritized action plans comparing them with the distribution of the administration budget. Research highlights: The environmental and social criteria are much more important than the economic ones in the regional planning of the Mediterranean forest, regardless of the method used to aggregate the social preferences and if the forest is public or private. (Author)

  4. Supercritical fluid extraction and chromatographic analysis (HRGC-FID and HRGC-MS of Lupinus spp. alkaloids

    Directory of Open Access Journals (Sweden)

    Nossack Ana C.

    2000-01-01

    Full Text Available The alkaloid extracts from Lupinus spp., obtained by conventional methods (maceration/sonication - solid phase extraction; maceration/sonication - liquid-liquid extraction and SFE (supercritical fluid extraction using CO2 and modified CO2 (CO2/MeOH, CO2/EtOH, CO2/iPrOH and CO2/H2O were analysed by HRGC-FID (high resolution gas chromatography - flame ionization detector and HRGC-MS (high resolution gas chromatography - mass spectrometry. The HRGC-FID quantitative analyses were performed with an internal standard method for quantification of lupanine, multiflorine and a spartein-like alkaloid. HRGC-MS allowed identification of the chemical constituents (alkaloids and other compounds from these extracts.

  5. 78 FR 8104 - First Phase of the Forest Planning Process for the Bio-Region; Correction

    Science.gov (United States)

    2013-02-05

    ... DEPARTMENT OF AGRICULTURE Forest Service First Phase of the Forest Planning Process for the Bio-Region; Correction AGENCY: USDA, Forest Service. ACTION: Notice; correction. SUMMARY: The Department of... rule entitled First Phase of the Forest Planning Process for the Bio-Region. The document contained...

  6. The analysis of the regional self-governing units forests in selected European countries

    Directory of Open Access Journals (Sweden)

    Barbora Lišková

    2013-01-01

    Full Text Available The article focuses on identification, analysis, description and comparison of the regional self-governing units (RSGU forests in selected European countries. The analysis deals not only with forests in the ownership of basic regional self-governing units such as villages but also with forests of higher regional self-governing unit such as regions or federated states. The identification and description of this type of ownership is not overly published in the Czech Republic. The published foreign overall studies and summaries state mainly the division into forests in public and private ownership. This article is created on the basis of the selection of relevant information sources according to corresponding key words. The methods of analysis of available literary sources, conspectus, comparison and interpretation were used to deal with the topic. The quantity of information is higher and more available within basic regional self-governing units than with higher regional self-governing units. On the basis of obtained information it can be stated that the share of forest ownership in the observed countries varies ranging from zero share in the ownership to fifty per cent share in Germany.

  7. Contemporary methods and means of monitoring for Karabach region's forest ecosystems

    International Nuclear Information System (INIS)

    Aliyev, N.R.; Abdurahmanova, I.G.; Askerov, R.A.

    2010-01-01

    Full Text: In the article is analyzed the changing of a condition in the Karabach regions forests. The negative influence to region as well as in other regions of Azerbaijan of a mass cutting down of forests because of need for energy and wood industry, life conditions and also the results of military operations were lighted. The effective methods of reception of the operative information on an ecological condition of wood ecological systems on the basis of modern technical means are offered

  8. Forecasting Areas Vulnerable to Forest Conversion in the Tam Dao National Park Region, Vietnam

    Directory of Open Access Journals (Sweden)

    Duong Dang Khoi

    2010-04-01

    Full Text Available Tam Dao National Park (TDNP is a remaining primary forest that supports some of the highest levels of biodiversity in Vietnam. Forest conversion due to illegal logging and agricultural expansion is a major problem that is hampering biodiversity conservation efforts in the TDNP region. Yet, areas vulnerable to forest conversion are unknown. In this paper, we predicted areas vulnerable to forest changes in the TDNP region using multi-temporal remote sensing data and a multi-layer perceptron neural network (MLPNN with a Markov chain model (MLPNN-M. The MLPNN-M model predicted increasing pressure in the remaining primary forest within the park as well as on the secondary forest in the surrounding areas. The primary forest is predicted to decrease from 18.03% in 2007 to 15.10% in 2014 and 12.66% in 2021. Our results can be used to prioritize locations for future biodiversity conservation and forest management efforts. The combined use of remote sensing and spatial modeling techniques provides an effective tool for monitoring the remaining forests in the TDNP region.

  9. The forest resources of the Russian Federation and their regional characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Kukuev, Y.A. [Department of Forest Utilization and Inventory, The Federal Forest Service of Russia (Russian Federation)

    1997-12-31

    The forests of Russia amount to ca. 25% of the world`s forests. They cover a territory of ca. 1.2 billion hectares, i.e. 69% of the land area of the Russian Federation, stretching from the western to the eastern borders, from the subtundra in the north to the steppes of the south. These forests are differing in terms of their economic value, species composition, and age. All forest stands have a major impact on the climate, they protect the soil against erosion by water and wind, and they regulate the water regimes. Our knowledge of the forests is based on the data provided by inventories carried out by federal forest inventory enterprises following universally applied principles. These data form the main basis for the forest resource statistical accounting conducted every five years to demonstrate the qualitative and quantitative changes that have taken place in the Federation`s forest resources. Major annual changes in the forest resources of Russia are caused by economic activity, natural calamities and the administrative reorganization of district forestry units (reshow). These changes determine the period when the inventory materials (projects of forestry organization, inventory data, etc.) are elaborated. This period is 10 years in regions where intensive forestry is practised and 15 years in regions of low intensity of commercial forestry. (orig.)

  10. Analysis of litter mesofauna of Poltava region forest ecosystems

    Directory of Open Access Journals (Sweden)

    O. S. Komarov

    2007-08-01

    Full Text Available On the basis of research of litter mesofauna of 48 forest biogeocenoses the regularities of invertebrate communities formation on the species and families levels are determined. The degree of similarity of test plots are analysed by taxonomic structure of the communities. The factors of the litter invertebrate communities formation in forest ecosystems of the Poltava region are revealed.

  11. Sustainable Forest Management in a Mediterranean region: Social preferences

    Directory of Open Access Journals (Sweden)

    C. Maroto Álvarez

    2013-12-01

    Full Text Available Aim of study: There is a lack of empirical research that deals with sustainable forest management in Mediterranean regions, among the most vulnerable ecosystems. The main purpose of this work is to define the strategic criteria and objectives for sustainable forest management and aggregate the preferences of stakeholders in a Mediterranean region, using AHP and Goal Programming.Area of study: Valencian Community (Spain.Material and Methods: Firstly, we identified forest stakeholders and structured a decision hierarchy. Then a workshop was carried out to test and validate the proposed criteria and objectives, as well as a survey to determine social preferences. Secondly, another survey was conducted amongst experts to prioritize action plans.Main results: Stakeholders’ preferences gave the greatest importance to the environmental criteria (hydrological regulation and erosion, climate change mitigation and biodiversity with an average weight of 40%.  Social criteria (employment, recreational activities and landscape had a weight of 38% and 22% the economic criteria case (wood, hunting and fishing, livestock, renewable energies, rural tourism and mining. The results showed that new products and services such as tourism, renewable energies, landscape, hydrological regulation and erosion control, biodiversity or climate change mitigation are very relevant objectives. We also prioritized action plans comparing them with the distribution of the administration budget.Research highlights: The environmental and social criteria are much more important than the economic ones in the regional planning of the Mediterranean forest, regardless of the method used to aggregate the social preferences and if the forest is public or private.Key words: Multiple Criteria Decision Making; Goal Programming; Analytic Hierarchy Process; Preferences Aggregation.

  12. Regional scales of fire danger rating in the forest: improved technique

    Directory of Open Access Journals (Sweden)

    A. V. Volokitina

    2017-04-01

    Full Text Available Wildland fires distribute unevenly in time and over area under the influence of weather and other factors. It is unfeasible to air patrol the whole forest area daily during a fire season as well as to keep all fire suppression forces constantly alert. Daily work and preparedness of forest fire protection services is regulated by the level of fire danger according to weather conditions (Nesterov’s index. PV-1 index, fire hazard class (Melekhov’s scale, regional scales (earlier called local scales. Unfortunately, there is still no unified comparable technique of making regional scales. As a result, it is difficult to maneuver forest fire protection resources, since the techniques currently used are not approved and not tested for their performance. They give fire danger rating incomparable even for neighboring regions. The paper analyzes the state-of-the-art in Russia and abroad. It is stated the irony is that with factors of fire danger measured quantitatively, the fire danger itself as a function has no quantitative expression. Thus, selection of an absolute criteria is of high importance for improvement of daily fire danger rating. On the example of the Chunsky forest ranger station (Krasnoyarsk Krai, an improved technique is suggested of making comparable local scales of forest fire danger rating based on an absolute criterion of fire danger rating – a probable density of active fires per million ha. A method and an algorithm are described of automatized local scales of fire danger that should facilitate effective creation of similar scales for any forest ranger station or aviation regional office using a database on forest fires and weather conditions. The information system of distant monitoring by Federal Forestry Agency of Russia is analyzed for its application in making local scales. To supplement the existing weather station net it is suggested that automatic compact weather stations or, if the latter is not possible, simple

  13. Regional forest cover estimation via remote sensing: the calibration center concept

    Science.gov (United States)

    Louis R. Iverson; Elizabeth A. Cook; Robin L. Graham; Robin L. Graham

    1994-01-01

    A method for combining Landsat Thematic Mapper (TM), Advanced Very High Resolution Radiometer (AVHRR) imagery, and other biogeographic data to estimate forest cover over large regions is applied and evaluated at two locations. In this method, TM data are used to classify a small area (calibration center) into forest/nonforest; the resulting forest cover map is then...

  14. Fonds d'innovation pour le développement (FID) aux fins de la ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    innovation en santé dans le but d'améliorer les conditions de vie des pauvres dans le monde entier. Le Fonds d'innovation pour le développement (FID) appuiera des scientifiques et des établissements voués à la recherche en santé par le ...

  15. The Effect of China’s New Circular Collective Forest Tenure Reform on Household Non-Timber Forest Product Production in Natural Forest Protection Project Regions

    Directory of Open Access Journals (Sweden)

    Yang Ren

    2018-04-01

    Full Text Available The implementation of China’s natural forest protection project (Protection Project in 1998 changed households’ forestry production modes in project regions, and China’s new circular collective forest tenure reform (Tenure Reform has been implemented since 2003 with the goal of motivating household forestry production and increasing household income from forests. Policymakers expect that Tenure Reform could also stimulate households to engage in non-timber forest products (NTFPs production in Protection Project regions. However, only a few studies have investigated the effect of Tenure Reform on household NTFP production in Protection Project regions. To fill this gap, we built an integrative conceptual framework and estimated a corresponding structural equation model (SEM using survey data from 932 households in Protection Project regions in southwestern China. In our research framework, there are four factors, including household characteristics, labour and social capital, forestland characteristics, and the Tenure Reform, affecting household NTFP production. The results substantiate that Tenure Reform has had a significant positive effect on household NTFP production. Additionally, household and forestland characteristics have promoted household NTFP production, but quantitatively less than Tenure Reform. This report can be used to inform the government that future investment in Tenure Reform still needs to be enhanced, and policy enforcement still needs to be strengthened.

  16. Regional Comparison of Nitrogen Export to Japanese Forest Streams

    Directory of Open Access Journals (Sweden)

    Hideaki Shibata

    2001-01-01

    Full Text Available Nitrogen (N emissions in Asian countries are predicted to increase over the next several decades. An understanding of the mechanisms that control temporal and spatial fluctuation of N export to forest streams is important not only to quantify critical loads of N, N saturation status, and soil acidification N dynamics and budgets in Japanese forested watersheds is not clear due to the lack of regional comparative studies on stream N chemistry. To address the lack of comparative studies, we measured inorganic N (nitrate and ammonium concentrations from June 2000 to May 2001 in streams in 18 experimental forests located throughout the Japanese archipelago and belonging to the Japanese Union of University Forests. N concentrations in stream water during base flow and high flow periods were monitored, and N mineralization potential in soil was measured using batch incubation experiments. Higher nitrate concentrations in stream water were present in central Japan, an area that receives high rates of atmospheric N deposition. In northern Japan, snowmelt resulted in increased nitrate concentrations in stream water. The potential net N mineralization rate was higher in surface soil than in subsurface soil, and the high potential for N mineralization in the surface soil partly contributed to the increase in nitrate concentration in stream water during a storm event. Regional differences in the atmospheric N deposition and seasonality of precipitation and high discharge are principal controls on the concentrations and variations of nitrates in stream water in forested watersheds of Japan.

  17. Regional Distribution of Forest Height and Biomass from Multisensor Data Fusion

    Science.gov (United States)

    Yu, Yifan; Saatchi, Sassan; Heath, Linda S.; LaPoint, Elizabeth; Myneni, Ranga; Knyazikhin, Yuri

    2010-01-01

    Elevation data acquired from radar interferometry at C-band from SRTM are used in data fusion techniques to estimate regional scale forest height and aboveground live biomass (AGLB) over the state of Maine. Two fusion techniques have been developed to perform post-processing and parameter estimations from four data sets: 1 arc sec National Elevation Data (NED), SRTM derived elevation (30 m), Landsat Enhanced Thematic Mapper (ETM) bands (30 m), derived vegetation index (VI) and NLCD2001 land cover map. The first fusion algorithm corrects for missing or erroneous NED data using an iterative interpolation approach and produces distribution of scattering phase centers from SRTM-NED in three dominant forest types of evergreen conifers, deciduous, and mixed stands. The second fusion technique integrates the USDA Forest Service, Forest Inventory and Analysis (FIA) ground-based plot data to develop an algorithm to transform the scattering phase centers into mean forest height and aboveground biomass. Height estimates over evergreen (R2 = 0.86, P forests (R2 = 0.93, P forests were less accurate because of the winter acquisition of SRTM data and loss of scattering phase center from tree ]surface interaction. We used two methods to estimate AGLB; algorithms based on direct estimation from the scattering phase center produced higher precision (R2 = 0.79, RMSE = 25 Mg/ha) than those estimated from forest height (R2 = 0.25, RMSE = 66 Mg/ha). We discuss sources of uncertainty and implications of the results in the context of mapping regional and continental scale forest biomass distribution.

  18. Agroecological Importance of the Protective Forest Plantings in Lower Volga Region

    Directory of Open Access Journals (Sweden)

    Ivantsova Elena Anatolyevna

    2014-12-01

    Full Text Available The positive role of protective forest plantings in maintaining the stability of biotic communities and ensuring stabilization of a phytosanitary situation in the agricultural and woodland landscape of steppe and semiarid zones of Lower Volga region is established. The analysis of long-term data testifies that in general, the number of a harmful complex on fields of winter wheat (Triticum and brown mustard (Brassica juncea in the system of forest strips is lower than in opened agrocoenosis in average by 20,6 % and 16,2 %, respectively. The regularities of distribution of harmful and useful insects in corn and mustard agrocoenosis are noted. The obtained data on distribution of harmful insects and their concentration in a forested field gives the grounds to include regional processings of agrocoenosis of agricultural and woodland landscape in the system of protective measures. It is established that the existence of fields afforestation in Volgograd region creates the favorable conditions for development and accumulation of entomophages in fields. It leads to restriction of mass reproduction of harmful insects and to the decrease in their injuriousness. The essential distinctions in distribution and development of diseases in the agrocoenosis protected by forest plantings and the treeless fields are revealed. The maximal values of development of a complex of diseases on winter wheat are observed in zones, adjacent to forest strips (I and III, minimum – in the middle of a field. The estimated values of development of diseases in forested field is less, and in certain cases it slightly differs from the data obtained in a treeless field.

  19. Capability of integrated MODIS imagery and ALOS for oil palm, rubber and forest areas mapping in tropical forest regions.

    Science.gov (United States)

    Razali, Sheriza Mohd; Marin, Arnaldo; Nuruddin, Ahmad Ainuddin; Shafri, Helmi Zulhaidi Mohd; Hamid, Hazandy Abdul

    2014-05-07

    Various classification methods have been applied for low resolution of the entire Earth's surface from recorded satellite images, but insufficient study has determined which method, for which satellite data, is economically viable for tropical forest land use mapping. This study employed Iterative Self Organizing Data Analysis Techniques (ISODATA) and K-Means classification techniques to classified Moderate Resolution Imaging Spectroradiometer (MODIS) Surface Reflectance satellite image into forests, oil palm groves, rubber plantations, mixed horticulture, mixed oil palm and rubber and mixed forest and rubber. Even though frequent cloud cover has been a challenge for mapping tropical forests, our MODIS land use classification map found that 2008 ISODATA-1 performed well with overall accuracy of 94%, with the highest Producer's Accuracy of Forest with 86%, and were consistent with MODIS Land Cover 2008 (MOD12Q1), respectively. The MODIS land use classification was able to distinguish young oil palm groves from open areas, rubber and mature oil palm plantations, on the Advanced Land Observing Satellite (ALOS) map, whereas rubber was more easily distinguished from an open area than from mixed rubber and forest. This study provides insight on the potential for integrating regional databases and temporal MODIS data, in order to map land use in tropical forest regions.

  20. Adjusting the Stems Regional Forest Growth Model to Improve Local Predictions

    Science.gov (United States)

    W. Brad Smith

    1983-01-01

    A simple procedure using double sampling is described for adjusting growth in the STEMS regional forest growth model to compensate for subregional variations. Predictive accuracy of the STEMS model (a distance-independent, individual tree growth model for Lake States forests) was improved by using this procedure

  1. Quantitative Analysis of Humectants in Tobacco Products Using Gas Chromatography (GC with Simultaneous Mass Spectrometry (MSD and Flame Ionization Detection (FID

    Directory of Open Access Journals (Sweden)

    Rainey CL

    2014-12-01

    Full Text Available This paper describes the modification of an existing gas chromatographic (GC method to incorporate simultaneous mass spectrometric (MSD and flame ionization detection (FID into the analysis of tobacco humectants. Glycerol, propylene glycol, and triethylene glycol were analyzed in tobacco labeled as roll-your-own (RYO, cigar, cigarette, moist snuff, and hookah tobacco. Tobacco was extracted in methanol containing 1,3-butanediol (internal standard, filtered, and separated on a 15 m megabore DB-Wax column. Post-column flow was distributed using a microfluidic splitter between the MSD and FID for simultaneous detection. The limits of detection for the FID detector were 0.5 μg/mL (propylene glycol and triethylene glycol and 0.25 μg/mL (glycerol with a linear range of 2-2000 μg/mL (propylene glycol and triethylene glycol and 1-4000 μg/mL (glycerol. The limits of detection for the MSD detector were 2 μg/mL (propylene glycol and triethylene glycol and 4 μg/mL (glycerol with a linear range of 20-2000 μg/mL (propylene glycol and triethylene glycol and 40-4000 μg/mL (glycerol. Significant improvement in the sensitivity of the MSD can be achieved by employing selective ion monitoring (SIM detection mode. Although a high degree of correlation was observed between the results from FID and MSD analyses, marginal chromatographic resolution between glycerol and triethylene glycol limits the applicability of FID to samples containing low levels of both of these humectants. Utilizing MSD greatly improves the reliability of quantitative results because compensation for inadequate chromatographic resolution can be accomplished with mass selectivity in detection.

  2. Interactive effects of environmental change and management strategies on regional forest carbon emissions

    NARCIS (Netherlands)

    Hudiburg, Tara W.; Luyssaert, Sebastiaan; Thornton, Peter E.; Law, Beverly E.

    2013-01-01

    Climate mitigation activities in forests need to be quantified in terms of the long-term effects on forest carbon stocks, accumulation, and emissions. The impacts of future environmental change and bioenergy harvests on regional forest carbon storage have not been quantified. We conducted a

  3. Examining Pseudotsuga menziesii biomass change dynamics through succession using a regional forest inventory system

    Science.gov (United States)

    David M. Bell; Andrew N. Gray

    2015-01-01

    Models of forest succession provide an appealing conceptual framework for understanding forest dynamics, but uncertainty in the degree to which patterns are regionally consistent might limit the application of successional theory in forest management. Remeasurements of forest inventory networks provide an opportunity to assess this consistency, improving our...

  4. Capturing forest dependency in the central Himalayan region: Variations between Oak (Quercus spp.) and Pine (Pinus spp.) dominated forest landscapes.

    Science.gov (United States)

    Chakraborty, Anusheema; Joshi, Pawan Kumar; Sachdeva, Kamna

    2018-05-01

    Our study explores the nexus between forests and local communities through participatory assessments and household surveys in the central Himalayan region. Forest dependency was compared among villages surrounded by oak-dominated forests (n = 8) and pine-dominated forests (n = 9). Both quantitative and qualitative analyses indicate variations in the degree of dependency based on proximity to nearest forest type. Households near oak-dominated forests were more dependent on forests (83.8%) compared to households near pine-dominated forests (69.1%). Forest dependency is mainly subsistence-oriented for meeting basic household requirements. Livestock population, cultivated land per household, and non-usage of alternative fuels are the major explanatory drivers of forest dependency. Our findings can help decision and policy makers to establish nested governance mechanisms encouraging prioritized site-specific conservation options among forest-adjacent households. Additionally, income diversification with respect to alternate livelihood sources, institutional reforms, and infrastructure facilities can reduce forest dependency, thereby, allowing sustainable forest management.

  5. Validation of rapid dioxin screening by GC-FID in fish products

    Energy Technology Data Exchange (ETDEWEB)

    Bassompierre, M.; Munck, L.; Bro, R.; Tomasi, G.; Engelsen, S.B. [Royal Veterinary and Agricultural Univ., Copenhagen (Denmark). Food Technology, Institute of Food Science, Centre for Advanced Food Studies

    2004-09-15

    A novel, cost- and time-effective dioxin screening method was developed and validated for fish product. The method is based on multivariate covariance between fatty acid composition monitored by GC-FID and dioxin content as teq WHO pg/ g fat. A dioxin range varying from 1.1 to 47.1 pg TEQ-WHO/ g fat using 65 fish meal samples was accessible for model calibration. An optimal multivariate dioxin prediction model was developed based on automatic peak integration, thereby enabling extraction of the area of 140 peaks from the gas chromatogramms. Models were produced employing partial least squares regression (PLS) based upon the duplicate GC-FID run and 46 specific peaks, selected after variable selection from the 140 investigated. The best results were yielded by local pls modelling employing three latent variables based upon the 12 nearest neighbors. For each prediction sample, the neighbors, yielding the 12 smallest sum of squares of differences to the test sample using the 140 peaks, were extracted from the whole calibration set and a local model built using these 12 chromatograms and related dioxin content. Prediction performance was thereafter validated for 10 fully independent samples. The performance of this model, yielded a correlation of 0.85 (r{sup 2}) and a root mean square error of prediction of 2.3 pg PCDD/F TEQWHO/ g fat.

  6. Mapping Distinct Forest Types Improves Overall Forest Identification Based on Multi-Spectral Landsat Imagery for Myanmar’s Tanintharyi Region

    Directory of Open Access Journals (Sweden)

    Grant Connette

    2016-10-01

    Full Text Available We investigated the use of multi-spectral Landsat OLI imagery for delineating mangrove, lowland evergreen, upland evergreen and mixed deciduous forest types in Myanmar’s Tanintharyi Region and estimated the extent of degraded forest for each unique forest type. We mapped a total of 16 natural and human land use classes using both a Random Forest algorithm and a multivariate Gaussian model while considering scenarios with all natural forest classes grouped into a single intact or degraded category. Overall, classification accuracy increased for the multivariate Gaussian model with the partitioning of intact and degraded forest into separate forest cover classes but slightly decreased based on the Random Forest classifier. Natural forest cover was estimated to be 80.7% of total area in Tanintharyi. The most prevalent forest types are upland evergreen forest (42.3% of area and lowland evergreen forest (21.6%. However, while just 27.1% of upland evergreen forest was classified as degraded (on the basis of canopy cover <80%, 66.0% of mangrove forest and 47.5% of the region’s biologically-rich lowland evergreen forest were classified as degraded. This information on the current status of Tanintharyi’s unique forest ecosystems and patterns of human land use is critical to effective conservation strategies and land-use planning.

  7. Regional impacts of a program for private forest carbon offset sales

    Science.gov (United States)

    Darius M. Adams; Ralph Alig; Greg Latta; Eric M. White

    2011-01-01

    Policymakers are examining wide range of alternatives for climate change mitigation, including carbon offset sales programs, to enhance sequestration in the forest sector. Under an offset sales program, on-the-ground forestry could change as result of both afforestation and modifications in the management of existing forests. These effects could vary markedly by region...

  8. Opinions of forest administration chief officers in Artvin Regional Directorate of Forestry about preparation and application phases of forest management plans

    Directory of Open Access Journals (Sweden)

    Rahmi Yılma

    2016-10-01

    Full Text Available In this study, based on the example of Artvin Regional Directorate of Forestry, it is aimed to display the viewpoints of forest administration chief officers as regards planning who are the basic elements of interest groups and who implement plans, determine their opinions about the problems they encounter during preparation and application phases of plans, and develop solution proposals. Within this study a survey was performed with 31 forest administration chief officers in Artvin Regional Directorate of Forestry. According to the survey results, at planning phase it has been seen that participatory processes are put into force, certain criteria and indicators are adopted in differentiating between forest functions at inventory stage, which were also taken into consideration during planning, and in particularly stand parameters were determined accurately. Also during planning phase, it is believed that, endemic, rare and endangered targeted plant and wild animal species are evaluated, whereas non-wood forest types suffer from a lack of evaluation. In addition, it was concluded that lack or insufficiency of silviculture plans, the size of forest administration chiefdom and relations problems between forest administration and local people were being experienced. By integrating other interest groups to planning process, widening the scope of the sudty and realizing similar studies in different regional directorates of forestry, we can determine common points and differences and by this way new strategies can be developed.

  9. Forest fragmentation and bird community dynamics: inference at regional scales

    Science.gov (United States)

    Boulinier, T.; Nichols, J.D.; Hines, J.E.; Sauer, J.R.; Flather, C.H.; Pollock, K.H.

    2001-01-01

    With increasing fragmentation of natural areas and a dramatic reduction of forest cover in several parts of the world, quantifying the impact of such changes on species richness and community dynamics has been a subject of much concern. Here, we tested whether in more fragmented landscapes there was a lower number of area-sensitive species and higher local extinction and turnover rates, which could explain higher temporal variability in species richness. To investigate such potential landscape effects at a regional scale, we merged two independent, large-scale monitoring efforts: the North American Breeding Bird Survey (BBS) and the Land Use and Land Cover Classification data from the U.S. Geological Survey. We used methods that accounted for heterogeneity in the probability of detecting species to estimate species richness and temporal changes in the bird communities for BBS routes in three mid-Atlantic U.S. states. Forest breeding bird species were grouped prior to the analyses into area-sensitive and non-area-sensitive species according to previous studies. We tested predictions relating measures of forest structure at one point in time (1974) to species richness at that time and to parameters of forest bird community change over the following 22-yr-period (1975-1996). We used the mean size of forest patches to characterize landscape structure, as high correlations among landscape variables did not allow us to disentangle the relative roles of habitat fragmentation per se and habitat loss. As predicted, together with lower species richness for area-sensitive species on routes surrounded by landscapes with lower mean forest-patch size, we found higher mean year-to-year rates of local extinction. Moreover, the mean year-to-year rates of local turnover (proportion of locally new species) for area-sensitive species were also higher in landscapes with lower mean forest-patch size. These associations were not observed for the non-area-sensitive species group. These

  10. Change in avian abundance predicted from regional forest inventory data

    Science.gov (United States)

    Twedt, Daniel J.; Tirpak, John M.; Jones-Farrand, D. Todd; Thompson, Frank R.; Uihlein, William B.; Fitzgerald, Jane A.

    2010-01-01

    An inability to predict population response to future habitat projections is a shortcoming in bird conservation planning. We sought to predict avian response to projections of future forest conditions that were developed from nationwide forest surveys within the Forest Inventory and Analysis (FIA) program. To accomplish this, we evaluated the historical relationship between silvicolous bird populations and FIA-derived forest conditions within 25 ecoregions that comprise the southeastern United States. We aggregated forest area by forest ownership, forest type, and tree size-class categories in county-based ecoregions for 5 time periods spanning 1963-2008. We assessed the relationship of forest data with contemporaneous indices of abundance for 24 silvicolous bird species that were obtained from Breeding Bird Surveys. Relationships between bird abundance and forest inventory data for 18 species were deemed sufficient as predictive models. We used these empirically derived relationships between regional forest conditions and bird populations to predict relative changes in abundance of these species within ecoregions that are anticipated to coincide with projected changes in forest variables through 2040. Predicted abundances of these 18 species are expected to remain relatively stable in over a quarter (27%) of the ecoregions. However, change in forest area and redistribution of forest types will likely result in changed abundance of some species within many ecosystems. For example, abundances of 11 species, including pine warbler (Dendroica pinus), brown-headed nuthatch (Sitta pusilla), and chuckwills- widow (Caprimulgus carolinensis), are projected to increase within more ecoregions than ecoregions where they will decrease. For 6 other species, such as blue-winged warbler (Vermivora pinus), Carolina wren (Thryothorus ludovicianus), and indigo bunting (Passerina cyanea), we projected abundances will decrease within more ecoregions than ecoregions where they will

  11. Human-driven topographic effects on the distribution of forest in a flat, lowland agricultural region

    DEFF Research Database (Denmark)

    Odgaard, Mette Vestergaard; Moeslund, Jesper Erenskjold; Dalgaard, Tommy

    2014-01-01

    Complex topography buffers forests against deforestation in mountainous regions. However, it is unknown if terrain also shapes forest distribution in lowlands where human impacts are likely to be less constrained by terrain. In such regions, if important at all, topographic effects will depend...

  12. East and central farming and forest region and Atlantic basin diversified farming region: LRRs N and S

    Science.gov (United States)

    Brad D. Lee; John M. Kabrick

    2017-01-01

    The central, unglaciated US east of the Great Plains to the Atlantic coast corresponds to the area covered by LRR N (East and Central Farming and Forest Region) and S (Atlantic Basin Diversified Farming Region). These regions roughly correspond to the Interior Highlands, Interior Plains, Appalachian Highlands, and the Northern Coastal Plains.

  13. Monitoring Regional Forest Disturbances across the US with near Real Time MODIS NDVI Products Resident to the ForWarn Forest Threat Early Warning System

    Science.gov (United States)

    Spruce, Joseph P.; Hargrove, William W.; Gasser, Gerald

    2013-01-01

    Forest threats across the US have become increasingly evident in recent years. Sometimes these have resulted in regionally evident disturbance progressions (e.g., from drought, bark beetle outbreaks, and wildfires) that can occur across multiyear durations and have resulted in extensive forest overstory mortality. In addition to stand replacement disturbances, other forests are subject to ephemeral, sometimes yearly defoliation from various insects and varying types and intensities of ephemeral damage from storms. Sometimes, after prolonged severe disturbance, signs of recovery in terms of Normalized Difference Vegetation Index (NDVI) can occur. The growing prominence and threat of forest disturbances in part have led to the formation and implementation of the 2003 Healthy Forest Restoration Act which mandated that national forest threat early warning system be developed and deployed. In response, the US Forest Service collaborated with NASA, DOE Oakridge National Laboratory, and the USGS Eros Data Center to build and roll-out the near real time ForWarn early warning system for monitoring regionally evident forest disturbances. Given the diversity of disturbance types, severities, and durations, ForWarn employs multiple historical baselines that are used with current NDVI to derive a suite of six forest change products that are refreshed every 8 days. ForWarn employs daily quarter kilometer MODIS NDVI data from the Aqua and Terra satellites, including MOD13 data for deriving historical baseline NDVIs and eMODIS 7 NDVI for compiling current NDVI. In doing so, the Time Series Product Tool and the Phenological Parameters Estimation Tool are used to temporally de-noise, fuse, and aggregate current and historical MODIS NDVIs into 24 day composites refreshed every 8 days with 46 dates of products per year. The 24 day compositing interval enables disturbances to be detected, while minimizing the frequency of residual atmospheric contamination. Forest change products are

  14. Potential of forest management to reduce French carbon emissions - regional modelling of the French forest carbon balance from the forest to the wood.

    Science.gov (United States)

    Valade, A.; Luyssaert, S.; Bellassen, V.; Vallet, P.

    2015-12-01

    In France the low levels of forest harvest (40 Mm3 per year over a volume increment of 89Mm3) is frequently cited to push for a more intensive management of the forest that would help reducing CO2 emissions. This reasoning overlooks the medium-to-long-term effects on the carbon uptake at the national scale that result from changes in the forest's structure and delayed emissions from products decay and bioenergy burning, both determinant for the overall C fluxes between the biosphere and the atmosphere. To address the impacts of an increase in harvest removal on biosphere-atmosphere carbon fluxes at national scale, we build a consistent regional modeling framework to integrate the forest-carbon system from photosynthesis to wood uses. We aim at bridging the gap between regional ecosystem modeling and land managers' considerations, to assess the synergistic and antagonistic effects of management strategies over C-based forest services: C-sequestration, energy and material provision, fossil fuel substitution. For this, we built on inventory data to develop a spatial forest growth simulator and design a novel method for diagnosing the current level of management based on stand characteristics (density, quadratic mean diameter or exploitability). The growth and harvest simulated are then processed with a life cycle analysis to account for wood transformation and uses. Three scenarii describe increases in biomass removals either driven by energy production target (set based on national prospective with a lock on minimum harvest diameters) or by changes in management practices (shorter or longer rotations, management of currently unmanaged forests) to be compared with business as usual simulations. Our management levels' diagnostics quantifies undermanagement at national scale and evidences the large weight of ownership-based undermanagement with an average of 26% of the national forest (between 10% and 40% per species) and thus represents a huge potential wood resource

  15. Importance of Foliar Nitrogen Concentration to Predict Forest Productivity in the Mid-Atlantic Region

    Science.gov (United States)

    Yude Pan; John Hom; Jennifer Jenkins; Richard Birdsey

    2004-01-01

    To assess what difference it might make to include spatially defined estimates of foliar nitrogen in the regional application of a forest ecosystem model (PnET-II), we composed model predictions of wood production from extensive ground-based forest inventory analysis data across the Mid-Atlantic region. Spatial variation in foliar N concentration was assigned based on...

  16. Forest Carbon Storage in the Northern Midwest, USA: A Bottom-Up Scaling Approach Combining Local Meteorological and Biometric Data With Regional Forest Inventories

    Science.gov (United States)

    Curtis, P. S.; Gough, C. M.; Vogel, C. S.

    2005-12-01

    Carbon (C) storage increasingly is considered an important part of the economic return of forestlands, making easily parameterized models for assessing current and future C storage important for both ecosystem and money managers. For the deciduous forests of the northern midwest, USA, detailed information relating annual C storage to local site characteristics can be combined with spatially extensive forest inventories to produce simple, robust models of C storage useful at a variety of scales. At the University of Michigan Biological Station (45o35`' N, 84o42`' W) we measured C storage, or net ecosystem production (NEP), in 65 forest stands varying in age, disturbance history, and productivity (site index) using biometric methods, and independently measured net C exchange at the landscape level using meteorological methods. Our biometric and meteorological estimates of NEP converged to within 1% of each other over five years, providing important confirmation of the robustness of these two approaches applied within northern deciduous forests (Gough et al. 2005). We found a significant relationship between NEP, stand age ( A, yrs), and site index ( Is, m), where NEP = 0.134 + 0.022 * (LN[ A* Is]) (r2 = 0.50, P database (ncrs2.fs.fed.us/4801/fiadb/) to estimate forest C storage at different scales across the upper midwest, Great Lakes region. Model estimates were validated against independent estimates of C storage for other forests in the region. At the local ecosystem-level (~1 km2) C storage averaged 1.52 Mg ha-1 yr-1. Scaling to the two-county area surrounding our meteorological and biometric study sites, average stand age decreased and site index increased, resulting in estimated storage of 1.62 Mg C ha-1 yr-1, or 0.22 Tg C yr-1 in the 1350 km2 of deciduous forest in this area. For the state of Michigan (31,537 km2 of deciduous forest), average uptake was estimated at 1.55 Mg C ha-1 yr-1, or 4.9 Tg C yr-1 total storage. For the three state region encompassing

  17. Multifractal analysis of forest fires in complex regions

    Science.gov (United States)

    Vega Orozco, C. D.; Kanevski, M.; Golay, J.; Tonini, M.; Conedera, M.

    2012-04-01

    Forest fires can be studied as point processes where the ignition points represent the set of locations of the observed events in a defined study region. Their spatial and temporal patterns can be characterized by their fractal properties; which quantify the global aspect of the geometry of the support data. However, a monofractal dimension can not completely describe the pattern structure and related scaling properties. Enhancements in fractal theory had developed the multifractal concept which describes the measures from which interlinked fractal sets can be retrieved and characterized by their fractal dimension and singularity strength [1, 2]. The spatial variability of forest fires is conditioned by an intermixture of human, topographic, meteorological and vegetation factors. This heterogeneity makes fire patterns complex scale-invariant processes difficult to be depicted by a single scale. Therefore, this study proposes an exploratory data analysis through a multifractal formalism to characterize and quantify the multiscaling behaviour of the spatial distribution pattern of this phenomenon in a complex region like the Swiss Alps. The studied dataset is represented by 2,401 georeferenced forest fire ignition points in canton Ticino, Switzerland, in a 40-years period from 1969 to 2008. Three multifractal analyses are performed: one assesses the multiscaling behaviour of fire occurrence probability of the support data (raw data) and four random patterns simulated within three different support domains; second analysis studies the multifractal behavior of patterns from anthropogenic and natural ignited fires (arson-, accident- and lightning-caused fires); and third analysis aims at detecting scale-dependency of the size of burned area. To calculate the generalized dimensions, Dq, a generalization of the box counting methods is carried out based on the generalization of Rényi information of the qth order moment of the probability distribution. For q > 0, Dq

  18. Spatial patterning of fuels and fire hazard across a central U.S. deciduous forest region

    Science.gov (United States)

    Michael C. Stambaugh; Daniel C. Dey; Richard P. Guyette; Hong S. He; Joseph M. Marschall

    2011-01-01

    Information describing spatial and temporal variability of forest fuel conditions is essential to assessing overall fire hazard and risk. Limited information exists describing spatial characteristics of fuels in the eastern deciduous forest region, particularly in dry oak-dominated regions that historically burned relatively frequently. From an extensive fuels survey...

  19. Forest resources of the Lincoln National Forest

    Science.gov (United States)

    John D. Shaw

    2006-01-01

    The Interior West Forest Inventory and Analysis (IWFIA) program of the USDA Forest Service, Rocky Mountain Research Station, as part of its national Forest Inventory and Analysis (FIA) duties, conducted forest resource inventories of the Southwestern Region (Region 3) National Forests. This report presents highlights of the Lincoln National Forest 1997 inventory...

  20. High carbon dioxide uptake by subtropical forest ecosystems in the East Asian monsoon region

    Science.gov (United States)

    Yu, Guirui; Chen, Zhi; Piao, Shilong; Peng, Changhui; Ciais, Philippe; Wang, Qiufeng; Li, Xuanran; Zhu, Xianjin

    2014-01-01

    Temperate- and high-latitude forests have been shown to contribute a carbon sink in the Northern Hemisphere, but fewer studies have addressed the carbon balance of the subtropical forests. In the present study, we integrated eddy covariance observations established in the 1990s and 2000s to show that East Asian monsoon subtropical forests between 20°N and 40°N represent an average net ecosystem productivity (NEP) of 362 ± 39 g C m−2 yr−1 (mean ± 1 SE). This average forest NEP value is higher than that of Asian tropical and temperate forests and is also higher than that of forests at the same latitudes in Europe–Africa and North America. East Asian monsoon subtropical forests have comparable NEP to that of subtropical forests of the southeastern United States and intensively managed Western European forests. The total NEP of East Asian monsoon subtropical forests was estimated to be 0.72 ± 0.08 Pg C yr−1, which accounts for 8% of the global forest NEP. This result indicates that the role of subtropical forests in the current global carbon cycle cannot be ignored and that the regional distributions of the Northern Hemisphere's terrestrial carbon sinks are needed to be reevaluated. The young stand ages and high nitrogen deposition, coupled with sufficient and synchronous water and heat availability, may be the primary reasons for the high NEP of this region, and further studies are needed to quantify the contribution of each underlying factor. PMID:24639529

  1. Modeling grain-size dependent bias in estimating forest area: a regional application

    Science.gov (United States)

    Daolan Zheng; Linda S. Heath; Mark J. Ducey

    2008-01-01

    A better understanding of scaling-up effects on estimating important landscape characteristics (e.g. forest percentage) is critical for improving ecological applications over large areas. This study illustrated effects of changing grain sizes on regional forest estimates in Minnesota, Wisconsin, and Michigan of the USA using 30-m land-cover maps (1992 and 2001)...

  2. An Approach for Forest Inventory in Canada's Northern Boreal region, Northwest Territories

    Science.gov (United States)

    Mahoney, C.; Hopkinson, C.; Hall, R.; Filiatrault, M.

    2017-12-01

    The northern extent of Canada's northern boreal forest is largely inaccessible resulting in logistical, financial, and human challenges with respect to obtaining concise and accurate forest resource inventory (FRI) attributes such as stand height, aboveground biomass and forest carbon stocks. This challenge is further exacerbated by mandated government resource management and reporting of key attributes with respect to assessing impacts of natural disturbances, monitoring wildlife habitat and establishing policies to mitigate effects of climate change. This study presents a framework methodology utilized to inventory canopy height and crown closure over a 420,000 km2 area in Canada's Northwest Territories (NWT) by integrating field, LiDAR and satellite remote sensing data. Attributes are propagated from available field to coincident airborne LiDAR thru to satellite laser altimetry footprints. A quality controlled form of the latter are then submitted to a k-nearest neighbor (kNN) imputation algorithm to produce a continuous map of each attribute on a 30 m grid. The resultant kNN stand height (r=0.62, p=0.00) and crown closure (r=0.64, p=0.00) products were identified as statistically similar to a comprehensive independent airborne LiDAR source. Regional uncertainty can be produced with each attribute to identify areas of potential improvement through future strategic data acquisitions or the fine tuning of model parameters. This study's framework concept was developed to inform Natural Resources Canada - Canadian Forest Service's Multisource Vegetation Inventory and update vast regions of Canada's northern forest inventories, however, its applicability can be generalized to any environment. Not only can such a framework approach incorporate other data sources (such as Synthetic Aperture Radar) to potentially better characterize forest attributes, but it can also utilize future Earth observation mission data (for example ICESat-2) to monitor forest dynamics and the

  3. The Impact of Increasing Fire Frequency on Forest Transformations in the Zabaikal Region, Southern Siberia

    Science.gov (United States)

    Conard, S. G.; Kukavskaya, E. A.; Buryak, L. V.; Shvetsov, E.; Kalenskaya, O. P.; Zhila, S.

    2017-12-01

    The Zabaikal region of southern Siberia is characterized by some of the highest fire activity in Russia. There has been a significant increase of fire frequency and burned area in the region over the last two decades due to a combination of high anthropogenic pressure, decreased funding to the forestry sector, and increased fire danger, which was associated with higher frequency and intensity of extreme weather events. Central and southern parts of the Zabaikal region where population density is higher and road network is relatively more developed are the most disturbed by fires. Larch stands cover the largest proportion of fire-disturbed lands in the region, while the less common pine and birch stands are characterized by higher fire frequency. About 13% (3.9 M ha) of the total forest area in the Zabaikal region was burned more than once in the 20 years from 1996 to 2015, with many sites burned multiple times. Repeat disturbances led to inadequate tree regeneration on all but the moistest sites. Pine stands on dry soils, which are common in the forest-steppe zone, were the most vulnerable. After repeat burns and over large burned sites we observed transformation of the forests to steppe ecosystems. The most likely causes of insufficient forest regeneration are soil overheating, dominance of tall grasses, and lack of nearby seed sources. Extensive tree plantations have potential to mitigate negative fire impacts; however, due to high fire hazard in the recent decade about half of the plantation area has been burned. Changes in the SWVI index were used to assess postfire reforestation based on a combination of satellite and field data. In the southwestern part of the Zabaikal region, we estimated that reforestation had been hampered over 11% of the forest land area. Regional climate models project increasing temperatures and decreasing precipitation across Siberia by the end of the 21st century, with changes in the Zabaikal region projected to be more than twice the

  4. Influence of forest road buffer zones on sediment transport in the Southern Appalachian Region

    Science.gov (United States)

    Johnny M. Grace; Stanley J. Zarnoch

    2013-01-01

    A gap exists in the understanding of the effectiveness of forest road best management practices (BMP) in controlling sediment movement and minimizing risks of sediment delivery to forest streams. The objective of this paper is to report the findings of investigations to assess sediment travel distances downslope of forest roads in the Appalachian region, relate...

  5. Ground cover in old-growth forests of the central hardwood region

    Science.gov (United States)

    Martin A. Spetich; Stephen R. Shifley; George R. Parker; Felix, Jr. Ponder

    1997-01-01

    Differences in ground cover (percent cover of litter, percent cover of vegetation and litter weight) in old-growth forests across this region are not well understood. We initiated a long-term study in a three-state region to enhance knowledge in this area. We present baseline results for ground cover and compare these data across productivity regions. Thirty 0.25-ac (0...

  6. Regional biomass stores and dynamics in forests of coastal Alaska

    Science.gov (United States)

    Mikhaill A. Yatskov; Mark E. Harmon; Olga N. Krankina; Tara M. Barrett; Kevin R. Dobelbower; Andrew N. Gray; Becky Fasth; Lori Trummer; Toni L. Hoyman; Chana M. Dudoit

    2015-01-01

    Coastal Alaska is a vast forested region (6.2 million ha) with the potential to store large amounts of carbon in live and dead biomass thus influencing continental and global carbon dynamics. The main objectives of this study were to assess regional biomass stores, examine the biomass partitioning between live and dead pools, and evaluate the effect of disturbance on...

  7. Joint simulation of regional areas burned in Canadian forest fires: A Markov Chain Monte Carlo approach

    Science.gov (United States)

    Steen Magnussen

    2009-01-01

    Areas burned annually in 29 Canadian forest fire regions show a patchy and irregular correlation structure that significantly influences the distribution of annual totals for Canada and for groups of regions. A binary Monte Carlo Markov Chain (MCMC) is constructed for the purpose of joint simulation of regional areas burned in forest fires. For each year the MCMC...

  8. Status and trends of bottomland hardwood forests in the mid-Atlantic Region

    Science.gov (United States)

    Anita Rose; Steve Meadows

    2016-01-01

    Bottomland hardwood forests cover approximately 2.9 million acres of the Coastal Plain and Piedmont region of Virginia and North Carolina. As of 2014, 59 percent of bottomland hardwood forests were in the large-diameter stand-size class. Between 2002 and 2014, area of large-diameter sized stands increased, while that of medium- and small-diameter stands decreased,...

  9. The effect of land cover change to the biomass value in the forest region of West Java province

    Science.gov (United States)

    Rahayu, M. I.; Waryono, T.; Rokhmatullah; Shidiq, I. P. A.

    2018-05-01

    Due to the issue of climate change as a public concern, information of carbon stock availability play an important role to describe the condition of forest ecosystems in the context of sustainable forest management. This study has the objective to identify land cover change during 2 decades (1996 – 2016) in the forest region and estimate the value of forest carbon stocks in west Java Province using remote sensing imagery. The land cover change information was obtained by visually interpreting the Landsat image, while the estimation of the carbon stock value was performed using the transformation of the NDVI (Normalized Difference Vegetation Index) which extracted from Landsat image. Biomass value is calculated by existing allometric equations. The results of this study shows that the forest area in the forest region of West Java Province have decreased from year to year, and the estimation value of forest carbon stock in the forest region of West Java Province also decreased from year to year.

  10. Vegetation Dynamics in the Upper Guinean Forest Region of West Africa from 2001 to 2015

    Directory of Open Access Journals (Sweden)

    Zhihua Liu

    2016-12-01

    Full Text Available The Upper Guinea Forest (UGF region of West Africa is one of the most climatically marginal and human-impacted tropical forest regions in the world. Research on the patterns and drivers of vegetation change is critical for developing strategies to sustain ecosystem services in the region and to understand how climate and land use change will affect other tropical forests around the globe. We compared six spectral indices calculated from the 2001–2015 MODIS optical-infrared reflectance data with manually-interpreted measurements of woody vegetation cover from high resolution imagery. The tasseled cap wetness (TCW index was found to have the strongest association with woody vegetation cover, whereas greenness indices, such as the enhanced vegetation index (EVI, had relatively weak associations with woody cover. Trends in woody vegetation cover measured with the TCW index were analyzed using Mann–Kendall statistics and were contrasted with trends in vegetation greenness measured with EVI. In the drier West Sudanian Savanna and Guinean Forest-Savanna Mosaic ecoregions, EVI trends were primarily positive, and TCW trends were primarily negative, suggesting that woody vegetation cover was decreasing, while herbaceous vegetation cover is increasing. In the wettest tropical forests in the Western Guinean Lowland Forest ecoregion, declining trends in both TCW and EVI were indicative of widespread forest degradation resulting from human activities. Across all ecoregions, declines in woody cover were less prevalent in protected areas where human activities were restricted. Multiple lines of evidence suggested that human land use and resource extraction, rather than climate trends or short-term climatic anomalies, were the predominant drivers of recent vegetation change in the UGF region of West Africa.

  11. Regional factors rather than forest type drive the community structure of soil living oribatid mites (Acari, Oribatida).

    Science.gov (United States)

    Erdmann, Georgia; Scheu, Stefan; Maraun, Mark

    2012-06-01

    Most European forests are managed by humans. However, the manner and intensity of management vary. While the effect of forest management on above-ground communities has been investigated in detail, effects on the below-ground fauna remain poorly understood. Oribatid mites are abundant microarthropods in forest soil and important decomposers in terrestrial ecosystems. Here, we investigated the effect of four forest types (i.e., managed coniferous forests; 30 and 70 years old managed beech forests; natural beech forests) on the density, diversity and community structure of oribatid mites (Acari). The study was replicated at three regions in Germany: the Swabian Alb, the Hainich and the Schorfheide. To relate changes in oribatid mite community structure to environmental factors, litter mass, pH, C and N content of litter, fine roots and C content of soil were measured. Density of oribatid mites was highest in the coniferous forests and decreased in the order 30 years old, 70 years old, and natural beech forests. Mass of the litter layer and density of oribatid mites were strongly correlated indicating that the litter layer is an important factor regulating oribatid mite densities. Diversity of oribatid mites was little affected by forest type indicating that they harbor similar numbers of niches. Species composition differed between the forest types, suggesting different types of niches. The community structure of oribatid mites differed more strongly between the three regions than between the forest types indicating that regional factors are more important than effects associated with forest type.

  12. Determinación de compuestos polares por TLC-FID en aceites refinado y semi-hidrogenado de soja sometidos a calentamiento prolongado

    Directory of Open Access Journals (Sweden)

    Cruzian, J. L.

    1997-06-01

    Full Text Available The thermal degradation of oils and fats leads to the formation of polar compounds, which is the reason why their determination is adopted for the quality control of the oil and fat used in frying. Samples of refined and partially hydrogenated soybean oil were heated for 30 and 60 hours respectively and the polar compounds content were determined using the lUPAC-AOAC official method and TLC-FID. The samples of oil and the fractions separated on the column were applied to the chromarods and developed in petroleum ether: diethyl ether (93:7 v/v. The determination of polar compounds by lUPAC method and by TLC-FID presented similar results (P-value<< 0,001, although when the content was greater than 16% the second method gave higher values. The results showed that the state of degradation of oils and fats as measured for the quantity of polar compounds can be determined alternatively by TLC-FID, presenting a significant reduction in time, hand work and solvent volume.

    La degradación térmica de aceites y grasas lleva a la formación de compuestos polares, motivo por el cual su determinación es usada como control de calidad de aceites y grasas utilizadas en fritura. Muestras de aceite de soja refinado y semi-hidrogenado fueron calentadas durante 30 y 60 horas respectivamente y el contenido de compuestos polares fue determinado utilizando el método oficial lUPAC-AOAC y TLCFID. Las muestras de aceite y las fracciones separadas en la columna fueron aplicadas en los «chromarods» y desarrolladas en éter de petróleo: éter etílico (93:7 v/v. La determinación de compuestos polares por el método lUPAC y por TLC-FID, dieron resultados similares (P-value<< 0,001, aunque los obtenidos por el segundo método fueron superiores, cuando los compuestos polares superan el 16%. Los resultados obtenidos indican que el estado de descomposición de aceites y grasas medido por la cantidad de compuestos polares puede ser determinado alternativamente por

  13. Benchmark map of forest carbon stocks in tropical regions across three continents.

    Science.gov (United States)

    Saatchi, Sassan S; Harris, Nancy L; Brown, Sandra; Lefsky, Michael; Mitchard, Edward T A; Salas, William; Zutta, Brian R; Buermann, Wolfgang; Lewis, Simon L; Hagen, Stephen; Petrova, Silvia; White, Lee; Silman, Miles; Morel, Alexandra

    2011-06-14

    Developing countries are required to produce robust estimates of forest carbon stocks for successful implementation of climate change mitigation policies related to reducing emissions from deforestation and degradation (REDD). Here we present a "benchmark" map of biomass carbon stocks over 2.5 billion ha of forests on three continents, encompassing all tropical forests, for the early 2000s, which will be invaluable for REDD assessments at both project and national scales. We mapped the total carbon stock in live biomass (above- and belowground), using a combination of data from 4,079 in situ inventory plots and satellite light detection and ranging (Lidar) samples of forest structure to estimate carbon storage, plus optical and microwave imagery (1-km resolution) to extrapolate over the landscape. The total biomass carbon stock of forests in the study region is estimated to be 247 Gt C, with 193 Gt C stored aboveground and 54 Gt C stored belowground in roots. Forests in Latin America, sub-Saharan Africa, and Southeast Asia accounted for 49%, 25%, and 26% of the total stock, respectively. By analyzing the errors propagated through the estimation process, uncertainty at the pixel level (100 ha) ranged from ± 6% to ± 53%, but was constrained at the typical project (10,000 ha) and national (>1,000,000 ha) scales at ca. ± 5% and ca. ± 1%, respectively. The benchmark map illustrates regional patterns and provides methodologically comparable estimates of carbon stocks for 75 developing countries where previous assessments were either poor or incomplete.

  14. Benchmark map of forest carbon stocks in tropical regions across three continents

    Science.gov (United States)

    Saatchi, Sassan S.; Harris, Nancy L.; Brown, Sandra; Lefsky, Michael; Mitchard, Edward T. A.; Salas, William; Zutta, Brian R.; Buermann, Wolfgang; Lewis, Simon L.; Hagen, Stephen; Petrova, Silvia; White, Lee; Silman, Miles; Morel, Alexandra

    2011-01-01

    Developing countries are required to produce robust estimates of forest carbon stocks for successful implementation of climate change mitigation policies related to reducing emissions from deforestation and degradation (REDD). Here we present a “benchmark” map of biomass carbon stocks over 2.5 billion ha of forests on three continents, encompassing all tropical forests, for the early 2000s, which will be invaluable for REDD assessments at both project and national scales. We mapped the total carbon stock in live biomass (above- and belowground), using a combination of data from 4,079 in situ inventory plots and satellite light detection and ranging (Lidar) samples of forest structure to estimate carbon storage, plus optical and microwave imagery (1-km resolution) to extrapolate over the landscape. The total biomass carbon stock of forests in the study region is estimated to be 247 Gt C, with 193 Gt C stored aboveground and 54 Gt C stored belowground in roots. Forests in Latin America, sub-Saharan Africa, and Southeast Asia accounted for 49%, 25%, and 26% of the total stock, respectively. By analyzing the errors propagated through the estimation process, uncertainty at the pixel level (100 ha) ranged from ±6% to ±53%, but was constrained at the typical project (10,000 ha) and national (>1,000,000 ha) scales at ca. ±5% and ca. ±1%, respectively. The benchmark map illustrates regional patterns and provides methodologically comparable estimates of carbon stocks for 75 developing countries where previous assessments were either poor or incomplete. PMID:21628575

  15. Soils of Mountainous Forests and Their Transformation under the Impact of Fires in Baikal Region

    Science.gov (United States)

    Krasnoshchekov, Yu. N.

    2018-04-01

    Data on postpyrogenic dynamics of soils under mountainous taiga cedar ( Pinus sibirica) and pine ( Pinus sylvestris) forests and subtaiga-forest-steppe pine ( Pinus sylvestris) forests in the Baikal region are analyzed. Ground litter-humus fires predominating in this region transform the upper diagnostic organic soil horizons and lead to the formation of new pyrogenic organic horizons (Opir). Adverse effects of ground fires on the stock, fractional composition, and water-physical properties of forest litters are shown. Some quantitative parameters of the liquid and solid surface runoff in burnt areas related to the slope gradient, fire intensity, and the time passed after the fire are presented. Pyrogenic destruction of forest ecosystems inevitably induces the degradation of mountainous soils, whose restoration after fires takes tens of years. The products of soil erosion from the burnt out areas complicate the current situation with the pollution of coastal waters of Lake Baikal.

  16. Forest Influences on Climate and Water Resources at the Landscape to Regional Scale

    Science.gov (United States)

    Ge Sun; Yongqiang Liu

    2013-01-01

    Although it is well known that climate controls the distribution, productivity and functioning of vegetation on earth, our knowledge about the role of forests in regulating regional climate and water resources is lacking. The studies on climate-forests feedbacks have received increasing attention from the climate change and ecohydrology research communities. The goal...

  17. Climate change and forests: Impacts and adaption. A regional assessment for the Western Ghats, India

    Energy Technology Data Exchange (ETDEWEB)

    Ravindranath, N H; Sukumar, R [Indian Inst. of Science, Bangalore (India). Centre for Ecological Sciences; Deshingkar, P [Stockholm Environment Inst. (Sweden)

    1998-12-31

    Potential climate change over the next 50 to 100 years could have major impacts on tropical forests. Forests, particularly in the tropics, are subjected to anthropogenic pressures leading to degradation and loss of forest ecosystems. Given the significant dependence of local people and economies on forests in tropical and temperate countries, there is a need to assess the possible impacts of climate change and to develop adaption measures. The diversity of forest types in the Western Ghats ranges from wet evergreen and deciduous forest to dry thorn and montane forests with a wide range of annual rainfall regimes (from less than 65 cm to over 300 cm). The study was conducted in two regions of the Western Ghats; the Uttara Kannada district and the Nilgiris. Climate change projections for 2020 and 2050 were used in assessing the possible impacts on forests. In general, the `most likely` projections of climate change were an increase in mean temperature in the range of 0.3-1.0 deg C and an increase in precipitation of 3-8% over the study regions by the year 2050. The `worst case` scenario was an increase in temperature of 1 deg C and a decrease in precipitation by 8% by 2050. To assess the vegetational responses to climate change, a simple model based on present-day correlations between climatic (mean annual temperature and precipitation) and vegetation types for these regions was developed. Likely changes in the areas under different forest types were assessed for `moderate climate` sensitivity and central scaling factor (referred to as the `most likely scenario`) for the years 2020 and 2050, and `high climate` sensitivity and a lower scaling factor (the `worst case scenario`) for 2050 90 refs, 15 figs, 15 tabs

  18. Climate change and forests: Impacts and adaption. A regional assessment for the Western Ghats, India

    Energy Technology Data Exchange (ETDEWEB)

    Ravindranath, N.H.; Sukumar, R. [Indian Inst. of Science, Bangalore (India). Centre for Ecological Sciences; Deshingkar, P. [Stockholm Environment Inst. (Sweden)

    1997-12-31

    Potential climate change over the next 50 to 100 years could have major impacts on tropical forests. Forests, particularly in the tropics, are subjected to anthropogenic pressures leading to degradation and loss of forest ecosystems. Given the significant dependence of local people and economies on forests in tropical and temperate countries, there is a need to assess the possible impacts of climate change and to develop adaption measures. The diversity of forest types in the Western Ghats ranges from wet evergreen and deciduous forest to dry thorn and montane forests with a wide range of annual rainfall regimes (from less than 65 cm to over 300 cm). The study was conducted in two regions of the Western Ghats; the Uttara Kannada district and the Nilgiris. Climate change projections for 2020 and 2050 were used in assessing the possible impacts on forests. In general, the `most likely` projections of climate change were an increase in mean temperature in the range of 0.3-1.0 deg C and an increase in precipitation of 3-8% over the study regions by the year 2050. The `worst case` scenario was an increase in temperature of 1 deg C and a decrease in precipitation by 8% by 2050. To assess the vegetational responses to climate change, a simple model based on present-day correlations between climatic (mean annual temperature and precipitation) and vegetation types for these regions was developed. Likely changes in the areas under different forest types were assessed for `moderate climate` sensitivity and central scaling factor (referred to as the `most likely scenario`) for the years 2020 and 2050, and `high climate` sensitivity and a lower scaling factor (the `worst case scenario`) for 2050 90 refs, 15 figs, 15 tabs

  19. Historical Susceptibility of Forest Fires in the Carajas Region, Brazil

    Science.gov (United States)

    Conceicao, M. C.; Rodrigues, R. A.; Cordeiro, R. C.; Barbosa, M. R.; Santos, D. D.; Turcq, B. J.; Seoane, J. S.; Sifeddine, A.

    2008-12-01

    The Carajas Region in the Para state, nowadays keeps a vast area of forests protected by Units of Conservation and Indigenous Land. Despite the efforts and investments done by private companies and government agencies to prevent forest fires, they are still registered, being one of the major factors of degradation of forests, flora and fauna. Thus there is a need to improve the understanding of these burning processes at present, and its evolution in different time scales, which allows comparison between patterns of fire occurrences related to climate and human reasons. This study aims to assess the evolution of the climate of Carajas region along the Quaternary, with emphasis on natural occurrence of fires related to historical events palaeoclimatic. For this a sediment core of a lake with 450 cm of depth was collected. Chronology is being determined by the radiocarbon method. Ours specific objectives are quantify and qualify the source of sedimentary material, determine concentrations of biogenic elements and minerals, through granulometric and mineralogical analyses and of quality and quantity of organic matter through the establishment of elementary (the C/N) and isotopic ratios (ä13C and ä15N). The dimensions of processes linked to the biomass burning will be determined by quantifying of charcoal fragments resulting from fires through microscopic analysis. This seeks to reconstruct the environmental scene and paleoclimatics conditions related to events of biomass burning, demonstrating the susceptibility of this historic region to the occurrence of fires according to the different climate stages identified.

  20. MARKETIZATION OF GREEN FOOD RESOURCES IN FOREST REGION OF THE CHANGBAI MOUNTAINS

    Institute of Scientific and Technical Information of China (English)

    XIAO Yan

    2004-01-01

    The Changbai Mountains is rich in the resources of green food. At present, the low marketization of green food resources in the forest region of the Changbai Mountains becomes the bottleneck to restrict the benign development of its green food industry. With huge market demands at home and abroad, it is the urgent problem how to improve marketization process of green food resources and transfer the resources superiority into the market superiority in the region. According to the investigation, this paper analyzed the status quo and the cause of formation of low-marketization with the method of combining comparative research and practice research. It pointed out that necessary condition of marketization of green food resources in the forest region, such as strategy, economic environment, marketization allocation of sci-tech resources, etc. should be established. Furthermore, the concrete strategies of marketization of green food resources in the region such as market location, strategies of objective markets, combined strategy of marketing, etc. were advanced.

  1. Mapping Annual Forest Cover in Sub-Humid and Semi-Arid Regions through Analysis of Landsat and PALSAR Imagery

    Directory of Open Access Journals (Sweden)

    Yuanwei Qin

    2016-11-01

    Full Text Available Accurately mapping the spatial distribution of forests in sub-humid to semi-arid regions over time is important for forest management but a challenging task. Relatively large uncertainties still exist in the spatial distribution of forests and forest changes in the sub-humid and semi-arid regions. Numerous publications have used either optical or synthetic aperture radar (SAR remote sensing imagery, but the resultant forest cover maps often have large errors. In this study, we propose a pixel- and rule-based algorithm to identify and map annual forests from 2007 to 2010 in Oklahoma, USA, a transitional region with various climates and landscapes, using the integration of the L-band Advanced Land Observation Satellite (ALOS PALSAR Fine Beam Dual Polarization (FBD mosaic dataset and Landsat images. The overall accuracy and Kappa coefficient of the PALSAR/Landsat forest map were about 88.2% and 0.75 in 2010, with the user and producer accuracy about 93.4% and 75.7%, based on the 3270 random ground plots collected in 2012 and 2013. Compared with the forest products from Japan Aerospace Exploration Agency (JAXA, National Land Cover Database (NLCD, Oklahoma Ecological Systems Map (OKESM and Oklahoma Forest Resource Assessment (OKFRA, the PALSAR/Landsat forest map showed great improvement. The area of the PALSAR/Landsat forest was about 40,149 km2 in 2010, which was close to the area from OKFRA (40,468 km2, but much larger than those from JAXA (32,403 km2 and NLCD (37,628 km2. We analyzed annual forest cover dynamics, and the results show extensive forest cover loss (2761 km2, 6.9% of the total forest area in 2010 and gain (3630 km2, 9.0% in southeast and central Oklahoma, and the total area of forests increased by 684 km2 from 2007 to 2010. This study clearly demonstrates the potential of data fusion between PALSAR and Landsat images for mapping annual forest cover dynamics in sub-humid to semi-arid regions, and the resultant forest maps would be

  2. GEOINFORMATIONAL ANALYSIS OF CHANGING BOUNDARIES OF FOREST TRACTS OF THE REGION OF CAUCASIAN MINERAL WATERS OF STAVROPOL TERRITORY

    Directory of Open Access Journals (Sweden)

    O. S. Anikeeva

    2017-01-01

    Full Text Available Deterioration of the state of forests and illegal logging are a global problem of our time. The region of the Caucasian Mineral Waters has a small number of forest areas, so the need to introduce new methods for analyzing the state of forests is an important task in the conservation of forests in this area. One such method is geoinformational analysis. For the survey, the geoinformation systems ScanEx Image Processor 4.0, Mapinfo Professional 12, QGIS 2.8 have been used.The species composition of the largest forest tracts of the Caucasian Mineral Waters is considered. The main reasons for changing the boundaries of forest areas have been determined. A geoinformational analysis of the changes in the boundaries of the forest tracts of the region has been carried out using remote sensing data for the period from 1987 to 2014. For the analysis, space images of the Landsat 5 and 8 system were used for the period from 1987 to 2014.A classification of multi-temporal optical images has been made, which allowed obtaining the values of forest areas in different years and to calculate their percentage of forest cover. In 1987, the forest area of the region was 35.2 thousand hectares; in 1998, 41.99 thousand hectares, and by 2014 it was reduced to 33.16 thousand hectares.On the basis of the data obtained, a series of maps characterizing the forests of the Caucasian Mineral Waters in different years has been constructed.The conducted study led to the conclusion that the main changes in the forest boundaries occurred in the Mashuk, Lysoy, Zheleznaya, Beshtau, Verblud and Bik mountains. This is due primarily to the proximity to the most densely populated cities in the region: Pyatigorsk, Zheleznovodsk, Essentuki and the city of Mineralnye Vody.

