WorldWideScience

Sample records for forest fragment effects

  1. Effect of fragmentation on the Costa Rican dry forest avifauna

    OpenAIRE

    Barrantes, Gilbert; Ocampo, Diego; Ram?rez-Fern?ndez, Jos? D.; Fuchs, Eric J.

    2016-01-01

    Deforestation and changes in land use have reduced the tropical dry forest to isolated forest patches in northwestern Costa Rica. We examined the effect of patch area and length of the dry season on nestedness of the entire avian community, forest fragment assemblages, and species occupancy across fragments for the entire native avifauna, and for a subset of forest dependent species. Species richness was independent of both fragment area and distance between fragments. Similarity in bird comm...

  2. Piecing together the fragments: Elucidating edge effects on forest carbon dynamics

    Science.gov (United States)

    Hutyra, L.; Smith, I. A.; Reinmann, A.; Marrs, J.; Thompson, J.

    2017-12-01

    Forest fragmentation is pervasive throughout the world's forests, impacting growing conditions and carbon dynamics through edge effects that produce gradients in microclimate, biogeochemistry, and stand structure. Despite the majority of the world's forests being biome, but current forest carbon accounting methods and ecosystem models largely do not include edge effects, highlighting an important gap in our understanding of the terrestrial carbon cycle. Characterizing the role of forest fragmentation in regional and global biogeochemical cycles necessitates advancing our understanding of how shifts in microenvironment at the forest edge interact with local prevailing drivers of global change and limitations to microbial activity and forest growth. This study synthesizes the literature related to edge effects and the carbon cycle, considering how fragmentation affects the growing conditions of the world's remaining forests based on risks and opportunities for forests near the edge.

  3. Long-term effects of fragmentation and fragment properties on bird species richness in Hawaiian forests

    Science.gov (United States)

    David J. Flaspohler; Christian P. Giardina; Gregory P. Asner; Patrick Hart; Jonathan Price; Cassie Ka’apu Lyons; Xeronimo. Castaneda

    2010-01-01

    Forest fragmentation is a common disturbance affecting biological diversity, yet the impacts of fragmentation on many forest processes remain poorly understood. Forest restoration is likely to be more successful when it proceeds with an understanding of how native and exotic vertebrates utilize forest patches of different size. We used a system of forest fragments...

  4. Forest Fragmentation and Selective Logging Have Inconsistent Effects on Multiple Animal-Mediated Ecosystem Processes in a Tropical Forest

    Science.gov (United States)

    Schleuning, Matthias; Farwig, Nina; Peters, Marcell K.; Bergsdorf, Thomas; Bleher, Bärbel; Brandl, Roland; Dalitz, Helmut; Fischer, Georg; Freund, Wolfram; Gikungu, Mary W.; Hagen, Melanie; Garcia, Francisco Hita; Kagezi, Godfrey H.; Kaib, Manfred; Kraemer, Manfred; Lung, Tobias; Schaab, Gertrud; Templin, Mathias; Uster, Dana; Wägele, J. Wolfgang; Böhning-Gaese, Katrin

    2011-01-01

    Forest fragmentation and selective logging are two main drivers of global environmental change and modify biodiversity and environmental conditions in many tropical forests. The consequences of these changes for the functioning of tropical forest ecosystems have rarely been explored in a comprehensive approach. In a Kenyan rainforest, we studied six animal-mediated ecosystem processes and recorded species richness and community composition of all animal taxa involved in these processes. We used linear models and a formal meta-analysis to test whether forest fragmentation and selective logging affected ecosystem processes and biodiversity and used structural equation models to disentangle direct from biodiversity-related indirect effects of human disturbance on multiple ecosystem processes. Fragmentation increased decomposition and reduced antbird predation, while selective logging consistently increased pollination, seed dispersal and army-ant raiding. Fragmentation modified species richness or community composition of five taxa, whereas selective logging did not affect any component of biodiversity. Changes in the abundance of functionally important species were related to lower predation by antbirds and higher decomposition rates in small forest fragments. The positive effects of selective logging on bee pollination, bird seed dispersal and army-ant raiding were direct, i.e. not related to changes in biodiversity, and were probably due to behavioural changes of these highly mobile animal taxa. We conclude that animal-mediated ecosystem processes respond in distinct ways to different types of human disturbance in Kakamega Forest. Our findings suggest that forest fragmentation affects ecosystem processes indirectly by changes in biodiversity, whereas selective logging influences processes directly by modifying local environmental conditions and resource distributions. The positive to neutral effects of selective logging on ecosystem processes show that the

  5. Meta-analysis of the effects of forest fragmentation on interspecific interactions.

    Science.gov (United States)

    Magrach, Ainhoa; Laurance, William F; Larrinaga, Asier R; Santamaria, Luis

    2014-10-01

    Forest fragmentation dramatically alters species persistence and distribution and affects many ecological interactions among species. Recent studies suggest that mutualisms, such as pollination and seed dispersal, are more sensitive to the negative effects of forest fragmentation than antagonisms, such as predation or herbivory. We applied meta-analytical techniques to evaluate this hypothesis and quantified the relative contributions of different components of the fragmentation process (decreases in fragment size, edge effects, increased isolation, and habitat degradation) to the overall effect. The effects of fragmentation on mutualisms were primarily driven by habitat degradation, edge effects, and fragment isolation, and, as predicted, they were consistently more negative on mutualisms than on antagonisms. For the most studied interaction type, seed dispersal, only certain components of fragmentation had significant (edge effects) or marginally significant (fragment size) effects. Seed size modulated the effect of fragmentation: species with large seeds showed stronger negative impacts of fragmentation via reduced dispersal rates. Our results reveal that different components of the habitat fragmentation process have varying impacts on key mutualisms. We also conclude that antagonistic interactions have been understudied in fragmented landscapes, most of the research has concentrated on particular types of mutualistic interactions such as seed dispersal, and that available studies of interspecific interactions have a strong geographical bias (arising mostly from studies carried out in Brazil, Chile, and the United States). © 2014 Society for Conservation Biology.

  6. Effects of forest fragmentation and habitat degradation on West African leaf-litter frogs

    NARCIS (Netherlands)

    Hillers, A.; Veith, M.; Rödel, M.-O.

    2008-01-01

    Habitat degradation alters the dynamics and composition of anuran assemblages in tropical forests. The effects of forest fragmentation on the composition of anuran assemblages are so far poorly known. We studied the joint influence of forest fragmentation and degradation on leaf-litter frogs. We

  7. Forest fragmentation in Vietnam : Effects on tree diversity, populations and genetics

    NARCIS (Netherlands)

    Ha, V.T.

    2015-01-01

    Millions of square kilometers of the Earth’s surface is covered by forest fragments, and a quarter of remaining tropical forest has been fragmented. In Southeast Asia, about 650,000 ha of natural forests are fragmented per year. Fragmentation of old growth forests is considered to be the greatest

  8. A Multi-Scale Perspective of the Effects of Forest Fragmentation on Birds in Eastern Forests

    Science.gov (United States)

    Frank R. Thompson; Therese M. Donovan; Richard M. DeGraff; John Faaborg; Scott K. Robinson

    2002-01-01

    We propose a model that considers forest fragmentation within a spatial hierarchy that includes regional or biogeographic effects, landscape-level fragmentation effects, and local habitat effects. We hypothesize that effects operate "top down" in that larger scale effects provide constraints or context for smaller scale effects. Bird species' abundance...

  9. Effects of local tree diversity on herbivore communities diminish with increasing forest fragmentation on the landscape scale.

    Directory of Open Access Journals (Sweden)

    Franziska Peter

    Full Text Available Forest fragmentation and plant diversity have been shown to play a crucial role for herbivorous insects (herbivores, hereafter. In turn, herbivory-induced leaf area loss is known to have direct implications for plant growth and reproduction as well as long-term consequences for ecosystem functioning and forest regeneration. So far, previous studies determined diverging responses of herbivores to forest fragmentation and plant diversity. Those inconsistent results may be owed to complex interactive effects of both co-occurring environmental factors albeit they act on different spatial scales. In this study, we investigated whether forest fragmentation on the landscape scale and tree diversity on the local habitat scale show interactive effects on the herbivore community and leaf area loss in subtropical forests in South Africa. We applied standardized beating samples and a community-based approach to estimate changes in herbivore community composition, herbivore abundance, and the effective number of herbivore species on the tree species-level. We further monitored leaf area loss to link changes in the herbivore community to the associated process of herbivory. Forest fragmentation and tree diversity interactively affected the herbivore community composition, mainly by a species turnover within the family of Curculionidae. Furthermore, herbivore abundance increased and the number of herbivore species decreased with increasing tree diversity in slightly fragmented forests whereas the effects diminished with increasing forest fragmentation. Surprisingly, leaf area loss was neither affected by forest fragmentation or tree diversity, nor by changes in the herbivore community. Our study highlights the need to consider interactive effects of environmental changes across spatial scales in order to draw reliable conclusions for community and interaction patterns. Moreover, forest fragmentation seems to alter the effect of tree diversity on the herbivore

  10. Forest species in an agricultural landscape in The Netherlands: effects of habitat fragmentation

    NARCIS (Netherlands)

    Grashof-Bokdam, C.

    1997-01-01

    For 312 forest patches on sandy soils in the Netherlands, effects of fragmentation are studied of forest habitat in the past on the present occurrence of forest plato species. Using regression techniques, the numbers of forest edge, interior, zoochorous and anemochorous species, as well as

  11. Forest structure and downed woody debris in boreal, temperate, and tropical forest fragments.

    Science.gov (United States)

    Gould, William A; González, Grizelle; Hudak, Andrew T; Hollingsworth, Teresa Nettleton; Hollingsworth, Jamie

    2008-12-01

    Forest fragmentation affects the heterogeneity of accumulated fuels by increasing the diversity of forest types and by increasing forest edges. This heterogeneity has implications in how we manage fuels, fire, and forests. Understanding the relative importance of fragmentation on woody biomass within a single climatic regime, and along climatic gradients, will improve our ability to manage forest fuels and predict fire behavior. In this study we assessed forest fuel characteristics in stands of differing moisture, i.e., dry and moist forests, structure, i.e., open canopy (typically younger) vs. closed canopy (typically older) stands, and size, i.e., small (10-14 ha), medium (33 to 60 ha), and large (100-240 ha) along a climatic gradient of boreal, temperate, and tropical forests. We measured duff, litter, fine and coarse woody debris, standing dead, and live biomass in a series of plots along a transect from outside the forest edge to the fragment interior. The goal was to determine how forest structure and fuel characteristics varied along this transect and whether this variation differed with temperature, moisture, structure, and fragment size. We found nonlinear relationships of coarse woody debris, fine woody debris, standing dead and live tree biomass with mean annual median temperature. Biomass for these variables was greatest in temperate sites. Forest floor fuels (duff and litter) had a linear relationship with temperature and biomass was greatest in boreal sites. In a five-way multivariate analysis of variance we found that temperature, moisture, and age/structure had significant effects on forest floor fuels, downed woody debris, and live tree biomass. Fragment size had an effect on forest floor fuels and live tree biomass. Distance from forest edge had significant effects for only a few subgroups sampled. With some exceptions edges were not distinguishable from interiors in terms of fuels.

  12. Forest edge disturbance increases rattan abundance in tropical rain forest fragments.

    Science.gov (United States)

    Campbell, Mason J; Edwards, Will; Magrach, Ainhoa; Laurance, Susan G; Alamgir, Mohammed; Porolak, Gabriel; Laurance, William F

    2017-07-20

    Human-induced forest fragmentation poses one of the largest threats to global diversity yet its impact on rattans (climbing palms) has remained virtually unexplored. Rattan is arguably the world's most valuable non-timber forest product though current levels of harvesting and land-use change place wild populations at risk. To assess rattan response to fragmentation exclusive of harvesting impacts we examined rattan abundance, demography and ecology within the forests of northeastern, Australia. We assessed the community abundance of rattans, and component adult (>3 m) and juvenile (≤3 m) abundance in five intact forests and five fragments (23-58 ha) to determine their response to a range of environmental and ecological parameters. Fragmented forests supported higher abundances of rattans than intact forests. Fragment size and edge degradation significantly increased adult rattan abundance, with more in smaller fragments and near edges. Our findings suggest that rattan increase within fragments is due to canopy disturbance of forest edges resulting in preferential, high-light habitat. However, adult and juvenile rattans may respond inconsistently to fragmentation. In managed forest fragments, a rattan abundance increase may provide economic benefits through sustainable harvesting practices. However, rattan increases in protected area forest fragments could negatively impact conservation outcomes.

  13. Does tropical forest fragmentation increase long-term variability of butterfly communities?

    Directory of Open Access Journals (Sweden)

    Allison K Leidner

    2010-03-01

    Full Text Available Habitat fragmentation is a major driver of biodiversity loss. Yet, the overall effects of fragmentation on biodiversity may be obscured by differences in responses among species. These opposing responses to fragmentation may be manifest in higher variability in species richness and abundance (termed hyperdynamism, and in predictable changes in community composition. We tested whether forest fragmentation causes long-term hyperdynamism in butterfly communities, a taxon that naturally displays large variations in species richness and community composition. Using a dataset from an experimentally fragmented landscape in the central Amazon that spanned 11 years, we evaluated the effect of fragmentation on changes in species richness and community composition through time. Overall, adjusted species richness (adjusted for survey duration did not differ between fragmented forest and intact forest. However, spatial and temporal variation of adjusted species richness was significantly higher in fragmented forests relative to intact forest. This variation was associated with changes in butterfly community composition, specifically lower proportions of understory shade species and higher proportions of edge species in fragmented forest. Analysis of rarefied species richness, estimated using indices of butterfly abundance, showed no differences between fragmented and intact forest plots in spatial or temporal variation. These results do not contradict the results from adjusted species richness, but rather suggest that higher variability in butterfly adjusted species richness may be explained by changes in butterfly abundance. Combined, these results indicate that butterfly communities in fragmented tropical forests are more variable than in intact forest, and that the natural variability of butterflies was not a buffer against the effects of fragmentation on community dynamics.

  14. Does Tropical Forest Fragmentation Increase Long-Term Variability of Butterfly Communities?

    Science.gov (United States)

    Leidner, Allison K.; Haddad, Nick M.; Lovejoy, Thomas E.

    2010-01-01

    Habitat fragmentation is a major driver of biodiversity loss. Yet, the overall effects of fragmentation on biodiversity may be obscured by differences in responses among species. These opposing responses to fragmentation may be manifest in higher variability in species richness and abundance (termed hyperdynamism), and in predictable changes in community composition. We tested whether forest fragmentation causes long-term hyperdynamism in butterfly communities, a taxon that naturally displays large variations in species richness and community composition. Using a dataset from an experimentally fragmented landscape in the central Amazon that spanned 11 years, we evaluated the effect of fragmentation on changes in species richness and community composition through time. Overall, adjusted species richness (adjusted for survey duration) did not differ between fragmented forest and intact forest. However, spatial and temporal variation of adjusted species richness was significantly higher in fragmented forests relative to intact forest. This variation was associated with changes in butterfly community composition, specifically lower proportions of understory shade species and higher proportions of edge species in fragmented forest. Analysis of rarefied species richness, estimated using indices of butterfly abundance, showed no differences between fragmented and intact forest plots in spatial or temporal variation. These results do not contradict the results from adjusted species richness, but rather suggest that higher variability in butterfly adjusted species richness may be explained by changes in butterfly abundance. Combined, these results indicate that butterfly communities in fragmented tropical forests are more variable than in intact forest, and that the natural variability of butterflies was not a buffer against the effects of fragmentation on community dynamics. PMID:20224772

  15. Global-Scale Patterns of Forest Fragmentation

    Directory of Open Access Journals (Sweden)

    Kurt Riitters

    2000-12-01

    Full Text Available We report an analysis of forest fragmentation based on 1-km resolution land-cover maps for the globe. Measurements in analysis windows from 81 km 2 (9 x 9 pixels, "small" scale to 59,049 km 2 (243 x 243 pixels, "large" scale were used to characterize the fragmentation around each forested pixel. We identified six categories of fragmentation (interior, perforated, edge, transitional, patch, and undetermined from the amount of forest and its occurrence as adjacent forest pixels. Interior forest exists only at relatively small scales; at larger scales, forests are dominated by edge and patch conditions. At the smallest scale, there were significant differences in fragmentation among continents; within continents, there were significant differences among individual forest types. Tropical rain forest fragmentation was most severe in North America and least severe in Europe-Asia. Forest types with a high percentage of perforated conditions were mainly in North America (five types and Europe-Asia (four types, in both temperate and subtropical regions. Transitional and patch conditions were most common in 11 forest types, of which only a few would be considered as "naturally patchy" (e.g., dry woodland. The five forest types with the highest percentage of interior conditions were in North America; in decreasing order, they were cool rain forest, coniferous, conifer boreal, cool mixed, and cool broadleaf.

  16. Global-scale patterns of forest fragmentation

    Science.gov (United States)

    Riitters, K.; Wickham, J.; O'Neill, R.; Jones, B.; Smith, E.

    2000-01-01

    We report an analysis of forest fragmentation based on 1-km resolution land-cover maps for the globe. Measurements in analysis windows from 81 km 2 (9 ?? 9 pixels, "small" scale) to 59,049 km 2 (243 ?? 243 pixels, "large" scale) were used to characterize the fragmentation around each forested pixel. We identified six categories of fragmentation (interior, perforated, edge, transitional, patch, and undetermined) from the amount of forest and its occurrence as adjacent forest pixels. Interior forest exists only at relatively small scales; at larger scales, forests are dominated by edge and patch conditions. At the smallest scale, there were significant differences in fragmentation among continents; within continents, there were significant differences among individual forest types. Tropical rain forest fragmentation was most severe in North America and least severe in Europe - Asia. Forest types with a high percentage of perforated conditions were mainly in North America (five types) and Europe - Asia (four types), in both temperate and subtropical regions. Transitional and patch conditions were most common in 11 forest types, of which only a few would be considered as "naturally patchy" (e.g., dry woodland). The five forest types with the highest percentage of interior conditions were in North America; in decreasing order, they were cool rain forest, coniferous, conifer boreal, cool mixed, and cool broadleaf. Copyright ?? 2000 by The Resilience Alliance.

  17. Detecting fragmentation extinction thresholds for forest understory plant species in peninsular Spain.

    Science.gov (United States)

    Rueda, Marta; Moreno Saiz, Juan Carlos; Morales-Castilla, Ignacio; Albuquerque, Fabio S; Ferrero, Mila; Rodríguez, Miguel Á

    2015-01-01

    Ecological theory predicts that fragmentation aggravates the effects of habitat loss, yet empirical results show mixed evidences, which fail to support the theory instead reinforcing the primary importance of habitat loss. Fragmentation hypotheses have received much attention due to their potential implications for biodiversity conservation, however, animal studies have traditionally been their main focus. Here we assess variation in species sensitivity to forest amount and fragmentation and evaluate if fragmentation is related to extinction thresholds in forest understory herbs and ferns. Our expectation was that forest herbs would be more sensitive to fragmentation than ferns due to their lower dispersal capabilities. Using forest cover percentage and the proportion of this percentage occurring in the largest patch within UTM cells of 10-km resolution covering Peninsular Spain, we partitioned the effects of forest amount versus fragmentation and applied logistic regression to model occurrences of 16 species. For nine models showing robustness according to a set of quality criteria we subsequently defined two empirical fragmentation scenarios, minimum and maximum, and quantified species' sensitivity to forest contraction with no fragmentation, and to fragmentation under constant forest cover. We finally assessed how the extinction threshold of each species (the habitat amount below which it cannot persist) varies under no and maximum fragmentation. Consistent with their preference for forest habitats probability occurrences of all species decreased as forest cover contracted. On average, herbs did not show significant sensitivity to fragmentation whereas ferns were favored. In line with theory, fragmentation yielded higher extinction thresholds for two species. For the remaining species, fragmentation had either positive or non-significant effects. We interpret these differences as reflecting species-specific traits and conclude that although forest amount is of

  18. Detecting fragmentation extinction thresholds for forest understory plant species in peninsular Spain.

    Directory of Open Access Journals (Sweden)

    Marta Rueda

    Full Text Available Ecological theory predicts that fragmentation aggravates the effects of habitat loss, yet empirical results show mixed evidences, which fail to support the theory instead reinforcing the primary importance of habitat loss. Fragmentation hypotheses have received much attention due to their potential implications for biodiversity conservation, however, animal studies have traditionally been their main focus. Here we assess variation in species sensitivity to forest amount and fragmentation and evaluate if fragmentation is related to extinction thresholds in forest understory herbs and ferns. Our expectation was that forest herbs would be more sensitive to fragmentation than ferns due to their lower dispersal capabilities. Using forest cover percentage and the proportion of this percentage occurring in the largest patch within UTM cells of 10-km resolution covering Peninsular Spain, we partitioned the effects of forest amount versus fragmentation and applied logistic regression to model occurrences of 16 species. For nine models showing robustness according to a set of quality criteria we subsequently defined two empirical fragmentation scenarios, minimum and maximum, and quantified species' sensitivity to forest contraction with no fragmentation, and to fragmentation under constant forest cover. We finally assessed how the extinction threshold of each species (the habitat amount below which it cannot persist varies under no and maximum fragmentation. Consistent with their preference for forest habitats probability occurrences of all species decreased as forest cover contracted. On average, herbs did not show significant sensitivity to fragmentation whereas ferns were favored. In line with theory, fragmentation yielded higher extinction thresholds for two species. For the remaining species, fragmentation had either positive or non-significant effects. We interpret these differences as reflecting species-specific traits and conclude that although

  19. Resilient networks of ant-plant mutualists in Amazonian forest fragments.

    Science.gov (United States)

    Passmore, Heather A; Bruna, Emilio M; Heredia, Sylvia M; Vasconcelos, Heraldo L

    2012-01-01

    The organization of networks of interacting species, such as plants and animals engaged in mutualisms, strongly influences the ecology and evolution of partner communities. Habitat fragmentation is a globally pervasive form of spatial heterogeneity that could profoundly impact the structure of mutualist networks. This is particularly true for biodiversity-rich tropical ecosystems, where the majority of plant species depend on mutualisms with animals and it is thought that changes in the structure of mutualist networks could lead to cascades of extinctions. We evaluated effects of fragmentation on mutualistic networks by calculating metrics of network structure for ant-plant networks in continuous Amazonian forests with those in forest fragments. We hypothesized that networks in fragments would have fewer species and higher connectance, but equal nestedness and resilience compared to forest networks. Only one of the nine metrics we compared differed between continuous forest and forest fragments, indicating that networks were resistant to the biotic and abiotic changes that accompany fragmentation. This is partially the result of the loss of only specialist species with one connection that were lost in forest fragments. We found that the networks of ant-plant mutualists in twenty-five year old fragments are similar to those in continuous forest, suggesting these interactions are resistant to the detrimental changes associated with habitat fragmentation, at least in landscapes that are a mosaic of fragments, regenerating forests, and pastures. However, ant-plant mutualistic networks may have several properties that may promote their persistence in fragmented landscapes. Proactive identification of key mutualist partners may be necessary to focus conservation efforts on the interactions that insure the integrity of network structure and the ecosystems services networks provide.

  20. Resilient networks of ant-plant mutualists in Amazonian forest fragments.

    Directory of Open Access Journals (Sweden)

    Heather A Passmore

    Full Text Available The organization of networks of interacting species, such as plants and animals engaged in mutualisms, strongly influences the ecology and evolution of partner communities. Habitat fragmentation is a globally pervasive form of spatial heterogeneity that could profoundly impact the structure of mutualist networks. This is particularly true for biodiversity-rich tropical ecosystems, where the majority of plant species depend on mutualisms with animals and it is thought that changes in the structure of mutualist networks could lead to cascades of extinctions.We evaluated effects of fragmentation on mutualistic networks by calculating metrics of network structure for ant-plant networks in continuous Amazonian forests with those in forest fragments. We hypothesized that networks in fragments would have fewer species and higher connectance, but equal nestedness and resilience compared to forest networks. Only one of the nine metrics we compared differed between continuous forest and forest fragments, indicating that networks were resistant to the biotic and abiotic changes that accompany fragmentation. This is partially the result of the loss of only specialist species with one connection that were lost in forest fragments.We found that the networks of ant-plant mutualists in twenty-five year old fragments are similar to those in continuous forest, suggesting these interactions are resistant to the detrimental changes associated with habitat fragmentation, at least in landscapes that are a mosaic of fragments, regenerating forests, and pastures. However, ant-plant mutualistic networks may have several properties that may promote their persistence in fragmented landscapes. Proactive identification of key mutualist partners may be necessary to focus conservation efforts on the interactions that insure the integrity of network structure and the ecosystems services networks provide.

  1. Secondary forest regeneration benefits old-growth specialist bats in a fragmented tropical landscape.

    Science.gov (United States)

    Rocha, Ricardo; Ovaskainen, Otso; López-Baucells, Adrià; Farneda, Fábio Z; Sampaio, Erica M; Bobrowiec, Paulo E D; Cabeza, Mar; Palmeirim, Jorge M; Meyer, Christoph F J

    2018-02-28

    Tropical forest loss and fragmentation are due to increase in coming decades. Understanding how matrix dynamics, especially secondary forest regrowth, can lessen fragmentation impacts is key to understanding species persistence in modified landscapes. Here, we use a whole-ecosystem fragmentation experiment to investigate how bat assemblages are influenced by the regeneration of the secondary forest matrix. We surveyed bats in continuous forest, forest fragments and secondary forest matrix habitats, ~15 and ~30 years after forest clearance, to investigate temporal changes in the occupancy and abundance of old-growth specialist and habitat generalist species. The regeneration of the second growth matrix had overall positive effects on the occupancy and abundance of specialists across all sampled habitats. Conversely, effects on generalist species were negligible for forest fragments and negative for secondary forest. Our results show that the conservation potential of secondary forests for reverting faunal declines in fragmented tropical landscapes increases with secondary forest age and that old-growth specialists, which are often of most conservation concern, are the greatest beneficiaries of secondary forest maturation. Our findings emphasize that the transposition of patterns of biodiversity persistence in island ecosystems to fragmented terrestrial settings can be hampered by the dynamic nature of human-dominated landscapes.

  2. Effects of climate and forest structure on palms, bromeliads and bamboos in Atlantic Forest fragments of Northeastern Brazil.

    Science.gov (United States)

    Hilário, R R; Toledo, J J

    2016-01-01

    Palms, bromeliads and bamboos are key elements of tropical forests and understanding the effects of climate, anthropogenic pressure and forest structure on these groups is crucial to forecast structural changes in tropical forests. Therefore, we investigated the effects of these factors on the abundance of these groups in 22 Atlantic forest fragments of Northeastern Brazil. Abundance of bromeliads and bamboos were assessed through indexes. Palms were counted within a radius of 20 m. We also obtained measures of vegetation structure, fragment size, annual precipitation, precipitation seasonality and human population density. We tested the effects of these predictors on plant groups using path analysis. Palm abundance was higher in taller forests with larger trees, closed canopy and sparse understory, which may be a result of the presence of seed dispersers and specific attributes of local palm species. Bromeliads were negatively affected by both annual precipitation and precipitation seasonality, what may reflect adaptations of these plants to use water efficiently, but also the need to capture water in a regular basis. Bamboos were not related to any predictor variable. As climate and forest structure affected the abundance of bromeliads and palms, human-induced climatic changes and disturbances in forest structure may modify the abundance of these groups. In addition, soil properties and direct measurements of human disturbance should be used in future studies in order to improve the predictability of models about plant groups in Northeastern Atlantic Forest.

  3. Temporal change in fragmentation of continental US forests

    Science.gov (United States)

    James D. Wickham; Kurt H. Riitters; Timothy G. Wade; Collin Homer

    2008-01-01

    Changes in forest ecosystem function and condition arise from changes in forest fragmentation. Previous studies estimated forest fragmentation for the continental United States (US). In this study, new temporal land-cover data from the National Land Cover Database (NLCD) were used to estimate changes in forest fragmentation at multiple scales for the continental US....

  4. Carbon emissions from deforestation and forest fragmentation in the Brazilian Amazon

    Science.gov (United States)

    Numata, Izaya; Cochrane, Mark A.; Souza, Carlos M., Jr.; Sales, Marcio H.

    2011-10-01

    Forest-fragmentation-related edge effects are one of the major causes of forest degradation in Amazonia and their spatio-temporal dynamics are highly influenced by annual deforestation patterns. Rapid biomass collapse due to edge effects in forest fragments has been reported in the Brazilian Amazon; however the collective impacts of this process on Amazonian carbon fluxes are poorly understood. We estimated biomass loss and carbon emissions from deforestation and forest fragmentation related to edge effects on the basis of the INPE (Brazilian National Space Research Institute) PRODES deforestation data and forest biomass volume data. The areas and ages of edge forests were calculated annually and the corresponding biomass loss and carbon emissions from these forest edges were estimated using published rates of biomass decay and decomposition corresponding to the areas and ages of edge forests. Our analysis estimated carbon fluxes from deforestation (4195 Tg C) and edge forest (126-221 Tg C) for 2001-10 in the Brazilian Amazon. The impacts of varying rates of deforestation on regional forest fragmentation and carbon fluxes were also investigated, with the focus on two periods: 2001-5 (high deforestation rates) and 2006-10 (low deforestation rates). Edge-released carbon accounted for 2.6-4.5% of deforestation-related carbon emissions. However, the relative importance of carbon emissions from forest fragmentation increased from 1.7-3.0% to 3.3-5.6% of the respective deforestation emissions between the two contrasting deforestation rates. Edge-related carbon fluxes are of increasing importance for basin-wide carbon accounting, especially as regards ongoing reducing emissions from deforestation and forest degradation (REDD) efforts in Brazilian Amazonia.

  5. Carbon emissions from deforestation and forest fragmentation in the Brazilian Amazon

    International Nuclear Information System (INIS)

    Numata, Izaya; Cochrane, Mark A; Souza, Carlos M Jr; Sales, Marcio H

    2011-01-01

    Forest-fragmentation-related edge effects are one of the major causes of forest degradation in Amazonia and their spatio-temporal dynamics are highly influenced by annual deforestation patterns. Rapid biomass collapse due to edge effects in forest fragments has been reported in the Brazilian Amazon; however the collective impacts of this process on Amazonian carbon fluxes are poorly understood. We estimated biomass loss and carbon emissions from deforestation and forest fragmentation related to edge effects on the basis of the INPE (Brazilian National Space Research Institute) PRODES deforestation data and forest biomass volume data. The areas and ages of edge forests were calculated annually and the corresponding biomass loss and carbon emissions from these forest edges were estimated using published rates of biomass decay and decomposition corresponding to the areas and ages of edge forests. Our analysis estimated carbon fluxes from deforestation (4195 Tg C) and edge forest (126-221 Tg C) for 2001-10 in the Brazilian Amazon. The impacts of varying rates of deforestation on regional forest fragmentation and carbon fluxes were also investigated, with the focus on two periods: 2001-5 (high deforestation rates) and 2006-10 (low deforestation rates). Edge-released carbon accounted for 2.6-4.5% of deforestation-related carbon emissions. However, the relative importance of carbon emissions from forest fragmentation increased from 1.7-3.0% to 3.3-5.6% of the respective deforestation emissions between the two contrasting deforestation rates. Edge-related carbon fluxes are of increasing importance for basin-wide carbon accounting, especially as regards ongoing reducing emissions from deforestation and forest degradation (REDD) efforts in Brazilian Amazonia.

  6. Edge effects resulting from forest fragmentation enhance carbon uptake and its vulnerability to climate change in temperate broadleaf forests

    Science.gov (United States)

    Reinmann, A.; Hutyra, L.

    2016-12-01

    Forest fragmentation resulting from land use and land cover change is a ubiquitous, ongoing global phenomenon with profound impacts on the growing conditions of the world's remaining forest. However, our understanding of forest carbon dynamics and their response to climate largely comes from unfragmented forest systems, which presents an important mismatch between the landscapes we study and those we aim to characterize. The temperate broadleaf forest makes a large contribution to the global terrestrial carbon sink, but is also the most heavily fragmented forest biome in the world. We use field measurements and geospatial analyses to characterize carbon dynamics in temperate broadleaf forest fragments. We show that forest growth and biomass increase by 89 ± 17% and 64 ± 12%, respectively, from the forest interior to edge. These ecosystem edge enhancements are not currently captured by models or approaches to quantifying regional C balance, but across southern New England, USA it increases carbon uptake and storage by 12.5 ± 2.9% and 9.6 ± 1.4%, respectively. However, we also find that forest growth near the edge declines three times faster than in the interior in response to heat stress during the growing season. Using climate projections, we show that future heat stress could reduce the forest edge growth enhancement by one-third by the end of the century. These findings contrast studies of edge effects in the world's other major forest biomes and indicate that the strength of the temperate broadleaf forest carbon sink and its capacity to mitigate anthropogenic carbon emissions may be stronger, but also more sensitive to climate change than previous estimates suggest.

  7. Fragmentation of eastern United States forest types

    Science.gov (United States)

    Kurt H. Riitters; John W. Coulston

    2013-01-01

    Fragmentation is a continuing threat to the sustainability of forests in the Eastern United States, where land use changes supporting a growing human population are the primary driver of forest fragmentation (Stein and others 2009). While once mostly forested, approximately 40 percent of the original forest area has been converted to other land uses, and most of the...

  8. Effect of forest fragmentation on microsporogenesis and pollen viability in Eugenia uniflora, a tree native to the Atlantic Forest.

    Science.gov (United States)

    de Almeida, D J; Faria, M V; da Silva, P R

    2012-12-06

    Habitat fragmentation, caused by the expansion of agriculture in natural areas, may be one of the strongest impacts humans have on the ecosystem. These changes can decrease the number of individuals in a population, leading to endogamy. In allogamous species, endogamy can have a negative effect on reproductive capacity. In this study, we analyzed the effects of forest fragmentation on microsporogenesis and pollen viability in Eugenia uniflora L., a tree species native to the Atlantic Forest. We analyzed 4 populations, 3 of which were connected by forest corridors and 1 of which was isolated by agricultural fields on all sides. For microsporogenesis analysis, 9000 meiocytes representing all stages of meiosis were evaluated. To perform the pollen viability test, we evaluated 152,000 pollen grains. Microsporogenesis was stable in plants from populations that were connected by forest corridors (abnormalities, less than 6%), while microsporogenesis in plants from the isolated population showed a higher level of abnormalities (13-29%). Average pollen viability was found to be more than 93% in the non-isolated populations and 82.62% in the isolated population. The χ(2) test showed that, in the isolated population, the meiotic index was significantly lower than that in the non-isolated populations (P = 0.03). The analysis of variance for the percentage of viable pollen grains confirmed the significant difference between the isolated and non-isolated populations. Our data show that forest fragmentation has a direct effect on microsporogenesis and pollen viability in E. uniflora and can directly influence the reproductive capacity of isolated populations of this species.

  9. Arthropods on plants in a fragmented Neotropical dry forest: a functional analysis of area loss and edge effects.

    Science.gov (United States)

    González, Ezequiel; Salvo, Adriana; Valladares, Graciela

    2015-02-01

    Loss and fragmentation of natural ecosystems are widely recognized as the most important threats to biodiversity conservation, with Neotropical dry forests among the most endangered ecosystems. Area and edge effects are major factors in fragmented landscapes. Here, we examine area and edge effects and their interaction, on ensembles of arthropods associated to native vegetation in a fragmented Chaco Serrano forest. We analyzed family richness and community composition of herbivores, predators, and parasitoids on three native plant species in 12 fragments of varying size and at edge/interior positions. We also looked for indicator families by using Indicator Species Analysis. Loss of family richness with the reduction of forest fragment area was observed for the three functional groups, with similar magnitude. Herbivores were richer at the edges without interaction between edge and area effects, whereas predators were not affected by edge/interior position and parasitoid richness showed an interaction between area and position, with a steeper area slope at the edges. Family composition of herbivore, predator, and parasitoid assemblages was also affected by forest area and/or edge/interior situation. We found three indicator families for large remnants and five for edges. Our results support the key role of forest area for conservation of arthropods taxonomic and functional diversity in a highly threatened region, and emphasize the need to understand the interactions between area and edge effects on such diversity. © 2014 Institute of Zoology, Chinese Academy of Sciences.

  10. A large-scale forest fragmentation experiment: the Stability of Altered Forest Ecosystems Project

    Science.gov (United States)

    Ewers, Robert M.; Didham, Raphael K.; Fahrig, Lenore; Ferraz, Gonçalo; Hector, Andy; Holt, Robert D.; Kapos, Valerie; Reynolds, Glen; Sinun, Waidi; Snaddon, Jake L.; Turner, Edgar C.

    2011-01-01

    Opportunities to conduct large-scale field experiments are rare, but provide a unique opportunity to reveal the complex processes that operate within natural ecosystems. Here, we review the design of existing, large-scale forest fragmentation experiments. Based on this review, we develop a design for the Stability of Altered Forest Ecosystems (SAFE) Project, a new forest fragmentation experiment to be located in the lowland tropical forests of Borneo (Sabah, Malaysia). The SAFE Project represents an advance on existing experiments in that it: (i) allows discrimination of the effects of landscape-level forest cover from patch-level processes; (ii) is designed to facilitate the unification of a wide range of data types on ecological patterns and processes that operate over a wide range of spatial scales; (iii) has greater replication than existing experiments; (iv) incorporates an experimental manipulation of riparian corridors; and (v) embeds the experimentally fragmented landscape within a wider gradient of land-use intensity than do existing projects. The SAFE Project represents an opportunity for ecologists across disciplines to participate in a large initiative designed to generate a broad understanding of the ecological impacts of tropical forest modification. PMID:22006969

  11. A large-scale forest fragmentation experiment: the Stability of Altered Forest Ecosystems Project.

    Science.gov (United States)

    Ewers, Robert M; Didham, Raphael K; Fahrig, Lenore; Ferraz, Gonçalo; Hector, Andy; Holt, Robert D; Kapos, Valerie; Reynolds, Glen; Sinun, Waidi; Snaddon, Jake L; Turner, Edgar C

    2011-11-27

    Opportunities to conduct large-scale field experiments are rare, but provide a unique opportunity to reveal the complex processes that operate within natural ecosystems. Here, we review the design of existing, large-scale forest fragmentation experiments. Based on this review, we develop a design for the Stability of Altered Forest Ecosystems (SAFE) Project, a new forest fragmentation experiment to be located in the lowland tropical forests of Borneo (Sabah, Malaysia). The SAFE Project represents an advance on existing experiments in that it: (i) allows discrimination of the effects of landscape-level forest cover from patch-level processes; (ii) is designed to facilitate the unification of a wide range of data types on ecological patterns and processes that operate over a wide range of spatial scales; (iii) has greater replication than existing experiments; (iv) incorporates an experimental manipulation of riparian corridors; and (v) embeds the experimentally fragmented landscape within a wider gradient of land-use intensity than do existing projects. The SAFE Project represents an opportunity for ecologists across disciplines to participate in a large initiative designed to generate a broad understanding of the ecological impacts of tropical forest modification.

  12. Reproductive success of Cabralea canjerana (Meliaceae in Atlantic forest fragments, Brazil

    Directory of Open Access Journals (Sweden)

    Edivani Villaron Franceschinelli

    2015-06-01

    Full Text Available In Brazil, the Atlantic forest remnants have high biological diversity and a high level of endemism, but very little is known about the reproductive success of native species. Cabralea canjerana is a common tree in the Montane Atlantic forest, and its reproduction is highly dependent on pollinators. In order to contribute with the particular knowledge on this species, we collected data in three fragmented and three continuous forest sites, where the effects of fragmentation on both mutualistic (pollination and antagonistic (seed predation interactions were analysed. We determined fruit production and weight of 25 trees per site. The number of seeds and the percentage of predated and aborted seeds were also accessed for seven fruits of 10 trees per site. Pollinator visitation frequencies to flowers were recorded in two forest fragments and in two sites of the continuous forest. Our data showed that plants of C. canjerana produced more fruits (z-value=-8.24; p<0.0001 and seeds per fruit (z-value=-6.58; p=0.002 in the continuous than in the fragmented sites. This was likely due to differences in pollination, because the number of pollinator visits was higher in the continuous forest than in the fragments. Seed abortion (z-value=4.08, p<0.001 and predation (z-value=3.72, p=0.0002, on the other hand, were higher in the fragmented than in the continuous sites. Then, mutualistic and antagonistic interactions were affected by fragmentation, decreasing the reproductive success of the study tree. This study was the first to show a decrease in the reproductive output in forest fragments in an Atlantic forest tree species. This decrease may threaten the population structure and viability of C. canjerana in forest fragments. Rev. Biol. Trop. 63 (2: 515-524. Epub 2015 June 01.

  13. Long-term carbon loss in fragmented Neotropical forests.

    Science.gov (United States)

    Pütz, Sandro; Groeneveld, Jürgen; Henle, Klaus; Knogge, Christoph; Martensen, Alexandre Camargo; Metz, Markus; Metzger, Jean Paul; Ribeiro, Milton Cezar; de Paula, Mateus Dantas; Huth, Andreas

    2014-10-07

    Tropical forests play an important role in the global carbon cycle, as they store a large amount of carbon (C). Tropical forest deforestation has been identified as a major source of CO2 emissions, though biomass loss due to fragmentation--the creation of additional forest edges--has been largely overlooked as an additional CO2 source. Here, through the combination of remote sensing and knowledge on ecological processes, we present long-term carbon loss estimates due to fragmentation of Neotropical forests: within 10 years the Brazilian Atlantic Forest has lost 69 (±14) Tg C, and the Amazon 599 (±120) Tg C due to fragmentation alone. For all tropical forests, we estimate emissions up to 0.2 Pg C y(-1) or 9 to 24% of the annual global C loss due to deforestation. In conclusion, tropical forest fragmentation increases carbon loss and should be accounted for when attempting to understand the role of vegetation in the global carbon balance.

  14. Changes in seed rain across Atlantic Forest fragments in Northeast Brazil

    Science.gov (United States)

    Freitas, Cíntia Gomes; Dambros, Cristian; Camargo, José Luís Campana

    2013-11-01

    The objectives of this study were to characterize the distribution of seeds in remnant fragments of the Atlantic Coastal Forest and to determine whether the species diversity, seed weight, and species composition of plant communities are altered by forest fragmentation. A transect of 100 m was established in the core of each of nine fragments of Atlantic Coastal Forest in a private sugarcane plantation in the state of Alagoas, NE Brazil, and ten seed-traps were distributed at intervals of 10 m each along the transects. For 12 consecutive months seeds were collected, dried, counted, weighed, and identified to species. Seeds were assigned to categories according to their size, dispersal mode, and shade tolerance. Multiple regression models and Mantel correlation tests were used to detect the effects of fragment size, percent forest cover nearby, distance from the source area, and distance from the nearest fragment on species diversity, mean seed weight, and species similarity. Analyses were carried out for all species and for subsets corresponding to each seed category. A total of 21,985 diaspores of 190 species were collected. Most seeds were small, shade-intolerant, and zoochoric, which corroborates other studies of fragmented forest landscapes and reflects the high disturbance levels in isolated forest remnants. Our data indicate that fragmentation processes such as habitat loss can alter species diversity and species composition by reducing habitat availability and increasing fragment isolation. We also found that large-seeded species are more affected by fragment isolation, possibly because their seed dispersers rarely cross non-forested areas between fragments, while zoochoric species are more strongly affected by fragment size and apparently more strongly associated with local edaphic conditions than with distance from seed sources.

  15. Fragmentation, topography, and forest age modulate impacts of drought on a tropical forested landscape in eastern Puerto Rico

    Science.gov (United States)

    Uriarte, M.; Schwartz, N.; Budsock, A.

    2017-12-01

    Naturally regenerating second-growth forests account for ca. 50% of tropical forest cover and provide key ecosystem services. Understanding climate impacts on these ecosystems is critical for developing effective mitigation programs. Differences in environmental conditions and landscape context from old-growth forests may exacerbate climate impacts on second-growth stands. Nearly 70% of forest regeneration is occurring in hilly, upland, or mountain regions; a large proportion of second-growth forests are also fragmented. The effects of drought at the landscape scale, however, and the factors that modulate landscape heterogeneity in drought impacts remain understudied. Heterogeneity in soil moisture, light, and temperature in fragmented, topographically complex landscapes is likely to influence climate impacts on these forests. We examine impacts of a severe drought in 2015 on a forested landscape in Puerto Rico using two anomalies in vegetation indices. The study landscape is fragmented and topographically complex and includes old- and second-growth forests. We consider how topography (slope, aspect), fragmentation (distance to forest edge, patch size), and forest age (old- vs second-growth) modulate landscape heterogeneity of drought impacts and recovery from drought. Drought impacts were more severe in second-growth forests than in old-growth stands. Both topography and forest fragmentation influences the magnitude of drought impacts. Forest growing in steep areas, south facing slopes, small patches, and closer to forest edges exhibited more marked responses to drought. Forest recovery from drought was greater in second-growth forests and south facing slopes but slower in small patches and closer to forest edges. These findings are congruent with studies of drought impacts on tree growth in the study region. Together these results demonstrate the need for a multi-scalar approach to the study of drought impacts on tropical forests.

  16. Tropical forest fragmentation affects floral visitors but not the structure of individual-based palm-pollinator networks.

    Science.gov (United States)

    Dáttilo, Wesley; Aguirre, Armando; Quesada, Mauricio; Dirzo, Rodolfo

    2015-01-01

    Despite increasing knowledge about the effects of habitat loss on pollinators in natural landscapes, information is very limited regarding the underlying mechanisms of forest fragmentation affecting plant-pollinator interactions in such landscapes. Here, we used a network approach to describe the effects of forest fragmentation on the patterns of interactions involving the understory dominant palm Astrocaryum mexicanum (Arecaceae) and its floral visitors (including both effective and non-effective pollinators) at the individual level in a Mexican tropical rainforest landscape. Specifically, we asked: (i) Does fragment size affect the structure of individual-based plant-pollinator networks? (ii) Does the core of highly interacting visitor species change along the fragmentation size gradient? (iii) Does forest fragment size influence the abundance of effective pollinators of A. mexicanum? We found that fragment size did not affect the topological structure of the individual-based palm-pollinator network. Furthermore, while the composition of peripheral non-effective pollinators changed depending on fragment size, effective core generalist species of pollinators remained stable. We also observed that both abundance and variance of effective pollinators of male and female flowers of A. mexicanum increased with forest fragment size. These findings indicate that the presence of effective pollinators in the core of all forest fragments could keep the network structure stable along the gradient of forest fragmentation. In addition, pollination of A. mexicanum could be more effective in larger fragments, since the greater abundance of pollinators in these fragments may increase the amount of pollen and diversity of pollen donors between flowers of individual plants. Given the prevalence of fragmentation in tropical ecosystems, our results indicate that the current patterns of land use will have consequences on the underlying mechanisms of pollination in remnant forests.

  17. Tropical forest fragmentation affects floral visitors but not the structure of individual-based palm-pollinator networks.

    Directory of Open Access Journals (Sweden)

    Wesley Dáttilo

    Full Text Available Despite increasing knowledge about the effects of habitat loss on pollinators in natural landscapes, information is very limited regarding the underlying mechanisms of forest fragmentation affecting plant-pollinator interactions in such landscapes. Here, we used a network approach to describe the effects of forest fragmentation on the patterns of interactions involving the understory dominant palm Astrocaryum mexicanum (Arecaceae and its floral visitors (including both effective and non-effective pollinators at the individual level in a Mexican tropical rainforest landscape. Specifically, we asked: (i Does fragment size affect the structure of individual-based plant-pollinator networks? (ii Does the core of highly interacting visitor species change along the fragmentation size gradient? (iii Does forest fragment size influence the abundance of effective pollinators of A. mexicanum? We found that fragment size did not affect the topological structure of the individual-based palm-pollinator network. Furthermore, while the composition of peripheral non-effective pollinators changed depending on fragment size, effective core generalist species of pollinators remained stable. We also observed that both abundance and variance of effective pollinators of male and female flowers of A. mexicanum increased with forest fragment size. These findings indicate that the presence of effective pollinators in the core of all forest fragments could keep the network structure stable along the gradient of forest fragmentation. In addition, pollination of A. mexicanum could be more effective in larger fragments, since the greater abundance of pollinators in these fragments may increase the amount of pollen and diversity of pollen donors between flowers of individual plants. Given the prevalence of fragmentation in tropical ecosystems, our results indicate that the current patterns of land use will have consequences on the underlying mechanisms of pollination in

  18. Fragmentation of Continental United States Forests

    Science.gov (United States)

    Kurt H. Riitters; James D. Wickham; Robert V. O' Neill; K. Bruce Jones; Elizabeth R. Smith; John W. Coulston; Timothy G. Wade; Jonathan H. Smith

    2002-01-01

    We report a multiple-scale analysis of forest fragmentation based on 30-m (0.09 ha pixel-1) land- cover maps for the conterminous United States. Each 0.09-ha unit of forest was classified according to fragmentation indexes measured within the surrounding landscape, for five landscape sizes including 2.25, 7.29, 65.61, 590.49, and 5314.41 ha....

  19. Forest Fragmentation and Driving Forces in Yingkou, Northeastern China

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2017-03-01

    Full Text Available Forest fragmentation, the process of changing original large and intact forest patches into smaller and isolated areas, significantly influences the balance of surface physical environment, biodiversity, and species richness. Sufficient knowledge of forest fragmentation is necessary to maintain ecological balance and promote sustainable resource utilization. This study combines remote sensing, geographical information systems, and landscape metrics to assess forest fragmentation at landscape and pixel levels during different time periods (2000–2005, 2005–2010, and 2010–2015 in the Yingkou region. Spatial statistical analysis is also used to analyze the relationship between forest landscape fragmentation and its determinants (e.g., natural factors, socioeconomic factors, and proximity factors. Results show that forest patches became smaller, subdivided, and isolated during 2010–2015 at the total landscape level. Local changes occurred in the southwest of the study region or around the development area. Our data also indicate that shrinkage and subdivision were the main forest fragmentation processes during three times, and attrition became the main forest fragmentation process from 2010 to 2015. These changes were significantly influenced by natural factors (e.g., elevation and slope, proximity factors (e.g., distance to city and distance to province roads, and socioeconomic factors (e.g., gross domestic product. Results presented in this study provide valuable insights into the pattern and processes of forest fragmentation and present direct implications for the protection and reasonable utilization of forest resources.

  20. Edge disturbance drives liana abundance increase and alteration of liana-host tree interactions in tropical forest fragments.

    Science.gov (United States)

    Campbell, Mason J; Edwards, Will; Magrach, Ainhoa; Alamgir, Mohammed; Porolak, Gabriel; Mohandass, D; Laurance, William F

    2018-04-01

    Closed-canopy forests are being rapidly fragmented across much of the tropical world. Determining the impacts of fragmentation on ecological processes enables better forest management and improves species-conservation outcomes. Lianas are an integral part of tropical forests but can have detrimental and potentially complex interactions with their host trees. These effects can include reduced tree growth and fecundity, elevated tree mortality, alterations in tree-species composition, degradation of forest succession, and a substantial decline in forest carbon storage. We examined the individual impacts of fragmentation and edge effects (0-100-m transect from edge to forest interior) on the liana community and liana-host tree interactions in rainforests of the Atherton Tableland in north Queensland, Australia. We compared the liana and tree community, the traits of liana-infested trees, and determinants of the rates of tree infestation within five forest fragments (23-58 ha in area) and five nearby intact-forest sites. Fragmented forests experienced considerable disturbance-induced degradation at their edges, resulting in a significant increase in liana abundance. This effect penetrated to significantly greater depths in forest fragments than in intact forests. The composition of the liana community in terms of climbing guilds was significantly different between fragmented and intact forests, likely because forest edges had more small-sized trees favoring particular liana guilds which preferentially use these for climbing trellises. Sites that had higher liana abundances also exhibited higher infestation rates of trees, as did sites with the largest lianas. However, large lianas were associated with low-disturbance forest sites. Our study shows that edge disturbance of forest fragments significantly altered the abundance and community composition of lianas and their ecological relationships with trees, with liana impacts on trees being elevated in fragments relative

  1. Comparing forest fragmentation and its drivers in China and the USA with Globcover v2.2

    Science.gov (United States)

    Chen, Mingshi; Mao, Lijun; Zhou, Chunguo; Vogelmann, James E.; Zhu, Zhiliang

    2010-01-01

    Forest loss and fragmentation are of major concern to the international community, in large part because they impact so many important environmental processes. The main objective of this study was to assess the differences in forest fragmentation patterns and drivers between China and the conterminous United States (USA). Using the latest 300-m resolution global land cover product, Globcover v2.2, a comparative analysis of forest fragmentation patterns and drivers was made. The fragmentation patterns were characterized by using a forest fragmentation model built on the sliding window analysis technique in association with landscape indices. Results showed that China’s forests were substantially more fragmented than those of the USA. This was evidenced by a large difference in the amount of interior forest area share, with China having 48% interior forest versus the 66% for the USA. China’s forest fragmentation was primarily attributed to anthropogenic disturbances, driven particularly by agricultural expansion from an increasing and large population, as well as poor forest management practices. In contrast, USA forests were principally fragmented by natural land cover types. However, USA urban sprawl contributed more to forest fragmentation than in China. This is closely tied to the USA’s economy, lifestyle and institutional processes. Fragmentation maps were generated from this study, which provide valuable insights and implications regarding habitat planning for rare and endangered species. Such maps enable development of strategic plans for sustainable forest management by identifying areas with high amounts of human-induced fragmentation, which improve risk assessments and enable better targeting for protection and remediation efforts. Because forest fragmentation is a long-term, complex process that is highly related to political, institutional, economic and philosophical arenas, both nations need to take effective and comprehensive measures to mitigate

  2. Habitat Fragmentation can Modulate Drought Effects on the Plant-soil-microbial System in Mediterranean Holm Oak (Quercus ilex) Forests.

    Science.gov (United States)

    Flores-Rentería, Dulce; Curiel Yuste, Jorge; Rincón, Ana; Brearley, Francis Q; García-Gil, Juan Carlos; Valladares, Fernando

    2015-05-01

    Ecological transformations derived from habitat fragmentation have led to increased threats to above-ground biodiversity. However, the impacts of forest fragmentation on soils and their microbial communities are not well understood. We examined the effects of contrasting fragment sizes on the structure and functioning of soil microbial communities from holm oak forest patches in two bioclimatically different regions of Spain. We used a microcosm approach to simulate the annual summer drought cycle and first autumn rainfall (rewetting), evaluating the functional response of a plant-soil-microbial system. Forest fragment size had a significant effect on physicochemical characteristics and microbial functioning of soils, although the diversity and structure of microbial communities were not affected. The response of our plant-soil-microbial systems to drought was strongly modulated by the bioclimatic conditions and the fragment size from where the soils were obtained. Decreasing fragment size modulated the effects of drought by improving local environmental conditions with higher water and nutrient availability. However, this modulation was stronger for plant-soil-microbial systems built with soils from the northern region (colder and wetter) than for those built with soils from the southern region (warmer and drier) suggesting that the responsiveness of the soil-plant-microbial system to habitat fragmentation was strongly dependent on both the physicochemical characteristics of soils and the historical adaptation of soil microbial communities to specific bioclimatic conditions. This interaction challenges our understanding of future global change scenarios in Mediterranean ecosystems involving drier conditions and increased frequency of forest fragmentation.

  3. Edge effects and beta diversity in ground and canopy beetle communities of fragmented subtropical forest.

    Science.gov (United States)

    Stone, Marisa J; Catterall, Carla P; Stork, Nigel E

    2018-01-01

    Clearing of dry forests globally creates edges between remnant forest and open anthropogenic habitats. We used flight intercept traps to evaluate how forest beetle communities are influenced by distance from such edges, together with vertical height, spatial location, and local vegetation structure, in an urbanising region (Brisbane, Australia). Species composition (but not total abundance or richness) differed greatly between ground and canopy. Species composition also varied strongly among sites at both ground and canopy levels, but almost all other significant effects occurred only at ground level, where: species richness declined from edge to interior; composition differed between positions near edges ( 50 m); high local canopy cover was associated with greater total abundance and richness and differing composition; and greater distances to the city centre were associated with increased total abundances and altered composition. Analyses of individual indicator species associated with this variation enabled further biological interpretations. A global literature synthesis showed that most spatially well-replicated studies of edge effects on ground-level beetles within forest fragments have likewise found that positions within tens of metres from edges with open anthropogenic habitats had increased species richness and different compositions from forest interior sites, with fewer effects on abundance. Accordingly, negative edge effects will not prevent relatively small compact fragments (if >10-20 ha) from supporting forest-like beetle communities, although indirect consequences of habitat degradation remain a threat. Retention of multiple spatially scattered forest areas will also be important in conserving forest-dependent beetles, given high levels of between-site diversity.

  4. Edge effects and beta diversity in ground and canopy beetle communities of fragmented subtropical forest

    Science.gov (United States)

    Catterall, Carla P.; Stork, Nigel E.

    2018-01-01

    Clearing of dry forests globally creates edges between remnant forest and open anthropogenic habitats. We used flight intercept traps to evaluate how forest beetle communities are influenced by distance from such edges, together with vertical height, spatial location, and local vegetation structure, in an urbanising region (Brisbane, Australia). Species composition (but not total abundance or richness) differed greatly between ground and canopy. Species composition also varied strongly among sites at both ground and canopy levels, but almost all other significant effects occurred only at ground level, where: species richness declined from edge to interior; composition differed between positions near edges ( 50 m); high local canopy cover was associated with greater total abundance and richness and differing composition; and greater distances to the city centre were associated with increased total abundances and altered composition. Analyses of individual indicator species associated with this variation enabled further biological interpretations. A global literature synthesis showed that most spatially well-replicated studies of edge effects on ground-level beetles within forest fragments have likewise found that positions within tens of metres from edges with open anthropogenic habitats had increased species richness and different compositions from forest interior sites, with fewer effects on abundance. Accordingly, negative edge effects will not prevent relatively small compact fragments (if >10–20 ha) from supporting forest-like beetle communities, although indirect consequences of habitat degradation remain a threat. Retention of multiple spatially scattered forest areas will also be important in conserving forest-dependent beetles, given high levels of between-site diversity. PMID:29494680

  5. Regional Forest Fragmentation and the Nesting Success of Migratory Birds

    Science.gov (United States)

    Scott K. Robinson; Frank R. Thompson III; Therese M. Donovan; Donald R. Whitehead; John Faaborg

    1995-01-01

    Forest fragmentation, the disruption in the continuity of forest habitat, is hypothesized to be a major cause of population decline for, some species of forest birds because fragmentation reduces nesting (reproductive) success. Nest predation and parasitism by cowbirds increased with forest fragmentation in nine midwestern (United States)landscapes that varied from 6...

  6. Discerning fragmentation dynamics of tropical forest and wetland during reforestation, urban sprawl, and policy shifts.

    Directory of Open Access Journals (Sweden)

    Qiong Gao

    Full Text Available Despite the overall trend of worldwide deforestation over recent decades, reforestation has also been found and is expected in developing countries undergoing fast urbanization and agriculture abandonment. The consequences of reforestation on landscape patterns are seldom addressed in the literature, despite their importance in evaluating biodiversity and ecosystem functions. By analyzing long-term land cover changes in Puerto Rico, a rapidly reforested (6 to 42% during 1940-2000 and urbanized tropical island, we detected significantly different patterns of fragmentation and underlying mechanisms among forests, urban areas, and wetlands. Forest fragmentation is often associated with deforestation. However, we also found significant fragmentation during reforestation. Urban sprawl and suburb development have a dominant impact on forest fragmentation. Reforestation mostly occurs along forest edges, while significant deforestation occurs in forest interiors. The deforestation process has a much stronger impact on forest fragmentation than the reforestation process due to their different spatial configurations. In contrast, despite the strong interference of coastal urbanization, wetland aggregation has occurred due to the effective implementation of laws/regulations for wetland protection. The peak forest fragmentation shifted toward rural areas, indicating progressively more fragmentation in forest interiors. This shift is synchronous with the accelerated urban sprawl as indicated by the accelerated shift of the peak fragmentation index of urban cover toward rural areas, i.e., 1.37% yr-1 in 1977-1991 versus 2.17% yr-1 in 1991-2000. Based on the expected global urbanization and the regional forest transition from deforested to reforested, the fragmented forests and aggregated wetlands in this study highlight possible forest fragmentation processes during reforestation in an assessment of biodiversity and functions and suggest effective laws

  7. Discerning fragmentation dynamics of tropical forest and wetland during reforestation, urban sprawl, and policy shifts.

    Science.gov (United States)

    Gao, Qiong; Yu, Mei

    2014-01-01

    Despite the overall trend of worldwide deforestation over recent decades, reforestation has also been found and is expected in developing countries undergoing fast urbanization and agriculture abandonment. The consequences of reforestation on landscape patterns are seldom addressed in the literature, despite their importance in evaluating biodiversity and ecosystem functions. By analyzing long-term land cover changes in Puerto Rico, a rapidly reforested (6 to 42% during 1940-2000) and urbanized tropical island, we detected significantly different patterns of fragmentation and underlying mechanisms among forests, urban areas, and wetlands. Forest fragmentation is often associated with deforestation. However, we also found significant fragmentation during reforestation. Urban sprawl and suburb development have a dominant impact on forest fragmentation. Reforestation mostly occurs along forest edges, while significant deforestation occurs in forest interiors. The deforestation process has a much stronger impact on forest fragmentation than the reforestation process due to their different spatial configurations. In contrast, despite the strong interference of coastal urbanization, wetland aggregation has occurred due to the effective implementation of laws/regulations for wetland protection. The peak forest fragmentation shifted toward rural areas, indicating progressively more fragmentation in forest interiors. This shift is synchronous with the accelerated urban sprawl as indicated by the accelerated shift of the peak fragmentation index of urban cover toward rural areas, i.e., 1.37% yr-1 in 1977-1991 versus 2.17% yr-1 in 1991-2000. Based on the expected global urbanization and the regional forest transition from deforested to reforested, the fragmented forests and aggregated wetlands in this study highlight possible forest fragmentation processes during reforestation in an assessment of biodiversity and functions and suggest effective laws/regulations in land

  8. Birds communities of fragmented forest within highly urbanized landscape in Kuala Lumpur, Malaysia

    Science.gov (United States)

    Mohd-Taib, F. S.; Rabiatul-Adawiyah, S.; Md-Nor, S.

    2014-09-01

    Urbanization is one form of forest modification for development purposes. It produces forest fragments scattered in the landscape with different intensity of disturbance. We want to determine the effect of forest fragmentation towards bird community in urbanized landscapes in Kuala Lumpur, namely Sungai Besi Forest Reserve (FR), Bukit Nenas FR and Bukit Sungei Puteh FR. We used mist-netting and direct observation method along established trails. These forests differ in size, vegetation composition and land use history. Results show that these forests show relatively low number of species compared to other secondary forest with only 39 bird species recorded. The largest fragment, Sg. Besi encompassed the highest species richness and abundance with 69% species but lower in diversity. Bukit Nenas, the next smallest fragment besides being the only remaining primary forest has the highest diversity index with 1.866. Bkt. Sg. Puteh the smallest fragment has the lowest species richness and diversity with Shanon diversity index of 1.332. The presence of introduced species such as Corvus splendens (House crow) in all study areas suggest high disturbance encountered by these forests. Nonetheless, these patches comprised of considerably high proportion of native species. In conclusion, different intensity of disturbance due to logging activities and urbanization surrounding the forest directly influenced bird species richness and diversity. These effects however can be compensated by maintaining habitat complexity including high vegetation composition and habitat structure at the landscape level.

  9. Gamebird responses to anthropogenic forest fragmentation and degradation in a southern Amazonian landscape

    Directory of Open Access Journals (Sweden)

    Fernanda Michalski

    2017-06-01

    Full Text Available Although large-bodied tropical forest birds are impacted by both habitat loss and fragmentation, their patterns of habitat occupancy will also depend on the degree of forest habitat disturbance, which may interact synergistically or additively with fragmentation effects. Here, we examine the effects of forest patch and landscape metrics, and levels of forest disturbance on the patterns of persistence of six gamebird taxa in the southern Brazilian Amazon. We use both interview data conducted with long-term residents and/or landowners from 129 remnant forest patches and 15 continuous forest sites and line-transect census data from a subset of 21 forest patches and two continuous forests. Forest patch area was the strongest predictor of species persistence, explaining as much as 46% of the overall variation in gamebird species richness. Logistic regression models showed that anthropogenic disturbance—including surface wildfires, selective logging and hunting pressure—had a variety of effects on species persistence. Most large-bodied gamebird species were sensitive to forest fragmentation, occupying primarily large, high-quality forest patches in higher abundances, and were typically absent from patches 10,000 ha, relatively undisturbed forest patches to both maximize persistence and maintain baseline abundances of large neotropical forest birds.

  10. Edge-related loss of tree phylogenetic diversity in the severely fragmented Brazilian Atlantic forest.

    Directory of Open Access Journals (Sweden)

    Bráulio A Santos

    Full Text Available Deforestation and forest fragmentation are known major causes of nonrandom extinction, but there is no information about their impact on the phylogenetic diversity of the remaining species assemblages. Using a large vegetation dataset from an old hyper-fragmented landscape in the Brazilian Atlantic rainforest we assess whether the local extirpation of tree species and functional impoverishment of tree assemblages reduce the phylogenetic diversity of the remaining tree assemblages. We detected a significant loss of tree phylogenetic diversity in forest edges, but not in core areas of small (<80 ha forest fragments. This was attributed to a reduction of 11% in the average phylogenetic distance between any two randomly chosen individuals from forest edges; an increase of 17% in the average phylogenetic distance to closest non-conspecific relative for each individual in forest edges; and to the potential manifestation of late edge effects in the core areas of small forest remnants. We found no evidence supporting fragmentation-induced phylogenetic clustering or evenness. This could be explained by the low phylogenetic conservatism of key life-history traits corresponding to vulnerable species. Edge effects must be reduced to effectively protect tree phylogenetic diversity in the severely fragmented Brazilian Atlantic forest.

  11. Edge effect on palm diversity in rain forest fragments in western Ecuador

    DEFF Research Database (Denmark)

    Baez, S.; Balslev, Henrik

    2007-01-01

    to be idiosyncratic and to depend on the level of disturbance at edges. This paper explores how variation in forest structure at the edges of two old-growth forest fragments in a tropical rain forest in western Ecuador affects palms of different species, life-forms, and size classes. We investigate (1) how edge...

  12. Agricultural matrices affect ground ant assemblage composition inside forest fragments.

    Directory of Open Access Journals (Sweden)

    Diego Santana Assis

    Full Text Available The establishment of agricultural matrices generally involves deforestation, which leads to fragmentation of the remaining forest. This fragmentation can affect forest dynamics both positively and negatively. Since most animal species are affected, certain groups can be used to measure the impact of such fragmentation. This study aimed to measure the impacts of agricultural crops (matrices on ant communities of adjacent lower montane Atlantic rainforest fragments. We sampled nine forest fragments at locations surrounded by different agricultural matrices, namely: coffee (3 replicates; sugarcane (3; and pasture (3. At each site we installed pitfall traps along a 500 m transect from the interior of the matrix to the interior of the fragment (20 pitfall traps ~25 m apart. Each transect was partitioned into four categories: interior of the matrix; edge of the matrix; edge of the fragment; and interior of the fragment. For each sample site, we measured ant species richness and ant community composition within each transect category. Ant richness and composition differed between fragments and matrices. Each sample location had a specific composition of ants, probably because of the influence of the nature and management of the agricultural matrices. Species composition in the coffee matrix had the highest similarity to its corresponding fragment. The variability in species composition within forest fragments surrounded by pasture was greatest when compared with forest fragments surrounded by sugarcane or, to a lesser extent, coffee. Functional guild composition differed between locations, but the most representative guild was 'generalist' both in the agricultural matrices and forest fragments. Our results are important for understanding how agricultural matrices act on ant communities, and also, how these isolated forest fragments could act as an island of biodiversity in an 'ocean of crops'.

  13. Agricultural matrices affect ground ant assemblage composition inside forest fragments.

    Science.gov (United States)

    Assis, Diego Santana; Dos Santos, Iracenir Andrade; Ramos, Flavio Nunes; Barrios-Rojas, Katty Elena; Majer, Jonathan David; Vilela, Evaldo Ferreira

    2018-01-01

    The establishment of agricultural matrices generally involves deforestation, which leads to fragmentation of the remaining forest. This fragmentation can affect forest dynamics both positively and negatively. Since most animal species are affected, certain groups can be used to measure the impact of such fragmentation. This study aimed to measure the impacts of agricultural crops (matrices) on ant communities of adjacent lower montane Atlantic rainforest fragments. We sampled nine forest fragments at locations surrounded by different agricultural matrices, namely: coffee (3 replicates); sugarcane (3); and pasture (3). At each site we installed pitfall traps along a 500 m transect from the interior of the matrix to the interior of the fragment (20 pitfall traps ~25 m apart). Each transect was partitioned into four categories: interior of the matrix; edge of the matrix; edge of the fragment; and interior of the fragment. For each sample site, we measured ant species richness and ant community composition within each transect category. Ant richness and composition differed between fragments and matrices. Each sample location had a specific composition of ants, probably because of the influence of the nature and management of the agricultural matrices. Species composition in the coffee matrix had the highest similarity to its corresponding fragment. The variability in species composition within forest fragments surrounded by pasture was greatest when compared with forest fragments surrounded by sugarcane or, to a lesser extent, coffee. Functional guild composition differed between locations, but the most representative guild was 'generalist' both in the agricultural matrices and forest fragments. Our results are important for understanding how agricultural matrices act on ant communities, and also, how these isolated forest fragments could act as an island of biodiversity in an 'ocean of crops'.

  14. Edge-related loss of tree phylogenetic diversity in the severely fragmented Brazilian Atlantic forest.

    Science.gov (United States)

    Santos, Bráulio A; Arroyo-Rodríguez, Víctor; Moreno, Claudia E; Tabarelli, Marcelo

    2010-09-08

    Deforestation and forest fragmentation are known major causes of nonrandom extinction, but there is no information about their impact on the phylogenetic diversity of the remaining species assemblages. Using a large vegetation dataset from an old hyper-fragmented landscape in the Brazilian Atlantic rainforest we assess whether the local extirpation of tree species and functional impoverishment of tree assemblages reduce the phylogenetic diversity of the remaining tree assemblages. We detected a significant loss of tree phylogenetic diversity in forest edges, but not in core areas of small (phylogenetic distance between any two randomly chosen individuals from forest edges; an increase of 17% in the average phylogenetic distance to closest non-conspecific relative for each individual in forest edges; and to the potential manifestation of late edge effects in the core areas of small forest remnants. We found no evidence supporting fragmentation-induced phylogenetic clustering or evenness. This could be explained by the low phylogenetic conservatism of key life-history traits corresponding to vulnerable species. Edge effects must be reduced to effectively protect tree phylogenetic diversity in the severely fragmented Brazilian Atlantic forest.

  15. Targeted habitat restoration can reduce extinction rates in fragmented forests.

    Science.gov (United States)

    Newmark, William D; Jenkins, Clinton N; Pimm, Stuart L; McNeally, Phoebe B; Halley, John M

    2017-09-05

    The Eastern Arc Mountains of Tanzania and the Atlantic Forest of Brazil are two of the most fragmented biodiversity hotspots. Species-area relationships predict that their habitat fragments will experience a substantial loss of species. Most of these extinctions will occur over an extended time, and therefore, reconnecting fragments could prevent species losses and allow locally extinct species to recolonize former habitats. An empirical relaxation half-life vs. area relationship for tropical bird communities estimates the time that it takes to lose one-half of all species that will be eventually lost. We use it to estimate the increase in species persistence by regenerating a forest connection 1 km in width among the largest and closest fragments at 11 locations. In the Eastern Arc Mountains, regenerating 8,134 ha of forest would create >316,000 ha in total of restored contiguous forest. More importantly, it would increase the persistence time for species by a factor of 6.8 per location or ∼2,272 years, on average, relative to individual fragments. In the Atlantic Forest, regenerating 6,452 ha of forest would create >251,000 ha in total of restored contiguous forest and enhance species persistence by a factor of 13.0 per location or ∼5,102 years, on average, relative to individual fragments. Rapidly regenerating forest among fragments is important, because mean time to the first determined extinction across all fragments is 7 years. We estimate the cost of forest regeneration at $21-$49 million dollars. It could provide one of the highest returns on investment for biodiversity conservation worldwide.

  16. Genetic consequences of forest fragmentation for a highly specialized arboreal mammal--the edible dormouse.

    Directory of Open Access Journals (Sweden)

    Joanna Fietz

    Full Text Available Habitat loss and fragmentation represent the most serious extinction threats for many species and have been demonstrated to be especially detrimental for mammals. Particularly, highly specialized species with low dispersal abilities will encounter a high risk of extinction in fragmented landscapes. Here we studied the edible dormouse (Glis glis, a small arboreal mammal that is distributed throughout Central Europe, where forests are mostly fragmented at different spatial scales. The aim of this study was to investigate the effect of habitat fragmentation on genetic population structures using the example of edible dormouse populations inhabiting forest fragments in south western Germany. We genotyped 380 adult individuals captured between 2001 and 2009 in four different forest fragments and one large continuous forest using 14 species-specific microsatellites. We hypothesised, that populations in small forest patches have a lower genetic diversity and are more isolated compared to populations living in continuous forests. In accordance with our expectations we found that dormice inhabiting forest fragments were isolated from each other. Furthermore, their genetic population structure was more unstable over the study period than in the large continuous forest. Even though we could not detect lower genetic variability within individuals inhabiting forest fragments, strong genetic isolation and an overall high risk to mate with close relatives might be precursors to a reduced genetic variability and the onset of inbreeding depression. Results of this study highlight that connectivity among habitat fragments can already be strongly hampered before genetic erosion within small and isolated populations becomes evident.

  17. The Importance of Maize Management on Dung Beetle Communities in Atlantic Forest Fragments.

    Directory of Open Access Journals (Sweden)

    Renata Calixto Campos

    Full Text Available Dung beetle community structures changes due to the effects of destruction, fragmentation, isolation and decrease in tropical forest area, and therefore are considered ecological indicators. In order to assess the influence of type of maize cultivated and associated maize management on dung beetle communities in Atlantic Forest fragments surrounded by conventional and transgenic maize were evaluated 40 Atlantic Forest fragments of different sizes, 20 surrounded by GM maize and 20 surrounded by conventional maize, in February 2013 and 2014 in Southern Brazil. After applying a sampling protocol in each fragment (10 pitfall traps baited with human feces or carrion exposed for 48 h, a total of 3454 individuals from 44 species were captured: 1142 individuals from 38 species in GM maize surrounded fragments, and 2312 from 42 species in conventional maize surrounded fragments. Differences in dung beetle communities were found between GM and conventional maize communities. As expected for fragmented areas, the covariance analysis showed a greater species richness in larger fragments under both conditions; however species richness was greater in fragments surrounded by conventional maize. Dung beetle structure in the forest fragments was explained by environmental variables, fragment area, spatial distance and also type of maize (transgenic or conventional associated with maize management techniques. In Southern Brazil's scenario, the use of GM maize combined with associated agricultural management may be accelerating the loss of diversity in Atlantic Forest areas, and consequently, important ecosystem services provided by dung beetles may be lost.

  18. The Importance of Maize Management on Dung Beetle Communities in Atlantic Forest Fragments.

    Science.gov (United States)

    Campos, Renata Calixto; Hernández, Malva Isabel Medina

    2015-01-01

    Dung beetle community structures changes due to the effects of destruction, fragmentation, isolation and decrease in tropical forest area, and therefore are considered ecological indicators. In order to assess the influence of type of maize cultivated and associated maize management on dung beetle communities in Atlantic Forest fragments surrounded by conventional and transgenic maize were evaluated 40 Atlantic Forest fragments of different sizes, 20 surrounded by GM maize and 20 surrounded by conventional maize, in February 2013 and 2014 in Southern Brazil. After applying a sampling protocol in each fragment (10 pitfall traps baited with human feces or carrion exposed for 48 h), a total of 3454 individuals from 44 species were captured: 1142 individuals from 38 species in GM maize surrounded fragments, and 2312 from 42 species in conventional maize surrounded fragments. Differences in dung beetle communities were found between GM and conventional maize communities. As expected for fragmented areas, the covariance analysis showed a greater species richness in larger fragments under both conditions; however species richness was greater in fragments surrounded by conventional maize. Dung beetle structure in the forest fragments was explained by environmental variables, fragment area, spatial distance and also type of maize (transgenic or conventional) associated with maize management techniques. In Southern Brazil's scenario, the use of GM maize combined with associated agricultural management may be accelerating the loss of diversity in Atlantic Forest areas, and consequently, important ecosystem services provided by dung beetles may be lost.

  19. Forest fragmentation in Massachusetts, USA: a town-level assessment using Morphological Spatial Pattern Analysis and affinity propagation

    Science.gov (United States)

    J. Rogan; T.M. Wright; J. Cardille; H. Pearsall; Y. Ogneva-Himmelberger; Rachel Riemann; Kurt Riitters; K. Partington

    2016-01-01

    Forest fragmentation has been studied extensively with respect to biodiversity loss, disruption of ecosystem services, and edge effects although the relationship between forest fragmentation and human activities is still not well understood. We classified the pattern of forests in Massachusetts using fragmentation indicators to address...

  20. Landscape responses of bats to habitat fragmentation in Atlantic forest of paraguay

    Science.gov (United States)

    Gorresen, P.M.; Willig, M.R.

    2004-01-01

    Understanding effects of habitat loss and fragmentation on populations or communities is critical to effective conservation and restoration. This is particularly important for bats because they provide vital services to ecosystems via pollination and seed dispersal, especially in tropical and subtropical habitats. Based on more than 1,000 h of survey during a 15-month period, we quantified species abundances and community structure of phyllostomid bats at 14 sites in a 3,000-km2 region of eastern Paraguay. Abundance was highest for Artibeus lituratus in deforested landscapes and for Chrotopterus auritus in forested habitats. In contrast, Artibeus fimbriatus, Carollia perspicillata, Glossophaga soricina, Platyrrhinus lineatus, Pygoderma bilabiatum, and Sturnira lilium attained highest abundance in moderately fragmented forest landscapes. Forest cover, patch size, and patch density frequently were associated with abundance of species. At the community level, species richness was highest in partly deforested landscapes, whereas evenness was greatest in forested habitat. In general, the highest diversity of bats occurred in landscapes comprising moderately fragmented forest habitat. This underscores the importance of remnant habitat patches to conservation strategies.

