WorldWideScience

Sample records for forest fire retardants

  1. US Forest Service Aerial Fire Retardant Avoidance Areas: Terrestrial

    Data.gov (United States)

    US Forest Service, Department of Agriculture — A map service depicting aerial fire retardant avoidance areas delivered as part of the 2011 Nationwide Aerial Application of Fire Retardant on National Forest System...

  2. US Forest Service Aerial Fire Retardant Hydrographic Avoidance Areas: Aquatic

    Data.gov (United States)

    US Forest Service, Department of Agriculture — A map services on the www depicting aerial retardant avoidance areas for hydrographic feature data. Aerial retardant avoidance area for hydrographic feature data are...

  3. Fire retardants for wood

    Directory of Open Access Journals (Sweden)

    Vlatka Jirouš-Rajković

    2009-06-01

    Full Text Available Along with many advantages, wood as traditional building material also has some disadvantages. One of them is the flammability. The most usual way to improve the fire performance of wood is by treating it with fire retardants that can be applied to wood composite products during manufacture, pressure impregnated into solid wood or wood products or added as a paint or surface coating. Fire retardants are formulated to control ignition, flame spread on the wood surface and to reduce the amount of heat released from wood. Fire retardants cannot make wood non combustible. According to the European reaction-to-fire “Euroclasses”classification system for construction products, wood treated with fire retardant can meet the requirements of Euroclass B, whereas ordinary wood products typically fall into class D. This article attempts to bring together information related to the burning of wood, fire performance of wood, types of fire retardants and mechanism of fire retardancy. Fire retardant coatings and chemical impregnation by pressure-treating are described separately.

  4. Impact of a long-term fire retardant (Fire Trol 931) on the leaching of Ca, Mg, and K from a Mediterranean forest loamy soil.

    Science.gov (United States)

    Michalopoulos, Charalampos; Koufopoulou, Sofia; Tzamtzis, Nikolaos; Pappa, Athina

    2016-03-01

    The present laboratory study was conducted in pot soil taken from forest. The leaching of calcium (Ca), magnesium (Mg), and potassium (K) (plant macronutrients) due to the application of a nitrogen phosphate-based long-term fire retardant (LTFR) (Fire Trol 931) was investigated. The concentrations of Ca(2+), Mg(2+), and K(+) were measured in the resulting leachates from pots with forest soil and pine tree alone and in combination with fire. Magnesium is a minor component of Fire Trol 931. The leaching of Ca(2+), Mg(2+), and K(+) from treated soils with the retardant pots was significantly greater than that from control pots. The leaching of Mg(2+) was found to be of small percentage of the initially applied Mg quantities. Fire Trol 931 application resulted in the leaching of Ca(2+), Mg(2+), and K(+) from a typical Mediterranean forest soil in pots, following the application of simulated annual precipitation probably due to ammonium (one of the major retardant components) soil deposition that mobilizes base cations from the soil. It seems that LTFR application may result in chemical leaching from the soil to the drainage water.

  5. 75 FR 52713 - Nationwide Aerial Application of Fire Retardant on National Forest System Lands

    Science.gov (United States)

    2010-08-27

    ... proposed action. DATES: Comments concerning the scope of the analysis must be received by October 12, 2010... or to preserve natural resources and critical habitat for threatened and endangered species. Fire... District of Montana issued a decision in Forest Service Employees for Environmental Ethics v. United...

  6. Fire-retardant foams

    Science.gov (United States)

    Gagliani, J.

    1978-01-01

    Family of polyimide resins are being developed as foams with exceptional fire-retardant properties. Foams are potentially useful for seat cushions in aircraft and ground vehicles and for applications such as home furnishings and building-construction materials. Basic formulations can be modified with reinforcing fibers or fillers to produce celular materials for variety of applications. By selecting reactants, polymer structure can be modified to give foams with properties ranging from high resiliency and flexibility to brittleness and rigidity.

  7. Forest-fire models

    Science.gov (United States)

    Haiganoush Preisler; Alan Ager

    2013-01-01

    For applied mathematicians forest fire models refer mainly to a non-linear dynamic system often used to simulate spread of fire. For forest managers forest fire models may pertain to any of the three phases of fire management: prefire planning (fire risk models), fire suppression (fire behavior models), and postfire evaluation (fire effects and economic models). In...

  8. Development of novel fire retardants

    Science.gov (United States)

    Sigdel Regmi, Bhawani

    Numerous candidate environmentally-friendly, water-soluble, and non-toxic fire retardants and fire-retarding processes were developed and tested according to the ASTM D 3801 flammability test and the NRL 8093 smoldering test. Flame retardants that passed the ASTM D 3801 flammability test with the highest V0 rating were boron esters of guanidinium hydroxycarboxylate (glycolate, salicylate and dihydroxybenzoate), zinc gluconate borate ester, and cyanoacetate salts of organic bases (melaminium, cyanoguanidinium, and ammonium). Several related compounds pass this test with the lower V1 rating. Two new synergistic flame and smolder retarding systems were developed in which the individual components were incapable of preventing flame spread or smoldering but in combination they were highly effective. These systems were mixtures of either guanyl urea phosphate and boric acid or beta-alanine and boric acid. Compositions leading to the maximum solubility of boron oxides in the ammonium borate/sodium borate system were determined at several temperatures and the formation of mixtures exceeding 50% dissolved boric acid equivalents was found possible. These mixtures were applied as flame retardants for wood, paper, and carbon-loaded polyurethane foam both directly and indirectly by in situ precipitation of boric acid or zinc borate by appropriate chemical treatments. These all passed the ASTM flammability test with V0 rating. The performance of the boron-containing fire retardants is likely due to deposition of protective boron oxide coatings at elevated temperatures except where phosphate was present and a protective boron phosphate was deposited instead. In all cases, the oxidation of carbonaceous char was strongly inhibited. The hydroxycarboxylate groups generally formed intumescent chars during thermal decomposition that also contributed to fire retardancy.

  9. Fire-Retardant Polymeric Additives

    Science.gov (United States)

    Williams, Martha K.; Smith, Trent M.

    2011-01-01

    Polyhydroxyamide (PHA) and polymethoxyamide (PMeOA) are fire-retardant (FR) thermoplastic polymers and have been found to be useful as an additive for imparting fire retardant properties to other compatible, thermoplastic polymers (including some elastomers). Examples of compatible flammable polymers include nylons, polyesters, and acrylics. Unlike most prior additives, PHA and PMeOA do not appreciably degrade the mechanical properties of the matrix polymer; indeed, in some cases, mechanical properties are enhanced. Also, unlike some prior additives, PHA and PMeOA do not decompose into large amounts of corrosive or toxic compounds during combustion and can be processed at elevated temperatures. PMeOA derivative formulations were synthesized and used as an FR additive in the fabrication of polyamide (PA) and polystyrene (PS) composites with notable reduction (>30 percent for PS) in peak heat release rates compared to the neat polymer as measured by a Cone Calorimeter (ASTM E1354). Synergistic effects were noted with nanosilica composites. These nanosilica composites had more than 50-percent reduction in peak heat release rates. In a typical application, a flammable thermoplastic, thermoplastic blend, or elastomer that one seeks to render flame-retardant is first dry-mixed with PHA or PMeOA or derivative thereof. The proportion of PHA or PMeOA or derivative in the mixture is typically chosen to lie between 1 and 20 weight percent. The dry blend can then be melt-extruded. The extruded polymer blend can further be extruded and/or molded into fibers, pipes, or any other of a variety of objects that may be required to be fire-retardant. The physical and chemical mechanisms which impart flame retardancy of the additive include inhibiting free-radical oxidation in the vapor phase, preventing vaporization of fuel (the polymer), and cooling through the formation of chemical bonds in either the vapor or the condensed phase. Under thermal stress, the cyclic hydroxyl/ methoxy

  10. Intumescent Coatings as Fire Retardants

    Science.gov (United States)

    Parker, J. A.; Fohlen, G. M.; Sawko, P. M.; Fish, R. H.

    1970-01-01

    The development of fire-retardant coatings to protect surfaces which may be exposed to fire or extreme heat is a subject of intense interest to many industries. A fire-retardant paint has been developed which represents a new chemical approach for preparing intumescent coatings, and potentially, is very important to fire-prevention authorities. The requirements for a superior coating include ease of application, suitability to a wide variety of surfaces and finishes, and stability over an extended period of time within a broad range of ambient temperature and humidity conditions. These innovative coatings, when activated by the heat of a fire, react to form a thick, low-density, polymeric coating or char layer. Water vapor and sulphur dioxide are released during the intumescent reaction. Two fire-protection mechanisms thus become available: (1) the char layer retards the flow of heat, due to the extremely low thermal conductivity; and (2) water vapor and sulfur dioxide are released, providing fire quenching properties. Still another mechanism functions in cases where the char, by virtue of its high oxidation resistance and low thermal conductivity, reaches a sufficiently high temperature to re-radiate much of the incident heat load. The coatings consist of dispersions of selective salts of a nitro-amino-arornatic compound. Specifically, para-nitroaniline bisulfate and the ammonium salt of para-nitroaniline-ortho sulphuric acid (2-amino-5-nitrobenzenesulphuric acid) are used. Suitable vehicles are cellulose nitrate of lacquer grade, a nitrite-phenolic modified rubber, or epoxy-polysulfide copolymer. Three separate formulations have been developed. A solvent is usually employed, such as methylethyl ketone, butyl acetate, or toluene, which renders the coatings suitably thin and which evaporates after the coatings are applied. Generally, the intumescent material is treated as insoluble in the vehicle, and is ground and dispersed in the vehicle and solvent like an

  11. Autonomous Forest Fire Detection

    NARCIS (Netherlands)

    Breejen, E. den; Breuers, M.; Cremer, F.; Kemp, R.A.W.; Roos, M.; Schutte, K.; Vries, J.S. de

    1998-01-01

    Forest fire detection is a very important issue in the pre-suppression process. Timely detection allows the suppression units to reach the fire in its initial stages and this will reduce the suppression costs considerably. The autonomous forest fire detection principle is based on temporal contrast

  12. Plasma impregnation of wood with fire retardants

    Science.gov (United States)

    Pabeliña, Karel G.; Lumban, Carmencita O.; Ramos, Henry J.

    2012-02-01

    The efficacy of chemical and plasma treatments with phosphate and boric compounds, and nitrogen as flame retardants on wood are compared in this study. The chemical treatment involved the conventional method of spraying the solution over the wood surface at atmospheric condition and chemical vapor deposition in a vacuum chamber. The plasma treatment utilized a dielectric barrier discharge ionizing and decomposing the flame retardants into innocuous simple compounds. Wood samples are immersed in either phosphoric acid, boric acid, hydrogen or nitrogen plasmas or a plasma admixture of two or three compounds at various concentrations and impregnated by the ionized chemical reactants. Chemical changes on the wood samples were analyzed by Fourier transform infrared spectroscopy (FTIR) while the thermal changes through thermo gravimetric analysis (TGA). Plasma-treated samples exhibit superior thermal stability and fire retardant properties in terms of highest onset temperature, temperature of maximum pyrolysis, highest residual char percentage and comparably low total percentage weight loss.

  13. Fire Retardant Textiles: A Particular Reference to China and Kenya

    Institute of Scientific and Technical Information of China (English)

    Eric Oyondi Nganyi; YU Chong-wen

    2002-01-01

    As more and more attention is paid to the utilization of fire retardant textile products in apparel, household,furnishing, and industrial sectors, this paper presents a brief survey of the use of fire retardant (FR) textile products, the rules, and regulations concerning their use, and their market potential in China and in Kenya.

  14. Learning to Control Forest Fires

    NARCIS (Netherlands)

    Wiering, M.A.; Dorigo, M.

    1998-01-01

    Forest fires are an important environmental problem. This paper describes a methodology for constructing an intelligent system which aims to support the human expert's decision making in fire control. The idea is based on first implementing a fire spread simulator and on searching for good decision

  15. Study on Forest Fire Occurrence in China

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    China is not rich in natural forest sources. Owing to natural and historical factors, forest fires have long been frequenting China. Forest fire prevention is the most important of all. Forest fire prevention and controlling have long been held as a very important factor in our ecological plans. Taking china 's special geographical location, topography, climate and the distribution of forest sources into consideration, we have every reason to believe that forest fires in China have their own special env...

  16. Pyrolytic characteristics of burning residue of fire-retardant wood

    Institute of Scientific and Technical Information of China (English)

    ZHAO Guangjie; LUO Wensheng; Furuno T; REN Qiang; MA Erni

    2007-01-01

    In order to investigate the pyrolytic characteristics of the burning residue of fire-retardant wood,a multifunctional fire-resistance test oven aimed at simulating the course of a fire was used to burn fire-retardant wood and untreated wood.Samples at different distances from the combustion surface were obtained and a thennogravimetric analysis (TG) was applied to test the pyrolytic process of the burning residue in an atmosphere of nitrogen.The results showed that:1) there was little difference between fireretardant wood and its residue in the initial temperature of thermal degradation.The initial temperature of thermal degradation of the combustion layer in untreated wood was higher than that in the no burning wood sample;2) the temperature of the flame retardant in fire-retardant wood was 200℃ in the differential thermogravimetry (DTG).The peak belonging to the flame retardant tended to dissipate during the time of burning;3) for the burning residue of fire-retardant wood,the peak belonging to hemicellulose near 230℃ in the DTG disappeared and there was a gentle shoulder from 210 to 240℃;4) the temperature of the main peaks of the fireretardant wood and its burning residue in DTG was 100℃ lower than that of the untreated wood and its burning residue.The rate of weight loss also decreased sharply;5) the residual weight of fire-retardant wood at 600~C clearly increased compared with that of untreated wood.Residual weight of the burning residue increased markedly as the heating temperature increased when burning;6) there was a considerable difference with respect to the thermal degradation temperature of the no burning sample and the burning residue between fire-retardant wood and untreated wood.

  17. Fire-retardant mechanism of fire-retardant FRW by FTIR

    Institute of Scientific and Technical Information of China (English)

    WANG Qingwen; LI Jian; LI Shujun

    2006-01-01

    The structures of the solid state products formed by the partial combustion of Korean pine wood treated with fire-retardant FRW were analyzed by microscopic FTIR.The volatile pyrolytic products of basswood (Tilia amurensis)specimens treated with FRW and its components guanylurea phosphate and boric acid were analyzed by GC-FTIR.The pyrolytic and charring process,the effects of fire-retardant,and the structural characteristics of the pyrolytic products were discussed.It was concluded that upon heating and by the catalysis of FRW and its decomposition products reactions of wood took place successively,namely the dehydration of polysaccharide,the elimination of acetic acid from hemicellulose,the degradation of polysaccharide,the degradation of lignin,the polymerization of the pyrolytic products of wood,reactions of oxygen-element-elimination of aliphatic polymers and the structural change of the latter to form aromatic structures,and charring.The pyrolysis process of wood was altered and the yield of volatile pyrolytic products was decreased by FRW treatment.

  18. Fire Occurrence Environments in Pinus pumila Forests

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In recent years, many serious forest fires occurred in precious Pinus pumila forests in Daxing'anling Mountains of Heilongjiang Province and Inner Mongolia. But up to now, there is still a lack of proper understanding of fire occurrence environments in P. pumila forests. In present paper, we investigated and studied the fire occurrence environments. The results showed that fires in P. pumila forests had their own special fire environments. Abundant fuel, drought weather, dry thunder and high altitude terrai...

  19. Surface Modification of Fire-retardant Asphalt with Silane Coupling Agent

    Institute of Scientific and Technical Information of China (English)

    CHEN Huiqiang; TANG Boming

    2012-01-01

    The theory and approach of the surface modified of asphalt fire-retardant with silane coupling agent were introduced,The optimum silane dosage was determined,and the structure and properties of the asphalt fire-retardant before and after the surface modification were characterized by infrared spectrum and thermo gravimetric analysis.The dispersion effect of asphalt fire-retardant was studied.The influence of the surface modification on the hydrophilicity and lipophilicity of the asphalt fire-retardant was analyzed.The experimental results showed that there were physical and chemical interactions between the silane coupling agent and the asphalt fire-retardant,which reduced the surface polarity of the asphalt fire retardant.The optimum silane coupling agent dosage was 0.95% of the asphalt fire retardant.The surface modification improved the thermal stability,dispersibility and lipophilicity of the asphalt fire retardant,which enhanced the compatibility between asphalt fire retardant and asphalt.

  20. Outline of Preparation and Fire- retardant Properties Detection of Nanocrystalline Cellulose Fire- retardant Membranes%纳米纤维素阻燃膜的制备及阻燃性检测概述

    Institute of Scientific and Technical Information of China (English)

    徐睿; 王海英; 孙睿; 雷舒

    2012-01-01

    Methods of fire -retardant properties evaluation, fire -retardant cellulose fibers preparation, and nano- crystalline cellulose preparation were introduced, respectively. The national standards of fire - retardant properties evalua- tion for fire - retardant protective clothing and forest fire - proof clothing were compared. National standards GB/T5454 - 1997, textiles - burning properties test oxygen index method, was used in forest fire - proof clothing. Preparation method and application prospects of nanocrystalline cellulose fire - retardant membranes were explored.%分别介绍了阻燃性能指标评价、阻燃纤维素纤维的制备、纳米纤维素的制备等方法,比较了阻燃防护服和森林防火服的阻燃性能指标评价国家标准,森林防火服的阻燃性能指标评价还另外采用了GB/T5454—1997纺织品燃烧性能试验氧指数法国家标准,探讨了纳米纤维素复合阻燃膜的制备方法及其应用前景。

  1. Monitor Forest Fires with FY Serial Satellites

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Remote sensing as the measure to monitor disasters has the advantage of temporal resolution and large scale. Since "5.6 catastrophe" in 1987, China began to monitor forest fires broadly. In the summer of 2002, many forest/grass fires occurred in the Daxing'anling Mountains, and the damage was very heavy. In the forest fires fighting, the meteorological satellites play an important role in monitoring the fires. Especially the FY serial meteorological satellites have the advantage of large scale monitorin...

  2. Modeling boreal fire and forest dynamics

    Science.gov (United States)

    de Groot, W. J.; McRae, D. J.; Cantin, A.

    2009-04-01

    The circumpolar boreal forest covers about 1.4 billion ha, representing 1/3 of global forest land. Approximately 2/3 of the boreal forest is located in Eurasia and the remainder in North America. Wildland fires annually burn an estimated 12-20 M ha across the entire boreal region, having a major influence on forest structure and composition. However, fire weather, fire behaviour, and fire ecology differ greatly between the boreal forests in eastern and western hemispheres, which have significant impact on tree survival, post-fire regeneration and forest succession. Every year, wildland fires in Canada and Alaska burn an average of 2-3 M ha, primarily by stand-replacing, high intensity crown fires. By comparison, Russian fires burn about 10-15 M ha annually, primarily by low to moderate intensity surface fires that cause minimal tree mortality. Fire weather conditions in the most fire prone regions of Russia are generally more severe than in similar regions of North America. Finally, the species composition of eastern and western boreal forests is also very different. Russian forests are dominated by larch (30%) and pine (28%) with lower components of spruce (14%) and poplar/birch hardwoods (18%) By contrast, Canadian forests are comprised mainly of spruce (35%), pine (22%), poplar/birch (16%), and fir (9%). All of these factors contribute to the variability in vegetation dynamics occurring within the circumpolar boreal region. This modeling study examines the interactions of fire weather, forest composition, fire behaviour, and fire ecology on forest vegetation dynamics within the boreal region. Similar active fire zones in western Canada and eastern Siberia were used as study sites. Historical weather data were collected for both locations and used to calculate fire weather data, which were used as primary driving variables for the Boreal Fire Effects model (BORFIRE). Fire behaviour was calculated in BORFIRE using data for major tree species at both study sites

  3. New Trends in Reaction and Resistance to Fire of Fire-retardant Epoxies

    Directory of Open Access Journals (Sweden)

    Caroline Gérard

    2010-08-01

    Full Text Available This paper focuses on current trends in the flame retardancy of epoxy-based thermosets. This review examines the incorporation of additives in these polymers, including synergism effects. Reactive flame-retardants—which are incorporated in the polymer backbone—are reported and the use of fire-retardant epoxy coatings for materials protection is also considered.

  4. Animation of Sequoia Forest Fire

    Science.gov (United States)

    2002-01-01

    Continued hot, dry weather in the American west contributed to the spread of numerous fires over the weekend of July 29-30, 2000. This is the most active fire season in the United States since 1988, when large portions of Yellowstone National Park burned. One of the largest fires currently burning has consumed more than 63,000 acres in Sequoia National Forest. This NOAA Geostationary Operational Environmental Satellite (GOES) image shows the fire on the afternoon of July 30, 2000. Note the clouds above the smoke plume. These often form during large fires because updrafts lift warm air near the ground high into the atmosphere, cooling the air and causing the water vapor it contains to condense into droplets. The soot particles in the smoke also act as condensation nuclei for the droplets. View the animation of GOES data to see the smoke forming clouds. Image and Animation by Robert Simmon and Marit-Jentoft Nilsen, NASA GSFC, based on data from NOAA.

  5. US Forest Service LANDFIRE Historical Fire Regimes

    Data.gov (United States)

    US Forest Service, Department of Agriculture — Historical fire regimes, intervals, and vegetation conditions are mapped using the Vegetation Dynamics Development Tool (VDDT). These data support fire and landscape...

  6. Thermal characterization of intumescent fire retardant paints

    Science.gov (United States)

    Calabrese, L.; Bozzoli, F.; Bochicchio, G.; Tessadri, B.; Rainieri, S.; Pagliarini, G.

    2014-11-01

    Intumescent coatings are now the dominant passive fire protection materials used in industrial and commercial buildings. The coatings, which usually are composed of inorganic components contained in a polymer matrix, are inert at low temperatures and at higher temperatures, they expand and degrade to provide a charred layer of low conductivity materials. The charred layer, which acts as thermal barrier, will prevent heat transfer to underlying substrate. The thermal properties of intumescent paints are often unknown and difficult to be estimated since they vary significantly during the expansion process; for this reason the fire resistance validation of a commercial coatings is based on expensive, large-scale methods where each commercial coating-beam configuration has to be tested one by one. Adopting, instead, approaches based on a thermal modelling of the intumescent paint coating could provide an helpful tool to make easier the test procedure and to support the design of fire resistant structures as well. The present investigation is focused on the assessment of a methodology intended to the restoration of the equivalent thermal conductivity of the intumescent layer produced under the action of a cone calorimetric apparatus. The estimation procedure is based on the inverse heat conduction problem approach, where the temperature values measured at some locations inside the layer during the expansion process are used as input known data. The results point out that the equivalent thermal conductivity reached by the intumescent material at the end of the expansion process significantly depends on the temperature while the initial thickness of the paint does not seem to have much effect.

  7. Improved fire retardancy of thermoset composites modified with carbon nanofibers

    Directory of Open Access Journals (Sweden)

    Zhongfu Zhao and Jan Gou

    2009-01-01

    Full Text Available Multifunctional thermoset composites were made from polyester resin, glass fiber mats and carbon nanofiber sheets (CNS. Their flaming behavior was investigated with cone calorimeter under well-controlled combustion conditions. The heat release rate was lowered by pre-planting carbon nanofiber sheets on the sample surface with the total fiber content of only 0.38 wt.%. Electron microscopy showed that carbon nanofiber sheet was partly burned and charred materials were formed on the combusting surface. Both the nanofibers and charred materials acted as an excellent insulator and/or mass transport barrier, improving the fire retardancy of the composite. This behavior agrees well with the general mechanism of fire retardancy in various nanoparticle-thermoplastic composites.

  8. Effects of fire disturbance on forest hydrology

    Institute of Scientific and Technical Information of China (English)

    YAOShu-ren

    2003-01-01

    Fire is quite a common natural phenomenon closely related to forest hydrology in forest ecosystem. The influence of fire on water is indirectly manifested in that the post fire changes of vegetation, ground cover, soil and environment affect water cycle, water quality and aquatic lives. The effect varies depending upon fire severity and frequency. Light wildland fires or prescribed burnings do not affect hydrology regime significantly but frequent burnings or intense fires can cause changes in hydrology regime similar to that caused clear cutting.

  9. Mexican forest fires and their decadal variations

    Science.gov (United States)

    Velasco Herrera, Graciela

    2016-11-01

    A high forest fire season of two to three years is regularly observed each decade in Mexican forests. This seems to be related to the presence of the El Niño phenomenon and to the amount of total solar irradiance. In this study, the results of a multi-cross wavelet analysis are reported based on the occurrence of Mexican forest fires, El Niño and the total solar irradiance for the period 1970-2014. The analysis shows that Mexican forest fires and the strongest El Niño phenomena occur mostly around the minima of the solar cycle. This suggests that the total solar irradiance minima provide the appropriate climatological conditions for the occurrence of these forest fires. The next high season for Mexican forest fires could start in the next solar minimum, which will take place between the years 2017 and 2019. A complementary space analysis based on MODIS active fire data for Mexican forest fires from 2005 to 2014 shows that most of these fires occur in cedar and pine forests, on savannas and pasturelands, and in the central jungles of the Atlantic and Pacific coasts.

  10. Determining the degree of fire retardancy of plywood with thermogravimetry, part I: Beech plywood

    Directory of Open Access Journals (Sweden)

    Gavrilović-Grmuša Ivana

    2007-01-01

    Full Text Available The basic motive of this work is the ever more pronounced need for fire-resistant plywood. In this work, beech veneers have been impregnated with solutions of chosen fire retardants, which are diammonium phosphate monoammonium phosphate, sodium acetate, water glass, sodium tetra borate and boric acid. To determine the preliminary level of fire retardancy achieved in veneers before manufacturing of finished plywood, thermo gravimetric (TG and derivative thermogravimetric (DTG methods are used. TG and DTG analyses of treated and untreated wood, as well as of fire retardants alone, were performed on a Perkin-Elmer TGS-2 thermo gravimetric equipment. Fire resistance of plywood was tested in accordance with standard test for resistance to the effects of fire and the most efficient fire retardants monoammonium phosphate and sodium tetra borate, had the same results as TG/DTG analyses, which points out the validity of TG methods in predicting success of fire retardants in future products.

  11. Fire-retardant and fire-barrier poly(vinyl acetate composites for sealant application

    Directory of Open Access Journals (Sweden)

    2010-02-01

    Full Text Available Fire-retardant ceramifying poly(vinyl acetate (PVAc sealants have been prepared. The degradation of PVA was integrated with the action of the fire retardants to reduce flammable gases, produce carbonaceous char and convert the fillers into a self-supporting ceramic barrier. PVA is readily degraded by elimination of acetic acid, yielding a char that provides a transitory phase as the filler particles fuse into a ceramic mass. Acetic acid is eliminated at similar temperature to the release of water from magnesium hydroxide fire-retardant, thereby diluting flammable acetic acid. The residual oxide from the fire-retardant filler and structural filler are fused by a flux, zinc borate. The degradative and ceramifying processes were characterised using thermogravimetry, infrared spectroscopy, scanning electron microscopy and ceramic strength. Thermogravimetry of the composites was compared with additive mass loss curves calculated from the components. Deviations between the experimental and additive curves revealed interactions between the components in the composites. The modulus of the PVAc composites and the strength of their ceramic residues after combustion were determined.

  12. Modeling human-caused forest fire ignition for assessing forest fire danger in Austria

    Directory of Open Access Journals (Sweden)

    Arndt N

    2013-07-01

    Full Text Available Forest fires have not been considered as a significant threat for mountain forests of the European Alpine Space so far. Climate change and its effects on nature, ecology, forest stand structure and composition, global changes according to demands of society and general trends in the provision of ecosystem services are potentially going to have a significant effect on fire ignition in the future. This makes the prediction of forest fire ignition essential for forest managers in order to establish an effective fire prevention system and to allocate fire fighting resources effectively, especially in alpine landscapes. This paper presents a modelling approach for predicting human-caused forest fire ignition by a range of socio-economic factors associated with an increasing forest fire danger in Austria. The relationship between touristic activities, infrastructure, agriculture and forestry and the spatial occurrence of forest fires have been studied over a 17-year period between 1993 and 2009 by means of logistic regression. 59 independent socio-economic variables have been analysed with different models and validated with heterogeneous subsets of forest fire records. The variables included in the final model indicate that railroad, forest road and hiking trail density together with agricultural and forestry developments may contribute significantly to fire danger. The final model explains 60.5% of the causes of the fire events in the validation set and allows a solid prediction. Maps showing the fire danger classification allow identifying the most vulnerable forest areas in Austria and are used to predict the fire danger classes on municipality level.

  13. Amazon Forest Responses to Drought and Fire

    Science.gov (United States)

    Morton, D. C.

    2015-12-01

    Deforestation and agricultural land uses provide a consistent source of ignitions along the Amazon frontier during the dry season. The risk of understory fires in Amazon forests is amplified by drought conditions, when fires at the forest edge may spread for weeks before rains begin. Fire activity also impacts the regional response of intact forests to drought through diffuse light effects and nutrient redistribution, highlighting the complexity of feedbacks in this coupled human and natural system. This talk will focus on recent advances in our understanding of fire-climate feedbacks in the Amazon, building on research themes initiated under NASA's Large-scale Biosphere-Atmosphere Experiment in Amazonia (LBA). NASA's LBA program began in the wake of the 1997-1998 El Niño, a strong event that exposed the vulnerability of Amazon forests to drought and fire under current climate and projections of climate change. With forecasts of another strong El Niño event in 2015-2016, this talk will provide a multi-scale synthesis of Amazon forest responses to drought and fire based on field measurements, airborne lidar data, and satellite observations of fires, rainfall, and terrestrial water storage. These studies offer new insights into the mechanisms governing fire season severity in the southern Amazon and regional variability in carbon losses from understory fires. The contributions from remote sensing to our understanding of drought and fire in Amazon forests reflect the legacy of NASA's LBA program and the sustained commitment to interdisciplinary research across the Amazon region.

  14. Aerial monitoring and measurement of forest fires

    Science.gov (United States)

    Merino, Luis; Gomez-Rodriguez, Francisco; Arrue, Begona C.; Ollero, Anibal

    2002-07-01

    This paper presents a system for forest fire monitoring using aerial images. The system uses the images taken from a helicopter, the GPS position of the helicopter, and information from a Geographic Information System (GIS) to locate the fire and to estimate in real-time their properties. Currently, the images are taken by a non-stabilized camera. Then, image processing for image stabilization and movement estimation is applied to cancel the vibration and to estimate the change in the camera orientation. Another image processing stage is the computation of the fire front and flame height features in the images. This process is based on color processing and thresholding, followed by contour computation. Finally, the fire front is automatically geo-located by projecting the features over the terrain model obtained from the GIS. Furthermore, an estimation of the flame height is obtained. The aerial image processing, automatic georeferencing and measurement has been integrated in a forest fire fire monitoring system in which several moving or fixed visual and infrared cameras can be used. The system provides in real-time the evolution of the fire-front and the flame height, and obtains a 3D perception model of the fire. The paper shows some results obtained with the application with images taken in real forest-fire experiments, in the framework of the INFLAME project funded by the European Commission.

  15. Fire and Climate Change in Boreal Forests

    Science.gov (United States)

    Flannigan, M. D.; Logan, K. A.; Stocks, S. J.; Wotton, B. M.; Amiro, B. D.

    2004-12-01

    Fire is the major stand-renewing agent for much of the circumboreal forest, and greatly influences the structure and function of boreal ecosystems from regeneration through mortality. Current estimates are that an average of 5-15 million hectares burn annually in boreal forests, almost exclusively in Siberia, Canada and Alaska. There is a growing global awareness of the importance and vulnerability of the boreal region to projected future climate change. Fire activity is strongly influenced by four factors - weather/climate, vegetation \\(fuels\\), natural ignition agents and humans. Climate and weather are strongly linked to fire activity which suggests that the fire regime will respond rapidly to changes in climate. Recent results suggest that area burned by fire is related to temperature and fuel moisture. The climate of the northern hemisphere has been warming due to an influx of radiatively active gases \\(carbon dioxide, methane etc.\\) as a result of human activities. This altered climate, modelled by General Circulation Models \\(GCMs\\), indicates a profound impact on fire activity in the circumboreal forest. Recent results using GCMs suggest that in many regions fire weather/fire danger conditions will be more severe, area burned will increase, people-caused and lightning-caused ignitions will increase, fire seasons will be longer and the intensity and severity of fires will increase. This increase in fire activity may lead to a positive feedback cycle with the increased release of greenhouse gases. Although a run away scenario is unlikely as changes in vegetation would limit the positive feedback cycle. Changes in fire activity as a result of climate change could have a greater and more immediate impact on vegetation distribution and abundance as compared to the direct impact of climate change.

  16. Boreal Forest Fires - Behavior and Atmospheric Impacts

    Science.gov (United States)

    Stocks, B. J.

    2003-12-01

    Fire is a natural and essential stand-renewing agent in circumboreal forests, and eliminating fire in this region is neither economically possible nor ecologically desirable. In general, boreal fire is managed on the basis of values-at-risk, with high levels of protection afforded to economically and recreationally important areas, while fire is permitted to burn naturally in many remote areas. Current estimates are that an average of 5-15 million hectares burn annually across the boreal zone, with at least 50% of the area burning in largely unmanaged forest. High-intensity crown fires account for the vast majority of the area burned in the boreal zone, particularly in North America. These fires typically consume 20-30 tonnes/ha of fuel, spread at rates up to 100 m/min, and generate intensity levels (or energy release rates) approaching 100,000 kW/m of fire front. Deep forest floor (organic) layers common to boreal forests contribute significantly to high levels of fuel consumption and assist in the propagation of crown fires. When crown fires are sustained through a peak afternoon burning period, they usually produce towering convection columns that can reach the upper troposphere directly. Numerous boreal fires columns reaching 11-14 kilometres in height have been documented in the fire literature. Given the lower altitude of the tropopause at boreal zone latitudes it is not surprising that some boreal fire columns have been recently reported reaching the lower stratosphere. Current global and regional climate models suggest a significant increase in both the severity and frequency of boreal fires under a changing climate, with potentially major impacts on terrestrial carbon storage and the global carbon budget, as well as hemispheric smoke transport. Modelling convection column dynamics is essential to predicting the future transport and atmospheric impacts of boreal fire smoke, and this science requires a solid understanding of fuel consumption and fire

  17. Dipterocarpaceae: forest fires and forest recovery

    NARCIS (Netherlands)

    Priadjati, A.

    2002-01-01

    One of the serious problems Indonesia is facing today is deforestation. Forests have been playing a very important role in Indonesia as the main natural resources for the economic growth of the country. Large areas of tropical forests, worldwide considered to be among the richest in p

  18. Quantitative analysis of forest fire extinction efficiency

    Directory of Open Access Journals (Sweden)

    Miguel E. Castillo-Soto

    2015-08-01

    Full Text Available Aim of study: Evaluate the economic extinction efficiency of forest fires, based on the study of fire combat undertaken by aerial and terrestrial means. Area of study, materials and methods: Approximately 112,000 hectares in Chile. Records of 5,876 forest fires that occurred between 1998 and 2009 were analyzed. The area further provides a validation sector for results, by incorporating databases for the years 2010 and 2012. The criteria used for measuring extinction efficiency were economic value of forestry resources, Contraction Factor analysis and definition of the extinction costs function. Main results: It is possible to establish a relationship between burnt area, extinction costs and economic losses. The method proposed may be used and adapted to other fire situations, requiring unit costs for aerial and terrestrial operations, economic value of the property to be protected and speed attributes of fire spread in free advance. Research highlights: The determination of extinction efficiency in containment works of forest fires and potential projection of losses, different types of plant fuel and local conditions favoring the spread of fire broaden the admissible ranges of a, φ and Ce considerably.

  19. Modification of poly(styrene-block-butadiene-block-styrene) [SBS] with phosphorus containing fire retardants

    DEFF Research Database (Denmark)

    Chernyy, Sergey; Ullah, Saif; Jomaas, Grunde;

    2015-01-01

    application of the H3PO4 modified SBS as a fire retardant additive for bitumen material, in combination with synergetic melamine species, offered 25% better self-extinguishing properties of such formulation already at a low loading level of the fire retardant components (3.5 wt.%).......An elaborate survey of the chemical modification methods for endowing highly flammable SBS with increased fire resistant properties by means of chemical modification of the polymer backbone with phosphorus containing fire retardant species is presented. Optimal conditions for free radical addition...... of the Psingle bondH containing fire retardants to a double bonds of poly(butadiene) block of SBS were found, affording varied degree of the modification (0.2–21 mol%). Alternatively, a two-step procedure based on an epoxidation step followed by hydrolysis of the epoxides with phosphoric acid was developed...

  20. Synthesis of Fluorocyclotriphosphazene Derivatives and Their Fire-Retardant Finishing on Cotton Fabrics

    Directory of Open Access Journals (Sweden)

    Li Zhanxiong

    2010-01-01

    Full Text Available A series of novel fire-retardant agents, fluorocyclotriphosphazene derivatives with the substitution groups of 2,2,3,3-tetrafluoropropoxy groups were synthesized using hexachlorocyclotriphosphazene and 2,2,3,3-tetrafluoropropyl alcohol as starting materials. The synthesized fire-retardant agent was emulsified and applied on the cotton fabric finishing to reduce the flammability and afford water/oil repellency simultaneously. The optimum finishing process was achieved according to the test of cotton finishing with fluorocyclotriphosphazene. The treated cotton showed not only excellent fire-retardant performance, but also water and oil repellency with little change in strength and whiteness.

  1. A NOVEL FIRE RETARDANT AFFECTS FIRE PERFORMANCE AND MECHANICAL PROPERTIES OF WOOD FLOUR-HIGH DENSITY POLYETHYLENE COMPOSITES

    Directory of Open Access Journals (Sweden)

    Mingzhu Pan,

    2012-02-01

    Full Text Available Wood flour-high density polyethylene (HDPE composites were prepared to investigate the effects of ammonium polyphosphate based fire retardant content (2, 4, 6, 8, and 10-wt%, on the flammability, mechanical, and morphological properties of the wood flour-HDPE composites in this study. Cone calorimetry analysis showed that the addition of fire retardant could decrease the heat release rate (HRR and total smoke release of wood flour-HDPE composites, while it had no obviously effects on effective heat of combustion. Most of the decrease of the HRR occurred with the concentration of the fire retardant up to 4-wt%. With addition of fire retardant, the composites showed a decrease in tensile elongation at break and impact strength, and had no obvious effect on tensile and flexural strength. The scanning electron microscopy observation on the fracture surface of the composites indicated that fire retardant had a uniform dispersion in the wood flour-HDPE composites. However, interfacial bonding would be suggested to improve in wood flour-HDPE composites with ammonium polyphosphate based fire retardant.

  2. Reaction-to-fire performance of fire-retardant treated wooden facades in Japan with respect to accelerated weathering

    Directory of Open Access Journals (Sweden)

    Nakamura Miki

    2016-01-01

    Full Text Available Wood has been used for building facades to enhance the aesthetic design of buildings since the revision to the evaluation method associated with the amendment of the Building Standard Law of Japan in 2000. In response, wood that has been pressure-impregnated with fire retardants (fire-retardant treated wood is often used to ensure it is safe in the event of a fire. Currently, when fire-retardant-treated wood is tested for certification of reaction to fire performance, a cone calorimeter test is conducted in Japan. This test applies radiant heat to the surface of a square specimen, 100 mm each side, immediately after it has undergone fire-retardant treatment. However, when applying fire-retardant treatment to wood, aqueous chemical injection is the standard procedure. When wood is actually used to construct a building, there is a concern about environmental forces such as wind and rain that could cause the wood to deteriorate, and concerns about performance degradation associated with aging. One of the past studies in Japan [1] conducted a cone calorimeter test after an outdoor exposure test and accelerated weathering test, compared the post-test performance with the initial performance and confirmed the amount of remaining fire retardant in the treated wood had been reduced. However, no comparison of the fireproof performance of fire-retardant wood in actual use in a building facade had been conducted in Japan. There have been already valuable researches [e.g. 2, 3] on this issue internationally, but this paper is the first step in Japan and authors hope to focus on the wooden façade construction technique and the standard façade test in Japan.

  3. Software fires detection and extinction for forest

    Directory of Open Access Journals (Sweden)

    Juan Carlos García Seco

    2008-12-01

    Full Text Available This article shows the most usual fire detection and forest extinction application technologies at present. We will see all different methods used by these applications that can be found in the Market and some examples. Also, some basic questions about the most influent parameters when a fire must be extinct are shown. Finally, after having shown all the technologies, we will build a model about an intelligent system which not only detects, but also extinguish wildfires.

  4. Self-organized criticality of forest fires in China

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Self-organized criticality (SOC) of forest fires in China from 1950 to 1989 is studied. The stability, scale- invariant character of SOC and external effects on SOC of forest fires in China are analyzed in detail. Forest-fire cellular automata model is a typical model for the research of SOC. Based on the traditional forest-fire model, an improved model, in which effects of tree species, meteorological conditions and human efforts on forest fires are considered, is introduced. Actual forest fire data in China are compared with simulation results of the two models. It is shown that forest fire data in China have SOC behavior and simulation results of the improved model accord better with actual forest fire data than those of the traditional model.

  5. Risk management :A probe and study on forest fires

    Institute of Scientific and Technical Information of China (English)

    YUE Jinzhu; FENG Zhongke; JIANG Wei; YANG Xiaoqin

    2007-01-01

    The subject of risk management is attracting more and more attention around the world.The risk of forest fire disasters should be faced and dealt with for forest fires cannot be avoided.Treating forest fire disasters as a risk management issue promotes important measures and methods for fire fighters to prevent,reduce and control the risks of forest fires.In this paper,the risk concept andrisk connotation as well as the management risks for forest fire suppression are discussed clearly.Issues such as risk judgments,risk analysis,risk control and the assessment of risk,including their contents and corresponding methods are clarified.

  6. Catastrophic fires in Russian forests

    Science.gov (United States)

    A. I. Sukhinin; D. J. McRae; B. J. Stocks; S. G. Conard; WeiMin Hao; A. J. Soja; D. Cahoon

    2010-01-01

    We evaluated the contribution of catastrophic fires to the total burned area and the amount of tree mortality in Russia since the 1970’s. Such fires occurred in the central regions of European Russia (1972, 1976, 1989, 2002, 2010), Khabarovsk krai (1976, 1988, 1998), Amur region (1997-2002), Republics of Yakutia and Tuva (2002), Magadan and Kamchatka oblast (1984, 2001...

  7. Fire-retardant and smoke-suppressant performance of an intumescent waterborne amino-resin fire-retardant coating for wood

    Institute of Scientific and Technical Information of China (English)

    Fengqiang WANG; Zhijun ZHANG; Qingwen WANG; Jiayin TANG

    2008-01-01

    An intumescent waterborne amino-resin fire-retardant coating for wood (C) was synthesized and its fire-retardant and smoke-suppressant properties were investigated. The main film-builder of C was urea-form-aldehyde resin blended with polyvinyl acetate resin. The intumescent fire-retardant system of C consisted of guany-lurea phosphate (GUP), ammonium polyphosphate (APP), pentaerythritol (PER) and melamine (MEL). Specimens of plywood painted, respectively, with a commercial intumes-cent fire-retardant coating (A), a synthesized coating (C), and the main film-builder of coating C (B), as well as an unpainted plywood (S-JHB), were analyzed by cone calori-metry (CONE). The results show a marked decrease in the heat release rate (HRR) and the total heat release (THR), an increased mass of residual char (Mass), a marked post-ponement in time to ignition (TTI) and a reduced carbon monoxide production rate (P). The smoke production rate (SPR) and total smoke production (TSP) of the ply-wood painted with coating C were observed with the CONE test. The overall fire-retardant and smoke-suppres-sant performance of the synthesized coating C was much better than that of the commercial coating A. The thermo-gravimetric analysis (TGA) results of coating C and its film-builder B indicated that the thermal degradation process of B was slowed down by the addition of the intumescent fire-retardant system; the increase in the amount of charring of coating C was considerable.

  8. Villaflores: Municipal forest fire management model

    Science.gov (United States)

    Pedro Martínez Muñoz; Carlos Alberto Velázquez Sanabria

    2013-01-01

    As provided for in the General Law on Sustainable Forestry Development, the Municipality of Villaflores has worked on a continuous basis since 2002 to reduce the damage caused by forest fires as part of its working agenda, in conjunction with Federal and State agencies and NGOs. The work plan has the following phases: a) Inter-agency coordination:...

  9. Water quality impacts of forest fires

    Science.gov (United States)

    Tecle Aregai; Daniel Neary

    2015-01-01

    Forest fires have been serious menace, many times resulting in tremendous economic, cultural and ecological damage to many parts of the United States. One particular area that has been significantly affected is the water quality of streams and lakes in the water thirsty southwestern United States. This is because the surface water coming off burned areas has resulted...

  10. The influence of fire retardants on the properties of beech and poplar veneers and plywood

    Directory of Open Access Journals (Sweden)

    Miljković Jovan

    2005-01-01

    Full Text Available Rising demands for fire resistance properties of wood construction and elements matching new standards have been an important part of building codes during the last decade. On the other side, lack of more detailed research on interaction between wood species and selected fire retardant chemicals even with basically one is evident. This is particularly truth with domestic wood species. In this research, beech and poplar veneers were immersed in 25% solutions of monoammonium phosphate (MP and sodium acetate (SA and impregnated for different periods of time. To determine the preliminary level of fire retardancy achieved in veneers before manufacturing of finished plywood, thermo gravimetric (TG and derivative thermo gravimetric (DTG methods were used. TG and DTG analyses of treated and untreated wood, as well as of fire retardants alone, were performed. The next properties of impregnated and no impregnated veneers and plywood were determined: absorption of imp regnant solution (A, weight percent gain (WPG of imp regnant, equilibrium moisture content (EMC, pH values, and in the case of plywood, strength and fire resistance. Fire resistance of plywood was tested in accordance with standard test for resistance to the effects of fire and the most efficient fire retardant, monoammonium phosphate, had the same result as TG/DTG analyses, which pointed out the validity of TG methods in predicting fire resistance of future products.

  11. Modern fire regime resembles historical fire regime in a ponderosa pine forest on Native American land

    Science.gov (United States)

    Amanda B. Stan; Peter Z. Fule; Kathryn B. Ireland; Jamie S. Sanderlin

    2014-01-01

    Forests on tribal lands in the western United States have seen the return of low-intensity surface fires for several decades longer than forests on non-tribal lands. We examined the surface fire regime in a ponderosa pinedominated (Pinus ponderosa) forest on the Hualapai tribal lands in the south-western United States. Using fire-scarred trees, we inferred temporal (...

  12. Properties and Performance of Rubberwood Particleboard Treated With Bp® Fire Retardant

    Directory of Open Access Journals (Sweden)

    Izran K.

    2011-12-01

    Full Text Available Rubberwood composites are available in many sizes and are frequently used as furniture and partitioning inputs. However they are naturally combustible and may limit its usage for other value-added products. Treating wood composites with fire retardant was one of the most effective ways to prevent such occurrence. In this study, Rubberwood (Hevea brasiliensis particleboards were incorporated with BP® fire retardant through hot and cold soaking processes. Four different concentrations of fire retardant were applied for the study i.e., 15, 20, 25 and 30% (w/v. Treated and untreated particleboards were exposed to early burning performance test. Fire performance was assessed based on the amount of weight loss and width of burnt area formed on the boards after they were exposed to a fire source. The study shows that BP® had significantly affected the burnt area of the treated particleboards. Insignificant reductions of weight loss were recorded between 15-30% treatment concentrations. Early burning performance showed that increase of fire retardant concentration up to 25% (w/v reduced the weight loss. There was no further weight loss reduction recorded above that concentration. The burnt area decreased as the concentration level of BP® increased. The smallest burnt area was recorded for the boards treated with 30% BP®. The addition of fire retardant had interfered slightly with the physical and mechanical properties of the treated particleboards. The physical and mechanical properties of the particleboards were adversely affected compared to untreated boards with increasing concentration of BP®.

  13. Forest Fires and Prevention Strategies in Northwestern Region of China

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The paper described the natural conditions and forest types in Northwestern Region of China. Most forests in the region are distributed in subalpine areas. It is important to protect the existent forests in the region for maintaining ecological balance. According to the statistics results of 1991~2000, the paper analyzes the forest fires distribution and fire severity. Annually the numbers of forest fires range from 52 to 240. The incidence rate of forest fires in Northwestern Region is under 0.33 per t...

  14. Modeling Anthropogenic Fire Occurrence in the Boreal Forest of China Using Logistic Regression and Random Forests

    Directory of Open Access Journals (Sweden)

    Futao Guo

    2016-10-01

    Full Text Available Frequent and intense anthropogenic fires present meaningful challenges to forest management in the boreal forest of China. Understanding the underlying drivers of human-caused fire occurrence is crucial for making effective and scientifically-based forest fire management plans. In this study, we applied logistic regression (LR and Random Forests (RF to identify important biophysical and anthropogenic factors that help to explain the likelihood of anthropogenic fires in the Chinese boreal forest. Results showed that the anthropogenic fires were more likely to occur at areas close to railways and were significantly influenced by forest types. In addition, distance to settlement and distance to road were identified as important predictors for anthropogenic fire occurrence. The model comparison indicated that RF had greater ability than LR to predict forest fires caused by human activity in the Chinese boreal forest. High fire risk zones in the study area were identified based on RF, where we recommend increasing allocation of fire management resources.

  15. El Nino And Forest Fire In Yunnan Province, Southwest China -New Way to Study Three Essential Factors of Forest Fire

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Three essential factors of forest fire (fire source, environment, and litter) were taken as the point of view, and has approached the forecast method of forest fire in tropical area of southwest China in a macroscopic scale. This study supported by mathematical method was from a new angle. For example, in the aspect of forest fire forecast, it has been thought over that most forest fire is artificial fire, which has lots of randomness. So it could be studied in a kind of Markov random processes. In the ...

  16. Avian community responses to post-fire forest structure: implications for fire management in mixed conifer forests

    Science.gov (United States)

    Angela White; Patricia Manley; Gina Tarbill; T. W. Richardson; R. E. Russell; H. D. Safford; S. Z. Dobrowski

    2016-01-01

    Fire is a natural process and the dominant disturbance shaping plant and animal communities in many coniferous forests of the western US. Given that fire size and severity are predicted to increase in the future, it has become increasingly important to understand how wildlife responds to fire and post-fire management. The Angora Fire...

  17. Properties of flat-pressed wood plastic composites containing fire retardants

    Science.gov (United States)

    Nadir Ayrilmis; Jan. T. Benthien; Heiko Thoemen; Robert H. White

    2011-01-01

    This study investigated physical, mechanical, and fire properties of the flat-pressed wood plastic composites (WPCs) incorporated with various fire retardants (FRs) [5 or 15% by weight (wt)] at 50 wt % of the wood flour (WF). The WPC panels were made from dry-blended WF, polypropylene (PP) with maleic anhydride grafted PP (2 wt %), and FR powder formulations using a...

  18. Durability of fire retardant treated wood products at humid and exterior conditions. Review of literature

    NARCIS (Netherlands)

    Ostman, B.; Voss, A.; Hughes, A.; Hovde, P.J.; Grexa, O.

    2001-01-01

    Fire retardants may considerably improve the fire properties of wood products, but the durability, e.g. in exterior applications, has not been addressed fully. This paper reviews the existing knowledge and experience mainly from the USA with the aim of supporting further development in Europe. The r

  19. Fire performance, microstructure and thermal degradation of an epoxy based nano intumescent fire retardant coating for structural applications

    Energy Technology Data Exchange (ETDEWEB)

    Aziz, Hammad, E-mail: engr.hammad.aziz03@gmail.com; Ahmad, Faiz, E-mail: faizahmad@petronas.com.my; Yusoff, P. S. M. Megat; Zia-ul-Mustafa, M. [Department of Mechanical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Tronoh 31750, Perak (Malaysia)

    2015-07-22

    Intumescent fire retardant coating (IFRC) is a passive fire protection system which swells upon heating to form expanded multi-cellular char layer that protects the substrate from fire. In this research work, IFRC’s were developed using different flame retardants such as ammonium polyphosphate, expandable graphite, melamine and boric acid. These flame retardants were bound together with the help of epoxy binder and cured together using curing agent. IFRC was then reinforced with nano magnesium oxide and nano alumina as inorganic fillers to study their effect towards fire performance, microstructure and thermal degradation. Small scale fire test was conducted to investigate the thermal insulation of coating whereas fire performance was calculated using thermal margin value. Field emission scanning electron microscopy was used to examine the microstructure of char obtained after fire test. Thermogravimetric analysis was conducted to investigate the residual weight of coating. Results showed that the performance of the coating was enhanced by reinforcement with nano size fillers as compared to non-filler based coating. Comparing both nano size magnesium oxide and nano size alumina; nano size alumina gave better fire performance with improved microstructure of char and high residual weight.

  20. Fire performance, microstructure and thermal degradation of an epoxy based nano intumescent fire retardant coating for structural applications

    Science.gov (United States)

    Aziz, Hammad; Ahmad, Faiz; Yusoff, P. S. M. Megat; Zia-ul-Mustafa, M.

    2015-07-01

    Intumescent fire retardant coating (IFRC) is a passive fire protection system which swells upon heating to form expanded multi-cellular char layer that protects the substrate from fire. In this research work, IFRC's were developed using different flame retardants such as ammonium polyphosphate, expandable graphite, melamine and boric acid. These flame retardants were bound together with the help of epoxy binder and cured together using curing agent. IFRC was then reinforced with nano magnesium oxide and nano alumina as inorganic fillers to study their effect towards fire performance, microstructure and thermal degradation. Small scale fire test was conducted to investigate the thermal insulation of coating whereas fire performance was calculated using thermal margin value. Field emission scanning electron microscopy was used to examine the microstructure of char obtained after fire test. Thermogravimetric analysis was conducted to investigate the residual weight of coating. Results showed that the performance of the coating was enhanced by reinforcement with nano size fillers as compared to non-filler based coating. Comparing both nano size magnesium oxide and nano size alumina; nano size alumina gave better fire performance with improved microstructure of char and high residual weight.

  1. How resilient are southwestern ponderosa pine forests after crown fires?

    OpenAIRE

    Savage, Van M.; Mast, J N

    2005-01-01

    The exclusion of low-severity surface fire from ponderosa pine (Pinus ponderosa P. & C. Lawson) forests of the Southwest has changed ecosystem structure and function such that severe crown fires are increasingly causing extensive stand mortality. This altered fire regime has resulted from the intersection of natural drought cycles with human activities that have suppressed natural fires for over a century. What is the trajectory of forest recovery after such fires? This study explores the reg...

  2. The Effect of Particle Size of Wollastonite Filler on Thermal Performance of Intumescent Fire Retardant Coating

    Directory of Open Access Journals (Sweden)

    Zia-ul-Mustafa M.

    2014-07-01

    Full Text Available Intumescent Fire retardant coatings (IFRC’s are one of the simplest ways to protect substrates exposed to fire. In this study, Wollastonite (W filler of two different particle sizes were used to determine the fire performance of intumescent fire retardant coating. The basic ingredients of the coating were ammonium poly-phosphate (APP as acid source, expandable graphite (EG as carbon source, melamine (MEL as blowing agent in epoxy binder, boric acid as additive and hardener as curing agent. A series of coating formulations were developed by using different weight percentages of both sized Wollastonite fillers. The coated steel substrate samples were tested for fire performance using Bunsen burner and char expansion was measured using furnace fire test. A Comparison of the coatings thermal performance was determined. Wollastonite containing filler particle size 10 μm showed better thermal performance than formulations containing filler’s particle size 44 μm.

  3. Comparisons and Assessment of Forest Fire Danger Systems

    Institute of Scientific and Technical Information of China (English)

    Tian Xiao-rui; Douglas J Mcrae; Den Boychuk; Jin Ji-zhong; Gao Cheng-da; Shu Li-fu; Wang Ming-yu

    2005-01-01

    The paper gives a brief description about the current main forest fire danger rating systems in the world, which include forest fire danger rating system used in Canada, USA, Australia, and other countries. It shows the composition, structure and development of the main fire danger rating systems. The limitations of those systems are also discussed. Through a comparison of the three main forest fire danger rating systems the paper describes their differences on development, fuel complex descriptions, inputs and outputs, and their applications and finds that the technologies of the Canadian forest fire danger rating system can be adopted for China to develop a national forest fire danger rating system. Two steps are needed to develop our own national forest fire danger rating system. Firstly, we apply the CFFDRS directly. Then some studies should be done to calibrate the FDRS to local weather and fuel characteristics.

  4. Performance of different fire retardant products applied on Norway spruce tested in a Cone calorimeter

    Directory of Open Access Journals (Sweden)

    Kögl Josef

    2013-11-01

    Full Text Available On the European market there are several fire retardant products available, which reach class B in the European classification system. The producers promise their fire retardants are effective in reducing different reaction to fire parameters of wood such as the time to ignition, the mass loss rate, the heat release rate, the total heat release, the charring rate and the flame spread. This paper discusses the performance of fire retardant products as pressure impregnated wood, non-intumescence surface coatings and intumescence coatings on Norway spruce (Picea abies. The investigations are performed by using a cone calo- rimeter test according to ISO 5660. The thermal exposures of the investigations are 50 kW/m2 and the standard IS0 834 test curve. As result information about the heat release rate, the mass loss rate and the total heat release for duration of 900 seconds will be presented in this paper.

  5. Modification of poly(styrene-block-butadiene-block-styrene) [SBS] with phosphorus containing fire retardants

    DEFF Research Database (Denmark)

    Chernyy, Sergey; Ullah, Saif; Jomaas, Grunde

    2015-01-01

    An elaborate survey of the chemical modification methods for endowing highly flammable SBS with increased fire resistant properties by means of chemical modification of the polymer backbone with phosphorus containing fire retardant species is presented. Optimal conditions for free radical addition...... resulting in 20 mol% of poly(butadiene) block modification. Based on TGA results, organophosporus-modified SBS was found to be amenable to charring – a property which correlated directly with the reduced flammability of the modified polymer observed in Cone Calorimetry tests. Furthermore, conceptually novel...... application of the H3PO4 modified SBS as a fire retardant additive for bitumen material, in combination with synergetic melamine species, offered 25% better self-extinguishing properties of such formulation already at a low loading level of the fire retardant components (3.5 wt.%)....

  6. Fire Regime and Stability of the West African Tropical Forest

    Science.gov (United States)

    Dwomoh, F. K.; Wimberly, M. C.

    2014-12-01

    Ecological discussions concerning alternative stable states theory suggest that tropical forest ecosystems could shift to qualitatively different alternative states upon catastrophic disturbances which exceed forest resilience. In this regard, it is expected that changes in the fire regime facilitated by climate and land use alterations could lead to rapid forest cover loss, creating conditions likely to push tropical forests to tipping points, beyond which forest resilience is lost. However, there is a dearth of empirical examples of fire-driven alternative stable states involving tropical forests. Key among the constraints for this scarcity are the requirements for large scale disturbances and long-term data, both of which are scarce. However, in the West African tropical forest (referred to as the Upper Guinean forest, UGF) a number of protected areas were impacted by large fire events during the 1980s El Niño-driven droughts, providing an opportunity for testing hypotheses concerning alternative stable states in tropical forest ecosystems. This paper aims to demonstrate fire-driven alternative stable states in the deciduous forest zone of the UGF by analyzing fire activity and forest recovery in fire-impacted forest reserves. We analyzed historical Landsat and MODIS imagery to map and quantify vegetation cover change, fire frequency and fire severity patterns. Our analyses suggest that the historic fires in the 1980s were catastrophic enough to remove forest canopy, thereby triggering a landscape-scale alternative stable states. Forest cover declined substantially becoming replaced by a novel ecosystem with low tree density. Our results also indicate the establishment of a positive fire-vegetation feedback effect, such that the new vegetation which displaced severely burned forests is more pyrogenic and maintained through frequent burns. This study expands our knowledge on the vulnerability of tropical forest ecosystems to state transitions in response to fire

  7. Time fluctuation analysis of forest fire sequences

    Science.gov (United States)

    Vega Orozco, Carmen D.; Kanevski, Mikhaïl; Tonini, Marj; Golay, Jean; Pereira, Mário J. G.

    2013-04-01

    Forest fires are complex events involving both space and time fluctuations. Understanding of their dynamics and pattern distribution is of great importance in order to improve the resource allocation and support fire management actions at local and global levels. This study aims at characterizing the temporal fluctuations of forest fire sequences observed in Portugal, which is the country that holds the largest wildfire land dataset in Europe. This research applies several exploratory data analysis measures to 302,000 forest fires occurred from 1980 to 2007. The applied clustering measures are: Morisita clustering index, fractal and multifractal dimensions (box-counting), Ripley's K-function, Allan Factor, and variography. These algorithms enable a global time structural analysis describing the degree of clustering of a point pattern and defining whether the observed events occur randomly, in clusters or in a regular pattern. The considered methods are of general importance and can be used for other spatio-temporal events (i.e. crime, epidemiology, biodiversity, geomarketing, etc.). An important contribution of this research deals with the analysis and estimation of local measures of clustering that helps understanding their temporal structure. Each measure is described and executed for the raw data (forest fires geo-database) and results are compared to reference patterns generated under the null hypothesis of randomness (Poisson processes) embedded in the same time period of the raw data. This comparison enables estimating the degree of the deviation of the real data from a Poisson process. Generalizations to functional measures of these clustering methods, taking into account the phenomena, were also applied and adapted to detect time dependences in a measured variable (i.e. burned area). The time clustering of the raw data is compared several times with the Poisson processes at different thresholds of the measured function. Then, the clustering measure value

  8. Trial by fire : Postfire development of a tropical dipterocarp forest

    NARCIS (Netherlands)

    Nieuwstadt, Mark Geerten Lambertus van

    2002-01-01

    Over the past decades, uncontrolled forest fires have formed an increasing threat for tropical forests, often causing large-scale ecological and economic damage. My research shows that, even though the damage caused by the fire is enormous, a single fire does not cause the complete destruction of a

  9. Plant diversity after rain-forest fires in Borneo

    NARCIS (Netherlands)

    Eichhorn, Karl August Otto

    2006-01-01

    In the last two decades El-Niño-induced fires have caused widespread destruction of forests in East Kalimantan. The 1997-98 fires were the most extensive yet. The post-fire situation was studied in detail by field assessments and high-resolution SAR-images. My results show that rain forests are bett

  10. Impregnation of preservative and fire retardants into Japanese cedar lumber by passive impregnation

    Directory of Open Access Journals (Sweden)

    Md Nazrul Islam

    2013-02-01

    Full Text Available Copper azole type B (CAz-B preservative and polyphosphatic carbamate (PPC fire retardants were impregnated in succession into green (97% MC and kiln-dried (18% MC Japanese cedar (Cryptomeria japonica (L.f. D.Don lumber by the passive impregnation method to prolong the period of lumber use by increasing its resistance to fire and biological degradation. Lumber was dried with a kiln or by air-drying. Total chemical retention, penetration, leaching, decay resistance (JIS K 1571, and fire retardancy (ISO 834-1 standard, 20 minutes tests were performed according to the mentioned standards. Preservative retention was higher in the green lumber (4.97 kg/m3 compared with the kiln-dried (4.88 kg/m3 lumber. However, fire retardant retention was similar for both lumber types (107 and 111 kg/m3. Leaching was higher in kiln-dried lumber (21.8% compared to air-dried lumber (14.4%, although there were no significant differences in the decay resistance test between these two lumber types. The fire performance of both lumber types was similar in the fire resistance test. Therefore, the passive impregnation method can be used effectively for impregnation of both preservatives and fire retardants into wood.