  3. Exploring the willingness to pay for forest ecosystem services by residents of the Veneto Region

    Directory of Open Access Journals (Sweden)

    Paola Gatto

    2014-05-01

    Full Text Available Forests produce a wide array of goods, both private and public. The demand for forest ecosystem services is increasing in many European countries, yet there is still a scarcity of data on values at regional scale for Alpine areas. A Choice Experiment survey has been conducted in order to explore preferences, uses and the willingness of the Veneto population to pay for ecosystem services produced by regional mountain forests. The results show that willingness to pay is significant for recreation and C-sequestration but not for biodiversity conservation, landscape and other ecosystem services. These findings question the feasibility of developing market-based mechanisms in Veneto at present and cast light on the possible role of public institutions in promoting policy actions to increase the general awareness of forest-related ecosystem services.

  4. Simulating forest productivity and surface-atmosphere carbon exchange in the BOREAS study region

    Energy Technology Data Exchange (ETDEWEB)

    Kimball, J.S.; Thornton, P.E.; White, M.A.; Running, S.W. [Montana Univ., Missoula, MT (United States). School of Forestry

    1997-12-31

    Studies have shown that the boreal forest region is in danger of experiencing significant warming and drying in response to increases in atmospheric CO{sub 2} concentration and other greenhouse gases. Since the boreal forest region contains 16-24 per cent of the world`s soil carbon, warming in this region could result in a rapid, large-scale displacement and redistribution of boreal forest, enhanced release of CO{sub 2} to the atmosphere, and an intensification of global warming. A study was conducted in which a process-based, general ecosystem model (BIOME-BGC) was used to simulate daily gross primary production, maintenance and heterotrophic respiration, net primary production and net ecosystem carbon exchange of boreal aspen, jack pine and black spruce. The objective was to integrate point measurements across multiple spatial and temporal scales using process level models of the boreal forest water, energy and biogeochemical cycles. Climate characteristics that control simulated carbon fluxes were also studied. Results showed that trees with large daily evapotranspiration rates and those situated on sandy soils with low water holding capacities were especially vulnerable to increased temperature and drought conditions. Trees subject to frequent water stress during the growing season, particularly older trees that exhibit low photosynthetic and high respiration rates, were on the margin between being annual net sources or sinks for atmospheric carbon. 71 refs., 3 tabs., 5 figs.

  5. Measures to maintain the forests in the regions of North Rhine Westphalia suffering from pollution

    Energy Technology Data Exchange (ETDEWEB)

    Rost, F

    1972-01-01

    Air pollution in the steadily expanding industrial and residential areas on the Rhine and Ruhr presents great problems for forestry. According to the data at present available, the polluted area in the Rhine-Ruhr region alone amounts to about 5200 sq km, i.e. about 15% of the total area of North Rhine/Westphalia. The Ruhr region proper is already extremely short of forests, but on the northern and southern sides the forest still covers comparatively large areas with differing site conditions. Different growth regions adjoin here. This is shown by the fact that on the northern edge of the Ruhr the Scots pine, and on the southern edge the spruce, have been the important species for forestry before the natural broadleaved species (oak and beech). These conifers can no longer be managed on normal rotations, without accepting considerable losses in increment. In order to maintain the forest, the regional government has therefore developed a program to promote non-state forestry, which will put the private and communal forest owners into a position to collaborate in the task of maintaining the forest by conversion, afforestation and tending. The focal point of this program is the recommendation to plant only three species relatively resistant to fumes. In the field of forestry research, special attention has been paid to provenance research, breeding for resistance, and differentiated demarcation of damaged stands by interpretation of false-color aerial photographs.

  6. Family forest owners in the redwood region: management priorities and opportunities in a carbon market

    Science.gov (United States)

    Erin Clover Kelly; Joanna Di Tommaso; Arielle Weisgrau

    2017-01-01

    California’s cap-and-trade carbon market has included forest offset projects, available to all private landowners across the United States. The redwood region has been at the forefront of the market, creating the earliest forest carbon projects. From carbon registries, we compiled a database of all forest carbon projects in the market, in order to determine...

  7. Estimating the carbon budget and maximizing future carbon uptake for a temperate forest region in the U.S.

    Science.gov (United States)

    2012-01-01

    Background Forests of the Midwest U.S. provide numerous ecosystem services. Two of these, carbon sequestration and wood production, are often portrayed as conflicting. Currently, carbon management and biofuel policies are being developed to reduce atmospheric CO2 and national dependence on foreign oil, and increase carbon storage in ecosystems. However, the biological and industrial forest carbon cycles are rarely studied in a whole-system structure. The forest system carbon balance is the difference between the biological (net ecosystem production) and industrial (net emissions from forest industry) forest carbon cycles, but to date this critical whole system analysis is lacking. This study presents a model of the forest system, uses it to compute the carbon balance, and outlines a methodology to maximize future carbon uptake in a managed forest region. Results We used a coupled forest ecosystem process and forest products life cycle inventory model for a regional temperate forest in the Midwestern U.S., and found the net system carbon balance for this 615,000 ha forest was positive (2.29 t C ha-1 yr-1). The industrial carbon budget was typically less than 10% of the biological system annually, and averaged averaged 0.082 t C ha-1 yr-1. Net C uptake over the next 100-years increased by 22% or 0.33 t C ha-1 yr-1 relative to the current harvest rate in the study region under the optized harvest regime. Conclusions The forest’s biological ecosystem current and future carbon uptake capacity is largely determined by forest harvest practices that occurred over a century ago, but we show an optimized harvesting strategy would increase future carbon sequestration, or wood production, by 20-30%, reduce long transportation chain emissions, and maintain many desirable stand structural attributes that are correlated to biodiversity. Our results for this forest region suggest that increasing harvest over the next 100 years increases the strength of

  8. Estimating the carbon budget and maximizing future carbon uptake for a temperate forest region in the U.S.

    Directory of Open Access Journals (Sweden)

    Peckham Scott D

    2012-06-01

    Full Text Available Abstract Background Forests of the Midwest U.S. provide numerous ecosystem services. Two of these, carbon sequestration and wood production, are often portrayed as conflicting. Currently, carbon management and biofuel policies are being developed to reduce atmospheric CO2 and national dependence on foreign oil, and increase carbon storage in ecosystems. However, the biological and industrial forest carbon cycles are rarely studied in a whole-system structure. The forest system carbon balance is the difference between the biological (net ecosystem production and industrial (net emissions from forest industry forest carbon cycles, but to date this critical whole system analysis is lacking. This study presents a model of the forest system, uses it to compute the carbon balance, and outlines a methodology to maximize future carbon uptake in a managed forest region. Results We used a coupled forest ecosystem process and forest products life cycle inventory model for a regional temperate forest in the Midwestern U.S., and found the net system carbon balance for this 615,000 ha forest was positive (2.29 t C ha-1 yr-1. The industrial carbon budget was typically less than 10% of the biological system annually, and averaged averaged 0.082 t C ha-1 yr-1. Net C uptake over the next 100-years increased by 22% or 0.33 t C ha-1 yr-1 relative to the current harvest rate in the study region under the optized harvest regime. Conclusions The forest’s biological ecosystem current and future carbon uptake capacity is largely determined by forest harvest practices that occurred over a century ago, but we show an optimized harvesting strategy would increase future carbon sequestration, or wood production, by 20-30%, reduce long transportation chain emissions, and maintain many desirable stand structural attributes that are correlated to biodiversity. Our results for this forest region suggest that increasing harvest over the next 100

  9. Integrating regional and continental scale comparisons of tree composition in Amazonian terra firme forests

    Science.gov (United States)

    Honorio Coronado, E. N.; Baker, T. R.; Phillips, O. L.; Pitman, N. C. A.; Pennington, R. T.; Vásquez Martínez, R.; Monteagudo, A.; Mogollón, H.; Dávila Cardozo, N.; Ríos, M.; García-Villacorta, R.; Valderrama, E.; Ahuite, M.; Huamantupa, I.; Neill, D. A.; Laurance, W. F.; Nascimento, H. E. M.; Soares de Almeida, S.; Killeen, T. J.; Arroyo, L.; Núñez, P.; Freitas Alvarado, L.

    2009-01-01

    We contrast regional and continental-scale comparisons of the floristic composition of terra firme forest in South Amazonia, using 55 plots across Amazonia and a subset of 30 plots from northern Peru and Ecuador. Firstly, we examine the floristic patterns using both genus- or species-level data and find that the species-level analysis more clearly distinguishes different plot clusters. Secondly, we compare the patterns and causes of floristic differences at regional and continental scales. At a continental scale, ordination analysis shows that species of Lecythidaceae and Sapotaceae are gradually replaced by species of Arecaceae and Myristicaceae from eastern to western Amazonia. These floristic gradients are correlated with gradients in soil fertility and to dry season length, similar to previous studies. At a regional scale, similar patterns are found within north-western Amazonia, where differences in soil fertility distinguish plots where species of Lecythidaceae, characteristic of poor soils, are gradually replaced by species of Myristicaceae on richer soils. The main coordinate of this regional-scale ordination correlates mainly with concentrations of available calcium and magnesium. Thirdly, we ask at a regional scale within north-western Amazonia, whether soil fertility or other distance dependent processes are more important for determining variation in floristic composition. A Mantel test indicates that both soils and geographical distance have a similar and significant role in determining floristic similarity across this region. Overall, these results suggest that regional-scale variation in floristic composition can rival continental scale differences within Amazonian terra firme forests, and that variation in floristic composition at both scales is dependent on a range of processes that include both habitat specialisation related to edaphic conditions and other distance-dependent processes. To fully account for regional scale variation in continental

  10. Chemical and biological study of essential oils from Eugenia pruniformis cambess., an endemic species from Brazilian Atlantic Forest

    OpenAIRE

    Albuquerque, Ricardo D.D.G.; Tietbohl, Luis A. C.; Fernandes, Caio P.; Couteiro, Pedro P.; Eiriz, Débora N.; Santos, Marcelo G.; Silva Filho, Moacélio V.; Alves, Gutemberg G.; Bachinski, Róber; Rocha, Leandro

    2012-01-01

    Eugenia pruniformis Cambess. is an endemic species from Brazilian Atlantic Forest. Essential oils from leaves and fruits from this species were obtained by hydrodistillation and analyzed by GCMS/CG-FID. In all, 25 compounds were identified, with predominance of sesquiterpene hydrocarbons in both plant parts. The major compounds were β-caryophyllene, bicyclogermacrene, germacrene D, δ- cadinene and α-copaene. Antioxidant activity was performed for essential oil from leaves using ORAC method, s...

  11. Regional-Scale Drivers of Forest Structure and Function in Northwestern Amazonia

    Science.gov (United States)

    Higgins, Mark A.; Asner, Gregory P.; Anderson, Christopher B.; Martin, Roberta E.; Knapp, David E.; Tupayachi, Raul; Perez, Eneas; Elespuru, Nydia; Alonso, Alfonso

    2015-01-01

    Field studies in Amazonia have found a relationship at continental scales between soil fertility and broad trends in forest structure and function. Little is known at regional scales, however, about how discrete patterns in forest structure or functional attributes map onto underlying edaphic or geological patterns. We collected airborne LiDAR (Light Detection and Ranging) data and VSWIR (Visible to Shortwave Infrared) imaging spectroscopy measurements over 600 km2 of northwestern Amazonian lowland forests. We also established 83 inventories of plant species composition and soil properties, distributed between two widespread geological formations. Using these data, we mapped forest structure and canopy reflectance, and compared them to patterns in plant species composition, soils, and underlying geology. We found that variations in soils and species composition explained up to 70% of variation in canopy height, and corresponded to profound changes in forest vertical profiles. We further found that soils and plant species composition explained more than 90% of the variation in canopy reflectance as measured by imaging spectroscopy, indicating edaphic and compositional control of canopy chemical properties. We last found that soils explained between 30% and 70% of the variation in gap frequency in these forests, depending on the height threshold used to define gaps. Our findings indicate that a relatively small number of edaphic and compositional variables, corresponding to underlying geology, may be responsible for variations in canopy structure and chemistry over large expanses of Amazonian forest. PMID:25793602

  12. Regional-scale drivers of forest structure and function in northwestern Amazonia.

    Directory of Open Access Journals (Sweden)

    Mark A Higgins

    Full Text Available Field studies in Amazonia have found a relationship at continental scales between soil fertility and broad trends in forest structure and function. Little is known at regional scales, however, about how discrete patterns in forest structure or functional attributes map onto underlying edaphic or geological patterns. We collected airborne LiDAR (Light Detection and Ranging data and VSWIR (Visible to Shortwave Infrared imaging spectroscopy measurements over 600 km2 of northwestern Amazonian lowland forests. We also established 83 inventories of plant species composition and soil properties, distributed between two widespread geological formations. Using these data, we mapped forest structure and canopy reflectance, and compared them to patterns in plant species composition, soils, and underlying geology. We found that variations in soils and species composition explained up to 70% of variation in canopy height, and corresponded to profound changes in forest vertical profiles. We further found that soils and plant species composition explained more than 90% of the variation in canopy reflectance as measured by imaging spectroscopy, indicating edaphic and compositional control of canopy chemical properties. We last found that soils explained between 30% and 70% of the variation in gap frequency in these forests, depending on the height threshold used to define gaps. Our findings indicate that a relatively small number of edaphic and compositional variables, corresponding to underlying geology, may be responsible for variations in canopy structure and chemistry over large expanses of Amazonian forest.

  13. Forecasting Forest Type and Age Classes in the Appalachian-Cumberland Subregion of the Central Hardwood Region

    Science.gov (United States)

    David N. Wear; Robert Huggett

    2011-01-01

    This chapter describes how forest type and age distributions might be expected to change in the Appalachian-Cumberland portions of the Central Hardwood Region over the next 50 years. Forecasting forest conditions requires accounting for a number of biophysical and socioeconomic dynamics within an internally consistent modeling framework. We used the US Forest...

  14. Development of lichen response indexes using a regional gradient modeling approach for large-scale monitoring of forests

    Science.gov (United States)

    Susan Will-Wolf; Peter Neitlich

    2010-01-01

    Development of a regional lichen gradient model from community data is a powerful tool to derive lichen indexes of response to environmental factors for large-scale and long-term monitoring of forest ecosystems. The Forest Inventory and Analysis (FIA) Program of the U.S. Department of Agriculture Forest Service includes lichens in its national inventory of forests of...

  15. Faunal diversity of Fagus sylvatica forests: A regional and European perspective based on three indicator groups

    Directory of Open Access Journals (Sweden)

    H. Walentowski

    2014-12-01

    Full Text Available While the postglacial history of European beech (Fagus sylvatica and the plant species composition of beech forests in  Central Europe are fairly well understood, the faunal biodiversity has been less well investigated. We studied three groups of  mostly sedentary organisms in beech forest at regional and European scales by combining field studies with a compilation of existing literature and expert knowledge. Specifically, we examined the relationship between host tree genera and saproxylic  beetles, and the diversity and composition of forest ground-dwelling molluscs and ground beetles in relation to the abundance  of beech. At a west central European scale (Germany, where beech has a “young” ecological and biogeographical history,  we found 48 primeval forest relict species of saproxylic beetles associated with beech, 124 ground beetles and 91 molluscs  inhabiting beech forest, yet none exclusive of west central European beech forests. High levels of faunal similarity between beech and other woodland trees suggested that many of the beech forest dwelling species are euryoecious and likely to  originate from mid-Holocene mixed broadleaf forests. Beech forests of the mountain ranges in southern and east central  Europe, which are ecologically and biogeographically “old”, were found to harbour distinct species assemblages, including  beech forest specialists (such as 10 carabid species in the Carpathians and narrow-range endemics of broadleaf forest. The  observed biodiversity patterns suggest differentiated conservation priorities in “young” and “old” European beech forest  regions.

  16. Spatial and topographic trends in forest expansion and biomass change, from regional to local scales.

    Science.gov (United States)

    Buma, Brian; Barrett, Tara M

    2015-09-01

    Natural forest growth and expansion are important carbon sequestration processes globally. Climate change is likely to increase forest growth in some regions via CO2 fertilization, increased temperatures, and altered precipitation; however, altered disturbance regimes and climate stress (e.g. drought) will act to reduce carbon stocks in forests as well. Observations of asynchrony in forest change is useful in determining current trends in forest carbon stocks, both in terms of forest density (e.g. Mg ha(-1) ) and spatially (extent and location). Monitoring change in natural (unmanaged) areas is particularly useful, as while afforestation and recovery from historic land use are currently large carbon sinks, the long-term viability of those sinks depends on climate change and disturbance dynamics at their particular location. We utilize a large, unmanaged biome (>135 000 km(2) ) which spans a broad latitudinal gradient to explore how variation in location affects forest density and spatial patterning: the forests of the North American temperate rainforests in Alaska, which store >2.8 Pg C in biomass and soil, equivalent to >8% of the C in contiguous US forests. We demonstrate that the regional biome is shifting; gains exceed losses and are located in different spatio-topographic contexts. Forest gains are concentrated on northerly aspects, lower elevations, and higher latitudes, especially in sheltered areas, whereas loss is skewed toward southerly aspects and lower latitudes. Repeat plot-scale biomass data (n = 759) indicate that within-forest biomass gains outpace losses (live trees >12.7 cm diameter, 986 Gg yr(-1) ) on gentler slopes and in higher latitudes. This work demonstrates that while temperate rainforest dynamics occur at fine spatial scales (biomass accumulation suggest the potential for relatively rapid biome shifts and biomass changes. © 2015 John Wiley & Sons Ltd.

  17. A comparison of GC-FID and PTR-MS toluene measurements in ambient air under conditions of enhanced monoterpene loading

    Directory of Open Access Journals (Sweden)

    J. L. Ambrose

    2010-07-01

    Full Text Available Toluene was measured using both a gas chromatographic system (GC, with a flame ionization detector (FID, and a proton transfer reaction-mass spectrometer (PTR-MS at the AIRMAP atmospheric monitoring station Thompson Farm (THF in rural Durham, NH during the summer of 2004. Simultaneous measurements of monoterpenes, including α- and β-pinene, camphene, Δ 3-carene, and d-limonene, by GC-FID demonstrated large enhancements in monoterpene mixing ratios relative to toluene, with median and maximum enhancement ratios of ~2 and ~30, respectively. A detailed comparison between the GC-FID and PTR-MS toluene measurements was conducted to test the specificity of PTR-MS for atmospheric toluene measurements under conditions often dominated by biogenic emissions. We derived quantitative estimates of potential interferences in the PTR-MS toluene measurements related to sampling and analysis of monoterpenes, including fragmentation of the monoterpenes and some of their primary carbonyl oxidation products via reactions with H3O+, O2+ and NO+ in the PTR-MS drift tube. The PTR-MS and GC-FID toluene measurements were in good quantitative agreement and the two systems tracked one another well from the instrumental limits of detection to maximum mixing ratios of ~0.5 ppbv. A correlation plot of the PTR-MS versus GC-FID toluene measurements was described by the least squares regression equation y=(1.13± 0.02x−(0.008±0.003 ppbv, suggesting a small ~13% positive bias in the PTR-MS measurements. The bias corresponded with a ~0.055 ppbv difference at the highest measured toluene level. The two systems agreed quantitatively within the combined 1σ measurement precisions for 60% of the measurements. Discrepancies in the measured mixing ratios were not well correlated with enhancements in the monoterpenes. Better quantitative agreement between the two systems was obtained by

  18. Historical range of variation assessment for wetland and riparian ecosystems, U.S. Forest Service Rocky Mountain Region

    Science.gov (United States)

    Edward Gage; David J. Cooper

    2013-01-01

    This document provides an overview of historical range of variation concepts and explores their application to wetland and riparian ecosystems in the US Forest Service Rocky Mountain Region (Region 2), which includes National Forests and National Grasslands occurring in the states of Colorado, Wyoming, Nebraska, Kansas, and South Dakota. For each of five ecosystem...

  19. Managing human disturbance: factors influencing flight-initiation ...

    African Journals Online (AJOL)

    We tested how FID varied with group size, proximity to vegetation acting as protective cover, levels of human use, and survival rate, and whether these relationships varied by species. We collected 504 FIDs for seven bird species in Amurum Forest Reserve and its surrounding habitats (Jos, Nigeria). The FID was lower in ...

  20. Mapping regional patterns of large forest fires in Wildland-Urban Interface areas in Europe.

    Science.gov (United States)

    Modugno, Sirio; Balzter, Heiko; Cole, Beth; Borrelli, Pasquale

    2016-05-01

    Over recent decades, Land Use and Cover Change (LUCC) trends in many regions of Europe have reconfigured the landscape structures around many urban areas. In these areas, the proximity to landscape elements with high forest fuels has increased the fire risk to people and property. These Wildland-Urban Interface areas (WUI) can be defined as landscapes where anthropogenic urban land use and forest fuel mass come into contact. Mapping their extent is needed to prioritize fire risk control and inform local forest fire risk management strategies. This study proposes a method to map the extent and spatial patterns of the European WUI areas at continental scale. Using the European map of WUI areas, the hypothesis is tested that the distance from the nearest WUI area is related to the forest fire probability. Statistical relationships between the distance from the nearest WUI area, and large forest fire incidents from satellite remote sensing were subsequently modelled by logistic regression analysis. The first European scale map of the WUI extent and locations is presented. Country-specific positive and negative relationships of large fires and the proximity to the nearest WUI area are found. A regional-scale analysis shows a strong influence of the WUI zones on large fires in parts of the Mediterranean regions. Results indicate that the probability of large burned surfaces increases with diminishing WUI distance in touristic regions like Sardinia, Provence-Alpes-Côte d'Azur, or in regions with a strong peri-urban component as Catalunya, Comunidad de Madrid, Comunidad Valenciana. For the above regions, probability curves of large burned surfaces show statistical relationships (ROC value > 0.5) inside a 5000 m buffer of the nearest WUI. Wise land management can provide a valuable ecosystem service of fire risk reduction that is currently not explicitly included in ecosystem service valuations. The results re-emphasise the importance of including this ecosystem service

  1. Green electricity externalities: Forest biomass in an Atlantic European Region

    International Nuclear Information System (INIS)

    Solino, M.; Prada, A.; Vazquez, M.X.

    2009-01-01

    Renewable energy sources are expected to represent a growing proportion of the primary energy sources for the production of electricity. Environmental and social reasons support this tendency. European and Spanish energy plans assign a role of primary importance to biomass in general and, especially, to forest biomass for the period up to 2010. This paper reviews, organises and quantifies the potentials and values of this renewable resource in the foremost Spanish Region in terms of silviculture. The non-market externalities (environmental, economic and social) are classified, and some of them are quantified to present a synthesis of the benefits of a partial substitution of fossil fuels by forest biomass for electricity generation. (author)

  2. Remote sensing of forest degradation in Southeast Asia—Aiming for a regional view through 5–30 m satellite data

    Directory of Open Access Journals (Sweden)

    Jukka Miettinen

    2014-12-01

    Full Text Available In this review paper we present geographical, ecological and historical aspects of Southeast Asia from the perspective of forest degradation monitoring and critically discuss available approaches for large area forest degradation monitoring with satellite remote sensing data at high to medium spatial resolution (5–30 m. Several authors have achieved promising results in geographically limited areas within Southeast Asia using automated detection algorithms. However, the application of automated methods to large area assessments remains a major challenge. To-date, nearly all large area assessments of forest degradation in the region have included a strong visual interpretation component. We conclude that due to the variety of forest types and forest disturbance levels, as well as the variable image acquisition conditions in Southeast Asia, it is unlikely that forest degradation monitoring can be conducted throughout the region using a single automated approach with currently available remote sensing data. The provision of regionally consistent information on forest degradation from satellite remote sensing data remains therefore challenging. However, the expected increase in observation frequency in the near future (due to Landsat 8 and Sentinel-2 satellites may lead to the desired improvement in data availability and enable consistent and robust regional forest degradation monitoring in Southeast Asia. Keywords: Tropical forest disturbance, Selective logging, Shifting cultivation, Satellite data, Indochina peninsula, Maritime continent

  3. Soil organic matter composition and quality across fire severity gradients in coniferous and deciduous forests of the southern boreal region

    Science.gov (United States)

    Jessica R. Miesel; William C. Hockaday; Randy Kolka; Philip A. Townsend

    2015-01-01

    Recent patterns of prolonged regional drought in southern boreal forests of the Great Lakes region, USA, suggest that the ecological effects of disturbance by wildfire may become increasingly severe. Losses of forest soil organic matter (SOM) during fire can limit soil nutrient availability and forest regeneration. These processes are also influenced by the composition...

  4. Using Resource Economics to Anticipate Forest Land Use Change in the U.S. Mid-Atlantic Region

    Science.gov (United States)

    Peter J. Parks; Ian W. Hardie; Cheryl A. Tedder; David N. Wear

    2000-01-01

    Demands for forest, farm, and developed land are evolving in the U.S. mid-Atlantic region. The demand for land in developed uses, as well as demands for various forest and farm products are changing in response to population growth, demographic shifts, and market forces. As demand factors change so do relative land values. Land area in future forest, farm, and...

  5. La gestion des ressources humaines peut-elle être un facteur de fidélisation de la clientèle du centre E. Leclerc Casteldis ?

    OpenAIRE

    Laurie Ple

    2010-01-01

    Le secteur de la grande distribution est un domaine passionnant par son histoire, son évolution et sa place au cœur de nombreuses mutations de notre société. L'explorer à travers la gestion des ressources humaines est tout de suite paru attirant. Étant donné que la grande distribution évolue dans un contexte de plus en plus compétitif, la fidélisation de la clientèle est devenue un de ses grands enjeux. La grande distribution a développé des outils de fidélisation, mais ils sont largement rep...

  6. Regional Markets for Non-timber Forest Products in Eastern Brazilian Amazon

    OpenAIRE

    Vuola, Matleena

    2013-01-01

    While export of non-timber forest products (NTFPs) has been promoted as a sustainable development strategy, the literature suggests that local and regional markets are also potentially important, not only for producers but also for traders and consumers (Shackleton et al. 2007). For producers, regional markets are thought to offer more accessible and more stable markets, while for traders, these markets offer employment, and for consumers, reasonably priced, diverse, fresh food. Consumptio...

  7. A GENERAL ASSESSMENT OF CLIMATE, SOIL STRUCTURE, FOREST AREAS, GROWING STOCK AND SOME FORESTRY APPLICATIONS OF ARTVIN REGION

    OpenAIRE

    Yüksek, Turan; Ölmez, Zafer

    2011-01-01

    Artvin is located in the North Eastern Blacksea region of Turkey. Forests of Artvin are spread out from cool climate zone to cold climate zone. Artvin has approximately 390471 ha of forests, which is consist of 276883 ha (70.91%) natural forest and 113588 (29.09 %) coppice forests. Forest area covering 54.77% of total land of Artvin. Most of species of forests (natural and coppice forests) areconiferous trees, such as Picea ssp., Pinus ssp., Juniperus ssp. and broaded leaves such as Quercus s...

  8. Quantification of compositional changes of petroleum hydrocarbons by GC/FID and GC/MS during a long-term bioremediation experiment

    DEFF Research Database (Denmark)

    Jensen, Trine S.; Arvin, Erik; Svensmark, Bo

    2000-01-01

    Samples from a long-term bioremediation experiment contaminated with two crude oils, Arabian Heavy and Gullfax, was used to analyze the compositional change of petroleum hydrocarbons. A time course of five different homologous series of petroleum hydrocarbons were analysed by GC/FID and GC...

  9. Climatic regions as an indicator of forest coarse and fine woody debris carbon stocks in the United States

    Directory of Open Access Journals (Sweden)

    Liknes Greg C

    2008-06-01

    Full Text Available Abstract Background Coarse and fine woody debris are substantial forest ecosystem carbon stocks; however, there is a lack of understanding how these detrital carbon stocks vary across forested landscapes. Because forest woody detritus production and decay rates may partially depend on climatic conditions, the accumulation of coarse and fine woody debris carbon stocks in forests may be correlated with climate. This study used a nationwide inventory of coarse and fine woody debris in the United States to examine how these carbon stocks vary by climatic regions and variables. Results Mean coarse and fine woody debris forest carbon stocks vary by Köppen's climatic regions across the United States. The highest carbon stocks were found in regions with cool summers while the lowest carbon stocks were found in arid desert/steppes or temperate humid regions. Coarse and fine woody debris carbon stocks were found to be positively correlated with available moisture and negatively correlated with maximum temperature. Conclusion It was concluded with only medium confidence that coarse and fine woody debris carbon stocks may be at risk of becoming net emitter of carbon under a global climate warming scenario as increases in coarse or fine woody debris production (sinks may be more than offset by increases in forest woody detritus decay rates (emission. Given the preliminary results of this study and the rather tenuous status of coarse and fine woody debris carbon stocks as either a source or sink of CO2, further research is suggested in the areas of forest detritus decay and production.

  10. Diversity and similarity of native forest fragments located in the northeast region of Minas Gerais

    Directory of Open Access Journals (Sweden)

    Christianne Riquetti Corsini

    2014-03-01

    Full Text Available In this study 26 distributed fragments of native forest in four located hydrographical Basins in the northeast region of Minas Gerais had been showed, with the purpose of analyzing the floristic similarity exists between 26 forest fragments native inserted in four basins in the northeast of the state of Minas Gerais and the diversity and evenness of physiognomies studied and groups of fragments formed. Systematic sampling with units was used shows of 1000 m² each, where the sample area varied of 1 the 6 has, as the area I break up of it. We measured the circumference at 1.30m (CAP and the total height and collected botanical material of all individuals with CAP greater or equal to 15.7 cm. Six groups were formed according to the floristic similarity coefficient Sorensen, with four groups there was an association of more than a physiognomy, showing regions of transition within the area. The Shannon diversity index, ranged from 2.236 in deciduous forest to 4.523 in Semideciduous Forest. The maximum and minimum values of evenness index Pielou were 0.850 and 0.616 , respectively. The floristic group 2 (Semideciduous Forest and Cerrado sensu stricto had the highest average value of diversity (3.585 and evenness (0.750 , and group 1 (Deciduous Forest had the lowest values (H': 2.426 and J': 0.687 .

  11. Whole-system carbon balance for a regional temperate forest in Northern Wisconsin, USA

    Science.gov (United States)

    Peckham, S. D.; Gower, S. T.

    2010-12-01

    The whole-system (biological + industrial) carbon (C) balance was estimated for the Chequamegon-Nicolet National Forest (CNNF), a temperate forest covering 600,000 ha in Northern Wisconsin, USA. The biological system was modeled using a spatially-explicit version of the ecosystem process model Biome-BGC. The industrial system was modeled using life cycle inventory (LCI) models for wood and paper products. Biome-BGC was used to estimate net primary production, net ecosystem production (NEP), and timber harvest (H) over the entire CNNF. The industrial carbon budget (Ci) was estimated by applying LCI models of CO2 emissions resulting from timber harvest and production of specific wood and paper products in the CNNF region. In 2009, simulated NEP of the CNNF averaged 3.0 tC/ha and H averaged 0.1 tC/ha. Despite model uncertainty, the CNNF region is likely a carbon sink (NEP - Ci > 0), even when CO2 emissions from timber harvest and production of wood and paper products are included in the calculation of the entire forest system C budget.

  12. Air pollution and forest ecosystems: a regional to global perspective

    International Nuclear Information System (INIS)

    Taylor, G.E.; Johnson, D.W.; Andersen, C.P.

    1994-01-01

    Changes in the atmospheric concentrations of a number of air pollutants over the last century are hallmarks of the magnitude and extent of human impact on the environment. Some of these changes are important to ecologists because many pollutants, acting singly or in combination, affect ecological systems in general and forests in particular. The greatest concern lies with chronic levels of tropospheric ozone, cumulative deposition of hydrogen ion, nitrogen, and sulfur via wet and dry processes, a select number of airborne chemicals (e.g., mercury) that tend to bio accumulate in continental landscapes, and ultraviolet—B radiation through the loss of stratospheric ozone. Because the atmospheric residence time of most pollutants of concern to ecologists is measured on time frames extending from a few weeks to decades, pollutant distribution and effects are regional to global in dimension. We present evidence that ambient levels of some air pollutants in North America are affecting managed and unmanaged forests, and that the two most important pollutants are tropospheric ozone and chronic nitrogen loading. Further evidence indicates that while concentrations of some air pollutants have been declining over the last decade in North America, others are expected to remain unchanged or increase, including tropospheric ozone. We conclude that air pollution is affecting many North American forests and some remote forests around the globe. In the immediate future, the concern for air pollution effects on forests and associated natural resources will broaden to include interactions with changes in climate and pollution effects in the world's developing countries. There has been a rapid evolution in air pollution studies in ecology, shifting away from the agricultural paradigm of single—factor experimentation toward new methodologies that are ecologically and multidisciplinarily based. This shift has been promoted by the recognition that air pollution is one of several

  13. Integration of ground and satellite data to estimate the forest carbon fluxes of a Mediterranean region

    Science.gov (United States)

    Chiesi, M.; Maselli, F.; Moriondo, M.; Fibbi, L.; Bindi, M.; Running, S. W.

    2009-04-01

    The current paper reports on the development and testing of a methodology capable of simulating the main terms of forest carbon budget (gross primary production, GPP, net primary production, NPP, and net ecosystem exchange, NEE) in the Mediterranean environment. The study area is Tuscany, a region of Central Italy which is covered by forests over about half of its surface. It is peculiar for its extremely heterogeneous morphological and climatic features which ranges from typically Mediterranean to temperate warm or cool according to the altitudinal and latitudinal gradients and the distance from the sea (Rapetti and Vittorini, 1995). The simulation of forest carbon budget is based on the preliminary collection of several data layers to characterize the eco-climatic and forest features of the region (i.e. maps of forest type and volume, daily meteorological data and monthly NDVI-derived FAPAR - fraction of absorbed photosynthetically active radiation - estimates for the years 1999-2003). In particular, the 1:250.000 forest type map describes the distribution of 18 forest classes and was obtained by the Regional Cartographic Service. The volume map, with a 30 m spatial resolution and a mean accuracy of about 90 m3/ha, was produced by combining the available regional forest inventory data and Landsat TM images (Maselli and Chiesi, 2006). Daily meteorological data (minimum and maximum air temperatures and precipitation) were extrapolated by the use of the DAYMET algorithm (Thornton et al., 1997) from measurements taken at existing whether stations for the years 1996-2003 (calibration plus application periods); solar radiation was then estimated by the model MT-CLIM (Thornton et al., 2000). Monthly NDVI-derived FAPAR estimates were obtained using the Spot-VEGETATION satellite sensor data for the whole study period (1999-2003). After the collection of these data layers, a simplified, remote sensing based parametric model (C-Fix), is applied for the production of a

  14. Forest and Society: Initiating a Southeast Asia Journal for Theoretical, Empirical, and Regional Scholarship

    Directory of Open Access Journals (Sweden)

    Micah Fisher

    2017-04-01

    Full Text Available Welcome to our first edition. We are excited to provide a new, and what we believe, timely avenue for presenting research findings and publications in Southeast Asia, for scholars interested in Southeast Asia. Although Southeast Asia as a region of study has provided tremendous contributions to theory and practice regarding forests and society across the social and natural sciences, avenues for cultivating a scholarship of the region remain limited. We seek to engage on a broad set of themes through the application of targeted research related to timely issues affecting the human-environment interface in a diverse region that we have much to learn from. We take a broad understanding of the forest - as a politico-administrative unit, a geographic area, and as an ecological unit. We do not limit the forest to its boundaries but rather seek to engage on the dynamics of change in social and ecological processes. Under such an umbrella, new approaches and methods become possible. ‘Forest’ can be analyzed as land use, ecological process, divided across watersheds, as landscapes, mountains, and more. The lens of ‘society’ allows for opportunities to understand change, whether it is the interaction between a resource to be preserved, exploited, forgotten, or erased. Forests, therefore, operate as the clues of what once was, has become, and what can be. Particularly in the age of climate change, riddled by increasingly complex challenges, a new dimension also emerges for the forest. Different perspectives at different scales – from the local to the global – provide equally important dimensions, and are those which we seek to provide avenues to learn from, and communicate through this journal. As the reader will find in this inaugural issue, we have compiled an initial set of studies across multiple methods and geographies that help to set the terms of future editions. We examine: historical political ecologies of land use around opium

  15. Human dynamics and forest management: a baseline assessment of the socioeconomic characteristics of the region surrounding the El Yunque National Forest

    Science.gov (United States)

    Kathleen McGinley

    2016-01-01

    In this paper, I examine the socioeconomic dynamics and human–environment interactions in the region surrounding the El Yunque National Forest (EYNF) in northeastern Puerto Rico and their implications for policy development and sustainable resource use. As part of a larger, comprehensive assessment of the conditions and trends of the EYNF and broader region, I...

  16. Diversity patterns of ground beetles and understory vegetation in mature, secondary, and plantation forest regions of temperate northern China.

    Science.gov (United States)

    Zou, Yi; Sang, Weiguo; Wang, Shunzhong; Warren-Thomas, Eleanor; Liu, Yunhui; Yu, Zhenrong; Wang, Changliu; Axmacher, Jan Christoph

    2015-02-01

    Plantation and secondary forests form increasingly important components of the global forest cover, but our current knowledge about their potential contribution to biodiversity conservation is limited. We surveyed understory plant and carabid species assemblages at three distinct regions in temperate northeastern China, dominated by mature forest (Changbaishan Nature Reserve, sampled in 2011 and 2012), secondary forest (Dongling Mountain, sampled in 2011 and 2012), and forest plantation habitats (Bashang Plateau, sampled in 2006 and 2007), respectively. The α-diversity of both taxonomic groups was highest in plantation forests of the Bashang Plateau. Beetle α-diversity was lowest, but plant and beetle species turnover peaked in the secondary forests of Dongling Mountain, while habitats in the Changbaishan Nature Reserve showed the lowest turnover rates for both taxa. Changbaishan Nature Reserve harbored the highest proportion of forest specialists. Our results suggest that in temperate regions of northern China, the protected larch plantation forest established over extensive areas might play a considerable role in maintaining a high biodiversity in relation to understory herbaceous plant species and carabid assemblages, which can be seen as indicators of forest disturbance. The high proportion of phytophagous carabids and the rarity of forest specialists reflect the relatively homogenous, immature status of the forest ecosystems on the Bashang Plateau. China's last remaining large old-growth forests like the ones on Changbaishan represent stable, mature ecosystems which require particular conservation attention.

  17. Silvicultural research and the evolution of forest practices in the Douglas-fir region.

    Science.gov (United States)

    Robert O. Curtis; Dean S. DeBell; Richard E. Miller; Michael Newton; J. Bradley St. Clair; William I. Stein

    2007-01-01

    Silvicultural practices in the Douglas-fir region evolved through a combination of formal research, observation, and practical experience of forest managers and silviculturists, and changing economic and social factors. This process began more than a century ago and still continues. It has had a great influence on the economic well-being of the region and on the...

  18. Aboveground biomass mapping of African forest mosaics using canopy texture analysis: toward a regional approach.

    Science.gov (United States)

    Bastin, Jean-François; Barbier, Nicolas; Couteron, Pierre; Adams, Benoît; Shapiro, Aurélie; Bogaert, Jan; De Cannière, Charles

    In the context of the reduction of greenhouse gas emissions caused by deforestation and forest degradation (the REDD+ program), optical very high resolution (VHR) satellite images provide an opportunity to characterize forest canopy structure and to quantify aboveground biomass (AGB) at less expense than methods based on airborne remote sensing data. Among the methods for processing these VHR images, Fourier textural ordination (FOTO) presents a good method to detect forest canopy structural heterogeneity and therefore to predict AGB variations. Notably, the method does not saturate at intermediate AGB values as do pixelwise processing of available space borne optical and radar signals. However, a regional-scale application requires overcoming two difficulties: (1) instrumental effects due to variations in sun–scene–sensor geometry or sensor-specific responses that preclude the use of wide arrays of images acquired under heterogeneous conditions and (2) forest structural diversity including monodominant or open canopy forests, which are of particular importance in Central Africa. In this study, we demonstrate the feasibility of a rigorous regional study of canopy texture by harmonizing FOTO indices of images acquired from two different sensors (Geoeye-1 and QuickBird-2) and different sun–scene–sensor geometries and by calibrating a piecewise biomass inversion model using 26 inventory plots (1 ha) sampled across very heterogeneous forest types. A good agreement was found between observed and predicted AGB (residual standard error [RSE] = 15%; R2 = 0.85; P biomass map (100-m pixels) was produced for a 400-km2 area, and predictions obtained from both imagery sources were consistent with each other (r = 0.86; slope = 1.03; intercept = 12.01 Mg/ha). These results highlight the horizontal structure of forest canopy as a powerful descriptor of the entire forest stand structure and heterogeneity. In particular, we show that quantitative metrics resulting from such

  19. Organization of private forest sector in Timok forest area

    Directory of Open Access Journals (Sweden)

    Vojislav Milijic

    2010-06-01

    Full Text Available Today, private forest owners (PFOs in Serbia cooperate in form of private forest owners associations (PFOAs. Currently, there are 20 PFOAs, of which 15 are in Timok region. Initiatives of PFOs from Timok forest area, animated the owners from other parts of the country and led to foundation of Serbian Federation of Forest Owners' Associations. Twelve of PFOAs from Timok forest area are the founders of Serbian private forest owners' umbrella organization. Restructuring of Public Enterprise (PE "Srbijasume", which started in 2001, led to development of private small and medium forest enterprises, engaged as contractors of PE for harvesting, timber transport and construction of forest roads. The objectives of this paper are to elaborate if there are differences between PFOs in Serbia and Timok region and to analyze organization of private forest owners in Timok forest area. In order to reach these objectives, results of PRIFORT project were used. This project focused on four countries of Western Balkans region: Bosnia and Herzegovina, Croatia, Serbia and Macedonia. The aim of this project was to explore precondition for formation of PFOs in this region. Quantitative survey (n = 350 of randomly selected PFOs was conducted in nine municipalities in Serbia, of which two were in Timok region (n = 100. The results show that there are differences between PFOs in Serbia and Timok region in number of PFOs, size of private property and in additional incentives. These results also indicate that economic interest is a motive for establishment of PFOAs and that state support is very important for their development. Since a number of PFOs are entrepreneurs, it can be assumed that, further development of theirs organizations could lead to development of SMEs clusters. 

  20. Implementing climate change adaptation in forested regions of the United States

    Science.gov (United States)

    Jessica E. Halofsky; David L. Peterson; Linda A. Joyce; Constance I. Millar; Janine M. Rice; Christopher W. Swanston

    2014-01-01

    Natural resource managers need concrete ways to adapt to the effects of climate change. Science-management partnerships have proven to be an effective means of facilitating climate change adaptation for natural resource management agencies. Here we describe the process and results of several science-management partnerships in different forested regions of the United...

  1. Divergence in Forest-Type Response to Climate and Weather: Evidence for Regional Links Between Forest-Type Evenness and Net Primary Productivity

    Science.gov (United States)

    Bradford, J.B.

    2011-01-01

    Climate change is altering long-term climatic conditions and increasing the magnitude of weather fluctuations. Assessing the consequences of these changes for terrestrial ecosystems requires understanding how different vegetation types respond to climate and weather. This study examined 20 years of regional-scale remotely sensed net primary productivity (NPP) in forests of the northern Lake States to identify how the relationship between NPP and climate or weather differ among forest types, and if NPP patterns are influenced by landscape-scale evenness of forest-type abundance. These results underscore the positive relationship between temperature and NPP. Importantly, these results indicate significant differences among broadly defined forest types in response to both climate and weather. Essentially all weather variables that were strongly related to annual NPP displayed significant differences among forest types, suggesting complementarity in response to environmental fluctuations. In addition, this study found that forest-type evenness (within 8 ?? 8 km2 areas) is positively related to long-term NPP mean and negatively related to NPP variability, suggesting that NPP in pixels with greater forest-type evenness is both higher and more stable through time. This is landscape- to subcontinental-scale evidence of a relationship between primary productivity and one measure of biological diversity. These results imply that anthropogenic or natural processes that influence the proportional abundance of forest types within landscapes may influence long-term productivity patterns. ?? 2011 Springer Science+Business Media, LLC (outside the USA).

  2. Climate change impact and vulnerability assessment of forests in the Indian Western Himalayan region: A case study of Himachal Pradesh, India

    Directory of Open Access Journals (Sweden)

    Sujata Upgupta

    2015-01-01

    Full Text Available Climate change impact and vulnerability assessment at state and regional levels is necessary to develop adaptation strategies for forests in the biogeographically vital Himalayan region. The present study assesses forest ecosystem vulnerability to climate change across Himachal Pradesh and presents the priority districts for vulnerability reduction under ‘current climate’ and ‘future climate’ scenarios. Vulnerability of forests under ‘current climate’ scenario is assessed by adopting indicator-based approach, while the vulnerability under ‘future climate’ scenario is assessed using climate and vegetation impact models. Based on the vulnerability index estimated to present the vulnerability of forests under current and projected climate change impacts representing climate driven vulnerability, five districts – Chamba, Kangra, Kullu, Mandi and Shimla are identified as priority forest districts for adaptation planning. Identifying vulnerable forest districts and forests will help policy makers and forest managers to prioritize resource allocation and forest management interventions, to restore health and productivity of forests and to build long-term resilience to climate change.

  3. Assessment of Land-Use/Land-Cover Change and Forest Fragmentation in the Garhwal Himalayan Region of India

    Directory of Open Access Journals (Sweden)

    Amit Kumar Batar

    2017-04-01

    Full Text Available The Garhwal Himalaya has experienced extensive deforestation and forest fragmentation, but data and documentation detailing this transformation of the Himalaya are limited. The aim of this study is to analyse the observed changes in land cover and forest fragmentation that occurred between 1976 and 2014 in the Garhwal Himalayan region in India. Three images from Landsat 2 Multispectral Scanner System (MSS, Landsat 5 Thematic Mapper (TM, and Landsat 8 Operational Land Imager (OLI were used to extract the land cover maps. A cross-tabulation detection method in the geographic information system (GIS module was used to detect land cover changes during the 1st period (1976–1998 and 2nd period (1998–2014. The landscape fragmentation tool LFT v2.0 was used to construct a forest fragmentation map and analyse the forest fragmentation pattern and change during the 1st period (1976–1998 and 2nd period (1998–2014. The overall annual rate of change in the forest cover was observed to be 0.22% and 0.27% in the 1st period (1976–1998 and 2nd period (1998–2014, respectively. The forest fragmentation analysis shows that a large core forest has decreased throughout the study period. The total area of forest patches also increased from 1976 to 2014, which are completely degraded forests. The results indicate that anthropogenic activities are the main causes of the loss of forest cover and forest fragmentation, but that natural factors also contributed. An increase in the area of scrub and barren land also contributed to the accumulation of wasteland or non-forest land in this region. Determining the trend and the rate of land cover conversion is necessary for development planners to establish a rational land use policy.

  4. Stand structure and dead wood characterization in cork forest of Calabria region (southern Italy

    Directory of Open Access Journals (Sweden)

    Barreca L

    2010-07-01

    Full Text Available The cork forests are one the most interesting forest ecosystems in the Mediterranean area. Their distribution and ecological characteristics have undergone a significant transformation after the significant changes following the development and establishment of agricultural crops. Currently, only a few stands, which survive in hard to reach places, prove the wide spread distribution of this species was also in the recent past. This study describes the stand structure of some cork forests in Calabria region (southern Italy. In order, to characterize the vertical structure Latham index has been applied, while for the description of the horizontal distribution NBSI group indices has been used. Detailed surveys on dead wood were also conducted determining the occurring volume and its decay stage according to the decay classes system proposed by Hunter. The aim of this study is to provide guidelines for sustainable management of cork forests, improving and promoting the structural complexity and functional efficiency of these forest stands.

  5. Fire History of Appalachian Forests of the Lower St-Lawrence Region (Southern Quebec

    Directory of Open Access Journals (Sweden)

    Serge Payette

    2017-04-01

    Full Text Available Sugar maple (Acer saccharum forests are among the main forest types of eastern North America. Sugar maple stands growing on Appalachian soils of the Lower St-Lawrence region are located at the northeastern limit of the northern hardwood forest zone. Given the biogeographical position of these forests at the edge of the boreal biome, we aimed to reconstruct the fire history and document the occurrence of temperate and boreal trees in sugar maple sites during the Holocene based on soil macrocharcoal analysis. Despite having experienced a different number of fire events, the fire history of the maple sites was broadly similar, with two main periods of fire activity, i.e., early- to mid-Holocene and late-Holocene. A long fire-free interval of at least 3500 years separated the two periods from the mid-Holocene to 2000 years ago. The maple sites differ with respect to fire frequency and synchronicity of the last millennia. According to the botanical composition of charcoal, forest vegetation remained relatively homogenous during the Holocene, except recently. Conifer and broadleaf species coexisted in mixed forests during the Holocene, in phase with fire events promoting the regeneration of boreal and temperate tree assemblages including balsam fir (Abies balsamea and sugar maple.

  6. Impact of mining and forest regeneration on small mammal biodiversity in the Western Region of Ghana.

    Science.gov (United States)

    Attuquayefio, Daniel K; Owusu, Erasmus H; Ofori, Benjamin Y

    2017-05-01

    Much of the terrestrial biodiversity in sub-Saharan Africa is supported by tropical rainforest. Natural resource development, particularly surface mining in the rainforest, poses great risks to the region's rich and endemic biodiversity. Here, we assessed the impact of surface mining and the success of forest rehabilitation on small mammal diversity in the Western Region of Ghana. We surveyed small mammals in the project area and two adjoining forest reserves (control sites) before the mining operation and 10 years after mine closure and forest rehabilitation (topsoil replacement and revegetation). The forest reserves recorded higher species abundance than the mining areas. Majority of the species captured in the forest reserves, including Hylomyscus alleni, Praomys tullbergi, Malacomys cansdalei, and Hybomys trivirgatus, are forest obligate species. Only one individual each of H. alleni and P. tullbergi was captured in the naturally regenerated areas (core areas of mining activities that were allowed to revegetate naturally), while 32 individuals belonging to four species (Lophuromys sikapusi, Mus musculoides, Mastomys erythroleucus, and Crocidura olivieri) were recorded in the rehabilitated areas. Our data suggested negative effects of mining on small mammal diversity and the restoration of species diversity and important ecological processes after rehabilitation of altered habitats. We strongly encourage deliberate conservation efforts, particularly the development of management plans that require the restoration of degraded land resulting from mining activities.

  7. Potential of Pest and Host Phenological Data in the Attribution of Regional Forest Disturbance Detection Maps According to Causal Agent

    Science.gov (United States)

    Spruce, Joseph; Hargrove, William; Norman Steve; Christie, William

    2014-01-01

    Near real time forest disturbance detection maps from MODIS NDVI phenology data have been produced since 2010 for the conterminous U.S., as part of the on-line ForWarn national forest threat early warning system. The latter has been used by the forest health community to identify and track many regional forest disturbances caused by multiple biotic and abiotic damage agents. Attribution of causal agents for detected disturbances has been a goal since project initiation in 2006. Combined with detailed cover type maps, geospatial pest phenology data offer a potential means for narrowing the candidate causal agents responsible for a given biotic disturbance. U.S. Aerial Detection Surveys (ADS) employ such phenology data. Historic ADS products provide general locational data on recent insect-induced forest type specific disturbances that may help in determining candidate causal agents for MODIS-based disturbance maps, especially when combined with other historic geospatial disturbance data (e.g., wildfire burn scars and drought maps). Historic ADS disturbance detection polygons can show severe and extensive regional forest disturbances, though they also can show polygons with sparsely scattered or infrequent disturbances. Examples will be discussed that use various historic disturbance data to help determine potential causes of MODIS-detected regional forest disturbance anomalies.

  8. [The concentration and distribution of 137Cs in soils of forest and agricultural ecosystems of Tula Region].

    Science.gov (United States)

    Lipatov, D N; Shcheglov, A I; Tsvetnova, O B

    2007-01-01

    The paper deals with a comparative study of 137Cs contamination in forest, old arable and cultivated soils of Tula Region. Initial interception of Chernobyl derived 137Cs is higher in forest ecosystems: oak-forest > birch-forest > pine-forest > agricultural ecosystems. Vertical migration of 137Cs in deeper layers of soils was intensive in agricultural ecosystems: cultivated soils > old arable soils > birch-forest soils > oak-forest soils > pine-forest soils. In study have been evaluated spatial variability of 137Cs in soil and asymmetrical distribution, that is a skew to the right. Spatial heterogeneity of 137Cs in agricultural soils is much lower than in forest soils. For cultivated soil are determined the rate of resuspension, which equal to 6.1 x 10(-4) day(-1). For forest soils are described the 137Cs concentration in litter of different ecosystems. The role of main accumulation and barrier of 137Cs retain higher layers of soils (horizon A1(A1E) in forest, horizon Ap in agricultural ecosystems) in long-term forecast after Chernobyl accident.

  9. Disturbance alters local-regional richness relationships in appalachian forests

    Science.gov (United States)

    Belote, R.T.; Sanders, N.J.; Jones, R.H.

    2009-01-01

    Whether biological diversity within communities is limited by local interactions or regional species pools remains an important question in ecology. In this paper, we investigate how an experimentally applied tree-harvesting disturbance gradient influenced local-regional richness relationships. Plant species richness was measured at three spatial scales (2 ha = regional; 576 m2 and 1 m2 = local) on three occasions (one year pre-disturbance, one year post-disturbance, and 10 years post-disturbance) across five disturbance treatments (uncut control through clearcut) replicated throughout the southern Appalachian Mountains, USA. We investigated whether species richness in 576-m2 plots and 1-m2 subplots depended on species richness in 2-ha experimental units and whether this relationship changed through time before and after canopy disturbance. We found that, before disturbance, the relationship between local and regional richness was weak or nonexistent. One year after disturbance local richness was a positive function of regional richness, because local sites were colonized from the regional species pool. Ten years after disturbance, the positive relationship persisted, but the slope had decreased by half. These results suggest that disturbance can set the stage for strong influences of regional species pools on local community assembly in temperate forests. However, as time since disturbance increases, local controls on community assembly decouple the relationships between regional and local diversity. ?? 2009 by the Ecological Society of America.

  10. The relation between Puelche wind and the occurrence of forest fires in Bio Bio region, Chile

    International Nuclear Information System (INIS)

    Inzunza, Juan Carlos

    2009-01-01

    This paper presents a study of the relation between Puelche wind and forest fires in the Bio Bio Region, Chile. To establish a relationship between Puelche wind and forest fire generation, different data analysis methods and statistics test were applied. The relation between the total number of fires in the season and the days with Puelche wind were not statistically significant. When analyzing daily averages of fires produced with and without Puelche wind for each season, the highest daily fire occurrence values were found when there is Puelche wind, indicating that this event produces a strong effect on the daily occurrence of fires since these increased by 90% in comparison to the days without Puelche wind. The results of the difference between the number of fires with and without Puelche wind with respect to the average number of total fires indicate that the days with Puelche wind surpass both the total and the average values for days without Puelche wind, confirming the strong effect that a Puelche wind day has on forest fires. The greatest number of fires produced with Puelche wind occurs in the Province of Concepcion. This Province is the most affected by Puelche wind conditions despite having the smallest surface area for the region studied. Still, it is the most populous province of the region and has the greatest surface area with forests and plantations with respect to its size. Consequently, Puelche wind is a factor that increases the occurrence of forest fires and favors their propagation.

  11. Bridging scale gaps between regional maps of forest aboveground biomass and field sampling plots using TanDEM-X data

    Science.gov (United States)

    Ni, W.; Zhang, Z.; Sun, G.

    2017-12-01

    Several large-scale maps of forest AGB have been released [1] [2] [3]. However, these existing global or regional datasets were only approximations based on combining land cover type and representative values instead of measurements of actual forest aboveground biomass or forest heights [4]. Rodríguez-Veiga et al[5] reported obvious discrepancies of existing forest biomass stock maps with in-situ observations in Mexico. One of the biggest challenges to the credibility of these maps comes from the scale gaps between the size of field sampling plots used to develop(or validate) estimation models and the pixel size of these maps and the availability of field sampling plots with sufficient size for the verification of these products [6]. It is time-consuming and labor-intensive to collect sufficient number of field sampling data over the plot size of the same as resolutions of regional maps. The smaller field sampling plots cannot fully represent the spatial heterogeneity of forest stands as shown in Figure 1. Forest AGB is directly determined by forest heights, diameter at breast height (DBH) of each tree, forest density and tree species. What measured in the field sampling are the geometrical characteristics of forest stands including the DBH, tree heights and forest densities. The LiDAR data is considered as the best dataset for the estimation of forest AGB. The main reason is that LiDAR can directly capture geometrical features of forest stands by its range detection capabilities.The remotely sensed dataset, which is capable of direct measurements of forest spatial structures, may serve as a ladder to bridge the scale gaps between the pixel size of regional maps of forest AGB and field sampling plots. Several researches report that TanDEM-X data can be used to characterize the forest spatial structures [7, 8]. In this study, the forest AGB map of northeast China were produced using ALOS/PALSAR data taking TanDEM-X data as a bridges. The TanDEM-X InSAR data used in

  12. Effects of fire on regional evapotranspiration in the central Canadian boreal forest

    Energy Technology Data Exchange (ETDEWEB)

    Bond-Lamberty, Benjamin; Peckham, Scott D.; Gower, Stith T.; Ewers, Brent

    2009-04-08

    Changes in fire regimes are driving the carbon balance of much of the North American boreal forest, but few studies have examined fire-driven changes in evapotranspiration (ET) at a regional scale. This study used a version of the Biome-BGC process model with dynamic and competing vegetation types, and explicit spatial representation of a large (106 km2) region, to simulate the effects of wildfire on ET and its components from 1948 to 2005 by comparing the fire dynamics of the 1948-1967 period with those of 1968-2005. Simulated ET averaged, over the entire temporal and spatial modeling domain, 323 mm yr-1; simulation results indicated that changes in fire in recent decades decreased regional ET by 1.4% over the entire simulation, and by 3.9% in the last ten years (1996-2005). Conifers dominated the transpiration (EC) flux (120 mm yr-1) but decreased by 18% relative to deciduous broadleaf trees in the last part of the 20th century, when increased fire resulted in increased soil evaporation, lower canopy evaporation, lower EC and a younger and more deciduous forest. Well- and poorly-drained areas had similar rates of evaporation from the canopy and soil, but EC was twice as high in the well-drained areas. Mosses comprised a significant part of the evaporative flux to the atmosphere (22 mm yr-1). Modeled annual ET was correlated with net primary production, but not with temperature or precipitation; ET and its components were consistent with previous field and modeling studies. Wildfire is thus driving significant changes in hydrological processes, changes that may control the future carbon balance of the boreal forest.

  13. Application of a COSMO Mesoscale Model to Assess the Influence of Forest Cover Changes on Regional Weather Conditions

    Science.gov (United States)

    Olchev, A.; Rozinkina, I.; Kuzmina, E.; Nikitin, M.; Rivin, G. S.

    2017-12-01

    Modern changes in land use and forest cover have a significant influence on local, regional, and global weather and climate conditions. In this study, the mesoscale model COSMO is used to estimate the possible influence of forest cover change in the central part of the East European Plain on regional weather conditions. The "model region" of the study is surrounded by geographical coordinates 55° and 59°N and 28° and 37°E and situated in the central part of a large modeling domain (50° - 70° N and 15° 55° E), covering almost the entire East European Plain in Northern Eurasia. The forests cover about 50% of the area of the "model region". The modeling study includes 3 main numerical experiments. The first assumes total deforestation of the "model region" and replacement of forests by grasslands. The second is represented by afforestation of the "model region." In the third, weather conditions are simulated with present land use and vegetation structures of the "model region." Output of numerical experiments is at 13.2 km grid resolution, and the ERA-Interim global atmospheric reanalysis (with 6-h resolution in time and 0.75°×0.75° in space) is used to quantify initial and boundary conditions. Numerical experiments for the warm period of 2010 taken as an example show that deforestation and afforestation processes in the selected region can lead to significant changes in weather conditions. Deforestation processes in summer conditions can result in increased air temperature and wind speed, reduction of precipitation, lower clouds, and relative humidity. The afforestation process can result in opposite effects (decreased air temperature, increased precipitation, higher air humidity and fog frequency, and strengthened storm winds). Maximum meteorological changes under forest cover changes are projected for the summer months (July and August). It was also shown that changes of some meteorological characteristics (e.g., air temperature) is observed in the

  14. Individual tree detection in intact forest and degraded forest areas in the north region of Mato Grosso State, Brazilian Amazon

    Science.gov (United States)

    Santos, E. G.; Jorge, A.; Shimabukuro, Y. E.; Gasparini, K.

    2017-12-01

    The State of Mato Grosso - MT has the second largest area with degraded forest among the states of the Brazilian Legal Amazon. Land use and land cover change processes that occur in this region cause the loss of forest biomass, releasing greenhouse gases that contribute to the increase of temperature on earth. These degraded forest areas lose biomass according to the intensity and magnitude of the degradation type. The estimate of forest biomass, commonly performed by forest inventory through sample plots, shows high variance in degraded forest areas. Due to this variance and complexity of tropical forests, the aim of this work was to estimate forest biomass using LiDAR point clouds in three distinct forest areas: one degraded by fire, another by selective logging and one area of intact forest. The approach applied in these areas was the Individual Tree Detection (ITD). To isolate the trees, we generated Canopy Height Models (CHM) images, which are obtained by subtracting the Digital Elevation Model (MDE) and the Digital Terrain Model (MDT), created by the cloud of LiDAR points. The trees in the CHM images are isolated by an algorithm provided by the Quantitative Ecology research group at the School of Forestry at Northern Arizona University (SILVA, 2015). With these points, metrics were calculated for some areas, which were used in the model of biomass estimation. The methodology used in this work was expected to reduce the error in biomass estimate in the study area. The cloud points of the most representative trees were analyzed, and thus field data was correlated with the individual trees found by the proposed algorithm. In a pilot study, the proposed methodology was applied generating the individual tree metrics: total height and area of the crown. When correlating 339 isolated trees, an unsatisfactory R² was obtained, as heights found by the algorithm were lower than those obtained in the field, with an average difference of 2.43 m. This shows that the

  15. Spatiotemporal Change Detection in Forest Cover Dynamics Along Landslide Susceptible Region of Karakoram Highway, Pakistan

    Science.gov (United States)

    Rashid, Barira; Iqbal, Javed

    2018-04-01

    Forest Cover dynamics and its understanding is essential for a country's social, environmental, and political engagements. This research provides a methodical approach for the assessment of forest cover along Karakoram Highway. It has great ecological and economic significance because it's a part of China-Pakistan Economic Corridor. Landsat 4, 5 TM, Landsat 7 ETM and Landsat 8 OLI imagery for the years 1990, 2000, 2010 and 2016 respectively were subjected to supervised classification in ArcMap 10.5 to identify forest change. The study area was categorized into five major land use land cover classes i.e., Forest, vegetation, urban, open land and snow cover. Results from post classification forest cover change maps illustrated notable decrease of almost 26 % forest cover over the time period of 26 years. The accuracy assessment revealed the kappa coefficients 083, 0.78, 0.77 and 0.85, respectively. Major reason for this change is an observed replacement of native forest cover with urban areas (12.5 %) and vegetation (18.6 %) However, there is no significant change in the reserved forests along the study area that contributes only 2.97 % of the total forest cover. The extensive forest degradation and risk prone topography of the region has increased the environmental risk of landslides. Hence, effective policies and forest management is needed to protect not only the environmental and aesthetic benefits of the forest cover but also to manage the disaster risks. Apart from the forest assessment, this research gives an insight of land cover dynamics, along with causes and consequences, thereby showing the forest degradation hotspots.

  16. Fire-induced Carbon Emissions and Regrowth Uptake in Western U.S. Forests: Documenting Variation Across Forest Types, Fire Severity, and Climate Regions

    Science.gov (United States)

    Ghimire, Bardan; Williams, Christopher A.; Collatz, George James; Vanderhoof, Melanie

    2012-01-01

    The forest area in the western United States that burns annually is increasing with warmer temperatures, more frequent droughts, and higher fuel densities. Studies that examine fire effects for regional carbon balances have tended to either focus on individual fires as examples or adopt generalizations without considering how forest type, fire severity, and regional climate influence carbon legacies. This study provides a more detailed characterization of fire effects and quantifies the full carbon impacts in relation to direct emissions, slow release of fire-killed biomass, and net carbon uptake from forest regrowth. We find important variations in fire-induced mortality and combustion across carbon pools (leaf, live wood, dead wood, litter, and duff) and across low- to high-severity classes. This corresponds to fire-induced direct emissions from 1984 to 2008 averaging 4 TgC/yr and biomass killed averaging 10.5 TgC/yr, with average burn area of 2723 sq km/yr across the western United States. These direct emission and biomass killed rates were 1.4 and 3.7 times higher, respectively, for high-severity fires than those for low-severity fires. The results show that forest regrowth varies greatly by forest type and with severity and that these factors impose a sustained carbon uptake legacy. The western U.S. fires between 1984 and 2008 imposed a net source of 12.3 TgC/yr in 2008, accounting for both direct fire emissions (9.5 TgC/yr) and heterotrophic decomposition of fire-killed biomass (6.1 TgC yr1) as well as contemporary regrowth sinks (3.3 TgC/yr). A sizeable trend exists toward increasing emissions as a larger area burns annually.