  1. Dynamic anthropogenic edge effects on the distribution and diversity of fungi in fragmented old-growth forests.

    Science.gov (United States)

    Ruete, Alejandro; Snäll, Tord; Jönsson, Mari

    2016-07-01

    Diversity patterns and dynamics at forest edges are not well understood. We disentangle the relative importance of edge-effect variables on spatio-temporal patterns in species richness and occupancy of deadwood-dwelling fungi in fragmented old-growth forests. We related richness and log occupancy by 10 old-growth forest indicator fungi and by two common fungi to log conditions in natural and anthropogenic edge habitats of 31 old-growth Picea abies forest stands in central Sweden. We compared edge-to-interior gradients (100 m) to the forest interior (beyond 100 m), and we analyzed stand-level changes after 10 yr. Both richness and occupancy of logs by indicator species was negatively related to adjacent young clear-cut edges, but this effect decreased with increasing clear-cut age. The occupancy of logs by indicator species also increased with increasing distance to the natural edges. In contrast, the occupancy of logs by common species was positively related or unrelated to distance to clear-cut edges regardless of the edge age, and this was partly explained by fungal specificity to substrate quality. Stand-level mean richness and mean occupancy of logs did not change for indicator or common species over a decade. By illustrating the importance of spatial and temporal dimensions of edge effects, we extend the general understanding of the distribution and diversity of substrate-confined fungi in fragmented old-growth forests. Our results highlight the importance of longer forest rotation times adjacent to small protected areas and forest set-asides, where it may take more than 50 yr for indicator species richness levels to recover to occupancy levels observed in the forest interior. Also, non-simultaneous clear-cutting of surrounding productive forests in a way that reduces the edge effect over time (i.e., dynamic buffers) may increase the effective core area of small forest set-asides and improve their performance on protecting species of special concern for

  2. Fragmentation increases wind disturbance impacts on forest structure and carbon stocks in a western Amazonian landscape.

    Science.gov (United States)

    Schwartz, Naomi B; Uriarte, María; DeFries, Ruth; Bedka, Kristopher M; Fernandes, Katia; Gutiérrez-Vélez, Victor; Pinedo-Vasquez, Miguel A

    2017-09-01

    Tropical second-growth forests could help mitigate climate change, but the degree to which their carbon potential is achieved will depend on exposure to disturbance. Wind disturbance is common in tropical forests, shaping structure, composition, and function, and influencing successional trajectories. However, little is known about the impacts of extreme winds on second-growth forests in fragmented landscapes, though these ecosystems are often located in mosaics of forest, pasture, cropland, and other land cover types. Indirect evidence suggests that fragmentation increases risk of wind damage in tropical forests, but no studies have found such impacts following severe storms. In this study, we ask whether fragmentation and forest type (old vs. second growth) were associated with variation in wind damage after a severe convective storm in a fragmented production landscape in western Amazonia. We applied linear spectral unmixing to Landsat 8 imagery from before and after the storm, and combined it with field observations of damage to map wind effects on forest structure and biomass. We also used Landsat 8 imagery to map land cover with the goals of identifying old- and second-growth forest and characterizing fragmentation. We used these data to assess variation in wind disturbance across 95,596 ha of forest, distributed over 6,110 patches. We find that fragmentation is significantly associated with wind damage, with damage severity higher at forest edges and in edgier, more isolated patches. Damage was also more severe in old-growth than in second-growth forests, but this effect was weaker than that of fragmentation. These results illustrate the importance of considering landscape context in planning tropical forest restoration and natural regeneration projects. Assessments of long-term carbon sequestration potential need to consider spatial variation in disturbance exposure. Where risk of extreme winds is high, minimizing fragmentation and isolation could increase

  3. Markedly Divergent Tree Assemblage Responses to Tropical Forest Loss and Fragmentation across a Strong Seasonality Gradient.

    Science.gov (United States)

    Orihuela, Rodrigo L L; Peres, Carlos A; Mendes, Gabriel; Jarenkow, João A; Tabarelli, Marcelo

    2015-01-01

    We examine the effects of forest fragmentation on the structure and composition of tree assemblages within three seasonal and aseasonal forest types of southern Brazil, including evergreen, Araucaria, and deciduous forests. We sampled three southernmost Atlantic Forest landscapes, including the largest continuous forest protected areas within each forest type. Tree assemblages in each forest type were sampled within 10 plots of 0.1 ha in both continuous forests and 10 adjacent forest fragments. All trees within each plot were assigned to trait categories describing their regeneration strategy, vertical stratification, seed-dispersal mode, seed size, and wood density. We detected differences among both forest types and landscape contexts in terms of overall tree species richness, and the density and species richness of different functional groups in terms of regeneration strategy, seed dispersal mode and woody density. Overall, evergreen forest fragments exhibited the largest deviations from continuous forest plots in assemblage structure. Evergreen, Araucaria and deciduous forests diverge in the functional composition of tree floras, particularly in relation to regeneration strategy and stress tolerance. By supporting a more diversified light-demanding and stress-tolerant flora with reduced richness and abundance of shade-tolerant, old-growth species, both deciduous and Araucaria forest tree assemblages are more intrinsically resilient to contemporary human-disturbances, including fragmentation-induced edge effects, in terms of species erosion and functional shifts. We suggest that these intrinsic differences in the direction and magnitude of responses to changes in landscape structure between forest types should guide a wide range of conservation strategies in restoring fragmented tropical forest landscapes worldwide.

  4. Markedly Divergent Tree Assemblage Responses to Tropical Forest Loss and Fragmentation across a Strong Seasonality Gradient.

    Directory of Open Access Journals (Sweden)

    Rodrigo L L Orihuela

    Full Text Available We examine the effects of forest fragmentation on the structure and composition of tree assemblages within three seasonal and aseasonal forest types of southern Brazil, including evergreen, Araucaria, and deciduous forests. We sampled three southernmost Atlantic Forest landscapes, including the largest continuous forest protected areas within each forest type. Tree assemblages in each forest type were sampled within 10 plots of 0.1 ha in both continuous forests and 10 adjacent forest fragments. All trees within each plot were assigned to trait categories describing their regeneration strategy, vertical stratification, seed-dispersal mode, seed size, and wood density. We detected differences among both forest types and landscape contexts in terms of overall tree species richness, and the density and species richness of different functional groups in terms of regeneration strategy, seed dispersal mode and woody density. Overall, evergreen forest fragments exhibited the largest deviations from continuous forest plots in assemblage structure. Evergreen, Araucaria and deciduous forests diverge in the functional composition of tree floras, particularly in relation to regeneration strategy and stress tolerance. By supporting a more diversified light-demanding and stress-tolerant flora with reduced richness and abundance of shade-tolerant, old-growth species, both deciduous and Araucaria forest tree assemblages are more intrinsically resilient to contemporary human-disturbances, including fragmentation-induced edge effects, in terms of species erosion and functional shifts. We suggest that these intrinsic differences in the direction and magnitude of responses to changes in landscape structure between forest types should guide a wide range of conservation strategies in restoring fragmented tropical forest landscapes worldwide.

  5. Geotechnology and landscape ecology applied to the selection of potential forest fragments for seed harvesting.

    Science.gov (United States)

    Santos, Alexandre Rosa Dos; Antonio Alvares Soares Ribeiro, Carlos; de Oliveira Peluzio, Telma Machado; Esteves Peluzio, João Batista; de Queiroz, Vagner Tebaldi; Figueira Branco, Elvis Ricardo; Lorenzon, Alexandre Simões; Domingues, Getulio Fonseca; Marcatti, Gustavo Eduardo; de Castro, Nero Lemos Martins; Teixeira, Thaisa Ribeiro; Dos Santos, Gleissy Mary Amaral Dino Alves; Santos Mota, Pedro Henrique; Ferreira da Silva, Samuel; Vargas, Rozimelia; de Carvalho, José Romário; Macedo, Leandro Levate; da Silva Araújo, Cintia; de Almeida, Samira Luns Hatum

    2016-12-01

    The Atlantic Forest biome is recognized for its biodiversity and is one of the most threatened biomes on the planet, with forest fragmentation increasing due to uncontrolled land use, land occupation, and population growth. The most serious aspect of the forest fragmentation process is the edge effect and the loss of biodiversity. In this context, the aim of this study was to evaluate the dynamics of forest fragmentation and select potential forest fragments with a higher degree of conservation for seed harvesting in the Itapemirim river basin, Espírito Santo State, Brazil. Image classification techniques, forest landscape ecology, and multi-criteria analysis were used to evaluate the evolution of forest fragmentation to develop the landscape metric indexes, and to select potential forest fragments for seed harvesting for the years 1985 and 2013. According to the results, there was a reduction of 2.55% of the occupancy of the fragments in the basin between the years 1985 and 2013. For the years 1985 and 2013, forest fragment units 2 and 3 were spatialized with a high potential for seed harvesting, representing 6.99% and 16.01% of the total fragments, respectively. The methodology used in this study has the potential to be used to support decisions for the selection of potential fragments for seed harvesting because selecting fragments in different environments by their spatial attributes provides a greater degree of conservation, contributing to the protection and conscious management of the forests. The proposed methodology can be adapted to other areas and different biomes of the world. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Bird communities in two oceanic island forests fragmented by roads ...

    African Journals Online (AJOL)

    Although most studies on road effects on birds have been conducted on continental grounds, road fragmentation on oceanic islands is often heavier. We assessed variation in bird communities near (≤ 25 m) and far (>100 m) from forest roads dividing laurel and pine forests on Tenerife, Canary Islands. Line transects were ...

  7. Geospatial analysis of forest fragmentation in Uttara Kannada District, India

    Directory of Open Access Journals (Sweden)

    Ramachandra T V

    2016-04-01

    Full Text Available Background: Landscapes consist of heterogeneous interacting dynamic elements with complex ecological, economic and cultural attributes. These complex interactions help in the sustenance of natural resources through bio-geochemical and hydrological cycling. The ecosystem functions are altered with changes in the landscape structure. Fragmentation of large contiguous forests to small and isolated forest patches either by natural phenomena or anthropogenic activities leads to drastic changes in forest patch sizes, shape, connectivity and internal heterogeneity, which restrict the movement leading to inbreeding among Meta populations with extirpation of species. Methods: Landscape dynamics are assessed through land use analysis by way of remote sensing data acquired at different time periods. Forest fragmentation is assessed at the pixel level through computation of two indicators, i.e., Pf (the ratio of pixels that are forested to the total non-water pixels in the window and Pff (the proportion of all adjacent (cardinal directions only pixel pairs that include at least one forest pixel, for which both pixels are forested. Results: Uttara Kannada District has the distinction of having the highest forest cover in Karnataka State, India. This region has been experiencing changes in its forest cover and consequent alterations in functional abilities of its ecosystem. Temporal land use analyses show the trend of deforestation, evident from the reduction of evergreen - semi evergreen forest cover from 57.31 % (1979 to 32.08 % (2013 Forest fragmentation at the landscape level shows a decline of interior forests 64.42 % (1979 to 25.62 % (2013 and transition of non-forest categories such as crop land, plantations and built-up areas, amounting now to 47.29 %. PCA prioritized geophysical and socio variables responsible for changes in the landscape structure at local levels. Conclusion: Terrestrial forest ecosystems in Uttara Kannada District of Central

  8. Responses of bats to forest fragmentation at Pozuzo, Peru

    Directory of Open Access Journals (Sweden)

    José Luis Mena

    2011-05-01

    Full Text Available Forest fragmentation and deforestation are among the major threats to Peruvian bats conservation. Unfortunately,information about the effects of these threats above 500 m elevation is lacking. In this study, I assessedbat responses to fragmentation in Pozuzo (Pasco at a landscape scale approach. I evaluate two hypothesesregarding the role of bats as indicators of habitat disturbance. The first prediction says that landscapes highlydisturbed will show higher abundances of habitat generalist species such as frugivorous bats belonging to thesubfamilies Stenodermatinae and Carollinae. The second prediction regards that landscapes with greater forestcover will show higher abundance of habitat specialist species such as animalivorous bat species belongingto the subfamily Phyllostominae, a guild sensitive to forest disturbance. I found evidence supporting the animalivoroushypothesis but it was partial to the frugivorous hypothesis. This study highlights the importance offorest fragments to bat conservation in human-modified landscapes.

  9. Effects of forest fragmentation on nocturnal Asian birds: A case study from Xishuangbanna, China

    Science.gov (United States)

    DAYANANDA, Salindra K.; GOODALE, Eben; LEE, Myung-bok; LIU, Jia-Jia; MAMMIDES, Christos; PASION, Bonifacio O.; QUAN, Rui-Chang; SLIK, J. W. Ferry; SREEKAR, Rachakonda; TOMLINSON, Kyle W.; YASUDA, Mika

    2016-01-01

    Owls have the potential to be keystone species for conservation in fragmented landscapes, as the absence of these predators could profoundly change community structure. Yet few studies have examined how whole communities of owls respond to fragmentation, especially in the tropics. When evaluating the effect of factors related to fragmentation, such as fragment area and distance to the edge, on these birds, it is also important in heterogeneous landscapes to ask how ‘location factors’ such as the topography, vegetation and soil of the fragment predict their persistence. In Xishuangbanna, southwest China, we established 43 transects (200 m×60 m) within 20 forest fragments to sample nocturnal birds, both visually and aurally. We used a multimodel inference approach to identify the factors that influence owl species richness, and generalized linear mixed models to predict the occurrence probabilities of each species. We found that fragmentation factors dominated location factors, with larger fragments having more species, and four of eight species were significantly more likely to occur in large fragments. Given the potential importance of these birds on regulating small mammal and other animal populations, and thus indirectly affecting seed dispersal, we suggest further protection of large fragments and programs to increase their connectivity to the remaining smaller fragments. PMID:27265653

  10. Effects of forest fragmentation on nocturnal Asian birds: A case study from Xishuangbanna, China

    Directory of Open Access Journals (Sweden)

    Salindra K. DAYANANDA

    2016-05-01

    Full Text Available Owls have the potential to be keystone species for conservation in fragmented landscapes, as the absence of these predators could profoundly change community structure. Yet few studies have examined how whole communities of owls respond to fragmentation, especially in the tropics. When evaluating the effect of factors related to fragmentation, such as fragment area and distance to the edge, on these birds, it is also important in heterogeneous landscapes to ask how ‘location factors’ such as the topography, vegetation and soil of the fragment predict their persistence. In Xishuangbanna, southwest China, we established 43 transects (200 m×60 m within 20 forest fragments to sample nocturnal birds, both visually and aurally. We used a multimodel inference approach to identify the factors that influence owl species richness, and generalized linear mixed models to predict the occurrence probabilities of each species. We found that fragmentation factors dominated location factors, with larger fragments having more species, and four of eight species were significantly more likely to occur in large fragments. Given the potential importance of these birds on regulating small mammal and other animal populations, and thus indirectly affecting seed dispersal, we suggest further protection of large fragments and programs to increase their connectivity to the remaining smaller fragments.

  11. Rapid decay of tree-community composition in Amazonian forest fragments

    Science.gov (United States)

    Laurance, William F.; Nascimento, Henrique E. M.; Laurance, Susan G.; Andrade, Ana; Ribeiro, José E. L. S.; Giraldo, Juan Pablo; Lovejoy, Thomas E.; Condit, Richard; Chave, Jerome; Harms, Kyle E.; D'Angelo, Sammya

    2006-01-01

    Forest fragmentation is considered a greater threat to vertebrates than to tree communities because individual trees are typically long-lived and require only small areas for survival. Here we show that forest fragmentation provokes surprisingly rapid and profound alterations in Amazonian tree-community composition. Results were derived from a 22-year study of exceptionally diverse tree communities in 40 1-ha plots in fragmented and intact forests, which were sampled repeatedly before and after fragment isolation. Within these plots, trajectories of change in abundance were assessed for 267 genera and 1,162 tree species. Abrupt shifts in floristic composition were driven by sharply accelerated tree mortality and recruitment within ≈100 m of fragment margins, causing rapid species turnover and population declines or local extinctions of many large-seeded, slow-growing, and old-growth taxa; a striking increase in a smaller set of disturbance-adapted and abiotically dispersed species; and significant shifts in tree size distributions. Even among old-growth trees, species composition in fragments is being restructured substantially, with subcanopy species that rely on animal seed-dispersers and have obligate outbreeding being the most strongly disadvantaged. These diverse changes in tree communities are likely to have wide-ranging impacts on forest architecture, canopy-gap dynamics, plant–animal interactions, and forest carbon storage. PMID:17148598

  12. Does the afrotropical army ant Dorylus (Anomma) molestus go extinct in fragmented forests?

    DEFF Research Database (Denmark)

    Schöning, Caspar; Kinuthia, Wanja; Boomsma, Jacobus Jan

    2006-01-01

    or facultatively associated with them. Field observations and mathematical modelling suggest that deforestation and accompanying forest fragmentation cause local extinctions of the neotropical swarm-raiding army ant Eciton burchellii which in turn have negative effects on its associated fauna. The aim......Swarm-raiding army ants are extremely polyphagous nomadic predators inhabiting tropical forests. They are considered keystone species because their raids can regulate the population dynamics of their prey and because a plethora of both invertebrate and vertebrate species are obligatorily...... of this study was to examine whether afrotropical army ants are affected by forest fragmentation in the same way. Surveys of Dorylus (Anomma) molestus colonies were carried out in forest fragments of different sizes and in the matrix habitat at two sites in Eastern Kenya, along the Lower Tana River...

  13. Richness and Abundance of Ichneumonidae in a Fragmented Tropical Rain Forest.

    Science.gov (United States)

    Ruiz-Guerra, B; Hanson, P; Guevara, R; Dirzo, R

    2013-10-01

    Because of the magnitude of land use currently occurring in tropical regions, the local loss of animal species due to habitat fragmentation has been widely studied, particularly in the case of vertebrates. Many invertebrate groups and the ichneumonid wasps in particular, however, have been poorly studied in this context, despite the fact that they are one of the most species-rich groups and play an important role as regulators of other insect populations. Here, we recorded the taxonomic composition of ichneumonid parasitoids and assessed their species richness, abundance, similarity, and dominance in the Los Tuxtlas tropical rain forest, Mexico. We compared two forest types: a continuous forest (640 ha) and a forest fragment (19 ha). We sampled ichneumonids using four malaise traps in both forest types during the dry (September-October) and rainy (March-April) seasons. A total of 104 individuals of Ichneumonidae belonging to 11 subfamilies, 18 genera, and 42 species were collected in the continuous forest and 11 subfamilies, 15 genera, and 24 species were collected in the forest fragment. Species richness, abundance, and diversity of ichneumonids were greater in the continuous forest than in the forest fragment. We did not detect differences between seasons. Species rank/abundance curves showed that the ichneumonid community between the forest types was different. Species similarity between forest types was low. The most dominant species in continuous forest was Neotheronia sp., whereas in the forest fragment, it was Orthocentrus sp. Changes in the ichneumonid wasp community may compromise important tropical ecosystem processes.

  14. Geospatial analysis of forest fragmentation in Uttara Kannada District, India

    Institute of Scientific and Technical Information of China (English)

    Ramachandra T V; Bharath Setturu; Subash Chandran

    2016-01-01

    Background: Landscapes consist of heterogeneous interacting dynamic elements with complex ecological,economic and cultural attributes. These complex interactions help in the sustenance of natural resources through bio-geochemical and hydrological cycling. The ecosystem functions are altered with changes in the landscape structure. Fragmentation of large contiguous forests to small and isolated forest patches either by natural phenomena or anthropogenic activities leads to drastic changes in forest patch sizes, shape, connectivity and internal heterogeneity, which restrict the movement leading to inbreeding among Meta populations with extirpation of species.Methods: Landscape dynamics are assessed through land use analysis by way of remote sensing data acquired at different time periods. Forest fragmentation is assessed at the pixel level through computation of two indicators,i.e., Pf(the ratio of pixels that are forested to the total non-water pixels in the window) and Pff(the proportion of all adjacent(cardinal directions only) pixel pairs that include at least one forest pixel, for which both pixels are forested).Results: Uttara Kannada District has the distinction of having the highest forest cover in Karnataka State, India. This region has been experiencing changes in its forest cover and consequent alterations in functional abilities of its ecosystem. Temporal land use analyses show the trend of deforestation, evident from the reduction of evergreen-semi evergreen forest cover from 57.31 %(1979) to 32.08 %(2013) Forest fragmentation at the landscape level shows a decline of interior forests 64.42 %(1979) to 25.62 %(2013) and transition of non-forest categories such as crop land, plantations and built-up areas, amounting now to 47.29 %. PCA prioritized geophysical and socio variables responsible for changes in the landscape structure at local levels.Conclusion: Terrestrial forest ecosystems in Uttara Kannada District of Central Western Ghats have been

  15. Effects of Habitat Structure and Fragmentation on Diversity and Abundance of Primates in Tropical Deciduous Forests in Bolivia.

    Science.gov (United States)

    Pyritz, Lennart W; Büntge, Anna B S; Herzog, Sebastian K; Kessler, Michael

    2010-10-01

    Habitat structure and anthropogenic disturbance are known to affect primate diversity and abundance. However, researchers have focused on lowland rain forests, whereas endangered deciduous forests have been neglected. We aimed to investigate the relationships between primate diversity and abundance and habitat parameters in 10 deciduous forest fragments southeast of Santa Cruz, Bolivia. We obtained primate data via line-transect surveys and visual and acoustic observations. In addition, we assessed the vegetation structure (canopy height, understory density), size, isolation time, and surrounding forest area of the fragments. We interpreted our results in the context of the historical distribution data for primates in the area before fragmentation and interviews with local people. We detected 5 of the 8 historically observed primate species: Alouatta caraya, Aotus azarae boliviensis, Callithrix melanura, Callicebus donacophilus, and Cebus libidinosus juruanus. Total species number and detection rates decreased with understory density. Detection rates also negatively correlated with forest areas in the surroundings of a fragment, which may be due to variables not assessed, i.e., fragment shape, distance to nearest town. Observations for Alouatta and Aotus were too few to conduct further statistics. Cebus and Callicebus were present in 90% and 70% of the sites, respectively, and their density did not correlate with any of the habitat variables assessed, signaling high ecological plasticity and adaptability to anthropogenic impact in these species. Detections of Callithrix were higher in areas with low forest strata. Our study provides baseline data for future fragmentation studies in Neotropical dry deciduous forests and sets a base for specific conservation measures.

  16. Multitemporal analysis of forest fragmentation in Hindu Kush Himalaya-a case study from Khangchendzonga Biosphere Reserve, Sikkim, India.

    Science.gov (United States)

    Sharma, Mohit; Areendran, G; Raj, Krishna; Sharma, Ankita; Joshi, P K

    2016-10-01

    Forests in the mountains are a treasure trove; harbour a large biodiversity; and provide fodder, firewood, timber and non-timber forest products; all of these are essential for human survival in the highest mountains on earth. The present paper attempts a spatiotemporal assessment of forest fragmentation and changes in land use land cover (LULC) pattern using multitemporal satellite data over a time span of around a decade (2000-2009), within the third highest protected area (PA) in the world. The fragmentation analysis using Landscape Fragmentation Tool (LFT) depicts a decrease in large core, edge and patches areas by 5.93, 3.64 and 0.66 %, respectively, while an increase in non-forest and perforated areas by 6.59 and 4.01 %, respectively. The land cover dynamics shows a decrease in open forest, alpine scrub, alpine meadows, snow and hill shadow areas by 2.81, 0.39, 8.18, 3.46 and 0.60 %, respectively, and there is an increase in dense forest and glacier area by 4.79 and 10.65 %, respectively. The change analysis shows a major transformation in areas from open forest to dense forest and from alpine meadows to alpine scrub. In order to quantify changes induced by forest fragmentation and to characterize composition and configuration of LULC mosaics, fragmentation indices were computed using Fragstats at class level, showing the signs of accelerated fragmentation. The outcome of the analysis revealed the effectiveness of geospatial tools coupled with landscape ecology in characterization and quantification of forest fragmentation and land cover changes. The present study provides a baseline database for sustainable conservation planning that will benefit the subsistence livelihoods in the region. Recommendations made based on the present analysis will help to recover forest and halt the pessimistic effects of fragmentation and land cover changes on biodiversity and ecosystem services in the region.

  17. High resolution analysis of tropical forest fragmentation and its impact on the global carbon cycle

    Science.gov (United States)

    Brinck, Katharina; Fischer, Rico; Groeneveld, Jürgen; Lehmann, Sebastian; Dantas de Paula, Mateus; Pütz, Sandro; Sexton, Joseph O.; Song, Danxia; Huth, Andreas

    2017-03-01

    Deforestation in the tropics is not only responsible for direct carbon emissions but also extends the forest edge wherein trees suffer increased mortality. Here we combine high-resolution (30 m) satellite maps of forest cover with estimates of the edge effect and show that 19% of the remaining area of tropical forests lies within 100 m of a forest edge. The tropics house around 50 million forest fragments and the length of the world's tropical forest edges sums to nearly 50 million km. Edge effects in tropical forests have caused an additional 10.3 Gt (2.1-14.4 Gt) of carbon emissions, which translates into 0.34 Gt per year and represents 31% of the currently estimated annual carbon releases due to tropical deforestation. Fragmentation substantially augments carbon emissions from tropical forests and must be taken into account when analysing the role of vegetation in the global carbon cycle.

  18. Who wants to conserve remaining forest fragments in the ...

    African Journals Online (AJOL)

    For exam- ple, a small forest that is surrounded by agricultural fields and that is still partly .... 75. 43. 21. Forest fragments [% of forest in village territory]. 5. 20. 100. 100. Market proximity ..... Cas de Manompana – Nord-Est de. Madagascar.

  19. Temporal bird community dynamics are strongly affected by landscape fragmentation in a Central American tropical forest region

    Science.gov (United States)

    Blandón, A.C.; Perelman, S.B.; Ramírez, M.; López, A.; Javier, O.; Robbins, Chandler S.

    2016-01-01

    Habitat loss and fragmentation are considered the main causes of species extinctions, particularly in tropical ecosystems. The objective of this work was to evaluate the temporal dynamics of tropical bird communities in landscapes with different levels of fragmentation in eastern Guatemala. We evaluated five bird community dynamic parameters for forest specialists and generalists: (1) species extinction, (2) species turnover, (3) number of colonizing species, (4) relative species richness, and (5) a homogeneity index. For each of 24 landscapes, community dynamic parameters were estimated from bird point count data, for the 1998–1999 and 2008–2009 periods, accounting for species’ detection probability. Forest specialists had higher extinction rates and a smaller number of colonizing species in landscapes with higher fragmentation, thus having lower species richness in both time periods. Alternatively, forest generalists elicited a completely different pattern, showing a curvilinear association to forest fragmentation for most parameters. Thus, greater community dynamism for forest generalists was shown in landscapes with intermediate levels of fragmentation. Our study supports general theory regarding the expected negative effects of habitat loss and fragmentation on the temporal dynamics of biotic communities, particularly for forest specialists, providing strong evidence from understudied tropical bird communities.

  20. Fragmentation of forest communities in the eastern United States

    Science.gov (United States)

    Kurt Riitters; John Coulston; James Wickham

    2011-01-01

    Forest fragmentation threatens the sustainability of forest communities in the eastern United States. Forest communities exhibiting either a low total area or low percentage of intact forest are subject to relatively higher risk of shifts in stand composition towards edge-adapted and invasive species. Such changes in stand composition could result in local extirpation...

  1. Forest fragmentation and bird community dynamics: inference at regional scales

    Science.gov (United States)

    Boulinier, T.; Nichols, J.D.; Hines, J.E.; Sauer, J.R.; Flather, C.H.; Pollock, K.H.

    2001-01-01

    With increasing fragmentation of natural areas and a dramatic reduction of forest cover in several parts of the world, quantifying the impact of such changes on species richness and community dynamics has been a subject of much concern. Here, we tested whether in more fragmented landscapes there was a lower number of area-sensitive species and higher local extinction and turnover rates, which could explain higher temporal variability in species richness. To investigate such potential landscape effects at a regional scale, we merged two independent, large-scale monitoring efforts: the North American Breeding Bird Survey (BBS) and the Land Use and Land Cover Classification data from the U.S. Geological Survey. We used methods that accounted for heterogeneity in the probability of detecting species to estimate species richness and temporal changes in the bird communities for BBS routes in three mid-Atlantic U.S. states. Forest breeding bird species were grouped prior to the analyses into area-sensitive and non-area-sensitive species according to previous studies. We tested predictions relating measures of forest structure at one point in time (1974) to species richness at that time and to parameters of forest bird community change over the following 22-yr-period (1975-1996). We used the mean size of forest patches to characterize landscape structure, as high correlations among landscape variables did not allow us to disentangle the relative roles of habitat fragmentation per se and habitat loss. As predicted, together with lower species richness for area-sensitive species on routes surrounded by landscapes with lower mean forest-patch size, we found higher mean year-to-year rates of local extinction. Moreover, the mean year-to-year rates of local turnover (proportion of locally new species) for area-sensitive species were also higher in landscapes with lower mean forest-patch size. These associations were not observed for the non-area-sensitive species group. These

  2. Would protecting tropical forest fragments provide carbon and biodiversity cobenefits under REDD+?

    Science.gov (United States)

    Magnago, Luiz Fernando S; Magrach, Ainhoa; Laurance, William F; Martins, Sebastião V; Meira-Neto, João Augusto A; Simonelli, Marcelo; Edwards, David P

    2015-09-01

    Tropical forests store vast amounts of carbon and are the most biodiverse terrestrial habitats, yet they are being converted and degraded at alarming rates. Given global shortfalls in the budgets required to prevent carbon and biodiversity loss, we need to seek solutions that simultaneously address both issues. Of particular interest are carbon-based payments under the Reducing Emissions from Deforestation and Forest Degradation (REDD+) mechanism to also conserve biodiversity at no additional cost. One potential is for REDD+ to protect forest fragments, especially within biomes where contiguous forest cover has diminished dramatically, but we require empirical tests of the strength of any carbon and biodiversity cobenefits in such fragmented systems. Using the globally threatened Atlantic Forest landscape, we measured above-ground carbon stocks within forest fragments spanning 13 to 23 442 ha in area and with different degrees of isolation. We related these stocks to tree community structure and to the richness and abundance of endemic and IUCN Red-listed species. We found that increasing fragment size has a positive relationship with above-ground carbon stock and with abundance of IUCN Red-listed species and tree community structure. We also found negative relationships between distance from large forest block and tree community structure, endemic species richness and abundance, and IUCN Red-listed species abundance. These resulted in positive congruence between carbon stocks and Red-listed species, and the abundance and richness of endemic species, demonstrating vital cobenefits. As such, protecting forest fragments in hotspots of biodiversity, particularly larger fragments and those closest to sources, offers important carbon and biodiversity cobenefits. More generally, our results suggest that macroscale models of cobenefits under REDD+ have likely overlooked key benefits at small scales, indicating the necessity to apply models that include finer

  3. Effect of forest fragmentation on the epiphytic lichen cover of pine trunks on the example taiga town

    Directory of Open Access Journals (Sweden)

    Gaigysh Irina Sergeevna

    2012-06-01

    Full Text Available The main characteristics of epiphytic lichen cover on pine trunks depending on the area of natural pine forest in Kostomuksha (north Karelia were analysed. The town of Kostomuksha was built so that to provide the conservation of forest sites. 56 fragments with the area of 0.04 - 6.13 ha were studied. The average area of fragment is 0.62 ha, with 49 fragments (88% having the area less than 1 ha. Biodiversity and lichen cover were studied in the each fragment with using framework 10x20 cm. 1792 sample plots were made on 448 trees. The total lichens cover varies from 0 to 85%,averaging 10%. 25 species of lichens were found. The number of species in the sample plots varies from 0 to 9. Dominant species found are Hypogymnia physodes, Parmeliopsis ambigua, P. hyperopta, Imshaugia aleurites, Cladonia. Species Alectoria sarmentosa, Cladonia macilenta, Pseudevernia fufruraceae, Bryoria fremontii were less common. It was shown that the main parameters of lichen cover are closely related to the size of the area left in the city forest fragments. The maximum values of species diversity and cover of lichens were found in the fragments of more 1-2 hectares.

  4. Geospatial Assessment of Forest Fragmentation and its Implications for Ecological Processes in Tropical Forests

    Directory of Open Access Journals (Sweden)

    Adepoju Kayode Adewale

    2017-11-01

    Full Text Available The study assessed the patterns of spatio-temporal configuration imposed on a forest landscape in Southwestern Nigeria due to fragmentation for the period 1986 – 2010 in order to understand the relationship between landscape patterns and the ecological processes influencing the distribution of species in tropical forest environment. Time-series Landsat TM and ETM satellite images and forest inventory data were pre-processed and classified into four landuse/landcover categories using maximum likelihood classification algorithm. Fragstats software was used for the computation of seven landscape and six class level metrics to provide indicators of fragmentation and landscape connectivity from the classified images.

  5. Human impacts affect tree community features of 20 forest fragments of a vanishing neotropical hotspot.

    Science.gov (United States)

    Pereira, José Aldo Alves; de Oliveira-Filho, Ary Teixeira; Eisenlohr, Pedro V; Miranda, Pedro L S; de Lemos Filho, José Pires

    2015-02-01

    The loss in forest area due to human occupancy is not the only threat to the remaining biodiversity: forest fragments are susceptible to additional human impact. Our aim was to investigate the effect of human impact on tree community features (species composition and abundance, and structural descriptors) and check if there was a decrease in the number of slender trees, an increase in the amount of large trees, and also a reduction in the number of tree species that occur in 20 fragments of Atlantic montane semideciduous forest in southeastern Brazil. We produced digital maps of each forest fragment using Landsat 7 satellite images and processed the maps to obtain morphometric variables. We used investigative questionnaires and field observations to survey the history of human impact. We then converted the information into scores given to the extent, severity, and duration of each impact, including proportional border area, fire, trails, coppicing, logging, and cattle, and converted these scores into categorical levels. We used linear models to assess the effect of impacts on tree species abundance distribution and stand structural descriptors. Part of the variation in floristic patterns was significantly correlated to the impacts of fire, logging, and proportional border area. Structural descriptors were influenced by cattle and outer roads. Our results provided, for the first time, strong evidence that tree species occurrence and abundance, and forest structure of Atlantic seasonal forest fragments respond differently to various modes of disturbance by humans.

  6. Fine-scale movement decisions of tropical forest birds in a fragmented landscape.

    Science.gov (United States)

    Gillies, Cameron S; Beyer, Hawthorne L; St Clair, Colleen Cassady

    2011-04-01

    The persistence of forest-dependent species in fragmented landscapes is fundamentally linked to the movement of individuals among subpopulations. The paths taken by dispersing individuals can be considered a series of steps built from individual route choices. Despite the importance of these fine-scale movement decisions, it has proved difficult to collect such data that reveal how forest birds move in novel landscapes. We collected unprecedented route information about the movement of translocated forest birds from two species in the highly fragmented tropical dry forest of Costa Rica. In this pasture-dominated landscape, forest remains in patches or riparian corridors, with lesser amounts of living fencerows and individual trees or "stepping stones." We used step selection functions to quantify how route choice was influenced by these habitat elements. We found that the amount of risk these birds were willing to take by crossing open habitat was context dependent. The forest-specialist Barred Antshrike (Thamnophilus doliatus) exhibited stronger selection for forested routes when moving in novel landscapes distant from its territory relative to locations closer to its territory. It also selected forested routes when its step originated in forest habitat. It preferred steps ending in stepping stones when the available routes had little forest cover, but avoided them when routes had greater forest cover. The forest-generalist Rufous-naped Wren (Campylorhynchus rufinucha) preferred steps that contained more pasture, but only when starting from non-forest habitats. Our results showed that forested corridors (i.e., riparian corridors) best facilitated the movement of a sensitive forest specialist through this fragmented landscape. They also suggested that stepping stones can be important in highly fragmented forests with little remaining forest cover. We expect that naturally dispersing birds and species with greater forest dependence would exhibit even stronger

  7. Season-modulated responses of Neotropical bats to forest fragmentation.

    Science.gov (United States)

    Ferreira, Diogo F; Rocha, Ricardo; López-Baucells, Adrià; Farneda, Fábio Z; Carreiras, João M B; Palmeirim, Jorge M; Meyer, Christoph F J

    2017-06-01

    Seasonality causes fluctuations in resource availability, affecting the presence and abundance of animal species. The impacts of these oscillations on wildlife populations can be exacerbated by habitat fragmentation. We assessed differences in bat species abundance between the wet and dry season in a fragmented landscape in the Central Amazon characterized by primary forest fragments embedded in a secondary forest matrix. We also evaluated whether the relative importance of local vegetation structure versus landscape characteristics (composition and configuration) in shaping bat abundance patterns varied between seasons. Our working hypotheses were that abundance responses are species as well as season specific, and that in the wet season, local vegetation structure is a stronger determinant of bat abundance than landscape-scale attributes. Generalized linear mixed-effects models in combination with hierarchical partitioning revealed that relationships between species abundances and local vegetation structure and landscape characteristics were both season specific and scale dependent. Overall, landscape characteristics were more important than local vegetation characteristics, suggesting that landscape structure is likely to play an even more important role in landscapes with higher fragment-matrix contrast. Responses varied between frugivores and animalivores. In the dry season, frugivores responded more to compositional metrics, whereas during the wet season, local and configurational metrics were more important. Animalivores showed similar patterns in both seasons, responding to the same group of metrics in both seasons. Differences in responses likely reflect seasonal differences in the phenology of flowering and fruiting between primary and secondary forests, which affected the foraging behavior and habitat use of bats. Management actions should encompass multiscale approaches to account for the idiosyncratic responses of species to seasonal variation in

  8. Fragmentation of forest, grassland, and shrubland

    Science.gov (United States)

    Kurt H. Riitters

    2013-01-01

    As humans introduce competing land uses into natural landscapes, the public concerns regarding landcover patterns are expressed through headline issues such as urban sprawl, forest fragmentation, water quality, and wilderness preservation. The spatial arrangement of an environment affects all human perceptions and ecological processes within that environment, but this...

  9. Spatial distribution of bird communities in small forest fragments in central Europe in relation to distance to the forest edge, fragment size and type of forest

    Czech Academy of Sciences Publication Activity Database

    Hofmeister, Jeňýk; Hošek, J.; Brabec, Marek; Kočvara, R.

    2017-01-01

    Roč. 401, OCT (2017), s. 255-263 ISSN 0378-1127 Institutional support: RVO:67179843 ; RVO:67985807 Keywords : Clearing * Dryocopus martius * Forest bird * Forest management * Generalized additive model * Habitat fragmentation Subject RIV: GK - Forestry; BB - Applied Statistics, Operational Research (UIVT-O) OBOR OECD: Forestry; Statistics and probability (UIVT-O) Impact factor: 3.064, year: 2016

  10. Forest Fragments Surrounded by Sugar Cane Are More Inhospitable to Terrestrial Amphibian Abundance Than Fragments Surrounded by Pasture

    Directory of Open Access Journals (Sweden)

    Paula Eveline Ribeiro D’Anunciação

    2013-01-01

    Full Text Available In recent years, there has been increasing interest in matrix-type influence on forest fragments. Terrestrial amphibians are good bioindicators for this kind of research because of low vagility and high philopatry. This study compared richness, abundance, and species composition of terrestrial amphibians through pitfall traps in two sets of semideciduous seasonal forest fragments in southeastern Brazil, according to the predominant surrounding matrix (sugar cane and pasture. There were no differences in richness, but fragments surrounded by sugar cane had the lowest abundance of amphibians, whereas fragments surrounded by pastures had greater abundance. The most abundant species, Rhinella ornata, showed no biometric differences between fragment groups but like many other amphibians sampled showed very low numbers of individuals in fragments dominated by sugar cane fields. Our data indicate that the sugar cane matrix negatively influences the community of amphibians present in fragments surrounded by this type of land use.

  11. Long-term fragmentation effects on the distribution and dynamics of canopy gaps in a tropical montane forest

    Science.gov (United States)

    Nicholas R. Vaughn; Gregory P. Asner; Christian P. Giardina

    2015-01-01

    Fragmentation alters forest canopy structure through various mechanisms, which in turn drive subsequent changes to biogeochemical processes and biological diversity. Using repeated airborne LiDAR (Light Detection and Ranging) mappings, we investigated the size distribution and dynamics of forest canopy gaps across a topical montane forest landscape in Hawaii naturally...

  12. Tropical Forest Fragmentation Limits Movements, but Not Occurrence of a Generalist Pollinator Species.

    Directory of Open Access Journals (Sweden)

    Noelia L Volpe

    Full Text Available Habitat loss and fragmentation influence species distributions and therefore ecological processes that depend upon them. Pollination may be particularly susceptible to fragmentation, as it depends on frequent pollinator movement. Unfortunately, most pollinators are too small to track efficiently which has precluded testing the hypothesis that habitat fragmentation reduces or eliminates pollen flow by disrupting pollinator movement. We used radio-telemetry to examine space use of the green hermit hummingbird (Phaethornis guy, an important 'hub' pollinator of understory flowering plants across substantial portions of the neotropics and the primary pollinator of a keystone plant which shows reduced pollination success in fragmented landscapes. We found that green hermits strongly avoided crossing large stretches of non-forested matrix and preferred to move along stream corridors. Forest gaps as small as 50 m diminished the odds of movement by 50%. Green hermits occurred almost exclusively inside the forest, with the odds of occurrence being 8 times higher at points with >95% canopy cover compared with points having <5% canopy cover. Nevertheless, surprisingly. the species occurred in fragmented landscapes with low amounts of forest (~30% within a 2 km radius. Our results indicate that although green hermits are present even in landscapes with low amounts of tropical forest, movement within these landscapes ends up strongly constrained by forest gaps. Restricted movement of pollinators may be an underappreciated mechanism for widespread declines in pollination and plant fitness in fragmented landscapes, even when in the presence of appropriate pollinators.

  13. Changes in tree reproductive traits reduce functional diversity in a fragmented Atlantic forest landscape.

    Directory of Open Access Journals (Sweden)

    Luciana Coe Girão

    Full Text Available Functional diversity has been postulated to be critical for the maintenance of ecosystem functioning, but the way it can be disrupted by human-related disturbances remains poorly investigated. Here we test the hypothesis that habitat fragmentation changes the relative contribution of tree species within categories of reproductive traits (frequency of traits and reduces the functional diversity of tree assemblages. The study was carried out in an old and severely fragmented landscape of the Brazilian Atlantic forest. We used published information and field observations to obtain the frequency of tree species and individuals within 50 categories of reproductive traits (distributed in four major classes: pollination systems, floral biology, sexual systems, and reproductive systems in 10 fragments and 10 tracts of forest interior (control plots. As hypothesized, populations in fragments and control plots differed substantially in the representation of the four major classes of reproductive traits (more than 50% of the categories investigated. The most conspicuous differences were the lack of three pollination systems in fragments--pollination by birds, flies and non-flying mammals--and that fragments had a higher frequency of both species and individuals pollinated by generalist vectors. Hermaphroditic species predominate in both habitats, although their relative abundances were higher in fragments. On the contrary, self-incompatible species were underrepresented in fragments. Moreover, fragments showed lower functional diversity (H' scores for pollination systems (-30.3%, floral types (-23.6%, and floral sizes (-20.8% in comparison to control plots. In contrast to the overwhelming effect of fragmentation, patch and landscape metrics such as patch size and forest cover played a minor role on the frequency of traits. Our results suggest that habitat fragmentation promotes a marked shift in the relative abundance of tree reproductive traits and

  14. Differences in seed rain composition in small and large fragments in the northeast Brazilian Atlantic Forest.

    Science.gov (United States)

    Knörr, U C; Gottsberger, G

    2012-09-01

    Tropical forests are seriously threatened by fragmentation and habitat loss. The impact of fragment size and forest configuration on the composition of seed rain is insufficiently studied. For the present study, seed rain composition of small and large forest fragments (8-388 ha) was assessed in order to identify variations in seed abundance, species richness, seed size and dispersal mode. Seed rain was documented during a 1-year period in three large and four small Atlantic Forest fragments that are isolated by a sugarcane matrix. Total seed rain included 20,518 seeds of 149 species of trees, shrubs, palms, lianas and herbs. Most species and seeds were animal-dispersed. A significant difference in the proportion of seeds and species within different categories of seed size was found between small and large fragments. Small fragments received significantly more very small-sized seeds (1.5 cm) that were generally very rare, with only one species in small and eight in large fragments. We found a negative correlation between the inflow of small-sized seeds and the percentage of forest cover. Species richness was lower in small than in large fragments, but the difference was not very pronounced. Given our results, we propose changing plant species pools through logging, tree mortality and a high inflow of pioneer species and lianas, especially in small forest fragments and areas with low forest cover. Connecting forest fragments through corridors and reforestation with local large-seeded tree species may facilitate the maintenance of species diversity. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.

  15. Gene Flow of a Forest-Dependent Bird across a Fragmented Landscape.

    Directory of Open Access Journals (Sweden)

    Rachael V Adams

    Full Text Available Habitat loss and fragmentation can affect the persistence of populations by reducing connectivity and restricting the ability of individuals to disperse across landscapes. Dispersal corridors promote population connectivity and therefore play important roles in maintaining gene flow in natural populations inhabiting fragmented landscapes. In the prairies, forests are restricted to riparian areas along river systems which act as important dispersal corridors for forest dependent species across large expanses of unsuitable grassland habitat. However, natural and anthropogenic barriers within riparian systems have fragmented these forested habitats. In this study, we used microsatellite markers to assess the fine-scale genetic structure of a forest-dependent species, the black-capped chickadee (Poecile atricapillus, along 10 different river systems in Southern Alberta. Using a landscape genetic approach, landscape features (e.g., land cover were found to have a significant effect on patterns of genetic differentiation. Populations are genetically structured as a result of natural breaks in continuous habitat at small spatial scales, but the artificial barriers we tested do not appear to restrict gene flow. Dispersal between rivers is impeded by grasslands, evident from isolation of nearby populations (~ 50 km apart, but also within river systems by large treeless canyons (>100 km. Significant population genetic differentiation within some rivers corresponded with zones of different cottonwood (riparian poplar tree species and their hybrids. This study illustrates the importance of considering the impacts of habitat fragmentation at small spatial scales as well as other ecological processes to gain a better understanding of how organisms respond to their environmental connectivity. Here, even in a common and widespread songbird with high dispersal potential, small breaks in continuous habitats strongly influenced the spatial patterns of genetic

  16. Characterizing fragmentation of the collective forests in southern China from multitemporal Landsat imagery: A case study from Kecheng district of Zhejiang province

    Science.gov (United States)

    Li, M.; Zhu, Z.; Vogelmann, James E.; Xu, D.; Wen, W.; Liu, A.

    2011-01-01

    Tropical and subtropical forests provide important ecosystem goods and services including carbon sequestration and biodiversity conservation. These forests are facing increasing socioeconomic pressures and are rapidly being degraded and fragmented. This analysis focuses on the rate of change and patterns of fragmentation in a collective forest area in Zhejiang province, China, during the time period 1988–2005. The research consisted of two parts. The first was the development of general land cover maps and the identification of land cover changes by interpreting Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) time series imagery. The second part involved the computation and analysis of forest fragmentation metrics. For this portion of the study, fragmentation statistics were analyzed, and images were developed to depict forest fragmentation patterns and trends. Results revealed that there was a net loss of 7.8% in forest coverage, dropping from 66.8% in 1988 to 59.0% in 2005, primarily caused by agricultural expansion and poor forest management practices. An acceleration of forest fragmentation was also witnessed during the time intervals, which was evidenced by a decreasing trend in interior forest (57.2% in 1988, 55.0% in 1996 and 54.8% in 2005 respectively) coupled with the scales of the selected geospatial metrics. Continued forest loss and fragmentation are closely correlated with the existing political, educational, institutional and economic processes of contemporary China. To unlock the developmental potentials of the collective forests and to effectively mitigate the rate of forest loss and fragmentation, reforms of forest tenure and ecological immigration practices are recognized as a prospective alternative. The produced fragmentation maps further illustrates the importance of assessing landscape change history, especially the spatiotemporal patterns of forest fragments, when developing landscape level plans for biodiversity

  17. Euglossine bee communities in small forest fragments of the Atlantic Forest, Rio de Janeiro state, southeastern Brazil (Hymenoptera, Apidae

    Directory of Open Access Journals (Sweden)

    Willian Moura de Aguiar

    2012-06-01

    Full Text Available Euglossine bee communities in small forest fragments of the Atlantic Forest, Rio de Janeiro state, southeastern Brazil (Hymenoptera, Apidae. Euglossine bees are important pollinators in forests and agricultural areas. Although the structure of their communities is critically affected by anthropogenic disturbances, little is known about these bees in small forest fragments. The objectives of this study were to analyze the composition, abundance, and diversity of euglossine bee species in nine small fragments of different phytophysiognomies of the Atlantic Forest in southeastern Brazil, and to identify the environmental variables that may be related to the species composition of these communities. Males were sampled quarterly from May 2007 to May 2009 with aromatic traps containing methyl cinnamate, vanillin, eucalyptol, benzyl acetate, and methyl salicylate. A total of 1558 males, belonging to 10 species and three genera of Euglossina were collected. The richness ranged from five to seven species per fragment. Euglossa cordata, E. securigera, Eulaema nigrita e E. cingulata were common to all fragments studied. The diversity differed significantly among areas, ranging from H' = 1.04 to H' = 1.65. The precipitation, phytophysiognomy, and altitude had the highest relative importance over the species composition variation. The results presented in this study demonstrate that small forest fragments are able to support populations of euglossine bee species, most of which are widely distributed and reportedly tolerant to open and/or disturbed areas and suggest that the conservation of such areas is important, particularly in areas that are regenerating and in regions with agricultural matrices where these bees can act as important pollinators

  18. Deforestation and fragmentation of natural forests in the upper Changhua watershed, Hainan, China: implications for biodiversity conservation.

    Science.gov (United States)

    Zhai, De-Li; Cannon, Charles H; Dai, Zhi-Cong; Zhang, Cui-Ping; Xu, Jian-Chu

    2015-01-01

    Hainan, the largest tropical island in China, belongs to the Indo-Burma biodiversity hotspot. The Changhua watershed is a center of endemism for plants and birds and the cradle of Hainan's main rivers. However, this area has experienced recent and ongoing deforestation and habitat fragmentation. To quantify habitat loss and fragmentation of natural forests, as well as the land-cover changes in the Changhua watershed, we analyzed Landsat images obtained in 1988, 1995, and 2005. Land-cover dynamics analysis showed that natural forests increased in area (97,909 to 104,023 ha) from 1988 to 1995 but decreased rapidly to 76,306 ha over the next decade. Rubber plantations increased steadily throughout the study period while pulp plantations rapidly expanded after 1995. Similar patterns of land cover change were observed in protected areas, indicating a lack of enforcement. Natural forests conversion to rubber and pulp plantations has a general negative effect on biodiversity, primarily through habitat fragmentation. The fragmentation analysis showed that natural forests area was reduced and patch number increased, while patch size and connectivity decreased. These land-cover changes threatened local biodiversity, especially island endemic species. Both natural forests losses and fragmentation should be stopped by strict enforcement to prevent further damage. Preserving the remaining natural forests and enforcing the status of protected areas should be a management priority to maximize the watershed's biodiversity conservation value.

  19. A multi-scale metrics approach to forest fragmentation for Strategic Environmental Impact Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eunyoung, E-mail: eykim@kei.re.kr [Korea Environment Institute, 215 Jinheungno, Eunpyeong-gu, Seoul 122-706 (Korea, Republic of); Song, Wonkyong, E-mail: wksong79@gmail.com [Suwon Research Institute, 145 Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-270 (Korea, Republic of); Lee, Dongkun, E-mail: dklee7@snu.ac.kr [Department of Landscape Architecture and Rural System Engineering, Seoul National University, 599 Gwanakro, Gwanak-gu, Seoul 151-921 (Korea, Republic of); Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921 (Korea, Republic of)

    2013-09-15

    Forests are becoming severely fragmented as a result of land development. South Korea has responded to changing community concerns about environmental issues. The nation has developed and is extending a broad range of tools for use in environmental management. Although legally mandated environmental compliance requirements in South Korea have been implemented to predict and evaluate the impacts of land-development projects, these legal instruments are often insufficient to assess the subsequent impact of development on the surrounding forests. It is especially difficult to examine impacts on multiple (e.g., regional and local) scales in detail. Forest configuration and size, including forest fragmentation by land development, are considered on a regional scale. Moreover, forest structure and composition, including biodiversity, are considered on a local scale in the Environmental Impact Assessment process. Recently, the government amended the Environmental Impact Assessment Act, including the SEA, EIA, and small-scale EIA, to require an integrated approach. Therefore, the purpose of this study was to establish an impact assessment system that minimizes the impacts of land development using an approach that is integrated across multiple scales. This study focused on forest fragmentation due to residential development and road construction sites in selected Congestion Restraint Zones (CRZs) in the Greater Seoul Area of South Korea. Based on a review of multiple-scale impacts, this paper integrates models that assess the impacts of land development on forest ecosystems. The applicability of the integrated model for assessing impacts on forest ecosystems through the SEIA process is considered. On a regional scale, it is possible to evaluate the location and size of a land-development project by considering aspects of forest fragmentation, such as the stability of the forest structure and the degree of fragmentation. On a local scale, land-development projects should

  20. Quantifying forest fragmentation using Geographic Information Systems and Forest Inventory and Analysis plot data

    Science.gov (United States)

    Dacia M. Meneguzzo; Mark H. Hansen

    2009-01-01

    Fragmentation metrics provide a means of quantifying and describing forest fragmentation. The most common method of calculating these metrics is through the use of Geographic Information System software to analyze raster data, such as a satellite or aerial image of the study area; however, the spatial resolution of the imagery has a significant impact on the results....

  1. Effects of soil, altitude, rainfall, and distance on the floristic similarity of Atlantic Forest fragments in the east-Northeast

    Directory of Open Access Journals (Sweden)

    Flávia de Barros Prado Moura

    2013-09-01

    Full Text Available This paper presents the results of a floristic survey conducted on an Atlantic Forest fragment in the state of Alagoas, Brazil. Besides, the results of a similarity analysis between ten rainforest fragments from the Brazilian east-Northeast are presented. The floristic comparison was based on binary data with regard to the presence/ absence criterion for tree species identified in the ten fragments by means of Sørensen’s similarity index. A dendrogram was prepared using cluster analysis (Jaccard’s index and canonical correspondence analysis (CCA to test the abiotic factors, which can differently influence the similarity of fragments. The fragments showed low similarity indices. The variations were due to the fact that each fragment is a patch of what once was a continuous and heterogeneous region. However, the diversity loss, including the disappearance of more demanding species, can lead, in large-scale, to homogeneity and simplification of the northeastern Atlantic Forest.

  2. Higher climate warming sensitivity of Siberian larch in small than large forest islands in the fragmented Mongolian forest steppe.

    Science.gov (United States)

    Khansaritoreh, Elmira; Dulamsuren, Choimaa; Klinge, Michael; Ariunbaatar, Tumurbaatar; Bat-Enerel, Banzragch; Batsaikhan, Ganbaatar; Ganbaatar, Kherlenchimeg; Saindovdon, Davaadorj; Yeruult, Yolk; Tsogtbaatar, Jamsran; Tuya, Daramragchaa; Leuschner, Christoph; Hauck, Markus

    2017-09-01

    Forest fragmentation has been found to affect biodiversity and ecosystem functioning in multiple ways. We asked whether forest size and isolation in fragmented woodlands influences the climate warming sensitivity of tree growth in the southern boreal forest of the Mongolian Larix sibirica forest steppe, a naturally fragmented woodland embedded in grassland, which is highly affected by warming, drought, and increasing anthropogenic forest destruction in recent time. We examined the influence of stand size and stand isolation on the growth performance of larch in forests of four different size classes located in a woodland-dominated forest-steppe area and small forest patches in a grassland-dominated area. We found increasing climate sensitivity and decreasing first-order autocorrelation of annual stemwood increment with decreasing stand size. Stemwood increment increased with previous year's June and August precipitation in the three smallest forest size classes, but not in the largest forests. In the grassland-dominated area, the tree growth dependence on summer rainfall was highest. Missing ring frequency has strongly increased since the 1970s in small, but not in large forests. In the grassland-dominated area, the increase was much greater than in the forest-dominated landscape. Forest regeneration decreased with decreasing stand size and was scarce or absent in the smallest forests. Our results suggest that the larch trees in small and isolated forest patches are far more susceptible to climate warming than in large continuous forests pointing to a grim future for the forests in this strongly warming region of the boreal forest that is also under high land use pressure. © 2017 John Wiley & Sons Ltd.

  3. Population genetics provides an efficient tool to quantify fragmentation impact in forest ecosystems

    Directory of Open Access Journals (Sweden)

    2005-01-01

    Full Text Available A method in population genetics (Dutech et al., Am. J. Bot. 92 (2, 252-261, February 2005 is described and discussed as an interesting tool for investigating the effects of fragmentation in forest ecosystems.

  4. Low functional richness and redundancy of a predator assemblage in native forest fragments of Chiloe island, Chile.

    Science.gov (United States)

    Farias, Ariel A; Jaksic, Fabian M

    2011-07-01

    1. Changes in land use and habitat fragmentation are major drivers of global change, and studying their effects on biodiversity constitutes a major research programme. However, biodiversity is a multifaceted concept, with a functional component linking species richness to ecosystem function. Currently, the interaction between functional and taxonomic components of biodiversity under realistic scenarios of habitat degradation is poorly understood. 2. The expected functional richness (FR)-species richness relationship (FRSR) is positive, and attenuated for functional redundancy in species-rich assemblages. Further, environmental filters are expected to flatten that association by sorting species with similar traits. Thus, analysing FRSR can inform about the response of biodiversity to environmental gradients and habitat fragmentation, and its expected functional consequences. 3. Top predators affect ecosystem functioning through prey consumption and are particularly vulnerable to changes in land use and habitat fragmentation, being good indicators of ecosystem health and suitable models for assessing the effects of habitat fragmentation on their FR. 4. Thus, this study analyses the functional redundancy of a vertebrate predator assemblage at temperate forest fragments in a rural landscape of Chiloe island (Chile), testing the existence of environmental filters by contrasting an empirically derived FRSR against those predicted from null models, and testing the association between biodiversity components and the structure of forest fragments. 5. Overall, contrasts against null models indicate that regional factors determine low levels of FR and redundancy for the vertebrate predator assemblage studied, while recorded linear FRSR indicates proportional responses of the two biodiversity components to the structure of forest fragments. Further, most species were positively associated with either fragment size or shape complexity, which are highly correlated. This, and the

  5. Domestic dogs in a fragmented landscape in the Brazilian Atlantic Forest: abundance, habitat use and caring by owners

    Directory of Open Access Journals (Sweden)

    PC. Torres

    Full Text Available This study aimed at estimating the population size and attitudes of residents towards caring for domestic dogs, through questionnaire surveys, as well as the frequency of these animals in different habitats (anthropic and forest patch, using scent stations. The study was conducted in a severely fragmented area of the Brazilian Atlantic Forest. A large number of unrestricted dogs was recorded, averaging 6.2 ind/km². These dogs have owners and are regularly fed. Dog records decreased from the anthropogenic matrix to the forest patch edge, which suggests that dogs act as an edge effect on forest patches. Encounters between domestic dog and wild animals can still be frequent in severely fragmented landscapes, mainly at the forest edges. However the fact that most dogs have an owner and are more frequent in the anthropic habitat suggests that their putative effects are less severe than expected for a carnivore of such abundance, but the reinforcement of responsible ownership is needed to further ameliorate such effects.

  6. The Multiple Impacts of Tropical Forest Fragmentation on Arthropod Biodiversity and on their Patterns of Interactions with Host Plants.

    Science.gov (United States)

    Benítez-Malvido, Julieta; Dáttilo, Wesley; Martínez-Falcón, Ana Paola; Durán-Barrón, César; Valenzuela, Jorge; López, Sara; Lombera, Rafael

    2016-01-01

    Tropical rain forest fragmentation affects biotic interactions in distinct ways. Little is known, however, about how fragmentation affects animal trophic guilds and their patterns of interactions with host plants. In this study, we analyzed changes in biotic interactions in forest fragments by using a multitrophic approach. For this, we classified arthropods associated with Heliconia aurantiaca herbs into broad trophic guilds (omnivores, herbivores and predators) and assessed the topological structure of intrapopulation plant-arthropod networks in fragments and continuous forests. Habitat type influenced arthropod species abundance, diversity and composition with greater abundance in fragments but greater diversity in continuous forest. According to trophic guilds, coleopteran herbivores were more abundant in continuous forest and overall omnivores in fragments. Continuous forest showed a greater diversity of interactions than fragments. Only in fragments, however, did the arthropod community associated with H aurantiaca show a nested structure, suggesting novel and/or opportunistic host-arthropod associations. Plants, omnivores and predators contributed more to nestedness than herbivores. Therefore, Heliconia-arthropod network properties do not appear to be maintained in fragments mainly caused by the decrease of herbivores. Our study contributes to the understanding of the impact of fragmentation on the structure and dynamics of multitrophic arthropod communities associated with a particular plant species of the highly biodiverse tropical forests. Nevertheless, further replication of study sites is needed to strengthen the conclusion that forest fragmentation negatively affects arthropod assemblages.

  7. Phylogenetic impoverishment of Amazonian tree communities in an experimentally fragmented forest landscape.

    Science.gov (United States)

    Santos, Bráulio A; Tabarelli, Marcelo; Melo, Felipe P L; Camargo, José L C; Andrade, Ana; Laurance, Susan G; Laurance, William F

    2014-01-01

    Amazonian rainforests sustain some of the richest tree communities on Earth, but their ecological and evolutionary responses to human threats remain poorly known. We used one of the largest experimental datasets currently available on tree dynamics in fragmented tropical forests and a recent phylogeny of angiosperms to test whether tree communities have lost phylogenetic diversity since their isolation about two decades previously. Our findings revealed an overall trend toward phylogenetic impoverishment across the experimentally fragmented landscape, irrespective of whether tree communities were in 1-ha, 10-ha, or 100-ha forest fragments, near forest edges, or in continuous forest. The magnitude of the phylogenetic diversity loss was low (phylogenetic diversity, we observed a significant decrease of 50% in phylogenetic dispersion since forest isolation, irrespective of plot location. Analyses based on tree genera that have significantly increased (28 genera) or declined (31 genera) in abundance and basal area in the landscape revealed that increasing genera are more phylogenetically related than decreasing ones. Also, the loss of phylogenetic diversity was greater in tree communities where increasing genera proliferated and decreasing genera reduced their importance values, suggesting that this taxonomic replacement is partially underlying the phylogenetic impoverishment at the landscape scale. This finding has clear implications for the current debate about the role human-modified landscapes play in sustaining biodiversity persistence and key ecosystem services, such as carbon storage. Although the generalization of our findings to other fragmented tropical forests is uncertain, it could negatively affect ecosystem productivity and stability and have broader impacts on coevolved organisms.

  8. Human-sensitive bryophytes retreat into the depth of forest fragments in central European landscape

    Czech Academy of Sciences Publication Activity Database

    Hofmeister, Jeňýk; Hošek, J.; Brabec, Marek; Tenčík, A.

    2016-01-01

    Roč. 135, č. 3 (2016), s. 539-549 ISSN 1612-4669 Institutional support: RVO:67179843 ; RVO:67985807 Keywords : colonization * forest continuity * fragmentation * forest management * fragment size Subject RIV: EH - Ecology, Behaviour; BB - Applied Statistics, Operational Research (UIVT-O) Impact factor: 2.017, year: 2016

  9. Natural canopy bridges effectively mitigate tropical forest fragmentation for arboreal mammals.

    Science.gov (United States)

    Gregory, Tremaine; Carrasco-Rueda, Farah; Alonso, Alfonso; Kolowski, Joseph; Deichmann, Jessica L

    2017-06-20

    Linear infrastructure development and resulting habitat fragmentation are expanding in Neotropical forests, and arboreal mammals may be disproportionately impacted by these linear habitat clearings. Maintaining canopy connectivity through preservation of connecting branches (i.e. natural canopy bridges) may help mitigate that impact. Using camera traps, we evaluated crossing rates of a pipeline right-of-way in a control area with no bridges and in a test area where 13 bridges were left by the pipeline construction company. Monitoring all canopy crossing points for a year (7,102 canopy camera nights), we confirmed bridge use by 25 mammal species from 12 families. With bridge use beginning immediately after exposure and increasing over time, use rates were over two orders of magnitude higher than on the ground. We also found a positive relationship between a bridge's use rate and the number of species that used it, suggesting well-used bridges benefit multiple species. Data suggest bridge use may be related to a combination of bridge branch connectivity, multiple connections, connectivity to adjacent forest, and foliage cover. Given the high use rate and minimal cost, we recommend all linear infrastructure projects in forests with arboreal mammal populations include canopy bridges.

  10. Plant diversity in hedgerows amidst Atlantic Forest fragments

    Directory of Open Access Journals (Sweden)

    Carolina C. C. Oliveira

    2015-06-01

    Full Text Available Hedgerows are linear structures found in agricultural landscapes that may facilitate dispersal of plants and animals and also serve as habitat. The aim of this study was to investigate the relationships among diversity and ecological traits of woody plants, hedgerow characteristics (size, age, and origin, and the structure of the surrounding Atlantic Forest landscape. Field data were collected from 14 hedgerows, and landscape metrics from 1000-m buffers surrounding hedgerows were recorded from a thematic map. In all sampled hedgerows, arboreal species were predominantly zoochoric and early-succession species, and hedgerow width was an important factor explaining the richness and abundance of this group of species. Connection with forest vegetation did not explain richness and abundance of animal-dispersed species, but richness of non-zoochoric species increased in more connected hedgerows. These results suggest that hedgerows are probably colonized by species arriving from nearby early-succession sites, forest fragment edges, and isolated trees in the matrix. Nonetheless, hedgerows provide resources for frugivorous animals and influence landscape connectivity, highlighting the importance of these elements in the conservation of biodiversity in fragmented and rural landscapes.

  11. A multi-method analysis of forest fragmentation and loss: The case ...

    African Journals Online (AJOL)

    Lazie

    2014-02-01

    Feb 1, 2014 ... mented, where the fragmented landscape represents the endpoint of the ... For example, some plants can only be pollinated by a certain kind of bird or ... tropical forests, and of the remainder, temperate and boreal forests ...

  12. Assessment of Land-Use/Land-Cover Change and Forest Fragmentation in the Garhwal Himalayan Region of India

    Directory of Open Access Journals (Sweden)

    Amit Kumar Batar

    2017-04-01

    Full Text Available The Garhwal Himalaya has experienced extensive deforestation and forest fragmentation, but data and documentation detailing this transformation of the Himalaya are limited. The aim of this study is to analyse the observed changes in land cover and forest fragmentation that occurred between 1976 and 2014 in the Garhwal Himalayan region in India. Three images from Landsat 2 Multispectral Scanner System (MSS, Landsat 5 Thematic Mapper (TM, and Landsat 8 Operational Land Imager (OLI were used to extract the land cover maps. A cross-tabulation detection method in the geographic information system (GIS module was used to detect land cover changes during the 1st period (1976–1998 and 2nd period (1998–2014. The landscape fragmentation tool LFT v2.0 was used to construct a forest fragmentation map and analyse the forest fragmentation pattern and change during the 1st period (1976–1998 and 2nd period (1998–2014. The overall annual rate of change in the forest cover was observed to be 0.22% and 0.27% in the 1st period (1976–1998 and 2nd period (1998–2014, respectively. The forest fragmentation analysis shows that a large core forest has decreased throughout the study period. The total area of forest patches also increased from 1976 to 2014, which are completely degraded forests. The results indicate that anthropogenic activities are the main causes of the loss of forest cover and forest fragmentation, but that natural factors also contributed. An increase in the area of scrub and barren land also contributed to the accumulation of wasteland or non-forest land in this region. Determining the trend and the rate of land cover conversion is necessary for development planners to establish a rational land use policy.

  13. Characterizing the spatial distribution of giant pandas (Ailuropoda melanoleuca) in fragmented forest landscapes

    NARCIS (Netherlands)

    Wang, T.; Ye, X.P.; Skidmore, A.K.; Toxopeus, A.G.

    2010-01-01

    Aim. To examine the effects of forest fragmentation on the distribution of the entire wild giant panda (Ailuropoda melanoleuca) population, and to propose a modelling approach for monitoring the spatial distribution and habitat of pandas at the landscape scale using Moderate Resolution Imaging

  14. The Multiple Impacts of Tropical Forest Fragmentation on Arthropod Biodiversity and on their Patterns of Interactions with Host Plants

    Science.gov (United States)

    Benítez-Malvido, Julieta; Dáttilo, Wesley; Martínez-Falcón, Ana Paola; Durán-Barrón, César; Valenzuela, Jorge; López, Sara; Lombera, Rafael

    2016-01-01

    Tropical rain forest fragmentation affects biotic interactions in distinct ways. Little is known, however, about how fragmentation affects animal trophic guilds and their patterns of interactions with host plants. In this study, we analyzed changes in biotic interactions in forest fragments by using a multitrophic approach. For this, we classified arthropods associated with Heliconia aurantiaca herbs into broad trophic guilds (omnivores, herbivores and predators) and assessed the topological structure of intrapopulation plant-arthropod networks in fragments and continuous forests. Habitat type influenced arthropod species abundance, diversity and composition with greater abundance in fragments but greater diversity in continuous forest. According to trophic guilds, coleopteran herbivores were more abundant in continuous forest and overall omnivores in fragments. Continuous forest showed a greater diversity of interactions than fragments. Only in fragments, however, did the arthropod community associated with H aurantiaca show a nested structure, suggesting novel and/or opportunistic host-arthropod associations. Plants, omnivores and predators contributed more to nestedness than herbivores. Therefore, Heliconia-arthropod network properties do not appear to be maintained in fragments mainly caused by the decrease of herbivores. Our study contributes to the understanding of the impact of fragmentation on the structure and dynamics of multitrophic arthropod communities associated with a particular plant species of the highly biodiverse tropical forests. Nevertheless, further replication of study sites is needed to strengthen the conclusion that forest fragmentation negatively affects arthropod assemblages. PMID:26731271

  15. Forest fragmentation and bird community dynamics: inference at regional scales

    Science.gov (United States)

    Thierry Boulinier; James D. Nichols; James E. Hines; John R. Sauer; Curtis H. Flather; Kenneth H. Pollock

    2001-01-01

    With increasing fragmentation of natural areas and a dramatic reduction of forest cover in several parts of the world, quantifying the impact of such changes on species richness and community dynamics has been a subject of much concern. Here, we tested whether in more fragmented landscapes there was a lower number of area-sensitive species and higher local extinction...

  16. Linear infrastructure drives habitat conversion and forest fragmentation associated with Marcellus shale gas development in a forested landscape.

    Science.gov (United States)

    Langlois, Lillie A; Drohan, Patrick J; Brittingham, Margaret C

    2017-07-15

    Large, continuous forest provides critical habitat for some species of forest dependent wildlife. The rapid expansion of shale gas development within the northern Appalachians results in direct loss of such habitat at well sites, pipelines, and access roads; however the resulting habitat fragmentation surrounding such areas may be of greater importance. Previous research has suggested that infrastructure supporting gas development is the driver for habitat loss, but knowledge of what specific infrastructure affects habitat is limited by a lack of spatial tracking of infrastructure development in different land uses. We used high-resolution aerial imagery, land cover data, and well point data to quantify shale gas development across four time periods (2010, 2012, 2014, 2016), including: the number of wells permitted, drilled, and producing gas (a measure of pipeline development); land use change; and forest fragmentation on both private and public land. As of April 2016, the majority of shale gas development was located on private land (74% of constructed well pads); however, the number of wells drilled per pad was lower on private compared to public land (3.5 and 5.4, respectively). Loss of core forest was more than double on private than public land (4.3 and 2.0%, respectively), which likely results from better management practices implemented on public land. Pipelines were by far the largest contributor to the fragmentation of core forest due to shale gas development. Forecasting future land use change resulting from gas development suggests that the greatest loss of core forest will occur with pads constructed farthest from pre-existing pipelines (new pipelines must be built to connect pads) and in areas with greater amounts of core forest. To reduce future fragmentation, our results suggest new pads should be placed near pre-existing pipelines and methods to consolidate pipelines with other infrastructure should be used. Without these mitigation practices, we

  17. Removal rates of native and exotic dung by dung beetles (Scarabaeidae: Scarabaeinae) in a fragmented tropical rain forest.

    Science.gov (United States)

    Amézquita, Sandra; Favila, Mario E

    2010-04-01

    Many studies have evaluated the effect of forest fragmentation on dung beetle assemblage structure. However, few have analyzed how forest fragmentation affects the processes carried out by these insects in tropical forests where their food sources consist mainly of dung produced by native herbivore mammals. With the conversion of forests to pastures, cattle dung has become an exotic alternative and abundant food for dung beetles. This study compares dung removal rates of native (monkey) and exotic (cow) dung in different-sized fragments of tropical rain forests, during the dry and rainy seasons at the Los Tuxtlas Biosphere Reserve. Dung removal rates were affected by season, dung type, and the interaction between resource type and season. During the dry season, the removal rates of monkey dung were somewhat similar than during the rainy season, whereas the removal rates of cow dung were much higher during the rainy season. Dung beetle biomass and species richness were almost three times greater in monkey dung than in cow dung. Monkey dung attracted species belonging to the dweller, roller, and tunneler guilds; cow dung attracted mostly tunnelers. Therefore, the use of exotic dung may result in a biased misconception of the rates of dung removal in tropical forest and an underestimation of dung beetle diversity. This study highlights the importance of working with natural tropical forest resources when attempting to identify realistic tendencies concerning processes in natural habitats and those modified by fragmentation and by other human activities.

  18. Assessing rates of forest change and fragmentation in Alabama, USA, using the vegetation change tracker model

    Science.gov (United States)

    Li, Mingshi; Huang, Chengquan; Zhu, Zhiliang; Shi, Hua; Lu, Heng; Peng, Shikui

    2009-01-01

    Forest change is of great concern for land use decision makers and conservation communities. Quantitative and spatial forest change information is critical for addressing many pressing issues, including global climate change, carbon budgets, and sustainability. In this study, our analysis focuses on the differences in geospatial patterns and their changes between federal forests and nonfederal forests in Alabama over the time period 1987–2005, by interpreting 163 Landsat Thematic Mapper (TM) scenes using a vegetation change tracker (VCT) model. Our analysis revealed that for the most part of 1990 s and between 2000 and 2005, Alabama lost about 2% of its forest on an annual basis due to disturbances, but much of the losses were balanced by forest regeneration from previous disturbances. The disturbance maps revealed that federal forests were reasonably well protected, with the fragmentation remaining relatively stable over time. In contrast, nonfederal forests, which are predominant in area share (about 95%), were heavily disturbed, clearly demonstrating decreasing levels of fragmentation during the time period 1987–1993 giving way to a subsequent accelerating fragmentation during the time period 1994–2005. Additionally, the identification of the statistical relationships between forest fragmentation status and forest loss rate and forest net change rate in relation to land ownership implied the distinct differences in forest cutting rate and cutting patterns between federal forests and nonfederal forests. The forest spatial change information derived from the model has provided valuable insights regarding regional forest management practices and disturbance regimes, which are closely associated with regional economics and environmental concerns.

  19. Strong influence of long-distance edge effect on herb-layer vegetation in forest fragments in an agricultural landscape

    Czech Academy of Sciences Publication Activity Database

    Hofmeister, J.; Hošek, J.; Brabec, Marek; Hédl, Radim; Modrý, M.

    2013-01-01

    Roč. 15, č. 6 (2013), s. 293-303 ISSN 1433-8319 Grant - others:GA MŽP(CZ) SM/6/69/05; GA MŽP(CZ) SP/2D3/139/07 Institutional support: RVO:67985807 ; RVO:67985939 Keywords : ancient forest * edge effect * habitat fragmentation * light condition * soil nutrients * species richness Subject RIV: BB - Applied Statistics, Operational Research; EH - Ecology, Behaviour (BU-J) Impact factor: 3.324, year: 2013

  20. Deforestation and Forest Fragmentation in South Ecuador since the 1970s - Losing a Hotspot of Biodiversity.

    Science.gov (United States)

    Tapia-Armijos, María Fernanda; Homeier, Jürgen; Espinosa, Carlos Iván; Leuschner, Christoph; de la Cruz, Marcelino

    2015-01-01

    Deforestation and fragmentation are major components of global change; both are contributing to the rapid loss of tropical forest area with important implications for ecosystem functioning and biodiversity conservation. The forests of South Ecuador are a biological 'hotspot' due to their high diversity and endemism levels. We examined the deforestation and fragmentation patterns in this area of high conservation value using aerial photographs and Aster satellite scenes. The registered annual deforestation rates of 0.75% (1976-1989) and 2.86% (1989-2008) for two consecutive survey periods, the decreasing mean patch size and the increasing isolation of the forest fragments show that the area is under severe threat. Approximately 46% of South Ecuador's original forest cover had been converted by 2008 into pastures and other anthropogenic land cover types. We found that deforestation is more intense at lower elevations (premontane evergreen forest and shrubland) and that the deforestation front currently moves in upslope direction. Improved awareness of the spatial extent, dynamics and patterns of deforestation and forest fragmentation is urgently needed in biologically diverse areas like South Ecuador.

  1. Genetics of Euglossini bees (Hymenoptera in fragments of the Atlantic Forest in the region of Viçosa, MG

    Directory of Open Access Journals (Sweden)

    A. M. Waldschmidt

    Full Text Available With uncontrolled deforestation, forest fragments remain, which in most cases are in different stages of regeneration and present isolated populations. In the present study we analyzed the genetic patterns of Eulaema nigrita populations in seven Atlantic Forest fragments of different sizes and successional stages in the region of Viçosa, MG. This was done by RAPD molecular markers. We observed that the area of the fragments had no effect on the genetic variability of E. nigrita in the direction predicted by meta-population models. Medium-sized well-preserved woods presented the lowest variability, whereas large and small woods were statistically identical. The evidence supports the notion that rural areas present greater dispersal among fragments, implying greater similarity between the populations of fragments located in rural areas when compared to fragments in urban areas.