  11. Forest Fire Image Intelligent Recognition based on the Neural Network

    OpenAIRE

    Yan Qiang; Bo Pei; Juanjuan Zhao

    2014-01-01

    To avoid the drawbacks caused by the long-distance and large-area features of the outdoor forest fires in the traditional fire detection methods. A new forest fire recognition method based on the neural network is proposed, which recognizes the fire based on the static and dynamic features of the fire. The method combines the multiple parameters of the flames and the shapes of the fire to distinguish fire image. Then the extracted features were tested by the Back Propagation Neural Network. T...

  12. THE COMBUSTION PERFORMANCE OF MEDIUM DENSITY FIBERBOARD TREATED WITH FIRE RETARDANT MICROSPHERES

    Directory of Open Access Journals (Sweden)

    Lichao Sun,

    2011-12-01

    Full Text Available Fire retardant particles (guanylurea phosphate and boric acid with a morphological characteristic of large crystal or fine microsphere, were respectively applied to wood fibers to make medium density fiberboard (MDF. The effects of particle size of the fire retardant on the combustion performance of the resulting MDF samples were determined using a thermogravimetric (TG analyzer and cone calorimeter (CONE. The scanning electron microscopy and laser particle size analysis showed that the microspheric particles of fire retardant had a mean size of approximately 20 µm, which was smaller than the crystal (260 um. Incorporation of the fire retardant either in the crystal or microsphere shape reduced the weight loss of the resulting MDF, as evidenced by the TG analysis and the CONE test; the release rate and total amount of both the heat and smoke were apparently inhibited as compared to the untreated MDF samples. Treatments caused an increase in both the ignition time and charring ratio of the MDF. Compared with the fire retardant crystals, the fine microspheric particles exhibited greater ability in inhibiting the release of heat and smoke through the combustion processes.

  13. Temperate and boreal forest mega-fires: characteristics and challenges

    Science.gov (United States)

    Stephens, Scott L.; Burrows, Neil; Buyantuyev, Alexander; Gray, Robert W.; Keane, Robert E.; Kubian, Rick; Liu, Shirong; Seijo, Francisco; Shu, Lifu; Tolhurst, Kevin G.; Van Wagtendonk, Jan W.

    2014-01-01

    Mega-fires are often defined according to their size and intensity but are more accurately described by their socioeconomic impacts. Three factors – climate change, fire exclusion, and antecedent disturbance, collectively referred to as the “mega-fire triangle” – likely contribute to today's mega-fires. Some characteristics of mega-fires may emulate historical fire regimes and can therefore sustain healthy fire-prone ecosystems, but other attributes decrease ecosystem resiliency. A good example of a program that seeks to mitigate mega-fires is located in Western Australia, where prescribed burning reduces wildfire intensity while conserving ecosystems. Crown-fire-adapted ecosystems are likely at higher risk of frequent mega-fires as a result of climate change, as compared with other ecosystems once subject to frequent less severe fires. Fire and forest managers should recognize that mega-fires will be a part of future wildland fire regimes and should develop strategies to reduce their undesired impacts.

  14. Acute toxicity of fire-retardant and foam-suppressant chemicals to yalella azteca (Saussure)

    Science.gov (United States)

    McDonald, Susan F.; Hamilton, Steven J.; Buhl, Kevin J.; Heisinger, James F.

    1997-01-01

    Acute toxicity tests were conducted with Hyalella azteca Saussure (an amphipod) exposed in soft and hard waters to three fire retardants (Fire-Trol GTS-R, Fire-Trol LCG-R, and Phos-Chek D75-F) and two foam suppressants (Phos-Chek WD-881 and Silv-Ex). The chemicals were slightly to moderately toxic to amphipods. The most toxic chemical to amphipods in soft and hard water was Phos-Chek WD-881 (96-h mean lethal concentration [LC50] equal to 10 mg/L and 22 mg/L, respectively), and the least toxic chemical to amphipods in soft water was Fire-Trol GTS-R (96-h LC50 equal to 127 mg/L) and in hard water was Fire-Trol LCG-R (96-h LC50 equal to 535 mg/L). Concentrations of ammonia in tests with the three fire retardants and both water types were greater than reported LC50 values and probably were the major toxic component. Estimated un-ionized ammonia concentrations near the LC50 were frequently less than the reported LC50 ammonia concentrations for amphipods. The three fire retardants were more toxic in soft water than in hard water even though ammonia and un-ionized ammonia concentrations were higher in hard water tests than in soft water tests. The accidental entry of fire-fighting chemicals into aquatic environments could adversely affect aquatic invertebrates, thereby disrupting ecosystem function.

  15. PAST AND PRESENT FOREST FIRES IN ITATIAIA NATIONAL PARK

    Directory of Open Access Journals (Sweden)

    Izar Aximoff

    2011-03-01

    Full Text Available This study was conducted with the aim of evaluating the fire reports occurring in the Itatiaia National Park (INP between 1937 and 2008 and aiming to show information about the total number of fires occurred, and the annual burnt areas, in relation with climate and biodiversity, the months of highest occurrence, the origins and causes of fires. A survey of 323 reports of forest fires showed the highest incidence of forest fires in the months of winter, during the dry season, between July and October. The most affected vegetation was that of the “campos de altitude” (high-altitude grasslands, a native ecosystem of Atlantic Rainforest restricted to the isolated southeastern high peaks and plateaus. Most of the fires had unknown origins and causes, and only twice were examinations by experts carried out. Data revealed INP fragility against forest fires and the importance and the need of Forest Fire Privation and Control Plans for effective biodiversity protection.

  16. Historical fire regime and forest variability on two eastern Great Basin fire-sheds (USA)

    Science.gov (United States)

    Stanley G. Kitchen

    2012-01-01

    Proper management of naturally forested landscapes requires knowledge of key disturbance processes and their effects on species composition and structure. Spatially-intensive fire and forest histories provide valuable information about how fire and vegetation may vary and interact on heterogeneous landscapes. I constructed 800-year fire and tree recruitment...

  17. Fire Patterns and Drivers of Fires in the West African Tropical Forest

    Science.gov (United States)

    Dwomoh, F. K.; Wimberly, M. C.

    2015-12-01

    The West African tropical forest (referred to as the Upper Guinean forest, UGF), is a global biodiversity hotspot providing vital ecosystem services for the region's socio-economic and environmental wellbeing. It is also one of the most fragmented and human-modified tropical forest ecosystems, with the only remaining large patches of original forests contained in protected areas. However, these remnant forests are susceptible to continued fire-mediated degradation and forest loss due to intense climatic, demographic and land use pressures. We analyzed human and climatic drivers of fire activity in the sub-region to better understand the spatial and temporal patterns of these risks. We utilized MODIS active fire and burned area products to identify fire activity within the sub-region. We measured climatic variability using TRMM rainfall data and derived indicators of human land use from a variety of geospatial datasets. We used a boosted regression trees model to determine the influences of predictor variables on fire activity. Our analyses indicated that the spatial and temporal variability of precipitation is a key driving factor of fire activity in the UGF. Anthropogenic effects on fire activity in the area were evident through the influences of agriculture and low-density populations. These human footprints in the landscape make forests more susceptible to fires through forest fragmentation, degradation, and fire spread from agricultural areas. Forested protected areas within the forest savanna mosaic experienced frequent fires, whereas the more humid forest areas located in the south and south-western portions of the study area had fewer fires as these rainforests tend to offer some buffering against fire encroachment. These results improve characterization of UGF fire regime and expand our understanding of the spatio-temporal dynamics of tropical forest fires in response to human and climatic pressures.

  18. 阻燃型有机胶粘剂%Fire retardant organic adhesive

    Institute of Scientific and Technical Information of China (English)

    李子东; 李广宇; 于敏

    2001-01-01

    论述了有机胶粘剂的阻燃问题,以阻燃性树脂、橡胶、固化剂、增塑剂、稀释剂、偶联剂、溶剂等配制阻燃型有机胶粘剂,用于电子、电器、建筑、汽车、化工等行业的粘接与修复,可以防止火灾发生。%The reasearch on flame retardant of organic adhesive was described in this paper.The fire retardant organic adhesive is compounded with fire retardant resin,rubber,curing agent and plasticizer,diluent,filler,coupling agent and solvent.It can avoid fire loss and ensure the safety of life and property.

  19. Early forest fire detection using low-energy hydrogen sensors

    Directory of Open Access Journals (Sweden)

    K. Nörthemann

    2013-11-01

    Full Text Available Most huge forest fires start in partial combustion. In the beginning of a smouldering fire, emission of hydrogen in low concentration occurs. Therefore, hydrogen can be used to detect forest fires before open flames are visible and high temperatures are generated. We have developed a hydrogen sensor comprising of a metal/solid electrolyte/insulator/semiconductor (MEIS structure which allows an economical production. Due to the low energy consumption, an autarkic working unit in the forest was established. In this contribution, first experiments are shown demonstrating the possibility to detect forest fires at a very early stage using the hydrogen sensor.

  20. Effects of a fire-retardant chemical to fathead minnows in experimental streams

    Science.gov (United States)

    Calfee, R.D.; Little, E.E.

    2003-01-01

    Background. Each year millions of liters of fire-retardant chemicals are applied to wildfires across the nation. Recent laboratory studies with long-term fire-retardant chemicals indicate a significant photoenhanced toxicity of products containing sodium ferrocyanide corrosion inhibitors. Our objective of this study was to determine the toxicity of fire-retardant chemicals to fathead minnows during exposure in experimental outdoor streams. Methods. Stream tests were conducted to determine the potential toxicity of a pulse of exposure as might occur when fire retardant chemical is rinsed from the watershed by rainfall. Two artificial 55-meter experimental streams were dosed with different concentrations of Fire-Trol?? GTS-R, or uncontaminated for a control. Replicate groups of fathead minnows were added to screened containers (10 fish per container) and exposed to retardant chemicals in the recirculating flow of the stream for up to 6 hours. Results and Discussion. Under field conditions toxicity of GTS-R only occurred in the presence of sunlight. When GTS-R was tested on sunny days, 100% mortality occurred. However, when tested during heavily overcast conditions, no mortality occurred. Conclusions. Lethal concentrations of cyanide were measured when GTS-R with YPS exposures were conducted under sunny conditions, but not under cloudy conditions, indicating that a minimum UV level is necessary to induce toxicity as well as the release of cyanide from YPS. The toxicity observed with GTS-R was likely associated with lethal concentrations of cyanide. Rainwater runoff following applications of this fire-retardant at the recommended rate could result in lethal concentrations in small ponds and streams receiving limited water flow under sunny conditions. Recommendations and Outlook. In addition to avoiding application to aquatic habitats, it is important to consider characteristics of the treated site including soil binding affinity and erosive properties.

  1. 无机锑系阻燃剂%Inorganic Antimony Series Fire Retardants

    Institute of Scientific and Technical Information of China (English)

    张亨

    2012-01-01

    无机锑系阻燃剂主要包括三氧化二锑、五氧化二锑溶胶和锑酸钠等。介绍了它们的性质、生产工艺、产品标准、阻燃用途和研发方向等。%Inorganic antimony series fire retardants include antimony trioxide, antimony pentoxide sol and sodium antimonate, etc. The properties, production process, production standard and uses of several inorganic antimony series fire retardants are introduced.

  2. FRW阻燃刨切薄竹的阻燃特性%Fire Retardancy of Sliced Bamboo Veneer Treated by Fire-Retardant FRW

    Institute of Scientific and Technical Information of China (English)

    金春德; 杜春贵; 李延军; 王清文

    2011-01-01

    采用FRW阻燃剂对刨切薄竹进行阻燃处理,用锥形量热仪(CONE)测定不同载药率下处理材与未处理材的阻燃性能.结果表明:在25 kW·m-2的热辐射功率下,刨切薄竹经FRW阻燃处理后,热释放速率、总热释放量和总烟释放量随着载药率的增大而减小,处理材在燃烧过程中不会出现较高火焰的燃烧过程;处理材与未处理材相比,点燃时间延长,残余物质量增加;FRW阻燃处理刨切薄竹的阻燃和抑烟效果明显.%The sliced bamboo veneer was treated by fire retardant FRW, and the fire retardancy of the treated and untreated sliced bamboo veneer was tested by cone calorimeter under different retentions. The results showed that; at the heat radiation of 25 kW·m-2, heat release rate(HRR) , total heat release(THR)and total smoke release (TSR) of treated sliced bamboo veneer decreased with the increasing of FRW retention, and it doesn' t produce more high flame in burning process, time to ignite(TTI) of treated sliced bamboo veneer was longer, and its residue mass was increased compared with the untreated sliced bamboo veneer; the obvious fire retardation and smoke inhibition effects of the sliced bamboo veneer treated by fire retardant FRW was observed.

  3. Studies of Fire Nature in the Forests of Siberia

    Directory of Open Access Journals (Sweden)

    P. A. Tsvetkov

    2014-06-01

    Full Text Available An analytical review of forest fires in the forests of Siberia from literature data published over the past 50 years is given. Prior to 1970 the main attention in publications was given to the investigation of fire nature in the southern taiga and mountain forests of Western and Central Siberia, Altai and Trans-Baikal. From 1971 to 1980, publications were characterized by wider aspects of forest fire research and expansion of the geographical area of coverage. In the next 15–20 years, the main consideration was given to the impact of fires on forest formation process, fire emissions, carbon balance, and fire management’ problems. Also in this paper, the main trends and goals for future research are determined.

  4. Variability of fire behavior, fire effects, and emissions in Scotch pine forests of central Siberia

    Science.gov (United States)

    D. J. McRae; Susan Conard; G. A. Ivanova; A. I. Sukhinin; Steve Baker; Y. N. Samsonov; T. W. Blake; V. A. Ivanov; A. V. Ivanov; T. V. Churkina; WeiMin Hao; K. P. Koutzenogij; Nataly Kovaleva

    2006-01-01

    As part of the Russian FIRE BEAR (Fire Effects in the Boreal Eurasia Region) Project, replicated 4-ha experimental fires were conducted on a dry Scotch pine (Pinus sylvestris)/lichen (Cladonia sp.)/feathermoss (Pleurozeum schreberi) forest site in central Siberia. Observations from the initial seven surface fires (2000-2001) ignited under a range of burning...

  5. 木材阻燃的回顾与展望%Review and Prospect of Wood Fire-retardant

    Institute of Scientific and Technical Information of China (English)

    杨文斌; 吴纯初; 顾练百

    2000-01-01

    综合论述了木材阻燃处理的国内外现状,并提出其今后发展趋势。%discussed systematically the yesterday and current situation of the wood fire-retardant processing in home and abroad. At the sametime, gave the prospect of the fire-retardant processing.

  6. Short Jute Fiber Reinforced Polypropylene Composites: Effect of Nonhalogenated Fire Retardants

    Directory of Open Access Journals (Sweden)

    Sk. Sharfuddin Chestee

    2017-01-01

    Full Text Available Short jute fiber reinforced polypropylene (PP composites were prepared using a single screw extrusion moulding. Jute fiber content in the composites is optimized with the extent of mechanical properties, and composites with 20% jute show higher mechanical properties. Dissimilar concentrations of several fire retardants (FRs, such as magnesium oxide (MO, aluminum oxide (AO, and phosphoric acid (PA, were used in the composites. The addition of MO, AO, and PA improved the fire retardancy properties (ignition time, flame height, and total firing time of the composites. Ignition time for 30% MO, flame height for 30% PA, and total firing time for 20% MO content composites showed good results which were 8 sec, 1 inch, and 268 sec, respectively. Mechanical properties (tensile strength, tensile modulus, bending strength, bending modulus, and elongation at break, degradation properties (soil test, weathering test, and percentage of weight loss, and water uptake were studied.

  7. Health consequences of forest fires in Indonesia.

    Science.gov (United States)

    Frankenberg, Elizabeth; McKee, Douglas; Thomas, Duncan

    2005-02-01

    We combined data from a population-based longitudinal survey with satellite measures of aerosol levels to assess the impact of smoke from forest fires that blanketed the Indonesian islands of Kalimantan and Sumatra in late 1997 on adult health. To account for unobserved differences between haze and nonhaze areas, we compared changes in the health of individual respondents. Between 1993 and 1997, individuals who were exposed to haze experienced greater increases in difficulty with activities of daily living than did their counterparts in nonhaze areas. The results for respiratory and general health, although more complicated to interpret, suggest that haze had a negative impact on these dimensions of health.

  8. A case study on fractal simulation of forest fire spread

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This paper relates to the semi-empirical model based on fire field energy balance and the physical model based on land temperature,aiming to provide a practical way of describing fire spread.Fire spread is determined by the characteristics of combustible materials and the agency of meteorological factors and terrains.Combustible materials,such as surface area,have no featured scale,yet the process of forest fire spread contains the self-replicating feature,both of which contribute to the self-similarity of fire spread.Consequently,fire behavior can be described by fractal geometry.In this research,we select Wuchagou forest in Da Hinggan Mountains as the experimental site where a forest fire took place three years ago.The forest fire was detected on low-resolution NOAA-AVHRR images,and fire spread was simulated on high-resolution TM images as another attempt to merge information.Based on remote sensing and GIS,we adopted the method of limited spreading lumping (DLA) to describe growing phenomenon to simulate the dynamic process of fire spread and adjusting shape of the result of fire simulation by the scale rule.As a result,the simulated fire and the actual fire manifest the self-similarity in their spreading shapes as well as the quantitative similarity in their areas.

  9. DOPO-VTS-based coatings in the realm of fire retardants for cotton textile

    DEFF Research Database (Denmark)

    Chernyy, Sergey; Ullah, Saif; Sørensen, Gitte

    2015-01-01

    The work elucidates the feasibility of incorporation of phosphorus-silicon containing fire retardant (10-(2-trimethoxysilylethyl)- 9-hydro-9-oxa-10-phosphaphenanthrene-10-oxide [DOPO-VTS]) into nanosol coating solutions by cohydrolysis cocondensation reaction of DOPO-VTS with tetraethoxysilane...

  10. SMOS and climate data applicability for analyzing forest decline and forest fires

    OpenAIRE

    Chaparro Danon, David; Vayreda, Jordi; Martínez Vilalta, Jordi; Vall-Llossera Ferran, Mercedes Magdalena; Banque, Mireia; Camps Carmona, Adriano José; Piles Guillem, Maria

    2014-01-01

    Forests partially reduce climate change impact but, at the same time, this climate forcing threatens forest's health. In recent decades, droughts are becoming more frequent and intense implying an increase of forest decline episodes and forest fires. In this context, global and frequent soil moisture observations from the ESA's SMOS mission could be useful in controlling forest exposure to decline and fires. In this paper, SMOS observations and several climate variables are analyzed together ...

  11. Fire and the changing face of the boreal forest

    Science.gov (United States)

    Lyons, E. A.

    2016-12-01

    Fire disturbance is a primary driver of land cover distributions in the boreal forest and it is broadly expected to increase in both intensity and area burned. This change will have impacts on the overall pattern of land cover within the boreal forest and on how it interacts with the atmosphere, neighboring biomes, and the global climate system. This study investigates changes to the spatial patterns of forest cover in boreal North America due to fire at the local and biome scale. First, at the local scale, the pattern of forest cover patches within burned areas were found to be larger, more regularly shaped, and clustered than unburned forest. These metrics, however, returned to pre-fire levels relatively quickly. Fires at the biome scale fires tended to decrease landscape heterogeneity.

  12. Spatially explicit measurements of forest structure and fire behavior following restoration treatments in dry forests

    Science.gov (United States)

    Justin Paul Ziegler; Chad Hoffman; Michael Battaglia; William Mell

    2017-01-01

    Restoration treatments in dry forests of the western US often attempt silvicultural practices to restore the historical characteristics of forest structure and fire behavior. However, it is suggested that a reliance on non-spatial metrics of forest stand structure, along with the use of wildland fire behavior models that lack the ability to handle complex structures,...

  13. Forest Fire History... A Computer Method of Data Analysis

    Science.gov (United States)

    Romain M. Meese

    1973-01-01

    A series of computer programs is available to extract information from the individual Fire Reports (U.S. Forest Service Form 5100-29). The programs use a statistical technique to fit a continuous distribution to a set of sampled data. The goodness-of-fit program is applicable to data other than the fire history. Data summaries illustrate analysis of fire occurrence,...

  14. Temporal scaling behavior of forest and urban fires

    Science.gov (United States)

    Wang, J.; Song, W.; Zheng, H.; Telesca, L.

    2009-04-01

    It has been found that many natural systems are characterized by scaling behavior. In such systems natural factors dominate the event dynamics. Forest fires in different countries have been found to exhibit frequency-size power law over many orders of magnitude and with similar value of parameters. But in countries with high population density such as China and Japan, more than 95% of the forest fire disasters are caused by human activities. Furthermore, with the development of society, the wildland-urban interface (WUI) area is becoming more and more populated, and the forest fire is much connected with urban fire. Therefore exploring the scaling behavior of fires dominated by human-related factors is very challenging. The present paper explores the temporal scaling behavior of forest fires and urban fires in Japan with mathematical methods. Two factors, Allan factor (AF) and Fano factor (FF) are used to investigate time-scaling of fire systems. It is found that the FF for both forest fires and urban fires increases linearly in log-log scales, and this indicates that it behaves as a power-law for all the investigated timescales. From the AF plot a 7 days cycle is found, which indicates a weekly cycle. This may be caused by human activities which has a weekly periodicity because on weekends people usually have more outdoor activities, which may cause more hidden trouble of fire disasters. Our findings point out that although the human factors are the main cause, both the forest fires and urban fires exhibit time-scaling behavior. At the same time, the scaling exponents for urban fires are larger than forest fires, signifying a more intense clustering. The reason may be that fires are affected not only by weather condition, but also by human activities, which play a more important role for urban fires than forest fires and have a power law distribution and scaling behavior. Then some work is done to the relative humidity. Similar distribution law characterizes the

  15. Forest Fire Finder - DOAS application to long-range forest fire detection

    Science.gov (United States)

    Valente de Almeida, Rui; Vieira, Pedro

    2017-06-01

    Fires are an important factor in shaping Earth's ecosystems. Plant and animal life, in almost every land habitat, are at least partially dependent on the effects of fire. However, their destructive force, which has often proven uncontrollable, is one of our greatest concerns, effectively resulting in several policies in the most important industrialised regions of the globe. This paper aims to comprehensively characterise the Forest Fire Finder (FFF), a forest fire detection system based mainly upon a spectroscopic technique called differential optical absorption spectroscopy (DOAS). The system is designed and configured with the goal of detecting higher-than-the-horizon smoke columns by measuring and comparing scattered sunlight spectra. The article covers hardware and software, as well as their interactions and specific algorithms for day mode operation. An analysis of data retrieved from several installations deployed in the course of the last 5 years is also presented. Finally, this paper features a discussion on the most prominent future improvements planned for the system, as well as its ramifications and adaptations, such as a thermal imaging system for short-range fire seeking or environmental quality control.

  16. NOAA Satellite Based Real Time Forest Fire Monitoring System for Russia and North Asian Region

    OpenAIRE

    Kalpoma,Kazi A. / Kawano,Koichi / Kudoh,Jun-ichi; / カワノ,コウイチ / クドウ,ジュンイチ

    2007-01-01

    Forest fires cause severe damages to natural resources and human lives all over the world. Though a lot of forest fires occur in Russia and North Asia every year, there is no system available that monitors forest fire in real time processing. However the MODIS Land Rapid Response System provides near-real time fire observations globally, currently forest fire monitoring techniques are not efficient enough to optimally monitor this disaster. For a real-time forest fire monitor system an effici...

  17. Fire regime in a Mexican forest under indigenous resource management.

    Science.gov (United States)

    Fulé, Peter Z; Ramos-Gómez, Mauro; Cortés-Montaño, Citlali; Miller, Andrew M

    2011-04-01

    The Rarámuri (Tarahumara) people live in the mountains and canyons of the Sierra Madre Occidental of Chihuahua, Mexico. They base their subsistence on multiple-use strategies of their natural resources, including agriculture, pastoralism, and harvesting of native plants and wildlife. Pino Gordo is a Rarámuri settlement in a remote location where the forest has not been commercially logged. We reconstructed the forest fire regime from fire-scarred trees, measured the structure of the never-logged forest, and interviewed community members about fire use. Fire occurrence was consistent throughout the 19th and 20th centuries up to our fire scar collection in 2004. This is the least interrupted surface-fire regime reported to date in North America. Studies from other relict sites such as nature reserves in Mexico or the USA have all shown some recent alterations associated with industrialized society. At Pino Gordo, fires recurred frequently at the three study sites, with a composite mean fire interval of 1.9 years (all fires) to 7.6 years (fires scarring 25% or more of samples). Per-sample fire intervals averaged 10-14 years at the three sites. Approximately two-thirds of fires burned in the season of cambial dormancy, probably during the pre-monsoonal drought. Forests were dominated by pines and contained many large living trees and snags, in contrast to two nearby similar forests that have been logged. Community residents reported using fire for many purposes, consistent with previous literature on fire use by indigenous people. Pino Gordo is a valuable example of a continuing frequent-fire regime in a never-harvested forest. The Rarámuri people have actively conserved this forest through their traditional livelihood and management techniques, as opposed to logging the forest, and have also facilitated the fire regime by burning. The data contribute to a better understanding of the interactions of humans who live in pine forests and the fire regimes of these

  18. Combining fire and erosion modeling to target forest management activities

    Science.gov (United States)

    William J. Elliot; Mary Ellen Miller; Nic Enstice

    2015-01-01

    Forests deliver a number of important ecosystem services including clean water. When forests are disturbed by wildfire, the timing, quantity and quality of runoff are altered. A modeling study was carried out in a forested watershed in California to determine the risk of wildfire, and the potential post-fire sediment delivery from approximately 6-ha hillslope polygons...

  19. Economic vulnerability of timber resources to forest fires

    Science.gov (United States)

    Francisco Rodriguez y Silva; Juan Ramon Molina; Armando Gonzalez-Caban; Miguel Angel Herrera Machuca

    2012-01-01

    The temporal-spatial planning of activities for a territorial fire management program requires knowing the value of forest ecosystems. In this paper we extend to and apply the economic valuation principle to the concept of economic vulnerability and present a methodology for the economic valuation of the forest production ecosystems. The forest vulnerability is...

  20. 无机磷系阻燃剂%Inorganic Phosphorus Series Fire Retardants

    Institute of Scientific and Technical Information of China (English)

    张亨

    2011-01-01

    Inorganic phosphorus series fire retardants include red phosphorus(microencapsulized red phosphorus),ammonium polyphosphate and phosphate(such as monoammonium phosphate,diammonium phosphate,triammonium phosphate).The properties,production process,production standard and uses of several inorganic phosphorus series fire retardants have been introduced.The production and retardancy application situation of inorganic phosphorus series fire retardants are summarized.%无机磷系阻燃剂包括红磷(微胶囊化红磷)、聚磷酸铵、磷酸盐(如磷酸氢二铵、磷酸二氢铵、磷酸铵等)。介绍了红磷、聚磷酸铵、磷酸盐等无机阻燃剂的性质、生产过程、产品标准和用途等。概括了无机磷系阻燃剂生产、性能和阻燃应用研究情况。

  1. Fire-retardant coatings based on organic bromine/phenoxy or brominated epoxy systems

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, D.M.; Chiu, Ing L.

    1989-06-01

    Thin phenoxy and brominated epoxy/curing agent films were prepared by solvent casting on Mylar and Kapton. Thicknesses were approximated assuming volume additivity. Important parameters were uniformity of thickness, distribution of the bromine-containing fire retardant, adhesion to carrier substrate (either Mylar or Kapton), and uniformity of the coating, i.e., absence of pinholes, blush, blistering, etc. Wetting behavior was modified using fluoro, silicone or polyurea surfactants. Several solvent systems were examined and a ternary solvent system was ultimately used. Distribution of fire-retardant bromine was analyzed using electron microprobe, x-ray fluorescence and wet chemical methods. Significant discrepancies in the /mu/m-scale analyses of the microprobe measurements have not been resolved. Some of the brominated fire retardants were insoluble in the resin systems and the phase separation was immediately obvious. Similarly, some of the crystallizable epoxies could not be cast easily into homogeneous, amorphous films. Castings were made on a standard 8'' /times/ 10'' aluminum vacuum plate polished with jeweler's rouge prior to every casting. Solvent was removed in a forced air or vacuum oven. Removal and/or curing was accelerated with temperature. The fire-retardant bromine was required to be stable in alcohol/salt solutions. Final formulation used after a significant amount of testing was phenoxy resin PKHC in a ternary solvent system composed of methylethyl ketone, cellosolve acetate and toluene. Tetrabromobisphenol A was used as the flame retardant with FC-430 as surfactant. The dying schedule was 30 minutes at 150/degree/C. 4 refs., 6 figs., 3 tabs.

  2. Actuality and Developing Tendency of Fire Retardants%阻燃剂的现状与展望

    Institute of Scientific and Technical Information of China (English)

    秦华军; 张立新

    2001-01-01

    Aim To introduce the mechanism and development trend of fire retardants simply. Methods The interrelated data home and abroad were summarized. Results The categories and conditions of fire retardants were summarized. Conclusion The research of fire retardants require to be heightened.%目的简单介绍阻燃剂的机理及发展趋势. 方法检索了国内外相关资料. 结果综述了阻燃剂的种类和状况. 结论阻燃剂的研究需进一步加强.

  3. Landscape development, forest fires, and wilderness management.

    Science.gov (United States)

    Wright, H E

    1974-11-08

    ' grand scheme of vegetational climax-created soon after Davis's model of landform development-can be evaluated in terms of modern knowledge. Disillusion with the climax model paralleled disillusion with Davis's model in the 1950's, but the climax model can be tested, because the record of vegetational history is accessible, datable, and decipherable. In the short term of a few decades, successional vegetation stages occur in variety of situations, as confirmed by observation or by techniques such as tree-ring analysis. The successional vegetation stages are reactions to nutrients, weather, competition, and consumption. Such succession implies long-term disequilibrium, or at least unidirectional development. The long-term controlling factor in Clements' model of vegetation development is climate. With climatic stability the succession will proceed to a climax. In the Appalachian Mountains, geomorphic, microclimatic, and edaphic conditions limit climax development, producing a polyclimax, which is generally sustained by the dominance of these factors. Death and regeneration of single forest trees is controlled mostly by windstorms. The distributional pattern may be locally transected by lightning fires, major windstorms, or washouts. However, the long-term stability of Appalachian forests is demonstrated by pollen stratigraphy. Although we can infer the long-term stability of Appalachian forests, the trends and mechanics of short-term vegetational succession are not fully understood, because lack of sizable areas of virgin forest limits investigations of natural conditions. In this respect, the eastern United States is already much like western Europe, where climatic and disturbance factors in vegetational history cannot be disentangled. In the Great Lakes region, a large area of virgin forest exists in the BWCA of northeastern Minnesota. Here short- and long-term studies show that for at least 9000 years the principal stabilizing factor has been the frequent occurrence of

  4. Fire Retardant Coatings for Military Equipment - A Review,

    Science.gov (United States)

    1988-02-01

    Intumescent Reaction Mechanisms, (1985), J. Fire Sci. 3, (3), 161. 52. Interam. 3M Co. St Paul , Minn. cited in Product Engineering, Feb. 1976. p 37...53. Sawko , P.M. & Riccitiello, S.R. (1977). Intumescent Coatings Based on 4,4’- Dinitrosulfanilide, J. Coat. Tech. 49, No 624, 49. 54. Cook, J. (1987...Fohlen, G.M., Sawko , P.M. and Griffin Jr., R.N. (1968). The Use of a Salt of p-Nitroaniline as a Component for Intumescent Coatings, SAMPE J. 4, 5. 56

  5. Effect of Forest Fire on Regional Carbon Dioxide Exchange Over Boreal Forest in Interior Alaska

    Science.gov (United States)

    Iwata, H.; Otsuki, M.; Harazono, Y.; Ueyama, M.; Iwata, T.

    2010-12-01

    Forest fire is a major disturbance in boreal forest ecosystems and significantly influences carbon exchange processes by combustion of vegetation and surface organic soils. In Interior Alaska, area of 7.6x106 ha was burned during 2000-2009 by forest fires. Fire occurrence frequency in the next decade may increase with current warming trend. Hence, it is important to include carbon dioxide (CO2) exchange at fire scars to accurately estimate regional CO2 exchange. To quantify CO2 exchange, CO2 flux and meteorological data were obtained at an undisturbed black spruce forest and a fire scar (five years after fire) in Interior Alaska, and responses of photosynthesis and respiration to meteorological variables were examined in each site. Photosynthesis at the fire scar was reduced to approximately 50 % of photosynthesis at the undisturbed black spruce forest due to loss of vegetation. Respiration at the fire scar was also reduced to 50 % of the undisturbed black spruce forest. This is attributable to decrease of biomass and surface organic matter. Annual net exchanges of CO2 at both sites were uptake of 519 and 256 gCO2/m2/year for the undisturbed black spruce forest and the fire scar, respectively. We used light-use efficiency model to estimate spatial distributions of photosynthesis and respiration using remote sensing imagery, NCEP/NCAR reanalysis meteorology and NASA solar radiation. The model was parameterized using observations at the undisturbed black spruce forest and the fire scar. Estimated regional average of CO2 uptake was reduced by 10 % compared to an estimated value with which fire scars were not included. Further improvement is expected by incorporating severity of forest fires that determine reduction of photosynthesis and respiration after fires.

  6. Evaluating the impact of climate on forest vulnerability to fires

    Directory of Open Access Journals (Sweden)

    Živanović Stanimir

    2015-01-01

    Full Text Available The assessment of the threat of forest fires usually includes identification of factors and quantification of risk levels. This work presents an approach to modeling the risk of forest fires caused by climate impacts. Climate Impact Assessment is based on the significance of air temperature, rainfall and relative air humidity. The analysis is based on the meteorological data obtained from 26 meteorological stations in Serbia for the period from 1981 to 2010. The analysis is used to predict the areas where the expected rate of fire is high. The method is simple; it describes the key variables for the risk under climate impacts and the spatial pattern of risk. It is suitable for operational use by authorized services. The risk of forest fire is classified as negligible, small, medium and large. The database and analysis results were used to build the matrix of risk assessment of forest fires in Serbia. A great part of the territory of Serbia is relatively highly sensitive to forest fires. The lowest consequences of climate impacts are visible in the areas of Kopaonik and Zlatibor. In Serbia, there is no place where there is a negligible risk of fire. Further research, especially in terms of the relationship between climate change and the adaptive capacity of existing forest ecosystems, species and existing genotypes, is urgently needed in Serbia.

  7. Characterization of the Fire Regime and Drivers of Fires in the West African Tropical Forest

    Science.gov (United States)

    Dwomoh, F. K.; Wimberly, M. C.

    2016-12-01

    The Upper Guinean forest (UGF), encompassing the tropical regions of West Africa, is a globally significant biodiversity hotspot and a critically important socio-economic and ecological resource for the region. However, the UGF is one of the most human-disturbed tropical forest ecosystems with the only remaining large patches of original forests distributed in protected areas, which are embedded in a hotspot of climate stress & land use pressures, increasing their vulnerability to fire. We hypothesized that human impacts and climate interact to drive spatial and temporal variability in fire, with fire exhibiting distinctive seasonality and sensitivity to drought in areas characterized by different population densities, agricultural practices, vegetation types, and levels of forest degradation. We used the MODIS active fire product to identify and characterize fire activity in the major ecoregions of the UGF. We used TRMM rainfall data to measure climatic variability and derived indicators of human land use from a variety of geospatial datasets. We employed time series modeling to identify the influences of drought indices and other antecedent climatic indicators on temporal patterns of active fire occurrence. We used a variety of modeling approaches to assess the influences of human activities and land cover variables on the spatial pattern of fire activity. Our results showed that temporal patterns of fire activity in the UGF were related to precipitation, but these relationships were spatially heterogeneous. The pattern of fire seasonality varied geographically, reflecting both climatological patterns and agricultural practices. The spatial pattern of fire activity was strongly associated with vegetation gradients and anthropogenic activities occurring at fine spatial scales. The Guinean forest-savanna mosaic ecoregion had the most fires. This study contributes to our understanding of UGF fire regime and the spatio-temporal dynamics of tropical forest fires in

  8. Tree diversity, composition, forest structure and aboveground biomass dynamics after single and repeated fire in a Bornean rain forest

    NARCIS (Netherlands)

    Slik, J.W.F.; Bernard, C.S.; Beek, van M.; Breman, F.C.; Eichhorn, K.A.O.

    2008-01-01

    Forest fires remain a devastating phenomenon in the tropics that not only affect forest structure and biodiversity, but also contribute significantly to atmospheric CO2. Fire used to be extremely rare in tropical forests, leaving ample time for forests to regenerate to pre-fire conditions. In recent

  9. A case study on fractal simulation of forest fire spread

    Institute of Scientific and Technical Information of China (English)

    朱启疆; 戎太宗; 孙睿

    2000-01-01

    This paper relates to the semi-empirical model based on fire field energy balance and the physical model based on land temperature, aiming to provide a practical way of describing fire spread. Fire spread is determined by the characteristics of combustible materials and the agency of meteorological factors and terrains. Combustible materials, such as surface area, have no featured scale, yet the process of forest fire spread contains the self-replicating feature, both of which contribute to the self-similarity of fire spread. Consequently, fire behavior can be described by fractal geometry. In this research, we select Wuchagou forest in Da Hinggan Mountains as the experimental site where a forest fire took place three years ago. The forest fire was detected on low-resolution NOAA-AVHRR images, and fire spread was simulated on high-resolution TM images as another attempt to merge information. Based on remote sensing and GIS, we adopted the method of limited spreading lumping (DLA) to describe growing phe

  10. Focused sunlight factor of forest fire danger assessment using Web-GIS and RS technologies

    Science.gov (United States)

    Baranovskiy, Nikolay V.; Sherstnyov, Vladislav S.; Yankovich, Elena P.; Engel, Marina V.; Belov, Vladimir V.

    2016-08-01

    Timiryazevskiy forestry of Tomsk region (Siberia, Russia) is a study area elaborated in current research. Forest fire danger assessment is based on unique technology using probabilistic criterion, statistical data on forest fires, meteorological conditions, forest sites classification and remote sensing data. MODIS products are used for estimating some meteorological conditions and current forest fire situation. Geonformation technologies are used for geospatial analysis of forest fire danger situation on controlled forested territories. GIS-engine provides opportunities to construct electronic maps with different levels of forest fire probability and support raster layer for satellite remote sensing data on current forest fires. Web-interface is used for data loading on specific web-site and for forest fire danger data representation via World Wide Web. Special web-forms provide interface for choosing of relevant input data in order to process the forest fire danger data and assess the forest fire probability.

  11. Nitrogen balance along a boreal forest fire chronosequence

    Science.gov (United States)

    Palviainen, Marjo; Pumpanen, Jukka; Berninger, Frank; Heinonsalo, Jussi; Sun, Hui; Köster, Egle; Köster, Kajar

    2016-04-01

    Fire is a major natural disturbance factor in boreal forests, and the frequency of forest fires is predicted to increase due to climate change in boreal regions. Because boreal forests comprise 30% of the global forest area, increases in the annual area burned may have significant implications for global carbon and nitrogen (N) cycles. The productivity of boreal forests is limited by low N availability. Fires cause N loss from ecosystems through oxidation and volatilization of N stored in biomass and soil. N balance may be poorly buffered against forest fires especially in sub-arctic ecosystems where atmospheric N deposition is low. Although forest fires alter N dynamics, there are little quantitative data available on N pools and fluxes through post-fire succession in sub-arctic boreal forests. We studied changes in N pools and fluxes, and the overall N balance across a 155-year forest fire chronosequence in sub-arctic Scots pine (Pinus sylvestris) forests in Värriö Strict Nature Reserve situated in Finnish Lapland (67°46' N, 29°35' E). Soil was the largest N pool in all forest age classes and comprised 69-82% of the total ecosystem N pool. The total ecosystem N pool varied from 622 kg ha-1 in the recently burned forest to 960 kg ha-1 in the 155-year-old forest. The forests were N sinks in all age classes the annual N accumulation rate being 2.28 kg ha-1 yr-1 which was distributed almost equally between soil and biomass. The observed changes in ecosystem N pools were consistent with the computed N balance 2.10 kg ha-1 yr-1 over the 155-year post-fire period (Balance= (atmospheric deposition + N fixation) - (leaching + N2O emissions)). The results indicated that N deposition is an important component of the N balance and the N outputs are small (13% of the inputs) in the studied ecosystems. N2O fluxes were negligible (≤ 0.01 kg ha-1 yr-1) compared to the other N fluxes. The biological N fixation increased with succession and constituted 9% of the total N

  12. A Fire-Retardant Composite Made from Domestic Waste and PVA

    Directory of Open Access Journals (Sweden)

    Neni Surtiyeni

    2016-01-01

    Full Text Available We report the synthesis of a composite from domestic waste with the strength of wood building materials. We used original domestic waste with only a simple pretreatment to reduce the processing cost. The wastes were composed of organic components (generally originating from foods, paper, plastics, and clothes; the average fraction of each type of waste mirrored the corresponding fractions of wastes in the city of Bandung, Indonesia. An initial survey of ten landfills scattered through Bandung was conducted to determine the average fraction of each component in the waste. The composite was made using a hot press. A large number of synthesis parameters were tested to determine the optimum ones. The measured mechanical strength of the produced composite approached the mechanical properties of wood building materials. A fire-retardant powder was added to retard fire so that the composite could be useful for the construction of residential homes of lower-income people who often have problems with fire. Fire tests showed that the composites were more resistant to fire than widely used wood building materials.

  13. Fire behavior of halogen-free flame retardant electrical cables with the cone calorimeter.

    Science.gov (United States)

    Meinier, Romain; Sonnier, Rodolphe; Zavaleta, Pascal; Suard, Sylvain; Ferry, Laurent

    2017-08-14

    Fires involving electrical cables are one of the main hazards in Nuclear Power Plants (NPPs). Cables are complex assemblies including several polymeric parts (insulation, bedding, sheath) constituting fuel sources. This study provides an in-depth characterization of the fire behavior of two halogen-free flame retardant cables used in NPPs using the cone calorimeter. The influence of two key parameters, namely the external heat flux and the spacing between cables, on the cable fire characteristics is especially investigated. The prominent role of the outer sheath material on the ignition and the burning at early times was highlighted. A parameter of utmost importance called transition heat flux, was identified and depends on the composition and the structure of the cable. Below this heat flux, the decomposition is limited and concerns only the sheath. Above it, fire hazard is greatly enhanced because most often non-flame retarded insulation part contributes to heat release. The influence of spacing appears complex, and depends on the considered fire property. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Nanostructured Wood Hybrids for Fire-Retardancy Prepared by Clay Impregnation into the Cell Wall.

    Science.gov (United States)

    Fu, Qiliang; Medina, Lilian; Li, Yuanyuan; Carosio, Federico; Hajian, Alireza; Berglund, Lars A

    2017-09-14

    Eco-friendly materials need "green" fire-retardancy treatments, which offer opportunity for new wood nanotechnologies. Balsa wood (Ochroma pyramidale) was delignified to form a hierarchically structured and nanoporous scaffold mainly composed of cellulose nanofibrils. This nanocellulosic wood scaffold was impregnated with colloidal montmorillonite clay to form a nanostructured wood hybrid with high flame-retardancy. The nanoporous scaffold was characterized by scanning electron microscopy and gas adsorption. Flame-retardancy was evaluated by cone calorimetry, whereas thermal and thermo-oxidative stabilities were assessed by thermogravimetry. The location of well-distributed clay nanoplatelets inside the cell walls was confirmed by energy-dispersive X-ray analysis. This unique nanostructure dramatically increased the thermal stability because of thermal insulation, oxygen depletion, and catalytic charring effects. A coherent organic/inorganic charred residue was formed during combustion, leading to a strongly reduced heat release rate peak and reduced smoke generation.

  15. Effect of clays on the fire-retardant properties of a polyethylenic copolymer containing intumescent formulation

    Directory of Open Access Journals (Sweden)

    Simone P S Ribeiro et al

    2008-01-01

    Full Text Available Organophilic clay particles were added to a standard intumescent formulation and, since the role of clay expansion or intercalation is still a matter of much controversy, several clays with varying degrees of interlayer distances were evaluated. The composites were obtained by blending the nanostructured clay and the intumescent system with a polyethylenic copolymer. The flame-retardant properties of the materials were evaluated by the limiting oxygen index (LOI, the UL-94 rating and thermogravimetric analysis (TGA. The results showed that the addition of highly expanded clays to the ammonium polyphosphate and pentaerythritol formulation does not significantly increase the flame retardancy of the mixture, when measured by the LOI and UL-94. However, when clays with smaller basal distances were added to the intumescent formulation, a synergistic effect was observed. In contrast, the simple addition of clays to the copolymer, without the intumescent formulation, did not increase the fire retardance of the materials.

  16. Effect of clays on the fire-retardant properties of a polyethylenic copolymer containing intumescent formulation

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Simone P S; Nascimento, Regina S V [Instituto de Quimica-DQO, UFRJ, CT Bloco A, 60 andar, Cidade Universitaria, Rio de Janeiro, RJ, CEP: 21941-590 (Brazil); Estevao, Luciana R M [Agencia Nacional do Petroleo, Gas Natural e BiocombustIveis-ANP, SCM, Av. Rio Branco 65, 170 andar, Centro, Rio de Janeiro, RJ, CEP: 20090-004 (Brazil)], E-mail: rsandra@iq.ufrj.br

    2008-04-15

    Organophilic clay particles were added to a standard intumescent formulation and, since the role of clay expansion or intercalation is still a matter of much controversy, several clays with varying degrees of interlayer distances were evaluated. The composites were obtained by blending the nanostructured clay and the intumescent system with a polyethylenic copolymer. The flame-retardant properties of the materials were evaluated by the limiting oxygen index (LOI), the UL-94 rating and thermogravimetric analysis (TGA). The results showed that the addition of highly expanded clays to the ammonium polyphosphate and pentaerythritol formulation does not significantly increase the flame retardancy of the mixture, when measured by the LOI and UL-94. However, when clays with smaller basal distances were added to the intumescent formulation, a synergistic effect was observed. In contrast, the simple addition of clays to the copolymer, without the intumescent formulation, did not increase the fire retardance of the materials.

  17. Study on fire retardant mechanism of nano-LDHs in intumescent system

    Institute of Scientific and Technical Information of China (English)

    ZHANG ZeJiang; LAN Bin; MEI XiuJuan; XU ChengHua

    2007-01-01

    This paper investigated the fire-retardant mechanism of the nano-LDHs in the intumescent system by the temperature programmed oxidation (TPO). Researches were also conducted to explore the function of the nano-LDHs in the composite fire-retardant agents in air and nitrogen atmosphere, respectively.The results indicated that the nano-LDHs species were responsible for the catalytic oxidation of the rich-carbon compound in oxygen atmosphere. In addition, the nano-LDHs species and their calcinated products at high temperature could increase the carbonaceous residue-shield of the carbon-rich materials, improve the quality and the graphitization degree of the formed char-layer, and accelerate the intumescence and expansion of the melting carbon-rich materials to a certain degree under the oxygen-free condition, leading to the carbonization and expansion of the intumescent layer.

  18. Study on fire retardant mechanism of nano-LDHs in intumescent system

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This paper investigated the fire-retardant mechanism of the nano-LDHs in the intumescent system by the temperature programmed oxidation (TPO). Researches were also conducted to explore the function of the nano-LDHs in the composite fire-retardant agents in air and nitrogen atmosphere, respectively. The results indicated that the nano-LDHs species were responsible for the catalytic oxidation of the rich-carbon compound in oxygen atmosphere. In addition, the nano-LDHs species and their calcinated products at high temperature could increase the carbonaceous residue-shield of the carbon-rich materials, improve the quality and the graphitization degree of the formed char-layer, and accelerate the intumescence and expansion of the melting carbon-rich materials to a certain degree under the oxygen-free condition, leading to the carbonization and expansion of the intumescent layer.

  19. DIMENSIONAL STABILITY PERFORMANCE OF FIRE RETARDANT TREATED VENEER-ORIENTED STRANDBOARD COMPOSITES

    Directory of Open Access Journals (Sweden)

    Zeki Candan

    2011-02-01

    Full Text Available This study investigated dimensional stability properties of oriented strandboard (OSB panels faced with fire retardant treated (FRT veneers. The beech (Fagus orientalis Lipsky veneers were treated with monoammonium phosphate (MAP, diammonium phosphate (DAP, lime water (LW, and a borax/boric acid (BX/BA (1:1 mixture. Dimensional stability tests were performed according to ASTM D-1037. The results revealed that facing veneers impregnated with fire-retardant chemicals had significant effects on the linear expansion (LE properties. The lowest LE value was obtained from the panels faced with MAP treated veneers, while the highest LE value was found in the panels faced with BX/BA treated veneers. The FRT treated veneer facing technique also affected the thickness swelling (TS properties of the OSB panels. The panels faced with LW treated veneers had the highest TS, whereas the panels faced with MAP treated veneers had the lowest TS values.

  20. Fire disturbance and climate change: implications for Russian forests

    Science.gov (United States)

    Shuman, Jacquelyn K.; Foster, Adrianna C.; Shugart, Herman H.; Hoffman-Hall, Amanda; Krylov, Alexander; Loboda, Tatiana; Ershov, Dmitry; Sochilova, Elena

    2017-03-01

    Change in the Russian boreal forest has the capacity to alter global carbon and climate dynamics. Fire disturbance is an integral determinant of the forest’s composition and structure, and changing climate conditions are expected to create more frequent and severe fires. Using the individual tree-based forest gap model UVAFME, along with an updated fire disturbance module that tracks mortality based on tree-species and –size level effects, biomass and species dynamics are simulated across Russia for multiple scenarios: with and without fire, and with and without altered climate. Historical fire return intervals and percent of forest stand mortality are calculated for the Russian eco-regions and applied to 31 010 simulation points across Russia. Simulation results from the scenarios are compared to assess changes in biomass, composition, and stand structure after 600 years of successional change following bare-ground initiation. Simulations that include fire disturbance show an increase in biomass across the region compared to equivalent simulations without fire. Fire disturbance allows the deciduous needle-leaved conifer larch to maintain dominance across much of the region due to their high growth rate and fire tolerance relative to other species. Larch remain dominant under the scenario of altered climate conditions with fire disturbance. The distribution of age cohorts shifts for the scenario of altered climate with fire disturbance, displaying a bimodal distribution with a peak of 280-year-old trees and another of 100-year-old cohorts. In these simulations, fire disturbance acts to increase the turnover rate and patterns of biomass accumulation, though species and tree size are also important factors in determining mortality and competitive success. These results reinforce the importance of the inclusion of complex competition at the species level in evaluating forest response to fire and climate.

  1. Low smoke, non-corrosive, fire retardant cable jackets based on HNBR and EVM

    Energy Technology Data Exchange (ETDEWEB)

    Meisenheimer, H.

    1991-06-01

    This article examines the properties of the polymers HNBR and EVM which make them good candidates for use in meeting the low smoke, non-corrosive, low toxicity and fire retardant requirements for electric safety cable jackets and electric insulation. Topics of the article include density, weight, and viscosity of each polymer, mechanical proprieties of each polymer, and other results of laboratory testing of these polymers.

  2. Ecofriendly Fire Retardant and Rot Resistance Finishing of Jute Fabric Using Tin and Boron Based Compound

    Science.gov (United States)

    Samanta, Ashis Kumar; Bagchi, Arindam

    2017-06-01

    Treatment with sodium stannate followed by treatment with boric acid imparts jute fabric wash fast fire resistance property as indicated by its Limiting Oxygen Index (LOI) value and 45° inclined flammability test results. The treatment was carried out by impregnation of sodium stannate followed by impregnation with an aqueous solution of boric acid and drying. Application of sodium stannate (20%) and boric acid (20%) treatment on jute fabric showed balanced flame retardancy property (LOI value 34) with some loss in fabric tenacity (loss of tenacity is 14.5%). Treated fabric retained good fire retardant property after three consecutive washing. Treated fabric also possessed good rot resistance property as indicated by soil burial test and strength retention after 21 days soil burial was found to be 65%. It is found that of sodium stannate and boric acid combination by double bath process form a synergistic durable fire-retardant as well as rot resistant when impregnated on jute material, which is considerably greater than the use of either sodium stannate or boric acid alone. TGA, FTIR and SEM analysis are also reported to support the results and reaction mechanism.

  3. Ecofriendly Fire Retardant and Rot Resistance Finishing of Jute Fabric Using Tin and Boron Based Compound

    Science.gov (United States)

    Samanta, Ashis Kumar; Bagchi, Arindam

    2017-02-01

    Treatment with sodium stannate followed by treatment with boric acid imparts jute fabric wash fast fire resistance property as indicated by its Limiting Oxygen Index (LOI) value and 45° inclined flammability test results. The treatment was carried out by impregnation of sodium stannate followed by impregnation with an aqueous solution of boric acid and drying. Application of sodium stannate (20%) and boric acid (20%) treatment on jute fabric showed balanced flame retardancy property (LOI value 34) with some loss in fabric tenacity (loss of tenacity is 14.5%). Treated fabric retained good fire retardant property after three consecutive washing. Treated fabric also possessed good rot resistance property as indicated by soil burial test and strength retention after 21 days soil burial was found to be 65%. It is found that of sodium stannate and boric acid combination by double bath process form a synergistic durable fire-retardant as well as rot resistant when impregnated on jute material, which is considerably greater than the use of either sodium stannate or boric acid alone. TGA, FTIR and SEM analysis are also reported to support the results and reaction mechanism.

  4. Fighting Forest Fires - An Assessment of Policy Options in Indonesia

    OpenAIRE

    Luthfi Fatah; Udiansyah

    2010-01-01

    Uncontrolled forest fires are one of the key causes of habitat destruction in Indonesia. The haze they produce causes significant pollution problems for people in the country and in surrounding nations. This study has highlighted the root causes of the fires and assessed a range of potential new policy options to improve the situation. The study finds that the weak enforcement of forest conservation rules and regulations is a key problem and that this is caused by wide range of resource and i...

  5. Modelling for Forest Fire Evolution Based on the Energy Accumulation and Release

    Directory of Open Access Journals (Sweden)

    Fan Yang

    2015-09-01

    Full Text Available Forest fire evolution plays an important role in the decision-making of controlling the forest fire. This paper aims to simulate the dynamics of the forest fire spread using a cellular automaton approach. Having analyzed the characteristics and evolution of forest fires, a simulation model for the forest fire evolution based on the energy accumulation and release is proposed. And, taking Australia's catastrophic forest fire in 2009 as an example, the fire’s evolution closely to the reality is simulated. The results of the experiments are shown that if forest energy is released in a small scale before or during the fire, the fire would be better controlled even if it does not occur. Improving the efficiency of the fire extinguishing procedures and reducing the speed of the fire spread are also effective for controlling the forest fire.

  6. Targeting Audiences and Content for Forest Fire Information Programs.

    Science.gov (United States)

    Carpenter, Edwin H.; And Others

    1986-01-01

    Discusses opinion survey results for the purpose of improving the capabilities of forest managers to effectively communicate new fire management objectives and plans. Includes recommendations based on the analysis concerning the appropriate audiences and content to target in the design of fire information programs. (ML)

  7. Forest construction infrastructures for the prevision, suppression, and protection before and after forest fires

    Science.gov (United States)

    Drosos, Vasileios C.; Giannoulas, Vasileios J.; Daoutis, Christodoulos

    2014-08-01

    Climatic changes cause temperature rise and thus increase the risk of forest fires. In Greece the forests with the greatest risk to fire are usually those located near residential and tourist areas where there are major pressures on land use changes, while there are no currently guaranteed cadastral maps and defined title deeds because of the lack of National and Forest Cadastre. In these areas the deliberate causes of forest fires are at a percentage more than 50%. This study focuses on the forest opening up model concerning both the prevention and suppression of forest fires. The most urgent interventions that can be done after the fire destructions is also studied in relation to soil protection constructions, in order to minimize the erosion and the torrential conditions. Digital orthophotos were used in order to produce and analyze spatial data using Geographical Information Systems (GIS). Initially, Digital Elevation Models were generated, based on photogrammetry and forest areas as well as the forest road network were mapped. Road density, road distance, skidding distance and the opening up percentage were accurately measured for a forest complex. Finally, conclusions and suggestions have been drawn about the environmental compatibility of forest protection and wood harvesting works. In particular the contribution of modern technologies such as digital photogrammetry, remote sensing and Geographical Information Systems is very important, allowing reliable, effective and fast process of spatial analysis contributing to a successful planning of opening up works and fire protection.

  8. Relation Between Continuity of Forest Fire and Forest Types in Indonesia

    OpenAIRE

    1998-01-01

    研究概要:Recently, big forest fires were reported in Indonesia every several years. According to the information from the Ministry of Forestry of Republic of Indonesia, the attacked areas were about 300 thousand, 162 thousand and 19 thousand hectors in 1997, 1994 and 1991, respectively. Early detection of forest fires and early attack to them are considered important for preventing such big fires and a new satellite observation system coupled with NOAA and HIMAWARI (GMS) was installed in Bogor in...

  9. Impact of forest fires on particulate matter and ozone levels during the 2003, 2004 and 2005 fire seasons in Portugal.

    Science.gov (United States)

    Martins, V; Miranda, A I; Carvalho, A; Schaap, M; Borrego, C; Sá, E

    2012-01-01

    The main purpose of this work is to estimate the impact of forest fires on air pollution applying the LOTOS-EUROS air quality modeling system in Portugal for three consecutive years, 2003-2005. Forest fire emissions have been included in the modeling system through the development of a numerical module, which takes into account the most suitable parameters for Portuguese forest fire characteristics and the burnt area by large forest fires. To better evaluate the influence of forest fires on air quality the LOTOS-EUROS system has been applied with and without forest fire emissions. Hourly concentration results have been compared to measure data at several monitoring locations with better modeling quality parameters when forest fire emissions were considered. Moreover, hourly estimates, with and without fire emissions, can reach differences in the order of 20%, showing the importance and the influence of this type of emissions on air quality.

  10. Modelling Variable Fire Severity in Boreal Forests: Effects of Fire Intensity and Stand Structure.

    Science.gov (United States)

    Miquelajauregui, Yosune; Cumming, Steven G; Gauthier, Sylvie

    2016-01-01

    It is becoming clear that fires in boreal forests are not uniformly stand-replacing. On the contrary, marked variation in fire severity, measured as tree mortality, has been found both within and among individual fires. It is important to understand the conditions under which this variation can arise. We integrated forest sample plot data, tree allometries and historical forest fire records within a diameter class-structured model of 1.0 ha patches of mono-specific black spruce and jack pine stands in northern Québec, Canada. The model accounts for crown fire initiation and vertical spread into the canopy. It uses empirical relations between fire intensity, scorch height, the percent of crown scorched and tree mortality to simulate fire severity, specifically the percent reduction in patch basal area due to fire-caused mortality. A random forest and a regression tree analysis of a large random sample of simulated fires were used to test for an effect of fireline intensity, stand structure, species composition and pyrogeographic regions on resultant severity. Severity increased with intensity and was lower for jack pine stands. The proportion of simulated fires that burned at high severity (e.g. >75% reduction in patch basal area) was 0.80 for black spruce and 0.11 for jack pine. We identified thresholds in intensity below which there was a marked sensitivity of simulated fire severity to stand structure, and to interactions between intensity and structure. We found no evidence for a residual effect of pyrogeographic region on simulated severity, after the effects of stand structure and species composition were accounted for. The model presented here was able to produce variation in fire severity under a range of fire intensity conditions. This suggests that variation in stand structure is one of the factors causing the observed variation in boreal fire severity.

  11. Synergistic effects of mica and wollastonite fillers on thermal performance of intumescent fire retardant coating

    Energy Technology Data Exchange (ETDEWEB)

    Zia-ul-Mustafa, M., E-mail: engr.ziamustafa@gmail.com; Ahmad, Faiz; Megat-Yusoff, Puteri S. M.; Aziz, Hammad [Mechanical Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia)

    2015-07-22

    In this study, intumescent fire retardant coatings (IFRC) were developed to investigate the synergistic effects of reinforced mica and wollastonite fillers based IFRC towards heat shielding, char expansion, char composition and char morphology. Ammonium poly-phosphate (APP) was used as acid source, expandable graphite (EG) as carbon source, melamine as blowing agent, boric acid as additive and Hardener H-2310 polyamide amine in bisphenol A epoxy resin BE-188(BPA) was used as curing agent. Bunsen burner fire test was used for thermal performance according to UL-94 for 1 h. Field Emission Scanning Electron Microscopy (FESEM) was used to observe char microstructure. X-Ray Diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) were used to analyse char composition. The results showed that addition of clay filler in IFRC enhanced the fire protection performance of intumescent coating. X-Ray Diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) results showed the presence of boron phosphate, silicon phosphate oxide, aluminium borate in the char that improved the thermal performance of intumescent fire retardant coating (IFRC). Resultantly, the presence of these developed compounds enhanced the Integrity of structural steel upto 500°C.

  12. Modeling study on the combustion of intumescent fire-retardant polypropylene

    Directory of Open Access Journals (Sweden)

    2007-03-01

    Full Text Available The heat transfer and burning behavior of the intumescent fire-retardant polypropylene were studied by the cone calorimeter at heat flux levels of 50 kW.m-2 to establish an essential physical model for the intumescence process in fire. A mathematical model for the burning process of fire-retardant intumescent polymer was put forward based on the assumption that an intumescent front existed between the char layer and virgin layer. The model emphasizes the thermodynamic aspect of the intumescence process and a corresponding submodel is presented. Meanwhile the thicknesses and mass loss rates of the intumescent polypropylene during burning were measured for the validation of the modeling results. Thermal conductivity and heat capacity of polymer material were also measured as input parameters of the model. The validation results showed that the intumescent thicknesses and mass loss rates predicted by the model were in good agreement with the experimental results. The model was also used to predict the temperature distribution across the sample thickness during burning. The study shows that the present model can appropriately describe the intumescent behavior of the polymer and numerically predict its mass loss rates and temperature distribution in fire.

  13. Forest fire forecasting tool for air quality modelling systems

    Energy Technology Data Exchange (ETDEWEB)

    San Jose, R.; Perez, J. L.; Perez, L.; Gonzalez, R. M.; Pecci, J.; Palacios, M.

    2015-07-01

    Adverse effects of smoke on air quality are of great concern; however, even today the estimates of atmospheric fire emissions are a key issue. It is necessary to implement systems for predicting smoke into an air quality modelling system, and in this work a first attempt towards creating a system of this type is presented. Wild land fire spread and behavior are complex phenomena due to both the number of involved physic-chemical factors, and the nonlinear relationship between variables. WRF-Fire was employed to simulate spread and behavior of some real fires occurred in South-East of Spain and North of Portugal. The use of fire behavior models requires the availability of high resolution environmental and fuel data. A new custom fuel moisture content model has been developed. The new module allows each time step to calculate the fuel moisture content of the dead fuels and live fuels. The results confirm that the use of accurate meteorological data and a custom fuel moisture content model is crucial to obtain precise simulations of fire behavior. To simulate air pollution over Europe, we use the regional meteorological-chemistry transport model WRF-Chem. In this contribution, we show the impact of using two different fire emissions inventories (FINN and IS4FIRES) and how the coupled WRF-Fire- Chem model improves the results of the forest fire emissions and smoke concentrations. The impact of the forest fire emissions on concentrations is evident, and it is quite clear from these simulations that the choice of emission inventory is very important. We conclude that using the WRF-fire behavior model produces better results than using forest fire emission inventories although the requested computational power is much higher. (Author)

  14. Forest fire forecasting tool for air quality modelling systems

    Energy Technology Data Exchange (ETDEWEB)

    San Jose, R.; Perez, J.L.; Perez, L.; Gonzalez, R.M.; Pecci, J.; Palacios, M.