  17. A high area, porous and resistant platinized stainless steel fiber coated by nanostructured polypyrrole for direct HS-SPME of nicotine in biological samples prior to GC-FID quantification.

    Science.gov (United States)

    Abdolhosseini, Sana; Ghiasvand, Alireza; Heidari, Nahid

    2017-09-01

    The surface of a stainless steel fiber was made porous, resistant and cohesive using electrophoretic deposition and coated by the nanostructured polypyrrole using an amended in-situ electropolymerization method. The coated fiber was applied for direct extraction of nicotine in biological samples through a headspace solid-phase microextraction (HS-SPME) method followed by GC-FID determination. The effects of the important experimental variables on the efficiency of the developed HS-SPME-GC-FID method, including pH of sample solution, extraction temperature and time, stirring rate, and ionic strength were evaluated and optimized. Under the optimal experimental conditions, the calibration curve was linear over the range of 0.1-20μgmL -1 and the detection limit was obtained 20ngmL -1 . Relative standard deviation (RSD, n=6) was calculated 7.6%. The results demonstrated the superiority of the proposed fiber compared with the most used commercial types. The proposed HS-SPME-GC-FID method was successfully used for the analysis of nicotine in urine and human plasma samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Metropolitanization and Forest Recovery in Southern Brazil: a Multiscale Analysis of the Florianópolis City-Region, Santa Catarina State, 1970 to 2005

    Directory of Open Access Journals (Sweden)

    Sandra R. Baptista

    2008-12-01

    Full Text Available Within the contexts of globalization and the Atlantic Forest ecoregion, I present a multiscale analysis of anthropogenic landscape dynamics in the Florianópolis city-region, Santa Catarina, southern Brazil. Drawing on field research conducted between 2000 and 2004 and a review of the literature, I examined Brazilian demographic and agricultural census data for the period of 1970 to 1995-1996. I hypothesized that economic restructuring, new institutional arrangements, and the valuation of environmental amenities and ecosystem services have contributed to forest recovery trends and thus a forest transition in the city-region. My results indicate that along with rapid urbanization, in-migration, socioeconomic polarization, and segregation, the city-region has experienced the contraction of private agricultural land area, expansion of protected areas, recovery of forests, and conversion of coastal plain ecosystems to built environments. Future analyses of forest transition dynamics should consider the spatial configurations of socioeconomic inequality in city-regions.

  19. Dynamics of forest populations in the mountain resort region of the North Caucasus

    Science.gov (United States)

    Chalaya, Elena; Efimenko, Natalia; Slepykh, Olga; Slepykh, Viktor; Povolotskaya, Nina

    2017-04-01

    Prehistoric formula of forest species composition of the resort region Caucasian Mineralnye Vody (RR CMV) in the North Caucasus is 6Q3Cb1Fe [1]. According to it, undisturbed forests of the region consisted of the pedunculate oak (Quercus robur L.) and the durmast (Quercus cerris L.) by 60%, the European hornbeam (Carpinus betulus L.) by 30% and the European ash (Fraxinus excelsior L.) only by 10%. At present the formula of forest composition of the region is 5Fe3Cb2Q, according to it, the rate of oak-groves (the most valuable to resort landscape gardening) has reduced to 20%, and the ash-tree, though the rate of the hornbeam has not changed, increased up to 50%. Forest breeding populations in the RR CMV are referred to natural medical resources as they have high rehabilitation and climate-regulating properties, the change in forest breeding populations influences the conditions of the resort climate-landscape-therapy. The researches conducted in the perfect oak wood of vegetative origin in Beshtaugorsky Forestry Area (BFA) of the RR CMV have shown the reduction of the pedunculate oak in the tree-stand composition during 1984-2014 from 10 to 8 units in the composition: the European ash (1 unit) and the crataegus monogyna (Crataegus monogyna Jacq.), the checker tree (Sorbus torminalis (L.) Crantz), the common pear (Pyrus communis L.) have appeared [2]. The rate of the pedunculate oak decreased from 10 units to 9 in the perfect planting of the pedunculate oak of the artificial origin (Mashuk section of the forestry of BFA of the RR CMV) during 1986-2016. Among accompanying breeds there was the English field maple (Acer campestre L.), the Chinese elm in singular (Ulmus parvifolia Jacq.), the single-seed hawthorn. The reliable regrowth (4C3Fe3Ac+Q+Cm+Pc+Up) in number of 3,9 thousand pieces/hectare defines the perspective of complete replacement of the oak crop in the future on planting with dominance of the hornbeam and the involvement of the ash-tree and the English

  20. Forest decline caused by high soil water conditions in a permafrost region

    Directory of Open Access Journals (Sweden)

    H. Iwasaki

    2010-02-01

    Full Text Available In the permafrost region near Yakutsk, eastern Siberia, Russia, annual precipitation (June–May in 2005–2006 and 2006–2007 exceeded the 26-year (1982–2008 mean of 222±68 mm by 185 mm and 128 mm, respectively, whereas in 2007–2008 the excedent was only 48 mm, well within the range of variability. Yellowing and browning of larch (Larix cajanderi Mayr. trees occurred in an undisturbed forest near Yakutsk in the 2007 summer growing season. Soil water content at a depth of 0.20 m was measured along a roughly 400 m long line transect running through areas of yellowing and browning larch trees (YBL and of normal larch trees (NL. In the two years of supranormal precipitation, soil water content was very high compared to values recorded for the same area in previous studies. For both wet years, the mean degree of saturation (s was significantly greater in YBL than NL areas, whereas the converse was the case for the gas diffusivity in soil. This implies that rather than mitigating water stress suffered during normal precipitation years, elevated soil water conditions adversely affected the growth of larch trees. Eastern Siberia's taiga forest extends widely into the permafrost region. Was such supranormal annual precipitation to extend for more than two years, as might be expected under impending global climate changes, forest recovery may not be expected and emission of greenhouse gas might continue in future.

  1. Regional Assessment of Remote Forests and Black Bear Habitat from Forest Resource Surveys

    Science.gov (United States)

    Victor A. Rudis; John B. Tansey

    1995-01-01

    We developed a spatially explicit modeling approach, using a county-scaled remote forest (i.e., forested area reserved from or having no direct human interference) assessment derived from 1984-1990 forest resource inventory data and a 1984 black bear (Ursus americantus) range map for 12 states in the southern United States.We defined minimum suitable and optimal black...

  2. Regional carbon dioxide implications of forest bioenergy production

    NARCIS (Netherlands)

    Hudiburg, Tara W.; Law, Beverly E.; Wirth, Christian; Luyssaert, Sebastiaan

    2011-01-01

    Strategies for reducing carbon dioxide emissions include substitution of fossil fuel with bioenergy from forests, where carbon emitted is expected to be recaptured in the growth of new biomass to achieve zero net emissions, and forest thinning to reduce wildfire emissions. Here, we use forest

  3. Simulation of Forest Cover Dynamics for Eastern Eurasian Boreal Forests

    Science.gov (United States)

    Shugart, H. H.; Yan, X.; Zhang, N.; Isaev, A. S.; Shuman, J. K.

    2006-12-01

    We are developing and testing a boreal zone forest dynamics model capable of simulating the forest cover dynamics of the Eurasian boreal forest, a major biospheric ecosystem with potentially large roles in the planetary carbon cycle and in the feedback between terrestrial surface and the atmosphere. In appreciating the role of this region in the coupling between atmosphere and terrestrial surface, on must understand the interactions between CO2 source/sink relationships (associated with growing or clearing forests) and the albedo effects (from changes in terrestrial surface cover). There is some evidence that in the Eurasian Boreal zone, the Carbon budget effects from forest change may oppose the albedo changes. This creates complex feedbacks between surface and atmosphere and motivates the need for a forest dynamics model that simultaneous represents forest vegetation and carbon storage and release. A forest dynamics model applied to Eastern Eurasia, FAREAST, has been tested using three types of information: 1. Direct species composition comparisons between simulated and observed mature forests at the same locations; 2. Forest type comparisons between simulated and observed forests along altitudinal gradients of several different mountains; 3. Comparison with forest stands in different succession stages of simulated forests. Model comparisons with independent data indicate the FAREAST model is capable of representing many of the broad features of the forests of Northeastern China. After model validation in the Northeast China region, model applications were developed for the forests of the Russian Far East. Continental-scale forest cover can be simulated to a relatively realistic degree using a forest gap model with standard representations of individual-plant processes. It appears that such a model, validated relatively locally in this case, in Northeastern China, can then be applied over a much larger region and under conditions of climatic change.

  4. Dependence of hydropower energy generation on forests in the Amazon Basin at local and regional scales.

    Science.gov (United States)

    Stickler, Claudia M; Coe, Michael T; Costa, Marcos H; Nepstad, Daniel C; McGrath, David G; Dias, Livia C P; Rodrigues, Hermann O; Soares-Filho, Britaldo S

    2013-06-04

    Tropical rainforest regions have large hydropower generation potential that figures prominently in many nations' energy growth strategies. Feasibility studies of hydropower plants typically ignore the effect of future deforestation or assume that deforestation will have a positive effect on river discharge and energy generation resulting from declines in evapotranspiration (ET) associated with forest conversion. Forest loss can also reduce river discharge, however, by inhibiting rainfall. We used land use, hydrological, and climate models to examine the local "direct" effects (through changes in ET within the watershed) and the potential regional "indirect" effects (through changes in rainfall) of deforestation on river discharge and energy generation potential for the Belo Monte energy complex, one of the world's largest hydropower plants that is currently under construction on the Xingu River in the eastern Amazon. In the absence of indirect effects of deforestation, simulated deforestation of 20% and 40% within the Xingu River basin increased discharge by 4-8% and 10-12%, with similar increases in energy generation. When indirect effects were considered, deforestation of the Amazon region inhibited rainfall within the Xingu Basin, counterbalancing declines in ET and decreasing discharge by 6-36%. Under business-as-usual projections of forest loss for 2050 (40%), simulated power generation declined to only 25% of maximum plant output and 60% of the industry's own projections. Like other energy sources, hydropower plants present large social and environmental costs. Their reliability as energy sources, however, must take into account their dependence on forests.

  5. Conservation value of a native forest fragment in a region of extensive agriculture.

    Science.gov (United States)

    Chiarello

    2000-05-01

    A survey of mammals and birds was carried out in a semi-deciduous forest fragment of 150 ha located in a zone of intensive agriculture in Ribeirão Preto, State of São Paulo, south-eastern Brazil. Line transect sampling was used to census mammals and birds during six days, totalling 27.8 km of trails and 27.8 hours of observation. Twenty mammal species were confirmed in the area (except bats and small mammals), including rare or endangered species, such as the mountain lion (Puma concolor), the maned wolf (Chrysocyon brachyurus), and the ocelot (Leopardus pardalis). The brown capuchin monkey (Cebus apella) and the black-tufted-ear marmoset (Callithrix penicillata) were found frequently, suggesting high population density in the fragment. Regarding the avifauna, 49 bird species were recorded, most of them typical of open areas or forest edges. Some confirmed species, however, are becoming increasingly rare in the region, as for example the muscovy duck (Cairina moschata) and the toco toucan (Ramphastos toco). The results demonstrate that forest fragment of this size are refuges for native fauna in a region dominated almost exclusively by sugar-cane plantations. Besides faunal aspects, the conservation of these fragments is of great importance for the establishment of studies related to species preservation in the long term, including reintroduction and translocation projects, as well as studies related to genetic health of isolated populations.

  6. Characterization of a Semideciduous Forest in Varginha, MG. and comparison with remaining forest fragments in the region

    Directory of Open Access Journals (Sweden)

    Rafaela Pereira Naves

    2012-09-01

    Full Text Available A floristic and phytossociological survey was made at the biggest area of continue forest at Parque Florestal Municipal São Francisco de Assis, in Varginha county, south of Minas Gerais state. The area has 10 ha and possesses a water stream. It was sampled 25 plots of 20m x 20m and recorded all the individuals with diameter at breast height (DBH equal to or larger than 5 cm. The phytossociological survey recorded 1568 individuals, and basal area of 23.65 m².ha-¹ distributed in 103 species, 72 genera and 42 families. The floristic survey recorded 111 species, 77 genera and 43families. The families with bigger number of species were: Myrtaceae, Fabaceae and Melastomataceae and the most important species were Casearia arborea, Copaifera langsdorffii, Tachigali rugosa and Myrcia splendens. The obtained results are in accordance wih the expected ones for the semideciduous seasonal forests of the region.

  7. Diversity patterns of ground beetles and understory vegetation in mature, secondary, and plantation forest regions of temperate northern China

    NARCIS (Netherlands)

    Zou, Yi; Sang, Weiguo; Wang, Shunzhong; Warren-Thomas, Eleanor; Liu, Yunhui; Yu, Zhenrong; Wang, Changliu; Axmacher, Jan Christoph

    2015-01-01

    Plantation and secondary forests form increasingly important components of the global forest cover, but our current knowledge about their potential contribution to biodiversity conservation is limited. We surveyed understory plant and carabid species assemblages at three distinct regions in

  8. A Modified Gash Model for Estimating Rainfall Interception Loss of Forest Using Remote Sensing Observations at Regional Scale

    Directory of Open Access Journals (Sweden)

    Yaokui Cui

    2014-04-01

    Full Text Available Rainfall interception loss of forest is an important component of water balance in a forested ecosystem. The Gash analytical model has been widely used to estimate the forest interception loss at field scale. In this study, we proposed a simple model to estimate rainfall interception loss of heterogeneous forest at regional scale with several reasonable assumptions using remote sensing observations. The model is a modified Gash analytical model using easily measured parameters of forest structure from satellite data and extends the original Gash model from point-scale to the regional scale. Preliminary results, using remote sensing data from Moderate Resolution Imaging Spectroradiometer (MODIS products, field measured rainfall data, and meteorological data of the Automatic Weather Station (AWS over a picea crassifolia forest in the upper reaches of the Heihe River Basin in northwestern China, showed reasonable accuracy in estimating rainfall interception loss at both the Dayekou experimental site (R2 = 0.91, RMSE = 0.34 mm∙d −1 and the Pailugou experimental site (R2 = 0.82, RMSE = 0.6 mm∙d −1, compared with ground measurements based on per unit area of forest. The interception loss map of the study area was shown to be strongly heterogeneous. The modified model has robust physics and is insensitive to the input parameters, according to the sensitivity analysis using numerical simulations. The modified model appears to be stable and easy to be applied for operational estimation of interception loss over large areas.

  9. Measuring the Regional Availability of Forest Biomass for Biofuels and the Potential of GHG Reduction

    Directory of Open Access Journals (Sweden)

    Fengli Zhang

    2018-01-01

    Full Text Available Forest biomass is an important resource for producing bioenergy and reducing greenhouse gas (GHG emissions. The State of Michigan in the United States (U.S. is one region recognized for its high potential of supplying forest biomass; however, the long-term availability of timber harvests and the associated harvest residues from this area has not been fully explored. In this study time trend analyses was employed for long term timber assessment and developed mathematical models for harvest residue estimation, as well as the implications of use for ethanol. The GHG savings potential of ethanol over gasoline was also modeled. The methods were applied in Michigan under scenarios of different harvest solutions, harvest types, transportation distances, conversion technologies, and higher heating values over a 50-year period. Our results indicate that the study region has the potential to supply 0.75–1.4 Megatonnes (Mt dry timber annually and less than 0.05 Mt of dry residue produced from these harvests. This amount of forest biomass could generate 0.15–1.01 Mt of ethanol, which contains 0.68–17.32 GJ of energy. The substitution of ethanol for gasoline as transportation fuel has potential to reduce emissions by 0.043–1.09 Mt CO2eq annually. The developed method is generalizable in other similar regions of different countries for bioenergy related analyses.

  10. Animal damage to conifers on national forests in the Pacific Northwest region.

    Science.gov (United States)

    Glenn L. Crouch

    1969-01-01

    Animal damage to conifers is a timely topic in the Pacific Northwest. Foresters in this Region are increasingly concerned and perplexed by damage caused by animals to natural and planted seedlings and larger growing stock. Nearly every animal inhabiting for st land is believed to injure seedlings and small trees to some degree. Mice girdle small trees, and bears girdle...

  11. Forest biomass carbon sinks in East Asia, with special reference to the relative contributions of forest expansion and forest growth.

    Science.gov (United States)

    Fang, Jingyun; Guo, Zhaodi; Hu, Huifeng; Kato, Tomomichi; Muraoka, Hiroyuki; Son, Yowhan

    2014-06-01

    Forests play an important role in regional and global carbon (C) cycles. With extensive afforestation and reforestation efforts over the last several decades, forests in East Asia have largely expanded, but the dynamics of their C stocks have not been fully assessed. We estimated biomass C stocks of the forests in all five East Asian countries (China, Japan, North Korea, South Korea, and Mongolia) between the 1970s and the 2000s, using the biomass expansion factor method and forest inventory data. Forest area and biomass C density in the whole region increased from 179.78 × 10(6) ha and 38.6 Mg C ha(-1) in the 1970s to 196.65 × 10(6) ha and 45.5 Mg C ha(-1) in the 2000s, respectively. The C stock increased from 6.9 Pg C to 8.9 Pg C, with an averaged sequestration rate of 66.9 Tg C yr(-1). Among the five countries, China and Japan were two major contributors to the total region's forest C sink, with respective contributions of 71.1% and 32.9%. In China, the areal expansion of forest land was a larger contributor to C sinks than increased biomass density for all forests (60.0% vs. 40.0%) and for planted forests (58.1% vs. 41.9%), while the latter contributed more than the former for natural forests (87.0% vs. 13.0%). In Japan, increased biomass density dominated the C sink for all (101.5%), planted (91.1%), and natural (123.8%) forests. Forests in South Korea also acted as a C sink, contributing 9.4% of the total region's sink because of increased forest growth (98.6%). Compared to these countries, the reduction in forest land in both North Korea and Mongolia caused a C loss at an average rate of 9.0 Tg C yr(-1), equal to 13.4% of the total region's C sink. Over the last four decades, the biomass C sequestration by East Asia's forests offset 5.8% of its contemporary fossil-fuel CO2 emissions. © 2014 John Wiley & Sons Ltd.

  12. Charcoal records reveal past occurrences of disturbances in the forests of the Kisangani region, Democratic Republic of the Congo

    Science.gov (United States)

    Tshibamba Mukendi, John; Hubau, Wannes; Ntahobavuka, Honorine; Boyemba Bosela, Faustin; De Cannière, Charles; Beeckman, Hans

    2014-05-01

    Past disturbances have modified local density, structure and floristic composition of Central African rainforests. As such, these perturbations represent a driving force for forest dynamics and they were presumably at the origin of present-day forest mosaics. One of the most prominent disturbances within the forest is fire, leaving behind charcoal as a witness of past forest dynamics. Quantification and identification of ancient charcoal fragments found in soil layers (= pedoanthracology) allows a detailed reconstruction of forest history, including the possible occurrence of past perturbations. The primary objective of this study is to present palaeoenvironmental evidence for the existence of past disturbances in the forests of the Kisangani region (Democratic Republic of the Congo) using a pedoanthracological approach. We quantified and identified charcoal fragments from pedoanthracological excavations in the Yangambi, Yoko, Masako and Kole forest regions. Charcoal sampling was conducted in pit intervals of 10 cm, whereby pottery fragments were also registered and quantified. Floristic identifications were conducted using former protocols based on wood anatomy, which is largely preserved after charcoalification. 14 excavations were conducted and charcoal was found in most pit intervals. Specifically, 52 out of 56 sampled intervals from the Yangambi forest contained charcoal, along with 47 pit intervals from the Yoko forest reserve, 34 pit intervals from the Masako forest and 16 from the Kole forest. Highest specific anthracomasses were recorded in Yoko (167 mg charcoal per kg soil), followed by Yangambi (133 mg/kg), Masako (71,89 mg/kg) and finally Kole (42,4 mg/kg). Charcoal identifications point at a manifest presence of the family of Fabaceae (Caesalpinioideae). This family is characteristic for the tropical humid rainforest. The presence of charcoal fragments from these taxa, associated with pottery sherds on different depths within the profiles, suggests

  13. Extracting Features of Acacia Plantation and Natural Forest in the Mountainous Region of Sarawak, Malaysia by ALOS/AVNIR2 Image

    Science.gov (United States)

    Fadaei, H.; Ishii, R.; Suzuki, R.; Kendawang, J.

    2013-12-01

    The remote sensing technique has provided useful information to detect spatio-temporal changes in the land cover of tropical forests. Land cover characteristics derived from satellite image can be applied to the estimation of ecosystem services and biodiversity over an extensive area, and such land cover information would provide valuable information to global and local people to understand the significance of the tropical ecosystem. This study was conducted in the Acacia plantations and natural forest situated in the mountainous region which has different ecological characteristic from that in flat and low land area in Sarawak, Malaysia. The main objective of this study is to compare extract the characteristic of them by analyzing the ALOS/AVNIR2 images and ground truthing obtained by the forest survey. We implemented a ground-based forest survey at Aacia plantations and natural forest in the mountainous region in Sarawak, Malaysia in June, 2013 and acquired the forest structure data (tree height, diameter at breast height (DBH), crown diameter, tree spacing) and spectral reflectance data at the three sample plots of Acacia plantation that has 10 x 10m area. As for the spectral reflectance data, we measured the spectral reflectance of the end members of forest such as leaves, stems, road surface, and forest floor by the spectro-radiometer. Such forest structure and spectral data were incorporated into the image analysis by support vector machine (SVM) and object-base/texture analysis. Consequently, land covers on the AVNIR2 image were classified into three forest types (natural forest, oil palm plantation and acacia mangium plantation), then the characteristic of each category was examined. We additionally used the tree age data of acacia plantation for the classification. A unique feature was found in vegetation spectral reflectance of Acacia plantations. The curve of the spectral reflectance shows two peaks around 0.3μm and 0.6 - 0.8μm that can be assumed to

  14. Ethnobotanical study of plants used for therapeutic purposes in the Atlantic Forest region, Southern Brazil.

    Science.gov (United States)

    Tribess, Bianca; Pintarelli, Gabrielli Melatto; Bini, Larissa Alida; Camargo, Anderson; Funez, Luís Adriano; de Gasper, André Luís; Zeni, Ana Lúcia Bertarello

    2015-04-22

    Atlantic Forest is a biome in dangerous situation and it lacks wider information on species with medicinal purposes used by people in this area. In this study an ethnobotanical survey was conducted in Apiúna district, Brazil with the goal of assessing traditional knowledge of medicinal plants used by rural communities in a region covered by Atlantic Forest. The ethnobotanical data were collected through semi-structured interviews and a free list of plants used for medicinal purposes. The respondents were selected by snow ball method. Therefore, the therapeutic use of plants was investigated and the species cited was collected and identified. Local plant uses were evaluated using ethnobotanical indices of diversity and equitability, and then compared with those obtained in other regions of Atlantic Forest in Brazil. Besides, the informant consensus factor (ICF) was calculated. A total of 162 species belonging to 61 families were recorded, mainly Asteraceae and Lamiaceae. Furthermore, the species cited, 45.06% were native and 54.94% were considered exotic. The most frequently reported medicinal uses were the symptoms and signs (17.42%), digestive system (15.33%) and, infectious and parasitic diseases (12.73%). Although, the ICF calculation showed that mental and behavioral (0.85), respiratory system (0.79) and, digestive and genitourinary system diseases (0.78 for both) were the categories with higher values reached. Usually, the administration is oral from leaves preparations. Folk medicine in rural communities in this region of Atlantic Forest is an important source of primary health care. The results indicate an available knowledge of medicinal plants uses in this area, when compared to other regions previously studied. The fact that this research was conducted next to a conservation area makes it possible to dispose the knowledge organized here into a tool for environmental education as well as preservation. Moreover, the pharmacological information will further

  15. Dependence of hydropower energy generation on forests in the Amazon Basin at local and regional scales

    Science.gov (United States)

    Stickler, Claudia M.; Coe, Michael T.; Costa, Marcos H.; Nepstad, Daniel C.; McGrath, David G.; Dias, Livia C. P.; Rodrigues, Hermann O.; Soares-Filho, Britaldo S.

    2013-01-01

    Tropical rainforest regions have large hydropower generation potential that figures prominently in many nations’ energy growth strategies. Feasibility studies of hydropower plants typically ignore the effect of future deforestation or assume that deforestation will have a positive effect on river discharge and energy generation resulting from declines in evapotranspiration (ET) associated with forest conversion. Forest loss can also reduce river discharge, however, by inhibiting rainfall. We used land use, hydrological, and climate models to examine the local “direct” effects (through changes in ET within the watershed) and the potential regional “indirect” effects (through changes in rainfall) of deforestation on river discharge and energy generation potential for the Belo Monte energy complex, one of the world’s largest hydropower plants that is currently under construction on the Xingu River in the eastern Amazon. In the absence of indirect effects of deforestation, simulated deforestation of 20% and 40% within the Xingu River basin increased discharge by 4–8% and 10–12%, with similar increases in energy generation. When indirect effects were considered, deforestation of the Amazon region inhibited rainfall within the Xingu Basin, counterbalancing declines in ET and decreasing discharge by 6–36%. Under business-as-usual projections of forest loss for 2050 (40%), simulated power generation declined to only 25% of maximum plant output and 60% of the industry’s own projections. Like other energy sources, hydropower plants present large social and environmental costs. Their reliability as energy sources, however, must take into account their dependence on forests. PMID:23671098

  16. Impact of Forest Harvesting and Forest Regeneration on Runoff Dynamics at Watersheds of Central Siberia

    Directory of Open Access Journals (Sweden)

    A. A. Onuchin

    2014-02-01

    Full Text Available In the paper disturbance of Angara river region forests were estimated and peculiarities of forest regeneration after logging and wild fires were analyzed. According to the landscape classification of the regional study, three groups of landscapes differencing on types of forest successions were developed. It was shown that water protective and water regulate functions of the Angara river region forests change under commercial forest harvesting. Comparisons of the inventory and hydrological data detected that hydrological consequences of commercial forest harvesting are dependent on climatic parameters and forest regeneration peculiarities. In the continental climate conditions, when forest regeneration is delayed, snow storms are more active, snow evaporation increases and runoff reduces. In the process of logging sites overgrown with secondary small-leaved forest, snow accumulation increases and runoff increases, exceeding the value of annual runoff at undisturbed watersheds.

  17. Effects of forest cover changes in European Russia on regional weather conditions: results of numerical experiments with the COSMO-CLM model

    Science.gov (United States)

    Olchev, Alexander; Kuzmina, Ekaterina; Rozinkina, Inna; Nikitin, Mikhail; Rivin, Gdaly S.

    2017-04-01

    The forests have a significant effect on the climatic system. They capture CO2 from the atmosphere, regulate the surface evaporation and runoff, and influence the radiation and thermal conditions of the land surface. It is obvious, that their influence depends on many different factors including regional climate conditions, land use and vegetation structure, surface topography, etc. The main goal of the study is to assess the possible influence of forest cover changes (under deforestation and/or afforestation) on regional weather conditions in the central part of European Russia using the results of modeling experiments provided by the meso-scale COSMO-CLM model. The need of the study lies in a lack of the experimental and modeling data characterizing the influence of the forest and land-use changes on regional weather conditions in European part of Russia. The forest ecosystems in the study region play a very important biosphere role that is significantly increased in the last decades due to considerable strengthening of anthropogenic activity in the area of European Russia. The area selected for the study is located in the central part of European Russia between 55 and 59N and 28 and 37E. It comprises several geographical zones including dark-coniferous forests of the South-European taiga in the north, the mixed forests in the central part and the broad-leaved forests in the south. The forests within the study area are very heterogeneous. The total area covered by forests according to recent remote sensing data is about 50%. The numerical experiments were provided using the COSMO-CLM model with the spatial resolution 13.2 km. As initial and boundary conditions for the numerical experiments the global reanalysis ERA Interim (with the 6-hour resolution in time and 0.75° × 0.75° in space) were used. The weather conditions were simulated in a continuous cycle for several months for the entire area of European Russia using the results of global reanalysis on

  18. Structural analysis of the drivers and barriers to forest management in the Slovak regions of Podpoľanie and Kysuce

    Directory of Open Access Journals (Sweden)

    Navrátil Rudolf

    2016-09-01

    Full Text Available The paper presents an application of structural analysis in search of key drivers and barriers of forest management in two Slovak regions: Podpoľanie and Kysuce. A comparison with factors identified in selected European regions is also presented. First, various relevant factors affecting forest management were selected for both regions. The selections draw on the pool of primary data (structured in-person interviews and secondary data (qualitative analysis of national and European documents. Second, factors were grouped according to the STEEP categories (Society, Technology, Economy, Ecology, and Policy. Subsequently, factors were rigorously assessed by the regional stakeholders in participatory workshops, and their answers were analysed by structural analysis with the help of Parmenides EIDOS™ software. The results show that in both Slovak regions political, economic, and ecological factors dominated over social and technological factors. The comparison with selected European regions revealed that in the Slovak and other European regions, the Policy category dominated due to having the highest number of factors and their overall impact on forest management. In contrast, the least important societal domain was Technology in both the Slovak and other European regions. However, while stakeholders across the selected European regions perceived the Society domain as significant, stakeholders in both Slovak regions perceived the Economy and Ecology domains as more significant.

  19. Analytical method validation of GC-FID for the simultaneous measurement of hydrocarbons (C2-C4 in their gas mixture

    Directory of Open Access Journals (Sweden)

    Oman Zuas

    2016-09-01

    Full Text Available An accurate gas chromatography coupled to a flame ionization detector (GC-FID method was validated for the simultaneous analysis of light hydrocarbons (C2-C4 in their gas mixture. The validation parameters were evaluated based on the ISO/IEC 17025 definition including method selectivity, repeatability, accuracy, linearity, limit of detection (LOD, limit of quantitation (LOQ, and ruggedness. Under the optimum analytical conditions, the analysis of gas mixture revealed that each target component was well-separated with high selectivity property. The method was also found to be precise and accurate. The method linearity was found to be high with good correlation coefficient values (R2 ≥ 0.999 for all target components. It can be concluded that the GC-FID developed method is reliable and suitable for determination of light C2-C4 hydrocarbons (including ethylene, propane, propylene, isobutane, and n-butane in their gas mixture. The validated method has successfully been applied to the estimation of hydrocarbons light C2-C4 hydrocarbons in natural gas samples, showing high performance repeatability with relative standard deviation (RSD less than 1.0% and good selectivity with no interference from other possible components could be observed.

  20. Vertical distribution of 137Cs in the native forest soil at Londrina region (Parana, Brazil)

    International Nuclear Information System (INIS)

    Andrello, Avacir Casanova; Appolono, Carlos Roberto; Nascimento Filho, Virgilio Franco do

    2002-01-01

    The 137 Cs depth distribution has been studied in several areas in the world and its knowledge is very important to verify its behavior in the soil matrix. The form of 137 Cs depth distribution more observed in an undisturbed soil it is exponential type. In this work, the study of 137 Cs depth distribution was accomplished at three native forests and a coffee yard, built before the 137 Cs fallout, in the region of Londrina (Parana). The sampling was conducted in 1 cm, 2 cm, 4 cm and 5 cm increment depth. The 137 Cs inventory observed for the forests was 248 Bq m -2 (Mata1), 338 Bq m -2 (Mata2) and 325 Bq m -2 (MataUEL). No 137 Cs activity was detected in the coffee yard. The 137 Cs depth distribution for the three forests presented the exponential type. For the soil class of the forests, 137 Cs adsorbed on the soil particles can be considered fixed or slowly exchangeable. (author)

  1. Soil organic matter composition and quality across fire severity gradients in coniferous and deciduous forests of the southern boreal region

    Science.gov (United States)

    Miesel, Jessica R.; Hockaday, William C.; Kolka, Randall K.; Townsend, Philip A.

    2015-06-01

    Recent patterns of prolonged regional drought in southern boreal forests of the Great Lakes region, USA, suggest that the ecological effects of disturbance by wildfire may become increasingly severe. Losses of forest soil organic matter (SOM) during fire can limit soil nutrient availability and forest regeneration. These processes are also influenced by the composition of postfire SOM. We sampled the forest floor layer (i.e., full organic horizon) and 0-10 cm mineral soil from stands dominated by coniferous (Pinus banksiana Lamb.) or deciduous (Populus tremuloides Michx.) species 1-2 months after the 2011 Pagami Creek wildfire in northern Minnesota. We used solid-state 13C NMR to characterize SOM composition across a gradient of fire severity in both forest cover types. SOM composition was affected by fire, even when no statistically significant losses of total C stocks were evident. The most pronounced differences in SOM composition between burned and unburned reference areas occurred in the forest floor for both cover types. Carbohydrate stocks in forest floor and mineral horizons decreased with severity level in both cover types, whereas pyrogenic C stocks increased with severity in the coniferous forest floor and decreased in only the highest severity level in the deciduous forest floor. Loss of carbohydrate and lignin pools contributed to a decreased SOM stability index and increased decomposition index. Our results suggest that increases in fire severity expected to occur under future climate scenarios may lead to changes in SOM composition and dynamics with consequences for postfire forest recovery and C uptake.

  2. Future forest carbon accounting challenges: the question of regionalization

    Science.gov (United States)

    Michael C. Nichols

    2015-01-01

    Forest carbon accounting techniques are changing. This year, a new accounting system is making its debut with the production of forest carbon data for EPA’s National Greenhouse Gas Inventory. The Forest Service’s annualized inventory system is being more fully integrated into estimates of forest carbon at the national and state levels both for the present and the...

  3. Effects of the "great recession" on the forest products sector in the northern region of the United States

    Science.gov (United States)

    Christopher W. Woodall; William G. Luppold; Peter J. Ince; Ronald J. Piva; Kenneth E. Skog

    2012-01-01

    The forest industry within the northern region of the United States has demonstrated a notable decline in terms of employment, number of mills, wood consumption, and forest harvests since 2000--a downturn exacerbated by the "Great Recession" of 2007-2009. Longer term industrial decline (since 2000) has been evidenced by reductions in secondary product (e.g.,...

  4. Analyzing cloud base at local and regional scales to understand tropical montane cloud forest vulnerability to climate change

    Science.gov (United States)

    Ashley E. Van Beusekom; Grizelle Gonzalez; Martha A. Scholl

    2017-01-01

    The degree to which cloud immersion provides water in addition to rainfall, suppresses transpiration, and sustains tropical montane cloud forests (TMCFs) during rainless periods is not well understood. Climate and land use changes represent a threat to these forests if cloud base altitude rises as a result of regional warming or deforestation. To establish a baseline...

  5. Regional annual water yield from forest lands and its response to potential deforestation across the southeastern United States

    Science.gov (United States)

    Ge Sun; Steve G. McNulty; J. Lu; Devendra M. Amatya; Y. Liang; R.K. Kolka

    2005-01-01

    Regional water yield at a meso-scale can be estimated as the difference between precipitation input and evapotranspiration output. Forest water yield from the southeastern US varies greatly both in space and time. Because of the hot climate and high evapotranspiration, less than half of the annual precipitation that falls on forest lands is available for stream flow...

  6. Regional Variation in the Temperature Sensitivity of Soil Organic Matter Decomposition in China's Forests and Grasslands

    Science.gov (United States)

    Liu, Y.; He, N.; Zhu, J.; Yu, G.; Xu, L.; Niu, S.; Sun, X.; Wen, X.

    2017-12-01

    How to assess the temperature sensitivity (Q10) of soil organic matter (SOM) decomposition and its regional variation with high accuracy is one of the largest uncertainties in determining the intensity and direction of the global carbon (C) cycle in response to climate change. In this study, we collected a series of soils from 22 forest sites and 30 grassland sites across China to explore regional variation in Q10 and its underlying mechanisms. We conducted a novel incubation experiment with periodically changing temperature (5-30 °C), while continuously measuring soil microbial respiration rates. The results showed that Q10 varied significantly across different ecosystems, ranging from 1.16 to 3.19 (mean 1.63). Q10 was ordered as follows: alpine grasslands (2.01) > temperate grasslands (1.81) > tropical forests (1.59) > temperate forests (1.55) > subtropical forests (1.52). The Q10 of grasslands (1.90) was significantly higher than that of forests (1.54). Furthermore, Q10 significantly increased with increasing altitude and decreased with increasing longitude. Environmental variables and substrate properties together explained 52% of total variation in Q10 across all sites. Overall, pH and soil electrical conductivity primarily explained spatial variation in Q10. The general negative relationships between Q10 and substrate quality among all ecosystem types supported the C quality temperature (CQT) hypothesis at a large scale, which indicated that soils with low quality should have higher temperature sensitivity. Furthermore, alpine grasslands, which had the highest Q10, were predicted to be more sensitive to climate change under the scenario of global warming.

  7. Scaling-based forest structural change detection using an inverted geometric-optical model in the Three Gorges region of China

    NARCIS (Netherlands)

    Zeng, Y.; Schaepman, M.E.; Wu, B.; Clevers, J.G.P.W.; Bregt, A.K.

    2008-01-01

    We use the Li-Strahler geometric-optical model combined with a scaling-based approach to detect forest structural changes in the Three Gorges region of China. The physical-based Li-Strahler model can be inverted to retrieve forest structural properties. One of the main input variables for the

  8. Assessing climate change impacts, benefits of mitigation, and uncertainties on major global forest regions under multiple socioeconomic and emissions scenarios

    Science.gov (United States)

    Kim, John B.; Monier, Erwan; Sohngen, Brent; Pitts, G. Stephen; Drapek, Ray; McFarland, James; Ohrel, Sara; Cole, Jefferson

    2017-04-01

    We analyze a set of simulations to assess the impact of climate change on global forests where MC2 dynamic global vegetation model (DGVM) was run with climate simulations from the MIT Integrated Global System Model-Community Atmosphere Model (IGSM-CAM) modeling framework. The core study relies on an ensemble of climate simulations under two emissions scenarios: a business-as-usual reference scenario (REF) analogous to the IPCC RCP8.5 scenario, and a greenhouse gas mitigation scenario, called POL3.7, which is in between the IPCC RCP2.6 and RCP4.5 scenarios, and is consistent with a 2 °C global mean warming from pre-industrial by 2100. Evaluating the outcomes of both climate change scenarios in the MC2 model shows that the carbon stocks of most forests around the world increased, with the greatest gains in tropical forest regions. Temperate forest regions are projected to see strong increases in productivity offset by carbon loss to fire. The greatest cost of mitigation in terms of effects on forest carbon stocks are projected to be borne by regions in the southern hemisphere. We compare three sources of uncertainty in climate change impacts on the world’s forests: emissions scenarios, the global system climate response (i.e. climate sensitivity), and natural variability. The role of natural variability on changes in forest carbon and net primary productivity (NPP) is small, but it is substantial for impacts of wildfire. Forest productivity under the REF scenario benefits substantially from the CO2 fertilization effect and that higher warming alone does not necessarily increase global forest carbon levels. Our analysis underlines why using an ensemble of climate simulations is necessary to derive robust estimates of the benefits of greenhouse gas mitigation. It also demonstrates that constraining estimates of climate sensitivity and advancing our understanding of CO2 fertilization effects may considerably reduce the range of projections.

  9. A model of forest floor carbon mass for United States forest types

    Science.gov (United States)

    James E. Smith; Linda S. Heath

    2002-01-01

    Includes a large set of published values of forest floor mass and develop large-scale estimates of carbon mass according to region and forest type. Estimates of average forest floor carbon mass per hectare of forest applied to a 1997 summary forest inventory, sum to 4.5 Gt carbon stored in forests of the 48 contiguous United States.

  10. Mercury distribution in the foliage and soil profiles of the Tibetan forest: Processes and implications for regional cycling

    International Nuclear Information System (INIS)

    Gong, Ping; Wang, Xiao-ping; Xue, Yong-gang; Xu, Bai-qing; Yao, Tan-dong

    2014-01-01

    Remote forests are considered a pool of Mercury (Hg) in the global Hg cycle. However, notably few studies have investigated the fate of Hg in the Tibetan forest. In this study, fifty-two foliage samples and seven litter/soil profiles were collected throughout the Tibetan forest. The concentrations of total Hg (THg) in foliage were positively correlated with longitude and negatively correlated with altitude, indicating that the emission of Hg is expected to decrease with increasing distance from emission sources to the Tibetan forest. The deposition flux of THg in the Tibetan forest (with an air-to-forest ground flux of 9.2 μg/m 2 /year) is ∼2 times the flux in clearings, which is suggestive of enhanced Hg deposition by the forest. The depositional Hg is eventually stored in the forest soil, and the soil acts as a net ‘sink’ for Hg. - Highlights: • Foliage can be used as bio-indicator for monitoring the spatial Hg distribution. • The Tibetan forest can enhance the atmospheric Hg deposition to the ground. • The Tibetan forest soil is a pool of Hg that acts to delay the regional cycling of Hg. - The Tibetan forest can accumulate atmospheric Hg, which undergoes long-range transport, and the soil of Tibetan forest acts as the final Hg ‘sink’

  11. Fire impact on carbon storage in light conifer forests of the Lower Angara region, Siberia

    International Nuclear Information System (INIS)

    Ivanova, G A; Kukavskaya, E A; Conard, S G; McRae, D J

    2011-01-01

    This study focused on structural analysis of ground carbon storage following fires in light conifer stands of the Lower Angara region (Siberia, Russia). Experimental fires of varying frontal intensity were conducted at Scots pine and mixed larch forests of southern taiga. Considerable amounts of surface and ground forest fuels (21–38 tC ha −1 ) enhanced low- to high-intensity fires. Post-fire carbon storage decreased by 16–49% depending on fire intensity and rate of spread, with depth of burn being 0.9–6.6 cm. Carbon emissions varied from 4.48 to 15.89 t ha −1 depending on fire intensity and forest type. Depth of burn and carbon emissions for four major site types were correlated with a weather-based fire hazard index.

  12. Private forest owners of the Central Hardwood Forest

    Science.gov (United States)

    Thomas W. Birch

    1997-01-01

    A recently completed survey of woodland owners provides insight into the owners of private forest lands in the Central Hardwood Region. There is increasing parcelization of forested lands and an increase in the numbers of nonindustrial private forest-land owners. Over half of the private owners have harvested timber from their holdings at some time in the past, they...

  13. Using remote sensing data to predict road fill areas and areas affected by fill erosion with planned forest road construction: a case study in Kastamonu Regional Forest Directorate (Turkey).

    Science.gov (United States)

    Aricak, Burak

    2015-07-01

    Forest roads are essential for transport in managed forests, yet road construction causes environmental disturbance, both in the surface area the road covers and in erosion and downslope deposition of road fill material. The factors affecting the deposition distance of eroded road fill are the slope gradient and the density of plant cover. Thus, it is important to take these factors into consideration during road planning to minimize their disturbance. The aim of this study was to use remote sensing and field surveying to predict the locations that would be affected by downslope deposition of eroding road fill and to compile the data into a geographic information system (GIS) database. The construction of 99,500 m of forest roads is proposed for the Kastamonu Regional Forest Directorate in Turkey. Using GeoEye satellite images and a digital elevation model (DEM) for the region, the location and extent of downslope deposition of road fill were determined for the roads as planned. It was found that if the proposed roads were constructed by excavators, the fill material would cover 910,621 m(2) and the affected surface area would be 1,302,740 m(2). Application of the method used here can minimize the adverse effects of forest roads.

  14. EXPLAINING FOREST COMPOSITION AND BIOMASS ACROSS MULTIPLE BIOGEOGRAPHIC REGIONS

    Science.gov (United States)

    Current scientific concerns regarding the impacts of global change include the responses of forest composition and biomass to rapid changes in climate, and forest gap models, have often been used to address this issue. These models reflect the concept that forest composition and...

  15. Comparison of regression coefficient and GIS-based methodologies for regional estimates of forest soil carbon stocks

    International Nuclear Information System (INIS)

    Elliott Campbell, J.; Moen, Jeremie C.; Ney, Richard A.; Schnoor, Jerald L.

    2008-01-01

    Estimates of forest soil organic carbon (SOC) have applications in carbon science, soil quality studies, carbon sequestration technologies, and carbon trading. Forest SOC has been modeled using a regression coefficient methodology that applies mean SOC densities (mass/area) to broad forest regions. A higher resolution model is based on an approach that employs a geographic information system (GIS) with soil databases and satellite-derived landcover images. Despite this advancement, the regression approach remains the basis of current state and federal level greenhouse gas inventories. Both approaches are analyzed in detail for Wisconsin forest soils from 1983 to 2001, applying rigorous error-fixing algorithms to soil databases. Resulting SOC stock estimates are 20% larger when determined using the GIS method rather than the regression approach. Average annual rates of increase in SOC stocks are 3.6 and 1.0 million metric tons of carbon per year for the GIS and regression approaches respectively. - Large differences in estimates of soil organic carbon stocks and annual changes in stocks for Wisconsin forestlands indicate a need for validation from forthcoming forest surveys

  16. Traditional access and forest management arrangements for beekeeping: the case of Southwest Ethiopia forest region

    NARCIS (Netherlands)

    Endalamaw, T.B.; Wiersum, K.F.

    2009-01-01

    Forest beekeeping is an ancient form of forest exploitation in south west Ethiopia. The practice has continued to the present with a gradual evolution in beekeeping technology and resource access and management arrangements. The aim of the present study is to study traditional forest management

  17. Regional and forest-level estimates of carbon stored in harvested wood products from the United States Forest Service Northern Region, 1906-2010

    Science.gov (United States)

    N. Anderson; J. Young; K. Stockmann; K. Skog; S. Healey; D. Loeffler; J.G. Jones; J. Morrison

    2013-01-01

    Global forests capture and store significant amounts of CO2 through photosynthesis. When carbon is removed from forests through harvest, a portion of the harvested carbon is stored in wood products, often for many decades. The United States Forest Service (USFS) and other agencies are interested in accurately accounting for carbon flux associated with harvested wood...

  18. A simple modeling approach to study the regional impact of a Mediterranean forest isoprene emission on anthropogenic plumes

    Directory of Open Access Journals (Sweden)

    J. Cortinovis

    2005-01-01

    Full Text Available Research during the past decades has outlined the importance of biogenic isoprene emission in tropospheric chemistry and regional ozone photo-oxidant pollution. The first part of this article focuses on the development and validation of a simple biogenic emission scheme designed for regional studies. Experimental data sets relative to Boreal, Tropical, Temperate and Mediterranean ecosystems are used to estimate the robustness of the scheme at the canopy scale, and over contrasted climatic and ecological conditions. A good agreement is generally found when comparing field measurements and simulated emission fluxes, encouraging us to consider the model suitable for regional application. Limitations of the scheme are nevertheless outlined as well as further on-going improvements. In the second part of the article, the emission scheme is used on line in the broader context of a meso-scale atmospheric chemistry model. Dynamically idealized simulations are carried out to study the chemical interactions of pollutant plumes with realistic isoprene emissions coming from a Mediterranean oak forest. Two types of anthropogenic sources, respectively representative of the Marseille (urban and Martigues (industrial French Mediterranean sites, and both characterized by different VOC/NOx are considered. For the Marseille scenario, the impact of biogenic emission on ozone production is larger when the forest is situated in a sub-urban configuration (i.e. downwind distance TOWN-FOREST -1. In this case the enhancement of ozone production due to isoprene can reach +37% in term of maximum surface concentrations and +11% in term of total ozone production. The impact of biogenic emission decreases quite rapidly when the TOWN-FOREST distance increases. For the Martigues scenario, the biogenic impact on the plume is significant up to TOWN-FOREST distance of 90km where the ozone maximum surface concentration enhancement can still reach +30%. For both cases, the

  19. An assessment of the downturn in the forest products sector in the northern region of the United States

    Science.gov (United States)

    C.W. Woodall; W.G. Luppold; P.J. Ince; R.J. Piva; K.E. Skog

    2012-01-01

    The forest industry within the northern region of the U.S. has declined notably in employment, mill numbers, wood consumption, and forest harvests since 2000…a downturn exacerbated by the recession of 2007 to 2009. Longer term industrial decline (since 2000) has been evidenced by reductions in secondary products (e.g., furniture) and print paper manufacturing which can...

  20. N : P Stoichiometry in a Forested Runoff during Storm Events: Comparisons with Regions and Vegetation Types

    Directory of Open Access Journals (Sweden)

    Lanlan Guo

    2012-01-01

    Full Text Available Nitrogen and phosphorus are considered the most important limiting elements in terrestrial and aquatic ecosystems. however, very few studies have focused on which is from forested streams, a bridge between these two systems. To fill this gap, we examined the concentrations of dissolved N and P in storm waters from forested watersheds of five regions in Japan, to characterize nutrient limitation and its potential controlling factors. First, dissolved N and P concentrations and the N : P ratio on forested streams were higher during storm events relative to baseflow conditions. Second, significantly higher dissolved inorganic N concentrations were found in storm waters from evergreen coniferous forest streams than those from deciduous broadleaf forest streams in Aichi, Kochi, Mie, Nagano, and with the exception of Tokyo. Finally, almost all the N : P ratios in the storm water were generally higher than 34, implying that the storm water should be P-limited, especially for Tokyo.

  1. N : P stoichiometry in a forested runoff during storm events: comparisons with regions and vegetation types.

    Science.gov (United States)

    Guo, Lanlan; Chen, Yi; Zhang, Zhao; Fukushima, Takehiko

    2012-01-01

    Nitrogen and phosphorus are considered the most important limiting elements in terrestrial and aquatic ecosystems. however, very few studies have focused on which is from forested streams, a bridge between these two systems. To fill this gap, we examined the concentrations of dissolved N and P in storm waters from forested watersheds of five regions in Japan, to characterize nutrient limitation and its potential controlling factors. First, dissolved N and P concentrations and the N : P ratio on forested streams were higher during storm events relative to baseflow conditions. Second, significantly higher dissolved inorganic N concentrations were found in storm waters from evergreen coniferous forest streams than those from deciduous broadleaf forest streams in Aichi, Kochi, Mie, Nagano, and with the exception of Tokyo. Finally, almost all the N : P ratios in the storm water were generally higher than 34, implying that the storm water should be P-limited, especially for Tokyo.

  2. [Syntaxonomic analysis of restorative successions after cutting down light coniferous forests of South Ural Region].

    Science.gov (United States)

    Martynenko, V B; Shirokhikh, P S; Mirkin, B M; Naumova, L G

    2014-01-01

    Discussed are the possibilities of using syntaxa from floristic classification for the analysis of secondary restorative successions after forest cutting in South Ural Region. Peculiarities of secondary forest communities classification that may be viewed as subjects of indigenous vegetation syntaxa forming, sub-associations or could be systematized according to 'deductive' classification introduced by K. Kopecky and S. Heiny are considered. An example is presented of an analysis of communities succession system formed after cutting down hemiboreal pine and birch-pine herbaceous forests of Bupleuro-Pinetum association. Within this system the processes of divergence and convergence of succession series take place. Divergence occur as a result of lifting of the influence caused by dominants edificating role and manifestation of differences in soil humidification, also as a consequence of soil enrichment by mineral elements after burning down the felling debris. The reason behind convergence is grading influence of renewed forest stand. Trends in species richness changes during restorative successions may differ depending on ecotope features. In course of a succession, models of tolerance and inhibition become apparent.

  3. Forest fires in Himalayan region during 2016 - Aerosol load and smoke plume heights detection by multi sensor observations

    Science.gov (United States)

    Kumar, S.; Dumka, U. C.

    2017-12-01

    The forest fires are common events over the Central Himalayan region during the pre-monsoon season (March - June) of every year. Forest fire plays a crucial role in governing the vegetation structure, ecosystem, climate change as well as in atmospheric chemistry. In regional and global scales, the combustion of forest and grassland vegetation releases large volumes of smoke, aerosols, and other chemically active species that significantly influence Earth's radiative budget and atmospheric chemistry, impacting air quality and risks to human health. During the year 2016, massive forest fires have been recorded over the Central Himalayan region of Uttarakhand which continues for several weeks. To study this event we used the multi-satellite observations of aerosols and pollutants during pre-fire, fire and post-fire period over the central Himalayan region. The data used in this study are active fire count and aerosol optical depth (AOD) from MODerate-resolution Imaging Spectroradiometer (MODIS), aerosol index and gases pollutants from Ozone Monitoring Instrument (OMI), along with vertical profiles of aerosols and smoke plume height information from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO). The result shows that the mean fire counts were maximum in April. The daily average AOD value shows an increasing trend during the fire events. The mean value of AOD before the massive fire (25 April), during the fire (30 April) and post fire (5 May) periods are 0.3, 1.2 and 0.6 respectively. We find an increasing trend of total columnar NO2 over the Uttarakhand region during the massive fire event. Space-born Lidar (CALIPSO) retrievals show the extent of smoke plume heights beyond the planetary boundary layer up to 6 km during the peak burning day (April 30). The HYSPLIT air mass forward trajectory shows the long-range transportation of smoke plumes. The results of the present study provide valuable information for addressing smoke plume and

  4. Phylogenetic classification of the world's tropical forests.

    Science.gov (United States)

    Slik, J W Ferry; Franklin, Janet; Arroyo-Rodríguez, Víctor; Field, Richard; Aguilar, Salomon; Aguirre, Nikolay; Ahumada, Jorge; Aiba, Shin-Ichiro; Alves, Luciana F; K, Anitha; Avella, Andres; Mora, Francisco; Aymard C, Gerardo A; Báez, Selene; Balvanera, Patricia; Bastian, Meredith L; Bastin, Jean-François; Bellingham, Peter J; van den Berg, Eduardo; da Conceição Bispo, Polyanna; Boeckx, Pascal; Boehning-Gaese, Katrin; Bongers, Frans; Boyle, Brad; Brambach, Fabian; Brearley, Francis Q; Brown, Sandra; Chai, Shauna-Lee; Chazdon, Robin L; Chen, Shengbin; Chhang, Phourin; Chuyong, George; Ewango, Corneille; Coronado, Indiana M; Cristóbal-Azkarate, Jurgi; Culmsee, Heike; Damas, Kipiro; Dattaraja, H S; Davidar, Priya; DeWalt, Saara J; Din, Hazimah; Drake, Donald R; Duque, Alvaro; Durigan, Giselda; Eichhorn, Karl; Eler, Eduardo Schmidt; Enoki, Tsutomu; Ensslin, Andreas; Fandohan, Adandé Belarmain; Farwig, Nina; Feeley, Kenneth J; Fischer, Markus; Forshed, Olle; Garcia, Queila Souza; Garkoti, Satish Chandra; Gillespie, Thomas W; Gillet, Jean-Francois; Gonmadje, Christelle; Granzow-de la Cerda, Iñigo; Griffith, Daniel M; Grogan, James; Hakeem, Khalid Rehman; Harris, David J; Harrison, Rhett D; Hector, Andy; Hemp, Andreas; Homeier, Jürgen; Hussain, M Shah; Ibarra-Manríquez, Guillermo; Hanum, I Faridah; Imai, Nobuo; Jansen, Patrick A; Joly, Carlos Alfredo; Joseph, Shijo; Kartawinata, Kuswata; Kearsley, Elizabeth; Kelly, Daniel L; Kessler, Michael; Killeen, Timothy J; Kooyman, Robert M; Laumonier, Yves; Laurance, Susan G; Laurance, William F; Lawes, Michael J; Letcher, Susan G; Lindsell, Jeremy; Lovett, Jon; Lozada, Jose; Lu, Xinghui; Lykke, Anne Mette; Mahmud, Khairil Bin; Mahayani, Ni Putu Diana; Mansor, Asyraf; Marshall, Andrew R; Martin, Emanuel H; Calderado Leal Matos, Darley; Meave, Jorge A; Melo, Felipe P L; Mendoza, Zhofre Huberto Aguirre; Metali, Faizah; Medjibe, Vincent P; Metzger, Jean Paul; Metzker, Thiago; Mohandass, D; Munguía-Rosas, Miguel A; Muñoz, Rodrigo; Nurtjahy, Eddy; de Oliveira, Eddie Lenza; Onrizal; Parolin, Pia; Parren, Marc; Parthasarathy, N; Paudel, Ekananda; Perez, Rolando; Pérez-García, Eduardo A; Pommer, Ulf; Poorter, Lourens; Qie, Lan; Piedade, Maria Teresa F; Pinto, José Roberto Rodrigues; Poulsen, Axel Dalberg; Poulsen, John R; Powers, Jennifer S; Prasad, Rama Chandra; Puyravaud, Jean-Philippe; Rangel, Orlando; Reitsma, Jan; Rocha, Diogo S B; Rolim, Samir; Rovero, Francesco; Rozak, Andes; Ruokolainen, Kalle; Rutishauser, Ervan; Rutten, Gemma; Mohd Said, Mohd Nizam; Saiter, Felipe Z; Saner, Philippe; Santos, Braulio; Dos Santos, João Roberto; Sarker, Swapan Kumar; Schmitt, Christine B; Schoengart, Jochen; Schulze, Mark; Sheil, Douglas; Sist, Plinio; Souza, Alexandre F; Spironello, Wilson Roberto; Sposito, Tereza; Steinmetz, Robert; Stevart, Tariq; Suganuma, Marcio Seiji; Sukri, Rahayu; Sultana, Aisha; Sukumar, Raman; Sunderland, Terry; Supriyadi; Suresh, H S; Suzuki, Eizi; Tabarelli, Marcelo; Tang, Jianwei; Tanner, Ed V J; Targhetta, Natalia; Theilade, Ida; Thomas, Duncan; Timberlake, Jonathan; de Morisson Valeriano, Márcio; van Valkenburg, Johan; Van Do, Tran; Van Sam, Hoang; Vandermeer, John H; Verbeeck, Hans; Vetaas, Ole Reidar; Adekunle, Victor; Vieira, Simone A; Webb, Campbell O; Webb, Edward L; Whitfeld, Timothy; Wich, Serge; Williams, John; Wiser, Susan; Wittmann, Florian; Yang, Xiaobo; Adou Yao, C Yves; Yap, Sandra L; Zahawi, Rakan A; Zakaria, Rahmad; Zang, Runguo

    2018-02-20

    Knowledge about the biogeographic affinities of the world's tropical forests helps to better understand regional differences in forest structure, diversity, composition, and dynamics. Such understanding will enable anticipation of region-specific responses to global environmental change. Modern phylogenies, in combination with broad coverage of species inventory data, now allow for global biogeographic analyses that take species evolutionary distance into account. Here we present a classification of the world's tropical forests based on their phylogenetic similarity. We identify five principal floristic regions and their floristic relationships: ( i ) Indo-Pacific, ( ii ) Subtropical, ( iii ) African, ( iv ) American, and ( v ) Dry forests. Our results do not support the traditional neo- versus paleotropical forest division but instead separate the combined American and African forests from their Indo-Pacific counterparts. We also find indications for the existence of a global dry forest region, with representatives in America, Africa, Madagascar, and India. Additionally, a northern-hemisphere Subtropical forest region was identified with representatives in Asia and America, providing support for a link between Asian and American northern-hemisphere forests. Copyright © 2018 the Author(s). Published by PNAS.

  5. Effect of root strength and soil saturation on hillslope stability in forests with natural cedar decline in headwater regions of SE Alaska.

    Science.gov (United States)

    Adelaide C. Johnson; Peter. Wilcock

    1998-01-01

    A natural decline in the population of yellow-cedar (Chamaecyparis nootkatensis) is occurring in pristine southeast Alaska forests and may be the most significant forest decline in the western United States. The frequency of landslides in cedar decline areas is three times larger than in areas of healthy forest. Three regions are investigated in...

  6. Invasions by two non-native insects alter regional forest species composition and successional trajectories

    Science.gov (United States)

    Randall S. Morin; Andrew M. Liebhold

    2015-01-01

    While invasions of individual non-native phytophagous insect species are known to affect growth and mortality of host trees, little is known about how multiple invasions combine to alter forest dynamics over large regions. In this study we integrate geographical data describing historical invasion spread of the hemlock woolly adelgid, Adelges tsugae...

  7. Mapping carbon sequestration in forests at the regional scale - a climate biomonitoring approach by example of Germany

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, Winfried; Pesch, Roland [University of Vechta, Chair of Landscape Ecology, PO Box. 1553, Vechta (Germany)

    2011-12-15

    The United Nations Framework Convention on Climate Change recognizes carbon (C) fixation in forests as an important contribution for the reduction of atmospheric pollution in terms of greenhouse gases. Spatial differentiation of C sequestration in forests either at the national or at the regional scale is therefore needed for forest planning purposes. Hence, within the framework of the Forest Focus regulation, the aim of this investigation was to statistically analyse factors influencing the C fixation and to use the corresponding associations in terms of a predictive mapping approach at the regional scale by example of the German federal state North Rhine-Westphalia. The results of the methodical scheme outlined in this article should be compared with an already-published approach applied to the same data which were used in the investigation at hand. Site-specific data on C sequestration in humus, forest trees/dead wood and soil from two forest monitoring networks were intersected with available surface information on topography, soil, climate and forestal growing areas and districts. Next, the association between the C sequestration and the influence factors were examined and modelled by linear regression analyses. The resulting regression equations were applied on the surface data to predicatively map the C sequestration for the entire study area. The computations yielded an estimation of 146.7 mio t C sequestered in the forests of North Rhine-Westphalia corresponding to 168.6 t/ha. The calculated values correspond well to according specifications given by the literature. Furthermore, the results are almost identical to those of another pilot study where a different statistical methodology was applied on the same database. Nevertheless, the underlying regression models contribute only a low degree of explanation to the overall variance of the C fixation. This might mainly be due to data quality aspects and missing influence factors in the analyses. In another

  8. Developing Inventory Projection Models Using Empirical Net Forest Growth and Growing-Stock Density Relationships Across U.S. Regions and Species Group

    Science.gov (United States)

    Prakash Nepal; Peter J. Ince; Kenneth E. Skog; Sun J. Chang

    2012-01-01

    This paper describes a set of empirical net forest growth models based on forest growing-stock density relationships for three U.S. regions (North, South, and West) and two species groups (softwoods and hardwoods) at the regional aggregate level. The growth models accurately predict historical U.S. timber inventory trends when we incorporate historical timber harvests...

  9. Creating a Regional MODIS Satellite-Driven Net Primary Production Dataset for European Forests

    Directory of Open Access Journals (Sweden)

    Mathias Neumann

    2016-06-01

    Full Text Available Net primary production (NPP is an important ecological metric for studying forest ecosystems and their carbon sequestration, for assessing the potential supply of food or timber and quantifying the impacts of climate change on ecosystems. The global MODIS NPP dataset using the MOD17 algorithm provides valuable information for monitoring NPP at 1-km resolution. Since coarse-resolution global climate data are used, the global dataset may contain uncertainties for Europe. We used a 1-km daily gridded European climate data set with the MOD17 algorithm to create the regional NPP dataset MODIS EURO. For evaluation of this new dataset, we compare MODIS EURO with terrestrial driven NPP from analyzing and harmonizing forest inventory data (NFI from 196,434 plots in 12 European countries as well as the global MODIS NPP dataset for the years 2000 to 2012. Comparing these three NPP datasets, we found that the global MODIS NPP dataset differs from NFI NPP by 26%, while MODIS EURO only differs by 7%. MODIS EURO also agrees with NFI NPP across scales (from continental, regional to country and gradients (elevation, location, tree age, dominant species, etc.. The agreement is particularly good for elevation, dominant species or tree height. This suggests that using improved climate data allows the MOD17 algorithm to provide realistic NPP estimates for Europe. Local discrepancies between MODIS EURO and NFI NPP can be related to differences in stand density due to forest management and the national carbon estimation methods. With this study, we provide a consistent, temporally continuous and spatially explicit productivity dataset for the years 2000 to 2012 on a 1-km resolution, which can be used to assess climate change impacts on ecosystems or the potential biomass supply of the European forests for an increasing bio-based economy. MODIS EURO data are made freely available at ftp://palantir.boku.ac.at/Public/MODIS_EURO.

  10. Screening of Satureja subspicata Vis. Honey by HPLC-DAD, GC-FID/MS and UV/VIS: Prephenate Derivatives as Biomarkers.

    Science.gov (United States)

    Jerković, Igor; Kranjac, Marina; Marijanović, Zvonimir; Zekić, Marina; Radonić, Ani; Tuberoso, Carlo Ignazio Giovanni

    2016-03-21

    The samples of Satureja subspicata Vis. honey were confirmed to be unifloral by melissopalynological analysis with the characteristic pollen share from 36% to 71%. Bioprospecting of the samples was performed by HPLC-DAD, GC-FID/MS, and UV/VIS. Prephenate derivatives were shown to be dominant by the HPLC-DAD analysis, particularly phenylalanine (167.8 mg/kg) and methyl syringate (MSYR, 114.1 mg/kg), followed by tyrosine and benzoic acid. Higher amounts of MSYR (3-4 times) can be pointed out for distinguishing S. subspicata Vis. honey from other Satureja spp. honey types. GC-FID/MS analysis of ultrasonic solvent extracts of the samples revealed MSYR (46.68%, solvent pentane/Et2O 1:2 (v/v); 52.98%, solvent CH2Cl2) and minor abundance of other volatile prephenate derivatives, as well as higher aliphatic compounds characteristic of the comb environment. Two combined extracts (according to the solvents) of all samples were evaluated for their antioxidant properties by FRAP and DPPH assay; the combined extracts demonstrated higher activity (at lower concentrations) in comparison with the average honey sample. UV/VIS analysis of the samples was applied for determination of CIE Lab colour coordinates, total phenolics (425.38 mg GAE/kg), and antioxidant properties (4.26 mmol Fe(2+)/kg (FRAP assay) and 0.8 mmol TEAC/kg (DDPH assay)).

  11. LANDIS PRO: a landscape model that predicts forest composition and structure changes at regional scales

    Science.gov (United States)

    Wen J. Wang; Hong S. He; Jacob S. Fraser; Frank R. Thompson; Stephen R. Shifley; Martin A. Spetich

    2014-01-01

    LANDIS PRO predicts forest composition and structure changes incorporating species-, stand-, and landscape-scales processes at regional scales. Species-scale processes include tree growth, establishment, and mortality. Stand-scale processes contain density- and size-related resource competition that regulates self-thinning and seedling establishment. Landscapescale...