  2. A 50-m forest cover map in Southeast Asia from ALOS/PALSAR and its application on forest fragmentation assessment.

    Directory of Open Access Journals (Sweden)

    Jinwei Dong

    Full Text Available Southeast Asia experienced higher rates of deforestation than other continents in the 1990s and still was a hotspot of forest change in the 2000s. Biodiversity conservation planning and accurate estimation of forest carbon fluxes and pools need more accurate information about forest area, spatial distribution and fragmentation. However, the recent forest maps of Southeast Asia were generated from optical images at spatial resolutions of several hundreds of meters, and they do not capture well the exceptionally complex and dynamic environments in Southeast Asia. The forest area estimates from those maps vary substantially, ranging from 1.73×10(6 km(2 (GlobCover to 2.69×10(6 km(2 (MCD12Q1 in 2009; and their uncertainty is constrained by frequent cloud cover and coarse spatial resolution. Recently, cloud-free imagery from the Phased Array Type L-band Synthetic Aperture Radar (PALSAR onboard the Advanced Land Observing Satellite (ALOS became available. We used the PALSAR 50-m orthorectified mosaic imagery in 2009 to generate a forest cover map of Southeast Asia at 50-m spatial resolution. The validation, using ground-reference data collected from the Geo-Referenced Field Photo Library and high-resolution images in Google Earth, showed that our forest map has a reasonably high accuracy (producer's accuracy 86% and user's accuracy 93%. The PALSAR-based forest area estimates in 2009 are significantly correlated with those from GlobCover and MCD12Q1 at national and subnational scales but differ in some regions at the pixel scale due to different spatial resolutions, forest definitions, and algorithms. The resultant 50-m forest map was used to quantify forest fragmentation and it revealed substantial details of forest fragmentation. This new 50-m map of tropical forests could serve as a baseline map for forest resource inventory, deforestation monitoring, reducing emissions from deforestation and forest degradation (REDD+ implementation, and

  3. Rates of species loss from Amazonian forest fragments

    Science.gov (United States)

    Ferraz, Gonçalo; Russell, Gareth J.; Stouffer, Philip C.; Bierregaard, Richard O.; Pimm, Stuart L.; Lovejoy, Thomas E.

    2003-01-01

    In the face of worldwide habitat fragmentation, managers need to devise a time frame for action. We ask how fast do understory bird species disappear from experimentally isolated plots in the Biological Dynamics of Forest Fragments Project, central Amazon, Brazil. Our data consist of mist-net records obtained over a period of 13 years in 11 sites of 1, 10, and 100 hectares. The numbers of captures per species per unit time, analyzed under different simplifying assumptions, reveal a set of species-loss curves. From those declining numbers, we derive a scaling rule for the time it takes to lose half the species in a fragment as a function of its area. A 10-fold decrease in the rate of species loss requires a 1,000-fold increase in area. Fragments of 100 hectares lose one half of their species in <15 years, too short a time for implementing conservation measures. PMID:14614134

  4. Seed predation by mammals in forest fragments in Monteverde, Costa Rica

    Directory of Open Access Journals (Sweden)

    Federico A Chinchilla

    2009-09-01

    Full Text Available Few studies have evaluated seed predation in fragmented landscapes, in which lower species diversity is expected to modifying ecological interactions. The rates of seed removal by mammals were investigated in a continuous forest and two fragmented patches of Premontane Tropical Moist Forest, in Monteverde, Costa Rica. The composition of mammalian seed-predators in each site was recorded during 16 months. The removal of four native tree species of experimental seeds: Ocotea valeriana and Ocotea whitei (Lauraceae, Panopsis costaricensis (Proteaceae and Billia colombiana (Hippocastanaceae in forest understories was followed during two annual fruiting seasons for each species. Results indicated similar species composition of seed-predators between continuous forest, the largest fragment (350 ha. However the smaller fragment (20 ha, had fewer seed predators. In this fragment, the specialized seed predator Heteromys desmarestianus (Rodentia was more abundant. Unexpectedly, seed-predation in the two forest fragments and the continuous forest did not differ statistically for any of the seed species. Apparently, the higher abundance of small seed-predators in the fragments was compensated by the absence of medium and large seed-predators, like Agouti paca, Dasyprocta punctata (both Rodentia and Pecari tajacu (Artiodactyla recorded in continuous forest. Removal of experimentally-placed seeds was higher when the number of naturally occurring seeds in the sites was lower. This result could best be attributed to differential satiation of seed predators rather than differences in richness or abundance of seed predators. Rev. Biol. Trop. 57 (3: 865-877. Epub 2009 September 30.Pocos estudios han evaluado la depredación de semillas en ambientes fragmentados, en éstos la menor diversidad de especies debe estar modificando las interacciones ecológicas. Se investigó la remoción de semillas por mamíferos en un bosque continuo y dos fragmentos en Monteverde

  5. Consequences of habitat fragmentation on genetic structure of Chamaedorea alternans (Arecaceae) palm populations in the tropical rain forests of Los Tuxtlas, Veracruz, Mexico

    OpenAIRE

    Peñaloza-Ramírez, Juan Manuel; Aguilar-Amezquita, Bernardo; Núñez-Farfán, Juan; Pérez-Nasser, Nidia; Albarrán-Lara, Ana Luisa; Oyama, Ken

    2016-01-01

    Abstract: Chamaedorea alternans is a palm species that has suffered from selective extraction, and habitat loss. We collected 11 populations from fragmented and conserved forest. We assess genetic variation of C. alternans, genetic exchange, differentiation, bottlenecks, effective population size and signals of natural selection. Genetic diversity was higher in conserved than in fragmented forest but not significant. Fragmentation did not play a significant role in genetic diversity, possibly...

  6. Predicting effects of rainforest fragmentation from live trapping studies of small mammals in Sri Lanka

    Directory of Open Access Journals (Sweden)

    M.R. Wijesinghe

    2012-06-01

    Full Text Available This paper examines the impact of forest fragmentation on small mammals inhabiting the rainforests of Sri Lanka. Fifteen forests ranging in size from 145 to 11000 ha were live-trapped for five to eight nights each in both interior and edge habitats, yielding a total of 18400 trap nights. A total of 444 individuals belonging to 10 species of small mammals were captured. Multiple-regression analysis incorporating three indicators of fragmentation: patch area, shape index (perimeter/area and degree of isolation, showed no significant effects on overall species richness of small mammals. This is likely because the decline of forest-adapted species from small forest fragments was accompanied by an increase in more tolerant and adaptive species. Patch size, however, had a significant positive effect on the abundance of small mammals. Of the two dominant species, the endemic Mus mayori was positively affected by patch area whilst Rattus rattus was not affected. Although no differences were evident between interior and edge habitats with respect to total species richness and abundance, endemics were more abundant in core areas while the reverse was true for the non-endemics. Core forest areas were significantly different from forest edges with respect to canopy cover, density of herbaceous vegetation, large trees and litter cover. These results suggest that forest fragmentation is detrimental to some forest specialists and beneficial to some generalists.

  7. The nexus between forest fragmentation in Africa and Ebola virus disease outbreaks

    Science.gov (United States)

    Rulli, Maria Cristina; Santini, Monia; Hayman, David T. S.; D'Odorico, Paolo

    2017-02-01

    Tropical forests are undergoing land use change in many regions of the world, including the African continent. Human populations living close to forest margins fragmented and disturbed by deforestation may be particularly exposed to zoonotic infections because of the higher likelihood for humans to be in contact with disease reservoirs. Quantitative analysis of the nexus between deforestation and the emergence of Ebola virus disease (EVD), however, is still missing. Here we use land cover change data in conjunction with EVD outbreak records to investigate the association between recent (2004-2014) outbreaks in West and Central Africa, and patterns of land use change in the region. We show how in these EVD outbreaks the index cases in humans (i.e. spillover from wildlife reservoirs) occurred mostly in hotspots of forest fragmentation.

  8. Landscape fragmentation, severe drought, and the new Amazon forest fire regime.

    Science.gov (United States)

    Alencar, Ane A; Brando, Paulo M; Asner, Gregory P; Putz, Francis E

    2015-09-01

    Changes in weather and land use are transforming the spatial and temporal characteristics of fire regimes in Amazonia, with important effects on the functioning of dense (i.e., closed-canopy), open-canopy, and transitional forests across the Basin. To quantify, document, and describe the characteristics and recent changes in forest fire regimes, we sampled 6 million ha of these three representative forests of the eastern and southern edges of the Amazon using 24 years (1983-2007) of satellite-derived annual forest fire scar maps and 16 years of monthly hot pixel information (1992-2007). Our results reveal that changes in forest fire regime properties differentially affected these three forest types in terms of area burned and fire scar size, frequency, and seasonality. During the study period, forest fires burned 15% (0.3 million ha), 44% (1 million ha), and 46% (0.6 million ha) of dense, open, and transitional forests, respectively. Total forest area burned and fire scar size tended to increase over time (even in years of average rainfall in open canopy and transitional forests). In dense forests, most of the temporal variability in fire regime properties was linked to El Nino Southern Oscillation (ENSO)-related droughts. Compared with dense forests, transitional and open forests experienced fires twice as frequently, with at least 20% of these forests' areas burning two or more times during the 24-year study period. Open and transitional forests also experienced higher deforestation rates than dense forests. During drier years, the end of the dry season was delayed by about a month, which resulted in larger burn scars and increases in overall area burned later in the season. These observations suggest that climate-mediated forest flammability is enhanced by landscape fragmentation caused by deforestation, as observed for open and transitional forests in the Eastern portion of the Amazon Basin.

  9. Assessment and monitoring of deforestation and forest fragmentation in South Asia since the 1930s

    Science.gov (United States)

    Sudhakar Reddy, C.; Saranya, K. R. L.; Vazeed Pasha, S.; Satish, K. V.; Jha, C. S.; Diwakar, P. G.; Dadhwal, V. K.; Rao, P. V. N.; Krishna Murthy, Y. V. N.

    2018-02-01

    The present study, first of its kind, has analyzed the land cover and investigated the spatial patterns of deforestation and forest fragmentation in South Asian region since the 1930's. This region comprises of eight countries: India, Bangladesh, Bhutan, Nepal, Pakistan, Afghanistan, Sri Lanka and Maldives. In South Asia, agricultural land is predominant constituting 43% of the total geographical area followed by barren land (19.99%) and forests (14.72%). The long-term change analysis using the classified maps of 1930 and 2014 indicated a loss of 29.62% of the forest cover. Higher annual net deforestation rates were observed in the period from 1930-1975 (0.68%) followed by 1975-1985 (0.23%), 1985-1995 (0.12%), 1995-2005 (0.06%) and 2005-2014 (0.04%) for the region. Forest fragmentation had significant spatio-temporal variation across the South Asian countries. In 1930, 88.91% of the South Asian forest was classified as large core forest, 8.18% as edge forest and 1.18% as perforated forest. The large core forest category has decreased significantly in area over last eight decades. The results of the present study are expected to serve as a reference for the evaluation of globally agreed Aichi biodiversity target 5 for South Asian countries. This study will be a valuable basis for developing management strategies and restoration programs as it tracks the spatial changes in deforestation and forest fragmentation.

  10. Temporary and space dynamics of the fragmentation of the native forest in the south of Chile

    International Nuclear Information System (INIS)

    Montenegro Calderon, Leyla M

    2001-01-01

    The degree of fragmentation of the remainders of native vegetation is evaluated in the hydro graphical basin of the River Damas, through the time. The native forests are had among the ecosystems bigger degree of fragmentation in the world environment. The fragmentation has been defined as the transformation of an originally continuous forest, in smaller varieties, generally anthropics that are hostile for they; These fragments behave as islands virtual immerses in an anthropic ocean and frequently they are analyzed in the context of the theory of the isolation bio geographic. The result of the fragmentation is a landscape in which they mix managed areas and transformed by the man with fragments of native vegetation, that is to say patches of different sizes and forms

  11. Deforestation and Forest Fragmentation in South Ecuador since the 1970s – Losing a Hotspot of Biodiversity

    Science.gov (United States)

    Tapia-Armijos, María Fernanda; Homeier, Jürgen; Espinosa, Carlos Iván; Leuschner, Christoph; de la Cruz, Marcelino

    2015-01-01

    Deforestation and fragmentation are major components of global change; both are contributing to the rapid loss of tropical forest area with important implications for ecosystem functioning and biodiversity conservation. The forests of South Ecuador are a biological ‘hotspot’ due to their high diversity and endemism levels. We examined the deforestation and fragmentation patterns in this area of high conservation value using aerial photographs and Aster satellite scenes. The registered annual deforestation rates of 0.75% (1976–1989) and 2.86% (1989–2008) for two consecutive survey periods, the decreasing mean patch size and the increasing isolation of the forest fragments show that the area is under severe threat. Approximately 46% of South Ecuador’s original forest cover had been converted by 2008 into pastures and other anthropogenic land cover types. We found that deforestation is more intense at lower elevations (premontane evergreen forest and shrubland) and that the deforestation front currently moves in upslope direction. Improved awareness of the spatial extent, dynamics and patterns of deforestation and forest fragmentation is urgently needed in biologically diverse areas like South Ecuador. PMID:26332681

  12. Composition and abundance of small mammal communities in forest fragments and vegetation corridors in Southern Minas Gerais, Brazil

    Directory of Open Access Journals (Sweden)

    Andréa O. Mesquita

    2012-09-01

    Full Text Available Habitat fragmentation leads to isolation and reduce habitat areas, in addition to a series of negative effects on natural populations, affecting richness, abundance and distribution of animal species. In such a text, habitat corridors serve as an alternative for connectivity in fragmented landscapes, minimizing the effects of structural isolation of different habitat areas. This study evaluated the richness, composition and abundance of small mammal communities in forest fragments and in the relevant vegetation corridors that connect these fragments, located in Southern Minas Gerais, Southeastern Brazil. Ten sites were sampled (five forest fragments and five vegetation corridors using the capture-mark-recapture method, from April 2007-March 2008. A total sampling effort of 6 300 trapnights resulted in 656 captures of 249 individuals. Across the 10 sites sampled, 11 small mammal species were recorded. Multidimensional scaling (MDS ordinations and ANOSIM based on the composition of small mammal communities within the corridor and fragment revealed a qualitative difference between the two environments. Regarding abundance, there was no significant difference between corridors and fragments. In comparing mean values of abundance per species in each environment, only Cerradomys subflavus showed a significant difference, being more abundant in the corridor environment. Results suggest that the presence of several small mammal species in the corridor environment, in relatively high abundances, could indicate corridors use as habitat, though they might also facilitate and/or allow the movement of individuals using different habitat patches (fragments.

  13. Ecological impacts of tropical forest fragmentation: how consistent are patterns in species richness and nestedness?

    Science.gov (United States)

    Hill, Jane K; Gray, Michael A; Khen, Chey Vun; Benedick, Suzan; Tawatao, Noel; Hamer, Keith C

    2011-11-27

    Large areas of tropical forest now exist as remnants scattered across agricultural landscapes, and so understanding the impacts of forest fragmentation is important for biodiversity conservation. We examined species richness and nestedness among tropical forest remnants in birds (meta-analysis of published studies) and insects (field data for fruit-feeding Lepidoptera (butterflies and moths) and ants). Species-area relationships were evident in all four taxa, and avian and insect assemblages in remnants typically were nested subsets of those in larger areas. Avian carnivores and nectarivores and predatory ants were more nested than other guilds, implying that the sequential loss of species was more predictable in these groups, and that fragmentation alters the trophic organization of communities. For butterflies, the ordering of fragments to achieve maximum nestedness was by fragment area, suggesting that differences among fragments were driven mainly by extinction. In contrast for moths, maximum nestedness was achieved by ordering species by wing length; species with longer wings (implying better dispersal) were more likely to occur at all sites, including low diversity sites, suggesting that differences among fragments were driven more strongly by colonization. Although all four taxa exhibited high levels of nestedness, patterns of species turnover were also idiosyncratic, and thus even species-poor sites contributed to landscape-scale biodiversity, particularly for insects.

  14. Characterizing the Status (Disturbed, Hybrid or Novel) of Swamp Forest Fragments in a Caribbean Ramsar Wetland: The Impact of Anthropogenic Degradation and Invasive Plant Species.

    Science.gov (United States)

    Prospere, Kurt; McLaren, Kurt P; Wilson, Byron

    2016-10-01

    The last remaining Amazonian-type swamp forest fragments in Black River Lower Morass, Jamaica, have been subjected to a myriad of anthropogenic disturbances, compounded by the establishment and spread of several invasive plant species. We established 44 permanent sample plots (covering 3.92 ha) across 10 of these swamp forest fragments and sampled all non-woody plants and all trees ≥2 cm DBH found in the plots. These data were used to (1) identify thresholds of hybridity and novelty, (2) derive several diversity and structural descriptors used to characterize the swamp forest fragments and (3) identify possible indicators of anthropogenic degradation. These were incorporated into a framework and used to determine the status of the swamp forest fragments so that appropriate management and conservation measures can be implemented. We recorded 43 woody plant species (9 endemic, 28 native and 4 non-native) and 21 non-tree species. The composition and structure of all the patches differed significantly due to the impact of the herbaceous invasive plant Alpinia allughas, the presence and diversity of other non-native plants, and differing intensities of anthropogenic disturbance (e.g., burning, cutting and harvesting of non-timber forest products). We ranked forest patches along a continuum representing deviations from a historical proxy (least disturbed) swamp forest to those with dramatically altered structural and floristic attributes (=novel swamp forests). Only one fragment overrun with A. allughas was classified as novel. If effective conservation and management does not come to the BRLM, the remaining swamp forest fragments appear doomed to further degradation and will soon disappear altogether.

  15. FLORULA URBAN FRAGMENT OF TROPICAL DRY FOREST

    Directory of Open Access Journals (Sweden)

    Willington Barranco-Pérez

    2016-01-01

    Full Text Available The aim of this study was to record the composition of plant species in an urban fragment of tropical dry forest of secondary regeneration (bs-T to generate information that can be used in the planning and management of green spaces in the city of Santa Marta. Transects of 2 x 50 m were established equivalent to 0.1 ha and all species were counted >1.0 cm DBH (Diameter at Breast Height: 1.3m. 100 species of angiosperms were recorded of which 47% have herbaceous habit. The number of species recorded in this study represents 39.6% of the species reported for the hills of Santa Marta and 3.8% for the dry forests of Colombia. It is suggested to isolate this type of secondary formations of any intervention and contemplate the reintroduction of individuals and conservation strategies.

  16. Relief influence on tree species richness in secondary forest fragments of Atlantic Forest, SE, Brazil

    OpenAIRE

    Silva,William Goulart da; Metzger,Jean Paul; Bernacci,Luis Carlos; Catharino,Eduardo Luís Martins; Durigan,Giselda; Simões,Sílvio

    2008-01-01

    The aim of this work was to explore the relationship between tree species richness and morphological characteristics of relief at the Ibiúna Plateau (SE Brazil). We sampled 61 plots of 0.30 ha, systematically established in 20 fragments of secondary forest (2-274 ha) and in three areas within a continuous secondary forest site, Morro Grande Reserve (9,400 ha). At each plot, 100 trees with diameter at breast height > 5 cm were sampled by the point centered quarter method, and total richness an...

  17. Effects of soil water table regime on tree community species richness and structure of alluvial forest fragments in Southeast Brazil.

    Science.gov (United States)

    Silva, A C; Higuchi, P; van den Berg, E

    2010-08-01

    In order to determine the influence of soil water table fluctuation on tree species richness and structure of alluvial forest fragments, 24 plots were allocated in a point bar forest and 30 plots in five forest fragments located in a floodplain, in the municipality of São Sebastião da Bela Vista, Southeast Brazil, totalizing 54, 10 X 20 m, plots. The information recorded in each plot were the soil water table level, diameter at breast height (dbh), total height and botanical identity off all trees with dbh > 5 cm. The water table fluctuation was assessed through 1 m deep observation wells in each plot. Correlations analysis indicated that sites with shallower water table in the flooding plains had a low number of tree species and high tree density. Although the water table in the point bar remained below the wells during the study period, low tree species richness was observed. There are other events taking place within the point bar forest that assume a high ecological importance, such as the intensive water velocity during flooding and sedimentation processes.

  18. Effects of soil water table regime on tree community species richness and structure of alluvial forest fragments in Southeast Brazil

    Directory of Open Access Journals (Sweden)

    AC. Silva

    Full Text Available In order to determine the influence of soil water table fluctuation on tree species richness and structure of alluvial forest fragments, 24 plots were allocated in a point bar forest and 30 plots in five forest fragments located in a floodplain, in the municipality of São Sebastião da Bela Vista, Southeast Brazil, totalizing 54, 10 X 20 m, plots. The information recorded in each plot were the soil water table level, diameter at breast height (dbh, total height and botanical identity off all trees with dbh > 5 cm. The water table fluctuation was assessed through 1 m deep observation wells in each plot. Correlations analysis indicated that sites with shallower water table in the flooding plains had a low number of tree species and high tree density. Although the water table in the point bar remained below the wells during the study period, low tree species richness was observed. There are other events taking place within the point bar forest that assume a high ecological importance, such as the intensive water velocity during flooding and sedimentation processes.

  19. Sleeping sites and latrines of spider monkeys in continuous and fragmented rainforests: implications for seed dispersal and forest regeneration.

    Directory of Open Access Journals (Sweden)

    Arturo González-Zamora

    Full Text Available Spider monkeys (Ateles geoffroyi use sites composed of one or more trees for sleeping (sleeping sites and sleeping trees, respectively. Beneath these sites/trees they deposit copious amounts of dung in latrines. This behavior results in a clumped deposition pattern of seeds and nutrients that directly impacts the regeneration of tropical forests. Therefore, information on the density and spatial distribution of sleeping sites and latrines, and the characteristics (i.e., composition and structure of sleeping trees are needed to improve our understanding of the ecological significance of spider monkeys in influencing forest composition. Moreover, since primate populations are increasingly forced to inhabit fragmented landscapes, it is important to assess if these characteristics differ between continuous and fragmented forests. We assessed this novel information from eight independent spider monkey communities in the Lacandona rainforest, Mexico: four continuous forest sites and four forest fragments. Both the density of sleeping sites and latrines did not differ between forest conditions. Latrines were uniformly distributed across sleeping sites, but the spatial distribution of sleeping sites within the areas was highly variable, being particularly clumped in forest fragments. In fact, the average inter-latrine distances were almost double in continuous forest than in fragments. Latrines were located beneath only a few tree species, and these trees were larger in diameter in continuous than fragmented forests. Because latrines may represent hotspots of seedling recruitment, our results have important ecological and conservation implications. The variation in the spatial distribution of sleeping sites across the forest indicates that spider monkeys likely create a complex seed deposition pattern in space and time. However, the use of a very few tree species for sleeping could contribute to the establishment of specific vegetation associations

  20. Sleeping sites and latrines of spider monkeys in continuous and fragmented rainforests: implications for seed dispersal and forest regeneration.

    Science.gov (United States)

    González-Zamora, Arturo; Arroyo-Rodríguez, Víctor; Oyama, Ken; Sork, Victoria; Chapman, Colin A; Stoner, Kathryn E

    2012-01-01

    Spider monkeys (Ateles geoffroyi) use sites composed of one or more trees for sleeping (sleeping sites and sleeping trees, respectively). Beneath these sites/trees they deposit copious amounts of dung in latrines. This behavior results in a clumped deposition pattern of seeds and nutrients that directly impacts the regeneration of tropical forests. Therefore, information on the density and spatial distribution of sleeping sites and latrines, and the characteristics (i.e., composition and structure) of sleeping trees are needed to improve our understanding of the ecological significance of spider monkeys in influencing forest composition. Moreover, since primate populations are increasingly forced to inhabit fragmented landscapes, it is important to assess if these characteristics differ between continuous and fragmented forests. We assessed this novel information from eight independent spider monkey communities in the Lacandona rainforest, Mexico: four continuous forest sites and four forest fragments. Both the density of sleeping sites and latrines did not differ between forest conditions. Latrines were uniformly distributed across sleeping sites, but the spatial distribution of sleeping sites within the areas was highly variable, being particularly clumped in forest fragments. In fact, the average inter-latrine distances were almost double in continuous forest than in fragments. Latrines were located beneath only a few tree species, and these trees were larger in diameter in continuous than fragmented forests. Because latrines may represent hotspots of seedling recruitment, our results have important ecological and conservation implications. The variation in the spatial distribution of sleeping sites across the forest indicates that spider monkeys likely create a complex seed deposition pattern in space and time. However, the use of a very few tree species for sleeping could contribute to the establishment of specific vegetation associations typical of the

  1. Comparison of Drosophilidae (Diptera) assemblages from two highland Araucaria Forest fragments, with and without environmental conservation policies

    OpenAIRE

    Cavasini, R; Buschini, MLT; Machado, LPB; Mateus, RP

    2014-01-01

    Flies from the Drosophilidae family are model organisms for biological studies and are often suggested as bioindicators of environmental quality. The Araucaria Forest, one of Atlantic Forest phyto-physiognomy, displays a highly fragmented distribution due to the expansion of agriculture and urbanization. Thus, this work aimed to evaluate and compare the drosophilid assemblages from two highland Araucaria Forest fragments, one a conservation unit (PMA – Parque Municipal das Araucárias) and the...

  2. Using Tree-Rings and Remote Sensing to Investigate Forest Productivity Response to Landscape Fragmentation in Northeastern Algeria

    Science.gov (United States)

    Rouini, N.; Lepley, K. S.; Messaoudene, M.

    2017-12-01

    Remote sensing and dendrochronology are valuable tools in the face of climate change and land use change, yet the connection between these resources remains largely unexploited. Research on forest fragmentation is mainly focused on animal groups, while our work focuses on tree communities. We link tree-rings and remotely-sensed Normalized Difference Vegetation Index (NDVI) using seasonal correlation analysis to investigate forest primary productivity response to fragmentation. Tree core samples from Quercus afares have been taken from two sites within the Guerrouche Forest in northeastern Algeria. The first site is located within a very fragmented area while the second site is intact. Fragmentation is estimated to have occurred with the construction of a road in 1930. We find raw tree-ring width chronologies from each site reveal growth release in the disturbed site after 1930. The means of each chronology for the 1930 to 2016 period are statistically different (p < 0.01). Based on these preliminary results we hypothesize that reconstructed primary productivity (NDVI) will be higher in the fragmented site after fragmentation took place.

  3. Abundance and survival rates of three leaf-litter frog species in fragments and continuous forest of the Mata Atlântica, Brazil

    Directory of Open Access Journals (Sweden)

    Henning Steinicke

    2018-04-01

    Full Text Available Habitat destruction and fragmentation alter the quality of habitats and put populations under the risk of extinction. Changes in population parameters can provide early warning signs of negative impacts. In tropical forests, where habitat loss and fragmentation are vast, such indicators are of high relevance for directing conservation efforts before effects are irreversible. Most of our knowledge from tropical ecosystems originates from community level surveys, whereas our understanding of the influence of habitat conversion on vital rates of species is limited. This study focused on the influence of anthropogenic habitat fragmentation on the survival probability and abundance of three leaf-litter frog species (Rhinella ornata, Ischnocnema guentheri and I. parva in forest patches of the Atlantic rainforest of South-east Brazil compared to a continuous forest. The species differ in their matrix tolerance: high for R. ornata and low for I. guentheri and I. parva and, thus, we examined whether their survival and abundance correspond to this classification. Ischnocnema guentheri showed highest abundances in all study sites and low mortality in the forest patches compared to the continuous forest; I. parva was encountered only in isolated fragments, with very low mortality in one isolated fragment; and the matrix tolerant species had generally low abundance and showed no clear pattern in terms of mortality in the different sites. Our counter-intuitive results show that even matrix sensitive amphibian species may show high abundance and low mortality in small forest patches. Therefore, these patches can be of high value for amphibian conservation regardless of their degree of matrix aversion. Landscape level conservation planning should not abandon small habitat patches, especially in highly fragmented tropical environments.

  4. Conservation value of a native forest fragment in a region of extensive agriculture.

    Science.gov (United States)

    Chiarello

    2000-05-01

    A survey of mammals and birds was carried out in a semi-deciduous forest fragment of 150 ha located in a zone of intensive agriculture in Ribeirão Preto, State of São Paulo, south-eastern Brazil. Line transect sampling was used to census mammals and birds during six days, totalling 27.8 km of trails and 27.8 hours of observation. Twenty mammal species were confirmed in the area (except bats and small mammals), including rare or endangered species, such as the mountain lion (Puma concolor), the maned wolf (Chrysocyon brachyurus), and the ocelot (Leopardus pardalis). The brown capuchin monkey (Cebus apella) and the black-tufted-ear marmoset (Callithrix penicillata) were found frequently, suggesting high population density in the fragment. Regarding the avifauna, 49 bird species were recorded, most of them typical of open areas or forest edges. Some confirmed species, however, are becoming increasingly rare in the region, as for example the muscovy duck (Cairina moschata) and the toco toucan (Ramphastos toco). The results demonstrate that forest fragment of this size are refuges for native fauna in a region dominated almost exclusively by sugar-cane plantations. Besides faunal aspects, the conservation of these fragments is of great importance for the establishment of studies related to species preservation in the long term, including reintroduction and translocation projects, as well as studies related to genetic health of isolated populations.

  5. Diversity and similarity of native forest fragments located in the northeast region of Minas Gerais

    Directory of Open Access Journals (Sweden)

    Christianne Riquetti Corsini

    2014-03-01

    Full Text Available In this study 26 distributed fragments of native forest in four located hydrographical Basins in the northeast region of Minas Gerais had been showed, with the purpose of analyzing the floristic similarity exists between 26 forest fragments native inserted in four basins in the northeast of the state of Minas Gerais and the diversity and evenness of physiognomies studied and groups of fragments formed. Systematic sampling with units was used shows of 1000 m² each, where the sample area varied of 1 the 6 has, as the area I break up of it. We measured the circumference at 1.30m (CAP and the total height and collected botanical material of all individuals with CAP greater or equal to 15.7 cm. Six groups were formed according to the floristic similarity coefficient Sorensen, with four groups there was an association of more than a physiognomy, showing regions of transition within the area. The Shannon diversity index, ranged from 2.236 in deciduous forest to 4.523 in Semideciduous Forest. The maximum and minimum values of evenness index Pielou were 0.850 and 0.616 , respectively. The floristic group 2 (Semideciduous Forest and Cerrado sensu stricto had the highest average value of diversity (3.585 and evenness (0.750 , and group 1 (Deciduous Forest had the lowest values (H': 2.426 and J': 0.687 .

  6. Bird community in an Araucaria forest fragment in relation to changes in the surrounding landscape in Southern Brazil

    Directory of Open Access Journals (Sweden)

    Pedro Scherer-Neto

    2012-12-01

    Full Text Available The dynamics of the bird community in a small forest fragment was evaluated along seven years in relation to changes in the surrounding landscape. The study area is an Araucaria forest fragment in Southern Brazil (state of Paraná. The sampling period covered the years 1988 through 1994 and the mark-release-recapture method was utilized. The landscape analysis was based on Landsat TM images, and changes in exotic tree plantations, native forest, open areas (agriculture, pasture, bare soil, and abandoned field, and "capoeira"(native vegetation < 2 m were quantified. The relationship between landscape changes and changes in abundance diversity of forest birds, open-area birds, forest-edge birds, and bamboo specialists was evaluated. Richness estimates were run for each year studied. The richness recorded in the study area comprised 96 species. The richness estimates were 114, 118 and 110 species for Chao 1, Jackknife 1 and Bootstrap, respectively. The bird community varied in species richness, abundance and diversity from year to year. As for species diversity, 1991, 1993 and 1994 were significantly different from the other years. Changes in the landscape contributed to the increase in abundance and richness for the groups of forest, open-area and bamboo-specialist species. An important factor discussed was the effect of the flowering of "taquara" (Poaceae, which contributed significantly to increasing richness of bamboo seed eaters, mainly in 1992 and 1993. In general, the results showed that landscape changes affected the dynamics and structure of the bird community of this forest fragment over time, and proved to have an important role in conservation of the avian community in areas of intensive forestry and agricultural activities.

  7. The impact of edge effect on termite community (Blattodea: Isoptera) in fragments of Brazilian Atlantic Rainforest.

    Science.gov (United States)

    Almeida, C S; Cristaldo, P F; Florencio, D F; Ribeiro, E J M; Cruz, N G; Silva, E A; Costa, D A; Araújo, A P A

    2017-01-01

    Habitat fragmentation is considered to be one of the biggest threats to tropical ecosystem functioning. In this region, termites perform an important ecological role as decomposers and ecosystem engineers. In the present study, we tested whether termite community is negatively affected by edge effects on three fragments of Brazilian Atlantic Rainforest. Termite abundance and vegetation structure were sampled in 10 transects (15 × 2 m), while termite richness, activity, and soil litter biomass were measured in 16 quadrants (5 × 2 m) at forest edge and interior of each fragment. Habitat structure (i.e. number of tree, diameter at breast height and soil litter biomass) did not differ between forest edge and interior of fragments. Termite richness, abundance and activity were not affected by edge effect. However, differences were observed in the β diversity between forest edge and interior as well as in the fragments sampled. The β diversity partitioning indicates that species turnover is the determinant process of termite community composition under edge effect. Our results suggest that conservation strategies should be based on the selection of several distinct sites instead of few rich sites (e.g. nesting).

  8. Sequential fragmentation of Pleistocene forests in an East Africa biodiversity hotspot: chameleons as a model to track forest history.

    Directory of Open Access Journals (Sweden)

    G John Measey

    Full Text Available The Eastern Arc Mountains (EAM is an example of naturally fragmented tropical forests, which contain one of the highest known concentrations of endemic plants and vertebrates. Numerous paleo-climatic studies have not provided direct evidence for ancient presence of Pleistocene forests, particularly in the regions in which savannah presently occurs. Knowledge of the last period when forests connected EAM would provide a sound basis for hypothesis testing of vicariance and dispersal models of speciation. Dated phylogenies have revealed complex patterns throughout EAM, so we investigated divergence times of forest fauna on four montane isolates in close proximity to determine whether forest break-up was most likely to have been simultaneous or sequential, using population genetics of a forest restricted arboreal chameleon, Kinyongia boehmei.We used mitochondrial and nuclear genetic sequence data and mutation rates from a fossil-calibrated phylogeny to estimate divergence times between montane isolates using a coalescent approach. We found that chameleons on all mountains are most likely to have diverged sequentially within the Pleistocene from 0.93-0.59 Ma (95% HPD 0.22-1.84 Ma. In addition, post-hoc tests on chameleons on the largest montane isolate suggest a population expansion ∼182 Ka.Sequential divergence is most likely to have occurred after the last of three wet periods within the arid Plio-Pleistocene era, but was not correlated with inter-montane distance. We speculate that forest connection persisted due to riparian corridors regardless of proximity, highlighting their importance in the region's historic dispersal events. The population expansion coincides with nearby volcanic activity, which may also explain the relative paucity of the Taita's endemic fauna. Our study shows that forest chameleons are an apposite group to track forest fragmentation, with the inference that forest extended between some EAM during the Pleistocene 1

  9. Termite assemblages in five semideciduous Atlantic Forest fragments in the northern coastland limit of the biome

    Directory of Open Access Journals (Sweden)

    Heitor Bruno de Araújo Souza

    2012-03-01

    Full Text Available Termites are abundant organisms in tropical ecosystems and strongly influence the litter decomposition and soil formation. Despite their importance, few studies about their assemblage structures have been made in Brazilian Atlantic Forest fragments, especially in the area located north of the São Francisco River. This study aims to analyze the assemblage composition of five Atlantic Forest fragments located in the northern biome limit along the Brazilian coast. A standardized sampling protocol of termites was applied in each fragment. Thirty-three termite species belonging to twenty genera and three families were found in the forest fragments. The wood-feeder group was dominant both concerning to species richness and number of encounters in all areas. In sites northern to 7°S, there is an evident simplification of the termite assemblage composition regarding species richness and number of encounters by feeding group. This fact is apparently due to a higher sandy level in soils and to semideciduous character of the vegetation in the northern fragments. Thus, even on the north of São Francisco River, termite biodiversity is heterogeneously spread with highest density of species in the portion between 07°S and São Francisco River mouth (10°29'S.

  10. Cumulative Effects of Barriers on the Movements of Forest Birds

    Directory of Open Access Journals (Sweden)

    Marc Bélisle

    2002-01-01

    Full Text Available Although there is a consensus of opinion that habitat fragmentation has deleterious effects on animal populations, primarily by inhibiting dispersal among remaining patches, there have been few explicit demonstrations of the ways by which degraded habitats actually constrain individual movement. Two impediments are primarily responsible for this paucity: it is difficult to separate the effects of habitat fragmentation (configuration from habitat loss (composition, and conventional measures of fragmented habitats are assumed to be, but probably are not, isotropic. We addressed these limitations by standardizing differences in forest cover in a clearly anisotropic configuration of habitat fragmentation by conducting a homing experiment with three species of forest birds in the Bow Valley of Banff National Park, Canada. Birds were translocated (1.2-3.5  km either parallel or perpendicular to four/five parallel barriers that are assumed to impede the cross-valley travel of forest-dependent animals. Taken together, individuals exhibited longer return times when they were translocated across these barriers, but differences among species suggest a more complex interpretation. A long-distance migrant (Yellow-rumped Warbler, Dendroica coronata behaved as predicted, but a short-distance migrant (Golden-crowned Kinglet, Regulus satrapa was indifferent to barrier configuration. A resident (Red-breasted Nuthatch, Sitta canadensis exhibited longer return times when it was translocated parallel to the barriers. Our results suggest that an anisotropic arrangement of small, open areas in fragmented landscapes can have a cumulative barrier effect on the movement of forest animals, but that both modelers and managers will have to acknowledge potentially counterintuitive differences among species to predict the effect that these may have on individual movement and, ultimately, dispersal.

  11. Landscape genetic analyses reveal fine-scale effects of forest fragmentation in an insular tropical bird.

    Science.gov (United States)

    Khimoun, Aurélie; Peterman, William; Eraud, Cyril; Faivre, Bruno; Navarro, Nicolas; Garnier, Stéphane

    2017-10-01

    Within the framework of landscape genetics, resistance surface modelling is particularly relevant to explicitly test competing hypotheses about landscape effects on gene flow. To investigate how fragmentation of tropical forest affects population connectivity in a forest specialist bird species, we optimized resistance surfaces without a priori specification, using least-cost (LCP) or resistance (IBR) distances. We implemented a two-step procedure in order (i) to objectively define the landscape thematic resolution (level of detail in classification scheme to describe landscape variables) and spatial extent (area within the landscape boundaries) and then (ii) to test the relative role of several landscape features (elevation, roads, land cover) in genetic differentiation in the Plumbeous Warbler (Setophaga plumbea). We detected a small-scale reduction of gene flow mainly driven by land cover, with a negative impact of the nonforest matrix on landscape functional connectivity. However, matrix components did not equally constrain gene flow, as their conductivity increased with increasing structural similarity with forest habitat: urban areas and meadows had the highest resistance values whereas agricultural areas had intermediate resistance values. Our results revealed a higher performance of IBR compared to LCP in explaining gene flow, reflecting suboptimal movements across this human-modified landscape, challenging the common use of LCP to design habitat corridors and advocating for a broader use of circuit theory modelling. Finally, our results emphasize the need for an objective definition of landscape scales (landscape extent and thematic resolution) and highlight potential pitfalls associated with parameterization of resistance surfaces. © 2017 John Wiley & Sons Ltd.

  12. Geostatistics and Geographic Information System to Analyze the Spatial Distribution of the Diversity of Anastrepha Species (Diptera: Tephritidae): the Effect of Forest Fragments in an Urban Area.

    Science.gov (United States)

    Garcia, A G; Araujo, M R; Uramoto, K; Walder, J M M; Zucchi, R A

    2017-12-08

    Fruit flies are among the most damaging insect pests of commercial fruit in Brazil. It is important to understand the landscape elements that may favor these flies. In the present study, spatial data from surveys of species of Anastrepha Schiner (Diptera: Tephritidae) in an urban area with forest fragments were analyzed, using geostatistics and Geographic Information System (GIS) to map the diversity of insects and evaluate how the forest fragments drive the spatial patterns. The results indicated a high diversity of species associated with large fragments, and a trend toward lower diversity in the more urbanized area, as the fragment sizes decreased. We concluded that the diversity of Anastrepha species is directly and positively related to large and continuous forest fragments in urbanized areas, and that combining geostatistics and GIS is a promising method for use in insect-pest management and sampling involving fruit flies. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Jaguars on the move: modeling movement to mitigate fragmentation from road expansion in the Mayan Forests

    DEFF Research Database (Denmark)

    Colchero, Fernando; Conde, Dalia Amor; Manterola, Carlos

    2011-01-01

    Road-induced habitat fragmentation is one of the greatest threats to large carnivores. Wildlife passes have been used to reduce fragmentation by mitigating the effects of roads as barriers to animal movement. However, direct observations of animals crossing roads are extremely rare and thus......-telemetry and GPS data to infer the movement behavior of jaguars Panthera onca as a response to vegetation, roads and human population density in the Mayan Forests of Mexico and Guatemala. We used the results of the model to simulate jaguars moving along a road that bisects the major reserve system in the area....... The aim of the simulations was to identify suitable locations for wildlife passes. We found that jaguars move preferentially to undisturbed forests and that females avoid moving close to roads and to areas with even low levels of human occupation. Males also avoid roads, but to a lesser degree, and appear...

  14. Mites associated to Xylopia aromatica (Lam. Mart. (Annonaceae in urban and rural fragments of semidecidual forest

    Directory of Open Access Journals (Sweden)

    Felipe M. Nuvoloni

    2011-12-01

    Full Text Available Mites associated to Xylopia aromatica (Lam. Mart. (Annonaceae in urban and rural fragments of semidecidual forest. Native plants can shelter a great diversity of mites. Notwithstanding, the conservation of the forest fragments where the plants are located can influence the structure of the mites community. Generally, in homogenous environments the diversity is lower due to the dominance of one or a few species. In this work, we studied the mite community on Xylopia aromatica (Lam. Mart. (Annonaceae in two fragments of semidecidual forest: one on rural and other on urban area. Seven individuals of X. aromatica were monthly sampled from April 2007 to March 2008, in each of these fragments. Descriptive indexes of diversity, dominance and evenness were applied to verify the ecological patterns of the mite community, besides the Student's t-test to compare the abundance between the fragments. We collected 27,365 mites of 37 species belonging to 11 families. Calacarus sp. (Eriophyidae was the most abundant species, representing 73% of the total sampled. The abundance was greater in the urban fragment (67.7%, with the diversity index reaching only 25% of the theoretical maximum expected. Probably, these values might have been influenced by the location of this fragment in the urban area, being more homogeneous and submitted directly to the presence of atmospheric pollution. In this manner, X. aromatica is able to shelter a higher diversity of mites when inserted in preserved ecosystems, since the highest diversity of available resources allows the establishment of richer and most diverse mite community.

  15. Association of pteridophyte species in two fragments of Atlantic Coastal Forest in the Brazilian Northeast

    Directory of Open Access Journals (Sweden)

    Iva Carneiro Leão Barros

    2006-09-01

    Full Text Available This study aims to investigate fern flora similarity and fern species relationships in the study areas, in terms of their substrates, habitat types, and life forms. The study was conducted in the Água Azul forest fragment, municipality of Timbaúba, Pernambuco, and the Maria Maior forest fragment, municipality of São José da Laje, Alagoas. The Jaccard similarity index was used for cluster analysis. The 112 species that occur in the two areas were used for numerical analysis. The floristic similarity was great (J=43.75%, principally due to similarities in the two areas vegetational types, as was expected due to their geographic proximity to one another and their similar climatic conditions. Five groups of associated species were determined for the Água Azul fragment and six groups for the Maria Maior fragment. In general, the ecological factors that determined fern species associations were habitat and type of substrate.

  16. Tree Regeneration in Church Forests of Ethiopia: Effects of Microsites and Management

    NARCIS (Netherlands)

    Wassie Eshete, A.; Sterck, F.J.; Teketay, D.; Bongers, F.

    2009-01-01

    Tree regeneration is severely hampered in the fragmented afromontane forests of northern Ethiopia. We explored how trees regenerate in remnant forests along the gradient from open field, forest edge to closed sites and canopy gaps inside the forest. We investigated the effects of seed sowing, litter

  17. Herpetofauna of an urban fragment of Atlantic Forest in Paraíba State, Northeast Brazil

    Directory of Open Access Journals (Sweden)

    Yuri C. C. Lima

    2008-03-01

    Full Text Available The Herpetofauna of an urban fragment of Atlantic Forest was investigated in relation to species richness and habitat use. Fourteen species of amphibian anurans pertaining to the families Bufonidae, Brachycephalidae, Hylidae, Leptodactylidae, Leiuperidae, Microhylidae and Ranidae were recorded. The reptiles were represented by 37 species, distributed in the families Gekkonidae, Gymnophthalmidae, Polychrotidae, Scincidae, Teiidae, Tropiduridae, Amphisbaenidae, Boidae, Colubridae, Elapidae, Typhlopidae, Chelidae, Testudinidae and Alligatoridae. Most of the recorded species presented wide geographic distribution, although some of them had distributions that were restricted to the Atlantic Forest. The species richness of Mata do Buraquinho is relatively high for an urban fragment of Atlantic Forest, and the observed anthropogenic impacts show the urgent necessity of conservation in order to guarantee the viability of populations of amphibians and reptiles.

  18. Species Richness and Phenology of Cerambycid Beetles in Urban Forest Fragments of Northern Delaware

    Science.gov (United States)

    K. Handley; J. Hough-Goldstein; L.M. Hanks; J.G. Millar; V. D' amico

    2015-01-01

    Cerambycid beetles are abundant and diverse in forests, but much about their host relationships and adult behavior remains unknown. Generic blends of synthetic pheromones were used as lures in traps, to assess the species richness, and phenology of cerambycids in forest fragments in northern Delaware. More than 15,000 cerambycid beetles of 69 species were trapped over...

  19. Response of the agile antechinus to habitat edge, configuration and condition in fragmented forest.

    Directory of Open Access Journals (Sweden)

    Christopher P Johnstone

    Full Text Available Habitat fragmentation and degradation seriously threaten native animal communities. We studied the response of a small marsupial, the agile antechinus Antechinus agilis, to several environmental variables in anthropogenically fragmented Eucalyptus forest in south-east Australia. Agile antechinus were captured more in microhabitats dominated by woody debris than in other microhabitats. Relative abundances of both sexes were positively correlated with fragment core area. Male and female mass-size residuals were smaller in larger fragments. A health status indicator, haemoglobin-haematocrit residuals (HHR, did not vary as a function of any environmental variable in females, but male HHR indicated better health where sites' microhabitats were dominated by shrubs, woody debris and trees other than Eucalyptus. Females were trapped less often in edge than interior fragment habitat and their physiological stress level, indicated by the neutrophil/lymphocyte ratio in peripheral blood, was higher where fragments had a greater proportion of edge habitat. The latter trend was potentially due to lymphopoenia resulting from stress hormone-mediated leukocyte trafficking. Using multiple indicators of population condition and health status facilitates a comprehensive examination of the effects of anthropogenic disturbances, such as habitat fragmentation and degradation, on native vertebrates. Male agile antechinus' health responded negatively to habitat degradation, whilst females responded negatively to the proportion of edge habitat. The health and condition indicators used could be employed to identify conservation strategies that would make habitat fragments less stressful for this or similar native, small mammals.

  20. PRELIMINARY RESULTS OF BOWL TRAPPING BEES (HYMENOPTERA, APOIDEA IN A SOUTHERN BRAZIL FOREST FRAGMENT

    Directory of Open Access Journals (Sweden)

    Rodrigo B. Gonçalves

    2013-05-01

    Full Text Available In recent years bowl traps have gained attention as a useful method for sampling bees and are now commonly used across the world for this purpose. However, specific questions about the method itself have not yet been tested on different regions of the globe. We present the preliminary results of bowl trapping in a Semidecidual Seasonal forest fragment in southern Brazil, including the test of two different color bowls, two different habitats, and the interaction of these variables in bee species number and composition. We used blue and yellow bowls in the border and in the core trails of the forest fragment. In five sampling days between October to December bowl traps captured 745 specimens of 37 morphospecies, with Halictinae bees being the richest and most abundant group. Non parametrical statistical analyses suggested that different colors of bowl traps influenced bee richness and composition and thus, they should be used together for a more complete sampling. Different trails influenced only the composition, while the interaction with different colors did not have a significant effect. These results, as well as the higher taxonomic composition of the inventoried bees, are similar to other studies reported in the literature.

  1. Mechanisms Driving Galling Success in a Fragmented Landscape: Synergy of Habitat and Top-Down Factors along Temperate Forest Edges.

    Directory of Open Access Journals (Sweden)

    Nina-S Kelch

    Full Text Available Edge effects play key roles in the anthropogenic transformation of forested ecosystems and their biota, and are therefore a prime field of contemporary fragmentation research. We present the first empirical study to address edge effects on the population level of a widespread galling herbivore in a temperate deciduous forest. By analyzing edge effects on abundance and trophic interactions of beech gall midge (Mikiola fagi Htg., we found 30% higher gall abundance in the edge habitat as well as lower mortality rates due to decreased top-down control, especially by parasitoids. Two GLM models with similar explanatory power (58% identified habitat specific traits (such as canopy closure and altitude and parasitism as the best predictors of gall abundance. Further analyses revealed a crucial influence of light exposure (46% on top-down control by the parasitoid complex. Guided by a conceptual framework synthesizing the key factors driving gall density, we conclude that forest edge proliferation of M. fagi is due to a complex interplay of abiotic changes and trophic control mechanisms. Most prominently, it is caused by the microclimatic regime in forest edges, acting alone or in synergistic concert with top-down pressure by parasitoids. Contrary to the prevailing notion that specialists are edge-sensitive, this turns M. fagi into a winner species in fragmented temperate beech forests. In view of the increasing proportion of edge habitats and the documented benefits from edge microclimate, we call for investigations exploring the pest status of this galling insect and the modulators of its biological control.

  2. Development of a spatial forest data base for the eastern boreal forest region of Ontario. Forest fragmentation and biodiversity project technical report No. 14

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    In 1991, a spatial forest database over large regions of Ontario was initiated as the basis for research into forest fragmentation and biodiversity using data generated from the digital analysis of LANDSAT thematic mapper satellite data integrated into a geographic information system (GIS). The project was later extended into the eastern segment of the Boreal forest system. This report describes preparation of the spatial forest data base over the eastern Boreal Forest Region that extends from the northern boundary of the Great Lakes-St. Lawrence Forest Region and the southern margin of the James Bay Lowland, between the Ontario-Quebec border and a point west of Michipicoten on Lake Superior. The report describes the methodology used to produce the data base and results, including mapping of water, dense and sparse conifer forest, mixed forest, dense and sparse deciduous forest, poorly vegetated areas, recent cutovers of less than 10 years, old cutovers and burns, recent burns of less than 10 years, wetlands, bedrock outcrops, agriculture, built-up areas, and mine tailings.

  3. An Amazonian rainforest and its fragments as a laboratory of global change.

    Science.gov (United States)

    Laurance, William F; Camargo, José L C; Fearnside, Philip M; Lovejoy, Thomas E; Williamson, G Bruce; Mesquita, Rita C G; Meyer, Christoph F J; Bobrowiec, Paulo E D; Laurance, Susan G W

    2018-02-01

    We synthesize findings from one of the world's largest and longest-running experimental investigations, the Biological Dynamics of Forest Fragments Project (BDFFP). Spanning an area of ∼1000 km 2 in central Amazonia, the BDFFP was initially designed to evaluate the effects of fragment area on rainforest biodiversity and ecological processes. However, over its 38-year history to date the project has far transcended its original mission, and now focuses more broadly on landscape dynamics, forest regeneration, regional- and global-change phenomena, and their potential interactions and implications for Amazonian forest conservation. The project has yielded a wealth of insights into the ecological and environmental changes in fragmented forests. For instance, many rainforest species are naturally rare and hence are either missing entirely from many fragments or so sparsely represented as to have little chance of long-term survival. Additionally, edge effects are a prominent driver of fragment dynamics, strongly affecting forest microclimate, tree mortality, carbon storage and a diversity of fauna. Even within our controlled study area, the landscape has been highly dynamic: for example, the matrix of vegetation surrounding fragments has changed markedly over time, succeeding from large cattle pastures or forest clearcuts to secondary regrowth forest. This, in turn, has influenced the dynamics of plant and animal communities and their trajectories of change over time. In general, fauna and flora have responded differently to fragmentation: the most locally extinction-prone animal species are those that have both large area requirements and low tolerance of the modified habitats surrounding fragments, whereas the most vulnerable plants are those that respond poorly to edge effects or chronic forest disturbances, and that rely on vulnerable animals for seed dispersal or pollination. Relative to intact forests, most fragments are hyperdynamic, with unstable or fluctuating

  4. Forest cover change and fragmentation using Landsat data in Maçka State Forest Enterprise in Turkey.

    Science.gov (United States)

    Cakir, Günay; Sivrikaya, Fatih; Keleş, Sedat

    2008-02-01

    Monitoring forest cover change and understanding the dynamic of forest cover is increasingly important in sustainable development and management of forest ecosystems. This paper uses remote sensing (RS) techniques to monitor forest cover change in Maçka State Forest Enterprise (MSFE) located in NE of Turkey through 1975 to 2000 and then analyses spatial and temporal changes in forest cover by Geographical Information Systems (GIS) and FRAGSTATStrade mark. Forest cover changes were detected from a time series of satellite images of Landsat MSS in 1975, Landsat TM in 1987, and Landsat ETM+ in 2000 using RS and GIS. The results showed that total forest area, productive forest area and degraded forest area increased while broadleaf forest area and non forest area decreased. Mixed forest and degraded forest increased during the first (1975-1987) period, but decreased during the second (1987-2000) period. During the whole study period, the annual forestation rate was 152 ha year(-1), equivalent to 0.27% year(-1) using the compound-interest-rate formula. The total number of patches increased from 36,204 to 48,092 (33%), and mean size of forest patch (MPS) decreased from 2.8 ha to 2.1 ha during a 25 year period. Number of smaller patches (patches in 0-100 ha size class) increased, indicating more fragmented landscape over time that might create a risk for the maintenance of biodiversity of the area. While total population increased from 1975 to 2000 (3.7%), rural population constantly decreased. The increase of forest areas may well be explained by the fact that demographic movement of rural areas concentrated into Maçka City Center. These figures also indicated that decrease in the rural population might likely lead to the release of human pressure to forest areas, probably resulting in a positive development of forest areas.

  5. Comparison of Drosophilidae (Diptera assemblages from two highland Araucaria Forest fragments, with and without environmental conservation policies

    Directory of Open Access Journals (Sweden)

    R Cavasini

    Full Text Available Flies from the Drosophilidae family are model organisms for biological studies and are often suggested as bioindicators of environmental quality. The Araucaria Forest, one of Atlantic Forest phyto-physiognomy, displays a highly fragmented distribution due to the expansion of agriculture and urbanization. Thus, this work aimed to evaluate and compare the drosophilid assemblages from two highland Araucaria Forest fragments, one a conservation unit (PMA – Parque Municipal das Araucárias and the other a private property without any conservational policy (FBL – Fazenda Brandalise, in space and time, using species abundances and richness, ecological indexes and Neotropical and exotic species proportions as parameters to establish the level of environmental quality of these fragments. Our results showed that the observed diversity in PMA (H′ = 2.221 was approximately 40% higher than in FBL (H′ = 1.592. This could be due to higher preservation quality and habitat diversity in PMA, indicating the importance of conservation units. However, richness were similar for these areas, with PMA (Dmg = 6.602 only 8% higher than FBL (Dmg = 6.128, which suggest that the larger distance from city limits and the larger size of FBL forested area could be compensating the higher disturbance caused by antrophic extractive exploitation of this fragment. This points out that, besides the quality of presevertion, the size and/or connection with other fragments should be considered for areas destined for biodiversity conservation. In general, both areas presented similar drosophilid assemblages, and the expressive abundance of both Neotropical species (mostly of the subgroup willistoni and the exotic species D. kikkawai suggests that these areas are in intermediate stages of conservation.

  6. Comparison of Drosophilidae (Diptera) assemblages from two highland Araucaria Forest fragments, with and without environmental conservation policies.

    Science.gov (United States)

    Cavasini, R; Buschini, M L T; Machado, L P B; Mateus, R P

    2014-11-01

    Flies from the Drosophilidae family are model organisms for biological studies and are often suggested as bioindicators of environmental quality. The Araucaria Forest, one of Atlantic Forest phyto-physiognomy, displays a highly fragmented distribution due to the expansion of agriculture and urbanization. Thus, this work aimed to evaluate and compare the drosophilid assemblages from two highland Araucaria Forest fragments, one a conservation unit (PMA - Parque Municipal das Araucárias) and the other a private property without any conservational policy (FBL - Fazenda Brandalise), in space and time, using species abundances and richness, ecological indexes and Neotropical and exotic species proportions as parameters to establish the level of environmental quality of these fragments. Our results showed that the observed diversity in PMA (H' = 2.221) was approximately 40% higher than in FBL (H' = 1.592). This could be due to higher preservation quality and habitat diversity in PMA, indicating the importance of conservation units. However, richness were similar for these areas, with PMA (Dmg = 6.602) only 8% higher than FBL (Dmg = 6.128), which suggest that the larger distance from city limits and the larger size of FBL forested area could be compensating the higher disturbance caused by antrophic extractive exploitation of this fragment. This points out that, besides the quality of presevertion, the size and/or connection with other fragments should be considered for areas destined for biodiversity conservation. In general, both areas presented similar drosophilid assemblages, and the expressive abundance of both Neotropical species (mostly of the subgroup willistoni) and the exotic species D. kikkawai suggests that these areas are in intermediate stages of conservation.

  7. Thermokarst rates intensify due to climate change and forest fragmentation in an Alaskan boreal forest lowland

    Science.gov (United States)

    Lara, M.; Genet, Helene; McGuire, A. David; Euskirchen, Eugénie S.; Zhang, Yujin; Brown, Dana R. N.; Jorgenson, M.T.; Romanovsky, V.; Breen, Amy L.; Bolton, W.R.

    2016-01-01

    Lowland boreal forest ecosystems in Alaska are dominated by wetlands comprised of a complex mosaic of fens, collapse-scar bogs, low shrub/scrub, and forests growing on elevated ice-rich permafrost soils. Thermokarst has affected the lowlands of the Tanana Flats in central Alaska for centuries, as thawing permafrost collapses forests that transition to wetlands. Located within the discontinuous permafrost zone, this region has significantly warmed over the past half-century, and much of these carbon-rich permafrost soils are now within ~0.5 °C of thawing. Increased permafrost thaw in lowland boreal forests in response to warming may have consequences for the climate system. This study evaluates the trajectories and potential drivers of 60 years of forest change in a landscape subjected to permafrost thaw in unburned dominant forest types (paper birch and black spruce) associated with location on elevated permafrost plateau and across multiple time periods (1949, 1978, 1986, 1998, and 2009) using historical and contemporary aerial and satellite images for change detection. We developed (i) a deterministic statistical model to evaluate the potential climatic controls on forest change using gradient boosting and regression tree analysis, and (ii) a 30 × 30 m land cover map of the Tanana Flats to estimate the potential landscape-level losses of forest area due to thermokarst from 1949 to 2009. Over the 60-year period, we observed a nonlinear loss of birch forests and a relatively continuous gain of spruce forest associated with thermokarst and forest succession, while gradient boosting/regression tree models identify precipitation and forest fragmentation as the primary factors controlling birch and spruce forest change, respectively. Between 1950 and 2009, landscape-level analysis estimates a transition of ~15 km² or ~7% of birch forests to wetlands, where the greatest change followed warm periods. This work highlights that the vulnerability and resilience of

  8. Species richness and relative abundance of birds in natural and anthropogenic fragments of Brazilian Atlantic forest

    Directory of Open Access Journals (Sweden)

    Luiz dos Anjos

    2004-06-01

    Full Text Available Bird communities were studied in two types of fragmented habitat of Atlantic forest in the State of Paraná, southern Brazil; one consisted of forest fragments that were created as a result of human activities (forest remnants, the other consisted of a set of naturally occurring forest fragments (forest patches. Using quantitative data obtained by the point counts method in 3 forest patches and 3 forest remnants during one year, species richness and relative abundance were compared in those habitats, considering species groups according to their general feeding habits. Insectivores, omnivores, and frugivores presented similar general tendencies in both habitats (decrease of species number with decreasing size and increasing isolation of forest fragment. However, these tendencies were different, when considering the relative abundance data: the trunk insectivores presented the highest value in the smallest patch while the lowest relative abundance was in the smallest remnant. In the naturally fragmented landscape, time permitted that the loss of some species of trunk insectivores be compensated for the increase in abundance of other species. In contrast, the remnants essentially represented newly formed islands that are not yet at equilibrium and where future species losses would make them similar to the patches.Comunidades de aves foram estudadas em duas regiões fragmentadas de floresta Atlântica no Estado do Paraná, sul do Brasil; uma região é constituída de fragmentos florestais que foram criados como resultado de atividades humanas (remanescentes florestais e a outra de um conjunto de fragmentos florestais naturais (manchas de floresta. Usando dados quantitativos (o método de contagens pontuais previamente obtidos em 3 manchas de floresta e em 3 remanescentes florestais durante um ano, a riqueza e a abundância relativa de aves foram comparadas naqueles habitats considerando as espécies pelos seus hábitos alimentares. Inset

  9. Forests on the edge: Microenvironmental drivers of carbon cycle response to edge effects

    Science.gov (United States)

    Reinmann, A.; Hutyra, L.; Smith, I. A.; Thompson, J.

    2017-12-01

    Twenty percent of the world's forest is within 100 m of a forest edge, but much of our understanding of forest carbon (C) cycling comes from large, intact ecosystems, which creates an important mismatch between the landscapes we study and those we aim to characterize. The temperate broadleaf forest is the most heavily fragmented forest biome in the world and its growth and carbon storage responses to forest edge effects appear to be the opposite of those in the tropical and boreal regions. We used field measurements to quantify the drivers of temperate forest C cycling response to edge effects, characterizing vegetative growth, respiration, and forest structure. We find large gradients in air and soil temperature from the forest interior to edge (up to 4 and 10° C, respectively) and the magnitude of this gradient is inversely correlated to the size of the forest edge growth enhancement. Further, leaf area index increases with proximity to the forest edge. While we also find increases in soil respiration between the forest interior and edge, this flux is small relative to aboveground growth enhancement near the edge. These findings represent an important advancement in our understanding of forest C cycle response to edge effects and will greatly improve our capacity to constrain biogenic C fluxes in fragmented and heterogeneous landscapes.

  10. Forest Fragmentation in the Lower Amazon Floodplain: Implications for Biodiversity and Ecosystem Service Provision to Riverine Populations

    Directory of Open Access Journals (Sweden)

    Vivian Renó

    2016-10-01

    Full Text Available This article analyzes the process of forest fragmentation of a floodplain landscape of the Lower Amazon over a 30-year period and its implications for the biodiversity and the provision of ecosystem services to the riverine population. To this end, we created a multi-temporal forest cover map based on Landsat images, and then analyzed the fragmentation dynamics through landscape metrics. From the analyses of the landscape and bibliographic information, we made inferences regarding the potential impacts of fragmentation on the biodiversity of trees, birds, mammals and insects. Subsequently, we used data on the local populations’ environmental perception to assess whether the inferred impacts on biodiversity are perceived by these populations and whether the ecosystem services related to the biodiversity of the addressed groups are compromised. The results show a 70% reduction of the forest habitat as well as important changes in the landscape structure that constitute a high degree of forest fragmentation. The perceived landscape alterations indicate that there is great potential for compromise of the biodiversity of trees, birds, mammals and insects. The field interviews corroborate the inferred impacts on biodiversity and indicate that the ecosystem services of the local communities have been compromised. More than 95% of the communities report a decreased variety and/or abundance of animal and plant species, 46% report a decrease in agricultural productivity, and 19% confirm a higher incidence of pests during the last 30 years. The present study provides evidence of an accelerated process of degradation of the floodplain forests of the Lower Amazon and indicate substantial compromise of the ecosystem services provision to the riverine population in recent decades, including reductions of food resources (animals and plants, fire wood, raw material and medicine, as well as lower agricultural productivity due to probable lack of pollination

  11. Multimodeling Framework for Predicting Water Quality in Fragmented Agriculture-Forest Ecosystems

    Science.gov (United States)

    Rose, J. B.; Guber, A.; Porter, W. F.; Williams, D.; Tamrakar, S.; Dechen Quinn, A.

    2012-12-01

    Both livestock and wildlife are major contributors of nonpoint pollution of surface water bodies. The interactions among them can substantially increase the chance of contamination especially in fragmented agriculture-forest landscapes, where wildlife (e.g. white tailed deer) can transmit diseases between remote farms. Unfortunately, models currently available for predicting fate and transport of microorganisms in these ecosystems do not account for such interactions. The objectives of this study are to develop and test a multimodeling framework that assesses the risk of microbial contamination of surface water caused by wildlife-livestock interactions in fragmented agriculture-forest ecosystems. The framework consists of a modified Soil Water Assessment Tool (SWAT), KINematic Runoff and EROSion model (KINEROS2) with the add-on module STWIR (Microorganism Transport with Infiltration and Runoff), RAMAS GIS, SIR compartmental model and Quantitative Microbial Risk Assessment model (QMRA). The watershed-scale model SWAT simulates plant biomass growth, wash-off of microorganisms from foliage and soil, overland and in-stream microbial transport, microbial growth, and die-off in foliage and soil. RAMAS GIS model predicts the most probable habitat and subsequent population of white-tailed deer based on land use and crop biomass. KINEROS-STWIR simulates overland transport of microorganisms released from soil, surface applied manure, and fecal deposits during runoff events at high temporal and special resolutions. KINEROS-STWIR and RAMAS GIS provide input for an SIR compartmental model which simulates disease transmission within and between deer groups. This information is used in SWAT model to account for transmission and deposition of pathogens by white tailed deer in stream water, foliage and soil. The QMRA approach extends to microorganisms inactivated in forage and water consumed by deer. Probabilities of deer infections and numbers of infected animals are computed

  12. Change and fragmentation trends of Zhanjiang mangrove forests in southern China using multi-temporal Landsat imagery (1977-2010)

    Science.gov (United States)

    Li, M. S.; Mao, L. J.; Shen, W. J.; Liu, S. Q.; Wei, A. S.

    2013-09-01

    Mangrove forests, which are found in saline coastal environments around the tropical and subtropical latitudes, are among the most productive terrestrial ecosystems in the world and provide valuable ecological and societal goods and services. The objective of this work was to characterize the spatio-temporal changes in mangrove distribution and fragmentation patterns in the Zhanjiang National Mangrove Forest Nature Reserve, Guangdong province of Southern China, from 1977 through 2010. In addition, a major goal was to assess the socio-economic drivers contributing to the chronic changes taking place within and around the mangrove reserve. Land use and land cover data sets were generated for the reserve for multiple years via unsupervised classification using Landsat time series images. Mangrove fragmentation patterns were then assessed with a fragmentation model. Results revealed that the mangrove spatial extent decreased sharply during the period from 1977 to 1991 due to deforestation caused by diverse development programs, particularly shrimp farming. Afterwards, there was a continuous increase in mangrove extent from 1991 to 2010 due to afforestation and conservation efforts. The mangrove fragmentation trends depicted by the fragmentation model had a high degree of correlation with the observed areal changes. Additionally, the recorded dynamics of the local biodiversity (mainly birds) were consistent with the mangrove ecosystem fragmentation trends over time, and different fragmentation components, including interior, perforated and edge, had distinct impacts on the local mangrove-dependent biodiversity. The most effective way to protect and expand the current mangroves include the following: (1) establishment of mangrove natural reserves, (2) forceful implementation of regulations, (3) establishment of educational programs related to mangrove management, (4) deepening international exchanges and cooperation and (5) increasing the transparency of the project

  13. Edge-effect interactions in fragmented and patchy landscapes.

    Science.gov (United States)

    Porensky, Lauren M; Young, Truman P

    2013-06-01

    Ecological edges are increasingly recognized as drivers of landscape patterns and ecosystem processes. In fragmented and patchy landscapes (e.g., a fragmented forest or a savanna with scattered termite mounds), edges can become so numerous that their effects pervade the entire landscape. Results of recent studies in such landscapes show that edge effects can be altered by the presence or proximity of other nearby edges. We considered the theoretical significance of edge-effect interactions, illustrated various landscape configurations that support them and reviewed existing research on this topic. Results of studies from a variety of locations and ecosystem types show that edge-effect interactions can have significant consequences for ecosystems and conservation, including higher tree mortality rates in tropical rainforest fragments, reduced bird densities in grassland fragments, and bush encroachment and reduced wildlife densities in a tropical savanna. To clarify this underappreciated concept and synthesize existing work, we devised a conceptual framework for edge-effect interactions. We first worked to reduce terminological confusion by clarifying differences among terms such as edge intersection and edge interaction. For cases in which nearby edge effects interact, we proposed three possible forms of interaction: strengthening (presence of a second edge causes stronger edge effects), weakening (presence of a second edge causes weaker edge effects), and emergent (edge effects change completely in the presence of a second edge). By clarifying terms and concepts, this framework enables more precise descriptions of edge-effect interactions and facilitates comparisons of results among disparate study systems and response variables. A better understanding of edge-effect interactions will pave the way for more appropriate modeling, conservation, and management in complex landscapes. © 2013 Society for Conservation Biology.

  14. Efeitos de área e de borda sobre a estrutura florestal em fragmentos de floresta de terra-firme após 13-17 anos de isolamento Area and edge effects on forest structure in Amazonian forest fragments after 13-17 years of isolation

    Directory of Open Access Journals (Sweden)

    Henrique E. M. Nascimento

    2006-01-01

    significantly among the four size categories and the two edge distance classes. However, forest fragments and distance 300 m from the edge, respectively. There were no significant differences among the size categories for standing dead trees. Forest fragments, however, had more quantity of LCG and LCF than did continuous forests. Moreover, distances 300 m. We performed an ANCOVA to assess whether differences in LCG and LCF in fragments were due to proximity of forest borders. An ANCOVA showed that there was no significant effect of fragment size on necromass, but a significant effect of edge distance on both LCG and LCF. The quantity of LCG and LCF was correlated negatively with edge distance sites close to the edge presented over 40-60% more LCG than sites far from the edges in both forest fragments and continuous forests.

  15. Time-Lag in Responses of Birds to Atlantic Forest Fragmentation: Restoration Opportunity and Urgency.

    Science.gov (United States)

    Uezu, Alexandre; Metzger, Jean Paul

    2016-01-01

    There are few opportunities to evaluate the relative importance of landscape structure and dynamics upon biodiversity, especially in highly fragmented tropical landscapes. Conservation strategies and species risk evaluations often rely exclusively on current aspects of landscape structure, although such limited assumptions are known to be misleading when time-lag responses occur. By relating bird functional-group richness to forest patch size and isolation in ten-year intervals (1956, 1965, 1978, 1984, 1993 and 2003), we revealed that birds with different sensitivity to fragmentation display contrasting responses to landscape dynamics in the Brazilian Atlantic Forest. For non-sensitive groups, there was no time-lag in response: the recent degree of isolation best explains their variation in richness, which likely relates to these species' flexibility to adapt to changes in landscape structure. However, for sensitive bird groups, the 1978 patch area was the best explanatory variable, providing evidence for a 25-year time-lag in response to habitat reduction. Time-lag was more likely in landscapes that encompass large patches, which can support temporarily the presence of some sensitive species, even when habitat cover is relatively low. These landscapes potentially support the most threatened populations and should be priorities for restoration efforts to avoid further species loss. Although time-lags provide an opportunity to counteract the negative consequences of fragmentation, it also reinforces the urgency of restoration actions. Fragmented landscapes will be depleted of biodiversity if landscape structure is only maintained, and not improved. The urgency of restoration action may be even higher in landscapes where habitat loss and fragmentation history is older and where no large fragment remained to act temporarily as a refuge.

  16. Blow Flies from Forest Fragments Embedded in Different Land Uses: Implications for Selecting Indicators in Forensic Entomology.

    Science.gov (United States)

    de Souza, Mirian S; Pepinelli, Mateus; de Almeida, Eduardo C; Ochoa-Quintero, Jose M; Roque, Fabio O

    2016-01-01

    Given the general expectation that forest loss can alter biodiversity patterns, we hypothesize that blow fly species abundances differ in a gradient of native vegetation cover. This study was conducted in 17 fragments across different landscapes in central Brazil. Different land cover type proportions were used to represent landscape structure. In total, 2334 specimens of nine species of Calliphoridae were collected. We used principal component analysis (PCA) to reduce dimensionality and multicollinearity of the landscape data. The first component explained 70%, and it represented a gradient of forest-pasture land uses. Alien species showed a wide distribution in different fragments with no clear relationship between the abundance values and the scores of PCA axes, whereas native species occurred only in areas with a predominance of forest cover. Our study revealed that certain native species may be sensitive to forest loss at the landscape scale, and they represent a bioindicator in forensic entomology. © 2015 American Academy of Forensic Sciences.

  17. Are Plant Species’ Richness and Diversity Influenced by Fragmentation at a Microscale?

    Directory of Open Access Journals (Sweden)

    Jesús Aguirre-Gutiérrez

    2014-01-01

    Full Text Available It is argued that forest fragmentation has negative effects on biodiversity at the short and long term; however, these effects might be dependent on the specific vegetation of the study area and its intrinsic characteristics. The processes leading to fragmentation are very diverse and many of them have anthropogenic causes as logging actions and clearings for agricultural fields. Furthermore, it is thought that scale plays an important role in the expected effects of fragmentation on biodiversity. In this study the effect of forest fragmentation and its impact on the woody plants species, richness and diversity are analysed considering three vegetation types in a poorly studied and difficult access biodiversity hotspot in northern Mexico. The results show that the effects of fragmentation are dependent on the vegetation type and that these are not strongly related to the species richness, and diversity in a microscale (100 m2. Fragmentation effects on biodiversity must be analysed in a broad scale, considering the fragment as a whole. Furthermore, conservation priority should be given to the larger fragments, which could potentially maintain a higher portion of biodiversity. Management should also be focused on increasing the connectivity between these big and medium size forest patches.

  18. Effects of dam-induced landscape fragmentation on amazonian ant-plant mutualistic networks.

    Science.gov (United States)

    Emer, Carine; Venticinque, Eduardo Martins; Fonseca, Carlos Roberto

    2013-08-01

    Mutualistic networks are critical to biological diversity maintenance; however, their structures and functionality may be threatened by a swiftly changing world. In the Amazon, the increasing number of dams poses a large threat to biological diversity because they greatly alter and fragment the surrounding landscape. Tight coevolutionary interactions typical of tropical forests, such as the ant-myrmecophyte mutualism, where the myrmecophyte plants provide domatia nesting space to their symbiotic ants, may be jeopardized by the landscape changes caused by dams. We analyzed 31 ant-myrmecophyte mutualistic networks in undisturbed and disturbed sites surrounding Balbina, the largest Central Amazonian dam. We tested how ant-myrmecophyte networks differ among dam-induced islands, lake edges, and undisturbed forests in terms of species richness, composition, structure, and robustness (number of species remaining in the network after partner extinctions). We also tested how landscape configuration in terms of area, isolation, shape, and neighborhood alters the structure of the ant-myrmecophyte networks on islands. Ant-myrmecophytic networks were highly compartmentalized in undisturbed forests, and the compartments had few strongly connected mutualistic partners. In contrast, networks at lake edges and on islands were not compartmentalized and were negatively affected by island area and isolation in terms of species richness, density, and composition. Habitat loss and fragmentation led to coextinction cascades that contributed to the elimination of entire ant-plant compartments. Furthermore, many myrmecophytic plants in disturbed sites lost their mutualistic ant partners or were colonized by opportunistic, nonspecialized ants. Robustness of ant-myrmecophyte networks on islands was lower than robustness near lake edges and in undisturbed forest and was particularly susceptible to the extinction of plants. Beyond the immediate habitat loss caused by the building of large dams

  19. STRUCTURAL CHARACTERIZATION OF A SEMIDECIDUOUS FOREST FRAGMENT IN IBITURUNA COUNTY, MG

    Directory of Open Access Journals (Sweden)

    Vagner Fernandes da Silva

    2003-01-01

    Full Text Available A survey describing the physiognomic structure and the species composition and diversityof the tree community was carried out in a fragment of tropical semideciduous forest. The forestfragment, with an area of 57ha, is situated at 21 °09’S of latitude and 44 °50’W of longitude, in Ibiturunacounty, Minas Gerais state, Brazil. The surveys were carried out in two sectors of the fragment,Slope and Valley, where 26 (20 ×20m plots were located. All trees with diameter at breast height dbh ≥ 5 cm were identified and measured (diameter and height. The survey registered 1008 tree,distributed in 191 species, 128 genera and 54 families; 20 species were added to this total andregistered during incursions outside the plots. The Fabaceae (Leguminosae family stood out for itsrichness of species (30 and genera (18, representing 15,7% of the total species registered. In secondplace, the Myrtaceae family presented 20 species and 9 genera, followed by the Lauraceae family,with 17 species and 7 genera. Other families that contributed with an expressive number of specieswere: Meliaceae, with 11; Euphorbiaceae, with 8; Malvaceae and Rubiaceae, both with 7 species.This floristic profile may be considered typical of the semideciduous forests of the region.

  20. forest birds in the Ongoye Forest Reserve, KwaZulu-Natal

    African Journals Online (AJOL)

    1997-02-03

    Feb 3, 1997 ... Amazonian Peru to support the edge-effect principle. By choosing a large forest and ... rodents, anurans; see Laurance 1990) is overdue. We also agree with .... Edge and other effects of isolation on Amazon forest fragments.