    2015-07-01

    Adverse effects of smoke on air quality are of great concern; however, even today the estimates of atmospheric fire emissions are a key issue. It is necessary to implement systems for predicting smoke into an air quality modelling system, and in this work a first attempt towards creating a system of this type is presented. Wildland fire spread and behavior are complex Phenomena due to both the number of involved physic-chemical factors, and the nonlinear relationship between variables. WRF-Fire was employed to simulate spread and behavior of some real fires occurred in South-East of Spain and North of Portugal. The use of fire behavior models requires the availability of high resolution environmental and fuel data. A new custom fuel moisture content model has been developed. The new module allows each time step to calculate the fuel moisture content of the dead fuels and live fuels. The results confirm that the use of accurate meteorological data and a custom fuel moisture content model is crucial to obtain precise simulations of fire behavior. To simulate air pollution over Europe, we use the regional meteorological-chemistry transport model WRF-Chem. In this contribution, we show the impact of using two different fire emissions inventories (FINN and IS4FIRES) and how the coupled WRF-FireChem model improves the results of the forest fire emissions and smoke concentrations. The impact of the forest fire emissions on concentrations is evident, and it is quite clear from these simulations that the choice of emission inventory is very important. We conclude that using the WRF-fire behavior model produces better results than using forest fire emission inventories although the requested computational power is much higher. (Author)

  15. The Greek National Observatory of Forest Fires (NOFFi)

    Science.gov (United States)

    Tompoulidou, Maria; Stefanidou, Alexandra; Grigoriadis, Dionysios; Dragozi, Eleni; Stavrakoudis, Dimitris; Gitas, Ioannis Z.

    2016-08-01

    Efficient forest fire management is a key element for alleviating the catastrophic impacts of wildfires. Overall, the effective response to fire events necessitates adequate planning and preparedness before the start of the fire season, as well as quantifying the environmental impacts in case of wildfires. Moreover, the estimation of fire danger provides crucial information required for the optimal allocation and distribution of the available resources. The Greek National Observatory of Forest Fires (NOFFi)—established by the Greek Forestry Service in collaboration with the Laboratory of Forest Management and Remote Sensing of the Aristotle University of Thessaloniki and the International Balkan Center—aims to develop a series of modern products and services for supporting the efficient forest fire prevention management in Greece and the Balkan region, as well as to stimulate the development of transnational fire prevention and impacts mitigation policies. More specifically, NOFFi provides three main fire-related products and services: a) a remote sensing-based fuel type mapping methodology, b) a semi-automatic burned area mapping service, and c) a dynamically updatable fire danger index providing mid- to long-term predictions. The fuel type mapping methodology was developed and applied across the country, following an object-oriented approach and using Landsat 8 OLI satellite imagery. The results showcase the effectiveness of the generated methodology in obtaining highly accurate fuel type maps on a national level. The burned area mapping methodology was developed as a semi-automatic object-based classification process, carefully crafted to minimize user interaction and, hence, be easily applicable on a near real-time operational level as well as for mapping historical events. NOFFi's products can be visualized through the interactive Fire Forest portal, which allows the involvement and awareness of the relevant stakeholders via the Public Participation GIS

  16. Acorn viability following prescribed fire in upland hardwood forests

    Science.gov (United States)

    Katie Greenberg; Tara Keyser; Stan Zarnoch; Kris Connor

    2012-01-01

    Restoration of structure and function of mixed-oak (Quercus spp.) forests is a focal issue of forest land managers in the eastern United States due to widespread regeneration failure and poor overstory recruitment of oaks, particularly on productive sites. Prescribed fire is increasingly used as a tool in oak ecosystem restoration, with the goal of reducing competition...

  17. Fire history of coniferous riparian forests in the Sierra Nevada

    Science.gov (United States)

    K. Van de Water; M. North

    2010-01-01

    Fire is an important ecological process in many western U.S. coniferous forests, yet high fuel loads, rural home construction and other factors have encouraged the suppression of most wildfires. Using mechanical thinning and prescribed burning, land managers often try to reduce fuels in strategic areas with the highest fuel loads. Riparian forests, however, are often...

  18. Predicting Fire Susceptibility in the Forests of Amazonia

    Science.gov (United States)

    Nepstad, Daniel C.; Brown, I. Foster; Setzer, Alberto

    2000-01-01

    Although fire is the single greatest threat to the ecological integrity of Amazon forests, our ability to predict the occurrence of Amazon forest fires is rudimentary. Part of the difficulty encountered in making such predictions is the remarkable capacity of Amazon forests to tolerate drought by tapping moisture stored in deep soil. These forests can avoid drought-induced leaf shedding by withdrawing moisture to depths of 8 meters and more. Hence, the absorption of deep soil moisture allows these forests to maintain their leaf canopies following droughts of several months duration, thereby maintaining the deep shade and high relative humidity of the forest interior that prevents these ecosystems from burning. But the drought- and fire-avoidance that is conferred by this deep-rooting phenomenon is not unlimited. During successive years of drought, such as those provoked by El Nino episodes, deep soil moisture can be depleted, and drought-induced leaf shedding begins. The goal of this project was to incorporate this knowledge of Amazon forest fire ecology into a predictive model of forest flammability.

  19. Water evaporation particularities in the process of forest fire extinguishing

    Directory of Open Access Journals (Sweden)

    Strizhak Pavel A.

    2015-01-01

    Full Text Available Numerical simulation of water massif motion through the high temperature gases corresponding to the typical conditions of forest fires was carried out. Maximal values of part by volume of liquid evaporating from water massif under its motion through the flaming burning area were determined when solving the heat and mass transfer problem under the conditions of endothermic phase transformations. Influence of liquid phase transition heat on the heat and mass transfer conditions on the track of water massif was determined. The expediency of polydisperse interspaced in time and space atomization of water massifs under the large-scale (especially, forest fires fire extinguishing was proved.

  20. Impacts of fire exclusion and recent managed fire on forest structure in old growth Sierra Nevada mixed-conifer forests

    Science.gov (United States)

    Brandon M. Collins; Richard G. Everett; Scott L. Stephens

    2011-01-01

    We re-sampled areas included in an unbiased 1911 timber inventory conducted by the U.S. Forest Service over a 4000 ha study area. Over half of the re-sampled area burned in relatively recent management- and lightning-ignited fires. This allowed for comparisons of both areas that have experienced recent fire and areas with no recent fire, to the same areas historically...

  1. [Impact of fire on carbon dynamics of Larix gmelinii forest in Daxing'an Mountains of North-East China: a simulation with CENTURY model].

    Science.gov (United States)

    Fang, Dong-Ming; Zhou, Guang-Sheng; Jiang, Yan-Ling; Jia, Bing-Rui; Xu, Zhen-Zhu; Sui, Xing-Hua

    2012-09-01

    Fire is one of the important natural disturbances to forest ecosystem, giving strong impact on the ecosystem carbon dynamics. By using CENTURY model, this paper simulated the responses of the carbon budget of Larix gmelinii forest in Huzhong area of Daxing' an Mountains to different intensities of fire. The results indicated that after the fires happened, the soil total carbon pool of the forest had a slight increase in the first few years and then recovered gradually, while the stand biomass carbon pool increased after an initial decrease, with the recovery rate of carbon pool of the stand fine components being faster than that of the coarse components. The fluctuation of the carbon pools increased with the increase of fire intensity. After the fires, both the net primary productivity (NPP) of forest vegetation and the soil heterotrophic respiration increased after an initial decrease, but the recovery rate of the NPP was faster than that of soil heterotrophic respiration, resulting in the alternation of the stand functioned as a carbon source or sink. After light fire, the forest still functioned as a weak carbon sink, and quickly recovered as a carbon sink to the level before the fire happened. After other intensities fire, the forest functioned as a carbon source within 9-12 years, and then turned back to a carbon sink again. It was suggested that lower intensity forest fire could promote the regeneration of L. gmelinii forest, reduce the combustibles, and have no strong impact on the stand carbon budget, while higher intensity forest fire would lead to the serious loss of soil- and tree carbon sequestration, retard the recovery of the forest, and thereby, the forest would be a carbon source in a longer term.

  2. Fire ecology of Montana forest habitat types east of the Continental Divide

    Science.gov (United States)

    William C. Fischer; Bruce D. Clayton

    1983-01-01

    Provides information on fire as an ecological factor for forest habitat types occurring east of the Continental Divide in Montana. Identifies "Fire Groups" of habitat types based on fire's role in forest succession. Describes forest fuels and suggests considerations for fire management.

  3. Early forest dynamics in stand-replacing fire patches in the northern Sierra Nevada, California, USA

    Science.gov (United States)

    Brandon M. Collins; Gary B. Roller

    2013-01-01

    There is considerable concern over the occurrence of stand-replacing fire in forest types historically associated with low- to moderate-severity fire. The concern is largely over whether contemporary levels of stand-replacing fire are outside the historical range of variability, and what natural forest recovery is in these forest types following stand-replacing fire....

  4. FRW 阻燃剂处理饰面炭化杨木单板阻燃性能研究%Study on the Fire-Retarding Properties of FRW Fire-Retardant Carbonized Poplar Veneer

    Institute of Scientific and Technical Information of China (English)

    步琦璟; 刘迎涛; 成真; 霍莹; 王旭婷; 刘芯彤; 黄佳波

    2015-01-01

    Oxygen index chamber and CONE calorimeter were used to evaluate the fire-retarding properties of FRW fire-retardant carbonized poplar veneers which were dipped with different consistence.The results showed that:the fire-retarding property of FRW fire-retardant carbonized poplar veneers which were dipped with more than 8% consistence could reach the first class of JISD 1322 -77.The heat release rate (HRR),total heat release (THR),smoking ratio (SR)and total smoke production (TSP)of FRW fire-retardant carbonized poplar veneers showed the decreasing tendency with the increase of the dipping consistence.The FRW fire-retardant carbonized poplar veneer owned the better fire-retarding and smoke suppression performance.%利用氧指数测定仪和锥形量热仪,研究不同质量分数 FRW 阻燃剂浸渍杨木素板和饰面炭化杨木单板的阻燃性能。结果表明,质量分数8%以上 FRW 阻燃剂浸渍处理的炭化杨木单板阻燃性可达到日本标准 JISD1322-77中规定的难燃一级品标准;随着 FRW 阻燃剂浸渍质量分数的增加,阻燃炭化杨木单板的热释放速率、总热释放量、烟比率和总烟释放量均呈降低趋势,说明阻燃炭化杨木单板具有较佳的阻燃和抑烟性能。

  5. The Influence of Dipping Technology on Fire Retardant Retention Quantity of FRW Fire-Retarding Veneer%浸渍工艺对FRW阻燃单板载药量的影响

    Institute of Scientific and Technical Information of China (English)

    刘迎涛; 乔磊; 李晓乐; 林会峰; 姜道鸿; 韩爽

    2012-01-01

    The new-type fire retardant FRW was selected to treat poplar and birch veneer, and the influence of the treatment technology conditions including the soaking time and solution concentration, veneer thickness and the timber of different tree species on the fire retardant retention quantity of the FRW fire-retarding veneer was studied. The results showed that along with the prolonging of soaking time duration and increasing of the solution concentration, the fire retardant retention quantity of the poplar and birch veneer both increased. There was difference in the fire retardant retention quantity between the tree species, the fire retardant retention quantity of poplar veneer was higher than that of the birch veneer. At the same time, with the increase of veneer thickness, the fire retardant retention quantity showed a downward trend in the overall.%选用新型木材阻燃剂FRW处理杨木和桦木单板,探讨浸渍工艺条件(浸渍时间和浸渍浓度)、单板厚度、树种等因素对FRW阻燃单板载药量的影响.结果表明:随着单板浸渍时间的增加和浸渍浓度的提高,杨木和桦木的单板载药量均呈上升趋势;树种不同,其载药量存在差异,杨木单板的载药量高于桦木单板;随着单板厚度的增加,单板载药量在整体上呈下降趋势.

  6. Fire-derived charcoal causes loss of forest humus.

    Science.gov (United States)

    Wardle, David A; Nilsson, Marie-Charlotte; Zackrisson, Olle

    2008-05-01

    Fire is a global driver of carbon storage and converts a substantial proportion of plant biomass to black carbon (for example, charcoal), which remains in the soil for thousands of years. Black carbon is therefore often proposed as an important long-term sink of soil carbon. We ran a 10-year experiment in each of three boreal forest stands to show that fire-derived charcoal promotes loss of forest humus and that this is associated with enhancement of microbial activity by charcoal. This result shows that charcoal-induced losses of belowground carbon in forests can partially offset the benefits of charcoal as a long-term carbon sink.

  7. Estimation of Direct Carbon Emissions from Chinese Forest Fires

    Institute of Scientific and Technical Information of China (English)

    TIANXiaorui; GAOChengde; SHULifu; WANGMingyu; YANGXiaohui

    2004-01-01

    Many studies indicated that the products of biosphere burning have short and long-term effects on the atmosphere. Vegetation burning can produce some gases which have significant influence on environment, including some greenhouse gases as CO2 and CH4, etc. Smoke aerosols produced from burning also influence global climate and atmospheric chemistry. The paper calculates the consumed biomass due to forest fires according to the statistics of forest fires from 1991 to 2000 and research results of biomass of Chinese forests. During the study period, forest fires burned average 5Tg-7Tg biomass each year and directly emitted 20.24 Tg-28.56 Tg carbon. In 1991-2000, average emission of carbon dioxide and CH4 account for 2.7%-3.9% and 3.3%-4.7% of the total emission of China (calculating with the data of 2000), respectively.

  8. Perceptions of forest experts on climate change and fire management in European Mediterranean forests

    Directory of Open Access Journals (Sweden)

    Raftoyannis Y

    2014-02-01

    Full Text Available Climate change has already increased fire risk in Mediterranean forests. Adaptation options related to forest fires and climate change include measures related to fuel management, fire fighting and infrastructure, as well as public awareness. The importance of each of these measures was evaluated in six Mediterranean countries in a study initiated within the COST Action FP0703 “Expected Climate Change and Options for European Silviculture”. A questionnaire survey was used to document the views of foresters and forest scientists. Country differences were observed and adaptation measures related to fire fighting efficiency and public awareness were valued as more important than fuel management. Results were discussed in the light of a critical review of adaptive fire management measures with special reference to European Mediterranean countries.

  9. Creation and implementation of a certification system for insurability and fire risk classification for forest plantations

    Science.gov (United States)

    Veronica Loewe M.; Victor Vargas; Juan Miguel Ruiz; Andrea Alvarez C.; Felipe Lobo Q.

    2015-01-01

    Currently, the Chilean insurance market sells forest fire insurance policies and agricultural weather risk policies. However, access to forest fire insurance is difficult for small and medium enterprises (SMEs), with a significant proportion (close to 50%) of forest plantations being without coverage. Indeed, the insurance market that sells forest fire insurance...

  10. Effectiveness of Prescribed Fire as a Fuel Treatment in Californian Coniferous Forests

    Science.gov (United States)

    Nicole M. Vaillant; JoAnn Fites-Kaufman; Scott L. Stephens

    2006-01-01

    Effective fire suppression for the past century has altered forest structure and increased fuel loads. Prescribed fire as a fuels treatment can reduce wildfire size and severity. This study investigates how prescribed fire affects fuel loads, forest structure, potential fire behavior, and modeled tree mortality at 80th, 90th, and 97.5th percentile fire weather...

  11. The impact of boreal forest fire on climate warming.

    Science.gov (United States)

    Randerson, J T; Liu, H; Flanner, M G; Chambers, S D; Jin, Y; Hess, P G; Pfister, G; Mack, M C; Treseder, K K; Welp, L R; Chapin, F S; Harden, J W; Goulden, M L; Lyons, E; Neff, J C; Schuur, E A G; Zender, C S

    2006-11-17

    We report measurements and analysis of a boreal forest fire, integrating the effects of greenhouse gases, aerosols, black carbon deposition on snow and sea ice, and postfire changes in surface albedo. The net effect of all agents was to increase radiative forcing during the first year (34 +/- 31 Watts per square meter of burned area), but to decrease radiative forcing when averaged over an 80-year fire cycle (-2.3 +/- 2.2 Watts per square meter) because multidecadal increases in surface albedo had a larger impact than fire-emitted greenhouse gases. This result implies that future increases in boreal fire may not accelerate climate warming.

  12. Fire risk and adaptation strategies in Northern Eurasian forests

    Science.gov (United States)

    Shvidenko, Anatoly; Schepaschenko, Dmitry

    2013-04-01

    On-going climatic changes substantially accelerate current fire regimes in Northern Eurasian ecosystems, particularly in forests. During 1998-2012, wildfires enveloped on average ~10.5 M ha year-1 in Russia with a large annual variation (between 3 and 30 M ha) and average direct carbon emissions at ~150 Tg C year-1. Catastrophic fires, which envelope large areas, spread in usually incombustible wetlands, escape from control and provide extraordinary negative impacts on ecosystems, biodiversity, economics, infrastructure, environment, and health of population, become a typical feature of the current fire regimes. There are new evidences of correlation between catastrophic fires and large-scale climatic anomalies at a continental scale. While current climatic predictions suggest the dramatic warming (at the average at 6-7 °C for the country and up to 10-12°C in some northern continental regions), any substantial increase of summer precipitation does not expected. Increase of dryness and instability of climate will impact fire risk and severity of consequences. Current models suggest a 2-3 fold increase of the number of fires by the end of this century in the boreal zone. They predict increases of the number of catastrophic fires; a significant increase in the intensity of fire and amount of consumed fuel; synergies between different types of disturbances (outbreaks of insects, unregulated anthropogenic impacts); acceleration of composition of the gas emissions due to enhanced soil burning. If boreal forests would become a typing element, the mass mortality of trees would increase fire risk and severity. Permafrost melting and subsequent change of hydrological regimes very likely will lead to the degradation and destruction of boreal forests, as well as to the widespread irreversible replacement of forests by other underproductive vegetation types. A significant feedback between warming and escalating fire regimes is very probable in Russia and particularly in the

  13. The Zoning of Forest Fire Potential of Gulestan Province Forests Using Granular Computing and MODIS Images

    Directory of Open Access Journals (Sweden)

    A. Jalilzadeh Shadlouei

    2013-09-01

    Full Text Available There are many vegetation in Iran. This is because of extent of Iran and its width. One of these vegetation is forest vegetation most prevalent in Northern provinces named Guilan, Mazandaran, Gulestan, Ardebil as well as East Azerbaijan. These forests are always threatened by natural forest fires so much so that there have been reports of tens of fires in recent years. Forest fires are one of the major environmental as well as economic, social and security concerns in the world causing much damages. According to climatology, forest fires are one of the important factors in the formation and dispersion of vegetation. Also, regarding the environment, forest fires cause the emission of considerable amounts of greenhouse gases, smoke and dust into the atmosphere which in turn causes the earth temperature to rise up and are unhealthy to humans, animals and vegetation. In agriculture droughts are the usual side effects of these fires. The causes of forest fires could be categorized as either Human or Natural Causes. Naturally, it is impossible to completely contain forest fires; however, areas with high potentials of fire could be designated and analysed to decrease the risk of fires. The zoning of forest fire potential is a multi-criteria problem always accompanied by inherent uncertainty like other multi-criteria problems. So far, various methods and algorithm for zoning hazardous areas via Remote Sensing (RS and Geospatial Information System (GIS have been offered. This paper aims at zoning forest fire potential of Gulestan Province of Iran forests utilizing Remote Sensing, Geospatial Information System, meteorological data, MODIS images and granular computing method. Granular computing is part of granular mathematical and one way of solving multi-criteria problems such forest fire potential zoning supervised by one expert or some experts , and it offers rules for classification with the least inconsistencies. On the basis of the experts’ opinion

  14. Climate effect on forest fire static risk assessment

    Science.gov (United States)

    Bodini, Antonella; Cossu, Antonello; Entrade, Erika; Fiorucci, Paolo; Gaetani, Francesco; Parodi, Ulderica

    2010-05-01

    The availability of a long data series of fire perimeters combined with a detailed knowledge of topography and land cover allow to understand which are the main features involved in forest fire occurrences and their behaviour. In addition, climate indexes obtained from the analysis of time series with more than 20 years of complete records allow to understand the role of climate on fire regime, both in terms of direct effects on fire behaviour and the effect on vegetation cover. In particular, indices of extreme events have been considered like CDD (maximum number of consecutive dry days) and HWDI (heat wave duration index: maximum period > 5 consecutive days with Tmax >5°C above the 1961-1990 daily Tmax normal), together with the usual indices describing rainfall and temperature regimes. As a matter of fact, based on this information it is possible to develop statistical methods for the objective classification of forest fire static risk at regional scale. Two different case studies are presented in this work: Regione Liguria and Regione Sardegna (Italy). Both regions are in the center of the Mediterranean and are characterized by a high number of fires and burned area. However, the two regions have very different fire regimes. Sardinia is affected by the fire phenomenon only in summer whilst Liguria is affected by fires also in winter, with higher number of fires and larger burned area. In addition, the two region are very different in vegetation cover. The presence of Mediterranean conifers, (Pinus Pinaster, Pinus Nigra, Pinus halepensis) is quite spread in Liguria and is almost absent in Sardinia. What is common in the two regions is the widespread presence of shrub species frequently spread by fire. The analysis in the two regions thus allows in a rather limited area to consider almost all the species and the climate conditions that characterize the Mediterranean region. More than 10000 fire perimeters that burnt about 800 km2 were considered in the analysis

  15. Amazonia rain forest fires: A lacustrine record of 7000 years

    Energy Technology Data Exchange (ETDEWEB)

    Turcq, B.; Sifeddine, A. [Universidade Federal Fluminense, Niterol, RJ (Brazil). Dept. de Geoquimica; Martin, Louis [PPPG, Inst. de Geociencias, Salvador, BA (Brazil); Absy, M.L. [Inst. Nacional de Pesquisas Amazonicas, Manaus, AM (Brazil). Dept. de Botanica; Soubies, F. [Univ. Paul Sabatier, Toulouse (France). Lab. de Mineralogie; Suguio, Kenitiro [Sao Paulo Univ., SP (Brazil). Inst. de Geociencias; Volkmer-Ribeiro, C. [Fundacao Zoobotanica do Rio Grande do Sul, Porto Alegre, RS (Brazil)

    1998-03-01

    Although human influence dominates present-day Amazonian rain forest fires, old charcoal fragments, buried in the soils or in lacustrine sediments, confirm that fire has played a major role in the history of Amazonian forests. These fires may have influenced the present-day diversity and structure of the rain forest and, if these fire-favorable events of the past reoccur, there may be drastic consequences for the future of the Amazonian forests. Detailed studies of Carajas lake sediments permit identification of these past fire events, through microscopic observations of small charcoal fragments. They also permit, through radiocarbon dating, a better definition of their timing and make it possible to relate them to past paleo-environmental and paleoclimatic conditions. The paleodata indicate that fire events were concomitant with short dry climate episodes whose frequency of occurrences has varied during the last 7000 years. These dry events may be related to past climate conditions observed in different regions of tropical South America 23 refs, 3 figs

  16. Infinity computations in cellular automaton forest-fire model

    Science.gov (United States)

    Iudin, D. I.; Sergeyev, Ya. D.; Hayakawa, M.

    2015-03-01

    Recently a number of traditional models related to the percolation theory has been considered by means of a new computational methodology that does not use Cantor's ideas and describes infinite and infinitesimal numbers in accordance with the principle 'The whole is greater than the part' (Euclid's Common Notion 5). Here we apply the new arithmetic to a cellular automaton forest-fire model which is connected with the percolation methodology and in some sense combines the dynamic and the static percolation problems and under certain conditions exhibits critical fluctuations. It is well known that there exist two versions of the model: real forest-fire model where fire catches adjacent trees in the forest in the step by step manner and simplified version with instantaneous combustion. Using new approach we observe that in both situations we deal with the same model but with different time resolution. We show that depending on the "microscope" we use the same cellular automaton forest-fire model reveals either instantaneous forest combustion or step by step firing. By means of the new approach it was also observed that as far as we choose an infinitesimal tree growing rate and infinitesimal ratio between the ignition probability and the growth probability we determine the measure or extent of the system size infinity that provides the criticality of the system dynamics. Correspondent inequalities for grosspowers are derived.

  17. A decision support system for managing forest fire casualties.

    Science.gov (United States)

    Bonazountas, Marc; Kallidromitou, Despina; Kassomenos, Pavlos; Passas, Nikos

    2007-09-01

    Southern Europe is exposed to anthropogenic and natural forest fires. These result in loss of lives, goods and infrastructure, but also deteriorate the natural environment and degrade ecosystems. The early detection and combating of such catastrophes requires the use of a decision support system (DSS) for emergency management. The current literature reports on a series of efforts aimed to deliver DSSs for the management of the forest fires by utilising technologies like remote sensing and geographical information systems (GIS), yet no integrated system exists. This manuscript presents the results of scientific research aiming to the development of a DSS for managing forest fires. The system provides a series of software tools for the assessment of the propagation and combating of forest fires based on Arc/Info, ArcView, Arc Spatial Analyst, Arc Avenue, and Visual C++ technologies. The system integrates GIS technologies under the same data environment and utilises a common user interface to produce an integrated computer system based on semi-automatic satellite image processing (fuel maps), socio-economic risk modelling and probabilistic models that would serve as a useful tool for forest fire prevention, planning and management. Its performance has been demonstrated via real time up-to-date accurate information on the position and evolution of the fire. The system can assist emergency assessment, management and combating of the incident. A site demonstration and validation has been accomplished for the island of Evoia, Greece, an area particularly vulnerable to forest fires due to its ecological characteristics and prevailing wind patterns.

  18. Effects of fire on properties of forest soils: a review.

    Science.gov (United States)

    Certini, Giacomo

    2005-03-01

    Many physical, chemical, mineralogical, and biological soil properties can be affected by forest fires. The effects are chiefly a result of burn severity, which consists of peak temperatures and duration of the fire. Climate, vegetation, and topography of the burnt area control the resilience of the soil system; some fire-induced changes can even be permanent. Low to moderate severity fires, such as most of those prescribed in forest management, promote renovation of the dominant vegetation through elimination of undesired species and transient increase of pH and available nutrients. No irreversible ecosystem change occurs, but the enhancement of hydrophobicity can render the soil less able to soak up water and more prone to erosion. Severe fires, such as wildfires, generally have several negative effects on soil. They cause significant removal of organic matter, deterioration of both structure and porosity, considerable loss of nutrients through volatilisation, ash entrapment in smoke columns, leaching and erosion, and marked alteration of both quantity and specific composition of microbial and soil-dwelling invertebrate communities. However, despite common perceptions, if plants succeed in promptly recolonising the burnt area, the pre-fire level of most properties can be recovered and even enhanced. This work is a review of the up-to-date literature dealing with changes imposed by fires on properties of forest soils. Ecological implications of these changes are described.

  19. 纳米阻燃剂对饰面型防火涂料性能影响研究%Effect of Nano Flame Retardant on the Performance of Decorated Fire-retardant Coating

    Institute of Scientific and Technical Information of China (English)

    方璐; 张佳璐; 王美琴; 张华文

    2015-01-01

    Decorated fire-retardant coating is an important method to avoid building fire accidents.Now the research finded that nanometre fire-retardant could solve the problems existing in the application of decorated fire-retardant coating and improved the performance.In order to research the effect of nano flame retardant on the performance of decorated fire-retardant coating, based on the nanometer aluminum hydroxide flame retardant.The method of tunnel ignition was adopted to test the fire performance of ordinary decorating fire-retardant coatings and the fire performance of the decorating fire-retardant coatings adding nanometer aluminum hydroxide. Comparative analysis of experimental results was used to obtained the inference rule of nanometer aluminum hydroxide flame retardant and to have a more intuitive understanding of the inference of nano flame retardant.Fire retardant coatings for nano future trends were forecasted.%饰面型防火涂料是建筑物防火的一种重要方法。现研究发现纳米阻燃剂可改善饰面型防火涂料存在问题,提高防火性能。为研究纳米阻燃剂对饰面型防火涂料的性能影响,本文以纳米氢氧化铝阻燃剂为例,通过隧道燃烧法测量火焰传播比值来对普通饰面型防火涂料和纳米改性涂料的耐火性能进行分析,得出纳米氢氧化铝的影响规律,对纳米阻燃剂的作用有一个更直观的认识,并对纳米防火涂料的未来发展进行展望。

  20. Mapping regional forest fire probability using artificial neural network model in a Mediterranean forest ecosystem

    Directory of Open Access Journals (Sweden)

    Onur Satir

    2016-09-01

    Full Text Available Forest fires are one of the most important factors in environmental risk assessment and it is the main cause of forest destruction in the Mediterranean region. Forestlands have a number of known benefits such as decreasing soil erosion, containing wild life habitats, etc. Additionally, forests are also important player in carbon cycle and decreasing the climate change impacts. This paper discusses forest fire probability mapping of a Mediterranean forestland using a multiple data assessment technique. An artificial neural network (ANN method was used to map forest fire probability in Upper Seyhan Basin (USB in Turkey. Multi-layer perceptron (MLP approach based on back propagation algorithm was applied in respect to physical, anthropogenic, climate and fire occurrence datasets. Result was validated using relative operating characteristic (ROC analysis. Coefficient of accuracy of the MLP was 0.83. Landscape features input to the model were assessed statistically to identify the most descriptive factors on forest fire probability mapping using the Pearson correlation coefficient. Landscape features like elevation (R = −0.43, tree cover (R = 0.93 and temperature (R = 0.42 were strongly correlated with forest fire probability in the USB region.

  1. Nitrogen balance along a northern boreal forest fire chronosequence.

    Science.gov (United States)

    Palviainen, Marjo; Pumpanen, Jukka; Berninger, Frank; Ritala, Kaisa; Duan, Baoli; Heinonsalo, Jussi; Sun, Hui; Köster, Egle; Köster, Kajar

    2017-01-01

    Fire is a major natural disturbance factor in boreal forests, and the frequency of forest fires is predicted to increase due to climate change. Nitrogen (N) is a key determinant of carbon sequestration in boreal forests because the shortage of N limits tree growth. We studied changes in N pools and fluxes, and the overall N balance across a 155-year non stand-replacing fire chronosequence in sub-arctic Pinus sylvestris forests in Finland. Two years after the fire, total ecosystem N pool was 622 kg ha-1 of which 16% was in the vegetation, 8% in the dead biomass and 76% in the soil. 155 years after the fire, total N pool was 960 kg ha-1, with 27% in the vegetation, 3% in the dead biomass and 69% in the soil. This implies an annual accumulation rate of 2.28 kg ha-1 which was distributed equally between soil and biomass. The observed changes in N pools were consistent with the computed N balance +2.11 kg ha-1 yr-1 over the 155-year post-fire period. Nitrogen deposition was an important component of the N balance. The biological N fixation increased with succession and constituted 9% of the total N input during the 155 post-fire years. N2O fluxes were negligible (≤ 0.01 kg ha-1 yr-1) and did not differ among post-fire age classes. The number and intensity of microbial genes involved in N cycling were lower at the site 60 years after fire compared to the youngest and the oldest sites indicating potential differences in soil N cycling processes. The results suggest that in sub-arctic pine forests, the non-stand-replacing, intermediate-severity fires decrease considerably N pools in biomass but changes in soil and total ecosystem N pools are slight. Current fire-return interval does not seem to pose a great threat to ecosystem productivity and N status in these sub-arctic forests.

  2. Climate change and forest fires in a Mediterranean environment

    Science.gov (United States)

    Turco, Marco; Llasat, Maria-Carmen; von Hardenberg, Jost; Provenzale, Antonello

    2014-05-01

    The Mediterranean region is a "hot-spot" of climate change and wildfires, where about 50000 fires burn 500000 hectares every year. However, in spite of the growing concerns of the climate change impacts on Mediterranean wildfires, there are aspects of this topic that remain largely to be investigated. The main scientific objective of this study is to investigate the climate-driven changes on fires in a typical Mediterranean environment (Catalonia, NE of Spain). To achieve this goal, the following specific aims have been identified: (1) Analysis of the recent evolution of fires; (2) Evaluation of the climate-fire relationship; (3) Estimation of the impacts of observed and future climate change. First, we examine a homogeneous series of forest fires in the period 1970-2010. Our analysis shows that both the burned area and number of fire series display a decreasing trend. After the large fires of 1986 and 1994, the increased effort in fire prevention and suppression could explain part of this decreasing trend. Although it is often stated that fires have increased in Mediterranean regions, the higher efficiency in fire detection could have led to spurious trends and misleading conclusions [1]. Secondly, we show that the interannual variability of summer fires is significantly related to antecedent and concurrent climate conditions, highlighting the importance of climate not only in regulating fuel flammability, but also fuel load. On the basis of these results, we develop a simple regression model that produces reliable out-of-sample predictions of the impact of climate variability on summer forest fires [2]. Finally we apply this model to estimate the impacts of observed climate trends on summer fires and the possible fire response to different regional climate change scenarios. We show that a transition toward warmer conditions has already started to occur and it is possible that they continue by mid-century (under the A1B scenario), and that these changes promote

  3. Mapping forest fire risk zones with spatial data and principal component analysis

    Institute of Scientific and Technical Information of China (English)

    XU; Dong; Guofan; Shao; DAI; Limin; HAO; Zhanqing; TANG; Lei; WANG; Hui

    2006-01-01

    By integrating forest inventory data with remotely sensed data, new data layers for factors that affect forest fire potentials were generated for Baihe Forestry Bureau in Jilin Province of China. The principle component analysis was used to sort out the relationships between forest fire potentials and environmental factors. The classifications of these factors were performed with GIS, generating three maps: a fuel-based fire risk map, a topography-based fire risk map, and an anthropogenic-factor fire risk map. These three maps were then synthesized to generate the final fire risk map. The linear regression method was used to analyze the relationship between an area-weighted value of forest fire risks and the frequency of historical forest fires at each forest farm. The results showed that the most important factor contributing to forest fire ignition was topography, followed by anthropogenic factors.

  4. Logging and Fire Effects in Siberian Boreal Forests

    Science.gov (United States)

    Kukavskaya, E.; Buryak, L.; Ivanova, G.; Kalenskaya, O.; Bogorodskaya, A.; Zhila, S.; McRae, D.; Conard, S. G.

    2013-12-01

    The Russian boreal zone supports a huge terrestrial carbon pool. Moreover, it is a tremendous reservoir of wood products concentrated mainly in Siberia. The main natural disturbance in these forests is wildfire, which modifies the carbon budget and has potentially important climate feedbacks. In addition, both legal and illegal logging increase landscape complexity and fire hazard. We investigated a number of sites in different regions of Siberia to evaluate the impacts of fire and logging on fuel loads, carbon emissions, tree regeneration, soil respiration, and microbocenosis. We found large variations of fire and logging effects among regions depending on growing conditions and type of logging activity. Partial logging had no negative impact on forest conditions and carbon cycle. Illegal logging resulted in increase of fire hazard, and higher carbon emissions than legal logging. The highest fuel loads and carbon emissions were found on repeatedly burned unlogged sites where first fire resulted in total tree mortality. Repeated fires together with logging activities in drier conditions and on large burned sites resulted in insufficient regeneration, or even total lack of tree seedlings. Soil respiration was less on both burned and logged areas than in undisturbed forest. The highest structural and functional disturbances of the soil microbocenosis were observed on logged burned sites. Understanding current interactions between fire and logging is important for modeling ecosystem processes and for managers to develop strategies of sustainable forest management. Changing patterns in the harvest of wood products increase landscape complexity and can be expected to increase emissions and ecosystem damage from wildfires, inhibit recovery of natural ecosystems, and exacerbate impacts of wildland fire on changing climate and air quality. The research was supported by NASA LCLUC Program, RFBR grant # 12-04-31258, and Russian Academy of Sciences.

  5. CBERS-2B Monitored Forest Fires In Yunnan Province

    Institute of Scientific and Technical Information of China (English)

    Rain.L

    2008-01-01

    @@ Several forest fires hit Yunnan Province,in the southwest of China from April 6 to 9.Two disastrous fires happened near Shangri-La County,Yunnan Province.According to the requirement of the Land and Surveying Department of Yunnan Province,the China Center for Resources Satellite Data & Application (CRESDA) provided satellite monitoring images to detect the events.The processed CBERS-2B images were delivered to the related departments for decision making and disaster relief.

  6. Forest Fires, Air Pollution and Mortality in Southeast Asia.

    OpenAIRE

    Narayan Sastry

    2000-01-01

    In this paper, the author assesses the population health effects in Malaysia of air pollution generated by a widespread series of fires that occurred mainly in Indonesia between April and November of 1997. The author describes how the forest fires occurred and why the associated air pollution was so widespread and long lasting. The main objective is to determine whether there were mortality effects and to assess how large and important these were. The author also investigates whether the mort...

  7. Nitrogen deposition in tropical forests from deforestation and savanna fires

    Science.gov (United States)

    Chen, Y.; Randerson, J. T.; van der Werf, G.; Morton, D. C.; Kasibhatla, P. S.

    2009-12-01

    Tropical forests account for nearly half of global net primary production (NPP) and may contribute substantially to contemporary and future land carbon (C) sinks. We used satellite-derived estimates of global fire emissions and a chemical transport model to estimate atmospheric nitrogen (N) fluxes from deforestation and savanna fires in tropical ecosystems. N emissions and deposition led to a substantial net transport of N equatorward, from savannas and areas undergoing deforestation to tropical forests. On average, N emissions from fires were equivalent to approximately 28% of biological N fixation (BNF) in savannas (4.8 kg N ha-1 yr-1) and 38% of BNF from ecosystems at the deforestation frontier (9.1 kg N ha-1 yr-1). N deposition occurred in interior tropical forests at a rate equivalent to 4% of their BNF (1.1 kg N ha-1 yr-1). This percentage was highest for African tropical forests in the Congo Basin (16%; 3.7 kg N ha-1 yr-1) owing to equatorward transport from northern and southern savannas. These results suggest that land use change, including deforestation fires, may be enhancing nutrient availability and carbon sequestration in nearby tropical forest ecosystems.

  8. Early Forest Fire Detection Using Low Energy Hydrogen Sensors

    Directory of Open Access Journals (Sweden)

    Jürgen Müller

    2016-08-01

    Full Text Available The North-east German Lowlands is a region with one of the highest forest fire risks in Europe. In order to keep damage levels as low as possible, it is important to have an effective early warning system. Such a system is being developed on the basis of a hydrogen sensor, which makes it possible to detect a smouldering forest fire before the development of open flames. The prototype hydrogen sensor produced at the Humboldt University Berlin has a metal/ solid electrolyte/insulator/ semiconductor (MEIS structure, which allows cost-effective production. Due to the low energy consumption, an autarchic working unit could be installed in the forest. Field trials have shown that it is possible to identify a forest fire in its early stages when hydrogen concentrations are still low. A significant change in the signal due to a fire was measured at a distance of about 100m. In view of the potential impacts of climate change, the innovative pre-ignition warning system is an important early diagnosis and monitoring module for the protection of the forests.

  9. Investigating the Spatial Characteristics of Forest Fire in North Korea using Remote Sensing and GIS

    Science.gov (United States)

    RI, J.; Lee, K. S.

    2015-12-01

    Forest fires cause billions of dollar damage to property and the environment in the world every year. In North Korea (NK) forest fire occurred frequently in the entire region with the exception of the western plains and massive forest fires broke out throughout NK in May 2004. Furthermore, few researches focused on NK forest fire because of data unavailability and inaccessibility to the region. Operational fire monitoring over large areas can be approached through satellite remote sensing (RS). Thus, it is necessary to investigate the area damaged by forest fire and get information of damaged area for restoration of forest in NK after reunification. Therefore, the purpose of this study is to identify the location of forest fire and to estimate the damaged area by forest fire and finally to detect the landscape change after forest fire in Gangwon and South Hamgyong Province, NK using satellite RS data. In this study, we will investigate the area damaged by forest fire and investigate the spatial characteristics of forest fire in Gangwon and South Hamgyong Province using RS. Landsat data from USGS Were preprocessed (band composition), NBR and dNBR are calculated for figuring out the burned area and investigating the burn severity (BS) in burned area. NBR and dNBR (differenced NBR) are mostly useful to estimate BS by forest fires damage from RS data. The dNBR was then calculated by subtracting the post-fire NBR from the pre-fire NBR: The burned area from Landsat data processing were stored in GIS database to be retrieved and analyzed to figure out the chronological change pattern of forest fire damaged area. Finally, the spatiotemporal characteristics of forest fire in NK were analyzed and discussed to provide the information for restoring forest fire damaged area after reunification.

  10. Fire in upper Midwestern oak forest ecosystems: an oak forest restoration and management handbook

    Science.gov (United States)

    Lee E. Frelich; Peter B. Reich; David W. Peterson

    2015-01-01

    We reviewed the literature to synthesize what is known about the use of fire to maintain and restore oak forests, woodlands, and savannas of the upper Midwestern United States, with emphasis on Minnesota, Wisconsin, and Michigan. Included are (1) known physical and ecological effects of fire on oaks from acorn through seedling, established sapling, and mature stages of...

  11. Aid for the victims of the forest fires in Greece

    CERN Multimedia

    2007-01-01

    To support the victims of the fires which devastated the Peloponnese at the end of August, the Permanent Mission of Greece in Geneva has informed us that the Greek government has opened an account into which donations may be paid. The funds collected will be used to assist the many victims of these fires. Bank of Greece Account name: Logariasmos Arogis Pyropathon (Hellenic Republic) (account reserved for aid for the victims of the forest fires) SWIFT : BNGRGRAA IBAN : GR 98 0100 0230 0000 0234 1103 053

  12. EFFECT OF FIRE RETARDANTS ON SURFACE ROUGHNESS AND WETTABILITY OF WOOD PLASTIC COMPOSITE PANELS

    Directory of Open Access Journals (Sweden)

    Nadir Ayrilmis

    2011-06-01

    Full Text Available Surface roughness and wettability of flat-pressed wood plastic composites (WPCs incorporated with various fire retardants (FRs (5, 10, or 15% by weight (wt at 50 wt-% content of the wood flour (WF were investigated. The most common FRs, zinc borate (ZB, magnesium hydroxide (MH, and ammonium polyphosphate (APP, were used in the experiments. The WPC panels were made from dry-blended wood flour (WF, fire retardant (FR powder, and polypropylene (PP powder with maleic anhydride-grafted PP (2 wt-% formulations using a conventional flat-pressing process under laboratory conditions. The contact angle measurements were obtained by using a goniometer connected with a digital camera and computer system. Three roughness measurements, average roughness (Ra, mean peak-to-valley height (Rz, and maximum roughness (Ry, were taken from the WPC panel surface using a fine stylus tracing technique. It was found that the surface smoothness of the WPC panels decreased with increasing content of the FR powder while the wettability increased. The control WPC panel without the FR had the smoothest surface, followed by the WPC panels containing the MH, ZB, and APP, respectively.

  13. Log-periodic behavior in a forest-fire model

    Directory of Open Access Journals (Sweden)

    B. D. Malamud

    2005-01-01

    Full Text Available This paper explores log-periodicity in a forest-fire cellular-automata model. At each time step of this model a tree is dropped on a randomly chosen site; if the site is unoccupied, the tree is planted. Then, for a given sparking frequency, matches are dropped on a randomly chosen site; if the site is occupied by a tree, the tree ignites and an 'instantaneous' model fire consumes that tree and all adjacent trees. The resultant frequency-area distribution for the small and medium model fires is a power-law. However, if we consider very small sparking frequencies, the large model fires that span the square grid are dominant, and we find that the peaks in the frequency-area distribution of these large fires satisfy log-periodic scaling to a good approximation. This behavior can be examined using a simple mean-field model, where in time, the density of trees on the grid exponentially approaches unity. This exponential behavior coupled with a periodic or near-periodic sparking frequency also generates a sequence of peaks in the frequency-area distribution of large fires that satisfy log-periodic scaling. We conclude that the forest-fire model might provide a relatively simple explanation for the log-periodic behavior often seen in nature.

  14. The national Fire and Fire Surrogate study: effects of fuel reduction methods on forest vegetation structure and fuels

    Science.gov (United States)

    Dylan W. Schwilk; Jon E. Keeley; Eric E. Knapp; James Mciver; John D. Bailey; Christopher J. Fettig; Carl E. Fiedler; Richy J. Harrod; Jason J. Moghaddas; Kenneth W. Outcalt; Carl N. Skinner; Scott L. Stephens; Thomas A. Waldrop; Daniel A. Yaussy; Andrew Youngblood

    2009-01-01

    Changes in vegetation and fuels were evaluated from measurements taken before and after fuel reduction treatments (prescribed fire, mechanical treatments, and the combination of the two) at 12 Fire and Fire Surrogate (FFS) sites located in forests with a surface fire regime across the conterminous United States. To test the relative effectiveness of fuel reduction...

  15. Calculation of Limits of Fire Resistance for Structures with Fire Retardant Coating

    Directory of Open Access Journals (Sweden)

    Krivtcov Artem

    2016-01-01

    Full Text Available This article is devoted to fireproof processing of steel structures. The main task is to consider different types of sections of rod elements and to choose the most effective section for a steel column from the point of view of fire protection. For the solution of this task the steel columns with various cross sections working in identical entry conditions were considered. All necessary calculations for all types of sections were carried out. Results of calculations were presented in the summary table according to which the comparative analysis was made. At the end of work the conclusion that the compound section from four equal corners is the most effective from the point of view of fire protection.

  16. Increasing resiliency in frequent fire forests: Lessons from the Sierra Nevada and western Australia

    Science.gov (United States)

    Scott L. Stephens

    2014-01-01

    This paper will primarily focus on the management and restoration of forests adapted to frequent, low-moderate intensity fire regimes. These are the forest types that are most at risk from large, high-severity wildfires and in many regions their fire regimes are changing. Fire as a landscape process can exhibit self-limiting characteristics in some forests which can...

  17. Fire, fuels, and restoration of ponderosa pine-Douglas-fir forests in the Rocky Mountains

    OpenAIRE

    Baker, W. L.; T. T. Veblen; Sherriff, R. L.

    2007-01-01

    Forest restoration in ponderosa pine and mixed ponderosa pine–Douglas fir forests in the US Rocky Mountains has been highly influenced by a historical model of frequent, low-severity surface fires developed for the ponderosa pine forests of the Southwestern USA. A restoration model, based on this low-severity fire model, focuses on thinning and prescribed burning to restore historical forest structure. However, in the US Rocky Mountains, research on fire history and forest structure, and earl...

  18. Severity of an uncharacteristically large wildfire, the Rim Fire, in forests with relatively restored frequent fire regimes

    Science.gov (United States)

    Jamie Lydersen; Malcolm North; Brandon M. Collins

    2014-01-01

    The 2013 Rim Fire, originating on Forest Service land, burned into old-growth forests within Yosemite National Park with relatively restored frequent-fire regimes (¡Ý2 predominantly low and moderate severity burns within the last 35 years). Forest structure and fuels data were collected in the field 3-4 years before the fire, providing a rare chance to use pre-existing...

  19. Tree diversity, composition, forest structure and aboveground biomass dynamics after single and repeated fire in a Bornean rain forest.

    Science.gov (United States)

    Slik, J W Ferry; Bernard, Caroline S; Van Beek, Marloes; Breman, Floris C; Eichhorn, Karl A O

    2008-12-01

    Forest fires remain a devastating phenomenon in the tropics that not only affect forest structure and biodiversity, but also contribute significantly to atmospheric CO2. Fire used to be extremely rare in tropical forests, leaving ample time for forests to regenerate to pre-fire conditions. In recent decades, however, tropical forest fires occur more frequently and at larger spatial scales than they used to. We studied forest structure, tree species diversity, tree species composition, and aboveground biomass during the first 7 years since fire in unburned, once burned and twice burned forest of eastern Borneo to determine the rate of recovery of these forests. We paid special attention to changes in the tree species composition during burned forest regeneration because we expect the long-term recovery of aboveground biomass and ecosystem functions in burned forests to largely depend on the successful regeneration of the pre-fire, heavy-wood, species composition. We found that forest structure (canopy openness, leaf area index, herb cover, and stem density) is strongly affected by fire but shows quick recovery. However, species composition shows no or limited recovery and aboveground biomass, which is greatly reduced by fire, continues to be low or decline up to 7 years after fire. Consequently, large amounts of the C released to the atmosphere by fire will not be recaptured by the burned forest ecosystem in the near future. We also observed that repeated fire, with an inter-fire interval of 15 years, does not necessarily lead to a huge deterioration in the regeneration potential of tropical forest. We conclude that burned forests are valuable and should be conserved and that long-term monitoring programs in secondary forests are necessary to determine their recovery rates, especially in relation to aboveground biomass accumulation.

  20. Remote Sensing Techniques in Monitoring Post-Fire Effects and Patterns of Forest Recovery in Boreal Forest Regions: A Review

    Directory of Open Access Journals (Sweden)

    Thuan Chu

    2013-12-01

    Full Text Available The frequency and severity of forest fires, coupled with changes in spatial and temporal precipitation and temperature patterns, are likely to severely affect the characteristics of forest and permafrost patterns in boreal eco-regions. Forest fires, however, are also an ecological factor in how forest ecosystems form and function, as they affect the rate and characteristics of tree recruitment. A better understanding of fire regimes and forest recovery patterns in different environmental and climatic conditions will improve the management of sustainable forests by facilitating the process of forest resilience. Remote sensing has been identified as an effective tool for preventing and monitoring forest fires, as well as being a potential tool for understanding how forest ecosystems respond to them. However, a number of challenges remain before remote sensing practitioners will be able to better understand the effects of forest fires and how vegetation responds afterward. This article attempts to provide a comprehensive review of current research with respect to remotely sensed data and methods used to model post-fire effects and forest recovery patterns in boreal forest regions. The review reveals that remote sensing-based monitoring of post-fire effects and forest recovery patterns in boreal forest regions is not only limited by the gaps in both field data and remotely sensed data, but also the complexity of far-northern fire regimes, climatic conditions and environmental conditions. We expect that the integration of different remotely sensed data coupled with field campaigns can provide an important data source to support the monitoring of post-fire effects and forest recovery patterns. Additionally, the variation and stratification of pre- and post-fire vegetation and environmental conditions should be considered to achieve a reasonable, operational model for monitoring post-fire effects and forest patterns in boreal regions.

  1. Acute toxicity of three fire-retardant and two fire-suppressant foam formulations to the early life stages of rainbow trout (Oncorhynchus mykiss)

    Science.gov (United States)

    Gaikowski, Mark P.; Hamilton, Steven J.; Buhl, Kevin J.; McDonald, Susan F.; Summers, Cliff H.; Linder, G.; Krest, S.; Sparling, D.; Little, E.

    1996-01-01

    Laboratory studies were conducted with five early life stages of rainbow trout, Oncorhynchus mykiss, to determine the acute toxicities of five fire-fighting chemical formulations in standardized soft and hard water. Eyed egg, embryo–larvae, swim-up fry, and 60- and 90-d posthatch juveniles were exposed to three fire retardants (Fire-Trol LCG-R, Fire-Trol GTS-R, and Phos-Chek D75-F) and two fire-suppressant foams (Phos-Chek WD-881 and Silv-Ex). Swim-up fry were generally the most sensitive life stage, whereas the eyed-egg was the least sensitive. Toxicity of fire-fighting formulations was greater in hard water than in soft water for all life stages tested with Fire-Trol GTS-R and Silv-Ex and for 90-d-old juveniles tested with Fire-Trol LCG-R. The fire-suppressant foams were more toxic than the fire retardants. The 96-h median lethal concentrations (LC50s) were ranked from the most toxic to the least toxic formulation as follows (ranges are the lowest and highest 96-h LC50 calculated for each formulation): Phos-Chek WD-881 (11–44 mg/L), Silv-Ex (11–78 mg/L), Phos-Chek D75-F (218–>3,600 mg/L), Fire-Trol GTS-R (207–>6,000 mg/L), and Fire-Trol LCG-R (872–>10,000 mg/L). Toxicity values suggest that accidental entry of fire-fighting chemicals into aquatic environments could adversely affect fish populations.

  2. Changes in forest structure and composition after fire in tropical montane cloud forests near the Andean treeline

    NARCIS (Netherlands)

    Oliveras Menor, I.; Malhi, Y.; Salinas, N.; Huaman, V.; Urquiaga-Flores, E.; Kala-Mamani, J.; Quintano-Loaiza, J.A.; Cuba-Torres, I.; Lizarraga-Morales, N.; Roman-Cuesta, R.M.

    2014-01-01

    Background: In tropical montane cloud forests (TMCFs) fires can be a frequent source of disturbance near the treeline. Aims: To identify how forest structure and tree species composition change in response to fire and to identify fire-tolerant species, and determine which traits or characteristics a

  3. Changes in forest structure and composition after fire in tropical montane cloud forests near the Andean treeline

    NARCIS (Netherlands)

    Oliveras Menor, I.; Malhi, Y.; Salinas, N.; Huaman, V.; Urquiaga-Flores, E.; Kala-Mamani, J.; Quintano-Loaiza, J.A.; Cuba-Torres, I.; Lizarraga-Morales, N.; Roman-Cuesta, R.M.

    2014-01-01

    Background: In tropical montane cloud forests (TMCFs) fires can be a frequent source of disturbance near the treeline. Aims: To identify how forest structure and tree species composition change in response to fire and to identify fire-tolerant species, and determine which traits or characteristics

  4. Defining fire environment zones in the boreal forests of northeastern China.

    Science.gov (United States)

    Wu, Zhiwei; He, Hong S; Yang, Jian; Liang, Yu

    2015-06-15

    Fire activity in boreal forests will substantially increase with prolonged growing seasons under a warming climate. This trend poses challenges to managing fires in boreal forest landscapes. A fire environment zone map offers a basis for evaluating these fire-related problems and designing more effective fire management plans to improve the allocation of management resources across a landscape. Toward that goal, we identified three fire environment zones across boreal forest landscapes in northeastern China using analytical methods to identify spatial clustering of the environmental variables of climate, vegetation, topography, and human activity. The three fire environment zones were found to be in strong agreement with the spatial distributions of the historical fire data (occurrence, size, and frequency) for 1966-2005. This paper discusses how the resulting fire environment zone map can be used to guide forest fire management and fire regime prediction. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Durability of the reaction to fire performance for fire retardant treated (FRT wood products in exterior applications – a ten years report

    Directory of Open Access Journals (Sweden)

    Östman Birgit

    2016-01-01

    Full Text Available Several long term experimental studies on the maintained reaction to fire performance of fire retardant treated (FRT wood products over time are presented. They are performed according to a European system based on earlier Nordic and North American systems and include accelerated ageing according to different procedures and natural weathering up to ten years. Main conclusions are: The hygroscopic properties are unchanged compared to untreated wood for most FRT wood products used commercially. The reaction to fire properties of FRT wood may be maintained after accelerated and natural ageing if the retention levels are high enough, but several FRT wood products loose most of their improved reaction to fire properties during weathering. Paint systems contribute considerably to maintain of the fire performance at exterior application and are usually needed to maintain the fire performance after weathering.

  6. Aeolian Dust and Forest Fire Smoke in Urban Air

    Science.gov (United States)

    Brimblecombe, P.

    2006-12-01

    Particles of aeolian dust and forest fire smoke are now regularly detected in urban air. Although dusts are common on the Asian Pacific Rim and forest fire smoke characteristic of South East Asia they also frequently detected elsewhere. In the past dust was treated as though it was fairly inert and reactions on the surface limited to the neutralizing ability of alkaline minerals. More recent work shows that that dust has a complex organic chemistry. Observations in China found fatty acids from urban areas (oleic acid and linoleic acid from cooking) on dust derived aerosols. The fatty acids and PAHs decreased sharply after dust storms, suggesting a role for dust in removal processes. When silica particles absorb unsaturated compounds they can react with ozone and release compounds such as formaldehyde. Particles from forest fires have a similarly complex chemistry and the acid-alkaline balance may vary depend on the balance of removal rates of alkaline materials (ammonia, potassium carbonate) and inorganic and organic acids. Airborne dust and forest fire soot can contain humic like substances (HULIS) either as primary material or as secondary oxidation products of the surface of soot. This paper will report on the role polluted air masses in the generation humic materials, particularly those that are surface active. These materials of high molecular weight oxygen rich organic compounds, which exhibit a range of properties of importance in aerosols: they can form complexes with metal ions and thus enhance their solubility, photosensitize the oxidation of organic compounds and lower the surface tension of aqueous aerosols. HULIS can be oxidized to form a range of simpler acids such as formic, acetic and oxalic acid. Dust and forest fire smoke particles have a different composition and size range to that of typical urban combustion particles, so it is likely that the health impacts will be different, yet current regulation often does not recognize any significant

  7. Droughts and forest fires in Mediterranean Europe

    Science.gov (United States)

    Turco, Marco; Llasat, Maria-Carmen; von Hardenberg, Jost; Provenzale, Antonello

    2015-04-01

    Most of the total burned area in Europe occurs in Mediterranean regions, with severe economic and environmental damage, life loss and an average of about 4500 km2 burned every year. A better understanding of the impacts on wildfires of environmental and socioeconomic changes is crucial to develop adequate measures of prevention, adaptation and mitigation in this area. Here we focus on the impact of droughts on fires in European Mediterranean regions (Portugal, Spain, the south of France, Italy, Greece). This goal will be achieved through three specific supporting objectives: (1) Understanding past changes in fires in this region (extending the study of [1]); (2) Comparing and analyzing different drought indices (e.g. SPI, SPEI and SSI; see [2, 3] for more details on those indices); (3) Modeling the interaction between drought and fires (following and extending the study of [4]). We develop relatively simple regression models that link the fire activity to the key climate drivers. These models could be used to estimate fire responses to different climate change projections and environmental and socioeconomic scenarios ([5]). *References [1] Turco M., Llasat M. C., Tudela A., Castro X., and Provenzale A. Brief communication Decreasing fires in a Mediterranean region (1970-2010, NE Spain). Natural Hazards and Earth System Science, 13(3):649-652, 2013. [2] Zengchao H., AghaKouchak A., Nakhjiri N., and Farahmand A. Global Integrated Drought Monitoring and Prediction System. Scientific Data, 1:1-10, 2014. [3] Vicente-Serrano, S. M., Beguería, S. and López-Moreno, J. I. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. Journal of Climate, 23:1696-1718, 2010. [4] Turco M., Llasat M. C., von Hardenberg J., and Provenzale A. Impact of climate variability on summer fires in a Mediterranean environment (northeastern Iberian Peninsula). Climatic Change, 116:665-678, 2013. [5] Turco M., Llasat M. C., von

  8. Spatio-temporal evolution of forest fires in Portugal

    Science.gov (United States)

    Tonini, Marj; Pereira, Mário G.; Parente, Joana

    2017-04-01

    A key issue in fire management is the ability to explore and try to predict where and when fires are more likely to occur. This information can be useful to understand the triggering factors of ignitions and for planning strategies to reduce forest fires, to manage the sources of ignition and to identify areas and frame period at risk. Therefore, producing maps displaying forest fires location and their occurrence in time can be of great help for accurately forecasting these hazardous events. In a fire prone country as Portugal, where thousands of events occurs each year, it is involved to drive information about fires over densities and recurrences just by looking at the original arrangement of the mapped ignition points or burnt areas. In this respect, statistical methods originally developed for spatio-temporal stochastic point processes can be employed to find a structure within these large datasets. In the present study, the authors propose an approach to analyze and visualize the evolution in space and in time of forest fires occurred in Portugal during a long frame period (1990 - 2013). Data came from the Portuguese mapped burnt areas official geodatabase (by the Institute for the Conservation of Nature and Forests), which is the result of interpreted satellite measurements. The following statistical analyses were performed: the geographically-weighted summary statistics, to analyze the local variability of the average burned area; the space-time Kernel density, to elaborate smoothed density surfaces representing over densities of fires classed by size and on North vs South region. Finally, we emploied the volume rendering thecnique to visualize the spatio-temporal evolution of these events into a unique map: this representation allows visually inspecting areas and time-step more affected from a high aggregation of forest fires. It results that during the whole investigated period over densities are mainly located in the northern regions, while in the

  9. Fire risks in forest carbon projects in Indonesia

    Institute of Scientific and Technical Information of China (English)

    Daniel; Murdiyarso; Makmur; Widodo; Desi; Suyamto

    2002-01-01

    It is well known that forest carbon or sink projects have not been included in the Clean Development Mechanism (CDM), one of the flexible mechanismscreated under the Kyoto Protocol. The main concern for postponing sink projectsis related to issues of methodology and integrity. Project eligibility needs tobe judged in a transparent manner if they are real, measurable, provide long-term benefits to mitigate climate change, and provide additional benefits to thosethat would occur in the absence of a certified project.One of the biggest challenges in implementing sink projects is fire risks and the associated biophysical and socio-economic underlying causes. This study attempts to assess fire probability and use it as a tool to estimate fire risk in carbon sink projects. Fire risks may not only threaten ongoing projects but may also cause leakage of carbon stocks in other areas, especially in protected areas. This exercise was carried out in the Berbak National Park located in Jambi Province, Sumatra, Indonesia and the surrounding areas. Fire probability is associated with (i) the means by which access to a given area is possible, and (ii) vegetation type or fuel load. Although most fires were intentionally ignited, fire escape is common and is enhanced by long spell of dryweather. When this occurs, secondary road was the most frequently used means, and it was certainly the case during 1997/1998 big fires when damage to natural vegetation (natural and secondary forests) was substantial. Burnt natural vegetation was 120000 ha or 95% of the total burnt areas, and released more than 7 Mt of carbon into the atmosphere.

  10. 膨胀型阻燃剂的研究现状%Current Research Situation of Intumescent Fire Retardants

    Institute of Scientific and Technical Information of China (English)

    梁基照; 冯金清

    2011-01-01

    The classification, history and recent development of intumescent fire-retardant were reviewed. The performances, advantages and disadvantages, and current research situation of mixed-type intumesceent flame retardant as well as single-component intumesceent flame retardant was introduced. The effects of several flame retardant synergist, such as montmorillonite, silica, zeolite, and metal compounds etc, on intumescent flame retardant system were introduced. Besides, three treatment techniques of intumescent fire-retardant, such as the nanominiaturization, surface modification and microencapsulation, were also briefly introduced.%概述了膨胀型阻燃剂的分类、发展历史和近况.介绍了混合型膨胀阻燃剂和单组分膨胀阻燃剂的性能、优缺点及研究现状.罗列了蒙脱土、二氧化硅、沸石以及金属化合物等多种膨胀协同阻燃助剂在膨胀阻燃体系中的作用.简单介绍了纳米化、表面改性以及微胶囊化三种膨胀型阻燃剂的处理技术.

  11. Effect of fillers and fire retardant compounds on hydroxy terminated polybutadiene based insulators

    Directory of Open Access Journals (Sweden)

    S. D. Kakade

    2001-04-01

    Full Text Available A series of polyurethane compositions have been formulated using hydroxy-terminated polybutadiene as polymeric binder and carbon black as a major filler. Various binder-to-filler ratios of the formulations were evaluated to get calendered sheets. The formulations have been characterised for pot-life and rollability and the calendered sheets for mechanical and thermal properties, bUm rate, glass transition temperature, shore hardness and density . The different fillers tried were varieties of carbon black as a major filler; metal oxides, silicates and organic compounds; and fire retardants, such as zinc borate, sodium metaborate, ammonium dihydrogen phosphate and antimony trioxide. The structure and morphology of the fillers have been correlated with the properties. The optimised composition has been evaluated in an end-burning motor, as an insulator for case-bonded application, using a typical composite propellant. The results of interface bonding between the propellant and the insulator have also been presented.

  12. Utilization of Magnesium Hydroxide Produced by Magnesia Hydration as Fire Retardant for Nylon 6-6,6

    Directory of Open Access Journals (Sweden)

    Rocha Sônia D.F.