  12. The infield varietu of available forms in the forest-steppe of western part Central Chernozemic region

    Science.gov (United States)

    Belik, Anton; Devyatova, Tatiana; Bozhko, Svetlana; Gorbunova, Yulia

    2016-04-01

    The infield varietu of available forms in the forest-steppe of western part Central Chernozemic region The Central Chernozemic region of Russia has been a region with a strong agricultural industry and determines the food security of the state by most part. The soil cover of the region is represented mainly by chernozems and is favorable for the cultivation of major crops and produce high crop yields. However, the high development of agriculture in the territory of Central Chernozemic region are led to the development of agrogenic degradation processes which impacts on the growth of the soil cover complexity and contrast, and as a consequence a significant infield variety of soil fertility and yields of major crops. In this regard, very promising direction in CChR is the development and practical application technologies of precision agriculture, which implies the spatial variety of soil fertility analysis within specific fields and work areas, especially the content of available forms of nutrients. The aim of our research was a study of the agro-ecological characteristics of the spatial variety of the content by available forms to plants of major nutrients in representative areas of sloping agricultural landscapes with forest-steppe chernozems in the western part of Central Chernozemic region of Russia. The research of infield variety by content of available forms of major nutrients are carried in the fields of Russian Research Institute of Agriculture and Protect the Soil from Erosion experimental and industrial farm in Medvensky district of Kursk region. The area characterized by a complex organization of relief. The soil cover is represented by full-profile typical (conventional and carbonate), leached chernozems. The growth of contrast of the soil cover are largely determined by the appearance of eroded soils of these analogues, as well as zoogenic dug and accumulative soils All of the studied areas with the forest-steppe chernozems were characterized by

  13. Model Effects on GLAS-Based Regional Estimates of Forest Biomass and Carbon

    Science.gov (United States)

    Nelson, Ross F.

    2010-01-01

    Ice, Cloud, and land Elevation Satellite (ICESat) / Geosciences Laser Altimeter System (GLAS) waveform data are used to estimate biomass and carbon on a 1.27 X 10(exp 6) square km study area in the Province of Quebec, Canada, below the tree line. The same input datasets and sampling design are used in conjunction with four different predictive models to estimate total aboveground dry forest biomass and forest carbon. The four models include non-stratified and stratified versions of a multiple linear model where either biomass or (biomass)(exp 0.5) serves as the dependent variable. The use of different models in Quebec introduces differences in Provincial dry biomass estimates of up to 0.35 G, with a range of 4.94 +/- 0.28 Gt to 5.29 +/-0.36 Gt. The differences among model estimates are statistically non-significant, however, and the results demonstrate the degree to which carbon estimates vary strictly as a function of the model used to estimate regional biomass. Results also indicate that GLAS measurements become problematic with respect to height and biomass retrievals in the boreal forest when biomass values fall below 20 t/ha and when GLAS 75th percentile heights fall below 7 m.

  14. Regional analysis of drought and heat impacts on forests: current and future science directions.

    Science.gov (United States)

    Law, Beverly E

    2014-12-01

    Accurate assessments of forest response to current and future climate and human actions are needed at regional scales. Predicting future impacts on forests will require improved analysis of species-level adaptation, resilience, and vulnerability to mortality. Land system models can be enhanced by creating trait-based groupings of species that better represent climate sensitivity, such as risk of hydraulic failure from drought. This emphasizes the need for more coordinated in situ and remote sensing observations to track changes in ecosystem function, and to improve model inputs, spatio-temporal diagnosis, and predictions of future conditions, including implications of actions to mitigate climate change. © 2014 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  15. Regional Forest Fragmentation and the Nesting Success of Migratory Birds

    Science.gov (United States)

    Scott K. Robinson; Frank R. Thompson III; Therese M. Donovan; Donald R. Whitehead; John Faaborg

    1995-01-01

    Forest fragmentation, the disruption in the continuity of forest habitat, is hypothesized to be a major cause of population decline for, some species of forest birds because fragmentation reduces nesting (reproductive) success. Nest predation and parasitism by cowbirds increased with forest fragmentation in nine midwestern (United States)landscapes that varied from 6...

  16. [Biogeographic regionalization of the mammals of tropical evergreen forests in Mesoamerica].

    Science.gov (United States)

    Olguin-Monroy, Hector C; Gutiérrez-Blando, Cirene; Rios-Muñoz, César A; León-Paniagua, Livia; Navarro-Sigüenza, Adolfo G

    2013-06-01

    Mesoamerica is a biologically complex zone that expands from Southern Mexico to extreme Northern Colombia. The biogeographical patterns and relationships of the mammalian fauna associated to the Mesoamerican Tropical Evergreen Forest (MTEF) are poorly understood, in spite of the wide distribution of this kind of habitat in the region. We compiled a complete georeferenced database of mammalian species distributed in the MTEF of specimens from museum collections and scientific literature. This database was used to create potential distribution maps through the use of environmental niche models (ENMs) by using the Genetic Algorithm for Rule-Set Production (GARP) using 22 climatic and topographic layers. Each map was used as a representation of the geographic distribution of the species and all available maps were summed to obtain general patterns of species richness in the region. Also, the maps were used to construct a presence-absence matrix in a grid of squares of 0.5 degrees of side, that was analyzed in a Parsimony Analysis of Endemicity (PAE), which resulted in a hypothesis of the biogeographic scheme in the region. We compiled a total of 41 527 records of 233 species of mammals associated to the MTEF. The maximum concentration of species richness (104-138 species) is located in the areas around the Isthmus of Tehuantepec, Northeastern Chiapas-Western Guatemala, Western Honduras, Central Nicaragua to Northwestern Costa Rica and Western Panama. The proposed regionalization indicates that mammalian faunas associated to these forests are composed of two main groups that are divided by the Isthmus of Tehuantepec in Oaxaca in: a) a Northern group that includes Sierra Madre of Chiapas-Guatemala and Yucatan Peninsula; and b) an austral group, that contains the Pacific slope of Chiapas towards the South including Central America. Some individual phylogenetic studies of mammal species in the region support the relationships between the areas of endemism proposed, which

  17. Analytical method validation of GC-FID for the simultaneous measurement of hydrocarbons (C2-C4) in their gas mixture

    OpenAIRE

    Oman Zuas; Harry budiman; Muhammad Rizky Mulyana

    2016-01-01

    An accurate gas chromatography coupled to a flame ionization detector (GC-FID) method was validated for the simultaneous analysis of light hydrocarbons (C2-C4) in their gas mixture. The validation parameters were evaluated based on the ISO/IEC 17025 definition including method selectivity, repeatability, accuracy, linearity, limit of detection (LOD), limit of quantitation (LOQ), and ruggedness. Under the optimum analytical conditions, the analysis of gas mixture revealed that each target comp...

  18. Floristic, edaphic and structural characteristics of flooded and unflooded forests in the lower Rio Purús region of central Amazonia, Brazil

    Directory of Open Access Journals (Sweden)

    Haugaasen Torbjørn

    2006-01-01

    Full Text Available Despite a natural history interest in the early 1900s, relatively little ecological research has been carried out in the Rio Purús basin of central Amazonia, Brazil. Here we describe a new study area in the region of Lago Uauaçú with an emphasis on the climate, forest structure and composition, and soil characteristics between adjacent unflooded (terra firme and seasonally inundated forests; situated within both the white-water (várzea and black-water (igapó drainage systems that dominate the landscape. The climate was found to be typical of that of the central Amazon. Várzea forest soils had high concentrations of nutrients, while terra firme and igapó soils were comparatively nutrient-poor. Terra firme forests were the most floristically diverse forest type, whereas várzea was intermediate, and igapó the most species-poor. The Lecythidaceae was the most important family in terra firme while the Euphorbiaceae was the most important in both várzea and igapó. There were significant differences between forest types in terms of number of saplings, canopy cover and understorey density. In contrasting our results with other published information, we conclude that the Lago Uauaçú region consists of a typical central Amazonian forest macro-mosaic, but is a unique area with high conservation value due to the intimate juxtaposition of terra firme, várzea and igapó forests.

  19. Experts’ Perceptions of the Effects of Forest Biomass Harvesting on Sustainability in the Alpine Region

    Directory of Open Access Journals (Sweden)

    Gianluca Grilli

    2015-06-01

    Full Text Available Background and Purpose: In the EU political agenda, the use of forest biomass for energy has grown rapidly and significantly, in order to mitigate carbon dioxide emissions and reduce the energy dependence on fossil fuels of European member countries. The target of the EU climate and energy package is to raise the share of renewable energy consumption produced from renewable resources to 20% in 2020 (Directive 2009/28/EC. With regards to biomass energy, the supply of forest wood biomass is expected to rise by 45% (reference period: 2006-2020, in response to increasing demand for renewable sources. The increase of forest biomass supply could have both positive and negative effects on several forest ecosystem services (ESs and local development. These effects should be assessed in a proper manner and taken into account when formulating management strategies. The aim of the paper is to assess the environmental, economic and social sustainability of forest biomass harvesting for energy, using the Figure of Merit (FoM approach. Materials and Methods: Sustainability was assessed through a set of four indicators: two focused on experts’ opinions regarding the effects of forest biomass harvesting and the other two focused on the cost-benefit analysis (potential energy obtained and costs for wood chips. The research was developed through four case studies located in the Alpine Region. A semi-structured questionnaire was administered face-to-face to 32 selected experts. The perceived effects of forest biomass harvesting for energy on ESs and local development were evaluated by experts using a 5-point Likert scale (from “quite negative effect” to “quite positive effect”. Results: All experts agree that forest biomass harvesting has a positive effect on forest products provision and local economic development (employment of local workforce, local entrepreneurship and market diversification, while the effects on other ESs are controversial (e

  20. Regional and historical factors supplement current climate in shaping global forest canopy height

    DEFF Research Database (Denmark)

    Zhang, Jian; Nielsen, Scott; Mao, Lingfeng

    2016-01-01

    on Light Detection and Ranging-derived maximum forest canopy height (Hmax) to test hypotheses relating Hmax to current climate (water availability, ambient energy and water–energy dynamics), regional evolutionary and biogeographic history, historical climate change, and human disturbance. We derived Hmax...... biogeographic regions, supporting the role of regional evolutionary and biogeographic history in structuring broad-scale patterns in canopy height. Furthermore, there were divergent relationships between climate and Hmax between the Southern and Northern Hemispheres, consistent with historical evolutionary...... contingencies modulating these relationships. Historical climate change was also related to Hmax, albeit not as strongly, with shorter canopy heights where late-Quaternary climate has been less stable. In contrast, human disturbance was only weakly related to Hmax at the scale (55 km) examined here. Synthesis...

  1. Mapping Forest Biomass Using Remote Sensing and National Forest Inventory in China

    Directory of Open Access Journals (Sweden)

    Ling Du

    2014-06-01

    Full Text Available Quantifying the spatial pattern of large-scale forest biomass can provide a general picture of the carbon stocks within a region and is of great scientific and political importance. The combination of the advantages of remote sensing data and field survey data can reduce uncertainty as well as demonstrate the spatial distribution of forest biomass. In this study, the seventh national forest inventory statistics (for the period 2004–2008 and the spatially explicit MODIS Land Cover Type product (MCD12C1 were used together to quantitatively estimate the spatially-explicit distribution of forest biomass in China (with a resolution of 0.05°, ~5600 m. Our study demonstrated that the calibrated forest cover proportion maps allow proportionate downscaling of regional forest biomass statistics to forest cover pixels to produce a relatively fine-resolution biomass map. The total stock of forest biomass in China was 11.9 Pg with an average of 76.3 Mg ha−1 during the study period; the high values were located in mountain ranges in northeast, southwest and southeast China and were strongly correlated with forest age and forest density.

  2. Tennessee's forest land area was stable 1999-2005 but early successional forest area declined

    Science.gov (United States)

    Christopher M. Oswalt

    2008-01-01

    A new analysis of the most recent (2005) annualized moving average data for Tennessee indicates that the area of forest land in the State remained stable between 1999 and 2005. Although trends in forest land area vary from region to region within the State, Tennessee neither lost nor gained forest land between 1999 and 2005. However, Tennessee had more than 2.5 times...

  3. Impact of forested fallows on fertility and mercury content in soils of the Tapajós River region, Brazilian Amazon.

    Science.gov (United States)

    Patry, Cynthia; Davidson, Robert; Lucotte, Marc; Béliveau, Annie

    2013-08-01

    Recent research on slash-and-burn agriculture conducted in the Amazonian basin has suggested that soils must be left under forested fallows for at least 10 to 15 years to regain fertility levels comparable to non-disturbed forests in order to allow for short cycle crop cultivation. However, small scale farmers tend nowadays to re-burn secondary forests as soon as after 3 to 5 years, thus could contribute to further reduce soil fertility and could enhance the transfer of mercury (Hg) naturally present in soils of the region towards water courses. The present research project sets out to characterize the impact of forested fallows of differing age and land-use history on soils properties (fertility and Hg contents) in the region of the Tapajós River, an active pioneer front of the Brazilian Amazon. To do this, soil samples in forested fallows of variable age and in control primary forests were retrieved. In general, soil fertility of grouped forested fallows of different ages was similar to that of the primary forests. But when discriminating soils according to their texture, forested fallows on coarse grained soils still had much higher NH4/NO3 ratios, NH4 and Ca contents than primary forests, this even 15 years after burning. The impact of repeated burnings was also assessed. Fallows on coarse grained soils showed an impoverishment for all variables related to fertility when the number of burnings was 5 or more. For fallows on fine grained soils that underwent 5 or more burnings, NO3 contents were low although a cation enrichment was observed. Total soil Hg content was also sensitive to repeated burnings, showing similar losses for forested fallows established on both types of soil. However, Hg linked to coarse particles appeared to migrate back towards fine particles at the surface of coarse grained soils in fallows older than 7 years. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. The relative contributions of forest growth and areal expansion to forest biomass carbon

    Science.gov (United States)

    P. Li; J. Zhu; H. Hu; Z. Guo; Y. Pan; R. Birdsey; J. Fang

    2016-01-01

    Forests play a leading role in regional and global terrestrial carbon (C) cycles. Changes in C sequestration within forests can be attributed to areal expansion (increase in forest area) and forest growth (increase in biomass density). Detailed assessment of the relative contributions of areal expansion and forest growth to C sinks is crucial to reveal the mechanisms...

  5. Understanding the Stability of Forest Reserve Boundaries in the West Mengo Region of Uganda

    Directory of Open Access Journals (Sweden)

    Nathan D. Vogt

    2006-06-01

    Full Text Available Despite heavy pressure and disturbance, state property regimes have stemmed deforestation within protected areas of the West Mengo region of Uganda for over 50 yr. In this manuscript, we reconstruct the process of creation and maintenance of forest reserve boundaries in the West Mengo region of Uganda to identify why these boundaries have largely remained stable over the long term under conditions in which they may be predicted to fail. The dramatic boundary stability in West Mengo we attribute to key aspects of institutional design and enforcement of boundaries.

  6. Evaluating the relative impact of climate and economic changes on forest and agricultural ecosystem services in mountain regions.

    Science.gov (United States)

    Briner, Simon; Elkin, Ché; Huber, Robert

    2013-11-15

    Provisioning of ecosystem services (ES) in mountainous regions is predicted to be influenced by i) the direct biophysical impacts of climate change, ii) climate mediated land use change, and iii) socioeconomic driven changes in land use. The relative importance and the spatial distribution of these factors on forest and agricultural derived ES, however, is unclear, making the implementation of ES management schemes difficult. Using an integrated economic-ecological modeling framework, we evaluated the impact of these driving forces on the provision of forest and agricultural ES in a mountain region of southern Switzerland. Results imply that forest ES will be strongly influenced by the direct impact of climate change, but that changes in land use will have a comparatively small impact. The simulation of direct impacts of climate change affects forest ES at all elevations, while land use changes can only be found at high elevations. In contrast, changes to agricultural ES were found to be primarily due to shifts in economic conditions that alter land use and land management. The direct influence of climate change on agriculture is only predicted to be substantial at high elevations, while socioeconomic driven shifts in land use are projected to affect agricultural ES at all elevations. Our simulation results suggest that policy schemes designed to mitigate the negative impact of climate change on forests should focus on suitable adaptive management plans, accelerating adaptation processes for currently forested areas. To maintain provision of agricultural ES policy needs to focus on economic conditions rather than on supporting adaptation to new climate. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Regional supply, demand and utilization of forest biomass in South-East Finland; Metsaeenergian kaeytoen kasvun liiketoimintamahdollisuudet Kaakkois-Suomessa

    Energy Technology Data Exchange (ETDEWEB)

    Laihanen, M.; Karhunen, A.; Ranta, T.

    2011-07-01

    Rising demand of forest biomass in South-East Finland has created need to evaluate the impact for different energy users and producers. The aim of this study is to settle the current demand and availability of forest biomass and to evaluate the opportunities the growth offers. Initial data of study base on current structure of energy supply and on current energy demand. The information can be used as a guideline when evaluating local sufficiency of energy wood and business opportunities for local actors such as energy producers and forest fuel suppliers. Main aim of the study is to create prosperity and entrepreneurship to South-East Finland. Analysis included following tasks: gathering data about the current and potential use and users of forest biomass (logging residues, stumps and small diameter energy wood), settling local availability of forest fuels, creating forest biomass balance to indicate the sufficiency of local resources and to identify the effects of current business opportunities around forest biomass sector. Results of the study illustrate local balance between use and availability of energy wood, need for labor and revenue of forest biomass supply in South-East Finland. Evaluation analysis constructed for regional and local needs combine the current and potential use of forest biomass with local availability. Analysis represents model for evaluating local possibilities of utilization of forest biomass. Co-operation with Forestry Centre of South-East Finland was productive through entire study. (orig.)

  8. Model Effects on GLAS-Based Regional Estimates of Forest Biomass and Carbon

    Science.gov (United States)

    Nelson, Ross

    2008-01-01

    ICESat/GLAS waveform data are used to estimate biomass and carbon on a 1.27 million sq km study area. the Province of Quebec, Canada, below treeline. The same input data sets and sampling design are used in conjunction with four different predictive models to estimate total aboveground dry forest biomass and forest carbon. The four models include nonstratified and stratified versions of a multiple linear model where either biomass or (square root of) biomass serves as the dependent variable. The use of different models in Quebec introduces differences in Provincial biomass estimates of up to 0.35 Gt (range 4.942+/-0.28 Gt to 5.29+/-0.36 Gt). The results suggest that if different predictive models are used to estimate regional carbon stocks in different epochs, e.g., y2005, y2015, one might mistakenly infer an apparent aboveground carbon "change" of, in this case, 0.18 Gt, or approximately 7% of the aboveground carbon in Quebec, due solely to the use of different predictive models. These findings argue for model consistency in future, LiDAR-based carbon monitoring programs. Regional biomass estimates from the four GLAS models are compared to ground estimates derived from an extensive network of 16,814 ground plots located in southern Quebec. Stratified models proved to be more accurate and precise than either of the two nonstratified models tested.

  9. A tale of two "forests": random forest machine learning AIDS tropical forest carbon mapping.

    Science.gov (United States)

    Mascaro, Joseph; Asner, Gregory P; Knapp, David E; Kennedy-Bowdoin, Ty; Martin, Roberta E; Anderson, Christopher; Higgins, Mark; Chadwick, K Dana

    2014-01-01

    Accurate and spatially-explicit maps of tropical forest carbon stocks are needed to implement carbon offset mechanisms such as REDD+ (Reduced Deforestation and Degradation Plus). The Random Forest machine learning algorithm may aid carbon mapping applications using remotely-sensed data. However, Random Forest has never been compared to traditional and potentially more reliable techniques such as regionally stratified sampling and upscaling, and it has rarely been employed with spatial data. Here, we evaluated the performance of Random Forest in upscaling airborne LiDAR (Light Detection and Ranging)-based carbon estimates compared to the stratification approach over a 16-million hectare focal area of the Western Amazon. We considered two runs of Random Forest, both with and without spatial contextual modeling by including--in the latter case--x, and y position directly in the model. In each case, we set aside 8 million hectares (i.e., half of the focal area) for validation; this rigorous test of Random Forest went above and beyond the internal validation normally compiled by the algorithm (i.e., called "out-of-bag"), which proved insufficient for this spatial application. In this heterogeneous region of Northern Peru, the model with spatial context was the best preforming run of Random Forest, and explained 59% of LiDAR-based carbon estimates within the validation area, compared to 37% for stratification or 43% by Random Forest without spatial context. With the 60% improvement in explained variation, RMSE against validation LiDAR samples improved from 33 to 26 Mg C ha(-1) when using Random Forest with spatial context. Our results suggest that spatial context should be considered when using Random Forest, and that doing so may result in substantially improved carbon stock modeling for purposes of climate change mitigation.

  10. A tale of two "forests": random forest machine learning AIDS tropical forest carbon mapping.

    Directory of Open Access Journals (Sweden)

    Joseph Mascaro

    Full Text Available Accurate and spatially-explicit maps of tropical forest carbon stocks are needed to implement carbon offset mechanisms such as REDD+ (Reduced Deforestation and Degradation Plus. The Random Forest machine learning algorithm may aid carbon mapping applications using remotely-sensed data. However, Random Forest has never been compared to traditional and potentially more reliable techniques such as regionally stratified sampling and upscaling, and it has rarely been employed with spatial data. Here, we evaluated the performance of Random Forest in upscaling airborne LiDAR (Light Detection and Ranging-based carbon estimates compared to the stratification approach over a 16-million hectare focal area of the Western Amazon. We considered two runs of Random Forest, both with and without spatial contextual modeling by including--in the latter case--x, and y position directly in the model. In each case, we set aside 8 million hectares (i.e., half of the focal area for validation; this rigorous test of Random Forest went above and beyond the internal validation normally compiled by the algorithm (i.e., called "out-of-bag", which proved insufficient for this spatial application. In this heterogeneous region of Northern Peru, the model with spatial context was the best preforming run of Random Forest, and explained 59% of LiDAR-based carbon estimates within the validation area, compared to 37% for stratification or 43% by Random Forest without spatial context. With the 60% improvement in explained variation, RMSE against validation LiDAR samples improved from 33 to 26 Mg C ha(-1 when using Random Forest with spatial context. Our results suggest that spatial context should be considered when using Random Forest, and that doing so may result in substantially improved carbon stock modeling for purposes of climate change mitigation.

  11. Evaluation of Sugar Maple Dieback in the Upper Great Lakes Region and Development of a Forest Health Youth Education Program

    Science.gov (United States)

    Bal, Tara L.

    2013-01-01

    Sugar Maple, "Acer saccharum" Marsh., is one of the most valuable trees in the northern hardwood forests. Severe dieback was recently reported by area foresters in the western Upper Great Lakes Region. Sugar Maple has had a history of dieback over the last 100 years throughout its range and different variables have been identified as…

  12. Phylogenetic classification of the world’s tropical forests

    Science.gov (United States)

    Franklin, Janet; Arroyo-Rodríguez, Víctor; Field, Richard; Aguilar, Salomon; Aguirre, Nikolay; Ahumada, Jorge; Aiba, Shin-Ichiro; K, Anitha; Avella, Andres; Mora, Francisco; Aymard C., Gerardo A.; Báez, Selene; Balvanera, Patricia; Bastian, Meredith L.; Bastin, Jean-François; Bellingham, Peter J.; van den Berg, Eduardo; da Conceição Bispo, Polyanna; Boeckx, Pascal; Boehning-Gaese, Katrin; Bongers, Frans; Boyle, Brad; Brearley, Francis Q.; Brown, Sandra; Chai, Shauna-Lee; Chazdon, Robin L.; Chen, Shengbin; Chhang, Phourin; Chuyong, George; Ewango, Corneille; Coronado, Indiana M.; Cristóbal-Azkarate, Jurgi; Culmsee, Heike; Damas, Kipiro; Dattaraja, H. S.; Davidar, Priya; DeWalt, Saara J.; Din, Hazimah; Drake, Donald R.; Durigan, Giselda; Eichhorn, Karl; Eler, Eduardo Schmidt; Enoki, Tsutomu; Ensslin, Andreas; Fandohan, Adandé Belarmain; Farwig, Nina; Feeley, Kenneth J.; Fischer, Markus; Forshed, Olle; Garcia, Queila Souza; Garkoti, Satish Chandra; Gillespie, Thomas W.; Gillet, Jean-Francois; Gonmadje, Christelle; Granzow-de la Cerda, Iñigo; Griffith, Daniel M.; Grogan, James; Hakeem, Khalid Rehman; Harris, David J.; Harrison, Rhett D.; Hector, Andy; Hemp, Andreas; Hussain, M. Shah; Ibarra-Manríquez, Guillermo; Hanum, I. Faridah; Imai, Nobuo; Jansen, Patrick A.; Joly, Carlos Alfredo; Joseph, Shijo; Kartawinata, Kuswata; Kearsley, Elizabeth; Kelly, Daniel L.; Kessler, Michael; Killeen, Timothy J.; Kooyman, Robert M.; Laumonier, Yves; Laurance, William F.; Lawes, Michael J.; Letcher, Susan G.; Lovett, Jon; Lozada, Jose; Lu, Xinghui; Lykke, Anne Mette; Mahmud, Khairil Bin; Mahayani, Ni Putu Diana; Mansor, Asyraf; Marshall, Andrew R.; Martin, Emanuel H.; Calderado Leal Matos, Darley; Meave, Jorge A.; Melo, Felipe P. L.; Mendoza, Zhofre Huberto Aguirre; Metali, Faizah; Medjibe, Vincent P.; Metzger, Jean Paul; Metzker, Thiago; Mohandass, D.; Munguía-Rosas, Miguel A.; Muñoz, Rodrigo; Nurtjahy, Eddy; de Oliveira, Eddie Lenza; Onrizal; Parolin, Pia; Parren, Marc; Parthasarathy, N.; Paudel, Ekananda; Perez, Rolando; Pérez-García, Eduardo A.; Pommer, Ulf; Poorter, Lourens; Qie, Lan; Piedade, Maria Teresa F.; Pinto, José Roberto Rodrigues; Poulsen, Axel Dalberg; Poulsen, John R.; Powers, Jennifer S.; Prasad, Rama Chandra; Puyravaud, Jean-Philippe; Rangel, Orlando; Reitsma, Jan; Rocha, Diogo S. B.; Rolim, Samir; Rovero, Francesco; Ruokolainen, Kalle; Rutishauser, Ervan; Rutten, Gemma; Mohd. Said, Mohd. Nizam; Saiter, Felipe Z.; Saner, Philippe; Santos, Braulio; dos Santos, João Roberto; Sarker, Swapan Kumar; Schoengart, Jochen; Schulze, Mark; Sheil, Douglas; Sist, Plinio; Souza, Alexandre F.; Spironello, Wilson Roberto; Sposito, Tereza; Steinmetz, Robert; Stevart, Tariq; Suganuma, Marcio Seiji; Sukri, Rahayu; Sukumar, Raman; Sunderland, Terry; Supriyadi; Suresh, H. S.; Suzuki, Eizi; Tabarelli, Marcelo; Tang, Jianwei; Tanner, Ed V. J.; Targhetta, Natalia; Theilade, Ida; Thomas, Duncan; Timberlake, Jonathan; de Morisson Valeriano, Márcio; van Valkenburg, Johan; Van Do, Tran; Van Sam, Hoang; Vandermeer, John H.; Verbeeck, Hans; Vetaas, Ole Reidar; Adekunle, Victor; Vieira, Simone A.; Webb, Campbell O.; Webb, Edward L.; Whitfeld, Timothy; Wich, Serge; Williams, John; Wiser, Susan; Wittmann, Florian; Yang, Xiaobo; Adou Yao, C. Yves; Yap, Sandra L.; Zahawi, Rakan A.; Zakaria, Rahmad; Zang, Runguo

    2018-01-01

    Knowledge about the biogeographic affinities of the world’s tropical forests helps to better understand regional differences in forest structure, diversity, composition, and dynamics. Such understanding will enable anticipation of region-specific responses to global environmental change. Modern phylogenies, in combination with broad coverage of species inventory data, now allow for global biogeographic analyses that take species evolutionary distance into account. Here we present a classification of the world’s tropical forests based on their phylogenetic similarity. We identify five principal floristic regions and their floristic relationships: (i) Indo-Pacific, (ii) Subtropical, (iii) African, (iv) American, and (v) Dry forests. Our results do not support the traditional neo- versus paleotropical forest division but instead separate the combined American and African forests from their Indo-Pacific counterparts. We also find indications for the existence of a global dry forest region, with representatives in America, Africa, Madagascar, and India. Additionally, a northern-hemisphere Subtropical forest region was identified with representatives in Asia and America, providing support for a link between Asian and American northern-hemisphere forests. PMID:29432167

  13. Spatial and temporal patterns of plantation forests in the United States since the 1930s: an annual and gridded data set for regional Earth system modeling

    Science.gov (United States)

    Chen, Guangsheng; Pan, Shufen; Hayes, Daniel J.; Tian, Hanqin

    2017-08-01

    Plantation forest area in the conterminous United States (CONUS) ranked second among the world's nations in the land area apportioned to forest plantation. As compared to the naturally regenerated forests, plantation forests demonstrate significant differences in biophysical characteristics, and biogeochemical and hydrological cycles as a result of more intensive management practices. Inventory data have been reported for multiple time periods on plot, state, and regional scales across the CONUS, but the requisite annual and spatially explicit plantation data set over a long-term period for analysis of the role of plantation management on regional or national scales is lacking. Through synthesis of multiple inventory data sources, this study developed methods to spatialize the time series plantation forest and tree species distribution data for the CONUS over the 1928-2012 time period. According to this new data set, plantation forest area increased from near zero in the 1930s to 268.27 thousand km2 in 2012, accounting for 8.65 % of the total forestland area in the CONUS. Regionally, the South contained the highest proportion of plantation forests, accounting for about 19.34 % of total forestland area in 2012. This time series and gridded data set developed here can be readily applied in regional Earth system modeling frameworks for assessing the impacts of plantation management practices on forest productivity, carbon and nitrogen stocks, and greenhouse gases (e.g., CO2, CH4, and N2O) and water fluxes on regional or national scales. The gridded plantation distribution and tree species maps, and the interpolated state-level annual tree planting area and plantation area during 1928-2012, are available from PANGAEA.873558" target="_blank">https://doi.org/10.1594/PANGAEA.873558.

  14. [Regional and global estimates of carbon stocks and carbon sequestration capacity in forest ecosystems: A review].

    Science.gov (United States)

    Liu, Wei-wei; Wang, Xiao-ke; Lu, Fei; Ouyang, Zhi-yun

    2015-09-01

    As a dominant part of terrestrial ecosystems, forest ecosystem plays an important role in absorbing atmospheric CO2 and global climate change mitigation. From the aspects of zonal climate and geographical distribution, the present carbon stocks and carbon sequestration capacity of forest ecosystem were comprehensively examined based on the review of the latest literatures. The influences of land use change on forest carbon sequestration were analyzed, and factors that leading to the uncertainty of carbon sequestration assessment in forest ecosystem were also discussed. It was estimated that the current forest carbon stock was in the range of 652 to 927 Pg C and the carbon sequestration capacity was approximately 4.02 Pg C · a(-1). In terms of zonal climate, the carbon stock and carbon sequestration capacity of tropical forest were the maximum, about 471 Pg C and 1.02-1.3 Pg C · a(-1) respectively; then the carbon stock of boreal forest was about 272 Pg C, while its carbon sequestration capacity was the minimum, approximately 0.5 Pg C · a(-1); for temperate forest, the carbon stock was minimal, around 113 to 159 Pg C and its carbon sequestration capacity was 0.8 Pg C · a(-1). From the aspect of geographical distribution, the carbon stock of forest ecosystem in South America was the largest (187.7-290 Pg C), then followed by European (162.6 Pg C), North America (106.7 Pg C), Africa (98.2 Pg C) and Asia (74.5 Pg C), and Oceania (21.7 Pg C). In addition, carbon sequestration capacity of regional forest ecosystem was summed up as listed below: Tropical South America forest was the maximum (1276 Tg C · a(-1)), then were Tropical Africa (753 Tg C · a(-1)), North America (248 Tg C · a(-1)) and European (239 Tg C · a(-1)), and East Asia (98.8-136.5 Tg C · a(-1)) was minimum. To further reduce the uncertainty in the estimations of the carbon stock and carbon sequestration capacity of forest ecosystem, comprehensive application of long-term observation, inventories

  15. Regional assessment of boreal forest productivity using an ecological process model and remote sensing parameter maps.

    Science.gov (United States)

    Kimball, J. S.; Keyser, A. R.; Running, S. W.; Saatchi, S. S.

    2000-06-01

    An ecological process model (BIOME-BGC) was used to assess boreal forest regional net primary production (NPP) and response to short-term, year-to-year weather fluctuations based on spatially explicit, land cover and biomass maps derived by radar remote sensing, as well as soil, terrain and daily weather information. Simulations were conducted at a 30-m spatial resolution, over a 1205 km(2) portion of the BOREAS Southern Study Area of central Saskatchewan, Canada, over a 3-year period (1994-1996). Simulations of NPP for the study region were spatially and temporally complex, averaging 2.2 (+/- 0.6), 1.8 (+/- 0.5) and 1.7 (+/- 0.5) Mg C ha(-1) year(-1) for 1994, 1995 and 1996, respectively. Spatial variability of NPP was strongly controlled by the amount of aboveground biomass, particularly photosynthetic leaf area, whereas biophysical differences between broadleaf deciduous and evergreen coniferous vegetation were of secondary importance. Simulations of NPP were strongly sensitive to year-to-year variations in seasonal weather patterns, which influenced the timing of spring thaw and deciduous bud-burst. Reductions in annual NPP of approximately 17 and 22% for 1995 and 1996, respectively, were attributed to 3- and 5-week delays in spring thaw relative to 1994. Boreal forest stands with greater proportions of deciduous vegetation were more sensitive to the timing of spring thaw than evergreen coniferous stands. Similar relationships were found by comparing simulated snow depth records with 10-year records of aboveground NPP measurements obtained from biomass harvest plots within the BOREAS region. These results highlight the importance of sub-grid scale land cover complexity in controlling boreal forest regional productivity, the dynamic response of the biome to short-term interannual climate variations, and the potential implications of climate change and other large-scale disturbances.

  16. Forest dynamics in the temperate rainforests of Alaska: from individual tree to regional scales

    Science.gov (United States)

    Tara M. Barrett

    2015-01-01

    Analysis of remeasurement data from 1079 Forest Inventory and Analysis (FIA) plots revealed multi-scale change occurring in the temperate rainforests of southeast Alaska. In the western half of the region, including Prince William Sound, aboveground live tree biomass and carbon are increasing at a rate of 8 ( ± 2 ) percent per decade, driven by an increase in Sitka...

  17. Determination and Distribution of Critical Loads: Application to the Forest Soils in the Autonomous Region of Madrid

    International Nuclear Information System (INIS)

    Sousa, M.; Schmid, T.; Rabago, I.

    2000-01-01

    The critical loads of acidity and sulphur have been determined for forest soils within the north and northwest of the Autonomous Region of Madrid. The SMB-CCE and SMB-PROFILE steady state models have been applied using a 1 km x 1 km resolution. The forest ecosystems have been characterised according to the soil and forest type, slope and climatic data using a Geographic Information System. In order to estimate the critical loads, processes such as weathering rate of the parent material, atmospheric deposition. critical alkalinity leaching rate and nutrients absorbed by the vegetation have been considered. In general the forest soils present high critical load values for acidity and sulphur. The more sensitive zones are found in the north of the Sierra of Guadarrama. Independent of the applied methods, the results are associated to the types of soils where Leptosols have the lowest, Cambisoles and Regosoles intermediate and Luvisoles the most elevated values. (Author) 40 refs

  18. Forest biological diversity interactions with resource utilization

    Science.gov (United States)

    S.T. Mok

    1992-01-01

    The most important forest resources of the Asia-Pacific region are the highly diverse rain forests. Utilization of the resource is a natural and inevitable consequence of the region's socio-economic development. The sustainable management and development of forest resources in the region can be achieved by implementing conservational forestry, which is based on...

  19. Conserving forest biodiversity across multiple land ownerships: lessons from the Northwest Forest Plan and the Southeast Queensland Regional Forests Agreement (Australia).

    Science.gov (United States)

    C.A. McAlpine; T.A. Spies; P. Norman; A. Peterson

    2007-01-01

    As the area of the world's forests shrinks, the management of production forests is becoming increasingly paramount for biodiversity conservation. In the United States and Australia, public debate and controversy about the management of production forests during the later decades of the 20th century resulted in governments adopting sweeping top-down changes to...

  20. Quantitative remote sensing for monitoring forest canopy structural variables in the Three Gorges region of China

    NARCIS (Netherlands)

    Zeng, Y.

    2008-01-01

    Bridging various scales ranging from local to regional and global, remote sensing has facilitated extraordinary advances in modeling and mapping ecosystems and their functioning. Since forests are one of the most important natural resources on the terrestrial Earth surface, accurate and up-to-date

  1. Results of forest insect and disease surveys in the central region of Ontario, 1994. Information report No. O-X-448. Annual publication

    Energy Technology Data Exchange (ETDEWEB)

    Evans, H.J.

    1995-12-31

    Report summarizing forest damage by insects, diseases and abiotic conditions in the Central Region of Ontario. Textual descriptions of pests are accompanied by maps and statistical tables. Pest conditions covered include pine false webworm, budworms, shoot borers, leafcutters, armillaria root rot and other diseases and insects. Abiotic damage reported on covers forest decline, frost injury, salt and wind damage, and winter drying. Forest health reports and special surveys are also described.

  2. An Experience of Statistical Method Application in Forest Survey at Angara River Region in 1932

    Directory of Open Access Journals (Sweden)

    L. N. Vashchuk

    2014-10-01

    Full Text Available Report of the Angara forest economic expedition of forest economic survey in 1932 on the left bank of the Angara River has been found. The survey covered a part of Krasnoyarsk Territory and Irkutsk region, a total area of 18641.8 thousand ha. The report describes technology of forest inventory and achievements that have not previously been published. The survey was conducted by statistical method, which consisted of a sample by a continuous forest inventory enumeration of trees on sample plots (SP, arranged in an array on a particular system, followed by mathematical-statistical recalculation of the sample results to the entire survey. To do this, strip finders (sights were cut in the latitudinal direction at a distance from one another at 16 km. On the hacked sights, by every 2 km, 0.1 ha (10 × 100 m SP were established. In total 32 forest inventory sights were hacked, with total length of 9931 km, which incorporated 4817 SP. The accuracy of forest resources’ inventory characteristics determining also was investigated using smaller sample plots. For this purpose, each of the SP were cut to smaller area of 0.01 ha (10 × 10 m, where independent continuous enumeration of trees was conducted, andsample trees were cut, measured and bucked to the assortments, to explore the tree stand assortment structure. At each «sample cutting area» all the trees were felled out from 44 cm and above DBH. At half of the sample plot with 5 × 10 m size, located in the eastern end, all the trees were felled out and measured from 24 cm and above DBH. Every four «sample cutting area» in the fifth, all the trees with 12 cm and above DBH were cut down and measured. According to the results of the work, a detailed description of forest resources in the whole Angara river basin, and across 17 forest exploitation areas was completed.

  3. Hydrological consequences of land-use change from forest to pasture in the Atlantic rain forest region

    Directory of Open Access Journals (Sweden)

    Luiz Antonio Martinelli

    2012-12-01

    Full Text Available The Atlantic rain forest is the most endangered ecosystem in Brazil. Its degradation has started since 1500 when the European settlers arrived. Despite of all land use changes that have occurred, hydrological studies carried out in this biome have been limited to hydrological functioning of rain forests only. In order to understand the hydrological consequences of land-use change from forest to pasture, we described the hydrological functioning of a pasture catchment that was previously covered by tropical rain forest. To reach this goal we measured the precipitation, soil matric potential, discharge, surface runoff and water table levels during one year. The results indicated that there is a decrease in surface soil saturated hydraulic conductivity. However, as low intensity rainfall prevails, the lower water conductivity does not necessarily leads to a substantially higher surface runoff generation. Regarding soil water matric potential, the pasture presented higher moisture levels than forest during the dry season. This increase in soil moisture implies in higher water table recharge that, in turn, explain the higher runoff ratio. This way, land-use change conversion from forest to pasture implies a higher annual streamflow in pasture catchments. Nonetheless, this increase in runoff due to forest conversion to pasture implies in losses of biological diversity as well as lower soil protection.

  4. Phylogenetic classification of the world's tropical forests

    DEFF Research Database (Denmark)

    Slik, J. W. Ferry; Franklin, Janet; Arroyo-Rodriguez, Victor

    2018-01-01

    -Pacific counterparts. We also find indications for the existence of a global dry forest region, with representatives in America, Africa, Madagascar, and India. Additionally, a northern-hemisphere Subtropical forest region was identified with representatives in Asia and America, providing support for a link between......Knowledge about the biogeographic affinities of the world's tropical forests helps to better understand regional differences in forest structure, diversity, composition, and dynamics. Such understanding will enable anticipation of region-specific responses to global environmental change. Modern...... phylogenies, in combination with broad coverage of species inventory data, now allow for global biogeographic analyses that take species evolutionary distance into account. Here we present a classification of the world's tropical forests based on their phylogenetic similarity. We identify five principal...

  5. Sustainable Forest Bioenergy Development Strategies in Indochina: Collaborative Effort to Establish Regional Policies

    Directory of Open Access Journals (Sweden)

    Viktor J. Bruckman

    2018-04-01

    Full Text Available We conducted a feasibility study in Indochina (Cambodia, Laos, Myanmar, Thailand, and Vietnam with the aim of promoting biomass and bioenergy markets, technology transfer, rural development, and income generation. Policy development is guided by the International Union of Forest Research Institutions (IUFRO Task Force “Sustainable Forest Bioenergy Network”. In this paper, we highlight the achievements up to now and present results of a multi-stakeholder questionnaire in combination with a quantitative analysis of the National Bioenergy Development Plans (NBDPs. We found a gap between official documents and working group assessments. NBDPs are focused on the market development, technology transfer, and funding possibilities of a regional bioenergy strategy, while the respondents of a questionnaire (working groups favored more altruistic goals, i.e., sustainable resource management, environmental protection and climate change mitigation, generation of rural income, and community involvement, etc. We therefore suggest the following measures to ensure regulations that support the original aims of the network (climate change mitigation, poverty alleviation, sustainable resource use, and diversification of energy generation: (i Consideration of science-based evidence for drafting bioenergy policies, particularly in the field of biomass production and harvesting; (ii invitation of stakeholders representing rural communities to participate in this process; (iii development of sustainability criteria; (iv feedback cycles ensuring more intensive discussion of policy drafts; (v association of an international board of experts to provide scientifically sound feedback and input; and (vi establishment of a local demonstration region, containing various steps in the biomass/bioenergy supply chain including transboundary collaboration in the ACMECS region.

  6. U.S. Forest Service Region 1 Lake Chemistry, NADP, and IMPROVE air quality data analysis

    Science.gov (United States)

    Jill Grenon; Mark Story

    2009-01-01

    This report was developed to address the need for comprehensive analysis of U.S. Forest Service (USFS) Region 1 air quality monitoring data. The monitoring data includes Phase 3 (long-term data) lakes, National Atmospheric Deposition Program (NADP), and Interagency Monitoring of Protected Visual Environments (IMPROVE). Annual and seasonal data for the periods of record...

  7. Using the Landsat data archive to assess long-term regional forest dynamics assessment in Eastern Europe, 1985-2012

    Science.gov (United States)

    Turubanova, S.; Potapov, P.; Krylov, A.; Tyukavina, A.; McCarty, J. L.; Radeloff, V. C.; Hansen, M. C.

    2015-04-01

    Dramatic political and economic changes in Eastern European countries following the dissolution of the "Eastern Bloc" and the collapse of the Soviet Union greatly affected land-cover and land-use trends. In particular, changes in forest cover dynamics may be attributed to the collapse of the planned economy, agricultural land abandonment, economy liberalization, and market conditions. However, changes in forest cover are hard to quantify given inconsistent forest statistics collected by different countries over the last 30 years. The objective of our research was to consistently quantify forest cover change across Eastern Europe from 1985 until 2012 using the complete Landsat data archive. We developed an algorithm for processing imagery from different Landsat platforms and sensors (TM and ETM+), aggregating these images into a common set of multi-temporal metrics, and mapping annual gross forest cover loss and decadal gross forest cover gain. Our results show that forest cover area increased from 1985 to 2012 by 4.7% across the region. Average annual gross forest cover loss was 0.41% of total forest cover area, with a statistically significant increase from 1985 to 2012. Most forest disturbance recovered fast, with only 12% of the areas of forest loss prior to 1995 not being recovered by 2012. Timber harvesting was the main cause of forest loss. Logging area declined after the collapse of socialism in the late 1980s, increased in the early 2000s, and decreased in most countries after 2007 due to the global economic crisis. By 2012, Central and Baltic Eastern European countries showed higher logging rates compared to their Western neighbours. Comparing our results with official forest cover and change estimates showed agreement in total forest area for year 2010, but with substantial disagreement between Landsat-based and official net forest cover area change. Landsat-based logging areas exhibit strong relationship with reported roundwood production at national

  8. Regional mapping of forest canopy water content and biomass using AIRSAR images over BOREAS study area

    Science.gov (United States)

    Saatchi, Sasan; Rignot, Eric; Vanzyl, Jakob

    1995-01-01

    In recent years, monitoring vegetation biomass over various climate zones has become the primary focus of several studies interested in assessing the role of the ecosystem responses to climate change and human activities. Airborne and spaceborne Synthetic Aperture Radar (SAR) systems provide a useful tool to directly estimate biomass due to its sensitivity to structural and moisture characteristics of vegetation canopies. Even though the sensitivity of SAR data to total aboveground biomass has been successfully demonstrated in many controlled experiments over boreal forests and forest plantations, so far, no biomass estimation algorithm has been developed. This is mainly due to the fact that the SAR data, even at lowest frequency (P-band) saturates at biomass levels of about 200 tons/ha, and the structure and moisture information in the SAR signal forces the estimation algorithm to be forest type dependent. In this paper, we discuss the development of a hybrid forest biomass algorithm which uses a SAR derived land cover map in conjunction with a forest backscatter model and an inversion algorithm to estimate forest canopy water content. It is shown that unlike the direct biomass estimation from SAR data, the estimation of water content does not depend on the seasonal and/or environmental conditions. The total aboveground biomass can then be derived from canopy water content for each type of forest by incorporating other ecological information. Preliminary results from this technique over several boreal forest stands indicate that (1) the forest biomass can be estimated with reasonable accuracy, and (2) the saturation level of the SAR signal can be enhanced by separating the crown and trunk biomass in the inversion algorithm. We have used the JPL AIRSAR data over BOREAS southern study area to test the algorithm and to generate regional scale water content and biomass maps. The results are compared with ground data and the sources of errors are discussed. Several SAR

  9. Woody species diversity in forest plantations in a mountainous region of Beijing, China: effects of sampling scale and species selection.

    Directory of Open Access Journals (Sweden)

    Yuxin Zhang

    Full Text Available The role of forest plantations in biodiversity conservation has gained more attention in recent years. However, most work on evaluating the diversity of forest plantations focuses only on one spatial scale; thus, we examined the effects of sampling scale on diversity in forest plantations. We designed a hierarchical sampling strategy to collect data on woody species diversity in planted pine (Pinus tabuliformis Carr., planted larch (Larix principis-rupprechtii Mayr., and natural secondary deciduous broadleaf forests in a mountainous region of Beijing, China. Additive diversity partition analysis showed that, compared to natural forests, the planted pine forests had a different woody species diversity partitioning pattern at multi-scales (except the Simpson diversity in the regeneration layer, while the larch plantations did not show multi-scale diversity partitioning patterns that were obviously different from those in the natural secondary broadleaf forest. Compare to the natural secondary broadleaf forests, the effects of planted pine forests on woody species diversity are dependent on the sampling scale and layers selected for analysis. Diversity in the planted larch forest, however, was not significantly different from that in the natural forest for all diversity components at all sampling levels. Our work demonstrated that the species selected for afforestation and the sampling scales selected for data analysis alter the conclusions on the levels of diversity supported by plantations. We suggest that a wide range of scales should be considered in the evaluation of the role of forest plantations on biodiversity conservation.

  10. Forest Cover Estimation in Ireland Using Radar Remote Sensing: A Comparative Analysis of Forest Cover Assessment Methodologies

    Science.gov (United States)

    Devaney, John; Barrett, Brian; Barrett, Frank; Redmond, John; O`Halloran, John

    2015-01-01

    Quantification of spatial and temporal changes in forest cover is an essential component of forest monitoring programs. Due to its cloud free capability, Synthetic Aperture Radar (SAR) is an ideal source of information on forest dynamics in countries with near-constant cloud-cover. However, few studies have investigated the use of SAR for forest cover estimation in landscapes with highly sparse and fragmented forest cover. In this study, the potential use of L-band SAR for forest cover estimation in two regions (Longford and Sligo) in Ireland is investigated and compared to forest cover estimates derived from three national (Forestry2010, Prime2, National Forest Inventory), one pan-European (Forest Map 2006) and one global forest cover (Global Forest Change) product. Two machine-learning approaches (Random Forests and Extremely Randomised Trees) are evaluated. Both Random Forests and Extremely Randomised Trees classification accuracies were high (98.1–98.5%), with differences between the two classifiers being minimal (forest area and an increase in overall accuracy of SAR-derived forest cover maps. All forest cover products were evaluated using an independent validation dataset. For the Longford region, the highest overall accuracy was recorded with the Forestry2010 dataset (97.42%) whereas in Sligo, highest overall accuracy was obtained for the Prime2 dataset (97.43%), although accuracies of SAR-derived forest maps were comparable. Our findings indicate that spaceborne radar could aid inventories in regions with low levels of forest cover in fragmented landscapes. The reduced accuracies observed for the global and pan-continental forest cover maps in comparison to national and SAR-derived forest maps indicate that caution should be exercised when applying these datasets for national reporting. PMID:26262681

  11. Invasive plants found in east Texas forests, 2009 forest inventory and analysis factsheet

    Science.gov (United States)

    Sonja N. Oswalt; Christopher M. Oswalt

    2011-01-01

    This science update provides information on the presence and cover of nonnative invasive plants found in forests of the eastern region of the State of Texas based on an annual inventory conducted by the Forest Inventory and Analysis (FIA) Program at the Southern Research Station of the U.S. Department of Agriculture Forest Service in cooperation with the Texas Forest...

  12. EUFODOS: European Forest Downstream Services - Improved Information on Forest Structure and Damage

    Science.gov (United States)

    Hirschmugl, M.; Gallaun, H.; Wack, R.; Granica, K.; Schardt, M.

    2013-05-01

    Forests play a key role in the European economy and environment. This role incorporates ecological functions which can be affected by the occurrence of insect infestations, forest fire, heavy snowfall or windfall events. Local or Regional Authorities (LRAs) thus require detailed information on the degradation status of their forests to be able to take appropriate measures for their forest management plans. In the EUFODOS project, state-of-the-art satellite and laser scanning technologies are used to provide forest authorities with cost-effective and comprehensive information on forest structure and damage. One of the six test sites is located in the Austrian province of Styria where regional forest authorities have expressed a strong need for detailed forest parameters in protective forest. As airborne laser-scanning data is available, it will be utilized to derive detailed forest parameters such as the upper forest border line, tree height, growth classes, forest density, vertical structure or volume. At the current project status, the results of (i) the forest border line, (ii) the segmentation of forest stands and (iii) the tree top detection are available and presented including accuracy assessment and interim results are shown for timber volume estimations. The final results show that the forest border can be mapped operationally with an overall accuracy of almost 99% from LiDAR data. For the segmentation of forest stands, a comparison of the automatically derived result with visual-manual delineation showed in general a more detailed segmentation result, but for all visual-manual segments a congruence of 87% within a 4 m buffer. Tree top detections were compared to stem numbers estimated based on angle-count samplings in a field campaign, which led to a correlation coefficient (R) of 0.79.

  13. Factors controlling regional differences in forest soil emission of nitrogen oxides (NO and N2O

    Directory of Open Access Journals (Sweden)

    K. Pilegaard

    2006-01-01

    often explaining most of the temporal variation within a site. When comparing annual emissions on a regional scale, however, factors such as nitrogen deposition and forest and soil type become much more important.

  14. Pedunculate oak forests (Quercus robur L. survey in the Ticino Regional Park (Italy by remote sensing

    Directory of Open Access Journals (Sweden)

    Rossini M

    2007-01-01

    Full Text Available Pedunculate oak forests (Quercus robur L. in the Ticino Regional Park (Italy show sensible damage conditions due to different environmental stresses: insect attacks, summer drought and air pollution. Knowing whether oaks are healthy or stressed can provide useful information in order to conserve the forest ecosystems and avoid the lost of valuable natural resources. Environmental stresses can affect tree biochemical and structural variables, such as the concentration, composition and efficiency in light harvesting of foliar pigments, and the Leaf Area Index (LAI. Interest in the use of these variables for forest condition assessment has recently increased because they can be indirectly estimated from remote observations at leaf and canopy level. In particular, in this research we found that total chlorophyll (Chl concentration, a biochemical variable related to crown discoloration rate, was the most suitable variable for the detection of pedunculate oak decline in the Ticino Park. A regression analysis between Chl concentration and optical indices computed from hyperspectral MIVIS data was performed in order to estimate Chl concentration from remote observations. The good correlation between field measurements of Chl concentration and MIVIS optical indices allowed the development of a model to map Chl concentration across the Ticino Park forested area. Promising results demonstrated that remotely sensed data can provide an accurate estimation of Chl concentration and indicated the potential of this technique for forest condition monitoring.

  15. Forest management and carbon sequestration in the Mediterranean region: A review

    International Nuclear Information System (INIS)

    Ruiz-Peinado, R.; Bravo-Oviedo, A.; López-Senespleda, E.; Bravo, F.; Río, M. Del

    2017-01-01

    Aim of the study: To review and acknowledge the value of carbon sequestration by forest management in the Mediterranean area. Material and methods: We review the main effects of forest management by comparing the effects of silviculture systems (even-aged vs. uneven-aged stands, coppice systems, agroforestry systems), silvicultural options (thinning, rotation period, species composition), afforestation, harvesting, fire impact or effects of shrub layer on carbon sequestration in the Mediterranean area. Main results: We illustrate as forest management can clearly improve forest carbon sequestration amounts. We conclude that forest management is an effective way to maintain and enhance high carbon sequestration rates in order to cope with climate change and provision of ecosystem services. We also think that although much effort has been put into this topic research, there are still certain gaps that must be dealt with to increase our scientific knowledge and in turn transfer this knowledge to forest practitioners in order to achieve sustainable management aimed at mitigating climate change. Research highlights: It is important to underline the importance of forests in the carbon cycle as this role can be enhanced by forest managers through sustainable forest management. The effects of different management options or disturbances can be critical as regards mitigating climate change. Understanding the effects of forest management is even more important in the Mediterranean area, given that the current high climatic variability together with historical human exploitation and disturbance events make this area more vulnerable to the effects of climate change

  16. Forest management and carbon sequestration in the Mediterranean region: A review

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz-Peinado, R.; Bravo-Oviedo, A.; López-Senespleda, E.; Bravo, F.; Río, M. Del

    2017-11-01

    Aim of the study: To review and acknowledge the value of carbon sequestration by forest management in the Mediterranean area. Material and methods: We review the main effects of forest management by comparing the effects of silviculture systems (even-aged vs. uneven-aged stands, coppice systems, agroforestry systems), silvicultural options (thinning, rotation period, species composition), afforestation, harvesting, fire impact or effects of shrub layer on carbon sequestration in the Mediterranean area. Main results: We illustrate as forest management can clearly improve forest carbon sequestration amounts. We conclude that forest management is an effective way to maintain and enhance high carbon sequestration rates in order to cope with climate change and provision of ecosystem services. We also think that although much effort has been put into this topic research, there are still certain gaps that must be dealt with to increase our scientific knowledge and in turn transfer this knowledge to forest practitioners in order to achieve sustainable management aimed at mitigating climate change. Research highlights: It is important to underline the importance of forests in the carbon cycle as this role can be enhanced by forest managers through sustainable forest management. The effects of different management options or disturbances can be critical as regards mitigating climate change. Understanding the effects of forest management is even more important in the Mediterranean area, given that the current high climatic variability together with historical human exploitation and disturbance events make this area more vulnerable to the effects of climate change.

  17. Forest Loss in Protected Areas and Intact Forest Landscapes: A Global Analysis.

    Science.gov (United States)

    Heino, Matias; Kummu, Matti; Makkonen, Marika; Mulligan, Mark; Verburg, Peter H; Jalava, Mika; Räsänen, Timo A

    2015-01-01

    In spite of the high importance of forests, global forest loss has remained alarmingly high during the last decades. Forest loss at a global scale has been unveiled with increasingly finer spatial resolution, but the forest extent and loss in protected areas (PAs) and in large intact forest landscapes (IFLs) have not so far been systematically assessed. Moreover, the impact of protection on preserving the IFLs is not well understood. In this study we conducted a consistent assessment of the global forest loss in PAs and IFLs over the period 2000-2012. We used recently published global remote sensing based spatial forest cover change data, being a uniform and consistent dataset over space and time, together with global datasets on PAs' and IFLs' locations. Our analyses revealed that on a global scale 3% of the protected forest, 2.5% of the intact forest, and 1.5% of the protected intact forest were lost during the study period. These forest loss rates are relatively high compared to global total forest loss of 5% for the same time period. The variation in forest losses and in protection effect was large among geographical regions and countries. In some regions the loss in protected forests exceeded 5% (e.g. in Australia and Oceania, and North America) and the relative forest loss was higher inside protected areas than outside those areas (e.g. in Mongolia and parts of Africa, Central Asia, and Europe). At the same time, protection was found to prevent forest loss in several countries (e.g. in South America and Southeast Asia). Globally, high area-weighted forest loss rates of protected and intact forests were associated with high gross domestic product and in the case of protected forests also with high proportions of agricultural land. Our findings reinforce the need for improved understanding of the reasons for the high forest losses in PAs and IFLs and strategies to prevent further losses.

  18. Terrestrial carbon losses from mountaintop coal mining offset regional forest carbon sequestration in the 21st century

    International Nuclear Information System (INIS)

    Elliott Campbell, J; Fox, James F; Acton, Peter M

    2012-01-01

    Studies that quantify the spatial and temporal variability of carbon sources and sinks provide process-level information for the prediction of future levels of atmospheric carbon dioxide as well as verification of current emission agreements. Assessments of carbon sources and sinks for North America that compare top-down atmospheric constraints with bottom-up inventories find particularly large carbon sinks in the southeastern US. However, this southeastern US sink may be impacted by extreme land-use disturbance events due to mountaintop coal mining (MCM). Here we apply ecosystem modeling and field experiment data to quantify the potential impact of future mountaintop coal mining on the carbon budget of the southern Appalachian forest region. For projections based on historical mining rates, grassland reclamation, and the continued regrowth of un-mined forests, we find that the southern Appalachian forests switch from a net carbon sink to a net carbon source by year 2025–33 with a 30%–35% loss in terrestrial carbon stocks relative to a scenario with no future mining by the year 2100. Alternatively, scenarios of forest sequestration due to the effect of CO 2 fertilization result in a 15%–24% loss in terrestrial carbon stocks by the year 2100 for mining scenarios relative to scenarios with no future mining. These results suggest that while power plant stack emissions are the dominant life-cycle stage in coal-fired electricity, accounting for mountaintop coal mining in bottom-up inventories may be a critical component of regional carbon budgets. (letter)

  19. Development, validation and application of a SDME/GC-FID methodology for the multiresidue determination of organophosphate and pyrethroid pesticides in water.

    Science.gov (United States)

    Pinheiro, Anselmo de Souza; de Andrade, Jailson B

    2009-10-15

    A single-drop microextraction (SDME) procedure was developed for the analysis of organophosphorus and pyrethroid pesticides in water by gas chromatography (GC) with flame ionization detection (GC-FID). The significant parameters that affect SDME performance, such as the selection of microextraction solvent, solvent volume, extraction time, and stirring rate, were studied and optimized using a tool screening factorial design. The limits of detection (LODs) in water for the four investigated compounds were between 0.3 and 3.0 microgL(-1), with relative standard deviations ranging from 7.7 to 18.8%. Linear response data were obtained in the concentration range of 0.9-6.0 microg L(-1) (lambda-cyhalothrin), 3.0-60.0 microg L(-1) (methyl parathion), 9.0-60.0 microg L(-1) (ethion), and 9.0-30.0 microg L(-1) (permethrin), with correlation coefficients ranging from 0.9337 to 0.9977. The relative recoveries for the spiked water ranged from 73.0 to 104%. Environmental water samples (n=26) were successfully analyzed using the proposed method and methyl parathion presented concentration up to 2.74 microg L(-1). The SDME method, coupled with GC-FID analysis, provided good precision, accuracy, and reproducibility over a wide linear range. Other highlights of the method include its ease of use and its requirement of only small volumes of both organic solvent and sample.

  20. Assessing the Heavy Metal Content in Forest Dormouse (Dryomys nitedula Pallas, 1778 from an Agricultural Region in Bulgaria

    Directory of Open Access Journals (Sweden)

    Georgi G. Markov

    2016-06-01

    Full Text Available The heavy metals load in the forest dormouse (Dryomys nitedula, inhabiting in forest shelter belts in the agricultural region was assessed. The concentrations of Cd, Co, Cu, Ni, Pb and Zn (expressed in mg/kg of dry tissue were established in the liver, using an atomic-absorption analysis. The fact that the highly toxic metals (Cd and Pb were found in considerable concentrations together with other metals with concentration dependent toxic effect (Cu, Ni, Zn and Co in the liver of forest dormice, suggests that it is necessary to carry out regular assessment and forecasting of accumulation of these metals in species, which are not direct targets of cultivation and control activities in agricultural ecosystems. The obtained values were used to create a baseline for estimation of heavy metal accumulation in the internal organs of the forest dormouse, both in anthropogenically transformed habitats and natural biotopes, as well as for using this species as a monitor of environmental status.

  1. Deforestation and Forest Fires in Roraima and Their Relationship with Phytoclimatic Regions in the Northern Brazilian Amazon

    Science.gov (United States)

    Barni, Paulo Eduardo; Pereira, Vaneza Barreto; Manzi, Antonio Ocimar; Barbosa, Reinaldo Imbrozio

    2015-05-01

    Deforestation and forest fires in the Brazilian Amazon are a regional-scale anthropogenic process related to biomass burning, which has a direct impact on global warming due to greenhouse gas emissions. Containment of this process requires characterizing its spatial distribution and that of the environmental factors related to its occurrence. The aim of this study is to investigate the spatial and temporal distribution of deforested areas and forest fires in the State of Roraima from 2000 to 2010. We mapped deforested areas and forest fires using Landsat images and associated their occurrence with two phytoclimatic zones: zone with savanna influence (ZIS), and zone without savanna influence (ZOS). Total deforested area during the interval was estimated at 3.06 × 103 km2 (ZIS = 55 %; ZOS = 45 %) while total area affected by forest fires was estimated at 3.02 × 103 km2 (ZIS = 97.7 %; ZOS = 2.3 %). Magnitude of deforestation in Roraima was not related to the phytoclimatic zones, but small deforested areas (≤17.9 ha) predominated in ZOS while larger deforestation classes (>17.9 ha) predominated in ZIS, which is an area with a longer history of human activities. The largest occurrence of forest fires was observed in the ZIS in years with El Niño events. Our analysis indicates that the areas most affected by forest fires in Roraima during 2000-2010 were associated with strong climatic events and the occurrence these fires was amplified in ZIS, a sensitive phytoclimatic zone with a higher risk of anthropogenic fires given its drier climate and open forest structure.

  2. Surface runoff fluxes of nutrients in montane forests in Piedras Blancas region, Antioquia (Colombia)

    International Nuclear Information System (INIS)

    Ruiz Suescun, Oscar Andres; Acosta Jaramillo, Juan Jose; Leon Pelaez, Juan Diego

    2005-01-01

    In natural montane oak forests (Quercus humboldtii Bonpl.), pine (Pinus patula Schltdl and cham.) and cypress (Cupressus lusitanica Mill.) plantations in the region of Piedras Blancas, Antioquia, surface runoff flows (SRF) were measured over 16 months. Runoff was measured using 2 m wide x 10 m long runoff bounded plots, collector tanks and a volumetric counter system. Nutrient flows for the oak forest, pine and cypress plantations were, respectively: P total (0,51, 0,08 and 0,42 kg ha-y), Ca (0,13, 0,21 and 1,27 kg ha- y); Mg (0,07, 0,07 and 0,34 kg ha-y); K (0,89, 0,71 and 2,60 kg ha-y); Fe (0,04, 0,04 and 0,47 kg ha-y) and Mn (0,01, 0,01 and 0,08 kg ha-y)

  3. La fidélité envers la marque de « Deal » à travers une atmosphère inter@ctive : une étude qualitative exploratoire « Le cas d’achat groupé en ligne »

    Directory of Open Access Journals (Sweden)

    Ali Sallemi Hrichi

    2017-09-01

    Full Text Available La présente étude qualitative s’inscrit dans le contexte du commerce électronique, elle se veut une tentative pour expliquer, à travers deux échantillons, la contribution des caractéristiques fonctionnelles et relationnelles d’un site web d’une marque de « Deal », via une atmosphère interactive, à la fidélité des clients dans le secteur d’achat groupé en ligne, et que les responsables des marques de « Deal » opèrent dans des stratégies de fidélisation à l’égard de leurs clients. Ceci se justifie par les outils technologiques utilisés par ces marques et l’originalité de la fidélité en groupe face à une rationalisation de choix de la part du consommateur tunisien.