  1. Beyond the fragmentation threshold hypothesis: regime shifts in biodiversity across fragmented landscapes.

    Directory of Open Access Journals (Sweden)

    Renata Pardini

    Full Text Available Ecological systems are vulnerable to irreversible change when key system properties are pushed over thresholds, resulting in the loss of resilience and the precipitation of a regime shift. Perhaps the most important of such properties in human-modified landscapes is the total amount of remnant native vegetation. In a seminal study Andrén proposed the existence of a fragmentation threshold in the total amount of remnant vegetation, below which landscape-scale connectivity is eroded and local species richness and abundance become dependent on patch size. Despite the fact that species patch-area effects have been a mainstay of conservation science there has yet to be a robust empirical evaluation of this hypothesis. Here we present and test a new conceptual model describing the mechanisms and consequences of biodiversity change in fragmented landscapes, identifying the fragmentation threshold as a first step in a positive feedback mechanism that has the capacity to impair ecological resilience, and drive a regime shift in biodiversity. The model considers that local extinction risk is defined by patch size, and immigration rates by landscape vegetation cover, and that the recovery from local species losses depends upon the landscape species pool. Using a unique dataset on the distribution of non-volant small mammals across replicate landscapes in the Atlantic forest of Brazil, we found strong evidence for our model predictions--that patch-area effects are evident only at intermediate levels of total forest cover, where landscape diversity is still high and opportunities for enhancing biodiversity through local management are greatest. Furthermore, high levels of forest loss can push native biota through an extinction filter, and result in the abrupt, landscape-wide loss of forest-specialist taxa, ecological resilience and management effectiveness. The proposed model links hitherto distinct theoretical approaches within a single framework

  2. Temporal Changes in Forest Contexts at Multiple Extents: Three Decades of Fragmentation in the Gran Chaco (1979-2010), Central Argentina

    Science.gov (United States)

    Frate, Ludovico; Acosta, Alicia T. R.; Cabido, Marcelo; Hoyos, Laura; Carranza, Maria Laura

    2015-01-01

    The context in which a forest exists strongly influences its function and sustainability. Unveiling the multi-scale nature of forest fragmentation context is crucial to understand how human activities affect the spatial patterns of forests across a range of scales. However, this issue remains almost unexplored in subtropical ecosystems. In this study, we analyzed temporal changes (1979–2010) in forest contexts in the Argentinean dry Chaco at multiple extents. We classified forests over the last three decades based on forest context amount (P f) and structural connectivity (P ff), which were measured using a moving window approach fixed at eight different extents (from local, ~ 6 ha, to regional, ~ 8300 ha). Specific multi-scale forest context profiles (for the years 1979 and 2010) were defined by projecting P f vs. P ff mean values and were compared across spatial extents. The distributions of P f across scales were described by scalograms and their shapes over time were compared. The amount of agricultural land and rangelands across the scales were also analyzed. The dry Chaco has undergone an intensive process of fragmentation, resulting in a shift from landscapes dominated by forests with gaps of rangelands to landscapes where small forest patches are embedded in agricultural lands. Multi-scale fragmentation analysis depicted landscapes in which local exploitation, which perforates forest cover, occurs alongside extensive forest clearings, reducing forests to small and isolated patches surrounded by agricultural lands. In addition, the temporal diminution of P f’s variability along with the increment of the mean slope of the P f ‘s scalograms, indicate a simplification of the spatial pattern of forest over time. The observed changes have most likely been the result of the interplay between human activities and environmental constraints, which have shaped the spatial patterns of forests across scales. Based on our results, strategies for the conservation

  3. Forest fragments as barriers to fruit fly dispersal: Anastrepha (Diptera: Tephritidae) populations in orchards and adjacent forest fragments in Puerto Rico.

    Science.gov (United States)

    Jenkins, David A; Kendra, Paul E; Van Bloem, Skip; Whitmire, Stefanie; Mizell, Russ; Goenaga, Ricardo

    2013-04-01

    McPhail-type traps baited with ammonium acetate and putrescine were used to monitor populations of Anastrepha obliqua (Macquart) and Anastrepha suspensa (Loew) in two orchards with hosts of these flies (mango, Mangifera indica L., and carambola, Averrhoa carambola L.), as well as in forest fragments bordering these orchards. Contour maps were constructed to measure population distributions in and around orchards. Our results indicate that Anastrepha populations are focused around host fruit in both space and time, that traps do not draw fruit flies away from hosts, even when placed within 15 m of the host, and that lures continue to function for 6 mo in the field. The contour mapping analyses reveal that populations of fruit flies are focused around ovipositional hosts. Although the trapping system does not have a very long effective sampling range, it is ideal, when used in combination with contour analyses, for assessing fine-scale (on the order of meters) population distributions, including identifying resources around which fly populations are focused or, conversely, assessing the effectiveness of management tools. The results are discussed as they pertain to monitoring and detecting Anastrepha spp. with the McPhail-type trap and ammonium acetate and putrescine baiting system and the dispersal of these flies within Puerto Rico.

  4. Habitat degradation and seasonality affect physiological stress levels of Eulemur collaris in littoral forest fragments.

    Directory of Open Access Journals (Sweden)

    Michela Balestri

    Full Text Available The littoral forest on sandy soil is among the most threatened habitats in Madagascar and, as such, it represents a hot-spot within a conservation hot-spot. Assessing the health of the resident lemur fauna is not only critical for the long-term viability of these populations, but also necessary for the future re-habilitation of this unique habitat. Since the Endangered collared brown lemur, Eulemur collaris, is the largest seed disperser of the Malagasy south-eastern littoral forest its survival in this habitat is crucial. In this study we compared fecal glucocorticoid metabolite (fGCM levels, a measure of physiological stress and potential early indicator of population health, between groups of collared brown lemurs living in a degraded forest fragment and groups occurring in a more preserved area. For this, we analysed 279 fecal samples collected year-round from 4 groups of collared brown lemurs using a validated 11-oxoetiocholanolone enzyme immunoassay and tested if fGCM levels were influenced by reproductive stages, phenological seasons, sex, and habitat degradation. The lemurs living in the degraded forest had significantly higher fGCM levels than those living in the more preserved area. In particular, the highest fGCM levels were found during the mating season in all animals and in females during gestation in the degraded forest. Since mating and gestation are both occurring during the lean season in the littoral forest, these results likely reflect a combination of ecological and reproductive pressures. Our findings provide a clear indication that habitat degradation has additive effects to the challenges found in the natural habitat. Since increased stress hormone output may have long-term negative effects on population health and reproduction, our data emphasize the need for and may add to the development of effective conservation plans for the species.

  5. Habitat degradation and seasonality affect physiological stress levels of Eulemur collaris in littoral forest fragments.

    Science.gov (United States)

    Balestri, Michela; Barresi, Marta; Campera, Marco; Serra, Valentina; Ramanamanjato, Jean Baptiste; Heistermann, Michael; Donati, Giuseppe

    2014-01-01

    The littoral forest on sandy soil is among the most threatened habitats in Madagascar and, as such, it represents a hot-spot within a conservation hot-spot. Assessing the health of the resident lemur fauna is not only critical for the long-term viability of these populations, but also necessary for the future re-habilitation of this unique habitat. Since the Endangered collared brown lemur, Eulemur collaris, is the largest seed disperser of the Malagasy south-eastern littoral forest its survival in this habitat is crucial. In this study we compared fecal glucocorticoid metabolite (fGCM) levels, a measure of physiological stress and potential early indicator of population health, between groups of collared brown lemurs living in a degraded forest fragment and groups occurring in a more preserved area. For this, we analysed 279 fecal samples collected year-round from 4 groups of collared brown lemurs using a validated 11-oxoetiocholanolone enzyme immunoassay and tested if fGCM levels were influenced by reproductive stages, phenological seasons, sex, and habitat degradation. The lemurs living in the degraded forest had significantly higher fGCM levels than those living in the more preserved area. In particular, the highest fGCM levels were found during the mating season in all animals and in females during gestation in the degraded forest. Since mating and gestation are both occurring during the lean season in the littoral forest, these results likely reflect a combination of ecological and reproductive pressures. Our findings provide a clear indication that habitat degradation has additive effects to the challenges found in the natural habitat. Since increased stress hormone output may have long-term negative effects on population health and reproduction, our data emphasize the need for and may add to the development of effective conservation plans for the species.

  6. Comparison of habitat quality and diet of Colobus vellerosus in forest fragments in Ghana.

    Science.gov (United States)

    Wong, Sarah N P; Saj, Tania L; Sicotte, Pascale

    2006-10-01

    The forest fragments surrounding the Boabeng-Fiema Monkey Sanctuary (BFMS) in central Ghana shelter small populations of Colobus vellerosus. Little is known about these populations or the ability of the fragments to support them, despite the fact that these fragments represent potentially important habitat for the colobus in this region. We compared the diet of three groups of C. vellerosus in the fragments to two groups in BFMS. We also examined the differences in plant species composition and food abundance among fragments. The study took place from June to November 2003. Dietary data were collected using scan sampling. Plant species composition and food abundance were evaluated using tree plots and large tree surveys. As in BFMS groups, leaves constituted the highest proportion of the diet of fragment groups, yet the colobus in fragments fed on more lianas than did those in BFMS. Over 50% of all species observed eaten by colobus in the fragments were not consumed in BFMS groups during the same season. Food abundance was similar between fragments and BFMS, although species composition differed. There was no relationship between the density of colobus and the density of food trees or percentage of food species, suggesting that other factors may be influencing the number of colobus present. This study highlights the broad dietary range of C. vellerosus, which may be a factor allowing its survival in these fragments.

  7. Edge effects on moisture reduce wood decomposition rate in a temperate forest.

    Science.gov (United States)

    Crockatt, Martha E; Bebber, Daniel P

    2015-02-01

    Forests around the world are increasingly fragmented, and edge effects on forest microclimates have the potential to affect ecosystem functions such as carbon and nutrient cycling. Edges tend to be drier and warmer due to the effects of insolation, wind, and evapotranspiration and these gradients can penetrate hundreds of metres into the forest. Litter decomposition is a key component of the carbon cycle, which is largely controlled by saprotrophic fungi that respond to variation in temperature and moisture. However, the impact of forest fragmentation on litter decay is poorly understood. Here, we investigate edge effects on the decay of wood in a temperate forest using an experimental approach, whereby mass loss in wood blocks placed along 100 m transects from the forest edge to core was monitored over 2 years. Decomposition rate increased with distance from the edge, and was correlated with increasing humidity and moisture content of the decaying wood, such that the decay constant at 100 m was nearly twice that at the edge. Mean air temperature decreased slightly with distance from the edge. The variation in decay constant due to edge effects was larger than that expected from any reasonable estimates of climatic variation, based on a published regional model. We modelled the influence of edge effects on the decay constant at the landscape scale using functions for forest area within different distances from edge across the UK. We found that taking edge effects into account would decrease the decay rate by nearly one quarter, compared with estimates that assumed no edge effect. © 2014 John Wiley & Sons Ltd.

  8. Habitat fragmentation and its lasting impact on Earth’s ecosystems

    Science.gov (United States)

    Haddad, Nick M.; Brudvig, Lars A.; Clobert, Jean; Davies, Kendi F.; Gonzalez, Andrew; Holt, Robert D.; Lovejoy, Thomas E.; Sexton, Joseph O.; Austin, Mike P.; Collins, Cathy D.; Cook, William M.; Damschen, Ellen I.; Ewers, Robert M.; Foster, Bryan L.; Jenkins, Clinton N.; King, Andrew J.; Laurance, William F.; Levey, Douglas J.; Margules, Chris R.; Melbourne, Brett A.; Nicholls, A. O.; Orrock, John L.; Song, Dan-Xia; Townshend, John R.

    2015-01-01

    We conducted an analysis of global forest cover to reveal that 70% of remaining forest is within 1 km of the forest’s edge, subject to the degrading effects of fragmentation. A synthesis of fragmentation experiments spanning multiple biomes and scales, five continents, and 35 years demonstrates that habitat fragmentation reduces biodiversity by 13 to 75% and impairs key ecosystem functions by decreasing biomass and altering nutrient cycles. Effects are greatest in the smallest and most isolated fragments, and they magnify with the passage of time. These findings indicate an urgent need for conservation and restoration measures to improve landscape connectivity, which will reduce extinction rates and help maintain ecosystem services. PMID:26601154

  9. Changes in abundance of birds in a Neotropical forest fragment over 25 years: a review

    Directory of Open Access Journals (Sweden)

    Robinson, W. D.

    2001-01-01

    Full Text Available Few data are available to evaluate the long term effects of habitat isolation on species richness or abundances in the tropics. Barro Colorado Island (BCI, Panama, has been studied for more than 80 years since its isolation from surrounding lowland forest when the Panama Canal was constructed. Thirty-five percent of the originally present 200 resident species have disappeared. Although the loss of species is well-studied, changes in abundance that might help predict future losses have not been evaluated. One study in 1970 and the present study conducted 25 years later estimated abundances of most bird species on BCI. Comparisons indicate at least 37 species have declined by at least 50%. Twenty-six species of edge habitats are expected to decline as forest maturation proceeds, yet 11 forest species that are now rare may be lost soon. All 26 species that were present in 1970 but not detected in the mid-1990s were rare in 1970. Thus, rarity appears to be a good predictor of extinction risk in this tropical habitat fragment.

  10. Dynamic Mesoscale Land-Atmosphere Feedbacks in Fragmented Forests in Amazonia

    Science.gov (United States)

    Rastogi, D.; Baidya Roy, S.

    2011-12-01

    This paper investigates land-atmosphere feedbacks in disturbed rainforests of Amazonia. Deforestation along the rapidly expanding highways and road network has created the unique fishbone land cover pattern in Rondonia, a state in southwestern Amazonia. Numerical experiments and observations show that sharp gradients in land cover due to the fishbone heterogeneity triggers mesoscale circulations. These circulations significantly change the spatial pattern of local hydrometeorology, especially convection, clouds and precipitation. The primary research question now is can these changes in local hydrometeorology affect vegetation growth in the clearings. If so, that would be a clear indication that land-atmosphere feedbacks can affect vegetation recovery in fragmented forests. A computationally-efficient modeling tool consisting of a mesoscale atmospheric model dynamically coupled with a plant growth model has been specifically developed to identify the atmospheric feedback pathways. Preliminary experiments focus on the seasonal-scale feedbacks during the dry season. Results show that temperature, incoming shortwave and precipitation are the three primary drivers through which the feedbacks operate. Increasing temperature increases respiratory losses generating a positive feedback. Increased cloud cover reduces incoming PAR and photosynthesis, resulting in a positive feedback. Increased precipitation reduces water stress and promotes growth resulting in a negative feedback. The net effect is a combination of these 3 feedback loops. These findings can significantly improve our understanding of ecosystem resiliency in disturbed tropical forests.

  11. The effects of habitat edges and trampling intensity on vegetation in urban forests

    OpenAIRE

    Hamberg, Leena

    2009-01-01

    Although changes in urban forest vegetation have been documented in previous Finnish studies, the reasons for these changes have not been studied explicitly. Especially, the consequences of forest fragmentation, i.e. the fact that forest edges receive more solar radiation, wind and air-borne nutrients than interiors have been ignored. In order to limit the change in urban forest vegetation we need to know why it occurs. Therefore, the effects of edges and recreational use of urban forests on ...

  12. SEASONAL AND TOPOGRAPHYCAL VARIATION OF THE LITTER NUTRIENT CONTENTS OF A ATLANTIC FOREST FRAGMENT

    Directory of Open Access Journals (Sweden)

    Rosângela A. Tristão Borém

    2002-01-01

    Full Text Available ABSTRACT: The objective of this work was to study the effects of forest degradation on the supplyand contents of nutrients in the litter of two toposequences. The study area is located in a fragment ofthe Atlantic Forest, in Silva Jardim, State of Rio de Janeiro, Brazil (42°31'W and 22°31'S. The twotoposequences are under low and high degrees of human intervention. They were divided in lower,middle and upper slope, and the vegetation sampled with plots of 600m2. The litter was collected forquantitative and qualitative characterisation using a wood frame of 0,25m2 randomly distributedwithin the sample plots. Litter collection was carried out in two distinct dates in order to capture seasonalpatterns. The average litter production did not differ significantly between the toposequences.The total litter production was higher at the end of the dry season, and lower at the end of the rainyseason, indicating the seasonal pattern of the forest. The chemical analyses showed that the nutrientscontents varied widely between the toposequences. The lower and middle slope of the toposequenceunder high degree of human intervention presented the highest nutrient contents in the litter.

  13. The orchid bees (Hymenoptera, Apidae, Euglossina in a forest fragment from western Paraná state, Brazil

    Directory of Open Access Journals (Sweden)

    Rodrigo B. Gonçalves

    2014-01-01

    Full Text Available An orchid bee inventory was carried out in Parque Estadual São Camilo, Palotina, Paraná (Brazil; conservation unit with about 400 hectares of Semidecidual Seasonal forest. Three bait traps were installed at the border of the fragment, each one containing the following fragrances: 1,8-cineole, eugenol, and vanilin. Sampling was carried out from 09am to 03pm, October 2011 to June 2012, summing up nine sampling days. A total of 186 specimens distributed among seven species were sampled. Eufriesea violacea with 140 specimens was the most common species, followed by Euglossa fimbriata (31, Euglossa annectans (9, Eulaema nigrita (4, Euglossa cordata (1, Euglossa pleosticta (1, and Exaerete smaragdina (1. According to qualitative and NMDS analysis, the orchid bee fauna of Parque Estadual São Camilo is representative of Semidecidual Seasonal forest, with richness comparable with other assemblages in the southern distribution of Euglossina. The sampled bee richness indicates that forest fragments, even small and isolated, are important in the conservation of this bees.

  14. Effects of growth form and functional traits on response of woody plants to clearing and fragmentation of subtropical rainforest.

    Science.gov (United States)

    Kooyman, R M; Zanne, A E; Gallagher, R V; Cornwell, W; Rossetto, M; O'Connor, P; Parkes, E A; Catterall, C F; Laffan, S W; Lusk, C H

    2013-12-01

    The conservation implications of large-scale rainforest clearing and fragmentation on the persistence of functional and taxonomic diversity remain poorly understood. If traits represent adaptive strategies of plant species to particular circumstances, the expectation is that the effect of forest clearing and fragmentation will be affected by species functional traits, particularly those related to dispersal. We used species occurrence data for woody plants in 46 rainforest patches across 75,000 ha largely cleared of forest by the early 1900s to determine the combined effects of area reduction, fragmentation, and patch size on the taxonomic structure and functional diversity of subtropical rainforest. We compiled species trait values for leaf area, seed dry mass, wood density, and maximum height and calculated species niche breadths. Taxonomic structure, trait values (means, ranges), and the functional diversity of assemblages of climbing and free-standing plants in remnant patches were quantified. Larger rainforest patches had higher species richness. Species in smaller patches were taxonomically less related than species in larger patches. Free-standing plants had a high percentage of frugivore dispersed seeds; climbers had a high proportion of small wind-dispersed seeds. Connections between the patchy spatial distribution of free-standing species, larger seed sizes, and dispersal syndrome were weak. Assemblages of free-standing plants in patches showed more taxonomic and spatial structuring than climbing plants. Smaller isolated patches retained relatively high functional diversity and similar taxonomic structure to larger tracts of forest despite lower species richness. The response of woody plants to clearing and fragmentation of subtropical rainforest differed between climbers and slow-growing mature-phase forest trees but not between climbers and pioneer trees. Quantifying taxonomic structure and functional diversity provides an improved basis for

  15. Frugivorous bats maintain functional habitat connectivity in agricultural landscapes but rely strongly on natural forest fragments.

    Science.gov (United States)

    Ripperger, Simon P; Kalko, Elisabeth K V; Rodríguez-Herrera, Bernal; Mayer, Frieder; Tschapka, Marco

    2015-01-01

    Anthropogenic changes in land use threaten biodiversity and ecosystem functioning by the conversion of natural habitat into agricultural mosaic landscapes, often with drastic consequences for the associated fauna. The first step in the development of efficient conservation plans is to understand movement of animals through complex habitat mosaics. Therefore, we studied ranging behavior and habitat use in Dermanura watsoni (Phyllostomidae), a frugivorous bat species that is a valuable seed disperser in degraded ecosystems. Radio-tracking of sixteen bats showed that the animals strongly rely on natural forest. Day roosts were exclusively located within mature forest fragments. Selection ratios showed that the bats foraged selectively within the available habitat and positively selected natural forest. However, larger daily ranges were associated with higher use of degraded habitats. Home range geometry and composition of focal foraging areas indicated that wider ranging bats performed directional foraging bouts from natural to degraded forest sites traversing the matrix over distances of up to three hundred meters. This behavior demonstrates the potential of frugivorous bats to functionally connect fragmented areas by providing ecosystem services between natural and degraded sites, and highlights the need for conservation of natural habitat patches within agricultural landscapes that meet the roosting requirements of bats.

  16. Frugivorous bats maintain functional habitat connectivity in agricultural landscapes but rely strongly on natural forest fragments.

    Directory of Open Access Journals (Sweden)

    Simon P Ripperger

    Full Text Available Anthropogenic changes in land use threaten biodiversity and ecosystem functioning by the conversion of natural habitat into agricultural mosaic landscapes, often with drastic consequences for the associated fauna. The first step in the development of efficient conservation plans is to understand movement of animals through complex habitat mosaics. Therefore, we studied ranging behavior and habitat use in Dermanura watsoni (Phyllostomidae, a frugivorous bat species that is a valuable seed disperser in degraded ecosystems. Radio-tracking of sixteen bats showed that the animals strongly rely on natural forest. Day roosts were exclusively located within mature forest fragments. Selection ratios showed that the bats foraged selectively within the available habitat and positively selected natural forest. However, larger daily ranges were associated with higher use of degraded habitats. Home range geometry and composition of focal foraging areas indicated that wider ranging bats performed directional foraging bouts from natural to degraded forest sites traversing the matrix over distances of up to three hundred meters. This behavior demonstrates the potential of frugivorous bats to functionally connect fragmented areas by providing ecosystem services between natural and degraded sites, and highlights the need for conservation of natural habitat patches within agricultural landscapes that meet the roosting requirements of bats.

  17. Use of the space by the opossum Didelphis aurita Wied-Newied (Mammalia, Marsupialia in a mixed forest fragment of southern Brazil

    Directory of Open Access Journals (Sweden)

    Cáceres Nilton Carlos

    2003-01-01

    Full Text Available Use of the space by the opossum Didelphis aurita Wied-Newied, 1826 (Mammalia, Marsupialia in a mixed forest fragment of southern Brazil. The space use of the marsupial Didelphis aurita was studied in a forest fragment of southern Brazil from February 1995 to January 1996. The method used was the 'distribution utilization' in which each trap was set in 38 x 38 m quadrats. Captures of each marked individual in each point give information on its habitat use. Food availability was searched and compared to the habitat utilization and to the food consumption of opossums. Distribution patterns of captures (aggregated to random and spatial overlap between individuals were searched. Results showed aggregated distributions of individuals, particularly females, in the fragment. Females used exclusively the fragment during the drier season. Opossums tend to not choose the sites with highest food availability to establish home ranges. Spatial overlap was usually low between forest resident and neighbouring resident females, but much lower during the breeding season (only forest resident females in an apparently pattern of territoriality. Hence, core areas of females decreased in size during the breeding season. Males probably searched primarily for mates during the breeding season being less opportunistic than females in feeding habits, yet their space use did not correlate to food consumption.

  18. Geospatial characterization of deforestation, fragmentation and forest fires in Telangana state, India: conservation perspective.

    Science.gov (United States)

    Sudhakar Reddy, C; Vazeed Pasha, S; Jha, C S; Dadhwal, V K

    2015-07-01

    Conservation of biodiversity has been put to the highest priority throughout the world. The process of identifying threatened ecosystems will search for different drivers related to biodiversity loss. The present study aimed to generate spatial information on deforestation and ecological degradation indicators of fragmentation and forest fires using systematic conceptual approach in Telangana state, India. Identification of ecosystems facing increasing vulnerability can help to safeguard the extinctions of species and useful for conservation planning. The technological advancement of satellite remote sensing and Geographical Information System has increased greatly in assessment and monitoring of ecosystem-level changes. The areas of threat were identified by creating grid cells (5 × 5 km) in Geographical Information System (GIS). Deforestation was assessed using multi-source data of 1930, 1960, 1975, 1985, 1995, 2005 and 2013. The forest cover of 40,746 km(2), 29,299 km(2), 18,652 km(2), 18,368 km(2), 18,006 km(2), 17,556 km(2) and 17,520 km(2) was estimated during 1930, 1960, 1975, 1985, 1995, 2005 and 2013, respectively. Historical evaluation of deforestation revealed that major changes had occurred in forests of Telangana and identified 1095 extinct, 397 critically endangered, 523 endangered and 311 vulnerable ecosystem grid cells. The fragmentation analysis has identified 307 ecosystem grid cells under critically endangered status. Forest burnt area information was extracted using AWiFS data of 2005 to 2014. Spatial analysis indicates total fire-affected forest in Telangana as 58.9% in a decadal period. Conservation status has been recorded depending upon values of threat for each grid, which forms the basis for conservation priority hotspots. Of existing forest, 2.1% grids had severe ecosystem collapse and had been included under the category of conservation priority hotspot-I, followed by 27.2% in conservation priority hotspot-II and 51.5% in conservation

  19. Landscape-level effects on aboveground biomass of tropical forests: A conceptual framework.

    Science.gov (United States)

    Melito, Melina; Metzger, Jean Paul; de Oliveira, Alexandre A

    2018-02-01

    Despite the general recognition that fragmentation can reduce forest biomass through edge effects, a systematic review of the literature does not reveal a clear role of edges in modulating biomass loss. Additionally, the edge effects appear to be constrained by matrix type, suggesting that landscape composition has an influence on biomass stocks. The lack of empirical evidence of pervasive edge-related biomass losses across tropical forests highlights the necessity for a general framework linking landscape structure with aboveground biomass. Here, we propose a conceptual model in which landscape composition and configuration mediate the magnitude of edge effects and seed-flux among forest patches, which ultimately has an influence on biomass. Our model hypothesizes that a rapid reduction of biomass can occur below a threshold of forest cover loss. Just below this threshold, we predict that changes in landscape configuration can strongly influence the patch's isolation, thus enhancing biomass loss. Moreover, we expect a synergism between landscape composition and patch attributes, where matrix type mediates the effects of edges on species decline, particularly for shade-tolerant species. To test our conceptual framework, we propose a sampling protocol where the effects of edges, forest amount, forest isolation, fragment size, and matrix type on biomass stocks can be assessed both collectively and individually. The proposed model unifies the combined effects of landscape and patch structure on biomass into a single framework, providing a new set of main drivers of biomass loss in human-modified landscapes. We argue that carbon trading agendas (e.g., REDD+) and carbon-conservation initiatives must go beyond the effects of forest loss and edges on biomass, considering the whole set of effects on biomass related to changes in landscape composition and configuration. © 2017 John Wiley & Sons Ltd.

  20. Importance of riparian remnants for frog species diversity in a highly fragmented rainforest.

    Science.gov (United States)

    Rodríguez-Mendoza, Clara; Pineda, Eduardo

    2010-12-23

    Tropical forests undergo continuous transformation to other land uses, resulting in landscapes typified by forest fragments surrounded by anthropogenic habitats. Small forest fragments, specifically strip-shaped remnants flanking streams (referred to as riparian remnants), can be particularly important for the maintenance and conservation of biodiversity within highly fragmented forests. We compared frog species diversity between riparian remnants, other forest fragments and cattle pastures in a tropical landscape in Los Tuxtlas, Mexico. We found similar species richness in the three habitats studied and a similar assemblage structure between riparian remnants and forest fragments, although species composition differed by 50 per cent. Frog abundance was halved in riparian remnants compared with forest fragments, but was twice that found in pastures. Our results suggest that riparian remnants play an important role in maintaining a portion of frog species diversity in a highly fragmented forest, particularly during environmentally stressful (hot and dry) periods. In this regard, however, the role of riparian remnants is complementary, rather than substitutive, with respect to the function of other forest fragments within the fragmented forest.

  1. Functional traits variation explains the distribution of Aextoxicon punctatum (Aextoxicaceae in pronounced moisture gradients within fog-dependent forest fragments

    Directory of Open Access Journals (Sweden)

    Beatriz eSalgado-Negret

    2015-07-01

    Full Text Available Climate change and fragmentation are major threats to world forests. Understanding how functional traits related to drought tolerance change across small-scale, pronounced moisture gradients in fragmented forests is important to predict species’ responses to these threats. In the case of Aextoxicon punctatum, a dominant canopy tree in fog-dependent rain forest patches in semiarid Chile, we explored how the magnitude, variability and correlation patterns of leaf and xylem vessel traits and hydraulic conductivity varied across soil moisture gradients established within and among forest patches of different size, which are associated with differences in tree establishment and mortality patterns. Leaf traits varied across soil-moisture gradients produced by fog interception. Trees growing at drier leeward edges showed higher LMA (leaf mass per area, trichome and stomatal density than trees from the wetter core and windward zones. In contrast, xylem vessel traits (vessels diameter and density did not vary producing loss of hydraulic conductivity at drier leeward edges. We also detected higher levels of phenotypic integration and variability at leeward edges. The ability of A. punctatum to modify leaf traits in response to differences in soil moisture availability established over short distances (<500 m facilitates its persistence in contrasting microhabitats within forest patches. However, xylem anatomy showed limited plasticity, which increases cavitation risk at leeward edges. Greater patch fragmentation, together with fluctuations in irradiance and soil moisture in small patches, could result in higher risk of drought-related tree mortality, with profound impacts on hydrological balances at the ecosystem scale.

  2. Effects of Forest Fragmentation on Human Risk of Lyme Disease

    Science.gov (United States)

    Percent forest-herbaceous edge repeatedly explained most of the variability in reported Lyme disease rates within a rural-to-urban study gradient across central Maryland and southeastern Pennsylvania. A one-percent increase in forest-herbaceous edge was associated with an increas...

  3. Edge effects enhance carbon uptake and its vulnerability to climate change in temperate broadleaf forests.

    Science.gov (United States)

    Reinmann, Andrew B; Hutyra, Lucy R

    2017-01-03

    Forest fragmentation is a ubiquitous, ongoing global phenomenon with profound impacts on the growing conditions of the world's remaining forest. The temperate broadleaf forest makes a large contribution to the global terrestrial carbon sink but is also the most heavily fragmented forest biome in the world. We use field measurements and geospatial analyses to characterize carbon dynamics in temperate broadleaf forest fragments. We show that forest growth and biomass increase by 89 ± 17% and 64 ± 12%, respectively, from the forest interior to edge, but ecosystem edge enhancements are not currently captured by models or approaches to quantifying regional C balance. To the extent that the findings from our research represent the forest of southern New England in the United States, we provide a preliminary estimate that edge growth enhancement could increase estimates of the region's carbon uptake and storage by 13 ± 3% and 10 ± 1%, respectively. However, we also find that forest growth near the edge declines three times faster than that in the interior in response to heat stress during the growing season. Using climate projections, we show that future heat stress could reduce the forest edge growth enhancement by one-third by the end of the century. These findings contrast studies of edge effects in the world's other major forest biomes and indicate that the strength of the temperate broadleaf forest carbon sink and its capacity to mitigate anthropogenic carbon emissions may be stronger, but also more sensitive to climate change than previous estimates suggest.

  4. Clustering Timber Harvests and the Effects of Dynamic Forest Management Policy on Forest Fragmentation

    Science.gov (United States)

    Eric J. Gustafson

    1998-01-01

    To integrate multiple uses (mature forest and commodity production) better on forested lands, timber management strategies that cluster harvests have been proposed. One such approach clusters harvest activity in space and time, and rotates timber production zones across the landscape with a long temporal period (dynamic zoning). Dynamic zoning has...

  5. Diet and food availability of the Virginia northern flying squirrel (Glaucomys sabrinus fuscus): implications for dispersal in a fragmented forest

    Science.gov (United States)

    Stephanie E. Trapp; Winston P. Smith; Elizabeth A. Flaherty

    2017-01-01

    A history of timber harvest in West Virginia has reduced red spruce (Picea rubens) forests to < 10% of their historic range and resulted in considerable habitat fragmentation for wildlife species associated with these forests. The Virginia northern flying squirrel (Glaucomys sabrinus fuscus) has been described as a red...

  6. Society's choices: land use changes, forest fragmentation, and conservation.

    Science.gov (United States)

    Jonathan Thompson

    2006-01-01

    Changing patterns of land use are at the heart of many environmental concerns regarding U.S. forest lands. Of all the human impacts to forests, development is one of the most significant because of the severity and permanency of the change. Concern about the effects of development on America’s forests has risen sharply since the 1990s, when the conversion of forest...

  7. The relations between forest fragmentation and bird community body size and biodiversity and bird community body size.

    OpenAIRE

    Hopman, F.

    2017-01-01

    Bachelor thesis Future Planet Studies, major biologie ABSTRACT Animal species with a larger body-size tend to have larger home ranges than small-bodied animals. Therefore it is likely that they are more affected by habitat fragmentation than small-bodied species. Body size of birds also seems to have a negative relation with species richness. This research has therefore looked into whether birds with a larger body-size are more sensitive to habitat fragmentation caused by forest...

  8. Lemur species-specific metapopulation responses to habitat loss and fragmentation.

    Directory of Open Access Journals (Sweden)

    Travis S Steffens

    Full Text Available Determining what factors affect species occurrence is vital to the study of primate biogeography. We investigated the metapopulation dynamics of a lemur community consisting of eight species (Avahi occidentalis, Propithecus coquereli, Microcebus murinus, Microcebus ravelobensis, Lepilemur edwardsi, Cheirogaleus medius, Eulemur mongoz, and Eulemur fulvus within fragmented tropical dry deciduous forest habitat in Ankarafantsika National Park, Madagascar. We measured fragment size and isolation of 42 fragments of forest ranging in size from 0.23 to 117.7 ha adjacent to continuous forest. Between June and November 2011, we conducted 1218 surveys and observed six of eight lemur species (M. murinus, M. ravelobensis, C. medius, E. fulvus, P. coquereli, and L. edwardsi in the 42 fragments. We applied among patch incidence function models (IFMs with various measures of dispersal and a mainland-island IFM to lemur species occurrence, with the aim of answering the following questions: 1 Do lemur species in dry deciduous forest fragments form metapopulations? 2 What are the separate effects of area (extinction risk and connectivity/isolation (colonization potential within a lemur metapopulation? 3 Within simulated metapopulations over time, how do area and connectivity/isolation affect occurrence? and 4 What are the conservation implications of our findings? We found that M. murinus formed either a mainland-island or an among patch metapopulation, M. ravelobensis formed a mainland-island metapopulation, C. medius and E. fulvus formed among patch metapopulations, and neither P. coquereli or L. edwardsi formed a metapopulation. Metapopulation dynamics and simulations suggest that area was a more consistent positive factor determining lemur species occurrence than fragment isolation and is crucial to the maintenance of lemur populations within this fragmented landscape. Using a metapopulation approach to lemur biogeography is critical for understanding how

  9. Factors associated with the seroprevalence of leishmaniasis in dogs living around Atlantic Forest fragments.

    Science.gov (United States)

    Curi, Nelson Henrique de Almeida; Paschoal, Ana Maria de Oliveira; Massara, Rodrigo Lima; Marcelino, Andreza Pain; Ribeiro, Adriana Aparecida; Passamani, Marcelo; Demétrio, Guilherme Ramos; Chiarello, Adriano Garcia

    2014-01-01

    Canine visceral leishmaniasis is an important zoonosis in Brazil. However, infection patterns are unknown in some scenarios such as rural settlements around Atlantic Forest fragments. Additionally, controversy remains over risk factors, and most identified patterns of infection in dogs have been found in urban areas. We conducted a cross-sectional epidemiological survey to assess the prevalence of leishmaniasis in dogs through three different serological tests, and interviews with owners to assess features of dogs and households around five Atlantic Forest remnants in southeastern Brazil. We used Generalized Linear Mixed Models and Chi-square tests to detect associations between prevalence and variables that might influence Leishmania infection, and a nearest neighbor dispersion analysis to assess clustering in the spatial distribution of seropositive dogs. Our findings showed an average prevalence of 20% (ranging from 10 to 32%) in dogs. Nearly 40% (ranging from 22 to 55%) of households had at least one seropositive dog. Some individual traits of dogs (height, sterilization, long fur, age class) were found to positively influence the prevalence, while some had negative influence (weight, body score, presence of ectoparasites). Environmental and management features (number of cats in the households, dogs with free-ranging behavior) also entered models as negative associations with seropositivity. Strong and consistent negative (protective) influences of the presence of chickens and pigs in dog seropositivity were detected. Spatial clustering of cases was detected in only one of the five study sites. The results showed that different risk factors than those found in urban areas may drive the prevalence of canine leishmaniasis in farm/forest interfaces, and that humans and wildlife risk infection in these areas. Domestic dog population limitation by gonadectomy, legal restriction of dog numbers per household and owner education are of the greatest importance for the

  10. Local population extinction and vitality of an epiphytic lichen in fragmented old-growth forest.

    Science.gov (United States)

    Ockinger, Erik; Nilsson, Sven G

    2010-07-01

    The population dynamics of organisms living in short-lived habitats will largely depend on the turnover of habitat patches. It has been suggested that epiphytes, whose host plants can be regarded as habitat patches, often form such patch-tracking populations. However, very little is known about the long-term fate of epiphyte individuals and populations. We estimated life span and assessed environmental factors influencing changes in vitality, fertility, abundance, and distribution of the epiphytic lichen species Lobaria pulmonaria on two spatial scales, individual trees and forest patches, over a period of approximately 10 years in 66 old-growth forest fragments. The lichen had gone extinct from 7 of the 66 sites (13.0%) where it was found 10 years earlier, even though the sites remained unchanged. The risk of local population extinction increased with decreasing population size. In contrast to the decrease in the number of occupied trees and sites, the mean area of the lichen per tree increased by 43.0%. The number of trees with fertile ramets of L. pulmonaria increased from 7 (approximately 1%) to 61 (approximately 10%) trees, and the number of forest fragments with fertile ramets increased from 4 to 23 fragments. The mean annual rate of L. pulmonaria extinction at the tree level was estimated to be 2.52%, translating into an expected lifetime of 39.7 years. This disappearance rate is higher than estimated mortality rates for potential host trees. The risk of extinction at the tree level was significantly positively related to tree circumference and differed between tree species. The probability of presence of fertile ramets increased significantly with local population size. Our results show a long expected lifetime of Lobaria pulmonaria ramets on individual trees and a recent increase in vitality, probably due to decreasing air pollution. The population is, however, declining slowly even though remaining stands are left uncut, which we interpret as an

  11. Forest remnants enhance wild pollinator visits to cashew flowers and mitigate pollination deficit in NE Brazil

    Directory of Open Access Journals (Sweden)

    Breno Magalhães Freitas

    2014-02-01

    Full Text Available Pollination deficit could cause low yields in cashew (Anacardium occidentale and it is possible that deforestation surrounding cashew plantations may prevent effective pollinators from visiting cashew flowers and contribute to this deficit. In the present work, we investigated the proximity effect of small and large forest fragments on the abundance and flower visits by feral Apis mellifera and wild native pollinators to cashew flowers and their interactions with yield in cashew plantations. Cashew nut yield was highest when plantations bordered a small forest fragment and were close to the large forest fragment. Yield from plantations that did not border small forest fragments but were close to the large forest fragment did not differ to yield from plantations at a greater distance to the large forest fragment. Flower visits by wild native pollinators, mainly Trigona spinipes, were negatively affected by distance to the large forest remnant and their numbers were directly correlated to nut yield. The number of A. mellifera visiting cashew flowers did not change significantly with distance to forest fragments, nor was it correlated with yield. We conclude that increasing the number of wild pollinator visits may increase yield, and proximity to large forest fragments are important for this.

  12. USE OF THE DE LIOCOURT QUOTIENT IN THE EVALUATION OF THE DIAMETRIC DISTRIBUTION IN FRAGMENTS OF OMBROPHYLOUS FOREST, PERNAMBUCO STATE-BRAZIL

    Directory of Open Access Journals (Sweden)

    Francisco Tarcísio Alves Junior

    2010-08-01

    Full Text Available Great part of the biodiversity of the ecosystem of tropical forests is being lost even before we have full knowledge of its natural wealth, making it important perform studies that can provide knowledge and the maintenance of its structure, besides making possible the exploration of its products, goods and/or services in a planned and rational form, guaranteeing the continuous flow of these resources. The general objective of this study was to use the De Liocourt quotient in the evaluation of the diametric distribution in fragments of Ombrophylous Forest located in the city of Catende, Pernambuco state - Brazil, having as specific objectives: to describe the diametric structure of the fragments and the species of greater importance using the Value of Importance Index (VI; and to evaluate the degradation and the state of succession of the studied areas. The diametric distribution revealed uneven-aged forests as the diametric curve of distribution resembled a reverse J-shape. The values of basal area in the fragments were of 23.6 and 20.9 m2.ha-1, for Mata das Caldeiras and Mata das Galinhas. The fragments were, on average, in the secondary period of succession. Some species presented difficulties in the rate of recruitment, which could lead to the extinguishing of some species in the future. Species, such as Tapirira guianensis Aubl., Dialium guianense (Aubl. Sandwith and Brosimum discolor Schott, demonstrated a distinct diametric structure among the fragments. The species Plathymenia foliolosa Benth. presented accented discontinuities in the diametric structure in both areas.

  13. Herpetofauna of an urban fragment of Atlantic Forest in Paraíba State, Northeast Brazil

    OpenAIRE

    Yuri C. C. Lima; Fagner R. Delfim; Gentil A. Pereira-Filho; Washington L. S. Vieira; Gindomar Gomes Santana; Kleber S. Vieira

    2008-01-01

    The Herpetofauna of an urban fragment of Atlantic Forest was investigated in relation to species richness and habitat use. Fourteen species of amphibian anurans pertaining to the families Bufonidae, Brachycephalidae, Hylidae, Leptodactylidae, Leiuperidae, Microhylidae and Ranidae were recorded. The reptiles were represented by 37 species, distributed in the families Gekkonidae, Gymnophthalmidae, Polychrotidae, Scincidae, Teiidae, Tropiduridae, Amphisbaenidae, Boidae, Colubridae, Elapidae, Typ...

  14. Analyzing the edge effects in a Brazilian seasonally dry tropical forest.

    Science.gov (United States)

    Arruda, D M; Eisenlohr, P V

    2016-02-01

    Due to the deciduous nature of dry forests (widely known as seasonally dry tropical forests) they are subject to microclimatic conditions not experienced in other forest formations. Close examinations of the theory of edge effects in dry forests are still rare and a number of questions arise in terms of this topic. In light of this situation we examined a fragment of the dry forest to respond to the following questions: (I) Are there differences in canopy cover along the edge-interior gradient during the dry season? (II) How does the microclimate (air temperature, soil temperature, and relative humidity) vary along that gradient? (III) How does the microclimate influence tree species richness, evenness and abundance along that gradient? (IV) Are certain tree species more dominant closer to the forest edges? Regressions were performed to address these questions. Their coefficients did not significantly vary from zero. Apparently, the uniform openness of the forest canopy caused a homogeneous internal microclimate, without significant differentiation in habitats that would allow modifications in biotic variables tested. We conclude that the processes of edge effect commonly seen in humid forests, not was shared with the dry forest assessed.

  15. Mites associated with sugarcane crop and with native trees from adjacent Atlantic forest fragment in Brazil.

    Science.gov (United States)

    Duarte, Mércia E; Navia, Denise; dos Santos, Lucas R; Rideiqui, Pedro J S; Silva, Edmilson S

    2015-08-01

    In some Brazilian regions the Atlantic forest biome is currently restrict to fragments occurring amid monocultures, as sugarcane crops in the Northeast region. Important influence of forest remnants over mite fauna of permanent crops have been showed, however it has been poorly explored on annual crops. The first step for understanding ecological relationship in an agricultural systems is known its composition. The objective of this study was to investigate the plant-inhabiting mite fauna associated with sugarcane crop (Saccharum officinarum L.) (Poaceae) and caboatã (Cupania oblongifolia Mart.) (Sapindaceae) trees in the state of Alagoas, Brazil. Sugarcane stalks and sugarcane and caboatã apical, middle and basal leaves were sampled. A total of 2565 mites were collected from sugarcane and classified into seven families of Trombidiformes and Mesostigmata orders, with most individuals belonging to the Eriophyidae, Tetranychidae and Tarsonemidae families. Among predatory mites, the Phytoseiidae were the most common. A total of 1878 mites were found on C. oblongifolia and classified into 13 families of Trombidiformes and Mesostigmata orders. The most abundant phytophagous mite family on caboatã was also Eriophyidae. In contrast to sugarcane, Ascidae was the most common predatory mite family observed in caboatã. No phytophagous species were common to both sugarcane and C. oblongifolia. However two predatory mites were shared between host plants. Although mites associated with only one native species in the forest fragment were evaluated in this study, our preliminary results suggest Atlantic forest native vegetation can present an important role in the sugarcane agricultural system as a source of natural enemies.

  16. Spatial and temporal dimensions of landscape fragmentation across the Brazilian Amazon.

    Science.gov (United States)

    Rosa, Isabel M D; Gabriel, Cristina; Carreiras, Joāo M B

    2017-01-01

    The Brazilian Amazon in the past decades has been suffering severe landscape alteration, mainly due to anthropogenic activities, such as road building and land clearing for agriculture. Using a high-resolution time series of land cover maps (classified as mature forest, non-forest, secondary forest) spanning from 1984 through 2011, and four uncorrelated fragmentation metrics (edge density, clumpiness index, area-weighted mean patch size and shape index), we examined the temporal and spatial dynamics of forest fragmentation in three study areas across the Brazilian Amazon (Manaus, Santarém and Machadinho d'Oeste), inside and outside conservation units. Moreover, we compared the impacts on the landscape of: (1) different land uses (e.g. cattle ranching, crop production), (2) occupation processes (spontaneous vs. planned settlements) and (3) implementation of conservation units. By 2010/2011, municipalities located along the Arc of Deforestation had more than 55% of the remaining mature forest strictly confined to conservation units. Further, the planned settlement showed a higher rate of forest loss, a more persistent increase in deforested areas and a higher relative incidence of deforestation inside conservation units. Distinct agricultural activities did not lead to significantly different landscape structures; the accessibility of the municipality showed greater influence in the degree of degradation of the landscapes. Even with a high proportion of the landscapes covered by conservation units, which showed a strong inhibitory effect on forest fragmentation, we show that dynamic agriculturally driven economic activities, in municipalities with extensive road development, led to more regularly shaped, heavily fragmented landscapes, with higher densities of forest edge.

  17. Anthropogenic Land-use Change and the Dynamics of Amazon Forest Biomass

    Science.gov (United States)

    Laurance, William F.

    2004-01-01

    This project was focused on assessing the effects of prevailing land uses, such as habitat fragmentation, selective logging, and fire, on biomass and carbon storage in Amazonian forests, and on the dynamics of carbon sequestration in regenerating forests. Ancillary goals included developing GIs models to help predict the future condition of Amazonian forests, and assessing the effects of anthropogenic climate change and ENS0 droughts on intact and fragmented forests. Ground-based studies using networks of permanent plots were linked with remote-sensing data (including Landsat TM and AVHRR) at regional scales, and higher-resolution techniques (IKONOS imagery, videography, LIDAR, aerial photographs) at landscape and local scales. The project s specific goals were quite eclectic and included: Determining the effects of habitat fragmentation on forest dynamics, floristic composition, and the various components of above- and below-ground biomass. Assessing historical and physical factors that affect trajectories of forest regeneration and carbon sequestration on abandoned lands. Extrapolating results from local studies of biomass dynamics in fragmented and regenerating forests to landscape and regional scales in Amazonia, using remote sensing and GIS. Testing the hypothesis that intact Amazonian forests are functioning as a significant carbon sink. Examining destructive synergisms between forest fragmentation and fire. Assessing the short-term impacts of selective logging on aboveground biomass. Developing GIS models that integrate current spatial data on forest cover, deforestation, logging, mining, highway and roads, navigable rivers, vulnerability to wild fires, protected areas, and existing and planned infrastructure projects, in an effort to predict the future condition of Brazilian Amazonian forests over the next 20-25 years. Devising predictive spatial models to assess the influence of varied biophysical and anthropogenic predictors on Amazonian deforestation.

  18. Forests

    Science.gov (United States)

    Louis R. Iverson; Mark W. Schwartz

    1994-01-01

    Originally diminished by development, forests are coming back: forest biomass is accumulating. Forests are repositories for many threatened species. Even with increased standing timber, however, biodiversity is threatened by increased forest fragmentation and by exotic species.

  19. Implications of Fine-Grained Habitat Fragmentation and Road Mortality for Jaguar Conservation in the Atlantic Forest, Brazil.

    Directory of Open Access Journals (Sweden)

    Laury Cullen

    Full Text Available Jaguar (Panthera onca populations in the Upper Paraná River, in the Brazilian Atlantic Forest region, live in a landscape that includes highly fragmented areas as well as relatively intact ones. We developed a model of jaguar habitat suitability in this region, and based on this habitat model, we developed a spatially structured metapopulation model of the jaguar populations in this area to analyze their viability, the potential impact of road mortality on the populations' persistence, and the interaction between road mortality and habitat fragmentation. In more highly fragmented populations, density of jaguars per unit area is lower and density of roads per jaguar is higher. The populations with the most fragmented habitat were predicted to have much lower persistence in the next 100 years when the model included no dispersal, indicating that the persistence of these populations are dependent to a large extent on dispersal from other populations. This, in turn, indicates that the interaction between road mortality and habitat fragmentation may lead to source-sink dynamics, whereby populations with highly fragmented habitat are maintained only by dispersal from populations with less fragmented habitat. This study demonstrates the utility of linking habitat and demographic models in assessing impacts on species living in fragmented landscapes.

  20. Implications of Fine-Grained Habitat Fragmentation and Road Mortality for Jaguar Conservation in the Atlantic Forest, Brazil.

    Science.gov (United States)

    Cullen, Laury; Stanton, Jessica C; Lima, Fernando; Uezu, Alexandre; Perilli, Miriam L L; Akçakaya, H Reşit

    2016-01-01

    Jaguar (Panthera onca) populations in the Upper Paraná River, in the Brazilian Atlantic Forest region, live in a landscape that includes highly fragmented areas as well as relatively intact ones. We developed a model of jaguar habitat suitability in this region, and based on this habitat model, we developed a spatially structured metapopulation model of the jaguar populations in this area to analyze their viability, the potential impact of road mortality on the populations' persistence, and the interaction between road mortality and habitat fragmentation. In more highly fragmented populations, density of jaguars per unit area is lower and density of roads per jaguar is higher. The populations with the most fragmented habitat were predicted to have much lower persistence in the next 100 years when the model included no dispersal, indicating that the persistence of these populations are dependent to a large extent on dispersal from other populations. This, in turn, indicates that the interaction between road mortality and habitat fragmentation may lead to source-sink dynamics, whereby populations with highly fragmented habitat are maintained only by dispersal from populations with less fragmented habitat. This study demonstrates the utility of linking habitat and demographic models in assessing impacts on species living in fragmented landscapes.

  1. Effects of matrix characteristics and interpatch distance on functional connectivity in fragmented temperate rainforests.

    Science.gov (United States)

    Magrach, Ainhoa; Larrinaga, Asier R; Santamaría, Luis

    2012-04-01

    The connectivity of remnant patches of habitat may affect the persistence of species in fragmented landscapes. We evaluated the effects of the structural connectivity of forest patches (i.e., distance between patches) and matrix class (land-cover type) on the functional connectivity of 3 bird species (the White-crested Elaenia [Elaenia albiceps], the Green-backed Firecrown Hummingbird [Sephanoides sephaniodes], and the Austral Thrush [Turdus falklandii]). We measured functional connectivity as the rate at which each species crossed from one patch to another. We also evaluated whether greater functional connectivity translated into greater ecological connectivity (dispersal of fruit and pollen) by comparing among forest patches fruit set of a plant pollinated by hummingbirds and abundance of seedlings and adults of 2 plants with bird- and wind-dispersed seeds. Interpatch distance was strongly associated with functional connectivity, but its effect was not independent of matrix class. For one of the bird-dispersed plants, greater functional connectivity for White-crested Elaenias and Austral Thrushes (both frugivores) was associated with higher densities of this plant. The lack of a similar association for the wind-dispersed species suggests this effect is linked to the dispersal vector. The abundance of the hummingbird-pollinated species was not related to the presence of hummingbirds. Interpatch distance and matrix class affect animal movement in fragmented landscapes and may have a cascading effect on the distribution of some animal-dispersed species. On the basis of our results, we believe effort should be invested in optimizing patch configuration and modifying the matrix so as to mitigate the effects of patch isolation in fragmented landscapes. ©2012 Society for Conservation Biology.

  2. Occupancy dynamics in a tropical bird community: unexpectedly high forest use by birds classified as non-forest species

    Science.gov (United States)

    Ruiz-Gutierrez, Viviana; Zipkin, Elise F.; Dhondt, Andre A.

    2010-01-01

    1. Worldwide loss of biodiversity necessitates a clear understanding of the factors driving population declines as well as informed predictions about which species and populations are at greatest risk. The biggest threat to the long-term persistence of populations is the reduction and changes in configuration of their natural habitat. 2. Inconsistencies have been noted in the responses of populations to the combined effects of habitat loss and fragmentation. These have been widely attributed to the effects of the matrix habitats in which remnant focal habitats are typically embedded. 3. We quantified the potential effects of the inter-patch matrix by estimating occupancy and colonization of forest and surrounding non-forest matrix (NF). We estimated species-specific parameters using a dynamic, multi-species hierarchical model on a bird community in southwestern Costa Rica. 4. Overall, we found higher probabilities of occupancy and colonization of forest relative to the NF across bird species, including those previously categorized as open habitat generalists not needing forest to persist. Forest dependency was a poor predictor of occupancy dynamics in our study region, largely predicting occupancy and colonization of only non-forest habitats. 5. Our results indicate that the protection of remnant forest habitats is key for the long-term persistence of all members of the bird community in this fragmented landscape, including species typically associated with open, non-forest habitats. 6.Synthesis and applications. We identified 39 bird species of conservation concern defined by having high estimates of forest occupancy, and low estimates of occupancy and colonization of non-forest. These species survive in forest but are unlikely to venture out into open, non-forested habitats, therefore, they are vulnerable to the effects of habitat loss and fragmentation. Our hierarchical community-level model can be used to estimate species-specific occupancy dynamics for focal

  3. Frugivory and seed dispersal of golden lion tamarin (Leontopithecus rosalia (Linnaeus, 1766 in a forest fragment in the Atlantic Forest, Brazil

    Directory of Open Access Journals (Sweden)

    MJ. Lapenta

    Full Text Available The influence of the golden lion tamarin (Leontopithecus rosalia as a seed disperser was studied by monitoring two groups of tamarins from December 1998 to December 2000 (871.9 hours of observations in a forest fragment in south-east Brazil. The tamarins consumed fruits of 57 species from at least 17 families. They ingested the seeds of 39 species, and 23 of these were put to germinate in the laboratory and/or in the field. L. rosalia is a legitimate seed disperser because the seeds of all species tested germinated after ingestion, albeit some in low percentages. These primates do not show a consistent effect in final seed germination, because they benefit some species while damaging others. Feces were examined for seeds that had been preyed upon or digested.

  4. Forest Patch Size, Land Use, and Mesic Forest Herbs in the French Broad River Basin, North Carolina

    Science.gov (United States)

    Scott M. Pearson; Alan B. Smith; Monica G. Turner

    1998-01-01

    The effect of forest fragmentation on cove-forest herbs was studied in the Southern Blue Ridge Province. Patches of mesic forests were sampled with 4 ha study plots. The coverage and density of herb species were greater in large patches (>200 ha) than in small patches (

  5. Diet and prey availability of terrestrial insectivorous birds prone to extinction in amazonian forest fragments

    Directory of Open Access Journals (Sweden)

    Luiz Augusto Macedo Mestre

    2010-12-01

    Full Text Available This study compared niche breath, prey size, and diet variability in two pairs of sympatric species of terrestrial insectivorous birds, each pair containing one species that can persist in small forest fragments and one that does not. The pairs were Myrmeciza ferruginea and Sclerurus rufigularis; and Formicarius colma and F. analis, respectively. The prey availability in forest fragments was also sampled and compared to the availability in continuous forests. Niche breath indices did not differ between pair members, but diet variability differed in the opposite direction from that hypothesized. Although the two bird species most vulnerable to fragmentation fed on larger prey than less vulnerable species, prey availability, including that based on prey size did not differ among fragmented versus continuous forest sites. Thus, diet per se appeared not to be an important cause of extinction-proneness in these species. The simplest explanation proposed, that vulnerability to fragmentation was directly related to territory size, requires testing. However, it was consistent with observations that the bird species feeding on larger prey also need larger territories.Dieta e disponibilidade de presas de aves insetívoras terrestres em fragmentos florestais amazônicos. As aves insetívoras terrestres são um dos grupos mais vulneráveis à fragmentação de florestas tropicais; no entanto algumas espécies desta guilda ainda sobrevivem em fragmentos florestais e em florestas secundárias. Se a sensibilidade destas aves à fragmentação de florestas estivesse associada à dieta, então espécies com a dieta relativamente flexível teriam maior propensão em persistir nos fragmentos florestais. Este estudo comparou sobreposição trófica, amplitude de nicho, tamanho de presas e variabilidade de dieta de dois pares de espécies de aves insetívoras terrestres, onde cada par foi composto por uma espécie que persiste nos fragmentos e outra que n

  6. Natural vegetation cover in the landscape and edge effects: differential responses of insect orders in a fragmented forest.

    Science.gov (United States)

    González, Ezequiel; Salvo, Adriana; Valladares, Graciela

    2017-10-01

    Human activities have led to global simplification of ecosystems, among which Neotropical dry forests are some of the most threatened. Habitat loss as well as edge effects may affect insect communities. Here, we analyzed insects sampled with pan traps in 9 landscapes (at 5 scales, in 100-500 m diameter circles) comprising cultivated fields and Chaco Serrano forests, at overall community and taxonomic order level. In total 7043 specimens and 456 species of hexapods were captured, with abundance and richness being directly related to forest cover at 500 m and higher at edges in comparison with forest interior. Community composition also varied with forest cover and edge/interior location. Different responses were detected among the 8 dominant orders. Collembola, Hemiptera, and Orthoptera richness and/or abundance were positively related to forest cover at the larger scale, while Thysanoptera abundance increased with forest cover only at the edge. Hymenoptera abundance and richness were negatively related to forest cover at 100 m. Coleoptera, Diptera, and Hymenoptera were more diverse and abundant at the forest edge. The generally negative influence of forest loss on insect communities could have functional consequences for both natural and cultivated systems, and highlights the relevance of forest conservation. Higher diversity at the edges could result from the simultaneous presence of forest and matrix species, although "resource mapping" might be involved for orders that were richer and more abundant at edges. Adjacent crops could benefit from forest proximity since natural enemies and pollinators are well represented in the orders showing positive edge effects. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  7. Diet and feeding ecology of the western hoolock gibbon (Hoolock hoolock) in a tropical forest fragment of Northeast India.

    Science.gov (United States)

    Borah, Mrigakhi; Devi, Ashalata; Kumar, Awadhesh

    2018-01-01

    Forest fragmentation alters plant species diversity and composition, and causes diverse affects on the feeding behavior of wild primates. We investigated the feeding behavior and diet of two groups of western hoolock gibbon (Hoolock hoolock) inhabiting a small isolated forest patch (21 km 2 ) in Hollongapar Gibbon Wildlife Sanctuary, Assam, Northeast India, over a year using focal animal sampling. H. hoolock adults spent, on average, 35.2% of their total annual activity budget on feeding, and fed on young leaves, mature leaves, flowers, fruits, petioles, buds and also on animal matter. There was marked seasonal variation in the proportions of the dietary items consumed. Fruits accounted for an average of 51% (range 34-71% per month) of feeding time over the year. This highly frugivorous diet may limit the ability of the species to survive in small and disturbed forest fragments. A total of 54 plant species (32 families) were consumed by the focal groups during the study period, but there were variations between months in the selection of these plant species. Non-tree species such as lianas were among the most highly selected species in the diet. Moraceae, comprising ten species, was the most dominant family among the food plants, accounting for 36% of annual feeding time. The present study presents quantitative and qualitative data on dietary composition, preference and selection of food plants of H. hoolock in a fragmented habitat, which can contribute to the restoration and manipulation of degraded habitats of H. hoolock.

  8. Reframing landscape fragmentation's effects on ecosystem services.

    Science.gov (United States)

    Mitchell, Matthew G E; Suarez-Castro, Andrés F; Martinez-Harms, Maria; Maron, Martine; McAlpine, Clive; Gaston, Kevin J; Johansen, Kasper; Rhodes, Jonathan R

    2015-04-01

    Landscape structure and fragmentation have important effects on ecosystem services, with a common assumption being that fragmentation reduces service provision. This is based on fragmentation's expected effects on ecosystem service supply, but ignores how fragmentation influences the flow of services to people. Here we develop a new conceptual framework that explicitly considers the links between landscape fragmentation, the supply of services, and the flow of services to people. We argue that fragmentation's effects on ecosystem service flow can be positive or negative, and use our framework to construct testable hypotheses about the effects of fragmentation on final ecosystem service provision. Empirical efforts to apply and test this framework are critical to improving landscape management for multiple ecosystem services. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Lianas as a food resource for brown howlers (Alouatta guariba) and southern muriquis (Brachyteles arachnoides) in a forest fragment

    OpenAIRE

    M. M. Martins

    2009-01-01

    Lianas as a food resource for brown howlers (Alouatta guariba) and southern muriquis (Brachyteles arachnoides) in a forest fragment.— Lianas, woody vines, are abundant and diverse in tropical forests, but their relative contribution as a source of food for herbivores has been neglected. I compared feeding rates on lianas and trees of two sympatric primates, A. guariba and B. arachnoides, in Southeastern Brazil. Availability of liana foods was gathered in parallel with primate behavioral data ...

  10. Lianas as a food resource for brown howlers (Alouatta guariba and southern muriquis (Brachyteles arachnoides in a forest fragment

    Directory of Open Access Journals (Sweden)

    M. M. Martins

    2009-01-01

    Full Text Available Lianas as a food resource for brown howlers (Alouatta guariba and southern muriquis (Brachyteles arachnoides in a forest fragment.— Lianas, woody vines, are abundant and diverse in tropical forests, but their relative contribution as a source of food for herbivores has been neglected. I compared feeding rates on lianas and trees of two sympatric primates, A. guariba and B. arachnoides, in Southeastern Brazil. Availability of liana foods was gathered in parallel with primate behavioral data collection. Liana represented 33.9% and 27.3% of food sources for A. guariba and B. arachnoides, respectively. Foods coming from trees, rather than from lianas, were significantly more consumed by B. arachnoides. However, both species took advantage of the continuously renewable and ephemeral food resources provided by liana. Availability of liana flowers correlated positively with A. guariba feeding proportions. The nutritional supply provided by lianas is apparently beneficial, or at least unharmful, but experiments comparing primate choices in forests with different liana abundances will help to shed light on their possible negative effect on communities.

  11. Efecto de la fragmentación forestal sobre la estructura vegetacional de las poblaciones amenazadas de Legrandia concinna (Myrtaceae del centro-sur de Chile Effect of forest fragmentation on vegetation structure of Legrandia concinna (Myrtaceae threatened populations in south-central Chile

    Directory of Open Access Journals (Sweden)

    ADISON ALTAMIRANO

    2007-03-01

    tiempo a fin de evaluar la efectividad de determinadas estrategias de conservación para estas poblacionesHabitat fragmentation is one of the main threats to ecosystems integrity. In this study we assessed the influence of forest fragmentation on vegetation structure of populations of tree specie Legrandia concinna in south-central Chile. Occupancy pattern of Legrandia populations in remaining fragments of native forests was described, and relationship between landscape indices and vegetation structure variables were evaluated. Landscape indices, such as area, proximity mean index, shape and edge distance to fragment were applied to forest cover maps generated from a Landsat ETM+ satellite scene for the year 2001. Results showed high predominance of reduced size fragments, high isolation levels and regulars shapes of the fragments. Occupancy pattern suggests that Legrandia populations are found mainly in small and more isolated fragments. No significant difference was found between fragment distribution with and without presence of Legrandia related to size and isolation. However, we found that size, isolation and distance to fragment edge are significantly related to the presence of this specie. As conservation measures for this specie, we propose to include populations with high disappearance risk in protected areas, promote ex situ conservation and set up a monitoring program. This study sets a precedent related by linking landscape scale information obtained from satellite imagery and vegetation structure information measured in the field with conservation status of threatened populations. This innovative method allows monitoring changes over time to assess effectiveness of conservation strategies for these populations

  12. Assessment of organochlorine pesticide residues in Atlantic Rain Forest fragments, Rio de Janeiro, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Soares Quinete, Natalia, E-mail: nataliaquinete@yahoo.com.br [Instituto Nacional de Tecnologia, Departamento de Quimica Analitica, Laboratorio de Quimica Analitica e Metrologia em Quimica, Av. Venezuela, 82 - Rio de Janeiro, RJ 20081-312 (Brazil); Santos de Oliveira, Elba dos [Instituto Nacional de Tecnologia, Departamento de Energia, Av. Venezuela, 82 - Rio de Janeiro, RJ 20081-312 (Brazil); Fernandes, Daniella R. [Universidade Federal do Rio de Janeiro, Instituto de Quimica, Departamento de Quimica Analitica, CT - Bloco A, Cidade Universitaria, 21941-909 - Rio de Janeiro (Brazil); Souza Avelar, Andre de [Universidade Federal do Rio de Janeiro, Departamento de Geografia, Instituto de Geociencias, CCMN, Bloco F, Cidade Universitaria, 21941-919 - Rio de Janeiro (Brazil); Erthal Santelli, Ricardo [Universidade Federal do Rio de Janeiro, Instituto de Quimica, Departamento de Quimica Analitica, CT - Bloco A, Cidade Universitaria, 21941-909 - Rio de Janeiro (Brazil)

    2011-12-15

    A superficial water quality survey in a watershed of the Paraiba do Sul River, the main water supply for the most populated cities of southeastern Brazil, was held in order to assess the impact of the expansion of agricultural activity in the near border of the Atlantic Rain Forest. The aim of this study was to investigate the presence of priority organochlorine pollutants in soils and superficial waters of Atlantic rainforest fragments in Teresopolis, Rio de Janeiro State. Soil sample preparations were compared by using ultrasound, microwave assisted extraction and Soxhlet extraction. Recoveries of matrix spiked samples ranged from 70 to 130%. Analysis of a certified soil material showed recoveries ranging from 71 to 234%. Although low concentrations of organochlorine residues were found in water and soil samples, this area is of environmental importance and concern, thus demanding a monitoring program of its compartments. - Highlights: > The organochlorine pollutants occurrence in the Atlantic Rain Forest was investigated. > PARNASO was considered a control area of environmental quality. > Extractions methods were compared for typical C-rich soils samples from Brazil. > Low concentrations of organochlorine residues were found in water and soil samples. > A monitoring program is demanded due to the environmental importance of the area. - The occurrence of organochlorine pollutants in soils of the Atlantic rainforest fragments in Rio de Janeiro, Brazil demands a monitoring program of its compartments.

  13. Assessment of organochlorine pesticide residues in Atlantic Rain Forest fragments, Rio de Janeiro, Brazil

    International Nuclear Information System (INIS)

    Soares Quinete, Natalia; Santos de Oliveira, Elba dos; Fernandes, Daniella R.; Souza Avelar, Andre de; Erthal Santelli, Ricardo

    2011-01-01

    A superficial water quality survey in a watershed of the Paraiba do Sul River, the main water supply for the most populated cities of southeastern Brazil, was held in order to assess the impact of the expansion of agricultural activity in the near border of the Atlantic Rain Forest. The aim of this study was to investigate the presence of priority organochlorine pollutants in soils and superficial waters of Atlantic rainforest fragments in Teresopolis, Rio de Janeiro State. Soil sample preparations were compared by using ultrasound, microwave assisted extraction and Soxhlet extraction. Recoveries of matrix spiked samples ranged from 70 to 130%. Analysis of a certified soil material showed recoveries ranging from 71 to 234%. Although low concentrations of organochlorine residues were found in water and soil samples, this area is of environmental importance and concern, thus demanding a monitoring program of its compartments. - Highlights: → The organochlorine pollutants occurrence in the Atlantic Rain Forest was investigated. → PARNASO was considered a control area of environmental quality. → Extractions methods were compared for typical C-rich soils samples from Brazil. → Low concentrations of organochlorine residues were found in water and soil samples. → A monitoring program is demanded due to the environmental importance of the area. - The occurrence of organochlorine pollutants in soils of the Atlantic rainforest fragments in Rio de Janeiro, Brazil demands a monitoring program of its compartments.

  14. A framework to predict the impacts of shale gas infrastructures on the forest fragmentation of an agroforest region.

    Science.gov (United States)

    Racicot, Alexandre; Babin-Roussel, Véronique; Dauphinais, Jean-François; Joly, Jean-Sébastien; Noël, Pascal; Lavoie, Claude

    2014-05-01

    We propose a framework to facilitate the evaluation of the impacts of shale gas infrastructures (well pads, roads, and pipelines) on land cover features, especially with regards to forest fragmentation. We used a geographic information system and realistic development scenarios largely inspired by the PA (United States) experience, but adapted to a region of QC (Canada) with an already fragmented forest cover and a high gas potential. The scenario with the greatest impact results from development limited by regulatory constraints only, with no access to private roads for connecting well pads to the public road network. The scenario with the lowest impact additionally integrates ecological constraints (deer yards, maple woodlots, and wetlands). Overall the differences between these two scenarios are relatively minor, with shale gas industry, we show that it is possible, within a reasonable time frame, to produce a robust assessment of the impacts of shale gas extraction. The framework we propose could easily be applied to other contexts or jurisdictions.

  15. Immigration rates in fragmented landscapes--empirical evidence for the importance of habitat amount for species persistence.

    Directory of Open Access Journals (Sweden)

    Thomas Püttker

    Full Text Available BACKGROUND: The total amount of native vegetation is an important property of fragmented landscapes and is known to exert a strong influence on population and metapopulation dynamics. As the relationship between habitat loss and local patch and gap characteristics is strongly non-linear, theoretical models predict that immigration rates should decrease dramatically at low levels of remaining native vegetation cover, leading to patch-area effects and the existence of species extinction thresholds across fragmented landscapes with different proportions of remaining native vegetation. Although empirical patterns of species distribution and richness give support to these models, direct measurements of immigration rates across fragmented landscapes are still lacking. METHODOLOGY/PRINCIPAL FINDINGS: Using the Brazilian Atlantic forest marsupial Gray Slender Mouse Opossum (Marmosops incanus as a model species and estimating demographic parameters of populations in patches situated in three landscapes differing in the total amount of remaining forest, we tested the hypotheses that patch-area effects on population density are apparent only at intermediate levels of forest cover, and that immigration rates into forest patches are defined primarily by landscape context surrounding patches. As expected, we observed a positive patch-area effect on M. incanus density only within the landscape with intermediate forest cover. Density was independent of patch size in the most forested landscape and the species was absent from the most deforested landscape. Specifically, the mean estimated numbers of immigrants into small patches were lower in the landscape with intermediate forest cover compared to the most forested landscape. CONCLUSIONS/SIGNIFICANCE: Our results reveal the crucial importance of the total amount of remaining native vegetation for species persistence in fragmented landscapes, and specifically as to the role of variable immigration rates in

  16. Does the edge effect influence plant community structure in a tropical dry forest?

    Directory of Open Access Journals (Sweden)

    Diogo Gallo Oliveira

    2013-04-01

    Full Text Available Edge effects are considered a key factor in regulating the structure of plant communities in different ecosystems. However, regardless to few studies, edge influence does not seem to be decisive in semiarid regions such as the Brazilian tropical dry forest known as Caatinga but this issue remains inconclusive. The present study tests the null hypothesis that the plant community of shrubs and trees does not change in its structure due to edge effects. Twenty-four plots (20 x 20 m were set up in a fragment of Caatinga, in which 12 plots were in the forest edges and 12 plots were inside the fragment. Tree richness, abundance and species composition did not differ between edge and interior plots. The results of this study are in agreement with the pattern previously found for semiarid environments and contrasts with previous results obtained in different environments such as Rainforests, Savanna and Forest of Araucaria, which indicate abrupt differences between the border and interior of the plant communities in these ecosystems, and suggest that the community of woody plants of the Caatinga is not ecologically affected by the presence of edges.

  17. Incidence of plant cover over the autotrophic nitrifying bacteria population in a fragment of Andean forest

    International Nuclear Information System (INIS)

    Gonzalez, Xiomara; Gonzalez, L; Varela, A; Ahumada, J A

    1999-01-01

    It was determined the incidence of plant cover (forest vs. pasture), on the autotrophy nitrifying bacteria, through the effect of biotic factors (radical exudate) and abiotic factors (temperature, ph and humidity), in a high mountain cloud forest fragment. The site of study was located near La Mesa (Cundinamarca) municipality. The temperature of soil was measured in situ, and soil samples were collected and carried to the laboratory for pH and humidity percentage measurements. Serial soil dilution method was used for plating samples on a selective culture medium with ammonium sulphate as nitrogen source, in order to estimate the autotrophic nitrifying bacteria population levels. Grown colonies were examined macro and microscopically. The quantity of nitrates produced by bacteria cultured in vitro was determined spectra-photometrical. In relation to the abiotic factors, there was no significant differences of pH between both plant covers, but there were significant for soil humidity and temperature (p<0.05). There were highly significant differences with respect to the bacteria population levels (p<0.0001) and with respect to nitrate production. This suggests a higher bacterial activity in the under forest cover. The radical exudate from both types of plant cover reduced the viability of bacteria in vitro, from 1:1 to 1:30 exudate bacteria proportions. In the soils physical and chemical analysis, it was found a higher P and Al concentrations, and a higher CIC and organic matter content under the forest cover. It is suggested the importance of this functional group in this ecosystem

  18. Uncertainty in future water supplies from forests: hydrologic effects of a changing forest landscape

    Science.gov (United States)

    Jones, J. A.; Achterman, G. L.; Alexander, L. E.; Brooks, K. N.; Creed, I. F.; Ffolliott, P. F.; MacDonald, L.; Wemple, B. C.

    2008-12-01

    Forests account for 33 percent of the U.S. land area, process nearly two-thirds of the fresh water supply, and provide water to 40 percent of all municipalities or about 180 million people. Water supply management is becoming more difficult given the increasing demand for water, climate change, increasing development, changing forest ownership, and increasingly fragmented laws governing forest and watershed management. In 2006, the US National Research Council convened a study on the present understanding of forest hydrology, the hydrologic effects of a changing forest landscape, and research and management needs for sustaining water resources from forested landscapes. The committee concluded that while it is possible to generate short-term water yield increases by timber harvesting, there are a variety of reasons why active forest management has only limited potential to sustainably increase water supplies. These include the short-term nature of the increases in most environments, the timing of the increases, the need for downstream storage, and that continuing ground- based timber harvest can reduce water quality. At the same time, past and continuing changes in forest structure and management may be altering water supplies at the larger time and space scales that are of most interest to forest and water managers. These changes include the legacy of past forest management practices, particularly fire suppression and clearcutting; exurban sprawl, which permanently converts forest land to nonforest uses; effects of climate change on wildfires, insect outbreaks, forest structure, forest species composition, snowpack depth and snowmelt; road networks; and changes in forest land ownership. All of these changes have the potential to alter water quantity and quality from forests. Hence, the baseline conditions that have been used to estimate sustained water yields from forested watersheds may no longer be applicable. Stationarity also can no longer be assumed for the

  19. Respuestas foliares de Aristotelia chilensis (Molina Stuntz (Elaeocarpaceae a la fragmentación del bosque maulino Leaf responses of Aristotelia chilensis (Molina Stuntz (Elaeocarpaceae to the fragmentation of the Maulino forest

    Directory of Open Access Journals (Sweden)

    FIORELLA REPETTO-GIAVELLI

    2007-12-01

    Full Text Available La fragmentación que ha sufrido el bosque nativo de Chile debido a la fuerte presión antrópica ha causado, además de la grave pérdida de habitat, la modificación del microclima de los parches de bosque remanente que alguna vez constituyeron un bosque continuo de especies nativas. Estos cambios generarían respuestas morfológicas, químicas y fisiológicas en plantas capaces de adaptarse a las nuevas condiciones. Este estudio tiene como objetivo identificar respuestas a nivel de las hojas ante el aumento de radiación solar y disminución de agua en el suelo que ocurre al interior de los fragmentos. Para esto utilizamos a Aristotelia chilensis, especie que crece tanto en fragmentos como en bosque continuo, y comparamos parámetros relacionados a su morfología foliar en bosque y fragmentos y medimos su repercusión en la capacidad fotosintética de A. chilensis. En términos morfológicos, se observó una disminución del área foliar y del área foliar específica en los fragmentos, siendo 1,2 veces menor que en el bosque continuo. En los fragmentos, el grosor de la epidermis y del parénquima esponjoso son más de 1,3 veces mas gruesos que en el bosque continuo. El grosor del parénquima en empalizada, en cambio, no se vio modificado. La cantidad de nitrógeno en las hojas es 1,2 veces mayor en el bosque continuo que en los fragmentos, mientras que el contenido de carbono no varía. La conductancia estomática en el bosque continuo fue 1,5 veces mayor que en los fragmentos. Aristotelia chilensis responde morfológica y fisiológicamente ante los cambios abióticos generados por la fragmentación de los bosques, lo que le permite sobrevivir tanto en ambientes de baja luminosidad como el bosque continuo y en ambientes de alta luminosidad y bajo contenido hídrico como los fragmentos de bosque, manteniendo tasas fotosintéticas semejantes en ambos ambientesFragmentation of the Maulino forest implies significant habitat loss, as well as the

  20. Feather mites (Acari, Astigmata) associated with birds in an Atlantic Forest fragment in Northeastern Brazil

    OpenAIRE

    Silva, HM; Hernandes, FA; Pichorim, M

    2015-01-01

    AbstractThe present study reports associations between feather mites (Astigmata) and birds in an Atlantic Forest fragment in Rio Grande do Norte state, in Brazil. In the laboratory, mites were collected through visual examination of freshly killed birds. Overall, 172 individuals from 38 bird species were examined, between October 2011 and July 2012. The prevalence of feather mites was 80.8%, corresponding to 139 infested individuals distributed into 30 species and 15 families of hosts. Fiftee...

  1. The effects of forest destruction on the abundance, species richness ...

    African Journals Online (AJOL)

    SARAH

    2013-04-25

    Apr 25, 2013 ... compounds found in plants, animals, or microorganisms. ... fragmented and degraded With the exception of sacred forest ... best-known insects that are involved in pollinating flowers. ... The influence of landscape patterns on butterfly ..... history were recorded in the tropical rain forest areas but due to ...