    2001-01-01

    Full Text Available The present work investigates the use of magnesium hydroxide, produced by magnesia hydration, as a fire retardant in polymers. The hydration was carried out in an autoclave, at temperature of 130°C for 1 hour, and the product was further submitted to cominution in a jet mill. The solids were characterized with regard to their chemical composition, particle size distribution, surface area and morphology. The performance evaluation of the hydroxide as a flame retardant for a copolymer of nylon 6-6,6 was carried out according to the UL94 specifications for vertical burning tests. V-0 flammability rating at 1.6 mm (60% magnesium hydroxide-filled nylon composite and at 3.2 mm (40% magnesium hydroxide filled nylon composite were achieved. Mechanical properties were maintained at the desired values. These results indicate that the hydroxide obtained from magnesia hydration can be successfully employed as a fire retardant for nylon 6-6,6.

  13. The impact of climate change on forest fire danger rating in China's boreal forest

    Institute of Scientific and Technical Information of China (English)

    YANG Guang; DI Xue-ying; GUO Qing-xi; SHU Zhan; ZENG Tao; YU Hong-zhou; WANG Chao

    2011-01-01

    The Great Xing'an Mountains boreal forests were focused on in the northeastern China.The simulated future climate scenarios of IPCC SRES A2a and B2a for both the baseline period of 1961-1990 and the future scenario periods were downscaled by the Delta Method and the Weather Generator to produce daily weather data.After the verification with local weather and fire data, the Canadian Forest Fire Weather Index System was used to assess the forest fire weather situation under climate change in the study region.An increasing trend of fire weather severity was found over the 21st century in the study region under the both future climate change scenarios, compared to the 1961-1990 baseline period.The annual mean/maximum fire weather index was predicted to rise continuously during 2010-2099, and by the end of the 21st century it is predicted to rise by 22%-52% across much of China's boreal forest.The significant increases were predicted in the spring from of April to June and in the summer from July to August.In the summer, the fire weather index was predicted to be higher than the current index by as much as 148% by the end of the 21st century.Under the scenarios of SRES A2a and B2a, both the chance of extremely high fire danger occurrence and the number of days of extremely high fire danger occurrence was predieted to increase in the study region.It is anticipated that the number of extremely high fire danger days would increase from 44 days in 1980s to 53-75 days by the end of the 21st century.

  14. Inhibition Effect of Phosphorus Flame Retardants on the Fire Disasters Induced by Spontaneous Combustion of Coal

    Directory of Open Access Journals (Sweden)

    Yibo Tang

    2017-01-01

    Full Text Available Coal spontaneous combustion (CSC generally induces fire disasters in underground mines, thus causing serious casualties, environmental pollution, and property loss around the world. By using six P-containing additives to process three typical coal samples, this study investigated the variations of the self-ignition characteristics of the coal samples before and after treatment. The analysis was performed by combining thermogravimetric analysis/differential scanning calorimetry (TG/DSC Fourier transform infrared spectrometer (FTIR and low temperature oxidation. Experimental results showed that P-containing inhibitors could effectively restrain the heat emitted in the combustion of coal samples and therefore the ignition temperature of the coal samples was delayed at varying degrees. The combustion rate of the coal samples was reduced as well. At the temperatures ranging from 50°C to 150°C, the activation energy of the coal samples after the treatment was found to increase, which indicated that the coal samples were more difficult to be oxidized. After being treated with phosphorus flame retardants (PFRs, the content of several active groups represented by the C-O structure in the three coal samples was proved to be obviously changed. This suggested that PFRs could significantly inhibit the content of CO generated by the low temperature oxidation of coal, and the flame-retardant efficiency grew with the increasing temperature. At 200°C, the maximal inhibition efficiency reached approximately 85%.

  15. The novel silicon-containing epoxy/PEPA phosphate flame retardant for transparent intumescent fire resistant coating

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Yanchao [School of Materials Science and Engineering, Tongji University, 4800 Cao' an Road, Shanghai 201804 (China); Wang, Guojian, E-mail: wanggj@tongji.edu.cn [School of Materials Science and Engineering, Tongji University, 4800 Cao' an Road, Shanghai 201804 (China); Key Laboratory of Advanced Civil Engineering Materials, Ministry of Education, 4800 Cao' an Road, Shanghai 201804 (China)

    2016-11-01

    Highlights: • The novel halogen-free flame retardant containing silicon and caged bicyclic phosphate was synthesized. • A novel transparent intumescent fire resistant coating was developed by the P-Si synergistic flame retardant and melamine formaldehyde resin. • Excellent fire protection of the transparent intumescent fire resistant coating. • The P-Si synergistic flame retardant could improve the thermo-oxidation resistance of transparent fire resistant coating. - Abstract: A series of novel silicon-containing epoxy/PEPA phosphate flame retardants (EPPSi) were synthesized by polyphosphoric acid (PPA), caged bicyclic phosphate 1-oxo-4-hydroxymethyl-2,6,7-trioxa-L-phosphabicyclo [2.2.2] octane (PEPA), and different ratios of silicon-containing epoxy 1,1,3,3-tetramethyl-1,3-bis(3-(oxiran-2-ylmethoxy)propyl)disiloxane (TMSEP) to 1,4-butanediol diglycidyl ether (BDE). The chemical structure of EPPSi was confirmed by Fourier transform infrared spectroscopy (FTIR) and {sup 1}H nuclear magnetic resonance spectroscopy ({sup 1}H NMR). Afterwards, the transparent intumescent fire resistant coatings were prepared by mixing EPPSi and melamine formaldehyde resin. The influence of silicon on the fire protection of coatings was intensively investigated by fire protection test, intumescence ratio, scanning electron microscope (SEM), compressive strength test, X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA) and real-time FTIR. It was found that the fire resistant coatings obtained the best fire protection when the ratio of TMESP/BDE was 20/100, while excessive TMSEP made the fire protection of coatings deceased sharply. The intumescence ratio, compressive strength test and SEM result showed that a synergistic effect existed between phosphorus and silicon, which improved the foam structure and compressive strength of the char layer significantly. XPS result proved the out-migration effect of silicon. The high concentration silicon on surface played

  16. Forest Fires and Post - Fire Regeneration in Algeria Analysis with Satellite Data

    Science.gov (United States)

    Zegrar, Ahmed

    2016-07-01

    The Algerian forests are characterized by a particularly flammable material and fuel. The wind, the relief and the slope facilitates the propagation of fire. The use of remote sensing data multi-­dates, combined with other types of data of various kinds on the environment and forest burned, opens up interesting perspectives for the management of post-­fire regeneration. In this study the use of multi-­temporal remote sensing image Alsat-­1 and Landsat combined with other types of data concerning both background and burned down forest appears to be promising in evaluating and spatial and temporal effects of post fire regeneration. A spatial analysis taking into consideration the characteristics of the burned down site in the North West of Algeria, allowed to better account new factors to explain the regeneration and its temporal and spatial variation. We intended to show the potential use of remote sensing data from satellite ALSAT-­1, of spatial resolution of 32 m. . This approach allows showing the contribution of the data of Algerian satellite ALSAT in the detection and the well attended some forest fires in Algeria.

  17. Impact of forest fire on physical, chemical and biological properties of soil: A review

    Directory of Open Access Journals (Sweden)

    Satyam Verma

    2012-09-01

    Full Text Available Forest fire is very common to all the ecosystems of the world. It affects both vegetation and soil. It is also helpful in maintaining diversity and stability of ecosystems. Effect of forest fire and prescribed fire on forest soil is very complex. It affects soil organic matter, macro and micro-nutrients, physical properties of soil like texture, colour, pH, Bulk Density as well as soil biota. The impact of fire on forest soil depends on various factors such as intensity of fire, fuel load and soil moisture. Fire is beneficial as well as harmful for the forest soil depending on its severity and fire return interval. In low intensity fires, combustion of litter and soil organic matter increase plant available nutrients, which results in rapid growth of herbaceous plants and a significant increase in plant storage of nutrients. Whereas high intensity fires can result into complete loss of soil organic matter, volatilization of N, P, S, K, death of microbes, etc. Intense forest fire results into formation of some organic compounds with hydrophobic properties, which results into high water repellent soils. Forest fire also causes long term effect on forest soil. The purpose of this paper is to review the effect of forest fire on various properties of soil, which are important in maintaining healthy ecosystem.

  18. [GIS-based forest fire risk zone mapping in Daxing'an Mountains].

    Science.gov (United States)

    Yin, Haiwei; Kong, Fanhua; Li, Xiuzhen

    2005-05-01

    In this study, the Yuying and Fendou forest farms of Tuqiang Forest Bureau in Daxing'an Mountains were chosen as test areas, and their vegetation type, altitude, slop, aspect, and settlement buffer were selected as the main forest fire factors. The circumstances of forest fire risk were quantified by the factor-weights union method with the support of GIS. Four classes of forest fire risk ranging from low to extreme were generated. The none-, low, moderate, high, and extremely high fire risk zones accounted for 0.37%, 0.63%, 38.67%, 58.63% and 1.70%, respectively, which was in corresponding with normal distribution. About 60.33% of the test areas were predicted to be upper moderate risk zones, indicating that the forest fire management task in these areas is super onerous. There was an obvious regional difference in the distribution of forest fire risk zones, being higher in the center and lower around the center, and the difference in fire factors was also obvious. The GIS-based forest fire risk model of test areas strongly cohered with the actual fire-affected sites in 1987, which suggested that the forest fire risk zone mapping had a higher reliability, and could be used as the reference and guidance of forest fire management.

  19. Multi-season climate synchronized forest fires throughout the 20th century, Northern Rockies, USA

    Science.gov (United States)

    Penelope Morgan; Emily K. Heyerdahl; Carly E. Gibson

    2008-01-01

    We inferred climate drivers of 20th-century years with regionally synchronous forest fires in the U.S. northern Rockies. We derived annual fire extent from an existing fire atlas that includes 5038 fire polygons recorded from 12 070 086 ha, or 71% of the forested land in Idaho and Montana west of the Continental Divide. The 11 regional-fire years, those exceeding the...

  20. Understorey fire frequency and the fate of burned forests in southern Amazonia.

    Science.gov (United States)

    Morton, D C; Le Page, Y; DeFries, R; Collatz, G J; Hurtt, G C

    2013-06-05

    Recent drought events underscore the vulnerability of Amazon forests to understorey fires. The long-term impact of fires on biodiversity and forest carbon stocks depends on the frequency of fire damages and deforestation rates of burned forests. Here, we characterized the spatial and temporal dynamics of understorey fires (1999-2010) and deforestation (2001-2010) in southern Amazonia using new satellite-based estimates of annual fire activity (greater than 50 ha) and deforestation (greater than 10 ha). Understorey forest fires burned more than 85 500 km(2) between 1999 and 2010 (2.8% of all forests). Forests that burned more than once accounted for 16 per cent of all understorey fires. Repeated fire activity was concentrated in Mato Grosso and eastern Pará, whereas single fires were widespread across the arc of deforestation. Routine fire activity in Mato Grosso coincided with annual periods of low night-time relative humidity, suggesting a strong climate control on both single and repeated fires. Understorey fires occurred in regions with active deforestation, yet the interannual variability of fire and deforestation were uncorrelated, and only 2.6 per cent of forests that burned between 1999 and 2008 were deforested for agricultural use by 2010. Evidence from the past decade suggests that future projections of frontier landscapes in Amazonia should separately consider economic drivers to project future deforestation and climate to project fire risk.

  1. Impact of forest fires on particulate matter and ozone levels during the 2003, 2004 and 2005 fire seasons in portugal

    NARCIS (Netherlands)

    Martins, V.; Miranda, A.I.; Carvalho, A.; Schaap, M.; Borrego, C.; Sá, E.

    2012-01-01

    The main purpose of this work is to estimate the impact of forest fires on air pollution applying the LOTOS-EUROS air quality modeling system in Portugal for three consecutive years, 2003-2005. Forest fire emissions have been included in the modeling system through the development of a numerical mod

  2. RS AND GIS-BASED FOREST FIRE RISK ZONE MAPPING IN DA HINGGAN MOUNTAINS

    Institute of Scientific and Technical Information of China (English)

    YIN Hai-wei; KONG Fan-hua; LI Xiu-zhen

    2004-01-01

    The Da Hinggan Mountains is one of the most important forest areas in China,but forest fire there is also of high frequency.So it is completely necessary to map forest fire risk zones in order to effectively manage and protect the forest resources.Two forest farms of Tuqiang Forest Bureau (53°34′-52°15′N,124°05′- 122°18′E) were chosen as typical areas in this study.Remote sensing (RS) and Geographic Information System (GIS) play a vital role and can be used effectively to obtain and combine different forest-fire-causing factors for demarcating the forest fire risk zone map.Forest fire risk zones were described by assigning subjective weights to the classes of all the coverage layers according to their sensitivity to fire,using the ARC/INFO GIS software.Four classes of forest fire risk ranging from low to extremely high were generated automatically in ARC/INFO.The results showed that about 60.33% of the study area were predicted to be upper moderate risk zones,indicating that the forest fire management task in this area is super onerous.The RS and GIS-based forest fire risk model of the study area was found to be highly compatible with the actual fire-affected sites in 1987.Therefore the forest fire risk zone map can be used for guidance of forest fire management,and as basis for fire prevention strategies.

  3. Spatial and temporal corroboration of a fire-scar-based fire history in a frequently burned ponderosa pine forest.

    Science.gov (United States)

    Farris, Calvin A; Baisan, Christopher H; Falk, Donald A; Yool, Stephen R; Swetnam, Thomas W

    2010-09-01

    Fire scars are used widely to reconstruct historical fire regime parameters in forests around the world. Because fire scars provide incomplete records of past fire occurrence at discrete points in space, inferences must be made to reconstruct fire frequency and extent across landscapes using spatial networks of fire-scar samples. Assessing the relative accuracy of fire-scar fire history reconstructions has been hampered due to a lack of empirical comparisons with independent fire history data sources. We carried out such a comparison in a 2780-ha ponderosa pine forest on Mica Mountain in southern Arizona (USA) for the time period 1937-2000. Using documentary records of fire perimeter maps and ignition locations, we compared reconstructions of key spatial and temporal fire regime parameters developed from documentary fire maps and independently collected fire-scar data (n = 60 plots). We found that fire-scar data provided spatially representative and complete inventories of all major fire years (> 100 ha) in the study area but failed to detect most small fires. There was a strong linear relationship between the percentage of samples recording fire scars in a given year (i.e., fire-scar synchrony) and total area burned for that year (y = 0.0003x + 0.0087, r2 = 0.96). There was also strong spatial coherence between cumulative fire frequency maps interpolated from fire-scar data and ground-mapped fire perimeters. Widely reported fire frequency summary statistics varied little between fire history data sets: fire-scar natural fire rotations (NFR) differed by fire return intervals (MFI) for large-fire years (i.e., > or = 25% of study area burned) were identical between data sets (25.5 yr); fire-scar MFIs for all fire years differed by 1.2 yr from documentary records. The known seasonal timing of past fires based on documentary records was furthermore reconstructed accurately by observing intra-annual ring position of fire scars and using knowledge of tree-ring growth

  4. Brominated flame retardants and the formation of dioxins and furans in fires and combustion.

    Science.gov (United States)

    Zhang, Mengmei; Buekens, Alfons; Li, Xiaodong

    2016-03-05

    The widespread use and increasing inventory of brominated flame retardants (BFRs) have caused considerable concern, as a result of BFRs emissions to the environment and of the formation of both polybrominated dibenzo-p-dioxins and dibenzofurans (PBDD/Fs) and mixed polybromochloro-dibenzo-p-dioxins and dibenzofurans (PBCDD/Fs or PXDD/Fs). Structural similarities between PBDD/Fs and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) suggest the existence of comparable formation pathways of both PBDD/Fs and PCDD/Fs, yet BFRs also act as specific precursors to form additional PBDD/Fs. Moreover, elementary bromine (Br2) seems to facilitate chlorination by bromination of organics, followed by Br/Cl-exchange based on displacement through the more reactive halogen. Overall, PBDD/Fs form through three possible pathways: precursor formation, de novo formation, and dispersion of parts containing BFRs as impurities and surviving a fire or other events. The present review summarises the formation mechanisms of both brominated (PBDD/Fs) and mixed dioxins (PXDD/Fs with X=Br or Cl) from BFRs, recaps available emissions data of PBDD/Fs and mixed PXDD/Fs from controlled waste incineration, uncontrolled combustion sources and accidental fires, and identifies and analyses the effects of several local factors of influence, affecting the formation of PBDD/Fs and mixed PXDD/Fs during BFRs combustion.

  5. Application of PDA forest fire monitoring based on web service technology

    Institute of Scientific and Technical Information of China (English)

    Yufei ZHOU; Pengju LIU; Xiaoming TANG

    2009-01-01

    The difficulty in information communication and sharing are major problems for forest fire monitoring and early warning in China. As authors, we applied web service technology to a personal digital assistant (PDA) forest fire monitoring system and propose the framework of a monitoring system based on service-oriented architecture (SOA). At the same time, we describe the composition and function of web services from a server side and a client side. The method for developing a web service invocation engine on the PDA is introduced in detail. Finally, an example of a fire danger rating and fire weather services system are established, based on the Beijing Forest Fire Control System. The results show that the PDA forest fire monitoring system based on web services can effectively take advantage of the existing fire protection decision information services, realize real-time information interaction and sharing, and improve the level of forest fire monitoring.

  6. Impact of forest fire on physical, chemical and biological properties of soil: A review

    OpenAIRE

    Satyam Verma; S Jayakumar

    2012-01-01

    Forest fire is very common to all the ecosystems of the world. It affects both vegetation and soil. It is also helpful in maintaining diversity and stability of ecosystems. Effect of forest fire and prescribed fire on forest soil is very complex. It affects soil organic matter, macro and micro-nutrients, physical properties of soil like texture, colour, pH, Bulk Density as well as soil biota. The impact of fire on forest soil depends on various factors such as intensity of fire, fuel load and...

  7. Fire dynamics and implications for nitrogen cycling in boreal forests

    Science.gov (United States)

    Harden, Jennifer W.; Mack, Michelle; Veldhuis, Hugo; Gower, S. T.

    2003-02-01

    We used a dynamic, long-term mass balance approach to track cumulative carbon (C) and nitrogen (N) losses to fire in boreal Manitoba over the 6500 years since deglaciation. Estimated C losses to decomposition and fire, combined with measurements of N pools in mature and burned forest floors, suggest that loss of N by combustion has likely resulted in a long-term loss that exceeds the amount of N stored in soil today by 2 to 3 times. These estimates imply that biological N fixation rates could be as high as 5 to 10 times atmospheric deposition rates in boreal regions. At the site scale, the amount of N lost is due to N content of fuels, which varies by stand type and fire severity, which in turn vary with climate and fire dynamics. The interplay of fire frequency, fire severity, and N partitioning during regrowth are important for understanding rates and sustainability of nutrient and carbon cycling over millenia and over broad regions.

  8. A data model for route planning in the case of forest fires

    NARCIS (Netherlands)

    Wang, Z.; Zlatanova, S.; Moreno, A.; Van Oosterom, P.J.M.; Toro, C.

    2013-01-01

    The ability to guide relief vehicles to safety and quickly pass through environments affected by fires is critical in fighting forest fires. In this paper, we focus on route determination in the case of forest fires, and propose a data model that supports finding paths among moving obstacles. This d

  9. Sentinel Mission: Forest Fire Products Evaluation over China

    Science.gov (United States)

    Garcia, M.; Sanz, J.; Salvador, P.; Molina, V.; Cassanova, J.-P.; Qin, Xianlin

    2016-08-01

    Sentinel-2a and Sentinel-3a were launch the 23 June 2015 and 16 February 2016 respectively. These two platforms constitute a great improvement in the surface monitoring, especially in forest fires emergency management, evaluation and recovery.The multispectral sensor on board Sentinel-2a is a perfect tool to delineate burnt areas and identify severity with great spatial and temporal resolution while the surface thermal information provided by Sea and Land Surface Temperature Radiometer (SLSTR) on board Sentinel-3a constitute a source of hotspots. Both platforms will be complemented with their respective twins Sentinel-2b and Sentinel-3b in order to improve temporal resolution.This work tries to evaluate the constellation capacity to provide reliable forest fires products over China by comparison with Earth Observing System (EOS) and Landsat constellation products.

  10. Post-fire effects and short-term regeneration dynamics following high-severity crown fires in a Mediterranean forest

    Directory of Open Access Journals (Sweden)

    Garbarino M

    2012-06-01

    Full Text Available Resilience against fire disturbance of Mediterranean vegetation has been frequently described. However, due to climatic change and abandonment of local land use practices, the fire regime is changing, probably leading to higher intensities and frequencies of disturbance events. The forthcoming scenario calls for a full understanding of post-disturbance tree recruitment processes, structural resilience and possible consequences on the overall forest biodiversity. In particular, knowledge on severe crown fires’ effects on forest stand structural attributes needs to be further explored. In this work, we describe and quantify fire impact and short-term response of a Mediterranean forest affected by high severity crown fires, focusing on the compositional and structural diversity of living and dead trees, spatial pattern of fire-induced mortality, recovery dynamics of tree species. The analysis, based on a synchronic approach, was carried out within four burned and two not burned fully stem-mapped research plots located in NW Italy, belonging to two forest categories differing for their main tree restoration strategies. Distance-dependent and distance-independent indices were applied to assess structural diversity dynamics over time since fire occurrence. Within the analyzed forests fire was found to affect mostly forest structure rather than its composition. Number of snags largely increases immediately after the fire, but it levels off due to their fall dynamics. Regeneration strategies and fire severity influenced species abundance and consequently diversity patterns. Stem diameter and height diversity were modified as well, with a strong increase in the first post-fire year and a sharp reduction six years after the disturbance. Fire determined also a higher heterogeneity in crown cover and vertical structure. Spatial patterns of surviving trees and snags were greatly affected by fire, producing an increase in aggregation and segregation

  11. Fire Retardant Technology and Evaluation Method for Wood-based Panels%人造板阻燃技术与评价方法

    Institute of Scientific and Technical Information of China (English)

    孙玉泉; 彭力争; 张根成; 吴建国; 张建

    2011-01-01

    The paper introduced three fire retardant treatments for wood-based panels and the common fire retardants;briefed the standards for fire retardant wood and wood-based panel products and the evaluation and test methods for fire retardant materials;and discussed the existing issues of the standard for fire-resistant panels.%介绍了3种人造板的阻燃处理方法及常用阻燃剂,概述了阻燃人造板标准、阻燃性能评价和检测方法,分析了目前阻燃人造板研发生产在国内外标准方面存在的问题。

  12. Landscape fragmentation, severe drought, and the new Amazon forest fire regime.

    Science.gov (United States)

    Alencar, Ane A; Brando, Paulo M; Asner, Gregory P; Putz, Francis E

    2015-09-01

    Changes in weather and land use are transforming the spatial and temporal characteristics of fire regimes in Amazonia, with important effects on the functioning of dense (i.e., closed-canopy), open-canopy, and transitional forests across the Basin. To quantify, document, and describe the characteristics and recent changes in forest fire regimes, we sampled 6 million ha of these three representative forests of the eastern and southern edges of the Amazon using 24 years (1983-2007) of satellite-derived annual forest fire scar maps and 16 years of monthly hot pixel information (1992-2007). Our results reveal that changes in forest fire regime properties differentially affected these three forest types in terms of area burned and fire scar size, frequency, and seasonality. During the study period, forest fires burned 15% (0.3 million ha), 44% (1 million ha), and 46% (0.6 million ha) of dense, open, and transitional forests, respectively. Total forest area burned and fire scar size tended to increase over time (even in years of average rainfall in open canopy and transitional forests). In dense forests, most of the temporal variability in fire regime properties was linked to El Nino Southern Oscillation (ENSO)-related droughts. Compared with dense forests, transitional and open forests experienced fires twice as frequently, with at least 20% of these forests' areas burning two or more times during the 24-year study period. Open and transitional forests also experienced higher deforestation rates than dense forests. During drier years, the end of the dry season was delayed by about a month, which resulted in larger burn scars and increases in overall area burned later in the season. These observations suggest that climate-mediated forest flammability is enhanced by landscape fragmentation caused by deforestation, as observed for open and transitional forests in the Eastern portion of the Amazon Basin.

  13. Local fractality: The case of forest fires in Portugal

    Science.gov (United States)

    Kanevski, Mikhail; Pereira, Mário G.

    2017-08-01

    The research deals with a study of local fractality in spatial distribution of forest fires in Portugal using the sandbox method. The general procedure is the following: (a) define a circle centred in each and all events with increasing radius R; (b) count the number of other events located within the circle of radius R, N(R) ; (c) plot the growth curve which is the functional dependence of N(R) versus R; and (d) estimate the local fractal dimension as the slope on log[ N(R) ] versus log[ R]. The computation is carried out by using the location of every fire event as a centre but without the final averaging over all the fires for a given R, which is usually performed to get a global fractal dimension and to estimate global clustering. Sandbox method is widely used in many applications in physics and other subjects. The local procedure has the ability to provide the most complete information regarding the spatial distribution of clustering and avoiding non-homogeneity and non-stationarity problems. Most of the analysis was performed using the National Mapping Burnt Area (NMBA) database which accounts for 32 156 fires during the 1975-2013 period. The results of local analysis are compared with a randomly generated pattern in forest zones (validity domain). The results demonstrate interesting local spatial patterns of clustering. Some results on global measures are reported as well.

  14. Defining old growth for fire-adapted forests of the Western United States

    Science.gov (United States)

    Merrill R. Kaufmann; Daniel Binkley; Peter Z. Fule; Johnson Marlin; Scott L. Stephens; Thomas W. Swetnam

    2007-01-01

    There are varying definitions of old-growth forests because of differences in environment and differing fire influence across the Intermountain West. Two general types of forests reflect the role of fire: 1) forests shaped by natural changes in structure and species makeup-plant succession-that are driven by competitive differences among species and individual trees...

  15. 我国阻燃剂生产现状与发展趋势%Production Situation and Development Trend of Domestic Fire Retardants

    Institute of Scientific and Technical Information of China (English)

    梁诚

    2001-01-01

    介绍了我国阻燃剂的生产现状及其在品种和产品质量等方面与国外存在的较大差距,论述了我国阻燃剂的研究开发方向及其发展趋势,并提出合理化建议。%The production situation of domestic fire retardants and theconsiderable gaps between domestic and foreign fire retardants in the way of kind, quality etc. were reviewed. The development trend of domestic fire retardants was discussed and reasonable suggestions were proposed.

  16. Estimating Fire-Caused Boreal Forest Disturbances Using Remote Sensing Data

    Science.gov (United States)

    Sukhinin, A. I.; Slinkina, O. A.; Soja, A. J.; Buryak, L. V.; Conard, S. G.; McRae, D.; Yurikova, E. Y.; Cahoon, D. R.

    2008-12-01

    Russia accounts for about half of the world's forests, most of which are in Siberia. Numerous forest fires, mostly human-caused, and extensive forest harvesting, including illegal logging, have resulted in considerable ecological damage and economic loss. At present, forest inventory agencies assess the effects of fire based on the known forest area burned. Due to potential cost and difficulty of access types and severity of fire effects are normally not assessed. The lack of reliable estimates of ecological and economic impacts of forest fires prevents development of effective approaches for forest management and forest fire protection. Remote sensing and GIS-based technologies provide for the development of fundamental new methods to assess and monitor forest condition and wildfire behavior and effects. Wildfire and insect and disease outbreaks are the main natural factors responsible for partial or complete mortality of forest stands in Siberia. Negative human influences include forest harvesting, mining, industrial pollution, and human-caused fires. Estimating the scale, rate, and severity of disturbance is of key importance for appraising the resulting ecological and economical damage. In this study, we developed a GIS- and satellite-based methodology to appraise forest damage by taking advantage of unique spectral signature of the underlying forest types. Our focus was on an area of intensive forest harvest in the Angara river basin, which includes the southern and central taiga zones. We have assessed the type, extent, and severity of disturbances in vegetation cover and mapped the current condition of disturbed forest sites.

  17. Development of Self Fire Retardant Melamine-Animal Glue Formaldehyde (MGF) Resin for the Manufacture of BWR Ply Board

    Science.gov (United States)

    Khatua, Pijus Kanti; Dubey, Rajib Kumar; Roymahapatra, Gourisankar; Mishra, Anjan; Shahoo, Shadhu Charan; Kalawate, Aparna

    2016-06-01

    Wood is one of the most sustainable, naturally growing materials that consist mainly of combustible organic carbon compounds. Since plywood are widely used nowadays especially in buildings, furniture and cabinets. Too often the fire behavior of ply-board may be viewed as a drawback. Amino-plastic based thermosetting resin adhesives are the important and most widely used in the plywood panel industries. The fire retardant property of wood panel products by adding animal glue as an additive in the form of MGF resin and used as substitute of melamine for manufacture of plywood. Environment concerns and higher cost of petroleum based resins have resulted in the development of technologies to replace melamine partially by biomaterials for the manufacturing of resin adhesive. Natural bio-based materials such as tannin, CNSL (cardanol), lignin, soya etc. are used as partial substitution of melamine. This article presents the development of melamine-animal glue formaldehyde resin as plywood binder. About 30 % melamine was substituted by animal glue and optimized. The different physico-mechanical and fire retardant property properties tested as per IS: 1734-1983 and IS: 5509-2000 respectively are quite satisfactory. The production of adhesive from melamine with compatible natural proteinous material is cost effective, eco-friendly and enhance the fire retardant property.

  18. Development of Self Fire Retardant Melamine-Animal Glue Formaldehyde (MGF) Resin for the Manufacture of BWR Ply Board

    Science.gov (United States)

    Khatua, Pijus Kanti; Dubey, Rajib Kumar; Roymahapatra, Gourisankar; Mishra, Anjan; Shahoo, Shadhu Charan; Kalawate, Aparna

    2017-10-01

    Wood is one of the most sustainable, naturally growing materials that consist mainly of combustible organic carbon compounds. Since plywood are widely used nowadays especially in buildings, furniture and cabinets. Too often the fire behavior of ply-board may be viewed as a drawback. Amino-plastic based thermosetting resin adhesives are the important and most widely used in the plywood panel industries. The fire retardant property of wood panel products by adding animal glue as an additive in the form of MGF resin and used as substitute of melamine for manufacture of plywood. Environment concerns and higher cost of petroleum based resins have resulted in the development of technologies to replace melamine partially by biomaterials for the manufacturing of resin adhesive. Natural bio-based materials such as tannin, CNSL (cardanol), lignin, soya etc. are used as partial substitution of melamine. This article presents the development of melamine-animal glue formaldehyde resin as plywood binder. About 30 % melamine was substituted by animal glue and optimized. The different physico-mechanical and fire retardant property properties tested as per IS: 1734-1983 and IS: 5509-2000 respectively are quite satisfactory. The production of adhesive from melamine with compatible natural proteinous material is cost effective, eco-friendly and enhance the fire retardant property.

  19. Remotely Sensed Fire Type Classification of the Brazilian Tropical Moist Forest Biome

    Science.gov (United States)

    Kumar, S.; Roy, D. P.

    2012-12-01

    Vegetation fires in the Brazilian Tropical Moist Forest Biome can be broadly classified into three types: i) Deforestation fires, lit to aid deforestation by burning of slashed, piled and dried forest biomass, ii) Maintenance fires, lit on agricultural fields or pasture areas to maintain and clear woody material and to rehabilitate degraded pasture areas, iii) Forest fires, associated with escaped anthropogenic fires or, less frequently, caused by lightning. Information on the incidence and spatial distribution of fire types is important as they have widely varying atmospheric emissions and ecological impacts. Satellite remote sensing offers a practical means of monitoring fires over areas as extensive as the Brazilian Tropical Moist Forest Biome which spans almost 4 million square kilometers. To date, fire type has been inferred based on the geographic context and proximity of satellite active fire detections relative to thematic land cover classes, roads, and forest edges, or by empirical consideration of the active fire detection frequency. In this paper a classification methodology is presented that demonstrates a way to classify the fire type of MODerate Resolution Imaging Spectroradiometer (MODIS) active fire detections. Training and validation fire type data are defined conservatively for MODIS active fire detections using a land cover transition matrix that labels MODIS active fires by consideration of the PRODES 120m land cover for the previous year and the year of fire detection. The training data are used with a random forest classifier and remotely sensed predictor variables including the number of MODIS Aqua and Terra satellite detections, the maximum and median Fire Radiative Power (FRP) [MW km-2], the scaling parameter of the FRP power law distribution, the number of day and night detections, and the fire surrounding "background" surface brightness temperature [K]. In addition, the total rainfall over periods from 1 to 24 months prior to fire

  20. Avian response to fire in pine–oak forests of Great Smoky Mountains National Park following decades of fire suppression

    Science.gov (United States)

    Rose, Eli T.; Simons, Theodore R.

    2016-01-01

    Fire suppression in southern Appalachian pine–oak forests during the past century dramatically altered the bird community. Fire return intervals decreased, resulting in local extirpation or population declines of many bird species adapted to post-fire plant communities. Within Great Smoky Mountains National Park, declines have been strongest for birds inhabiting xeric pine–oak forests that depend on frequent fire. The buildup of fuels after decades of fire suppression led to changes in the 1996 Great Smoky Mountains Fire Management Plan. Although fire return intervals remain well below historic levels, management changes have helped increase the amount of fire within the park over the past 20 years, providing an opportunity to study patterns of fire severity, time since burn, and bird occurrence. We combined avian point counts in burned and unburned areas with remote sensing indices of fire severity to infer temporal changes in bird occurrence for up to 28 years following fire. Using hierarchical linear models that account for the possibility of a species presence at a site when no individuals are detected, we developed occurrence models for 24 species: 13 occurred more frequently in burned areas, 2 occurred less frequently, and 9 showed no significant difference between burned and unburned areas. Within burned areas, the top models for each species included fire severity, time since burn, or both, suggesting that fire influenced patterns of species occurrence for all 24 species. Our findings suggest that no single fire management strategy will suit all species. To capture peak occupancy for the entire bird community within xeric pine–oak forests, at least 3 fire regimes may be necessary; one applying frequent low severity fire, another using infrequent low severity fire, and a third using infrequently applied high severity fire.

  1. Boreal ditched forest and peatland are more vulnerable to forest fire than unditched areas

    Science.gov (United States)

    Köhler, Stephan J.; Granath, Gustav; Landahl, Anna; Fölster, Jens

    2016-04-01

    During summer of 2014 the largest wildfire in Swedish modern history occurred. The fire was ignited in a forest close to the Swedish town Sala and incinerated a total of 14 000 ha. The frequency of wildfires is expected to increase, due to effects of climate change such as increased temperature and decreased precipitation during the summer months. Wildfires can have a considerable impact on aquatic ecosystems and previous studies of wildfires have shown elevated concentrations of nutrients, cat- and anions. The area of the fire mainly consists of forestland, peatland and lakes and has been affected by acidification and intensive forestry. To assess the fire severity and the effects on the water chemistry, the fire severity were analyzed and classified using aerial phtographs and high resolution LIDAR data. The analysis indicated that increased fire intensity caused increased fire severity and that drained forested areas were more vulnerable to fire than undrained peatland. Measurements of water chemistry were conducted at nine streams and ten lakes inside the affected area. At two sites sensors for multiple parameters were deployed. During the initial three months of the post-fire period large peaks of ammonia-N and sulphate were observed in the streams and in a majority of the lakes while DOC was suppressed. In one stream Gärsjöbäcken the median concentrations of ammonia-N were 79 times higher after the fire. Due to nitrification the elevated concentrations of ammonia-N-nitrogen caused elevated concentrations of nitrate-nitrogen. The initial peak of sulphate caused a drop in ANC but after the peak had past ANC increased due to elevated concentrations of base cations. Correlation analysis of fire severity and water chemistry indicated that the maximum concentrations of ammonia-N increased with severely burned canopies in drained forested peatlands and in scorched open peatland. In a future climate with increased dry spells extensive ditching operations in

  2. Forest fire risk assessment in parts of Northeast India using geospatial tools

    Institute of Scientific and Technical Information of China (English)

    Kanchan Puri; G. Areendran; Krishna Raj; Sraboni Mazumdar; P.K. Joshi

    2011-01-01

    Forest fire is a major cause of changes in forest structure and function.Among various floristic regions,the northeast region of India suffers maximum from the fires due to age-old practice of shifting cultivation and spread of fires from jhum fields.For proper mitigation and management,an early warning of forest fires through risk modeling is required.The study results demonstrate the potential use of remote sensing and Geographic Information System (GIS) in identifying forest fire prone areas in Manipur,southeastern part of Northeast India.Land use land cover (LULC),vegetation type,Digital elevation model (DEM),slope,aspect and proximity to roads and settlements,factors that influence the behavior of fire,were used to model the forest fire risk zones.Each class of the layers was given weight according to their fire inducing capability and their sensitivity to fire.Weighted sum modeling and ISODATA clustering was used to classify the fire zones.To validate the results,Along Track Scanning Radiometer (ATSR),the historical fire hotspots data was used to check the occurrence points and modeled forest fire locations.The forest risk zone map has 55-63% of agreement with ATSR datsset.

  3. Effect of Magnesium Borates on the Fire-Retarding Properties of Zinc Borates

    Directory of Open Access Journals (Sweden)

    Azmi Seyhun Kipcak

    2014-01-01

    Full Text Available Magnesium borate (MB is a technical ceramic exhibiting high heat resistance, corrosion resistance, great mechanical strength, great insulation properties, lightweightness, high strength, and a high coefficient of elasticity. Zinc borate (ZB can be used as a multifunctional synergistic additive in addition to flame retardant additives in polymers. In this study, the raw materials of zinc oxide (ZnO, magnesium oxide (MgO, and boric acid (H3BO3 were used in the mole ratio of 1 : 1 : 9, which was obtained from preexperiments. Using the starting materials, hydrothermal synthesis was applied, and characterisation of the products was performed using X-Ray diffraction (XRD and Fourier transform infrared (FT-IR and Raman spectroscopies. The forms of Zn3B6O12·3.5H2O, MgO(B2O33·7(H2O, and Mg2(B6O7(OH62·9(H2O were synthesised successfully. Moreover, the surface morphology was investigated using scanning electron microscopy (SEM, and the B2O3 content was determined. In addition, the reaction yields were calculated. The results of the B2O3 content analysis were in compliance with the literature values. Examination of the SEM images indicated that the obtained nanoscale minerals had a reaction efficiency ranging between 63–74% for MB and 87–98% for ZB. Finally, the fire-retarding properties of the synthesised pure MBs, pure ZBs, and mixtures of MB and ZB were determined using differential thermal analysis and thermal gravimetry (DTA-TG and differential scanning calorimetry (DSC.

  4. The tropical forest and fire emissions experiment: laboratory fire measurements and synthesis of campaign data

    Science.gov (United States)

    Yokelson, R. J.; Christian, T. J.; Karl, T. G.; Guenther, A.

    2008-07-01

    As part of the Tropical Forest and Fire Emissions Experiment (TROFFEE), tropical forest fuels were burned in a large, biomass-fire simulation facility and the smoke was characterized with open-path Fourier transform infrared spectroscopy (FTIR), proton-transfer reaction mass spectrometry (PTR-MS), gas chromatography (GC), GC/PTR-MS, and filter sampling of the particles. In most cases, about one-third of the fuel chlorine ended up in the particles and about one-half remained in the ash. About 50% of the mass of non-methane organic compounds (NMOC) emitted by these fires could be identified with the available instrumentation. The lab fire emission factors (EF, g compound emitted per kg dry fuel burned) were coupled with EF obtained during the TROFFEE airborne and ground-based field campaigns. This revealed several types of EF dependence on parameters such as the ratio of flaming to smoldering combustion and fuel characteristics. The synthesis of data from the different TROFFEE platforms was also used to derive EF for all the measured species for both primary deforestation fires and pasture maintenance fires the two main types of biomass burning in the Amazon. Many of the EF are larger than those in widely-used earlier work. This is mostly due to the inclusion of newly-available, large EF for the initially-unlofted smoldering emissions from residual logs in pastures and the assumption that these emissions make a significant contribution (~40%) to the total emissions from pasture fires. The TROFFEE EF for particles with aerodynamic diameter sugar cane burning, which may help estimate the air quality impacts of burning this major crop, which is often grown in densely populated areas.

  5. Fire in Ghana's dry forest: Causes, frequency, effects and management interventions

    Science.gov (United States)

    Sandra Opoku Agyemang; Michael Muller; Victor Rex Barnes

    2015-01-01

    This paper describes the number of fires, area burned, causes and seasonality of fires over a ten year period from 2002-2012 and investigates different fire management strategies and their effectiveness in the Afram headwaters forest reserve in Ghana. Data were collected from interviews of stakeholders in two communities adjacent to the reserve, and from 2002-2012 fire...

  6. An Intelligent System For Effective Forest Fire Detection Using Spatial Data

    CERN Document Server

    Angayarkkani, K

    2010-01-01

    The explosive growth of spatial data and extensive utilization of spatial databases emphasize the necessity for the automated discovery of spatial knowledge. In modern times, spatial data mining has emerged as an area of voluminous research. Forest fires are a chief environmental concern, causing economical and ecological damage while endangering human lives across the world. The fast or early detection of forest fires is a vital element for controlling such phenomenon. The application of remote sensing is at present a significant method for forest fires monitoring, particularly in vast and remote areas. Different methods have been presented by researchers for forest fire detection. The motivation behind this research is to obtain beneficial information from images in the forest spatial data and use the same in the determination of regions at the risk of fires by utilizing Image Processing and Artificial Intelligence techniques. This paper presents an intelligent system to detect the presence of forest fires ...

  7. Increment-borer methods for determining fire history in coniferous forests

    Science.gov (United States)

    Stephen W. Barrett; Stephen F. Arno

    1988-01-01

    Describes use of increment borers for interpreting fire history in coniferous forests. These methods are intended for use in wildernesses, parks, and other natural areas where sawing cross-sections from fire-scarred trees is prohibited.

  8. 建筑电气中阻燃和耐火电缆的使用分析%Use Analysis of Building Electrical Retardant and Fire Resistant Cables

    Institute of Scientific and Technical Information of China (English)

    汪圣昌

    2012-01-01

      在建筑的建造过程中,建筑电气中的阻燃和耐火电缆是构成电缆材料的一个组成部分。阻燃和耐火电缆在建筑构造中的电源、通讯设施、以及对火灾消防方面存在着重要的作用。阻燃和耐火电缆主要有两种:一种是用阻止燃烧的塑料做成的阻燃和耐火电缆;一种是由云母带以及阻止燃烧的塑料合并而成的阻燃和耐火电缆。本文针对影响阻燃和耐火电缆的火灾燃烧的因素展开探讨,分析建筑电气中阻燃和耐火电缆的使用方法。%  In the process of building construction, building electrical retardant and fire resistant cables constitute a part of the cable material. Flame retardant and fire power, in the cons-truction of communication facilities, as wel as the fire has played an important role in.Flame retardant and fire resistant cable is mainly has two kinds:one kind is made stop burning plastics flame-retardant and fire-resistant cable;one is from the mica tape and prevent burning plastic merged with flame retardant and fire resistant cable. This paper discusses the infl-uence of fire retardant and the burning factors of fire resistant cables,and analyzes the usage of the building electrical retard-ant and fire resistant cables.

  9. Brominated flame retardants and the formation of dioxins and furans in fires and combustion

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Mengmei [State key laboratory of clean energy utilisation, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou (China); Buekens, Alfons [State key laboratory of clean energy utilisation, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou (China); Formerly with Chemical Engineering department, Vrije Universiteit Brussel, Brussels (Belgium); Li, Xiaodong, E-mail: lixd@zju.edu.cn [State key laboratory of clean energy utilisation, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou (China)

    2016-03-05

    Highlights: • BFRs (PBDEs, HBCD and TBBP-A) are the main sources of PBDD/Fs in combustion process. • Precursor formation is the most relevant pathway for PBDD/Fs formation. • Adding bromine into combustion system can enhance the formation of PCDD/Fs. • Primitive recycling of e-waste produces the largest amounts of PBDD/Fs. - Abstract: The widespread use and increasing inventory of brominated flame retardants (BFRs) have caused considerable concern, as a result of BFRs emissions to the environment and of the formation of both polybrominated dibenzo-p-dioxins and dibenzofurans (PBDD/Fs) and mixed polybromochloro-dibenzo-p-dioxins and dibenzofurans (PBCDD/Fs or PXDD/Fs). Structural similarities between PBDD/Fs and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) suggest the existence of comparable formation pathways of both PBDD/Fs and PCDD/Fs, yet BFRs also act as specific precursors to form additional PBDD/Fs. Moreover, elementary bromine (Br{sub 2}) seems to facilitate chlorination by bromination of organics, followed by Br/Cl-exchange based on displacement through the more reactive halogen. Overall, PBDD/Fs form through three possible pathways: precursor formation, de novo formation, and dispersion of parts containing BFRs as impurities and surviving a fire or other events. The present review summarises the formation mechanisms of both brominated (PBDD/Fs) and mixed dioxins (PXDD/Fs with X = Br or Cl) from BFRs, recaps available emissions data of PBDD/Fs and mixed PXDD/Fs from controlled waste incineration, uncontrolled combustion sources and accidental fires, and identifies and analyses the effects of several local factors of influence, affecting the formation of PBDD/Fs and mixed PXDD/Fs during BFRs combustion.

  10. Visibility analysis of fire lookout towers in the Boyabat State Forest Enterprise in Turkey.

    Science.gov (United States)

    Kucuk, Omer; Topaloglu, Ozer; Altunel, Arif Oguz; Cetin, Mehmet

    2017-07-01

    For a successful fire suppression, it is essential to detect and intervene forest fires as early as possible. Fire lookout towers are crucial assets in detecting forest fires, in addition to other technological advancements. In this study, we performed a visibility analysis on a network of fire lookout towers currently operating in a relatively fire-prone region in Turkey's Western Black Sea region. Some of these towers had not been functioning properly; it was proposed that these be taken out of the grid and replaced with new ones. The percentage of visible areas under the current network of fire lookout towers was 73%; it could rise to 81% with the addition of newly proposed towers. This study was the first research to conduct a visibility analysis of current and newly proposed fire lookout towers in the Western Black Sea region and focus on its forest fire problem.

  11. Mapping Local Effects of Forest Properties on Fire Risk across Canada

    Directory of Open Access Journals (Sweden)

    Pierre Y. Bernier

    2016-07-01

    Full Text Available Fire is a dominant mechanism of forest renewal in most of Canada’s forests and its activity is predicted to increase over the coming decades. Individual fire events have been considered to be non-selective with regards to forest properties, but evidence now suggests otherwise. Our objective was therefore to quantify the effect of forest properties on fire selectivity or avoidance, evaluate the stability of these effects across varying burn rates, and use these results to map local fire risk across the forests of Canada. We used Canada-wide MODIS-based maps of annual fires and of forest properties to identify burned and unburned pixels for the 2002–2011 period and to bin them into classes of forest composition (% conifer and broadleaved deciduous, above-ground tree biomass and stand age. Logistic binomial regressions were then used to quantify fire selectivity by forest properties classes and by zones of homogeneous fire regime (HFR. Results suggest that fire exhibits a strong selectivity for conifer stands, but an even stronger avoidance of broadleaved stands. In terms of age classes, fire also shows a strong avoidance for young (0 to 29 year stands. The large differences among regional burn rates do not significantly alter the overall preference and avoidance ratings. Finally, we combined these results on relative burn preference with regional burn rates to map local fire risks across Canada.

  12. Scenario Modeling of Thermal Influence from Forest Fire Front on a Coniferous Tree Trunk

    Directory of Open Access Journals (Sweden)

    Baranovskiy Nikolay V.

    2016-01-01

    Full Text Available Scenario research results of heat transfer and tissue damage in three-layered tree trunk influenced by heat flux from forest fire are presented. The problem is solved in two-dimensional statement in polar coordinates. The typical range of influence parameters (heat flux from forest fire front, trunk radius, coniferous species, air temperature, duration of exposure and distance from fire line is considered. Temperature distributions in different moments of time are obtained. Condition of tree damage by forest fire influence is under consideration in this research. Information summarized using tables with scenario and fire consequences results.

  13. An Intelligent System For Effective Forest Fire Detection Using Spatial Data

    Directory of Open Access Journals (Sweden)

    K. Angayarkkani

    2010-01-01

    Full Text Available The explosive growth of spatial data and extensive utilization of spatial databases emphasize the necessity for the automated discovery of spatial knowledge. In modern times, spatial data mining has emerged as an area of voluminous research. Forest fires are a chief environmental concern, causing economical and ecological damage while endangering human lives across the world. The fast or early detection of forest fires is a vital element for controlling such phenomenon. The application of remote sensing is at present a significant method for forest fires monitoring, particularly in vast and remote areas. Different methods have been presented by researchers for forest fire detection. The motivation behind this research is to obtain beneficial information from images in the forest spatial data and use the same in the determination of regions at the risk of fires by utilizing Image Processing and Artificial Intelligence techniques. This paper presents an intelligent system to detect the presence of forest fires in the forest spatial data using Artificial Neural Networks. The digital images in the forest spatial data are converted from RGB to XYZ color space and then segmented by employing anisotropic diffusion to identify the fire regions. Subsequently, Radial Basis Function Neural Network is employed in the design of the intelligent system, which is trained with the color space values of the segmented fire regions. Extensive experimental assessments on publicly available spatial data illustrated the efficiency of the proposed system in effectively detecting forest fires.

  14. Fire Regime along Latitudinal Gradients of Continuous to Discontinuous Coniferous Boreal Forests in Eastern Canada

    National Research Council Canada - National Science Library

    Portier, Jeanne; Gauthier, Sylvie; Leduc, Alain; Arseneault, Dominique; Bergeron, Yves

    2016-01-01

      Fire is the main disturbance in North American coniferous boreal forests. In Northern Quebec, Canada, where forest management is not allowed, the landscape is gradually constituted of more opened lichen woodlands...

  15. WETTABILITY OF FIRE RETARDANT TREATED LAMINATED VENEER LUMBER (LVL MANUFACTURED FROM VENEERS DRIED AT DIFFERENT TEMPERATURES

    Directory of Open Access Journals (Sweden)

    Zeki Candan

    2009-11-01

    Full Text Available Wettability of the fire retardant treated (FRT laminated veneer lumber (LVL manufactured from wood veneers dried at different temperatures was investigated. Commercially manufactured veneer of beech wood (Fagus orientalis L. was treated with borax-boric acid (BX/BA, 1:1 by weight, monoammonium phosphate (MAP, and diammonium phosphate (DAP using a full-cell pressure process. The veneers were then dried at different temperatures (120, 140, 160, and 180°C, and experimental LVLs were made from these veneer sheets. The wettability of LVL was characterized by contact angle analysis. The lowest contact angle was obtained from LVL made from BX/BA-treated veneers, while the highest value was found for the control LVL. The CA values of these samples at each re-drying level were lower than LVLs made from untreated veneers. Re-drying of the treated veneers decreased the CA values of the LVL, while it was found higher for the LVL made from untreated veneer.

  16. Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide

    Science.gov (United States)

    Wicklein, Bernd; Kocjan, Andraž; Salazar-Alvarez, German; Carosio, Federico; Camino, Giovanni; Antonietti, Markus; Bergström, Lennart

    2015-03-01

    High-performance thermally insulating materials from renewable resources are needed to improve the energy efficiency of buildings. Traditional fossil-fuel-derived insulation materials such as expanded polystyrene and polyurethane have thermal conductivities that are too high for retrofitting or for building new, surface-efficient passive houses. Tailored materials such as aerogels and vacuum insulating panels are fragile and susceptible to perforation. Here, we show that freeze-casting suspensions of cellulose nanofibres, graphene oxide and sepiolite nanorods produces super-insulating, fire-retardant and strong anisotropic foams that perform better than traditional polymer-based insulating materials. The foams are ultralight, show excellent combustion resistance and exhibit a thermal conductivity of 15 mW m-1 K-1, which is about half that of expanded polystyrene. At 30 °C and 85% relative humidity, the foams retained more than half of their initial strength. Our results show that nanoscale engineering is a promising strategy for producing foams with excellent properties using cellulose and other renewable nanosized fibrous materials.

  17. Land cover, more than monthly fire weather, drives fire-size distribution in Southern Québec forests: Implications for fire risk management.

    Science.gov (United States)

    Marchal, Jean; Cumming, Steve G; McIntire, Eliot J B

    2017-01-01

    Fire activity in North American forests is expected to increase substantially with climate change. This would represent a growing risk to human settlements and industrial infrastructure proximal to forests, and to the forest products industry. We modelled fire size distributions in southern Québec as functions of fire weather and land cover, thus explicitly integrating some of the biotic interactions and feedbacks in a forest-wildfire system. We found that, contrary to expectations, land-cover and not fire weather was the primary driver of fire size in our study region. Fires were highly selective on fuel-type under a wide range of fire weather conditions: specifically, deciduous forest, lakes and to a lesser extent recently burned areas decreased the expected fire size in their vicinity compared to conifer forest. This has large implications for fire risk management in that fuels management could reduce fire risk over the long term. Our results imply, for example, that if 30% of a conifer-dominated landscape were converted to hardwoods, the probability of a given fire, occurring in that landscape under mean fire weather conditions, exceeding 100,000 ha would be reduced by a factor of 21. A similarly marked but slightly smaller effect size would be expected under extreme fire weather conditions. We attribute the decrease in expected fire size that occurs in recently burned areas to fuel availability limitations on fires spread. Because regenerating burned conifer stands often pass through a deciduous stage, this would also act as a negative biotic feedback whereby the occurrence of fires limits the size of nearby future for some period of time. Our parameter estimates imply that changes in vegetation flammability or fuel availability after fires would tend to counteract shifts in the fire size distribution favoring larger fires that are expected under climate warming. Ecological forecasts from models neglecting these feedbacks may markedly overestimate the

  18. Fire retardancy of emulsion polymerized poly (methyl methacrylate)/cerium(IV) dioxide and polystyrene/cerium(IV) dioxide nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Guipeng [Department of Chemistry and Fire Retardant Research Facility, Marquette University, PO Box 1881, Milwaukee, WI 53201 (United States); Lu, Hongdian [Department of Chemical and Materials Engineering, Hefei University, Hefei, Anhui 230022 (China); Zhou, You; Hao, Jianwei [School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); Wilkie, Charles A., E-mail: charles.wilkie@marquette.edu [Department of Chemistry and Fire Retardant Research Facility, Marquette University, PO Box 1881, Milwaukee, WI 53201 (United States)

    2012-12-10

    Highlights: Black-Right-Pointing-Pointer We prepare PMMA and PS containing ceria. Black-Right-Pointing-Pointer Characterization by XRD and TEM shows that some of the ceria is well-dispersed in the polymers. Black-Right-Pointing-Pointer The addition of ceria to both polymers leads to reduced thermal stability. Black-Right-Pointing-Pointer In PMMA, the fire retardancy is enhanced but there is little effect in PS. - Abstract: In situ emulsion polymerization was employed to obtain poly (methyl methacrylate) (PMMA)/cerium(IV) dioxide and polystyrene (PS)/cerium(IV) dioxide nanocomposites at two different cerium(IV) dioxide loadings (2.3 wt% and 4.6 wt%). Transmission electron microscope results indicated uniform dispersion of cerium (IV) dioxide in the polymer matrix. Both PMMA and PS nanocomposites exhibit lower thermal stability than the pristine polymers. Microscale combustion calorimeter (MCC) and cone calorimetry are used to evaluate the fire retardancy of the polymer nanocomposites. PMMA/cerium(IV) dioxide showed significant heat release rate (HRR) reduction at low loadings (<5 wt%), while PS/cerium(IV) dioxide exhibits less HRR reduction at the same loadings. An explanation of the role of cerium (IV) dioxide in fire retardancy of polymer/ceria nanocomposites based on XPS results is suggested.

  19. Study on fire-retardant of bamboo footboard of scaffold used in building construction%建筑用竹制脚踏板的防火阻燃

    Institute of Scientific and Technical Information of China (English)

    刘惠平; 朱鹏; 刘章蕊; 周波

    2012-01-01

    以自制硅溶胶和铝溶胶为阻燃体系,研究阻燃浸注处理压力、处理时间、阻燃成分含量及样品不同处理方式等对建筑用竹制脚踏板防火阻燃性能的影响.试验结果表明:硅溶胶比铝溶胶更易渗入到竹片内部;在真空条件下以硅溶胶对竹片进行阻燃浸注处理时,浸注时间越长、阻燃体系中阻燃组分含量越高,所得样品的载药率和氧指数越高;样品的不同阻燃处理方式对其载药率和氧指数有较大影响.%Utilize the self-making silica sol and aluminum sol, the effects of fire-retardant impregnating pressure, impregnating time, the content of fire-retardant component and the different treatment styles on the fire-retardant property of bamboo footboard used in building construction have been studied. The experimental results show that: compare with the aluminum sol, silica sol is more easily to be impregnated into the bamboo; fire-retardant treatment of bamboo footboard under vacuum, longer time of the fire-retardant treatment and higher content of fire-retardant component in fire-retarding system are favorable to improve the drug-loading rate and oxygen index of the samples; in addition, different fire-retardant treatment styles have great effect on the drug-loading rate and the oxygen index of the samples.

  20. Assessment of dermal hazard from acid burns with fire retardant garments in a full-size simulation of an engulfment flash fire.

    Science.gov (United States)

    Mackay, Christopher E; Vivanco, Stephanie N; Yeboah, George; Vercellone, Jeff

    2016-09-01

    There have been concerns that fire-derived acid gases could aggravate thermal burns for individuals wearing synthetic flame retardant garments. A comparative risk assessment was performed on three commercial flame retardant materials with regard to relative hazards associated with acidic combustion gases to skin during a full engulfment flash fire event. The tests were performed in accordance with ASTM F1930 and ISO 13506: Standard Test Method for Evaluation of Flame Resistant Clothing for Protection against Fire Simulations Using an Instrumented Manikin. Three fire retardant textiles were tested: an FR treated cotton/nylon blend, a low Protex(®) modacrylic blend, and a medium Protex(®) modacrylic blend. The materials, in the form of whole body coveralls, were subjected to propane-fired flash conditions of 84kW/m(2) in a full sized simulator for a duration of either 3 or 4s. Ion traps consisting of wetted sodium carbonate-impregnated cellulose in Teflon holders were placed on the chest and back both above and under the standard undergarments. The ion traps remained in position from the time of ignition until 5min post ignition. Results indicated that acid deposition did increase with modacrylic content from 0.9μmol/cm(2) for the cotton/nylon, to 12μmol/cm(2) for the medium modacrylic blend. The source of the acidity was dominated by hydrogen chloride. Discoloration was inversely proportional to the amount of acid collected on the traps. A risk assessment was performed on the potential adverse impact of acid gases on both the skin and open wounds. The results indicated that the deposition and dissolution of the acid gases in surficial fluid media (perspiration and blood plasma) resulted in an increase in acidity, but not sufficient to induce irritation/skin corrosion or to cause necrosis in open third degree burns.

  1. Burn Severity Dominates Understory Plant Community Response to Fire in Xeric Jack Pine Forests

    OpenAIRE

    Pinno, Bradley D.; Ruth C. Errington

    2016-01-01

    Fire is the most common disturbance in northern boreal forests, and large fires are often associated with highly variable burn severities across the burnt area. We studied the understory plant community response to a range of burn severities and pre-fire stand age four growing seasons after the 2011 Richardson Fire in xeric jack pine forests of northern Alberta, Canada. Burn severity had the greatest impact on post-fire plant communities, while pre-fire stand age did not have a significant im...

  2. Controls on variations in MODIS fire radiative power in Alaskan boreal forests: implications for fire severity conditions

    Science.gov (United States)

    Barrett, Kirsten; Kasischke, Eric S.

    2013-01-01

    Fire activity in the Alaskan boreal forest, though episodic at annual and intra-annual time scales, has experienced an increase over the last several decades. Increases in burned area and fire severity are not only releasing more carbon to the atmosphere, but likely shifting vegetation composition in the region towards greater deciduous dominance and a reduction in coniferous stands. While some recent studies have addressed qualitative differences between large and small fire years in the Alaskan boreal forest, the ecological effects of a greater proportion of burning occurring during large fire years and during late season fires have not yet been examined. Some characteristics of wildfires that can be detected remotely are related to fire severity and can provide new information on spatial and temporal patterns of burning. This analysis focused on boreal wildfire intensity (fire radiative power, or FRP) contained in the Moderate Resolution Imaging Spectroradiometer (MODIS) daily active fire product from 2003 to 2010. We found that differences in FRP resulted from seasonality and intra-annual variability in fire activity levels, vegetation composition, latitudinal variation, and fire spread behavior. Our studies determined two general categories of active fire detections: new detections associated with the spread of the fire front and residual pixels in areas that had already experienced front burning. Residual pixels had a lower average FRP than front pixels, but represented a high percentage of all pixels during periods of high fire activity (large fire years, late season burning, and seasonal periods of high fire activity). As a result, the FRP from periods of high fire activity was less intense than those from periods of low fire activity. Differences related to latitude were greater than expected, with higher latitudes burning later in the season and at a higher intensity than lower latitudes. Differences in vegetation type indicate that coniferous vegetation

  3. The frequency of forest fires in Scots pine stands of Tuva, Russia

    Science.gov (United States)

    Ivanova, G. A.; Ivanov, V. A.; Kukavskaya, E. A.; Soja, A. J.

    2010-01-01

    Forest fires resulting from long periods of drought cause extensive forest ecosystem destruction and can impact on the carbon balance and air quality and feed back to the climate system, regionally and globally. Past fire frequency is reconstructed for Tuvan Scots pine stands using dendrochronology and statistics. Central Tuvan Scots pine (Pinus sylvestris) stands are subject to annual fire regimes; however high intensity fires are rare but they are responsible for most of the damage. Low, medium, and high severity fires have shaped the multi-story Scots pine communities, locally and regionally. Fire type and frequency are directly related to weather and climate and are also dependent on anthropogenic influences. The primary dry period, which promotes fire ignition and spread, in Tuva occurs in April and May. In some years, the precipitation deficit combined with high air temperatures induces long periods of drought. Unlike the typical surface fire regime, forest fires that burn during these extreme droughts often become crown fires that result in substantial forest damage and carbon release. The mean fire interval (MFI) is found to be 10.4 years in Balgazyn stands, and the landscape-scale MFI is 22.4 years. High severity, stand-replacing crown fires have a longer MFI. The warmer and dryer weather that is predicted by global climate models is evident in Tuva, and we believe that these changes in weather and climate have resulted in increased fire intensity and severity, rather than fire frequency in the Tuvan region.

  4. The frequency of forest fires in Scots pine stands of Tuva, Russia

    Energy Technology Data Exchange (ETDEWEB)

    Ivanova, G A; Kukavskaya, E A [Russian Academy of Sciences, Siberian Branch, V N Sukachev Institute of Forest, Akademgorodok, Krasnoyarsk, 660036 (Russian Federation); Ivanov, V A [Siberian State Technological University, Krasnoyarsk, 660049 (Russian Federation); Soja, A J, E-mail: GAIvanova@ksc.krasn.r [National Institute of Aerospace, Resident at NASA Langley Research Center, MS 420, Hampton, VA 23681-2199 (United States)

    2010-01-15

    Forest fires resulting from long periods of drought cause extensive forest ecosystem destruction and can impact on the carbon balance and air quality and feed back to the climate system, regionally and globally. Past fire frequency is reconstructed for Tuvan Scots pine stands using dendrochronology and statistics. Central Tuvan Scots pine (Pinus sylvestris) stands are subject to annual fire regimes; however high intensity fires are rare but they are responsible for most of the damage. Low, medium, and high severity fires have shaped the multi-story Scots pine communities, locally and regionally. Fire type and frequency are directly related to weather and climate and are also dependent on anthropogenic influences. The primary dry period, which promotes fire ignition and spread, in Tuva occurs in April and May. In some years, the precipitation deficit combined with high air temperatures induces long periods of drought. Unlike the typical surface fire regime, forest fires that burn during these extreme droughts often become crown fires that result in substantial forest damage and carbon release. The mean fire interval (MFI) is found to be 10.4 years in Balgazyn stands, and the landscape-scale MFI is 22.4 years. High severity, stand-replacing crown fires have a longer MFI. The warmer and dryer weather that is predicted by global climate models is evident in Tuva, and we believe that these changes in weather and climate have resulted in increased fire intensity and severity, rather than fire frequency in the Tuvan region.