  4. Changes in Area of Timberland in the United States, 1952-2040, By Ownership, Forest Type, Region, and State

    Science.gov (United States)

    Ralph J. Allg; William G. Hohenstein; Brian C. Murray; Robert G. Haight

    1990-01-01

    Area change projections for timberland in the United Steats are provided by region, State, ownership, and forest type.Total timberland area is projected to drop by 21 million acres or 4 percent by the year 2040.

  5. Forest management and carbon sequestration in the Mediterranean region: A review

    Directory of Open Access Journals (Sweden)

    Ricardo Ruiz-Peinado

    2017-10-01

    Full Text Available Aim of the study: To review and acknowledge the value of carbon sequestration by forest management in the Mediterranean area. Material and methods: We review the main effects of forest management by comparing the effects of silvicultural systems (even-aged vs. uneven-aged stands, coppice systems, agroforestry systems, silvicultural options (thinning, rotation period, species composition, afforestation, harvesting, fire impact or effects of shrub layer on carbon sequestration in the Mediterranean area. Main results: We illustrate as forest management can clearly improve forest carbon sequestration amounts. We conclude that forest management is an effective way to maintain and enhance high carbon sequestration rates in order to cope with climate change and provision of ecosystem services. We also think that although much effort has been put into this topic research, there are still certain gaps that must be dealt with to increase our scientific knowledge and in turn transfer this knowledge to forest practitioners in order to achieve sustainable management aimed at mitigating climate change. Research highlights: It is important to underline the importance of forests in the carbon cycle as this role can be enhanced by forest managers through sustainable forest management. The effects of different management options or disturbances can be critical as regards mitigating climate change. Understanding the effects of forest management is even more important in the Mediterranean area, given that the current high climatic variability together with historical human exploitation and disturbance events make this area more vulnerable to the effects of climate change

  6. Mapping growing stock volume and forest live biomass: a case study of the Polissya region of Ukraine

    Science.gov (United States)

    Bilous, Andrii; Myroniuk, Viktor; Holiaka, Dmytrii; Bilous, Svitlana; See, Linda; Schepaschenko, Dmitry

    2017-10-01

    Forest inventory and biomass mapping are important tasks that require inputs from multiple data sources. In this paper we implement two methods for the Ukrainian region of Polissya: random forest (RF) for tree species prediction and k-nearest neighbors (k-NN) for growing stock volume and biomass mapping. We examined the suitability of the five-band RapidEye satellite image to predict the distribution of six tree species. The accuracy of RF is quite high: ~99% for forest/non-forest mask and 89% for tree species prediction. Our results demonstrate that inclusion of elevation as a predictor variable in the RF model improved the performance of tree species classification. We evaluated different distance metrics for the k-NN method, including Euclidean or Mahalanobis distance, most similar neighbor (MSN), gradient nearest neighbor, and independent component analysis. The MSN with the four nearest neighbors (k = 4) is the most precise (according to the root-mean-square deviation) for predicting forest attributes across the study area. The k-NN method allowed us to estimate growing stock volume with an accuracy of 3 m3 ha-1 and for live biomass of about 2 t ha-1 over the study area.

  7. 77 FR 12002 - Mount Baker-Snoqualmie National Forest Site-Specific Invasive Plant Treatment Project and Forest...

    Science.gov (United States)

    2012-02-28

    ... Invasive Plant Treatment Project and Forest Plan Amendment Number 28 AGENCY: Forest Service, USDA. ACTION... Forest. The current Forest-wide treatment approach pre-dates the Pacific Northwest Region Invasive Plant... interdisciplinary analysis: (1) Whether or not to authorize site- specific invasive plant treatments using...

  8. Changes of forest cover and disturbance regimes in the mountain forests of the Alps☆

    Science.gov (United States)

    Bebi, P.; Seidl, R.; Motta, R.; Fuhr, M.; Firm, D.; Krumm, F.; Conedera, M.; Ginzler, C.; Wohlgemuth, T.; Kulakowski, D.

    2017-01-01

    Natural disturbances, such as avalanches, snow breakage, insect outbreaks, windthrow or fires shape mountain forests globally. However, in many regions over the past centuries human activities have strongly influenced forest dynamics, especially following natural disturbances, thus limiting our understanding of natural ecological processes, particularly in densely-settled regions. In this contribution we briefly review the current understanding of changes in forest cover, forest structure, and disturbance regimes in the mountain forests across the European Alps over the past millennia. We also quantify changes in forest cover across the entire Alps based on inventory data over the past century. Finally, using the Swiss Alps as an example, we analyze in-depth changes in forest cover and forest structure and their effect on patterns of fire and wind disturbances, based on digital historic maps from 1880, modern forest cover maps, inventory data on current forest structure, topographical data, and spatially explicit data on disturbances. This multifaceted approach presents a long-term and detailed picture of the dynamics of mountain forest ecosystems in the Alps. During pre-industrial times, natural disturbances were reduced by fire suppression and land-use, which included extraction of large amounts of biomass that decreased total forest cover. More recently, forest cover has increased again across the entire Alps (on average +4% per decade over the past 25–115 years). Live tree volume (+10% per decade) and dead tree volume (mean +59% per decade) have increased over the last 15–40 years in all regions for which data were available. In the Swiss Alps secondary forests that established after 1880 constitute approximately 43% of the forest cover. Compared to forests established previously, post-1880 forests are situated primarily on steep slopes (>30°), have lower biomass, a more aggregated forest structure (primarily stem-exclusion stage), and have been more

  9. A Laboratory Experiment To Measure Henry's Law Constants of Volatile Organic Compounds with a Bubble Column and a Gas Chromatography Flame Ionization Detector (GC-FID)

    Science.gov (United States)

    Lee, Shan-Hu; Mukherjee, Souptik; Brewer, Brittany; Ryan, Raphael; Yu, Huan; Gangoda, Mahinda

    2013-01-01

    An undergraduate laboratory experiment is described to measure Henry's law constants of organic compounds using a bubble column and gas chromatography flame ionization detector (GC-FID). This experiment is designed for upper-division undergraduate laboratory courses and can be implemented in conjunction with physical chemistry, analytical…

  10. Changing values and the impact on land use and social networks in the northern forest region: a qualitative examination

    Science.gov (United States)

    Jean Dedam; Rodney Zwick

    2007-01-01

    Patterns of land ownership and economics are changing in the Northern Forest Region of New York, Vermont, New Hampshire, and Maine. The percentage of people living in the region who work in the resource extraction industry has become much smaller. Tourism and outdoor recreation are promoted as economic substitutes that will provide an alternate use of the natural...

  11. EUFODOS: European Forest Downstream Services – Improved Information on Forest Structure and Damage

    Directory of Open Access Journals (Sweden)

    M. Hirschmugl

    2013-05-01

    Full Text Available Forests play a key role in the European economy and environment. This role incorporates ecological functions which can be affected by the occurrence of insect infestations, forest fire, heavy snowfall or windfall events. Local or Regional Authorities (LRAs thus require detailed information on the degradation status of their forests to be able to take appropriate measures for their forest management plans. In the EUFODOS project, state-of-the-art satellite and laser scanning technologies are used to provide forest authorities with cost-effective and comprehensive information on forest structure and damage. One of the six test sites is located in the Austrian province of Styria where regional forest authorities have expressed a strong need for detailed forest parameters in protective forest. As airborne laser-scanning data is available, it will be utilized to derive detailed forest parameters such as the upper forest border line, tree height, growth classes, forest density, vertical structure or volume. At the current project status, the results of (i the forest border line, (ii the segmentation of forest stands and (iii the tree top detection are available and presented including accuracy assessment and interim results are shown for timber volume estimations. The final results show that the forest border can be mapped operationally with an overall accuracy of almost 99% from LiDAR data. For the segmentation of forest stands, a comparison of the automatically derived result with visual-manual delineation showed in general a more detailed segmentation result, but for all visual-manual segments a congruence of 87% within a 4 m buffer. Tree top detections were compared to stem numbers estimated based on angle-count samplings in a field campaign, which led to a correlation coefficient (R of 0.79.

  12. A GIS-based multicriteria evaluation for aiding risk management Pinus pinaster Ait. forests: a case study in Corsican Island, western Mediterranean Region.

    Science.gov (United States)

    Pasqualini, Vanina; Oberti, Pascal; Vigetta, Stéphanie; Riffard, Olivier; Panaïotis, Christophe; Cannac, Magali; Ferrat, Lila

    2011-07-01

    Forest management can benefit from decision support tools, including GIS-based multicriteria decision-aiding approach. In the Mediterranean region, Pinus pinaster forests play a very important role in biodiversity conservation and offer many socioeconomic benefits. However, the conservation of this species is affected by the increase in forest fires and the expansion of Matsucoccus feytaudi. This paper proposes a methodology based on commonly available data for assessing the values and risks of P. pinaster forests and to generating maps to aid in decisions pertaining to fire and phytosanitary risk management. The criteria for assessing the values (land cover type, legislative tools for biodiversity conservation, environmental tourist sites and access routes, and timber yield) and the risks (fire and phytosanitation) of P. pinaster forests were obtained directly or by considering specific indicators, and they were subsequently aggregated by means of GIS-based multicriteria analysis. This approach was tested on the island of Corsica (France), and maps to aid in decisions pertaining to fire risk and phytosanitary risk (M. feytaudi) were obtained for P. pinaster forest management. Study results are used by the technical offices of the local administration-Corsican Agricultural and Rural Development Agency (ODARC)-for planning the conservation of P. pinaster forests with regard to fire prevention and safety and phytosanitary risks. The decision maker took part in the evaluation criteria study (weight, normalization, and classification of the values). Most suitable locations are given to target the public intervention. The methodology presented in this paper could be applied to other species and in other Mediterranean regions.

  13. A GIS-Based Multicriteria Evaluation for Aiding Risk Management Pinus pinaster Ait. Forests: A Case Study in Corsican Island, Western Mediterranean Region

    Science.gov (United States)

    Pasqualini, Vanina; Oberti, Pascal; Vigetta, Stéphanie; Riffard, Olivier; Panaïotis, Christophe; Cannac, Magali; Ferrat, Lila

    2011-07-01

    Forest management can benefit from decision support tools, including GIS-based multicriteria decision-aiding approach. In the Mediterranean region, Pinus pinaster forests play a very important role in biodiversity conservation and offer many socioeconomic benefits. However, the conservation of this species is affected by the increase in forest fires and the expansion of Matsucoccus feytaudi. This paper proposes a methodology based on commonly available data for assessing the values and risks of P. pinaster forests and to generating maps to aid in decisions pertaining to fire and phytosanitary risk management. The criteria for assessing the values (land cover type, legislative tools for biodiversity conservation, environmental tourist sites and access routes, and timber yield) and the risks (fire and phytosanitation) of P. pinaster forests were obtained directly or by considering specific indicators, and they were subsequently aggregated by means of GIS-based multicriteria analysis. This approach was tested on the island of Corsica (France), and maps to aid in decisions pertaining to fire risk and phytosanitary risk ( M. feytaudi) were obtained for P. pinaster forest management. Study results are used by the technical offices of the local administration— Corsican Agricultural and Rural Development Agency (ODARC)—for planning the conservation of P. pinaster forests with regard to fire prevention and safety and phytosanitary risks. The decision maker took part in the evaluation criteria study (weight, normalization, and classification of the values). Most suitable locations are given to target the public intervention. The methodology presented in this paper could be applied to other species and in other Mediterranean regions.

  14. Phylogenetic classification of the world’s tropical forests

    OpenAIRE

    Slik, J. W. Ferry; Franklin, Janet; Arroyo-Rodríguez, Víctor; Field, Richard; Aguilar, Salomon; Aguirre, Nikolay; Ahumada, Jorge; Aiba, Shin-Ichiro; Alves, Luciana F.; K, Anitha; Avella, Andres; Mora, Francisco; Aymard C., Gerardo A.; Báez, Selene; Balvanera, Patricia

    2018-01-01

    Identifying and explaining regional differences in tropical forest dynamics, structure, diversity, and composition are critical for anticipating region-specific responses to global environmental change. Floristic classifications are of fundamental importance for these efforts. Here we provide a global tropical forest classification that is explicitly based on community evolutionary similarity, resulting in identification of five major tropical forest regions and their relationships: (i) Indo-...

  15. Tropical forest mapping at regional scale using the GRFM SAR mosaics over the Amazon in South America

    NARCIS (Netherlands)

    Sgrenzaroli, M.

    2004-01-01

    The work described in this thesis concerns the estimation of tropical forest vegetation cover in the Amazon region using as data source a continental scale high resolution (100 m) radar mosaic as data source. The radar mosaic was compiled by the Jet Propulsion Laboratory (NASA JPL) using

  16. US Forest Service Region 3 Wilderness Areas

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This file contains a feature class depicting National Forest System land parcels that have a Congressionally designated boundary. Examples include National...

  17. Deforestation and forest fires in Roraima and their relationship with phytoclimatic regions in the northern Brazilian Amazon.

    Science.gov (United States)

    Barni, Paulo Eduardo; Pereira, Vaneza Barreto; Manzi, Antonio Ocimar; Barbosa, Reinaldo Imbrozio

    2015-05-01

    Deforestation and forest fires in the Brazilian Amazon are a regional-scale anthropogenic process related to biomass burning, which has a direct impact on global warming due to greenhouse gas emissions. Containment of this process requires characterizing its spatial distribution and that of the environmental factors related to its occurrence. The aim of this study is to investigate the spatial and temporal distribution of deforested areas and forest fires in the State of Roraima from 2000 to 2010. We mapped deforested areas and forest fires using Landsat images and associated their occurrence with two phytoclimatic zones: zone with savanna influence (ZIS), and zone without savanna influence (ZOS). Total deforested area during the interval was estimated at 3.06 × 10(3) km(2) (ZIS = 55 %; ZOS = 45 %) while total area affected by forest fires was estimated at 3.02 × 10(3) km(2) (ZIS = 97.7 %; ZOS = 2.3 %). Magnitude of deforestation in Roraima was not related to the phytoclimatic zones, but small deforested areas (≤17.9 ha) predominated in ZOS while larger deforestation classes (>17.9 ha) predominated in ZIS, which is an area with a longer history of human activities. The largest occurrence of forest fires was observed in the ZIS in years with El Niño events. Our analysis indicates that the areas most affected by forest fires in Roraima during 2000-2010 were associated with strong climatic events and the occurrence these fires was amplified in ZIS, a sensitive phytoclimatic zone with a higher risk of anthropogenic fires given its drier climate and open forest structure.

  18. Regional variation in Caribbean dry forest tree species composition

    Science.gov (United States)

    Janet Franklin; Julie Ripplinger; Ethan H. Freid; Humfredo Marcano-Vega; David W. Steadman

    2015-01-01

    How does tree species composition vary in relation to geographical and environmental gradients in a globally rare tropical/subtropical broadleaf dry forest community in the Caribbean? We analyzed data from 153 Forest Inventory and Analysis (FIA) plots from Puerto Rico and the U.S. Virgin Islands (USVI), along with 42 plots that we sampled in the Bahamian Archipelago (...

  19. Land surveys show regional variability of historical fire regimes and dry forest structure of the western United States.

    Science.gov (United States)

    Baker, William L; Williams, Mark A

    2018-03-01

    An understanding of how historical fire and structure in dry forests (ponderosa pine, dry mixed conifer) varied across the western United States remains incomplete. Yet, fire strongly affects ecosystem services, and forest restoration programs are underway. We used General Land Office survey reconstructions from the late 1800s across 11 landscapes covering ~1.9 million ha in four states to analyze spatial variation in fire regimes and forest structure. We first synthesized the state of validation of our methods using 20 modern validations, 53 historical cross-validations, and corroborating evidence. These show our method creates accurate reconstructions with low errors. One independent modern test reported high error, but did not replicate our method and made many calculation errors. Using reconstructed parameters of historical fire regimes and forest structure from our validated methods, forests were found to be non-uniform across the 11 landscapes, but grouped together in three geographical areas. Each had a mixture of fire severities, but dominated by low-severity fire and low median tree density in Arizona, mixed-severity fire and intermediate to high median tree density in Oregon-California, and high-severity fire and intermediate median tree density in Colorado. Programs to restore fire and forest structure could benefit from regional frameworks, rather than one size fits all. © 2018 by the Ecological Society of America.

  20. Forests of Pennsylvania, 2013

    Science.gov (United States)

    George L. McCaskill

    2014-01-01

    This publication provides an overview of the forest resources in Pennsylvania based upon inventories conducted by the USDA Forest Service, Forest Inventory and Analysis (FIA) program of the Northern Research Station. Information about the national and regional FIA program is available online at http://fia.fs.fed.us. Since 1999, FIA has implemented an annual inventory...

  1. Taboos and forest governance: informal protection of hot spot dry forest in southern Madagascar.

    Science.gov (United States)

    Tengö, Maria; Johansson, Kristin; Rakotondrasoa, Fanambinantsoa; Lundberg, Jakob; Andriamaherilala, Jean-Aimé; Rakotoarisoa, Jean-Aimé; Elmqvist, Thomas

    2007-12-01

    In the dry forest of southern Madagascar, a region of global conservation priority, formally protected areas are nearly totally absent. We illustrate how the continued existence of unique forest habitats in the Androy region is directly dependent on informal institutions, taboos, regulating human behavior. Qualitative interviews to map and analyze the social mechanisms underlying forest protection have been combined with vegetation analyses of species diversity and composition. Of 188 forest patches, 93% were classified as protected, and in Southern Androy all remaining forest patches larger than 5 ha were protected. Eight different types of forests, with a gradient of social fencing from open access to almost complete entry prohibitions, were identified. Transgressions were well enforced with strong sanctions of significant economic as well as religious importance. Analyses of species diversity between protected and unprotected forests were complicated because of size differences and access restrictions. However, since, for example, in southern Androy >90% of the total remaining forest cover is protected through taboos, these informal institutions represent an important, and presently the only, mechanism for conservation of the highly endemic forest species. We conclude that social aspects, such as local beliefs and legitimate sanctioning systems, need to be analyzed and incorporated along with biodiversity studies for successful conservation.

  2. Restoring oak ecosystems on national forest system lands in the eastern region: an adaptive management approach

    Science.gov (United States)

    Gregory Nowacki; Michael Ablutz; Dan Yaussy; Thomas Schuler; Dan Dey

    2009-01-01

    The U.S. Forest Service has recently completed an ecosystem restoration framework and enacted accompanying policy to help guide its nationwide efforts. The Eastern Region is in the midst of translating the general guidance set forth in these documents to actual on-the-ground restoration. We envision a set of coordinated field demonstrations that will initially focus on...

  3. Relationships between net primary productivity and forest stand age in U.S. forests

    Science.gov (United States)

    Liming He; Jing M. Chen; Yude Pan; Richard Birdsey; Jens. Kattge

    2012-01-01

    Net primary productivity (NPP) is a key flux in the terrestrial ecosystem carbon balance, as it summarizes the autotrophic input into the system. Forest NPP varies predictably with stand age, and quantitative information on the NPP-age relationship for different regions and forest types is therefore fundamentally important for forest carbon cycle modeling. We used four...

  4. Trends over time in tree and seedling phylogenetic diversity indicate regional differences in forest biodiversity change.

    Science.gov (United States)

    Potter, Kevin M; Woodall, Christopher W

    2012-03-01

    Changing climate conditions may impact the short-term ability of forest tree species to regenerate in many locations. In the longer term, tree species may be unable to persist in some locations while they become established in new places. Over both time frames, forest tree biodiversity may change in unexpected ways. Using repeated inventory measurements five years apart from more than 7000 forested plots in the eastern United States, we tested three hypotheses: phylogenetic diversity is substantially different from species richness as a measure of biodiversity; forest communities have undergone recent changes in phylogenetic diversity that differ by size class, region, and seed dispersal strategy; and these patterns are consistent with expected early effects of climate change. Specifically, the magnitude of diversity change across broad regions should be greater among seedlings than in trees, should be associated with latitude and elevation, and should be greater among species with high dispersal capacity. Our analyses demonstrated that phylogenetic diversity and species richness are decoupled at small and medium scales and are imperfectly associated at large scales. This suggests that it is appropriate to apply indicators of biodiversity change based on phylogenetic diversity, which account for evolutionary relationships among species and may better represent community functional diversity. Our results also detected broadscale patterns of forest biodiversity change that are consistent with expected early effects of climate change. First, the statistically significant increase over time in seedling diversity in the South suggests that conditions there have become more favorable for the reproduction and dispersal of a wider variety of species, whereas the significant decrease in northern seedling diversity indicates that northern conditions have become less favorable. Second, we found weak correlations between seedling diversity change and latitude in both zones

  5. Mapping Global Forest Aboveground Biomass with Spaceborne LiDAR, Optical Imagery, and Forest Inventory Data

    Directory of Open Access Journals (Sweden)

    Tianyu Hu

    2016-07-01

    Full Text Available As a large carbon pool, global forest ecosystems are a critical component of the global carbon cycle. Accurate estimations of global forest aboveground biomass (AGB can improve the understanding of global carbon dynamics and help to quantify anthropogenic carbon emissions. Light detection and ranging (LiDAR techniques have been proven that can accurately capture both horizontal and vertical forest structures and increase the accuracy of forest AGB estimation. In this study, we mapped the global forest AGB density at a 1-km resolution through the integration of ground inventory data, optical imagery, Geoscience Laser Altimeter System/Ice, Cloud, and Land Elevation Satellite data, climate surfaces, and topographic data. Over 4000 ground inventory records were collected from published literatures to train the forest AGB estimation model and validate the resulting global forest AGB product. Our wall-to-wall global forest AGB map showed that the global forest AGB density was 210.09 Mg/ha on average, with a standard deviation of 109.31 Mg/ha. At the continental level, Africa (333.34 ± 63.80 Mg/ha and South America (301.68 ± 67.43 Mg/ha had higher AGB density. The AGB density in Asia, North America and Europe were 172.28 ± 94.75, 166.48 ± 84.97, and 132.97 ± 50.70 Mg/ha, respectively. The wall-to-wall forest AGB map was evaluated at plot level using independent plot measurements. The adjusted coefficient of determination (R2 and root-mean-square error (RMSE between our predicted results and the validation plots were 0.56 and 87.53 Mg/ha, respectively. At the ecological zone level, the R2 and RMSE between our map and Intergovernmental Panel on Climate Change suggested values were 0.56 and 101.21 Mg/ha, respectively. Moreover, a comprehensive comparison was also conducted between our forest AGB map and other published regional AGB products. Overall, our forest AGB map showed good agreements with these regional AGB products, but some of the regional

  6. Where do forests influence rainfall?

    Science.gov (United States)

    Wang-Erlandsson, Lan; van der Ent, Ruud; Fetzer, Ingo; Keys, Patrick; Savenije, Hubert; Gordon, Line

    2017-04-01

    Forests play a major role in hydrology. Not only by immediate control of soil moisture and streamflow, but also by regulating climate through evaporation (i.e., transpiration, interception, and soil evaporation). The process of evaporation travelling through the atmosphere and returning as precipitation on land is known as moisture recycling. Whether evaporation is recycled depends on wind direction and geography. Moisture recycling and forest change studies have primarily focused on either one region (e.g. the Amazon), or one biome type (e.g. tropical humid forests). We will advance this via a systematic global inter-comparison of forest change impacts on precipitation depending on both biome type and geographic location. The rainfall effects are studied for three contemporary forest changes: afforestation, deforestation, and replacement of mature forest by forest plantations. Furthermore, as there are indications in the literature that moisture recycling in some places intensifies during dry years, we will also compare the rainfall impacts of forest change between wet and dry years. We model forest change effects on evaporation using the global hydrological model STEAM and trace precipitation changes using the atmospheric moisture tracking scheme WAM-2layers. This research elucidates the role of geographical location of forest change driven modifications on rainfall as a function of the type of forest change and climatic conditions. These knowledge gains are important at a time of both rapid forest and climate change. Our conclusions nuance our understanding of how forests regulate climate and pinpoint hotspot regions for forest-rainfall coupling.

  7. Abundance and potential metabolic activity of methanogens in well-aerated forest and grassland soils of an alpine region.

    Science.gov (United States)

    Hofmann, Katrin; Praeg, Nadine; Mutschlechner, Mira; Wagner, Andreas O; Illmer, Paul

    2016-02-01

    Although methanogens were recently discovered to occur in aerated soils, alpine regions have not been extensively studied for their presence so far. Here, the abundance of archaea and the methanogenic guilds Methanosarcinales, Methanococcales, Methanobacteriales, Methanomicrobiales and Methanocella spp. was studied at 16 coniferous forest and 14 grassland sites located at the montane and subalpine belts of the Northern Limestone Alps (calcareous) and the Austrian Central Alps (siliceous) using quantitative real-time PCR. Abundance of archaea, methanogens and the methanogenic potentials were significantly higher in grasslands than in forests. Furthermore, methanogenic potentials of calcareous soils were higher due to pH. Methanococcales, Methanomicrobiales and Methanocella spp. were detected in all collected samples, which indicates that they are autochthonous, while Methanobacteriales were absent from 4 out of 16 forest soils. Methanosarcinales were absent from 10 out of 16 forest soils and 2 out of 14 grassland soils. Nevertheless, together with Methanococcales they represented the majority of the 16S rRNA gene copies quantified from the grassland soils. Contrarily, forest soils were clearly dominated by Methanococcales. Our results indicate a higher diversity of methanogens in well-aerated soils than previously believed and that pH mainly influences their abundances and activities. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Different regional climatic drivers of Holocene large wildfires in boreal forests of northeastern America

    Science.gov (United States)

    Remy, Cécile C.; Hély, Christelle; Blarquez, Olivier; Magnan, Gabriel; Bergeron, Yves; Lavoie, Martin; Ali, Adam A.

    2017-03-01

    Global warming could increase climatic instability and large wildfire activity in circumboreal regions, potentially impairing both ecosystem functioning and human health. However, links between large wildfire events and climatic and/or meteorological conditions are still poorly understood, partly because few studies have covered a wide range of past climate-fire interactions. We compared palaeofire and simulated climatic data over the last 7000 years to assess causes of large wildfire events in three coniferous boreal forest regions in north-eastern Canada. These regions span an east-west cline, from a hilly region influenced by the Atlantic Ocean currently dominated by Picea mariana and Abies balsamea to a flatter continental region dominated by Picea mariana and Pinus banksiana. The largest wildfires occurred across the entire study zone between 3000 and 1000 cal. BP. In western and central continental regions these events were triggered by increases in both the fire-season length and summer/spring temperatures, while in the eastern region close to the ocean they were likely responses to hydrological (precipitation/evapotranspiration) variability. The impact of climatic drivers on fire size varied spatially across the study zone, confirming that regional climate dynamics could modulate effects of global climate change on wildfire regimes.

  9. Modeling the influence of alternative forest management scenarios on wood production and carbon storage: A case study in the Mediterranean region.

    Science.gov (United States)

    Bottalico, Francesca; Pesola, Lucia; Vizzarri, Matteo; Antonello, Leonardo; Barbati, Anna; Chirici, Gherardo; Corona, Piermaria; Cullotta, Sebastiano; Garfì, Vittorio; Giannico, Vincenzo; Lafortezza, Raffaele; Lombardi, Fabio; Marchetti, Marco; Nocentini, Susanna; Riccioli, Francesco; Travaglini, Davide; Sallustio, Lorenzo

    2016-01-01

    Forest ecosystems are fundamental for the terrestrial biosphere as they deliver multiple essential ecosystem services (ES). In environmental management, understanding ES distribution and interactions and assessing the economic value of forest ES represent future challenges. In this study, we developed a spatially explicit method based on a multi-scale approach (MiMoSe-Multiscale Mapping of ecoSystem services) to assess the current and future potential of a given forest area to provide ES. To do this we modified and improved the InVEST model in order to adapt input data and simulations to the context of Mediterranean forest ecosystems. Specifically, we integrated a GIS-based model, scenario model, and economic valuation to investigate two ES (wood production and carbon sequestration) and their trade-offs in a test area located in Molise region (Central Italy). Spatial information and trade-off analyses were used to assess the influence of alternative forest management scenarios on investigated services. Scenario A was designed to describe the current Business as Usual approach. Two alternative scenarios were designed to describe management approaches oriented towards nature protection (scenario B) or wood production (scenario C) and compared to scenario A. Management scenarios were simulated at the scale of forest management units over a 20-year time period. Our results show that forest management influenced ES provision and associated benefits at the regional scale. In the test area, the Total Ecosystem Services Value of the investigated ES increases 85% in scenario B and decreases 82% in scenario C, when compared to scenario A. Our study contributes to the ongoing debate about trade-offs and synergies between carbon sequestration and wood production benefits associated with socio-ecological systems. The MiMoSe approach can be replicated in other contexts with similar characteristics, thus providing a useful basis for the projection of benefits from forest

  10. Dynamics of forest ecosystems regenerated on burned and harvested areas in mountain regions of Siberia: characteristics of biological diversity, structure and productivity

    Directory of Open Access Journals (Sweden)

    I. M. Danilin

    2016-12-01

    Full Text Available Complex estimation of forest ecosystems dynamics based on detailing characteristics of structure, growth and productivity of the stands and describing general geographical and biological management options for preserving their biodiversity and sustaining stability are discussed in the paper by describing examples of tree stands restored on burned and logged areas in mountain regions of Siberia. On vast areas in Siberia, characterized as sub-boreal, subarid and with a strongly continental climate, forests grow on seasonally frozen soils and in many cases are surrounded by vast steppe and forest-steppe areas and uplands. Developing criteria for sustainability of mountain forest ecosystems is necessary for forest resource management and conservation. It is therefore important to obtain complex biometric characteristics on forest stands and landscapes and to thoroughly study their structure, biological diversity and productivity. Morphometric methods, Weibull simulation and allometric equations were used to determine the dimensional hierarchies of coenopopulation individuals. Structure and productivity of the aboveground stand components were also studied.

  11. Forest influences on snow accumulation and snowmelt at the Hubbard Brook Experimental Forest, New Hampshire, USA

    Science.gov (United States)

    Colin A. Penn; Beverley C. Wemple; John L. Campbell

    2012-01-01

    Many factors influence snow depth, water content and duration in forest ecosystems. The effects of forest cover and canopy gap geometry on snow accumulation has been well documented in coniferous forests of western North America and other regions; however, few studies have evaluated these effects on snowpack dynamics in mixed deciduous forests of the northeastern USA....

  12. Forest litter stocks in Korean pine-broad-leaved forests of the southern Sikhote Alin

    Directory of Open Access Journals (Sweden)

    A. V. Ivanov

    2015-10-01

    Full Text Available The article presents the data on the forest litter of the Korean pine-broad-leaved forests of the South of Primorsky krai. The focus of the research is plantations dominated by Korean pine; areas of the main tree species with ages of 50, 80, 130 and 200 years were selected. The dynamics of the forest litter stock in the pine and broadleaved forests of different ages according to the measurement results for the season in 2014 is stated. In the studied plantation, the forest litter stock varies between 9.7–20.3 t ha-1. The greatest value of the forest litter stock is recorded in old-growth cedar forest (200 years. Relatively high power and the stock of litter are typical for young Korean pine forest that can explain the lower speed of the litter properties change against the dynamics of taxation indicators of the forest stand. The difference between the amount of the litter in the 200-year-old and remaining pine trees are statistically significant at p = 0.05. The dependence of the litter power on the age is not revealed. The coefficient of the forest litter decomposition ranges from 2.55–10.60 that characterizes the high speed of its rotting. The highest coefficient of the litter decomposition has an old-growing pine forest. The schedule of seasonal humidity fluctuations of the forest litter on the chosen plot is made; with increasing cedar forest age, the volumetric moisture content of the forest litter increases; volumetric moisture content on the plots remain relatively unchanged during the season. The area of the Korean pine forests of Primorsky State Academy of Agriculture is 6835 ha. The amount of carbon stock in the forest litter is 38.7 thousand tons C. in this area, while the system of regional assessment of the forest carbon balance estimates this index as 24.3 tons С. The data obtained can be used to adjust the coefficients of regional assessment of the forest carbon balance for cedar forests of Primorsky krai.

  13. Estimating Aboveground Forest Carbon Stock of Major Tropical Forest Land Uses Using Airborne Lidar and Field Measurement Data in Central Sumatra

    Science.gov (United States)

    Thapa, R. B.; Watanabe, M.; Motohka, T.; Shiraishi, T.; shimada, M.

    2013-12-01

    Tropical forests are providing environmental goods and services including carbon sequestration, energy regulation, water fluxes, wildlife habitats, fuel, and building materials. Despite the policy attention, the tropical forest reserve in Southeast Asian region is releasing vast amount of carbon to the atmosphere due to deforestation. Establishing quality forest statistics and documenting aboveground forest carbon stocks (AFCS) are emerging in the region. Airborne and satellite based large area monitoring methods are developed to compliment conventional plot based field measurement methods as they are costly, time consuming, and difficult to implement for large regions. But these methods still require adequate ground measurements for calibrating accurate AFCS model. Furthermore, tropical region comprised of varieties of natural and plantation forests capping higher variability of forest structures and biomass volumes. To address this issue and the needs for ground data, we propose the systematic collection of ground data integrated with airborne light detection and ranging (LiDAR) data. Airborne LiDAR enables accurate measures of vertical forest structure, including canopy height and volume demanding less ground measurement plots. Using an appropriate forest type based LiDAR sampling framework, structural properties of forest can be quantified and treated similar to ground measurement plots, producing locally relevant information to use independently with satellite data sources including synthetic aperture radar (SAR). In this study, we examined LiDAR derived forest parameters with field measured data and developed general and specific AFCS models for tropical forests in central Sumatra. The general model is fitted for all types of natural and plantation forests while the specific model is fitted to the specific forest type. The study region consists of natural forests including peat swamp and dry moist forests, regrowth, and mangrove and plantation forests

  14. Promoting Sustainable Forest Management Among Stakeholders in the Prince Albert Model Forest, Canada

    Directory of Open Access Journals (Sweden)

    Glen T Hvenegaard

    2015-01-01

    Full Text Available Model Forests are partnerships for shared decision-making to support social, environmental, and economic sustainability in forest management. Relationships among sustainable forest management partners are often strained, but the Prince Albert Model Forest (PAMF represents a process of effective stakeholder involvement, cooperative relationships, visionary planning, and regional landscape management. This article seeks to critically examine the history, drivers, accomplishments, and challenges associated with the PAMF. Four key phases are discussed, representing different funding levels, planning processes, research projects, and partners. Key drivers in the PAMF were funding, urgent issues, provincial responsibility, core of committed people, evolving governance, desire for a neutral organisation, role of protected areas, and potential for mutual benefits. The stakeholders involved in the Model Forest, including the forest industry and associated groups, protected areas, Aboriginal groups, local communities, governments, and research groups, were committed to the project, cooperated on many joint activities, provided significant staffing and financial resources, and gained many benefits to their own organisations. Challenges included declining funding, changing administrative structures, multiple partners, and rotating representatives. The PAMF process promoted consultative and integrated land resource management in the region, and demonstrated the positive results of cooperation between stakeholders interested in sustainable forest management.

  15. Phylogenetic classification of the world's tropical forests

    NARCIS (Netherlands)

    Slik, J.W.F.; Franklin, Janet; Arroyo-Rodríguez, Víctor; Field, Richard; Aguilar, Salomon; Aguirre, Nikolay; Ahumada, Jorge; Aiba, Shin Ichiro; Alves, Luciana F.; Anitha, K.; Avella, Andres; Mora, Francisco; Aymard, Gerardo A.C.; Báez, Selene; Balvanera, Patricia; Bastian, Meredith L.; Bastin, Jean François; Bellingham, Peter J.; Berg, Van Den Eduardo; Conceição Bispo, Da Polyanna; Boeckx, Pascal; Boehning-Gaese, Katrin; Bongers, Frans; Boyle, Brad; Brambach, Fabian; Brearley, Francis Q.; Brown, Sandra; Chai, Shauna Lee; Chazdon, Robin L.; Chen, Shengbin; Chhang, Phourin; Chuyong, George; Ewango, Corneille; Coronado, Indiana M.; Cristóbal-Azkarate, Jurgi; Culmsee, Heike; Damas, Kipiro; Dattaraja, H.S.; Davidar, Priya; DeWalt, Saara J.; Din, Hazimah; Drake, Donald R.; Duque, Alvaro; Durigan, Giselda; Eichhorn, Karl; Eler, Eduardo Schmidt; Enoki, Tsutomu; Ensslin, Andreas; Fandohan, Adandé Belarmain; Farwig, Nina; Feeley, Kenneth J.; Fischer, Markus; Forshed, Olle; Garcia, Queila Souza; Garkoti, Satish Chandra; Gillespie, Thomas W.; Gillet, Jean Francois; Gonmadje, Christelle; Granzow-De La Cerda, Iñigo; Griffith, Daniel M.; Grogan, James; Hakeem, Khalid Rehman; Harris, David J.; Harrison, Rhett D.; Hector, Andy; Hemp, Andreas; Homeier, Jürgen; Hussain, M.S.; Ibarra-Manríquez, Guillermo; Hanum, I.F.; Imai, Nobuo; Jansen, Patrick A.; Joly, Carlos Alfredo; Joseph, Shijo; Kartawinata, Kuswata; Kearsley, Elizabeth; Kelly, Daniel L.; Kessler, Michael; Killeen, Timothy J.; Kooyman, Robert M.; Laumonier, Yves; Laurance, Susan G.; Laurance, William F.; Lawes, Michael J.; Letcher, Susan G.; Lindsell, Jeremy; Lovett, Jon; Lozada, Jose; Lu, Xinghui; Lykke, Anne Mette; Mahmud, Bin Khairil; Mahayani, Ni Putu Diana; Mansor, Asyraf; Marshall, Andrew R.; Martin, Emanuel H.; Matos, Darley Calderado Leal; Meave, Jorge A.; Melo, Felipe P.L.; Mendoza, Zhofre Huberto Aguirre; Metali, Faizah; Medjibe, Vincent P.; Metzger, Jean Paul; Metzker, Thiago; Mohandass, D.; Munguía-Rosas, Miguel A.; Muñoz, Rodrigo; Nurtjahy, Eddy; Oliveira, De Eddie Lenza; Onrizal,; Parolin, Pia; Parren, Marc; Parthasarathy, N.; Paudel, Ekananda; Perez, Rolando; Pérez-García, Eduardo A.; Pommer, Ulf; Poorter, Lourens; Qi, Lan; Piedade, Maria Teresa F.; Pinto, José Roberto Rodrigues; Poulsen, Axel Dalberg; Poulsen, John R.; Powers, Jennifer S.; Prasad, Rama Chandra; Puyravaud, Jean Philippe; Rangel, Orlando; Reitsma, Jan; Rocha, Diogo S.B.; Rolim, Samir; Rovero, Francesco; Rozak, Andes; Ruokolainen, Kalle; Rutishauser, Ervan; Rutten, Gemma; Mohd Said, Mohd Nizam; Saiter, Felipe Z.; Saner, Philippe; Santos, Braulio; Santos, Dos João Roberto; Sarker, Swapan Kumar; Schmitt, Christine B.; Schoengart, Jochen; Schulze, Mark; Sheil, Douglas; Sist, Plinio; Souza, Alexandre F.; Spironello, Wilson Roberto; Sposito, Tereza; Steinmetz, Robert; Stevart, Tariq; Suganuma, Marcio Seiji; Sukri, Rahayu; Sultana, Aisha; Sukumar, Raman; Sunderland, Terry; Supriyadi, S.; Suresh, H.S.; Suzuki, Eizi; Tabarelli, Marcelo; Tang, Jianwei; Tanner, Ed V.J.; Targhetta, Natalia; Theilade, Ida; Thomas, Duncan; Timberlake, Jonathan; Morisson Valeriano, De Márcio; Valkenburg, Van Johan; Do, Van Tran; Sam, Van Hoang; Vandermeer, John H.; Verbeeck, Hans; Vetaas, Ole Reidar; Adekunle, Victor; Vieira, Simone A.; Webb, Campbell O.; Webb, Edward L.; Whitfeld, Timothy; Wich, Serge; Williams, John; Wiser, Susan; Wittmann, Florian; Yang, Xiaobo; Yao, C.Y.A.; Yap, Sandra L.; Zahawi, Rakan A.; Zakaria, Rahmad; Zang, Runguo

    2018-01-01

    Knowledge about the biogeographic affinities of the world's tropical forests helps to better understand regional differences in forest structure, diversity, composition, and dynamics. Such understanding will enable anticipation of region-specific responses to global environmental change. Modern

  16. Abiotic and Biotic Soil Characteristics in Old Growth Forests and Thinned or Unthinned Mature Stands in Three Regions of Oregon

    Directory of Open Access Journals (Sweden)

    David A. Perry

    2012-09-01

    Full Text Available We compared forest floor depth, soil organic matter, soil moisture, anaerobic mineralizable nitrogen (a measure of microbial biomass, denitrification potential, and soil/litter arthropod communities among old growth, unthinned mature stands, and thinned mature stands at nine sites (each with all three stand types distributed among three regions of Oregon. Mineral soil measurements were restricted to the top 10 cm. Data were analyzed with both multivariate and univariate analyses of variance. Multivariate analyses were conducted with and without soil mesofauna or forest floor mesofauna, as data for those taxa were not collected on some sites. In multivariate analysis with soil mesofauna, the model giving the strongest separation among stand types (P = 0.019 included abundance and richness of soil mesofauna and anaerobic mineralizable nitrogen. The best model with forest floor mesofauna (P = 0.010 included anaerobic mineralizable nitrogen, soil moisture content, and richness of forest floor mesofauna. Old growth had the highest mean values for all variables, and in both models differed significantly from mature stands, while the latter did not differ. Old growth also averaged higher percent soil organic matter, and analysis including that variable was significant but not as strong as without it. Results of the multivariate analyses were mostly supported by univariate analyses, but there were some differences. In univariate analysis, the difference in percent soil organic matter between old growth and thinned mature was due to a single site in which the old growth had exceptionally high soil organic matter; without that site, percent soil organic matter did not differ between old growth and thinned mature, and a multivariate model containing soil organic matter was not statistically significant. In univariate analyses soil mesofauna had to be compared nonparametrically (because of heavy left-tails and differed only in the Siskiyou Mountains, where

  17. Data bases for forest inventory in the North-Central Region.

    Science.gov (United States)

    Jerold T. Hahn; Mark H. Hansen

    1985-01-01

    Describes the data collected by the Forest Inventory and Analysis (FIA) Research Work Unit at the North Central Forest Experiment Station. Explains how interested parties may obtain information from the databases either through direct access or by special requests to the FIA database manager.

  18. Chromatographic analyses of fatty acid methyl esters by HPLC-UV and GC-FID

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Myller S.; Pinho, David M.M.; Suarez, Paulo A.Z., E-mail: psuarez@unb.br [Laboratorio de Materiais e Combustiveis, Instituto de Quimica, Universidade de Brasilia, DF (Brazil); Mendonca, Marcio A. [Faculdade de Agronomia e Medicina Veterinaria, Universidade de Brasilia, DF (Brazil); Resck, Ines S. [Laboratorio de Ressonancia Magnetica Nuclear, Universidade de Brasilia, DF (Brazil)

    2012-04-15

    An analytical method using high performance liquid chromatography with UV detection (HPLC-UV) (method A) was used for simultaneous determination of total amounts of triacylglycerides, diacylglycerides, monoacylglycerides and fatty acid methyl esters in alcoholysis of different oil (cotton, canola, sunflower, corn and soybean) samples. Analyses were carried out at 40 deg C for 20 min using a gradient of methanol (MeOH) and 2-propanol-hexane 5:4 (v/v) (PrHex): 100% of MeOH in 0 min, 50% of MeOH and 50% of PrHex in 10 min maintained with isocratic elution for 10 min. Another HPLC-UV method (method B) with acetonitrile isocratic elution for 34 min was used to determine the fatty acid composition of oils analyzing their methyl ester derivatives. Contents were determined with satisfactory repeatability (relative standard deviation, RSD < 3%), linearity (r{sup 2} > 0.99) and sensitivity (limit of quantification). Method B was compared with an official gas chromatographic method with flame ionization detection (GC-FID) from American Oil Chemists' Society (AOCS) in the determination of fatty acid methyl esters (FAME) in biodiesel real samples. (author)

  19. SPATIAL DISTRIBUTION OF SOME ECTOMYCORRHIZAL FUNGI (RUSSULACEAE, FUNGI, BASIDIOMYCOTA IN FOREST HABITATS FROM THE NORTH-EAST REGION (ROMANIA

    Directory of Open Access Journals (Sweden)

    Ovidiu COPOT

    2016-12-01

    Full Text Available Ectomycorrhizal macromycetes are, generally, an important ecological component for forest habitats, and a valuable resource in the context of sustainable development of rural communities in the North-East Region of Romania. The woody species distribution is an extremely important factor for the ECM macromycetes presence. The purpose of this study was to elaborate maps of potential distribution for some ECM edible macromycetes from Russula and Lactarius genera, based on chorological information, ICAS Forest Types Map, vegetation tables and bibliographical sources. These information allowed the elaboration of 15 potential maps of distribution for 15 edible species of Russula and Lactarius. The study was based entirely on the plant – fungal associations. The results highlighted that in the North-East Region of Romania there is a noteworthy potential for Russulaceae species. As expected, there is a large amplitude of species presence in the field depending on the fungal specificity for tree host and tree species distribution.

  20. Observations of atmospheric monoaromatic hydrocarbons at urban, semi-urban and forest environments in the Amazon region

    Science.gov (United States)

    Paralovo, Sarah L.; Borillo, Guilherme C.; Barbosa, Cybelli G. G.; Godoi, Ana Flavia L.; Yamamoto, Carlos I.; de Souza, Rodrigo A. F.; Andreoli, Rita V.; Costa, Patrícia S.; Almeida, Gerson P.; Manzi, Antonio O.; Pöhlker, Christopher; Yáñez-Serrano, Ana M.; Kesselmeier, Jürgen; Godoi, Ricardo H. M.

    2016-03-01

    The Amazon region is one of the most significant natural ecosystems on the planet. Of special interest as a major study area is the interface between the forest and Manaus city, a state capital in Brazil embedded in the heart of the Amazon forest. In view of the interactions between natural and anthropogenic processes, an integrated experiment was conducted measuring the concentrations of the volatile organic compounds (VOCs) benzene, toluene, ethylbenzene and meta, ortho, para-xylene (known as BTEX), all of them regarded as pollutants with harmful effects on human health and vegetation and acting also as important precursors of tropospheric ozone. Furthermore, these compounds also take part in the formation of secondary organic aerosols, which can influence the pattern of cloud formation, and thus the regional water cycle and climate. The samples were collected in 2012/2013 at three different sites: (i) The Amazon Tall Tower Observatory (ATTO), a pristine rain forest region in the central Amazon Basin; (ii) Manacapuru, a semi-urban site located southwest and downwind of Manaus as a preview of the Green Ocean Amazon Experiment (GoAmazon 2014/15); and (iii) the city of Manaus (distributed over three sites). Results indicate that there is an increase in pollutant concentrations with increasing proximity to urban areas. For instance, the benzene concentration ranges were 0.237-19.6 (Manaus), 0.036-0.948 (Manacapuru) and 0.018-0.313 μg m-3 (ATTO). Toluene ranges were 0.700-832 (Manaus), 0.091-2.75 μg m-3 (Manacapuru) and 0.011-4.93 (ATTO). For ethylbenzene, they were 0.165-447 (Manaus), 0.018-1.20 μg m-3 (Manacapuru) and 0.047-0.401 (ATTO). Some indication was found for toluene to be released from the forest. No significant difference was found between the BTEX levels measured in the dry season and the wet seasons. Furthermore, it was observed that, in general, the city of Manaus seems to be less impacted by these pollutants than other cities in Brazil and in other

  1. Role of forest conservation in lessening land degradation in a temperate region: the Monarch Butterfly Biosphere Reserve, Mexico.

    Science.gov (United States)

    Manzo-Delgado, Lilia; López-García, José; Alcántara-Ayala, Irasema

    2014-06-01

    With international concern about the rates of deforestation worldwide, particular attention has been paid to Latin America. Forest conservation programmes in Mexico include Payment for Environmental Services (PES), a scheme that has been successfully introduced in the Monarch Butterfly Biosphere Reserve. To seek further evidence of the role of PES in lessening land degradation processes in a temperate region, the conservation state of the Cerro Prieto ejido within the Reserve was assessed by an analysis of changes in vegetation cover and land-use between 1971 and 2013. There were no changes in the total forest surface area, but the relative proportions of the different classes of cover density had changed. In 1971, closed and semi-closed forest occupied 247.81 ha and 5.38 ha, 82.33% and 1.79% of the total area of the ejido, respectively. By 2013, closed forest had decreased to 230.38 ha (76.54% of the ejido), and semi-closed cover was 17.23 ha (5.72% of the ejido), suggesting that some semi-closed forest had achieved closed status. The final balance between forest losses and recovery was: 29.63 ha were lost, whereas 13.72 ha were recovered. Losses were mainly linked to a sanitation harvest programme to control the bark beetle Scolytus mundus. Ecotourism associated with forest conservation in the Cerro Prieto ejido has been considered by inhabitants as a focal alternative for economic development. Consequently, it is essential to develop a well-planned and solidly structured approach based on social cohesion to foster a community-led sustainable development at local level. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Rapid analytical procedure for determination of mineral oils in edible oil by GC-FID.

    Science.gov (United States)

    Wrona, Magdalena; Pezo, Davinson; Nerin, Cristina

    2013-12-15

    A procedure for the determination of mineral oils in edible oil has been fully developed. The procedure consists of using a sulphuric acid-impregnated silica gel (SAISG) glass column to eliminate the fat matter. A chemical combustion of the fatty acids takes place, while the mineral oils are not affected by the sulphuric acid. The column is eluted with hexane using a vacuum pump and the final extract is concentrated and analysed by gas chromatography (GC) with flame ionisation detector (FID). The detection limit (LOD) and the quantification limit (LOQ) in hexane were 0.07 and 0.21 μg g(-1) respectively and the LOQ in vegetable oil was 1 μg g(-1). Only a few minutes were necessary for sample treatment to have a clean extract. The efficiency of the process, measured through the recoveries from spiked samples of edible oil was higher than 95%. The procedure has been applied to determine mineral oil in olive oil from the retailed market. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Forecasting forest chip energy production in Finland 2008-2014

    International Nuclear Information System (INIS)

    Linden, Mikael

    2011-01-01

    Energy policy measures aim to increase energy production from forest chips in Finland to 10 TWh by year 2010. However, on the regional level production differences are large, and the regional estimates of the potential base of raw materials for the production of forest chips are heterogeneous. In order to analyse the validity of the above target, two methods are proposed to derive forecasts for region-level energy production from forest chips in Finland in the years 2008-2014. The plant-level data from 2003-2007 gives a starting point for a detailed statistical analysis of present and future region-level forest chip production. Observed 2008 regional levels are above the estimated prediction 95% confidence intervals based on aggregation of plant-level time averages. A simple time trend model with fixed-region effects provides accurate forecasts for the years 2008-2014. Forest chip production forecast confidence intervals cover almost all regions for the 2008 levels and the estimates of potential production levels for 2014. The forecast confidence intervals are also derived with re-sampling methods, i.e. with bootstrap methods, to obtain more reliable results. Results confirm that a general materials shortfall is not expected in the near future for forest chip energy production in Finland.

  4. Assessing the extent of "conflict of use" in multipurpose tropical forest trees: a regional view.

    Science.gov (United States)

    Herrero-Jáuregui, Cristina; Guariguata, Manuel R; Cárdenas, Dairon; Vilanova, Emilio; Robles, Marco; Licona, Juan Carlos; Nalvarte, Walter

    2013-11-30

    In the context of multiple forest management, multipurpose tree species which provide both timber and non-timber forest products (NTFP), present particular challenges as the potential of conflicting use for either product may be high. One key aspect is that the magnitude of conflict of use can be location specific, thus adding complexity to policy development. This paper focuses on the extent to which the potential for conflict of use in multipurpose tree species varies across the Amazonian lowland forests shared by Peru, Bolivia, Colombia, Ecuador and Venezuela, emphasizing the economic dimension of conflict. Based on a review of the current normative and regulatory aspects of timber and NTFP extraction in the five countries, the paper also briefly discusses the opportunities and constraints for harmonization of timber and NTFP management of multipurpose species across the region. It was found that about half of the 336 timber species reviewed across the five countries also have non-timber uses. Eleven timber species are multipurpose in all five countries: Calophyllum brasiliense, Cedrela odorata, Ceiba pentandra, Clarisia racemosa, Ficus insipida, Jacaranda copaia, Schefflera morototoni, Simarouba amara and Terminalia amazonia. Seven other multipurpose species occurred only in either Venezuela (Tabebuia impetiginosa, Spondias mombin, Pentaclethra macroloba, Copaifera officinalis, Chlorophora tinctoria, Carapa guianensis) or Ecuador (Tabebuia chrysantha). Four multipurpose tree species presented the highest potential of conflict of use across the region: Dipteryx odorata, Tabebuia serratifolia, Hymenaea courbaril and Myroxylon balsamum yet these were not evenly distributed across all five countries. None of the five studied countries have specific legislation to promote sustainable use of any of the multipurpose species reported here and thus mitigate potential conflict of use; nor documented management options for integration or else segregation of both their

  5. Valuation of Forest Amenities: A Macro Approach

    Science.gov (United States)

    Ronald Raunikar; Joseph Buongiorno

    2001-01-01

    A method of estimating forest amenity value based on macroeconomic growth theory is presented. It relies on the assumption that more valuable forest amenities are provided by a forest with a more natural stand structure. We construct a forest naturalness index from stand data that provides a relative measure of the forest amenity provided regionally. This naturalness...

  6. Genetic variability and health of Norway spruce stands in the Regional Directorate of the State Forests in Krosno

    Directory of Open Access Journals (Sweden)

    Gutkowska Justyna

    2017-03-01

    Full Text Available The study was conducted in 2015 in six spruce stands situated in different forest districts administratively belonging to the Regional Directorate of State Forests in Krosno. Each spruce population was represented by 30 trees and assessed in terms of their current health status. Genetic analyses were performed on shoot samples from each tree using nine nuclear DNA markers and one mitochondrial DNA marker (nad1. The health status of the trees was described according to the classification developed by Szczepkowski and Tarasiuk (2005 and the correlation between health classes and the level of genetic variability was computed with STATISTICA (α = 0.05.

  7. Eastern Africa Coastal Forest Programme

    OpenAIRE

    Younge, A.

    2002-01-01

    The eastern African coastal forest ecoregion is recognised as one of Africa’s centres of species endemism, and is distributed over six countries (Somalia, Kenya, Tanzania, Mozambique, Zimbabwe and Malawi). Most is found in Kenya, Tanzania and Mozambique, which form our focal region. The coastal forests are fragmented, small and surrounded by poor communities that have a high demand for land and forest resources. Although coastal forests have significant cultural and traditional...

  8. Interactions among Amazon land use, forests and climate: prospects for a near-term forest tipping point

    OpenAIRE

    Nepstad, Daniel C; Stickler, Claudia M; Filho, Britaldo Soares-; Merry, Frank

    2008-01-01

    Some model experiments predict a large-scale substitution of Amazon forest by savannah-like vegetation by the end of the twenty-first century. Expanding global demands for biofuels and grains, positive feedbacks in the Amazon forest fire regime and drought may drive a faster process of forest degradation that could lead to a near-term forest dieback. Rising worldwide demands for biofuel and meat are creating powerful new incentives for agro-industrial expansion into Amazon forest regions. For...

  9. Compressed sensing for high-resolution nonlipid suppressed 1 H FID MRSI of the human brain at 9.4T.

    Science.gov (United States)

    Nassirpour, Sahar; Chang, Paul; Avdievitch, Nikolai; Henning, Anke

    2018-04-29

    The aim of this study was to apply compressed sensing to accelerate the acquisition of high resolution metabolite maps of the human brain using a nonlipid suppressed ultra-short TR and TE 1 H FID MRSI sequence at 9.4T. X-t sparse compressed sensing reconstruction was optimized for nonlipid suppressed 1 H FID MRSI data. Coil-by-coil x-t sparse reconstruction was compared with SENSE x-t sparse and low rank reconstruction. The effect of matrix size and spatial resolution on the achievable acceleration factor was studied. Finally, in vivo metabolite maps with different acceleration factors of 2, 4, 5, and 10 were acquired and compared. Coil-by-coil x-t sparse compressed sensing reconstruction was not able to reliably recover the nonlipid suppressed data, rather a combination of parallel and sparse reconstruction was necessary (SENSE x-t sparse). For acceleration factors of up to 5, both the low-rank and the compressed sensing methods were able to reconstruct the data comparably well (root mean squared errors [RMSEs] ≤ 10.5% for Cre). However, the reconstruction time of the low rank algorithm was drastically longer than compressed sensing. Using the optimized compressed sensing reconstruction, acceleration factors of 4 or 5 could be reached for the MRSI data with a matrix size of 64 × 64. For lower spatial resolutions, an acceleration factor of up to R∼4 was successfully achieved. By tailoring the reconstruction scheme to the nonlipid suppressed data through parameter optimization and performance evaluation, we present high resolution (97 µL voxel size) accelerated in vivo metabolite maps of the human brain acquired at 9.4T within scan times of 3 to 3.75 min. © 2018 International Society for Magnetic Resonance in Medicine.

  10. Tropical Forest Gain and Interactions amongst Agents of Forest Change

    Directory of Open Access Journals (Sweden)

    Sean Sloan

    2016-02-01

    Full Text Available The tropical deforestation literature advocates multi-agent enquiry in recognition that key dynamics arise from inter-agent interactions. Studies of tropical forest-cover gain have lagged in this respect. This article explores the roles and key aspects of interactions shaping natural forest regeneration and active reforestation in Eastern Panama since 1990. It employs household surveys of agricultural landholders, interviews with community forest-restoration organisations, archival analysis of plantation reforestation interests, satellite image analysis of forest-cover change, and the consideration of State reforestation policies. Forest-cover gain reflected a convergence of interests and land-use trends amongst agents. Low social and economic costs of sustained interaction and organisation enabled extensive forest-cover gain, but low transaction costs did not. Corporate plantation reforestation rose to the fore of regional forest-cover gain via opportunistic land sales by ranchers and economic subsidies indicative of a State preference for autonomous, self-organising forest-cover gain. This reforestation follows a recent history of neoliberal frontier development in which State-backed loggers and ranchers similarly displaced agriculturalists. Community institutions, long neglected by the State, struggled to coordinate landholders and so effected far less forest-cover gain. National and international commitments to tropical forest restoration risk being similarly characterised as ineffective by a predominance of industrial plantation reforestation without greater State support for community forest management.

  11. Forest Carbon-Storage as a Peacebuilding Strategy

    DEFF Research Database (Denmark)

    Nunez, Augusto Carlos Castro

    explaining farmers’ propensity to adopt forest carbon conservation practices in situations of armed-conflicts. Meanwhile, data at the municipal-scale was used to: (1) investigate potential geographic overlaps between peacebuilding and forest carbon storage and peace building programs at national and regional......Many of the armed-conflicts in tropical regions occur in areas with high forest-cover. Generally, these areas are known for their physical potential to implement programs for forest carbon storage. Despite this important correlation, it remains uncertain what links, if any, exist between forest...... carbon biomass and armed conflicts. With this in mind, the present dissertation utilizes household-level surveys and data at the municipal-scale to assess potential for the integration of forest-carbon storage and peacebuilding efforts. Specifically, household surveys were used to identify factors...

  12. Forest vegetation of Xishuangbanna, south China

    Institute of Scientific and Technical Information of China (English)

    Zhu Hua

    2006-01-01

    Xishuangbanna of southern Yunnan is biogeographically located at a transitional zone from tropical southeast (SE) Asia to subtropical east Asia and is at the junction of the Indian and Burmese plates of Gondwana and the Eurasian plate of Laurasia. The region, though surprisingly far from the equator and at a relatively high altitude, has a rich tropical flora and a typical tropical rain forest in the lowland areas. Based on physiognomic and ecological characteristics, floristic composition and habitats combined, the primary vegetation in Xishuangbanna can be organized into four main vegetation types: tropical rain forest, tropical seasonal moist forest, tropical montane evergreen broad-leaved forest and tropical monsoon forest. The tropical rain forest can be classified into two subtypes, i.e. a tropical seasonal rain forest in the lowlands and a tropical montane rain forest at higher elevations. The tropical seasonal rain forest has almost the same forest profile and physiognomic characteristics as equatorial lowland rain forests and is a type of truly tropical rain forest. Because of conspicuous similarity on ecological and floristic characteristics, the tropical rain forest in Xishuangbanna is a type of tropical Asian rain forest. However, since the tropical rain forest of Xishuangbanna occurs at the northern edge of tropical SE Asia, it differs from typical lowland rain forests in equatorial areas in having some deciduous trees in the canopy layer, fewer megaphanerophytes and epiphytes but more abundant lianas and more plants with microphyll. It is a type of semi-evergreen rain forest at the northern edge of the tropical zone. The tropical montane rain forest occurs at wet montane habitats and is similar to the lower montane rain forest in equatorial Asia in floristic composition and physiognomy. It is a type of lower montane rain forests within the broader category of tropical rain forests. The tropical seasonal moist forest occurs on middle and upper

  13. Twentieth-century shifts in forest structure in California: Denser forests, smaller trees, and increased dominance of oaks.

    Science.gov (United States)

    McIntyre, Patrick J; Thorne, James H; Dolanc, Christopher R; Flint, Alan L; Flint, Lorraine E; Kelly, Maggi; Ackerly, David D

    2015-02-03

    We document changes in forest structure between historical (1930s) and contemporary (2000s) surveys of California vegetation through comparisons of tree abundance and size across the state and within several ecoregions. Across California, tree density in forested regions increased by 30% between the two time periods, whereas forest biomass in the same regions declined, as indicated by a 19% reduction in basal area. These changes reflect a demographic shift in forest structure: larger trees (>61 cm diameter at breast height) have declined, whereas smaller trees (Forest composition in California in the last century has also shifted toward increased dominance by oaks relative to pines, a pattern consistent with warming and increased water stress, and also with paleohistoric shifts in vegetation in California over the last 150,000 y.

  14. Temperature as a potent driver of regional forest drought stress and tree mortality

    Science.gov (United States)

    Williams, A. Park; Allen, Craig D.; Macalady, Alison K.; Griffin, Daniel; Woodhouse, Connie A.; Meko, David M.; Swetnam, Thomas W.; Rauscher, Sara A.; Seager, Richard; Grissino-Mayer, Henri D.; Dean, Jeffrey S.; Cook, Edward R.; Gangodagamage, Chandana; Cai, Michael; McDowell, Nathan G.

    2012-01-01

    s the climate changes, drought may reduce tree productivity and survival across many forest ecosystems; however, the relative influence of specific climate parameters on forest decline is poorly understood. We derive a forest drought-stress index (FDSI) for the southwestern United States using a comprehensive tree-ring data set representing AD 1000-2007. The FDSI is approximately equally influenced by the warm-season vapour-pressure deficit (largely controlled by temperature) and cold-season precipitation, together explaining 82% of the FDSI variability. Correspondence between the FDSI and measures of forest productivity, mortality, bark-beetle outbreak and wildfire validate the FDSI as a holistic forest-vigour indicator. If the vapour-pressure deficit continues increasing as projected by climate models, the mean forest drought-stress by the 2050s will exceed that of the most severe droughts in the past 1,000 years. Collectively, the results foreshadow twenty-first-century changes in forest structures and compositions, with transition of forests in the southwestern United States, and perhaps water-limited forests globally, towards distributions unfamiliar to modern civilization.

  15. On Wind Forces in the Forest-Edge Region During Extreme-Gust Passages and Their Implications for Damage Patterns

    Science.gov (United States)

    Gromke, Christof; Ruck, Bodo

    2018-03-01

    A damage pattern that is occasionally found after a period of strong winds shows an area of damaged trees inside a forest stand behind an intact stripe of trees directly at the windward edge. In an effort to understand the mechanism leading to this damage pattern, wind loading in the forest-edge region during passages of extreme gusts with different characteristics are investigated using a scaled forest model in the wind tunnel. The interaction of a transient extreme gust with the stationary atmospheric boundary layer (ABL) as a background flow at the forest edge leads to the formation of a vortex at the top of the canopy. This vortex intensifies when travelling downstream and subsequently deflects high-momentum air from above the canopy downwards resulting in increased wind loading on the tree crowns. Under such conditions, the decrease in wind loading in the streamwise direction can be relatively weak compared to stationary ABL approach flows. The resistance of trees with streamwise distance from the forest edge, however, is the result of adaptive growth to wind loading under stationary flow conditions and shows a rapid decline within two to three tree heights behind the windward edge. For some of the extreme gusts realized, an exceedance of the wind loading over the resistance of the trees is found at approximately three tree heights behind the forest edge, suggesting that the damage pattern described above can be caused by the interaction of a transient extreme gust with the stationary ABL flow.

  16. Degraded tropical rain forests possess valuable carbon storage opportunities in a complex, forested landscape.

    Science.gov (United States)

    Alamgir, Mohammed; Campbell, Mason J; Turton, Stephen M; Pert, Petina L; Edwards, Will; Laurance, William F

    2016-07-20

    Tropical forests are major contributors to the terrestrial global carbon pool, but this pool is being reduced via deforestation and forest degradation. Relatively few studies have assessed carbon storage in degraded tropical forests. We sampled 37,000 m(2) of intact rainforest, degraded rainforest and sclerophyll forest across the greater Wet Tropics bioregion of northeast Australia. We compared aboveground biomass and carbon storage of the three forest types, and the effects of forest structural attributes and environmental factors that influence carbon storage. Some degraded forests were found to store much less aboveground carbon than intact rainforests, whereas others sites had similar carbon storage to primary forest. Sclerophyll forests had lower carbon storage, comparable to the most heavily degraded rainforests. Our findings indicate that under certain situations, degraded forest may store as much carbon as intact rainforests. Strategic rehabilitation of degraded forests could enhance regional carbon storage and have positive benefits for tropical biodiversity.

  17. Impacts of climate change on the global forest sector

    Science.gov (United States)

    Perez-Garcia, J.; Joyce, L.A.; McGuire, A.D.; Xiao, X.