  2. Positive edge effects on forest-interior cryptogams in clear-cuts.

    Directory of Open Access Journals (Sweden)

    Alexandro Caruso

    Full Text Available Biological edge effects are often assessed in high quality focal habitats that are negatively influenced by human-modified low quality matrix habitats. A deeper understanding of the possibilities for positive edge effects in matrix habitats bordering focal habitats (e.g. spillover effects is, however, essential for enhancing landscape-level resilience to human alterations. We surveyed epixylic (dead wood inhabiting forest-interior cryptogams (lichens, bryophytes, and fungi associated with mature old-growth forests in 30 young managed Swedish boreal forest stands bordering a mature forest of high conservation value. In each young stand we registered species occurrences on coarse dead wood in transects 0-50 m from the border between stand types. We quantified the effect of distance from the mature forest on the occurrence of forest-interior species in the young stands, while accounting for local environment and propagule sources. For comparison we also surveyed epixylic open-habitat (associated with open forests and generalist cryptogams. Species composition of epixylic cryptogams in young stands differed with distance from the mature forest: the frequency of occurrence of forest-interior species decreased with increasing distance whereas it increased for open-habitat species. Generalists were unaffected by distance. Epixylic, boreal forest-interior cryptogams do occur in matrix habitats such as clear-cuts. In addition, they are associated with the matrix edge because of a favourable microclimate closer to the mature forest on southern matrix edges. Retention and creation of dead wood in clear-cuts along the edges to focal habitats is a feasible way to enhance the long-term persistence of epixylic habitat specialists in fragmented landscapes. The proposed management measures should be performed in the whole stand as it matures, since microclimatic edge effects diminish as the matrix habitat matures. We argue that management that aims to increase

  3. Woody lianas increase in dominance and maintain compositional integrity across an Amazonian dam-induced fragmented landscape.

    Directory of Open Access Journals (Sweden)

    Isabel L Jones

    Full Text Available Tropical forest fragmentation creates insular biological communities that undergo species loss and changes in community composition over time, due to area- and edge-effects. Woody lianas thrive in degraded and secondary forests, due to their competitive advantage over trees in these habitats. Lianas compete both directly and indirectly with trees, increasing tree mortality and turnover. Despite our growing understanding of liana-tree dynamics, we lack detailed knowledge of the assemblage-level responses of lianas themselves to fragmentation, particularly in evergreen tropical forests. We examine the responses of both sapling and mature liana communities to landscape-scale forest insularization induced by a mega hydroelectric dam in the Brazilian Amazon. Detailed field inventories were conducted on islands created during reservoir filling, and in nearby mainland continuous forest. We assess the relative importance of variables associated with habitat fragmentation such as area, isolation, surrounding forest cover, fire and wind disturbance, on liana community attributes including abundance, basal area, diversity, and composition. We also explore patterns of liana dominance relative to tree saplings and adults ≥10 cm diameter at breast height. We find that 1 liana community composition remains remarkably similar across mainland continuous forest and islands, regardless of extreme area- and edge- effects and the loss of vertebrate dispersers in the latter; and 2 lianas are increasing in dominance relative to trees in the sapling layer in the most degraded islands, with both the amount of forest cover surrounding islands and fire disturbance history predicting liana dominance. Our data suggest that liana communities persist intact in isolated forests, regardless of extreme area- and edge-effects; while in contrast, tree communities simultaneously show evidence of increased turnover and supressed recruitment. These processes may lead to lianas

  4. Woody lianas increase in dominance and maintain compositional integrity across an Amazonian dam-induced fragmented landscape.

    Science.gov (United States)

    Jones, Isabel L; Peres, Carlos A; Benchimol, Maíra; Bunnefeld, Lynsey; Dent, Daisy H

    2017-01-01

    Tropical forest fragmentation creates insular biological communities that undergo species loss and changes in community composition over time, due to area- and edge-effects. Woody lianas thrive in degraded and secondary forests, due to their competitive advantage over trees in these habitats. Lianas compete both directly and indirectly with trees, increasing tree mortality and turnover. Despite our growing understanding of liana-tree dynamics, we lack detailed knowledge of the assemblage-level responses of lianas themselves to fragmentation, particularly in evergreen tropical forests. We examine the responses of both sapling and mature liana communities to landscape-scale forest insularization induced by a mega hydroelectric dam in the Brazilian Amazon. Detailed field inventories were conducted on islands created during reservoir filling, and in nearby mainland continuous forest. We assess the relative importance of variables associated with habitat fragmentation such as area, isolation, surrounding forest cover, fire and wind disturbance, on liana community attributes including abundance, basal area, diversity, and composition. We also explore patterns of liana dominance relative to tree saplings and adults ≥10 cm diameter at breast height. We find that 1) liana community composition remains remarkably similar across mainland continuous forest and islands, regardless of extreme area- and edge- effects and the loss of vertebrate dispersers in the latter; and 2) lianas are increasing in dominance relative to trees in the sapling layer in the most degraded islands, with both the amount of forest cover surrounding islands and fire disturbance history predicting liana dominance. Our data suggest that liana communities persist intact in isolated forests, regardless of extreme area- and edge-effects; while in contrast, tree communities simultaneously show evidence of increased turnover and supressed recruitment. These processes may lead to lianas becoming a dominant

  5. Composition and abundance of small mammal communities in forest fragments and vegetation corridors in Southern Minas Gerais, Brazil

    Directory of Open Access Journals (Sweden)

    Andréa O. Mesquita

    2012-09-01

    Full Text Available Habitat fragmentation leads to isolation and reduce habitat areas, in addition to a series of negative effects on natural populations, affecting richness, abundance and distribution of animal species. In such a text, habitat corridors serve as an alternative for connectivity in fragmented landscapes, minimizing the effects of structural isolation of different habitat areas. This study evaluated the richness, composition and abundance of small mammal communities in forest fragments and in the relevant vegetation corridors that connect these fragments, located in Southern Minas Gerais, Southeastern Brazil. Ten sites were sampled (five forest fragments and five vegetation corridors using the capture-mark-recapture method, from April 2007-March 2008. A total sampling effort of 6 300 trapnights resulted in 656 captures of 249 individuals. Across the 10 sites sampled, 11 small mammal species were recorded. Multidimensional scaling (MDS ordinations and ANOSIM based on the composition of small mammal communities within the corridor and fragment revealed a qualitative difference between the two environments. Regarding abundance, there was no significant difference between corridors and fragments. In comparing mean values of abundance per species in each environment, only Cerradomys subflavus showed a significant difference, being more abundant in the corridor environment. Results suggest that the presence of several small mammal species in the corridor environment, in relatively high abundances, could indicate corridors use as habitat, though they might also facilitate and/or allow the movement of individuals using different habitat patches (fragments.La fragmentación del hábitat conduce al aislamiento y la reducción de los hábitats, además provoca una serie de efectos negativos sobre las poblaciones naturales, afectando la riqueza, abundancia y distribución de las especies de animales. Dentro de este contexto, los corredores biológicos sirven

  6. Bird communities in two fragments of semideciduos forest in rural São Paulo state

    Directory of Open Access Journals (Sweden)

    D. D. Pozza

    Full Text Available A quali-quantitative survey was done in two fragments (75 and 100 ha of semideciduous forest in rural São Paulo State. The aim was to characterize the bird community according to richness, abundance, and occurrence frequency in these areas. The qualitative survey showed 145 species in the Estação Ecológica de São Carlos - EESCar (Brotas - and 173 in the Fazenda Santa Cecília - FSC (Patrocínio Paulista, while the quantitative survey showed the presence of 60 and 72 species in EESCar and FSC respectively. The isolation and the lower environmental quality of the EESCar fragment may be responsible for the lower number of species in this area compared to that of FSC. Abundance index value analysis (IPA showed that both areas have a large number of species with low IPA and few species with intermediate or high IPA compared to the pattern observed in other surveys. At FSC, a larger number of occurrences of species in danger of extinction in São Paulo State was also observed. Apparently, the FSC fragment had better environmental quality for sheltering a larger number of species, including the endangered ones. The study of the community of birds is important in planning management and conservation of natural areas.

  7. Bird communities in two fragments of semideciduos forest in rural São Paulo state

    Directory of Open Access Journals (Sweden)

    Pozza D. D.

    2003-01-01

    Full Text Available A quali-quantitative survey was done in two fragments (75 and 100 ha of semideciduous forest in rural São Paulo State. The aim was to characterize the bird community according to richness, abundance, and occurrence frequency in these areas. The qualitative survey showed 145 species in the Estação Ecológica de São Carlos - EESCar (Brotas - and 173 in the Fazenda Santa Cecília - FSC (Patrocínio Paulista, while the quantitative survey showed the presence of 60 and 72 species in EESCar and FSC respectively. The isolation and the lower environmental quality of the EESCar fragment may be responsible for the lower number of species in this area compared to that of FSC. Abundance index value analysis (IPA showed that both areas have a large number of species with low IPA and few species with intermediate or high IPA compared to the pattern observed in other surveys. At FSC, a larger number of occurrences of species in danger of extinction in São Paulo State was also observed. Apparently, the FSC fragment had better environmental quality for sheltering a larger number of species, including the endangered ones. The study of the community of birds is important in planning management and conservation of natural areas.

  8. Effect of the degree of anthropization in the structure, at three sites fragmented evergreen piedmont forest

    Directory of Open Access Journals (Sweden)

    Hugo Gabriel Sánchez Villacis

    2017-08-01

    Full Text Available The Ecuadorian Amazon is recognized worldwide for its extraordinary megadiversity and multiplicity of forest goods and services. However, the inadequate practices of extractive use of non-timber forest products, the clearing of extensive areas of forests for the development of oil activity and the unsustainable use of timber as economic sustenance of communities have led to structural and functional changes In ecosystems. The study was carried out in three sites of a degraded evergreen forest of the eastern Amazon (Mera, Shell and Puyo in order to evaluate the effect of the degree of intervention on the forest structure. A floristic inventory was carried out with 60 plots of 25 x 25 m2 and tree species ≥ 2.5 cm d1.30 and species in natural regeneration phase with h <2 m were measured. We found 35 families, 65 genera, 101 species and 2 298 individuals, with Arecaceae, Fabaceae and Moraceae being the most representative botanical families. The degree of anthropization was highly modified where Mera was the best state of conservation. It was evidenced a low floristic diversity with patterns of alteration in the vertical and horizontal structure, distinguished phytosociologically by two strata in the sites of Shell and Puyo and by three in Mera, indicator of structural changes.

  9. Transforming Pinus pinaster forest to recreation site: preliminary effects on LAI, some forest floor, and soil properties.

    Science.gov (United States)

    Öztürk, Melih; Bolat, İlyas

    2014-04-01

    This study investigates the effects of forest transformation into recreation site. A fragment of a Pinus pinaster plantation forest was transferred to a recreation site in the city of Bartın located close to the Black Sea coast of northwestern Turkey. During the transformation, some of the trees were selectively removed from the forest to generate more open spaces for the recreationists. As a result, Leaf Area Index (LAI) decreased by 0.20 (about 11%). Additionally, roads and pathways were introduced into the site together with some recreational equipment sealing parts of the soil surface. Consequently, forest environment was altered with a semi-natural landscape within the recreation site. The purpose of this study is to assess the effects of forest transformation into recreation site particularly in terms of the LAI parameter, forest floor, and soil properties. Preliminary monitoring results indicate that forest floor biomass is reduced by 26% in the recreation site compared to the control site. Soil temperature is increased by 15% in the recreation site where selective removal of trees expanded the gaps allowing more light transmission. On the other hand, the soil bulk density which is an indicator of soil compaction is unexpectedly slightly lower in the recreation site. Organic carbon (C(org)) and total nitrogen (N(total)) together with the other physical and chemical parameter values indicate that forest floor and soil have not been exposed to much disturbance. However, subsequent removal of trees that would threaten the vegetation, forest floor, and soil should not be allowed. The activities of the recreationists are to be concentrated on the paved spaces rather than soil surfaces. Furthermore, long-term monitoring and management is necessary for both the observation and conservation of the site.

  10. A degradation debt? Large-scale shifts in community composition and loss of biomass in a tropical forest fragment after 40 years of isolation.

    Science.gov (United States)

    Zahawi, Rakan A; Oviedo-Brenes, Federico; Peterson, Chris J

    2017-01-01

    Habitat loss and fragmentation are among the biggest threats to tropical biodiversity and associated ecosystem services. We examined forest dynamics in a mid-elevation 365-ha fragment in southern Costa Rica. The fragment was isolated in the mid-1970s and belongs to the Las Cruces Biological Station. A 2.25-ha permanent plot was established in the center of the old-growth forest (>400 m to nearest edge boundary) and all plants >5 cm DBH were censused, mapped, and identified to species in two surveys taken ~5-6 years apart (>3,000 stems/survey). Although the reserve maintains high species richness (>200 spp.), with many rare species represented by only one individual, we document a strong shift in composition with a two-fold increase in the number of soft-wooded pioneer individuals. The dominant late-successional understory tree species, Chrysochlamys glauca (Clusiaceae), and most species in the Lauraceae, declined dramatically. Turnover was high: 22.9% of stems in the first survey were lost, and 27.8% of stems in the second survey represented new recruits. Mean tree diameter decreased significantly and there was a 10% decrease in overall biomass. Such alteration has been documented previously but only in smaller fragments or within ~100 m of an edge boundary. Further penetration into this fragment was perhaps driven by a progressive invasion of disturbance-adapted species into the fragment's core over time; the loss of once-dominant late successional species could be a contributing factor. The pattern found is of particular concern given that such fragments represent a substantial portion of today's remaining tropical habitat; further studies in similar-sized fragments that have been isolated for similar prolonged periods are called for.

  11. A degradation debt? Large-scale shifts in community composition and loss of biomass in a tropical forest fragment after 40 years of isolation.

    Directory of Open Access Journals (Sweden)

    Rakan A Zahawi

    Full Text Available Habitat loss and fragmentation are among the biggest threats to tropical biodiversity and associated ecosystem services. We examined forest dynamics in a mid-elevation 365-ha fragment in southern Costa Rica. The fragment was isolated in the mid-1970s and belongs to the Las Cruces Biological Station. A 2.25-ha permanent plot was established in the center of the old-growth forest (>400 m to nearest edge boundary and all plants >5 cm DBH were censused, mapped, and identified to species in two surveys taken ~5-6 years apart (>3,000 stems/survey. Although the reserve maintains high species richness (>200 spp., with many rare species represented by only one individual, we document a strong shift in composition with a two-fold increase in the number of soft-wooded pioneer individuals. The dominant late-successional understory tree species, Chrysochlamys glauca (Clusiaceae, and most species in the Lauraceae, declined dramatically. Turnover was high: 22.9% of stems in the first survey were lost, and 27.8% of stems in the second survey represented new recruits. Mean tree diameter decreased significantly and there was a 10% decrease in overall biomass. Such alteration has been documented previously but only in smaller fragments or within ~100 m of an edge boundary. Further penetration into this fragment was perhaps driven by a progressive invasion of disturbance-adapted species into the fragment's core over time; the loss of once-dominant late successional species could be a contributing factor. The pattern found is of particular concern given that such fragments represent a substantial portion of today's remaining tropical habitat; further studies in similar-sized fragments that have been isolated for similar prolonged periods are called for.

  12. Different pollinator assemblages ensure reproductive success of Cleisostoma linearilobatum (Orchidaceae) in fragmented holy hill forest and traditional tea garden.

    Science.gov (United States)

    Zhou, Xiang; Liu, Qiang; Han, Jessie Yc; Gao, JiangYun

    2016-02-24

    Orchids are generally recognized to have specialist pollination systems and low fruit set is often thought to be characteristic of the family. In this study, we investigated the reproductive ecology of Cleisostoma linearilobatum, an epiphytic tropical orchid, in a holy hill forest fragment and a traditional tea garden in SW China using comparable methods. C. linearilobatum is self-compatible and dependent on insects for pollination. Fruit production in natural conditions was both pollinator- and resource-limited. However, the natural fruit set remained stable over multiple years at both sites. Pollination observations showed that C. linearilobatum has a generalized pollination system and seven insect species were observed as legitimate pollinators. Although the visit frequencies of different pollinators were different in the two sites, the pollinator assemblages ensured reproductive success of C. linearilobatum in both study sites over multiple years. The results partly explain why C. linearilobatum is so successful in the area, and also suggest that holy hill forest fragments and traditional tea gardens in Xishuangbanna are important in preserving orchids, especially those with generalist pollination.

  13. Caloric content of leaves of five tree species from the riparian vegetation in a forest fragment from South Brazil

    Directory of Open Access Journals (Sweden)

    Leandro Fabrício Fiori

    2015-09-01

    Full Text Available Abstract Aim: The measurement of the caloric content evidences the amount of energy that remains in the leaf and that can be released to the aquatic trophic chain. We assessed the energy content of leaves from five riparian tree species of a forest fragment in south Brazil and analyzed whether leaf caloric content varied between leaf species and between seasons (dry and wet. The studied sites are located in Northwest of Paraná State, inside a Semi-Deciduous Forest fragment beside two headwater streams. Methods Sampling sites were located along the riparian vegetation of these two water bodies, and due to its proximity and absence of statistical differences of caloric values, analyzed as one compartment. Results Caloric content varied significantly among species and among all pairs of species, with exception of Nectandra cuspidata Ness and Calophyllum brasiliensis Cambess. Two species presented significant differences between seasons, Sloanea guianensis (Aubl. Ben and Calophyllum brasiliensis Cambess. Conclusions The absence of significant seasonal differences of energy content for some species may be due to the characteristics of the tropical forest, in which temperature did not varied dramatically between seasons. However, the energy differed between species and seasons for some species, emphasizing the necessity of a preliminary inspection of energy content, before tracing energy fluxes instead of using a single value to all species from riparian vegetation.

  14. Memory effects in nuclear fragmentation?

    International Nuclear Information System (INIS)

    Colonna, M.; Di Toro, M.; Guarnera, A.

    1994-01-01

    A general procedure to identify instability regions which lead to multifragmentation events is presented. The dominant mode at the instability point is determined from the knowledge of the mean properties (density and temperature) of the system at that point. For spinodal instabilities the dependence of fragment structures on the dynamical conditions is studied changing the beam energy and the considered equation of state. An important competition between two dynamical effects, expansion of the system and growth of fluctuations, is revealed. It is shown that in heavy-ion central collisions at medium energies memory effects of the configuration formed at the instability time could be observed in the final fragmentation pattern. Some hints towards a fully dynamical picture of fragmentation processes are finally suggested. ((orig.))

  15. Changes in Orchid Bee Communities Across Forest-Agroecosystem Boundaries in Brazilian Atlantic Forest Landscapes.

    Science.gov (United States)

    De Aguiar, Willian Moura; Sofia, Silvia H; Melo, Gabriel A R; Gaglianone, Maria Cristina

    2015-12-01

    Deforestation has dramatically reduced the extent of Atlantic Forest cover in Brazil. Orchid bees are key pollinators in neotropical forest, and many species are sensitive to anthropogenic interference. In this sense understanding the matrix permeability for these bees is important for maintaining genetic diversity and pollination services. Our main objective was to assess whether the composition, abundance, and diversity of orchid bees in matrices differed from those in Atlantic forest. To do this we sampled orchid bees at 4-mo intervals from 2007 to 2009 in remnants of Atlantic Forest, and in the surrounding pasture and eucalyptus matrices. The abundance, richness, and diversity of orchid bees diminished significantly from the forest fragment toward the matrix points in the eucalyptus and pasture. Some common or intermediate species in the forest areas, such as Eulaema cingulata (F.) and Euglossa fimbriata Moure, respectively, become rare species in the matrices. Our results show that the orchid bee community is affected by the matrices surrounding the forest fragments. They also suggest that connections between forest fragments need to be improved using friendly matrices that can provide more favorable conditions for bees and increase their dispersal between fragments. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. [Species composition and diversity of soil mesofauna in the 'Holy Hills' fragmentary tropical rain forest of Xishuangbanna, China].

    Science.gov (United States)

    Yang, X; Sha, L

    2001-04-01

    The species composition and diversity of soil mesofauna were examined in fragmented dry tropical seasonal rainforest of tow 'Holy Hills' of Dai nationality, compared with the continuous moist tropical seasonal rain forest of Nature Reserve in Xishuangbanna area. 5 sample quadrats were selected along the diagonal of 20 m x 20 m sampling plot, and the samples of litterfall and 0-3 cm soil were collected from each 50 cm x 10 cm sample quadrat. Animals in soil sample were collected by using dry-funnel(Tullgren's), were identified to their groups according to the order. The H' index, D.G index and the pattern of relative abundance of species were used to compare the diversity of soil mesofauna. The results showed that the disturbance of vegetation and soil resulted by tropical rainforest fragmentation was the major factor affecting the diversity of soil mesofauna. Because the fragmented forest was intruded by some pioneer tree species and the "dry and warm" effect operated, this forest had more litterfall on the floor and more humus in the soil than the continuous moist rain forest. The soil condition with more soil organic matter, total N and P, higher pH value and lower soil bulk density became more favorable to the soil mesofauna. Therefore, the species richness, abundance and diversity of soil mesofauna in fragmented forests were higher than those in continuous forest, but the similarity of species composition in fragmented forest to the continuous forest was minimal. Soil mesofauna diversity in fragmented forests did not change with decreasing fragmented area, indicating that there was no species-area effect operation in this forest. The pattern of relative abundance of species in these forest soils was logarithmic series distribution.

  17. Biological effectiveness of high-energy protons - Target fragmentation

    International Nuclear Information System (INIS)

    Cucinotta, F.A.; Katz, R.; Wilson, J.W.; Townsend, L.W.; Shinn, J.; Hajnal, F.

    1991-01-01

    High-energy protons traversing tissue produce local sources of high-linear-energy-transfer ions through nuclear fragmentation. The contribution of these target fragments to the biological effectiveness of high-energy protons using the cellular track model is examined. The effects of secondary ions are treated in terms of the production collision density using energy-dependent parameters from a high-energy fragmentation model. Calculations for mammalian cell cultures show that at high dose, at which intertrack effects become important, protons deliver damage similar to that produced by gamma rays, and with fragmentation the relative biological effectiveness (RBE) of protons increases moderately from unity. At low dose, where sublethal damage is unimportant, the contribution from target fragments dominates, causing the proton effectiveness to be very different from that of gamma rays with a strongly fluence-dependent RBE. At high energies, the nuclear fragmentation cross sections become independent of energy. This leads to a plateau in the proton single-particle-action cross section, below 1 keV/micron, since the target fragments dominate. 29 refs

  18. Bark and Ambrosia Beetle (Curculionidae: Scolytinae) Diversity Found in Agricultural and Fragmented Forests in Piracicaba-SP, Brazil.

    Science.gov (United States)

    Sandoval Rodríguez, Carla; Cognato, Anthony I; Righi, Ciro Abbud

    2017-12-08

    Land use changes and forest fragmentation result in biodiversity loss and displacement, with insects among the most affected groups. Among these, bark beetles (Curculionidae: Scolytinae) occupy a prominent position due to their close ties to food resources, i.e., trees, and importance as primary decomposers in forest ecosystems. Therefore, our study aimed to document scolytine biodiversity associated with landscape components that vary based on their physical or botanical composition. Bark beetle diversity was sampled monthly for 12 mo in an Atlantic forest remnant and five adjacent vegetation plots (mixed Agroforestry System-AFS, of native trees and fruit species; AFS of rubber trees and coffee plants; coffee monoculture; rubber monoculture; and pasture). In total, 1,833 individuals were sampled from 38 species of which 24 (63%) were detected in very low abundance. The remaining 14 species were more abundant and widespread almost in all areas. Hypothenemus hampei (Westwood), Premnobius cavipennis (Eichhoff), Hypothenemus sp1., and Xyleborus volvulus (Fabricius) were the most abundant. The greatest abundance and richness of bark beetles were found in the dry and cold season. The varied microclimatic conditions of the vegetation plots greatly affected the diversity of the Scolytinae. Solar radiation presented a significant negative effect on abundance in almost all the studied areas. The greatest scolytine diversity was found in anthropic areas with tree canopy structure. Open areas (pasture and coffee monocrop) had a lower species diversity. Similarly, a lower abundance and species richness were found for the Atlantic forest remnant. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Environmental drivers of Ixodes ricinus abundance in forest fragments of rural European landscapes.

    Science.gov (United States)

    Ehrmann, Steffen; Liira, Jaan; Gärtner, Stefanie; Hansen, Karin; Brunet, Jörg; Cousins, Sara A O; Deconchat, Marc; Decocq, Guillaume; De Frenne, Pieter; De Smedt, Pallieter; Diekmann, Martin; Gallet-Moron, Emilie; Kolb, Annette; Lenoir, Jonathan; Lindgren, Jessica; Naaf, Tobias; Paal, Taavi; Valdés, Alicia; Verheyen, Kris; Wulf, Monika; Scherer-Lorenzen, Michael

    2017-09-06

    The castor bean tick (Ixodes ricinus) transmits infectious diseases such as Lyme borreliosis, which constitutes an important ecosystem disservice. Despite many local studies, a comprehensive understanding of the key drivers of tick abundance at the continental scale is still lacking. We analyze a large set of environmental factors as potential drivers of I. ricinus abundance. Our multi-scale study was carried out in deciduous forest fragments dispersed within two contrasting rural landscapes of eight regions, along a macroclimatic gradient stretching from southern France to central Sweden and Estonia. We surveyed the abundance of I. ricinus, plant community composition, forest structure and soil properties and compiled data on landscape structure, macroclimate and habitat properties. We used linear mixed models to analyze patterns and derived the relative importance of the significant drivers. Many drivers had, on their own, either a moderate or small explanatory value for the abundance of I. ricinus, but combined they explained a substantial part of variation. This emphasizes the complex ecology of I. ricinus and the relevance of environmental factors for tick abundance. Macroclimate only explained a small fraction of variation, while properties of macro- and microhabitat, which buffer macroclimate, had a considerable impact on tick abundance. The amount of forest and the composition of the surrounding rural landscape were additionally important drivers of tick abundance. Functional (dispersules) and structural (density of tree and shrub layers) properties of the habitat patch played an important role. Various diversity metrics had only a small relative importance. Ontogenetic tick stages showed pronounced differences in their response. The abundance of nymphs and adults is explained by the preceding stage with a positive relationship, indicating a cumulative effect of drivers. Our findings suggest that the ecosystem disservices of tick-borne diseases, via the

  20. Population viability analysis: using a modeling tool to assess the viability of tapir populations in fragmented landscapes.

    Science.gov (United States)

    Medici, Emília Patrícia; Desbiez, Arnaud Leonard Jean

    2012-12-01

    A population viability analysis (PVA) was conducted of the lowland tapir populations in the Atlantic Forest of the Pontal do Paranapanema region, Brazil, including Morro do Diabo State Park (MDSP) and surrounding forest fragments. Results from the model projected that the population of 126 tapirs in MDSP is likely to persist over the next 100 years; however, 200 tapirs would be required to maintain a viable population. Sensitivity analysis showed that sub-adult mortality and adult mortality have the strongest influence on the dynamics of lowland tapir populations. High road-kill has a major impact on the MDSP tapir population and can lead to population extinction. Metapopulation modeling showed that dispersal of tapirs from MDSP to the surrounding fragments can be detrimental to the overall metapopulation, as fragments act as sinks. Nevertheless, the model showed that under certain conditions the maintenance of the metapopulation dynamics might be determinant for the persistence of tapirs in the region, particularly in the smaller fragments. The establishment of corridors connecting MDSP to the forest fragments models resulted in an increase in the stochastic growth rate, making tapirs more resilient to threats and catastrophes, but only if rates of mortality were not increased when using corridors. The PVA showed that the conservation of tapirs in the Pontal region depends on: the effective protection of MDSP; maintenance and, whenever possible, enhancement of the functional connectivity of the landscape, reducing mortality during dispersal and threats in the unprotected forest fragments; and neutralization of all threats affecting tapirs in the smaller forest fragments. © 2012 Wiley Publishing Asia Pty Ltd, ISZS and IOZ/CAS.

  1. Phytosociology analysis of a fragment of Seasonal Deciduous Forest: Parque Estadual do Turvo, RS, Brazil

    Directory of Open Access Journals (Sweden)

    Rafaelo Balbinot

    2016-06-01

    Full Text Available The ecosystem formed by the Seasonal Deciduous Forest (SDF predominates in the region of Alto Uruguay in Rio Grande do Sul State, Brazil. This study aimed to analyze descriptively the floristic composition and the phytosociology of trees from a fragment of SDF present in Parque Estadual do Turvo (PET located in the Municipality of Derrubadas, Rio Grande do Sul State (Yucumã forest. We used the method of fixed area, based on 18 sample units with 1,000 m2 installed randomly oriented by the main road of the park. All wood species with diameter at 1.3 m above ground level (DBH greater than 10 cm were measured and identified. It was observed the presence of 842 individuals belonging to 32 families, 67 genera and 83 species (12% were not identified. The families with the highest number of species were Fabaceae, Euphorbiaceae, Meliaceae, Myrtaceae and Sapindaceae. Shannon index estimated was 3.72.

  2. Shifts in Plant Assemblages Reduce the Richness of Galling Insects Across Edge-Affected Habitats in the Atlantic Forest.

    Science.gov (United States)

    Souza, Danielle G; Santos, Jean C; Oliveira, Marcondes A; Tabarelli, Marcelo

    2016-10-01

    Impacts of habitat loss and fragmentation on specialist herbivores have been rarely addressed. Here we examine the structure of plant and galling insect assemblages in a fragmented landscape of the Atlantic forest to verify a potential impoverishment of these assemblages mediated by edge effects. Saplings and galling insects were recorded once within a 0.1-ha area at habitat level, covering forest interior stands, forest edges, and small fragments. A total of 1,769 saplings from 219 tree species were recorded across all three habitats, with differences in terms of sapling abundance and species richness. Additionally, edge-affected habitats exhibited reduced richness of both host-plant and galling insects at plot and habitat spatial scale. Attack levels also differed among forest types at habitat spatial scale (21.1% of attacked stems in forest interior, 12.4% in small fragments but only 8.5% in forest edges). Plot ordination resulted in three clearly segregated clusters: one formed by forest interior, one by small fragments, and another formed by edge plots. Finally, the indicator species analysis identified seven and one indicator plant species in forest interior and edge-affected habitats, respectively. Consequently, edge effects lead to formation of distinct taxonomic groups and also an impoverished assemblage of plants and galling insects at multiple spatial scales. The results of the present study indicate that fragmentation-related changes in plant assemblages can have a cascade effects on specialist herbivores. Accordingly, hyperfragmented landscapes may not be able to retain an expressive portion of tropical biodiversity. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Fragmentation of random trees

    International Nuclear Information System (INIS)

    Kalay, Z; Ben-Naim, E

    2015-01-01

    We study fragmentation of a random recursive tree into a forest by repeated removal of nodes. The initial tree consists of N nodes and it is generated by sequential addition of nodes with each new node attaching to a randomly-selected existing node. As nodes are removed from the tree, one at a time, the tree dissolves into an ensemble of separate trees, namely, a forest. We study statistical properties of trees and nodes in this heterogeneous forest, and find that the fraction of remaining nodes m characterizes the system in the limit N→∞. We obtain analytically the size density ϕ s of trees of size s. The size density has power-law tail ϕ s ∼s −α with exponent α=1+(1/m). Therefore, the tail becomes steeper as further nodes are removed, and the fragmentation process is unusual in that exponent α increases continuously with time. We also extend our analysis to the case where nodes are added as well as removed, and obtain the asymptotic size density for growing trees. (paper)

  4. Deforestation trends of tropical dry forests in central Brazil

    Science.gov (United States)

    Bianchi, Carlos A.; Haig, Susan M.

    2013-01-01

    Tropical dry forests are the most threatened forest type in the world yet a paucity of research about them stymies development of appropriate conservation actions. The Paranã River Basin has the most significant dry forest formations in the Cerrado biome of central Brazil and is threatened by intense land conversion to pastures and agriculture. We examined changes in Paranã River Basin deforestation rates and fragmentation across three time intervals that covered 31 yr using Landsat imagery. Our results indicated a 66.3 percent decrease in forest extent between 1977 and 2008, with an annual rate of forest cover change of 3.5 percent. Landscape metrics further indicated severe forest loss and fragmentation, resulting in an increase in the number of fragments and reduction in patch sizes. Forest fragments in flatlands have virtually disappeared and the only significant forest remnants are mostly found over limestone outcrops in the eastern part of the basin. If current patterns persist, we project that these forests will likely disappear within 25 yr. These patterns may be reversed with creation of protected areas and involvement of local people to preserve small fragments that can be managed for restoration.

  5. Biodiversity conservation values of fragmented communally reserved forests, managed by indigenous people, in a human-modified landscape in Borneo.

    Science.gov (United States)

    Takeuchi, Yayoi; Soda, Ryoji; Diway, Bibian; Kuda, Tinjan Ak; Nakagawa, Michiko; Nagamasu, Hidetoshi; Nakashizuka, Tohru

    2017-01-01

    This study explored the conservation values of communally reserved forests (CRFs), which local indigenous communities deliberately preserve within their area of shifting cultivation. In the current landscape of rural Borneo, CRFs are the only option for conservation because other forested areas have already been logged or transformed into plantations. By analyzing their alpha and beta diversity, we investigated how these forests can contribute to restore regional biodiversity. Although CRFs were fragmented and some had been disturbed in the past, their tree species diversity was high and equivalent to that of primary forests. The species composition of intact forests and forests disturbed in the past did not differ clearly, which indicates that past logging was not intensive. All CRFs contained unique and endangered species, which are on the IUCN Red List, Sarawak protected plants, or both. On the other hand, the forest size structure differed between disturbed and intact CRFs, with the disturbed CRFs consisting of relatively smaller trees. Although the beta diversity among CRFs was also high, we found a high contribution of species replacement (turnover), but not of richness difference, in the total beta diversity. This suggests that all CRFs have a conservation value for restoring the overall regional biodiversity. Therefore, for maintaining the regional species diversity and endangered species, it would be suitable to design a conservation target into all CRFs.

  6. Temporal mapping of deforestation and forest degradation in Nepal: Applications to forest conservation

    NARCIS (Netherlands)

    Panta, M.; Kim, K.; Joshi, C.

    2008-01-01

    Deforestation and forest degradation are associated and progressive processes resulting in the conversion of forest area into a mosaic of mature forest fragments, pasture, and degraded habitat. Monitoring of forest landscape spatial structures has been recommended to detect degenerative trends in

  7. Creation of forest edges has a global impact on forest vertebrates

    Science.gov (United States)

    Peres, CA; Banks-Leite, C; Wearn, OR; Marsh, CJ; Butchart, SHM; Arroyo-Rodríguez, V; Barlow, J; Cerezo, A; Cisneros, L; D’Cruze, N; Faria, D; Hadley, A; Harris, S; Klingbeil, BT; Kormann, U; Lens, L; Medina-Rangel, GF; Morante-Filho, JC; Olivier, P; Peters, SL; Pidgeon, A; Ribeiro, DB; Scherber, C; Schneider-Maunory, L; Struebig, M; Urbina-Cardona, N; Watling, JI; Willig, MR; Wood, EM; Ewers, RM

    2017-01-01

    Summary Forest edges influence more than half the world’s forests and contribute to worldwide declines in biodiversity and ecosystem functions. However, predicting these declines is challenging in heterogeneous fragmented landscapes. We assembled an unmatched global dataset on species responses to fragmentation and developed a new statistical approach for quantifying edge impacts in heterogeneous landscapes to quantify edge-determined changes in abundance of 1673 vertebrate species. We show that 85% of species’ abundances are affected, either positively or negatively, by forest edges. Forest core species, which were more likely to be listed as threatened by the IUCN, only reached peak abundances at sites farther than 200-400 m from sharp high-contrast forest edges. Smaller-bodied amphibians, larger reptiles and medium-sized non-volant mammals experienced a larger reduction in suitable habitat than other forest core species. Our results highlight the pervasive ability of forest edges to restructure ecological communities on a global scale. PMID:29088701

  8. Biologia e ecologia de Anthodioctes moratoi Urban (Hymenoptera, Megachilidae, Anthidiini em matas contínuas e fragmentos na Amazônia Central, Brasil Biology and ecology of Anthodioctes moratoi Urban (Hymenoptera, Megachilidae, Anthidiini in continuous forests and forest fragments in Central Amazonia, Brazil

    Directory of Open Access Journals (Sweden)

    Elder Ferreira Morato

    2001-09-01

    Full Text Available Anthodioctes moratoi Urban, 1999 was described based on specimens collected in tlhe state of Amazonas during a study of the ecology of trap-nesting bees and wasps. Sampling was done between 1988 and 1990 north of Manaus, in areas of the "Forest Fragment Biological Dynamics Project". Wooden trap-nests were set in different heights inside continuous forests, forest fragments of different sizes, natural gaps inside continuous forest, and in cleared areas between forest fragments. A total of 61 nests were collected from which 33 males and 46 females emerged. The majority of nests was collected in continuous forests, at 15 m height, in holes 4.8 mm in diameter. No nest was collected in cleared areas. There was no correlation, neither between number of nests and monthly precipitation, nor between the monthly number of nests constructed in the two consecutive years. No nest was constructed between January and June 1989. Overall, this coincided with the period of least activity of other trap-nesting bees in the studied areas. The nests consisted of a linear series of brood cells with walls made of resinous material mixed with small wood chips. The average length of the provisioned cell was 13,4 mm. Half of this length was occupied by a pollen mass. The number of provisioned cells varied between two and nine. In 52% of the nests there was brood mortality in at least one cell. The phorid fly Phalacrotophora (Omapanta sp. was the only nest associate, emerged, from just one cell.

  9. Host-specific effects of soil microbial filtrates prevail over those of arbuscular mycorrhizae in a fragmented landscape.

    Science.gov (United States)

    Pizano, Camila; Mangan, Scott A; Graham, James H; Kitajima, Kaoru

    2017-09-01

    Plant-soil interactions have been shown to determine plant community composition in a wide range of environments. However, how plants distinctly interact with beneficial and detrimental organisms across mosaic landscapes containing fragmented habitats is still poorly understood. We experimentally tested feedback responses between plants and soil microbial communities from adjacent habitats across a disturbance gradient within a human-modified tropical montane landscape. In a greenhouse experiment, two components of soil microbial communities were amplified; arbuscular mycorrhizal fungi (AMF) and a filtrate excluding AMF spores from the soils of pastures (high disturbance), coffee plantations (intermediate disturbance), and forest fragments (low disturbance), using potted seedlings of 11 plant species common in these habitats (pasture grass, coffee, and nine native species). We then examined their effects on growth of these same 11 host species with reciprocal habitat inoculation. Most plant species received a similar benefit from AMF, but differed in their response to the filtrates from the three habitats. Soil filtrate from pastures had a net negative effect on plant growth, while filtrates from coffee plantations and forests had a net positive effect on plant growth. Pasture grass, coffee, and five pioneer tree species performed better with the filtrate from "away" (where these species rarely occur) compared to "home" (where these species typically occur) habitat soils, while four shade-tolerant tree species grew similarly with filtrates from different habitats. These results suggest that pastures accumulate species-specific soil enemies, while coffee plantations and forests accumulate beneficial soil microbes that benefit pioneer native plants and coffee, respectively. Thus, compared to AMF, soil filtrates exerted stronger habitat and host-specific effects on plants, being more important mediators of plant-soil feedbacks across contrasting habitats. © 2017 by

  10. Creation of forest edges has a global impact on forest vertebrates

    Science.gov (United States)

    Pfeifer, M.; Lefebvre, V.; Peres, C. A.; Banks-Leite, C.; Wearn, O. R.; Marsh, C. J.; Butchart, S. H. M.; Arroyo-Rodríguez, V.; Barlow, J.; Cerezo, A.; Cisneros, L.; D'Cruze, N.; Faria, D.; Hadley, A.; Harris, S. M.; Klingbeil, B. T.; Kormann, U.; Lens, L.; Medina-Rangel, G. F.; Morante-Filho, J. C.; Olivier, P.; Peters, S. L.; Pidgeon, A.; Ribeiro, D. B.; Scherber, C.; Schneider-Maunoury, L.; Struebig, M.; Urbina-Cardona, N.; Watling, J. I.; Willig, M. R.; Wood, E. M.; Ewers, R. M.

    2017-11-01

    Forest edges influence more than half of the world’s forests and contribute to worldwide declines in biodiversity and ecosystem functions. However, predicting these declines is challenging in heterogeneous fragmented landscapes. Here we assembled a global dataset on species responses to fragmentation and developed a statistical approach for quantifying edge impacts in heterogeneous landscapes to quantify edge-determined changes in abundance of 1,673 vertebrate species. We show that the abundances of 85% of species are affected, either positively or negatively, by forest edges. Species that live in the centre of the forest (forest core), that were more likely to be listed as threatened by the International Union for Conservation of Nature (IUCN), reached peak abundances only at sites farther than 200-400 m from sharp high-contrast forest edges. Smaller-bodied amphibians, larger reptiles and medium-sized non-volant mammals experienced a larger reduction in suitable habitat than other forest-core species. Our results highlight the pervasive ability of forest edges to restructure ecological communities on a global scale.

  11. The influence of anthropogenic edge effects on primate populations and their habitat in a fragmented rainforest in Costa Rica.

    Science.gov (United States)

    Bolt, Laura M; Schreier, Amy L; Voss, Kristofor A; Sheehan, Elizabeth A; Barrickman, Nancy L; Pryor, Nathaniel P; Barton, Matthew C

    2018-05-01

    When a forest is fragmented, this increases the amount of forest edge relative to the interior. Edge effects can lead to loss of animal and plant species and decreased plant biomass near forest edges. We examined the influence of an anthropogenic forest edge comprising cattle pasture, coconut plantations, and human settlement on the mantled howler (Alouatta palliata), white-faced capuchin (Cebus capucinus), Central American spider monkey (Ateles geoffroyi), and plant populations at La Suerte Biological Research Station (LSBRS), Costa Rica. We predicted that there would be lower monkey encounter rate, mean tree species richness, and diameter at breast height (DBH) in forest edge versus interior, and that monkeys would show species-specific responses to edge based on diet, body size, and canopy height preferences. Specifically, we predicted that howler monkeys would show positive or neutral edge effects due to their flexible folivorous diet, large body size, and preference for high canopy, capuchins would show positive edge effects due to their diverse diet, small body size, and preference for low to middle canopy, and spider monkeys would show negative edge effects due their reliance on ripe fruit, large body size, and preference for high upper canopy. We conducted population and vegetation surveys along edge and interior transects at LSBRS. Contrary to predictions, total monkey encounter rate did not vary between the forest edge and forest interior. Furthermore, all three species showed neutral edge effects with no significant differences in encounter rate between forest edge and interior. Interior transects had significantly higher mean tree species richness than edge transects, and interior trees had greater DBH than edge trees, although this difference was not significant. These results suggest that forest edges negatively impact plant populations at La Suerte but that the monkeys are able to withstand these differences in vegetation.

  12. Forest fragmentation and Lyme disease

    Science.gov (United States)

    Lyme disease is the most commonly reported vectorborne disease in the United States. It is associated with human exposure to infected Ixodes ticks which exist even in degraded forest and herbaceous habitat. We provide an overview of the epidemiology, ecology and landscape charact...

  13. Pollination of euglossinophylic epiphytic orchids in agroecosystems and forest fragments in southeast Mexico

    Directory of Open Access Journals (Sweden)

    Anne Damon

    2012-09-01

    Full Text Available To determine the reproductive status of the native orchids of the biodiversity “hotspot”, Biological Corridor Tacaná-Boquerón, in the region of Soconusco, southeast Mexico, which are suffering the effects of habitat degradation, unsustainable exploitation and potentially, climate change, we analysed the species richness, abundance, habitat and abiotic preferences, pollinaria transport and relation to orchid populations, of male Euglossine bees (Hymenoptera: Apidea: Euglossini in agroecosystems and forest fragments within the region. Using volatile baits we trapped 2,480 bees, consisting of 14 species, during a total of 256 hours, of which 284 individuals (11.5% had pollinaria of 18 orchid species adhered to their bodies. Three species of Eufriesia (E. caerulescens, E. mexicana, E. rugosa and one species of Euglossa (E. villosa were recorded for the first time. We report Eulaema meriana as the pollinator of the recently rediscovered Plectrophora alata. We did not detect habitat preferences for the species of Euglossini captured, and they were frequent, or even more frequent, in intensive coffee plantations, as are many of the orchid species, which can be classified as a disturbed habitat. Bees tended to be more abundant with increasing light intensity and decreasing humidity at each site. There was little indication of pollinator specificity and the position of the pollinaria of each orchid species on the bodies of the bees was also variable. We did not recover any pollinaria from various euglossinophylic, epiphytic orchid species present in the region and three bee species showed signs of population decline. However, our results indicate that many species of orchids with this pollination syndrome are receiving pollination service within an increasingly fragmented and disturbed environment, suggesting that both the orchids and the bees are adapting to the changes.

  14. Targeting incentives to reduce habitat fragmentation

    Science.gov (United States)

    David Lewis; Andrew Plantinga; Junjie Wu

    2009-01-01

    This article develops a theoretical model to analyze the spatial targeting of incentives for the restoration of forested landscapes when wildlife habitat can be enhanced by reducing fragmentation. The key theoretical result is that the marginal net benefits of increasing forest can be convex, in which case corner solutions--converting either none or all of the...

  15. FLORISTIC AND STRUCTURAL CHARACTERIZATION OF GALLERY FOREST FRAGMENTS OF UPPER ARAGUAIA RIVER BASIN

    Directory of Open Access Journals (Sweden)

    Christian Dias Cabacinha

    2014-06-01

    Full Text Available http://dx.doi.org/10.5902/1980509814575The forests of upper Araguaia river basin are daily exposed to degradation agents due to intense agriculture practices. Twenty two fragments (of 10 until 169 ha were surveyed according to point-centered quarter method to characterize vegetation structure and to create a database to forest restoration. One hundred and nine (109 species, belonging to 78 genus and 42 families, were sampled where 73.4% revealed zoochorous dispersal pattern, and 69.7% were classified to initial sucessional category. Shannon index and Pielou equability index were 3.86 nats. ind-1 and 0.82, respectively. Density and total basal area estimated were 1,351 trees.ha-1 and 19.28 m2.ha-1. The areas showed lower richness, Shannon and Pielou heterogeneity indices, lower basal area, and high number of species of intermediate stage of ecological sucession and colonization of cerrado and cerradão species in disturbed areas, altering the original landscape. Such situation, added to the importance of those areas for the biodiversity conservation and ecological services (mainly relative to the water, demands protection actions and management that use the great regenerative potential of the area, given by the existence of a great number of initial secondary species and the prevalence of zoochoric species.

  16. ABC 27-2 General bat activity measured with an ultrasound detector in a fragmented tropical landscape in Los Tuxtlas, Mexico

    Directory of Open Access Journals (Sweden)

    Estrada, A.

    2004-12-01

    Full Text Available Bat tolerance to neotropical forest fragmentation may be related to ability by bats to use available habitats in the modified environmental matrix. This paper presents data on general bat activity (for three hours starting at dusk measured with an ultrasound detector in a fragmented landscape in the region of Los Tuxtlas, Mexico. Bat activity was measured in continuous forests, forests fragments, forest-pasture edges, forest corridors, linear strips of vegetation, citrus groves, pastures and the vegetation present in local villages. The highest bat activity rates were recorded in the villages, in the forest fragments and in linear strips of vegetation. The lowest activity rates were detected in pasture habitats. Data suggest that native and man-made arboreal vegetation may be important for sustaining bat activity in fragmented landscapes.

  17. Impacts of habitat loss and fragmentation on the activity budget, ranging ecology and habitat use of Bale monkeys (Chlorocebus djamdjamensis) in the southern Ethiopian Highlands.

    Science.gov (United States)

    Mekonnen, Addisu; Fashing, Peter J; Bekele, Afework; Hernandez-Aguilar, R Adriana; Rueness, Eli K; Nguyen, Nga; Stenseth, Nils Chr

    2017-07-01

    Understanding the extent to which primates in forest fragments can adjust behaviorally and ecologically to changes caused by deforestation is essential to designing conservation management plans. During a 12-month period, we studied the effects of habitat loss and degradation on the Ethiopian endemic, bamboo specialist, Bale monkey (Chlorocebus djamdjamensis) by comparing its habitat quality, activity budget, ranging ecology and habitat use in continuous forest and two fragments. We found that habitat loss and fragmentation resulted in major differences in vegetation composition and structure between forest types. We also found that Bale monkeys in continuous forest spent more time feeding and traveling and less time resting and socializing than monkeys in fragments. Bale monkeys in continuous forest also had higher movement rates (m/hr) than monkeys in fragments. Bale monkeys in continuous forest used exclusively bamboo and mixed bamboo forest habitats while conspecifics in fragments used a greater variety of habitats including human use areas (i.e., matrix). Our findings suggest that Bale monkeys in fragments use an energy minimization strategy to cope with the lower availability of the species' primary food species, bamboo (Arundinaria alpina). We contend that Bale monkeys may retain some of the ancestral ecological flexibility assumed to be characteristic of the genus Chlorocebus, within which all extant species except Bale monkeys are regarded as ecological generalists. Our results suggest that, like other bamboo eating primates (e.g., the bamboo lemurs of Madagascar), Bale monkeys can cope with a certain threshold of habitat destruction. However, the long-term conservation prospects for Bale monkeys in fragments remain unclear and will require further monitoring to be properly evaluated. © 2017 Wiley Periodicals, Inc.

  18. Landscape composition influences abundance patterns and habitat use of three ungulate species in fragmented secondary deciduous tropical forests, Mexico

    Directory of Open Access Journals (Sweden)

    G. García-Marmolejo

    2015-01-01

    Full Text Available Secondary forests are extensive in the tropics. Currently, these plant communities are the available habitats for wildlife and in the future they will possibly be some of the most wide-spread ecosystems world-wide. To understand the potential role of secondary forests for wildlife conservation, three ungulate species were studied: Mazama temama, Odocoileus virginianus and Pecari tajacu. We analyzed their relative abundance and habitat use at two spatial scales: (1 Local, where three different successional stages of tropical deciduous forest were compared, and (2 Landscape, where available habitats were compared in terms of landscape composition (proportion of forests, pastures and croplands within 113 ha. To determine the most important habitat-related environmental factors influencing the Sign Encounter Rate (SER of the three ungulate species, 11 physical, anthropogenic and vegetation variables were simultaneously analyzed through model selection using Akaike’s Information Criterion. We found, that P. tajacu and O. virginianus mainly used early successional stages, while M. temama used all successional stages in similar proportions. The latter species, however, used early vegetation stages only when they were located in landscapes mainly covered by forest (97%. P. tajacu and O. virginianus also selected landscapes covered essentially by forests, although they required smaller percentages of forest (86%. All ungulate species avoided landscape fragments covered by pastures. For all three species, landscape composition and human activities were the variables that best explained SER. We concluded that landscape is the fundamental scale for ungulate management, and that secondary forests are potentially important landscape elements for ungulate conservation.

  19. Diametric structure in a tropical dry forest fragment in the Cerrado Eco-Museum region, Brazil

    International Nuclear Information System (INIS)

    Imana Encinas Jose, Antunes Santana Otacilio; Rainier Imana Christian

    2011-01-01

    In a tropical dry forest area of the Brazilian central region, the DBH distribution of 742 trees ≥ 5 cm was analyzed in a 4000 m 2 area. Eighty three tree species were found, of which 25 species with more than 10 individuals were analyzed for this study. The frequency histograms were obtained through the Meyer and Gaussian equations. The DBH distribution of the population showed a negative exponential inverse J curve. Of the 25 species selected, 14 exhibited the same pattern. Eight species presented a tendency near the normal distribution while three species had an abnormal pattern. We concluded that the observed fragment is in a natural auto regenerative status.

  20. Keystone Species, Forest and Landscape: A Model to Select Protected Areas

    Science.gov (United States)

    Lins, Daniela Barbosa da Silva; Gardon, Fernando Ravanini; Meyer, João Frederico da Costa Azevedo; Santos, Rozely Ferreira dos

    2017-06-01

    The selection of forest fragments for conservation is usually based on spatial parameters as forest size and canopy integrity. This strategy assumes that chosen fragments present high conservation status, ensuring biodiversity and ecological functions. We argue that a well-preserved forest fragment that remains connected by the landscape structure, does not necessarily hold attributes that ensure the presence of keystone species. We also discuss that the presence of keystone species does not always mean that it has the best conditions for its occurrence and maintenance. We developed a model to select areas in forest landscapes to be prioritized for protection based on suitability curves that unify and compare spatial indicators of three categories: forest fragment quality, landscape quality, and environmental conditions for the occurrence of a keystone species. We use a case study to compare different suitability degrees for Euterpe edulis presence, considered an important functional element in Atlantic Forest (São Paulo, Brazil) landscapes and a forest resource for local people. The results show that the identification of medium or advanced stage fragments as singular indicator of forest quality does not guarantee the existence or maintenance of this keystone species. Even in some well-preserved forest fragments, connected to others and with palm presence, the reverse J-shaped distribution of the population size structure is not sustained and these forests continue to be threatened due to human disturbances.

  1. Effective Fragmentation and Flyrock Control Strategies at Quarries

    Directory of Open Access Journals (Sweden)

    Sedat Esen

    2017-01-01

    Full Text Available This paper presents the effective fragmentation and flyrock control strategies that could be applied at quarries to improve the productivity and safety. Fragmentation measurement and modelling as well as a comprehensive drill and blast audit are essential for improving the fragmentation. Face profiling and bore tracking are good tools to manage the ―as-designed‖ and ―as-drilled‖ conditions to get reasonable fragmentation from face burden zone and minimise the flyrock risk. In general, a large scatter in fragmentation data was observed at sites and the causes should be analysed by a detailed root-cause analysis technique. Two case studies were presented in this paper showing some of the effective fragmentation strategies. Finally, a flyrock model was shown to determine the safe blast exclusion zone for the mining equipment and personnel. Some key guidelines were suggested to minimise the occurrence of the flyrock.

  2. The effect of isolation, fragmentation, and population bottlenecks on song structure of a Hawaiian honeycreeper

    Science.gov (United States)

    Pang-Ching, Joshua M.; Paxton, Kristina L.; Paxton, Eben H.; Pack, Adam A.; Hart, Patrick J.

    2018-01-01

    Little is known about how important social behaviors such as song vary within and among populations for any of the endemic Hawaiian honeycreepers. Habitat loss and non‐native diseases (e.g., avian malaria) have resulted in isolation and fragmentation of Hawaiian honeycreepers within primarily high elevation forests. In this study, we examined how isolation of Hawai'i ‘amakihi (Chlorodrepanis virens) populations within a fragmented landscape influences acoustic variability in song. In the last decade, small, isolated populations of disease tolerant ‘amakihi have been found within low elevation forests, allowing us to record ‘amakihi songs across a large elevational gradient (10–1800 m) that parallels disease susceptibility on Hawai'i island. To understand underlying differences among populations, we examined the role of geographic distance, elevation, and habitat structure on acoustic characteristics of ‘amakihi songs. We found that the acoustic characteristics of ‘amakihi songs and song‐type repertoires varied most strongly across an elevational gradient. Differences in ‘amakihi song types were primarily driven by less complex songs (e.g., fewer frequency changes, shorter songs) of individuals recorded at low elevation sites compared to mid and high elevation populations. The reduced complexity of ‘amakihi songs at low elevation sites is most likely shaped by the effects of habitat fragmentation and a disease‐driven population bottleneck associated with avian malaria, and maintained through isolation, localized song learning and sharing, and cultural drift. These results highlight how a non‐native disease through its influence on population demographics may have also indirectly played a role in shaping the acoustic characteristics of a species.

  3. Spatial and temporal patterns of microclimates at an urban forest edge and their management implications.

    Science.gov (United States)

    Li, Yingnan; Kang, Wanmo; Han, Yiwen; Song, Youngkeun

    2018-01-23

    Fragmented forests generate a variety of forest edges, leading to microclimates in the edge zones that differ from those in the forest interior. Understanding microclimatic variation is an important consideration for managers because it helps when making decisions about how to restrict the extent of edge effects. Thus, our study attempted to characterize the changing microclimate features at an urban forest edge located on Mt. Gwanak, Seoul, South Korea. We examined edge effects on air temperature, relative humidity, soil temperature, soil moisture, and photosynthetically active radiation (PAR) during the hottest three consecutive days in August 2016. Results showed that each variable responded differently to the edge effects. This urban forest edge had an effect on temporal changes at a diurnal scale in all microclimate variables, except soil moisture. In addition, all variables except relative humidity were significantly influenced by the edge effect up to 15 m inward from the forest boundary. The relative humidity fluctuated the most and showed the deepest extent of the edge effect. Moreover, the edge widths calculated from the relative humidity and air temperature both peaked in the late afternoon (16:00 h). Our findings provide a reference for forest managers in designing urban forest zones and will contribute to the conservation of fragmented forests in urban areas.

  4. Mammals of the Oak forest

    International Nuclear Information System (INIS)

    Otalora Ardila, Aida

    2003-01-01

    The high rate of deforestation over the Andean forests has generated a large proportion of fragmented landscapes in the country. The distribution of oak groves in the country was determined based on ecosystem maps. Charala and Encino oak groves patches are the largest ones found at the east Andes and like others, due to the unfair use of these resources, have suffered a fragmentation process. Fifty-five species of mammals included in 10 orders and 14 families were found in these forests. Chiroptera and Rodentia were the most representative groups. Anthropic processes had produced a 68.1% loss of the habitat and constitute the main threat for these forests. The sizes of the patches were evaluated for three mammal species categories. The patches' area are not favorable for large-size species, intermediately to favorable to medium-size species and are favorable for small-size species. It is suggested that patches' area effect over mammal species could relate to the decrease of species richness and of each fragment area. There are good connections between patches (only five isolated), allowing the presence of a greater species diversity. There is also a bleak plateau zone between connected patches increasing their connectivity and offering different habitats and resources for some mammal species

  5. Pervasive Defaunation of Forest Remnants in a Tropical Biodiversity Hotspot

    Science.gov (United States)

    Canale, Gustavo R.; Peres, Carlos A.; Guidorizzi, Carlos E.; Gatto, Cassiano A. Ferreira; Kierulff, Maria Cecília M.

    2012-01-01

    Tropical deforestation and forest fragmentation are among the most important biodiversity conservation issues worldwide, yet local extinctions of millions of animal and plant populations stranded in unprotected forest remnants remain poorly explained. Here, we report unprecedented rates of local extinctions of medium to large-bodied mammals in one of the world's most important tropical biodiversity hotspots. We scrutinized 8,846 person-years of local knowledge to derive patch occupancy data for 18 mammal species within 196 forest patches across a 252,669-km2 study region of the Brazilian Atlantic Forest. We uncovered a staggering rate of local extinctions in the mammal fauna, with only 767 from a possible 3,528 populations still persisting. On average, forest patches retained 3.9 out of 18 potential species occupancies, and geographic ranges had contracted to 0–14.4% of their former distributions, including five large-bodied species that had been extirpated at a regional scale. Forest fragments were highly accessible to hunters and exposed to edge effects and fires, thereby severely diminishing the predictive power of species-area relationships, with the power model explaining only ∼9% of the variation in species richness per patch. Hence, conventional species-area curves provided over-optimistic estimates of species persistence in that most forest fragments had lost species at a much faster rate than predicted by habitat loss alone. PMID:22905103

  6. Pervasive defaunation of forest remnants in a tropical biodiversity hotspot.

    Directory of Open Access Journals (Sweden)

    Gustavo R Canale

    Full Text Available Tropical deforestation and forest fragmentation are among the most important biodiversity conservation issues worldwide, yet local extinctions of millions of animal and plant populations stranded in unprotected forest remnants remain poorly explained. Here, we report unprecedented rates of local extinctions of medium to large-bodied mammals in one of the world's most important tropical biodiversity hotspots. We scrutinized 8,846 person-years of local knowledge to derive patch occupancy data for 18 mammal species within 196 forest patches across a 252,669-km(2 study region of the Brazilian Atlantic Forest. We uncovered a staggering rate of local extinctions in the mammal fauna, with only 767 from a possible 3,528 populations still persisting. On average, forest patches retained 3.9 out of 18 potential species occupancies, and geographic ranges had contracted to 0-14.4% of their former distributions, including five large-bodied species that had been extirpated at a regional scale. Forest fragments were highly accessible to hunters and exposed to edge effects and fires, thereby severely diminishing the predictive power of species-area relationships, with the power model explaining only ~9% of the variation in species richness per patch. Hence, conventional species-area curves provided over-optimistic estimates of species persistence in that most forest fragments had lost species at a much faster rate than predicted by habitat loss alone.

  7. Does silvoagropecuary landscape fragmentation affect the genetic diversity of the sigmodontine rodent Oligoryzomys longicaudatus?

    Directory of Open Access Journals (Sweden)

    Daniela Lazo-Cancino

    2017-09-01

    Full Text Available Background Fragmentation of native forests is a highly visible result of human land-use throughout the world. In this study, we evaluated the effects of landscape fragmentation and matrix features on the genetic diversity and structure of Oligoryzomys longicaudatus, the natural reservoir of Hantavirus in southern South America. We focused our work in the Valdivian Rainforest where human activities have produced strong change of natural habitats, with an important number of human cases of Hantavirus. Methods We sampled specimens of O. longicaudatus from five native forest patches surrounded by silvoagropecuary matrix from Panguipulli, Los Rios Region, Chile. Using the hypervariable domain I (mtDNA, we characterized the genetic diversity and evaluated the effect of fragmentation and landscape matrix on the genetic structure of O. longicaudatus. For the latter, we used three approaches: (i Isolation by Distance (IBD as null model, (ii Least-cost Path (LCP where genetic distances between patch pairs increase with cost-weighted distances, and (iii Isolation by Resistance (IBR where the resistance distance is the average number of steps that is needed to commute between the patches during a random walk. Results We found low values of nucleotide diversity (π for the five patches surveyed, ranging from 0.012 to 0.015, revealing that the 73 sampled specimens of this study belong to two populations but with low values of genetic distance (γST ranging from 0.022 to 0.099. Likewise, we found that there are no significant associations between genetic distance and geographic distance for IBD and IBR. However, we found for the LCP approach, a significant positive relationship (r = 0.737, p = 0.05, with shortest least-cost paths traced through native forest and arborescent shrublands. Discussion In this work we found that, at this reduced geographical scale, Oligoryzomys longicaudatus shows genetic signs of fragmentation. In addition, we found that

  8. Seed dissemination by frugivorous birds from forest fragments to adjacent pastures on the western slope of Volcán Barva, Costa Rica

    Directory of Open Access Journals (Sweden)

    Gilbert Barrantes

    2002-06-01

    Full Text Available Logging, cattle raising, and agricultural activities have caused the destruction of most forested areas in Costa Rica. In some middle and highlands the abrupt topography delayed the complete destruction of montane forest. Consequently, some fragments of almost pristine forest remain along streams that run in deep canyons. Frequently, these remnants serve as corridors between larger forested areas and as routes for movement of frugivorous birds. Eighteen bird species, e.g., Turdus plebejus, Elaenia frantzii and Ptilogonys caudatus are common dwellers of forest patches throughout the Pacific slope of the Volcán Barva. These species fly frequently from forest fragments to adjacent pastures. They defecated and regurgitated seeds of 28 plant species on stumps scattered on pasture areas. Isolated trees and specially the stumps are suitable microhabitats for germination of seeds and establishment of seedlingsLa deforestación, la ganadería y las actividades agrícolas han causado la destrucción de la mayoría de los bosques en Costa Rica. Sin embargo, la abrupta topografía de las zonas medias y altas del país ha retardado este proceso de deforestación en el bosque montano. Es así como aún algunos fragmentos de bosques poco alterados estan todavía en pie a lo largo de riachuelos que corren en cañones profundos. Estos fragmentos sirven como corredores entre áreas más grandes de bosque y como rutas para el movimiento altitudinal de aves frugívoras. Dieciocho aves, e.g., Turdus plebejus, Elaenia frantzii y Ptilogonys caudatus son habitantes comunes de los parches de bosque presentes en la vertiente Pacífica del Volcán Barva. Estas especies vuelan frecuentemente entre los fragmentos de bosque y potreros adyacentes. Estas aves defecaron y regurgitaron semillas de 28 especies de plantas en troncos distribuidos en los potreros. Los árboles aislados y troncos son micro-hábitats adecuados para la germinación de semillas y el establecimiento de

  9. Edge effects on foliar stable isotope values in a Madagascan tropical dry forest.

    Directory of Open Access Journals (Sweden)

    Brooke E Crowley

    Full Text Available Edge effects represent an inevitable and important consequence of habitat loss and fragmentation. These effects include changes in microclimate, solar radiation, or temperature. Such abiotic effects can, in turn, impact biotic factors. They can have a substantial impact on species, communities, and ecosystems. Here we examine clinal variations in stable carbon and nitrogen isotope values for trees along an edge-interior gradient in the dry deciduous forest at Ankarafantsika National Park. We predicted that soil respiration and differences in solar irradiance would result in stratified δ¹³C values where leaves collected close to the forest floor would have lower δ¹³C values than those growing higher up in the canopy. We also anticipated that plants growing at the savannah-forest boundary would have higher δ¹³C and δ¹⁵N values than plants growing in the forest interior. As expected, we detected a small but significant canopy effect. Leaves growing below 2 m from the forest floor exhibit δ¹³C values that are, on average, 1.1‰ lower than those growing above this threshold. We did not, however, find any relationship between foliar δ¹³C and distance from the edge. Unpredictably, we detected a striking positive relationship between foliar δ¹⁵N values and increasing distance into the forest interior. Variability in physiology among species, anthropogenic influence, organic input, and rooting depth cannot adequately explain this trend. Instead, this unexpected relationship most likely reflects decreasing nutrient or water availability, or a shift in N-sources with increasing distance from the savannah. Unlike most forest communities, the trees at Ampijoroa are growing in nutrient-limited sands. In addition to being nutrient poor, these well-drained soils likely decrease the amount of soil water available to forest vegetation. Continued research on plant responses to edge effects will improve our understanding of the conservation

  10. Effect of rock fragments on macropores and water effluent in a forest ...

    African Journals Online (AJOL)

    DR. NJ TONUKARI

    2012-05-15

    May 15, 2012 ... throughout the world, accounting for about 30% of the land area in Western Europe, for example. In the ... Beijing, for example, the content of rock fragments is higher than 22% on the surface of the coarse brown ... the physical properties of soils including bulk density, hydraulic properties (Torri et al., 1994; ...

  11. Proximal and Distal Predictors of the Spider Monkey's Stress Levels in Fragmented Landscapes.

    Directory of Open Access Journals (Sweden)

    José D Ordóñez-Gómez

    Full Text Available The rapid loss, fragmentation and degradation of tropical forests threaten the survival of many animal species. However, the way in which these phenomena affect animal health has been poorly explored, thus limiting the design of appropriate conservation strategies. To address this, here we identified using linear mixed models the effect of proximal (diet, activity pattern, hunting and logging and distal (sum of the basal areas of fruiting-tree species [SBAFS], landscape forest cover and degree of forest fragmentation variables over fecal glucocorticoid metabolite (fGCM levels-hormones associated with animal health and fitness-of six groups of spider monkeys (Ateles geoffroyi inhabiting six landscapes with different spatial structures in Mexico. Proximal variables showed a stronger predictive power over fGCMs than distal. In this sense, increases in travel time, the occurrence of hunting, and reductions in rest time and fruit consumption resulted in higher fGCM levels. Regarding distal variables, increases in SBAFS were negatively related to fGCM levels, thus suggesting that food scarcity increases stress hormone levels. Nevertheless, contrary to theoretical expectations, spider monkeys living in smaller tracts of forest spent less time travelling, but the same time feeding on fruit as those in more forested areas. The lower net energy return associated with this combination of factors would explain why, contrary to theoretical expectations, increased forest cover was associated with increased levels of fGCMs in these groups. Our study shows that, at least in the short term, spider monkeys in fragmented landscapes do not always present higher levels of stress hormones compared to those inhabiting continuous forest, and the importance of preserving fruit sources and controlling hunting for reducing the levels of stress hormones in free ranging spider monkeys.

  12. Anthropogenic Matrices Favor Homogenization of Tree Reproductive Functions in a Highly Fragmented Landscape.

    Science.gov (United States)

    Carneiro, Magda Silva; Campos, Caroline Cambraia Furtado; Beijo, Luiz Alberto; Ramos, Flavio Nunes

    2016-01-01

    Species homogenization or floristic differentiation are two possible consequences of the fragmentation process in plant communities. Despite the few studies, it seems clear that fragments with low forest cover inserted in anthropogenic matrices are more likely to experience floristic homogenization. However, the homogenization process has two other components, genetic and functional, which have not been investigated. The purpose of this study was to verify whether there was homogenization of tree reproductive functions in a fragmented landscape and, if found, to determine how the process was influenced by landscape composition. The study was conducted in eight fragments in southwest Brazil. The study was conducted in eight fragments in southwestern Brazil. In each fragment, all individual trees were sampled that had a diameter at breast height ≥3 cm, in ten plots (0.2 ha) and, classified within 26 reproductive functional types (RFTs). The process of functional homogenization was evaluated using additive partitioning of diversity. Additionally, the effect of landscape composition on functional diversity and on the number of individuals within each RFT was evaluated using a generalized linear mixed model. appeared to be in a process of functional homogenization (dominance of RFTs, alpha diversity lower than expected by chance and and low beta diversity). More than 50% of the RFTs and the functional diversity were affected by the landscape parameters. In general, the percentage of forest cover has a positive effect on RFTs while the percentage of coffee matrix has a negative one. The process of functional homogenization has serious consequences for biodiversity conservation because some functions may disappear that, in the long term, would threaten the fragments. This study contributes to a better understanding of how landscape changes affect the functional diversity, abundance of individuals in RFTs and the process of functional homogenization, as well as how to

  13. Epiphytic lichen diversity in central European oak forests: Assessment of the effects of natural environmental factors and human influences

    International Nuclear Information System (INIS)

    Svoboda, David; Peksa, Ondrej; Vesela, Jana

    2010-01-01

    We investigated lichen diversity in temperate oak forests using standardized protocols. Forty-eight sites were sampled in the Czech Republic, Slovakia and Hungary. The effects of natural environmental predictors and human influences on lichen diversity (lichen diversity value, species richness) were analysed by means of correlation tests. We found that lichen diversity responded differently to environmental predictors between two regions with different human impact. In the industrial region, air pollution was the strongest factor. In the agricultural to highly forested regions, lichen diversity was strongly influenced by forest age and forest fragmentation. We found that several natural factors can in some cases obscure the effect of human influences. Thus, factors of naturality gradient must be considered (both statistically and interpretively) when studying human impact on lichen diversity. - We detected the different responses of lichens to ecological predictors in polluted and unpolluted areas.

  14. Dynamical effects in the Colomb expansion following nuclear fragmentation

    International Nuclear Information System (INIS)

    Chung, K.C.; Donangelo, R.J.; Schechter, H.

    1987-01-01

    The effects of the Colomb expansion on the fragment Kinetic energy spectrum for a fragmentating hot nuclear system is investigated. In particular, 12 C fragment spectra are calculated and compared with those predicted by the uniform expansion approximation. The results indicate that energy spectra of fragments are quite sensitive to the details of the Coulomb expansion treatment. (Author) [pt

  15. [Responses of boreal forest landscape in northern Great Xing'an Mountains of Northeast China to climate change].

    Science.gov (United States)

    Li, Xiao-Na; He, Hong-Shi; Wu, Zhi-Wei; Liang, Yu

    2012-12-01

    With the combination of forest landscape model (LANDIS) and forest gap model (LINKAGES), this paper simulated the effects of climate change on the boreal forest landscape in the Great Xing'an Mountains, and compared the direct effects of climate change and the effects of climate warming-induced fires on the forest landscape. The results showed that under the current climate conditions and fire disturbances, the forest landscape in the study area could maintain its dynamic balance, and Larix gmelinii was still the dominant tree species. Under the future climate and fire disturbances scenario, the distribution area of L. gmelinii and Pinus pumila would be decreased, while that of Betula platyphylla, Populus davidiana, Populus suaveolens, Chosenia arbutifolia, and Pinus sylvestris var. mongolica would be increased, and the forest fragmentation and forest diversity would have an increase. The changes of the forest landscape lagged behind climate change. Climate warming would increase the growth of most tree species except L. gmelinii, while the increased fires would increase the distribution area of P. davidiana, P. suaveolens, and C. arbutifolia and decrease the distribution area of L. gmelinii, P. sylvestris var. mongolica, and P. pumila. The effects of climate warming-induced fires on the forest landscape were almost equal to the direct effects of climate change, and aggravated the direct effects of climate change on forest composition, forest landscape fragmentation, and forest landscape diversity.

  16. Proximal and Distal Predictors of the Spider Monkey’s Stress Levels in Fragmented Landscapes

    Science.gov (United States)

    Ordóñez-Gómez, José D.; Cristóbal-Azkarate, Jurgi; Arroyo-Rodríguez, Víctor; Santillán-Doherty, Ana M.; Valdez, Ricardo A.; Romano, Marta C.

    2016-01-01

    The rapid loss, fragmentation and degradation of tropical forests threaten the survival of many animal species. However, the way in which these phenomena affect animal health has been poorly explored, thus limiting the design of appropriate conservation strategies. To address this, here we identified using linear mixed models the effect of proximal (diet, activity pattern, hunting and logging) and distal (sum of the basal areas of fruiting-tree species [SBAFS], landscape forest cover and degree of forest fragmentation) variables over fecal glucocorticoid metabolite (fGCM) levels–hormones associated with animal health and fitness–of six groups of spider monkeys (Ateles geoffroyi) inhabiting six landscapes with different spatial structures in Mexico. Proximal variables showed a stronger predictive power over fGCMs than distal. In this sense, increases in travel time, the occurrence of hunting, and reductions in rest time and fruit consumption resulted in higher fGCM levels. Regarding distal variables, increases in SBAFS were negatively related to fGCM levels, thus suggesting that food scarcity increases stress hormone levels. Nevertheless, contrary to theoretical expectations, spider monkeys living in smaller tracts of forest spent less time travelling, but the same time feeding on fruit as those in more forested areas. The lower net energy return associated with this combination of factors would explain why, contrary to theoretical expectations, increased forest cover was associated with increased levels of fGCMs in these groups. Our study shows that, at least in the short term, spider monkeys in fragmented landscapes do not always present higher levels of stress hormones compared to those inhabiting continuous forest, and the importance of preserving fruit sources and controlling hunting for reducing the levels of stress hormones in free ranging spider monkeys. PMID:26901767

  17. Effective Fragment Potential Method for H-Bonding: How To Obtain Parameters for Nonrigid Fragments.

    Science.gov (United States)

    Dubinets, Nikita; Slipchenko, Lyudmila V

    2017-07-20

    Accuracy of the effective fragment potential (EFP) method was explored for describing intermolecular interaction energies in three dimers with strong H-bonded interactions, formic acid, formamide, and formamidine dimers, which are a part of HBC6 database of noncovalent interactions. Monomer geometries in these dimers change significantly as a function of intermonomer separation. Several EFP schemes were considered, in which fragment parameters were prepared for a fragment in its gas-phase geometry or recomputed for each unique fragment geometry. Additionally, a scheme in which gas-phase fragment parameters are shifted according to relaxed fragment geometries is introduced and tested. EFP data are compared against the coupled cluster with single, double, and perturbative triple excitations (CCSD(T)) method in a complete basis set (CBS) and the symmetry adapted perturbation theory (SAPT). All considered EFP schemes provide a good agreement with CCSD(T)/CBS for binding energies at equilibrium separations, with discrepancies not exceeding 2 kcal/mol. However, only the schemes that utilize relaxed fragment geometries remain qualitatively correct at shorter than equilibrium intermolecular distances. The EFP scheme with shifted parameters behaves quantitatively similar to the scheme in which parameters are recomputed for each monomer geometry and thus is recommended as a computationally efficient approach for large-scale EFP simulations of flexible systems.

  18. Foreign capital, forest change and regulatory compliance in Congo Basin forests

    International Nuclear Information System (INIS)

    Brandt, Jodi S; Nolte, Christoph; Agrawal, Arun; Steinberg, Jessica

    2014-01-01

    Tropical forest change is driven by demand in distant markets. Equally, investments in tropical forest landscapes by capital originating from distant emerging economies are on the rise. Understanding how forest outcomes vary by investment source is therefore becoming increasingly important. We empirically evaluate the relationship between investment source and deforestation from 2000 to 2010 in the Republic of Congo. A Congolese forestry code was implemented in 2000 to mitigate degradation of production forests by standardizing all logging in the country according to sustainable forest management (SFM) guidelines. Following the implementation of this law, the majority (73%) of Congo’s production forests were managed by European (40%) and Asian (33%) companies. European concessions had the highest rates of total and core deforestation, followed by Asian concessions, indicating that the fragmentation of intact forests in Congo is strongly associated with industrial logging fueled by foreign capital. European concession holders were also far more likely to comply with SFM policies, followed by Asian concessions, suggesting that compliance with Sustainable Forest Management policies may not mitigate degradation in tropical production forests. Further evaluation of the relationship between investment source, regulatory compliance, and outcomes in tropical countries is essential for effective conservation of tropical forest ecosystems. (paper)

  19. Foreign capital, forest change and regulatory compliance in Congo Basin forests

    Science.gov (United States)

    Brandt, Jodi S.; Nolte, Christoph; Steinberg, Jessica; Agrawal, Arun

    2014-04-01

    Tropical forest change is driven by demand in distant markets. Equally, investments in tropical forest landscapes by capital originating from distant emerging economies are on the rise. Understanding how forest outcomes vary by investment source is therefore becoming increasingly important. We empirically evaluate the relationship between investment source and deforestation from 2000 to 2010 in the Republic of Congo. A Congolese forestry code was implemented in 2000 to mitigate degradation of production forests by standardizing all logging in the country according to sustainable forest management (SFM) guidelines. Following the implementation of this law, the majority (73%) of Congo’s production forests were managed by European (40%) and Asian (33%) companies. European concessions had the highest rates of total and core deforestation, followed by Asian concessions, indicating that the fragmentation of intact forests in Congo is strongly associated with industrial logging fueled by foreign capital. European concession holders were also far more likely to comply with SFM policies, followed by Asian concessions, suggesting that compliance with Sustainable Forest Management policies may not mitigate degradation in tropical production forests. Further evaluation of the relationship between investment source, regulatory compliance, and outcomes in tropical countries is essential for effective conservation of tropical forest ecosystems.