  5. Simulating Changes in Fires and Ecology of the 21st Century Eurasian Boreal Forests of Siberia

    Directory of Open Access Journals (Sweden)

    Ksenia Brazhnik

    2017-02-01

    Full Text Available Wildfires release the greatest amount of carbon into the atmosphere compared to other forest disturbances. To understand how current and potential future fire regimes may affect the role of the Eurasian boreal forest in the global carbon cycle, we employed a new, spatially-explicit fire module DISTURB-F (DISTURBance-Fire in tandem with a spatially-explicit, individually-based gap dynamics model SIBBORK (SIBerian BOReal forest simulator calibrated to Krasnoyarsk Region. DISTURB-F simulates the effect of forest fire on the boreal ecosystem, namely the mortality of all or only the susceptible trees (loss of biomass, i.e., carbon within the forested landscape. The fire module captures some important feedbacks between climate, fire and vegetation structure. We investigated the potential climate-driven changes in the fire regime and vegetation in middle and south taiga in central Siberia, a region with extensive boreal forest and rapidly changing climate. The output from this coupled simulation can be used to estimate carbon losses from the ecosystem as a result of fires of different sizes and intensities over the course of secondary succession (decades to centuries. Furthermore, it may be used to assess the post-fire carbon storage capacity of potential future forests, the structure and composition of which may differ significantly from current Eurasian boreal forests due to regeneration under a different climate.

  6. Effects of Burn Severity and Environmental Conditions on Post-Fire Regeneration in Siberian Larch Forest

    Directory of Open Access Journals (Sweden)

    Thuan Chu

    2017-03-01

    Full Text Available Post-fire forest regeneration is strongly influenced by abiotic and biotic heterogeneity in the pre- and post-fire environments, including fire regimes, species characteristics, landforms, hydrology, regional climate, and soil properties. Assessing these drivers is key to understanding the long-term effects of fire disturbances on forest succession. We evaluated multiple factors influencing patterns of variability in a post-fire boreal Larch (Larix sibirica forest in Siberia. A time-series of remote sensing images was analyzed to estimate post-fire recovery as a response variable across the burned area in 1996. Our results suggested that burn severity and water content were primary controllers of both Larch forest recruitment and green vegetation cover as defined by the forest recovery index (FRI and the fractional vegetation cover (FVC, respectively. We found a high rate of Larch forest recruitment in sites of moderate burn severity, while a more severe burn was the preferable condition for quick occupation by vegetation that included early seral communities of shrubs, grasses, conifers and broadleaf trees. Sites close to water and that received higher solar energy during the summer months showed a higher rate of both recovery types, defined by the FRI and FVC, dependent on burn severity. In addition to these factors, topographic variables and pre-fire condition were important predictors of post-fire forest patterns. These results have direct implications for the post-fire forest management in the Siberian boreal Larch region.

  7. Defining Old Growth for Fire-adapted Forests of the Western United States

    Directory of Open Access Journals (Sweden)

    Merrill R. Kaufmann

    2007-12-01

    Full Text Available There are varying definitions of old-growth forests because of differences in environment and differing fire influence across the Intermountain West. Two general types of forests reflect the role of fire: 1 forests shaped by natural changes in structure and species makeup - plant succession - that are driven by competitive differences among species and individual trees and by small-scale disturbances, and 2 forests where plant succession processes are disrupted by major biological disturbances (fire, insects, wind, or drought extending across larger areas. Some case examples of old-growth forests where fire was historically frequent are used. The examples sketch out the typical biophysical settings, fire regime, natural disturbance factors, spatial features of patches, and the processes and conditions that produce spatial changes of the landscape over time. These examples confirm the complexity of describing or defining old growth in frequent-fire forests. We define fire-adapted forests at three spatial scales, whereas the standard definition of old growth refers to a patch or stand condition. Our definition is based on ecological principles rather than on the cultural aspects of old growth. It focuses on central tendencies, given all the possible combinations of conditions and processes, that move forests toward old growth in the fire-adapted forests of the Intermountain West.

  8. Analysis of forest fires spatial clustering using local fractal measure

    Science.gov (United States)

    Kanevski, Mikhail; Rochat, Mikael; Timonin, Vadim

    2013-04-01

    The research deals with an application of local fractal measure - local sandbox counting or mass counting, for the characterization of patterns of spatial clustering. The main application concerns the simulated (random patterns within validity domain in forest regions) and real data (forest fires in Ticino, Switzerland) case studies. The global patterns of spatial clustering of forest fires were extensively studied using different topological (nearest-neighbours, Voronoi polygons), statistical (Ripley's k-function, Morisita diagram) and fractal/multifractal measures (box-counting, sandbox counting, lacunarity) (Kanevski, 2008). Generalizations of these measures to functional ones can reveal the structure of the phenomena, e.g. burned areas. All these measures are valuable and complementary tools to study spatial clustering. Moreover, application of the validity domain (complex domain where phenomena is studied) concept helps in understanding and interpretation of the results. In the present paper a sandbox counting method was applied locally, i.e. each point of ignition was considered as a centre of events counting with an increasing search radius. Then, the local relationships between the radius and the number of ignition points within the given radius were examined. Finally, the results are mapped using an interpolation algorithm for the visualization and analytical purposes. Both 2d (X,Y) and 3d (X,Y,Z) cases were studied and compared. Local "fractal" study gives an interesting spatially distributed picture of clustering. The real data case study was compared with a reference homogeneous pattern - complete spatial randomness. The difference between two patterns clearly indicates the regions with important spatial clustering. An extension to the local functional measure was applied taking into account the surface of burned area, i.e. by analysing only data with the fires above some threshold of burned area. Such analysis is similar to marked point processes and

  9. Fire-induced Carbon Emissions and Regrowth Uptake in Western U.S. Forests: Documenting Variation Across Forest Types, Fire Severity, and Climate Regions

    Science.gov (United States)

    Ghimire, Bardan; Williams, Christopher A.; Collatz, George James; Vanderhoof, Melanie

    2012-01-01

    The forest area in the western United States that burns annually is increasing with warmer temperatures, more frequent droughts, and higher fuel densities. Studies that examine fire effects for regional carbon balances have tended to either focus on individual fires as examples or adopt generalizations without considering how forest type, fire severity, and regional climate influence carbon legacies. This study provides a more detailed characterization of fire effects and quantifies the full carbon impacts in relation to direct emissions, slow release of fire-killed biomass, and net carbon uptake from forest regrowth. We find important variations in fire-induced mortality and combustion across carbon pools (leaf, live wood, dead wood, litter, and duff) and across low- to high-severity classes. This corresponds to fire-induced direct emissions from 1984 to 2008 averaging 4 TgC/yr and biomass killed averaging 10.5 TgC/yr, with average burn area of 2723 sq km/yr across the western United States. These direct emission and biomass killed rates were 1.4 and 3.7 times higher, respectively, for high-severity fires than those for low-severity fires. The results show that forest regrowth varies greatly by forest type and with severity and that these factors impose a sustained carbon uptake legacy. The western U.S. fires between 1984 and 2008 imposed a net source of 12.3 TgC/yr in 2008, accounting for both direct fire emissions (9.5 TgC/yr) and heterotrophic decomposition of fire-killed biomass (6.1 TgC yr1) as well as contemporary regrowth sinks (3.3 TgC/yr). A sizeable trend exists toward increasing emissions as a larger area burns annually.

  10. Forest fires caused by lightning activity in Portugal

    Science.gov (United States)

    Russo, Ana; Ramos, Alexandre M.; Benali, Akli; Trigo, Ricardo M.

    2017-04-01

    Wildfires in southern Europe have been causing in the last decades extensive economic and ecological losses and, even human casualties (e.g. Pereira et al., 2011). According to statistics provided by the EC-JRC European Forest Fires Information System (EFFIS) for Europe, the years of 2003 and 2007 represent the most dramatic fire seasons since the beginning of the millennium, followed by the years 2005 and 2012. These extreme years registered total annual burned areas for Europe of over 600.000 ha, reaching 800.000 ha in 2003. Over Iberia and France, the exceptional fire seasons registered in 2003 and 2005 were coincident respectively with one of the most severe heatwaves (Bastos et al., 2014) and droughts of the 20th century (Gouveia et al., 2009). On the other hand, the year 2007 was very peculiar as the area of the Peloponnese was struck by a severe winter drought followed by a subsequent wet spring, being also stricken by three heat heaves during summer and played a major role increasing the susceptibility of the region to wildfires (Gouveia et al., 2016). Some countries have a relatively large fraction of fires caused by natural factors such as lightning, e.g. northwestern USA, Canada, Russia. In contrast, Mediterranean countries such as Portugal has only a small percentage of fire records caused by lightning. Although significant uncertainties remain for the triggering mechanism for the majority of fires registered in the catalog, since they were cataloged without a likely cause. In this work we have used mainly two different databases: 1) the Portuguese Rural Fire Database (PRFD) which is representative of rural fires that have occurred in Continental Portugal, 2002-2009, with the original data provided by the National forestry Authority; 2) lightning discharges location which were extracted from the Portuguese Lightning Location System that has been in service since June of 2002 and is operated by the national weather service - Portuguese Institute for Sea

  11. Alaska’s changing fire regime - Implications for the vulnerability of its boreal forests

    Science.gov (United States)

    Kasischke, Eric S.; Verbyla, David L.; Rupp, T. Scott; McGuire, Anthony; Murphy, Karen A.; Jandt, R.; Barnes, Jennifer L.; Hoy, E.; Duffy, Paul A; Calef, Monika; Turetsky, Merritt R.

    2010-01-01

    A synthesis was carried out to examine Alaska’s boreal forest fire regime. During the 2000s, an average of 767 000 ha·year–1 burned, 50% higher than in any previous decade since the 1940s. Over the past 60 years, there was a decrease in the number of lightning-ignited fires, an increase in extreme lightning-ignited fire events, an increase in human-ignited fires, and a decrease in the number of extreme human-ignited fire events. The fraction of area burned from human-ignited fires fell from 26% for the 1950s and 1960s to 5% for the 1990s and 2000s, a result from the change in fire policy that gave the highest suppression priorities to fire events that occurred near human settlements. The amount of area burned during late-season fires increased over the past two decades. Deeper burning of surface organic layers in black spruce (Picea mariana (Mill.) BSP) forests occurred during late-growing-season fires and on more well-drained sites. These trends all point to black spruce forests becoming increasingly vulnerable to the combined changes of key characteristics of Alaska’s fire regime, except on poorly drained sites, which are resistant to deep burning. The implications of these fire regime changes to the vulnerability and resilience of Alaska’s boreal forests and land and fire management are discussed.

  12. Alaska's Changing Fire Regime - Implications for the Vulnerability of Its Boreal Forests

    Science.gov (United States)

    Kasischke, E. S.; Hoy, E. E.; Verbyla, D. L.; Rupp, T. S.; Duffy, P. A.; McGuire, A. D.; Murphy, K. A.; Jandt, R.; Barnes, J. L.; Calef, M.; hide

    2010-01-01

    A synthesis was carried out to examine Alaska s boreal forest fire regime. During the 2000s, an average of 767 000 ha/year burned, 50% higher than in any previous decade since the 1940s. Over the past 60 years, there was a decrease in the number of lightning-ignited fires, an increase in extreme lightning-ignited fire events, an increase in human-ignited fires, and a decrease in the number of extreme human-ignited fire events. The fraction of area burned from humanignited fires fell from 26% for the 1950s and 1960s to 5% for the 1990s and 2000s, a result from the change in fire policy that gave the highest suppression priorities to fire events that occurred near human settlements. The amount of area burned during late-season fires increased over the past two decades. Deeper burning of surface organic layers in black spruce (Picea mariana (Mill.) BSP) forests occurred during late-growing-season fires and on more well-drained sites. These trends all point to black spruce forests becoming increasingly vulnerable to the combined changes of key characteristics of Alaska s fire regime, except on poorly drained sites, which are resistant to deep burning. The implications of these fire regime changes to the vulnerability and resilience of Alaska s boreal forests and land and fire management are discussed.

  13. Do insect outbreaks reduce the severity of subsequent forest fires?

    Science.gov (United States)

    Meigs, Garrett W.; Zald, Harold S. J.; Campbell, John L.; Keeton, William S.; Kennedy, Robert E.

    2016-04-01

    Understanding the causes and consequences of rapid environmental change is an essential scientific frontier, particularly given the threat of climate- and land use-induced changes in disturbance regimes. In western North America, recent widespread insect outbreaks and wildfires have sparked acute concerns about potential insect-fire interactions. Although previous research shows that insect activity typically does not increase wildfire likelihood, key uncertainties remain regarding insect effects on wildfire severity (i.e., ecological impact). Recent assessments indicate that outbreak severity and burn severity are not strongly associated, but these studies have been limited to specific insect or fire events. Here, we present a regional census of large wildfire severity following outbreaks of two prevalent bark beetle and defoliator species, mountain pine beetle (Dendroctonus ponderosae) and western spruce budworm (Choristoneura freemani), across the US Pacific Northwest. We first quantify insect effects on burn severity with spatial modeling at the fire event scale and then evaluate how these effects vary across the full population of insect-fire events (n = 81 spanning 1987-2011). In contrast to common assumptions of positive feedbacks, we find that insects generally reduce the severity of subsequent wildfires. Specific effects vary with insect type and timing, but both insects decrease the abundance of live vegetation susceptible to wildfire at multiple time lags. By dampening subsequent burn severity, native insects could buffer rather than exacerbate fire regime changes expected due to land use and climate change. In light of these findings, we recommend a precautionary approach when designing and implementing forest management policies intended to reduce wildfire hazard and increase resilience to global change.

  14. Soil erosion after forest fires in the Valencia region

    Science.gov (United States)

    González-Pelayo, Óscar; Keizer, Jan Jacob; Cerdà, Artemi

    2014-05-01

    Soil erosion after forest fire is triggered by the lack of vegetation cover and the degradation of the physical, biological and chemical properties (Martí et al., 2012; Fernández et al., 2012; Guénon, 2013). Valencia region belongs to the west Mediterranean basin ("Csa", Köppen climate classification), with drought summer periods that enhance forest fire risk. The characteristics of the climate, lithology and land use history makes this region more vulnerable to soil erosion. In this area, fire recurrence is being increased since late 50s (Pausas, 2004) and post-fire erosion studies became more popular from 80's until nowadays (Cerdá and Mataix-Solera, 2009). Research in Valencia region has contributed significantly to a better understanding of the effect of spatial and temporal scale on runoff and sediment yield measurements. The main achievements concerns: a) direct measurement of erosion rates under a wide range of methodologies (natural vs simulated rainfall, open vs closed plots); from micro- to meso-plot and catchment scale in single (Rubio et al., 1994; Cerdà et al., 1995; Cerdà 1998a; 1998b; Llovet et al., 1998; Cerdà, 2001; Calvo-Cases et al., 2003; Andreu et al., 2001; Mayor et al., 2007; Cerdà and Doerr, 2008) and multiples fires (Campo et al., 2006; González-Pelayo et al., 2010a). Changes in soil properties (Sanroque et al., 1985; Rubio et al., 1997; Boix-Fayós, 1997; Gimeno-Garcia et al., 2000; Guerrero et al., 2001; Mataix-Solera et al., 2004; González-Pelayo et al., 2006; Arcenegui et al., 2008; Campo et al., 2008; Bodí et al., 2012), in post-fire vegetation patterns (Gimeno-García et al., 2007) and, studies on mitigation strategies (Bautista et al., 1996; Abad et al., 2000). b) Progress to understanding post-fire erosion mechanism and sediment movement (Boix-Fayós et al., 2005) by definition of thresholds for sediment losses; fire severity, slope angle, bedrock, rain characteristics, vegetation pattern and ecosystem resilience (Mayor

  15. Short- and long-term effects of fire on carbon in US dry temperate forest systems

    Science.gov (United States)

    Hurteau, Matthew D.; Brooks, Matthew L.

    2011-01-01

    Forests sequester carbon from the atmosphere, and in so doing can mitigate the effects of climate change. Fire is a natural disturbance process in many forest systems that releases carbon back to the atmosphere. In dry temperate forests, fires historically burned with greater frequency and lower severity than they do today. Frequent fires consumed fuels on the forest floor and maintained open stand structures. Fire suppression has resulted in increased understory fuel loads and tree density; a change in structure that has caused a shift from low- to high-severity fires. More severe fires, resulting in greater tree mortality, have caused a decrease in forest carbon stability. Fire management actions can mitigate the risk of high-severity fires, but these actions often require a trade-off between maximizing carbon stocks and carbon stability. We discuss the effects of fire on forest carbon stocks and recommend that managing forests on the basis of their specific ecologies should be the foremost goal, with carbon sequestration being an ancillary benefit. ?? 2011 by American Institute of Biological Sciences. All rights reserved.

  16. What ignited Forest Service interest in nonmarket valuation in fire economics?

    Science.gov (United States)

    John B. Loomis; Armando González-Cabán

    2009-01-01

    This paper traces the origin and evolution of the application of nonmarket valuation techniques to fire management within the USDA Forest Service. The motivation for contingent valuation (CVM) studies that quantify existence value is traced to the need for monetary benefits of protecting spotted owl old-growth forest habitat from fire in the early 1990s. Two large...

  17. Joint simulation of regional areas burned in Canadian forest fires: A Markov Chain Monte Carlo approach

    Science.gov (United States)

    Steen Magnussen

    2009-01-01

    Areas burned annually in 29 Canadian forest fire regions show a patchy and irregular correlation structure that significantly influences the distribution of annual totals for Canada and for groups of regions. A binary Monte Carlo Markov Chain (MCMC) is constructed for the purpose of joint simulation of regional areas burned in forest fires. For each year the MCMC...

  18. Restoring oak forest, woodlands and savannahs using modern silvicultural analogs to historic cultural fire regimes

    Science.gov (United States)

    Daniel C. Dey; Richard P. Guyette; Callie J. Schweitzer; Michael C. Stambaugh; John M. Kabrick

    2015-01-01

    Variability in historic fire regimes in eastern North America resulted in an array of oak savannahs, woodlands and forests that were dominant vegetation types throughout the region. In the past century, once abundant savannahs and woodlands have become scarce due to conversion to agriculture, or development of forest structure in the absence of fire. In addition, the...

  19. Wildland fires and moist deciduous forests of Chhattisgarh, India:di-vergent component assessment

    Institute of Scientific and Technical Information of China (English)

    B. H. Kittur; S. L. Swamy; S. S. Bargali; Manoj Kumar Jhariya

    2014-01-01

    We studied moist deciduous forests of Chhattisgarh, India (1) to assess the effect of four levels of historic wildland fire frequency (high, medium, low, and no-fire) on regeneration of seedlings in fire affected areas during pre and post-fire seasons, (2) to evaluate vegetation struc-ture and diversity by layer in the four fire frequency zones, (3) to evalu-ate the impact of fire frequency on the structure of economically impor-tant tree species of the region, and (4) to quantify fuel loads by fire fre-quency level. We classified fire-affected areas into high, medium, low, and no-fire frequency classes based on government records. Tree species were unevenly distributed across fire frequency categories. Shrub density was maximum in zones of high fire frequency and minimum in low-frequency and no-fire zones. Lower tree density after fires indicated that regeneration of seedlings was reduced by fire. The population structure in the high-frequency zone was comprised of seedlings of size class (A) and saplings of size class (B), represented by Diospyros melanoxylon, Dalbergia sissoo, Shorea robusta and Tectona grandis. Younger and older trees were more abundant for Tectona grandis and Dalbargia sis-soo after fire, whereas intermediate-aged trees were more abundant pre-fire, indicating that the latter age-class was thinned by the catastrophic effect of fire. The major contributing components of fuel load included duff litter and small woody branches and twigs on the forest floor. Total fuel load on the forest floor ranged from 2.2 to 3.38 Mg/ha. The net change in fuel load was positive in high- and medium-frequency fire zones and negative under low- and no-fire zones. Repeated fires, how-ever, slowly reduced stand stability. An ecological approach is needed for fire management to restore the no-fire spatial and temporal structure of moist deciduous forests, their species composition and fuel loads. The management approach should incorporate participatory forest manage

  20. Spatial fluctuation of forest fires and their regional behaviors

    Institute of Scientific and Technical Information of China (English)

    Mingyu WANG; Long SUN; Lifu SHU; Xiaorui TIAN

    2008-01-01

    Historical forest fire records from Alaska State (1950-2000),California State (1895-2001), USA and Heilongjiang Province (1980-1999), China were used to calculate the longitude and latitude of the annual burned area's centroids for these regions. Fluctuation phenomena by year were analyzed using spectrum analysis. The results show that centroids of burned areas in these three regions are in a fluctuating condition that encircles the distribution center. The distribution centers are 151.11°W, 64.96°N in Alaska State, 120.02°W, 37.11°N in California State and 127.07°E, 49.59°N in Heilongjiang Province, respectively. The fluctuation of the burned area's centroids in Alaska State and California State in longitude has obvious periodicity,and the periodicities are 4.2 years,6.25 years in Alaska State and 6.24 years, 106 years in California State. The fluctuation of the burned area's centroids in Heilongjiang Province has a periodicity both in longitude and latitude, and the periodicities are both 3.3 years, 6.67 years. Fluctuation of the burned area's centroids in Alaska State and California State in latitude does not have periodicity, and big forest fires with low frequencies predominate.

  1. Latent resilience in ponderosa pine forest: effects of resumed frequent fire.

    Science.gov (United States)

    Larson, Andrew J; Belote, R Travis; Cansler, C Alina; Parks, Sean A; Dietz, Matthew S

    2013-09-01

    Ecological systems often exhibit resilient states that are maintained through negative feedbacks. In ponderosa pine forests, fire historically represented the negative feedback mechanism that maintained ecosystem resilience; fire exclusion reduced that resilience, predisposing the transition to an alternative ecosystem state upon reintroduction of fire. We evaluated the effects of reintroduced frequent wildfire in unlogged, fire-excluded, ponderosa pine forest in the Bob Marshall Wilderness, Montana, USA. Initial reintroduction of fire in 2003 reduced tree density and consumed surface fuels, but also stimulated establishment of a dense cohort of lodgepole pine, maintaining a trajectory toward an alternative state. Resumption of a frequent fire regime by a second fire in 2011 restored a low-density forest dominated by large-diameter ponderosa pine by eliminating many regenerating lodgepole pines and by continuing to remove surface fuels and small-diameter lodgepole pine and Douglas-fir that established during the fire suppression era. Our data demonstrate that some unlogged, fire-excluded, ponderosa pine forests possess latent resilience to reintroduced fire. A passive model of simply allowing lightning-ignited fires to burn appears to be a viable approach to restoration of such forests.

  2. Mechanism and Development of Decorating Fire-retardant Coatings%饰面型防火涂料阻燃防火机理及研究进展

    Institute of Scientific and Technical Information of China (English)

    尹碧军

    2012-01-01

    The paper discussed the flame retardant mechanisms of decorating fire-retardant coatings and narrated the current status of decorating fire-retardant coatings in China.Combined with the safety and environmental protection of toxicity and volatile organic compounds in the practical application,it forecasted the development trend of decorating fire-retardant coatings in our country.%探讨了饰面型防火涂料的阻燃及防火机理,阐述了我国饰面型防火涂料的研究进展。结合饰面型防火涂料在实际使用过程中烟气毒性、挥发性有机化合物的安全环保问题,对我国饰面型防火涂料的发展趋势进行了展望。

  3. Biological properties of soils of former forest fires in Samosir Regency of North Sumatera

    Directory of Open Access Journals (Sweden)

    D. Elfiati

    2016-04-01

    Full Text Available A study that was aimed to identify the impact of forest fires on the biological properties of soils was carried out at former forest fire areas in Samosir Regency of North Sumatera. Soil samples were collected from former forest fire areas of 2014, 2013, 2012, 2011, 2010. The composite soil samples were collected systematically using diagonal method as much as 5 points in each period of fire. The soil samples were taken at three plots measuring 20 x 20 m 0-20 cm depth. Soil biological properties observed were soil organic C content, total number of microbes, abundance of arbuscular mycorrhizal fungi, phosphate solubilizing microbes, and soil microbial activity. The results showed that organic C content ranged from 0.75 to 2.47% which included criteria for very low to moderate. Arbuscular mycorrhizal fungi spores were found belonging to the genus of Glomus and Acaulospora. Spore number increased with the fire period ranging from 45 spores (forest fire in 2014 to 152 spores (forest fire in 2010. The total number of microbes obtained ranged from 53.78 x 107 cfu/mL (forest fire in 2010 to 89.70 x107 cfu/mL (forest fire in 2013. It was found 29 isolates of phosphate solubilizing microbes that consisted of 14 bacterial isolates and 15 fungi isolates with densities ranging from 27.642 x105 cfu/mL (forest fires in 2014 to 97.776 x 105 cfu/ mL (forest fires in 2011. The isolates of phosphate solubilizing bacteria identified consisted of Pseudomonas, Flavobacterium, Staphylococcus, and Mycobacterium genus, whereas the isolates of phosphate solubilizing fungi obtained consisted of Aspergillus and Penicillium genus. Soil respiration ranged from 2.14 kg / day (forest fire in 2010 up to 3.71 kg / day (forest fire in 2013. The varied results were greatly influenced by the type or form of the fires and intensity of fires. In the study area the type or form of the fires were canopy fires with low intensity.

  4. Using cellular automata to simulate forest fire propagation in Portugal

    Science.gov (United States)

    Freire, Joana; daCamara, Carlos

    2017-04-01

    evolution of the fire spread. We present and discuss the application of the CA model to the "Tavira wildfire" in which approximately 24,800ha were burned. The event took place in summer 2012, between July 18 and 21, and spread in the Tavira and São Brás de Alportel municipalities of Algarve, a province in the southern coast of Portugal. [1] DaCamara et. al. (2014), International Journal of Wildland Fire 23. [2] Amraoui et. al. (2013), Forest Ecology and Management 294. [3] Alexandridis et. al. (2008), Applied Mathematics and Computation 204.

  5. Effect of Addition of Boric Acid and Borax on Fire-Retardant and Mechanical Properties of Urea Formaldehyde Saw Dust Composites

    Directory of Open Access Journals (Sweden)

    Zenat A. Nagieb

    2011-01-01

    Full Text Available Properties of the flame retardant urea formaldehyde (UF board made from saw dust fibers were investigated. Flame retardant chemicals that were evaluated include boric acid (BA and borax (BX which were incorporated with saw dust fibers to manufacture experimental panels. Three concentration levels, (0.5, 1, and 5% of fire retardants and 10% urea formaldehyde resin based on oven dry fiber weight were used to manufacture experimental panels. Physical and mechanical properties including water absorption, modulus of rupture (MOR, and modulus of elasticity (MOE were determined. The results showed that water absorption and bending strength decreased as the flame retardant increased. The highest concentration of (BA + BX enhanced the fire retardant more than the lower ones. Scanning electron microscope and FTIR of composite panels were studied.

  6. Variability in Albedo Associated with Fire-Mediated Controls on Stand Density in Siberian Larch Forests

    Science.gov (United States)

    Loranty, M. M.; Fullmer, J.; Nguyen, C. L.; Alexander, H. D.; Natali, S.; Bunn, A. G.; Davydov, S. P.; Goetz, S. J.; Mack, M. C.

    2015-12-01

    Fire is an integral component of boreal forests, and exerts strong control over ecosystem structure and function. The frequency and spatial extent of fire controls the age-class distribution of forests on the landscape. In addition, recent evidence from North American boreal forests has show that fire severity influences post-fire succession via impacts on seedling recruitment that manifest in mature ecosystems dominated by either deciduous or coniferous tree species. The effects of fire on ecosystem structure have important climate feedback implications; changes in forest density or leaf habit can influence surface net radiation by altering the snow-masking effects of vegetation. Although Siberian larch forests occupy a more than 2.8 million km2 of the boreal biome, and are the most prevalent forests in Russia, the influence of fire severity on succession and associated surface energy dynamics are less well understood in comparison to North American boreal forests. There is evidence suggesting that increased fire severity may lead to higher density of post-fire regrowth, but the influence of stand density on surface energy dynamics remains poorly quantified. Here, we quantify the effects of stand density on albedo across the Kolyma River basin using satellite-derived albedo and fire history in conjunction with maps and field observations of ecosystem structure. During snow-free periods albedo varies little with stand density. During periods of snow cover we find consistent negative correlations between multiple metrics of canopy cover and albedo. Albedo decreased with fire recovery over the forty-year fire record for the study area. However, the range of albedo observed within individual fire scars was similar to the magnitude of albedo recovery during the study period. This result indicates the importance of variability in post-fire regrowth within individual fire scars, potentially associated with fire severity, for understanding fire effects on surface energy

  7. Forest Fire Detection Using Artificial Neural Network Algorithm Implemented in Wireless Sensor Networks

    Institute of Scientific and Technical Information of China (English)

    Yongsheng Liu; Yansong Yang; Chang Liu; Yu Gu

    2015-01-01

    A forest fire is a severe threat to forest resources and human life. In this paper, we propose a forest⁃fire detection system that has an artificial neural network algorithm implemented in a wireless sensor network (WSN). The proposed detection system mitigates the threat of forest fires by provide accurate fire alarm with low maintenance cost. The accuracy is increased by the novel multi⁃criteria detection, referred to as an alarm decision depends on multiple attributes of a forest fire. The multi⁃criteria detection is im⁃plemented by the artificial neural network algorithm. Meanwhile, we have developed a prototype of the proposed system consisting of the solar batter module, the fire detection module and the user interface module.

  8. Analyzing the Impacts of Information in the Prevention of Forest Fires in Greece

    Directory of Open Access Journals (Sweden)

    Paraskevi Karanikola

    2013-06-01

    Full Text Available The forest fires which occurred in the prefecture of Ilia, Greece, in August 2007 resulted in significant losses in forest lands, property and human lives. The citizens behaved as simple spectators of the disaster. Although they could have reacted, they did nothing. The citizens, however, declare that they know what actions they need to take in case of fire. Their information regarding forest fires mainly comes from television and radio, family and friends, newspapers and magazines and education. Indeed, it seems that through interpersonal channels of communication better results are achieved. In confronting forest fires, knowledge alone is not sufficient. In order to effectively confront forest fires, the local population also needs to be trained and organized in a voluntary system of confrontation.

  9. Influence of forest fires on climate change studies in the central boreal forest of Canada

    Science.gov (United States)

    Valeo, C.; Beaty, K.; Hesslein, R.

    2003-09-01

    This brief paper indicates that forest fires may have short and longer term effects on runoff and thus, can influence trend studies on the response of watersheds to climate change. Twenty-two watersheds at the Experimental Lakes Area in northwestern Ontario were studied to view the impacts of climatic variability and forest fires on runoff. A roughly 30 year database demonstrated few trends in climatological variables and even fewer trends in runoff data at the 5% significance level. Daily maximum temperature increased by 0.053 °C per year, while precipitation in the months of February and March showed significant decreases. Total snow showed a significant decrease over a 30 year period at the 8% significance level. The Mann Kendall test for trend was applied to the runoff indices of 19 watersheds and it was revealed that only six exhibited trends. Of these, five had been burned during the test period. Virtually all burned watersheds showed initial increases in runoff, however, long term runoff trended lower in the burned watersheds, while the one watershed that was not burned showed an increasing trend. Forest fires alter the age distribution of trees with subsequent impacts on water yields in the short and longer term.

  10. Assessment of a Forest-fire Danger Index for Russia Using Remote Sensing Information

    Science.gov (United States)

    Sukhinin, Anatoly; McRae, Douglas; Ji-Zhong, Jin; Dubrovskaya, Olga; Ponomarev, Eugene

    2010-05-01

    Intensive exploitation of Siberian forest resources requires to increase the level of their protection. In Russia, forests annually disturbed by fire make up about 6% of the total forest area, whereas they account for hundredth or even thousandth of percent in the West European countries and Canada. Devastating forest fires associated with long draughts have become very common over recent decades in some parts of Siberia and the Russian Far East. Fires burning under these conditions disturb hundreds of thousands hectares of forest lands. Forest fires impact essentially on different biogeocenosis and on ecological situation in region as well. Thus their detrimental effects, including economic damage, are hard to overestimate. Remote sensing data using is more perspective method for forests monitoring in Russia. Moreover satellite data is only available information for non-protected Russian boreal forests and tundra also. To be efficient, modern forest fire managers require a reliable method for estimating fire danger. For large remote forested areas, such as found in Russia where a dense network of local weather station needed to calculate fire danger does not exist, this can be a major problem. However, remote sensing using satellite data can provide reasonable estimates of fire danger across Russia to allow for an understanding of the current fire situation. An algorithm has been developed that can assess current fire danger by inputting ambient weather conditions derived from remote sensing data obtained from NOAA, TERRA-series satellites. Necessary inputs for calculating fire danger, such as surface temperature, dew-point temperature, and precipitation, are obtained from AVHRR, MODIS and ATOVS satellite data. By generating the final products as maps a concise picture can be presented of fire danger across Russia. In order to understand future fire suppression needs, fire danger predictions for an advanced 7-day period can be made using meteorological forecasts

  11. Local fractality: the case of forest fires in Portugal

    CERN Document Server

    Kanevski, Mikhail

    2016-01-01

    The research deals with a study of local fractality in spatial distribution of forest fires in Portugal using the sandbox method. The general procedure is the following: (a) define a circle centred in each and all events with increasing radius R; (b) count the number of other events located within the circle of radius R, N(R); (c) plot the growth curve which is the functional dependence of N(R) versus R; and (d) estimate the local fractal dimension as the slope on log[N(R)] versus log[R]. The computation is carried out by using the location of every fire event as a centre but without the final averaging over all the fires for a given R, which is usually performed to get a global fractal dimension and to estimate global clustering. Sandbox method is widely used in many applications in physics and other subjects. The local procedure has the ability to provide the most complete information regarding the spatial distribution of clustering and avoiding non-homogeneity and non-stationarity problems. Most of the ana...

  12. Effect of basalt fibres reinforcement and aluminum trihydrate on the thermal properties of intumescent fire retardant coatings

    Science.gov (United States)

    Yasir, Muhammad; Amir, Norlaili Binti; Ahmad, Faiz; Syahirah Rodzhan, N.

    2017-08-01

    This research is carried out in order to study the synergistic effect of aluminium trihydrate and basalt fibres on the properties of fire resistant intumescent coatings. Intumescent fire retardant coatings were developed using different flame retardants such as ammonium polyphosphate, expandable graphite, melamine and boric acid. These flame retardants were bound together with the help of epoxy binder along with curing agent. Furthermore, individual and combinations of aluminium trihydrate and basalt fibres was incorporated in the formulations to analyse mechanical and chemical properties of the coatings. Char expansion was observed using furnace test, thermogravimetric analysis was used to determine residual weight, X-Ray Diffraction was performed to investigate compounds present in the char, shear test was conducted to determine char strength and scanning electron microscopy analysis was performed to observe morphology of the burnt char. From the microscopic investigation it was concluded that the dense structure of the char increased the char integrity by adding basalt and aluminium trihydrate as fillers. X-Ray Diffraction results shows the presence boron phosphate, and boric acid which enhanced the thermal performance of the coating up to 800°C. From the Thermogravimetric analysis it was concluded that the residual weight of the char was increased up to 34.9 % for IC-B2A4 which enhanced thermal performance of intumescent coating.

  13. Strategies for preventing invasive plant outbreaks after prescribed fire in ponderosa pine forest

    Science.gov (United States)

    Symstad, Amy J.; Newton, Wesley E.; Swanson, Daniel J.

    2014-01-01

    Land managers use prescribed fire to return a vital process to fire-adapted ecosystems, restore forest structure from a state altered by long-term fire suppression, and reduce wildfire intensity. However, fire often produces favorable conditions for invasive plant species, particularly if it is intense enough to reveal bare mineral soil and open previously closed canopies. Understanding the environmental or fire characteristics that explain post-fire invasive plant abundance would aid managers in efficiently finding and quickly responding to fire-caused infestations. To that end, we used an information-theoretic model-selection approach to assess the relative importance of abiotic environmental characteristics (topoedaphic position, distance from roads), pre-and post-fire biotic environmental characteristics (forest structure, understory vegetation, fuel load), and prescribed fire severity (measured in four different ways) in explaining invasive plant cover in ponderosa pine forest in South Dakota’s Black Hills. Environmental characteristics (distance from roads and post-fire forest structure) alone provided the most explanation of variation (26%) in post-fire cover of Verbascum thapsus (common mullein), but a combination of surface fire severity and environmental characteristics (pre-fire forest structure and distance from roads) explained 36–39% of the variation in post-fire cover of Cirsium arvense (Canada thistle) and all invasives together. For four species and all invasives together, their pre-fire cover explained more variation (26–82%) in post-fire cover than environmental and fire characteristics did, suggesting one strategy for reducing post-fire invasive outbreaks may be to find and control invasives before the fire. Finding them may be difficult, however, since pre-fire environmental characteristics explained only 20% of variation in pre-fire total invasive cover, and less for individual species. Thus, moderating fire intensity or targeting areas

  14. Forest fire and climate change in western North America: insights from sediment charcoal records.

    Science.gov (United States)

    Daniel G Gavin; Douglas J Hallett; Feng Sheng Hu; Kenneth P Lertzman; Susan J Prichard; Kendrick J Brown; Jason A Lynch; Patrick Bartlein; David L. Peterson

    2007-01-01

    Millennial-scale records of forest fire provide important baseline information for ecosystem management, especially in regions with too few recent fires to describe the historical range of variability. Charcoal records from lake sediments and soil profiles are well suited for reconstructing the incidence of past fire and its relationship to changing climate and...

  15. Mitigating old tree mortality in long-unburned, fire-dependent forests: a synthesis

    Science.gov (United States)

    Sharon M. Hood

    2010-01-01

    This report synthesizes the literature and current state of knowledge pertaining to reintroducing fire in stands where it has been excluded for long periods and the impact of these introductory fires on overstory tree injury and mortality. Only forested ecosystems in the United States that are adapted to survive frequent fire are included. Treatment options that...

  16. Multi-season climate synchronized historical fires in dry forests (1650-1900), Northern Rockies, USA

    Science.gov (United States)

    Emily K. Heyerdahl; Penelope Morgan; James P. Riser

    2008-01-01

    Our objective was to infer the climate drivers of regionally synchronous fire years in dry forests of the U.S. northern Rockies in Idaho and western Montana. During our analysis period (1650-­1900), we reconstructed fires from 9245 fire scars on 576 trees (mostly ponderosa pine, Pinus ponderosa P. & C. Lawson) at 21 sites and compared them to...

  17. Spatio-Temporal Analysis of Forest Fire Risk and Danger Using LANDSAT Imagery

    Directory of Open Access Journals (Sweden)

    Ömer Kücük

    2008-06-01

    Full Text Available Computing fire danger and fire risk on a spatio-temporal scale is of crucial importance in fire management planning, and in the simulation of fire growth and development across a landscape. However, due to the complex nature of forests, fire risk and danger potential maps are considered one of the most difficult thematic layers to build up. Remote sensing and digital terrain data have been introduced for efficient discrete classification of fire risk and fire danger potential. In this study, two time-series data of Landsat imagery were used for determining spatio-temporal change of fire risk and danger potential in Korudag forest planning unit in northwestern Turkey. The method comprised the following two steps: (1 creation of indices of the factors influencing fire risk and danger; (2 evaluation of spatio-temporal changes in fire risk and danger of given areas using remote sensing as a quick and inexpensive means and determining the pace of forest cover change. Fire risk and danger potential indices were based on species composition, stand crown closure, stand development stage, insolation, slope and, proximity of agricultural lands to forest and distance from settlement areas. Using the indices generated, fire risk and danger maps were produced for the years 1987 and 2000. Spatio-temporal analyses were then realized based on the maps produced. Results obtained from the study showed that the use of Landsat imagery provided a valuable characterization and mapping of vegetation structure and type with overall classification accuracy higher than 83%.

  18. Spatio-Temporal Analysis of Forest Fire Risk and Danger Using LANDSAT Imagery

    Science.gov (United States)

    Sağlam, Bülent; Bilgili, Ertuğrul; Durmaz, Bahar Dinç; Kadıoğulları, Ali İhsan; Küçük, Ömer

    2008-01-01

    Computing fire danger and fire risk on a spatio-temporal scale is of crucial importance in fire management planning, and in the simulation of fire growth and development across a landscape. However, due to the complex nature of forests, fire risk and danger potential maps are considered one of the most difficult thematic layers to build up. Remote sensing and digital terrain data have been introduced for efficient discrete classification of fire risk and fire danger potential. In this study, two time-series data of Landsat imagery were used for determining spatio-temporal change of fire risk and danger potential in Korudag forest planning unit in northwestern Turkey. The method comprised the following two steps: (1) creation of indices of the factors influencing fire risk and danger; (2) evaluation of spatio-temporal changes in fire risk and danger of given areas using remote sensing as a quick and inexpensive means and determining the pace of forest cover change. Fire risk and danger potential indices were based on species composition, stand crown closure, stand development stage, insolation, slope and, proximity of agricultural lands to forest and distance from settlement areas. Using the indices generated, fire risk and danger maps were produced for the years 1987 and 2000. Spatio-temporal analyses were then realized based on the maps produced. Results obtained from the study showed that the use of Landsat imagery provided a valuable characterization and mapping of vegetation structure and type with overall classification accuracy higher than 83%. PMID:27879918

  19. A soil burn severity index for understanding soil-fire relations in tropical forests

    Science.gov (United States)

    Jain, T.B.; Gould, W.A.; Graham, R.T.; Pilliod, D.S.; Lentile, L.B.; Gonzalez, G.

    2008-01-01

    Methods for evaluating the impact of fires within tropical forests are needed as fires become more frequent and human populations and demands on forests increase. Short- and long-term fire effects on soils are determined by the prefire, fire, and postfire environments. We placed these components within a fire-disturbance continuum to guide our literature synthesis and develop an integrated soil burn severity index. The soil burn severity index provides a set of indicators that reflect the range of conditions present after a fire. The index consists of seven levels, an unburned level and six other levels that describe a range of postfire soil conditions. We view this index as a tool for understanding the effects of fires on the forest floor, with the realization that as new information is gained, the index may be modified as warranted. ?? Royal Swedish Academy of Sciences 2008.

  20. 纳米无机阻燃剂及其阻燃机理研究进展%Research Advances in Inorganic Fire-Retardant and Their Flame Retardant Mechanism

    Institute of Scientific and Technical Information of China (English)

    刘振宇; 梅文杰; 熊玉竹

    2012-01-01

    介绍了纳米三氧化二锑(Sb2O3)、纳米氢氧化铝[Al(OH)3]、纳米氢氧化镁[Mg(OH)2]和聚合物/纳米复合材料的阻燃性能及其机理,总结了国内外纳米阻燃体系的发展,提出阻燃纳米复合材料方面的研究方向与建议.%Fire-retardant properties of the fire-retardant nanomaterials such as timo-nytrioxide, aluminum hydroxide, magnesium hydroxide and polymer nanocomposites are reviewed. Their fire-retardant mechanism is summarized,and the challenges and problems on the research of the polymer nanocomposites are put forward.

  1. Structure changes and succession dynamic of the natural secondary forest after severe fire interference

    Institute of Scientific and Technical Information of China (English)

    LIU Bin-fan; LIU Guang-ju; WANG Zhi-cheng

    2009-01-01

    The structure and dynamic succession law of natural secondary forest after severe fire interference in recent 20 years were studied by adopting the method of deducing time series from the spatial sequence of vegetation in Heihe region, Heilongjiang, China. Two typical and widely distributed forest types in the study area, namely forest type A and forest type B, were selected as study subjects. Forest type A is pure broadleaf forest or broadleaf mixed forest mainly composing of superior Betula platyphylla and Populus davidiana in the area with gradient 25°. Species richness, vegetation coverage, important value, and similarity index of community in different layers (Herb, shrub, small tree, and arbor layers) were investigated and analyzed for the two typical forests. The results show that after fire interference, the species richness and coverage in each layer in forest type A were higher than that in forest type B. Both for forest type A and B, with elapse of post-fire years, the species richness and coverage of herbs and shrubs showed a decline tendency, while those of arbor layer present a rising tendency. Through comparison of the important values of species in each layer and analysis of community structure changes, the dynamic process of post-fire vegetation succession for forest type A and B was separately determined. Post-fire 80 years' succession tendency of forest type A is B. platyphylla and Larix gmelinii mixed forest. Its shrub layer is mainly composed of Corylus heterophylla and Vaccinium uliginosum, and herb layer is dominated by Carex tristachya, Athyrium multidentatum, and Pyrola incarnate; whereas, the post-fire 80 years' succession of forest type B is Q. mongolica and B. davurica mixed forest. Its shrub layer is mainly composed of lespedeza bicolar and corylus heterophylla and herb layer is dominated by Carex tristachya, Asparagus densiflorus, and Hemerocallis minor.

  2. Preliminary assessment of night vision goggles in airborne forest fire suppression

    Science.gov (United States)

    Jennings, Sion; Craig, Greg; Erdos, Rob; Filiter, Don; Crowell, Bob; Macuda, Todd

    2007-04-01

    Helicopters are widely used in daytime forest fire suppression, conducting diverse tasks such as spotting, re-supply, medical evacuation and airborne delivery. However, they are not used at night for forest fire suppression operations. There would be many challenges when operating in the vicinity of forest fires at night, including scene obscuration from smoke and dynamic changes in lighting conditions. There is little data on the use of Night Vision Goggles (NVGs) for airborne forest fire suppression. The National Research Council of Canada (NRC), in collaboration with the Ontario Ministry of Natural Resources (OMNR), performed a preliminary flight test to examine the use of NVGs while operating near forest fires. The study also simulated limited aspects of night time water bucketing. The preliminary observations from this study suggest that NVGs have potential to improve the safety and efficiency of airborne forest fire suppression, including forest fire perimeter mapping and take-off and landing in the vicinity of open fires. NVG operations at some distance from the fire pose minimal risk to flight, and provide an enhanced capability to identify areas of combustion at greater distances and accuracy. Closer to the fire, NVG flight becomes more risk intensive as a consequence of a reduction in visibility attributable to the adverse effects on NVG performance of the excess radiation and smoke emitted by the fire. The preliminary results of this study suggest that water bucketing at night is a difficult operation with elevated risk. Further research is necessary to clarify the operational limitations and implementation of these devices in forest fire suppression.

  3. Assessing the Impact of Recurrent Fires on Forests in Southern Amazonia

    Science.gov (United States)

    Morton, D. C.; Defries, R. S.; Hurtt, G. C.; Dubayah, R.

    2008-12-01

    Human-caused fires in Amazon forests alter forest structure, species composition, and the likelihood of future disturbance. Repeated exposure to fire may eventually convert tropical forest into fire-adapted grasslands, a process described as savannization, with dramatic consequences for carbon storage, regional climate, and biodiversity. We tested the savannization hypothesis for a study area in the Brazilian state of Mato Grosso using annual satellite data to determine the frequency of fire damages and characterize vegetation recovery following repeated burning. We then incorporated results from the remote sensing analysis into the Ecosystem Demography (ED) model to quantify the long-term carbon consequences of recurrent forest fire damages in southern Amazonia. Our analysis of time series data from the Moderate Resolution Imaging Spectroradiometer (MODIS) revealed that burned forests are an extensive and long-term component of the frontier landscape, but recurrent fire damages did not lead to evidence of savannization in MODIS-based measures of vegetation greenness following fire. Comparable recovery of dry-season vegetation greenness in the years following first, second, and third fires suggests that tree sprouts and other woody vegetation quickly regained dominance following initial and repeated burning. ED model results demonstrated that establishment of pioneer tree species in fire-damaged forests leads to a short-term increase in the risk of future fires and a long-term decrease in aboveground biomass. Without widespread conversion of forests to grasslands, the long-term impacts from fire in southern Amazonia could still be large if frequent fires trap burned forests in early succession.

  4. The novel silicon-containing epoxy/PEPA phosphate flame retardant for transparent intumescent fire resistant coating

    Science.gov (United States)

    Shi, Yanchao; Wang, Guojian

    2016-11-01

    A series of novel silicon-containing epoxy/PEPA phosphate flame retardants (EPPSi) were synthesized by polyphosphoric acid (PPA), caged bicyclic phosphate 1-oxo-4-hydroxymethyl-2,6,7-trioxa-L-phosphabicyclo [2.2.2] octane (PEPA), and different ratios of silicon-containing epoxy 1,1,3,3-tetramethyl-1,3-bis(3-(oxiran-2-ylmethoxy)propyl)disiloxane (TMSEP) to 1,4-butanediol diglycidyl ether (BDE). The chemical structure of EPPSi was confirmed by Fourier transform infrared spectroscopy (FTIR) and 1H nuclear magnetic resonance spectroscopy (1H NMR). Afterwards, the transparent intumescent fire resistant coatings were prepared by mixing EPPSi and melamine formaldehyde resin. The influence of silicon on the fire protection of coatings was intensively investigated by fire protection test, intumescence ratio, scanning electron microscope (SEM), compressive strength test, X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA) and real-time FTIR. It was found that the fire resistant coatings obtained the best fire protection when the ratio of TMESP/BDE was 20/100, while excessive TMSEP made the fire protection of coatings deceased sharply. The intumescence ratio, compressive strength test and SEM result showed that a synergistic effect existed between phosphorus and silicon, which improved the foam structure and compressive strength of the char layer significantly. XPS result proved the out-migration effect of silicon. The high concentration silicon on surface played an important protecting role for the inner char residue and improved the fire protection of the coatings. TGA result demonstrated that silicon enhanced the thermo-oxidation resistance of coatings efficiently. Furthermore, real-time FTIR revealed the intumescent process of the fire resistant coatings according to the chemical structure changes of char residue.

  5. Fire Regime along Latitudinal Gradients of Continuous to Discontinuous Coniferous Boreal Forests in Eastern Canada

    Directory of Open Access Journals (Sweden)

    Jeanne Portier

    2016-09-01

    Full Text Available Fire is the main disturbance in North American coniferous boreal forests. In Northern Quebec, Canada, where forest management is not allowed, the landscape is gradually constituted of more opened lichen woodlands. Those forests are discontinuous and show a low regeneration potential resulting from the cumulative effects of harsh climatic conditions and very short fire intervals. In a climate change context, and because the forest industry is interested in opening new territories to forest management in the north, it is crucial to better understand how and why fire risk varies from the north to the south at the transition between the discontinuous and continuous boreal forest. We used time-since-fire (TSF data from fire archives as well as a broad field campaign in Quebec’s coniferous boreal forests along four north-south transects in order to reconstruct the fire history of the past 150 to 300 years. We performed survival analyses in each transect in order to (1 determine if climate influences the fire risk along the latitudinal gradient; (2 fractionate the transects into different fire risk zones; and (3 quantify the fire cycle—defined as the time required to burn an area equivalent to the size of the study area—of each zone and compare its estimated value with current fire activity. Results suggest that drought conditions are moderately to highly responsible for the increasing fire risk from south to north in the three westernmost transects. No climate influence was observed in the last one, possibly because of its complex physical environment. Fire cycles are shortening from south to north, and from east to west. Limits between high and low fire risk zones are consistent with the limit between discontinuous and continuous forests, established based on recent fire activity. Compared to the last 40 years, fire cycles of the last 150–300 years are shorter. Our results suggest that as drought episodes are expected to become more frequent

  6. The experience of community residents in a fire-prone ecosystem: A case study on the San Bernardino National Forest

    Science.gov (United States)

    George T. Cvetkovich; Patricia L. Winter

    2008-01-01

    This report presents results from a study of San Bernardino National Forest community residents’ experiences with and perceptions of fire, fire management, and the Forest Service. Using self-administered surveys and focus group discussions, we found that participants had personal experiences with fire, were concerned about fire, and felt knowledgeable about effective...

  7. Fire and other disturbances of the forests in Mount Rainier National Park

    Science.gov (United States)

    Hemstrom, Miles A.; Franklin, Jerry F.

    1982-07-01

    The recent history of catastrophic disturbances in forests was reconstructed at Mount Rainier National Park. Basic data were ages of trees based on ring counts of early seral conifer species and maps of age-class boundaries from field work and aerial photographs. Maps illustrate age classes of the forests and show disturbances from fires, snow avalanches, and lahars (volcanic mudflows). Fires are by far the most important major disturbers, followed by snow avalanches and lahars. Fires over 250 ha in size are called fire events. Burns over 1000 ha, which may have been one fire or a series of fires within a short time, are called fire episodes. Important fire events or episodes occurred in the years 1230, 1303, 1403, 1503, 1628, 1688, 1703, 1803, 1825, 1856, 1858, 1872, 1886, 1894, 1930, and 1934 A.D. The largest fire episode was in 1230; it affected approximately 47% of the forests in the park. The majority of the forests are over 350 yr old, and several stands are over 1000 yr old. Stands 350 yr and 100 to 200 yr in age are the most extensive age classes in the park. Three fire frequency indices are compared. None describe fire frequency at Mount Rainier well. Natural fire rotation was estimated at about 434 yr. All but two episodes of major fires since 1300 A.D. correspond well with major droughts reconstructed for locations east of the Cascade Range crest. Impacts of humans on the disturbance regime may have increased the frequency of fire in the 1850-1900 period, followed by a decrease in frequency after 1900. Fuel build-up as a result of fire suppression should have no significant impact on fire frequency, since fires are relatively infrequent and fuels accumulate naturally.

  8. A review of the relationships between drought and forest fire in the United States

    Science.gov (United States)

    Littell, Jeremy; Peterson, David L.; Riley, Karin L.; Yongquiang Liu,; Luce, Charles H.

    2016-01-01

    The historical and pre-settlement relationships between drought and wildfire are well documented in North America, with forest fire occurrence and area clearly increasing in response to drought. There is also evidence that drought interacts with other controls (forest productivity, topography, fire weather, management activities) to affect fire intensity, severity, extent, and frequency. Fire regime characteristics arise across many individual fires at a variety of spatial and temporal scales, so both weather and climate—including short- and long-term droughts—are important and influence several, but not all, aspects of fire regimes. We review relationships between drought and fire regimes in United States forests, fire-related drought metrics and expected changes in fire risk, and implications for fire management under climate change. Collectively, this points to a conceptual model of fire on real landscapes: fire regimes, and how they change through time, are products of fuels and how other factors affect their availability (abundance, arrangement, continuity) and flammability (moisture, chemical composition). Climate, management, and land use all affect availability, flammability, and probability of ignition differently in different parts of North America. From a fire ecology perspective, the concept of drought varies with scale, application, scientific or management objective, and ecosystem.

  9. STUDY ON FOREST FIRE DANGER MODEL WITHREMOTE SENSING BASED ON GIS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Forest fire is one of the main natural hazards because of its fierce destructiveness. Various researches on fire real-time monitoring, behavior simulation and loss assessment have been carried out in many countries. As fire prevention is probably the most efficient means for protecting forests, suitable methods should be developed for estimating the fire danger. Fire danger is composed of ecological, human and climatic factors. Therefore, the systematic analysis of the factors including forest characteristics, meteorological status, topographic condition causing forest fire is made in this paper at first. The relationships between biophysical factors and fire danger are paid more attention to. Then the parameters derived from remote sensing data are used to estimate the fire danger variables, According to the analysis, not only PVI (Perpendicular Vegetation Index) can classify different vegetation but also crown density is captured with PVI. Vegetation moisture content has high correlation with the ratio of actual evapotranspiration (LE) to potential ecapotranspiration (LEp). SI (Structural Index), which is the combination of TM band 4 and 5 data, is a good indicator of forest age. Finally, a fire dsnger prediction model, in which relative importance of each fire factor is taken into account, is built based on GIS.

  10. The tropical forest and fire emissions experiment: laboratory fire measurements and synthesis of campaign data

    Directory of Open Access Journals (Sweden)

    R. J. Yokelson

    2008-03-01

    Full Text Available As part of the Tropical Forest and Fire Emissions Experiment (TROFFEE, tropical forest fuels were burned in a large, biomass-fire simulation facility and the smoke was characterized with open-path Fourier transform infrared spectroscopy (FTIR, proton-transfer reaction mass spectrometry (PTR-MS, gas chromatography (GC, GC/PTR-MS, and filter sampling of the particles. In most cases, about one-third of the fuel chlorine ended up in the particles and about one-half remained in the ash. About 50% of the mass of non-methane organic compounds (NMOC emitted by these fires could be identified with the available instrumentation. The lab fire emission factors (EF, g compound emitted per kg fuel burned were coupled with EF obtained during the TROFFEE airborne and ground-based field campaigns. This revealed several types of EF dependence on parameters such as the ratio of flaming to smoldering combustion and fuel characteristics. The synthesis of data from the different TROFFEE platforms was also used to derive EF for all the measured species for both primary deforestation fires and pasture maintenance fires – the two main types of biomass burning in the Amazon. Many of the EF are larger than those in widely-used earlier work. This is mostly due to the inclusion of newly-available, large EF for the initially-unlofted smoldering emissions and the assumption that these emissions make a significant contribution (~40% to the total emissions from pasture fires. The TROFFEE EF for particles with aerodynamic diameter <2.5 microns (EFPM2.5 is 14.8 g/kg for primary deforestation fires and 18.7 g/kg for pasture maintenance fires. These EFPM2.5 are significantly larger than a previous recommendation (9.1 g/kg and lead to an estimated pyrogenic primary PM2.5 source for the Amazon that is 84% larger. Regional through global budgets for biogenic and pyrogenic emissions were roughly estimated. Coupled with previous measurements of

  11. The tropical forest and fire emissions experiment: laboratory fire measurements and synthesis of campaign data

    Directory of Open Access Journals (Sweden)

    R. J. Yokelson

    2008-07-01

    Full Text Available As part of the Tropical Forest and Fire Emissions Experiment (TROFFEE, tropical forest fuels were burned in a large, biomass-fire simulation facility and the smoke was characterized with open-path Fourier transform infrared spectroscopy (FTIR, proton-transfer reaction mass spectrometry (PTR-MS, gas chromatography (GC, GC/PTR-MS, and filter sampling of the particles. In most cases, about one-third of the fuel chlorine ended up in the particles and about one-half remained in the ash. About 50% of the mass of non-methane organic compounds (NMOC emitted by these fires could be identified with the available instrumentation. The lab fire emission factors (EF, g compound emitted per kg dry fuel burned were coupled with EF obtained during the TROFFEE airborne and ground-based field campaigns. This revealed several types of EF dependence on parameters such as the ratio of flaming to smoldering combustion and fuel characteristics. The synthesis of data from the different TROFFEE platforms was also used to derive EF for all the measured species for both primary deforestation fires and pasture maintenance fires – the two main types of biomass burning in the Amazon. Many of the EF are larger than those in widely-used earlier work. This is mostly due to the inclusion of newly-available, large EF for the initially-unlofted smoldering emissions from residual logs in pastures and the assumption that these emissions make a significant contribution (~40% to the total emissions from pasture fires. The TROFFEE EF for particles with aerodynamic diameter <2.5 microns (EFPM2.5 is 14.8 g/kg for primary deforestation fires and 18.7 g/kg for pasture maintenance fires. These EFPM2.5 are significantly larger than a previous recommendation (9.1 g/kg and lead to an estimated pyrogenic primary PM2.5 source for the Amazon that is 84% larger. New regional budgets for biogenic and pyrogenic emissions were roughly estimated. Coupled with an

  12. Larch Forests of Middle Siberia: Long-Term Trends in Fire Return Intervals

    Science.gov (United States)

    Kharuk, Viacheslav I.; Dvinskaya, Mariya L.; Petrov, Ilya A.; Im, Sergei T.; Ranson, Kenneth J.

    2016-01-01

    Fire history within the northern larch forests of Central Siberia was studied (65+degN). Fires within this area are predominantly caused by lightning strikes rather than human activity. Mean fire return intervals (FRIs) were found to be 112 +/- 49 years (based on firescars) and 106 +/- 36 years (based on firescars and tree natality dates). FRIs were increased with latitude increase and observed to be about 80 years at 64N, about 200 years near the Arctic Circle and about 300 years nearby the northern range limit of larch stands (approx.71+degN). Northward FRIs increase correlated with incoming solar radiation (r = -0.95). Post- Little Ice Age (LIA) warming (after 1850) caused approximately a doubling of fire events (in comparison with a similar period during LIA). The data obtained support a hypothesis of climate-induced fire frequency increase. Keywords Fire ecology Fire history Fire frequency Siberian wildfires Larch forests Climate change

  13. The Tropical Forest and Fire Emissions Experiment: overview and airborne fire emission factor measurements

    Directory of Open Access Journals (Sweden)

    R. J. Yokelson

    2007-10-01

    Full Text Available The Tropical Forest and Fire Emissions Experiment (TROFFEE used laboratory measurements followed by airborne and ground based field campaigns during the 2004 Amazon dry season to quantify the emissions from pristine tropical forest and several plantations as well as the emissions, fuel consumption, and fire ecology of tropical deforestation fires. The airborne campaign used an Embraer 110B aircraft outfitted with whole air sampling in canisters, mass-calibrated nephelometry, ozone by UV absorbance, Fourier transform infrared spectroscopy (FTIR, and proton-transfer mass spectrometry (PTR-MS to measure PM10, O3, CO2, CO, NO, NO2, HONO, HCN, NH3, OCS, DMS, CH4, and up to 48 non-methane organic compounds (NMOC. The Brazilian smoke/haze layers extended to 2–3 km altitude, which is much lower than the 5–6 km observed at the same latitude, time of year, and local time in Africa in 2000. Emission factors (EF were computed for the 19 tropical deforestation fires sampled and they largely compare well to previous work. However, the TROFFEE EF are mostly based on a much larger number of samples than previously available and they also include results for significant emissions not previously reported such as: nitrous acid, acrylonitrile, pyrrole, methylvinylketone, methacrolein, crotonaldehyde, methylethylketone, methylpropanal, "acetol plus methylacetate," furaldehydes, dimethylsulfide, and C1-C4 alkyl nitrates. Thus, we recommend these EF for all tropical deforestation fires. The NMOC emissions were ~80% reactive, oxygenated volatile organic compounds (OVOC. Our EF for PM10 (17.8±4 g/kg is ~25% higher than previously reported for tropical forest fires and may reflect a trend towards, and sampling of, larger fires than in earlier studies. A large fraction of the total burning for 2004 likely occurred during a two-week period of very low humidity. The

  14. The Tropical Forest and fire emissions experiment: overview and airborne fire emission factor measurements

    Directory of Open Access Journals (Sweden)

    R. J. Yokelson

    2007-05-01

    Full Text Available The Tropical Forest and Fire Emissions Experiment (TROFFEE used laboratory measurements followed by airborne and ground based field campaigns during the 2004 Amazon dry season to quantify the emissions from pristine tropical forest and several plantations as well as the emissions, fuel consumption, and fire ecology of tropical deforestation fires. The airborne campaign used an Embraer 110B aircraft outfitted with whole air sampling in canisters, mass-calibrated nephelometry, ozone by uv absorbance, Fourier transform infrared spectroscopy (FTIR, and proton-transfer mass spectrometry (PTR-MS to measure PM10, O3, CO2, CO, NO, NO2, HONO, HCN, NH3, OCS, DMS, CH4, and up to 48 non-methane organic compounds (NMOC. The Brazilian smoke/haze layers extended to 2–3 km altitude, which is much lower than the 5–6 km observed at the same latitude, time of year, and local time in Africa in 2000. Emission factors (EF were computed for the 19 tropical deforestation fires sampled and they largely compare well to previous work. However, the TROFFEE EF are mostly based on a much larger number of samples than previously available and they also include results for significant emissions not previously reported such as: nitrous acid, acrylonitrile, pyrrole, methylvinylketone, methacrolein, crotonaldehyde, methylethylketone, methylpropanal, "acetol plus methylacetate," furaldehydes, dimethylsulfide, and C1-C4 alkyl nitrates. Thus, we recommend these EF for all tropical deforestation fires. The NMOC emissions were ~80% reactive, oxygenated volatile organic compounds (OVOC. Our EF for PM10 (17.8±4 g/kg is ~25% higher than previously reported for tropical forest fires and may reflect a trend towards, and sampling of, larger fires than in earlier studies. A large fraction of the total burning for 2004 likely occurred during a two-week period of very low humidity. The combined output of these

  15. Prospective impact of forest fire on Mass Movement events

    Science.gov (United States)

    Ziade, Rouba; Abdallah, Chadi; Baghdadi, Nicolas

    2013-04-01

    Mass Movement (MM) has always been one of the main natural hazards that threatened both the natural and human environments of Lebanon and their occurrence has increased by almost 60% between 1956 and 2008. On the other hand, Forest Fire (FF) has emerged to impose as another natural hazard that has destroyed more than 25 % of Lebanon's forests in less than 40 years. The increased FF occurrence is one of the potential detrimental impacts of anthropogenic climate change where high temperatures and current-year drought are strongly associated with an increase in the number of fires and area burned in a variety of forest types. A simple observation shows the coincident trends between MM and FF. This paper investigates the potential impact of FF on MM occurrence in Damour and Nahr Ibrahim watersheds in Lebanon. Preconditioning factors taken into consideration were topography, soil, geology, mean annual precipitation and land cover maps. MM and FF inventory maps were produced through Remote Sensing (RS) using aerial (1956 and 2008) and satellite images (2005 and 2011) in addition to Google Earth Timeline. Furthermore, FF was introduced as the inducing factor whose impact was assessed by the calculation of FF burn severity. This burn severity was extracted from Landsat images (1986-2011) through the Normalized Burn Ratio (NBR) index. A field study was carried out in order to substantiate the MM inventory. Furthermore, the burn index maps were validated through the Mini-Disk Infiltrometer (MDI), a device which supplies the soil infiltration rate usually after a fire. Following the standardization of the impact factors into layers using Geographic Information System (GIS), the relative importance of these layers for causing MM has been evaluated using modified InfoVal method and a MM Susceptibility Map (MMSM) was generated. Hence, every factor obtained a weight that shows its impact on MM occurrence. Preceded only by Land Cover change, NBR obtained the highest weight making

  16. Effects of Repeated Fires in the Forest Ecosystems of the Zabaikalye Region, Southern Siberia

    Science.gov (United States)

    Kukavskaya, E.; Buryak, L. V.; Conard, S. G.; Petkov, A.; Barrett, K.; Kalenskaya, O. P.; Ivanova, G.