    2002-01-01

    The path and magnitude of future anthropogenic emissions of carbon dioxide will likely influence changes in climate that may impact the global forest sector. These responses in the global forest sector may have implications for international efforts to stabilize the atmospheric concentration of carbon dioxide. This study takes a step toward including the role of global forest sector in integrated assessments of the global carbon cycle by linking global models of climate dynamics, ecosystem processes and forest economics to assess the potential responses of the global forest sector to different levels of greenhouse gas emissions. We utilize three climate scenarios and two economic scenarios to represent a range of greenhouse gas emissions and economic behavior. At the end of the analysis period (2040), the potential responses in regional forest growing stock simulated by the global ecosystem model range from decreases and increases for the low emissions climate scenario to increases in all regions for the high emissions climate scenario. The changes in vegetation are used to adjust timber supply in the softwood and hardwood sectors of the economic model. In general, the global changes in welfare are positive, but small across all scenarios. At the regional level, the changes in welfare can be large and either negative or positive. Markets and trade in forest products play important roles in whether a region realizes any gains associated with climate change. In general, regions with the lowest wood fiber production cost are able to expand harvests. Trade in forest products leads to lower prices elsewhere. The low-cost regions expand market shares and force higher-cost regions to decrease their harvests. Trade produces different economic gains and losses across the globe even though, globally, economic welfare increases. The results of this study indicate that assumptions within alternative climate scenarios and about trade in forest products are important factors

  18. Methods for calculating forest ecosystem and harvested carbon with standard estimates for forest types of the United States

    Science.gov (United States)

    James E. Smith; Linda S. Heath; Kenneth E. Skog; Richard A. Birdsey

    2006-01-01

    This study presents techniques for calculating average net annual additions to carbon in forests and in forest products. Forest ecosystem carbon yield tables, representing stand-level merchantable volume and carbon pools as a function of stand age, were developed for 51 forest types within 10 regions of the United States. Separate tables were developed for...

  19. The economic efficiency of forest energy wood chip production in regional use – A case study

    Directory of Open Access Journals (Sweden)

    Dalibor Šafařík

    2013-01-01

    Full Text Available This regional project case study deals with the limiting factors of economic efficiency in the production of forest energy wood chips. The evaluation of production efficiency made use of data obtained from the Lesy města Brna, a.s. (Forest of the City of Brno, Corp., which were subjected to two static methods of investment evaluation: an analysis of the tipping point and determination of the limit of variable costs and a dynamic modified tipping point analysis using cash flow (i.e. cash break even analysis. The results have confirmed an established hypothesis, namely that the decisive factor in the profitability of the production of forest energy wood chips hinges on the costs incurred in the gathering of raw material and the distribution of the produced chips. The results include a further limiting factor: transportation costs to the final consumption location. The output of the study is a recommendation that the concentration of residual forest materials not exceed a distance of 250 m from the place of production to the point of disintegration and that the transport distance of energy chips not exceed 50 km from the place of disintegration to the final consumption point. These limiting values help quantify the full internal costs per cost unit, full internal cost profitability, total revenue profitability and annual profitability expressed in terms of fixed assets depreciation without factoring in financial aid.

  20. Erosion taken place in mountainous regions by effect of the forest fires; Erosion producida en las regiones montanosas por efecto de los incendios forestales

    Energy Technology Data Exchange (ETDEWEB)

    Carignano, Claudio A; Cioccale, Marcela A

    1992-07-01

    This paper presents the first part of an investigation about the effect of the fire in the forest in a basin, which is a hydric reserve and supplies with potable water to a big region of Sierras Chicas, in the province of Cordoba, Argentina. The combination of the unprotected soil, by the lack of vegetation due to the fire, the climate conditions, the gradient and the lithology produce an increase over the processes of erosion. Different thematic maps were necessary join all the information, to determine the relation between the fires affected areas and the erosion processes, besides the regional climate conditions were considered as a fundamental factor.

  1. The political ecology of forest health in the redwood region

    Science.gov (United States)

    Chris Lee; Yana Valachovic; Dan Stark

    2017-01-01

    Imported forest pests have changed North American forests and caused staggering monetary losses in the centuries since the country was founded. Since most problem-causing non-native pests are innocuous in their home ranges, where they have coevolved with their host trees, experts cannot predict which pathogens or insects will have lethal effect on other continents....

  2. Forecasting the forest and the trees: consequences of drought in competitive forests

    Science.gov (United States)

    Clark, J. S.

    2015-12-01

    Models that translate individual tree responses to distribution and abundance of competing populations are needed to understand forest vulnerability to drought. Currently, biodiversity predictions rely on one scale or the other, but do not combine them. Synthesis is accomplished here by modeling data together, each with their respective scale-dependent connections to the scale needed for prediction—landscape to regional biodiversity. The approach we summarize integrates three scales, i) individual growth, reproduction, and survival, ii) size-species structure of stands, and iii) regional forest biomass. Data include 24,347 USDA Forest Inventory and Analysis (FIA) plots and 135 Long-term Forest Demography plots. Climate, soil moisture, and competitive interactions are predictors. We infer and predict the four-dimensional size/species/space/time (SSST) structure of forests, where all demographic rates respond to winter temperature, growing season length, moisture deficits, local moisture status, and competition. Responses to soil moisture are highly non-linear and not strongly related to responses to climatic moisture deficits over time. In the Southeast the species that are most sensitive to drought on dry sites are not the same as those that are most sensitive on moist sites. Those that respond most to spatial moisture gradients are not the same as those that respond most to regional moisture deficits. There is little evidence of simple tradeoffs in responses. Direct responses to climate constrain the ranges of few tree species, north or south; there is little evidence that range limits are defined by fecundity or survival responses to climate. By contrast, recruitment and the interactions between competition and drought that affect growth and survival are predicted to limit ranges of many species. Taken together, results suggest a rich interaction involving demographic responses at all size classes to neighbors, landscape variation in moisture, and regional

  3. Forest statistics for Arkansas' Ouachita counties - 1995

    Science.gov (United States)

    James F. Rosson; Jack D. London

    1997-01-01

    Periodic surveys of forest resources are authorized by the Forest Service and Rangeland Renewable Resources Research Act of 1978. These surveys are a continuing, nationwide undertaking by the Regional Experiment Stations of the USDA Forest Service. In the Southern United States, these surveys are conducted by the two Forest Inventory and Analysis (FIA) Research Work...

  4. Forest health monitoring: 2009 national technical report

    Science.gov (United States)

    Kevin M. Potter; Barbara L. Conkling

    2012-01-01

    The annual national technical report of the Forest Health Monitoring Program of the Forest Service, U.S. Department of Agriculture, presents forest health status and trends from a national or multi-State regional perspective using a variety of sources, introduces new techniques for analyzing forest health data, and summarizes results of recently completed Evaluation...

  5. The Turkey oak high forests in the Molise region (central Italy. Analysis of past silvicultural system and current management choices.

    Directory of Open Access Journals (Sweden)

    Paolo Cantiani

    2010-12-01

    Full Text Available Normal 0 14 false false false MicrosoftInternetExplorer4 Aim of the work is to provide further knowledge on the silvicultural system applied to Quercus cerris hight forests in the Molise Region (Central Italy. An historical analysis, based on a number of forest management plans applied since 1940 referred to 19 municipalities and on other historical documents, is provided in the paper. Forest management has been traditionally applied in the Molise Region and therefore is at now possible to reconstruct in detail the management of the forests of Molise Region. The historical study has been integrated with the analysis of a chronosequence including four steps of stand development in a Turkey oak stand: the regeneration phase (1-2 yrs - the unthinned young stand (46 yrs - the unthinned adult stand (aged 60 to 100 - the mature stand (126 yrs. Mensurational surveys were carried out at each phase in order to characterize both stand structure and derive information on the silvicultural practices applied in the past, but not documented in the available papers. The stand age was determined by tree coring and count of annual rings. At the beginning of the last century, the silvicultural system to be applied in oak high forests wasn’t strictly defined and a particular kind of selection cutting was carried out. It was named taglio a salto per sezioni i.e. “compartment selection cutting”, partly leading back to a real selection cutting, partly to a shelterwood system. The use of the reported silvicultural system gave rise to irregular forest structures and led to management problems well-described in the management plans at the end of 1940s. Another consequence of the applied practices was the absence or the inadequate natural regeneration establishment. The contemporary unregulated practice of grazing the forest floor contributed to the unsuccessful regeneration and made the situation worse. The presence of an understorey layer made up by sproutings

  6. NASA LCLUC Program: An Integrated Forest Monitoring System for Central Africa

    Science.gov (United States)

    Laporte, Nadine; LeMoigne, Jacqueline; Elkan, Paul; Desmet, Olivier; Paget, Dominique; Pumptre, Andrew; Gouala, Patrice; Honzack, Miro; Maisels, Fiona

    2004-01-01

    Central Africa has the second largest unfragmented block of tropical rain forest in the world; it is also one of the largest carbon and biodiversity reservoirs. With nearly one-third of the forest currently allocated for logging, the region is poised to undergo extensive land-use change. Through the mapping of the forests, our Integrated Forest Monitoring System for Central Africa (INFORMS) project aims to monitor habitat alteration, support biodiversity conservation, and promote better land-use planning and forest management. Designed as an interdisciplinary project, its goal is to integrate data acquired from satellites with field observations from forest inventories, wildlife surveys, and socio-economic studies to map and monitor forest resources. This project also emphasizes on collaboration and coordination with international, regional, national, and local partners-including non-profit, governmental, and commercial sectors. This project has been focused on developing remote sensing products for the needs of forest conservation and management, insuring that research findings are incorporated in forest management plans at the national level. The societal impact of INFORMS can be also appreciated through the development of a regional remote sensing network in central Africa. With a regional office in Kinshasa, (www.OSFAC.org), the contribution to the development of forest management plans for 1.5 million hectares of forests in northern Republic of Congo (www.tt-timber.com), and the monitoring of park encroachments in the Albertine region (Uganda and DRC) (www.albertinerift.org).

  7. The measurement of Cs-137 in Latvian forest litter

    International Nuclear Information System (INIS)

    Riekstina, D.; Veveris, O.

    1998-01-01

    The role of forests in the distribution of cesium 137 over the Latvian territory affected by the Chernobyl accident was examined. Concentrations of this radionuclide in soil in pine, spruce, and birch forests and in non-forest areas in Rucava (affected by the accident) and in Taurene (non-polluted zone) were compared. In Rucava, the concentrations of Cs-137 fluctuated over the region of 108-724 Bq/kg in a pine forest, 205-2270 Bq/kg in a spruce forest, and 15-30 Bq/kg beyond the forest region. In Taurene, the corresponding figures were 42-157, 19-133, and 3-19 Bq/kg, respectively. The data confirm the appreciable role of coniferous forests in the absorption of Cs-137 from the air and its redistribution within the forest area. (P.A.)

  8. The role of forest disturbance in global forest mortality and terrestrial carbon fluxes

    Science.gov (United States)

    Pugh, Thomas; Arneth, Almut; Smith, Benjamin; Poulter, Benjamin

    2017-04-01

    Large-scale forest disturbance dynamics such as insect outbreaks, wind-throw and fires, along with anthropogenic disturbances such as logging, have been shown to turn forests from carbon sinks into intermittent sources, often quite dramatically so. There is also increasing evidence that disturbance regimes in many regions are changing as a result of climatic change and human land-management practices. But how these landscape-scale events fit into the wider picture of global tree mortality is not well understood. Do such events dominate global carbon turnover, or are their effects highly regional? How sensitive is global terrestrial carbon exchange to realistic changes in the occurrence rate of such disturbances? Here, we combine recent advances in global satellite observations of stand-replacing forest disturbances and in compilations of forest inventory data, with a global terrestrial ecosystem model which incorporates an explicit representation of the role of disturbance in forest dynamics. We find that stand-replacing disturbances account for a fraction of wood carbon turnover that varies spatially from less than 5% in the tropical rainforest to ca. 50% in the mid latitudes, and as much as 90% in some heavily-managed regions. We contrast the size of the land-atmosphere carbon flux due to this disturbance with other components of the terrestrial carbon budget. In terms of sensitivity, we find a quasi log-linear relationship of disturbance rate to total carbon storage. Relatively small changes in disturbance rates at all latitudes have marked effects on vegetation carbon storage, with potentially very substantial implications for the global terrestrial carbon sink. Our results suggest a surprisingly small effect of disturbance type on large-scale forest vegetation dynamics and carbon storage, with limited evidence of widespread increases in nitrogen limitation as a result of increasing future disturbance. However, the influence of disturbance type on soil carbon

  9. Forest Disturbance Across the Conterminous United States from 1985-2012: The Emerging Dominance of Forest Decline

    Science.gov (United States)

    Cohen, Warren B.; Yang, Zhiqiang; Stehman, Stephen; Schroeder, Todd; Bell, David M.; Masek, Jeffrey; Huang, Chengquan; Meigs, Garrett W.

    2015-01-01

    Evidence of shifting dominance among major forest disturbance agent classes regionally to globally has been emerging in the literature. For example, climate-related stress and secondary stressors on forests (e.g., insect and disease, fire) have dramatically increased since the turn of the century globally, while harvest rates in the western US and elsewhere have declined. For shifts to be quantified, accurate historical forest disturbance estimates are required as a baseline for examining current trends. We report annual disturbance rates (with uncertainties) in the aggregate and by major change causal agent class for the conterminous US and five geographic subregions between 1985 and 2012. Results are based on human interpretations of Landsat time series from a probability sample of 7200 plots (30 m) distributed throughout the study area. Forest disturbance information was recorded with a Landsat time series visualization and data collection tool that incorporates ancillary high-resolution data. National rates of disturbance varied between 1.5% and 4.5% of forest area per year, with trends being strongly affected by shifting dominance among specific disturbance agent influences at the regional scale. Throughout the time series, national harvest disturbance rates varied between one and two percent, and were largely a function of harvest in the more heavily forested regions of the US (Mountain West, Northeast, and Southeast). During the first part of the time series, national disturbance rates largely reflected trends in harvest disturbance. Beginning in the mid-90s, forest decline-related disturbances associated with diminishing forest health (e.g., physiological stress leading to tree canopy cover loss, increases in tree mortality above background levels), especially in the Mountain West and Lowland West regions of the US, increased dramatically. Consequently, national disturbance rates greatly increased by 2000, and remained high for much of the decade. Decline

  10. Carbon storage and emissions offset potential in an African dry forest, the Arabuko-Sokoke Forest, Kenya.

    Science.gov (United States)

    Glenday, Julia

    2008-07-01

    Concerns about rapid tropical deforestation, and its contribution to rising atmospheric concentrations of greenhouse gases, increase the importance of monitoring terrestrial carbon storage in changing landscapes. Emerging markets for carbon emission offsets may offer developing nations needed incentives for reforestation, rehabilitation, and avoided deforestation. However, relatively little empirical data exists regarding carbon storage in African tropical forests, particularly for those in arid or semi-arid regions. Kenya's 416 km(2) Arabuko-Sokoke Forest (ASF) is the largest remaining fragment of East African coastal dry forest and is considered a global biodiversity hotspot (Myers et al. 2000), but has been significantly altered by past commercial logging and ongoing extraction. Forest carbon storage for ASF was estimated using allometric equations for tree biomass, destructive techniques for litter and herbaceous vegetation biomass, and spectroscopy for soils. Satellite imagery was used to assess land cover changes from 1992 to 2004. Forest and thicket types (Cynometra webberi dominated, Brachystegia spiciformis dominated, and mixed species forest) had carbon densities ranging from 58 to 94 Mg C/ha. The ASF area supported a 2.8-3.0 Tg C carbon stock. Although total forested area in ASF did not change over the analyzed time period, ongoing disturbances, quantified by the basal area of cut tree stumps per sample plot, correlated with decreased carbon densities. Madunguni Forest, an adjoining forest patch, lost 86% of its forest cover and at least 76% of its terrestrial carbon stock in the time period. Improved management of wood harvesting in ASF and rehabilitation of Madunguni Forest could substantially increase terrestrial carbon sequestration in the region.

  11. Change detection by the IR-MAD and kernel MAF methods in Landsat TM data covering a Swedish forest region

    DEFF Research Database (Denmark)

    Nielsen, Allan Aasbjerg; Olsson, Håkan

    2010-01-01

    Change over time between two 512 by 512 (25 m by 25 m pixels) multispectral Landsat Thematic Mapper images dated 6 June 1986 and 27 June 1988 respectively covering a forested region in northern Sweden, is here detected by means of the iteratively reweighted multivariate alteration detection (IR-M...

  12. The arboreal component of a dry forest in Northeastern Brazil

    Directory of Open Access Journals (Sweden)

    M. J. N. Rodal

    Full Text Available The dry forests of northeastern Brazil are found near the coastal zone and on low, isolated mountains inland amid semi-arid vegetation. The floristic composition of these dry montane forests, as well as their relationship to humid forests (Atlantic forest sensu stricto and to the deciduous thorn woodlands (Caatinga sensu stricto of the Brazilian northeast are not yet well known. This paper sought to determine if the arboreal plants in a dry forest growing on a low mountain in the semi-arid inland region (Serra Negra, 8° 35’ - 8° 38’ S and 38° 02’ - 38° 04’ W between the municipalities of Floresta and Inajá, state of Pernambuco have the same floristic composition and structure as that seen in other regional forests. In fifty 10 x 20 m plots all live and standing dead trees with trunk measuring > 5 cm diameter at breast height were measured. Floristic similarities between the forest studied and other regional forests were assessed using multivariate analysis. The results demonstrate that the dry forest studied can be classified into two groups that represent two major vegetational transitions: (1 a humid forest/dry forest transition; and (2 a deciduous thorn-woodland/ dry forest transition.

  13. The arboreal component of a dry forest in Northeastern Brazil.

    Science.gov (United States)

    Rodal, M J N; Nascimento, L M

    2006-05-01

    The dry forests of northeastern Brazil are found near the coastal zone and on low, isolated mountains inland amid semi-arid vegetation. The floristic composition of these dry montane forests, as well as their relationship to humid forests (Atlantic forest sensu stricto) and to the deciduous thorn woodlands (Caatinga sensu stricto) of the Brazilian northeast are not yet well known. This paper sought to determine if the arboreal plants in a dry forest growing on a low mountain in the semi-arid inland region (Serra Negra, 8 degrees 35 - 8 degrees 38 S and 38 degrees 02 - 38 degrees 04 W) between the municipalities of Floresta and Inajá, state of Pernambuco have the same floristic composition and structure as that seen in other regional forests. In fifty 10 x 20 m plots all live and standing dead trees with trunk measuring > 5 cm diameter at breast height were measured. Floristic similarities between the forest studied and other regional forests were assessed using multivariate analysis. The results demonstrate that the dry forest studied can be classified into two groups that represent two major vegetational transitions: (1) a humid forest/dry forest transition; and (2) a deciduous thorn-woodland/ dry forest transition.

  14. Region 3 National Forest Boundaries (NM and AZ)

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — A feature class describing the spatial location of the administrative boundary of the lands managed by the Forest Supervisor's office. An area encompassing all the...

  15. Rehabilitation of radioactive contaminated forests

    International Nuclear Information System (INIS)

    Panfilov, A.V.; Uspenskaya, E.Ju.

    2002-01-01

    As a result of radiation accidents and nuclear-weapon tests at the territory of the former USSR a part of the Forest Fund of 23 subjects of the Russian Federation has been contaminated by radionuclides. The contaminated forests, which are included in a structure of more than 130 forest management units (leskhozes) and more then 330 local forest management units, as a rule, are located in highly inhabited regions with traditionally intensive forestry management and high level of forest resources use. To provide radiologically safe forest management in the contaminated areas, the Federal Forest Service has developed and validated a special system of countermeasures. Use of this system makes it possible to diminish significantly the dose to personnel, to exclude the use of forest products with contamination exceeding radiological standards and to provide protection of the forest as a biogeochemical barrier to radionuclide migration from contaminated areas to human habitat. (author)

  16. La fidélité envers la marque de « Deal » à travers une atmosphère inter@ctive : une étude qualitative exploratoire « Le cas d’achat groupé en ligne »

    OpenAIRE

    Ali Sallemi Hrichi; Kaouther Ben Rached

    2017-01-01

    La présente étude qualitative s’inscrit dans le contexte du commerce électronique, elle se veut une tentative pour expliquer, à travers deux échantillons, la contribution des caractéristiques fonctionnelles et relationnelles d’un site web d’une marque de « Deal », via une atmosphère interactive, à la fidélité des clients dans le secteur d’achat groupé en ligne, et que les responsables des marques de « Deal » opèrent dans des stratégies de fidélisation à l’égard de leurs clients. Ceci se justi...

  17. Distribution and dynamics of mangrove forests of South Asia

    Science.gov (United States)

    Giri, Chandra; Long, Jordan; Abbas, Sawaid; Murali, R. Mani; Qamer, Faisal M.; Pengra, Bruce; Thau, David

    2014-01-01

    Mangrove forests in South Asia occur along the tidal sea edge of Bangladesh, India, Pakistan, and Sri Lanka. These forests provide important ecosystem goods and services to the region's dense coastal populations and support important functions of the biosphere. Mangroves are under threat from both natural and anthropogenic stressors; however the current status and dynamics of the region's mangroves are poorly understood. We mapped the current extent of mangrove forests in South Asia and identified mangrove forest cover change (gain and loss) from 2000 to 2012 using Landsat satellite data. We also conducted three case studies in Indus Delta (Pakistan), Goa (India), and Sundarbans (Bangladesh and India) to identify rates, patterns, and causes of change in greater spatial and thematic details compared to regional assessment of mangrove forests.

  18. Heavy metal pollution and forest health in the Ukrainian Carpathians

    International Nuclear Information System (INIS)

    Shparyk, Y.S.; Parpan, V.I.

    2004-01-01

    The Ukrainian Carpathians are characterized by high air pollution caused by emissions from numerous industries. We have been monitoring the state of forests in this region since 1989. The highest levels of tree defoliation (>30%) are found close to industrial emission sources and in the upper mountain forests of the Ivano-Frankivsk and Chernivtsi regions. This is caused by a combination of strong anthropogenic influences (pollution, illegal uses, recreation) as well as poor site and climatic conditions. In the Ivano-Frankivsk region, Cd and Mo accumulate in forest soils; Cr, Mo and Zn soil concentrations are higher than their limit levels; and Pb concentrations exceed toxic levels close to industrial areas (10% of the region territory). Local background levels of heavy metals are greatly exceeded in snow close to industrial regions. Analysis of correlation matrices shows that the chemical elements Ba, Cd, Co, Cr, Cu, Mo, Ni, Pb, V and Zn occur at pollution levels in natural ecosystems in the Ukrainian Carpathians. Maximum concentrations of toxic elements occur in the oak forest zone; the most industrially developed area of the region. Toxic heavy metals in the Ukrainian Carpathians forests enter with precipitation and dustfall, then become fixed in soil and accumulate in leaves, needles of vascular plants and mosses. Concentrations of these metals decrease with altitude: highest in the oak forests, less in beech, and lowest in the spruce forest zones. However, some chemical elements have the highest concentrations in spruce forests; V in needles, As in snow, and Ba and Al in soils. - Local industrial emissions of heavy metal pollution and the condition of Ukrainian Carpathians forests are examined

  19. Fragmentation, topography, and forest age modulate impacts of drought on a tropical forested landscape in eastern Puerto Rico

    Science.gov (United States)

    Uriarte, M.; Schwartz, N.; Budsock, A.

    2017-12-01

    Naturally regenerating second-growth forests account for ca. 50% of tropical forest cover and provide key ecosystem services. Understanding climate impacts on these ecosystems is critical for developing effective mitigation programs. Differences in environmental conditions and landscape context from old-growth forests may exacerbate climate impacts on second-growth stands. Nearly 70% of forest regeneration is occurring in hilly, upland, or mountain regions; a large proportion of second-growth forests are also fragmented. The effects of drought at the landscape scale, however, and the factors that modulate landscape heterogeneity in drought impacts remain understudied. Heterogeneity in soil moisture, light, and temperature in fragmented, topographically complex landscapes is likely to influence climate impacts on these forests. We examine impacts of a severe drought in 2015 on a forested landscape in Puerto Rico using two anomalies in vegetation indices. The study landscape is fragmented and topographically complex and includes old- and second-growth forests. We consider how topography (slope, aspect), fragmentation (distance to forest edge, patch size), and forest age (old- vs second-growth) modulate landscape heterogeneity of drought impacts and recovery from drought. Drought impacts were more severe in second-growth forests than in old-growth stands. Both topography and forest fragmentation influences the magnitude of drought impacts. Forest growing in steep areas, south facing slopes, small patches, and closer to forest edges exhibited more marked responses to drought. Forest recovery from drought was greater in second-growth forests and south facing slopes but slower in small patches and closer to forest edges. These findings are congruent with studies of drought impacts on tree growth in the study region. Together these results demonstrate the need for a multi-scalar approach to the study of drought impacts on tropical forests.

  20. MODIS Based Estimation of Forest Aboveground Biomass in China.

    Directory of Open Access Journals (Sweden)

    Guodong Yin

    Full Text Available Accurate estimation of forest biomass C stock is essential to understand carbon cycles. However, current estimates of Chinese forest biomass are mostly based on inventory-based timber volumes and empirical conversion factors at the provincial scale, which could introduce large uncertainties in forest biomass estimation. Here we provide a data-driven estimate of Chinese forest aboveground biomass from 2001 to 2013 at a spatial resolution of 1 km by integrating a recently reviewed plot-level ground-measured forest aboveground biomass database with geospatial information from 1-km Moderate-Resolution Imaging Spectroradiometer (MODIS dataset in a machine learning algorithm (the model tree ensemble, MTE. We show that Chinese forest aboveground biomass is 8.56 Pg C, which is mainly contributed by evergreen needle-leaf forests and deciduous broadleaf forests. The mean forest aboveground biomass density is 56.1 Mg C ha-1, with high values observed in temperate humid regions. The responses of forest aboveground biomass density to mean annual temperature are closely tied to water conditions; that is, negative responses dominate regions with mean annual precipitation less than 1300 mm y-1 and positive responses prevail in regions with mean annual precipitation higher than 2800 mm y-1. During the 2000s, the forests in China sequestered C by 61.9 Tg C y-1, and this C sink is mainly distributed in north China and may be attributed to warming climate, rising CO2 concentration, N deposition, and growth of young forests.

  1. MODIS Based Estimation of Forest Aboveground Biomass in China

    Science.gov (United States)

    Sun, Yan; Wang, Tao; Zeng, Zhenzhong; Piao, Shilong

    2015-01-01

    Accurate estimation of forest biomass C stock is essential to understand carbon cycles. However, current estimates of Chinese forest biomass are mostly based on inventory-based timber volumes and empirical conversion factors at the provincial scale, which could introduce large uncertainties in forest biomass estimation. Here we provide a data-driven estimate of Chinese forest aboveground biomass from 2001 to 2013 at a spatial resolution of 1 km by integrating a recently reviewed plot-level ground-measured forest aboveground biomass database with geospatial information from 1-km Moderate-Resolution Imaging Spectroradiometer (MODIS) dataset in a machine learning algorithm (the model tree ensemble, MTE). We show that Chinese forest aboveground biomass is 8.56 Pg C, which is mainly contributed by evergreen needle-leaf forests and deciduous broadleaf forests. The mean forest aboveground biomass density is 56.1 Mg C ha−1, with high values observed in temperate humid regions. The responses of forest aboveground biomass density to mean annual temperature are closely tied to water conditions; that is, negative responses dominate regions with mean annual precipitation less than 1300 mm y−1 and positive responses prevail in regions with mean annual precipitation higher than 2800 mm y−1. During the 2000s, the forests in China sequestered C by 61.9 Tg C y−1, and this C sink is mainly distributed in north China and may be attributed to warming climate, rising CO2 concentration, N deposition, and growth of young forests. PMID:26115195

  2. MODIS Based Estimation of Forest Aboveground Biomass in China.

    Science.gov (United States)

    Yin, Guodong; Zhang, Yuan; Sun, Yan; Wang, Tao; Zeng, Zhenzhong; Piao, Shilong

    2015-01-01

    Accurate estimation of forest biomass C stock is essential to understand carbon cycles. However, current estimates of Chinese forest biomass are mostly based on inventory-based timber volumes and empirical conversion factors at the provincial scale, which could introduce large uncertainties in forest biomass estimation. Here we provide a data-driven estimate of Chinese forest aboveground biomass from 2001 to 2013 at a spatial resolution of 1 km by integrating a recently reviewed plot-level ground-measured forest aboveground biomass database with geospatial information from 1-km Moderate-Resolution Imaging Spectroradiometer (MODIS) dataset in a machine learning algorithm (the model tree ensemble, MTE). We show that Chinese forest aboveground biomass is 8.56 Pg C, which is mainly contributed by evergreen needle-leaf forests and deciduous broadleaf forests. The mean forest aboveground biomass density is 56.1 Mg C ha-1, with high values observed in temperate humid regions. The responses of forest aboveground biomass density to mean annual temperature are closely tied to water conditions; that is, negative responses dominate regions with mean annual precipitation less than 1300 mm y-1 and positive responses prevail in regions with mean annual precipitation higher than 2800 mm y-1. During the 2000s, the forests in China sequestered C by 61.9 Tg C y-1, and this C sink is mainly distributed in north China and may be attributed to warming climate, rising CO2 concentration, N deposition, and growth of young forests.

  3. Gender Bias Affects Forests Worldwide

    Directory of Open Access Journals (Sweden)

    Marlène Elias

    2017-04-01

    Full Text Available Gender biases persist in forestry research and practice. These biases result in reduced scientific rigor and inequitable, ineffective, and less efficient policies, programs, and interventions. Drawing from a two-volume collection of current and classic analyses on gender in forests, we outline five persistent and inter-related themes: gendered governance, tree tenure, forest spaces, division of labor, and ecological knowledge. Each emerges across geographic regions in the northern and southern hemisphere and reflects inequities in women’s and men’s ability to make decisions about and benefit from trees, forests, and their products. Women’s ability to participate in community-based forest governance is typically less than men’s, causing concern for social equity and forest stewardship. Women’s access to trees and their products is commonly more limited than men’s, and mediated by their relationship with their male counterparts. Spatial patterns of forest use reflect gender norms and taboos, and men’s greater access to transportation. The division of labor results in gender specialization in the collection of forest products, with variations in gender roles across regions. All these gender differences result in ecological knowledge that is distinct but also complementary and shifting across the genders. The ways gender plays out in relation to each theme may vary across cultures and contexts, but the influence of gender, which intersects with other factors of social differentiation in shaping forest landscapes, is global.

  4. Securing tropical forest carbon

    DEFF Research Database (Denmark)

    Scharlemann, Jörn P. W.; Kapos, Valerie; Campbell, Alison

    2010-01-01

    Forest loss and degradation in the tropics contribute 6-17% of all greenhouse gas emissions. Protected areas cover 217.2 million ha (19.6%) of the world's humid tropical forests and contain c. 70.3 petagrams of carbon (Pg C) in biomass and soil to 1 m depth. Between 2000 and 2005, we estimate...... that 1.75 million ha of forest were lost from protected areas in humid tropical forests, causing the emission of 0.25-0.33 Pg C. Protected areas lost about half as much carbon as the same area of unprotected forest. We estimate that the reduction of these carbon emissions from ongoing deforestation...... in protected sites in humid tropical forests could be valued at USD 6,200-7,400 million depending on the land use after clearance. This is >1.5 times the estimated spending on protected area management in these regions. Improving management of protected areas to retain forest cover better may be an important...

  5. Southern Forest Resource Assessment - Summary Report

    Science.gov (United States)

    David N. Wear; John G. Greis

    2002-01-01

    The Southern Forest Resource Assessment was initiated in 1999 as a result of concerns raised by natural resource managers, the science community, and the public regarding the status and likely future of forests in the South. These included changes to the region’s forests brought about by rapid urbanization, increasing timber demand, increasing numbers of...

  6. North Carolina, 2007: Forest Inventory and Analysis factsheet

    Science.gov (United States)

    Mark Brown; Barry D. New

    2011-01-01

    Sixty-three of North Carolina’s 100 counties were > 50 percent forested. Fifteen of these were > 75 percent forested (fig. 1). The majority of these most heavily forested counties were located in the more mountainous regions of the State, usually near or including national forest lands. The remaining two most heavily forested counties were in the lower Coastal...

  7. Long and short term changes in the forests of the Cumberland Plateau and Mountains using large scale forest inventory data

    Science.gov (United States)

    Christopher M. Oswalt; Andrew J. Hartsell

    2012-01-01

    The Cumberland Plateau and Mountains (CPM) are a significant component of the eastern deciduous forest with biological and cultural resources strongly connected to and dependent upon the forest resources of the region. As a result, continuous inventory and monitoring is critical. The USDA Forest Service Forest Inventory and Analysis (FIA) program has been collecting...

  8. Forest insect & disease conditions in the Northeast - 1956

    Science.gov (United States)

    W. E. Waters; Alma M. Waterman

    1957-01-01

    This annual report on forest pest conditions in the Northeast combines, for the first time, information about both the major forest insects and the major forest diseases in the region. It was prepared as an aid to those who have a concern for protecting our forests from insect and disease attacks.

  9. Broadleaf deciduous forest counterbalanced the direct effect of climate on Holocene fire regime in hemiboreal/boreal region (NE Europe)

    Science.gov (United States)

    Feurdean, Angelica; Veski, Siim; Florescu, Gabriela; Vannière, Boris; Pfeiffer, Mirjam; O'Hara, Robert B.; Stivrins, Normunds; Amon, Leeli; Heinsalu, Atko; Vassiljev, Jüri; Hickler, Thomas

    2017-08-01

    Disturbances by fire are essential for the functioning of boreal/hemiboreal forests, but knowledge of long-term fire regime dynamics is limited. We analysed macrocharcoal morphologies and pollen of a sediment record from Lake Lielais Svētiņu (eastern Latvia), and in conjunction with fire traits analysis present the first record of Holocene variability in fire regime, fuel sources and fire types in boreal forests of the Baltic region. We found a phase of moderate to high fire activity during the cool and moist early (mean fire return interval; mFRI of ∼280 years; 11,700-7500 cal yr BP) and the late (mFRI of ∼190 years; 4500-0 cal yr BP) Holocene and low fire activity (mFRI of ∼630 years) during the Holocene Thermal Optimum (7500-4500 cal yr BP). Charcoal morphotypes and the pollen record show the predominance of frequent surface fires, occasionally transitioning to the crown during Pinus sylvestris-Betula boreal forests and less frequent surface fires during the dominance of temperate deciduous forests. In contrast to the prevailing opinion that fires in boreal forests are mostly low to moderate severity surface fires, we found evidence for common occurrence of stand-replacing crown fires in Picea abies canopy. Our results highlight that charcoal morphotypes analysis allows for distinguishing the fuel types and surface from crown fires, therefore significantly advancing our interpretation of fire regime. Future warmer temperatures and increase in the frequency of dry spells and abundant biomass accumulation can enhance the fire risk on the one hand, but will probably promote the expansion of broadleaf deciduous forests to higher latitudes, on the other hand. By highlighting the capability of broadleaf deciduous forests to act as fire-suppressing landscape elements, our results suggest that fire activity may not increase in the Baltic area under future climate change.

  10. Development of a Regional Lidar-Derived Above-Ground Biomass Model with Bayesian Model Averaging for Use in Ponderosa Pine and Mixed Conifer Forests in Arizona and New Mexico, USA

    Directory of Open Access Journals (Sweden)

    Karis Tenneson

    2018-03-01

    Full Text Available Historical forest management practices in the southwestern US have left forests prone to high-severity, stand-replacement fires. Reducing the cost of forest-fire management and reintroducing fire to the landscape without negative impact depends on detailed knowledge of stand composition, in particular, above-ground biomass (AGB. Lidar-based modeling techniques provide opportunities to increase ability of managers to monitor AGB and other forest metrics at reduced cost. We developed a regional lidar-based statistical model to estimate AGB for Ponderosa pine and mixed conifer forest systems of the southwestern USA, using previously collected field data. Model selection was performed using Bayesian model averaging (BMA to reduce researcher bias, fully explore the model space, and avoid overfitting. The selected model includes measures of canopy height, canopy density, and height distribution. The model selected with BMA explains 71% of the variability in field-estimates of AGB, and the RMSE of the two independent validation data sets are 23.25 and 32.82 Mg/ha. The regional model is structured in accordance with previously described local models, and performs equivalently to these smaller scale models. We have demonstrated the effectiveness of lidar for developing cost-effective, robust regional AGB models for monitoring and planning adaptively at the landscape scale.

  11. Assessing regional and interspecific variation in threshold responses of forest breeding birds through broad scale analyses.

    Directory of Open Access Journals (Sweden)

    Yntze van der Hoek

    Full Text Available BACKGROUND: Identifying persistence and extinction thresholds in species-habitat relationships is a major focal point of ecological research and conservation. However, one major concern regarding the incorporation of threshold analyses in conservation is the lack of knowledge on the generality and transferability of results across species and regions. We present a multi-region, multi-species approach of modeling threshold responses, which we use to investigate whether threshold effects are similar across species and regions. METHODOLOGY/PRINCIPAL FINDINGS: We modeled local persistence and extinction dynamics of 25 forest-associated breeding birds based on detection/non-detection data, which were derived from repeated breeding bird atlases for the state of Vermont. We did not find threshold responses to be particularly well-supported, with 9 species supporting extinction thresholds and 5 supporting persistence thresholds. This contrasts with a previous study based on breeding bird atlas data from adjacent New York State, which showed that most species support persistence and extinction threshold models (15 and 22 of 25 study species respectively. In addition, species that supported a threshold model in both states had associated average threshold estimates of 61.41% (SE = 6.11, persistence and 66.45% (SE = 9.15, extinction in New York, compared to 51.08% (SE = 10.60, persistence and 73.67% (SE = 5.70, extinction in Vermont. Across species, thresholds were found at 19.45-87.96% forest cover for persistence and 50.82-91.02% for extinction dynamics. CONCLUSIONS/SIGNIFICANCE: Through an approach that allows for broad-scale comparisons of threshold responses, we show that species vary in their threshold responses with regard to habitat amount, and that differences between even nearby regions can be pronounced. We present both ecological and methodological factors that may contribute to the different model results, but propose that

  12. Assessing regional and interspecific variation in threshold responses of forest breeding birds through broad scale analyses.

    Science.gov (United States)

    van der Hoek, Yntze; Renfrew, Rosalind; Manne, Lisa L

    2013-01-01

    Identifying persistence and extinction thresholds in species-habitat relationships is a major focal point of ecological research and conservation. However, one major concern regarding the incorporation of threshold analyses in conservation is the lack of knowledge on the generality and transferability of results across species and regions. We present a multi-region, multi-species approach of modeling threshold responses, which we use to investigate whether threshold effects are similar across species and regions. We modeled local persistence and extinction dynamics of 25 forest-associated breeding birds based on detection/non-detection data, which were derived from repeated breeding bird atlases for the state of Vermont. We did not find threshold responses to be particularly well-supported, with 9 species supporting extinction thresholds and 5 supporting persistence thresholds. This contrasts with a previous study based on breeding bird atlas data from adjacent New York State, which showed that most species support persistence and extinction threshold models (15 and 22 of 25 study species respectively). In addition, species that supported a threshold model in both states had associated average threshold estimates of 61.41% (SE = 6.11, persistence) and 66.45% (SE = 9.15, extinction) in New York, compared to 51.08% (SE = 10.60, persistence) and 73.67% (SE = 5.70, extinction) in Vermont. Across species, thresholds were found at 19.45-87.96% forest cover for persistence and 50.82-91.02% for extinction dynamics. Through an approach that allows for broad-scale comparisons of threshold responses, we show that species vary in their threshold responses with regard to habitat amount, and that differences between even nearby regions can be pronounced. We present both ecological and methodological factors that may contribute to the different model results, but propose that regardless of the reasons behind these differences, our results merit a warning that

  13. Leveraging 35 years of Pinus taeda research in the southeastern US to constrain forest carbon cycle predictions: regional data assimilation using ecosystem experiments

    Science.gov (United States)

    Quinn Thomas, R.; Brooks, Evan B.; Jersild, Annika L.; Ward, Eric J.; Wynne, Randolph H.; Albaugh, Timothy J.; Dinon-Aldridge, Heather; Burkhart, Harold E.; Domec, Jean-Christophe; Fox, Thomas R.; Gonzalez-Benecke, Carlos A.; Martin, Timothy A.; Noormets, Asko; Sampson, David A.; Teskey, Robert O.

    2017-07-01

    Predicting how forest carbon cycling will change in response to climate change and management depends on the collective knowledge from measurements across environmental gradients, ecosystem manipulations of global change factors, and mathematical models. Formally integrating these sources of knowledge through data assimilation, or model-data fusion, allows the use of past observations to constrain model parameters and estimate prediction uncertainty. Data assimilation (DA) focused on the regional scale has the opportunity to integrate data from both environmental gradients and experimental studies to constrain model parameters. Here, we introduce a hierarchical Bayesian DA approach (Data Assimilation to Predict Productivity for Ecosystems and Regions, DAPPER) that uses observations of carbon stocks, carbon fluxes, water fluxes, and vegetation dynamics from loblolly pine plantation ecosystems across the southeastern US to constrain parameters in a modified version of the Physiological Principles Predicting Growth (3-PG) forest growth model. The observations included major experiments that manipulated atmospheric carbon dioxide (CO2) concentration, water, and nutrients, along with nonexperimental surveys that spanned environmental gradients across an 8.6 × 105 km2 region. We optimized regionally representative posterior distributions for model parameters, which dependably predicted data from plots withheld from the data assimilation. While the mean bias in predictions of nutrient fertilization experiments, irrigation experiments, and CO2 enrichment experiments was low, future work needs to focus modifications to model structures that decrease the bias in predictions of drought experiments. Predictions of how growth responded to elevated CO2 strongly depended on whether ecosystem experiments were assimilated and whether the assimilated field plots in the CO2 study were allowed to have different mortality parameters than the other field plots in the region. We present

  14. Modeled effects of soil acidification on long-term ecological and economic outcomes for managed forests in the Adirondack region (USA)

    Science.gov (United States)

    Caputo, Jesse PhD.; Beier, Colin M.; Sullivan, Timothy J.; Lawrence, Gregory B.

    2016-01-01

    Sugar maple (Acer saccharum) is among the most ecologically and economically important tree species in North America, and its growth and regeneration is often the focus of silvicultural practices in northern hardwood forests. A key stressor for sugar maple (SM) is acid rain, which depletes base cations from poorly-buffered forest soils and has been associated with much lower SM vigor, growth, and recruitment. However, the potential interactions between forest management and soil acidification – and their implications for the sustainability of SM and its economic and cultural benefits – have not been investigated. In this study, we simulated the development of 50 extant SM stands in the western Adirondack region of NY (USA) for 100 years under different soil chemical conditions and silvicultural prescriptions. We found that interactions between management prescription and soil base saturation will strongly shape the ability to maintain SM in managed forests. Below 12% base saturation, SM did not regenerate sufficiently after harvest and was replaced mainly by red maple (Acer rubrum) and American beech (Fagus grandifolia). Loss of SM on acid-impaired sites was predicted regardless of whether the shelterwood or diameter-limit prescriptions were used. On soils with sufficient base saturation, models predicted that SM will regenerate after harvest and be sustained for future rotations. We then estimated how these different post-harvest outcomes, mediated by acid impairment of forest soils, would affect the potential monetary value of ecosystem services provided by SM forests. Model simulations indicated that a management strategy focused on syrup production – although not feasible across the vast areas where acid impairment has occurred – may generate the greatest economic return. Although pollution from acid rain is declining, its long-term legacy in forest soils will shape future options for sustainable forestry and ecosystem stewardship in the northern

  15. Sixty years of research, 60 years of data: long-term US Forest Service data management on the Penobscot Experimental Forest

    Science.gov (United States)

    Matthew B. Russell; Spencer R. Meyer; John C. Brissette; Laura Kenefic

    2014-01-01

    The U.S. Department of Agriculture, Forest Service silvicultural experiment on the Penobscot Experimental Forest (PEF) in Maine represents 60 years of research in the northern conifer and mixedwood forests of the Acadian Forest Region. The objective of this data management effort, which began in 2008, was to compile, organize, and archive research data collected in the...

  16. Possible effects of the hurricane Gudrun on the regional Swedish forest energy supply

    International Nuclear Information System (INIS)

    Bjoerheden, Rolf

    2007-01-01

    This paper presents a snapshot speculative analysis of some possible effects of the massive windthrow in south Sweden on January 8-9, 2005. Hurricane Gudrun damaged buildings and blocked roads, making large areas inaccessible except by helicopter. Electricity and telecommunications were shambolic. Around 70 million cubic metres were windthrown, equalling a 'normal' Swedish annual felling-a gross value exceeding EUR20,000,000,000. The paper presents the subsequent restoration work that has placed a special focus on the forest sector. In south Sweden, logging work will last for a couple of years. The roundwood market will be severely strained. For individual forest owners, the economic effects of the storm are often disastrous. To ensure that forest owners will retrieve at least part of the pre-storm forest value, restoration aims at the salvaging of maximum value. Sawmills try to store the most valuable timber for years to come, decreasing the risk of painful capacity adjustments and protecting export opportunities. Forest fuel value is low compared to sawlogs and pulpwood. Thus, the forest energy sector has received little attention. Forest chippers normally contribute important marginal quantities of wood fuels, but since no logging residues will be harvested from the windthrown forests for a period of 2-3 years, they are put out of business and may disappear from the market. Heating and power plants will receive an abundance of industrial by-products in the coming 2-3 years, followed by a period of expected shortage of woody biomass for energy production. With few forest chippers left, the situation will be troublesome. (author)

  17. Aspen Delineation - Klamath National Forest [ds370

    Data.gov (United States)

    California Natural Resource Agency — The database represents polygons of aspen stands in the Klamath National Forest, Siskiyou County, California. The Klamath National Forest Region 5 Vegetation aspen...

  18. Western forests and air pollution

    International Nuclear Information System (INIS)

    Olson, R.K.; Binkley, D.; Boehm, M.

    1992-01-01

    The book addresses the relationships between air pollution in the western United States and trends in the growth and condition of Western coniferous forests. The major atmospheric pollutants to which forest in the region are exposed are sulfur and nitrogen compounds and ozone. The potential effects of atmospheric pollution on these forests include foliar injury, alteration of growth rates and patterns, soil acidification, shifts in species composition, and modification of the effects of natural stresses

  19. Mapping of forest disturbance magnitudes across the US National Forest System

    Science.gov (United States)

    Hernandez, A. J.; Healey, S. P.; Ramsey, R. D.; McGinty, C.; Garrard, C.; Lu, N.; Huang, C.

    2013-12-01

    A precise record in conjunction with ongoing monitoring of carbon pools constitutes essentials inputs for the continuous modernization of an ever- dynamic science such as climate change. This is particularly important in forested ecosystems for which accurate field archives are available and can be used in combination with historic satellite imagery to obtain spatially explicit estimates of several indicators that can be used in the assessment of said carbon pools. Many forest disturbance processes limit storage of carbon in forested ecosystems and thereby reduce those systems' capacity to mitigate changes in the global climate system. A component of the US National Forest System's (NFS) comprehensive plan for carbon monitoring includes accounting for mapped disturbances, such as fires, harvests, and insect activity. A long-term time series of maps that show the timing, extent, type, and magnitude of disturbances going back to 1990 has been prepared for the United States Forest Service (USFS) Northern Region, and is currently under preparation for the rest of the NFS regions covering more than 75 million hectares. Our mapping approach starts with an automated initial detection of annual disturbances using imagery captured within the growing season from the Landsat archive. Through a meticulous process, the initial detections are then visually inspected, manually corrected and labeled using various USFS ancillary datasets and Google Earth high-resolution historic imagery. We prepared multitemporal models of percent canopy cover and live tree carbon (T/ha) that were calibrated with extensive (in excess of 2000 locations) field data from the US Forest Service Forest Inventory and Analysis program (FIA). The models were then applied to all the years of the radiometrically corrected and normalized Landsat time series in order to provide annual spatially explicit estimates of the magnitude of change in terms of these two attributes. Our results provide objective, widely

  20. Solar radiation and forest fuel moisture

    Science.gov (United States)

    George M. Byram; George M. Jemison

    1943-01-01

    A major contribution to progress in forest fire prevention and control during the past 10 years has been the development and widespread application of methods of rating forest fire danger. Fire danger rating systems are now in use in all the forest regions of the United States. They have been described by Gisborne, Brown and Davis, Curry et al., Matthews, Jemison, and...

  1. Dynamic Response of Satellite-Derived Vegetation Growth to Climate Change in the Three North Shelter Forest Region in China

    Directory of Open Access Journals (Sweden)

    Bin He

    2015-08-01

    Full Text Available Since the late 1970s, the Chinese government has initiated ecological restoration programs in the Three North Shelter Forest System Project (TNSFSP area. Whether accelerated climate change will help or hinder these efforts is still poorly understood. Using the updated and extended AVHRR NDVI3g dataset from 1982 to 2011 and corresponding climatic data, we investigated vegetation variations in response to climate change. The results showed that the overall state of vegetation in the study region has improved over the past three decades. Vegetation cover significantly decreased in 23.1% and significantly increased in 21.8% of the study area. An increase in all three main vegetation types (forest, grassland, and cropland was observed, but the trend was only statistically significant in cropland. In addition, bare and sparsely vegetated areas, mainly located in the western part of the study area, have significantly expanded since the early 2000s. A moisture condition analysis indicated that the study area experienced significant climate variations, with warm-wet conditions in the western region and warm-dry conditions in the eastern region. Correlation analysis showed that variations in the Normalized Difference Vegetation Index (NDVI were positively correlated with precipitation and negatively correlated with temperature. Ultimately, climate change influenced vegetation growth by controlling the availability of soil moisture. Further investigation suggested that the positive impacts of precipitation on NDVI have weakened in the study region, whereas the negative impacts from temperature have been enhanced in the eastern study area. However, over recent years, the negative temperature impacts have been converted to positive impacts in the western region. Considering the variations in the relationship between NDVI and climatic variables, the warm–dry climate in the eastern region is likely harmful to vegetation growth, whereas the warm

  2. Characteristics of soil seed bank in plantation forest in the rocky mountain region of Beijing, China

    Institute of Scientific and Technical Information of China (English)

    HU Zeng-hui; YANG Yang; LENG Ping-sheng; DOU De-quan; ZHANG Bo; HOU Bing-fei

    2013-01-01

    We investigated characteristics (scales and composition) of soil seed banks at eight study sites in the rocky mountain region of Beijing by seed identification and germination monitoring.We also surveyed the vegetation communities at the eight study sites to explore the role of soil seed banks in vegetation restoration.The storage capacity of soil seed banks at the eight sites ranked from 766.26 to 2461.92 seedsm-2.A total of 23 plant species were found in soil seed banks,of which 63-80%of seeds were herbs in various soil layers and 60% of seeds were located in the soil layer at 0-5 cm depth.Biodiversity indices indicated clear differences in species diversity of soil seed banks among different plant communities.The species composition of aboveground vegetation showed low similarity with that based on soil seed banks.In the aboveground plant community,the afforestation tree species showed high importance values.The plant species originating from soil seed banks represented natural regeneration,which also showed relatively high importance values.This study suggests that in the rocky mountain region of Beijing the soil seed banks played a key role in the transformation from pure plantation forest to near-natural forest,promoting natural ecological processes,and the role of the seed banks in vegetation restoration was important to the improvement of ecological restoration methods.

  3. A GIS-derived integrated moisture index to predict forest composition and productivity of Ohio forests (U.S.A.)

    Science.gov (United States)

    Louis R. Iverson; Martin E. Dale; Charles T. Scott; Anantha Prasad; Anantha Prasad

    1997-01-01

    A geographic information system (GIS) approach was used in conjunction with forest-plot data to develop an integrated moisture index (IMI), which was then used to predict forest productivity (site index) and species composition for forests in Ohio. In this region, typical of eastern hardwoods across the Midwest and southern Appalachians, topographic aspect and position...

  4. Magnetic Soils Profiles in the Volga-Kama Forest-Steppe Region

    Directory of Open Access Journals (Sweden)

    L.A. Fattakhova

    2016-09-01

    Full Text Available The magnetic properties of virgin forest-steppe soils developed on the originally vertically uniform unconsolidated parent material have been investigated. The profile samples of virgin dark-grey forest light-clayey soil derived from a siltstone of the Kazan layer of the Upper Permian and virgin leached medium-thick fertile light-clayey chernozem derived from a Quaternary heavy deluvial loam have been considered. Both soils are characterized by the accumulative type of magnetic susceptibility and F-factor values distribution patterns with depth. In the humus part of the soil profile, magnetics are present pre-dominantly in the < 2.5 µm fraction. The coercivity spectra allowed to determine the contribution of dia-/paramagnetic and ferromagnetic components to magnetic susceptibility. It has been found that magnetic susceptibility enhancement in the organogenic horizons of virgin forest-steppe soils occurs due to the contribution of ferromagnetic components. The results indicate a strong positive linear correlation between the magnetic susceptibility and oxalate-extractable Fe, as well as between the magnetic susceptibility and Schwertmann’s criterion values. Using the method of thermomagnetic analysis of the < 2.5 µm fraction, it has been found that the magnetic susceptibility enhancement in the profiles of forest-steppe soils took place due to the formation of maghemite-magnetite associations. The predominantly ferromagnetic fraction consists of small single-domain grains.

  5. Riparian area protection and outdoor recreation: lessons from the Northwest Forest Plan

    Science.gov (United States)

    Patrick Impero Wilson; Troy E. Hall; Linda E. Kruger

    2012-01-01

    The Northwest Forest Plan required the US Forest Service (USFS) to shift its management focus to ecological values rather than the utilitarian ones that had dominated forest policy in the region. This article examines the effects of this shift on the USFS's historic mission to provide recreational access to the region's forests. Focusing on six national...

  6. Effects of national forest-management regimes on unprotected forests of the Himalaya.

    Science.gov (United States)

    Brandt, Jodi S; Allendorf, Teri; Radeloff, Volker; Brooks, Jeremy

    2017-12-01

    Globally, deforestation continues, and although protected areas effectively protect forests, the majority of forests are not in protected areas. Thus, how effective are different management regimes to avoid deforestation in non-protected forests? We sought to assess the effectiveness of different national forest-management regimes to safeguard forests outside protected areas. We compared 2000-2014 deforestation rates across the temperate forests of 5 countries in the Himalaya (Bhutan, Nepal, China, India, and Myanmar) of which 13% are protected. We reviewed the literature to characterize forest management regimes in each country and conducted a quasi-experimental analysis to measure differences in deforestation of unprotected forests among countries and states in India. Countries varied in both overarching forest-management goals and specific tenure arrangements and policies for unprotected forests, from policies emphasizing economic development to those focused on forest conservation. Deforestation rates differed up to 1.4% between countries, even after accounting for local determinants of deforestation, such as human population density, market access, and topography. The highest deforestation rates were associated with forest policies aimed at maximizing profits and unstable tenure regimes. Deforestation in national forest-management regimes that emphasized conservation and community management were relatively low. In India results were consistent with the national-level results. We interpreted our results in the context of the broader literature on decentralized, community-based natural resource management, and our findings emphasize that the type and quality of community-based forestry programs and the degree to which they are oriented toward sustainable use rather than economic development are important for forest protection. Our cross-national results are consistent with results from site- and regional-scale studies that show forest-management regimes that

  7. Assessment of textural differentiations in forest resources in Romania using fractal analysis

    DEFF Research Database (Denmark)

    Andronache, Ion; Fensholt, Rasmus; Ahammer, Helmut

    2017-01-01

    regions in Romania affected by both deforestation and reforestation using a non-Euclidean method based on fractal analysis.We calculated four fractal dimensions of forest areas: the fractal box-counting dimension of the forest areas, the fractal box-counting dimension of the dilated forest areas......, the fractal dilation dimension and the box-counting dimension of the border of the dilated forest areas. Fractal analysis revealed morpho-structural and textural differentiations of forested, deforested and reforested areas in development regions with dominant mountain relief and high hills (more forested...... and compact organization) in comparison to the development regions dominated by plains or low hills (less forested, more fragmented with small and isolated clusters). Our analysis used the fractal analysis that has the advantage of analyzing the entire image, rather than studying local information, thereby...

  8. Identifying forest lands in urban areas in the Central Hardwood Region

    Science.gov (United States)

    Thomas W. Birch; Rachel Riemann Hershey; Philip Kern

    1997-01-01

    Forests in urban areas are an important component of urban and suburban environments. They provide places for recreation and environmental education, wildlife habitat for species adapted to living near humans, contribute to general human physical and psychological health. Knowing how much and what type of forest exists in urban areas provides critical baseline data for...

  9. Gross changes in forest area shape the future carbon balance of tropical forests

    Science.gov (United States)

    Li, Wei; Ciais, Philippe; Yue, Chao; Gasser, Thomas; Peng, Shushi; Bastos, Ana

    2018-01-01

    Bookkeeping models are used to estimate land-use and land-cover change (LULCC) carbon fluxes (ELULCC). The uncertainty of bookkeeping models partly arises from data used to define response curves (usually from local data) and their representativeness for application to large regions. Here, we compare biomass recovery curves derived from a recent synthesis of secondary forest plots in Latin America by Poorter et al. (2016) with the curves used previously in bookkeeping models from Houghton (1999) and Hansis et al. (2015). We find that the two latter models overestimate the long-term (100 years) vegetation carbon density of secondary forest by about 25 %. We also use idealized LULCC scenarios combined with these three different response curves to demonstrate the importance of considering gross forest area changes instead of net forest area changes for estimating regional ELULCC. In the illustrative case of a net gain in forest area composed of a large gross loss and a large gross gain occurring during a single year, the initial gross loss has an important legacy effect on ELULCC so that the system can be a net source of CO2 to the atmosphere long after the initial forest area change. We show the existence of critical values of the ratio of gross area change over net area change (γAnetAgross), above which cumulative ELULCC is a net CO2 source rather than a sink for a given time horizon after the initial perturbation. These theoretical critical ratio values derived from simulations of a bookkeeping model are compared with observations from the 30 m resolution Landsat Thematic Mapper data of gross and net forest area change in the Amazon. This allows us to diagnose areas in which current forest gains with a large land turnover will still result in LULCC carbon emissions in 20, 50 and 100 years.

  10. [Influence of fire disturbance on aboveground deadwood debris carbon storage in Huzhong forest region of Great Xing'an Mountains, Northeast China].

    Science.gov (United States)

    Yang, Da; He, Hong-shi; Wu, Zhi-wei; Liang, Yu; Huang, Chao; Luo, Xu; Xiao, Jiang-tao; Zhang, Qing-long

    2015-02-01

    Based on the field inventory data, the aboveground deadwood debris carbon storage under different fire severities was analyzed in Huzhong forest region of Great Xing' an Mountains. The results showed that the fire severity had a significant effect on aboveground deadwood debris carbon storage. The deadwood debris carbon storage was in the order of high-severity > low-severity > unburned in Larix gmelinii stands, and mixed conifer-broadleaf stands ( L. gmelinii and Betula platyphylla), and in the order of high severity > unburned > low-severity in B. platyphylla stands. Fire disturbance significantly changed the component percentage of the deadwood debris carbon storage. The component percentage of snags increased and litter decreased with the increasing fire severity. Logs and stumps did not change significantly with the increasing fire severity. The spatial variation of deadwood debris carbon storage in forests burned with low-severity fire was higher than that in unburned forests. The spatial variation of deadwood debris carbon storage with high-severity fires was lowest. This spatial variation needed to be accounted when calculating forest deadwood debris carbon storage.

  11. 36 CFR 261.73 - Regulations applicable to Region 3, Southwestern Region, as defined in § 200.2. [Reserved

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false Regulations applicable to Region 3, Southwestern Region, as defined in § 200.2. [Reserved] 261.73 Section 261.73 Parks, Forests... § 261.73 Regulations applicable to Region 3, Southwestern Region, as defined in § 200.2. [Reserved] ...

  12. Phytosociological characteristics of forest vegetation NPR Dubnik

    International Nuclear Information System (INIS)

    Hrabovsky, A.; Balkovic, J.; Kollar, J.

    2010-01-01

    National Wildlife (NPR) Dubnik represents a unique fragment of natural forest vegetation in the region of Nitra loess upland. Status of oak and oak-hornbeam forests in this book was last documented in 1965. The aim of the contribution is to assess the current status of forest vegetation in the NPR Dubnik by modern methods of phytosociology in accordance with current thinking on the classification of oak and oak-hornbeam forests.

  13. An Assessment of Carbon Storage in China’s Arboreal Forests

    Directory of Open Access Journals (Sweden)

    Weiwei Shao

    2017-04-01

    Full Text Available In the years 2009–2013, China carried out its eighth national survey of forest resources. Based on the survey data, this paper used a biomass conversion function method to evaluate the carbon stores and carbon density of China’s arboreal forests. The results showed that: (1 By age group, the largest portion of carbon stores in China’s arboreal forests are in middle-aged forests. Over-mature forests have the least carbon storage; (2 By origin, natural forests of all age groups have higher carbon storage and carbon density than man-made forest plantations. The carbon density of natural forests and forest plantations increases gradually with the age of the trees; (3 By type (dominant tree species, the 18 most abundant types of arboreal forest in China account for approximately 94% of the nation’s total arboreal forest biomass and carbon storage. Among these, broadleaf mixed and Quercus spp. form the two largest portions. Taxus spp. forests, while comprising a very small portion of China’s forested area, have very high carbon density; (4 By region, the overall arboreal forest carbon storage is highest in the southwest part of China, and lowest in the northwest. However, because of differences in land use and forest coverage ratios, regions with arboreal forests of high carbon density are not necessarily the same regions that have high overall carbon storage; (5 By province, Heilongjiang, Yunnan, Tibet, Sichuan, Inner Mongolia, and Jilin have rather high carbon storage. The arboreal forests in Tibet, Jilin, Xinjiang, Sichuan, Yunnan, and Hainan have a rather high carbon density. This paper’s evaluation of carbon storage in China’s arboreal forests is a valuable reference for interpreting the role and function of Chinese ecosystems in coping with global climate change.

  14. Spatial distribution of forest aboveground biomass estimated from remote sensing and forest inventory data in New England, USA

    Science.gov (United States)

    Daolan Zheng; Linda S. Heath; Mark J. Ducey

    2008-01-01

    We combined satellite (Landsat 7 and Moderate Resolution Imaging Spectrometer) and U.S. Department of Agriculture forest inventory and analysis (FIA) data to estimate forest aboveground biomass (AGB) across New England, USA. This is practical for large-scale carbon studies and may reduce uncertainty of AGB estimates. We estimate that total regional forest AGB was 1,867...

  15. Predictive Models of Primary Tropical Forest Structure from Geomorphometric Variables Based on SRTM in the Tapajós Region, Brazilian Amazon.

    Science.gov (United States)

    Bispo, Polyanna da Conceição; Dos Santos, João Roberto; Valeriano, Márcio de Morisson; Graça, Paulo Maurício Lima de Alencastro; Balzter, Heiko; França, Helena; Bispo, Pitágoras da Conceição

    2016-01-01

    Surveying primary tropical forest over large regions is challenging. Indirect methods of relating terrain information or other external spatial datasets to forest biophysical parameters can provide forest structural maps at large scales but the inherent uncertainties need to be evaluated fully. The goal of the present study was to evaluate relief characteristics, measured through geomorphometric variables, as predictors of forest structural characteristics such as average tree basal area (BA) and height (H) and average percentage canopy openness (CO). Our hypothesis is that geomorphometric variables are good predictors of the structure of primary tropical forest, even in areas, with low altitude variation. The study was performed at the Tapajós National Forest, located in the Western State of Pará, Brazil. Forty-three plots were sampled. Predictive models for BA, H and CO were parameterized based on geomorphometric variables using multiple linear regression. Validation of the models with nine independent sample plots revealed a Root Mean Square Error (RMSE) of 3.73 m2/ha (20%) for BA, 1.70 m (12%) for H, and 1.78% (21%) for CO. The coefficient of determination between observed and predicted values were r2 = 0.32 for CO, r2 = 0.26 for H and r2 = 0.52 for BA. The models obtained were able to adequately estimate BA and CO. In summary, it can be concluded that relief variables are good predictors of vegetation structure and enable the creation of forest structure maps in primary tropical rainforest with an acceptable uncertainty.

  16. Regional economic contributions of the forest-based industries in the south

    Science.gov (United States)

    P.B. Aruna; Frederick Cubbage; Karen Abt; Clair Redmond

    1997-01-01

    Forest-based industries (including forestry) make substantial direct contributions to the economy of the South, as well as contributing to pleasant living conditions and environmental protection. As of 1992, about 633,000 persons were employed in forest-based industries, comprising 1.5 percent of all southern employment. Total wages amounted to $15 billion in 1990, or...

  17. Tree communities of lowland warm-temperate old-growth and neighboring shelterbelt forests in the Shikoku region of southwestern Japan

    Science.gov (United States)

    Shigeo Kuramoto; Shigenori Oshioka; Takahisa Hirayama; Kaori Sato; Yasumasa Hirata

    2007-01-01

    We characterized the tree species composition of a 30 ha old-growth and neighboring shelterbelt (reserved buffer strips among conifer plantations) in warm-temperate forests in the Shikoku region of southwestern Japan. Using a two-way indicator species analysis of data from 28 plots, we identified four structural groups in terms of relative basal area. These structural...