  20. Better Few than Hungry: Flexible Feeding Ecology of Collared Lemurs Eulemur collaris in Littoral Forest Fragments

    Science.gov (United States)

    Donati, Giuseppe; Kesch, Kristina; Ndremifidy, Kelard; Schmidt, Stacey L.; Ramanamanjato, Jean-Baptiste; Borgognini-Tarli, Silvana M.; Ganzhorn, Joerg U.

    2011-01-01

    Background Frugivorous primates are known to encounter many problems to cope with habitat degradation, due to the fluctuating spatial and temporal distribution of their food resources. Since lemur communities evolved strategies to deal with periods of food scarcity, these primates are expected to be naturally adapted to fluctuating ecological conditions and to tolerate a certain degree of habitat changes. However, behavioral and ecological strategies adopted by frugivorous lemurs to survive in secondary habitats have been little investigated. Here, we compared the behavioral ecology of collared lemurs (Eulemur collaris) in a degraded fragment of littoral forest of south-east Madagascar, Mandena, with that of their conspecifics in a more intact habitat, Sainte Luce. Methodology/Principal Findings Lemur groups in Mandena and in Sainte Luce were censused in 2004/2007 and in 2000, respectively. Data were collected via instantaneous sampling on five lemur groups totaling 1,698 observation hours. The Shannon index was used to determine dietary diversity and nutritional analyses were conducted to assess food quality. All feeding trees were identified and measured, and ranging areas determined via the minimum convex polygon. In the degraded area lemurs were able to modify several aspects of their feeding strategies by decreasing group size and by increasing feeding time, ranging areas, and number of feeding trees. The above strategies were apparently able to counteract a clear reduction in both food quality and size of feeding trees. Conclusions/Significance Our findings indicate that collared lemurs in littoral forest fragments modified their behavior to cope with the pressures of fluctuating resource availability. The observed flexibility is likely to be an adaptation to Malagasy rainforests, which are known to undergo periods of fruit scarcity and low productivity. These results should be carefully considered when relocating lemurs or when selecting suitable areas for

  1. Impact of Land Use Change on the Temperate Forest of South Central Chile

    Science.gov (United States)

    Fernandez, A.; Fuentes, R.; Jaque, E.; Fernandez, S.

    2017-12-01

    Chilean temperate forests is a biological hotspot because its high diversity and endemism. Nevertheless, in the last few decades the spatial extent of this forest has been decimated, portraying potentially harmful impacts on the regional biodiversity. In this work, we present our ongoing study on the rate of temperate forest shrinkage and their causes in a section of the BioBío region (37°S), South Central Chile. We derived land cover maps from satellite imagery acquired over 20 years (1990 and 2010) and assessed the effects of changes in land use on native forest. Between 1990 and 2010, there was a 59% reduction in native forest area, which is equivalent to an annual forest loss rate of 4.4% per year. Forest fragmentation was associated with a decrease in forest patch size and proximity, and an increase in the number of forest patches. During this study period native forest loss was correlated with an expansion of plantations of exotic species, which in turn was associated with substantial changes in the spatial configuration of the landscape. We will also present an update of this pattern including the period 2010-2017. The assessment of deforestation and fragmentation provides a basis for future research on the impacts of forest fragmentation on the different components of biodiversity. We suggest that conservation strategies and land use planning are necessary in the study area; this should consider the spatial pattern of native forest patches and the change of these over time at a landscape level.

  2. Assessment of Textural Differentiations in Forest Resources in Romania Using Fractal Analysis

    Directory of Open Access Journals (Sweden)

    Ion Andronache

    2017-02-01

    Full Text Available Deforestation and forest degradation have several negative effects on the environment including a loss of species habitats, disturbance of the water cycle and reduced ability to retain CO2, with consequences for global warming. We investigated the evolution of forest resources from development regions in Romania affected by both deforestation and reforestation using a non-Euclidean method based on fractal analysis. We calculated four fractal dimensions of forest areas: the fractal box-counting dimension of the forest areas, the fractal box-counting dimension of the dilated forest areas, the fractal dilation dimension and the box-counting dimension of the border of the dilated forest areas. Fractal analysis revealed morpho-structural and textural differentiations of forested, deforested and reforested areas in development regions with dominant mountain relief and high hills (more forested and compact organization in comparison to the development regions dominated by plains or low hills (less forested, more fragmented with small and isolated clusters. Our analysis used the fractal analysis that has the advantage of analyzing the entire image, rather than studying local information, thereby enabling quantification of the uniformity, fragmentation, heterogeneity and homogeneity of forests.

  3. Forest health conditions in North America

    International Nuclear Information System (INIS)

    Tkacz, Borys; Moody, Ben; Castillo, Jaime Villa; Fenn, Mark E.

    2008-01-01

    Some of the greatest forest health impacts in North America are caused by invasive forest insects and pathogens (e.g., emerald ash borer and sudden oak death in the US), by severe outbreaks of native pests (e.g., mountain pine beetle in Canada), and fires exacerbated by changing climate. Ozone and N and S pollutants continue to impact the health of forests in several regions of North America. Long-term monitoring of forest health indicators has facilitated the assessment of forest health and sustainability in North America. By linking a nationwide network of forest health plots with the more extensive forest inventory, forest health experts in the US have evaluated current trends for major forest health indicators and developed assessments of future risks. Canada and Mexico currently lack nationwide networks of forest health plots. Development and expansion of these networks is critical to effective assessment of future forest health impacts. - The forests of North America continue to face many biotic and abiotic stressors including fragmentation, fires, native and invasive pests, and air pollution

  4. Home-range use patterns and movements of the Siberian flying squirrel in urban forests: Effects of habitat composition and connectivity.

    Science.gov (United States)

    Mäkeläinen, Sanna; de Knegt, Henrik J; Ovaskainen, Otso; Hanski, Ilpo K

    2016-01-01

    Urbanization causes modification, fragmentation and loss of native habitats. Such landscape changes threaten many arboreal and gliding mammals by limiting their movements through treeless parts of a landscape and by making the landscape surrounding suitable habitat patches more inhospitable. Here, we investigate the effects of landscape structure and habitat availability on the home-range use and movement patterns of the Siberian flying squirrel (Pteromys volans) at different spatial and temporal scales. We followed radio-tagged individuals in a partly urbanized study area in Eastern Finland, and analysed how landscape composition and connectivity affected the length and speed of movement bursts, distances moved during one night, and habitat and nest-site use. The presence of urban habitat on movement paths increased both movement lengths and speed whereas nightly distances travelled by males decreased with increasing amount of urban habitat within the home range. The probability of switching from the present nest site to another nest site decreased with increasing distance among the nest sites, but whether the nest sites were connected or unconnected by forests did not have a clear effect on nest switching. Flying squirrels preferred to use mature forests for their movements at night. Our results suggest that the proximity to urban habitats modifies animal movements, possibly because animals try to avoid such habitats by moving faster through them. Urbanization at the scale of an entire home range can restrict their movements. Thus, maintaining a large enough amount of mature forests around inhabited landscape fragments will help protect forest specialists in urban landscapes. The effect of forested connections remains unclear, highlighting the difficulty of measuring and preserving connectivity in a species-specific way.

  5. Evaluating realized seed dispersal across fragmented tropical landscapes: a two-fold approach using parentage analysis and the neighbourhood model.

    Science.gov (United States)

    Ismail, Sascha A; Ghazoul, Jaboury; Ravikanth, Gudasalamani; Kushalappa, Cheppudira G; Uma Shaanker, Ramanan; Kettle, Chris J

    2017-05-01

    Despite the importance of seed dispersal for survival of plant species in fragmented landscapes, data on seed dispersal at landscape scales remain sparse. Effective seed dispersal among fragments determines recolonization and plant species persistence in such landscapes. We present the first large-scale (216-km 2 ) direct estimates of realized seed dispersal of a high-value timber tree (Dysoxylum malabaricum) across an agro-forest landscape in the Western Ghats, India. Based upon an exhaustive inventory of adult trees and a sample of 488 seedlings all genotyped at 10 microsatellite loci, we estimated realized seed dispersal using parentage analysis and the neighbourhood model. Our estimates found that most realized seed dispersal was within 200 m, which is insufficient to effectively bridge the distances between forest patches. We conclude that using mobility of putative animal dispersers can be misleading when estimating tropical tree species vulnerability to habitat fragmentation. This raises serious concerns about the potential of many tropical trees to recolonize isolated forest patches where high-value tree species have already been removed. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  6. Habitat disturbance results in chronic stress and impaired health status in forest-dwelling paleotropical bats.

    Science.gov (United States)

    Seltmann, Anne; Czirják, Gábor Á; Courtiol, Alexandre; Bernard, Henry; Struebig, Matthew J; Voigt, Christian C

    2017-01-01

    Anthropogenic habitat disturbance is a major threat to biodiversity worldwide. Yet, before population declines are detectable, individuals may suffer from chronic stress and impaired immunity in disturbed habitats, making them more susceptible to pathogens and adverse weather conditions. Here, we tested in a paleotropical forest with ongoing logging and fragmentation, whether habitat disturbance influences the body mass and immunity of bats. We measured and compared body mass, chronic stress (indicated by neutrophil to lymphocyte ratios) and the number of circulating immune cells between several bat species with different roost types living in recovering areas, actively logged forests, and fragmented forests in Sabah, Malaysia. In a cave-roosting species, chronic stress levels were higher in individuals from fragmented habitats compared with conspecifics from actively logged areas. Foliage-roosting species showed a reduced body mass and decrease in total white blood cell counts in actively logged areas and fragmented forests compared with conspecifics living in recovering habitats. Our study highlights that habitat disturbance may have species-specific effects on chronic stress and immunity in bats that are potentially related to the roost type. We identified foliage-roosting species as particularly sensitive to forest habitat deterioration. These species may face a heightened extinction risk in the near future if anthropogenic habitat alterations continue.

  7. Forest biodiversity conservation in the context of increasing woody biomass harvests

    International Nuclear Information System (INIS)

    Bouget, Christophe; Gosselin, Frederic; Gosselin, Marion

    2011-01-01

    After describing peculiarities and stakes in forest biodiversity, we discuss the response of biodiversity to potential habitat changes induced by increasing forest biomass harvesting: decrease in old trees and stands, and in forest areas unmanaged for decades, increase in overall felled areas, in forest road density and in habitat fragmentation, deleterious changes in soil conditions and forest ambience, development of short and very short rotation coppices. Positive or negative effects on several components of forest biodiversity (mainly soil fauna and flora, and dead wood associated species) are explored. Needs are highlighted: biodiversity monitoring, adaptive management and context-based recommendations. (authors)

  8. Populações de aranhas errantes do gênero Ctenus em fragmentos florestais na Amazônia Central Populations of Ctenus wandering spiders in Amazonian forest fragments

    Directory of Open Access Journals (Sweden)

    Luiz Augusto Macedo Mestre

    2008-01-01

    ções ambientais.Ctenus is a genus of wandering spiders abundant in Neotropical and African rainforests and is becoming a model organism to understand the biology of predators in the leaf litter fauna. We compared abundance, sex ratio, seasonality and size dimorphism in populations of four species of medium sized wandering spiders, Ctenus amphora, C. crulsi, C. manauara and C. villasboasi in primary forests, fragments with different areas, their borders and secondary forests near them. This study was conducted between February and July 1999, in a terra-firme (non-flooded tropical rain forest, in central Amazonia. The spiders were measured and counted in transects of 250x5 m or 500x5 m in three secondary forest sites, four fragments of primary forest of 1 ha, three of 10 ha, two of 100 ha and four reserves of continuous forest (larger than 10.000 ha. There was a significant predominance of females in two species (C. amphora- 74% and C. crulsi- 65%, sexual dimorphism significant in three species (C. amphora, C. crulsi, and C. manauara, and temporal variation of the abundance for the four species. These results corroborate and complement tendencies from previous studies. There were no statistical differences between spider abundance in interior, borders and between reserves of different areas. Effects of border and size of fragments on the Ctenus spider populations are smaller than the previously observed variations among different habitats in the forest interior. There was no difference in spider size captured in small reserves, large reserves, edges, and continuous forests sites. Comparing these results with other study in the same sites, we conclude that the effects of fragmentation in Ctenus spiders decrease with second grown regeneration, resulting in a rapid reply of these species to habitat modifications.

  9. A comparative study on genetic effects of artificial and natural habitat fragmentation on Loropetalum chinense (Hamamelidaceae) in Southeast China.

    Science.gov (United States)

    Yuan, N; Comes, H P; Cao, Y N; Guo, R; Zhang, Y H; Qiu, Y X

    2015-06-01

    Elucidating the demographic and landscape features that determine the genetic effects of habitat fragmentation has become fundamental to research in conservation and evolutionary biology. Land-bridge islands provide ideal study areas for investigating the genetic effects of habitat fragmentation at different temporal and spatial scales. In this context, we compared patterns of nuclear microsatellite variation between insular populations of a shrub of evergreen broad-leaved forest, Loropetalum chinense, from the artificially created Thousand-Island Lake (TIL) and the Holocene-dated Zhoushan Archipelago of Southeast China. Populations from the TIL region harboured higher levels of genetic diversity than those from the Zhoushan Archipelago, but these differences were not significant. There was no correlation between genetic diversity and most island features, excepting a negative effect of mainland-island distance on allelic richness and expected heterozygosity in the Zhoushan Archipelago. In general, levels of gene flow among island populations were moderate to high, and tests of alternative models of population history strongly favoured a gene flow-drift model over a pure drift model in each region. In sum, our results showed no obvious genetic effects of habitat fragmentation due to recent (artificial) or past (natural) island formation. Rather, they highlight the importance of gene flow (most likely via seed) in maintaining genetic variation and preventing inter-population differentiation in the face of habitat 'insularization' at different temporal and spatial scales.

  10. Ethiopian church forests : opportunities and challenges for restoration

    NARCIS (Netherlands)

    Wassie Eshete, A.

    2007-01-01

    In Northern Ethiopia almost all dry Afromontane forests have been converted to open agricultural lands. Only small isolated fragments remain around churches ("church forests"), but these are many. This study analyses forest community structure and composition of the church forests, investigates

  11. Post-fire regeneration in seasonally dry tropical forest fragments in southeastern Brazil.

    Science.gov (United States)

    Costa, Mayke B; Menezes, Luis Fernando T DE; Nascimento, Marcelo T

    2017-01-01

    Seasonally dry tropical forest is one of the highly threatened biome. However, studies on the effect of fire on these tree communities are still scarce. In this context, a floristic and structural survey in three forest areas in the southeast of Brazil that were affected by fire between 14 and 25 years ago was performed with the objective of evaluating post-fire regeneration. In each site, five systematically placed plots (25 m x 25 m each) were established. The more recently burnt site had significantly lower values of richness and diversity than the other two sites. However, the sites did not differ in density and basal area. Annona dolabripetala, Astronium concinnum, Joannesia princeps and Polyandrococos caudescens were within the 10 most important species for the three sites. Comparing these data with adjacent mature forests, the results indicated differences both in structural and floristic aspects, suggesting that the time after fire was not sufficient for recuperation of these areas. The recovery process indicate at least 190 years for areas return to basal area values close to those observed in mature forests nearby.

  12. Post-frontier forest change adjacent to Braulio Carrillo National Park, Costa Rica

    Science.gov (United States)

    John Schelhas; G. Arturo Sanchez-Azofeifa

    2006-01-01

    Effective biodiversity conservation in national parks depends to a large extent on adjacent forest cover. While deforestation and forest fragmentation as a result of colonization and agriculture have been widespread in neotropical countries over the past few decades, in some places agricultural intensification, wage labor, and rural to urban migration are becoming the...

  13. Unraveling the drivers of community dissimilarity and species extinction in fragmented landscapes.

    Science.gov (United States)

    Banks-Leite, Cristina; Ewers, Robert M; Metzger, Jean Paul

    2012-12-01

    Communities in fragmented landscapes are often assumed to be structured by species extinction due to habitat loss, which has led to extensive use of the species-area relationship (SAR) in fragmentation studies. However, the use of the SAR presupposes that habitat loss leads species to extinction but does not allow for extinction to be offset by colonization of disturbed-habitat specialists. Moreover, the use of SAR assumes that species richness is a good proxy of community changes in fragmented landscapes. Here, we assessed how communities dwelling in fragmented landscapes are influenced by habitat loss at multiple scales; then we estimated the ability of models ruled by SAR and by species turnover in successfully predicting changes in community composition, and asked whether species richness is indeed an informative community metric. To address these issues, we used a data set consisting of 140 bird species sampled in 65 patches, from six landscapes with different proportions of forest cover in the Atlantic Forest of Brazil. We compared empirical patterns against simulations of over 8 million communities structured by different magnitudes of the power-law SAR and with species-specific rules to assign species to sites. Empirical results showed that, while bird community composition was strongly influenced by habitat loss at the patch and landscape scale, species richness remained largely unaffected. Modeling results revealed that the compositional changes observed in the Atlantic Forest bird metacommunity were only matched by models with either unrealistic magnitudes of the SAR or by models ruled by species turnover, akin to what would be observed along natural gradients. We show that, in the presence of such compositional turnover, species richness is poorly correlated with species extinction, and z values of the SAR strongly underestimate the effects of habitat loss. We suggest that the observed compositional changes are driven by each species reaching its

  14. Assessing the use of forest islands by parrot species in a neotropical savanna

    Directory of Open Access Journals (Sweden)

    Igor Berkunsky

    2015-06-01

    Full Text Available Understanding the effect of habitat fragmentation is a fundamental yet complicated aim of many ecological studies. Beni savanna is a naturally fragmented forest habitat, where forest islands exhibit variation in resources and threats. To understand how the availability of resources and threats affect the use of forest islands by parrots, we applied occupancy modeling to quantify use and detection probabilities for 12 parrot species on 60 forest islands. The presence of urucuri (Attalea phalerata and macaw (Acrocomia aculeata palms, the number of tree cavities on the islands, and the presence of selective logging,and fire were included as covariates associated with availability of resources and threats. The model-selection analysis indicated that both resources and threats variables explained the use of forest islands by parrots. For most species, the best models confirmed predictions. The number of cavities was positively associated with use of forest islands by 11 species. The area of the island and the presence of macaw palm showed a positive association with the probability of use by seven and five species, respectively, while selective logging and fire showed a negative association with five and six species, respectively. The Blue-throated Macaw (Ara glaucogularis, the critically endangered parrot species endemic to our study area, was the only species that showed a negative association with both threats. Monitoring continues to be essential to evaluate conservation and management actions of parrot populations. Understanding of how species are using this natural fragmented habitat will help determine which fragments should be preserved and which conservation actions are needed.

  15. Fuel fragmentation data review and separate effects testing

    International Nuclear Information System (INIS)

    Yueh, Ken. H.; Snis, N.; Mitchell, D.; Munoz-Reja, C.

    2014-01-01

    A simple alternative test has been developed to study the fuel fragmentation process at loss of coolant accident (LOCA) temperatures. The new test heats a short section of fuel, approximately two pellets worth of material, in a tube furnace open to air. An axial slit is cut in the test sample cladding to reduce radial restraint and to simulate ballooned condition. The tube furnace allows the fuel fragmentation process be observed during the experiment. The test was developed as a simple alternative so large number of tests could be conducted quickly and efficiently to identify key variables that influence fuel fragmentation and to zeroing on the fuel fragmentation burn-up threshold. Several tests were conducted, using fuel materials from fuel rods that were used in earlier integral tests to benchmark and validate the test technique. High burn-up fuel materials known to be above the fragmentation threshold was used to evaluate the fragmentation process as a function of temperature. Even with an axial slit and both ends open, no significant fuel detachment/release was detected until above 750°C. Additional tests were conducted with fuel materials at burn-ups closer to the fuel fragmentation burn-up threshold. Results from these tests indicate a minor power history effect on the fuel fragmentation burn-up threshold. An evaluation of available literature and data generated from this work suggest a fuel fragmentation burn-up threshold between 70 and 75 GWd/MTU. (author)

  16. Natural radionuclides in soils of a forest fragment of Atlantic Forest under ecological restoration process

    International Nuclear Information System (INIS)

    Ferreira, F.S.; Lira, M.B.; Souza, E.M.; França, E.J.

    2017-01-01

    The natural radioactive isotopes come from the radioactive series of the 238 U (Uranium Series), the 235 U (Actinium Series) and the 232 Th (Thorium Series) series, or they can occur in isolation as is the case with the 40 K. Primordial radionuclides such as 40 K, 232 Th, 235 U and 238 U exist since the formation of the earth, being found in appreciable amounts in nature and in some cases may present a mass activity above the acceptable of environmental radiation. The objective of this work was to evaluate the mass activity of 40 K, 226 Ra and 228 Ra in the soils of a fragment of Atlantic Forest under ecological restoration process located in the Municipality of Paulista, PE, Brazil. Soil samples (0 - 15 cm) were collected under the projection of the treetops of the most abundant trees in the region. After drying and comminution, analytical portions of 40 g were transferred to polyethylene petri dishes, sealed and stored for 30 days to ensure secular equilibrium. Radioactivity was quantified by High Resolution Gamma Spectrometry - EGAR. The mean physical activities of 40 K, 226 Ra and 228 Ra were 12, 15 and 20 Bq kg -1 , respectively, for the surface soil of the Parque Natural Municipal Mata do Frio. The values found were lower than those found in mangroves in the state of Pernambuco and those considered normal for soils worldwide

  17. Amount of Forest Edge at a 2 Hectare Scale

    Data.gov (United States)

    U.S. Environmental Protection Agency — Forests provide economic and ecological value. High amounts of forest edge indicates a highly fragmented forest, which generally diminishes those economic and...

  18. Amount of Forest Edge at a 65 Hectare Scale

    Data.gov (United States)

    U.S. Environmental Protection Agency — Forests provide economic and ecological value. High amounts of forest edge indicates a highly fragmented forest, which generally diminishes those economic and...

  19. Bee Diversity and Solanum didymum (Solanaceae Flower–Visitor Network in an Atlantic Forest Fragment in Southern Brazil

    Directory of Open Access Journals (Sweden)

    Francieli Lando

    2018-01-01

    Full Text Available Brazil’s Atlantic Forest biome is currently undergoing forest loss due to repeated episodes of devastation. In this biome, bees perform the most frequent pollination system. Over the last decade, network analysis has been extensively applied to the study of plant–pollinator interactions, as it provides a consistent view of the structure of plant–pollinator interactions. The aim of this study was to use palynological studies to obtain an understanding of the relationship between floral visitor bees and the pioneer plant S. didymum in a fragment of the Atlantic Forest, and also learn about the other plants that interact to form this network. Five hundred bees were collected from 32 species distributed into five families: Andrenidae, Apidae, Colletidae, Megachilidae, and Halictidae. The interaction network consisted of 21 bee species and 35 pollen types. The Solanum-type bee species with the highest number of interactions were Anthrenoides sp. 1, Augochlora sp. 2, and Augochloropsis notophos, representing 71.78% of their interactions. Augochloropsis notophos and Augochlora sp. 2 were the only common species in the flowers of S. didymum. Given the results of our study, we conclude that Solanum is an important source of pollen grains for several native bee species, mainly for the solitary species that are more diverse in the south of Brazil. Moreover, our results indicate that bees from the families Halictidae (A. notophos, Augochlora and Andrenidae (Anthrenoides are the pollinators of S. didymum.

  20. Land fauna composition of small mammals of a fragment of Atlantic Forest in the State of Sao Paulo, Brazil

    Directory of Open Access Journals (Sweden)

    Darci Moraes Barros-Battesti

    2000-03-01

    Full Text Available The Atlantic Forest small mammal land fauna, except bats, and the abiotic factors that might have an influence on its composition, were studied in the Itapevi County, State of Sao Paulo, a forested region, partly altered by antropic action, from January, 1995 to June, 1996. The trapping effort consisted of 2,888 trap-nights, resulting in a 4.6% trapping success and consisted of monthly trappings, for five consecutive days. During this period, 134 specimens were captured, of which 46.3% were Didelphimorphia and 53.7% were Rodentia. Eleven species were registered: two Didelphimorphia: Didelphis marsupialis (Linnaeus, 1758 and Marmosops incanus (Lund, 1841, and nine Rodentia: Akodon cursor (Winge, 1887, Bolomys lasiurus (Lund, 1841, Oxymycterus hispidus Pictet, 1843, Oxymycterus nasutus (Waterhouse, 1837, Oligoryzomys nigripes (Olfers, 1818, Oryzomys angouya (Fischer, 1814, Raltus norvegicus (Berkenhout, 1769, Euryzygomatomys spinosus (G. Fischer, 1814 and Cavia aperea Erxleben, 1777. The relative density indices were correlated with meteorological data by Spearman and Pearson coefficients. For marsupials these correlations were not significant. For rodents, the correlations were significant and directly related to lower temperature and rainfall indices (p<0.05. During the dry season the occurrence of small mammals was 50% greater than during the wet season, probably due to foraging strategies in the studied fragment of Atlantic Forest.

  1. The Missouri Ozark Forest Ecosystem Project: the effects of forest management on the forest ecosystem

    Science.gov (United States)

    Brian Brookshire; Carl Hauser

    1993-01-01

    The effects of forest management on non-timber resources are of growing concern to forest managers and the public. While many previous studies have reported effects of stand-level treatments (less than 15 ha) on various stand-level attributes, few studies have attempted to document the influence of forest management on the biotic and abiotic characteristics of entire...

  2. Relevance of new multispectral imagery for assessing tropical forest disturbance: RapidEye and WorldView-2

    CSIR Research Space (South Africa)

    Cho, Moses A

    2012-11-01

    Full Text Available The aims of this study were to assess utility of RapidEye imagery for predicting leaf nitrogen concentration and evaluate the effects of forest fragmentation on leaf nitrogen distribution in the Dukuduku forest, KwaZulu Natal, South Africa. RapidEye...

  3. Euglossine bee communities in small forest fragments of the Atlantic Forest, Rio de Janeiro state, southeastern Brazil (Hymenoptera, Apidae Comunidade de abelhas Euglossina em pequenos fragmentos de Mata Atlântica no estado do Rio de Janeiro, sudeste do Brasil (Hymenoptera, Apidae

    Directory of Open Access Journals (Sweden)

    Willian Moura de Aguiar

    2012-06-01

    Full Text Available Euglossine bee communities in small forest fragments of the Atlantic Forest, Rio de Janeiro state, southeastern Brazil (Hymenoptera, Apidae. Euglossine bees are important pollinators in forests and agricultural areas. Although the structure of their communities is critically affected by anthropogenic disturbances, little is known about these bees in small forest fragments. The objectives of this study were to analyze the composition, abundance, and diversity of euglossine bee species in nine small fragments of different phytophysiognomies of the Atlantic Forest in southeastern Brazil, and to identify the environmental variables that may be related to the species composition of these communities. Males were sampled quarterly from May 2007 to May 2009 with aromatic traps containing methyl cinnamate, vanillin, eucalyptol, benzyl acetate, and methyl salicylate. A total of 1558 males, belonging to 10 species and three genera of Euglossina were collected. The richness ranged from five to seven species per fragment. Euglossa cordata, E. securigera, Eulaema nigrita e E. cingulata were common to all fragments studied. The diversity differed significantly among areas, ranging from H' = 1.04 to H' = 1.65. The precipitation, phytophysiognomy, and altitude had the highest relative importance over the species composition variation. The results presented in this study demonstrate that small forest fragments are able to support populations of euglossine bee species, most of which are widely distributed and reportedly tolerant to open and/or disturbed areas and suggest that the conservation of such areas is important, particularly in areas that are regenerating and in regions with agricultural matrices where these bees can act as important pollinatorsComunidade de abelhas Euglossina em pequenos fragmentos de Mata Atlântica no estado do Rio de Janeiro, sudeste do Brasil (Hymenoptera, Apidae. Abelhas Euglossina são importantes polinizadores nas florestas e em

  4. Eastern Africa Coastal Forest Programme

    OpenAIRE

    Younge, A.

    2002-01-01

    The eastern African coastal forest ecoregion is recognised as one of Africa’s centres of species endemism, and is distributed over six countries (Somalia, Kenya, Tanzania, Mozambique, Zimbabwe and Malawi). Most is found in Kenya, Tanzania and Mozambique, which form our focal region. The coastal forests are fragmented, small and surrounded by poor communities that have a high demand for land and forest resources. Although coastal forests have significant cultural and traditional...

  5. Vascular epiphytic component in an urban forest fragment in Criciuma, Santa Catarina, Brazil

    Directory of Open Access Journals (Sweden)

    Telma Elyta Vilhalba Azeredo

    2013-06-01

    Full Text Available This study aimed to conduct a floristic and phytosociological survey, as well as analyze the spatial distribution of the vascular epiphytic component in an urban forest fragment belonging to the submontane dense ombrophilous forest in the town of Criciuma, Santa Catarina, Brazil. In addition, information on the ecological groups of epiphytic species and the strategies for pollination and dispersal were also presented. One sampled 60 trees as phorophytes with DBH ≥ 10 cm, through the point-centered quarter method, and the expeditious walking method was used for recording the epiphytic species which weren’t sampled in the phorophytes through the phytosociological method. The frequency was evaluated having the occurrence of epiphytes in the phorophytes and the segments on the bole and crown as a basis. One recorded the presence of epiphytes in the phorophytes in the segments on the bole and crown. One found 65 species distributed into 39 genera and 14 families, out of which 49 were sampled in the phytosociological survey and the remaining ones in the walking survey. Bromeliaceae showed the highest richness, followed by Orchidaceae, and Cactaceae. Tillandsia recurvata (L. L. was firstly mentioned in the southern state. The specific diversity was estimated as H’ = 3.33 and evenness (E was equal to 0.86. The ecological group of holoepiphytes was the most representative one in the area under study. Entomophily and anemochory were the prevailing strategies for pollination and dispersal, respectively. In the phytosociological survey, the number of epiphytic species in the phorophytes ranged from 0 to 21. The highest importance values were those related to Rhipsalis teres (Vell. Steud. and Microgramma vacciniifolia (Langsd. & Fisch. Copel.

  6. Abiotic alterations caused by forest fragmentation affect tree regeneration: a shade and drought tolerance gradient in the remnants of Coastal Maulino Forest Alteraciones abióticas causadas por la fragmentación del bosque afectan la regeneración arbórea: un gradiente de tolerancia a la sombra y la sequía en los remanentes del Bosque Maulino Costero

    Directory of Open Access Journals (Sweden)

    PABLO C GUERRERO

    2009-01-01

    Full Text Available Plant regeneration is strongly determined by light and soil moisture differences between habitáis; both variables are modified by large-scale forest fragmentation. Several studies have indicated this alteration as the mechanism involved in tropical forest community change. The effects of fragmentation may be much more severe in Mediterranean and deciduous forests, because plant species in these forests show a stress tolerance tradeoff between shade and drought. Our study was performed in the deciduous fragmented Coastal Maulino Forest: Reserva Nacional Los Queules (RNLQ and surrounding small fragments. We hypothesised that Aristotelia chilensis (shade intolerant but drought tolerant should increase its regeneration in small patches as a consequence of the change in habitat suitability (i.e. luminous and drier, while Cryptocarya alba (shade tolerant but drought intolerant should have less regeneration in small fragments. We also expected that Nothofagus glauca and N. obliqua, which have shade and drought tolerances intermedíate between A. chilensis and C. alba, should respond less to forest fragmentation. We used two estimations of plant regeneration: (i seedling and sapling densities via field observations and (ii seed germination and seedling establishment via a field-based experiment. Natural regeneration patterns of C. alba indicated a depressed regeneration within small forest fragments compared to RNLQ, although experimental germination, establishment and recruitment proportions did not vary between habitáis. In contrast, A. chilensis regeneration was favored by forest fragmentation, with increased seedling and sapling densities and germination in small forest fragments. Both N. glauca and N. obliqua were less affected by forest fragmentation in their natural and experimental regeneration. This study highlights the relevance of studying changes in abiotic factors as a consequence of human activities, and considering safe sites (defined

  7. Forest Health Status in North America

    Directory of Open Access Journals (Sweden)

    Borys Tkacz

    2007-01-01

    Full Text Available The forests of North America provide a variety of benefits including water, recreation, wildlife habitat, timber, and other forest products. However, they continue to face many biotic and abiotic stressors including fires, native and invasive pests, fragmentation, and air pollution. Forest health specialists have been monitoring the health of forests for many years. This paper highlights some of the most damaging forest stressors affecting North American forests in recent years and provides some projections of future risks.

  8. Effects of national forest-management regimes on unprotected forests of the Himalaya.

    Science.gov (United States)

    Brandt, Jodi S; Allendorf, Teri; Radeloff, Volker; Brooks, Jeremy

    2017-12-01

    Globally, deforestation continues, and although protected areas effectively protect forests, the majority of forests are not in protected areas. Thus, how effective are different management regimes to avoid deforestation in non-protected forests? We sought to assess the effectiveness of different national forest-management regimes to safeguard forests outside protected areas. We compared 2000-2014 deforestation rates across the temperate forests of 5 countries in the Himalaya (Bhutan, Nepal, China, India, and Myanmar) of which 13% are protected. We reviewed the literature to characterize forest management regimes in each country and conducted a quasi-experimental analysis to measure differences in deforestation of unprotected forests among countries and states in India. Countries varied in both overarching forest-management goals and specific tenure arrangements and policies for unprotected forests, from policies emphasizing economic development to those focused on forest conservation. Deforestation rates differed up to 1.4% between countries, even after accounting for local determinants of deforestation, such as human population density, market access, and topography. The highest deforestation rates were associated with forest policies aimed at maximizing profits and unstable tenure regimes. Deforestation in national forest-management regimes that emphasized conservation and community management were relatively low. In India results were consistent with the national-level results. We interpreted our results in the context of the broader literature on decentralized, community-based natural resource management, and our findings emphasize that the type and quality of community-based forestry programs and the degree to which they are oriented toward sustainable use rather than economic development are important for forest protection. Our cross-national results are consistent with results from site- and regional-scale studies that show forest-management regimes that

  9. Postdispersal seed predation and seed viability in forest soils: implications for the regeneration of tree species in Ethiopian church forests

    NARCIS (Netherlands)

    Wassie Eshete, A.; Bekele, T.; Sterck, F.J.; Teketay, D.; Bongers, F.

    2010-01-01

    Almost all dry Afromontane forests of Northern Ethiopia have been converted to agricultural, grazing or scrub lands except for small fragments left around churches ('Church forests'). Species regeneration in these forests is limited. We investigated (i) how intense postdispersal seed predation was

  10. Amount of Future Forest Edge at a 2 Hectare Scale

    Data.gov (United States)

    U.S. Environmental Protection Agency — Forests provide economic and ecological value. High amounts of forest edge indicates a highly fragmented forest, which generally diminishes those economic and...

  11. Amount of Future Forest Edge at a 65 Hectare scale

    Data.gov (United States)

    U.S. Environmental Protection Agency — Forests provide economic and ecological value. High amounts of forest edge indicates a highly fragmented forest, which generally diminishes those economic and...

  12. Landscape attributes as drivers of the geographical variation in density of Sapajus nigritus Kerr, 1792, a primate endemic to the Atlantic Forest

    Science.gov (United States)

    Hendges, Carla D.; Melo, Geruza L.; Gonçalves, Alberto S.; Cerezer, Felipe O.; Cáceres, Nilton C.

    2017-10-01

    Neotropical primates are among the most well studied forest mammals concerning their population densities. However, few studies have evaluated the factors that influence the spatial variation in the population density of primates, which limits the possibility of inferences towards this animal group, especially at the landscape-level. Here, we compiled density data of Sapajus nigritus from 21 forest patches of the Brazilian Atlantic Forest. We tested the effects of climatic variables (temperature, precipitation), landscape attributes (number of patches, mean inter-patch isolation distance, matrix modification index) and patch size on the population density using linear models and the Akaike information criterion. Our findings showed that the density of S. nigritus is influenced by landscape attributes, particularly by fragmentation and matrix modification. Overall, moderately fragmented landscapes and those surrounded by matrices with intermediate indexes of temporal modification (i.e., crop plantations, forestry) are related to high densities of this species. These results support the assumptions that ecologically flexible species respond positively to forest fragmentation. However, the non-linear relationship between S. nigritus density and number of patches suggests that even the species that are most tolerant to forest cover changes seem to respond positively only at an intermediate level of habitat fragmentation, being dependent of both a moderate degree of forest cover and a high quality matrix. The results we found here can be a common response to fragmentation for those forest dweller species that are able to use the matrix as complementary foraging sites.

  13. Survival and development of reintroduced Cattleya intermedia plants related to abiotic factors and herbivory at the edge and in the interior of a forest fragment in South Brazil

    Directory of Open Access Journals (Sweden)

    Delio Endres Júnior

    2018-06-01

    Full Text Available ABSTRACT Biotic and abiotic factors, such as luminosity, temperature, air humidity, and herbivory, can affect the establishment of reintroduced plants in natural habitats. This study evaluated the effects of these factors on the survival and growth of Cattleya intermedia plants reintroduced into a forest fragment in South Brazil. Plants of C. intermedia were obtained from in vitro seed germination in asymbiotic culture. Eighty-eight plants were reintroduced at both the forest edge and forest interior. Plants with greater shoot heights and number of leaves and pseudobulbs suffered more damage from herbivores at the edge. There were no significant differences in morphometric parameters between damaged and non-damaged plants in the interior. Tenthecoris bicolor, Helionothrips errans, Ithomiola nepos, Molomea magna and Coleoptera larvae damaged C. intermedia. Luminosity was higher at the edge, while air humidity and temperature were the same in both environments. Herbivory associated with abiotic factors increased plant mortality in the interior, while abiotic factors were determinative of plant survival at the edge. Luminosity is important to the survival of reintroduced epiphytic orchids, and herbivory affects the success of reintroduction.

  14. Habitat fragmentation reduces nest survival in an Afrotropical bird community in a biodiversity hotspot.

    Science.gov (United States)

    Newmark, William D; Stanley, Thomas R

    2011-07-12

    Ecologists have long hypothesized that fragmentation of tropical landscapes reduces avian nest success. However, this hypothesis has not been rigorously assessed because of the difficulty of finding large numbers of well-hidden nests in tropical forests. Here we report that in the East Usambara Mountains in Tanzania, which are part of the Eastern Arc Mountains, a global biodiversity hotspot, that daily nest survival rate and nest success for seven of eight common understory bird species that we examined over a single breeding season were significantly lower in fragmented than in continuous forest, with the odds of nest failure for these seven species ranging from 1.9 to 196.8 times higher in fragmented than continuous forest. Cup-shaped nests were particularly vulnerable in fragments. We then examined over six breeding seasons and 14 study sites in a multivariable survival analysis the influence of landscape structure and nest location on daily nest survival for 13 common species representing 1,272 nests and four nest types (plate, cup, dome, and pouch). Across species and nest types, area, distance of nest to edge, and nest height had a dominant influence on daily nest survival, with area being positively related to nest survival and distance of nest to edge and nest height being both positively and negatively associated with daily nest survival. Our results indicate that multiple environmental factors contribute to reduce nest survival within a tropical understory bird community in a fragmented landscape and that maintaining large continuous forest is important for enhancing nest survival for Afrotropical understory birds.

  15. Analysing fragmentation in vulnerable biodiversity hotspots in Tanzania from 1975 to 2012 using remote sensing and fragstats

    Directory of Open Access Journals (Sweden)

    M.M. Ojoyi

    2016-11-01

    Full Text Available Habitat fragmentation is a threat to conservation of biodiversity hotspots in the Morogoro region, Tanzania. However, on-going research on fragmentation has not kept pace with temporal lapses and how individual species respond to habitat transformation and heterogeneity. This study sought to model spatial and temporal fragmentation patterns. Cloud free multi-temporal Landsat imagery with similar spectral resolution were acquired in the same season in 1975, 1995 and 2012. The images were used to characterize the biophysical landscape characteristics and a range of metrics used to quantify the magnitude of fragmentation. Patches and classes in the landscape were assessed using Fragstats, a spatial statistics program useful in computing landscape metrics. Results show that patch number was higher in dense forest and woodland than in less dense forest and grassland in 1975, 1995 and 2012 while the interspersion Juxtaposition Index (IJI ranged between 0 (for clumped patches and 100 (for grassland. In 1975 and 1995, the grassland habitat had the highest IJI while in 2012 less dense forest had the highest IJI. The Games-Howell test showed a significant fragmentation trend in less dense forests class (p≤0.05. Generally, the study indicates a high fragmentation pattern in the vulnerable tropical eastern arc mountain region of East Africa. This finding demonstrates the value of remotely sensed data in understanding the impact of anthropogenic processes on natural landscape transformation. Furthermore, the study provides a basis for informed conservation policy design and implementation in the region.

  16. The effective fragment molecular orbital method for fragments connected by covalent bonds.

    Directory of Open Access Journals (Sweden)

    Casper Steinmann

    Full Text Available We extend the effective fragment molecular orbital method (EFMO into treating fragments connected by covalent bonds. The accuracy of EFMO is compared to FMO and conventional ab initio electronic structure methods for polypeptides including proteins. Errors in energy for RHF and MP2 are within 2 kcal/mol for neutral polypeptides and 6 kcal/mol for charged polypeptides similar to FMO but obtained two to five times faster. For proteins, the errors are also within a few kcal/mol of the FMO results. We developed both the RHF and MP2 gradient for EFMO. Compared to ab initio, the EFMO optimized structures had an RMSD of 0.40 and 0.44 Å for RHF and MP2, respectively.

  17. Preliminary inventory and classification of indigenous afromontane forests on the Blyde River Canyon Nature Reserve, Mpumalanga, South Africa

    Directory of Open Access Journals (Sweden)

    Beck Hans T

    2004-08-01

    Full Text Available Abstract Background Mixed evergreen forests form the smallest, most widely distributed and fragmented biome in southern Africa. Within South Africa, 44% of this vegetation type has been transformed. Afromontane forest only covers 0.56 % of South Africa, yet it contains 5.35% of South Africa's plant species. Prior to this investigation of the indigenous forests on the Blyde River Canyon Nature Reserve (BRCNR, very little was known about the size, floristic composition and conservation status of the forest biome conserved within the reserve. We report here an inventory of the forest size, fragmentation, species composition and the basic floristic communities along environmental gradients. Results A total of 2111 ha of forest occurs on Blyde River Canyon Nature Reserve. The forest is fragmented, with a total of 60 forest patches recorded, varying from 0.21 ha to 567 ha in size. On average, patch size was 23 ha. Two forest communities – high altitude moist afromontane forest and low altitude dry afromontane forest – are identified. Sub-communities are recognized based on canopy development and slope, respectively. An altitudinal gradient accounts for most of the variation within the forest communities. Conclusion BRCNR has a fragmented network of small forest patches that together make up 7.3% of the reserve's surface area. These forest patches host a variety of forest-dependent trees, including some species considered rare, insufficiently known, or listed under the Red Data List of South African Plants. The fragmented nature of the relatively small forest patches accentuates the need for careful fire management and stringent alien plant control.

  18. Wind energy's subtle effect - habitat fragmentation

    Energy Technology Data Exchange (ETDEWEB)

    Pruett, Jay

    2011-07-01

    Full text: New wind energy production facilities are being built to accommodate demands for more, renewable, emission-free energy. This development is most often in windy, remote parts of the United States, so new transmission infrastructure capacity is also needed for shipment of energy from prairies, hilltops and shorelines to distant population centres. Well known environmental effects from wind energy development have included direct mortality to birds and bats. However, there is a more subtle effect also at play. 'Habitat fragmentation' is an impact caused by the siting and presence of infrastructure features on wildlife species. Instead of direct mortality, there is behavioural avoidance of such features because of activity, noise and even simply the presence of vertical structures that are different from the original nature of the habitat. This fragmentation threatens to make some of the last remaining habitat for declining species, especially grassland birds, unusable by them. Prairie grouse such as prairie chickens and sage grouse appear to be particularly susceptible to habitat fragmentation due to the presence of vertical structures. Other species such as the grasshopper sparrow have also been shown to avoid such features. It is believed that these species have evolved to avoid any vertical structure because it can serve as a perch for bird-eating raptors, including eagles, hawks, falcons and owls. Certain life cycle stages, such as nesting and chick rearing, appear to be most vulnerable to these fragmentation influences. Some of the research contributing to concern over habitat fragmentation, along with the mechanism of such fragmentation, will be presented. Solutions will also be offered for the siting of wind energy facilities and transmission lines to avoid this negative environmental impact. (Author)

  19. Impacts of Landscape Context on Patterns of Wind Downfall Damage in a Fragmented Amazonian Landscape

    Science.gov (United States)

    Schwartz, N.; Uriarte, M.; DeFries, R. S.; Gutierrez-Velez, V. H.; Fernandes, K.; Pinedo-Vasquez, M.

    2015-12-01

    Wind is a major disturbance in the Amazon and has both short-term impacts and lasting legacies in tropical forests. Observed patterns of damage across landscapes result from differences in wind exposure and stand characteristics, such as tree stature, species traits, successional age, and fragmentation. Wind disturbance has important consequences for biomass dynamics in Amazonian forests, and understanding the spatial distribution and size of impacts is necessary to quantify the effects on carbon dynamics. In November 2013, a mesoscale convective system was observed over the study area in Ucayali, Peru, a highly human modified and fragmented forest landscape. We mapped downfall damage associated with the storm in order to ask: how does the severity of damage vary within forest patches, and across forest patches of different sizes and successional ages? We applied spectral mixture analysis to Landsat images from 2013 and 2014 to calculate the change in non-photosynthetic vegetation fraction after the storm, and combined it with C-band SAR data from the Sentinel-1 satellite to predict downfall damage measured in 30 field plots using random forest regression. We then applied this model to map damage in forests across the study area. Using a land cover classification developed in a previous study, we mapped secondary and mature forest, and compared the severity of damage in the two. We found that damage was on average higher in secondary forests, but patterns varied spatially. This study demonstrates the utility of using multiple sources of satellite data for mapping wind disturbance, and adds to our understanding of the sources of variation in wind-related damage. Ultimately, an improved ability to map wind impacts and a better understanding of their spatial patterns can contribute to better quantification of carbon dynamics in Amazonian landscapes.

  20. AN ANALYSIS OF LATE-SERAL FOREST CONNECTIVITY IN WESTERN OREGON

    Science.gov (United States)

    Habitat loss and fragmentation due to timber harvest in western Oregon has put wildlife species reliant on late-seral forest under demographic pressure as available habitat shrinks and local populations become isolated. Few studies have examined the effects of habitat removal an...

  1. Forest Cover Change Analysis in Inner Mongolia Using Remote Sensing Data

    Science.gov (United States)

    Xie, S.; Gong, J.; Huang, X.

    2018-04-01

    Forest is the lung of the earth, and it has important effect on maintaining the ecological balance of the whole earth. This study was conducted in Inner Mongolia during the year 1990-2015. Land use and land cover data were used to obtain forest cover change of Inner Mongolia. In addition, protected area data, road data, ASTER GDEM data were combined with forest cover change data to analyze the relationship between them. Moreover, patch density and landscape shape index were calculated to analyze forest change in perspective of landscape aspect. The results indicated that forest area increased overall during the study period. However, a few cities still had a phenomenon of reduced forest area. Results also demonstrated that the construction of protected area had positive effect on protecting forest while roads may disturbed forest due to human activities. In addition, forest patches in most of cities of Inner Mongolia tended to be larger and less fragmented. This paper reflected forest change in Inner Mongolia objectively, which is helpful for policy making by government.

  2. Human presence increases parasitic load in endangered lion-tailed macaques (Macaca silenus in its fragmented rainforest habitats in Southern India.

    Directory of Open Access Journals (Sweden)

    Shaik Hussain

    Full Text Available BACKGROUND: Understanding changes in the host-parasite relationship due to habitat fragmentation is necessary for better management and conservation of endangered species in fragmented landscapes. Pathogens and parasites can pose severe threat to species in restricted environments such as forest fragments where there is increased contact of wildlife with human and livestock populations. Environmental stress and reduced nutritional level in forest fragments can influence parasite infection and intensity on the native species. In this study, we examine the impact of habitat fragmentation on the prevalence of gastrointestinal parasites in lion-tailed macaques in a fragmented rainforest in Western Ghats. METHODS: The prevalence of different gastrointestinal parasites was estimated from 91 fecal samples collected from 9 lion-tailed macaque groups in nine forest fragments. The parasites were identified up to genus level on the basis of the morphology and coloration of the egg, larva and cyst. The covariates included forest fragment area, group size and the presence/absence of human settlements and livestock in proximity. We used a linear regression model to identify the covariates that significantly influenced the prevalence of different parasite taxa. RESULTS: Nine gastrointestinal parasite taxa were detected in lion-tailed macaque groups. The groups near human settlements had greater prevalence and number of taxa, and these variables also had significant positive correlations with group size. We found that these parameters were also greater in groups near human settlements after controlling for group size. Livestock were present in all five fragments that had human settlements in proximity. CONCLUSION: The present study suggests that high prevalence and species richness of gastrointestinal parasites in lion-tailed macaque groups are directly related to habitat fragmentation, high anthropogenic activities and high host density. The parasite load

  3. Effects of Habitat Structure, Plant Cover, and Successional Stage on the Bat Assemblage of a Tropical Dry Forest at Different Spatial Scales

    Directory of Open Access Journals (Sweden)

    Luiz A. D. Falcão

    2018-05-01

    Full Text Available Bats play a fundamental role in ecosystem functioning since they are responsible for several ecological services such as seed dispersal and pollination. Therefore, assessing the effects of habitat structure at different scales on the bat assemblage is extremely important for supporting conservation strategies. The objective of the present study was to investigate the effects of habitat structure at multiple spatial scales on the bat assemblages and their variation along a gradient of secondary succession in a Brazilian tropical dry forest. Our results suggest that bat abundance is higher in areas close to mature forests, which shows the important role of those habitats as refuges for the regional bat fauna (in a fragmented landscape and for the maintenance of ecosystem services provided by this group in tropical dry forests in a landscape context. In addition, bat abundance was lower in protected areas whose surroundings were better preserved (greater forest extension. This unexpected finding could result from an altered behavior in areas under a strong influence of a fruit crop matrix. Finally, we showed that the effects of the surroundings depend on the successional stage of the area under analysis. Late forests are more susceptible to variations in the forest cover in their surroundings, which show the higher fragility of these environments.

  4. Forest Cover Estimation in Ireland Using Radar Remote Sensing: A Comparative Analysis of Forest Cover Assessment Methodologies

    Science.gov (United States)

    Devaney, John; Barrett, Brian; Barrett, Frank; Redmond, John; O`Halloran, John

    2015-01-01

    Quantification of spatial and temporal changes in forest cover is an essential component of forest monitoring programs. Due to its cloud free capability, Synthetic Aperture Radar (SAR) is an ideal source of information on forest dynamics in countries with near-constant cloud-cover. However, few studies have investigated the use of SAR for forest cover estimation in landscapes with highly sparse and fragmented forest cover. In this study, the potential use of L-band SAR for forest cover estimation in two regions (Longford and Sligo) in Ireland is investigated and compared to forest cover estimates derived from three national (Forestry2010, Prime2, National Forest Inventory), one pan-European (Forest Map 2006) and one global forest cover (Global Forest Change) product. Two machine-learning approaches (Random Forests and Extremely Randomised Trees) are evaluated. Both Random Forests and Extremely Randomised Trees classification accuracies were high (98.1–98.5%), with differences between the two classifiers being minimal (forest area and an increase in overall accuracy of SAR-derived forest cover maps. All forest cover products were evaluated using an independent validation dataset. For the Longford region, the highest overall accuracy was recorded with the Forestry2010 dataset (97.42%) whereas in Sligo, highest overall accuracy was obtained for the Prime2 dataset (97.43%), although accuracies of SAR-derived forest maps were comparable. Our findings indicate that spaceborne radar could aid inventories in regions with low levels of forest cover in fragmented landscapes. The reduced accuracies observed for the global and pan-continental forest cover maps in comparison to national and SAR-derived forest maps indicate that caution should be exercised when applying these datasets for national reporting. PMID:26262681

  5. Skin microbiota in frogs from the Brazilian Atlantic Forest: Species, forest type, and potential against pathogens.

    Science.gov (United States)

    Assis, Ananda Brito de; Barreto, Cristine Chaves; Navas, Carlos Arturo

    2017-01-01

    The cutaneous microbiota of amphibians can be defined as a biological component of protection, since it can be composed of bacteria that produce antimicrobial compounds. Several factors influence skin microbial structure and it is possible that environmental variations are among one of these factors, perhaps through physical-chemical variations in the skin. This community, therefore, is likely modified in habitats in which some ecophysiological parameters are altered, as in fragmented forests. Our research goal was to compare the skin bacterial community of four anuran species of the Atlantic Forest of Brazil in landscapes from two different environments: continuous forest and fragmented forest. The guiding hypotheses were: 1) microbial communities of anuran skin vary among sympatric frog species of the Atlantic forest; 2) the degree to which forested areas are intact affects the cutaneous bacterial community of amphibians. If the external environment influences the skin microbiota, and if such influences affect microorganisms capable of inhibiting the colonization of pathogens, we expect consequences for the protection of host individuals. We compared bacterial communities based on richness and density of colony forming units; investigated the antimicrobial potential of isolated strains; and did the taxonomic identification of isolated morphotypes. We collected 188 individual frogs belonging to the species Proceratophrys boiei, Dendropsophus minutus, Aplastodiscus leucopygius and Phyllomedusa distincta, and isolated 221 bacterial morphotypes. Our results demonstrate variation in the skin microbiota of sympatric amphibians, but only one frog species exhibited differences in the bacterial communities between populations from fragmented and continuous forest. Therefore, the variation we observed is probably derived from both intrinsic aspects of the host amphibian species and extrinsic aspects of the environment occupied by the host. Finally, we detected

  6. Selecting a Conservation Surrogate Species for Small Fragmented Habitats Using Ecological Niche Modelling

    Directory of Open Access Journals (Sweden)

    K. Anne-Isola Nekaris

    2015-01-01

    Full Text Available Flagship species are traditionally large, charismatic animals used to rally conservation efforts. Accepted flagship definitions suggest they need only fulfil a strategic role, unlike umbrella species that are used to shelter cohabitant taxa. The criteria used to select both flagship and umbrella species may not stand up in the face of dramatic forest loss, where remaining fragments may only contain species that do not suit either set of criteria. The Cinderella species concept covers aesthetically pleasing and overlooked species that fulfil the criteria of flagships or umbrellas. Such species are also more likely to occur in fragmented habitats. We tested Cinderella criteria on mammals in the fragmented forests of the Sri Lankan Wet Zone. We selected taxa that fulfilled both strategic and ecological roles. We created a shortlist of ten species, and from a survey of local perceptions highlighted two finalists. We tested these for umbrella characteristics against the original shortlist, utilizing Maximum Entropy (MaxEnt modelling, and analysed distribution overlap using ArcGIS. The criteria highlighted Loris tardigradus tardigradus and Prionailurus viverrinus as finalists, with the former having highest flagship potential. We suggest Cinderella species can be effective conservation surrogates especially in habitats where traditional flagship species have been extirpated.

  7. Role of edge effect on small mammal populations in a forest fragment

    International Nuclear Information System (INIS)

    Wike, L.D.

    2000-01-01

    In many cases, edge effect may determine the distribution and densities of small mammal populations. In 1995 and 1998, a mark and recapture study was conducted at the Savannah River Site (SRS), Aiken, SC, to evaluate the role of forest edge habitat. The area studied was an abandoned home site that had been recently isolated by a timber harvest. Harvest activities left a distinct edge of old field and planted pine contrasting with a relatively xeric, mixed hardwood stand. Trapping was conducted for 17 days in 1995 and 14 days in 1998. Three 30 m by 150 m grids were placed in the clear-cut, edge, and hardwood interior habitats. For both years the principal species captured were Peromyscus gossypinus, P. polionotus, and Neotoma floridana. The edge habitat accounted for approximately 55 percent of all captures and nearly four times as many recaptures as the interior and clear-cut habitats. In 1998, greater numbers of N. floridana were trapped than in 1995. The results indicate that the use of edge habitat can be pronounced even within simple communities. Stewards of managed or restored habitats need to carefully consider the role of edge in these systems. In managed areas such as waste sites, movement of material within the food chain could be reduced by minimizing edge habitat around the points of contamination

  8. Towards a population synthesis model of self-gravitating disc fragmentation and tidal downsizing II: the effect of fragment-fragment interactions

    Science.gov (United States)

    Forgan, D. H.; Hall, C.; Meru, F.; Rice, W. K. M.

    2018-03-01

    It is likely that most protostellar systems undergo a brief phase where the protostellar disc is self-gravitating. If these discs are prone to fragmentation, then they are able to rapidly form objects that are initially of several Jupiter masses and larger. The fate of these disc fragments (and the fate of planetary bodies formed afterwards via core accretion) depends sensitively not only on the fragment's interaction with the disc, but also with its neighbouring fragments. We return to and revise our population synthesis model of self-gravitating disc fragmentation and tidal downsizing. Amongst other improvements, the model now directly incorporates fragment-fragment interactions while the disc is still present. We find that fragment-fragment scattering dominates the orbital evolution, even when we enforce rapid migration and inefficient gap formation. Compared to our previous model, we see a small increase in the number of terrestrial-type objects being formed, although their survival under tidal evolution is at best unclear. We also see evidence for disrupted fragments with evolved grain populations - this is circumstantial evidence for the formation of planetesimal belts, a phenomenon not seen in runs where fragment-fragment interactions are ignored. In spite of intense dynamical evolution, our population is dominated by massive giant planets and brown dwarfs at large semimajor axis, which direct imaging surveys should, but only rarely, detect. Finally, disc fragmentation is shown to be an efficient manufacturer of free-floating planetary mass objects, and the typical multiplicity of systems formed via gravitational instability will be low.

  9. Late-successional forests and northern spotted owls: how effective is the Northwest Forest Plan?

    Science.gov (United States)

    Miles Hemstrom; Martin G. Raphael

    2000-01-01

    This paper describes the late-successional and old-growth forest and the northern spotted owl effectiveness monitoring plans for the Northwest Forest Plan. The effectiveness monitoring plan for late-successional and old-growth forests will track changes in forest spatial distribution, and within-stand structure and composition, and it will predict future trends.

  10. Phytosociological characteristics of forest vegetation NPR Dubnik

    International Nuclear Information System (INIS)

    Hrabovsky, A.; Balkovic, J.; Kollar, J.

    2010-01-01

    National Wildlife (NPR) Dubnik represents a unique fragment of natural forest vegetation in the region of Nitra loess upland. Status of oak and oak-hornbeam forests in this book was last documented in 1965. The aim of the contribution is to assess the current status of forest vegetation in the NPR Dubnik by modern methods of phytosociology in accordance with current thinking on the classification of oak and oak-hornbeam forests.

  11. Spatio-temporal Genetic Structure of a Tropical Bee Species Suggests High Dispersal Over a Fragmented Landscape.

    Science.gov (United States)

    Suni, Sevan S; Bronstein, Judith L; Brosi, Berry J

    2014-03-01

    Habitat destruction threatens biodiversity by reducing the amount of available resources and connectivity among geographic areas. For organisms living in fragmented habitats, population persistence may depend on dispersal, which maintains gene flow among fragments and can prevent inbreeding within them. It is centrally important to understand patterns of dispersal for bees living in fragmented areas given the importance of pollination systems and recently documented declines in bee populations. We used population and landscape genetic techniques to characterize patterns of dispersal over a large fragmented area in southern Costa Rica for the orchid bee species Euglossa championi . First, we estimated levels of genetic differentiation among forest fragments as φ pt , an analog to the traditional summary statistic F st , as well as two statistics that may more adequately represent levels of differentiation, G ' st and D est . Second, we used a Bayesian approach to determine the number and composition of genetic groups in our sample. Third we investigated how genetic differentiation changes with distance. Fourth, we determined the extent to which deforested areas restrict dispersal. Finally, we estimated the extent to which there were temporal differences in allele frequencies within the same forest fragments. Within years we found low levels of differentiation even over 80 km, and no effect of land use type on level of genetic differentiation. However, we found significant genetic differentiation between years. Taken together our results suggest that there are high levels of gene flow over this geographic area, and that individuals show low site fidelity over time.

  12. Jet fragmentation

    International Nuclear Information System (INIS)

    Saxon, D.H.

    1985-10-01

    The paper reviews studies on jet fragmentation. The subject is discussed under the topic headings: fragmentation models, charged particle multiplicity, bose-einstein correlations, identified hadrons in jets, heavy quark fragmentation, baryon production, gluon and quark jets compared, the string effect, and two successful models. (U.K.)

  13. Climate change and human colonization triggered habitat loss and fragmentation in Madagascar.

    Science.gov (United States)

    Salmona, Jordi; Heller, Rasmus; Quéméré, Erwan; Chikhi, Lounès

    2017-10-01

    The relative effect of past climate fluctuations and anthropogenic activities on current biome distribution is subject to increasing attention, notably in biodiversity hot spots. In Madagascar, where humans arrived in the last ~4 to 5,000 years, the exact causes of the demise of large vertebrates that cohabited with humans are yet unclear. The prevailing narrative holds that Madagascar was covered with forest before human arrival and that the expansion of grasslands was the result of human-driven deforestation. However, recent studies have shown that vegetation and fauna structure substantially fluctuated during the Holocene. Here, we study the Holocene history of habitat fragmentation in the north of Madagascar using a population genetics approach. To do so, we infer the demographic history of two northern Madagascar neighbouring, congeneric and critically endangered forest dwelling lemur species-Propithecus tattersalli and Propithecus perrieri-using population genetic analyses. Our results highlight the necessity to consider population structure and changes in connectivity in demographic history inferences. We show that both species underwent demographic fluctuations which most likely occurred after the mid-Holocene transition. While mid-Holocene climate change probably triggered major demographic changes in the two lemur species range and connectivity, human settlements that expanded over the last four millennia in northern Madagascar likely played a role in the loss and fragmentation of the forest cover. © 2017 John Wiley & Sons Ltd.

  14. How Biotic Differentiation of Human Impacted Nutrient Poor Deciduous Forests Can Affect the Preservation Status of Mountain Forest Vegetation

    Directory of Open Access Journals (Sweden)

    Tomasz Durak

    2016-10-01

    Full Text Available A significant loss of biodiversity resulting from human activity has caused biotic homogenisation to become the dominant process shaping forest communities. In this paper, we present a rare case of biotic differentiation in European temperate deciduous forest herb layer vegetation. The process is occurring in nutrient poor oak-hornbeam forests in mountain areas (Polish Eastern Carpathians, Central Europe where non-timber use was converted into conventional forest management practice. This change contributed to increases in the nitrogen content and pH reaction of the soil that, contrary to predominant beliefs on the negative impact of habitat eutrophication on diversity, did not result in a decrease in the latter. We discuss possible reasons for this phenomenon that indicate the important role of tree stand composition (an increasing admixture of beech worsening the trophic properties of the soil. The second issue considered involves the effect of the changes in herb species composition of oak-hornbeam forest on its distinctiveness from the beech forest predominating in the Polish Eastern Carpathians. Unfortunately, despite the increase in the species compositional dissimilarity of oak-hornbeam forest, a reduction in their distinctiveness in relation to the herb species composition of beech forest was found. Such a phenomenon is an effect of the major fragmentation of oak-hornbeam forests, a spread of beech forest-type species, and forest management that gives preference to beech trees. Consequently, it can be expected that changes occurring in oak-hornbeam forest vegetation will contribute to a decrease in the forest vegetation variability at the regional scale.

  15. SPIN EFFECTS IN THE FRAGMENTATION OF TRANSVERSELY POLARIZED AND UNPOLARIZED QUARKS

    International Nuclear Information System (INIS)

    ANSELMINO, M.; BOER, D.; DALESIO, U.; MURGIA, F.

    2001-01-01

    We study the fragmentation of a transversely polarized quark into a non-collinear (kperpendicular ≠ 0) spinless hadron and the fragmentation of an unpolarized quark into a non collinear transversely polarized spin 1/2 baryon. These nonperturbative properties are described by spin and kperpendicular dependent fragmentation functions and are revealed in the observation of single spin asymmetries. Recent data on the production of pions in polarized semi-inclusive DIS and long known data on A polarization in unpolarized p-N processes are considered: these new fragmentation functions can describe the experimental results and the single spin effects in the quark fragmentation turn out to be surprisingly large

  16. Floral preferences of a neotropical stingless bee, Melipona quadrifasciata Lepeletier (Apidae: Meliponina) in an urban forest fragment.

    Science.gov (United States)

    Antonini, Y; Costa, R G; Martins, R P

    2006-05-01

    Species of plants used by Melipona quadrifasciata Lepeletier for pollen and nectar gathering in an urban forest fragment were recorded in Belo Horizonte, Minas Gerais, Brazil. Melipona quadrifasciata visited 22 out of 103 flowering plant species. The plant species belonged mainly to Myrtaceae, Asteraceae, and Convolvulaceae (64% of the visits). Melipona quadrifasciata tended to collect pollen or nectar each time, except for Myrtaceae species, from which both pollen and nectar were collected. Bee abundance at flowers did not significantly correlate to food availability (expressed by flowering plant richness). We found a relatively high similarity (50%) between plant species used by M. quadrifasciata, which was also found in studies carried out in São Paulo State. However, low similarity (17%) was found between the results of this study and those of another done in Bahia State, Brazil.

  17. Floral preferences of a neotropical stingless bee, Melipona quadrifasciata Lepeletier (Apidae: Meliponina in an urban forest fragment

    Directory of Open Access Journals (Sweden)

    Y. Antonini

    Full Text Available Species of plants used by Melipona quadrifasciata Lepeletier for pollen and nectar gathering in an urban forest fragment were recorded in Belo Horizonte, Minas Gerais, Brazil. Melipona quadrifasciata visited 22 out of 103 flowering plant species. The plant species belonged mainly to Myrtaceae, Asteraceae, and Convolvulaceae (64% of the visits. Melipona quadrifasciata tended to collect pollen or nectar each time, except for Myrtaceae species, from which both pollen and nectar were collected. Bee abundance at flowers did not significantly correlate to food availability (expressed by flowering plant richness. We found a relatively high similarity (50% between plant species used by M. quadrifasciata, which was also found in studies carried out in São Paulo State. However, low similarity (17% was found between the results of this study and those of another done in Bahia State, Brazil.

  18. Combining measures of dispersal to identify conservation strategies in fragmented landscapes.

    Science.gov (United States)

    Leidner, Allison K; Haddad, Nick M

    2011-10-01

    Understanding the way in which habitat fragmentation disrupts animal dispersal is key to identifying effective and efficient conservation strategies. To differentiate the potential effectiveness of 2 frequently used strategies for increasing the connectivity of populations in fragmented landscapes-corridors and stepping stones-we combined 3 complimentary methods: behavioral studies at habitat edges, mark-recapture, and genetic analyses. Each of these methods addresses different steps in the dispersal process that a single intensive study could not address. We applied the 3 methods to the case study of Atrytonopsis new species 1, a rare butterfly endemic to a partially urbanized stretch of barrier islands in North Carolina (U.S.A.). Results of behavioral analyses showed the butterfly flew into urban and forested areas, but not over open beach; mark-recapture showed that the butterfly dispersed successfully through short stretches of urban areas (5 km) were a dispersal barrier, but shorter stretches of urban areas (≤5 km) were not. Although results from all 3 methods indicated natural features in the landscape, not urbanization, were barriers to dispersal, when we combined the results we could determine where barriers might arise: forests restricted dispersal for the butterfly only when there were long stretches with no habitat. Therefore, urban areas have the potential to become a dispersal barrier if their extent increases, a finding that may have gone unnoticed if we had used a single approach. Protection of stepping stones should be sufficient to maintain connectivity for Atrytonopsis new species 1 at current levels of urbanization. Our research highlights how the use of complementary approaches for studying animal dispersal in fragmented landscapes can help identify conservation strategies. ©2011 Society for Conservation Biology.

  19. Forest Microclimate Characteristics Review

    Science.gov (United States)

    2014-09-01

    1123–32. This study area was located in the coastal mountain range of the Serra do Palmital, Saquarema, in the State of Rio de Janeiro , Brazil...the Atlantic forest in Rio de Janeiro . The objective of the study was to reveal whether forest fragmentation produces biotic and abiotic differences...Roanoke River Basin, North Carolina North Carolina percentage cover of individual species, percentage cover of exotic species, species richness

  20. Flux-based Enrichment Ratios of Throughfall and Stemflow Found to Vary Significantly within Urban Fragments and Along an Urban-to-Rural Gradient

    Science.gov (United States)

    Dowtin, A. L.; Levia, D. F., Jr.

    2017-12-01

    Throughfall and stemflow are important inputs of water and solutes to forest soils in both rural and urban forests. In metropolitan wooded ecosystems, a number of factors can affect flux-based enrichment ratios, including combustion of fossil fuels and proximity to industry. Use of flux-based enrichment ratios provides a means by which this modification of net precipitation chemistry can be quantified for both throughfall and stemflow, and allows for a characterization of the relative contributions of stemflow and throughfall in the delivery of nutrients and pollutants to forest soils. This study utilizes five mixed deciduous forest stands along an urban-to-rural gradient (3 urban fragments, 1 suburban fragment, and a portion of 1 contiguous rural forest) within a medium-sized metropolitan region of the United States' Northeast megalopolis, to determine how the size, shape, structure, and geographic context of remnant forest fragments determine hydrologic and solute fluxes within them. In situ observations of throughfall and stemflow (the latter of which is limited to Quercus rubra and Quercus alba) within each study plot allow for an identification and characterization of the spatial variability in solute fluxes within and between the respective sites. Preliminary observations indicate significant intra-site variability in solute concentrations as observed in both throughfall and stemflow, with higher concentrations along the respective windward edges of the study plots than at greater depths into their interiors. Higher flux-based stemflow enrichment ratios, for both Q. rubra and Q. alba, were also evident for certain ions (i.e., S2-, NO3-) in the urban forest fragments, with significantly lower ratios observed at the suburban and rural sites. Findings from this research are intended to aid in quantifying the spatial variability of the hydrologic and hydrochemical ecosystem service provisions of remnant metropolitan forest fragments. This research is supported in

  1. [Effect of pine plantations on soil arthropods in a high Andean forest].

    Science.gov (United States)

    León-Gamboa, Alba Lucía; Ramos, Carolina; García, Mary Ruth

    2010-09-01

    One of the most common problems in the Colombian mountains has been the replacement of native vegetation by pine plantations. Soil arthropods are a fundamental component of forest ecosystem, since they participate in the organic matter fragmentation, previous to decomposition. This role is more valuable in high altitude environments, where low temperatures limit the dynamics of biological processes, where the effects of pine plantations on soil arthropods are still not well-known. In a remnant of high-andean forest (Neusa - Colombia) and a pine plantation of about 50 years-old, it was evaluated the composition, richness and abundance of arthropods at surface (S), organic horizon (O) and mineral horizon (A) of soil, to establish the differences associated to the soil use transformation. It was used "Pitfall" sampling to register the movement of the epigeous fauna, and extraction by funnel Berlese for determining the fauna density from O and A horizons. The Shannon and Simpson indexes estimated the diversity at different places and horizons, and the trophic structure of the community was evaluated. Overall, there were collected 38 306 individuals from forest and 17 386 individuals from pine plantation, mainly distributed in Collembola (42.4%), Acari (27%), Diptera (17.6%) and Coleoptera (4.6%). The most important differences were given in the surface, where the mobilization in forest (86 individuals/day) almost triplicates the one in pine plantation (33 individuals/day). The differences in composition were given in Collembola, Araneae, Hemiptera, Homoptera and Hymenoptera. The dynamics of richness and abundance along the year had significant high values in the native forest than in the pine plantation. The general trophic structure was dominated by saprophagous (75%), followed by predators (14%) and phytophagous (9%), but in two layers of the pine plantation soil (S and O) this structural pattern was not given. Based on the results, it was concluded that pine

  2. Fragmentation

    Science.gov (United States)

    K.H. Riitters

    2009-01-01

    Effective resource management takes into account the administrative and biophysical settings within which natural resources occur. A setting may be described in many ways; for example, by forest land ownership, by reserved and roadless designation, or by the distribution of human populations in relation to forest (chapter 3). The physical arrangement of forest in a...

  3. Effects of Deforestation and Forest Degradation on Forest Carbon Stocks in Collaborative Forests, Nepal

    Directory of Open Access Journals (Sweden)

    Ram Asheshwar MANDAL

    2012-12-01

    Full Text Available There are some key drivers that favor deforestation and forest degradation. Consequently, levels of carbon stock are affected in different parts of same forest types. But the problem lies in exploring the extent of the effects on level of carbon stocking. This paper highlights the variations in levels of carbon stocks in three different collaborative forests of same forest type i.e. tropical sal (Shorea robusta forest in Mahottari district of the central Terai in Nepal. Three collaborative forests namely Gadhanta-Bardibas Collaborative Forest (CFM, Tuteshwarnath CFM and Banke- Maraha CFM were selected for research site. Interview and workshops were organized with the key informants that include staffs, members and representatives of CFMs to collect the socio-economic data and stratified random sampling was applied to collect the bio-physical data to calculate the carbon stocks. Analysis was carried out using statistical tools. It was found five major drivers namely grazing, fire, logging, growth of invasive species and encroachment. It was found highest carbon 269.36 ton per ha in Gadhanta- Bardibash CFM. The findings showed that the levels of carbon stocks in the three studied CFMs are different depending on how the drivers of deforestation and forest degradation influence over them.

  4. Effects of visitor pressure on understory vegetation in Warsaw forested parks (Poland).

    Science.gov (United States)

    Sikorski, Piotr; Szumacher, Iwona; Sikorska, Daria; Kozak, Marcin; Wierzba, Marek

    2013-07-01

    Visitor's access to understorey vegetation in park forest stands results in the impoverishment of plant species composition and a reduction in habitat quality. The phenomenon of biotic homogenisation is typical in urban landscapes, but it can proceed differently depending on the scale, a detail that has not been observed in previous studies. This research was carried out in seven Warsaw parks (both public and restricted access). Thirty-four forested areas were randomly selected, some subjected to strong visitors' pressure and some within restricted access areas, free of such impacts. The latter category included woodlands growing in old forest and secondary habitats. Public access to the study areas contributed to the disappearance of some forest species and their replacement by cosmopolitan non-forest species, leading to loss of floristic biodiversity in areas of high ecological importance at the city scale. Some human-induced factors, including soil compaction and changes in soil pH, moisture and capillary volume, were found to cause habitat changes that favoured native non-forest plants. Despite changes in species composition, the taxonomic similarity of understorey vegetation in both categories--public access and restricted access--was comparable. In a distance gradient of measurements taken around selected individual trees, there was found to be significant variation (in light, soil pH and compaction) affecting the quality and quantity of understorey vegetation (including rare species). In conclusion, the protection of rare forest species could be achieved by limiting access to forested areas, particularly in old forest fragments, and we highly recommend its consideration in the proposal of future park restoration plans.

  5. Diverse Effects of a Seven-Year Experimental Grassland Fragmentation on Major Invertebrate Groups.

    Science.gov (United States)

    Braschler, Brigitte; Baur, Bruno

    2016-01-01

    Habitat fragmentation is a major driver of biodiversity loss, but observed effects vary and may depend on the group examined. Time since fragmentation may explain some differences between taxonomical groups, as some species and thus species composition respond with a delay to changes in their environment. Impacts of drivers of global change may thus be underestimated in short-term studies. In our study we experimentally fragmented nutrient-poor dry calcareous grasslands and studied the response of species richness, individual density and species composition of various groups of invertebrates (gastropods, ants, ground beetles, rove beetles, orthoptera, spiders, woodlice) in 12 small (1.5 m * 1.5 m) and 12 large (4.5 m * 4.5 m) fragments and their corresponding control plots after 7 years. We further examined responses to fragmentation in relation to body size and habitat preferences. Responses to fragmentation varied between taxonomical groups. While spider species richness and individual density were lower in fragments, the opposite was true for an orthopteran species and woodlice. Species composition and β-diversity differed between fragments and control plots for some groups. However, the interaction treatment*plot size was rarely significant. Species with high occupancy rates in undisturbed control plots responded more negatively to the fragmentation, while species with large body size were relatively more abundant in fragments in some groups. No effect of the fragmentation was found for ants, which may have the longest lag times because of long-lived colonies. However, relationships between abundance and the species' preferences for environmental factors affected by edge effects indicate that ant diversity too may be affected in the longer-term. Our results show the importance of considering different groups in conservation management in times of widespread fragmentation of landscapes. While species richness may respond slowly, changes in abundance related to

  6. Soil charcoal as long-term pyrogenic carbon storage in Amazonian seasonal forests.

    Science.gov (United States)

    Turcios, Maryory M; Jaramillo, Margarita M A; do Vale, José F; Fearnside, Philip M; Barbosa, Reinaldo Imbrozio

    2016-01-01

    Forest fires (paleo + modern) have caused charcoal particles to accumulate in the soil vertical profile in Amazonia. This forest compartment is a long-term carbon reservoir with an important role in global carbon balance. Estimates of stocks remain uncertain in forests that have not been altered by deforestation but that have been impacted by understory fires and selective logging. We estimated the stock of pyrogenic carbon derived from charcoal accumulated in the soil profile of seasonal forest fragments impacted by fire and selective logging in the northern portion of Brazilian Amazonia. Sixty-nine soil cores to 1-m depth were collected in 12 forest fragments of different sizes. Charcoal stocks averaged 3.45 ± 2.17 Mg ha(-1) (2.24 ± 1.41 Mg C ha(-1) ). Pyrogenic carbon was not directly related to the size of the forest fragments. This carbon is equivalent to 1.40% (0.25% to 4.04%) of the carbon stocked in aboveground live tree biomass in these fragments. The vertical distribution of pyrogenic carbon indicates an exponential model, where the 0-30 cm depth range has 60% of the total stored. The total area of Brazil's Amazonian seasonal forests and ecotones not altered by deforestation implies 65-286 Tg of pyrogenic carbon accumulated along the soil vertical profile. This is 1.2-2.3 times the total amount of residual pyrogenic carbon formed by biomass burning worldwide in 1 year. Our analysis suggests that the accumulated charcoal in the soil vertical profile in Amazonian forests is a substantial pyrogenic carbon pool that needs to be considered in global carbon models. © 2015 John Wiley & Sons Ltd.