    2014-12-01

    Fire is the main ecological disturbance controlling forest development in the boreal forests of Siberia and contributing substantially to the global carbon cycle. The warmer and dryer climate observed recently in the boreal forests is considered to be responsible for extreme fire weather, resulting in higher fire frequency, larger areas burned, and an increase of fire severity. Because of the increase of fire activity, boreal forests in some regions may not be able to reach maturity before they re-burn, which means less carbon will be stored in the ecosystem and more will remain in the atmosphere. Moreover, if one fire occurs within a few years of another, some stands will not re-grow at all, and even more carbon will accumulate in the atmosphere. Zabaikalye region located in the south of Siberia is characterized by the highest fire activity in Russia. With a use of the satellite-based fire product we found that there are about 7.0 million hectares in the region burned repeatedly during the last decade. We have investigated a number of sites in-situ in light-coniferous (Scots pine and larch) forests and evaluated the impacts of repeated fires on fuel loads, carbon emissions, and tree regeneration. Substantial decrease of carbon stocks, change of the vegetation structure and composition, and soil erosion were observed in many areas disturbed by repeated fires. At drier sites located in the southern regions repeated fires prohibited successful regeneration and resulted in forest conversion to grassland. Detection and monitoring of changes in the areas of Siberia where repeated fires have caused a major shift in ecosystem structure and function is required for the development of sustainable forest management strategies to mitigate climate change. The research was supported by NASA LCLUC Program.

  17. Lightning in Colorado forest fire smoke plumes during summer 2012

    Science.gov (United States)

    Lang, T. J.; Krehbiel, P. R.; Dolan, B.; Lindsey, D.; Rutledge, S. A.; Rison, W.

    2012-12-01

    May and June 2012 were unusually hot and dry in Colorado, which was suffering from a strong drought. A major consequence of this climatic regime was one of the most destructive forest fire seasons in state history, with hundreds of thousands of acres of forest and grassland consumed by flames, hundreds of homes burned, and several lives lost. Many of these fires occurred within range of the newly installed Colorado Lightning Mapping Array (COLMA), which provides high-resolution observations of discharges over a large portion of the state. The COLMA was installed in advance of the Deep Convective Clouds and Chemistry (DC3) project. High-altitude lightning was observed to occur sporadically in the smoke plumes over three major fires that occurred during early summer: Hewlett Gulch, High Park, and Waldo Canyon. Additionally, the Colorado State University CHILL (CSU-CHILL) and Pawnee radars observed the Hewlett Gulch plume electrify with detailed polarimetric and dual-Doppler measurements, and also provided these same measurements for the High Park plume when it was not producing lightning. Meanwhile, local Next Generation Radars (NEXRADs) provided observations of the electrified High Park and Waldo Canyon plumes. All of these plumes also were observed by geostationary meteorological satellites. These observations provide an unprecedented dataset with which to study smoke plume and pyrocumulus electrification. The polarimetric data - low reflectivity, high differential reflectivity, low correlation coefficient, and noisy differential phase - were consistent with the smoke plumes and associated pyrocumulus being filled primarily with irregularly shaped ash particles. Lightning was not observed in the plumes until they reached over 10 km above mean sea level, which was an uncommon occurrence requiring explosive fire growth combined with increased meteorological instability and reduced wind shear. Plume updraft intensification and echo-top growth led the occurrence of

  18. A review of the main driving factors of forest fire ignition over Europe.

    Science.gov (United States)

    Ganteaume, Anne; Camia, Andrea; Jappiot, Marielle; San-Miguel-Ayanz, Jesus; Long-Fournel, Marlène; Lampin, Corinne

    2013-03-01

    Knowledge of the causes of forest fires, and of the main driving factors of ignition, is an indispensable step towards effective fire prevention policies. This study analyses the factors driving forest fire ignition in the Mediterranean region including the most common human and environmental factors used for modelling in the European context. Fire ignition factors are compared to spatial and temporal variations of fire occurrence in the region, then are compared to results obtained in other areas of the world, with a special focus on North America (US and Canada) where a significant number of studies has been carried out on this topic. The causes of forest fires are varied and their distribution differs among countries, but may also differ spatially and temporally within the same country. In Europe, and especially in the Mediterranean basin, fires are mostly human-caused mainly due arson. The distance to transport networks and the distance to urban or recreation areas are among the most frequently used human factors in modelling exercises and the Wildland-Urban Interface is increasingly taken into account in the modelling of fire occurrence. Depending on the socio-economic context of the region concerned, factors such as the unemployment rate or variables linked to agricultural activity can explain the ignition of intentional and unintentional fires. Regarding environmental factors, those related to weather, fuel and topography are the most significant drivers of ignition of forest fires, especially in Mediterranean-type regions. For both human and lightning-caused fires, there is a geographical gradient of fire ignition, mainly due to variations in climate and fuel composition but also to population density for instance. The timing of fires depends on their causes. In populated areas, the timing of human-caused fires is closely linked to human activities and peaks in the afternoon whereas, in remote areas, the timing of lightning-caused fires is more linked to

  19. The effect of fire intensity on soil respiration in Siberia boreal forest

    Science.gov (United States)

    S. Baker; A. V. Bogorodskaya

    2010-01-01

    Russian boreal forests have an annual wildfire activity averaging 10 to 20 million ha, which has increased in recent years. This wildfire activity, in response to changing climate has the potential to significantly affect the carbon storage capacity of Siberian forests. A better understanding of the effect of fire on soil respiration rates in the boreal forest of...

  20. Mixed Conifer Forest Duff Consumption during Prescribed Fires: Tree Crown Impacts

    NARCIS (Netherlands)

    Hille, M.G.; Stephens, S.L.

    2005-01-01

    Fire suppression has produced large forest floor fuel loads in many coniferous forests in western North America. This study describes spatial patterns of duff consumption in a mixed-conifer forest in the north-central Sierra Nevada, California. Overstory crown coverage was correlated to spatial patt

  1. Modeling soil erosion and sediment transport from fires in forested watersheds of the South Carolina Piedmont

    Science.gov (United States)

    Tyler Crumbley; Ge Sun; Steve McNulty

    2008-01-01

    Forested watersheds in the Southeastern U.S. provide high quality water vital to ecosystem integrity and downstream aquatic resources. Excessive sedimentation from human activities in forest streams is of concern to responsible land managers. Prescribed fire is a common treatment applied to Southeastern piedmont forests and the risk of wildfire is becoming increasingly...

  2. The interacting effects of ungulates and fire on forest dynamics: an analysis using the model FORSPACE

    NARCIS (Netherlands)

    Kramer, K.; Groen, T.A.; Wieren, van S.E.

    2003-01-01

    The effects of interactions between the density of ungulates and forest fires on forest dynamics were studied on an area of 1188 ha called Planken Wambuis. The vegetation consists mainly of heathland and Scots pine forest but also includes oak, beech and birch, and parts of former arable land that i

  3. Different fire-climate relationships on forested and non-forested landscapes in the Sierra Nevada ecoregion

    Science.gov (United States)

    Keeley, Jon E.; Syphard, Alexandra D.

    2015-01-01

    In the California Sierra Nevada region, increased fire activity over the last 50 years has only occurred in the higher-elevation forests on US Forest Service (USFS) lands, and is not characteristic of the lower-elevation grasslands, woodlands and shrublands on state responsibility lands (Cal Fire). Increased fire activity on USFS lands was correlated with warmer and drier springs. Although this is consistent with recent global warming, we found an equally strong relationship between fire activity and climate in the first half of the 20th century. At lower elevations, warmer and drier conditions were not strongly tied to fire activity over the last 90 years, although prior-year precipitation was significant. It is hypothesised that the fire–climate relationship in forests is determined by climatic effects on spring and summer fuel moisture, with hotter and drier springs leading to a longer fire season and more extensive burning. In contrast, future fire activity in the foothills may be more dependent on rainfall patterns and their effect on the herbaceous fuel load. We predict spring and summer warming will have a significant impact on future fire regimes, primarily in higher-elevation forests. Lower elevation ecosystems are likely to be affected as much by global changes that directly involve land-use patterns as by climate change.

  4. Research progress in fire retardant coatings for steel structures%钢结构防火涂料研究进展

    Institute of Scientific and Technical Information of China (English)

    瞿金清; 肖新颜; 陈焕钦

    2001-01-01

    钢结构防火涂料是防火涂料中的重要品种,国内外正开展广泛研究和推广应用。本文综述了钢结构防火涂料的分类及特点,论述了膨胀型钢结构防火涂料的组成、作用及阻燃机理。展望了钢结构防火涂料的发展前景,即开发涂层超薄、装饰性强、施工方便、防火性能高、应用范围广的超薄型的室外钢结构防火涂料和研制环保型水性钢结构防火涂料,以及结合新的合成技术,研制多功能钢结构防火涂料。%The fire retardant coatings for steel structures is an important kind of the fire retardant coatings,so extensive investigation and application have been carried out all over the world.In this paper,the catalogue and characteristics of fire retardant coatings for steel structures were reviewed.The component,effect and flame retardant mechanism of dilatant fire retardant coatings for steel structures were described.Its prospective development was also pointed out.The super-thin exterior fire retardant coatings for steel structures featuring high thermal insulation against flame and good decorative property will be developed,and water-borne environmental friendly and multifunctional fire retardant coatings for steel structures will be investigated also.

  5. Mixed-severity fire history at a forest-grassland ecotone in west central British Columbia, Canada.

    Science.gov (United States)

    Harvey, Jill E; Smith, Dan J; Veblen, Thomas T

    2017-09-01

    This study examines spatially variable stand structure and fire-climate relationships at a low elevation forest-grassland ecotone in west central British Columbia, Canada. Fire history reconstructions were based on samples from 92 fire-scarred trees and stand demography from 27 plots collected over an area of about 7 km(2) . We documented historical chronologies of widespread fires and localized grassland fires between AD 1600 and 1900. Relationships between fire events, reconstructed values of the Palmer Drought Severity Index, and annual precipitation were examined using superposed epoch and bivariate event analyses. Widespread fires occurred during warm, dry years and were preceded by multiple anomalously dry, warm years. Localized fires that affected only grassland-proximal forests were more frequent than widespread fires. These localized fires showed a lagged, positive relationship with wetter conditions. The landscape pattern of forest structure provided further evidence of complex fire activity with multiple plots shown to have experienced low-, mixed-, and/or high-severity fires over the last four centuries. We concluded that this forest-grassland ecotone was characterized by fires of mixed severity, dominated by frequent, low-severity fires punctuated by widespread fires of moderate to high severity. This landscape-level variability in fire-climate relationships and patterns in forest structure has important implications for fire and grassland management in west central British Columbia and similar environments elsewhere. Forest restoration techniques such as prescribed fire and thinning are oftentimes applied at the forest-grassland ecotone on the basis that historically high frequency, low-severity fires defined the character of past fire activity. This study provides forest managers and policy makers with important information on mixed-severity fire activity at a low elevation forest-grassland ecotone, a crucial prerequisite for the effective

  6. 溴碳树脂在防火涂料中的应用与发展%Application and Development of Bromine Carbon Resin Fire-retardant Coatings

    Institute of Scientific and Technical Information of China (English)

    吴纯.; 杨保平; 崔锦峰; 郭军红; 李军

    2012-01-01

    This paper reviews the achievements of the fire-retardant coatings research and utilization from the aspect of binder resins, introduces the application of bromine carbon resin in steel structure fire-retardant coatings, finishing fire-retardant coatings, fire- retardant anticorrosive floor coatings and water-borne environment-friendly fire-retardant coatings in details, and basing the actual situation of our country, gives the use prospect of the bromine carbon resin.%综述了近年来从基体树脂入手,在防火涂料的研究与应用中的成果,详细介绍了溴碳树脂在钢结构建筑防火涂料、饰面型防火涂料、防火防腐地坪涂料及水性环保型防火涂料中的应用情况,并结合我国的实际情况对溴碳树脂的应用前景进行了展望。

  7. Fire Impact on Carbon Emissions on Logged and Unlogged Scots pine Forest Sites in Siberia

    Science.gov (United States)

    Ivanova, G.; Kukavskaya, E.; Buryak, L.; Kalenskaya, O.; Bogorodskaya, A.; Conard, S. G.

    2012-12-01

    Fires cover millions ha of boreal forests of Russia annually, mostly in Siberia. Wildfire and forest harvesting are the major disturbances in Siberia's boreal zone. Logged areas appear to be highly susceptible to fire due to a combination of high fuel loads and accessibility for human-caused ignition. Fire spreading from logging sites to surrounding forest is a common situation in this region. Changing patterns of timber harvesting increase landscape complexity and can be expected to increase the emissions and ecosystem damage from wildfires, inhibit recovery of natural ecosystems, and exacerbate impacts of wildfire on changing climate and on air quality. Fire effects on pine stands and biomass of surface vegetation were estimated on logged and unlogged sites in the Central Siberia region as a part of the project "The Influence of Changing Forestry Practices on the Effects of Wildfire and on Interactions Between Fire and Changing Climate in Central Siberia" supported by NASA (NEESPI). Fires occurring on logged areas were typically of higher severity than those in unlogged forests, but the specific effects of fire and logging varied widely among forest types and as a result of weather patterns during and prior to the fire. Consumption of surface and ground fuels in spring fires was 25% to 50% of that in summer fires. Estimated carbon emissions due to fire were 2-5 times higher on logged areas compared to undisturbed sites. Post-fire soil respiration decreases found for both site types partially offset carbon losses. Carbon emissions from fire and post-fire ecosystem damage on logged sites are expected to increase under changing climate conditions in Siberia.

  8. Forest fires detection in Indonesia using satellite Himawari-8 (case study: Sumatera and Kalimantan on august-october 2015)

    Science.gov (United States)

    Fatkhuroyan; Wati, Trinah; Panjaitan, Andersen

    2017-01-01

    Forest fires in Indonesia are serious problem affecting widely in material losses, health and environment. Himawari-8 as one of meteorological satellites with high resolution 0,5 km x 0,5 km can be used for forest fire monitoring and detection. Combination between 3, 4 and 6 channels using Sataid (Satellite Animation and Interactive Diagnosis) software will visualize forest fire in the study site. Monitoring which used Himawari-8 data on August, September and October 2015 can detect the distribution of smoke and the extents of forest fire in Sumatera and Kalimantan. The result showed the extent of forest fire can be identified for anticipation in the next step.

  9. Potential for Extensive Forest Loss in the Klamath Mountains due to Increased Fire Activity and Altered Post-Fire Forest Recovery Dynamics in a Warming Climate

    Science.gov (United States)

    Tepley, A. J.; Thompson, J. R.; Epstein, H. E.; Anderson-Teixeira, K. J.

    2016-12-01

    In the context of ongoing climatic warming, certain landscapes could be near a tipping point where relatively small changes to their fire regimes or post-fire forest recovery dynamics could bring about extensive conversion of forests to shorter-statured, more fire-prone vegetation, with associated changes in biodiversity, carbon dynamics, and climate feedbacks. Such concerns are particularly valid in the Klamath Region of northern California and southwestern Oregon, where montane landscapes support conifer forests, but severe fire converts them to systems dominated by broadleaf trees and shrubs that rapidly resprout or germinate from a dormant seedbank. Conifers eventually overtop the competing vegetation, but until they do, these systems are highly fire prone and susceptible to perpetuation through a cycle of reburning. To assess the vulnerability to fire-driven loss of conifer forests in a warming climate, we characterized the trajectories of post-fire forest recovery in 57 sites that burned severely within the last three decades and span the aridity gradient of montane conifer forests. Post-fire conifer regeneration was limited to a surprisingly narrow window, with 89% of all seedlings established in the first four years after fire. Early establishment conferred a competitive growth advantage such that the longer the lag between the fire year and the year of seedling establishment, the slower its height growth. A substantial portion of variation in post-fire conifer seedling density was driven by an interaction between propagule pressure and site moisture status (climatic water deficit). Mesic sites had abundant regeneration except where seed sources were nearly absent across large (ca. 50 ha) high-severity patches. Toward the dry end of the moisture gradient, much higher propagule pressure was required to support even moderate levels of conifer regeneration. The present distribution of conifer forests falls largely within the portion of the moisture gradient

  10. Forest fire spread with non-universal critical behavior

    Science.gov (United States)

    Khelloufi, K.; Baara, Y.; Clerc, J. P.; Porterie, B.; Zekri, N.

    2013-10-01

    The critical behavior of spread dynamics is examined using a forest fire model. This model is characterized by long-range interactions due to flame radiation and a weighting process induced by the combustibles’ ignition energy and the flame residence time. Unlike magnetic systems, this model exhibits a non-universal phase transition. The critical exponents of the rate of spread depend both on the local interaction and on weighting. Near the transition, the exponent x of rate of spread is found to be equivalent to that of correlation time. The weighting process exhibits a new phase transition related to the heating process. This transition is analogous to the gelation transition in spin glasses.

  11. Impact of forest fire on diversity of hymenopteran insects – a study at Copia species-used forest, Son La Province

    OpenAIRE

    Thi Nhi, Pham; Vu Tru, Hoang; Van Phu, Pham

    2017-01-01

    Besides the unsustainable exploitation, farming activities and economic development activities, forest fire is considered as one of the major threats to biodiversity and deforestation in Vietnam. In forest ecosystems, any changes in insect communities can affect species composition, nutrient cycling and numerous other ecological processes. The impact of forest fires, however, is not equal to different insect groups. In this paper, we study the impact of forest fires to hymenopteran insects at...

  12. Siberian forest fires and soil moisture anomalies observed with C-band scatterometer

    Science.gov (United States)

    Bartsch, A.; Balzter, H.; George, C.

    2009-12-01

    Forest fires are frequent in the Siberian taiga and are predicted to increase in frequency as a result of increased fire risk under drought conditions caused by climate change. There is, however, some uncertainty as to the extent to which drought influences forest fire frequency. Both, forest fires and drought conditions can be observed with satellite data. Here, we present an analyses of satellite-derived soil moisture anomaly data (ERS-1/2 scatterometer) and burned area maps (AVHRR/ATSR) over central Siberia for the years 1992-2000. Monthly mean soil moisture deviations were compared to the number of fire scars and the burned area. Results show that above average surface soil moisture conditions limit the possible burned area. The magnitude of a negative deviation does not determine the maximum size of by fire affected areas. More than 50% of area is burned under below average surface soil moisture condition in July and 80% in August.

  13. Forest Fires and Resuspension of Radionuclides into the Atmosphere

    Directory of Open Access Journals (Sweden)

    Fernando P. Carvalho

    2012-01-01

    Full Text Available Problem statement: Forest fires are especially frequent around the Mediterranean Sea basin in the summer period and might be able to release naturally-occurring and man-made radionuclides from plant biomass and inject them into the atmosphere. The impact of this radioactivity on populations was not investigated before. Approach: Radionuclide analysis was performed in plants, in smoke from plant burning and in cigarette smoke to determine radionuclide concentrations by alpha spectrometry. Results: Concentrations of 210Pb and 210Po in trees such as olive trees, showed low concentrations in roots, trunk and leaves and minor translocation of radionuclides from the root to aerial parts. Soil to plant transfer ratios for 210Po and 210Pb in several plants were in the range from 10-4 to 10-2. Radionuclides from atmospheric depositions may be accumulated in plants by foliar uptake and for 210Pb this seems the main pathway, with plant aerial parts displaying 210Po/210Pb ratios around 0.1, which is similar to the radionuclide ratios determined in atmospheric depositions. Experimental burning of wood from several tree species showed enhanced radionuclide concentrations in smoke compared to plant materials. Investigation of 210Po release from tobacco leaves used in cigarettes, showed especially enhanced concentrations of this radionuclide in the cigarette smoke particles. Conclusion: Radionuclide concentrations in cigarette smoke expose the lung tissues of regular smokers to high concentrations of 210Po that were considered carcinogenic. Although radionuclide concentrations in other plants analyzed were generally lower than in tobacco, globally the radionuclide activity in the plant biomass is elevated. Inhaled smoke particles from forest fires are likely to contribute to enhanced radiation doses in the human lung.

  14. An Analysis of the Defects of Steel Structured Fire Retardant Coating%试论钢结构防火涂料的问题

    Institute of Scientific and Technical Information of China (English)

    王路杰

    2015-01-01

    the fire resistance of steel structured coating is poor,one fire breaks out,the steel structure would collapse, which,as a result,would result serious economic loss and casualties.This paper analyzed the classifications and fire protec-tion mechanism of steel structured fire retardant coatings and expounded the problems in the application of steel struc-tured fire retardant coatings .%钢结构的抗火性能较差,一旦发生火灾,会造成整个钢结构的坍塌,从而造成严重的经济损失和人员伤亡,文章分析了钢结构防火涂料的分类和防火机理,同时分析了当前钢结构防火材料应用中存在的问题。

  15. Effects of ground fires on element dynamics in mountainous coniferous forest in Germany

    Directory of Open Access Journals (Sweden)

    Kerstin Näthe

    2012-09-01

    Full Text Available Disturbances such as fires are a natural phenomenon of forested ecosystems, having a different impact on (micro- climate (e.g. emissions of gases and aerosols, ecology (destruction of flora and fauna and nutrient cycles especially in the soils. Forest fires alter the spatial distribution (forest floor vs. mineral soil, binding forms (organic vs. inorganic and availability (water solubility of organic substances and nutrients. The effects of fires on chemical, biological and physical soil properties in forested ecosystems have been intensively studied in the last decades, especially in the Mediterranean area and North America. However, differences in fire intensity, forest type (species, age and location (climate, geological substrate, nutrient status lead to divergent results. Furthermore, only a few case studies focused on the effects of ground fires in hilly landscapes, on the vertical and lateral water-driven fluxes of elements (C, N, nutrients, as well as on the input of fire-released terrestrial nutrients into aquatic ecosystems. Thus, this study will evaluate the effects of low-severity fires on nutrient cycling in a coniferous forest in a hilly landscape connected to an aquatic system. At three spatially independent sites three paired plots (control and manipulated were chosen at a forested site in Thuringia, Germany. All plots are similar in the vegetation cover and pedogenetic properties.In relation to control sites, this study will examine the effects of low-severity fires on:a the mobilization of organic carbon and nutrients (released from ash material and the forest floor via leachate and erosion paths,b the binding form (inorganic/organic of elements and organic compounds, and c the particle size fraction (DOM/POM of elements and organic compounds.The goal of this study is a better understanding of the impact of forest fires on element cycling and release in a hilly landscape connected to an aquatic system, supposedly driven by

  16. Late Holocene geomorphic record of fire in ponderosa pine and mixed-conifer forests, Kendrick Mountain, northern Arizona, USA

    Science.gov (United States)

    Sara E. Jenkins; Carolyn Hull Sieg; Diana E. Anderson; Darrell S. Kaufman; Philip A. Pearthree

    2011-01-01

    Long-term fire history reconstructions enhance our understanding of fire behaviour and associated geomorphic hazards in forested ecosystems. We used 14C ages on charcoal from fire-induced debris-flow deposits to date prehistoric fires on Kendrick Mountain, northern Arizona, USA. Fire-related debris-flow sedimentation dominates Holocene fan deposition in the study area...

  17. Animals as Mobile Biological Sensors for Forest Fire Detection

    Directory of Open Access Journals (Sweden)

    Yasar Guneri Sahin

    2007-12-01

    Full Text Available This paper proposes a mobile biological sensor system that can assist in earlydetection of forest fires one of the most dreaded natural disasters on the earth. The main ideapresented in this paper is to utilize animals with sensors as Mobile Biological Sensors(MBS. The devices used in this system are animals which are native animals living inforests, sensors (thermo and radiation sensors with GPS features that measure thetemperature and transmit the location of the MBS, access points for wireless communicationand a central computer system which classifies of animal actions. The system offers twodifferent methods, firstly: access points continuously receive data about animals’ locationusing GPS at certain time intervals and the gathered data is then classified and checked tosee if there is a sudden movement (panic of the animal groups: this method is called animalbehavior classification (ABC. The second method can be defined as thermal detection(TD: the access points get the temperature values from the MBS devices and send the datato a central computer to check for instant changes in the temperatures. This system may beused for many purposes other than fire detection, namely animal tracking, poachingprevention and detecting instantaneous animal death.

  18. Post-fire succession of ground vegetation of central Siberia in Scots pine forests

    Science.gov (United States)

    Kovaleva, N.; Ivanova, G. A.; Conard, S. G.

    2012-04-01

    Extensive wildfires have affected the Russian region in the last decade. Scots pine forests (Pinus sylvestris L.) are widespread in central Siberia and fire occurrence is high in these forests, whose dominant fire regime is one of frequent surface fires. We studied post- fire succession of ground vegetation has been studied on nine experimental fires of varying severity (from 620 to 5220 kW/m) in middle taiga Scots pine forests of central Siberia (Russia). It proved from our study that all species of the succession process are present from initial stages. We did not find any trend of ground vegetation diversity with the time during 8 years after the fire. Our investigation showed that post- fire recovery of the ground vegetation is determined by initial forest type, fire severity and litter burning depth. Fire severity had a clear effect in initial succession in study area and it clearly had an impact on percentage cover, biomass and structure of ground vegetation. In a lesser degree the small shrubs are damaged during ground fires. The dominating species (Vaccinium vitis-idaea and V. myrtillus) regained the cover values above or close to 6—8 years. The post- fire biomass of ground vegetation 93—100% consists of species (Vaccinium vitis-idaea and V. myrtillus) that survived after the fire and increased in the cover with the time. In pine forests mosses and lichens suffer to a greater degree after ground fires. Lichen layer was completely lost after the fires of any severity. Decrease of mosses species diversity takes place after ground fires. The post- fire cover and species diversity of the green mosses were progressively lower with increasing the fire severity during the observation period. Maximum changes are discovered in the post- fire structure of plant microgroups after the high- severity fire which resulted in intensive invasion by the post- fire mosses (Polytrichum strictum and P. commune). There is a positive trend of green moss microgroups recovery

  19. Restoring and managing low-severity fire in dry-forest landscapes of the western USA.

    Science.gov (United States)

    Baker, William L

    2017-01-01

    Low-severity fires that killed few canopy trees played a significant historical role in dry forests of the western USA and warrant restoration and management, but historical rates of burning remain uncertain. Past reconstructions focused on on dating fire years, not measuring historical rates of burning. Past statistics, including mean composite fire interval (mean CFI) and individual-tree fire interval (mean ITFI) have biases and inaccuracies if used as estimators of rates. In this study, I used regression, with a calibration dataset of 96 cases, to test whether these statistics could accurately predict two equivalent historical rates, population mean fire interval (PMFI) and fire rotation (FR). The best model, using Weibull mean ITFI, had low prediction error and R2adj = 0.972. I used this model to predict historical PMFI/FR at 252 sites spanning dry forests. Historical PMFI/FR for a pool of 342 calibration and predicted sites had a mean of 39 years and median of 30 years. Short ( 55 years) mean PMFI/FRs were mainly from northern New Mexico to South Dakota. Mountain sites often had a large range in PMFI/FR. Nearly all 342 estimates are for old forests with a history of primarily low-severity fire, found across only about 34% of historical dry-forest area. Frequent fire (PMFI/FR fire. Historical fuels (e.g., understory shrubs and small trees) could fully recover between multidecadal fires, allowing some denser forests and some ecosystem processes and wildlife habitat to be less limited by fire. Lower historical rates mean less restoration treatment is needed before beginning managed fire for resource benefits, where feasible. Mimicking patterns of variability in historical low-severity fire regimes would likely benefit biological diversity and ecosystem functioning.

  20. Herbaceous species diversity in relation to fire severity in Zagros oak forests, Iran

    Institute of Scientific and Technical Information of China (English)

    Morteza Pourreza; Seyed Mohsen Hosseini; Ali Akbar Safari Sinegani; Mohammad Matinizadeh; Seyed Jalil Alavai

    2014-01-01

    Zagros forests are mainly covered byQuercus brantii L. coppices and oak sprout clumps occupy the forest area like patches. We investigated post-fire herbaceous diversity in the first growing season after fire. For this purpose neighboring burned and unburned areas were selected with the same plant species and ecological conditions. The data were collected from areas subjected to different fire severities. Overall 6 treatments were considered with respect to fire severity and the mi-crosites of inside and outside of oak sprout clumps including: unburned inside and outside of sprout clumps (Ni and No), inside of sprout clumps that burned with high fire severity (H), inside of sprout clumps that burned with moderate fire severity (M), outside of sprout clumps that burned with low fire severity (OH and OM). Different herbaceous com-position was observed in the unburned inside and outside of oak sprout clumps. The species diversity and richness were increased in treatments burned with low and moderate fire severity. However, in treatment burned with high fire severity (H), herbaceous cover was reduced, even-ness was increased, and richness and diversity were not significantly changed. We concluded that besides the microsites conditions in forest, fire severity is an inseparable part of the ecological effect of fire on her-baceous composition.

  1. Effects of alpha-zirconium phosphate on thermal degradation and flame retardancy of transparent intumescent fire protective coating

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Weiyi [State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzai Road, Hefei, Anhui 230026 (China); Zhang, Ping [State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang 621010 (China); Song, Lei; Wang, Xin [State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzai Road, Hefei, Anhui 230026 (China); Hu, Yuan, E-mail: yuanhu@ustc.edu.cn [State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzai Road, Hefei, Anhui 230026 (China)

    2014-01-01

    Graphical abstract: - Highlights: • A transparent intumescent fire protective coating was obtained by UV-cured technology. • OZrP could enhance the thermal stability and anti-oxidation of the coating. • OZrP could reduce the combustion properties of the coatings. - Abstract: Organophilic alpha-zirconium phosphate (OZrP) was used to improve the thermal and fire retardant behaviors of the phenyl di(acryloyloxyethyl)phosphate (PDHA)-triglycidyl isocyanurate acrylate (TGICA)-2-phenoxyethyl acrylate (PHEA) (PDHA-TGICA-PHEA) coating. The morphology of nanocomposite coating was characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The effect of OZrP on the flame retardancy, thermal stability, fireproofing time and char formation of the coatings was investigated by microscale combustion calorimeter (MCC), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), laser Raman spectroscopy (LRS) and scanning electric microscope (SEM). The results showed that by adding OZrP, the peak heat release rate and total heat of combustion were significantly reduced. The highest improvement was achieved with 0.5 wt% OZrP. XPS analysis indicated that the performance of anti-oxidation of the coating was improved with the addition of OZrP, and SEM images showed that a good synergistic effect was obtained through a ceramic-like layer produced by OZrP covered on the surface of char.

  2. Mechanical properties and fire retardancy of bidirectional reinforced composite based on biodegradable starch resin and basalt fibres

    Directory of Open Access Journals (Sweden)

    2008-11-01

    Full Text Available Environmental problems caused by extensive use of polymeric materials arise mainly due to lack of landfill space and depletion of finite natural resources of fossil raw materials, such as petroleum or natural gas. The substitution of synthetic petroleum-based resins with natural biodegradable resins appears to be one appropriate measure to remedy the above-mentioned situation. This study presents the development of a composite that uses environmentally degradable starch-based resin as matrix and basalt fibre plain fabric as reinforcement. Prepreg sheets were manufactured by means of a modified doctor blade system and a hot power press. The sheets were used to manufacture bidirectional-reinforced specimens with fibre volume contents ranging from 33 to 61%. Specimens were tested for tensile and flexural strength, and exhibited values of up to 373 and 122 MPa, respectively. Through application of silane coupling agents to the reinforcement fibres, the flexural composite properties were subsequently improved by as much as 38%. Finally, in order to enhance the fire retardancy and hence the applicability of the composite, fire retardants were applied to the resin, and their effectiveness was tested by means of flame rating (according to UL 94 and thermogravimetric analysis (TGA, respectively.

  3. Investigation on Resistance against White-rot and Brown-rot Fungi of some Fire Retardant Chemicals in Laminate Flooring

    Directory of Open Access Journals (Sweden)

    Ferhat Özdemir

    2013-11-01

    Full Text Available The objective of this study is to determine the effects of some fire retardants on decay resistance of the high density fiberboard (HDF panels covered with overlay, decorative and balance papers. Borax (BX, boric acid (BA, ammonium polyphosphate (APP and alpha-x (AX as fire retardant (FR chemicals were added as powder into the fibers made from 50% pine and 50% beech woods at 3%, 6% and 9% levels based on oven-dry fiber weight. HDF panels (400x400x6.5mm were produced. After, surfaces of the panels were coated with overlay, decorative and balance papers. The panels were exposed to white (Ceriporiopsis subvermisphora and brown (Coniophora puteana decay fungi. The decay resistance of panels was investigated. The results showed that the addition of FR chemicals increased resistance against white and brown rot fungi of the panels. Thus, it was ascertained that concentration and type of FR chemicals are effective on decay resistance of laminate flooring

  4. Average stand age from forest inventory plots does not describe historical fire regimes in ponderosa pine and mixed-conifer forests of western North America

    Science.gov (United States)

    Jens T. Stevens; Hugh D. Safford; Malcolm P. North; Jeremy S. Fried; Andrew N. Gray; Peter M. Brown; Christopher R. Dolanc; Solomon Z. Dobrowski; Donald A. Falk; Calvin A. Farris; Jerry F. Franklin; Peter Z. Fulé; R. Keala Hagmann; Eric E. Knapp; Jay D. Miller; Douglas F. Smith; Thomas W. Swetnam; Alan H. Taylor; Julia A. Jones

    2016-01-01

    Quantifying historical fire regimes provides important information for managing contemporary forests. Historical fire frequency and severity can be estimated using several methods; each method has strengths and weaknesses and presents challenges for interpretation and verification. Recent efforts to quantify the timing of historical high-severity fire events in forests...

  5. Fire History of Appalachian Forests of the Lower St-Lawrence Region (Southern Quebec)

    OpenAIRE

    Serge Payette; Vanessa Pilon; Pierre-Luc Couillard; Jason Laflamme

    2017-01-01

    Sugar maple (Acer saccharum) forests are among the main forest types of eastern North America. Sugar maple stands growing on Appalachian soils of the Lower St-Lawrence region are located at the northeastern limit of the northern hardwood forest zone. Given the biogeographical position of these forests at the edge of the boreal biome, we aimed to reconstruct the fire history and document the occurrence of temperate and boreal trees in sugar maple sites during the Holocene based on soil macroch...

  6. Fuel buildup and potential fire behavior after stand-replacing fires, logging fire-killed trees and herbicide shrub removal in Sierra Nevada forests

    Science.gov (United States)

    McGinnis, Thomas W.; Keeley, Jon E.; Stephens, Scott L.; Roller, Gary B.

    2010-01-01

    Typically, after large stand-replacing fires in mid-elevation Sierra Nevada forests, dense shrub fields occupy sites formerly occupied by mature conifers, until eventually conifers overtop and shade out shrubs. Attempting to reduce fuel loads and expedite forest regeneration in these areas, the USDA Forest Service often disrupts this cycle by the logging of fire-killed trees, replanting of conifers and killing of shrubs. We measured the effects of these treatments on live and dead fuel loads and alien species and modeled potential fire behavior and fire effects on regenerating forests. Sampling occurred in untreated, logged and herbicide-treated stands throughout the Sierra Nevada in four large fire areas 4–21 years after stand-replacing fires. Logging fire-killed trees significantly increased total available dead fuel loads in the short term but did not affect shrub cover, grass and forb cover, alien species cover or alien species richness. Despite the greater available dead fuel loads, fire behavior was not modeled to be different between logged and untreated stands, due to abundant shrub fuels in both logged and untreated stands. In contrast, the herbicide treatment directed at shrubs resulted in extremely low shrub cover, significantly greater alien species richness and significantly greater alien grass and forb cover. Grass and forb cover was strongly correlated with solar radiation on the ground, which may be the primary reason that grass and forb cover was higher in herbicide treated stands with low shrub and tree cover. Repeat burning exacerbated the alien grass problem in some stands. Although modeled surface fire flame lengths and rates of spread were found to be greater in stands dominated by shrubs, compared to low shrub cover conifer plantations, surface fire would still be intense enough to kill most trees, given their small size and low crown heights in the first two decades after planting.

  7. Decreases in Soil Moisture and Organic Matter Quality Suppress Microbial Decomposition Following a Boreal Forest Fire

    Energy Technology Data Exchange (ETDEWEB)

    Holden, Sandra R.; Berhe, Asmeret A.; Treseder, Kathleen K.

    2015-08-01

    Climate warming is projected to increase the frequency and severity of wildfires in boreal forests, and increased wildfire activity may alter the large soil carbon (C) stocks in boreal forests. Changes in boreal soil C stocks that result from increased wildfire activity will be regulated in part by the response of microbial decomposition to fire, but post-fire changes in microbial decomposition are poorly understood. Here, we investigate the response of microbial decomposition to a boreal forest fire in interior Alaska and test the mechanisms that control post-fire changes in microbial decomposition. We used a reciprocal transplant between a recently burned boreal forest stand and a late successional boreal forest stand to test how post-fire changes in abiotic conditions, soil organic matter (SOM) composition, and soil microbial communities influence microbial decomposition. We found that SOM decomposing at the burned site lost 30.9% less mass over two years than SOM decomposing at the unburned site, indicating that post-fire changes in abiotic conditions suppress microbial decomposition. Our results suggest that moisture availability is one abiotic factor that constrains microbial decomposition in recently burned forests. In addition, we observed that burned SOM decomposed more slowly than unburned SOM, but the exact nature of SOM changes in the recently burned stand are unclear. Finally, we found no evidence that post-fire changes in soil microbial community composition significantly affect decomposition. Taken together, our study has demonstrated that boreal forest fires can suppress microbial decomposition due to post-fire changes in abiotic factors and the composition of SOM. Models that predict the consequences of increased wildfires for C storage in boreal forests may increase their predictive power by incorporating the observed negative response of microbial decomposition to boreal wildfires.

  8. Fire History of Appalachian Forests of the Lower St-Lawrence Region (Southern Quebec

    Directory of Open Access Journals (Sweden)

    Serge Payette

    2017-04-01

    Full Text Available Sugar maple (Acer saccharum forests are among the main forest types of eastern North America. Sugar maple stands growing on Appalachian soils of the Lower St-Lawrence region are located at the northeastern limit of the northern hardwood forest zone. Given the biogeographical position of these forests at the edge of the boreal biome, we aimed to reconstruct the fire history and document the occurrence of temperate and boreal trees in sugar maple sites during the Holocene based on soil macrocharcoal analysis. Despite having experienced a different number of fire events, the fire history of the maple sites was broadly similar, with two main periods of fire activity, i.e., early- to mid-Holocene and late-Holocene. A long fire-free interval of at least 3500 years separated the two periods from the mid-Holocene to 2000 years ago. The maple sites differ with respect to fire frequency and synchronicity of the last millennia. According to the botanical composition of charcoal, forest vegetation remained relatively homogenous during the Holocene, except recently. Conifer and broadleaf species coexisted in mixed forests during the Holocene, in phase with fire events promoting the regeneration of boreal and temperate tree assemblages including balsam fir (Abies balsamea and sugar maple.

  9. A Voxel-based Method for Forest Change Detection after Fire Using LiDAR Data

    Science.gov (United States)

    Xu, Z.

    2015-12-01

    A Voxel-based Method for Forest Change Detection after Fire Using LiDAR DataZewei Xu and Jonathan A. Greenberg Traditional methods of forest fire modeling focus on the patterns of burning in two-dimensions at relatively coarse resolutions. However, fires spread in complex, three-dimensional patterns related to the horizontal and vertical distributions of woody fuel as well as the prevailing climate conditions, and the micro-scale patterns of fuel distributions over scales of only meters can determine the path that fire can take through a complex landscape. One challenge in understanding the full three-dimensional (3D) path that a fire takes through a landscape is a lack of data at landscape scales of these burns. Remote sensing approaches, while operating at landscape scales, typically focus on two-dimensional analyses using standard image-based change detection techniques. In this research, we develop a 3D voxel-based change detection method applied to multitemporal LiDAR data collected before and after forest fires in California to quantify the full 3D pattern of vegetation loss. By changing the size of the voxel, forest loss at different spatial scales is revealed. The 3D tunnel of fuel loss created by the fire was used to examine ground-to-crown transitions, firebreaks, and other three-dimensional aspects of a forest fire.

  10. [Forest fire division by using MODIS data based on the temporal-spatial variation law].

    Science.gov (United States)

    He, Cheng; He, Cheng; Gong, Yin-xi; Zhang, Si-yu; He, Teng-fei; Chen, Feng; Sun, Yu; Feng, Zhong-ke

    2013-09-01

    Forest fires are harmful to the ecological environment, which have induced global attention. In the present paper fire activities extracted from MODIS and burned areas were compared, and it was found that the wave band of 8-9 extracted from MOD14A1 was useful for fire monitoring, and the data accorded with field investigation with goodness of fit reaching up to 0. 83. Through combining this wave band and the relative data to make the time and space analysis of the forest fires for 11 years, from 2000 to 2010, the study showed that the fire occurred most frequently in the spring, the autumn took the second place, and in the summer there was almost no fire occurrence unless drought. Through the analysis of the research area, the burned areas of the coniferous forest and temperate mixed forest were 53.68% and 44%, respectively, while the grassland was only 2.32%. Da Hinggan Ling region was the main combustion area, the burned areas were 64.7% and that for Xiao Hinggan Ling was about 23.49%, while those for other areas were less than 5%. The majority of forest land of burned areas has a gentle slope (fire activities, climate change, topography and vegetation type clear and it is also helpful to predicting the risk level of the fire areas.

  11. Web-GIS platform for forest fire danger prediction in Ukraine: prospects of RS technologies

    Science.gov (United States)

    Baranovskiy, N. V.; Zharikova, M. V.

    2016-10-01

    There are many different statistical and empirical methods of forest fire danger use at present time. All systems have not physical basis. Last decade deterministic-probabilistic method is rapidly developed in Tomsk Polytechnic University. Forest sites classification is one way to estimate forest fire danger. We used this method in present work. Forest fire danger estimation depends on forest vegetation condition, forest fire retrospective, precipitation and air temperature. In fact, we use modified Nesterov Criterion. Lightning activity is under consideration as a high temperature source in present work. We use Web-GIS platform for program realization of this method. The program realization of the fire danger assessment system is the Web-oriented geoinformation system developed by the Django platform in the programming language Python. The GeoDjango framework was used for realization of cartographic functions. We suggest using of Terra/Aqua MODIS products for hot spot monitoring. Typical territory for forest fire danger estimation is Proletarskoe forestry of Kherson region (Ukraine).

  12. Emissions Of Forest Fires In The Amazon: Impact On The Tropical Mountain Forest In Ecuador

    Science.gov (United States)

    Fabian, P.; Rollenbeck, R.; Thiemens, M. H.; Brothers, L.

    2006-12-01

    Biomass burning is a source of carbon, sulphur, and nitrogen compounds which, along with their photochemically generated reaction products, can be transported over very large distances, even traversing oceans. Four years of regular rain and fog-water measurements in the tropical mountain forest at the eastern slopes of the Ecuadorian Andes, along an altitude profile between 1800 m and 3185 m, have been carried out. The ion composition of rain and fog-water samples shows frequent episodes of significantly enhanced nitrogen and sulphur, resulting in annual deposition rates of about 5 kg N/ha and 10 kg S/ha into this ecosystem, which are comparable to those of polluted central Europe. By relating back trajectories calculated by means of the FLEXTRA model to the distributions of satellite derived forest fire pixels, it can be shown that most episodes of enhanced ion concentration, with pH values as low as 4.0, can be attributed to biomass burning in the Amazon. First analyses of oxygen isotopes 16O, 17O, and 18O of nitrate in fogwater samples show mass independent fractionation values ranging between 15 and 20 per mille, clearly indicating that nitrate in the samples is a product of atmospheric conversion of precursors, while the isotope data of river samples taken downstream of the research area are grouped in the region of microbial nitrate. This strongly supports the aforementioned trajectory results and shows that the tropical mountain forest in Ecuador, with local pollution sources missing,is "fertilized" by long-range transport of substances originating from forest fires in Colombia, Venezuela, Brazil, and Peru, far upwind of the research site.

  13. Restoring and managing low-severity fire in dry-forest landscapes of the western USA

    Science.gov (United States)

    2017-01-01

    Low-severity fires that killed few canopy trees played a significant historical role in dry forests of the western USA and warrant restoration and management, but historical rates of burning remain uncertain. Past reconstructions focused on on dating fire years, not measuring historical rates of burning. Past statistics, including mean composite fire interval (mean CFI) and individual-tree fire interval (mean ITFI) have biases and inaccuracies if used as estimators of rates. In this study, I used regression, with a calibration dataset of 96 cases, to test whether these statistics could accurately predict two equivalent historical rates, population mean fire interval (PMFI) and fire rotation (FR). The best model, using Weibull mean ITFI, had low prediction error and R2adj = 0.972. I used this model to predict historical PMFI/FR at 252 sites spanning dry forests. Historical PMFI/FR for a pool of 342 calibration and predicted sites had a mean of 39 years and median of 30 years. Short ( 55 years) mean PMFI/FRs were mainly from northern New Mexico to South Dakota. Mountain sites often had a large range in PMFI/FR. Nearly all 342 estimates are for old forests with a history of primarily low-severity fire, found across only about 34% of historical dry-forest area. Frequent fire (PMFI/FR shrubs and small trees) could fully recover between multidecadal fires, allowing some denser forests and some ecosystem processes and wildlife habitat to be less limited by fire. Lower historical rates mean less restoration treatment is needed before beginning managed fire for resource benefits, where feasible. Mimicking patterns of variability in historical low-severity fire regimes would likely benefit biological diversity and ecosystem functioning. PMID:28199416

  14. Application of thermal analysis methods on the study of PE thermal degradation and the influence of Mg (OH) sub 2 as fire retardant

    CERN Document Server

    Zarringhalam-Moghaddam, A

    2002-01-01

    Fire retardation effects of Mg(OH) sub 2 on PE was studied utilizing DTA, TGA and DSC methods. Reductions on reaction peak area and mass loss rate with the addition of Mg(OH) sub 2 were observed as indication of retardation effects of Mg(OH) sub 2 on PE. Cone calorimeter tests were performed on samples to verify the thermo analytical results. It was concluded that when Mg(OH) sub 2 is present it effectively modified the degradation behavior of PE and the thermal analyses are useful and rapid methods to study the retardation effects.

  15. Effects of fire disturbance on the forest structure and succession in the natural broad-leaved/Korean pine forest

    Institute of Scientific and Technical Information of China (English)

    LIULi-juan; GEJian-ping

    2003-01-01

    Investigations on charcoal in the soil, fire-scarred trees, stand composition, forest structure as well as regeneration status were carried out in the natural broad-leaved/Korean pine (Pinus koraiensis) forest after fire disturbance at Liangshui Nature Reserve on the mid-north of Xiaoxing'an Mountains from 1990 to 1992, and the ecological effects of fire disturbance on the formation and succession of this kind of forest were analyzed according to the survey results. The average depth of charcoal in the soil was related to the timing of the fire. According to the characteristic of fire-scarred trees, the dynamic map of the fire behavior was drawn onto the topographic map. It showed that the dimension and extent of the fire disturbance was closely related with site conditions. Fire disturbance only led to a significant difference in stand composition and diameter class structurefor the stands at different locations, rather than completely destroying the forest. After fire disturbance, the horizontal community structure was a mosaic of different patches, which were made up of different deciduous species or different sizes of Korean pines, and the succession trend of each patch was also different. In the sites with the heavy fire disturbance, the intolerant hardwood species were dominant, and there were a large number of regenerative Korean pine saplings under the canopy. In the moderate -disturbed sites, the tolerant hardwood species were dominant, and a small number of large size Korean pines still survived. In the light-disturbed sites, large size Korean pines were dominant.

  16. Estimation of the carbon storage of forest vegetation and carbon emission from forest fires in Heilongjiang Province, China

    Institute of Scientific and Technical Information of China (English)

    HU Hai-qing; LIU Yuan-chun; JIAO Yan

    2007-01-01

    The forest resource of Heilongjiang province has important position in china. On the basis of the six times of national forest inventory data (1973-1976, 1977-1981, 1985-1988, 1989-1993, 1994-1998, 1999-2003) surveyed by the Forestry Ministry of P. R. China from 1973 to 2003, the carbon storage of forests in Heilongjiang Province are estimated by using the method of linear relationship of each tree species between biomass and volume. The results show that the carbon storage of Heilongjiang forests in the six periods (1973-1976,1977-1981, 1985-1988, 1989-1993, 1994-1998, 1999-2003) are 7.164×108 t, 4.871×108 t, 5.094×108 t, 5.292×108 t, 5.594×108 t and 5.410×108 t, respectively., which showed a trend of decreasing in early time and then increasing. It indicated that Heilongjiang forests play an important role as a sink of atmospheric carbon dioxide during past 30 years. Based on the data of forest fires from 1980 to 1999 and ground biomass estimation for some forest types in Heilongjiang Province, it is estimated that the amount of mean annual consumed biomass of forests is 391758.65t-522344.95t, accounting for 6.4%-8.4% of total national consummation from forest fires, and the amount of carbon emission is 176 291.39t-235 055.23t, about 8% of total national emission from forest fires. The emission of CO2, CO, CH4 and NMHC from forest fires in Heilongjiang Province are estimated at 581761.6-775682.25 t, 34892.275-46523.04 t, 14091.11-18788.15 t and 6500-9000 t, respectively, every year.

  17. Ectomycorrhizal fungal spore bank recovery after a severe forest fire: some like it hot.

    Science.gov (United States)

    Glassman, Sydney I; Levine, Carrie R; DiRocco, Angela M; Battles, John J; Bruns, Thomas D

    2016-05-01

    After severe wildfires, pine recovery depends on ectomycorrhizal (ECM) fungal spores surviving and serving as partners for regenerating forest trees. We took advantage of a large, severe natural forest fire that burned our long-term study plots to test the response of ECM fungi to fire. We sampled the ECM spore bank using pine seedling bioassays and high-throughput sequencing before and after the California Rim Fire. We found that ECM spore bank fungi survived the fire and dominated the colonization of in situ and bioassay seedlings, but there were specific fire adapted fungi such as Rhizopogon olivaceotinctus that increased in abundance after the fire. The frequency of ECM fungal species colonizing pre-fire bioassay seedlings, post-fire bioassay seedlings and in situ seedlings were strongly positively correlated. However, fire reduced the ECM spore bank richness by eliminating some of the rare species, and the density of the spore bank was reduced as evidenced by a larger number of soil samples that yielded uncolonized seedlings. Our results show that although there is a reduction in ECM inoculum, the ECM spore bank community largely remains intact, even after a high-intensity fire. We used advanced techniques for data quality control with Illumina and found consistent results among varying methods. Furthermore, simple greenhouse bioassays can be used to determine which fungi will colonize after fires. Similar to plant seed banks, a specific suite of ruderal, spore bank fungi take advantage of open niche space after fires.

  18. Changing patterns of fire occurrence in proximity to forest edges, roads and rivers between NW Amazonian countries

    Directory of Open Access Journals (Sweden)

    D. Armenteras

    2017-06-01

    Full Text Available Tropical forests in NW Amazonia are highly threatened by the expansion of the agricultural frontier and subsequent deforestation. Fire is used, both directly and indirectly, in Brazilian Amazonia to propagate deforestation and increase forest accessibility. Forest fragmentation, a measure of forest degradation, is also attributed to fire occurrence in the tropics. However, outside the Brazilian Legal Amazonia the role of fire in increasing accessibility and forest fragmentation is less explored. In this study, we compared fire regimes in five countries that share this tropical biome in the most north-westerly part of the Amazon Basin (Venezuela, Colombia, Ecuador, Peru and Brazil. We analysed spatial differences in the timing of peak fire activity and in relation to proximity to roads and rivers using 12 years of MODIS active fire detections. We also distinguished patterns of fire in relation to forest fragmentation by analysing fire distance to the forest edge as a measure of fragmentation for each country. We found significant hemispheric differences in peak fire occurrence with the highest number of fires in the south in 2005 vs. 2007 in the north. Despite this, both hemispheres are equally affected by fire. We also found difference in peak fire occurrence by country. Fire peaked in February in Colombia and Venezuela, whereas it peaked in September in Brazil and Peru, and finally Ecuador presented two fire peaks in January and October. We confirmed the relationship between fires and forest fragmentation for all countries and also found significant differences in the distance between the fire and the forest edge for each country. Fires were associated with roads and rivers in most countries. These results can inform land use planning at the regional, national and subnational scales to minimize the contribution of road expansion and subsequent access to the Amazonian natural resources to fire occurrence and the associated deforestation and

  19. Changing patterns of fire occurrence in proximity to forest edges, roads and rivers between NW Amazonian countries

    Science.gov (United States)

    Armenteras, Dolors; Barreto, Joan Sebastian; Tabor, Karyn; Molowny-Horas, Roberto; Retana, Javier

    2017-06-01

    Tropical forests in NW Amazonia are highly threatened by the expansion of the agricultural frontier and subsequent deforestation. Fire is used, both directly and indirectly, in Brazilian Amazonia to propagate deforestation and increase forest accessibility. Forest fragmentation, a measure of forest degradation, is also attributed to fire occurrence in the tropics. However, outside the Brazilian Legal Amazonia the role of fire in increasing accessibility and forest fragmentation is less explored. In this study, we compared fire regimes in five countries that share this tropical biome in the most north-westerly part of the Amazon Basin (Venezuela, Colombia, Ecuador, Peru and Brazil). We analysed spatial differences in the timing of peak fire activity and in relation to proximity to roads and rivers using 12 years of MODIS active fire detections. We also distinguished patterns of fire in relation to forest fragmentation by analysing fire distance to the forest edge as a measure of fragmentation for each country. We found significant hemispheric differences in peak fire occurrence with the highest number of fires in the south in 2005 vs. 2007 in the north. Despite this, both hemispheres are equally affected by fire. We also found difference in peak fire occurrence by country. Fire peaked in February in Colombia and Venezuela, whereas it peaked in September in Brazil and Peru, and finally Ecuador presented two fire peaks in January and October. We confirmed the relationship between fires and forest fragmentation for all countries and also found significant differences in the distance between the fire and the forest edge for each country. Fires were associated with roads and rivers in most countries. These results can inform land use planning at the regional, national and subnational scales to minimize the contribution of road expansion and subsequent access to the Amazonian natural resources to fire occurrence and the associated deforestation and carbon emissions.

  20. Fire severity unaffected by spruce beetle outbreak in spruce-fir forests in southwestern Colorado.

    Science.gov (United States)

    Andrus, Robert A; Veblen, Thomas T; Harvey, Brian J; Hart, Sarah J

    2016-04-01

    Recent large and severe outbreaks of native bark beetles have raised concern among the general public and land managers about potential for amplified fire activity in western North America. To date, the majority of studies examining bark beetle outbreaks and subsequent fire severity in the U.S. Rocky Mountains have focused on outbreaks of mountain pine beetle (MPB; Dendroctonus ponderosae) in lodgepole pine (Pinus contorta) forests, but few studies, particularly field studies, have addressed the effects of the severity of spruce beetle (Dendroctonus rufipennis Kirby) infestation on subsequent fire severity in subalpine Engelmann spruce (Picea engelmannii) and subalpine fir (Abies lasiocarpa) forests. In Colorado, the annual area infested by spruce beetle outbreaks is rapidly rising, while MPB outbreaks are subsiding; therefore understanding this relationship is of growing importance. We collected extensive field data in subalpine forests in the eastern San Juan Mountains, southwestern Colorado, USA, to investigate whether a gray-stage (beetle infestation affected fire severity. Contrary to the expectation that bark beetle infestation alters subsequent fire severity, correlation and multivariate generalized linear regression analysis revealed no influence of pre-fire spruce beetle severity on nearly all field or remotely sensed measurements of fire severity. Findings were consistent across moderate and extreme burning conditions. In comparison to severity of the pre-fire beetle outbreak, we found that topography, pre-outbreak basal area, and weather conditions exerted a stronger effect on fire severity. Our finding that beetle infestation did not alter fire severity is consistent with previous retrospective studies examining fire activity following other bark beetle outbreaks and reiterates the overriding influence of climate that creates conditions conducive to large, high-severity fires in the subalpine zone of Colorado. Both bark beetle outbreaks and wildfires

  1. Modeling interactions betweenspotted owl and barred owl populations in fire-prone forests

    Science.gov (United States)

    Background / Question / Methods Efforts to conserve northern spotted owls (Strix occidentalis caurina) in the eastern Cascades of Washington must merge the challenges of providing sufficient structurally complex forest habitat in a fire-prone landscape with the limitations impos...

  2. Fire-induced erosion and millennial-scale climate change in northern ponderosa pine forests.

    Science.gov (United States)

    Pierce, Jennifer L; Meyer, Grant A; Jull, A J Timothy

    2004-11-04

    Western US ponderosa pine forests have recently suffered extensive stand-replacing fires followed by hillslope erosion and sedimentation. These fires are usually attributed to increased stand density as a result of fire suppression, grazing and other land use, and are often considered uncharacteristic or unprecedented. Tree-ring records from the past 500 years indicate that before Euro-American settlement, frequent, low-severity fires maintained open stands. However, the pre-settlement period between about ad 1500 and ad 1900 was also generally colder than present, raising the possibility that rapid twentieth-century warming promoted recent catastrophic fires. Here we date fire-related sediment deposits in alluvial fans in central Idaho to reconstruct Holocene fire history in xeric ponderosa pine forests and examine links to climate. We find that colder periods experienced frequent low-severity fires, probably fuelled by increased understory growth. Warmer periods experienced severe droughts, stand-replacing fires and large debris-flow events that comprise a large component of long-term erosion and coincide with similar events in sub-alpine forests of Yellowstone National Park. Our results suggest that given the powerful influence of climate, restoration of processes typical of pre-settlement times may be difficult in a warmer future that promotes severe fires.

  3. Effects of active forest fire on terrestrial ecosystem production and greenhouse gas emissions

    Science.gov (United States)

    Sannigrahi, Srikanta; Rahmat, Shahid; Bhatt, Sandeep; Rana, Virendra

    2017-04-01

    The forest fire is one of the most catalysing agents which degrade an ecosystems leading to the loss of net and gross primary productivity (NPP & GPP) and carbon sequestration service. Additionally, it can suppress the efficiency of service providing capacity of an ecosystem throughout the time and space. Remote sensing-based forest fire estimation in a diverse ecosystem is very much essential for mitigating the biodiversity and productivity losses due to the forest fire. Satellite-based Land Surface Temperature (LST) has been calculated for the pre-fire and fire years to identify the burn severity hotspot across all eco-regions in the Lower Himalaya region. Several burn severity indices: Normalized Burn Ratio (NBR), Burnt Area Index (BAI), Normalized Multiband Drought Index (NMDI), Soil Adjusted Vegetation Index (SAVI), Global Environmental Monitoring Index (GEMI), Enhance Vegetation Index (EVI) have been used in this study to quantify the spatial and temporal changes (delta) of the selected indices. Two Light Use Efficiency (LUE) models: Carnegie- Ames-Stanford-Approach (CASA) and Vegetation Photosynthesis Model (VPM) have been used to quantify the terrestrial Net Primary Productivity (NPP) in the pre-fire and fire years across all biomes of the region. A novel approach has been preceded in this field to demonstrate the correlation between forest fire density (FFD) and NPP. A strong positive correlation was found between burn severity indices and predicted NPP: BAI and NPP (r = 0.49), NBR and NPP: (r = 0.58), EVI and NPP: (r = 0.72), SAVI and NPP: (r = 0.67), whereas, a negative association has noted between the NMDI and NPP: (r = -0.36) during the both studied years. Results have shown that the NPP is highly correlated with the forest fire density (R2 = 0.75, RMSE = 5.03 gC m-2 month-1). The estimated LST of the individual fire days has witnessed a sharp temperature increase by > 6oC - 9oC in comparison to the non-fire days clearly indicates high fire risk (in

  4. Improving the accuracy of image-based forest fire recognition and spatial positioning

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Forest fires are frequent natural disasters.It is necessary to explore advanced means to monitor,recognize and locate forest fires so as to establish a scientific system for the early detection,real-time positioning and quick fighting of forest fires.This paper mainly expounds methods and algorithms for improving accuracy and removing uncertainty in image-based forest fire recognition and spatial positioning.Firstly,we discuss a method of forest fire recognition in visible-light imagery.There are four aspects to improve accuracy and remove uncertainty in fire recognition:(1)eliminating factors of interference such as road and sky with high brightness,red leaves,other colored objects and objects that are lit up at night,(2)excluding imaging for specific periods and azimuth angles for which interference phenomena repeatedly occur,(3)improving the thresholding method for determining the flame border in image processing by adjusting the threshold to the season,weather and region,and (4)integrating the visible-light image method with infrared image technology.Secondly,we examine infrared-image-based methods and approaches of improving the accuracy of forest fire recognition by combining the spectrum threshold with an object feature value such as the normalized difference vegetation index and excluding factors of disturbance such as interference signals,extreme weather and high-temperature animals.Thirdly,a method of visible analysis to enhance the accuracy of forest fire positioning is examined and realized;the method includes decreasing the visual angle,selecting central points,selecting the largest spots,and judging the selection of fire spots according to the central distance.Case studies are examined and the results are found to be satisfactory.