  18. IMPLEMENTASI DIALOG OTENTIK DALAM PENGELOLAAN HUTAN DI BKPH NGARENGAN KPH PATI PERUM PERHUTANI DIVISI REGIONAL JAWA TENGAH (Authentic Dialogue Implementation on Forest Management in BKPH Ngarengan KPH Pati Perum Perhutani Central Java Regional Division

    Directory of Open Access Journals (Sweden)

    Rela Pambudi

    2017-01-01

    Full Text Available ABSTRAK Perum Perhutani berusaha berkolaborasi dengan masyarakat dalam pengelolaan hutan dengan meluncurkan progam pengelolaan hutan bersama masyarakat (PHBM. Pelaksanaan PHBM di BKPH Ngarengan KPH Pati Perum Perhutani Divisi Regional Jawa Tengah saat ini terhambat karena adanya konflik dengan masyarakat. Penelitian ini berusaha mengkaji pelaksanaan PHBM di BKPH Ngarengan dari sudut pandang collaborative policymaking serta mencari solusi konflik. Penelitian ini bertujuan untuk mengetahui keragaman kepentingan dan saling ketergantungan antara masyarakat dan Perhutani dalam pengelolaan hutan serta menyusun strategi untuk menciptakan kondisi pengelolaan hutan kolaboratif. Pengambilan data dilakukan dengan pengamatan terlibat dan wawancara mendalam kepada petugas Perhutani, pengurus LMDH serta masyarakat. Analisis deskriptif digunakan untuk menggambarkan bentuk saling ketergantungan dan ragam kepentingan dalam pengelolaan hutan, sedangkan analisis SWOT digunakan untuk merumuskan strategi menuju pengelolaan hutan kolaboratif. Hasil penelitian ini yaitu terdapat bentuk ragam kepentingan dan saling ketergantungan antara masyarakat dan Perhutani dalam pengelolaan hutan. Untuk menciptakan pengelolaan hutan kolaboratif dan sebagai resolusi konflik dilakukan dengan model pengaruh politik dengan membuat program bersama berupa pengaturan jarak tanam dan pengamanan hutan bersama yang sebelumnya didahului dengan dialog otentik untuk membangun kesepahaman, tawar-menawar dan membuat kesepakatan program bersama. ABSTRACT Perum Perhutani efforts in a collaboration with the local community of forest management introduce Forest Management with Community (PHBM Program. PHBM implementation in BKPH Ngarengan KPH Pati Perum Perhutani, Central Java Regional Division is currently hampered because of a conflict with the local community. This study examines the implementation of PHBM in BKPH Ngarengan from the perspective of collaborative policymaking as well as finding

  19. Carbon stores, sinks, and sources in forests of northwestern Russia: can we reconcile forest inventories with remote sensing results?

    Science.gov (United States)

    Olga N. Krankina; Mark E. Harmon; Warren B. Cohen; Doug R. Oetter; Olga Zyrina; Maureen V. Duane

    2004-01-01

    Forest inventories and remote sensing are the two principal data sources used to estimate carbon (C) stocks and fluxes for large forest regions. National governments have historically relied on forest inventories for assessments but developments in remote sensing technology provide additional opportunities for operational C monitoring. The estimate of total C stock in...

  20. Mapping Forest Cover and Forest Cover Change with Airborne S-Band Radar

    Directory of Open Access Journals (Sweden)

    Ramesh K. Ningthoujam

    2016-07-01

    Full Text Available Assessments of forest cover, forest carbon stocks and carbon emissions from deforestation and degradation are increasingly important components of sustainable resource management, for combating biodiversity loss and in climate mitigation policies. Satellite remote sensing provides the only means for mapping global forest cover regularly. However, forest classification with optical data is limited by its insensitivity to three-dimensional canopy structure and cloud cover obscuring many forest regions. Synthetic Aperture Radar (SAR sensors are increasingly being used to mitigate these problems, mainly in the L-, C- and X-band domains of the electromagnetic spectrum. S-band has not been systematically studied for this purpose. In anticipation of the British built NovaSAR-S satellite mission, this study evaluates the benefits of polarimetric S-band SAR for forest characterisation. The Michigan Microwave Canopy Scattering (MIMICS-I radiative transfer model is utilised to understand the scattering mechanisms in forest canopies at S-band. The MIMICS-I model reveals strong S-band backscatter sensitivity to the forest canopy in comparison to soil characteristics across all polarisations and incidence angles. Airborne S-band SAR imagery over the temperate mixed forest of Savernake Forest in southern England is analysed for its information content. Based on the modelling results, S-band HH- and VV-polarisation radar backscatter and the Radar Forest Degradation Index (RFDI are used in a forest/non-forest Maximum Likelihood classification at a spatial resolution of 6 m (70% overall accuracy, κ = 0.41 and 20 m (63% overall accuracy, κ = 0.27. The conclusion is that S-band SAR such as from NovaSAR-S is likely to be suitable for monitoring forest cover and its changes.

  1. ESTIMATION OF CARBON SEQUESTRATION BY RUSSIAN FORESTS: GEOSPATIAL ISSUE

    Directory of Open Access Journals (Sweden)

    N. V. Malysheva

    2017-01-01

    Full Text Available Сategories of carbon sequestration assessment for Russian forests are identified by GIS toolkit. Those are uniform by bioclimatic and site-specific conditions strata corresponding to modern version of bioclimatic forest district division. Stratification of forests at early stage substantially reduces the ambiguity of the evaluation because phytomass conversion sequestration capacity and expansion factor dependent on site-specific condition for calculating of forest carbon sink are absolutely necessary. Forest management units were linked to strata. Biomass conversion and expansion factor for forest carbon sink assessment linked to the strata were recalculated for forest management units. All operations were carried out with GIS analytical toolkit due to accessible functionalities. Units for forest carbon storage inventory and forest carbon balance calculation were localized. Production capacity parameters and forest carbon sequestration capacity have been visualized on maps complied by ArcGIS. Based on spatially-explicit information, we have found out that the greatest annual rates of forest’s carbon accumulation in Russian forests fall into mixed coniferous-deciduous forests of European-Ural part of Russia to Kaliningrad, Smolensk and Briansk Regions, coniferous-deciduous forests close to the boundary of Khabarovsk Region and Primorskij Kray in the Far East, as well as separate forest management units of Kabardino-Balkariya NorthCaucasian mountain area. The geospatial visualization of carbon sequestration by Russian forests and carbon balance assessment has been given.

  2. Coupling of microbial nitrogen transformations and climate in sclerophyll forest soils from the Mediterranean Region of central Chile.

    Science.gov (United States)

    Pérez, Cecilia A; Armesto, Juan J

    2018-06-01

    The Mediterranean region of central Chile is experiencing extensive "mega-droughts" with detrimental effects for the environment and economy of the region. In the northern hemisphere, nitrogen (N) limitation of Mediterranean ecosystems has been explained by the decoupling between N inputs and plant uptake during the dormant season. In central Chile, soils have often been considered N-rich in comparison to other Mediterranean ecosystems of the world, yet the impacts of expected intensification of seasonal drought remain unknown. In this work, we seek to disentangle patterns of microbial N transformations and their seasonal coupling with climate in the Chilean sclerophyll forest-type. We aim to assess how water limitation affects microbial N transformations, thus addressing the impact of ongoing regional climate trends on soil N status. We studied four stands of the sclerophyll forest-type in Chile. Field measurements in surface soils showed a 67% decline of free-living diazotrophic activity (DA) and 59% decrease of net N mineralization rates during the summer rainless and dormant season, accompanied by a stimulation of in-situ denitrification rates to values 70% higher than in wetter winter. Higher rates of both free-living DA and net N mineralization found during spring, provided evidence for strong coupling of these two processes during the growing season. Overall, the experimental addition of water in the field to litter samples almost doubled DA but had no effect on denitrification rates. We conclude that coupling of microbial mediated soil N transformations during the wetter growing season explains the N enrichment of sclerophyll forest soils. Expected increases in the length and intensity of the dry period, according to climate change models, reflected in the current mega-droughts may drastically reduce biological N fixation and net N mineralization, increasing at the same time denitrification rates, thereby potentially reducing long-term soil N capital

  3. Odor Profile of Different Varieties of Extra-Virgin Olive Oil During Deep Frying Using an Electronic Nose and SPME-GC-FID

    Science.gov (United States)

    Messina, Valeria; Biolatto, Andrea; Sancho, Ana; Descalzo, Adriana; Grigioni, Gabriela; de Reca, Noemí Walsöe

    2011-09-01

    The aim of the performed work was to evaluate with an electronic nose changes in odor profile of Arauco and Arbequina varieties of extra-virgin olive oil during deep-frying. Changes in odor were analyzed using an electronic nose composed of 16 sensors. Volatile compounds were analyzed by SPME-GC-FID. Principal Component Analysis was applied for electronic results. Arauco variety showed the highest response for sensors. Statistical analysis for volatile compounds indicated a significant (P<0.001) interaction between variety and time of frying processes. Arauco variety showed the highest production of volatile compounds at 60 min of deep frying. The two varieties presented distinct patterns of volatile products, being clearly identified with the electronic nose.

  4. Is the Forest Healthy? (Mid-Atlantic, North Central, New England, and New York Regions)

    Science.gov (United States)

    Jennifer Stoyenoff; John Witter; Bruce Leutscher

    1997-01-01

    No single measurement can summarize forest health. Instead, we need to look at a wide set of indicators which together serve as a reflection of existing conditions. Repeated monitoring of the forest over time allows us to identify trends in forest conditions and evaluate the effectiveness of our actions. Information about forest health is obtained in a variety of ways...

  5. Breeding bird populations in Missouri Ozark forests with and without clearcutting

    Science.gov (United States)

    Frank R., III Thompson; William D. Dijak; Thomas G. Kulowiec; David A. Hamilton

    1992-01-01

    Concern has arisen that forest management practices that create edge (such as clearcutting) are contributing to regional declines in neotropical migrant birds that inhabit forest interiors. Consequently, we studied breeding bird populations in an extensively forested region of southern Missouri to determine if the numbers of breeding birds differed between areas (n = 9...

  6. Theme E: Forest Biomass and Bioenergy

    DEFF Research Database (Denmark)

    Bentsen, Niclas Scott; Stupak, Inge; Smith, C

    2014-01-01

    Several countries in the world have policies for increased use of biomass for energy and biomaterials. It is likely that such policies will lead to increased international demand for wood and increased pressure on the world’s forests. Concerns for forest sustainability have been expressed, especi...... challenges in the different regions for consideration by institutions developing energy biomass sourcing polices and biomass sustainability criteria in the public and private sector......., especially in the EU and its biomass importing countries. As countries and companies search worldwide for new biomass sourcing areas, there is a need to review and compare the biomass potentials in different regions and the associated forest sustainability challenges. We reviewed the literature to assess...

  7. High rates of carbon storage in old deciduous forests: Emerging mechanisms from the Forest Accelerated Succession ExperimenT (FASET)

    Science.gov (United States)

    Gough, C. M.; Nave, L. E.; Hardiman, B. S.; Bohrer, G.; Halperin, A.; Maurer, K.; Le Moine, J.; Nadelhoffer, K.; Vogel, C. S.; Curtis, P.; University Of Michigan Biological Station Forest Ecosystem Study (Umbs-Fest) Team

    2010-12-01

    Deciduous forests of the eastern US are broadly approaching an ecological threshold in which early successional dominant trees are senescing and giving way to later successional species, with unknown consequences for regional carbon (C) cycling. Though recent research demonstrates that forests may accumulate C for centuries, the mechanisms behind sustained rates of C storage in old, particularly deciduous, forests have not been identified. In a regionally representative forest at the University of Michigan Biological Station, we are combining observational and experimental C cycling studies to forecast how forest C storage responds to climate variation, disturbance, and succession. The Forest Accelerated Succession ExperimenT (FASET), in which >6,700 aspen and birch trees (~35 % LAI) were stem girdled within a 39 ha area, is testing the hypothesis that forest production will increase rather than decline with age, due to increases in nitrogen (N) availability, N allocation to the canopy, and the concurrent development of a more biologically and structurally complex canopy. Results thus far support our hypothesis that aging forests in the region may sustain high rates of C storage through shifts in N cycling and increased canopy complexity. Girdling-induced mortality of early successional species reduced soil respiration, accelerated fine root turnover, and prompted the redistribution of N from the foliage of early to later successional species. Nitrogen redistribution increased leaf area index (LAI) production by later successional species, offsetting declines in LAI from senescing early successional species. High rates of net primary production (NPP) were sustained in stands comprising a diverse assemblage of early and later successional species because later successional species, when already present in the canopy, rapidly compensated for declining growth of early successional species. Canopy structural complexity, which increased with forest age, was positively

  8. Forest health conditions in North America

    International Nuclear Information System (INIS)

    Tkacz, Borys; Moody, Ben; Castillo, Jaime Villa; Fenn, Mark E.

    2008-01-01

    Some of the greatest forest health impacts in North America are caused by invasive forest insects and pathogens (e.g., emerald ash borer and sudden oak death in the US), by severe outbreaks of native pests (e.g., mountain pine beetle in Canada), and fires exacerbated by changing climate. Ozone and N and S pollutants continue to impact the health of forests in several regions of North America. Long-term monitoring of forest health indicators has facilitated the assessment of forest health and sustainability in North America. By linking a nationwide network of forest health plots with the more extensive forest inventory, forest health experts in the US have evaluated current trends for major forest health indicators and developed assessments of future risks. Canada and Mexico currently lack nationwide networks of forest health plots. Development and expansion of these networks is critical to effective assessment of future forest health impacts. - The forests of North America continue to face many biotic and abiotic stressors including fragmentation, fires, native and invasive pests, and air pollution

  9. Pyrogenic Transformations of the Baikal Lake Forests. Retrospective and Contemporary Issues

    Directory of Open Access Journals (Sweden)

    M. D. Yevdokimenko

    2014-06-01

    Full Text Available In the forests of the Baikal Lake basin annual fire activity historically has been higher as compared to surrounding forest areas due to specific climatic conditions and altitude-controlled vegetation structure. The regional forests, predominantly light coniferous, develop under a high or, in dry years, extreme-fire-activity regime. Common pine and larch tree stands of fire origin are periodically thinned by fire. The productivity of the fire-intact parts of such stands decreases as a result of fire-caused soil condition disturbances. In extreme fire years, large fires cover landscapes and lead to irreversible forest ecosystem degradation and, hence, to local deforestation. In the past, forest fire activity and area burned increased with increasing use of the regional forests beginning with hunting, wood extraction by dwellers of local settlements, Trans-Siberian Rail Road building and, finally, industrial-scale logging. In 1970–1980, the regional fire situation was successfully controlled due to improvements of forest use and protection. However, the recently relaxed forest economy standards have resulted in loss of the progress achieved.

  10. Evidence of Incipient Forest Transition in Southern Mexico

    Science.gov (United States)

    Vaca, Raúl Abel; Golicher, Duncan John; Cayuela, Luis; Hewson, Jenny; Steininger, Marc

    2012-01-01

    Case studies of land use change have suggested that deforestation across Southern Mexico is accelerating. However, forest transition theory predicts that trajectories of change can be modified by economic factors, leading to spatial and temporal heterogeneity in rates of change that may take the form of the Environmental Kuznets Curve (EKC). This study aimed to assess the evidence regarding potential forest transition in Southern Mexico by classifying regional forest cover change using Landsat imagery from 1990 through to 2006. Patterns of forest cover change were found to be complex and non-linear. When rates of forest loss were averaged over 342 municipalities using mixed-effects modelling the results showed a significant (p<0.001) overall reduction of the mean rate of forest loss from 0.85% per year in the 1990–2000 period to 0.67% in the 2000–2006 period. The overall regional annual rate of deforestation has fallen from 0.33% to 0.28% from the 1990s to 2000s. A high proportion of the spatial variability in forest cover change cannot be explained statistically. However analysis using spline based general additive models detected underlying relationships between forest cover and income or population density of a form consistent with the EKC. The incipient forest transition has not, as yet, resulted in widespread reforestation. Forest recovery remains below 0.20% per year. Reforestation is mostly the result of passive processes associated with reductions in the intensity of land use. Deforestation continues to occur at high rates in some focal areas. A transition could be accelerated if there were a broader recognition among policy makers that the regional rate of forest loss has now begun to fall. The changing trajectory provides an opportunity to actively restore forest cover through stimulating afforestation and stimulating more sustainable land use practices. The results have clear implications for policy aimed at carbon sequestration through reducing

  11. Evidence of incipient forest transition in Southern Mexico.

    Science.gov (United States)

    Vaca, Raúl Abel; Golicher, Duncan John; Cayuela, Luis; Hewson, Jenny; Steininger, Marc

    2012-01-01

    Case studies of land use change have suggested that deforestation across Southern Mexico is accelerating. However, forest transition theory predicts that trajectories of change can be modified by economic factors, leading to spatial and temporal heterogeneity in rates of change that may take the form of the Environmental Kuznets Curve (EKC). This study aimed to assess the evidence regarding potential forest transition in Southern Mexico by classifying regional forest cover change using Landsat imagery from 1990 through to 2006. Patterns of forest cover change were found to be complex and non-linear. When rates of forest loss were averaged over 342 municipalities using mixed-effects modelling the results showed a significant (p<0.001) overall reduction of the mean rate of forest loss from 0.85% per year in the 1990-2000 period to 0.67% in the 2000-2006 period. The overall regional annual rate of deforestation has fallen from 0.33% to 0.28% from the 1990s to 2000s. A high proportion of the spatial variability in forest cover change cannot be explained statistically. However analysis using spline based general additive models detected underlying relationships between forest cover and income or population density of a form consistent with the EKC. The incipient forest transition has not, as yet, resulted in widespread reforestation. Forest recovery remains below 0.20% per year. Reforestation is mostly the result of passive processes associated with reductions in the intensity of land use. Deforestation continues to occur at high rates in some focal areas. A transition could be accelerated if there were a broader recognition among policy makers that the regional rate of forest loss has now begun to fall. The changing trajectory provides an opportunity to actively restore forest cover through stimulating afforestation and stimulating more sustainable land use practices. The results have clear implications for policy aimed at carbon sequestration through reducing

  12. Evidence of incipient forest transition in Southern Mexico.

    Directory of Open Access Journals (Sweden)

    Raúl Abel Vaca

    Full Text Available Case studies of land use change have suggested that deforestation across Southern Mexico is accelerating. However, forest transition theory predicts that trajectories of change can be modified by economic factors, leading to spatial and temporal heterogeneity in rates of change that may take the form of the Environmental Kuznets Curve (EKC. This study aimed to assess the evidence regarding potential forest transition in Southern Mexico by classifying regional forest cover change using Landsat imagery from 1990 through to 2006. Patterns of forest cover change were found to be complex and non-linear. When rates of forest loss were averaged over 342 municipalities using mixed-effects modelling the results showed a significant (p<0.001 overall reduction of the mean rate of forest loss from 0.85% per year in the 1990-2000 period to 0.67% in the 2000-2006 period. The overall regional annual rate of deforestation has fallen from 0.33% to 0.28% from the 1990s to 2000s. A high proportion of the spatial variability in forest cover change cannot be explained statistically. However analysis using spline based general additive models detected underlying relationships between forest cover and income or population density of a form consistent with the EKC. The incipient forest transition has not, as yet, resulted in widespread reforestation. Forest recovery remains below 0.20% per year. Reforestation is mostly the result of passive processes associated with reductions in the intensity of land use. Deforestation continues to occur at high rates in some focal areas. A transition could be accelerated if there were a broader recognition among policy makers that the regional rate of forest loss has now begun to fall. The changing trajectory provides an opportunity to actively restore forest cover through stimulating afforestation and stimulating more sustainable land use practices. The results have clear implications for policy aimed at carbon sequestration through

  13. Satellite-Based Derivation of High-Resolution Forest Information Layers for Operational Forest Management

    Directory of Open Access Journals (Sweden)

    Johannes Stoffels

    2015-06-01

    Full Text Available A key factor for operational forest management and forest monitoring is the availability of up-to-date spatial information on the state of forest resources. Earth observation can provide valuable contributions to these information needs. The German federal state of Rhineland-Palatinate transferred its inherited forest information system to a new architecture that is better able to serve the needs of centralized inventory and planning services, down to the level of forest districts. During this process, a spatially adaptive classification approach was developed to derive high-resolution forest information layers (e.g., forest type, tree species distribution, development stages based on multi-temporal satellite data. This study covers the application of the developed approach to a regional scale (federal state level and the further adaptation of the design to meet the information needs of the state forest service. The results confirm that the operational requirements for mapping accuracy can, in principle, be fulfilled. However, the state-wide mapping experiment also revealed that the ability to meet the required level of accuracy is largely dependent on the availability of satellite observations within the optimum phenological time-windows.

  14. The enhanced forest inventory and analysis program of the USDA forest service: historical perspective and announcements of statistical documentation

    Science.gov (United States)

    Ronald E. McRoberts; William A. Bechtold; Paul L. Patterson; Charles T. Scott; Gregory A. Reams

    2005-01-01

    The Forest Inventory and Analysis (FIA) program of the USDA Forest Service has initiated a transition from regional, periodic inventories to an enhanced national FIA program featuring annual measurement of a proportion of plots in each state, greater national consistency, and integration with the ground sampling component of the Forest Health Monitoring (FHM) program...

  15. Forest health monitoring: 2008 national technical report

    Science.gov (United States)

    Kevin M. Potter; Barbara L. Conkling

    2012-01-01

    The Forest Health Monitoring (FHM) Program’s annual national technical report has three objectives: (1) to present forest health status and trends from a national or a multi-State regional perspective using a variety of sources, (2) to introduce new techniques for analyzing forest health data, and (3) to report results of recently completed evaluation monitoring...

  16. Loss of ecosystem services due to chronic pollution of forests and surface waters in the Adirondack region (USA)

    Science.gov (United States)

    Beier, Colin M.; Caputo, Jesse; Lawrence, Gregory B.; Sullivan, Timothy J.

    2017-01-01

    Sustaining recent progress in mitigating acid pollution could require lower emissions caps that will give rise to real or perceived tradeoffs between healthy ecosystems and inexpensive energy. Because most impacts of acid rain affect ecosystem functions that are poorly understood by policy-makers and the public, an ecosystem services (ES) framework can help to measure how pollution affects human well-being. Focused on the Adirondack region (USA), a global ‘hot-spot’ of acid pollution, we measured how the chronic acidification of the region's forests, lakes, and streams has affected the potential economic and cultural benefits they provide to society. We estimated that acid-impaired hardwood forests provide roughly half of the potential benefits of forests on moderate to well-buffered soils – an estimated loss of ∼ $10,000 ha−1 in net present value of wood products, maple syrup, carbon sequestration, and visual quality. Acidic deposition has had only nominal impact – relative to the effects of surficial geology and till depth – on the capacity of Adirondack lakes and streams to provide water suitable for drinking. However, as pH declines in lakes, the estimated value of recreational fishing decreases significantly due to loss of desirable fish such as trout. Hatchery stocking programs have partially offset the pollution-mediated losses of fishery value, most effectively in the pH range 4.8–5.5, but are costly and limited in scope. Although any estimates of the monetary ‘damages’ of acid rain have significant uncertainties, our findings highlight some of the more tangible economic and cultural benefits of pollution mitigation efforts, which continue to face litigation and political opposition.

  17. Composition and seasonal phenology of a nonindigenous root-feeding weevil (Coleoptera: Curculionidae) complex in northern hardwood forests in the Great Lakes Region

    Science.gov (United States)

    R. A. Pinski; W. J. Mattson; K. F. Raffa

    2005-01-01

    Phyllobius oblongus (L.), Polydrusus sericeus (Schaller), and Sciaphilus asperatus (Bonsdorff) comprise a complex of nonindigenous root-feeding weevils in northern hardwood forests of the Great Lakes region. Little is known about their detailed biology, seasonality, relative abundance, and distribution patterns....

  18. Forest health monitoring: national status, trends, and analysis 2016

    Science.gov (United States)

    Kevin M. Potter; Barbara L. Conkling

    2017-01-01

    The annual national report of the Forest Health Monitoring (FHM) Program of the Forest Service, U.S. Department of Agriculture, presents forest health status and trends from a national or multi-State regional perspective using a variety of sources, introducesnew techniques for analyzing forest health data, and summarizes results of recently completed...

  19. Regional constraints to biological nitrogen fixation in post-fire forest communities

    Science.gov (United States)

    Yelenik, Stephanie; Perakis, Steven S.; Hibbs, David

    2013-01-01

    Biological nitrogen fixation (BNF) is a key ecological process that can restore nitrogen (N) lost in wildfire and shape the pace and pattern of post-fire forest recovery. To date, there is limited information on how climate and soil fertility interact to influence different pathways of BNF in early forest succession. We studied asymbiotic (forest floor and soil) and symbiotic (the shrub Ceanothus integerrimus) BNF rates across six sites in the Klamath National Forest, California, USA. We used combined gradient and experimental phosphorus (P) fertilization studies to explore cross-site variation in BNF rates and then related these rates to abiotic and biotic variables. We estimate that our measured BNF rates 22 years after wildfire (6.1–12.1 kg N·ha-1·yr-1) are unlikely to fully replace wildfire N losses. We found that asymbiotic BNF is P limited, although this is not the case for symbiotic BNF in Ceanothus. In contrast, Ceanothus BNF is largely driven by competition from other vegetation: in high-productivity sites with high potential evapotranspiration (Et), shrub biomass is suppressed as tree biomass increases. Because shrub biomass governed cross-site variation in Ceanothus BNF, this competitive interaction led to lower BNF in sites with high productivity and Et. Overall, these results suggest that the effects of nutrients play a larger role in driving asymbiotic than symbiotic fixation across our post-fire sites. However, because symbiotic BNF is 8–90x greater than asymbiotic BNF, it is interspecific plant competition that governs overall BNF inputs in these forests.

  20. Forest Ecosystem services: Water resources

    Science.gov (United States)

    Thomas P. Holmes; James Vose; Travis Warziniack; Bill Holman

    2017-01-01

    Since the publication of the Millennium Ecosystem Assessment (MEA 2005), awareness has steadily grown regarding the importance of maintaining natural capital. Forest vegetation is a valuable source of natural capital, and the regulation of water quantity and quality is among the most important forest ecosystem services in many regions around the world. Changes in...

  1. Leveraging 35 years of Pinus taeda research in the southeastern US to constrain forest carbon cycle predictions: regional data assimilation using ecosystem experiments

    Directory of Open Access Journals (Sweden)

    R. Q. Thomas

    2017-07-01

    Full Text Available Predicting how forest carbon cycling will change in response to climate change and management depends on the collective knowledge from measurements across environmental gradients, ecosystem manipulations of global change factors, and mathematical models. Formally integrating these sources of knowledge through data assimilation, or model–data fusion, allows the use of past observations to constrain model parameters and estimate prediction uncertainty. Data assimilation (DA focused on the regional scale has the opportunity to integrate data from both environmental gradients and experimental studies to constrain model parameters. Here, we introduce a hierarchical Bayesian DA approach (Data Assimilation to Predict Productivity for Ecosystems and Regions, DAPPER that uses observations of carbon stocks, carbon fluxes, water fluxes, and vegetation dynamics from loblolly pine plantation ecosystems across the southeastern US to constrain parameters in a modified version of the Physiological Principles Predicting Growth (3-PG forest growth model. The observations included major experiments that manipulated atmospheric carbon dioxide (CO2 concentration, water, and nutrients, along with nonexperimental surveys that spanned environmental gradients across an 8.6  ×  105 km2 region. We optimized regionally representative posterior distributions for model parameters, which dependably predicted data from plots withheld from the data assimilation. While the mean bias in predictions of nutrient fertilization experiments, irrigation experiments, and CO2 enrichment experiments was low, future work needs to focus modifications to model structures that decrease the bias in predictions of drought experiments. Predictions of how growth responded to elevated CO2 strongly depended on whether ecosystem experiments were assimilated and whether the assimilated field plots in the CO2 study were allowed to have different mortality parameters than the other field

  2. Soil erosion after forest fires in the Valencia region

    Science.gov (United States)

    González-Pelayo, Óscar; Keizer, Jan Jacob; Cerdà, Artemi

    2014-05-01

    Soil erosion after forest fire is triggered by the lack of vegetation cover and the degradation of the physical, biological and chemical properties (Martí et al., 2012; Fernández et al., 2012; Guénon, 2013). Valencia region belongs to the west Mediterranean basin ("Csa", Köppen climate classification), with drought summer periods that enhance forest fire risk. The characteristics of the climate, lithology and land use history makes this region more vulnerable to soil erosion. In this area, fire recurrence is being increased since late 50s (Pausas, 2004) and post-fire erosion studies became more popular from 80's until nowadays (Cerdá and Mataix-Solera, 2009). Research in Valencia region has contributed significantly to a better understanding of the effect of spatial and temporal scale on runoff and sediment yield measurements. The main achievements concerns: a) direct measurement of erosion rates under a wide range of methodologies (natural vs simulated rainfall, open vs closed plots); from micro- to meso-plot and catchment scale in single (Rubio et al., 1994; Cerdà et al., 1995; Cerdà 1998a; 1998b; Llovet et al., 1998; Cerdà, 2001; Calvo-Cases et al., 2003; Andreu et al., 2001; Mayor et al., 2007; Cerdà and Doerr, 2008) and multiples fires (Campo et al., 2006; González-Pelayo et al., 2010a). Changes in soil properties (Sanroque et al., 1985; Rubio et al., 1997; Boix-Fayós, 1997; Gimeno-Garcia et al., 2000; Guerrero et al., 2001; Mataix-Solera et al., 2004; González-Pelayo et al., 2006; Arcenegui et al., 2008; Campo et al., 2008; Bodí et al., 2012), in post-fire vegetation patterns (Gimeno-García et al., 2007) and, studies on mitigation strategies (Bautista et al., 1996; Abad et al., 2000). b) Progress to understanding post-fire erosion mechanism and sediment movement (Boix-Fayós et al., 2005) by definition of thresholds for sediment losses; fire severity, slope angle, bedrock, rain characteristics, vegetation pattern and ecosystem resilience (Mayor

  3. Regional Floras: the target groups, usage and feedback

    NARCIS (Netherlands)

    Ng, F.S.P.

    1989-01-01

    The target groups for regional floras may be generalized for the purpose of this discussion, into four main groups. Firstly, in the Flora Malesiana region – a major producer of tropical hardwoods and other commercial forest products – one large target is the forest industry, consisting of foresters,

  4. Combined fluorescence, reflectance, and ground measurements of a stressed Norway spruce forest for forest damage assessment

    Science.gov (United States)

    Banninger, C.

    1991-01-01

    The detection and monitoring of stress and damage in forested areas is of utmost importance to forest managers for planning purposes. Remote sensing are the most suitable means to obtain this information. This requires that remote sensing data employed in a forest survey be properly chosen and utilized for their ability to measure canopy spectral features directly related to key tree and canopy properties that are indicators of forest health and vitality. Plant reflectance in the visible to short wave IR regions (400 to 2500 nm) provides information on its biochemical, biophysical, and morphological make up, whereas plant fluorescence in the 400 to 750 nm region is more indicative of the capacity and functioning of its photosynthetic apparatus. A measure of both these spectral properties can be used to provide an accurate assessment of stress and damage within the forest canopy. Foliar chlorophyll and nitrogen are essential biochemical constituents required for the proper functioning and maintenance of a plant's biological processes. Chlorophyll-a is the prime reactive center for photosynthesis, by which a plant converts CO2 and H2O into necessary plant products. Nitrogen forms an important component of the amino-acids, enzymes, proteins, alkaloids, and cyanogenic compounds that make up a plant, including its pigments. Both chlorophyll and nitrogen have characteristic absorption features in the visible to short wave IR region. By measuring the wavelength position and depth of these features and the fluorescence response of the foliage, the health and vitality of a canopy can be ascertained. Examples for a stressed Norway spruce forest in south-eastern Austria are presented.

  5. Forest Health Monitoring: national status, trends, and analysis 2014

    Science.gov (United States)

    Kevin M. Potter; Barbara L. Conkling

    2015-01-01

    The annual national report of the Forest Health Monitoring (FHM) Program of the Forest Service, U.S. Department of Agriculture, presents forest health status and trends from a national or multi-State regional perspective using a variety of sources, introduces new techniques for analyzing forest health data, and summarizes results of recently completed Evaluation...

  6. Forest health monitoring: national status, trends, and analysis 2013

    Science.gov (United States)

    Kevin M. Potter; Barbara L. Conkling

    2015-01-01

    The annual national report of the Forest Health Monitoring (FHM) Program of the Forest Service, U.S. Department of Agriculture, presents forest health status and trends from a national or multi-State regional perspective using a variety of sources, introduces new techniques for analyzing forest health data, and summarizes results of recently completed Evaluation...

  7. Assessment of Textural Differentiations in Forest Resources in Romania Using Fractal Analysis

    Directory of Open Access Journals (Sweden)

    Ion Andronache

    2017-02-01

    Full Text Available Deforestation and forest degradation have several negative effects on the environment including a loss of species habitats, disturbance of the water cycle and reduced ability to retain CO2, with consequences for global warming. We investigated the evolution of forest resources from development regions in Romania affected by both deforestation and reforestation using a non-Euclidean method based on fractal analysis. We calculated four fractal dimensions of forest areas: the fractal box-counting dimension of the forest areas, the fractal box-counting dimension of the dilated forest areas, the fractal dilation dimension and the box-counting dimension of the border of the dilated forest areas. Fractal analysis revealed morpho-structural and textural differentiations of forested, deforested and reforested areas in development regions with dominant mountain relief and high hills (more forested and compact organization in comparison to the development regions dominated by plains or low hills (less forested, more fragmented with small and isolated clusters. Our analysis used the fractal analysis that has the advantage of analyzing the entire image, rather than studying local information, thereby enabling quantification of the uniformity, fragmentation, heterogeneity and homogeneity of forests.

  8. Assessment of Soil Water Composition in the Northern Taiga Coniferous Forests of Background Territories in the Industrially Developed Region

    Science.gov (United States)

    Lukina, N. V.; Ershov, V. V.; Gorbacheva, T. T.; Orlova, M. A.; Isaeva, L. G.; Teben'kova, D. N.

    2018-03-01

    The composition of soil water under coniferous forests of Murmansk oblast—an industrially developed region of northern Russia—was investigated. The studied objects were dwarf-shrub-green-moss spruce forests and dwarf-shrub-lichen pine forests on Al-Fe-humus podzols ( Albic Rustic Podzols) that are widespread in the boreal zone. The concentrations and removal of organic carbon performing the most important biogeochemical and pedogenic functions were estimated. The results proved significant intra- and inter-biogeocenotic variability in the composition of atmospheric depositions and soil water. Carbon removal with soil water from organic and mineral horizons within elementary biogeoareas (EBGA) under tree crowns was 2-5 and 2-3 times (in some cases, up to 10 times) greater than that in the intercrown areas, respectively. The lowest critical level of mineral nitrogen (0.2 mg/L) was, as a rule, exceeded in tree EBGAs contrary to intercrown areas. Concentrations of sulfates and heavy metals in water of tree EBGA were 3-5 times greater than those in inter-crown areas. Significant inter-biogeocenotic variations related to differences in the height of trees and tree stand density were found. It is argued that adequate characterization of biochemical cycles and assessment of critical levels of components in soil water of forest ecosystems should be performed with due account for the intra- and inter-biogeocenotic variability.

  9. GIS-Based Suitability Model for Assessment of Forest Biomass Energy Potential in a Region of Portugal

    Science.gov (United States)

    Quinta-Nova, Luis; Fernandez, Paulo; Pedro, Nuno

    2017-12-01

    This work focuses on developed a decision support system based on multicriteria spatial analysis to assess the potential for generation of biomass residues from forestry sources in a region of Portugal (Beira Baixa). A set of environmental, economic and social criteria was defined, evaluated and weighted in the context of Saaty’s analytic hierarchies. The best alternatives were obtained after applying Analytic Hierarchy Process (AHP). The model was applied to the central region of Portugal where forest and agriculture are the most representative land uses. Finally, sensitivity analysis of the set of factors and their associated weights was performed to test the robustness of the model. The proposed evaluation model provides a valuable reference for decision makers in establishing a standardized means of selecting the optimal location for new biomass plants.

  10. Central Region Regionally Ecological Significant Areas

    Data.gov (United States)

    Minnesota Department of Natural Resources — This is an analysis of regionally significant Terrestrial and Wetland Ecological Areas in the seven county metropolitan area. Individual forest, grassland and...

  11. Relative impact of previous disturbance history on the likelihood of additional disturbance in the Northern United States Forest Service USFS Region

    Science.gov (United States)

    Hernandez, A. J.

    2015-12-01

    The Landsat archive is increasingly being used to detect trends in the occurrence of forest disturbance. Beyond information about the amount of area affected, forest managers need to know if and how disturbance regimes change. The National Forest System (NFS) has developed a comprehensive plan for carbon monitoring that requires a detailed temporal mapping of forest disturbances across 75 million hectares. A long-term annual time series that shows the timing, extent, and type of disturbance beginning in 1990 and ending in 2011 has been prepared for several USFS Regions, including the Northern Region. Our mapping starts with an automated detection of annual disturbances using a time series of historical Landsat imagery. Automated detections are meticulously inspected, corrected and labeled using various USFS ancillary datasets. The resulting maps of verified disturbance show the timing and types are fires, harvests, insect activity, disease, and abiotic (wind, drought, avalanche) damage. Also, the magnitude of each change event is modeled in terms of the proportion of canopy cover lost. The sequence of disturbances for every pixel since 1990 has been consistently mapped and is available across the entirety of NFS. Our datasets contain sufficient information to describe the frequency of stand replacement, as well as how often disturbance results in only a partial loss of canopy. This information provides empirical insight into how an initial disturbance may predispose a stand to further disturbance, and it also show a climatic signal in the occurrence of processes such as fire and insect epidemics. Thus, we have the information to model the likelihood of occurrence of certain disturbances after a given event (i.e. if we have a fire in the past what does that do to the likelihood of occurrence of insects in the future). Here, we explore if previous disturbance history is a reliable predictor of additional disturbance in the future and we present results of applying

  12. Monitoring of radionuclides in the forest ecosystems of the Krasnoyarsk region in the 30 km area around the mining and chemical complex

    International Nuclear Information System (INIS)

    Dement'eva, D.V.; Bolsunovskij, A.Ya.

    2010-01-01

    The study addresses accumulation of radionuclides by mushrooms and berry shrubs in the forest ecosystems around the mining and chemical complex (MCC, Krasnoyarsk region, Russia). Results of determination of radionuclide levels in mushrooms and shrubs were used to calculate transfer factors. (authors)

  13. Monitoring coniferous forest biomass change using a Landsat trajectory-based approach

    Science.gov (United States)

    Magdalena Main-Knorn; Warren B. Cohen; Robert E. Kennedy; Wojciech Grodzki; Dirk Pflugmacher; Patrick Griffiths; Patrick Hostert

    2013-01-01

    Forest biomass is a major store of carbon and thus plays an important role in the regional and global carbon cycle. Accurate forest carbon sequestration assessment requires estimation of both forest biomass and forest biomass dynamics over time. Forest dynamics are characterized by disturbances and recovery, key processes affecting site productivity and the forest...

  14. Patterns of forest phylogenetic community structure across the United States and their possible forest health implications

    Science.gov (United States)

    Kevin M. Potter; Frank H. Koch

    2014-01-01

    The analysis of phylogenetic relationships among co-occurring tree species offers insights into the ecological organization of forest communities from an evolutionary perspective and, when employed regionally across thousands of plots, can assist in forest health assessment. Phylogenetic clustering of species, when species are more closely related than expected by...

  15. Water and Forest Health: Drought Stress as a Core Driver of Forest Disturbances and Tree Mortality in Western North America

    Science.gov (United States)

    Allen, C. D.; Williams, P.

    2012-12-01

    Increasing warmth and dry climate conditions have affected large portions of western North America in recent years, causing elevated levels of both chronic and acute forest drought stress. In turn, increases in drought stress amplify the incidence and severity of the most significant forest disturbances in this region, including wildfire, drought-induced tree mortality, and outbreaks of damaging insects and diseases. Regional patterns of drought stress and various forest disturbances are reviewed, including interactions among climate and the various disturbance processes; similar global-scale patterns and trends of drought-amplified forest die-off and high-severity wildfire also are addressed. New research is presented that derives a tree-ring-based Forest Drought Stress Index (FDSI) for the three most widespread conifer species (Pinus edulis, Pinus ponderosa, and Pseudotsuga menziesii) in the southwestern US (Arizona, New Mexico), demonstrating nonlinear escalation of FDSI to levels unprecedented in the past 1000 years, in response to both drought and especially recent warming. This new work further highlights strong correlations between drought stress and amplified forest disturbances (fire, bark beetle outbreaks), and projects that by ca. 2050 anticipated regional warming will cause mean FDSI levels to reach extreme levels that may exceed thresholds for the survival of current tree species in large portions of their current range. Given recent trends of forest disturbance and projections for substantially warmer temperatures and greater drought stress for much of western North America in coming years, the growing risks to western forest health are becoming clear. This emerging understanding suggests an urgent need to determine potentials and methods for managing water on-site to maintain the vigor and resilience of western forests in the face of increasing levels of climate-induced water stress.

  16. Self-amplified Amazon forest loss due to vegetation-atmosphere feedbacks

    NARCIS (Netherlands)

    Zemp, Delphine Clara; Schleussner, Carl Friedrich; Barbosa, Henrique M J; Hirota, Marina; Montade, Vincent; Sampaio, Gilvan; Staal, Arie; Wang-Erlandsson, L.; Rammig, Anja

    2017-01-01

    Reduced rainfall increases the risk of forest dieback, while in return forest loss might intensify regional droughts. The consequences of this vegetation-atmosphere feedback for the stability of the Amazon forest are still unclear. Here we show that the risk of self-amplified Amazon forest loss

  17. Forest Resources of the United States, 2012: a technical document supporting the Forest Service 2010 update of the RPA Assessment

    Science.gov (United States)

    Sonja N. Oswalt; W. Brad Smith; Patrick D. Miles; Scott A. Pugh

    2014-01-01

    Forest resource statistics from the 2010 Resources Planning Act (RPA) Assessment were updated to provide current information on the Nation's forests as a baseline for the 2015 national assessment. Resource tables present estimates of forest area, volume, mortality, growth, removals, and timber products output in various ways, such as by ownership, region, or State...

  18. Neolithization of the Volga-Kama Forest Region

    Directory of Open Access Journals (Sweden)

    Nikitin Valeriy V.

    2013-03-01

    Full Text Available The problem of Volga-Kama neolithization was reflected primarily in the works by the Kazan archaeologists A.Kh. Khalikov and R.S. Gabyashev. Currently, the settlement area of the early Neolithic formations has been defined, chronological framework of their existence has been designated, and their further transformation to the culture of the Kama and Oka Neolithic has been traced. But still there is the problem of criteria for defining the boundary of the Mesolithic and Neolithic. The study of complexes referring to the transitional period from the Mesolithic to the Neolithic has allowed the author to make a conclusion about a simultaneous process of neolithization in the forest zone of European Russia that had taken place at the turn of the 7th to 6th and throughout the 6th millennium BC. It is also assumed that the origins of the bearers of flat-bottomed stroke-ornamented and incised pottery, the earliest for the Middle Volga Neolithic culture, are associated with the southern forest-steppe Yelshan type cultures. The migration of population groups from the south took place in the first half of the 6th millennium BC. In the Mari lowland, they came into contact with the local Late Mesolithic population and developed a new cultural formation, related to the Yelshan, Samara and Upper Volga cultures

  19. issues of tropical forest transformation in ashanti region, ghana

    African Journals Online (AJOL)

    User

    The paper examines how livelihood strategies, trade, and ecology have ... provided by the international agencies are re- peatedly ..... travel in forested areas compared with the northern routes ... 1600s-1800. Source: Adapted from Diaw, 1998.

  20. Random Forest Segregation of Drug Responses May define Regions of Biological Significance

    Directory of Open Access Journals (Sweden)

    Qasim eBukhari

    2016-03-01

    Full Text Available The ability to assess brain responses in unsupervised manner based on fMRI measure has remained a challenge. Here we have applied the Random Forest (RF method to detect differences in the pharmacological MRI (phMRI response in rats to treatment with an analgesic drug (buprenorphine as compared to control (saline. Three groups of animals were studied: two groups treated with different doses of the opioid buprenorphine, low (LD and high dose (HD, and one receiving saline. PhMRI responses were evaluated in 45 brain regions and RF analysis was applied to allocate rats to the individual treatment groups. RF analysis was able to identify drug effects based on differential phMRI responses in the hippocampus, amygdala, nucleus accumbens, superior colliculus and the lateral and posterior thalamus for drug vs. saline. These structures have high levels of mu opioid receptors. In addition these regions are involved in aversive signaling, which is inhibited by mu opioids. The results demonstrate that buprenorphine mediated phMRI responses comprise characteristic features that allow an unsupervised differentiation from placebo treated rats as well as the proper allocation to the respective drug dose group using the RF method, a method that has been successfully applied in clinical studies.

  1. ANALYSIS OF FOOD SECURITY STATUS OF FARMING HOUSEHOLDS IN THE FOREST BELT OF THE CENTRAL REGION OF GHANA

    Directory of Open Access Journals (Sweden)

    John K.M. Kuwornu

    2013-01-01

    Full Text Available The study seeks to examine the Food Security Status of Farming Households in the Forest Belt of the Central Region of Ghana. A multistage sampling technique was used to select the respondents that were interviewed. In all 134 farming households were interviewed but 120 were selected for analysis after removing the questionnaires which were not properly administered. The households were selected from eight communities in two districts. Food consumption data of 851 individuals in 120 households were used for the analysis. The study reveals that the majority of the farming households (60% were found to be food insecure. Further, the Binary Logit Model results reveal that an increase in household's income, having access to credit as well as increase in the quantity of own farm production improve the food security status of farming households in the Forest Belt of the Central Region of Ghana. However, holding all other factors constant, increases in non-working member of households worsens the food security status of farming households. Most of the food insecurity coping strategies adopted by household's are not severe and can only be used to avert the impact of food insecurity on a temporal basis. These results have policy implications for Food Security Status of Farming Households in developing countries.

  2. A national and international analysis of changing forest density.

    Directory of Open Access Journals (Sweden)

    Aapo Rautiainen

    Full Text Available Like cities, forests grow by spreading out or by growing denser. Both inventories taken steadily by a single nation and other inventories gathered recently from many nations by the United Nations confirm the asynchronous effects of changing area and of density or volume per hectare. United States forests spread little after 1953, while growing density per hectare increased national volume and thus sequestered carbon. The 2010 United Nations appraisal of global forests during the briefer span of two decades after 1990 reveals a similar pattern: A slowing decline of area with growing volume means growing density in 68 nations encompassing 72% of reported global forest land and 68% of reported global carbon mass. To summarize, the nations were placed in 5 regions named for continents. During 1990-2010 national density grew unevenly, but nevertheless grew in all regions. Growing density was responsible for substantially increasing sequestered carbon in the European and North American regions, despite smaller changes in area. Density nudged upward in the African and South American regions as area loss outstripped the loss of carbon. For the Asian region, density grew in the first decade and fell slightly in the second as forest area expanded. The different courses of area and density disqualify area as a proxy for volume and carbon. Applying forestry methods traditionally used to measure timber volumes still offers a necessary route to measuring carbon stocks. With little expansion of forest area, managing for timber growth and density offered a way to increase carbon stocks.

  3. The prospection of uranium and thorium ores in desert country and in equatorial forest regions of the Union Francaise

    International Nuclear Information System (INIS)

    Lecoq, J.J.; Bigotte, G.; Hinault, J.; Leconte, J.R.

    1958-01-01

    Since it was founded, the D.R.E.M. has carried out important prospection work in the overseas territories which now make up the Communaute Francaise. This work, now involving almost a million km 2 , represents an experiment scarcely equalled throughout the world. Research in these territories presents both general and technical difficulties, which are especially severe in countries with extreme climates: deserts or dense equatorial forests. The adaptation of various methods of radioactive ore prospection to these regions is described, and also the results obtained. Three particular examples are given in detail: - general exploration in the Hoggar, and reconnoitring of particular indications; - general exploration in the equatorial forest of French Guyana; - detailed study of a sign of uraniferous occurrences and its surroundings in the equatorial zone (Mounana deposit near Franceville (Gabon)). (author) [fr

  4. Gross changes in forest area shape the future carbon balance of tropical forests

    Directory of Open Access Journals (Sweden)

    W. Li

    2018-01-01

    Full Text Available Bookkeeping models are used to estimate land-use and land-cover change (LULCC carbon fluxes (ELULCC. The uncertainty of bookkeeping models partly arises from data used to define response curves (usually from local data and their representativeness for application to large regions. Here, we compare biomass recovery curves derived from a recent synthesis of secondary forest plots in Latin America by Poorter et al. (2016 with the curves used previously in bookkeeping models from Houghton (1999 and Hansis et al. (2015. We find that the two latter models overestimate the long-term (100 years vegetation carbon density of secondary forest by about 25 %. We also use idealized LULCC scenarios combined with these three different response curves to demonstrate the importance of considering gross forest area changes instead of net forest area changes for estimating regional ELULCC. In the illustrative case of a net gain in forest area composed of a large gross loss and a large gross gain occurring during a single year, the initial gross loss has an important legacy effect on ELULCC so that the system can be a net source of CO2 to the atmosphere long after the initial forest area change. We show the existence of critical values of the ratio of gross area change over net area change (γAnetAgross, above which cumulative ELULCC is a net CO2 source rather than a sink for a given time horizon after the initial perturbation. These theoretical critical ratio values derived from simulations of a bookkeeping model are compared with observations from the 30 m resolution Landsat Thematic Mapper data of gross and net forest area change in the Amazon. This allows us to diagnose areas in which current forest gains with a large land turnover will still result in LULCC carbon emissions in 20, 50 and 100 years.

  5. The relative impact of harvest and fire upon landscape-level dynamics of older forests: Lessons from the Northwest Forest Plan

    Science.gov (United States)

    Sean P. Healey; Warren B. Cohen; Thomas A. Spies; Melinda Moeur; Dirk Pflungmacher; M. German Whitley; Michael Lefsky

    2008-01-01

    Interest in preserving older forests at the landscape level has increased in many regions, including the Pacific Northwest of the United States. The Northwest Forest Plan (NWFP) of 1994 initiated a significant reduction in the harvesting of older forests on federal land. We used historical satellite imagery to assess the effect of this reduction in relation to: past...

  6. Tropical forest carbon assessment: integrating satellite and airborne mapping approaches

    International Nuclear Information System (INIS)

    Asner, Gregory P

    2009-01-01

    Large-scale carbon mapping is needed to support the UNFCCC program to reduce deforestation and forest degradation (REDD). Managers of forested land can potentially increase their carbon credits via detailed monitoring of forest cover, loss and gain (hectares), and periodic estimates of changes in forest carbon density (tons ha -1 ). Satellites provide an opportunity to monitor changes in forest carbon caused by deforestation and degradation, but only after initial carbon densities have been assessed. New airborne approaches, especially light detection and ranging (LiDAR), provide a means to estimate forest carbon density over large areas, which greatly assists in the development of practical baselines. Here I present an integrated satellite-airborne mapping approach that supports high-resolution carbon stock assessment and monitoring in tropical forest regions. The approach yields a spatially resolved, regional state-of-the-forest carbon baseline, followed by high-resolution monitoring of forest cover and disturbance to estimate carbon emissions. Rapid advances and decreasing costs in the satellite and airborne mapping sectors are already making high-resolution carbon stock and emissions assessments viable anywhere in the world.

  7. Forest transitions in Eastern Europe and their effects on carbon budgets

    DEFF Research Database (Denmark)

    Kuemmerle, Tobias; Kaplan, Jed O.; Prishchepov, Alexander

    2015-01-01

    Forests often rebound from deforestation following industrialization and urbanization, but for many regions our understanding of where and when forest transitions happened, and how they affected carbon budgets remains poor. One such region is Eastern Europe, where political and socio......-economic conditions changed drastically over the last three centuries, but forest trends have not yet been analyzed in detail. We present a new assessment of historical forest change in the European part of the former Soviet Union and the legacies of these changes on contemporary carbon stocks. To reconstruct forest...... carbon stock dynamics. Our results revealed that forest transitions in Eastern Europe occurred predominantly in the early 20th century, substantially later than in Western Europe. We also found marked geographic variation in forest transitions, with some areas characterized by relatively stable...

  8. Forest decline research in Northrhine-Westphalia at the regional research site Eggegebirge/Velmerstot

    International Nuclear Information System (INIS)

    Prinz, B.; Koeth, I.; Krause, G.H.M.; Thiele, V.

    1989-01-01

    In 1984 Northrhine Westfalia established a research program 'Air Pollution and Forest Decline'. Results of various experiments, carried out on the level of 1. epidemiological observations, 2. semi-controlled experiments in open-to-chambers as well as 3. controlled fumigation experiments are presented as an overview. Emphasis is put on field experiments at the regional research site Eggegebirge/Velmerstot, where the Landesanstalt fuer Immissionsschutz analysed among others yearly nutrient cycling and leaching phenomena of injured and healthy spruce trees (type: montanious yellowing). Deposition measurements were carried on a horizontal and vertical trajectory outside and inside a young spruce stand. Preliminary results showed that atmospheric acidic deposition accounts only for 1/3 of the acidification of the soil within the stand, where acidification processes are most prevalent. (orig.) [de

  9. Analyzing cloud base at local and regional scales to understand tropical montane cloud forest vulnerability to climate change

    Science.gov (United States)

    Van Beusekom, Ashley E.; González, Grizelle; Scholl, Martha A.

    2017-01-01

    The degree to which cloud immersion provides water in addition to rainfall, suppresses transpiration, and sustains tropical montane cloud forests (TMCFs) during rainless periods is not well understood. Climate and land use changes represent a threat to these forests if cloud base altitude rises as a result of regional warming or deforestation. To establish a baseline for quantifying future changes in cloud base, we installed a ceilometer at 100 m altitude in the forest upwind of the TMCF that occupies an altitude range from ∼ 600 m to the peaks at 1100 m in the Luquillo Mountains of eastern Puerto Rico. Airport Automated Surface Observing System (ASOS) ceilometer data, radiosonde data, and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite data were obtained to investigate seasonal cloud base dynamics, altitude of the trade-wind inversion (TWI), and typical cloud thickness for the surrounding Caribbean region. Cloud base is rarely quantified near mountains, so these results represent a first look at seasonal and diurnal cloud base dynamics for the TMCF. From May 2013 to August 2016, cloud base was lowest during the midsummer dry season, and cloud bases were lower than the mountaintops as often in the winter dry season as in the wet seasons. The lowest cloud bases most frequently occurred at higher elevation than 600 m, from 740 to 964 m. The Luquillo forest low cloud base altitudes were higher than six other sites in the Caribbean by ∼ 200–600 m, highlighting the importance of site selection to measure topographic influence on cloud height. Proximity to the oceanic cloud system where shallow cumulus clouds are seasonally invariant in altitude and cover, along with local trade-wind orographic lifting and cloud formation, may explain the dry season low clouds. The results indicate that climate change threats to low-elevation TMCFs are not limited to the dry season; changes in synoptic-scale weather patterns

  10. Loss of ecosystem services due to chronic pollution of forests and surface waters in the Adirondack region (USA).

    Science.gov (United States)

    Beier, Colin M; Caputo, Jesse; Lawrence, Gregory B; Sullivan, Timothy J

    2017-04-15

    Sustaining recent progress in mitigating acid pollution could require lower emissions caps that will give rise to real or perceived tradeoffs between healthy ecosystems and inexpensive energy. Because most impacts of acid rain affect ecosystem functions that are poorly understood by policy-makers and the public, an ecosystem services (ES) framework can help to measure how pollution affects human well-being. Focused on the Adirondack region (USA), a global 'hot-spot' of acid pollution, we measured how the chronic acidification of the region's forests, lakes, and streams has affected the potential economic and cultural benefits they provide to society. We estimated that acid-impaired hardwood forests provide roughly half of the potential benefits of forests on moderate to well-buffered soils - an estimated loss of ∼ $10,000 ha -1 in net present value of wood products, maple syrup, carbon sequestration, and visual quality. Acidic deposition has had only nominal impact - relative to the effects of surficial geology and till depth - on the capacity of Adirondack lakes and streams to provide water suitable for drinking. However, as pH declines in lakes, the estimated value of recreational fishing decreases significantly due to loss of desirable fish such as trout. Hatchery stocking programs have partially offset the pollution-mediated losses of fishery value, most effectively in the pH range 4.8-5.5, but are costly and limited in scope. Although any estimates of the monetary 'damages' of acid rain have significant uncertainties, our findings highlight some of the more tangible economic and cultural benefits of pollution mitigation efforts, which continue to face litigation and political opposition. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Conserving pollinators in North American forests: A review

    Science.gov (United States)

    James L. Hanula; Michael D. Ulyshen; Scott Horn

    2016-01-01

    Bees and butterflies generally favor open forest habitats regardless of forest type, geographic region, or methods used to create these habitats. Dense shrub layers of native or nonnative species beneath forest canopies negatively impact herbaceous plant cover and diversity, and pollinators. The presence of nonnative flowers as a source of nectar, pollen, or larval...

  12. The importance of age-related decline in forest NPP for modeling regional carbon balances.

    Science.gov (United States)

    Zaehle, Sönke; Sitch, Stephen; Prentice, I Colin; Liski, Jari; Cramer, Wolfgang; Erhard, Markus; Hickler, Thomas; Smith, Benjamin

    2006-08-01

    We show the implications of the commonly observed age-related decline in aboveground productivity of forests, and hence forest age structure, on the carbon dynamics of European forests in response to historical changes in environmental conditions. Size-dependent carbon allocation in trees to counteract increasing hydraulic resistance with tree height has been hypothesized to be responsible for this decline. Incorporated into a global terrestrial biosphere model (the Lund-Potsdam-Jena model, LPJ), this hypothesis improves the simulated increase in biomass with stand age. Application of the advanced model, including a generic representation of forest management in even-aged stands, for 77 European provinces shows that model-based estimates of biomass development with age compare favorably with inventory-based estimates for different tree species. Model estimates of biomass densities on province and country levels, and trends in growth increment along an annual mean temperature gradient are in broad agreement with inventory data. However, the level of agreement between modeled and inventory-based estimates varies markedly between countries and provinces. The model is able to reproduce the present-day age structure of forests and the ratio of biomass removals to increment on a European scale based on observed changes in climate, atmospheric CO2 concentration, forest area, and wood demand between 1948 and 2000. Vegetation in European forests is modeled to sequester carbon at a rate of 100 Tg C/yr, which corresponds well to forest inventory-based estimates.

  13. Seasonal variation of gastroprotective terpenoids in Maytenus robusta (Celastraceae) quantified by gas chromatography-flame ionization detection (GC-FID).

    Science.gov (United States)

    Zermiani, Tailyn; Junior, Antonio A S; Ferreira, Renê A; Wagner, Theodoro M; Machado, Marina S; Cechinel-Filho, Valdir; Niero, Rivaldo

    2016-11-01

    The triterpenes friedelin (1), β-friedelinol (2) and 3,15-dioxo-21α-hydroxyfriedelane (3) in the aerial parts of Maytenus robusta, a Brazilian medicinal plant with antiulcer potential, were seasonally quantified by gas chromatography flame-ionization detection (GC-FID) using an external standard. The method was found to be linear, precise and sensitive. Compounds 1 and 2 were found in M. robusta leaves and branches, with highest concentrations in the leaves collected in autumn, i.e. 3.21 ± 0.16 and 12.60 ± 1.49 mg g-1 dry weight of 1 and 2, respectively. On the other hand, compound 3 was found only in the branches, with the highest concentrations in winter and autumn (0.21 ± 0.01 and 0.20 ± 0.02 mg g-1). The results allow to define the optimal season and plant parts for the collection of M. robusta as a phytotherapeutic drug.

  14. Specifics of fire-preventing arrangements in the forests of Baikal region

    Directory of Open Access Journals (Sweden)

    M. D. Evdokimenko

    2017-10-01

    Full Text Available Fire risk in major forest types and concomitant vegetation complexes across all altitudinal belts has been analyzed. High fire risk in woodlands is determined by domination of light needle coniferous stands in their structure and specific climate with continuous spring-summer droughts. Thus, the risk of landscape wildfires is high. The most drastic situations occur in very dry years of climatic cycles during forest pyrogenic anomalies when fire spreads across the main landscapes in several nature areas. Current fire-frequency is incompatible with high biosphere status of nature complex of Lake Baikal as an object of the World nature heritage. Extensive forest exploitation is unacceptable as well. Fire-prevention measures in the area require modernization. According to the results of many years of comparative studies of fire risk in phytocenoses with different species composition and structure of tree layers, the techniques of making fire stopping barriers were developed. The scheme of dividing the managed forests into isolated cells separated by special obstacles and fire-resistant forest borders combined with commonly used fire barriers is suggested. Fire-resistant barriers should be formed on both sides of main roads, passing through the intensively exploited woodlands dominating with common pine Pinus sylvestris L., Siberian stone pine Pinus sibirica Du Tour, Siberian spruce Picea obovata Ledeb., and Siberian fir Abies sibirica Ledeb. tree species. Such barriers are intended to stop the fire front of crown fires. The barrier width is determined by the cell order. The barriers are bordered with clearings with scarified soil strips of 3–4 meters in width. Trees and shrubs damaged in the process are removed during clutter cleaning. In places where the barrier passes through coniferous tree stands longitudinal corridors with scarified soil strips every 20–30 meters should be made. Reforestation and thinning are supposed to be combined with

  15. Assessing Watershed-Wildfire Risks on National Forest System Lands in the Rocky Mountain Region of the United States

    Directory of Open Access Journals (Sweden)

    Jessica R. Haas

    2013-07-01

    Full Text Available Wildfires can cause significant negative impacts to water quality with resultant consequences for the environment and human health and safety, as well as incurring substantial rehabilitation and water treatment costs. In this paper we will illustrate how state-of-the-art wildfire simulation modeling and geospatial risk assessment methods can be brought to bear to identify and prioritize at-risk watersheds for risk mitigation treatments, in both pre-fire and post-fire planning contexts. Risk assessment results can be particularly useful for prioritizing management of hazardous fuels to lessen the severity and likely impacts of future wildfires, where budgetary and other constraints limit the amount of area that can be treated. Specifically we generate spatially resolved estimates of wildfire likelihood and intensity, and couple that information with spatial data on watershed location and watershed erosion potential to quantify watershed exposure and risk. For a case study location we focus on National Forest System lands in the Rocky Mountain Region of the United States. The Region houses numerous watersheds that are critically important to drinking water supplies and that have been impacted or threatened by large wildfires in recent years. Assessment results are the culmination of a broader multi-year science-management partnership intended to have direct bearing on wildfire management decision processes in the Region. Our results suggest substantial variation in the exposure of and likely effects to highly valued watersheds throughout the Region, which carry significant implications for prioritization. In particular we identified the San Juan National Forest as having the highest concentration of at-risk highly valued watersheds, as well as the greatest amount of risk that can be mitigated via hazardous fuel reduction treatments. To conclude we describe future opportunities and challenges for management of wildfire-watershed interactions.

  16. Forest carbon response to management scenarios intended to mitigate GHG emissions and reduce fire impacts in the US West Coast region

    Science.gov (United States)

    Hudiburg, T. W.; Law, B. E.; Thornton, P. E.; Luyssaert, S.

    2012-12-01

    US West coast forests are among the most carbon dense biomes in the world and the potential for biomass accumulation in mesic coastal forests is the highest recorded (Waring and Franklin 1979, Hudiburg et al. 2009). Greenhouse gas (GHG) mitigation strategies have recently expanded to include forest woody biomass as bioenergy, with the expectation that this will also reduce forest mortality. We examined forest carbon response and life cycle assessment (LCA) of net carbon emissions following varying combinations of bioenergy management scenarios in Pacific Northwest forests for the period from 2010-2100. We use the NCAR CLM4 model combined with a regional atmospheric forcing dataset and account for future environmental change using the IPCC RCP4.5 and RCP 8.5 scenarios. Bioenergy management strategies include a repeated thinning harvest, a repeated clearcut harvest, and a single salvage harvest in areas with projected insect-related mortality. None of the bioenergy management scenarios reduce net emissions to the atmosphere compared to continued business-as-usual harvest (BAU) by the end of the 21st century. Forest regrowth and reduced fire emissions are not large enough to balance the wood removals from harvest. Moreover, the substitution of wood for fossil fuel energy and products is not large enough to offset the wood losses through decomposition and combustion. However, in some ecoregions (Blue Mountains and East Cascades), emissions from the thinning harvests begin to improve over BAU at the end of the century and could lead to net reductions in those ecoregions over a longer time period (> 100 years). For salvage logging, there is no change compared to BAU emissions by the end of the 21st century because the treatment area is minimal compared to the other treatments and only performed once. These results suggest that managing forests for carbon sequestration will need to include a variety of approaches accounting for forest baseline conditions and in some

  17. Developing a unified monitoring and reporting system: a key to successful restoration of mixed-oak forests throughout the central hardwood region

    Science.gov (United States)

    Daniel A. Yaussy; Gregory J. Nowacki; Thomas M. Schuler; Daniel C. Dey

    2008-01-01

    Many national forests and grasslands in the Central Hardwoods region of the United States recently have undergone Land Management Plan revision, which include management areas that promote restoration through a variety of management activities. Monitoring is a vital component of adaptive management whereby the effects from a variety of treatments (including controls)...

  18. Diametric structure in a tropical dry forest fragment in the Cerrado Eco-Museum region, Brazil

    International Nuclear Information System (INIS)

    Imana Encinas Jose, Antunes Santana Otacilio; Rainier Imana Christian

    2011-01-01

    In a tropical dry forest area of the Brazilian central region, the DBH distribution of 742 trees ≥ 5 cm was analyzed in a 4000 m 2 area. Eighty three tree species were found, of which 25 species with more than 10 individuals were analyzed for this study. The frequency histograms were obtained through the Meyer and Gaussian equations. The DBH distribution of the population showed a negative exponential inverse J curve. Of the 25 species selected, 14 exhibited the same pattern. Eight species presented a tendency near the normal distribution while three species had an abnormal pattern. We concluded that the observed fragment is in a natural auto regenerative status.