  7. Translating Sustainable Forest Management from the global to the domestic sphere

    NARCIS (Netherlands)

    Mattei Faggin, Joana; Behagel, J.H.

    2017-01-01

    In the context of fragmented global forest governance, Sustainable Forest Management (SFM) has gained force as a strategy to improve forest conditions and livelihood outcomes. Accordingly, SFM related ideas and norms are translated across different environmental domains, levels of governance, and

  8. Fitoseídeos (Acari: Phytoseiidae associados a cafezais e fragmentos florestais vizinhos Phytoseiids (Acari: Phytoseiidae associated to coffee plantations and adjacent forest fragments

    Directory of Open Access Journals (Sweden)

    Ester Azevedo Silva

    2010-10-01

    (Phytoseiidae in Brazilian natural environments, adjacent to coffee agroecosystems (Coffea spp., or about the influence exerted by neighbor vegetation as a reservoir of predatory mites. The objective of this study was to evaluate the diversity of these organisms in coffee plantations and adjacent forest fragments. Samples of the species Calyptranthes clusiifolia (Miq. O. Berg (Myrtaceae, Esenbeckia febrifuga (A. St.-Hil. A. Juss. ex Mart., Metrodorea stipularis Mart. (Rutaceae and Allophylus semidentatus (Miq. Radlk. (Sapindaceae were collected in eight forest fragments, from 5 to 51ha, adjacent to coffee plantations, in June (end of the rainy season and October (end of the dry season in the years of 2004 and 2005, in the Southern region of State of Minas Gerais. Leaf mites were extracted using the wash method, mounted in microscopy slides with Hoyer's medium for identification. A total of 2.348 phytoseiids was collected, being 2.090 in the forest fragments and 258 in adjacent coffee plantations, belonging to 38 species. According to fauna analysis, Iphiseiodes zuluaguai Denmark & Muma, the year of 1972 presented the best indexes in the coffee agroecosystem, being very frequent and constant in those periods. In the forest fragments, Amblyseius herbicolus Chant, 1959, Iphiseiodes affs. neonobilis Denmark & Muma, 1978, Leonseius regularis DeLeon, 1965 and Euseius alatus DeLeon, 1966 were dominant, very abundant, very frequent and constant in those periods. One may conclude that the native vegetation shelters predator mite, natural enemies of mite-pests that still occur in coffee culture, making possible ecological management program development involving areas of natural vegetation and adjacent coffee agroecosystems.

  9. Landsat-Based Land Use Change Assessment in the Brazilian Atlantic Forest: Forest Transition and Sugarcane Expansion

    Directory of Open Access Journals (Sweden)

    Alindomar Lacerda Silva

    2018-06-01

    Full Text Available In this study, we examine the hypothesis of a forest transition in an area of early expansion of the agricultural frontier over the Brazilian Atlantic Forest in the south-central part of the State of São Paulo. Large scale land use/cover changes were assessed by integrating Landsat imagery, census data, and landscape metrics. Two Landsat multi-temporal datasets were assembled for two consecutive periods—1995–2006 and 2006–2013—to assess changes in forest cover according to four classes: (i transition from non-forest cover to planted forest (NF-PF; (ii transition from non-forest to secondary (successional forest (NF-SF; (iii conservation of planted forest (PF and (iv conservation of forest remnants (REM. Data from the two most recent, 1995/96 and 2006 agricultural censuses were analyzed to single out major changes in agricultural production. The total area of forest cover, including primary, secondary, and planted forest, increased 30% from 1995 to 2013, whereas forest planted in non-forest areas (NF-PF and conservation of planted forest (PF accounted for 14.1% and 19.6%, respectively, of the total forest area by 2013. Such results showed a relatively important forest transition that would be explained mostly by forest plantations though. Analysis of the landscape metrics indicated an increase in connectivity among forest fragments during the period of study, and revealed that nearly half of the forest fragments were located within 50 m from riverbeds, possibly suggesting some level of compliance with environmental laws. Census data showed an increase in both the area and productivity of sugarcane plantations, while pasture and citrus area decreased by a relatively important level, suggesting that sugarcane production has expanded at the expense of these land uses. Both satellite and census data helped to delineate the establishment of two major production systems, the first one dominated by sugarcane plantations approximately located in

  10. Recent habitat fragmentation caused by major roads leads to reduction of gene flow and loss of genetic variability in ground beetles.

    Science.gov (United States)

    Keller, Irene; Largiadèr, Carlo R

    2003-02-22

    Although habitat fragmentation is suspected to jeopardize the long-term survival of many species, few data are available on its impact on the genetic variability of invertebrates. We assess the genetic population structure of the flightless ground beetle Carabus violaceus L., 1758 in a Swiss forest, which is divided into several fragments by a highway and two main roads. Eight samples were collected from different forest fragments and analysed at six microsatellite loci. The largest genetic differentiation was observed between samples separated by roads and in particular by the highway. The number of roads between sites explained 44% of the variance in pairwise F(ST) estimates, whereas the age of the road and the geographical distance between locations were not significant factors. Furthermore, a comparison of allelic richness showed that the genetic variability in a small forest fragment isolated by the highway was significantly lower than in the rest of the study area. These findings strongly support the hypothesis that large roads are absolute barriers to gene flow in C. violaceus, which may lead to a loss of genetic variability in fragmented populations.

  11. Assessing the effects of subtropical forest fragmentation on leaf nitrogen distribution using remote sensing data

    CSIR Research Space (South Africa)

    Cho, Moses A

    2013-10-01

    Full Text Available the utility of new remote sensing tools to model the spatial distribution of leaf N concentration in a forested landscape undergoing deforestation in KwaZulu-Natal, South Africa. Leaf N was mapped using models developed from RapidEye imagery; a relatively new...

  12. Gene flow of common ash (Fraxinus excelsior L. in a fragmented landscape.

    Directory of Open Access Journals (Sweden)

    Devrim Semizer-Cuming

    Full Text Available Gene flow dynamics of common ash (Fraxinus excelsior L. is affected by several human activities in Central Europe, including habitat fragmentation, agroforestry expansion, controlled and uncontrolled transfer of reproductive material, and a recently introduced emerging infectious disease, ash dieback, caused by Hymenoscyphus fraxineus. Habitat fragmentation may alter genetic connectivity and effective population size, leading to loss of genetic diversity and increased inbreeding in ash populations. Gene flow from cultivated trees in landscapes close to their native counterparts may also influence the adaptability of future generations. The devastating effects of ash dieback have already been observed in both natural and managed populations in continental Europe. However, potential long-term effects of genetic bottlenecks depend on gene flow across fragmented landscapes. For this reason, we studied the genetic connectivity of ash trees in an isolated forest patch of a fragmented landscape in Rösenbeck, Germany. We applied two approaches to parentage analysis to estimate gene flow patterns at the study site. We specifically investigated the presence of background pollination at the landscape level and the degree of genetic isolation between native and cultivated trees. Local meteorological data was utilized to understand the effect of wind on the pollen and seed dispersal patterns. Gender information of the adult trees was considered for calculating the dispersal distances. We found that the majority of the studied seeds (55-64% and seedlings (75-98% in the forest patch were fathered and mothered by the trees within the same patch. However, we determined a considerable amount of pollen flow (26-45% from outside of the study site, representing background pollination at the landscape level. Limited pollen flow was observed from neighbouring cultivated trees (2%. Both pollen and seeds were dispersed in all directions in accordance with the local

  13. Gene flow of common ash (Fraxinus excelsior L.) in a fragmented landscape.

    Science.gov (United States)

    Semizer-Cuming, Devrim; Kjær, Erik Dahl; Finkeldey, Reiner

    2017-01-01

    Gene flow dynamics of common ash (Fraxinus excelsior L.) is affected by several human activities in Central Europe, including habitat fragmentation, agroforestry expansion, controlled and uncontrolled transfer of reproductive material, and a recently introduced emerging infectious disease, ash dieback, caused by Hymenoscyphus fraxineus. Habitat fragmentation may alter genetic connectivity and effective population size, leading to loss of genetic diversity and increased inbreeding in ash populations. Gene flow from cultivated trees in landscapes close to their native counterparts may also influence the adaptability of future generations. The devastating effects of ash dieback have already been observed in both natural and managed populations in continental Europe. However, potential long-term effects of genetic bottlenecks depend on gene flow across fragmented landscapes. For this reason, we studied the genetic connectivity of ash trees in an isolated forest patch of a fragmented landscape in Rösenbeck, Germany. We applied two approaches to parentage analysis to estimate gene flow patterns at the study site. We specifically investigated the presence of background pollination at the landscape level and the degree of genetic isolation between native and cultivated trees. Local meteorological data was utilized to understand the effect of wind on the pollen and seed dispersal patterns. Gender information of the adult trees was considered for calculating the dispersal distances. We found that the majority of the studied seeds (55-64%) and seedlings (75-98%) in the forest patch were fathered and mothered by the trees within the same patch. However, we determined a considerable amount of pollen flow (26-45%) from outside of the study site, representing background pollination at the landscape level. Limited pollen flow was observed from neighbouring cultivated trees (2%). Both pollen and seeds were dispersed in all directions in accordance with the local wind directions

  14. A bio-indicator for the evaluation of quality forestry and landscape fragmentation

    Directory of Open Access Journals (Sweden)

    Kappers EF

    2013-11-01

    Full Text Available A bio-indicator for the evaluation of quality forestry and landscape fragmentation. Intensive agricultural practices, as well as tourism development, summer fires, urbanization and air pollution represent a serious threat for many woodlands in Mediterranean Europe. Tawny owls, Strix aluco, is a valuable indicator of habitat quality and shows high sensitivity to wood fragmentation. Assessing the association between Tawny owls and their habitat may provide useful tools for conservation and management of forested habitats. Populations of woodland birds are influenced by forest characteristics, wood proportion being a key factor explaining breeding density and regularity in nest spacing. Populations of the Tawny Owl reach their highest densities in old deciduous forests. The distribution of territories remains almost constant for many years, and the period during which any particular wood maintains suitable conditions for nesting depends on factors like tree species and management, especially on the timing and extent of thinning. To assure the maintenance of good habitat quality in most woodlands, regulation of water diversion, prevention of summer fires, and a general reduction of human activities inside forests seem to be useful conservation tools.

  15. The relict forests of Northwest Peru and Southwest Ecuador

    Directory of Open Access Journals (Sweden)

    Maximilian Weigend

    2013-05-01

    Full Text Available The forest fragments or relict forests on the Western slopes of the Andes in northwest Peru and in south-west Ecuador are fragile ecosystems, which were largely continuous at some stage in the past. The importance and uniqueness of these forests as «refuges» and stable habitats roots partly in their complex diversity and their high levels of endemicity. These in turn are the outcome of a complex topography and ecology. In this introductory chapter 12 studies are analysed, which were presented at the Taller sobre Bosques Relictos de la Vertiente Occidental Andina del Norte del Perú y Sur del Ecuador in May 2004 at the X CONABOT, Trujillo-Perú. This helps to consolidate and update our knowledge on these over 20 forests fragments in northern Peru and two previously unknown fragments are presented for the first time: Bosque La Oscurana (Cajamarca and Kañaris (Lambayeque. Some ideas are exposed on the the relationships between the relict forests, how to analyse their dynamics, how to characterize their structure and how their conservation may be achieved. It is proposed that crucial elements in a conservation of these forests are a urgently inventorizing them to demonstrate their high diversity b emphasizing their economic potential with respect to the abundance of phytogenetic ressources c evaluating their role as catchment areas for the rivers which are the primary source of water for agriculture and urban life on the coast.

  16. The role of novel forest ecosystems in the conservation of wood?inhabiting fungi in boreal broadleaved forests

    OpenAIRE

    Juutilainen, Katja; M?nkk?nen, Mikko; Kotiranta, Heikki; Halme, Panu

    2016-01-01

    Abstract The increasing human impact on the earth's biosphere is inflicting changes at all spatial scales. As well as deterioration and fragmentation of natural biological systems, these changes also led to other, unprecedented effects and emergence of novel habitats. In boreal zone, intensive forest management has negatively impacted a multitude of deadwood?associated species. This is especially alarming given the important role wood?inhabiting fungi have in the natural decay processes. In t...

  17. Water availability determines the richness and density of fig trees within Brazilian semideciduous forest landscapes

    Science.gov (United States)

    Coelho, Luís Francisco Mello; Ribeiro, Milton Cezar; Pereira, Rodrigo Augusto Santinelo

    2014-05-01

    The success of fig trees in tropical ecosystems is evidenced by the great diversity (+750 species) and wide geographic distribution of the genus. We assessed the contribution of environmental variables on the species richness and density of fig trees in fragments of seasonal semideciduous forest (SSF) in Brazil. We assessed 20 forest fragments in three regions in Sao Paulo State, Brazil. Fig tree richness and density was estimated in rectangular plots, comprising 31.4 ha sampled. Both richness and fig tree density were linearly modeled as function of variables representing (1) fragment metrics, (2) forest structure, and (3) landscape metrics expressing water drainage in the fragments. Model selection was performed by comparing the AIC values (Akaike Information Criterion) and the relative weight of each model (wAIC). Both species richness and fig tree density were better explained by the water availability in the fragment (meter of streams/ha): wAICrichness = 0.45, wAICdensity = 0.96. The remaining variables related to anthropic perturbation and forest structure were of little weight in the models. The rainfall seasonality in SSF seems to select for both establishment strategies and morphological adaptations in the hemiepiphytic fig tree species. In the studied SSF, hemiepiphytes established at lower heights in their host trees than reported for fig trees in evergreen rainforests. Some hemiepiphytic fig species evolved superficial roots extending up to 100 m from their trunks, resulting in hectare-scale root zones that allow them to efficiently forage water and soil nutrients. The community of fig trees was robust to variation in forest structure and conservation level of SSF fragments, making this group of plants an important element for the functioning of seasonal tropical forests.

  18. Fractal analysis for studying the evolution of forests

    International Nuclear Information System (INIS)

    Andronache, Ion C.; Ahammer, Helmut; Jelinek, Herbert F.; Peptenatu, Daniel; Ciobotaru, Ana-M.; Draghici, Cristian C.; Pintilii, Radu D.; Simion, Adrian G.

    2016-01-01

    Highlights: • Legal and illegal deforestation is investigated by fractal analysis. • A new fractal fragmentation index FFI is proposed. • Differences in shapes of forest areas indicate the type of deforestation. • Support of ecological management. - Abstract: Deforestation is an important phenomenon that may create major imbalances in ecosystems. In this study we propose a new mathematical analysis of the forest area dynamic, enabling qualitative as well as quantitative statements and results. Fractal dimensions of the area and the perimeter of a forest were determined using digital images. The difference between fractal dimensions of the area and the perimeter images turned out to be a crucial quantitative parameter. Accordingly, we propose a new fractal fragmentation index, FFI, which is based on this difference and which highlights the degree of compaction or non-compaction of the forest area in order to interpret geographic features. Particularly, this method was applied to forests, where large areas have been legally or illegally deforested. However, these methods can easily be used for other ecological or geographical investigations based on digital images, including deforestation of rainforests.

  19. Degree of Landscape Fragmentation Influences Genetic Isolation among Populations of a Gliding Mammal

    Science.gov (United States)

    Taylor, Andrea C.; Walker, Faith M.; Goldingay, Ross L.; Ball, Tina; van der Ree, Rodney

    2011-01-01

    Forests and woodlands are under continuing pressure from urban and agricultural development. Tree-dependent mammals that rarely venture to the ground are likely to be highly sensitive to forest fragmentation. The Australian squirrel glider (Petaurus norfolcensis) provides an excellent case study to examine genetic (functional) connectivity among populations. It has an extensive range that occurs in a wide band along the east coast. However, its forest and woodland habitat has become greatly reduced in area and is severely fragmented within the southern inland part of the species' range, where it is recognised as threatened. Within central and northern coastal regions, habitat is much more intact and we thus hypothesise that genetic connectivity will be greater in this region than in the south. To test this we employed microsatellite analysis in a molecular population biology approach. Most sampling locations in the highly modified south showed signatures of genetic isolation. In contrast, a high level of genetic connectivity was inferred among most sampled populations in the more intact habitat of the coastal region, with samples collected 1400 km apart having similar genetic cluster membership. Nonetheless, some coastal populations associated with urbanisation and agriculture are genetically isolated, suggesting the historic pattern observed in the south is emerging on the coast. Our study demonstrates that massive landscape changes following European settlement have had substantial impacts on levels of connectivity among squirrel glider populations, as predicted on the basis of the species' ecology. This suggests that landscape planning and management in the south should be focused on restoring habitat connectivity where feasible, while along the coast, existing habitat connectivity must be maintained and recent losses restored. Molecular population biology approaches provide a ready means for identifying fragmentation effects on a species at multiple scales

  20. Degree of landscape fragmentation influences genetic isolation among populations of a gliding mammal.

    Directory of Open Access Journals (Sweden)

    Andrea C Taylor

    Full Text Available Forests and woodlands are under continuing pressure from urban and agricultural development. Tree-dependent mammals that rarely venture to the ground are likely to be highly sensitive to forest fragmentation. The Australian squirrel glider (Petaurus norfolcensis provides an excellent case study to examine genetic (functional connectivity among populations. It has an extensive range that occurs in a wide band along the east coast. However, its forest and woodland habitat has become greatly reduced in area and is severely fragmented within the southern inland part of the species' range, where it is recognised as threatened. Within central and northern coastal regions, habitat is much more intact and we thus hypothesise that genetic connectivity will be greater in this region than in the south. To test this we employed microsatellite analysis in a molecular population biology approach. Most sampling locations in the highly modified south showed signatures of genetic isolation. In contrast, a high level of genetic connectivity was inferred among most sampled populations in the more intact habitat of the coastal region, with samples collected 1400 km apart having similar genetic cluster membership. Nonetheless, some coastal populations associated with urbanisation and agriculture are genetically isolated, suggesting the historic pattern observed in the south is emerging on the coast. Our study demonstrates that massive landscape changes following European settlement have had substantial impacts on levels of connectivity among squirrel glider populations, as predicted on the basis of the species' ecology. This suggests that landscape planning and management in the south should be focused on restoring habitat connectivity where feasible, while along the coast, existing habitat connectivity must be maintained and recent losses restored. Molecular population biology approaches provide a ready means for identifying fragmentation effects on a species at

  1. Effects of clonal fragmentation on intraspecific competition of a stoloniferous floating plant.

    Science.gov (United States)

    Wang, P; Xu, Y-S; Dong, B-C; Xue, W; Yu, F-H

    2014-11-01

    Disturbance is common and can fragment clones of plants. Clonal fragmentation may affect the density and growth of ramets so that it could alter intraspecific competition. To test this hypothesis, we grew one (low density), five (medium density) or nine (high density) parent ramets of the floating invasive plant Pistia stratiotes in buckets, and newly produced offspring ramets were either severed (with fragmentation) or remained connected to parent ramets (no fragmentation). Increasing density reduced biomass of the whole clone (i.e. parent ramet plus its offspring ramets), showing intense intraspecific competition. Fragmentation decreased biomass of offspring ramets, but increased biomass of parent ramets and the whole clone, suggesting significant resource translocation from parent to offspring ramets when clones were not fragmented. There was no interaction effect of density x fragmentation on biomass of the whole clone, and fragmentation did not affect competition intensity index. We conclude that clonal fragmentation does not alter intraspecific competition between clones of P. stratiotes, but increases biomass production of the whole clone. Thus, fragmentation may contribute to its interspecific competitive ability and invasiveness, and intentional fragmentation should not be recommended as a measure to stop the rapid growth of this invasive species. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  2. Diverse Effects of a Seven-Year Experimental Grassland Fragmentation on Major Invertebrate Groups.

    Directory of Open Access Journals (Sweden)

    Brigitte Braschler

    Full Text Available Habitat fragmentation is a major driver of biodiversity loss, but observed effects vary and may depend on the group examined. Time since fragmentation may explain some differences between taxonomical groups, as some species and thus species composition respond with a delay to changes in their environment. Impacts of drivers of global change may thus be underestimated in short-term studies. In our study we experimentally fragmented nutrient-poor dry calcareous grasslands and studied the response of species richness, individual density and species composition of various groups of invertebrates (gastropods, ants, ground beetles, rove beetles, orthoptera, spiders, woodlice in 12 small (1.5 m * 1.5 m and 12 large (4.5 m * 4.5 m fragments and their corresponding control plots after 7 years. We further examined responses to fragmentation in relation to body size and habitat preferences. Responses to fragmentation varied between taxonomical groups. While spider species richness and individual density were lower in fragments, the opposite was true for an orthopteran species and woodlice. Species composition and β-diversity differed between fragments and control plots for some groups. However, the interaction treatment*plot size was rarely significant. Species with high occupancy rates in undisturbed control plots responded more negatively to the fragmentation, while species with large body size were relatively more abundant in fragments in some groups. No effect of the fragmentation was found for ants, which may have the longest lag times because of long-lived colonies. However, relationships between abundance and the species' preferences for environmental factors affected by edge effects indicate that ant diversity too may be affected in the longer-term. Our results show the importance of considering different groups in conservation management in times of widespread fragmentation of landscapes. While species richness may respond slowly, changes in

  3. Effect of industrial pollution on behaviour of radionuclides in forest ecosystems; Forests ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Outola, I. (STUK-Radiation and Nuclear Safety Authority, Helsinki (Finland))

    2009-06-15

    To investigate how and to what extent industrial pollution affects the behaviour of radionuclides in forest ecosystems, studies were conducted in the vicinity of two Cu-Ni smelters: one in a pine forest at Harjavalta, Finland, and the other in a spruce forest at Monchegorsk, Russia. Industrial pollution had significant effects on the distribution of radionuclides in soil horizons. With the increase in pollution towards the smelter, radionuclides were accumulated more in the litter layer because the conversion of litter into organic material was diminished due to inhibited microbial activity. As a result, the organic layer contained less radionuclides towards the smelter. The effect of industrial pollution on soil-to-plant transfer was complex. The effect varied with radionuclide, plant species and also on forest type. For 137Cs, soil-to-plant transfer decreased significantly as industrial pollution increased in pine forest, whereas the decrease was less pronounced in spruce forest. Root uptake of 239,240Pu by plants is extremely small, and plant contamination by resuspended soil is an important factor in considering the soil-to-plant transfer of this radionuclide. In spruce forest, more plutonium was transferred into plants when pollution load increased due to resuspension of litter particles, which contained higher concentrations of plutonium in the vicinity of the smelter. Soil-to-plant transfer of plutonium was much less affected in pine forests contaminated with industrial pollution. This research clearly indicates the sensitivity of the northern forest ecosystem to inorganic pollutants. Prediction of the soil-to-plant transfer of radionuclides in industrially polluted forest ecosystems requires detailed information on the total deposition, vertical distribution of radionuclides in soil, soil microbiological factors, other soil parameters as well as the rooting depths of the plants. (LN)

  4. Advances of air pollution science: from forest decline to multiple-stress effects on forest ecosystem services.

    Science.gov (United States)

    Paoletti, E; Schaub, M; Matyssek, R; Wieser, G; Augustaitis, A; Bastrup-Birk, A M; Bytnerowicz, A; Günthardt-Goerg, M S; Müller-Starck, G; Serengil, Y

    2010-06-01

    Over the past 20 years, the focus of forest science on air pollution has moved from forest decline to a holistic framework of forest health, and from the effects on forest production to the ecosystem services provided by forest ecosystems. Hence, future research should focus on the interacting factorial impacts and resulting antagonistic and synergistic responses of forest trees and ecosystems. The synergistic effects of air pollution and climatic changes, in particular elevated ozone, altered nitrogen, carbon and water availability, must be key issues for research. Present evidence suggests air pollution will become increasingly harmful to forests under climate change, which requires integration amongst various stressors (abiotic and biotic factors, including competition, parasites and fire), effects on forest services (production, biodiversity protection, soil protection, sustained water balance, socio-economical relevance) and assessment approaches (research, monitoring, modeling) to be fostered. Copyright 2009 Elsevier Ltd. All rights reserved.

  5. [Effects of climate change on forest succession].

    Science.gov (United States)

    Wang, Jijun; Pei, Tiefan

    2004-10-01

    Forest regeneration is an important process driven by forest ecological dynamic resources. More and more concern has been given to forest succession issues since the development of forest succession theory during the early twentieth century. Scientific management of forest ecosystem entails the regulations and research models of forest succession. It is of great practical and theoretical significance to restore and reconstruct forest vegetation and to protect natural forest. Disturbances are important factors affecting regeneration structure and ecological processes. They result in temporal and spatial variations of forest ecosystem, and change the efficiencies of resources. In this paper, some concepts about forest succession and disturbances were introduced, and the difficulties of forest succession were proposed. Four classes of models were reviewed: Markov model, GAP model, process-based equilibrium terrestrial biosphere models (BIOME series models), and non-linear model. Subsequently, the effects of climate change on forest succession caused by human activity were discussed. At last, the existing problem and future research directions were proposed.

  6. Large forest patches promote breeding success of a terrestrial mammal in urban landscapes.

    Directory of Open Access Journals (Sweden)

    Masashi Soga

    Full Text Available Despite a marked increase in the focus toward biodiversity conservation in fragmented landscapes, studies that confirm species breeding success are scarce and limited. In this paper, we asked whether local (area of forest patches and landscape (amount of suitable habitat surrounding of focal patches factors affect the breeding success of raccoon dogs (Nyctereutes procyonoides in Tokyo, Central Japan. The breeding success of raccoon dogs is easy to judge as adults travel with pups during the breeding season. We selected 21 forest patches (3.3-797.8 ha as study sites. In each forest patch, we used infra-red-triggered cameras for a total of 60 camera days per site. We inspected each photo to determine whether it was of an adult or a pup. Although we found adult raccoon dogs in all 21 forest patches, pups were found only in 13 patches. To estimate probability of occurrence and detection for raccoon in 21 forest fragments, we used single season site occupancy models in PRESENCE program. Model selection based on AIC and model averaging showed that the occupancy probability of pups was positively affected by patch area. This result suggests that large forests improve breeding success of raccoon dogs. A major reason for the low habitat value of small, isolated patches may be the low availability of food sources and the high risk of being killed on the roads in such areas. Understanding the effects of local and landscape parameters on species breeding success may help us to devise and implement effective long-term conservation and management plans.

  7. Heavy-quark fragmentation functions in the effective theory of heavy quarks

    International Nuclear Information System (INIS)

    Martynenko, A.P.; Saleev, V.A.

    1996-01-01

    The effective theory of heavy quarks is used to study b-bar-antiquark fragmentation in polarized Bc* mesons and b-quark fragmentation into P-wave (c-barb) states. The functions of heavy-quark fragmentation into longitudinally and transversely polarized S-wave (b-barc) states and into P-wave mesons containing b and c quarks are calculated. First-order corrections in 1/mb are taken into account exactly in these calculations. The results are shown to be consistent with the corresponding QCD calculations

  8. Evaluating the CONAMA 04/94 resolution to classify successional stages of rainforest fragments in Santa Catarina State

    Directory of Open Access Journals (Sweden)

    Fernando Andreacci

    2017-12-01

    Full Text Available In the Atlantic Forest, land use and land-use change are partly determined based on a classification of the successional stages of forests. Different regeneration stages are limited to different amounts and types of use. The parameters used to define the successional stages of forests are described in specific resolutions for each of the states. CONAMA 04/94 is the resolution for the forests of Santa Catarina. The aim of this study was to evaluate the quantitative parameters in CONAMA 04/94 for classifying successional stages of forests in the northern coastal plains of the state. Six forest fragments with different soil types were evaluated using average DBH and average height of individuals, as well as basal area and indicator species. The results show that CONAMA 04/94 disregards certain phytophysiognomic characteristics of the northern coastal plains of the state. They also show that the CONAMA 04/94 text is incoherent regarding structural parameters and indicator species. The results suggest the urgent need to review the CONAMA 04/94 resolution because forest fragments could qualify for incorrect land uses according to what is defined in the current policy.

  9. Ocelot Population Status in Protected Brazilian Atlantic Forest.

    Science.gov (United States)

    Massara, Rodrigo Lima; Paschoal, Ana Maria de Oliveira; Doherty, Paul Francis; Hirsch, André; Chiarello, Adriano Garcia

    2015-01-01

    Forest fragmentation and habitat loss are detrimental to top carnivores, such as jaguars (Panthera onca) and pumas (Puma concolor), but effects on mesocarnivores, such as ocelots (Leopardus pardalis), are less clear. Ocelots need native forests, but also might benefit from the local extirpation of larger cats such as pumas and jaguars through mesopredator release. We used a standardized camera trap protocol to assess ocelot populations in six protected areas of the Atlantic forest in southeastern Brazil where over 80% of forest remnants are forest cover, number of free-ranging domestic dogs and presence of top predators. Ocelot abundance was positively correlated with reserve size and the presence of top predators (jaguar and pumas) and negatively correlated with the number of dogs. We also found higher detection probabilities in less forested areas as compared to larger, intact forests. We suspect that smaller home ranges and higher movement rates in smaller, more degraded areas increased detection. Our data do not support the hypothesis of mesopredator release. Rather, our findings indicate that ocelots respond negatively to habitat loss, and thrive in large protected areas inhabited by top predators.

  10. Benchmark values for forest soil carbon stocks in Europe

    DEFF Research Database (Denmark)

    De Vos, Bruno; Cools, Nathalie; Ilvesniemi, Hannu

    2015-01-01

    Soil organic carbon (SOC) stocks in forest floors and in mineral and peat forest soils were estimated at the European scale. The assessment was based on measured C concentration, bulk density, coarse fragments and effective soil depth data originating from 4914 plots in 22 EU countries belonging...... to the UN/ECE ICP Forests 16 × 16 km Level I network. Plots were sampled and analysed according to harmonized methods during the 2nd European Forest Soil Condition Survey. Using continuous carbon density depth functions, we estimated SOC stocks to 30-cm and 1-m depth, and stratified these stocks according...... to 22 WRB Reference Soil Groups (RSGs) and 8 humus forms to provide European scale benchmark values. Average SOC stocks amounted to 22.1 t C ha− 1 in forest floors, 108 t C ha− 1 in mineral soils and 578 t C ha− 1 in peat soils, to 1 m depth. Relative to 1-m stocks, the vertical SOC distribution...

  11. Assessing management effects on Oak forests in Austria

    Science.gov (United States)

    Gautam, Sishir; Pietsch, Stephan A.; Hasenauer, Hubert

    2010-05-01

    Historic land use as well as silvicultural management practices have changed the structures and species composition of central European forests. Such changes have effects on the growth of forests and contribute to global warming. As insufficient information on historic forest management is available it is hard to explain the effect of management on forests growth and its possible consequences to the environment. In this situation, the BIOME-BGC model, which integrates the main physical, biological and physiological processes based on current understanding of ecophysiology is an option for assessing the management effects through tracking the cycling of energy, water, carbon and nutrients within a given ecosystems. Such models are increasingly employed to simulate current and future forest dynamics. This study first compares observed standing tree volume, carbon and nitrogen content in soil in the high forests and coppice with standards stands of Oak forests in Austria. Biome BGC is then used to assess the effects of management on forest growth and to explain the differences with measured parameters. Close positive correlations and unbiased results and statistically insignificant differences between predicted and observed volumes indicates the application of the model as a diagnostic tool to assess management effects in oak forests. The observed data in 2006 and 2009 was further compared with the results of respective model runs. Further analysis on simulated data shows that thinning leads to an increase in growth efficiency (GE), nitrogen use efficiency (NUE) and water use efficiency (WUE), and to a decrease in the radiation use efficiency (RUE) in both forests. Among all studied growth parameters, only the difference in the NUE was statistically significant. This indicates that the difference in the yield of forests is mainly governed by the NUE difference in stands due to thinning. The coppice with standards system produces an equal amount of net primary

  12. Human impacts on genetic diversity in forest ecosystems

    Science.gov (United States)

    F. Thomas Ledig

    1992-01-01

    Humans have converted forest to agricultural and urban uses, exploited species, fragmented wildlands. changed the demographic structure of forests, altered habitat, degraded the environment with atmospheric and soil pollutants, introduced exotic pests and competitors, and domesticated favored species. None of they activities is new; perhaps with the exception of...

  13. Habitat management for red tree voles in Douglas-fir forests.

    Science.gov (United States)

    M.H. Huff; R.S. Holthausen; K.B. Aubry

    1992-01-01

    The relations between arboreal rodents and trees causes the animals to be particularly sensitive to the effects of timber harvesting.Among arboreal rodents,we consider the redtree vole to be the most vulnerable to local extinctions resulting from the loss or fragmentation of old-growth Douglas-fir forests. Redtree voles are nocturnal,canopy dwelling, and difficult to...

  14. Biodiversity, ecosystem function and forest management. Part I

    International Nuclear Information System (INIS)

    Le Tacon, F.; Selosse, M-A.; Gosselin, F.

    2000-01-01

    In part one, the authors dealt first with the foundations of biodiversity and its role in forest ecosystems. They then go on to the problems relating to its level of expression and the measurements and indicators for assessing it. Following a section on ethical considerations, the authors explore the possible impact of factors involving human activities other than forest management on biodiversity - fragmentation and structuring of space, forest occupancy, picking, disappearance of carnivorous species, depositions and pollution, global warming and forest fires. (authors)

  15. Longleaf pine forests and woodlands: old growth under fire!

    Science.gov (United States)

    Joan L. Walker

    1999-01-01

    The author discusses a once widespread forest type of the Southeast – longleaf pine dominated forests and woodlands. This system depends on fire – more or less frequent, and often of low intensity. Because human-mediated landscape fragmentation has drastically changed the behavior of fire on longleaf pine dominated landscapes, these forests and woodlands will never be...

  16. Pentatomidae (Hemiptera: Heteroptera) in Herbaceous and Shrub Strata of Atlantic Forest Remnants in Northeastern Brazil.

    Science.gov (United States)

    Firmino, João V L; Mendonça, Milton D S; Lima, Iracilda M M; Grazia, Jocelia

    2017-06-01

    Most pentatomids are phytophagous, many of which are economically important crop pests. The family may also be a potentially important group to monitor the health of neotropical forests. However, there is a lack of biological inventories of Pentatomidae, especially in forest remnants of the Brazilian Atlantic forest. This is the first systematic survey of pentatomids reported in three Atlantic forest fragments in northeastern Brazil. In total, 997 individuals belonging to 38 species were recorded, some of which are considered economically important pests. Singletons and doubletons represented 45.9% of all species collected. The most abundant genera were Mormidea Amyot & Serville, 1843; Stictochilus Bergroth, 1918; Xynocoris Garbelotto & Campos 2014; and Edessa F., 1803. Species richness differed among fragments, with a richness gradient correlated with decreased urbanization and increased fragment size. The species abundance distribution fitted the logseries function but not the lognormal, in accordance with what is found for other assemblages in southern Brazil. Species composition also changed, in association with changes in temperature (revealed by the canonical correspondence analysis [CCA]), among fragments. Murici is one of the last remaining dense forests with high plant diversity in the region, having higher pentatomid species richness and a distinctive fauna. This first diversity study for Pentatomidae in fragments of tropical Atlantic Forest in northeastern Brazil reveals richness comparable with those from subtropical southern Brazil, with some species in common as well. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Feather mites (Acari, Astigmata associated with birds in an Atlantic Forest fragment in Northeastern Brazil

    Directory of Open Access Journals (Sweden)

    HM Silva

    Full Text Available AbstractThe present study reports associations between feather mites (Astigmata and birds in an Atlantic Forest fragment in Rio Grande do Norte state, in Brazil. In the laboratory, mites were collected through visual examination of freshly killed birds. Overall, 172 individuals from 38 bird species were examined, between October 2011 and July 2012. The prevalence of feather mites was 80.8%, corresponding to 139 infested individuals distributed into 30 species and 15 families of hosts. Fifteen feather mite taxa could be identified to the species level, sixteen to the genus level and three to the subfamily level, distributed into the families Analgidae, Proctophyllodidae, Psoroptoididae, Pteronyssidae, Xolalgidae, Trouessartiidae, Falculiferidae and Gabuciniidae. Hitherto unknown associations between feather mites and birds were recorded for eleven taxa identified to the species level, and nine taxa were recorded for the first time in Brazil. The number of new geographic records, as well as the hitherto unknown mite-host associations, supports the high estimates of diversity for feather mites of Brazil and show the need for research to increase knowledge of plumicole mites in the Neotropical region.

  18. Changing patterns of fire occurrence in proximity to forest edges, roads and rivers between NW Amazonian countries

    Science.gov (United States)

    Armenteras, Dolors; Barreto, Joan Sebastian; Tabor, Karyn; Molowny-Horas, Roberto; Retana, Javier

    2017-06-01

    Tropical forests in NW Amazonia are highly threatened by the expansion of the agricultural frontier and subsequent deforestation. Fire is used, both directly and indirectly, in Brazilian Amazonia to propagate deforestation and increase forest accessibility. Forest fragmentation, a measure of forest degradation, is also attributed to fire occurrence in the tropics. However, outside the Brazilian Legal Amazonia the role of fire in increasing accessibility and forest fragmentation is less explored. In this study, we compared fire regimes in five countries that share this tropical biome in the most north-westerly part of the Amazon Basin (Venezuela, Colombia, Ecuador, Peru and Brazil). We analysed spatial differences in the timing of peak fire activity and in relation to proximity to roads and rivers using 12 years of MODIS active fire detections. We also distinguished patterns of fire in relation to forest fragmentation by analysing fire distance to the forest edge as a measure of fragmentation for each country. We found significant hemispheric differences in peak fire occurrence with the highest number of fires in the south in 2005 vs. 2007 in the north. Despite this, both hemispheres are equally affected by fire. We also found difference in peak fire occurrence by country. Fire peaked in February in Colombia and Venezuela, whereas it peaked in September in Brazil and Peru, and finally Ecuador presented two fire peaks in January and October. We confirmed the relationship between fires and forest fragmentation for all countries and also found significant differences in the distance between the fire and the forest edge for each country. Fires were associated with roads and rivers in most countries. These results can inform land use planning at the regional, national and subnational scales to minimize the contribution of road expansion and subsequent access to the Amazonian natural resources to fire occurrence and the associated deforestation and carbon emissions.

  19. Heavy quark fragmentation functions in the heavy quark effective theory

    International Nuclear Information System (INIS)

    Martynenko, A.P.; Saleev, V.A.

    1996-01-01

    The fragmentation of b-bar-antiquark into polarized B c * -mesons and b-quark into P-wave (c-bar b) states in the Heavy Quark Effective Theory. The heavy quark fragmentation functions in longitudinally and transversely polarized S-wave b-bar c-states and P-wave mesons containing b-, c-quarks also, with the exact account of corrections of first order in 1/m b . 20 refs., 2 figs

  20. Quantifying edge effect extent and its impacts on carbon stocks across a degraded landscape in the Amazon using airborne lidar.

    Science.gov (United States)

    dos-Santos, M. N.; Keller, M.; Morton, D. C.; Longo, M.; Scaranello, M. A., Sr.; Pinagé, E. R.; Correa Pabon, R.

    2017-12-01

    Ongoing tropical forest degradation and forest fragmentation increases forest edge area. Forest edges experience hotter, drier, and windier conditions and greater exposure to fires compared to interior areas, which elevate rates of tree mortality. Previous studies have suggested that forests within 100 m from the edge may lose 36% of biomass during the first two decades following fragmentation, although such estimates are based on a limited number of experimental plots. Degraded forests behave differently from intact forests and quantifying edge effect extension in a degraded forest landscape is more challenging compared to experimental studies. To overcome these limitations, we used airborne lidar data to quantify changes in forest structure near 91 edges in a heavily degraded tropical forest in Paragominas Municipality, eastern Brazilian Amazon. Paragominas was a center of timber production in the 1990s. Today, the landscape is a mosaic of different agricultural uses, degraded, secondary and unmanaged forests. A total of 3000 ha of high density (mean density of 17.9 points/m2) lidar data were acquired in August/September 2013 and June/July 2014 over 30 transects (200 x 5000m), systematically distributed over the study area, using the Optech Orion M-200 laser scanning system. We adopted lidar-measured forest heights as the edge effect criteria and found that mean extent of edge effect was highly variable across degraded forests (150 ± 354m) and secondary forest fragments (265 ± 365m). We related the extent of forest edges to the historical disturbances identified in Landsat imagery since 1984. Contrary to previous studies, we found that carbon stocks along forest edges were not significantly lower than forest core biomass when edges were defined by previously estimated range of 100 and 300m. In frontier forests, ecological edge effect may be masked by the cumulative impact of historic forest degradation - an anthropogenic edge effect that extends beyond the

  1. Natal Dispersal in the North Island Robin (Petroica longipes: the Importance of Connectivity in Fragmented Habitats

    Directory of Open Access Journals (Sweden)

    Askia K. Wittern

    2007-12-01

    Full Text Available Natal dispersal is an important component in bird population dynamics and can influence the persistence of local and metapopulations. We examined natal dispersal in the North Island robin (Petroica longipes, a sedentary bird species distributed in a fragmented forest habitat on Tiritiri Matangi Island, New Zealand. Earlier studies have shown that the only dispersal phase in this species takes place when juveniles leave their natal patch, and that juveniles who fail to find suitable habitat do not survive their first winter. These findings suggest that natal dispersal behavior in this species is important for population viability. We found that juveniles were highly affected by the fragmentation of the forest habitat, with patch occupancy being positively correlated with degree of connectivity of the landscape. Most juvenile movements (52.1% were observed between patches that were separated by less than 20 m. Juvenile North Island robins were found in all forest habitat types, including young and open stands. This suggests that the juveniles are not dependent on old forest stands during their dispersal phase. Based on these findings, we suggest that management of this regionally-threatened species should focus not only on maintaining populations in occupied patches and increasing the habitat quality of these patches, but also on protecting existing forest patches acting as corridors and creating new forest habitat among patches. This would greatly increase the viability of the species' metapopulations by increasing dispersal success between both unoccupied patches and subpopulations. Additionally, increased connectivity between forest patches could also be expected to increase the probability of successful dispersal of other threatened native species, many of which are also sensitive to the high degree of fragmentation of their habitats.

  2. Effects of experimental fuel additions on fire intensity and severity: unexpected carbon resilience of a neotropical forest.

    Science.gov (United States)

    Brando, Paulo M; Oliveria-Santos, Claudinei; Rocha, Wanderley; Cury, Roberta; Coe, Michael T

    2016-07-01

    Global changes and associated droughts, heat waves, logging activities, and forest fragmentation may intensify fires in Amazonia by altering forest microclimate and fuel dynamics. To isolate the effects of fuel loads on fire behavior and fire-induced changes in forest carbon cycling, we manipulated fine fuel loads in a fire experiment located in southeast Amazonia. We predicted that a 50% increase in fine fuel loads would disproportionally increase fire intensity and severity (i.e., tree mortality and losses in carbon stocks) due to multiplicative effects of fine fuel loads on the rate of fire spread, fuel consumption, and burned area. The experiment followed a fully replicated randomized block design (N = 6) comprised of unburned control plots and burned plots that were treated with and without fine fuel additions. The fuel addition treatment significantly increased burned area (+22%) and consequently canopy openness (+10%), fine fuel combustion (+5%), and mortality of individuals ≥5 cm in diameter at breast height (dbh; +37%). Surprisingly, we observed nonsignificant effects of the fuel addition treatment on fireline intensity, and no significant differences among the three treatments for (i) mortality of large trees (≥30 cm dbh), (ii) aboveground forest carbon stocks, and (iii) soil respiration. It was also surprising that postfire tree growth and wood increment were higher in the burned plots treated with fuels than in the unburned control. These results suggest that (i) fine fuel load accumulation increases the likelihood of larger understory fires and (ii) single, low-intensity fires weakly influence carbon cycling of this primary neotropical forest, although delayed postfire mortality of large trees may lower carbon stocks over the long term. Overall, our findings indicate that increased fine fuel loads alone are unlikely to create threshold conditions for high-intensity, catastrophic fires during nondrought years. © 2016 John Wiley & Sons Ltd.

  3. Riqueza, composição e distribuição espacial da comunidade de aves em um fragmento florestal urbano em Maringá, Norte do Estado do Paraná, Brasil = Richness, composition and spatial distribution of bird community on an urban forest fragment at Maringá, Northern Paraná State, Brazil

    Directory of Open Access Journals (Sweden)

    André Beal Galina

    2006-10-01

    bird species were registered on the forest fragment, being the insectivores and omnivores, respectively, the guilds with larger number of species. Most of the species was registered on no more than 25% of samplings. The forest was the habitat with largest species richness and largest percentage of species with occurrence frequency above of 75%. The mid-levels presented the largest species richness and the canopy the largest percentage of species with occurrencefrequency above of 75%. It is pointed out the importance of conservation of the several urban forest fragments and the tree covering on Maringá, in order to minimize the isolation effects and to try to supply the needs of part of the bird community that possibly would not to persist on studied fragment whether there were not other near forest areas.

  4. The effect of land fragmentation on farm performance

    DEFF Research Database (Denmark)

    Olsen, Jakob Vesterlund; Czekaj, Tomasz Gerard; Henningsen, Arne

    and fields. Fragmented land is expected to increase costs and reduce production and, thus, decrease the performance of farms. Preliminary results based on two methodological approaches both indicate no statistically significant effect of field shape, while smaller field sizes and longer distances...

  5. Fragmentation reduces regional-scale spatial genetic structure in a wind-pollinated tree because genetic barriers are removed.

    Science.gov (United States)

    Wang, Rong; Compton, Stephen G; Shi, Yi-Su; Chen, Xiao-Yong

    2012-09-01

    Gene flow strongly influences the regional genetic structuring of plant populations. Seed and pollen dispersal patterns can respond differently to the increased isolation resulting from habitat fragmentation, with unpredictable consequences for gene flow and population structuring. In a recently fragmented landscape we compared the pre- and post-fragmentation genetic structure of populations of a tree species where pollen and seed dispersal respond differentially to forest fragmentation generated by flooding. Castanopsis sclerophylla is wind-pollinated, with seeds that are dispersed by gravity and rodents. Using microsatellites, we found no significant difference in genetic diversity between pre- and post-fragmentation cohorts. Significant genetic structure was observed in pre-fragmentation cohorts, due to an unknown genetic barrier that had isolated one small population. Among post-fragmentation cohorts this genetic barrier had disappeared and genetic structure was significantly weakened. The strengths of genetic structuring were at a similar level in both cohorts, suggesting that overall gene flow of C. sclerophylla has been unchanged by fragmentation at the regional scale. Fragmentation has blocked seed dispersal among habitats, but this appears to have been compensated for by enhanced pollen dispersal, as indicated by the disappearance of a genetic barrier, probably as a result of increased wind speeds and easier pollen movement over water. Extensive pollen flow can counteract some negative effects of fragmentation and assist the long-term persistence of small remnant populations.

  6. Evaluating heterogeneous conservation effects of forest protection in Indonesia.

    Directory of Open Access Journals (Sweden)

    Payal Shah

    Full Text Available Establishing legal protection for forest areas is the most common policy used to limit forest loss. This article evaluates the effectiveness of seven Indonesian forest protected areas introduced between 1999 and 2012. Specifically, we explore how the effectiveness of these parks varies over space. Protected areas have mixed success in preserving forest, and it is important for conservationists to understand where they work and where they do not. Observed differences in the estimated treatment effect of protection may be driven by several factors. Indonesia is particularly diverse, with the landscape, forest and forest threats varying greatly from region to region, and this diversity may drive differences in the effectiveness of protected areas in conserving forest. However, the observed variation may also be spurious and arise from differing degrees of bias in the estimated treatment effect over space. In this paper, we use a difference-in-differences approach comparing treated observations and matched controls to estimate the effect of each protected area. We then distinguish the true variation in protected area effectiveness from spurious variation driven by several sources of estimation bias. Based on our most flexible method that allows the data generating process to vary across space, we find that the national average effect of protection preserves an additional 1.1% of forest cover; however the effect of individual parks range from a decrease of 3.4% to an increase of 5.3% and the effect of most parks differ from the national average. Potential biases may affect estimates in two parks, but results consistently show Sebangau National Park is more effective while two parks are substantially less able to protect forest cover than the national average.

  7. The effect of habitat fragmentation and abiotic factors on fen plant occurrence

    NARCIS (Netherlands)

    Soomers, H.; Karssenberg, D.J.; Verhoeven, J.T.A.; Verweij, P.A.; Wassen, M.J.

    2013-01-01

    Human landscape modification has led to habitat fragmentation for many species. Habitat fragmentation, leading to isolation, decrease in patch size and increased edge effect, is observed in fen ecosystems that comprise many endangered plant species. However, until now it has remained unclear

  8. Tamm Review: Sequestration of carbon from coarse woody debris in forest soils

    NARCIS (Netherlands)

    Magnússon, R.Í.; Tietema, A.; Cornelissen, J.H.C.; Hefting, M.M.; Kalbitz, K.

    2016-01-01

    Worldwide, forests have absorbed around 30% of global anthropogenic emissions of carbon dioxide (CO2) annually, thereby acting as important carbon (C) sinks. It is proposed that leaving large fragments of dead wood, coarse woody debris (CWD), in forest ecosystems may contribute to the forest C sink

  9. Mapeamento dos fragmentos de vegetação florestal nativa da bacia hidrográfica do rio Alegre, Espírito Santo, a partir de imagens do satélite IKONOS II Native forest fragmentation mapping of the Alegre river watershed, Espirito Santo State, Brazil, using IKONOS II data

    Directory of Open Access Journals (Sweden)

    Melchior Carlos do Nascimento

    2006-06-01

    Full Text Available O estudo teve como objetivos elaborar o mapa de uso da terra e diagnosticar, em nível de paisagem, os fragmentos de vegetação florestal nativa por meio da classificação visual da imagem do satélite IKONOS II. A pesquisa foi desenvolvida na bacia hidrográfica do rio Alegre, situada no extremo sul do Estado do Espírito Santo, Brasil. Foram mapeadas 12 classes de uso da terra, destacando-se 475 fragmentos florestais. As classes cafezal (2.086,2 ha, pastagem (14.130,1 ha e fragmento florestal (2.978,9 ha ocuparam 92,16% (19.195,2 ha da área total da bacia, que é de 20.819,8 ha. A maioria dos fragmentos florestais possui formas fortemente alongadas e área média de 6,3 ha. Também se constatou que a maior parte está sujeita a um elevado nível de perturbação, com 452 e 166 fragmentos florestais vizinhos às classes pastagem e cafezal, respectivamente.The main objective of this study was to create land use and diagnosis maps, at landscape level, of the native forest fragmentation through visual classification using IKONOS II data. The study was conducted in the river Alegre watershed, situated in the south region of State of Espirito Santo, Brazil. Twelve land use classes were mapped, pointing out 475 forest fragments. The classes of coffee plantation (2,086.2 ha, pasture (14,130.1 ha and forest fragmentation (2,978.9 ha occupied 92.16% (19,195.2 ha of the total study area, which was about 20,819.8 ha. The majority of the forest fragments presented strongly elongated shapes, with an average of 6.3 ha. It was also noticed that most of them presented a high level of disturbance, with 452 and 166 forest fragments neighboring the pasture and coffee plantation classes, respectively.

  10. Potential utility of SumbandilaSat imagery for monitoring indigenous forest health

    CSIR Research Space (South Africa)

    Cho, Moses A

    2010-09-01

    Full Text Available Indigenous forest degradation is regarded as one of the most important environmental issues facing sub-Saharan Africa and South Africa in particular. Indigenous forest degradation is characterised by habitat fragmentation stemming from logging...

  11. ASSESSING THE CANOPY INTEGRITY USING CANOPY DIGITAL IMAGES IN SEMIDECIDUOUS FOREST FRAGMENT IN SÃO CARLOS - SP- BRAZIL1

    Directory of Open Access Journals (Sweden)

    Thiago Yamada

    2017-11-01

    Full Text Available ABSTRACT It is well-known that conducting experimental research aiming the characterization of canopy structure of forests can be a difficult and costly task and, generally, requires an expert to extract, in loco, relevant information. Aiming at easing studies related to canopy structures, several techniques have been proposed in the literature and, among them, various are based on canopy digital image analysis. The research work described in this paper empirically compares two techniques that measure the integrity of the canopy structure of a forest fragment; one of them is based on central parts of canopy cover images and, the other, on canopy closure images. For the experiments, 22 central parts of canopy cover images and 22 canopy closure images were used. The images were captured along two transects: T1 (located in the conserved area and T2 (located in the naturally disturbance area. The canopy digital images were computationally processed and analyzed using the MATLAB platform for the canopy cover images and the Gap Light Analyzer (GLA, for the canopy closure images. The results obtained using these two techniques showed that canopy cover images and, among the employed algorithms, the Jseg, characterize the canopy integrity best. It is worth mentioning that part of the analysis can be automatically conducted, as a quick and precise process, with low material costs involved.

  12. Advances of Air Pollution Science: From Forest Decline to Multiple-Stress Effects on Forest Ecosystem Services

    Science.gov (United States)

    E. Paoletti; M. Schaub; R. Matyssek; G. Wieser; A. Augustaitis; A. M. Bastrup-Birk; A. Bytnerowicz; M. S. Gunthardt-Goerg; G. Muller-Starck; Y. Serengil

    2010-01-01

    Over the past 20 years, the focus of forest science on air pollution has moved from forest decline to a holistic framework of forest health, and from the effects on forest production to the ecosystem services provided by forest ecosystems. Hence, future research should focus on the interacting factorial impacts and resulting antagonistic and synergistic responses of...

  13. Thinning alternatives for forest management; Metsaenkasvatus ja harvennusvaihtoehdot

    Energy Technology Data Exchange (ETDEWEB)

    Mielikaeinen, K; Hirvelae, H; Haerkoenen, K; Malinen, J [Finnish Forest Research Inst., Vantaa (Finland)

    1995-11-01

    The amount of economically producible energy wood, the effects of energy wood harvesting on the development of forests, and the changes required by harvesting of energy wood on the forest processing instructions at the area of the Forestry Board of Central Ostrobothnia were investigated. The calculations were made using the Metsaelaskelma (Forest calculation) MELA program. At the energy wood production cost level 45 FIM/MWh, and when the energy wood competes with the industrial wood, the annual energy wood accumulation was about 120 000 m{sup 3}, which would be sufficient for three heating plants using about 100 000 m{sup 3} of chips annually. Even if the fellings of industrial wood would remain on the low level of the beginning of 1990`s the harvesting of energy wood would not become much higher than this. By harvesting of energy wood it is impossible to effect on the forestry state and the future development of the Finnish forests remarkably before the separate harvesting of energy wood becomes profitable. Harvesting of felling residues from spruce predominant final cutting sites and integrated harvesting of pine predominant first thinning forests would be more profitable harvesting methods than the separate harvesting. On the basis of the information on the future net income obtained from the forests, the harvesting of the energy wood seemed, however, to be a profitable alternative. Harvesting of energy wood was not observed to effect on the forest cultivation models remarkably because the harvesting of energy wood was just a small fragment of the complete forest processing chain (first thinning phase) studied, and the economical profitability controlled the thinnings strongly independently on where the wood was utilized. (author)

  14. Habitat Fragmentation and Native Bees: a Premature Verdict?

    Directory of Open Access Journals (Sweden)

    James H. Cane

    2001-06-01

    Full Text Available Few studies directly address the consequences of habitat fragmentation for communities of pollinating insects, particularly for the key pollinator group, bees (Hymenoptera: Apiformes. Bees typically live in habitats where nesting substrates and bloom are patchily distributed and spatially dissociated. Bee studies have all defined habitat fragments as remnant patches of floral hosts or forests, overlooking the nesting needs of bees. Several authors conclude that habitat fragmentation is broadly deleterious, but their own data show that some native species proliferate in sampled fragments. Other studies report greater densities and comparable diversities of native bees at flowers in some fragment size classes relative to undisrupted habitats, but find dramatic shifts in species composition. Insightful studies of habitat fragmentation and bees will consider fragmentation, alteration, and loss of nesting habitats, not just patches of forage plants, as well as the permeability of the surrounding matrix to interpatch movement. Inasmuch as the floral associations and nesting habits of bees are often attributes of species or subgenera, ecological interpretations hinge on authoritative identifications. Study designs must accommodate statistical problems associated with bee community samples, especially non-normal data and frequent zero values. The spatial scale of fragmentation must be appreciated: bees of medium body size can regularly fly 1-2 km from nest site to forage patch. Overall, evidence for prolonged persistence of substantial diversity and abundances of native bee communities in habitat fragments of modest size promises practical solutions for maintaining bee populations. Provided that reserve selection, design, and management can address the foraging and nesting needs of bees, networks of even small reserves may hold hope for sustaining considerable pollinator diversity and the ecological services pollinators provide.

  15. The effects of landscape fragmentation on pollination dynamics: absence of evidence not evidence of absence.

    Science.gov (United States)

    Hadley, Adam S; Betts, Matthew G

    2012-08-01

    Animal-mediated pollination is essential for both ecosystem services and conservation of global biodiversity, but a growing body of work reveals that it is negatively affected by anthropogenic disturbance. Landscape-scale disturbance results in two often inter-related processes: (1) habitat loss, (2) disruptions of habitat configuration (i.e. fragmentation). Understanding the relative effects of such processes is critical in designing effective management strategies to limit pollination and pollinator decline. We reviewed existing published work from 1989 to 2009 and found that only six of 303 studies considering the influence of landscape context on pollination separated the effects of habitat loss from fragmentation. We provide a synthesis of the current landscape, behavioural, and pollination ecology literature in order to present preliminary multiple working hypotheses explaining how these two landscape processes might independently influence pollination dynamics. Landscape disturbance primarily influences three components of pollination interactions: pollinator density, movement, and plant demography. We argue that effects of habitat loss on each of these components are likely to differ substantially from the effects of fragmentation, which is likely to be more complex and may influence each pollination component in contrasting ways. The interdependency between plants and animals inherent to pollination systems also has the possibility to drive cumulative effects of fragmentation, initiating negative feedback loops between animals and the plants they pollinate. Alternatively, due to their asymmetrical structure, pollination networks may be relatively robust to fragmentation. Despite the potential importance of independent effects of habitat fragmentation, its effects on pollination remain largely untested. We postulate that variation across studies in the effects of 'fragmentation' owes much to artifacts of the sampling regimes adopted, particularly (1

  16. Effectiveness of Africa's tropical protected areas for maintaining forest cover.

    Science.gov (United States)

    Bowker, J N; De Vos, A; Ament, J M; Cumming, G S

    2017-06-01

    The effectiveness of parks for forest conservation is widely debated in Africa, where increasing human pressure, insufficient funding, and lack of management capacity frequently place significant demands on forests. Tropical forests house a substantial portion of the world's remaining biodiversity and are heavily affected by anthropogenic activity. We analyzed park effectiveness at the individual (224 parks) and national (23 countries) level across Africa by comparing the extent of forest loss (as a proxy for deforestation) inside parks to matched unprotected control sites. Although significant geographical variation existed among parks, the majority of African parks had significantly less forest loss within their boundaries (e.g., Mahale Park had 34 times less forest loss within its boundary) than control sites. Accessibility was a significant driver of forest loss. Relatively inaccessible areas had a higher probability (odds ratio >1, p < 0.001) of forest loss but only in ineffective parks, and relatively accessible areas had a higher probability of forest loss but only in effective parks. Smaller parks less effectively prevented forest loss inside park boundaries than larger parks (T = -2.32, p < 0.05), and older parks less effectively prevented forest loss inside park boundaries than younger parks (F 2,154 = -4.11, p < 0.001). Our analyses, the first individual and national assessment of park effectiveness across Africa, demonstrated the complexity of factors (such as geographical variation, accessibility, and park size and age) influencing the ability of a park to curb forest loss within its boundaries. © 2016 Society for Conservation Biology.

  17. Remote Sensing Techniques in Monitoring Post-Fire Effects and Patterns of Forest Recovery in Boreal Forest Regions: A Review

    Directory of Open Access Journals (Sweden)

    Thuan Chu

    2013-12-01

    Full Text Available The frequency and severity of forest fires, coupled with changes in spatial and temporal precipitation and temperature patterns, are likely to severely affect the characteristics of forest and permafrost patterns in boreal eco-regions. Forest fires, however, are also an ecological factor in how forest ecosystems form and function, as they affect the rate and characteristics of tree recruitment. A better understanding of fire regimes and forest recovery patterns in different environmental and climatic conditions will improve the management of sustainable forests by facilitating the process of forest resilience. Remote sensing has been identified as an effective tool for preventing and monitoring forest fires, as well as being a potential tool for understanding how forest ecosystems respond to them. However, a number of challenges remain before remote sensing practitioners will be able to better understand the effects of forest fires and how vegetation responds afterward. This article attempts to provide a comprehensive review of current research with respect to remotely sensed data and methods used to model post-fire effects and forest recovery patterns in boreal forest regions. The review reveals that remote sensing-based monitoring of post-fire effects and forest recovery patterns in boreal forest regions is not only limited by the gaps in both field data and remotely sensed data, but also the complexity of far-northern fire regimes, climatic conditions and environmental conditions. We expect that the integration of different remotely sensed data coupled with field campaigns can provide an important data source to support the monitoring of post-fire effects and forest recovery patterns. Additionally, the variation and stratification of pre- and post-fire vegetation and environmental conditions should be considered to achieve a reasonable, operational model for monitoring post-fire effects and forest patterns in boreal regions.

  18. Birds on fragmented islands : persistence in the forests of Java and Bali

    NARCIS (Netherlands)

    Balen, van S.

    1999-01-01

    This study describes, analyses and provides suggestions for the amelioration of the impact of age-long deforestation on the distribution of forest birds on the islands of Java and Bali (Indonesia). The first section deals with colonisation and extinction processes of forest birds in a

  19. Lack of Population Genetic Structuring in Ocelots (Leopardus pardalis in a Fragmented Landscape

    Directory of Open Access Journals (Sweden)

    Marina G. Figueiredo

    2015-07-01

    Full Text Available Habitat fragmentation can promote patches of small and isolated populations, gene flow disruption between those populations, and reduction of local and total genetic variation. As a consequence, these small populations may go extinct in the long-term. The ocelot (Leopardus pardalis, originally distributed from Texas to southern Brazil and northern Argentina, has been impacted by habitat fragmentation throughout much of its range. To test whether habitat fragmentation has already induced genetic differentiation in an area where this process has been documented for a larger felid (jaguars, we analyzed molecular variation in ocelots inhabiting two Atlantic Forest fragments, Morro do Diabo (MD and Iguaçu Region (IR. Analyses using nine microsatellites revealed mean observed and expected heterozygosity of 0.68 and 0.70, respectively. The MD sampled population showed evidence of a genetic bottleneck under two mutational models (TPM = 0.03711 and SMM = 0.04883. Estimates of genetic structure (FST = 0.027; best fit of k = 1 with STRUCTURE revealed no meaningful differentiation between these populations. Thus, our results indicate that the ocelot populations sampled in these fragments are still not significantly different genetically, a pattern that strongly contrasts with that previously observed in jaguars for the same comparisons. This observation is likely due to a combination of two factors: (i larger effective population size of ocelots (relative to jaguars in each fragment, implying a slower effect of drift-induced differentiation; and (ii potentially some remaining permeability of the anthropogenic matrix for ocelots, as opposed to the observed lack of permeability for jaguars. The persistence of ocelot gene flow between these areas must be prioritized in long-term conservation planning on behalf of these felids.

  20. Effects of high-frequency understorey fires on woody plant regeneration in southeastern Amazonian forests

    Science.gov (United States)

    Balch, Jennifer K.; Massad, Tara J.; Brando, Paulo M.; Nepstad, Daniel C.; Curran, Lisa M.

    2013-01-01

    Anthropogenic understorey fires affect large areas of tropical forest, yet their effects on woody plant regeneration post-fire remain poorly understood. We examined the effects of repeated experimental fires on woody stem (less than 1 cm at base) mortality, recruitment, species diversity, community similarity and regeneration mode (seed versus sprout) in Mato Grosso, Brazil. From 2004 to 2010, forest plots (50 ha) were burned twice (B2) or five times (B5), and compared with an unburned control (B0). Stem density recovered within a year after the first burn (initial density: 12.4–13.2 stems m−2), but after 6 years, increased mortality and decreased regeneration—primarily of seedlings—led to a 63 per cent and 85 per cent reduction in stem density in B2 and B5, respectively. Seedlings and sprouts across plots in 2010 displayed remarkable community similarity owing to shared abundant species. Although the dominant surviving species were similar across plots, a major increase in sprouting occurred—almost three- and fourfold greater in B2 and B5 than in B0. In B5, 29 species disappeared and were replaced by 11 new species often present along fragmented forest edges. By 2010, the annual burn regime created substantial divergence between the seedling community and the initial adult tree community (greater than or equal to 20 cm dbh). Increased droughts and continued anthropogenic ignitions associated with frontier land uses may promote high-frequency fire regimes that may substantially alter regeneration and therefore successional processes. PMID:23610167

  1. Ocelot Population Status in Protected Brazilian Atlantic Forest.

    Directory of Open Access Journals (Sweden)

    Rodrigo Lima Massara

    Full Text Available Forest fragmentation and habitat loss are detrimental to top carnivores, such as jaguars (Panthera onca and pumas (Puma concolor, but effects on mesocarnivores, such as ocelots (Leopardus pardalis, are less clear. Ocelots need native forests, but also might benefit from the local extirpation of larger cats such as pumas and jaguars through mesopredator release. We used a standardized camera trap protocol to assess ocelot populations in six protected areas of the Atlantic forest in southeastern Brazil where over 80% of forest remnants are < 50 ha. We tested whether variation in ocelot abundance could be explained by reserve size, forest cover, number of free-ranging domestic dogs and presence of top predators. Ocelot abundance was positively correlated with reserve size and the presence of top predators (jaguar and pumas and negatively correlated with the number of dogs. We also found higher detection probabilities in less forested areas as compared to larger, intact forests. We suspect that smaller home ranges and higher movement rates in smaller, more degraded areas increased detection. Our data do not support the hypothesis of mesopredator release. Rather, our findings indicate that ocelots respond negatively to habitat loss, and thrive in large protected areas inhabited by top predators.

  2. The Urban Forest Effects (UFORE) model: quantifying urban forest structure and functions

    Science.gov (United States)

    David J. Nowak; Daniel E. Crane

    2000-01-01

    The Urban Forest Effects (UFORE) computer model was developed to help managers and researchers quantify urban forest structure and functions. The model quantifies species composition and diversity, diameter distribution, tree density and health, leaf area, leaf biomass, and other structural characteristics; hourly volatile organic compound emissions (emissions that...

  3. Humidity Effects on Fragmentation in Plasma-Based Ambient Ionization Sources.

    Science.gov (United States)

    Newsome, G Asher; Ackerman, Luke K; Johnson, Kevin J

    2016-01-01

    Post-plasma ambient desorption/ionization (ADI) sources are fundamentally dependent on surrounding water vapor to produce protonated analyte ions. There are two reports of humidity effects on ADI spectra. However, it is unclear whether humidity will affect all ADI sources and analytes, and by what mechanism humidity affects spectra. Flowing atmospheric pressure afterglow (FAPA) ionization and direct analysis in real time (DART) mass spectra of various surface-deposited and gas-phase analytes were acquired at ambient temperature and pressure across a range of observed humidity values. A controlled humidity enclosure around the ion source and mass spectrometer inlet was used to create programmed humidity and temperatures. The relative abundance and fragmentation of molecular adduct ions for several compounds consistently varied with changing ambient humidity and also were controlled with the humidity enclosure. For several compounds, increasing humidity decreased protonated molecule and other molecular adduct ion fragmentation in both FAPA and DART spectra. For others, humidity increased fragment ion ratios. The effects of humidity on molecular adduct ion fragmentation were caused by changes in the relative abundances of different reagent protonated water clusters and, thus, a change in the average difference in proton affinity between an analyte and the population of water clusters. Control of humidity in ambient post-plasma ion sources is needed to create spectral stability and reproducibility.

  4. Spatial genetic structure in continuous and fragmented populations of Pinus pinaster Aiton.

    Science.gov (United States)

    De-Lucas, A I; González-Martínez, S C; Vendramin, G G; Hidalgo, E; Heuertz, M

    2009-11-01

    Habitat fragmentation, i.e., the reduction of populations into small isolated remnants, is expected to increase spatial genetic structure (SGS) in plant populations through nonrandom mating, lower population densities and potential aggregation of reproductive individuals. We investigated the effects of population size reduction and genetic isolation on SGS in maritime pine (Pinus pinaster Aiton) using a combined experimental and simulation approach. Maritime pine is a wind-pollinated conifer which has a scattered distribution in the Iberian Peninsula as a result of forest fires and habitat fragmentation. Five highly polymorphic nuclear microsatellites were genotyped in a total of 394 individuals from two population pairs from the Iberian Peninsula, formed by one continuous and one fragmented population each. In agreement with predictions, SGS was significant and stronger in fragments (Sp = 0.020 and Sp = 0.026) than in continuous populations, where significant SGS was detected for one population only (Sp = 0.010). Simulations suggested that under fat-tailed dispersal, small population size is a stronger determinant of SGS than genetic isolation, while under normal dispersal, genetic isolation has a stronger effect. SGS was always stronger in real populations than in simulations, except if unrealistically narrow dispersal and/or high variance of reproductive success were modelled (even when accounting for potential overestimation of SGS in real populations as a result of short-distance sampling). This suggests that factors such as nonrandom mating or selection not considered in the simulations were additionally operating on SGS in Iberian maritime pine populations.

  5. Anuran assemblage on forest edges in Datu Salumay, Davao City, Philippines

    Directory of Open Access Journals (Sweden)

    Christelle Mae M. Dacalus

    2017-12-01

    Full Text Available Forest fragmentation due to anthropogenic encroachment has been associated with changes in abiotic conditions known as edge effect. This condition plays a major role in the amphibian decline globally. A five-day sampling in a regenerating forest of So. Maharlika, Barangay Datu Salumay, Marilog District, Davao City, Philippines was conducted to test effect of forest edges on a local forest. Visual encounter technique was employed surveying quadrats (10 x 10 meters established along a main transect (1 km long. The first 500 meters of the main transect served as the edge while the rest constituted the forest interior. Data on canopy cover, termperature, and humidity from each site were contrasted with species endemism and diversity to determine influence of differing edge and forest interior conditions. Eight species of frogs were captured: five belongs to the Family Rhacophoridae and one species each belong to the Families Megophryidae, Microhylidae, and Dicroglossidae. No significant difference was noted of the data on canopy cover, temperature, and humidity in both forest edge and interior. Six anuran species were accounted each in the forest edge and interior, although more endemic species were recorded from the forest interior. Current results maybe suggestive of the possible impact of edges on anuran species although more data is required to validate this claim.

  6. Seed-dispersal distributions by trumpeter hornbills in fragmented landscapes

    Science.gov (United States)

    Lenz, Johanna; Fiedler, Wolfgang; Caprano, Tanja; Friedrichs, Wolfgang; Gaese, Bernhard H.; Wikelski, Martin; Böhning-Gaese, Katrin

    2011-01-01

    Frugivorous birds provide important ecosystem services by transporting seeds of fleshy fruited plants. It has been assumed that seed-dispersal kernels generated by these animals are generally leptokurtic, resulting in little dispersal among habitat fragments. However, little is known about the seed-dispersal distribution generated by large frugivorous birds in fragmented landscapes. We investigated movement and seed-dispersal patterns of trumpeter hornbills (Bycanistes bucinator) in a fragmented landscape in South Africa. Novel GPS loggers provide high-quality location data without bias against recording long-distance movements. We found a very weakly bimodal seed-dispersal distribution with potential dispersal distances up to 14.5 km. Within forest, the seed-dispersal distribution was unimodal with an expected dispersal distance of 86 m. In the fragmented agricultural landscape, the distribution was strongly bimodal with peaks at 18 and 512 m. Our results demonstrate that seed-dispersal distributions differed when birds moved in different habitat types. Seed-dispersal distances in fragmented landscapes show that transport among habitat patches is more frequent than previously assumed, allowing plants to disperse among habitat patches and to track the changing climatic conditions. PMID:21177686

  7. Trends in management of the world's forests and impacts on carbon stocks

    Science.gov (United States)

    Richard Birdsey; Yude. Pan

    2015-01-01

    Global forests are increasingly affected by land-use change, fragmentation, changing management objectives, and degradation. In this paper we broadly characterize trends in global forest area by intensity of management, and provide an overview of changes in global carbon stocks associated with managed forests. We discuss different interpretations of "management...

  8. The effects of habitat fragmentation on extinction risk: Mechanisms and synthesis

    Directory of Open Access Journals (Sweden)

    David H. Reed

    2006-01-01

    Full Text Available Across the globe, much current research reflects concerns over the effect of habitat fragmentation on the viability of species and populations. This is an immediate and important concern for the Kingdom of Thailand, where decisions about land use are at a critical juncture. Thailand is in danger of losing species that play a special role in Thai culture and history such as the Asian elephant (Elephas maximus and the tiger (Panthera tigris. We provide a selective review and synthesis of the effects of habitat fragmentation on extinction risk. Our emphasis is on objectives, causal mechanisms, and the validity of some of the arguments that have been made in the debate. Heuristic models are explored to elucidate mechanisms that may affect populations in fragmented landscapes and we point out gaps in our knowledge of this important and complicated question. Our synthesis of the current evidence suggests that fragmenting landscapes usually increases the risk of extinction, especially as the isolation of patches increases or the size of patches decreases. The Kingdom of Thailand, and other countries facing similar circumstances, should seek to connect isolated patches of habitat in order to better protect their remaining biodiversity.

  9. Dynamic effects in fragmentation reactions

    International Nuclear Information System (INIS)

    Bertsch, G. F.; Esbensen, H.

    2002-01-01

    Fragmentation reactions offer a useful tool to study the spectroscopy of halo nuclei, but the large extent of the halo wave function makes the reaction theory more difficult. The simple reaction models based on the eikonal approximation for the nuclear interaction or first-order perturbation theory for the Coulomb interaction have systematic errors that they investigate here, comparing to the predictions of complete dynamical calculations. They find that stripping probabilities are underpredicted by the eikonal model, leading to extracted spectroscopy strengths that are two large. In contrast, the Coulomb excitation is overpredicted by the simple theory. They attribute this to a screening effect, as is well known in the Barkas effect on stopping powers. The errors decrease with beam energy as E(sub beam)(sup -1), and are not significant at beam energies above 50 MeV/u. At lower beam energies, the effects should be taken into account when extracting quantitative spectroscopic strengths

  10. Will climate change affect biodiversity in pacific northwest forests

    International Nuclear Information System (INIS)

    Henderson, S.; Rosenbaum, B.J.

    1992-01-01

    Global climate change could have significant consequences for biological diversity in Pacific Northwest (PNW) forested ecosystems, particularly in areas already threatened by anthropogenic activities and the resultant habitat modification and fragmentation. The forests of the Pacific Northwest have a high biological diversity, not only in terms of tree species, but also in terms of herbs, bryophytes and hepatophytes, algae, fungi, protist, bacteria, and many groups of vertebrates and invertebrates. Global circulation and vegetation model projections of global climate change effects on PNW forests include reductions in species diversity in low elevation forests as well as elevational and latitudinal shifts in species ranges. As species are most likely to be stressed at the edges of their ranges, plant and animal species with low mobility, or those that are prevented from migrating by lack of habitat corridors, may become regionally extinct. Endangered species with limited distribution may be especially vulnerable to shifts in habitat conditions

  11. Climate change effects on forests: A critical review

    Energy Technology Data Exchange (ETDEWEB)

    Loehle, C. [Argonne National Lab., IL (United States); LeBlanc, D. [Ball State Univ., Muncie, IN (United States). Dept. of Biology

    1996-02-01

    While current projections of future climate change associated with increases in atmospheric greenhouse gases have a high degree of uncertainty, the potential effects of climate change on forests are of increasing concern. A number of studies based on forest simulation models predict substantial temperatures associated with increasing atmospheric carbon dioxide concentrations. However, the structure of these computer models may cause them to overemphasize the role of climate in controlling tree growth and mortality. We propose that forest simulation models be reformulated with more realistic representations of growth responses to temperature, moisture, mortality, and dispersal. We believe that only when these models more accurately reflect the physiological bases of the responses of tree species to climate variables can they be used to simulate responses of forests to rapid changes in climate. We argue that direct forest responses to climate change projected by such a reformulated model may be less traumatic and more gradual than those projected by current models. However, the indirect effects of climate change on forests, mediated by alterations of disturbance regimes or the actions of pests and pathogens, may accelerate climate-induced change in forests, and they deserve further study and inclusion within forest simulation models.

  12. Degradation in carbon stocks near tropical forest edges.

    Science.gov (United States)

    Chaplin-Kramer, Rebecca; Ramler, Ivan; Sharp, Richard; Haddad, Nick M; Gerber, James S; West, Paul C; Mandle, Lisa; Engstrom, Peder; Baccini, Alessandro; Sim, Sarah; Mueller, Carina; King, Henry

    2015-12-18

    Carbon stock estimates based on land cover type are critical for informing climate change assessment and landscape management, but field and theoretical evidence indicates that forest fragmentation reduces the amount of carbon stored at forest edges. Here, using remotely sensed pantropical biomass and land cover data sets, we estimate that biomass within the first 500 m of the forest edge is on average 25% lower than in forest interiors and that reductions of 10% extend to 1.5 km from the forest edge. These findings suggest that IPCC Tier 1 methods overestimate carbon stocks in tropical forests by nearly 10%. Proper accounting for degradation at forest edges will inform better landscape and forest management and policies, as well as the assessment of carbon stocks at landscape and national levels.

  13. Mixed Effectiveness of Africa's Tropical Protected Areas for Maintaining Forest Cover: Insights from a Global Forest Change Dataset

    Science.gov (United States)

    De Vos, A.; Bowker, J.; Ament, J.; Cumming, G.