  5. Patterns of Canopy and Surface Layer Consumption in a Boreal Forest Fire from Repeat Airborne Lidar

    Science.gov (United States)

    Alonzo, Michael; Morton, Douglas C.; Cook, Bruce D.; Andersen, Hans-Erik; Babcock, Chad; Pattison, Robert

    2017-01-01

    Fire in the boreal region is the dominant agent of forest disturbance with direct impacts on ecosystem structure, carbon cycling, and global climate. Global and biome-scale impacts are mediated by burn severity, measured as loss of forest canopy and consumption of the soil organic layer. To date, knowledge of the spatial variability in burn severity has been limited by sparse field sampling and moderate resolution satellite data. Here, we used pre- and post-fire airborne lidar data to directly estimate changes in canopy vertical structure and surface elevation for a 2005 boreal forest fire on Alaskas Kenai Peninsula. We found that both canopy and surface losses were strongly linked to pre-fire species composition and exhibited important fine-scale spatial variability at sub-30m resolution. The fractional reduction in canopy volume ranged from 0.61 in lowland black spruce stands to 0.27 in mixed white spruce and broad leaf forest. Residual structure largely reflects standing dead trees, highlighting the influence of pre-fire forest structure on delayed carbon losses from above ground biomass, post-fire albedo, and variability in understory light environments. Median loss of surface elevation was highest in lowland black spruce stands (0.18 m) but much lower in mixed stands (0.02 m), consistent with differences in pre-fire organic layer accumulation. Spatially continuous depth-of-burn estimates from repeat lidar measurements provide novel information to constrain carbon emissions from the surface organic layer and may inform related research on post-fire successional trajectories. Spectral measures of burn severity from Landsat were correlated with canopy (r = 0.76) and surface (r = -0.71) removal in black spruce stands but captured less of the spatial variability in fire effects for mixed stands (canopy r = 0.56, surface r = -0.26), underscoring the difficulty in capturing fire effects in heterogeneous boreal forest landscapes using proxy measures of burn severity

  6. Effects of forest fires in southern and central of Zabaykal region

    Directory of Open Access Journals (Sweden)

    L. V. Buryak

    2016-12-01

    Full Text Available The fire frequency situation in Zabaykal region from 1964 to 2015 is evaluated and discussed in the paper. The main reasons of decadal increase of fire numbers and the area burned are revealed. The main reasons of high fire frequency and the increase of fire activity in the last decades are shown. The characteristics of the weather conditions in the years of high fire frequency are presented. Fire activity was found to increase not only because of the droughts in the last decades but also due to forest disturbances in Zabaykalsky Krai by illegal logging. Based on the data from 170 sample sites laid out with the use of satellite images, forest inventory data and results of ground sample transects, the impact of the wildfires of different type, form and severity on tree mortality in the light-coniferous forests was estimated, as well as the amount of tree regeneration in the forest areas disturbed by fires, logged sites (both burned and unburned, and sites burned repeatedly was evaluated. Wildfires in the Zabaykal region were found to be strong ecological factor influencing on the probability of existence of many forest ecosystems. In case of further climate warming and repeated fires, the part of the forests may transform to the non forest areas. The steppification of the burned sites in the southern forest-steppe regions and in the low parts of the southern slopes at the border with steppe landscapes as well as desertification in the central parts of the region and swamping of burned sites located in the wet soils are observed. Wind and water soil erosion happens at the large burned sites.

  7. Estimation of Forest Fire-fighting Budgets Using Climate Indexes

    NARCIS (Netherlands)

    Xu, Z.; Kooten, van G.C.

    2012-01-01

    Given the complexity and relative short length of current predicting system for fire behavior, it is inappropriate to be referred for planning fire-fighting budgets of BC government due to the severe uncertainty of fire behavior across fire seasons. Therefore, a simple weather derived index for

  8. A geo-information system approach for forest fire likelihood based on causative and anti - causative factors

    NARCIS (Netherlands)

    Srivastava, Sanjay K.; Saran, Sameer; de By, R.A.; Dadhwal, V.K.

    2014-01-01

    Innumerable forest fire spread models exist for taking a decision, but far less focus is on the real causative factors which initiate/ignite fire in an area. It has been observed that the majority of the forest fires in India are initiated due to anthropogenic factors. In this study, we develop a

  9. Analysis of forest fires causes and their motivations in northern Algeria: the Delphi method

    Directory of Open Access Journals (Sweden)

    Meddour-Sahar O

    2013-06-01

    Full Text Available Forest fires in Algeria are mostly human-caused and result from local social behavior, whether voluntary (arson or involuntary (negligence. Understanding the reasons why fires start is, therefore, a crucial factor in preventing or reducing their incidence, developing significant prevention efforts and designing specific fire prevention campaigns. The Delphi method is a promising tool for improving knowledge about how fire starts and why, and above all helps reduce the number of fires started by unknown causes, the majority type in Algeria. The Delphi method uses a set of procedures for eliciting and refining the opinions of a panel of experts on a particular subject of interest. This method was used in three case studies, in coastal or inner wilayas (provinces selected from a highly fire-prone area in north-central Algeria. Results showed the traditional use of fire in agriculture and forestry, in situations related to land use changes and in interpersonal conflicts are the major causes of voluntary fires. For involuntary events (negligence, experts unanimously identified the importance of the restart of fire, caused by fire crews who do not ensure the mopping up of controlled fires (91.49% and the negligent use of agricultural fires, particularly stubble burning (80.14%. For voluntary fires (arson, results highlight the importance of fires set for land use changes (77.30%, pyromania (67.38% and honey gathering (62.41%. Illegal dumping and burning of garbage was also mentioned by responders in all study-areas.

  10. A fire suppression model for forested range of the Beverly and Qamanirjuaq herds of caribou

    Directory of Open Access Journals (Sweden)

    Donald C. Thomas

    1996-01-01

    Full Text Available A fire suppression model was developed for forested winter range of the Beverly and Qamanirjuaq (formerly Kaminuriak herds of barren-ground caribou (Rangifer tarandus groenlandicus in north-central Canada. The model is a balance between total protection, as voiced by some aboriginal people, and a let-burn policy for natural fires advocated by some ecologists. Elements in the model were caribou ecology, lichen recovery after fire, burn history, community priorities for caribou hunting, and fire cycle lengths. The percent ratio of current productive caribou habitat to the goal for that habitat determines whether fire should be suppressed in a specific area. The goals for productive caribou habitat, defined as forests older than 50 years, were scaled by fire cycle length and community priority ranking. Thus, the model is an example of co-management: traditional knowledge combined with science in a joint forum, the Beverly and Qamanirjuaq Caribou Management Board.

  11. Recent burning of boreal forests exceeds fire regime limits of the past 10,000 years.

    Science.gov (United States)

    Kelly, Ryan; Chipman, Melissa L; Higuera, Philip E; Stefanova, Ivanka; Brubaker, Linda B; Hu, Feng Sheng

    2013-08-06

    Wildfire activity in boreal forests is anticipated to increase dramatically, with far-reaching ecological and socioeconomic consequences. Paleorecords are indispensible for elucidating boreal fire regime dynamics under changing climate, because fire return intervals and successional cycles in these ecosystems occur over decadal to centennial timescales. We present charcoal records from 14 lakes in the Yukon Flats of interior Alaska, one of the most flammable ecoregions of the boreal forest biome, to infer causes and consequences of fire regime change over the past 10,000 y. Strong correspondence between charcoal-inferred and observational fire records shows the fidelity of sedimentary charcoal records as archives of past fire regimes. Fire frequency and area burned increased ∼6,000-3,000 y ago, probably as a result of elevated landscape flammability associated with increased Picea mariana in the regional vegetation. During the Medieval Climate Anomaly (MCA; ∼1,000-500 cal B.P.), the period most similar to recent decades, warm and dry climatic conditions resulted in peak biomass burning, but severe fires favored less-flammable deciduous vegetation, such that fire frequency remained relatively stationary. These results suggest that boreal forests can sustain high-severity fire regimes for centuries under warm and dry conditions, with vegetation feedbacks modulating climate-fire linkages. The apparent limit to MCA burning has been surpassed by the regional fire regime of recent decades, which is characterized by exceptionally high fire frequency and biomass burning. This extreme combination suggests a transition to a unique regime of unprecedented fire activity. However, vegetation dynamics similar to feedbacks that occurred during the MCA may stabilize the fire regime, despite additional warming.

  12. 国内阻燃剂协同作用的研究进展%The Latest Achievements about the Synergistic Effect of Fire Retardant in China

    Institute of Scientific and Technical Information of China (English)

    韩丽芳; 郝建淦

    2013-01-01

    This paper introduces the latest achievements about the synergistic effect of fire retardant in china and pointed out about the development tendency of fire retardans in future.%对国内类阻燃剂协同作用研究的最新成果进行了介绍,并提出了对阻燃剂未来发展趋向的预测.

  13. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009

    Directory of Open Access Journals (Sweden)

    G. R. van der Werf

    2010-06-01

    Full Text Available New burned area datasets and top-down constraints from atmospheric concentration measurements of pyrogenic gases have decreased the large uncertainty in fire emissions estimates. However, significant gaps remain in our understanding of the contribution of deforestation, savanna, forest, agricultural waste, and peat fires to total global fire emissions. Here we used a revised version of the Carnegie-Ames-Stanford-Approach (CASA biogeochemical model and improved satellite-derived estimates of area burned, fire activity, and plant productivity to calculate fire emissions for the 1997–2009 period on a 0.5° spatial resolution with a monthly time step. For November 2000 onwards, estimates were based on burned area, active fire detections, and plant productivity from the Moderate Resolution Imaging Spectroradiometer (MODIS sensor. For the partitioning we focused on the MODIS era. We used burned area estimates based on Tropical Rainfall Measuring Mission (TRMM Visible and Infrared Scanner (VIRS and Along-Track Scanning Radiometer (ATSR active fire data prior to MODIS (1997–2000 and Advanced Very High Resolution Radiometer (AVHRR derived estimates of plant productivity during the same period. Average global fire carbon emissions were 2.0 Pg yr−1 with significant interannual variability during 1997–2001 (2.8 Pg yr−1 in 1998 and 1.6 Pg yr−1 in 2001. Emissions during 2002–2007 were relatively constant (around 2.1 Pg yr−1 before declining in 2008 (1.7 Pg yr−1 and 2009 (1.5 Pg yr−1 partly due to lower deforestation fire emissions in South America and tropical Asia. During 2002–2007, emissions were highly variable from year-to-year in many regions, including in boreal Asia, South America, and Indonesia, but these regional differences cancelled out at a global level. During the MODIS era (2001–2009, most fire carbon emissions were from fires in grasslands and savannas (44

  14. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997-2009)

    Science.gov (United States)

    van der Werf, G.; Randerson, J. T.; Giglio, L.; Collatz, G. J.; Mu, M.; Kasibhatla, P. S.; Morton, D. C.; Defries, R. S.; Jin, Y.; van Leeuwen, T. T.

    2010-12-01

    New burned area datasets and top-down constraints from atmospheric concentration measurements of pyrogenic gases have decreased the large uncertainty in fire emissions estimates. However, significant gaps remain in our understanding of the contribution of deforestation, savanna, forest, agricultural waste, and peat fires to total global fire emissions. Here we used a revised version of the Carnegie-Ames-Stanford-Approach (CASA) biogeochemical model and improved satellite-derived estimates of area burned, fire activity, and plant productivity to calculate fire emissions for the 1997-2009 period on a 0.5° spatial resolution with a monthly time step. For November 2000 onwards, estimates were based on burned area, active fire detections, and plant productivity from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. For the partitioning we focused on the MODIS era. We used burned area estimates based on Tropical Rainfall Measuring Mission (TRMM) Visible and Infrared Scanner (VIRS) and Along-Track Scanning Radiometer (ATSR) active fire data prior to MODIS (1997-2000) and Advanced Very High Resolution Radiometer (AVHRR) derived estimates of plant productivity during the same period. Average global fire carbon emissions were 2.0 Pg yr-1 with significant interannual variability during 1997-2001 (2.8 Pg/yr in 1998 and 1.6 Pg/yr in 2001). Emissions during 2002-2007 were relatively constant (around 2.1 Pg/yr) before declining in 2008 (1.7 Pg/yr) and 2009 (1.5 Pg/yr) partly due to lower deforestation fire emissions in South America and tropical Asia. During 2002-2007, emissions were highly variable from year-to-year in many regions, including in boreal Asia, South America, and Indonesia, but these regional differences cancelled out at a global level. During the MODIS era (2001-2009), most fire carbon emissions were from fires in grasslands and savannas (44%) with smaller contributions from tropical deforestation and degradation fires (20%), woodland fires

  15. Enhancement of greenhouse gases associated with Canadian forest fire using multi sensor data

    Science.gov (United States)

    Singh, Rachita; Singh, Rachita; Chaturvedi, Ritu

    Forest fire is a common natural hazard that takes lives of people and billion dollar loss of properties almost every year. In the recent past frequency of forest fires have increased in Canada and throughout the world that is associated with the changes in land use and land cover practice. Multi sensor satellites are now capable in providing information about the land cover, atmosphere and meteorological parameters. The present paper deals with the multi sensor data (AIRS, MODIS, OMI AURA, TOMS) to study the changes in greenhouse and other gases (NOx, O3, CO, water vapor) and aerosol parameters. The detailed analysis of multi sensor data have shown elevated amount of greenhouse gases, total ozone column and aerosol optical depth during summer of 2004 at the time of Canadian forest fire compared to other years. The spatial distribution of greenhouse gas, aerosol optical depth and meteorological conditions are found to change after the onset of forest fire that shows the dynamic nature of the greenhouse gas and associated releases with the dispersion of the plume and smoke from the forest fire. The maximum changes are found from the surface up to a pressure level height 500 hPa, the change occur is found to be very much dependent on the distance from the source (forest fire location) and also on the meteorological conditions.

  16. Typology of land and forest fire in South Sumatra, Indonesia Based on Assessment of MODIS Data

    Science.gov (United States)

    Ardiansyah, M.; Boer, R.; Situmorang, A. P.

    2017-01-01

    In 2015, Sumatera and Kalimantan, in particular, has undergone dramatic fires. The fires were particularly bad in 2015 because of a prolonged dry season caused by the El Nino weather pattern and creating a lot of greenhouse gas emissions. Between about July and December, more than a million hectares of forest were burned. South Sumatra is one of the provinces with the highest of hotspots number and of fire area on this period. The aim of the study was to find burned area that caused by fire activity in 2015 and to identify a typology of land and forest fire the South Sumatera. In our study showed that between July and December 2015 the estimated burned area during El Nino in South Sumatra was 422,718 ha, of which 163,143 ha in mineral soil and 260,575 ha in peat soil. The majority of burned area occurred outside concession and inside concession with following typology: the fire activity in the HTI on non-forested land (26%), in the HTI on forested land (24%), in oil palm on non-forested land (17%), and in oil palm on forested land (2%).

  17. Emissions of Selected Semivolatile Organic Chemicals from Forest and Savannah Fires.

    Science.gov (United States)

    Wang, Xianyu; Thai, Phong K; Mallet, Marc; Desservettaz, Maximilien; Hawker, Darryl W; Keywood, Melita; Miljevic, Branka; Paton-Walsh, Clare; Gallen, Michael; Mueller, Jochen F

    2017-02-07

    The emission factors (EFs) for a broad range of semivolatile organic chemicals (SVOCs) from subtropical eucalypt forest and tropical savannah fires were determined for the first time from in situ investigations. Significantly higher (t test, P < 0.01) EFs (μg kg(-1) dry fuel, gas + particle-associated) for polycyclic aromatic hydrocarbons (∑13 PAHs) were determined from the subtropical forest fire (7,000 ± 170) compared to the tropical savannah fires (1,600 ± 110), due to the approximately 60-fold higher EFs for 3-ring PAHs from the former. EF data for many PAHs from the eucalypt forest fire were comparable with those previously reported from pine and fir forest combustion events. EFs for other SVOCs including polychlorinated biphenyl (PCB), polychlorinated naphthalene (PCN), and polybrominated diphenyl ether (PBDE) congeners as well as some pesticides (e.g., permethrin) were determined from the subtropical eucalypt forest fire. The highest concentrations of total suspended particles, PAHs, PCBs, PCNs, and PBDEs, were typically observed in the flaming phase of combustion. However, concentrations of levoglucosan and some pesticides such as permethrin peaked during the smoldering phase. Along a transect (10-150-350 m) from the forest fire, concentration decrease for PCBs during flaming was faster compared to PAHs, while levoglucosan concentrations increased.

  18. Factors influencing bark beetle outbreaks after forest fires on the Iberian Peninsula.

    Science.gov (United States)

    Lombardero, María J; Ayres, Matthew P

    2011-10-01

    Fires are among the most globally important disturbances in forest ecosystems. Forest fires can be followed by bark beetle outbreaks. Therefore, the dynamic interactions between bark beetle outbreaks and fire appear to be of general importance in coniferous forests throughout the world. We tested three hypotheses of how forest fires in pine ecosystems (Pinus pinaster Alton and P. radiata D. Don) in Spain could alter the population dynamics of bark beetles and influence the probability of further disturbance from beetle outbreaks: fire could affect the antiherbivore resin defenses of trees, change their nutritional suitability, or affect top-down controls on herbivore populations. P. radiata defenses decreased immediately after fire, but trees with little crown damage soon recovered with defenses higher than before. Fire either reduced or did not affect nutritional quality of phloem and either reduced or had no effect on the abundance, diversity, and relative biomass of natural enemies. After fire, bark beetle abundance increased via rapid aggregation of reproductive adults on scorched trees. However, our results indicate that for populations to increase to an outbreak situation, colonizing beetles must initiate attacks before tree resin defenses recover, host trees must retain enough undamaged phloem to facilitate larval development, and natural enemies should be sufficiently rare to permit high beetle recruitment into the next generation. Coincidence of these circumstances may promote the possibility of beetle populations escaping to outbreak levels.

  19. An enhanced real-time forest fire assessment algorithm based on video by using texture analysis

    Directory of Open Access Journals (Sweden)

    Gudikandhula Narasimha Rao

    2016-09-01

    Full Text Available As the human technology moved further, the risk of natural and man induced sudden damage increase exponentially. One of the most dangerous disasters is fire. In addition to its direct danger on human's lives, fire consumes forests where trees that provide humans with oxygen are destroyed. Every year, the large number of wildfires happening all over the world they burn forested lands, causing adverse ecological and social impacts. Early warning and immediate responses are the only ways to avoid such type of disasters. This work describes a naïve method is used to detect flames in forest by using a Spatio Wildfire Prediction and Monitoring System (SWPMS. Basically, the fired information retrieving from regions by using background subtraction and colour analysis. The fire behaviour is modelled by texture analysis using computer vision systems. The Central Server should receives fired regions from the volunteer's smart phone and use fired location coordinates, different angles of smart phone receives fired locations based on Google Earth API. Finally, Kalman filter estimator computes the position vector of a moving object. Antennas or Satellite systems are grasping information from fire regions then GIS will be analyzed those regions and send alert to local peoples of forest regions and NDRF team.

  20. Time series analysis of forest carbon dynamics: recovery of Pinus palustris physiology following a prescribed fire

    Science.gov (United States)

    G. Starr; C. L. Staudhammer; H. W. Loescher; R. Mitchell; A. Whelan; J. K. Hiers; J. J. O’Brien

    2015-01-01

    Frequency and intensity of fire determines the structure and regulates the function of savanna ecosystems worldwide, yet our understanding of prescribed fire impacts on carbon in these systems is rudimentary. We combined eddy covariance (EC) techniques and fuel consumption plots to examine the short-term response of longleaf pine forest carbon dynamics to one...

  1. Methodological approach for assessing the economic impact of forest fires using MODIS remote sensing images

    Science.gov (United States)

    Francisco Rodríguez y Silva; Juan Ramón Molina Martínez; Miguel Castillo Soto

    2013-01-01

    Assessing areas affected by forest fires requires comprehensive studies covering a wide range of analyzes. From an economic standpoint, assessing the affected area in monetary terms is crucial. Determining the degree of loss in the value of natural resources, both those of a tangible and intangible nature, enables knowing the residual value remaining after a fire, i.e...

  2. Do fungi have a role as soil stabilizers and remediators after forest fire?

    Science.gov (United States)

    Andrew W. Claridge; James M. Trappe; Karen Hansen

    2009-01-01

    The functional roles of fungi in recovery of forest ecosystems after fire remain poorly documented. We observed macrofungi soon after fire at two widely separated sites, one in the Pacific Northwest United States and the other in southeastern mainland Australia. The range of species onsite was compared against macrofungi reported after the volcanic eruption at Mount St...

  3. 'SINAMI': a tool for the economic evaluation of forest fire management programs in Mediterranean ecosystems

    Science.gov (United States)

    Francisco Rodriguez y Silva; Armando Gonzalez-Caban

    2010-01-01

    Historically, in Spain and most European countries, forest fire budgets have never been subjected to an objective and rigorous economic analysis indicative of the returns on investments in fire management protection programs. Thus far we have witnessed expansive growth of costs without any investment planning. New economic realities and more focussed oversight by...

  4. Selective logging and fire as drivers of alien grass invasion in a Bolivian tropical dry forest

    NARCIS (Netherlands)

    Veldman, J.W.; Mostacedo, B.; Peña-Claros, M.; Putz, F.E.

    2009-01-01

    Logging is an integral component of most conceptual models that relate human land-use and climate change to tropical deforestation via positive-feedbacks involving fire. Given that grass invasions can substantially alter fire regimes, we studied grass distributions in a tropical dry forest 1-5 yr af

  5. A stochastic forest fire model for future land cover scenarios assessment

    Science.gov (United States)

    M. D' Andrea; P. Fiorucci; T.P. Holmes

    2011-01-01

    Land cover is affected by many factors including economic development, climate and natural disturbances such as wildfires. The ability to evaluate how fire regimes may alter future vegetation, and how future vegetation may alter fire regimes, would assist forest managers in planning management actions to be carried out in the face of anticipated socio-economic and...

  6. 我国阻燃人造板研究与开发的几个问题%Some Issues in Research and Exploitation of Fire Retardant Reconstituted Panels in China

    Institute of Scientific and Technical Information of China (English)

    李光沛; 程强; 刘毅

    2001-01-01

    A discussion is made on the necessity and urgency of developingof fire retardant reconstituted panels,the common fire retardants and fire retardant treatment technology used for reconstituted anels,as well as their present status and development direction in China. An analysis is given of existing problems in research of fire-retardant panel and a new KM fire retardant is briefly recommmended.%论述了我国阻燃人造板研究的必要性和紧迫性,及人造板常用阻燃剂、阻燃处理工艺研究开发的现状和方向;分析了我国在阻燃人造板研究与开发中存在的问题,并介绍了新型KM系列阻燃剂的研究与开发近况。

  7. Effects of fire season on flowering of forbs and shrubs in longleaf pine forests.

    Science.gov (United States)

    Platt, William J; Evans, Gregory W; Davis, Mary M

    1988-08-01

    Effects of variation in fire season on flowering of forbs and shrubs were studied experimentally in two longleaf pine forest habitats in northern Florida, USA. Large, replicated plots were burned at different times of the year, and flowering on each plot was measured over the twelve months following fire. While fire season had little effect on the number of species flowering during the year following fire, fires during the growing season decreased average flowering duration per species and increased synchronization of peak flowering times within species relative to fires between growing seasons. Fires during the growing season also increased the dominance of fall flowering forbs and delayed peak fall flowering. Differences in flowering resulting from variation in fire season were related to seasonal changes in the morphology of clonal forbs, especially fall-flowering composites. Community level differences in flowering phenologies indicated that timing of fire relative to environmental cues that induced flowering was important in determining flowering synchrony among species within the ground cover of longleaf pine forests. Differences in fire season produced qualitatively similar effects on flowering phenologies in both habitats, indicating plant responses to variation in the timing of fires were not habitat specific.

  8. Design of Fire Retardant Layer with Thermionic Coat Mixture%加入换热离子涂层的防火阻燃层设计

    Institute of Scientific and Technical Information of China (English)

    王小雷

    2014-01-01

    Model and flame retardant layer preparation method of fireproof coating pyrolysis reaction dynamics analysis is researched, a scheme of fire retardant coatings layer was prepared by adding in thermionic coating is proposed, coating for thermionic flame retardant and preparation of the fire retardant coatings layer preparation is obtained, fireproof coating per-formance is tested, heat adsorption isotherms is analyzed, the fire the preparation of coating of polymerization process is ob-tained. The experimental results show that the fire retardant coatings layer pyrolysis can get more residue carbon material, so that the fireproof coatings durable resistance to burn, fire prevention performance of heat insulation, improve the weather-ability and pyrolysis reaction activation energy, flame retardant layer and other components to achieve the best cooperation, a complete, organic fire system is formed. Fire retardant coatings layer has excellent physical and chemical properties and fireproof performance, it ensures fire safety.%研究防火涂料热解反应动力学分析模型和阻燃层制备方法,提出一种加入换热离子涂层的防火涂料阻燃层制备方案。进行换热离子涂层阻燃剂的制备和防火涂料阻燃层制备,测定防火涂料性能,分析热量吸附等温线,得到防火涂料制备聚合反应流程。实验结果表明,设计的防火涂料阻燃层热解残余物炭物质较多,从而使该防火涂料经久耐烧,具有高效隔热防火性能,提高其耐火性和热解反应的活化能力。阻燃层与其它各组分防火涂层达到最佳的协合,形成一个完整、有机的防火体系。研究得出的防火涂料阻燃层具有优良的阻燃性能和防火性能,保证了消防安全。

  9. Strata-based forest fuel classification for wild fire hazard assessment using terrestrial LiDAR

    Science.gov (United States)

    Chen, Yang; Zhu, Xuan; Yebra, Marta; Harris, Sarah; Tapper, Nigel

    2016-10-01

    Fuel structural characteristics affect fire behavior including fire intensity, spread rate, flame structure, and duration, therefore, quantifying forest fuel structure has significance in understanding fire behavior as well as providing information for fire management activities (e.g., planned burns, suppression, fuel hazard assessment, and fuel treatment). This paper presents a method of forest fuel strata classification with an integration between terrestrial light detection and ranging (LiDAR) data and geographic information system for automatically assessing forest fuel structural characteristics (e.g., fuel horizontal continuity and vertical arrangement). The accuracy of fuel description derived from terrestrial LiDAR scanning (TLS) data was assessed by field measured surface fuel depth and fuel percentage covers at distinct vertical layers. The comparison of TLS-derived depth and percentage cover at surface fuel layer with the field measurements produced root mean square error values of 1.1 cm and 5.4%, respectively. TLS-derived percentage cover explained 92% of the variation in percentage cover at all fuel layers of the entire dataset. The outcome indicated TLS-derived fuel characteristics are strongly consistent with field measured values. TLS can be used to efficiently and consistently classify forest vertical layers to provide more precise information for forest fuel hazard assessment and surface fuel load estimation in order to assist forest fuels management and fire-related operational activities. It can also be beneficial for mapping forest habitat, wildlife conservation, and ecosystem management.

  10. Post-Fire Restoration Plan for Sustainable Forest Management in South Korea

    Directory of Open Access Journals (Sweden)

    Soung-Ryoul Ryu

    2017-05-01

    Full Text Available This review was to determine a standard post-fire restoration strategy for use in South Korea according to the magnitude of the damage and the condition of the affected site. The government has strongly enforced reforestation in deforested areas as well as fire prevention and suppression since the 1960s. These efforts have successfully recovered dense even-aged forests over the last five decades. However, high fuel loading and the homogeneous structure have made forests vulnerable to large fires. In recent years, large forest fires have occurred in the eastern coastal region of Korea. Forest fires can significantly influence the economic and social activities of the residents of such affected forest regions. Burned areas may require urgent and long-term restoration strategies, depending on the condition of the affected site. Erosion control is the most important component of an urgent restoration and should be completed before a rainy season to prevent secondary damage such as landslides and sediment runoff in burned areas. Long-term restoration is necessary to renew forest functions such as timber production, water conservation, ecosystem conservation, and recreation for residents. Sound restoration for burned areas is critical for restoring healthy ecological functions of forests and providing economic incentives to local residents.

  11. Thinning and prescribed fire effects on overstory tree and snag structure in dry coniferous forests of the interior Pacific Northwest

    Science.gov (United States)

    Richy J. Harrod; David W. Peterson; Nicholas A. Povak; Erich Kyle Dodson

    2009-01-01

    Forest thinning and prescribed fires are practices used by managers to address concerns over ecosystem degradation and severe wildland fire potential in dry forests. There is some debate, however, about treatment effectiveness in meeting management objectives as well as their ecological consequences. The purpose of this study was to assess changes to forest stand...

  12. The Impact of Precipitation Regimes on Forest Fires in Yunnan Province, Southwest China

    Directory of Open Access Journals (Sweden)

    Feng Chen

    2014-01-01

    Full Text Available The amount, frequency, and duration of precipitation have important impact on the occurrence and severity of forest fires. To fully understand the effects of precipitation regimes on forest fires, a drought index was developed with number of consecutive dry days (daily precipitation less than 2 mm and total precipitation, and the relationships of drought and precipitation with fire activities were investigated over two periods (i.e., 1982–1988 and 1989–2008 in five ecoregions of Yunnan Province. The results showed that precipitation regime had a significant relationship with fire activities during the two periods. However, the influence of the drought on fire activities varied by ecoregions, with more impacts in drier ecoregions IV-V and less impacts in the more humid ecoregions I–III. The drought was more closely related to fire activities than precipitation during the two study periods, especially in the drier ecoregions, indicating that the frequency and the duration of precipitation had significant influences on forest fires in the drier areas. Drought appears to offer a better explanation than total precipitation on temporal changes in fire regimes across the five ecoregions in Yunnan. Our findings have significant implications for forecasting the local fire dangers under the future climate change.

  13. Spatial modeling of fires: a predictive tool for La Primavera Forest, Jalisco Mexico

    Directory of Open Access Journals (Sweden)

    Jose Luis Ibarra-Montoya

    2016-03-01

    Full Text Available The interaction of various elements of socioeconomic, political and cultural nature, influenced by landscape and climatic factors, are important aspects of fire regimes. Space models that integrate these elements and factors help to more accurately predict potential fire areas. The Protected Area Wildlife La Primavera (APFFLP is the main regulator of the climate of the Guadalajara metropolitan area, and forest fires frequently occur there. These represent a challenge for science and technology to develop methodologies that help predict forest fires. This study involves the construction of a spatial model that helps identify potential areas of fire in that area. The model integrates meteorological variables, landscape, fuels, anthropogenic and / or causality, and historical occurrences of fires during the period 1998-2012. According to the model, the variables that determine the areas of greatest fire potential are: slope (landscape, relative humidity (weather, vegetation type (causality and land use (anthropogenic. The model predicts a large area with high potential for fire, located in the central and northwest APFFLP polygon; also, there are small, isolated potential zones in the eastern part of the polygon. The information developed by this study could support the generation of local risk maps, thereby optimizing the actions of fire management and restoration of the La Primavera forest.

  14. Forest fire management to avoid unintended consequences: a case study of Portugal using system dynamics.

    Science.gov (United States)

    Collins, Ross D; de Neufville, Richard; Claro, João; Oliveira, Tiago; Pacheco, Abílio P

    2013-11-30

    Forest fires are a serious management challenge in many regions, complicating the appropriate allocation to suppression and prevention efforts. Using a System Dynamics (SD) model, this paper explores how interactions between physical and political systems in forest fire management impact the effectiveness of different allocations. A core issue is that apparently sound management can have unintended consequences. An instinctive management response to periods of worsening fire severity is to increase fire suppression capacity, an approach with immediate appeal as it directly treats the symptom of devastating fires and appeases the public. However, the SD analysis indicates that a policy emphasizing suppression can degrade the long-run effectiveness of forest fire management. By crowding out efforts to preventative fuel removal, it exacerbates fuel loads and leads to greater fires, which further balloon suppression budgets. The business management literature refers to this problem as the firefighting trap, wherein focus on fixing problems diverts attention from preventing them, and thus leads to inferior outcomes. The paper illustrates these phenomena through a case study of Portugal, showing that a balanced approach to suppression and prevention efforts can mitigate the self-reinforcing consequences of this trap, and better manage long-term fire damages. These insights can help policymakers and fire managers better appreciate the interconnected systems in which their authorities reside and the dynamics that may undermine seemingly rational management decisions.

  15. The impact of precipitation regimes on forest fires in Yunnan Province, southwest China.

    Science.gov (United States)

    Chen, Feng; Niu, Shukui; Tong, Xiaojuan; Zhao, Jinlong; Sun, Yu; He, Tengfei

    2014-01-01

    The amount, frequency, and duration of precipitation have important impact on the occurrence and severity of forest fires. To fully understand the effects of precipitation regimes on forest fires, a drought index was developed with number of consecutive dry days (daily precipitation less than 2 mm) and total precipitation, and the relationships of drought and precipitation with fire activities were investigated over two periods (i.e., 1982-1988 and 1989-2008) in five ecoregions of Yunnan Province. The results showed that precipitation regime had a significant relationship with fire activities during the two periods. However, the influence of the drought on fire activities varied by ecoregions, with more impacts in drier ecoregions IV-V and less impacts in the more humid ecoregions I-III. The drought was more closely related to fire activities than precipitation during the two study periods, especially in the drier ecoregions, indicating that the frequency and the duration of precipitation had significant influences on forest fires in the drier areas. Drought appears to offer a better explanation than total precipitation on temporal changes in fire regimes across the five ecoregions in Yunnan. Our findings have significant implications for forecasting the local fire dangers under the future climate change.

  16. Increasing elevation of fire in the Sierra Nevada and implications for forest change

    Science.gov (United States)

    Schwartz, Mark W.; Butt, Nathalie; Dolanc, Christopher R.; Holguin, Andrew; Moritz, Max A.; North, Malcolm P.; Safford, Hugh D.; Stephenson, Nathan L.; Thorne, James H.; van Mantgem, Phillip J.

    2015-01-01

    Fire in high-elevation forest ecosystems can have severe impacts on forest structure, function and biodiversity. Using a 105-year data set, we found increasing elevation extent of fires in the Sierra Nevada, and pose five hypotheses to explain this pattern. Beyond the recognized pattern of increasing fire frequency in the Sierra Nevada since the late 20th century, we find that the upper elevation extent of those fires has also been increasing. Factors such as fire season climate and fuel build up are recognized potential drivers of changes in fire regimes. Patterns of warming climate and increasing stand density are consistent with both the direction and magnitude of increasing elevation of wildfire. Reduction in high elevation wildfire suppression and increasing ignition frequencies may also contribute to the observed pattern. Historical biases in fire reporting are recognized, but not likely to explain the observed patterns. The four plausible mechanistic hypotheses (changes in fire management, climate, fuels, ignitions) are not mutually exclusive, and likely have synergistic interactions that may explain the observed changes. Irrespective of mechanism, the observed pattern of increasing occurrence of fire in these subalpine forests may have significant impacts on their resilience to changing climatic conditions.

  17. Holocene fire and vegetation dynamics in a montane forest, North Cascade Range, Washington, USA

    Science.gov (United States)

    Prichard, Susan J.; Gedalof, Ze'ev; Oswald, W. Wyatt; Peterson, David L.

    2009-07-01

    We reconstructed a 10,500-yr fire and vegetation history of a montane site in the North Cascade Range, Washington State based on lake sediment charcoal, macrofossil and pollen records. High-resolution sampling and abundant macrofossils made it possible to analyze relationships between fire and vegetation. During the early Holocene (> 10,500 to ca. 8000 cal yr BP) forests were subalpine woodlands dominated by Pinus contorta. Around 8000 cal yr BP, P. contorta sharply declined in the macrofossil record. Shade tolerant, mesic species first appeared ca. 4500 cal yr BP. Cupressus nootkatensis appeared most recently at 2000 cal yr BP. Fire frequency varies throughout the record, with significantly shorter mean fire return intervals in the early Holocene than the mid and late Holocene. Charcoal peaks are significantly correlated with an initial increase in macrofossil accumulation rates followed by a decrease, likely corresponding to tree mortality following fire. Climate appears to be a key driver in vegetation and fire regimes over millennial time scales. Fire and other disturbances altered forest vegetation at shorter time scales, and vegetation may have mediated local fire regimes. For example, dominance of P. contorta in the early Holocene forests may have been reinforced by its susceptibility to frequent, stand-replacing fire events.

  18. Development of customized fire behavior fuel models for boreal forests of northeastern China.

    Science.gov (United States)

    Wu, Zhi Wei; He, Hong Shi; Chang, Yu; Liu, Zhi Hua; Chen, Hong Wei

    2011-12-01

    Knowledge of forest fuels and their potential fire behavior across a landscape is essential in fire management. Four customized fire behavior fuel models that differed significantly in fuels characteristics and environmental conditions were identified using hierarchical cluster analysis based on fuels data collected across a boreal forest landscape in northeastern China. Fuel model I represented the dense and heavily branched Pinus pumila shrubland which has significant fine live woody fuels. These forests occur mainly at higher mountain elevations. Fuel model II is applicable to forests dominated by Betula platyphylla and Populus davidiana occurring in native forests on hill slopes or at low mountain elevations. This fuel model was differentiated from other fuel models by higher herbaceous cover and lower fine live woody loading. The primary coniferous forests dominated by Larix gmelini and Pinus sylvestris L. var. mongolica were classified as fuel model III and fuel model IV. Those fuel models differed from one another in average cover and height of understory shrub and herbaceous layers as well as in aspect. The potential fire behavior for each fuel model was simulated with the BehavePlus5.0 fire behavior prediction system. The simulation results indicated that the Pinus pumila shrubland fuels had the most severe fire behavior for the 97th percentile weather condition, and had the least severe fire behavior under 90th percentile weather condition. Fuel model II presented the least severe fire potential across weather conditions. Fuel model IV resulted in greater fire severity than Fuel model III across the two weather scenarios that were examined.

  19. Climate effects on fire regimes and tree recruitment in Black Hills ponderosa pine forests.

    Science.gov (United States)

    Brown, Peter M

    2006-10-01

    Climate influences forest structure through effects on both species demography (recruitment and mortality) and disturbance regimes. Here, I compare multi-century chronologies of regional fire years and tree recruitment from ponderosa pine forests in the Black Hills of southwestern South Dakota and northeastern Wyoming to reconstructions of precipitation and global circulation indices. Regional fire years were affected by droughts and variations in both Pacific and Atlantic sea surface temperatures. Fires were synchronous with La Niñas, cool phases of the Pacific Decadal Oscillation (PDO), and warm phases of the Atlantic Multidecadal Oscillation (AMO). These quasi-periodic circulation features are associated with drought conditions over much of the western United States. The opposite pattern (El Niño, warm PDO, cool AMO) was associated with fewer fires than expected. Regional tree recruitment largely occurred during wet periods in precipitation reconstructions, with the most abundant recruitment coeval with an extended pluvial from the late 1700s to early 1800s. Widespread even-aged cohorts likely were not the result of large crown fires causing overstory mortality, but rather were caused by optimal climate conditions that contributed to synchronous regional recruitment and longer intervals between surface fires. Synchronous recruitment driven by climate is an example of the Moran effect. The presence of abundant fire-scarred trees in multi-aged stands supports a prevailing historical model for ponderosa pine forests in which recurrent surface fires affected heterogenous forest structure, although the Black Hills apparently had a greater range of fire behavior and resulting forest structure over multi-decadal time scales than ponderosa pine forests of the Southwest that burned more often.

  20. A stochastic Forest Fire Model for future land cover scenarios assessment

    Directory of Open Access Journals (Sweden)

    M. D'Andrea

    2010-10-01

    Full Text Available Land cover is affected by many factors including economic development, climate and natural disturbances such as wildfires. The ability to evaluate how fire regimes may alter future vegetation, and how future vegetation may alter fire regimes, would assist forest managers in planning management actions to be carried out in the face of anticipated socio-economic and climatic change. In this paper, we present a method for calibrating a cellular automata wildfire regime simulation model with actual data on land cover and wildfire size-frequency. The method is based on the observation that many forest fire regimes, in different forest types and regions, exhibit power law frequency-area distributions. The standard Drossel-Schwabl cellular automata Forest Fire Model (DS-FFM produces simulations which reproduce this observed pattern. However, the standard model is simplistic in that it considers land cover to be binary – each cell either contains a tree or it is empty – and the model overestimates the frequency of large fires relative to actual landscapes. Our new model, the Modified Forest Fire Model (MFFM, addresses this limitation by incorporating information on actual land use and differentiating among various types of flammable vegetation. The MFFM simulation model was tested on forest types with Mediterranean and sub-tropical fire regimes. The results showed that the MFFM was able to reproduce structural fire regime parameters for these two regions. Further, the model was used to forecast future land cover. Future research will extend this model to refine the forecasts of future land cover and fire regime scenarios under climate, land use and socio-economic change.

  1. Sensitivity of ALOS/PALSAR imagery to forest degradation by fire in northern Amazon

    Science.gov (United States)

    Martins, Flora da Silva Ramos Vieira; dos Santos, João Roberto; Galvão, Lênio Soares; Xaud, Haron Abrahim Magalhães

    2016-07-01

    We evaluated the sensitivity of the full polarimetric Phased Array type L-band Synthetic Aperture Radar (PALSAR), onboard the Advanced Land Observing Satellite (ALOS), to forest degradation caused by fires in northern Amazon, Brazil. We searched for changes in PALSAR signal and tri-dimensional polarimetric responses for different classes of fire disturbance defined by fire frequency and severity. Since the aboveground biomass (AGB) is affected by fire, multiple regression models to estimate AGB were obtained for the whole set of coherent and incoherent attributes (general model) and for each set separately (specific models). The results showed that the polarimetric L-band PALSAR attributes were sensitive to variations in canopy structure and AGB caused by forest fire. However, except for the unburned and thrice burned classes, no single PALSAR attribute was able to discriminate between the intermediate classes of forest degradation by fire. Both the coherent and incoherent polarimetric attributes were important to explain AGB variations in tropical forests affected by fire. The HV backscattering coefficient, anisotropy, double-bounce component, orientation angle, volume index and HH-VV phase difference were PALSAR attributes selected from multiple regression analysis to estimate AGB. The general regression model, combining phase and power radar metrics, presented better results than specific models using coherent or incoherent attributes. The polarimetric responses indicated the dominance of VV-oriented backscattering in primary forest and lightly burned forests. The HH-oriented backscattering predominated in heavily and frequently burned forests. The results suggested a greater contribution of horizontally arranged constituents such as fallen trunks or branches in areas severely affected by fire.

  2. LIDAR detection of forest fire smoke above Sofia

    Science.gov (United States)

    Grigorov, Ivan; Deleva, Atanaska; Stoyanov, Dimitar; Kolev, Nikolay; Kolarov, Georgi

    2015-01-01

    The distribution of aerosol load in the atmosphere due to two forest fires near Sofia (the capital city of Bulgaria) was studied using two aerosol lidars which operated at 510.6 nm and 1064 nm. Experimental data is presented as 2D-heatmaps of the evolution of attenuated backscatter coefficient profiles and mean profile of the aerosol backscatter coefficient, calculated for each lidar observation. Backscatter related Angstrom exponent was used as a criterion in particle size estimation of detected smoke layers. Calculated minimal values at altitudes where the aerosol layer was observed corresponded to predominant fraction of coarse aerosol. Dust-transport forecast maps and calculations of backward trajectories were employed to make conclusions about aerosol's origin. They confirmed the local transport of smoke aerosol over the city and lidar station. DREAM forecast maps predicted neither cloud cover, nor Saharan load in the air above Sofia on the days of measurements. The results of lidar observations are discussed in conjunction with meteorological situation, aiming to better explain the reason for the observed aerosol stratification. The data of regular radio sounding of the atmosphere showed a characteristic behavior with small differences of the values between the air temperature and dew-point temperature profiles at aerosol smoke layer altitude. So the resulting stratification revealed the existence of atmospheric layers with aerosol trapping properties.

  3. Forest fires on $\\Z_+$ with ignition only at 0

    CERN Document Server

    Volkov, Stanislav

    2009-01-01

    We consider a version of the forest fire model on graph $G$, where each vertex of a graph becomes occupied with rate one. A fixed vertex $v_0$ is hit by lightning with the same rate, and when this occurs, the whole cluster of occupied vertices containing $v_0$ is burnt out. We show that when $G=Z_{+}$, the times between consecutive burnouts at vertex $n$, divided by $\\log n$, converge weakly as $n\\to\\infty$ to a random variable which distribution is $1-\\rho(x)$ where $\\rho(x)$ is the Dickman function. We also show that on transitive graphs with a non-trivial site percolation threshold and one infinite cluster at most, the distributions of the time till the first burnout of {\\it any} vertex have exponential tails. Finally, we give an elementary proof of an interesting limit: $\\lim_{n\\to\\infty} \\sum_{k=1}^n {n \\choose k} (-1)^k \\log k -\\log\\log n=\\gamma$.

  4. Effects of fire on spotted owl site occupancy in a late-successional forest

    Science.gov (United States)

    Roberts, Susan L.; van Wagtendonk, Jan W.; Miles, A. Keith; Kelt, Douglas A.

    2011-01-01

    The spotted owl (Strix occidentalis) is a late-successional forest dependent species that is sensitive to forest management practices throughout its range. An increase in the frequency and spatial extent of standreplacing fires in western North America has prompted concern for the persistence of spotted owls and other sensitive late-successional forest associated species. However, there is sparse information on the effects of fire on spotted owls to guide conservation policies. In 2004-2005, we surveyed for California spotted owls during the breeding season at 32 random sites (16 burned, 16 unburned) throughout late-successional montane forest in Yosemite National Park, California. Our burned areas burned at all severities, but predominately involved low to moderate fire severity. Based on an information theoretic approach, spotted owl detection and occupancy rates were similar between burned and unburned sites. Nest and roost site occupancy was best explained by a model that combined total tree basal area (positive effect) with cover by coarse woody debris (negative effect). The density estimates of California spotted owl pairs were similar in burned and unburned forests, and the overall mean density estimate for Yosemite was higher than previously reported for montane forests. Our results indicate that low to moderate severity fires, historically common within montane forests of the Sierra Nevada, California, maintain habitat characteristics essential for spotted owl site occupancy. These results suggest that managed fires that emulate the historic fire regime of these forests may maintain spotted owl habitat and protect this species from the effects of future catastrophic fires.

  5. Spatially explicit fire-climate history of the boreal forest-tundra (Eastern Canada) over the last 2000 years.

    Science.gov (United States)

    Payette, Serge; Filion, Louise; Delwaide, Ann

    2008-07-12

    Across the boreal forest, fire is the main disturbance factor and driver of ecosystem changes. In this study, we reconstructed a long-term, spatially explicit fire history of a forest-tundra region in northeastern Canada. We hypothesized that current occupation of similar topographic and edaphic sites by tundra and forest was the consequence of cumulative regression with time of forest cover due to compounding fire and climate disturbances. All fires were mapped and dated per 100 year intervals over the last 2,000 years using several fire dating techniques. Past fire occurrences and post-fire regeneration at the northern forest limit indicate 70% reduction of forest cover since 1800 yr BP and nearly complete cessation of forest regeneration since 900 yr BP. Regression of forest cover was particularly important between 1500s-1700s and possibly since 900 yr BP. Although fire frequency was very low over the last 100 years, each fire event was followed by drastic removal of spruce cover. Contrary to widespread belief of northward boreal forest expansion due to recent warming, lack of post-fire recovery during the last centuries, in comparison with active tree regeneration more than 1,000 years ago, indicates that the current climate does not favour such expansion.

  6. Spatial patterning of fuels and fire hazard across a central U.S. deciduous forest region

    Science.gov (United States)

    Michael C. Stambaugh; Daniel C. Dey; Richard P. Guyette; Hong S. He; Joseph M. Marschall

    2011-01-01

    Information describing spatial and temporal variability of forest fuel conditions is essential to assessing overall fire hazard and risk. Limited information exists describing spatial characteristics of fuels in the eastern deciduous forest region, particularly in dry oak-dominated regions that historically burned relatively frequently. From an extensive fuels survey...

  7. Strategies to prevent forest fires and techniques to reverse degradation processes in burned areas

    NARCIS (Netherlands)

    Ferreira, António José Dinis; Alegre, Sérgio Prats; Coelho, Celeste Oliveira Alves; Shakesby, Rick A.; Páscoa, Fernando M.; Ferreira, Carla Sofia Santos; Keizer, Jan Jacob; Ritsema, Coen

    2015-01-01

    Forest fires are probably the more deleterious event in forest and range areas in the Mediterranean nowadays. Despite the significant area burned every year, little has been done to develop strategies and techniques for soil and water conservation in burned areas, despite the major impacts on soi

  8. Development of ecological restoration experiments in fire adapted forests at Grand Canyon National Park

    Science.gov (United States)

    Thomas A. Heinlein; W. Wallace Covington; Peter Z. Fule; Margaret H. Moore; Hiram B. Smith

    2000-01-01

    The management of national park and wilderness areas dominated by forest ecosystems adapted to frequent, low-intensity fires, continues to be a tremendous challenge. Throughout the inland West and particularly in the Southwest, ponderosa pine (Pinus ponderosa) and mixed conifer forests have become dense and structurally homogeneous after periods of...

  9. Vulnerability and Resilience of Temperate Forest Landscapes to Broad-Scale Deforestation in Response to Changing Fire Regimes and Altered Post-Fire Vegetation Dynamics

    Science.gov (United States)

    Tepley, A. J.; Veblen, T. T.; Perry, G.; Anderson-Teixeira, K. J.

    2015-12-01

    In the face of on-going climatic warming and land-use change, there is growing concern that temperate forest landscapes could be near a tipping point where relatively small changes to the fire regime or altered post-fire vegetation dynamics could lead to extensive conversion to shrublands or savannas. To evaluate vulnerability and resilience to such conversion, we develop a simple model based on three factors we hypothesize to be key in predicting temperate forest responses to changing fire regimes: (1) the hazard rate (i.e., the probability of burning in the next year given the time since the last fire) in closed-canopy forests, (2) the hazard rate for recently-burned, open-canopy vegetation, and (3) the time to redevelop canopy closure following fire. We generate a response surface representing the proportions of the landscape potentially supporting closed-canopy forest and non-forest vegetation under nearly all combinations of these three factors. We then place real landscapes on this response surface to assess the type and magnitude of changes to the fire regime that would drive extensive forest loss. We show that the deforestation of much of New Zealand that followed initial human colonization and the introduction of a new ignition source ca. 750 years ago was essentially inevitable due to the slow rate of forest recovery after fire and the high flammability of post-fire vegetation. In North America's Pacific Northwest, by contrast, a predominantly forested landscape persisted despite two periods of widespread burning in the recent past due in large part to faster post-fire forest recovery and less pronounced differences in flammability between forests and the post-fire vegetation. We also assess the factors that could drive extensive deforestation in other regions to identify where management could reduce this potential and to guide field and modeling work to better understand the responses and ecological feedbacks to changing fire regimes.

  10. Post-Fire Changes in Forest Biomass Retrieved by Airborne LiDAR in Amazonia

    Directory of Open Access Journals (Sweden)

    Luciane Yumie Sato

    2016-10-01

    Full Text Available Fire is one of the main factors directly impacting Amazonian forest biomass and dynamics. Because of Amazonia’s large geographical extent, remote sensing techniques are required for comprehensively assessing forest fire impacts at the landscape level. In this context, Light Detection and Ranging (LiDAR stands out as a technology capable of retrieving direct measurements of vegetation vertical arrangement, which can be directly associated with aboveground biomass. This work aims, for the first time, to quantify post-fire changes in forest canopy height and biomass using airborne LiDAR in western Amazonia. For this, the present study evaluated four areas located in the state of Acre, called Rio Branco, Humaitá, Bonal and Talismã. Rio Branco and Humaitá burned in 2005 and Bonal and Talismã burned in 2010. In these areas, we inventoried a total of 25 plots (0.25 ha each in 2014. Humaitá and Talismã are located in an open forest with bamboo and Bonal and Rio Branco are located in a dense forest. Our results showed that even ten years after the fire event, there was no complete recovery of the height and biomass of the burned areas (p < 0.05. The percentage difference in height between control and burned sites was 2.23% for Rio Branco, 9.26% for Humaitá, 10.03% for Talismã and 20.25% for Bonal. All burned sites had significantly lower biomass values than control sites. In Rio Branco (ten years after fire, Humaitá (nine years after fire, Bonal (four years after fire and Talismã (five years after fire biomass was 6.71%, 13.66%, 17.89% and 22.69% lower than control sites, respectively. The total amount of biomass lost for the studied sites was 16,706.3 Mg, with an average loss of 4176.6 Mg for sites burned in 2005 and 2890 Mg for sites burned in 2010, with an average loss of 3615 Mg. Fire impact associated with tree mortality was clearly detected using LiDAR data up to ten years after the fire event. This study indicates that fire disturbance

  11. Development of Fire-Retardant Elastic Acrylic Finishing Coating%阻燃型弹性丙烯酸饰面涂料的研制

    Institute of Scientific and Technical Information of China (English)

    陈铁鑫; 郭岳峰

    2012-01-01

    The fire - retardant elastic acrylic finishing coating applied on polyurethane foam was prepared with UV curable elastomeric acrylic emulsion as binder and modified ammonium polyphosphate ( APP) as fire retardant. Orthogonal test was used to optimize the coating formulation,the best content of fire retardant was 35%. Effection of UV and sun lights on coating tensile property were studied,and found that exoposure to UV 4 h and sun light 7 d,the tensile strength reached the highest; coating fire - retardant property was ev-alated by use of oxygen index and mass loss.%采用紫外光固化的弹性丙烯酸树脂为基料,改性聚磷酸铵为阻燃剂,制备了聚氨酯泡沫用阻燃型弹性丙烯酸饰面涂料,通过正交试验对涂料配方进行了优化,确定了阻燃剂最佳含量为35%.考察了紫外光和太阳光对涂层拉伸强度的影响,紫外光4h,太阳光7d,涂层拉伸性能达到最佳;采用氧指数及质量损失评估了涂层的阻燃性能.

  12. Fire Return Interval Within the Northern Boundary of the Larch Forest

    Science.gov (United States)

    Kharuk, V. I.; Dvinskaya, M. L.; Ranson, K. J.

    2011-01-01

    Larch (Larix spp.) dominant forests compose a large proportion of the forests of Russia (i.e., about 40% of forested areas). These forests range from the Yenisei ridge on the west to the Pacific Ocean on the east, and from Lake Baikal on the south to the 73rd parallel in the north. Larch stands comprise the world s northern most forest at Ary-Mas (72 deg 28' N, 102 deg 15' E). Larch dominated forests occupy about 70% of the permafrost areas in Siberia. Larch forms high closure stands as well as open forests, and is found mainly over permafrost, where other tree species barely survive. Wildfires are typical for this territory with the majority occurring as ground fires due to low crown closure. Due to the thin active layer in permafrost soils and a dense lichen-moss cover, ground fires may cause stand mortality. The vast areas of larch-dominant forests is generally considered as a "carbon sink"; however, positive long-term temperature trends at higher latitudes are expected to result in an increase of fire frequency, and thus may convert this area to a source for greenhouse gases. There are recent observations regarding the increase of fire frequency within non-protected territories. Surprisingly, there are few publications on fire chronoseqences for the huge forested territory between the Ural Mountains and the Pacific Ocean. Also there is a general understanding that bimodal (late spring -- early summer and late summer-beginning of fall) fire seasonal distribution in the south becomes uni-modal (late spring -- early summer) in the north. The purpose of this study is to investigate the wildfire history at the northern edge of the zone of larch dominance.

  13. Macromycetes diversity of pine-tree plantings on a post-fire forest site in Notecka Forest (NW Poland

    Directory of Open Access Journals (Sweden)

    Stefan Friedrich

    2014-08-01

    Full Text Available The article presents the results of a study on fungi in pine-tree plantings after the last great fire in Notecka Forest. The occurrence of 134 species of fungi and 3 species of myxomycetes was recorded in 25 permanent study areas investigated between 1993 and 1998. The particpalion of bio-ecological of macromycetes was described in the context of vegetation changes in the years following the fire.

  14. An Overview of Wood Fire-Retardant in the United States%美国阻燃处理木材的现状

    Institute of Scientific and Technical Information of China (English)

    纪磊; 陈志林; 蔡智勇

    2011-01-01

    This article reviewed the current status of wood fire retardants, and their corresponding manufacturing specifications and standards in the US. The author also introduced five major fireretardant manufacturers in the US and their flame retardant formulations and market. It was expected that this paper would provide useful suggestions to the domestic fire-retardant industry.%总结美国阻燃处理木材的规范与标准,介绍美国主要阻燃处理木材生产商的阻燃木材产品,分析主要阻燃剂的配方及合成工艺、处理木材的工艺与技术特点,为国内阻燃处理木材行业的技术发展提出建议.

  15. Satellite remote-sensing technologies used in forest fire management

    Institute of Scientific and Technical Information of China (English)

    TIAN Xiao-rui; Douglas J. Mcrae; SHU Li-fu; WANG Ming-yu; LI Hong

    2005-01-01

    Satellite remote sensing has become a primary data source for fire danger rating prediction, fuel and fire mapping, fire monitoring, and fire ecology research. This paper summarizes the research achievements in these research fields, and discusses the future trend in the use of satellite remote-sensing techniques in wildfire management. Fuel-type maps from remote-sensing data can now be produced at spatial and temporal scales quite adequate for operational fire management applications. US National Oceanic and Atmospheric Administration (NOAA) and Moderate Resolution Imaging Spectroradiometer (MODIS) satellites are being used for fire detection worldwide due to their high temporal resolution and ability to detect fires in remote regions. Results can be quickly presented on many Websites providing a valuable service readily available to fire agency. As cost-effective tools, satellite remote-sensing techniques play an important role in fire mapping. Improved remote-sensing techniques have the potential to date older fire scars and provide estimates of burn severity. Satellite remote sensing is well suited to assessing the extent of biomass burning, a prerequisite for estimating emissions at regional and global scales, which are needed for better understanding the effects of fire on climate change. The types of satellites used in fire research are also discussed in the paper. Suggestions on what remote-sensing efforts should be completed in China to modernize fire management technology in this country are given.

  16. Broadleaf deciduous forest counterbalanced the direct effect of climate on Holocene fire regime in hemiboreal/boreal region (NE Europe)

    Science.gov (United States)

    Feurdean, Angelica; Veski, Siim; Florescu, Gabriela; Vannière, Boris; Pfeiffer, Mirjam; O'Hara, Robert B.; Stivrins, Normunds; Amon, Leeli; Heinsalu, Atko; Vassiljev, Jüri; Hickler, Thomas

    2017-08-01

    Disturbances by fire are essential for the functioning of boreal/hemiboreal forests, but knowledge of long-term fire regime dynamics is limited. We analysed macrocharcoal morphologies and pollen of a sediment record from Lake Lielais Svētiņu (eastern Latvia), and in conjunction with fire traits analysis present the first record of Holocene variability in fire regime, fuel sources and fire types in boreal forests of the Baltic region. We found a phase of moderate to high fire activity during the cool and moist early (mean fire return interval; mFRI of ∼280 years; 11,700-7500 cal yr BP) and the late (mFRI of ∼190 years; 4500-0 cal yr BP) Holocene and low fire activity (mFRI of ∼630 years) during the Holocene Thermal Optimum (7500-4500 cal yr BP). Charcoal morphotypes and the pollen record show the predominance of frequent surface fires, occasionally transitioning to the crown during Pinus sylvestris-Betula boreal forests and less frequent surface fires during the dominance of temperate deciduous forests. In contrast to the prevailing opinion that fires in boreal forests are mostly low to moderate severity surface fires, we found evidence for common occurrence of stand-replacing crown fires in Picea abies canopy. Our results highlight that charcoal morphotypes analysis allows for distinguishing the fuel types and surface from crown fires, therefore significantly advancing our interpretation of fire regime. Future warmer temperatures and increase in the frequency of dry spells and abundant biomass accumulation can enhance the fire risk on the one hand, but will probably promote the expansion of broadleaf deciduous forests to higher latitudes, on the other hand. By highlighting the capability of broadleaf deciduous forests to act as fire-suppressing landscape elements, our results suggest that fire activity may not increase in the Baltic area under future climate change.

  17. Contribution of forest fires to concentrations of particulate matter in Singapore

    Science.gov (United States)

    Spracklen, D. V.; Reddington, C.; Yoshioka, M.; Arnold, S.; Balasubramanian, R.

    2013-12-01

    Singapore is regularly exposed to substantial levels of transboundary air pollution arising from uncontrolled forest and peat fires from specific regions within Southeast Asia. This air pollution has detrimental impacts on the lives of Singapore residents and on sensitive ecosystems. In June 2013, forest fires resulted in concentrations of particulate matter greatly exceeding levels recommended for human health, causing substantial public concern. We apply two different methods to quantify the impact of forest fires on the concentrations of particulate matter with diameter less than 2.5 micrometres (PM2.5) in Singapore. Firstly, we use a global aerosol model (GLOMAP) in combination with fire emissions from GFED3 to simulate PM2.5 concentrations over the period 1998-2009. We evaluate simulated PM2.5 concentrations against long-term observations from Singapore. To identify the contributions of fires from different source regions to PM2.5 concentrations we run multiple simulations with and without fire emissions from specific regions across Southeast Asia. Secondly, we apply an atmospheric back trajectory model in combination with the GFED3 fire emissions to calculate exposure of air masses arriving in Singapore to fire emissions. Both methods use meteorology from the European Centre for Medium Range Weather Forecasts and are consistent with the large-scale atmospheric flow from the assimilated observations. We find that both methods give consistent results, with forest fires increasing PM2.5 concentrations in Singapore predominately during April to October. Forest and peat fires in Sumatra and Kalimantan cause the greatest degradation of air quality in Singapore. The contribution of fires to PM2.5 concentrations in Singapore exhibits strong interannual variability. During years with a strong contribution from fires, our simulations show that the prevention of fires in southern Sumatra would reduce regional PM2.5 concentrations around Singapore by more than a factor

  18. Mega fire emissions in Siberia: potential supply of soluble iron from forests to the ocean

    Directory of Open Access Journals (Sweden)

    A. Ito

    2011-02-01

    Full Text Available Significant amounts of carbon and nutrients are released to the atmosphere due to large fires in forests. Characterization of the spatial distribution and temporal variation of the intense fire emissions is crucial for assessing the atmospheric loadings of aerosols and trace gases. This paper discusses issues of the representation of forest fires in the estimation of emissions and the application to an atmospheric chemistry transport model (CTM. The potential contribution of forest fires to the deposition of soluble iron (Fe into the ocean is highlighted, with a focus on mega fires in eastern Siberia. Satellite products of burned area, active fire, and land cover are used to estimate biomass burning emissions in conjunction with a biogeochemical model. Satellite-derived plume height from MISR is used for the injection height of boreal forest fire emissions. This methodology is applied to quantify fire emission rates in each three-dimensional grid location in the high latitude Northern Hemisphere (> 30° N latitude over a 5-year period from 2001 to 2005. There is large interannual variation in forest burned area during 2001–2005 (13–51 × 103 km2 yr−1 which results in a corresponding variation in the annual emissions of carbon monoxide (CO (12–78 Tg CO yr−1. Satellite observations of CO from MOPITT are used to evaluate the model performance in simulating the spatial distribution and temporal variation of the fire emissions. During the major Siberian fire seasons in the summer of 2002 and in the spring of 2003, the model results for CO enhancements due to intense fires are in good agreement with MOPITT observations. These fire emission rates are applied to the aerosol chemistry transport model to examine the relative importance of biomass burning sources of soluble iron compared to those from dust sources. Compared to the dust sources without the atmospheric processing by acidic species

  19. Abrupt fire regime change may cause landscape-wide loss of mature obligate seeder forests.

    Science.gov (United States)

    Bowman, David M J S; Murphy, Brett P; Neyland, Dominic L J; Williamson, Grant J; Prior, Lynda D

    2014-03-01

    Obligate seeder trees requiring high-severity fires to regenerate may be vulnerable to population collapse if fire frequency increases abruptly. We tested this proposition using a long-lived obligate seeding forest tree, alpine ash (Eucalyptus delegatensis), in the Australian Alps. Since 2002, 85% of the Alps bioregion has been burnt by several very large fires, tracking the regional trend of more frequent extreme fire weather. High-severity fires removed 25% of aboveground tree biomass, and switched fuel arrays from low loads of herbaceous and litter fuels to high loads of flammable shrubs and juvenile trees, priming regenerating stands for subsequent fires. Single high-severity fires caused adult mortality and triggered mass regeneration, but a second fire in quick succession killed 97% of the regenerating alpine ash. Our results indicate that without interventions to reduce fire severity, interactions between flammability of regenerating stands and increased extreme fire weather will eliminate much of the remaining mature alpine ash forest. © 2013 John Wiley & Sons Ltd.