  19. HIGH QUALITY FACADE SEGMENTATION BASED ON STRUCTURED RANDOM FOREST, REGION PROPOSAL NETWORK AND RECTANGULAR FITTING

    Directory of Open Access Journals (Sweden)

    K. Rahmani

    2018-05-01

    Full Text Available In this paper we present a pipeline for high quality semantic segmentation of building facades using Structured Random Forest (SRF, Region Proposal Network (RPN based on a Convolutional Neural Network (CNN as well as rectangular fitting optimization. Our main contribution is that we employ features created by the RPN as channels in the SRF.We empirically show that this is very effective especially for doors and windows. Our pipeline is evaluated on two datasets where we outperform current state-of-the-art methods. Additionally, we quantify the contribution of the RPN and the rectangular fitting optimization on the accuracy of the result.

  20. Balancing trade-offs between ecosystem services in Germany’s forests under climate change

    Science.gov (United States)

    Gutsch, Martin; Lasch-Born, Petra; Kollas, Chris; Suckow, Felicitas; Reyer, Christopher P. O.

    2018-04-01

    Germany’s forests provide a variety of ecosystem services. Sustainable forest management aims to optimize the provision of these services at regional level. However, climate change will impact forest ecosystems and subsequently ecosystem services. The objective of this study is to quantify the effects of two alternative management scenarios and climate impacts on forest variables indicative of ecosystem services related to timber, habitat, water, and carbon. The ecosystem services are represented through nine model output variables (timber harvest, above and belowground biomass, net ecosystem production, soil carbon, percolation, nitrogen leaching, deadwood, tree dimension, broadleaf tree proportion) from the process-based forest model 4C. We simulated forest growth, carbon and water cycling until 2045 with 4C set-up for the whole German forest area based on National Forest Inventory data and driven by three management strategies (nature protection, biomass production and a baseline management) and an ensemble of regional climate scenarios (RCP2.6, RCP 4.5, RCP 8.5). We provide results as relative changes compared to the baseline management and observed climate. Forest management measures have the strongest effects on ecosystem services inducing positive or negative changes of up to 40% depending on the ecosystem service in question, whereas climate change only slightly alters ecosystem services averaged over the whole forest area. The ecosystem services ‘carbon’ and ‘timber’ benefit from climate change, while ‘water’ and ‘habitat’ lose. We detect clear trade-offs between ‘timber’ and all other ecosystem services, as well as synergies between ‘habitat’ and ‘carbon’. When evaluating all ecosystem services simultaneously, our results reveal certain interrelations between climate and management scenarios. North-eastern and western forest regions are more suitable to provide timber (while minimizing the negative impacts on remaining

  1. Idaho forest carbon projections from 2017 to 2117 under forest disturbance and climate change scenarios

    Science.gov (United States)

    Hudak, A. T.; Crookston, N.; Kennedy, R. E.; Domke, G. M.; Fekety, P.; Falkowski, M. J.

    2017-12-01

    Commercial off-the-shelf lidar collections associated with tree measures in field plots allow aboveground biomass (AGB) estimation with high confidence. Predictive models developed from such datasets are used operationally to map AGB across lidar project areas. We use a random selection of these pixel-level AGB predictions as training for predicting AGB annually across Idaho and western Montana, primarily from Landsat time series imagery processed through LandTrendr. At both the landscape and regional scales, Random Forests is used for predictive AGB modeling. To project future carbon dynamics, we use Climate-FVS (Forest Vegetation Simulator), the tree growth engine used by foresters to inform forest planning decisions, under either constant or changing climate scenarios. Disturbance data compiled from LandTrendr (Kennedy et al. 2010) using TimeSync (Cohen et al. 2010) in forested lands of Idaho (n=509) and western Montana (n=288) are used to generate probabilities of disturbance (harvest, fire, or insect) by land ownership class (public, private) as well as the magnitude of disturbance. Our verification approach is to aggregate the regional, annual AGB predictions at the county level and compare them to annual county-level AGB summarized independently from systematic, field-based, annual inventories conducted by the US Forest Inventory and Analysis (FIA) Program nationally. This analysis shows that when federal lands are disturbed the magnitude is generally high and when other lands are disturbed the magnitudes are more moderate. The probability of disturbance in corporate lands is higher than in other lands but the magnitudes are generally lower. This is consistent with the much higher prevalence of fire and insects occurring on federal lands, and greater harvest activity on private lands. We found large forest carbon losses in drier southern Idaho, only partially offset by carbon gains in wetter northern Idaho, due to anticipated climate change. Public and

  2. Interpreting forest biome productivity and cover utilizing nested scales of image resolution and biogeographical analysis

    Science.gov (United States)

    Iverson, Louis R.; Cook, Elizabeth A.; Graham, Robin L.; Olson, Jerry S.; Frank, Thomas D.; Ying, KE

    1988-01-01

    The objective was to relate spectral imagery of varying resolution with ground-based data on forest productivity and cover, and to create models to predict regional estimates of forest productivity and cover with a quantifiable degree of accuracy. A three stage approach was outlined. In the first stage, a model was developed relating forest cover or productivity to TM surface reflectance values (TM/FOREST models). The TM/FOREST models were more accurate when biogeographic information regarding the landscape was either used to stratigy the landscape into more homogeneous units or incorporated directly into the TM/FOREST model. In the second stage, AVHRR/FOREST models that predicted forest cover and productivity on the basis of AVHRR band values were developed. The AVHRR/FOREST models had statistical properties similar to or better than those of the TM/FOREST models. In the third stage, the regional predictions were compared with the independent U.S. Forest Service (USFS) data. To do this regional forest cover and forest productivity maps were created using AVHRR scenes and the AVHRR/FOREST models. From the maps the county values of forest productivity and cover were calculated. It is apparent that the landscape has a strong influence on the success of the approach. An approach of using nested scales of imagery in conjunction with ground-based data can be successful in generating regional estimates of variables that are functionally related to some variable a sensor can detect.

  3. Utilisation and Management Changes in South Kyrgyzstan's Mountain Forests

    Institute of Scientific and Technical Information of China (English)

    Matthias Schmidt

    2005-01-01

    Using political ecology as its conceptual framework, this paper focuses on the changes in forest utilisation and management of South Kyrgyzstan's walnut-fruit forests over the last century. The aim of this study on human-environment interactions is to investigate the relationship between actors on the one side, their interests and demands, and the forests and forested lands on the other. Forest resource utilisation and management - and even the recognition of different forest products as resources - are connected with political and socio-economic conditions that change with time. The walnut-fruit forests of South Kyrgyzstan are unique, characterised by high biodiversity and a multiplicity of usable products; and they have been utilised for a long time. Centralised and formal management of the forests started with the Russian occupation and was strengthened under Soviet rule, when the region became a part of the USSR. During this era, a state forest administration that was structured from Moscow all the way down to the local level drew up detailed plans and developed procedures for utilising the different forest products. Since the collapse of the Soviet Union, the socio-political and economic frame conditions have changed significantly, which has brought not only the sweeping changes in the managing institutions, but also the access rights and interests in the forest resources. At present, the region is suffering from a high unemployment rate, which has resulted in the forests' gaining considerable importance in the livelihood strategies of the local population. Political and economic liberalization, increased communication and trans-regional exchange relations have opened the door for international companies and agents interested in the valuable forest products. Today, walnut wood and burls, walnuts, wild apples and mushrooms are all exported to various countries in the world. Scientists and members of various international organisations stress the ecological

  4. Determinação do coeficiente de atividade em diluição infinita de hidrocarbonetos em furfural a 298,15 K por SPME-GC/FID

    Directory of Open Access Journals (Sweden)

    Filipe Arantes Furtado

    2010-01-01

    Full Text Available In this work a new method (SPME-GC/FID was developed to analyze the activity of binary liquid mixtures. The purpose is to demonstrate that SPME is capable to be used to determinate activity coefficients at infinite dilution knowing the fiber properties, with a lower cost than the conventional methods encountered in literature such as GLC. The activity coefficients at infinite dilution in furfural for n-hexane, n-heptane and cyclohexane at 298.15 K was determined using SPME and deviations of literature data was about 7%.

  5. MILDLY-DAMAGED FOREST AREAS IN BOREAL FORESTS OF THE WORLD. THE ORIGIN, DEVELOPMENT, IMPOTANCE AND PROBABLE FUTURE OF THE CONCEPT OF MILDLY-DAMAGED FOREST AREAS WITH REGARD TO BOREAL FORESTS

    Directory of Open Access Journals (Sweden)

    I.V. Zhuravleva

    2016-03-01

    Full Text Available The most important environmental goals at the global level, relating to forests, are conservation of biological diversity in the natural environment of its habitat and preservation of the environmental role (especially regarding the climate of forests. Major forest areas, not fragmented by infrastructure and preserving the diversity of relationships between landscape elements, are of crucial importance for solution of both these problems. Since many decisions, concerning conservation and management, are taken at inter-regional and inter-state levels or within the framework of various international processes, it is important to have clear and uniform criteria for identification of such areas. The article deals with occurrence, development and current state of the most common concepts of allocation thereof – the concept of mildly-damaged forest areas, based on the use of remote sensing data, especially images from Landsat satellites. The article substantiates a necessity of further development and update of the concept of intact forest landscapes: unification of approaches to their identification near northern boundaries of forests, adjustment of approaches to registering impacts of forest fires in the context of global climate change and land-use practices, adaption to new public data of remote sensing of the Earth.

  6. How Forest Inhomogeneities Affect the Edge Flow

    DEFF Research Database (Denmark)

    Boudreault, Louis-Étienne; Dupont, Sylvain; Bechmann, Andreas

    2016-01-01

    Most of our knowledge on forest-edge flows comes from numerical and wind-tunnel experiments where canopies are horizontally homogeneous. To investigate the impact of tree-scale heterogeneities (>1 m) on the edge-flow dynamics, the flow in an inhomogeneous forest edge on Falster island in Denmark...... is investigated using large-eddy simulation. The three-dimensional forest structure is prescribed in the model using high resolution helicopter-based lidar scans. After evaluating the simulation against wind measurements upwind and downwind of the forest leading edge, the flow dynamics are compared between...... the scanned forest and an equivalent homogeneous forest. The simulations reveal that forest inhomogeneities facilitate flow penetration into the canopy from the edge, inducing important dispersive fluxes in the edge region as a consequence of the flow spatial variability. Further downstream from the edge...

  7. Forest fire risk zonation mapping using remote sensing technology

    Science.gov (United States)

    Chandra, Sunil; Arora, M. K.

    2006-12-01

    Forest fires cause major losses to forest cover and disturb the ecological balance in our region. Rise in temperature during summer season causing increased dryness, increased activity of human beings in the forest areas, and the type of forest cover in the Garhwal Himalayas are some of the reasons that lead to forest fires. Therefore, generation of forest fire risk maps becomes necessary so that preventive measures can be taken at appropriate time. These risk maps shall indicate the zonation of the areas which are in very high, high, medium and low risk zones with regard to forest fire in the region. In this paper, an attempt has been made to generate the forest fire risk maps based on remote sensing data and other geographical variables responsible for the occurrence of fire. These include altitude, temperature and soil variations. Key thematic data layers pertaining to these variables have been generated using various techniques. A rule-based approach has been used and implemented in GIS environment to estimate fuel load and fuel index leading to the derivation of fire risk zonation index and subsequently to fire risk zonation maps. The fire risk maps thus generated have been validated on the ground for forest types as well as for forest fire risk areas. These maps would help the state forest departments in prioritizing their strategy for combating forest fires particularly during the fire seasons.

  8. A method of forest management for the planned introduction of intensive husbandry in virgin forest stands

    Science.gov (United States)

    B. Dolezal

    1978-01-01

    The method proposed is derived from long experience of intensive management in forest stands of Central Europe and from our proposal for management in virgin Iranian forests of the Caspian Region. The method establishes the need for systematic planning of stand conversion to insure both sustained yield and the harvesting of sufficient timber to sustain economic...

  9. Thirty-Two Years of Forest Service Research at the Southern Forest Fire Laboratory in Macon, GA

    Science.gov (United States)

    USDA Forest Service

    1991-01-01

    When completed in 1959, the Southern Forest Fire Laboratory was the world?s first devoted entirely to the study of forest fires, Since then the scientists at the Laboratory have: 1) performed basic and applied research on critical fire problems of national interest, 2) conducted special regional research on fire problems peculiar to the 13 Southern States, and 3)...

  10. Calculation on the impacts of forestation, afforestation and reforestation on the C-sequestration potential in Belgian forests ecosystems. COST E21 Workshop. Contribution of forests and forestry to mitigate greenhouse effects. Joensuu (Finland. 28-30 Sep 2000

    Directory of Open Access Journals (Sweden)

    Perrin D.

    2000-01-01

    Full Text Available The Belgian climate policy is formulated at the federal level, requiring cooperation between regional and federal administrations. Around a fifth of the total area of Belgium is covered by forests. Around 80/ of the productive forests are in the Walloon region. Reported values for land use change and forestry categories give a potential of 2,057 kt eq. CO2 per year. Given the existing regional forest inventories (RFI: RFI1 for 1984 and RFI2 for 1999, an estimate has been made to consolidate reported data. Afforestation, deforestation and reforestation activities are calculated according the Intergovernemental Panel on Climate Change special report on land use, land use change and forestry.

  11. The lack of adequate quality assurance/quality control data hinders the assessment of potential forest degradation in a national forest inventory

    Science.gov (United States)

    Thomas Brandeis; Stanley Zarnoch; Christopher Oswalt; Jeffery Stringer

    2017-01-01

    Hardwood lumber harvested from the temperate broadleaf and mixed broadleaf/conifer forests of the east-central United States is an important economic resource. Forest industry stakeholders in this region have a growing need for accurate, reliable estimates of high-quality wood volume. While lower-graded timber has an increasingly wide array of uses, the forest products...

  12. Growth decline linked to warming-induced water limitation in hemi-boreal forests.

    Science.gov (United States)

    Wu, Xiuchen; Liu, Hongyan; Guo, Dali; Anenkhonov, Oleg A; Badmaeva, Natalya K; Sandanov, Denis V

    2012-01-01

    Hemi-boreal forests, which make up the transition from temperate deciduous forests to boreal forests in southern Siberia, have experienced significant warming without any accompanying increase in precipitation during the last 80 years. This climatic change could have a profound impact on tree growth and on the stability of forest ecosystems in this region, but at present evidence for these impacts is lacking. In this study, we report a recent dramatic decline in the growth of hemi-boreal forests, based on ring width measurements from three dominant tree-species (Pinus sylvestris, Larix sibirica and Larix gmelinii), sampled from eight sites in the region. We found that regional tree growth has become increasingly limited by low soil water content in the pre- and early-growing season (from October of the previous year to July of the current year) over the past 80 years. A warming-induced reduction in soil water content has also increased the climate sensitivity of these three tree species. Beginning in the mid-1980s, a clear decline in growth is evident for both the pine forests and the larch forests, although there are increasing trends in the proxy of soil water use efficiencies. Our findings are consistent with those from other parts of the world and provide valuable insights into the regional carbon cycle and vegetation dynamics, and should be useful for devising adaptive forest management strategies.

  13. Ecological assessment of riparian forests in Benin

    NARCIS (Netherlands)

    Natta, A.K.

    2003-01-01

    The present research deals with the flora, phytosociology and ecology of riparian forests. The overall objective of this research is to contribute to a better knowledge of the flora, diversity and ecology of riparian forests inregion>

  14. Genetics of Euglossini bees (Hymenoptera in fragments of the Atlantic Forest in the region of Viçosa, MG

    Directory of Open Access Journals (Sweden)

    A. M. Waldschmidt

    Full Text Available With uncontrolled deforestation, forest fragments remain, which in most cases are in different stages of regeneration and present isolated populations. In the present study we analyzed the genetic patterns of Eulaema nigrita populations in seven Atlantic Forest fragments of different sizes and successional stages in the region of Viçosa, MG. This was done by RAPD molecular markers. We observed that the area of the fragments had no effect on the genetic variability of E. nigrita in the direction predicted by meta-population models. Medium-sized well-preserved woods presented the lowest variability, whereas large and small woods were statistically identical. The evidence supports the notion that rural areas present greater dispersal among fragments, implying greater similarity between the populations of fragments located in rural areas when compared to fragments in urban areas.

  15. Natural Variation of Volatile Compounds in Virgin Olive Oil Analyzed by HS-SPME/GC-MS-FID

    Directory of Open Access Journals (Sweden)

    Carlos Sanz

    2018-04-01

    Full Text Available Virgin olive oil is unique among plant oils for its high levels of oleic acid, and the presence of a wide range of minor components, which are responsible for both its health-promoting properties and characteristic aroma, and only produced when olives are crushed during the industrial process used for oil production. The genetic variability of the major volatile compounds comprising the oil aroma was studied in a representative sample of olive cultivars from the World Olive Germplasm Collection (IFAPA, Cordoba, Spain, by means of the headspace solid-phase microextraction/gas chromatography–mass spectrometry–flame ionization detection (HS-SPME/GC-MS-FID. The analytical data demonstrated that a high variability is found for the content of volatile compounds in olive species, and that most of the volatile compounds found in the oils were synthesized by the enzymes included in the so-called lipoxygenase pathway. Multivariate analysis allowed the identification of cultivars that are particularly interesting, in terms of volatile composition and presumed organoleptic quality, which can be used both to identify old olive cultivars that give rise to oils with a high organoleptic quality, and in parent selection for olive breeding programs.

  16. Public Preferences Across Europe for Different Forest Stand Types as Sites for Recreation

    Directory of Open Access Journals (Sweden)

    David M. Edwards

    2012-03-01

    Full Text Available A Delphi survey involving experts in forest preference research was carried out to derive scores for the recreational value of 240 forest stand types across Europe. The survey was organized around four regional panels: Great Britain, Nordic Region, Central Europe, and Iberia. In each region, 60 forest stand types were defined according to five forest management alternatives (FMAs on a continuum of management intensity, four phases of development (establishment, young, medium, and adult, and three tree species types (conifer, broadleaved, and mixed stands of conifer and broadleaved. The resulting scores were examined using conjoint analysis to determine the relative importance of the three structural attributes (FMA, phase of development, and tree species type, and each level or component of the attributes. The findings quantify the extent to which forest visitors prefer a degree of management to unmanaged forest nature reserves across the four regions. Phase of development was shown to make the highest contribution to the recreational value of forests while the contribution of tree species type was shown to be relatively unimportant. While the results are indicative, they provide evidence to support long-term retention and low-impact silviculture in forests where recreation is a primary objective of management.

  17. Observations from old forests underestimate climate change effects on tree mortality.

    Science.gov (United States)

    Luo, Yong; Chen, Han Y H

    2013-01-01

    Understanding climate change-associated tree mortality is central to linking climate change impacts and forest structure and function. However, whether temporal increases in tree mortality are attributed to climate change or stand developmental processes remains uncertain. Furthermore, interpreting the climate change-associated tree mortality estimated from old forests for regional forests rests on an un-tested assumption that the effects of climate change are the same for young and old forests. Here we disentangle the effects of climate change and stand developmental processes on tree mortality. We show that both climate change and forest development processes influence temporal mortality increases, climate change-associated increases are significantly higher in young than old forests, and higher increases in younger forests are a result of their higher sensitivity to regional warming and drought. We anticipate our analysis to be a starting point for more comprehensive examinations of how forest ecosystems might respond to climate change.

  18. Demographic change in the northern forest

    Science.gov (United States)

    Kenneth M. Johnson; Susan I. Stewart; Miranda H. Mockrin

    2012-01-01

    The Northern Forest spans more than 26 million acres across Maine, New Hampshire, New York, and Vermont. With densely settled urban cores, sprawling suburbs, struggling industrial and forest products towns, fast growing recreational areas, and isolated rural villages, the region includes many of the diverse strands that together compose the demographic fabric of the...

  19. Eco-environment Restoration and Regional Differentiation Characteristics Based on “Building Terrace and Returning Slope Farmland to Forests and Grass”

    Institute of Scientific and Technical Information of China (English)

    Yanhua; LIU; Yong; XU

    2013-01-01

    Based on the scientific and technological achievements in the past decade in the Loess Hilly-gully Region and the successful demonstration experience in Yan’an Yangou watershed, we summarize the characteristics of eco-environment restoration pattern based on "building terrace and returning slope farmland to forests and grass". According to the data on land use, slope farmland and the agricultural population in 1999, we calculate the area of new terrace that needs to be built, the area of garden plot that needs to be extended, vegetation restoration area and investment demand in counties (cities, districts). Establishing and using some indicators, such as basic farmland extension indicator, garden plot extension indicator, vegetation restoration index and investment demand density, we conduct type classification and analysis of regional differentiation characteristics in 55 counties (cities, districts). The results show that in the Loess Hilly-gully Region, 691 600 hm2 of new terrace needs to be built, 792 000 hm2 of economic forests and orchards need to be extended, 5 410 200 hm2 of vegetation needs to be restored, and the total investment demand is 15.82 billion yuan; in terms of geographical distribution, obviously there are two key areas for eco-environment restoration (one is located in the border area between northern Shaanxi and northwestern Shanxi, and the other is located in the eastern Gansu and southern Ningxia area); the classified regional guidance policies should be formulated as soon as possible, and the limited funds should be concentrated in the key areas.

  20. 77 FR 15994 - Southern Region Recreation Resource Advisory Committee

    Science.gov (United States)

    2012-03-19

    ... DEPARTMENT OF AGRICULTURE Forest Service Southern Region Recreation Resource Advisory Committee AGENCY: Forest Service, USDA. ACTION: Notice of meeting via teleconference. SUMMARY: The Southern Region... and requests to Southern Region Recreation RAC, Caroline Mitchell, P.O. Box 1270, Hot Springs, AR...

  1. Bioenergy production and forest landscape change in the southeastern United States

    Science.gov (United States)

    Costanza, Jennifer K.; Abt, Robert C.; McKerrow, Alexa; Collazo, Jaime A.

    2016-01-01

    Production of woody biomass for bioenergy, whether wood pellets or liquid biofuels, has the potential to cause substantial landscape change and concomitant effects on forest ecosystems, but the landscape effects of alternative production scenarios have not been fully assessed. We simulated landscape change from 2010 to 2050 under five scenarios of woody biomass production for wood pellets and liquid biofuels in North Carolina, in the southeastern United States, a region that is a substantial producer of wood biomass for bioenergy and contains high biodiversity. Modeled scenarios varied biomass feedstocks, incorporating harvest of ‘conventional’ forests, which include naturally regenerating as well as planted forests that exist on the landscape even without bioenergy production, as well as purpose-grown woody crops grown on marginal lands. Results reveal trade-offs among scenarios in terms of overall forest area and the characteristics of the remaining forest in 2050. Meeting demand for biomass from conventional forests resulted in more total forest land compared with a baseline, business-as-usual scenario. However, the remaining forest was composed of more intensively managed forest and less of the bottomland hardwood and longleaf pine habitats that support biodiversity. Converting marginal forest to purpose-grown crops reduced forest area, but the remaining forest contained more of the critical habitats for biodiversity. Conversion of marginal agricultural lands to purpose-grown crops resulted in smaller differences from the baseline scenario in terms of forest area and the characteristics of remaining forest habitats. Each scenario affected the dominant type of land-use change in some regions, especially in the coastal plain that harbors high levels of biodiversity. Our results demonstrate the complex landscape effects of alternative bioenergy scenarios, highlight that the regions most likely to be affected by bioenergy production are also critical for

  2. A GIS-based decision support system for determining the shortest and safest route to forest fires: a case study in Mediterranean Region of Turkey.

    Science.gov (United States)

    Akay, Abdullah E; Wing, Michael G; Sivrikaya, Fatih; Sakar, Dursun

    2012-03-01

    The ability of firefighting vehicles and staff to reach a fire area as quickly as possible is critical in fighting against forest fires. In this study, a Geographical Information System-based decision support system was developed to assist fire managers in determining the fastest and the safest or more reliable access routes from firefighting headquarters to fire areas. The decision support system was tested in the Kahramanmaras Forestry Regional Directoratein the Mediterranean region of Turkey. The study area consisted of forested lands which had been classified according to fire sensitivity. The fire response routing simulations considered firefighting teams located in 20 firefighting headquarter locations. The road network, the locations of the firefighting headquarters, and possible fire locations were mapped for simulation analysis. In alternative application simulations, inaccessible roads which might be closed due to fire or other reasons were indicated in the network analysis so that the optimum route was not only the fastest but also the safest and most reliable path. The selection of which firefighting headquarters to use was evaluated by considering critical response time to potential fire areas based on fire sensitivity levels. Results indicated that new firefighting headquarters should be established in the region in order to provide sufficient firefighting response to all forested lands. In addition, building new fire access roads and increasing the design speed on current roads could also increase firefighting response capabilities within the study area.

  3. Arthropod diversity in pristine vs. managed beech forests in Transcarpathia (Western Ukraine

    Directory of Open Access Journals (Sweden)

    Vasyl Chumak

    2015-01-01

    We conclude that biodiversity in pristine beech forests is not generally higher than in managed beech forests. However, the much higher amount of dead wood in pristine forests provides a source habitat for saproxylic species spreading into managed forest plots in the same region, but not to distant forests, far from virgin forests, such as in Western Europe.

  4. MODIS NDVI Change Detection Techniques and Products Used in the Near Real Time ForWarn System for Detecting, Monitoring, and Analyzing Regional Forest Disturbances

    Science.gov (United States)

    Spruce, Joseph P.; Hargrove, William; Gasser, Jerry; Smoot, James; Kuper, Philip D.

    2014-01-01

    This presentation discusses MODIS NDVI change detection methods and products used in the ForWarn Early Warning System (EWS) for near real time (NRT) recognition and tracking of regionally evident forest disturbances throughout the conterminous US (CONUS). The latter has provided NRT forest change products to the forest health protection community since 2010, using temporally processed MODIS Aqua and Terra NDVI time series data to currently compute and post 6 different forest change products for CONUS every 8 days. Multiple change products are required to improve detectability and to more fully assess the nature of apparent disturbances. Each type of forest change product reports per pixel percent change in NDVI for a given 24 day interval, comparing current versus a given historical baseline NDVI. EMODIS 7 day expedited MODIS MOD13 data are used to obtain current and historical NDVIs, respectively. Historical NDVI data is processed with Time Series Product Tool (TSPT); and 2) the Phenological Parameters Estimation Tool (PPET) software. While each change products employ maximum value compositing (MVC) of NDVI, the design of specific products primarily differs in terms of the historical baseline. The three main change products use either 1, 3, or all previous years of MVC NDVI as a baseline. Another product uses an Adaptive Length Compositing (ALC) version of MVC to derive an alternative current NDVI that is the freshest quality NDVI as opposed to merely the MVC NDVI across a 24 day time frame. The ALC approach can improve detection speed by 8 to 16 days. ForWarn also includes 2 change products that improve detectability of forest disturbances in lieu of climatic fluctuations, especially in the spring and fall. One compares current MVC NDVI to the zonal maximum under the curve NDVI per pheno-region cluster class, considering all previous years in the MODIS record. The other compares current maximum NDVI to the mean of maximum NDVI for all previous MODIS years.

  5. Condition and fate of logged forests in the Brazilian Amazon.

    Science.gov (United States)

    Gregory P. Asner; Eben N. Broadbent; Paulo J. C. Oliveira; Michael Keller; David E. Knapp; Jose N. M. Silva

    2006-01-01

    The long-term viability of a forest industry in the Amazon region of Brazil depends on the maintenance of adequate timber volume and growth in healthy forests. Using extensive high-resolution satellite analyses, we studied the forest damage caused by recent logging operations and the likelihood that logged forests would be cleared within 4 years after timber harvest....

  6. Disturbing forest disturbances

    Energy Technology Data Exchange (ETDEWEB)

    Volney, W.J.A.; Hirsch, K.G. [Natural Resources Canada, Canadian Forest Service, Northern Forestry Centre, Edmonton, AB (Canada)

    2005-10-01

    This paper described the role that disturbances play in maintaining the ecological integrity of Canadian boreal forests. Potential adaptation options to address the challenges that these disturbances present were also examined. Many forest ecosystems need fire for regeneration, while other forests rely on a cool, wet disintegration process driven by insects and commensal fungi feeding on trees to effect renewal. While there are characteristic natural, temporal and spatial patterns to these disturbances, recent work has demonstrated that the disturbances are being perturbed by climatic change that has been compounded by anthropogenic disturbances in forests. Fire influences species composition and age structure, regulates forest insects and diseases, affects nutrient cycling and energy fluxes, and maintains the productivity of different habitats. Longer fire seasons as a result of climatic change will lead to higher intensity fires that may more easily evade initial attacks and become problematic. Fire regimes elevated beyond the range of natural variation will have a dramatic effect on the regional distribution and functioning of forest ecosystems and pose a threat to the safety and prosperity of people. While it was acknowledged that if insect outbreaks were to be controlled on the entire forest estate, the productivity represented by dead wood would be lost, it was suggested that insects such as the forest tent caterpillar and the spruce bud worm may also pose a greater threat as the climate gets warmer and drier. Together with fungal associates, saproxylic arthropods are active in nutrient cycling and ultimately determine the fertility of forest sites. It was suggested that the production of an age class structure and forest mosaic would render the forest landscape less vulnerable to the more negative aspects of climate change on vegetation response. It was concluded that novel management design paradigms are needed to successfully reduce the risk from threats

  7. Preliminary evaluation of a method using an FID (flame ionization detector) for measurement of methanol in auto emissions. Final report

    International Nuclear Information System (INIS)

    Gabele, P.A.; Ray, W.D.; Duncan, J.; Burton, C.

    1987-09-01

    This report evaluates a simplified technique for estimating methanol emission rates in auto exhaust. The technique, referred to as the FID Bubbled Method or FBM, is based in principle on the fact that, while hydrocarbons are not readily absorbed in water, methanol is. Hence, by using a heated flame ionization detector to measure the organic mass in samples before and after bubbling them in water, the quantity of methanol originally present can be estimated by taking the difference between the measurements. Evaluation of the method was done by comparing methanol measurements using the FBM with measurements made using an established reference method. Results showed poor to fair agreement between the two methods. The FBM appeared better at estimating methanol emission rates from evaporative tests than from exhaust tests and also exhibited better accuracy for samples containing higher levels of methanol

  8. Self-amplified Amazon forest loss due to vegetation-atmosphere feedbacks

    OpenAIRE

    Zemp, Delphine Clara; Schleussner, Carl Friedrich; Barbosa, Henrique M J; Hirota, Marina; Montade, Vincent; Sampaio, Gilvan; Staal, Arie; Wang-Erlandsson, L.; Rammig, Anja

    2017-01-01

    Reduced rainfall increases the risk of forest dieback, while in return forest loss might intensify regional droughts. The consequences of this vegetation–atmosphere feedback for the stability of the Amazon forest are still unclear. Here we show that the risk of self-amplified Amazon forest loss increases nonlinearly with dry-season intensification. We apply a novel complexnetwork approach, in which Amazon forest patches are linked by observation-based atmospheric water fluxes. ...

  9. Air pollution impacts on forests in changing climate

    Science.gov (United States)

    M. Lorenz; N. Clarke; E. Paoletti; A. Bytnerowicz; N. Grulke; N. Lukina; H. Sase; J. Staelens

    2010-01-01

    Growing awareness of air pollution effects on forests has, from the early 1980s on, led to intensive forest damage research and monitoring. This has fostered air pollution control, especially in Europe and North America, and to a smaller extent also in other parts of the world. At several forest sites in these regions, there are first indications of a recovery of...

  10. Analysis of the changes in forest ecosystem functions, structure and composition in the Black Sea region of Turkey

    Institute of Scientific and Technical Information of China (English)

    Sedat Kele(s); (I)dris Durusoy; Günay Çakir

    2017-01-01

    We used geographical information system to analyze changes in forest ecosystem functions, structure and composition in a typical department of forest man-agement area consisting of four forest management plan-ning units in Turkey. To assess these effects over a 25 year period we compiled data from three forest management plans that were made in 1986, 2001 and 2011. Temporal changes in forest ecosystem functions were estimated based on the three pillars of forest sustainability: eco-nomics, ecology and socio-culture. We assessed a few indicators such as land-use and forest cover, forest types, tree species, development stage, stand age classes, crown closure, growing stock and its increment, and timber bio-mass. The results of the case study suggested a shift in forest values away from economic values toward ecologi-cal and socio-cultural values over last two planning peri-ods. Forest ecosystem structure improved, due mainly to increasing forest area, decreasing non-forest areas (espe-cially in settlement and agricultural areas), forestation on forest openings, rehabilitation of degraded forests, con-version of even-aged forests to uneven-aged forests and conversion of coppice forests to high forests with greater growing stock increments. There were also favorable changes in forest management planning approaches.

  11. Regional cost information for private timberland conversion and management.

    Science.gov (United States)

    Lucas S Bair; Ralph J. Alig

    2006-01-01

    Cost of private timber management practices in the United States are identified, and their relationship to timber production in general is highlighted. Costs across timber-producing regions and forest types are identified by forest type and timber management practices historically applied in each region. This includes cost estimates for activities such as forest...

  12. Effects of forest conversion on the assemblages' structure of aquatic insects in subtropical regions

    Directory of Open Access Journals (Sweden)

    Tiago R.N. Bertaso

    2015-03-01

    Full Text Available The effects of forest conversion to agricultural land uses on assemblages of aquatic insects were analyzed in subtropical streams. Organisms and environmental variables were collected in six low-order streams: three streams located in a forested area, and three in areas converted to agricultural land uses. We expected that the aquatic insects' assemblage attributes would be significantly affected by forest conversion, as well as by environmental variables. Streams in converted areas presented lower species richness, abundance and proportion of sensitive insect taxa. The ANOSIM test evidenced strong difference in EPT assemblage structure between streams of forested and converted areas. The ISA test evidenced several EPT genera with high specificity to streams in forested areas and only one genus related to streams in converted areas. Thus, the impacts of the conversion of forested area to agricultural land uses have significantly affected the EPT assemblages, while environmental variables were not affected. We suggest that the effects detected can be influenced by two processes related to vegetation cover: i lower input of allochthonous material, and ii increased input of fine sediments in streams draining converted areas.

  13. A framework to predict the impacts of shale gas infrastructures on the forest fragmentation of an agroforest region.

    Science.gov (United States)

    Racicot, Alexandre; Babin-Roussel, Véronique; Dauphinais, Jean-François; Joly, Jean-Sébastien; Noël, Pascal; Lavoie, Claude

    2014-05-01

    We propose a framework to facilitate the evaluation of the impacts of shale gas infrastructures (well pads, roads, and pipelines) on land cover features, especially with regards to forest fragmentation. We used a geographic information system and realistic development scenarios largely inspired by the PA (United States) experience, but adapted to a region of QC (Canada) with an already fragmented forest cover and a high gas potential. The scenario with the greatest impact results from development limited by regulatory constraints only, with no access to private roads for connecting well pads to the public road network. The scenario with the lowest impact additionally integrates ecological constraints (deer yards, maple woodlots, and wetlands). Overall the differences between these two scenarios are relatively minor, with shale gas industry, we show that it is possible, within a reasonable time frame, to produce a robust assessment of the impacts of shale gas extraction. The framework we propose could easily be applied to other contexts or jurisdictions.

  14. Region effects influence local tree species diversity.

    Science.gov (United States)

    Ricklefs, Robert E; He, Fangliang

    2016-01-19

    Global patterns of biodiversity reflect both regional and local processes, but the relative importance of local ecological limits to species coexistence, as influenced by the physical environment, in contrast to regional processes including species production, dispersal, and extinction, is poorly understood. Failure to distinguish regional influences from local effects has been due, in part, to sampling limitations at small scales, environmental heterogeneity within local or regional samples, and incomplete geographic sampling of species. Here, we use a global dataset comprising 47 forest plots to demonstrate significant region effects on diversity, beyond the influence of local climate, which together explain more than 92% of the global variation in local forest tree species richness. Significant region effects imply that large-scale processes shaping the regional diversity of forest trees exert influence down to the local scale, where they interact with local processes to determine the number of coexisting species.

  15. An experimental test of the habitat-amount hypothesis for saproxylic beetles in a forested region.

    Science.gov (United States)

    Seibold, Sebastian; Bässler, Claus; Brandl, Roland; Fahrig, Lenore; Förster, Bernhard; Heurich, Marco; Hothorn, Torsten; Scheipl, Fabian; Thorn, Simon; Müller, Jörg

    2017-06-01

    The habitat-amount hypothesis challenges traditional concepts that explain species richness within habitats, such as the habitat-patch hypothesis, where species number is a function of patch size and patch isolation. It posits that effects of patch size and patch isolation are driven by effects of sample area, and thus that the number of species at a site is basically a function of the total habitat amount surrounding this site. We tested the habitat-amount hypothesis for saproxylic beetles and their habitat of dead wood by using an experiment comprising 190 plots with manipulated patch sizes situated in a forested region with a high variation in habitat amount (i.e., density of dead trees in the surrounding landscape). Although dead wood is a spatio-temporally dynamic habitat, saproxylic insects have life cycles shorter than the time needed for habitat turnover and they closely track their resource. Patch size was manipulated by adding various amounts of downed dead wood to the plots (~800 m³ in total); dead trees in the surrounding landscape (~240 km 2 ) were identified using airborne laser scanning (light detection and ranging). Over 3 yr, 477 saproxylic species (101,416 individuals) were recorded. Considering 20-1,000 m radii around the patches, local landscapes were identified as having a radius of 40-120 m. Both patch size and habitat amount in the local landscapes independently affected species numbers without a significant interaction effect, hence refuting the island effect. Species accumulation curves relative to cumulative patch size were not consistent with either the habitat-patch hypothesis or the habitat-amount hypothesis: several small dead-wood patches held more species than a single large patch with an amount of dead wood equal to the sum of that of the small patches. Our results indicate that conservation of saproxylic beetles in forested regions should primarily focus on increasing the overall amount of dead wood without considering its

  16. Alternatives to deforestation: Steps toward sustainable use of the Amazon Rain Forest

    International Nuclear Information System (INIS)

    Anderson, A.B.

    1990-01-01

    The high rate of deforestation of the Brazilian Amazon over the past two decades has jeopardized genetic diversity, contributed to regional and global climate change, caused erosion and flooding, destroyed forest resources, spread disease, and increased poverty. This book presents a selection of papers from an international conference that explored alternatives to deforestation of tropical forests. The alternatives described include natural forest management, agroforestry systems, and forest reestablishment on degraded pastures. The book should be useful to scientists, regional planners, and the broad scientific audience

  17. Susceptibility of forests in the northeastern USA to nitrogen and sulfur deposition: critical load exceedance and forest health

    Science.gov (United States)

    N. Duarte; L.H. Pardo; M.J. Robin-Abbott

    2013-01-01

    The objectives of this study were to assess susceptibility to acidification and nitrogen (N) saturation caused by atmospheric deposition to northeastern US forests, evaluate the benefits and shortcomings of making critical load assessments using regional data, and assess the relationship between expected risk (exceedance) and forest health. We calculated the critical...

  18. Forest health in a changing world: Effects of globalization and climate change on forest insect and pathogen impacts

    Science.gov (United States)

    T. D. Ramsfield; Barbara Bentz; M. Faccoli; H. Jactel; E. G. Brockerhoff

    2016-01-01

    Forests and trees throughout the world are increasingly affected by factors related to global change. Expanding international trade has facilitated invasions of numerous insects and pathogens into new regions. Many of these invasions have caused substantial forest damage, economic impacts and losses of ecosystem goods and services provided by trees. Climate...

  19. IN SITU MEASUREMENTS OF C2-C10 VOLATILE ORGANIC COMPOUNDS ABOVE A SIERRA NEVADA PONDEROSA PINE PLANTATION

    Science.gov (United States)

    A fully automated GC-FID system was designed and built to measure ambient concentrations of C2-C10 volatile organic compounds, including many oxygenated compounds, without using liquid cryogen. It was deployed at Blodgett Forest Research Station in Georgetown, CA USA, 38 deg 53' ...

  20. Genèse du poème « Trahison fidèle » dans Stèles de Victor Segalen

    OpenAIRE

    Queloz, Danielle Terrien et Jean-Jacques

    2016-01-01

    Segalen publie une première édition de Stèles en 1912. Elle comporte quarante-huit poèmes. Une deuxième édition augmentée de seize poèmes voit le jour au début de 1914. « Trahison fidèle ». en fait partie. L’élaboration de ce poème s’est déroulée par étapes successives. En effet, outre le texte publié que nous connaissons, il existe sept versions différentes du poème, que Segalen est même allé jusqu’à classer, ce qui permet d’adopter une perspective génétique et de pratiquer une lecture qui s...

  1. Trace metal concentrations in forest and lawn soils of Paris region (France) along a gradient of urban pressure

    Science.gov (United States)

    Ludovic, Foti

    2017-04-01

    Urban soils differ greatly from natural ones as they are located in areas of intense anthropogenic activity (e.g. pollution, physical disturbance, surface transformation). Urban soils are a crucial component of urban ecosystems, especially in public green spaces, and contribute to many ecosystem services from the mitigation of urban heat island to recreational services. In the last decade, the study of urban soils has emerged as an important frontier in environmental research, at least because of their impact on the quality of life of urban populations, because of the services they deliver and because they are more and more recognized as a valuable resource. One of the key issues is the pollution of urban soils because they receive a variety of deposits from local (vehicle emissions, industrial discharges, domestic heating, waste incineration and other anthropogenic activities) and from remote sources (through atmospheric transport). Typical contaminants include persistent toxic substances, such as trace metals (TMs) that have drawn wide attention due to their long persistence in the environment, their tendency to bioaccumulate in the food chain and their toxicity for humans and other organisms. Concentrations, spatial distributions, dynamics, impacts and sources of TMs (e.g. industry or fossil fuels combustion) have attracted a global interest in urban soils and are the subject of ongoing research (e.g. ecotoxicological urban ecology). Some studies have already documented soil pollution with TMs at both the town and regional scales. So far, several monitoring programs (e.g. National Network for the long term Monitoring of Forest Ecosystem, Regional Monitoring Quality of Soil in France) and studies have been carried out on a national scale to measure the ranges of TM concentrations and natural background values in French soils. These studies have focused on French agricultural and forest soils and have not tackled urban soils. No study has described TM

  2. Multi-scale comparisons of tree composition in Amazonian terra firme forests

    Science.gov (United States)

    Honorio Coronado, E. N.; Baker, T. R.; Phillips, O. L.; Pitman, N. C. A.; Pennington, R. T.; Vásquez Martínez, R.; Monteagudo, A.; Mogollón, H.; Dávila Cardozo, N.; Ríos, M.; García-Villacorta, R.; Valderrama, E.; Ahuite, M.; Huamantupa, I.; Neill, D. A.; Laurance, W. F.; Nascimento, H. E. M.; Soares de Almeida, S.; Killeen, T. J.; Arroyo, L.; Núñez, P.; Freitas Alvarado, L.

    2009-11-01

    We explored the floristic composition of terra firme forests across Amazonia using 55 plots. Firstly, we examined the floristic patterns using both genus- and species-level data and found that the species-level analysis more clearly distinguishes among forests. Next, we compared the variation in plot floristic composition at regional- and continental-scales, and found that average among-pair floristic similarity and its decay with distance behave similarly at regional- and continental-scales. Nevertheless, geographical distance had different effects on floristic similarity within regions at distances floristic variation than plots of central and eastern Amazonia. Finally, we quantified the role of environmental factors and geographical distance for determining variation in floristic composition. A partial Mantel test indicated that while geographical distance appeared to be more important at continental scales, soil fertility was crucial at regional scales within western Amazonia, where areas with similar soil conditions were more likely to share a high number of species. Overall, these results suggest that regional-scale variation in floristic composition can rival continental-scale differences within Amazonian terra firme forests, and that variation in floristic composition at both scales is influenced by geographical distance and environmental factors, such as climate and soil fertility. To fully account for regional-scale variation in continental studies of floristic composition, future floristic studies should focus on forest types poorly represented at regional scales in current datasets, such as terra firme forests with high soil fertility in north-western Amazonia.

  3. Increased topsoil carbon stock across China's forests.

    Science.gov (United States)

    Yang, Yuanhe; Li, Pin; Ding, Jinzhi; Zhao, Xia; Ma, Wenhong; Ji, Chengjun; Fang, Jingyun

    2014-08-01

    Biomass carbon accumulation in forest ecosystems is a widespread phenomenon at both regional and global scales. However, as coupled carbon-climate models predicted, a positive feedback could be triggered if accelerated soil carbon decomposition offsets enhanced vegetation growth under a warming climate. It is thus crucial to reveal whether and how soil carbon stock in forest ecosystems has changed over recent decades. However, large-scale changes in soil carbon stock across forest ecosystems have not yet been carefully examined at both regional and global scales, which have been widely perceived as a big bottleneck in untangling carbon-climate feedback. Using newly developed database and sophisticated data mining approach, here we evaluated temporal changes in topsoil carbon stock across major forest ecosystem in China and analysed potential drivers in soil carbon dynamics over broad geographical scale. Our results indicated that topsoil carbon stock increased significantly within all of five major forest types during the period of 1980s-2000s, with an overall rate of 20.0 g C m(-2) yr(-1) (95% confidence interval, 14.1-25.5). The magnitude of soil carbon accumulation across coniferous forests and coniferous/broadleaved mixed forests exhibited meaningful increases with both mean annual temperature and precipitation. Moreover, soil carbon dynamics across these forest ecosystems were positively associated with clay content, with a larger amount of SOC accumulation occurring in fine-textured soils. In contrast, changes in soil carbon stock across broadleaved forests were insensitive to either climatic or edaphic variables. Overall, these results suggest that soil carbon accumulation does not counteract vegetation carbon sequestration across China's forest ecosystems. The combination of soil carbon accumulation and vegetation carbon sequestration triggers a negative feedback to climate warming, rather than a positive feedback predicted by coupled carbon-climate models

  4. Carbon Consequences of Forest Disturbance and Recovery Across the Conterminous United States

    Science.gov (United States)

    Williams, Christopher A.; Collatz, G. James; Masek, Jeffrey; Goward, Samuel N.

    2012-01-01

    Forests of North America are thought to constitute a significant long term sink for atmospheric carbon. The United States Forest Service Forest Inventory and Analysis (FIA) program has developed a large data base of stock changes derived from consecutive estimates of growing stock volume in the US. These data reveal a large and relatively stable increase in forest carbon stocks over the last two decades or more. The mechanisms underlying this national increase in forest stocks may include recovery of forests from past disturbances, net increases in forest area, and growth enhancement driven by climate or fertilization by CO2 and Nitrogen. Here we estimate the forest recovery component of the observed stock changes using FIA data on the age structure of US forests and carbon stocks as a function of age. The latter are used to parameterize forest disturbance and recovery processes in a carbon cycle model. We then apply resulting disturbance/recovery dynamics to landscapes and regions based on the forest age distributions. The analysis centers on 28 representative climate settings spread about forested regions of the conterminous US. We estimate carbon fluxes for each region and propagate uncertainties in calibration data through to the predicted fluxes. The largest recovery-driven carbon sinks are found in the South central, Pacific Northwest, and Pacific Southwest regions, with spatially averaged net ecosystem productivity (NEP) of about 100 g C / square m / a driven by forest age structure. Carbon sinks from recovery in the Northeast and Northern Lake States remain moderate to large owing to the legacy of historical clearing and relatively low modern disturbance rates from harvest and fire. At the continental scale, we find a conterminous U.S. forest NEP of only 0.16 Pg C/a from age structure in 2005, or only 0.047 Pg C/a of forest stock change after accounting for fire emissions and harvest transfers. Recent estimates of NEP derived from inventory stock change

  5. Implications of climate change for Pacific Northwest forest management

    International Nuclear Information System (INIS)

    Wall, G.

    1991-01-01

    A Canada/USA symposium was held to identify potential consequences of global climate change to Pacific Northwest forests; to identify the future role and relative contribution of those forests in the balance of carbon, moisture, and energy exchange of the atmosphere; and to develop recommendations for Pacific Northwest forest management strategies and policy options for responding to global climate change. Papers were presented on such topics as regional climatic change, forest responses and processes, public policy on forests and climatic change, sequestration of atmospheric carbon, forest management, and forest adaptation to climatic change. Separate abstracts have been prepared for 14 papers from this symposium

  6. Observed forest sensitivity to climate implies large changes in 21st century North American forest growth.

    Science.gov (United States)

    Charney, Noah D; Babst, Flurin; Poulter, Benjamin; Record, Sydne; Trouet, Valerie M; Frank, David; Enquist, Brian J; Evans, Margaret E K

    2016-09-01

    Predicting long-term trends in forest growth requires accurate characterisation of how the relationship between forest productivity and climatic stress varies across climatic regimes. Using a network of over two million tree-ring observations spanning North America and a space-for-time substitution methodology, we forecast climate impacts on future forest growth. We explored differing scenarios of increased water-use efficiency (WUE) due to CO2 -fertilisation, which we simulated as increased effective precipitation. In our forecasts: (1) climate change negatively impacted forest growth rates in the interior west and positively impacted forest growth along the western, southeastern and northeastern coasts; (2) shifting climate sensitivities offset positive effects of warming on high-latitude forests, leaving no evidence for continued 'boreal greening'; and (3) it took a 72% WUE enhancement to compensate for continentally averaged growth declines under RCP 8.5. Our results highlight the importance of locally adapted forest management strategies to handle regional differences in growth responses to climate change. © 2016 John Wiley & Sons Ltd/CNRS.

  7. Family forest landowners' interest in forest carbon offset programs: Focus group findings from the Lake States, USA

    Science.gov (United States)

    Kristell A. Miller; Stephanie A. Snyder; Mike A. Kilgore; Mae A. Davenport

    2014-01-01

    In 2012, focus groups were organized with individuals owning 20+ acres in the Lake States region of the United States (Michigan, Minnesota, and Wisconsin) to discuss various issues related to forest carbon offsetting. Focus group participants consisted of landowners who had responded to an earlier mail-back survey (2010) on forest carbon offsets. Two focus groups were...

  8. The changing effects of Alaska’s boreal forests on the climate system

    Science.gov (United States)

    Euskirchen, E.S.; McGuire, A. David; Chapin, F.S.; Rupp, T.S.

    2010-01-01

    In the boreal forests of Alaska, recent changes in climate have influenced the exchange of trace gases, water, and energy between these forests and the atmosphere. These changes in the structure and function of boreal forests can then feed back to impact regional and global climates. In this manuscript, we examine the type and magnitude of the climate feedbacks from boreal forests in Alaska. Research generally suggests that the net effect of a warming climate is a positive regional feedback to warming. Currently, the primary positive climate feedbacks are likely related to decreases in surface albedo due to decreases in snow cover. Fewer negative feedbacks have been identified, and they may not be large enough to counterbalance the large positive feedbacks. These positive feedbacks are most pronounced at the regional scale and reduce the resilience of the boreal vegetation – climate system by amplifying the rate of regional warming. Given the recent warming in this region, the large variety of associated mechanisms that can alter terrestrial ecosystems and influence the climate system, and a reduction in the boreal forest resilience, there is a strong need to continue to quantify and evaluate the feedback pathways.

  9. A Regional Guidebook for Applying the Hydrogeomorphic Approach to Assessing Functions of Forested Wetlands in the Mississippi Alluvial Valley

    Science.gov (United States)

    2013-07-01

    regions of applicability if they prefer, and they will yield essentially the same results as this guidebook. However, this version is designed to...in the 16th century, natural levees of the major rivers were extensively used for maize agriculture by Native Americans (Hudson 1997). By the time...Together these indicate whether the stand has a structure typical of a mature forest with “ gap ” regeneration processes in place. The second term of

  10. Global-Scale Patterns of Forest Fragmentation

    Directory of Open Access Journals (Sweden)

    Kurt Riitters

    2000-12-01

    Full Text Available We report an analysis of forest fragmentation based on 1-km resolution land-cover maps for the globe. Measurements in analysis windows from 81 km 2 (9 x 9 pixels, "small" scale to 59,049 km 2 (243 x 243 pixels, "large" scale were used to characterize the fragmentation around each forested pixel. We identified six categories of fragmentation (interior, perforated, edge, transitional, patch, and undetermined from the amount of forest and its occurrence as adjacent forest pixels. Interior forest exists only at relatively small scales; at larger scales, forests are dominated by edge and patch conditions. At the smallest scale, there were significant differences in fragmentation among continents; within continents, there were significant differences among individual forest types. Tropical rain forest fragmentation was most severe in North America and least severe in Europe-Asia. Forest types with a high percentage of perforated conditions were mainly in North America (five types and Europe-Asia (four types, in both temperate and subtropical regions. Transitional and patch conditions were most common in 11 forest types, of which only a few would be considered as "naturally patchy" (e.g., dry woodland. The five forest types with the highest percentage of interior conditions were in North America; in decreasing order, they were cool rain forest, coniferous, conifer boreal, cool mixed, and cool broadleaf.

  11. Global-scale patterns of forest fragmentation

    Science.gov (United States)

    Riitters, K.; Wickham, J.; O'Neill, R.; Jones, B.; Smith, E.

    2000-01-01

    We report an analysis of forest fragmentation based on 1-km resolution land-cover maps for the globe. Measurements in analysis windows from 81 km 2 (9 ?? 9 pixels, "small" scale) to 59,049 km 2 (243 ?? 243 pixels, "large" scale) were used to characterize the fragmentation around each forested pixel. We identified six categories of fragmentation (interior, perforated, edge, transitional, patch, and undetermined) from the amount of forest and its occurrence as adjacent forest pixels. Interior forest exists only at relatively small scales; at larger scales, forests are dominated by edge and patch conditions. At the smallest scale, there were significant differences in fragmentation among continents; within continents, there were significant differences among individual forest types. Tropical rain forest fragmentation was most severe in North America and least severe in Europe - Asia. Forest types with a high percentage of perforated conditions were mainly in North America (five types) and Europe - Asia (four types), in both temperate and subtropical regions. Transitional and patch conditions were most common in 11 forest types, of which only a few would be considered as "naturally patchy" (e.g., dry woodland). The five forest types with the highest percentage of interior conditions were in North America; in decreasing order, they were cool rain forest, coniferous, conifer boreal, cool mixed, and cool broadleaf. Copyright ?? 2000 by The Resilience Alliance.

  12. Growth decline linked to warming-induced water limitation in hemi-boreal forests.

    Directory of Open Access Journals (Sweden)

    Xiuchen Wu

    Full Text Available Hemi-boreal forests, which make up the transition from temperate deciduous forests to boreal forests in southern Siberia, have experienced significant warming without any accompanying increase in precipitation during the last 80 years. This climatic change could have a profound impact on tree growth and on the stability of forest ecosystems in this region, but at present evidence for these impacts is lacking. In this study, we report a recent dramatic decline in the growth of hemi-boreal forests, based on ring width measurements from three dominant tree-species (Pinus sylvestris, Larix sibirica and Larix gmelinii, sampled from eight sites in the region. We found that regional tree growth has become increasingly limited by low soil water content in the pre- and early-growing season (from October of the previous year to July of the current year over the past 80 years. A warming-induced reduction in soil water content has also increased the climate sensitivity of these three tree species. Beginning in the mid-1980s, a clear decline in growth is evident for both the pine forests and the larch forests, although there are increasing trends in the proxy of soil water use efficiencies. Our findings are consistent with those from other parts of the world and provide valuable insights into the regional carbon cycle and vegetation dynamics, and should be useful for devising adaptive forest management strategies.

  13. Multi-scale comparisons of tree composition in Amazonian terra firme forests

    Directory of Open Access Journals (Sweden)

    L. Freitas Alvarado

    2009-11-01

    Full Text Available We explored the floristic composition of terra firme forests across Amazonia using 55 plots. Firstly, we examined the floristic patterns using both genus- and species-level data and found that the species-level analysis more clearly distinguishes among forests. Next, we compared the variation in plot floristic composition at regional- and continental-scales, and found that average among-pair floristic similarity and its decay with distance behave similarly at regional- and continental-scales. Nevertheless, geographical distance had different effects on floristic similarity within regions at distances <100 km, where north-western and south-western Amazonian regions showed greater floristic variation than plots of central and eastern Amazonia. Finally, we quantified the role of environmental factors and geographical distance for determining variation in floristic composition. A partial Mantel test indicated that while geographical distance appeared to be more important at continental scales, soil fertility was crucial at regional scales within western Amazonia, where areas with similar soil conditions were more likely to share a high number of species. Overall, these results suggest that regional-scale variation in floristic composition can rival continental-scale differences within Amazonian terra firme forests, and that variation in floristic composition at both scales is influenced by geographical distance and environmental factors, such as climate and soil fertility. To fully account for regional-scale variation in continental studies of floristic composition, future floristic studies should focus on forest types poorly represented at regional scales in current datasets, such as terra firme forests with high soil fertility in north-western Amazonia.

  14. Carbon changes in conterminous US forests associated with growth and major disturbances: 1992-2001

    International Nuclear Information System (INIS)

    Zheng Daolan; Ducey, Mark J; Heath, Linda S; Smith, James E

    2011-01-01

    We estimated forest area and carbon changes in the conterminous United States using a remote sensing based land cover change map, forest fire data from the Monitoring Trends in Burn Severity program, and forest growth and harvest data from the USDA Forest Service, Forest Inventory and Analysis Program. Natural and human-associated disturbances reduced the forest ecosystems' carbon sink by 36% from 1992 to 2001, compared to that without disturbances in the 48 states. Among the three identified disturbances, forest-related land cover change contributed 33% of the total effect in reducing the forest carbon potential sink, while harvests and fires accounted for 63% and 4% of the total effect, respectively. The nation's forests sequestered 1.6 ± 0.1 Pg (10 15 petagram) carbon during the period, or 0.18 Pg C yr -1 , with substantial regional variation. The southern region of the United States was a small net carbon source whereas the greater Pacific Northwest region was a strong net sink. Results of the approach fit reasonably well at an aggregate level with other related estimates of the current forest US greenhouse gas inventory, suggesting that further research using this approach is warranted.

  15. Sequential fragmentation of Pleistocene forests in an East Africa biodiversity hotspot: chameleons as a model to track forest history.

    Directory of Open Access Journals (Sweden)

    G John Measey

    Full Text Available The Eastern Arc Mountains (EAM is an example of naturally fragmented tropical forests, which contain one of the highest known concentrations of endemic plants and vertebrates. Numerous paleo-climatic studies have not provided direct evidence for ancient presence of Pleistocene forests, particularly in the regions in which savannah presently occurs. Knowledge of the last period when forests connected EAM would provide a sound basis for hypothesis testing of vicariance and dispersal models of speciation. Dated phylogenies have revealed complex patterns throughout EAM, so we investigated divergence times of forest fauna on four montane isolates in close proximity to determine whether forest break-up was most likely to have been simultaneous or sequential, using population genetics of a forest restricted arboreal chameleon, Kinyongia boehmei.We used mitochondrial and nuclear genetic sequence data and mutation rates from a fossil-calibrated phylogeny to estimate divergence times between montane isolates using a coalescent approach. We found that chameleons on all mountains are most likely to have diverged sequentially within the Pleistocene from 0.93-0.59 Ma (95% HPD 0.22-1.84 Ma. In addition, post-hoc tests on chameleons on the largest montane isolate suggest a population expansion ∼182 Ka.Sequential divergence is most likely to have occurred after the last of three wet periods within the arid Plio-Pleistocene era, but was not correlated with inter-montane distance. We speculate that forest connection persisted due to riparian corridors regardless of proximity, highlighting their importance in the region's historic dispersal events. The population expansion coincides with nearby volcanic activity, which may also explain the relative paucity of the Taita's endemic fauna. Our study shows that forest chameleons are an apposite group to track forest fragmentation, with the inference that forest extended between some EAM during the Pleistocene 1

  16. Disentangling the environmental heterogeneity, floristic distinctiveness and current threats of tropical dry forests in Colombia

    Science.gov (United States)

    González-M, Roy; García, Hernando; Isaacs, Paola; Cuadros, Hermes; López-Camacho, René; Rodríguez, Nelly; Pérez, Karen; Mijares, Francisco; Castaño-Naranjo, Alejandro; Jurado, Rubén; Idárraga-Piedrahíta, Álvaro; Rojas, Alicia; Vergara, Hernando; Pizano, Camila

    2018-04-01

    Tropical dry forests (TDFs) have been defined as a single biome occurring mostly in the lowlands where there is a marked period of drought during the year. In the Neotropics, dry forests occur across contrasting biogeographical regions that contain high beta diversity and endemism, but also strong anthropogenic pressures that threaten their biodiversity and ecological integrity. In Colombia, TDFs occur across six regions with contrasting soils, climate, and anthropogenic pressures, therefore being ideal for studying how these variables relate to dry forest species composition, successional stage and conservation status. Here, we explore the variation in climate and soil conditions, floristic composition, forest fragment size and shape, successional stage and anthropogenic pressures in 571 dry forest fragments across Colombia. We found that TDFs should not be classified solely on rainfall seasonality, as high variation in precipitation and temperature were correlated with soil characteristics. In fact, based on environmental factors and floristic composition, the dry forests of Colombia are clustered in three distinctive groups, with high species turnover across and within regions, as reported for other TDF regions of the Neotropics. Widely distributed TDF species were found to be generalists favored by forest disturbance and the early successional stages of dry forests. On the other hand, TDF fragments were not only small in size, but highly irregular in shape in all regions, and comprising mostly early and intermediate successional stages, with very little mature forest left at the national level. At all sites, we detected at least seven anthropogenic disturbances with agriculture, cattle ranching and human infrastructure being the most pressing disturbances throughout the country. Thus, although environmental factors and floristic composition of dry forests vary across regions at the national level, dry forests are equally threatened by deforestation, degradation

  17. Potential of VIIRS Data for Regional Monitoring of Gypsy Moth Defoliation: Implications for Forest Threat Early Warning System

    Science.gov (United States)

    Spruce, Joseph P.; Ryan, Robert E.; Smoot, James C.; Prados, Donald; McKellip, Rodney; Sader. Steven A.; Gasser, Jerry; May, George; Hargrove, William

    2007-01-01

    date showed moderately high correlation with Hyperion-simulated VIIRS data (NDVI R2 of 0.62 and RMSE of 0.035), even though the datasets were collected about a half an hour apart during changing weather conditions. MODIS products (MOD02, MOD09, and MOD13) and MOD02-simulated VIIRS time series data were used to generate defoliation mapping products based on image classification and image differencing change detection techniques. Accuracy of final defoliation mapping products was assessed by image interpreting over 170 randomly sampled locations found on Landsat and ASTER data in conjunction with defoliation map data from the USFS. The MOD02-simulated VIIRS 400-meter NDVI classification produced a similar overall accuracy (87.28 percent with 0.72 Kappa) to the MOD02 250-meter NDVI classification (86.71 percent with 0.71 Kappa). In addition, the VIIRS 400-meter NDVI, MOD02 250-meter NDVI, and MOD02 500-meter NDVI showed good user and producer accuracies for the defoliated forest class (70 percent) and acceptable Kappa values (0.66). MOD02 and MOD02-simulated VIIRS data both showed promise as data sources for regional monitoring of forest disturbance due to insect defoliation.

  18. Public perspectives of fire, fuels, and the Forest Service in the Great Lakes Region: a survey of citizen-agency communication and trust

    Science.gov (United States)

    Bruce A. Shindler; Eric Toman; Sarah M. McCaffrey

    2009-01-01

    Relative to the western United States, where fire and fuel management programs have received greater emphasis, few community-based studies have focused on the Great Lakes region. The present paper describes public opinion research from counties surrounding National Forests inWisconsin, Minnesota and Michigan. Survey data address citizen perspectives on (1) fuel...

  19. Floristic and structural status of forests in permanent preservation areas of Moju river basin, Amazon region.

    Science.gov (United States)

    Oliveira, J C; Vieira, I C G; Almeida, A S; Silva, C A

    2016-01-01

    The goal of this study is to analyze the floristic patterns and the structure of disturbed and undisturbed upland forests, in Permanent Preservation Areas (PPAs) along the Moju river, in the Brazilian state of Pará. Trees with a diameter equal to or larger than 10cm at 1.30m from the ground (DBH) ≥10cm were analyzed for the upper stratum. For the middle stratum, individuals with DBH between 4.99 and 9.99cm were sampled. Forty-five families and 221 species were found in disturbed forests, and 43 families and 208 species in undisturbed forests. Floristic similarity was high between strata and between forest types, with values above 50%. Similarity was highest between middle strata. The most species-abundant families in undisturbed forests were Fabaceae, Sapotaceae, Chrysobalanaceae and Myrtaceae; the species with the highest density there were Eschweilera grandiflora, Licania sclerophylla and Zygia cauliflora. In disturbed forests, the dominant families were Fabaceae, Sapotaceae, Lecythidaceae and Melastomataceae. The Shannon-Wiener diversity index was 3.21 for undisturbed forests and 2.85 for disturbed forests. Non-metric multidimensional scaling (MDS) analysis did not group the forests by their floristic composition in both upper and middle strata. Overall, the PPA forests along the Moju river, even if disturbed, did not show major floristic changes but substantially change their structural characteristics.

  20. Floristic and structural status of forests in permanent preservation areas of Moju river basin, Amazon region

    Directory of Open Access Journals (Sweden)

    J. C. Oliveira

    Full Text Available Abstract The goal of this study is to analyze the floristic patterns and the structure of disturbed and undisturbed upland forests, in Permanent Preservation Areas (PPAs along the Moju river, in the Brazilian state of Pará. Trees with a diameter equal to or larger than 10cm at 1.30m from the ground (DBH ≥10cm were analyzed for the upper stratum. For the middle stratum, individuals with DBH between 4.99 and 9.99cm were sampled. Forty-five families and 221 species were found in disturbed forests, and 43 families and 208 species in undisturbed forests. Floristic similarity was high between strata and between forest types, with values above 50%. Similarity was highest between middle strata. The most species-abundant families in undisturbed forests were Fabaceae, Sapotaceae, Chrysobalanaceae and Myrtaceae; the species with the highest density there were Eschweilera grandiflora, Licania sclerophylla and Zygia cauliflora. In disturbed forests, the dominant families were Fabaceae, Sapotaceae, Lecythidaceae and Melastomataceae. The Shannon-Wiener diversity index was 3.21 for undisturbed forests and 2.85 for disturbed forests. Non-metric multidimensional scaling (MDS analysis did not group the forests by their floristic composition in both upper and middle strata. Overall, the PPA forests along the Moju river, even if disturbed, did not show major floristic changes but substantially change their structural characteristics.