    2016-12-01

    The effectiveness of parks for forest conservation is widely debated in Africa, where increasing human pressure, insufficient funding, and lack of management capacity frequently place significant demands on forest habitats. Tropical forests house a significant portion of the world's remaining biodiversity and are being heavily impacted by anthropogenic activity. We used Hansen et al.'s (2013) global forest change dataset to analyse park effectiveness at the individual (224 parks) and national (23 countries) level across Africa by comparing the extent of forest loss (as a proxy for deforestation) inside parks to matched unprotected control samples. We found that, although significant geographical variation exists between parks, the majority of African parks experienced significantly lower deforestation within their boundaries. Accessibility was a significant driver of deforestation, with less accessible areas having a higher probability of forest loss in ineffective parks and more accessible areas having a higher probability of forest loss in effective parks. Smaller parks were less effective at preventing forest loss inside park boundaries than larger parks, and older parks were less effective than younger parks. Our analysis, which is the first individual and national assessment of park effectiveness across Africa, demonstrates the complexity of factors influencing the ability of a park to curb deforestation within its boundaries and highlights the potential of web-based remote sensing technology in monitoring protected area effectiveness.

  14. TRAP-NESTING BEES AND WASPS (HYMENOPTERA, ACULEATA IN A SEMIDECIDUAL SEASONAL FOREST FRAGMENT, SOUTHERN BRAZIL

    Directory of Open Access Journals (Sweden)

    PRISCILA S. OLIVEIRA

    Full Text Available ABSTRACT Trap-nesting bee and wasp inventories are common in Brazil but many phytophysiognomies are still poorly studied. The main objective of this study is to survey trap-nesting bees and wasps in a Semidecidual Seasonal Forest fragment. Also, we test the differences on nesting between interior and edge transects. A sum of 1,500 trap nests was made with bamboo cane internodes and two consecutive years were monitored. In the first year 46 nests were occupied by Pachodynerus grandis (19 nests, Pachodynerus guadulpensis (19, Centris analis (two, and Centris tarsata, Megachile fiebrigi, Megachile guaranitica, Megachile susurrans, Trypoxylon sp and Zethus smithii with one nest each. No statistical differences were found between interior and edge transects for richness and occupation rate, but the species composition was different. In the second year 39 nests were occupied by four species, three previously recorded, C. analis (seven nests, P. guadulpensis and P. grandis (six nests each, plus Monobia angulosa with 15 nests. Parasitoids from four families and one cleptoparasite were recorded and the mortality rate was higher in bees than in wasps. These findings reinforce the notion that trap nests assemblages from different studies are not directly comparable for richness and composition.

  15. Effect of coolant velocity on the fragmentation of single melt drops in water

    International Nuclear Information System (INIS)

    Cunningham, M.H.; Frost, D.L.

    1997-01-01

    Flash X-ray radiography and high-speed photography are used to investigate the effect of the coolant velocity on the fine fragmentation of molten tin drops in water. A water cannot is used to accelerate the water to a constant speed of up to 30 m/s. The water is accelerated with a double piston arrangement including a foam shock absorber to eliminate the formation of a shock wave. In this way, the effect of coolant velocity on drop breakup is investigated in the absence of the strong shock wave that is present in most earlier studies. The results show that there is a transition from thermal to hydrodynamic fragmentation through an intermediate stage in which the drops initially undergo hydrodynamic fragmentation followed by the formation of a vapour bubble. For low velocities (9 m/s) this bubble collapses, fragmenting the remainder of the drop while at greater velocities (15 m/s) the drop breaks up within the bubble before it condenses. At 22 and 28 m/s there is no vapour formation and the drop fragments due to hydrodynamic effects. Quantitative analysis of the radiographs is used to determine the mass distribution of the melt during the drop fragmentation. Comparison with earlier work in which the ambient flow is preceded by a strong shock wave indicates that the transition from thermal to hydrodynamic breakup is strongly dependent on the characteristics of the pressure field experienced by the drop. (author)

  16. Coulomb and even-odd effects in cold and super-asymmetric fragmentation for thermal neutron induced fission of 235U

    International Nuclear Information System (INIS)

    Modesto, Montoya

    2014-01-01

    The Coulomb effects hypothesis is used to interpret even-odd effects of maximum total kinetic energy as a function of mass and charge of fragments from thermal neutron induced fission of 235 U. Assuming spherical fragments at scission, the Coulomb interaction energy between fragments (C sph ) is higher than the Q-value, the available energy. Therefore at scission the fragments must be deformed, so that the Coulomb interaction energy does not exceed the Q-value. The fact that the even-odd effects in the maximum total kinetic energy as a function of the charge and mass, respectively, are lower than the even-odd effects of Q is consistent with the assumption that odd mass fragments are softer than the even-even fragments. Even-odd effects of charge distribution in super asymmetric fragmentation also are interpreted with the Coulomb effect hypothesis. Because the difference between C sph and Q increases with asymmetry, fragmentations require higher total deformation energy to occur. Higher deformation energy of the fragments implies lower free energy to break pairs of nucleons. This explains why in the asymmetric fragmentation region, the even-odd effects of the distribution of proton number and neutron number increases with asymmetry. (author).

  17. Behavioral and physiological responses to subgroup size and number of people in howler monkeys inhabiting a forest fragment used for nature-based tourism.

    Science.gov (United States)

    Aguilar-Melo, Adriana R; Andresen, Ellen; Cristóbal-Azkarate, Jurgi; Arroyo-Rodríguez, Victor; Chavira, Roberto; Schondube, Jorge; Serio-Silva, Juan Carlos; Cuarón, Alfredo D

    2013-11-01

    Animals' responses to potentially threatening factors can provide important information for their conservation. Group size and human presence are potentially threatening factors to primates inhabiting small reserves used for recreation. We tested these hypotheses by evaluating behavioral and physiological responses in two groups of mantled howler monkeys (Alouatta palliata mexicana) at the "Centro Ecológico y Recreativo El Zapotal", a recreational forest reserve and zoo located in the Mexican state of Chiapas. Both groups presented fission-fusion dynamics, splitting into foraging subgroups which varied in size among, but not within days. Neither subgroup size nor number of people had an effect on fecal cortisol. Out of 16 behavioral response variables tested, the studied factors had effects on six: four were affected by subgroup size and two were affected by number of people. With increasing subgroup size, monkeys increased daily path lengths, rested less, increased foraging effort, and used more plant individuals for feeding. As the number of people increased, monkeys spent more time in lower-quality habitat, and less time engaged in social interactions. Although fecal cortisol levels were not affected by the factors studied, one of the monkey groups had almost twice the level of cortisol compared to the other group. The group with higher cortisol levels also spent significantly more time in the lower-quality habitat, compared to the other group. Our results suggest that particular behavioral adjustments might allow howler monkeys at El Zapotal to avoid physiological stress due to subgroup size and number of people. However, the fact that one of the monkey groups is showing increased cortisol levels may be interpreted as a warning sign, indicating that an adjustment threshold is being reached, at least for part of the howler monkey population in this forest fragment. © 2013 Wiley Periodicals, Inc.

  18. Understanding old-growth red and white pine dominated forests in Ontario. Forest fragmentation and biodiversity project technical report No. 2

    Energy Technology Data Exchange (ETDEWEB)

    Carleton, T.J.; Gordon, A.M.

    1992-01-01

    In summer 1991, a variety of forest stands dominated by old specimens of white pine and red pine were sampled across a representative portion of the species' range in northcentral Ontario. Plots were established in 40 stands of those surveyed to identify the salient structural components of old-growth, to survey the floristic composition (vascular plants and autotrophic non- vascular plants), to survey site characteristics, and to estimate the links in understorey alpha diversity with site conditions and stand structure. Long-term objectives include a definition of old- growth pine forest, recognition criteria, and prospective management options. Forest stand structure was enumerated through mapping, mensurational, and age estimation techniques. Forest vegetation, including over and understorey species, was non- destructively sampled and a range of data on stand and soil-site variables was also collected in conjunction with information on stand variables peculiar to old growth forests.

  19. Forest fragmentation and Red-cockaded Woodpecker population: an analysis at intermediate scale

    Science.gov (United States)

    D. Craig Rudolph; Richard N. Conner

    1994-01-01

    The Red-cockaded Woodpecker population on the Sam Houston National Forest in Texas was surveyed during 1988. The 128 active clusters present make this population one of the largest in existence. Pine stand ages varied considerably across the forest. Correlation analysis indicated that stand area in excess of 60 yr of age is positively correlated with measures of...

  20. Reproductive phenology, pollination, and fructification of Heliconia spathocircinata Aristeg. (Heliconiaceae in an Atlantic Rain Forest fragment in Rio de Janeiro City

    Directory of Open Access Journals (Sweden)

    Caio César Corrêa Missagia

    2011-09-01

    Full Text Available Aspects of phenology and reproductive biology of Heliconia spathocircinata Aristeg. in border and interior areas of an Atlantic Rain Forest fragment in Rio de Janeiro City, Brazil, are apresented. Four plots of 10x10m were delineated, two on the edge and two inside the forest, and individuals of H. spathocircinata were monitored from June 2009 to June 2010. The observations were carried out from 6 a.m. to 6 p.m. once a week on December and January, and fortnightly the rest of flowering. Heliconia spathocircinata bloomeds between November and March and the fruits were ripe two months after pollination, and there was no significant difference between edge and interior with regard to the period of flowering and fruiting. The fruit-flower ratio averaged 66.6% in the interior and 27% within the forestedge, a considerable difference. The male hummingbirds Thalurania glaucopis Gmelin, and to a lesser extent, female birds of this species, were the most frequent pollinators in the area evaluated, both edge and interior. Other species were identified as pollinators: Phaethornis ruber L., Ramphodon naevius Dumont, Eupetomena macroura Gmelin, and Amazilia fimbriata Gmelin. Of these, only P. ruber was found in both environments.

  1. Effects of landscape fragmentation on genetic diversity of Stipa ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-08-04

    Aug 4, 2009 ... Effects of landscape fragmentation on genetic diversity of Stipa krylovii ..... nation plant tends to anemophily, this pollination mode enable it to have the .... sity on newly isolated tropical islands: a test of a null hypothesis and.

  2. A quantitative analysis of forest fragmentation in Los Tuxtlas, southeast Mexico: patterns and implications for conservation Un análisis cuantitativo de la fragmentación de la selva de Los Tuxtlas en el sudeste de México: patrones e implicaciones para la conservación

    Directory of Open Access Journals (Sweden)

    EDUARDO MENDOZA

    2005-09-01

    Full Text Available Habitat loss is a critical threat to tropical biodiversity and its quantification constitutes a central conservation issue. Typically, assessments have been based on deforestation rates statistics. However, this overlooks the effects brought about by the spatial reconfiguration of the remaining habitat: fragmentation. We present an analysis of fragmentation in a Neotropical site aimed at: (a devising a protocol for its quantification, (b using such protocol to provide insights on the ecological consequences of fragmentation, (c exploring its applicability to address the hypothesis that forest size-inequality decreases with elevation, an indicator of habitat accessibility. We applied the Gini coefficient (G and the Lorenz curve to analyze fragment-size variation using a satellite-generated map. We also estimated edge effect, fragment shape and isolation. Remaining forest includes 1,005 fragments, ranging from 0.5 to 9.356 ha (median = 0.89. Size inequality was very high (G = 0.928, producing a flattened Lorenz curve. Forty percent of the fragments did not maintain an area free of a 30-m edge effect, and larger fragments showed a marked deviation from ideal circular forms. Eighty-four percent of the fragments lay further than 500 m from the largest forest tract and their size decreased with distance. Fragment size distribution changed with altitude: the Gini coefficient was lowest and forest coverage was greatest at the highest altitude, but inequality peaked at an intermediate elevation. Given the current pace of habitat deterioration, application of similar analyses may improve global assessments of tropical ecosystems and their perspectives for biodiversity conservationLa destrucción del hábitat es la principal amenaza para la biodiversidad tropical, por lo que su cuantificación constituye un aspecto central para la biología de la conservación. Usualmente, esta cuantificación se basa en el cálculo de las tasas de deforestaci

  3. Effects of Amphetamine and β-Endorphin Fragments on Maze Performance in Rats

    NARCIS (Netherlands)

    Boer, S. de; Bohus, B.

    1990-01-01

    Fragments of β-endorphin and amphetamine cause similar effects in some tests of maze behavior in rats. The present study served to compare the influence of amphetamine and two β-endorphin fragments [β-endorphin (βE)-(2-9) and βE-(2-16)] on maze behavior in more detail. In Experiment I no significant

  4. [Psychological Effects of Forest Therapy Program on Workers].

    Science.gov (United States)

    Ikei, Harumi; Koizumi, Haruka; Song, Chorong; Kouzuki, Mitsunori; Teratani, Seiichiro; Sakuma, Takahiro; Miyazaki, Yoshifumi

    2015-01-01

    To examine the psychological effects of forest therapy program on workers. The subjective symptoms index, a shortened version of the profile of mood states (POMS), and a semantic differential (SD) method were used to measure the psychological effects. The evaluations were performed 3 days before, during, and 1, 3, and 5 days after the forest therapy. The following results were obtained: (1) the subjective symptoms improved before breakfast and continued for 5 days; (2) the mood evaluated using POMS improved before breakfast and continued for 3 days; and (3) “comfortable,” “relaxed,” and “natural” feelings evaluated using the SD method were enhanced before breakfast, lunch, and dinner during forest therapy. These results provided scientific evidence of the psychological effects of forest therapy program on workers.

  5. Exploiting Growing Stock Volume Maps for Large Scale Forest Resource Assessment: Cross-Comparisons of ASAR- and PALSAR-Based GSV Estimates with Forest Inventory in Central Siberia

    Directory of Open Access Journals (Sweden)

    Christian Hüttich

    2014-07-01

    Full Text Available Growing stock volume is an important biophysical parameter describing the state and dynamics of the Boreal zone. Validation of growing stock volume (GSV maps based on satellite remote sensing is challenging due to the lack of consistent ground reference data. The monitoring and assessment of the remote Russian forest resources of Siberia can only be done by integrating remote sensing techniques and interdisciplinary collaboration. In this paper, we assess the information content of GSV estimates in Central Siberian forests obtained at 25 m from ALOS-PALSAR and 1 km from ENVISAT-ASAR backscatter data. The estimates have been cross-compared with respect to forest inventory data showing 34% relative RMSE for the ASAR-based GSV retrievals and 39.4% for the PALSAR-based estimates of GSV. Fragmentation analyses using a MODIS-based land cover dataset revealed an increase of retrieval error with increasing fragmentation of the landscape. Cross-comparisons of multiple SAR-based GSV estimates helped to detect inconsistencies in the forest inventory data and can support an update of outdated forest inventory stands.

  6. Assessing the utility WorldView-2 imagery for tree species mapping in a South African subtropical forest patch and the conservation implications: Dukuduku forest patch as case study

    CSIR Research Space (South Africa)

    Cho, Moses A

    2015-06-01

    Full Text Available Indigenous forest biome in South Africa is highly fragmented into patches of various sizes (most patches < 1 km (sup20). The utilization of timber and non-timber resources by poor rural communities living around protected forest patches produce...

  7. Thrown object testing of forest machine operator protective structures

    Science.gov (United States)

    S.E. Taylor; M.W. Veal; R.B. Rummer

    2003-01-01

    High-speed chains or rotating disks are commonly used to cut and process trees during forest harvesting operations. Mechanical failure or fatigue of these tools can lead to a potentially hazardous situation where fragments of chain or sawteeth are thrown through the operator enclosures on forest machines. This poster presentation discusses the development and...

  8. Effectiveness of community forestry in Prey Long forest, Cambodia.

    Science.gov (United States)

    Lambrick, Frances H; Brown, Nick D; Lawrence, Anna; Bebber, Daniel P

    2014-04-01

    Cambodia has 57% forest cover, the second highest in the Greater Mekong region, and a high deforestation rate (1.2%/year, 2005-2010). Community forestry (CF) has been proposed as a way to reduce deforestation and support livelihoods through local management of forests. CF is expanding rapidly in Cambodia. The National Forests Program aims to designate one million hectares of forest to CF by 2030. However, the effectiveness of CF in conservation is not clear due to a global lack of controlled comparisons, multiple meanings of CF, and the context-specific nature of CF implementation. We assessed the effectiveness of CF by comparing 9 CF sites with paired controls in state production forest in the area of Prey Long forest, Cambodia. We assessed forest condition in 18-20 randomly placed variable-radius plots and fixed-area regeneration plots. We surveyed 10% of households in each of the 9 CF villages to determine the proportion that used forest products, as a measure of household dependence on the forest. CF sites had fewer signs of anthropogenic damage (cut stems, stumps, and burned trees), higher aboveground biomass, more regenerating stems, and reduced canopy openness than control areas. Abundance of economically valuable species, however, was higher in control sites. We used survey results and geographic parameters to model factors affecting CF outcomes. Interaction between management type, CF or control, and forest dependence indicated that CF was more effective in cases where the community relied on forest products for subsistence use and income. © 2014 Society for Conservation Biology.

  9. Species richness and abundance of bats in fragments of the stational semidecidual forest, Upper Paraná River, southern Brazil

    Directory of Open Access Journals (Sweden)

    H. Ortêncio-Filho

    Full Text Available The Upper Paraná River floodplain is inserted in a region of the Mata Atlântica biome, which is a critical area to preserve. Due to the scarcity of researches about the chiropterofauna in this region, the present study investigated species richness and abundance of bats in remnants from the stational semidecidual forest of the Upper Paraná River, southern Brazil. Samplings were taken every month, from January to December 2006, using 32 mist nets with 8.0 x 2.5 m, resulting in 640 m²/h and totaling a capture effort of 87,040 m²/h. In order to estimate the species richness, the following estimators were employed Chao1 and Jack2. During the study, a total of 563 individuals belonging to 17 species (Artibeus planirostris, Artibeus lituratus, Carollia perspicillata, Platyrrhinus lineatus, Sturnira lilium, Artibeus fimbriatus, Myotis nigricans, Desmodus rotundus, Artibeus obscurus, Noctilio albiventris, Phylostomus discolor, Phylostomus hastatus, Chrotopterus auritus, Lasiurus ega, Chiroderma villosum, Pygoderma bilabiatum and Lasiurus blossevillii were captured. The estimated richness curves tended to stabilize, indicating that most of the species were sampled. Captured species represented 10% of the taxa recorded in Brazil and 28% in Paraná State, revealing the importance of this area for the diversity of bats. These findings indicate the need to determine actions aiming to restrict human activities in these forest fragments, in order to minimize anthropogenic impacts on the chiropterofauna.

  10. Rapid assessment of Wreathed Hornbill Aceros undulates (Aves: Bucerotidae populations and conservation issues in fragmented lowland tropical forests of Arunachal Pradesh, India

    Directory of Open Access Journals (Sweden)

    C.M. Krishna

    2012-11-01

    Full Text Available A rapid assessment of Wreathed Hornbills, their distribution and abundance was carried out in fragmented lowland tropical forests of Lower Dibang Valley District, Arunachal Pradesh, northeastern India from October 2010 to April 2011 using the total count method. A total of 62km distance was covered on foot to survey four study sites: Horupahar, Delo, Koronu and Injunu. Nine flocks of 172 hornbills were sighted. Aceros undulatus flock size ranged from 8-38 individuals with a mean of about 19.1 plus or minus 2.6. Illegal logging, hunting for bushmeat and other body parts (feathers, beak etc. for decorating the head gear and house interiors by the local tribals were observed as the major threats to the species in the study areas.

  11. Ethno-medicinal study of plants used for treatment of human ailments, with residents of the surrounding region of forest fragments of Paraná, Brazil.

    Science.gov (United States)

    Bolson, Mônica; Hefler, Sonia Marisa; Hefler, Sonia Regina; Dall'Oglio Chaves, Elisiane Inês; Gasparotto Junior, Arquimedes; Cardozo Junior, Euclides Lara

    2015-02-23

    This study aims to document the traditional knowledge on the use of medicinal plants in the neighborhood of the protected area "Parque Estadual da Cabeça do Cachorro", a fragment of seasonal semideciduous forests. This vegetation is intensely fragmented and disturbed; despite its importance there are few records of the traditional knowledge of medicinal species. Twenty-four residents in the neighborhood of the protected area "Parque Estadual da Cabeça do Cachorro" were interviewed. The residents were questioned about preparation techniques, recommended doses, ways of administration and healing properties of various parts of the plants and were invited to walk through the park to collect in situ some species of plants. The recognized medicinal species were identified and traditional knowledge was systematized. Quantitative indices (Informant Consensus Factor - FIC and Use Value - UV) were calculated. 115 species of medicinal plants belonging to 54 botanical families were cited. Asteraceae (n=14), Fabaceae (n=11), Myrtaceae (n=6), Bignoniaceae, Solanaceae and Verbenaceae (n=5) were the most species-rich. The highest use values were calculated for Achyrocline satureioides, Aristolochia triangularis and Bauhinia forficata (0.63). Moreover, the informants consensus about usages of medicinal plants ranges from 0.024 to 0.663, which shows high level of agreements among the informants for gastro-intestinal and respiratory system diseases. Furthermore, for the first time, new traditional medicinal uses of Asteraceae (Chromolaena pedunculosa Hook. & Arn.), Commelinaceae (Tradescantia fluminensis Vell.) and Polypodiaceae (Microgramma vacciniifolia Langsd. & Fisch.) species were reported. Present study revealed that the residents of the surrounding region of forest fragments of Paraná are rich in ethno-medicinal knowledge and rely on plant-based remedies for common health problems. As in many parts of Brazil knowledge of the past is combined with new knowledge that has

  12. Efficiency of playback for assessing the occurrence of five bird species in Brazilian Atlantic Forest fragments

    Directory of Open Access Journals (Sweden)

    Danilo Boscolo

    2006-12-01

    Full Text Available Playback of bird songs is a useful technique for species detection; however, this method is usually not standardized. We tested playback efficiency for five Atlantic Forest birds (White-browed Warbler Basileuterus leucoblepharus, Giant Antshrike Batara cinerea, Swallow-tailed Manakin Chiroxiphia caudata, Whiteshouldered Fire-eye Pyriglena leucoptera and Surucua Trogon Trogon surrucura for different time of the day, season of the year and species abundance at the Morro Grande Forest Reserve (South-eastern Brazil and at thirteen forest fragments in a nearby landscape. Vocalizations were broadcasted monthly at sunrise, noon and sunset, during one year. For B. leucoblepharus, C. caudata and T. surrucura, sunrise and noon were more efficient than sunset. Batara cinerea presented higher efficiency from July to October. Playback expanded the favourable period for avifaunal surveys in tropical forest, usually restricted to early morning in the breeding season. The playback was efficient in detecting the presence of all species when the abundance was not too low. But only B. leucoblepharus and T. surrucura showed abundance values significantly related to this efficiency. The present study provided a precise indication of the best daily and seasonal periods and a confidence interval to maximize the efficiency of playback to detect the occurrence of these forest species.A técnica de play-back é muito útil para a detecção de aves, mas este método geralmente não é padronizado. Sua eficiência em atestar a ocorrência de cinco espécies de aves da Mata Atlântica (Pula-pula-assobiador Basileuterus leucoblepharus, Batará Batara cinerea, Tangará Chiroxiphia caudata, Olho-de-fogo Pyriglena leucoptera e Surucuá-de-barriga-vermelha Trogon surrucura foi analisada de acordo com o horário do dia, estação do ano e abundância das espécies na Reserva Florestal do Morro Grande (São Paulo, Brasil e em treze fragmentos florestais de uma paisagem adjacente

  13. Guidelines of handling and management of forest fragments in the municipality of Murcia

    International Nuclear Information System (INIS)

    Zapata Perez, V. M.; Robledano, F.; Jimenez, M. V.; Farinos, P.

    2009-01-01

    Most forest systems in the municipality of Murcia are old afforestations with Pinus halepensis. In many sites, the unsuitability of the habitat for this species has led to a poor tree development, and to a strong competence for resources that increases environmental stress. We have studied patches of forests protected by the municipality of Murcia (Forest Parks of Majal Blanco, Montepinar and Los Polvorines) and other unprotected patches close to these. The objective was to study their composition, structure and ecological dynamics. (Author) 3 refs.

  14. Aboveground biomass variability across intact and degraded forests in the Brazilian Amazon

    Science.gov (United States)

    Marcos Longo; Michael Keller; Maiza N. dos-Santos; Veronika Leitold; Ekena R. Pinagé; Alessandro Baccini; Sassan Saatchi; Euler M. Nogueira; Mateus Batistella; Douglas C. Morton

    2016-01-01

    Deforestation rates have declined in the Brazilian Amazon since 2005, yet degradation from logging, fire, and fragmentation has continued in frontier forests. In this study we quantified the aboveground carbon density (ACD) in intact and degraded forests using the largest data set of integrated forest inventory plots (n = 359) and airborne lidar data (18,000 ha)...

  15. Analysing Blast and Fragment Penetration Effects on Composite Helicopter Structures

    National Research Council Canada - National Science Library

    van't Hof, C; Herlaar, K; Luyten, J. M; van der Jagt, M. J

    2005-01-01

    .... The last decades the threat of helicopters has increased in military circumstances. Consequently the helicopters will be exposed to weapon effects like high blast loads and fragment impact more frequently...

  16. Payment for multiple forest benefits alters the effect of tree disease on optimal forest rotation length.

    Science.gov (United States)

    Macpherson, Morag F; Kleczkowski, Adam; Healey, John R; Hanley, Nick

    2017-04-01

    Forests deliver multiple benefits both to their owners and to wider society. However, a wave of forest pests and pathogens is threatening this worldwide. In this paper we examine the effect of disease on the optimal rotation length of a single-aged, single rotation forest when a payment for non-timber benefits, which is offered to private forest owners to partly internalise the social values of forest management, is included. Using a generalisable bioeconomic framework we show how this payment counteracts the negative economic effect of disease by increasing the optimal rotation length, and under some restrictive conditions, even makes it optimal to never harvest the forest. The analysis shows a range of complex interactions between factors including the rate of spread of infection and the impact of disease on the value of harvested timber and non-timber benefits. A key result is that the effect of disease on the optimal rotation length is dependent on whether the disease affects the timber benefit only compared to when it affects both timber and non-timber benefits. Our framework can be extended to incorporate multiple ecosystem services delivered by forests and details of how disease can affect their production, thus facilitating a wide range of applications.

  17. Microhabitats occupied by Myxomycetes in the Brazilian Atlantic Forest: Heliconiaceae inflorescences.

    Science.gov (United States)

    Cavalcanti, L H; Ferreira, I N; Bezerra, A C C; Costa, A A A

    2015-11-01

    The occurrence of Myxomycetes in Heliconia psittacorum L.f. inflorescences was researched within four conservation units located in Northeast Brazil, aiming at evaluating the occupation of this microhabitat in fragments of Atlantic Forest along an altitude between 30-750 m. Inflorescences attached to the plant were examined; dead flowers and bracts were collected to assemble moist chambers (368). Four families, four genera and 10 species were recorded. A preference was evidenced for a basic pH substrate and a predominance of calcareous species (5:1). The composition of the myxobiota in fragments pertaining to altitudes above 400 m was similar and differed significantly from the one found in fragments of lowland forests (<100 m). Physarum compressum and Arcyria cinerea are the most characteristic species of the studied myxobiota.

  18. Effect of Stemming to Burden Ratio and Powder Factor on Blast Induced Rock Fragmentation- A Case Study

    Science.gov (United States)

    Prasad, Sandeep; Choudhary, B. S.; Mishra, A. K.

    2017-08-01

    Rock fragmentation size is very important parameters for economical point of view in any surface mining. Rock fragment size direct effects on the costs of drilling, blasting, loading, secondary blasting and crushing. The main purpose of this study is to investigate effect of blast design parameters such as burden, blast hole length, stemming length, and powder factor on rock fragmentation. The fragment sizes (MFS, K50, m), and maximum fragment size (K95, m) of rock were determined by using the computer software. For every blast, after blasting operation, the images of whole muck pile are captured and there images were used for fragmentation analysis by using the Fragalyst software. It was observed that the optimal fragment size (MFS, K50, m and maximum fragment size, K95, m) of rock depends strongly on the blast design parameters and explosive parameters.

  19. Anomalous nuclear fragments

    International Nuclear Information System (INIS)

    Karmanov, V.A.

    1983-01-01

    Experimental data are given, the status of anomalon problem is discussed, theoretical approaches to this problem are outlined. Anomalons are exotic objects formed following fragmentation of nuclei-targets under the effect of nuclei - a beam at the energy of several GeV/nucleon. These nuclear fragments have an anomalously large cross section of interaction and respectively, small free path, considerably shorter than primary nuclei have. The experimental daa are obtained in accelerators following irradiation of nuclear emulsions by 16 O, 56 Fe, 40 Ar beams, as well as propane by 12 C beams. The experimental data testify to dependence of fragment free path on the distance L from the point of the fragment formation. A decrease in the fragment free path is established more reliably than its dependence on L. The problem of the anomalon existence cannot be yet considered resolved. Theoretical models suggested for explanation of anomalously large cross sections of nuclear fragment interaction are variable and rather speculative

  20. Human impacts on genetic diversity in forest ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Ledig, F T [Inst. of Forest Genetics, Southwest Forest and Range Experiment Station, USDA Forest Service, Berkeley (US)

    1992-01-01

    Humans have converted forest to agricultural and urban uses, exploited species, fragmented wildlands, changed the demographic structure of forests, altered habitat, degraded the environment with atmospheric and soil pollutants, introduced exotic pests and competitors, and domesticated favored species. None of these activities is new; perhaps with the exception of atmospheric pollution, they date back to prehistory. All have impacted genetic diversity by their influence on the evolutionary processes of extinction, selection, drift, gene flow, and mutation, sometimes increasing diversity, as int he case of domestication, but often reducing it. Even in the absence of changes in diversity, mating systems were altered, changing the genetic structure of populations. Demographic changes influenced selection by increasing the incidence of disease. Introduction of exotic diseases, insects, mammalian herbivores, and competing vegetation has had the best-documented effects on genetic diversity, reducing both species diversity and intraspecific diversity. Deforestation has operated on a vast scale to reduce diversity by direct elimination of locally-adapted populations. Atmospheric pollution and global warming will be a major threat in the near future, particularly because forests are fragmented and migration is impeded. Past impacts can be estimated with reference to expert knowledge, but hard data are often laching. Baselines are needed to quantify future impacts and provide an early warning of problems. Genetic inventories of indicator species can provide the baselines against which to measure changes in diversity. (author) (44 refs.).

  1. Towards restoration of Hawaiian tropical dry forests: the Kaupulehu outplanting programme

    Science.gov (United States)

    Susan Cordell; Moana McClellan; Yvonne Yarber Carter; Lisa J. Hadway

    2008-01-01

    Hawaiian tropical dry forests contain diverse assemblages of woody canopy species, including many endemic and endangered species that warrant conservation attention before completely disappearing. Today, tropical dry forests in Hawaii are not viable ecosystems. Poor land use practices, fragmentation, non-native plant invasions, and inadequate native vegetation...

  2. Fungal Community and Ligninolytic Enzyme Activities in Quercus deserticola Trel. Litter from Forest Fragments with Increasing Levels of Disturbance

    Directory of Open Access Journals (Sweden)

    Jesús A. Rosales-Castillo

    2017-12-01

    Full Text Available Litter fungal communities and their ligninolytic enzyme activities (laccase, Mn-peroxidase, and lignin-peroxidase play a vital role in forest biogeochemical cycles by breaking down plant cell wall polymers, including recalcitrant lignin. However, litter fungal communities and ligninolytic enzyme activities have rarely been studied in Neotropical, non-coniferous forests. Here, we found no significant differences in litter ligninolytic enzyme activities from well preserved, moderately disturbed, and heavily disturbed Quercus deserticola Trel. forests in central Mexico. However, we did find seasonal effects on enzyme activities: during the dry season, we observed lower laccase, and increased Mn-peroxidase and lignin-peroxidase activities, and in the rainy season, Mn-peroxidase and lignin-peroxidase activities were lower, while laccase activity peaked. Fungal diversity (Shannon-Weaver and Simpson indices based on ITS-rDNA analyses decreased with increased disturbance, and principal component analysis showed that litter fungal communities are structured differently between forest types. White-rot Polyporales and Auriculariales only occurred in the well preserved forest, and a high number of Ascomycota were shared between forests. While the degree of forest disturbance significantly affected the litter fungal community structure, the ligninolytic enzyme activities remained unaffected, suggesting functional redundancy and a possible role of generalist Ascomycota taxa in litter delignification. Forest conservation and restoration strategies must account for leaf litter and its associated fungal community.

  3. Behavioral effects of the [beta]-endorphin fragment 2-9

    NARCIS (Netherlands)

    Ree, J.M. van; Wied, D. de

    1982-01-01

    The non-opiate β-endorphin (βE) fragment des-Tyr-α-endorphin (βE 2–16) delays extinction of pole jumping avoidance behavior and potentiates apomorphine-induced stereotyped sniffing. Structure-activity relationship studies revealed that the active moiety mediating these psycho-stimulant effects

  4. Charcoal records reveal past occurrences of disturbances in the forests of the Kisangani region, Democratic Republic of the Congo

    Science.gov (United States)

    Tshibamba Mukendi, John; Hubau, Wannes; Ntahobavuka, Honorine; Boyemba Bosela, Faustin; De Cannière, Charles; Beeckman, Hans

    2014-05-01

    Past disturbances have modified local density, structure and floristic composition of Central African rainforests. As such, these perturbations represent a driving force for forest dynamics and they were presumably at the origin of present-day forest mosaics. One of the most prominent disturbances within the forest is fire, leaving behind charcoal as a witness of past forest dynamics. Quantification and identification of ancient charcoal fragments found in soil layers (= pedoanthracology) allows a detailed reconstruction of forest history, including the possible occurrence of past perturbations. The primary objective of this study is to present palaeoenvironmental evidence for the existence of past disturbances in the forests of the Kisangani region (Democratic Republic of the Congo) using a pedoanthracological approach. We quantified and identified charcoal fragments from pedoanthracological excavations in the Yangambi, Yoko, Masako and Kole forest regions. Charcoal sampling was conducted in pit intervals of 10 cm, whereby pottery fragments were also registered and quantified. Floristic identifications were conducted using former protocols based on wood anatomy, which is largely preserved after charcoalification. 14 excavations were conducted and charcoal was found in most pit intervals. Specifically, 52 out of 56 sampled intervals from the Yangambi forest contained charcoal, along with 47 pit intervals from the Yoko forest reserve, 34 pit intervals from the Masako forest and 16 from the Kole forest. Highest specific anthracomasses were recorded in Yoko (167 mg charcoal per kg soil), followed by Yangambi (133 mg/kg), Masako (71,89 mg/kg) and finally Kole (42,4 mg/kg). Charcoal identifications point at a manifest presence of the family of Fabaceae (Caesalpinioideae). This family is characteristic for the tropical humid rainforest. The presence of charcoal fragments from these taxa, associated with pottery sherds on different depths within the profiles, suggests

  5. Survival of male Tengmalm’s owls increases with cover of old forest in the territory

    NARCIS (Netherlands)

    Hakkarainen, H.; Korpimäki, E.; Laaksonen, T.; Nikula, A.; Suorsa, P.

    2008-01-01

    The loss and fragmentation of forest habitats have been considered to pose a worldwide threat to the viability of forest-dwelling animals, especially to species that occupy old forests. We investigated whether the annual survival of sedentary male Tengmalm’s owls Aegolius funereus was associated

  6. Variable effects of climate on forest growth in relation to climate extremes, disturbance, and forest dynamics.

    Science.gov (United States)

    Itter, Malcolm S; Finley, Andrew O; D'Amato, Anthony W; Foster, Jane R; Bradford, John B

    2017-06-01

    Changes in the frequency, duration, and severity of climate extremes are forecast to occur under global climate change. The impacts of climate extremes on forest productivity and health remain difficult to predict due to potential interactions with disturbance events and forest dynamics-changes in forest stand composition, density, size and age structure over time. Such interactions may lead to non-linear forest growth responses to climate involving thresholds and lag effects. Understanding how forest dynamics influence growth responses to climate is particularly important given stand structure and composition can be modified through management to increase forest resistance and resilience to climate change. To inform such adaptive management, we develop a hierarchical Bayesian state space model in which climate effects on tree growth are allowed to vary over time and in relation to past climate extremes, disturbance events, and forest dynamics. The model is an important step toward integrating disturbance and forest dynamics into predictions of forest growth responses to climate extremes. We apply the model to a dendrochronology data set from forest stands of varying composition, structure, and development stage in northeastern Minnesota that have experienced extreme climate years and forest tent caterpillar defoliation events. Mean forest growth was most sensitive to water balance variables representing climatic water deficit. Forest growth responses to water deficit were partitioned into responses driven by climatic threshold exceedances and interactions with insect defoliation. Forest growth was both resistant and resilient to climate extremes with the majority of forest growth responses occurring after multiple climatic threshold exceedances across seasons and years. Interactions between climate and disturbance were observed in a subset of years with insect defoliation increasing forest growth sensitivity to water availability. Forest growth was particularly

  7. Variable effects of climate on forest growth in relation to climate extremes, disturbance, and forest dynamics

    Science.gov (United States)

    Itter, Malcolm S.; Finley, Andrew O.; D'Amato, Anthony W.; Foster, Jane R.; Bradford, John B.

    2017-01-01

    Changes in the frequency, duration, and severity of climate extremes are forecast to occur under global climate change. The impacts of climate extremes on forest productivity and health remain difficult to predict due to potential interactions with disturbance events and forest dynamics—changes in forest stand composition, density, size and age structure over time. Such interactions may lead to non-linear forest growth responses to climate involving thresholds and lag effects. Understanding how forest dynamics influence growth responses to climate is particularly important given stand structure and composition can be modified through management to increase forest resistance and resilience to climate change. To inform such adaptive management, we develop a hierarchical Bayesian state space model in which climate effects on tree growth are allowed to vary over time and in relation to past climate extremes, disturbance events, and forest dynamics. The model is an important step toward integrating disturbance and forest dynamics into predictions of forest growth responses to climate extremes. We apply the model to a dendrochronology data set from forest stands of varying composition, structure, and development stage in northeastern Minnesota that have experienced extreme climate years and forest tent caterpillar defoliation events. Mean forest growth was most sensitive to water balance variables representing climatic water deficit. Forest growth responses to water deficit were partitioned into responses driven by climatic threshold exceedances and interactions with insect defoliation. Forest growth was both resistant and resilient to climate extremes with the majority of forest growth responses occurring after multiple climatic threshold exceedances across seasons and years. Interactions between climate and disturbance were observed in a subset of years with insect defoliation increasing forest growth sensitivity to water availability. Forest growth was particularly

  8. The tree-species-specific effect of forest bathing on perceived anxiety alleviation of young-adults in urban forests

    Directory of Open Access Journals (Sweden)

    Haoming Guan

    2017-12-01

    Full Text Available Forest bathing, i.e. spending time in a forest to walk, view and breathe in a forest, can alleviate the mental depression of visitors, but the tree-species-specific effect of this function by the urban forest is unknown. In this study, sixty-nine university students (aged 19-22, male ratio: 38% were recruited as participants to visit urban forests dominated by birch (Betula platyphylla Suk., maple (Acer triflorum Komarov and oak (Quercus mongolica Fisch. ex Ledeb trees in a park at the center of Changchun City, Northeast China. In the maple forest only the anxiety from study interest was decreased, while the anxiety from employment pressure was alleviated to the most extent in the birch forest. Participants perceived more anxiety from lesson declined in the oak forest than in the birch forest. Body parameters of weight and age were correlated with the anti-anxiety scores. In the oak forest, female participants can perceive more anxiety alleviation than male participants. For university students, forest bathing in our study can promote their study interest. Forest bathing can be more effective to alleviate the anxiety of young adults with greater weight. The birch forest was recommended to be visited by students to alleviate the pressure of employment worry, and the oak forest was recommended to be visited by girls.

  9. Forests and water: effects of forest management on floods, sedimentation, and water supply

    Science.gov (United States)

    Henry W. Anderson; Marvin D. Hoover; Kenneth G. Reinhart

    1976-01-01

    From the background of more than 100 years' collective experience in watershed research and from comprehensive review of the literature of forest hydrology, the authors summarize what is known about the forest's influence on the water resource, particularly the effects of current forestry practices. They first examine the fundamental hydrologic processes in...

  10. Soil pretreatment and fast cell lysis for direct polymerase chain reaction from forest soils for terminal restriction fragment length polymorphism analysis of fungal communities

    Directory of Open Access Journals (Sweden)

    Fei Cheng

    Full Text Available Abstract Humic substances in soil DNA samples can influence the assessment of microbial diversity and community composition. Using multiple steps during or after cell lysis adds expenses, is time-consuming, and causes DNA loss. A pretreatment of soil samples and a single step DNA extraction may improve experimental results. In order to optimize a protocol for obtaining high purity DNA from soil microbiota, five prewashing agents were compared in terms of their efficiency and effectiveness in removing soil contaminants. Residual contaminants were precipitated by adding 0.6 mL of 0.5 M CaCl2. Four cell lysis methods were applied to test their compatibility with the pretreatment (prewashing + Ca2+ flocculation and to ultimately identify the optimal cell lysis method for analyzing fungal communities in forest soils. The results showed that pretreatment with TNP + Triton X-100 + skim milk (100 mM Tris, 100 mM Na4P2O7, 1% polyvinylpyrrolidone, 100 mM NaCl, 0.05% Triton X-100, 4% skim milk, pH 10.0 removed most soil humic contaminants. When the pretreatment was combined with Ca2+ flocculation, the purity of all soil DNA samples was further improved. DNA samples obtained by the fast glass bead-beating method (MethodFGB had the highest purity. The resulting DNA was successfully used, without further purification steps, as a template for polymerase chain reaction targeting fungal internal transcribed spacer regions. The results obtained by terminal restriction fragment length polymorphism analysis indicated that the MethodFGB revealed greater fungal diversity and more distinctive community structure compared with the other methods tested. Our study provides a protocol for fungal cell lysis in soil, which is fast, convenient, and effective for analyzing fungal communities in forest soils.

  11. MILDLY-DAMAGED FOREST AREAS IN BOREAL FORESTS OF THE WORLD. THE ORIGIN, DEVELOPMENT, IMPOTANCE AND PROBABLE FUTURE OF THE CONCEPT OF MILDLY-DAMAGED FOREST AREAS WITH REGARD TO BOREAL FORESTS

    Directory of Open Access Journals (Sweden)

    I.V. Zhuravleva

    2016-03-01

    Full Text Available The most important environmental goals at the global level, relating to forests, are conservation of biological diversity in the natural environment of its habitat and preservation of the environmental role (especially regarding the climate of forests. Major forest areas, not fragmented by infrastructure and preserving the diversity of relationships between landscape elements, are of crucial importance for solution of both these problems. Since many decisions, concerning conservation and management, are taken at inter-regional and inter-state levels or within the framework of various international processes, it is important to have clear and uniform criteria for identification of such areas. The article deals with occurrence, development and current state of the most common concepts of allocation thereof – the concept of mildly-damaged forest areas, based on the use of remote sensing data, especially images from Landsat satellites. The article substantiates a necessity of further development and update of the concept of intact forest landscapes: unification of approaches to their identification near northern boundaries of forests, adjustment of approaches to registering impacts of forest fires in the context of global climate change and land-use practices, adaption to new public data of remote sensing of the Earth.

  12. Boreal forests

    International Nuclear Information System (INIS)

    Essen, P.A.; Ericson, L.; Ehnstroem, B.; Sjoeberg, K.

    1997-01-01

    We review patterns and processes important for biodiversity in the Fennoscandian boreal forest, describe man's past and present impact and outline a strategy for conservation. Natural disturbances, particularly forest fire and gap formation, create much of the structural and functional diversity in forest ecosystems. Several boreal plants and animals are adapted to fire regimes. In contrast, many organisms (epiphytic lichens, fungi, invertebrates) require stable conditions with long continuity in canopy cover. The highly mechanized and efficient Fennoscandian forest industry has developed during the last century. The result is that most natural forest has been lost and that several hundreds of species, mainly cryptograms and invertebrates, are threatened. The forestry is now in a transition from exploitation to sustainable production and has recently incorporated some measures to protect the environment. Programmes for maintaining biodiversity in the boreal forest should include at least three parts. First, the system of forest reserves must be significantly improved through protection of large representative ecosystems and key biotopes that host threatened species. Second, we must restore ecosystem properties that have been lost or altered. Natural disturbance regimes must be allowed to operate or be imitated, for example by artificial fire management. Stand-level management should particularly increase the amount of coarse woody debris, the number of old deciduous trees and large, old conifers, by using partial cutting. Third, natural variation should also be mimicked at the landscape level, for example, by reducing fragmentation and increasing links between landscape elements. Long-term experiments are required to evaluate the success of different management methods in maintaining biodiversity in the boreal forest. (au) 260 refs

  13. [Environmental variability and physiological responses from Polylepis cuadrijuga (Rosaceae) in a fragmented environment in the Páramo de la Rusia (Colombia].

    Science.gov (United States)

    Ramos, Carolina; Buitrago, Sindy P; Pulido, Karen L; Vanegas, Leidy J

    2013-03-01

    Polylepis cuadrijuga is an endemic woody species from the Colombian Eastern range, being the only tree species with capacity to live on mountainous environments beyond 4 000m of altitude. Grazing and agriculture have transformed at least 30% of the Guantiva-La Rusia region, turning continuous extensions of high Andean forest in a fragmented landscape, and P cuadrijuga remnants have become smaller and more isolated. The aim of this study was to establish the environmental differences between a matrix of grazing pastures and the interior of fragments, to evaluate the physiological responses of P cuadrijuga and determining the edge effect. Air temperature and humidity, soil water holding capacity and photosynthetic active radiation, were measured along two 50X2m transects from the matrix toward the center of fragment. Six trees inside the transects were chosen in each one of three sites (matrix, edge and interior) to measure the index chlorophyll content and to sample leaves to assess the leaf area, leaf biomass, specific leaf area, anatomy, health condition and pubescence. Results showed significantly differences between the matrix and the interior and intermediate conditions in the edge. Radiation, temperature and air desiccation were higher in the matrix than in the interior, submitting P cuadrijuga trees to a stressing environment, where they presented stratification of epidermis and palisade parenchyma, and a higher leaf area, leaf thickness, chlorophyll content and pubescence than in the interior of fragments. All these physiological traits allow avoiding the photoxidation and damages by freezing or desiccation to which trees are exposed in a grazing pasture matrix. Nevertheless, there was a higher frequency of healthy leaves in the interior of fragments, showing that high irradiations and extreme air temperature and humidity reach adversely affect to P cuadrijuga. Individuals in the edge had ecophysiological traits similar to the matrix ones, which confirm an

  14. Effect of forest on sediment yield in North China

    Directory of Open Access Journals (Sweden)

    Yu Xinxiao Prof.

    2013-06-01

    Full Text Available Forest-sediment relationship is a hot and important issue in Ecohydrology studies. China has implemented many large-scale reforestation programmes in the last decades to address the growing soil erosion and desertification. In this study, we made statistical and graphic analyses on the long-term hydrological data of the 39 watersheds in the rocky mountain area of the North China, and then we were able to analyze the effect of forest on sediment yield. Our results show that the effect is weak in the lees-precipitation regions (when MAP 500 mm, the impact of forest on reducing sediment yield is different with the varied forest coverage (f, the relationship between the sediment yield and forest coverage show a quadratic polynomial.

  15. Patterns and predictors of β-diversity in the fragmented Brazilian Atlantic forest: a multiscale analysis of forest specialist and generalist birds.

    Science.gov (United States)

    Morante-Filho, José Carlos; Arroyo-Rodríguez, Víctor; Faria, Deborah

    2016-01-01

    Biodiversity maintenance in human-altered landscapes (HALs) depends on the species turnover among localities, but the patterns and determinants of β-diversity in HALs are poorly known. In fact, declines, increases and neutral shifts in β-diversity have all been documented, depending on the landscape, ecological group and spatial scale of analysis. We shed some light on this controversy by assessing the patterns and predictors of bird β-diversity across multiple spatial scales considering forest specialist and habitat generalist bird assemblages. We surveyed birds from 144 point counts in 36 different forest sites across two landscapes with different amount of forest cover in the Brazilian Atlantic forest. We analysed β-diversity among points, among sites and between landscapes with multiplicative diversity partitioning of Hill numbers. We tested whether β-diversity among points was related to within-site variations in vegetation structure, and whether β-diversity among sites was related to site location and/or to differences among sites in vegetation structure and landscape composition (i.e. per cent forest and pasture cover surrounding each site). β-diversity between landscapes was lower than among sites and among points in both bird assemblages. In forest specialist birds, the landscape with less forest cover showed the highest β-diversity among sites (bird differentiation among sites), but generalist birds showed the opposite pattern. At the local scale, however, the less forested landscape showed the lowest β-diversity among points (bird homogenization within sites), independently of the bird assemblage. β-diversity among points was weakly related to vegetation structure, but higher β-diversity values were recorded among sites that were more isolated from each other, and among sites with higher differences in landscape composition, particularly in the less forested landscape. Our findings indicate that patterns of bird β-diversity vary across scales

  16. Conservation of forest birds: evidence of a shifting baseline in community structure.

    Science.gov (United States)

    Rittenhouse, Chadwick D; Pidgeon, Anna M; Albright, Thomas P; Culbert, Patrick D; Clayton, Murray K; Flather, Curtis H; Huang, Chengquan; Masek, Jeffrey G; Stewart, Susan I; Radeloff, Volker C

    2010-08-02

    already fall below the habitat amount threshold where fragmentation effects become important predictors of forest bird community structure.

  17. Strain-energy effects on dynamic fragmentation

    International Nuclear Information System (INIS)

    Glenn, L.A.; Chudnovsky, A.

    1986-01-01

    Grady's model of the dynamic fragmentation process, in which the average fragment size is determined by balancing the local kinetic energy and the surface energy, is modified to include the stored elastic (strain) energy. The revised model predicts that the strain energy should dominate for brittle materials, with low fracture toughness and high fracture-initiation stress. This conclusion is not borne out, however, by limited experimental data on brittle steels, even when the kinetic-energy density is small compared with the strain-energy density

  18. Fission fragment simulation of fusion neutron radiation effects on bulk mechanical properties

    International Nuclear Information System (INIS)

    Van Konynenburg, R.A.; Mitchell, J.B.; Guinan, M.W.; Stuart, R.N.; Borg, R.J.

    1976-01-01

    This research demonstrates the feasibility of using homogeneously-generated fission fragments to simulate high-fluence fusion neutron damage in niobium tensile specimens. This technique makes it possible to measure radiation effects on bulk mechanical properties at high damage states, using conveniently short irradiation times. The primary knock-on spectrum for a fusion reactor is very similar to that produced by fission fragments, and nearly the same ratio of gas atoms to displaced atoms is produced in niobium. The damage from fission fragments is compared to that from fusion neutrons and fission reactor neutrons in terms of experimentally measured yield strength increase, transmission electron microscopy (TEM) observations, and calculated damage energies

  19. Disentangling the environmental heterogeneity, floristic distinctiveness and current threats of tropical dry forests in Colombia

    Science.gov (United States)

    González-M, Roy; García, Hernando; Isaacs, Paola; Cuadros, Hermes; López-Camacho, René; Rodríguez, Nelly; Pérez, Karen; Mijares, Francisco; Castaño-Naranjo, Alejandro; Jurado, Rubén; Idárraga-Piedrahíta, Álvaro; Rojas, Alicia; Vergara, Hernando; Pizano, Camila

    2018-04-01

    Tropical dry forests (TDFs) have been defined as a single biome occurring mostly in the lowlands where there is a marked period of drought during the year. In the Neotropics, dry forests occur across contrasting biogeographical regions that contain high beta diversity and endemism, but also strong anthropogenic pressures that threaten their biodiversity and ecological integrity. In Colombia, TDFs occur across six regions with contrasting soils, climate, and anthropogenic pressures, therefore being ideal for studying how these variables relate to dry forest species composition, successional stage and conservation status. Here, we explore the variation in climate and soil conditions, floristic composition, forest fragment size and shape, successional stage and anthropogenic pressures in 571 dry forest fragments across Colombia. We found that TDFs should not be classified solely on rainfall seasonality, as high variation in precipitation and temperature were correlated with soil characteristics. In fact, based on environmental factors and floristic composition, the dry forests of Colombia are clustered in three distinctive groups, with high species turnover across and within regions, as reported for other TDF regions of the Neotropics. Widely distributed TDF species were found to be generalists favored by forest disturbance and the early successional stages of dry forests. On the other hand, TDF fragments were not only small in size, but highly irregular in shape in all regions, and comprising mostly early and intermediate successional stages, with very little mature forest left at the national level. At all sites, we detected at least seven anthropogenic disturbances with agriculture, cattle ranching and human infrastructure being the most pressing disturbances throughout the country. Thus, although environmental factors and floristic composition of dry forests vary across regions at the national level, dry forests are equally threatened by deforestation, degradation

  20. Uso de florestas secundárias por aves de sub-bosque em uma paisagem fragmentada na Amazônia central Use of secondary forests by understory birds in a fragmented landscape in central Amazonia

    Directory of Open Access Journals (Sweden)

    João Vitor Campos e Silva

    2012-03-01

    secondary forests that are established in the abandoned areas. The trend is an increase in secondary forests cover, resulting in a mosaic of primary forest (FP and fragments separated by an array of secondary forests (FS. In this scenario, the prediction of a massive extinction could be wrong if many species could survive in the secondary forests. To assess the importance of FS for the understory birds we sampled areas in regeneration and a continuous forest of a fragmented landscape. We conducted mist netting (24 nets/day for six consecutive days/month, for 8 months (May-November in 2009. Some forest species as do not seem to be adapted to the secondary forest environment and their occurrences are restricted to continuous forest environments. But most focal species showed no significant difference in apparent survival rates between the enviroments, suggesting that these species inhabit the secondary forest and the primary forest similarly. Because most of the matrix in fragmented landscapes are composed by secondary forests, such results highlights the conservation value that these habitats present in the long term. Thus, FS should be regarded as dynamic matrix that not only allows the movement of individuals but also function as habitat for many species typical of FP.

  1. Species- and sex-specific connectivity effects of habitat fragmentation in a suite of woodland birds.

    Science.gov (United States)

    Amos, Nevil; Harrisson, Katherine A; Radford, James Q; White, Matt; Newell, Graeme; Mac Nally, Ralph; Sunnucks, Paul; Pavlova, Alexandra

    2014-06-01

    Loss of functional connectivity following habitat loss and fragmentation could drive species declines. A comprehensive understanding of fragmentation effects on functional connectivity of an ecological assemblage requires investigation of multiple species with different mobilities, at different spatial scales, for each sex, and in different landscapes. Based on published data on mobility and ecological responses to fragmentation of 10 woodland-dependent birds, and using simulation studies, we predicted that (1) fragmentation would impede dispersal and gene flow of eight "decliners" (species that disappear from suitable patches when landscape-level tree cover falls below species-specific thresholds), but not of two "tolerant" species (whose occurrence in suitable habitat patches is independent of landscape tree cover); and that fragmentation effects would be stronger (2) in the least mobile species, (3) in the more philopatric sex, and (4) in the more fragmented region. We tested these predictions by evaluating spatially explicit isolation-by-landscape-resistance models of gene flow in fragmented landscapes across a 50 x 170 km study area in central Victoria, Australia, using individual and population genetic distances. To account for sex-biased dispersal and potential scale- and configuration-specific effects, we fitted models specific to sex and geographic zones. As predicted, four of the least mobile decliners showed evidence of reduced genetic connectivity. The responses were strongly sex specific, but in opposite directions in the two most sedentary species. Both tolerant species and (unexpectedly) four of the more mobile decliners showed no reduction in gene flow. This is unlikely to be due to time lags because more mobile species develop genetic signatures of fragmentation faster than do less mobile ones. Weaker genetic effects were observed in the geographic zone with more aggregated vegetation, consistent with gene flow being unimpeded by landscape

  2. Threshold responses of forest birds to landscape changes around exurban development.

    Directory of Open Access Journals (Sweden)

    Marcela Suarez-Rubio

    Full Text Available Low-density residential development (i.e., exurban development is often embedded within a matrix of protected areas and natural amenities, raising concern about its ecological consequences. Forest-dependent species are particularly susceptible to human settlement even at low housing densities typical of exurban areas. However, few studies have examined the response of forest birds to this increasingly common form of land conversion. The aim of this study was to assess whether, how, and at what scale forest birds respond to changes in habitat due to exurban growth. We evaluated changes in habitat composition (amount and configuration (arrangement for forest and forest-edge species around North America Breeding Bird Survey (BBS stops between 1986 and 2009. We used Threshold Indicator Taxa Analysis to detect change points in species occurrence at two spatial extents (400-m and 1-km radius buffer. Our results show that exurban development reduced forest cover and increased habitat fragmentation around BBS stops. Forest birds responded nonlinearly to most measures of habitat loss and fragmentation at both the local and landscape extents. However, the strength and even direction of the response changed with the extent for several of the metrics. The majority of forest birds' responses could be predicted by their habitat preferences indicating that management practices in exurban areas might target the maintenance of forested habitats, for example through easements or more focused management for birds within existing or new protected areas.

  3. Structure of a fragment of Atlantic Rainforest in regeneration with occurrence of Caesalpinia echinata Lam. (brazil-wood

    Directory of Open Access Journals (Sweden)

    Liliane Baldan Zani

    2012-11-01

    Full Text Available This study aimed to evaluate the phytosociological structure of a remaining fragment of Atlantic Rainforest undergoing regeneration in the town of Aracruz-ES in a forest board with natural occurrence of Caesalpinia echinata Lam. We installed 10 sample units (plots of 10 x 50m, sampling all individuals with DBH≥5cm and <10cm. Altogether, we sampled 500 individuals distributed into 181 species. The richest families were Leguminosae (35, Sapotaceae (18, and Myrtaceae (14. The most important species were Caesalpinia echinata Lam., Eugenia tinguyensis Cambess., and Pterocarpus rohrii Vahl. The Shannon index (H’ was 4.89 and the equability (J’ was 0.94. This area is one of the last remaining fragments with brazil-wood from the state of Espirito Santo and the population of this species is well preserved at the site, it occurs very frequently, emphasizing the importance of preserving small forest fragments to conserve biodiversity.

  4. Modelling tropical forests response to logging

    Science.gov (United States)

    Cazzolla Gatti, Roberto; Di Paola, Arianna; Valentini, Riccardo; Paparella, Francesco

    2013-04-01

    Tropical rainforests are among the most threatened ecosystems by large-scale fragmentation due to human activity such as heavy logging and agricultural clearance. Although, they provide crucial ecosystem goods and services, such as sequestering carbon from the atmosphere, protecting watersheds and conserving biodiversity. In several countries forest resource extraction has experienced a shift from clearcutting to selective logging to maintain a significant forest cover and understock of living biomass. However the knowledge on the short and long-term effects of removing selected species in tropical rainforest are scarce and need to be further investigated. One of the main effects of selective logging on forest dynamics seems to be the local disturbance which involve the invasion of open space by weed, vines and climbers at the expense of the late-successional state cenosis. We present a simple deterministic model that describes the dynamics of tropical rainforest subject to selective logging to understand how and why weeds displace native species. We argue that the selective removal of tallest tropical trees carries out gaps of light that allow weeds, vines and climbers to prevail on native species, inhibiting the possibility of recovery of the original vegetation. Our results show that different regime shifts may occur depending on the type of forest management adopted. This hypothesis is supported by a dataset of trees height and weed/vines cover that we collected from 9 plots located in Central and West Africa both in untouched and managed areas.

  5. Azimuthal Anisotropies in Nuclear Fragmentation

    International Nuclear Information System (INIS)

    Dabrowska, A.; Szarska, M.; Trzupek, A.; Wolter, W.; Wosiek, B.

    2002-01-01

    The directed and elliptic flow of fragments emitted from the excited projectile nuclei has been observed for 158 AGeV Pb collisions with the lead and plastic targets. For comparison the flow analysis has been performed for 10.6 AGeV Au collisions with the emulsion target. The strong directed flow of heaviest fragments is found. Light fragments exhibit directed flow opposite to that of heavy fragments. The elliptic flow for all multiply charged fragments is positive and increases with the charge of the fragment. The observed flow patterns in the fragmentation of the projectile nucleus are practically independent of the mass of the target nucleus and the collision energy. Emission of fragments in nuclear multifragmentation shows similar, although weaker, flow effects. (author)

  6. effect of habitat fragmentation on diversity and abundance of nesting

    African Journals Online (AJOL)

    cw

    Department of Zoology and Wildlife Conservation, University of Dar es ... Keywords: fragmentation, nesting birds, thickets, campus of the University of Dar es ... 43(1), 2017 ..... Yale University Press, ... bird species in urban parks: Effects of park.

  7. Edge effects and geometric constraints: a landscape-level empirical test.

    Science.gov (United States)

    Ribeiro, Suzy E; Prevedello, Jayme A; Delciellos, Ana Cláudia; Vieira, Marcus Vinícius

    2016-01-01

    Edge effects are pervasive in landscapes yet their causal mechanisms are still poorly understood. Traditionally, edge effects have been attributed to differences in habitat quality along the edge-interior gradient of habitat patches, under the assumption that no edge effects would occur if habitat quality was uniform. This assumption was questioned recently after the recognition that geometric constraints tend to reduce population abundances near the edges of habitat patches, the so-called geometric edge effect (GEE). Here, we present the first empirical, landscape-level evaluation of the importance of the GEE in shaping abundance patterns in fragmented landscapes. Using a data set on the distribution of small mammals across 18 forest fragments, we assessed whether the incorporation of the GEE into the analysis changes the interpretation of edge effects and the degree to which predictions based on the GEE match observed responses. Quantitative predictions were generated for each fragment using simulations that took into account home range, density and matrix use for each species. The incorporation of the GEE into the analysis changed substantially the interpretation of overall observed edge responses at the landscape scale. Observed abundances alone would lead to the conclusion that the small mammals as a group have no consistent preference for forest edges or interiors and that the black-eared opossum Didelphis aurita (a numerically dominant species in the community) has on average a preference for forest interiors. In contrast, incorporation of the GEE suggested that the small mammal community as a whole has a preference for forest edges, whereas D. aurita has no preference for forest edges or interiors. Unexplained variance in edge responses was reduced by the incorporation of GEE, but remained large, varying greatly on a fragment-by-fragment basis. This study demonstrates how to model and incorporate the GEE in analyses of edge effects and that this

  8. Effect of selective logging on floristic and structural composition in a forest fragment from Amazon Biome

    Directory of Open Access Journals (Sweden)

    Karen Janones da Rocha

    2017-04-01

    Full Text Available This study was conducted in one region of a Seasonal Semideciduous Forest located in Tapurah (Mato Grosso State, Brazil with the aim of studying its floristic and structural composition. The fixed area method was applied to 10 × 250 m clusters, allocating and measuring five clusters with five subunits of 500 m² each. Species with a diameter at breast height greater than or equal to 10 cm were considered, and the sample sufficiency of the floristic survey was verified by a species accumulation curve. The similarities between the sample subunits were calculated by the Jaccard Similarity Index, and the species diversity with the Shannon Diversity Index and Pielou Evenness Index. The horizontal vegetation structure was characterized by density, frequency, dominance and the values of ecological importance, and diametric distribution were assessed by the Spiegel procedure. The families Vochysiaceae, Fabaceae and Sapindaceae were highly represented, and Qualea paraensis, Aspidosperma discolor and Matayba arborescens were the most important species. A high diversity and low ecological dominance were found, and the diametric structure of the trees presented a negative exponential distribution. In general, the structure, floristic composition and richness of vegetation correspond to a forest with stable and autoregenerative community after selective logging.

  9. Florística de lianas em um fragmento de floresta estacional semidecidual, Parque Estadual de Vassununga, Santa Rita do Passa Quatro, SP, Brasil Floristic of lianas in a fragment of seasonal semidecidual forest State Park of Vassununga, Santa Rita do Passa Quatro, São Paulo State, Brazil

    Directory of Open Access Journals (Sweden)

    Yara Junqueira de Azevedo Tibiriçá

    2006-06-01

    Full Text Available Embora o conhecimento sobre a florística dos fragmentos de florestas estacionais semideciduais tenha crescido nos últimos anos, ainda sabe-se pouco sobre a comunidade de lianas (lenhosas ou herbáceas nesses fragmentos. Assim, foi realizado o levantamento florístico de lianas na gleba Maravilha, pertencente ao Parque Estadual de Vassununga (Santa Rita do Passa Quatro, SP, a fim de colaborar com o conhecimento dessa comunidade e subsidiar futuros trabalhos que envolvam essa forma de vida. A área de estudo compreende 127,08 ha, com inverno seco e temperatura média anual de 22 ºC. Para a coleta do material, percorreu-se mensalmente toda a borda do fragmento e três trilhas no interior da mata, de agosto/2002 a setembro/2003. Foram identificadas 120 espécies de lianas, pertencentes a 30 famílias e 71 gêneros, das quais 51% das espécies são volúveis, 42% apresentam gavinhas e apenas 7% são escandentes. As famílias mais representativas em número de espécies foram: Bignoniaceae (26, Malpighiaceae (14, Sapindaceae (12 e Asteraceae (9. Houve baixa similaridade florística entre as espécies de lianas presentes na gleba Maravilha em relação a outras áreas de florestas estacionais semideciduais do interior paulista.Although the knowledge about the floristic composition of the fragments of seasonal semidecidual forest had grown in the last few years, little is known about the liana communities (woody vines and herbaceous vines in those fragments. To collaborate with the knowledgement of the lianas and subsidize future works involving this life form, a floristic survey of the liana species occurring at the fragment Maravilha of the State Park of Vassununga (Santa Rita do Passa Quatro - SP was carried out. The study area comprised 127.08ha, with average temperature of 22 ºC. The whole border of the forest fragment and three tracks inside the forest were surveyed monthly between August 2002 and September 2003. One hundred and twenty species

  10. Asymmetry effects in fragment production

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Manpreet [Sri Guru Granth Sahib World University, Fatehgarh Sahib-140406, Punjab (India); Kaur, Varinderjit, E-mail: drvarinderjit@gmail.com [Mata Gujri College, Fatehgarh Sahib-140406, Punjab (India)

    2016-05-06

    The production of different fragments has been studied by taking into account the mass asymmetry of the reaction and employing the momentum dependent interactions. Two different set of asymmetric reactions have been analyzed while keeping At{sub otal} fixed using soft momentum dependent equation of state. Our results indicate that the impact of momentum dependent interactions is different in lighter projectile systems as compared to heavier ones. The comparative analysis of IQMD simulations with the experimental data in case of heavier projectile and lighter target system for the reaction of {sup 197}Au+{sup 27}Al (η = 0.7) at E = 600 MeV/nucleon shows that with the inclusion of MDI we are able, upto some extent, to reproduce the experimental universality of rise and fall of intermediate mass fragments (IMFs).

  11. Effects of rapid urban sprawl on urban forest carbon stocks: integrating remotely sensed, GIS and forest inventory data.

    Science.gov (United States)

    Ren, Yin; Yan, Jing; Wei, Xiaohua; Wang, Yajun; Yang, Yusheng; Hua, Lizhong; Xiong, Yongzhu; Niu, Xiang; Song, Xiaodong

    2012-12-30

    Research on the effects of urban sprawl on carbon stocks within urban forests can help support policy for sustainable urban design. This is particularly important given climate change and environmental deterioration as a result of rapid urbanization. The purpose of this study was to quantify the effects of urban sprawl on dynamics of forest carbon stock and density in Xiamen, a typical city experiencing rapid urbanization in China. Forest resource inventory data collected from 32,898 patches in 4 years (1972, 1988, 1996 and 2006), together with remotely sensed data (from 1988, 1996 and 2006), were used to investigate vegetation carbon densities and stocks in Xiamen, China. We classified the forests into four groups: (1) forest patches connected to construction land; (2) forest patches connected to farmland; (3) forest patches connected to both construction land and farmland and (4) close forest patches. Carbon stocks and densities of four different types of forest patches during different urbanization periods in three zones (urban core, suburb and exurb) were compared to assess the impact of human disturbance on forest carbon. In the urban core, the carbon stock and carbon density in all four forest patch types declined over the study period. In the suburbs, different urbanization processes influenced forest carbon density and carbon stock in all four forest patch types. Urban sprawl negatively affected the surrounding forests. In the exurbs, the carbon stock and carbon density in all four forest patch types tended to increase over the study period. The results revealed that human disturbance played the dominant role in influencing the carbon stock and density of forest patches close to the locations of human activities. In forest patches far away from the locations of human activities, natural forest regrowth was the dominant factor affecting carbon stock and density. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Heavy quark fragmentation into polarized quarkonium in the heavy quark effective theory

    International Nuclear Information System (INIS)

    Martynenko, A.P.; Saleev, V.A.

    1996-01-01

    Fragmentation of b-antiquark into polarized B* c -mesons is investigated within the framework of effective theory of heavy quarks. Functions of b fragmentation into longitudinally polarized and transversely polarized S-wave states of b c are calculated with an exact regard tot he first order corrections by 1/m b . Agreement of the results obtained with the corresponding calculations, performed in the quantum chromodynamics, is shown. 17 refs.; 2 figs

  13. The effect of local and landscape-level characteristics on the abundance of forest birds in early-successional habitats during the post-fledging season in western Massachusetts.

    Directory of Open Access Journals (Sweden)

    Michelle A Labbe

    Full Text Available Many species of mature forest-nesting birds ("forest birds" undergo a pronounced shift in habitat use during the post-fledging period and move from their forest nesting sites into areas of early-successional vegetation. Mortality is high during this period, thus understanding the resource requirements of post-fledging birds has implications for conservation. Efforts to identify predictors of abundance of forest birds in patches of early-successional habitats have so far been equivocal, yet these previous studies have primarily focused on contiguously forested landscapes and the potential for landscape-scale influences in more fragmented and modified landscapes is largely unknown. Landscape composition can have a strong influence on the abundance and productivity of forest birds during the nesting period, and could therefore affect the number of forest birds in the landscape available to colonize early-successional habitats during the post-fledging period. Therefore, the inclusion of landscape characteristics should increase the explanatory power of models of forest bird abundance in early-successional habitat patches during the post-fledging period. We examined forest bird abundance and body condition in relation to landscape and habitat characteristics of 15 early-successional sites during the post-fledging season in Massachusetts. The abundance of forest birds was influenced by within-patch habitat characteristics, however the explanatory power of these models was significantly increased by the inclusion of landscape fragmentation and the abundance of forest birds in adjacent forest during the nesting period for some species and age groups. Our findings show that including factors beyond the patch scale can explain additional variation in the abundance of forest birds in early-successional habitats during the post-fledging period. We conclude that landscape composition should be considered when siting early-successional habitat to maximize its

  14. The Effect of Local and Landscape-Level Characteristics on the Abundance of Forest Birds in Early-Successional Habitats during the Post-Fledging Season in Western Massachusetts

    Science.gov (United States)

    Labbe, Michelle A.; King, David I.

    2014-01-01

    Many species of mature forest-nesting birds (“forest birds”) undergo a pronounced shift in habitat use during the post-fledging period and move from their forest nesting sites into areas of early-successional vegetation. Mortality is high during this period, thus understanding the resource requirements of post-fledging birds has implications for conservation. Efforts to identify predictors of abundance of forest birds in patches of early-successional habitats have so far been equivocal, yet these previous studies have primarily focused on contiguously forested landscapes and the potential for landscape-scale influences in more fragmented and modified landscapes is largely unknown. Landscape composition can have a strong influence on the abundance and productivity of forest birds during the nesting period, and could therefore affect the number of forest birds in the landscape available to colonize early-successional habitats during the post-fledging period. Therefore, the inclusion of landscape characteristics should increase the explanatory power of models of forest bird abundance in early-successional habitat patches during the post-fledging period. We examined forest bird abundance and body condition in relation to landscape and habitat characteristics of 15 early-successional sites during the post-fledging season in Massachusetts. The abundance of forest birds was influenced by within-patch habitat characteristics, however the explanatory power of these models was significantly increased by the inclusion of landscape fragmentation and the abundance of forest birds in adjacent forest during the nesting period for some species and age groups. Our findings show that including factors beyond the patch scale can explain additional variation in the abundance of forest birds in early-successional habitats during the post-fledging period. We conclude that landscape composition should be considered when siting early-successional habitat to maximize its benefit to

  15. Patchwork policy, fragmented forests: In-situ oil sands, industrial development, and the ecological integrity of Alberta's boreal forest

    International Nuclear Information System (INIS)

    MacCrimmon, G.; Marr-Laing, T.

    2000-05-01

    Environmental impacts of current oil sands industry activities and the potential cumulative impacts of new in-situ oil sands development on the boreal forest of northeastern Alberta are reviewed. The objective is to improve understanding of the impacts of existing industrial activity on the broader boreal forest ecosystem, and the environmental implications of further disturbance to this ecosystem from future development of heavy and conventional fossil fuel reserves in the province. The report also outlines elements of a boreal forest use framework that could assist in managing industrial activity within ecologically sustainable limits and makes recommendations for specific actions that need to be taken by government and industry to guide future development decisions. The top 50 key landscape areas of interest in the province, identified by the World Wildlife Federation, based primarily on a series of reports by Alberta Environmental Protection, are briefly described. Implications of failure to act are also outlined. 138 end-notes, 8 tabs., 16 figs

  16. Traffic noise affects forest bird species in a protected tropical forest

    Directory of Open Access Journals (Sweden)

    J. Edgardo Arévalo

    2011-06-01

    Full Text Available The construction of roads near protected forest areas alters ecosystem function by creating habitat fragmentation and through several direct and indirect negative effects such as increased pollution, animal mortality through collisions, disturbance caused by excessive noise and wind turbulence. Noise in particular may have strong negative effects on animal groups such as frogs and birds, that rely on sound for communication as it can negatively interfere with vocalizations used for territorial defense or courtship. Thus, birds are expected to be less abundant close to the road where noise levels are high. In this study, we examined the effects of road traffic noise levels on forest bird species in a protected tropical forest in Costa Rica. Data collection was conducted in a forest segment of the Carara National Park adjacent to the Coastal Highway. We carried out 120 ten minute bird surveys and measured road noise levels 192 times from the 19th to the 23rd of April and from the 21st to the 28th of November, 2008. To maximize bird detection for the species richness estimates we operated six 12m standard mist nets simultaneously with the surveys. The overall mist-netting effort was 240net/h. In addition, we estimated traffic volumes by tallying the number of vehicles passing by the edge of the park using 24 one hour counts throughout the study. We found that the relative abundance of birds and bird species richness decreased significantly with the increasing traffic noise in the dry and wet season. Noise decreased significantly and in a logarithmic way with distance from the road in both seasons. However, noise levels at any given distance were significantly higher in the dry compared to the wet season. Our results suggest that noise might be an important factor influencing road bird avoidance as measured by species richness and relative abundance. Since the protected forest in question is located in a national park subjected to tourist visitation

  17. Light habitat, structure, diversity and dynamic of the tropical dry forest

    Directory of Open Access Journals (Sweden)

    Omar Melo-Cruz

    2017-01-01

    Full Text Available Tropical dry forests are complex and fragile ecosystems with high anthropic intervention and restricted reproductive cycles. These have unique richness, structural diversity, physiological and phenological . This research was executed  in the Upper Magdalena Valley, in four forest fragments with different successional stages. In each fragment four permanent plots of 0.25 ha were established and lighting habitat associated with richness, relative abundance and rarity of species. The forest dynamics included the mortality, recruitment and diameter growth for a period of 5.25 years. The species rischness found in the mature riparian forestis higher than that reported in other studies of similar areas in Valle del Cauca and the Atlantic coast.  The values of richness, diversity and rarity species are more evidenced  than the magnitudes found in  drier areas of Tolima. The structure, diversity and dynamics of forests were correlated with the lighting habitat, showing differences in canopy architecture and its role in the capture and absorption of radiation. Forests with dense canopy have limited availability of photosynthetically active radiation in understory related low species richness, while illuminated undergrowth are richer and heterogeneous.

  18. [Advance in researches on the effect of forest on hydrological process].

    Science.gov (United States)

    Zhang, Zhiqiang; Yu, Xinxiao; Zhao, Yutao; Qin, Yongsheng

    2003-01-01

    According to the effects of forest on hydrological process, forest hydrology can be divided into three related aspects: experimental research on the effects of forest changing on hydrological process quantity and water quality; mechanism study on the effects of forest changing on hydrological cycle, and establishing and exploitating physical-based distributed forest hydrological model for resource management and engineering construction. Orientation experiment research can not only support the first-hand data for forest hydrological model, but also make clear the precipitation-runoff mechanisms. Research on runoff mechanisms can be valuable for the exploitation and improvement of physical based hydrological models. Moreover, the model can also improve the experimental and runoff mechanism researches. A review of above three aspects are summarized in this paper.

  19. String fragmentation; La fragmentation des cordes

    Energy Technology Data Exchange (ETDEWEB)

    Drescher, H.J.; Werner, K. [Laboratoire de Physique Subatomique et des Technologies Associees - SUBATECH, Centre National de la Recherche Scientifique, 44 - Nantes (France)

    1997-10-01

    The classical string model is used in VENUS as a fragmentation model. For the soft domain simple 2-parton strings were sufficient, whereas for higher energies up to LHC, the perturbative regime of the QCD gives additional soft gluons, which are mapped on the string as so called kinks, energy singularities between the leading partons. The kinky string model is chosen to handle fragmentation of these strings by application of the Lorentz invariant area law. The `kinky strings` model, corresponding to the perturbative gluons coming from pQCD, takes into consideration this effect by treating the partons and gluons on the same footing. The decay law is always the Artru-Menessier area law which is the most realistic since it is invariant to the Lorentz and gauge transformations. For low mass strings a manipulation of the rupture point is necessary if the string corresponds already to an elementary particle determined by the mass and the flavor content. By means of the fragmentation model it will be possible to simulate the data from future experiments at LHC and RHIC 3 refs.

  20. Granulated wood ash to forest soil - Ecological effects

    International Nuclear Information System (INIS)

    Rosen, K.; Eriksson, H.; Clarholm, M.; Lundkvist, H.; Rudebeck, A.

    1993-01-01

    This report describes research concerning ecological effects of wood ash recycling to forest soils. The main part of the minerals in the wood fuels are retained in the ashes after combustion. By returning the ashes back to the cleared forest areas, the mineral losses can be reduced. Adding ashes and limestone is a method to vitalize acidified forest soils and restore the production capacity. 48 refs, 26 figs, 8 tabs