  20. 热重分析仪在评定饰面型防火涂料防火性能中的应用%The Application of Thermogravimetric Analyzer in the Evaluation of Fire Resistance of Decorative Fire Retardant Coatings

    Institute of Scientific and Technical Information of China (English)

    马腾洲; 陈俊水; 赵雨薇

    2015-01-01

    采用热重分析仪研究了不同类型饰面防火涂料的防火性能.试验结果表明:该方法同国标检测方法结果一致,是评定饰面型防火涂料防火性能的快速初筛方法.%The fire resistance of different types of decorative fire retardant coatings was studied by the TGA. The results showed that the test resutl from this method was consistent with that from national standard. It was a quick screening method for evaluating the fire resistance of decorative fire retardant coatings.

  1. Monitoring Forest Fire with MODIS-NDVI Images in Beijing

    Institute of Scientific and Technical Information of China (English)

    TIAN Xiaorui; SHU Lifu; WANG Mingyu; ZHAO Fengjun

    2006-01-01

    Fuel moisture monitoring is an important component of fire danger rating system in fire management This paper describes the application of NDVI images in monitoring potential fire danger and analyses the relationship between MODIS-NDVI and fire weather index.The series of weather data in Beijing are used in this analysis including fire seasons in spring during 2004 to 2005.Canadian Fire Weather Index (FWI) is selected in this study, because it can properly estimate moisture conditions of live fuel.Fine fuel moisture, drought code and FWI values are generated by using the squared inverse distance algorithm.Strong correlations have previously been observed between FWI variables and NDVI data.The MODIS-NDVI images can be used in fire management as component related with live fuel moisture and fire danger.

  2. Joint processing of RS and WWLLN data for forest fire danger estimation: new concept

    Science.gov (United States)

    Baranovskiy, Nikolay V.; Krechetova, Svetlana Yu.; Belikova, Marina Yu.; Kocheeva, Nina A.; Yankovich, Elena P.

    2016-10-01

    The present article describes a new concept of lightning-caused forest fire danger using a probabilistic criterion. The assessment of forest fire danger is made on the basis of the algorithm that classifies the forest territory by vegetation conditions. Lightning activity is processed by the MODIS spectroradiometer according to the World Wide Lightning Location Network data and remote sensing data for the Timiryazevskiy forestry in the Tomsk Region. The cluster analysis of the WWLLN and MOD06_L2 product data are used in the present paper.

  3. Evaluation of deriving fire cycle of forested landscape based on time-since-fire distribution

    Institute of Scientific and Technical Information of China (English)

    ZHANG Quan-fa; Kurt S. Pregitzer; JIANG Ming-xi; CHEN Wen-jun

    2006-01-01

    Estimation of fire cycle has been conducted by using the negative exponential function as an approximation of time-since-fire distribution of a landscape assumed .to be homogeneous with respect to fire spread processes. The authors imposed predefined fire cycles on a virtual landscape of 100 cell ×100 cell, and obtained a mosaic composing of patches with different stand ages (i.e. time since fire). Graphical and statistical methods (Van Wagner 1978; Reed et al. 1998) were employed to derive fire cycle from the virtual landscape. By comparing the predefined and the derived fire cycles, the two methods and tested the effects of sample size and hazard of burning (i.e., stand's susceptibility to fire in relation to its stand age) were evaluated on fire cycle deviation. The simulation results indicated a minimum sample size of 10 times of the annual burnt area would be required for partitioning time-since-fire distribution into homogeneous epochs indicating temporal change in fire cycle. Statistically, there was significant difference among the imposed and the derived fire cycle, regardless of sample sizes with or without consideration of hazard of burning. Both methods underestimated the more recent fire cycle without significant difference between them. The results imply that deviation of fire cycle based on time-since-fire distribution warrants cautious interpretation, especially when a landscape is spatially partitioned into small units and temporal changes in fire cycle are involved.

  4. Investigating the effects of forest structure on the small mammal community in frequent-fire coniferous forests using capture-recapture models for stratified populations

    Science.gov (United States)

    Rahel Sollmann; Angela M. White; Beth Gardner; Patricia N. Manley

    2015-01-01

    Small mammals comprise an important component of forest vertebrate communities. Our understanding of how small mammals use forested habitat has relied heavily on studies in forest systems not naturally prone to frequent disturbances. Small mammal populations that evolved in frequent-fire forests, however, may be less restricted to specific habitat conditions due to the...

  5. Cellular automaton modelling of lightning-induced and man made forest fires

    Directory of Open Access Journals (Sweden)

    R. Krenn

    2009-10-01

    Full Text Available The impact of forest fires on nature and civilisation is conflicting: on one hand, they play an irreplaceable role in the natural regeneration process, but on the other hand, they come within the major natural hazards in many regions. Their frequency-area distributions show power-law behaviour with scaling exponents α in a quite narrow range, relating wildfire research to the theoretical framework of self-organised criticality. Examples of self-organised critical behaviour can be found in computer simulations of simple cellular automaton models. The established self-organised critical Drossel-Schwabl forest fire model is one of the most widespread models in this context. Despite its qualitative agreement with event-size statistics from nature, its applicability is still questioned. Apart from general concerns that the Drossel-Schwabl model apparently oversimplifies the complex nature of forest dynamics, it significantly overestimates the frequency of large fires. We present a modification of the model rules that distinguishes between lightning-induced and man made forest fires and enables a systematic increase of the scaling exponent α by approximately 1/3. In addition, combined simulations using both the original and the modified model rules predict a dependence of the overall event-size distribution on the ratio of lightning induced and man made fires as well as a splitting of their partial distributions. Lightning is identified as the dominant mechanism in the regime of the largest fires. The results are confirmed by the analysis of the Canadian Large Fire Database and suggest that lightning-induced and man made forest fires cannot be treated separately in wildfire modelling, hazard assessment and forest management.

  6. Cellular automaton modelling of lightning-induced and man made forest fires

    Science.gov (United States)

    Krenn, R.; Hergarten, S.

    2009-10-01

    The impact of forest fires on nature and civilisation is conflicting: on one hand, they play an irreplaceable role in the natural regeneration process, but on the other hand, they come within the major natural hazards in many regions. Their frequency-area distributions show power-law behaviour with scaling exponents α in a quite narrow range, relating wildfire research to the theoretical framework of self-organised criticality. Examples of self-organised critical behaviour can be found in computer simulations of simple cellular automaton models. The established self-organised critical Drossel-Schwabl forest fire model is one of the most widespread models in this context. Despite its qualitative agreement with event-size statistics from nature, its applicability is still questioned. Apart from general concerns that the Drossel-Schwabl model apparently oversimplifies the complex nature of forest dynamics, it significantly overestimates the frequency of large fires. We present a modification of the model rules that distinguishes between lightning-induced and man made forest fires and enables a systematic increase of the scaling exponent α by approximately 1/3. In addition, combined simulations using both the original and the modified model rules predict a dependence of the overall event-size distribution on the ratio of lightning induced and man made fires as well as a splitting of their partial distributions. Lightning is identified as the dominant mechanism in the regime of the largest fires. The results are confirmed by the analysis of the Canadian Large Fire Database and suggest that lightning-induced and man made forest fires cannot be treated separately in wildfire modelling, hazard assessment and forest management.

  7. Using Landsat data to assess fire and burn severity in the North American boreal forest region: an overview and summary of results

    Science.gov (United States)

    Nancy H.F. French; Eric S. Kasischke; Ronald J. Hall; Karen A. Murphy; David L. Verbyla; Elizabeth E. Hoy; Jennifer L. Allen

    2008-01-01

    There has been considerable interest in the recent literature regarding the assessment of post-fire effects on forested areas within the North American boreal forest. Assessing the physical and ecological effects of fire in boreal forests has far-reaching implications for a variety of ecosystem processes -- such as post-fire forest succession -- and land management...

  8. Impacts of Boreal Forest Fires and Post-Fire Succession on Energy Budgets and Climate in the Community Earth System Model

    Science.gov (United States)

    Rogers, B. M.; Randerson, J. T.; Bonan, G. B.

    2011-12-01

    Vegetation compositions of boreal forests are determined largely by recovery patterns after large-scale disturbances, the most notable of which is wildfire. Forest compositions exert large controls on regional energy and greenhouse gas budgets by affecting surface albedo, net radiation, turbulent energy fluxes, and carbon stocks. Impacts of boreal forest fires on climate are therefore products of direct fire effects, including charred surfaces and emitted aerosols and greenhouse gasses, and post-fire vegetation succession, which affects carbon and energy exchange for many decades after the initial disturbance. Climate changes are expected to be greatest at high latitudes, leading many to project increases in boreal forest fires. While numerous studies have documented the effects of post-fire landscape on energy and gas budgets in boreal forests, to date no continental analysis using a coupled model has been performed. In this study we quantified the effects of boreal forest fires and post-fire succession on regional and global climate using model experiments in the Community Earth System Model. We used 20th century climate data and MODIS vegetation continuous fields and land cover classes to identify boreal forests across North America and Eurasia. Historical fire return intervals were derived from a regression approach utilizing the Canadian and Alaskan Large Fire Databases, the Global Fire Emissions Database v3, and land cover and climate data. Succession trajectories were derived from the literature and MODIS land cover over known fire scars. Major improvements in model-data comparisons of long-term energy budgets were observed by prescribing post-fire vegetation succession. Global simulations using historical and future burn area scenarios highlight the potential impacts on climate from changing fire regimes and provide motivation for including vegetation succession in coupled simulations.

  9. Fire Effects on Soils in Lake States Forests: A Compilation of Published Research to Facilitate Long-Term Investigations

    Directory of Open Access Journals (Sweden)

    David M. Hix

    2012-11-01

    Full Text Available Fire-adapted forests of the Lake States region are poorly studied relative to those of the western and southeastern United States and our knowledge base of regional short- and long-term fire effects on soils is limited. We compiled and assessed the body of literature addressing fire effects on soils in Lake States forests to facilitate the re-measurement of previous studies for the development of new long-term datasets, and to identify existing gaps in the regional knowledge of fire effects on forest soils. Most studies reviewed addressed fire effects on chemical properties in pine-dominated forests, and long-term (>10 years studies were limited. The major gaps in knowledge we identified include: (1 information on fire temperature and behavior information that would enhance interpretation of fire effects; (2 underrepresentation of the variety of forest types in the Lake States region; (3 information on nutrient fluxes and ecosystem processes; and (4 fire effects on soil organisms. Resolving these knowledge gaps via future research will provide for a more comprehensive understanding of fire effects in Lake States forest soils. Advancing the understanding of fire effects on soil processes and patterns in Lake States forests is critical for designing regionally appropriate long-term forest planning and management activities.

  10. Recent Forest and Peat Fire Trends in Indonesia The Latest Decade by MODIS Hotspot Data

    OpenAIRE

    Yulianti, Nina; Hayasaka, Hiroshi; Usup, Aswin

    2012-01-01

    The worse air pollution due to haze from fires occurred in the Southeast Asia during the strongest 1997-1998 El Niño event in the last century. The dense haze came from forest and peat fires mainly occurred in Indonesia. Recent fires in Indonesia have become an annual phenomenon nevertheless rapid deforestation rate showed declined trend. In addition, Indonesia formally admitted very large amount of CO2 emission mostly from fires and deforestation (about 3.01 billion tonnes after the Un...

  11. Interactive effects of historical logging and fire exclusion on ponderosa pine forest structure in the northern Rockies.

    Science.gov (United States)

    Naficy, Cameron; Sala, Anna; Keeling, Eric G; Graham, Jon; DeLuca, Thomas H

    2010-10-01

    Increased forest density resulting from decades of fire exclusion is often perceived as the leading cause of historically aberrant, severe, contemporary wildfires and insect outbreaks documented in some fire-prone forests of the western United States. Based on this notion, current U.S. forest policy directs managers to reduce stand density and restore historical conditions in fire-excluded forests to help minimize high-severity disturbances. Historical logging, however, has also caused widespread change in forest vegetation conditions, but its long-term effects on vegetation structure and composition have never been adequately quantified. We document that fire-excluded ponderosa pine forests of the northern Rocky Mountains logged prior to 1960 have much higher average stand density, greater homogeneity of stand structure, more standing dead trees and increased abundance of fire-intolerant trees than paired fire-excluded, unlogged counterparts. Notably, the magnitude of the interactive effect of fire exclusion and historical logging substantially exceeds the effects of fire exclusion alone. These differences suggest that historically logged sites are more prone to severe wildfires and insect outbreaks than unlogged, fire-excluded forests and should be considered a high priority for fuels reduction treatments. Furthermore, we propose that ponderosa pine forests with these distinct management histories likely require distinct restoration approaches. We also highlight potential long-term risks of mechanical stand manipulation in unlogged forests and emphasize the need for a long-term view of fuels management.

  12. Toxic Combustion Product Yields as a Function of Equivalence Ratio and Flame Retardants in Under-Ventilated Fires: Bench-Large-Scale Comparisons

    Directory of Open Access Journals (Sweden)

    David A. Purser

    2016-09-01

    Full Text Available In large-scale compartment fires; combustion product yields vary with combustion conditions mainly in relation to the fuel:air equivalence ratio (Φ and the effects of gas-phase flame retardants. Yields of products of inefficient combustion; including the major toxic products CO; HCN and organic irritants; increase considerably as combustion changes from well-ventilated (Φ < 1 to under-ventilated (Φ = 1–3. It is therefore essential that bench-scale toxicity tests reproduce this behaviour across the Φ range. Yield data from repeat compartment fire tests for any specific fuel show some variation on either side of a best-fit curve for CO yield as a function of Φ. In order to quantify the extent to which data from the steady state tube furnace (SSTF [1]; ISO TS19700 [2] represents compartment fire yields; the range and average deviations of SSTF data for CO yields from the compartment fire best-fit curve were compared to those for direct compartment fire measurements for six different polymeric fuels with textile and non-textile applications and for generic post-flashover fire CO yield data. The average yields; range and standard deviations of the SSTF data around the best-fit compartment fire curves were found to be close to those for the compartment fire data. It is concluded that SSTF data are as good a predictor of compartment fire yields as are repeat compartment fire test data.

  13. Ash after forest fires. Effects on soil hydrology and erosion

    Science.gov (United States)

    Bodí, Merche B.

    2013-04-01

    from certain Eucaliptus and Pinus), or if clog soil pores (depending also on the soil type). If ash is wettable, it can store even 80% of its volume and then it will delay and reduce overland flow proportionally to the thickness of the ash layer. Once ash gets saturated, the flow tends to adjust to an infiltration rate similar to the soil itself, or sometimes higher due to the protection of ash that can reduce soil water repellency and soil sealing (Bodí et al. 2011, 2012). Still, many other aspects on ash remain unknown and ash present us more questions like, what it is its role on the carbon cycle? what is the extent of the ahs effects at basin scale? what is the fate of ash and how long it remains in the ecosystem? are there specific effects of ash depending on the ecosystem and so the type of ash? Acknowledgements This work was supported financially by a research fellowship (AP2007-04602) from the Spanish Ministry of Science and Innovation (M.B. Bodí) and the projects PT2009-0073 and CGL2010-21670-C02-01. References Bodí, M.B., Mataix-Solera, J., Doerr, S.H., Cerdà, A., 2011, The wettability of ash from burned vegetation and its relationship to Mediterranean plant species type, burn severity and total organic carbon content. Geoderma 160, 599-607. Bodí, M.B., Doerr, S.H., Cerdà, A., Mataix-Solera, J., 2012, Hydrological effects of a layer of vegetation ash on underlying wettable and water repellent soil. Geoderma 191, 14-23 Cerdà, A., 1998, Changes in overland flow and infiltration after a rangeland fire in a Mediterranean scrubland. Hydrological Processes 12, 1031-1042. Cerdà, A., Doerr, S.H., 2008, The effect of ash and needle cover on surface runoff and erosion in the immediate post-fire period. Catena 74, 256-263. Woods, S.W., Balfour, V., 2008, The effect of ash on runoff and erosion after a forest wildfire, Montana, U.S.A. International Journal of Wildland Fire 17, 535-548.

  14. Study on fire-retardant nanocrystalline Mg-Al layered double hydroxides synthesized by microwave-crystallization method

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zejiang; XU Chenghua; QIU Fali; MEI Xiujuan; LAN Bin; ZHANG Shuosheng

    2004-01-01

    Nanocrystalline Mg-Al layered double hydroxides with the particle size being 10-40 nm were firstly prepared by the technology of the microwave-crystallization and the variable-speed addition of the alkali. The obtained samples were characterized by TEM and XRD. The roles of the microwave and addition rate of the alkali were also discussed in the present work. The thermal decomposition activation energy of the nano-LDHs was calculated according to their TG, DTG and DSC curves by the Ozawa method. The results showed that the thermal decomposition of the nano-LDHs had four steps. Thereby the decomposition model of the nano-LDHs was supposed according to the analysis of their thermal decomposition. After PS, ABS, HDPE and PVC were filled with the nano-LDHs, their LOI values could be increased up to 28, 27, 26 and 33, respectively. When the fire-retardant coating contained 1.9% of the nano-LDHs that was 0.27 times the dosage of the conventional TiO2, its fire endurance time reached 32.75min that was 7.05 min longer than that of the best coating containing TiO2 according to the model big-panel combustion test method.

  15. Flexible fire retardant polyisocyanate modified neoprene foam. [for thermal protective devices

    Science.gov (United States)

    Parker, J. A.; Riccitiello, S. R. (Inventor)

    1973-01-01

    Lightweight, fire resistant foams have been developed through the modification of conventional neoprene-isocyanate foams by the addition of an alkyl halide polymer. Extensive tests have shown that the modified/neoprene-isocyanate foams are much superior in heat protection properties than the foams heretofore employed both for ballistic and ablative purposes.

  16. Fire retardancy and environmental assessment of rubbery blends of recycled polymers

    Directory of Open Access Journals (Sweden)

    2008-02-01

    Full Text Available Flame retarded thermoplastic polymer compounds were prepared containing recycled rubber tyres, low density polyethylene, ethylene vinyl acetate copolymer and an intumescent additive system consisting of waste polyurethane foam and ammonium polyphosphate. The effect of the additives on the combustion properties was characterised by Limiting Oxygen Index, UL 94 and mass loss calorimetric measurements. The environmental impact was estimated by determining the gas components of CO2 and CO evolving from the compounds during the burning process using a gas analyser system constructed by coupling an FTIR unit to a mass loss calorimeter. The new material forms a thermoplastic rubber of excellent processability making it suitable for application in construction industry.

  17. Long-term temporal changes in the occurrence of a high forest fire danger in Finland

    Directory of Open Access Journals (Sweden)

    H. M. Mäkelä

    2012-08-01

    Full Text Available Climate variation and change influence several ecosystem components including forest fires. To examine long-term temporal variations of forest fire danger, a fire danger day (FDD model was developed. Using mean temperature and total precipitation of the Finnish wildfire season (June–August, the model describes the climatological preconditions of fire occurrence and gives the number of fire danger days during the same time period. The performance of the model varied between different regions in Finland being best in south and west. In the study period 1908–2011, the year-to-year variation of FDD was large and no significant increasing or decreasing tendencies could be found. Negative slopes of linear regression lines for FDD could be explained by the simultaneous, mostly not significant increases in precipitation. Years with the largest wildfires did not stand out from the FDD time series. This indicates that intra-seasonal variations of FDD enable occurrence of large-scale fires, despite the whole season's fire danger is on an average level. Based on available monthly climate data, it is possible to estimate the general fire conditions of a summer. However, more detailed input data about weather conditions, land use, prevailing forestry conventions and socio-economical factors would be needed to gain more specific information about a season's fire risk.

  18. Main dynamics and drivers of boreal forests fire regimes during the Holocene

    Science.gov (United States)

    Molinari, Chiara; Lehsten, Veiko; Blarquez, Olivier; Clear, Jennifer; Carcaillet, Christopher; Bradshaw, Richard HW

    2015-04-01

    Forest fire is one of the most critical ecosystem processes in the boreal megabiome, and it is likely that its frequency, size and severity have had a primary role in vegetation dynamics since the Last Ice Age (Kasischke & Stocks 2000). Fire not only organizes the physical and biological attributes of boreal forests, but also affects biogeochemical cycling, particularly the carbon balance (Balshi et al. 2007). Due to their location at climatically sensitive northern latitudes, boreal forests are likely to be significantly affected by global warming with a consequent increase in biomass burning (Soja et al. 2007), a variation in vegetation structure and composition (Johnstone et al. 2004) and a rise in atmospheric carbon dioxide concentration (Bond-Lamberty et al. 2007). Even if the ecological role of wildfire in boreal forest is widely recognized, a clearer understanding of the environmental factors controlling fire dynamics and how variations in fire regimes impact forest ecosystems is essential in order to place modern fire processes in a meaningful context for projecting ecosystem behaviour in a changing environment (Kelly et al. 2013). Because fire return intervals and successional cycles in boreal forests occur over decadal to centennial timescales (Hu et al. 2006), palaeoecological research seems to be one of the most promising tool for elucidating ecosystem changes over a broad range of environmental conditions and temporal scales. Within this context, our first aim is to reconstruct spatial and temporal patterns of boreal forests fire dynamics during the Holocene based on sedimentary charcoal records. As a second step, trends in biomass burning will be statistically analysed in order to disentangle between regional and local drivers. The use of European and north-American sites will give us the unique possibility to perform a large scale analysis on one of the broadest biome in the world and to underline the different patterns of fire in these two

  19. Future impacts of climate change on forest fire danger in northeastern China

    Institute of Scientific and Technical Information of China (English)

    TIAN Xiao-rui; SHU Li-fu; ZHAO Feng-jun; WANG Ming-yu; Douglas J. McRae

    2011-01-01

    Climate warming has a rapid and far-reaching impact on forest fire management in the boreal forests of China. Regional climate model outputs and the Canadian Forest Fire Weather Index (FWI) Sys- tern were used to analyze changes to fire danger and the fire season for future periods under IPCC Special Report on Emission Scenarios (SRES) A2 and B2, and the data will guide future fire management planning. We used regional climate in China (1961-1990) as our validation data, and the period (1991-2100) was modeled under SRES A2 and B2 through the weather simulated by the regional climate model system (PRECIS). Meteorological data and fire danger were interpolated to 1 km by using ANUSPLIN software. The average FWI value for future spring fire sea-sons under Scenarios A2 and B2 shows an increase over most of the region. Compared with the baseline, FWI averages of spring fire season will increase by -0.40, 0.26 and 1.32 under Scenario A2, and increase by 0.60, 1.54 and 2.56 under Scenario B2 in 2020s, 2050s and 2080s, re-spectively. FWI averages of autumn fire season also show an increase over most of the region. FWI values increase more for Scenario B2 than for Scenario A2 in the same periods, particularly during the 2050s and 2080s. Average future FWI values will increase under both scenarios for autumn fire season. The potential burned areas are expected to increase by 10% and 18% in spring for 2080s under Scenario A2 and B2, respec- tively. Fire season will be prolonged by 21 and 26 days under Scenarios A2 and B2 in 2080s respectively.

  20. Invasion of alien plants in fire-damaged forests at southern boundary of the taiga zone

    Energy Technology Data Exchange (ETDEWEB)

    Khapugin, A.A.; Vargot, E.V.; Chugunov, G.G.; Shugaev, N.I.

    2016-07-01

    Aim of the study: Biological invasions are one of the most important areas of forest research. In this study, we revealed invasibility of fire-damaged forests at the southern boundary of the taiga zone. Area of study: The Mordovia State Nature Reserve (Central Russia). Material and Methods: Altogether, 11 square plots of each 100 ×100 m were established in different types of fire-damaged forests. To test plant invasion outside the established plots, field researches were carried out by route method in fire-damaged area of the Mordovia Reserve. Main Results: Six alien species (Erigeron canadensis, E. annuus, Oenothera biennis, Lactuca serriola, Sambucus racemosa, Viola arvensis) were registered within the established plots in 2011–2014. In addition, two alien invasive plants (Solidago canadensis and Bidens frondosa) were found outside these plots. No differences were detected in invasibility of the tested forest ecosystems. Research highlights: Among the revealed alien species, Erigeron canadensis, Lactuca serriola and Solidago canadensis are the most invasive plants in forest ecosystems. The first one was observed with a high occurrence frequency and abundance in all forest types tested. The second one has not been differed by abundance, but it characterized by a high competition as well as a large biomass and a large number of seeds. Solidago canadensis penetrated to natural forest ecosystem in a short time period due to closest location of its dispersal centers near the boundary of the Mordovia Reserve. These species are the most probable invaders of the forest ecosystems. (Author)

  1. Estimating carbon emissions in Russia using the Canadian Forest Fire Danger Rating System

    Science.gov (United States)

    McRae, D. J.; Jin, J.; Yang, Y.; Conard, S. G.; Sukhinin, A.; Stocks, B. J.

    2009-12-01

    The Russian boreal forest zone contains about 28 percent of the global terrestrial carbon. Wildfires in Russia burn an estimated 12-15 million ha annually. In a warming climate, fires in the boreal zone are expected to increase in area and severity, with the potential for increasing global fire emissions and decreasing carbon stored in soils and biomass. Current fire data for these forests generally do not account for the large spatial and temporal variations in fuel loads and consumption for differing forest types and weather patterns. As a result, it has been difficult to obtain good estimates of annual carbon emissions. While methods are being developed to estimate carbon emission remotely, there is an immediate need for more accurate estimates. Our previous work has indicated that the Canadian Forest Fire Danger Rating System (CFFDRS) is suitable for use in Russia. CFFDRS fuel consumption models can be used to estimate carbon emissions. The Canadian Forest Fire Weather Indexes (FWI) System, part of the CFFDRS, estimates the moisture content of various fuel classes and uses these estimates to generate a set of relative fire behavior indicators. As part of the Russian FIRE BEAR (Fire Effects in the Boreal Eurasia Region) Project, we conducted 14 experimental surface fires on Scots pine (Pinus sylvestris) forest sites in Siberia under a range of weather and fuel conditions. Detailed measurements of fuel consumption on each fire provided a basis for modeling carbon emissions using the FWI System. Carbon released by these experimental surface fires ranged from 4.8 to 15.4 t C ha-1 depending on burning conditions and fuel conditions. Provided burn areas and burn dates are known, and forest type and antecedent weather data are available, these models can be used to estimate the total annual carbon emissions for forest fires in Russia. Weather data was obtained for all Russian weather stations over a 55-year period (1953-2008) from the National Climate Data Center

  2. Influence of repeated prescribed fire on tree growth and mortality in Pinus resinosa forests, northern Minnesota

    Science.gov (United States)

    Bottero, Alessandra; D'Amato, Anthony W.; Palik, Brian J.; Kern, Christel C.; Bradford, John B.; Scherer, Sawyer S.

    2017-01-01

    Prescribed fire is widely used for ecological restoration and fuel reduction in fire-dependent ecosystems, most of which are also prone to drought. Despite the importance of drought in fire-adapted forests, little is known about cumulative effects of repeated prescribed burning on tree growth and related response to drought. Using dendrochronological data in red pine (Pinus resinosa Ait.)-dominated forests in northern Minnesota, USA, we examined growth responses before and after understory prescribed fires between 1960 and 1970, to assess whether repeated burning influences growth responses of overstory trees and vulnerability of overstory tree growth to drought. We found no difference in tree-level growth vulnerability to drought, expressed as growth resistance, resilience, and recovery, between areas receiving prescribed fire treatments and untreated forests. Annual mortality rates during the period of active burning were also low (less than 2%) in all treatments. These findings indicate that prescribed fire can be effectively integrated into management plans and climate change adaptation strategies for red pine forest ecosystems without significant short- or long-term negative consequences for growth or mortality rates of overstory trees.

  3. Interactive modelling of forest fires and their impacts on atmospheric composition

    Science.gov (United States)

    Mangeon, S.; Voulgarakis, A.; Folberth, G.

    2016-12-01

    Forest and wildland fires are a significant emission source of gases and aerosols to the atmosphere. In particular, biomass burning has been shown to be a significant driver of interannual variability and short-term climate forcings. Fires emit a wide variety of compounds to the atmosphere, from greenhouse gases to aerosols. Conversely, weather and climate also drive fire occurrence, creating potential feedbacks between climate, atmospheric composition, and fire. Here, we will present INFERNO (INteractive Fires and Emissions algoRithm for Natural envirOnments, described in Mangeon et al., 2016), a reduced complexity approach to global fire modelling coupled to interactive atmospheric composition in the UK Met Office's Unified Model. We will first show the coupled model's performance in capturing burnt area and fire emissions. We will then demonstrate how fires impact atmospheric composition in the global model for present-day scenarios: with our interactive scheme but also with reference datasets of global fire emissions, as well as in simulations assuming no fire emissions. In particular, we will investigate the role of fires on the mean present-day state, the seasonal cycle, and the interannual variability of important atmospheric constituents (e.g., CO and aerosols).

  4. Reprint of Infinity computations in cellular automaton forest-fire model

    Science.gov (United States)

    Iudin, D. I.; Sergeyev, Ya. D.; Hayakawa, M.

    2015-04-01

    Recently a number of traditional models related to the percolation theory has been considered by means of a new computational methodology that does not use Cantor's ideas and describes infinite and infinitesimal numbers in accordance with the principle 'The whole is greater than the part' (Euclid's Common Notion 5). Here we apply the new arithmetic to a cellular automaton forest-fire model which is connected with the percolation methodology and in some sense combines the dynamic and the static percolation problems and under certain conditions exhibits critical fluctuations. It is well known that there exist two versions of the model: real forest-fire model where fire catches adjacent trees in the forest in the step by step manner and simplified version with instantaneous combustion. Using new approach we observe that in both situations we deal with the same model but with different time resolution. We show that depending on the "microscope" we use the same cellular automaton forest-fire model reveals either instantaneous forest combustion or step by step firing. By means of the new approach it was also observed that as far as we choose an infinitesimal tree growing rate and infinitesimal ratio between the ignition probability and the growth probability we determine the measure or extent of the system size infinity that provides the criticality of the system dynamics. Correspondent inequalities for grosspowers are derived.

  5. CO2 and CO emission rates from three forest fire controlled experiments in Western Amazonia

    Science.gov (United States)

    Carvalho, J. A., Jr.; Amaral, S. S.; Costa, M. A. M.; Soares Neto, T. G.; Veras, C. A. G.; Costa, F. S.; van Leeuwen, T. T.; Krieger Filho, G. C.; Tourigny, E.; Forti, M. C.; Fostier, A. H.; Siqueira, M. B.; Santos, J. C.; Lima, B. A.; Cascão, P.; Ortega, G.; Frade, E. F., Jr.

    2016-06-01

    Forests represent an important role in the control of atmospheric emissions through carbon capture. However, in forest fires, the carbon stored during photosynthesis is released into the atmosphere. The carbon quantification, in forest burning, is important for the development of measures for its control. The aim of this study was to quantify CO2 and CO emissions of forest fires in Western Amazonia. In this paper, results are described of forest fire experiments conducted in Cruzeiro do Sul and Rio Branco, state of Acre, and Candeias do Jamari, state of Rondônia, Brazil. These cities are located in the Western portion of the Brazilian Amazon region. The biomass content per hectare, in the virgin forest, was measured by indirect methods using formulas with parameters of forest inventories in the central hectare of the test site. The combustion completeness was estimated by randomly selecting 10% of the total logs and twelve 2 × 2 m2 areas along three transects and examining their consumption rates by the fire. The logs were used to determine the combustion completeness of the larger materials (characteristic diameters larger than 10 cm) and the 2 × 2 m2 areas to determine the combustion completeness of small-size materials (those with characteristic diameters lower than 10 cm) and the. The overall biomass consumption by fire was estimated to be 40.0%, 41.2% and 26.2%, in Cruzeiro do Sul, Rio Branco and Candeias do Jamari, respectively. Considering that the combustion gases of carbon in open fires contain approximately 90.0% of CO2 and 10.0% of CO in volumetric basis, the average emission rates of these gases by the burning process, in the three sites, were estimated as 191 ± 46.7 t ha-1 and 13.5 ± 3.3 t ha-1, respectively.

  6. The Role of Old-growth Forests in Frequent-fire Landscapes

    Directory of Open Access Journals (Sweden)

    Daniel Binkley

    2007-12-01

    Full Text Available Classic ecological concepts and forestry language regarding old growth are not well suited to frequent-fire landscapes. In frequent-fire, old-growth landscapes, there is a symbiotic relationship between the trees, the understory graminoids, and fire that results in a healthy ecosystem. Patches of old growth interspersed with younger growth and open, grassy areas provide a wide variety of habitats for animals, and have a higher level of biodiversity. Fire suppression is detrimental to these forests, and eventually destroys all old growth. The reintroduction of fire into degraded frequent-fire, old-growth forests, accompanied by appropriate thinning, can restore a balance to these ecosystems. Several areas require further research and study: 1 the ability of the understory to respond to restoration treatments, 2 the rate of ecosystem recovery following wildfires whose level of severity is beyond the historic or natural range of variation, 3 the effects of climate change, and 4 the role of the microbial community. In addition, it is important to recognize that much of our knowledge about these old-growth systems comes from a few frequent-fire forest types.

  7. Forest fire risk assessment in Sweden using climate model data: bias correction and future changes

    Directory of Open Access Journals (Sweden)

    W. Yang

    2015-01-01

    Full Text Available As the risk for a forest fire is largely influenced by weather, evaluating its tendency under a changing climate becomes important for management and decision making. Currently, biases in climate models make it difficult to realistically estimate the future climate and consequent impact on fire risk. A distribution-based scaling (DBS approach was developed as a post-processing tool that intends to correct systematic biases in climate modelling outputs. In this study, we used two projections, one driven by historical reanalysis (ERA40 and one from a global climate model (ECHAM5 for future projection, both having been dynamically downscaled by a regional climate model (RCA3. The effects of the post-processing tool on relative humidity and wind speed were studied in addition to the primary variables precipitation and temperature. Finally, the Canadian Fire Weather Index system was used to evaluate the influence of changing meteorological conditions on the moisture content in fuel layers and the fire-spread risk. The forest fire risk results using DBS are proven to better reflect risk using observations than that using raw climate outputs. For future periods, southern Sweden is likely to have a higher fire risk than today, whereas northern Sweden will have a lower risk of forest fire.

  8. 无机阻燃改性沥青结构表征及阻燃机理研究%Structural expressions and retarding mechanism of inorganic modified fire-retardant asphalt

    Institute of Scientific and Technical Information of China (English)

    王朝辉; 董彪; 高志伟; 刘志胜; 贺海

    2014-01-01

    Considering the problem of heavy smoke,toxic,high cost of some flame retardants,two new inorgan-ic flame retardants were developed,and the fire-retardant modified asphalts were prepared;in order to study the internal structure and the flame-retardant mechanism of our new developed flame-retardant asphalt,the combi-nation between flame retardant particles and asphalt were analyzed by scanning electron microscopy (SEM)test and the effect of the flame retardants on the functional groups was studied by infrared spectroscopy (FT-IR) test.The effect of inorganic fire-retardants on the nature of asphalt was analyzed by using TG experiment.The research results showed that the flame retardant effect of the modified asphalt was well;the inorganic fire-re-tardant modifiers can be evenly distributed in asphalt and there was no phenomenon of reunion.FT-IR test shows that there was no covalent generating when the two flame retardants are added into the asphalt.The ther-mal weightlessness of inorganic modified fire-retardant asphalt was greater than that of base asphalt.%针对目前某些阻燃剂发烟量大、有毒和成本较高问题,研发了两种新型无机阻燃剂,并制备了无机阻燃改性沥青;借助扫描电镜(SEM)实验和红外光谱(FT-IR)实验,探究了两种阻燃剂与沥青的结合状况以及二者对沥青官能团的影响;通过热重(TG)实验,分析了两种阻燃剂对沥青燃烧过程中热失重变化的影响,探究了两种阻燃改性沥青的作用机理。结果表明,两种新型无机阻燃沥青性能良好;无机阻燃剂颗粒可均匀地分布在沥青中,没有团聚现象,两种阻燃剂各颗粒与沥青具有良好的粘结性;两种新型阻燃剂加入到沥青中,未与沥青形成新的共价键;燃烧过程中无机阻燃改性沥青的热失重大于基础沥青,无机阻燃沥青主要凭借阻燃剂的结合水分挥发以及金属化合物烧结覆盖作用发挥阻燃作用。

  9. Global change induced biomass growth offsets carbon released via increased forest fire and respiration of the central Canadian boreal forest

    Science.gov (United States)

    Gonsamo, Alemu; Chen, Jing M.; Colombo, Stephen J.; Ter-Mikaelian, Michael T.; Chen, Jiaxin

    2017-05-01

    Northern boreal forests are sensitive to many effects of global change. This is of particular concern due to the proportionally greater climate change projected for the area in which these forests occur. One of the sensitive areas is the Far North of Ontario (FNO), consisting of one of the world's largest remaining tracts of unmanaged boreal forest, the world's third largest area of wetland, and the most southerly area of tundra. We studied past, present, and potential future carbon (C) balance of FNO forests using the Integrated Terrestrial Ecosystem Carbon Model and the Canadian Regional Climate Model with stand-replacing fire disturbance. The forced simulations of past (1901-2004) C balances indicated that vegetation C stock remained stable, while soil C stock gradually declined (-0.07 t C ha-1 yr-1, p forest age class structure resulting in an increase in total FNO ecosystem C stock by mid-21st century. However, the projected simulations also indicated that the relative sizes of forest C stocks will change, with relatively less in the soil and more in vegetation, increasing fuel loads and making the entire ecosystem susceptible to forest fire and insect disturbances.

  10. Proceedings of the 6. Canadian Urban Forest Conference : fires, storms, and pests : crisis in our urban forests

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    There is an increasing awareness in Canada of the benefits and values of urban forests in environmental, social and economic terms. However, the mountain pine beetle (MPB) infestation in British Columbia (BC) has infected vast tracts of the province's forest lands over the last several years, and there is evidence that the beetle plague is now causing major devastation in urban areas. Fires are increasing in size and moving from surrounding forest lands into towns and cities in the province and have taken a toll on people and properties in urban areas. Storms and hurricanes have imposed damage on trees in urban areas in the Maritimes, Quebec and Ontario. This conference presented strategies for urban forest managers faced with a variety of disturbances. Issues concerning emergency preparedness and the role of utilities in urban forestry matters were examined and tools for valuing and marketing the urban forest were reviewed. Landscaping for the mitigation of fires was discussed along with tree hazard assessment techniques. The positive financial impact made to communities by their urban forests was emphasized and guidelines and support tools to help municipalities maintain and enhance their urban forests were outlined. The establishment of research priorities for urban forestry was recommended, as well as the identification of unique and threatened habitats both in, and near, large and small municipalities. Twenty-four presentations were given at this conference, of which 3 have been catalogued separately for inclusion in this database. refs., tabs., figs.

  11. The improved Global Fire Emissions Database (GFED) version 3: contribution of savanna, forest, deforestation, and peat fires to the global fire emissions budget

    Science.gov (United States)

    van der Werf, Guido; Randerson, Jim; Giglio, Louis; Collatz, Jim; Kasibhatla, Prasad; Morton, Doug; Defries, Ruth

    2010-05-01

    Global fire activity is an important contributor to the atmospheric trace gas and aerosol burdens. New burned area datasets and top-down constraints from atmospheric concentration measurements of pyrogenic gases have decreased the large uncertainty in fire emissions estimates, but little is known about the contribution of deforestation, agricultural waste, peat, forest, and savanna fires to total global fire emissions. Here we used a revised version of the CASA biogeochemical model and improved satellite-derived estimates of area burned, fire activity, and plant productivity to calculate fire emissions for the 1997-2008 period on a 0.5°×0.5° spatial resolution with a monthly time step. For November 2000 onwards, estimates were based on burned area, active fire detections, and plant productivity from the MODIS sensor. For this time period we also calculated the breakdown of emissions into different sources. We used TRMM-VIRS and ATSR data to extend our fire time series back in time, combined with AVHRR-derived plant productivity in the pre-MODIS era. Average global fire carbon emissions were 1.9 Pg C / year with significant interannual variability over 1997-2001 (2.6 Pg C / year in 1998 and 1.5 Pg C / year in 2001) while emissions over 2002-2007 were relatively constant (varying between 1.9 and 2.0 Pg C / year), before declining in 2008 (1.6 Pg C / year). Over 2002-2007, interannual variability was still large on regional scales but on a global scale high fire years in some regions were balanced by low fire years in other regions. In the MODIS era (2001 onwards), most carbon losses were the result of fires in (wooded) savannas (68%) with lower contributions from deforestation (13%), forest (12%), agricultural waste (4%), and tropical peat fires (3%). On regional scales, these contributions vary to a large degree, and the contribution of peat fires would increase when including the 1997/1998 El Niño period with record-high fire emissions in Equatorial Asia. For

  12. Recovery of soil carbon and nitrogen pools following forest fires in eastern Lapland, Finland.

    Science.gov (United States)

    Koster, K.; Pumpanen, J.; Berninger, F.

    2012-04-01

    Forest fires have been the dominant disturbance regimes in boreal forests since the last Ice Age. Fire is the primary process which organizes the physical and biological attributes of the boreal biome and influences energy flows and biogeochemical cycles, particularly the carbon and nitrogen cycle. Forest fire activity is expected to increase significantly with changing climate, acting as a catalyst to a wide range of ecosystem processes controlling carbon storage in boreal forests. We compared the initial recovery of carbon (C) and nitrogen (N) pools and dynamics following fire disturbance in Scots pine (Pinus sylvesteris) stands in the boreal forests of eastern Lapland (Värriö Strict Nature Reserve), Finland, by sampling soils and measuring soil respiration from sample plots established in a chronosequence of different forest sites with 4 age classes, ranging from 2 years to 150 years after fire disturbance (2, 40, 60, 150 years after fire). The sites are situated north of the Arctic Circle, near to the northern timberline at an average of 300 m altitude. The overall/total C and N contents in the first 10 cm of the topsoil (all soil layers taken into consideration) were highest on old areas (fire 150 years ago) and lowest on new areas (fire 2-40 years ago). The highest C pools (1071 g m-2) were measured on old areas from top soil horizons (consisting of decomposing litter). The total C pool was at the old site was 2329 g m-2. The area where the fire was 2 years ago had the lowest total C pools, 1550 g m-2 respectively. The lowest C pools were measured from area where the fire was 60 years ago, and from B horizon, where the amount of C was 103 g m-2.When we compared the total C pools, the newly burned areas (areas where the fire was 2 - 40 years ago) formed one group (had similar values of total C) and old areas (areas where the fire was 60-150 years ago) formed another group with similar values. Same tendencies occurred also in total N pools, where we had

  13. Living among Frequent-fire Forests: Human History and Cultural Perspectives

    Directory of Open Access Journals (Sweden)

    Terry Daniel

    2007-12-01

    Full Text Available Ecological and social factors shaped old-growth forests of the western United States before Euro-American settlement, and will, in large part, determine their future. In this article, we focus on the social factors that affected the forest's ecological structure and function, review the changing cultural influences through law and policy of public land management and use, and discuss the changing public perceptions of fire use. We also provide an overview of the current debates about the conservation of old-growth forests, and the current congressional protection and management of old-growth forests in public land management and use.

  14. 纯丙乳胶防火涂料稳定性影响因素的研究%Study on Influence of Storage Stability of Pure Acrylic Latex Fire Retardant Coating

    Institute of Scientific and Technical Information of China (English)

    马金; 吴润泽; 王桂银

    2011-01-01

    以纯丙乳液为主要成膜物质制备了防火性能优异,贮存稳定的防火涂料;探讨了分散剂、增稠剂、成膜助剂对乳胶防火涂料体系稳定性的影响。%A fire retardant coatings with excellent fire retardant performance and good storage stability was prepared by pure acrylic emulsion as the main filming material, the influence of dispersant, thickener, coalescent to the stability of fire retardant coatings system were discussed.

  15. Using unplanned fires to help suppressing future large fires in Mediterranean forests.

    Directory of Open Access Journals (Sweden)

    Adrián Regos

    Full Text Available Despite the huge resources invested in fire suppression, the impact of wildfires has considerably increased across the Mediterranean region since the second half of the 20th century. Modulating fire suppression efforts in mild weather conditions is an appealing but hotly-debated strategy to use unplanned fires and associated fuel reduction to create opportunities for suppression of large fires in future adverse weather conditions. Using a spatially-explicit fire-succession model developed for Catalonia (Spain, we assessed this opportunistic policy by using two fire suppression strategies that reproduce how firefighters in extreme weather conditions exploit previous fire scars as firefighting opportunities. We designed scenarios by combining different levels of fire suppression efficiency and climatic severity for a 50-year period (2000-2050. An opportunistic fire suppression policy induced large-scale changes in fire regimes and decreased the area burnt under extreme climate conditions, but only accounted for up to 18-22% of the area to be burnt in reference scenarios. The area suppressed in adverse years tended to increase in scenarios with increasing amounts of area burnt during years dominated by mild weather. Climate change had counterintuitive effects on opportunistic fire suppression strategies. Climate warming increased the incidence of large fires under uncontrolled conditions but also indirectly increased opportunities for enhanced fire suppression. Therefore, to shift fire suppression opportunities from adverse to mild years, we would require a disproportionately large amount of area burnt in mild years. We conclude that the strategic planning of fire suppression resources has the potential to become an important cost-effective fuel-reduction strategy at large spatial scale. We do however suggest that this strategy should probably be accompanied by other fuel-reduction treatments applied at broad scales if large-scale changes in fire

  16. Biodiversity and resilience of arthropod communities after fire disturbance in temperate forests.

    Science.gov (United States)

    Moretti, Marco; Duelli, Peter; Obrist, Martin K

    2006-08-01

    Changes in ecosystem functions following disturbances are of central concern in ecology and a challenge for ecologists is to understand the factors that affect the resilience of community structures and ecosystem functions. In many forest ecosystems, one such important natural disturbance is fire. The aim of this study was to understand the variation of resilience in six functional groups of invertebrates in response to different fire frequencies in southern Switzerland. We measured resilience by analysing arthropod species composition, abundance and diversity in plots where the elapsed time after single or repeated fires, as determined by dendrochronology, varied. We compared data from these plots with data from plots that had not burned recently and defined high resilience as the rapid recovery of the species composition to that prior to fire. Pooling all functional groups showed that they were more resilient to single fires than to repeated events, recovering 6-14 years after a single fire, but only 17-24 years after the last of several fires. Flying zoophagous and phytophagous arthropods were the most resilient groups. Pollinophagous and epigaeic zoophagous species showed intermediate resilience, while ground-litter saprophagous and saproxylophagous arthropods clearly displayed the lowest resilience to fire. Their species composition 17-24 years post-burn still differed markedly from that of the unburned control plots. Depending on the fire history of a forest plot, we found significant differences in the dominance hierarchy among invertebrate species. Any attempt to imitate natural disturbances, such as fire, through forest management must take into account the recovery times of biodiversity, including functional group composition, to ensure the conservation of multiple taxa and ecosystem functions in a sustainable manner.

  17. Operational perspective of remote sensing-based forest fire danger forecasting systems

    Science.gov (United States)

    Chowdhury, Ehsan H.; Hassan, Quazi K.

    2015-06-01

    Forest fire is a natural phenomenon in many ecosystems across the world. One of the most important components of forest fire management is the forecasting of fire danger conditions. Here, our aim was to critically analyse the following issues, (i) current operational forest fire danger forecasting systems and their limitations; (ii) remote sensing-based fire danger monitoring systems and usefulness in operational perspective; (iii) remote sensing-based fire danger forecasting systems and their functional implications; and (iv) synergy between operational forecasting systems and remote sensing-based methods. In general, the operational systems use point-based measurements of meteorological variables (e.g., temperature, wind speed and direction, relative humidity, precipitations, cloudiness, solar radiation, etc.) and generate danger maps upon employing interpolation techniques. Theoretically, it is possible to overcome the uncertainty associated with the interpolation techniques by using remote sensing data. During the last several decades, efforts were given to develop fire danger condition systems, which could be broadly classified into two major groups: fire danger monitoring and forecasting systems. Most of the monitoring systems focused on determining the danger during and/or after the period of image acquisition. A limited number of studies were conducted to forecast fire danger conditions, which could be adaptable. Synergy between the operational systems and remote sensing-based methods were investigated in the past but too much complex in nature. Thus, the elaborated understanding about these developments would be worthwhile to advance research in the area of fire danger in the context of making them operational.

  18. Spatial heterogeneity of factors influencing forest fires size in northern Mexico

    Institute of Scientific and Technical Information of China (English)

    Gustavo Perez-Verdin; Marco Antonio Marquez-Linares; Maricela Salmeron-Macias

    2014-01-01

    In Mexico, forest fires are strongly influenced by environ-mental, topographic, and anthropogenic factors. A government-based database covering the period 2000-2011 was used to analyze the spatial heterogeneity of the factors influencing forest fire size in the state of Durango, Mexico. Ordinary least squares and geographically weighted regression models were fit to identify the main factors as well as their spatial influence on fire size. Results indicate that fire size is greatly affected by distance to roads, distance to towns, precipitation, temperature, and a population gravity index. The geographically weighted model was better than the ordinary least squares model. The improvement of the former is due to the influence of factors that were found to be non-stationary. These results suggest that geographic location determines the influence of a factor on fire size. While the models can be greatly improved with additional information, the study suggests the need to adopt fire management policies to more efficiently reduce the effect of anthropogenic factors. These policies may include more training for landowners who use fire for clearing, closure of roads, application of thinning, prescribed burning, and fire breaks in perimeters adjacent to roads.

  19. Dependence of solar radiative forcing of forest fire aerosol on ageing and state of mixture

    Directory of Open Access Journals (Sweden)

    M. Fiebig

    2003-01-01

    Full Text Available During airborne in situ measurements of particle size distributions in a forest fire plume originating in Northern Canada, an accumulation mode number mean diameter of 0.34 mm was observed over Lindenberg, Germany on 9 August 1998. Realizing that this is possibly the largest value observed for this property in a forest fire plume, scenarios of plume ageing by coagulation are considered to explain the observed size distribution, concluding that the plume dilution was inhibited in parts of the plume. The uncertainties in coagulation rate and transition from external to internal mixture of absorbing forest fire and non-absorbing background particles cause uncertainties in the plume's solar instantaneous radiative forcing of 20-40% and of a factor of 5-6, respectively. Including information compiled from other studies on this plume, it is concluded that the plume's characteristics are qualitatively consistent with a radiative-convective mixed layer.

  20. A Forest Fire Risk Assessment Using ASTER Images in Peninsular Malaysia

    Institute of Scientific and Technical Information of China (English)

    PENG Guang-xiong; LI Jing; CHEN Yun-hao; NORIZAN Abdul-patah

    2007-01-01

    Based on the physical concept of heat energy of pre-ignition, a new fire susceptibility index (FSI) is used to estimate forest fire risk. This physical basis allows calculation of ignition probabilities and comparisons of fire risk across eco-regions. The computation of the index requires inputs of fuel temperature and fuel moisture content (FMC), both of which can be estimated using remote sensing data. While ASTER data for land surface temperatures (LST) was used as proxys for fuel temperatures, fuel moisture content is estimated by regression technique utilizing the ratio NDVI/LST of ASTER data. FSIs are computed in peninsular Malaysia for nine days before the fires of 2004 and 2005 and validated with fire occurrence data. Results show that the FSI increases as the day approaches the fire day. This trend can be observed clearly about four days before the day of fire. It suggests that FSI can be a good estimator of fire risk. The physical basis provides a more meaningful FSI, allows calculation of ignition probabilities and facilitates the development of a future class of fire risk models. FSI can be used to compare fire risk across different eco-regions and time periods. FSI retains the flexibility to be localized to a vegetation type or eco-regions for improved performance.

  1. Wildfire and Spatial Patterns in Forests in Northwestern Mexico: The United States Wishes It Had Similar Fire Problems

    Directory of Open Access Journals (Sweden)

    Scott L. Stephens

    2008-12-01

    Full Text Available Knowledge of the ecological effect of wildfire is important to resource managers, especially from forests in which past anthropogenic influences, e.g., fire suppression and timber harvesting, have been limited. Changes to forest structure and regeneration patterns were documented in a relatively unique old-growth Jeffrey pine-mixed conifer forest in northwestern Mexico after a July 2003 wildfire. This forested area has never been harvested and fire suppression did not begin until the 1970s. Fire effects were moderate especially considering that the wildfire occurred at the end of a severe, multi-year (1999-2003 drought. Shrub consumption was an important factor in tree mortality and the dominance of Jeffrey pine increased after fire. The Baja California wildfire enhanced or maintained a patchy forest structure; similar spatial heterogeneity should be included in US forest restoration plans. Most US forest restoration plans include thinning from below to separate tree crowns and attain a narrow range for residual basal area/ha. This essentially produces uniform forest conditions over broad areas that are in strong contrast to the resilient forests in northern Baja California. In addition to producing more spatial heterogeneity in restoration plans of forests that once experienced frequent, low-moderate intensity fire regimes, increased use of US wildfire management options such as wildland fire use as well as appropriate management responses to non-natural ignitions could also be implemented at broader spatial scales to increase the amount of burning in western US forests.

  2. The effect of remnant forest on insect successional response in tropical fire-impacted peatland: A bi-taxa comparison

    Science.gov (United States)

    Neoh, Kok-Boon; Bong, Lee-Jin; Muhammad, Ahmad; Itoh, Masayuki; Kozan, Osamu; Takematsu, Yoko; Yoshimura, Tsuyoshi

    2017-01-01

    Fire has become a common feature in tropical drained peatlands, and it may have detrimental impacts on the overall biodiversity of the forest ecosystem. We investigated the effect of fire on termite and ant assemblages and the importance of remnant forest in restoring species diversity in fire-impacted tropical peat swamp forests. The species loss of both termites and ants was as high as 50% in some fire-impacted peats compared to remnant forests, but in most cases the species richness for termites and ants was statistically equal along the land uses surveyed. However, a pronounced difference in functional group composition of termites was detected. In particular, sites close to remnant forests contained two additional termite feeding groups so that they shared a similar composition structure with remnant forests but were significantly different from sites distant from remnant forests. In general, ants were resilient to fire, and the similarity index showed a high degree of similarity among ant communities in all land uses surveyed. The Shannon diversity index for termites and ants decreased with increasing distance from the remnant forests and level of ecological degradation. Peat vegetation variables and ecological degradation were important in shaping termite and ant communities in the tropical peatlands, but their relative importance was not significant in fire-impacted peats regardless of distance from the remnant forests. This study highlights the importance of remnant forests as a biodiversity repository and natural buffer that can enhance species diversity and recolonization of forest-adapted species. PMID:28334021

  3. The effect of remnant forest on insect successional response in tropical fire-impacted peatland: A bi-taxa comparison.

    Science.gov (United States)

    Neoh, Kok-Boon; Bong, Lee-Jin; Muhammad, Ahmad; Itoh, Masayuki; Kozan, Osamu; Takematsu, Yoko; Yoshimura, Tsuyoshi

    2017-01-01

    Fire has become a common feature in tropical drained peatlands, and it may have detrimental impacts on the overall biodiversity of the forest ecosystem. We investigated the effect of fire on termite and ant assemblages and the importance of remnant forest in restoring species diversity in fire-impacted tropical peat swamp forests. The species loss of both termites and ants was as high as 50% in some fire-impacted peats compared to remnant forests, but in most cases the species richness for termites and ants was statistically equal along the land uses surveyed. However, a pronounced difference in functional group composition of termites was detected. In particular, sites close to remnant forests contained two additional termite feeding groups so that they shared a similar composition structure with remnant forests but were significantly different from sites distant from remnant forests. In general, ants were resilient to fire, and the similarity index showed a high degree of similarity among ant communities in all land uses surveyed. The Shannon diversity index for termites and ants decreased with increasing distance from the remnant forests and level of ecological degradation. Peat vegetation variables and ecological degradation were important in shaping termite and ant communities in the tropical peatlands, but their relative importance was not significant in fire-impacted peats regardless of distance from the remnant forests. This study highlights the importance of remnant forests as a biodiversity repository and natural buffer that can enhance species diversity and recolonization of forest-adapted species.

  4. Chemical characteristics of Siberian boreal forest fire emissions

    Science.gov (United States)

    Engling, G.; Popovicheva, O.; Fan, T. S.; Eleftheriadis, K.; Diapouli, E.; Kozlov, V.

    2014-12-01

    Smoke emissions from Siberian boreal forest fires exert critical impacts on the aerosol/climate system of subarctic regions and the Arctic. It is, therefore, crucial to assess the ability of such particles to absorb/scatter incoming solar radiation as well as act as cloud condensation nuclei, which is closely linked to the physical and chemical aerosol properties. However, observations of Siberian wildfire emissions are limited, and no systematic database of smoke particle properties is available for this region to date. As part of this study, ambient aerosol samples were collected during two smoke episodes in Tomsk, Siberia, in the summers of 2012 and 2013. In addition, the chemical composition and optical properties of smoke particles derived from the combustion of typical Siberian fuels, including pine wood and debris, were determined during chamber burn experiments in a large aerosol/combustion chamber under controlled combustion conditions representative of wildfires and prescribed burns. Detailed multi-component characterization of individual particles and bulk properties was accomplished with a suite of techniques, including various types of chromatography, microscopy, spectroscopy, and thermo-optical analysis. Individual particle analysis by SEM-EDX combined with cluster analysis revealed characteristic smoke structural components and major types of particles, which allowed to discriminate between flaming and smoldering regimes, reflected in specific morphological and chemical microstructure. The physicochemical properties representing the combustion phase (smoldering versus flaming) and the degree of processing (fresh versus aged) were assessed in the ambient aerosol based on the chamber burn results. For instance, some chemical transformation (aging of smoke particles) was noticed over a period of two days in the absence of sun light in the combustion chamber for certain chemical species, while the molecular tracer levoglucosan appeared to be rather

  5. The pilot of one fire retardant liquid's application on varnish contiguous wooden houses%某阻燃液对木质结构房屋应用探讨

    Institute of Scientific and Technical Information of China (English)

    郑锦; 傅勤勇; 孟繁茂

    2012-01-01

    One fire retardant liquid was taken as flame retardant treatment in one varnish contiguous wooden houses (village). The preparation method and the fire retardant mechanism of fire retardant liquid were introduced; the national administration' s test results of this liquid were given and the method and procedure of this fire retardant liquid in Shilong village in Kaili City were introduced. The samples took from the villages which were taken flame retardant treatment by this fire retardant liquid were tested in the fire product quality supervision and inspection station in Guizhou province, and the result is that the samples' combustion performance reached the level B1.%采用某阻燃液对连片木质结构房屋(村寨)进行阻燃处理.介绍该阻燃液及阻燃清漆的制备方法、阻燃机理,国家检验机构的检验结果以及该阻燃液应用于凯里市寨石龙寨的实施方法及工序.从试点村寨抽取经该阻燃液阻燃处理的木质板材等样品,经贵州省消防产品质量监督检验站检测,其燃烧性能均达到B1级.

  6. [Forest lighting fire forecasting for Daxing'anling Mountains based on MAXENT model].

    Science.gov (United States)

    Sun, Yu; Shi, Ming-Chang; Peng, Huan; Zhu, Pei-Lin; Liu, Si-Lin; Wu, Shi-Lei; He, Cheng; Chen, Feng

    2014-04-01

    Daxing'anling Mountains is one of the areas with the highest occurrence of forest lighting fire in Heilongjiang Province, and developing a lightning fire forecast model to accurately predict the forest fires in this area is of importance. Based on the data of forest lightning fires and environment variables, the MAXENT model was used to predict the lightning fire in Daxing' anling region. Firstly, we studied the collinear diagnostic of each environment variable, evaluated the importance of the environmental variables using training gain and the Jackknife method, and then evaluated the prediction accuracy of the MAXENT model using the max Kappa value and the AUC value. The results showed that the variance inflation factor (VIF) values of lightning energy and neutralized charge were 5.012 and 6.230, respectively. They were collinear with the other variables, so the model could not be used for training. Daily rainfall, the number of cloud-to-ground lightning, and current intensity of cloud-to-ground lightning were the three most important factors affecting the lightning fires in the forest, while the daily average wind speed and the slope was of less importance. With the increase of the proportion of test data, the max Kappa and AUC values were increased. The max Kappa values were above 0.75 and the average value was 0.772, while all of the AUC values were above 0.5 and the average value was 0. 859. With a moderate level of prediction accuracy being achieved, the MAXENT model could be used to predict forest lightning fire in Daxing'anling Mountains.

  7. Impacts of Land Management on the Resilience of Mediterranean Dry Forests to Fire

    Directory of Open Access Journals (Sweden)

    Matteo Jucker Riva

    2016-09-01

    Full Text Available Wildfires have always been a part of the history of Mediterranean forests. However, forests are not always certain to regenerate after a wildfire. Whether they do depends on many factors, some of which may be influenced by land management activities. Failure to regenerate will cause a regime shift in the ecosystem, reducing the provision of ecosystem services and ultimately leading to desertification. How can we increase the resilience of Mediterranean forests to fire? Our approach to answering this question was twofold: first, we reviewed the literature to investigate chains of processes that allowed forests to regenerate (which we label Regeneration Mechanisms, or RMs; and second, we assessed the impact of selected management practices documented in the WOCAT database on these RMs. For the assessment, we evaluated the relation between the benefits and disadvantages of the land management practices on the one hand, and the hindering and supporting factors of the RMs on the other. We identified three distinct RMs that enable Mediterranean forests to recover, as well as the time frame before and after a fire in which they are at work, and factors that can hinder or support resilience. The three RMs enabling a forest to regenerate after a fire consist of regeneration (1 from a seed bank; (2 from resprouting individuals; and (3 from unburned plants that escaped the fire. Management practices were grouped into four categories: (1 fuel breaks; (2 fuel management; (3 afforestation; and (4 mulching. We assessed how and under what conditions land management modifies the ecosystem’s resilience. The results show that land management influences resilience by interacting with resilience mechanisms before and after the fire, and not just by modifying the fire regime. Our analysis demonstrates a need for adaptive—i.e., context- and time-specific—management strategies.

  8. Effects of Different Fire Retardant Treatment on Properties of Poplar Plywood%不同阻燃剂对速生杨木胶合板性能的影响

    Institute of Scientific and Technical Information of China (English)

    赵东; 周云明; 孙晓博; 柴永家; 王翔; 王传贵

    2014-01-01

    This paper studied the poplar veneer, and impregnated them with self-made fire retardant and FRW fire retardant, to discuss the influence of different fire retardant, impregnation time, impregnation concentration, hot-pressing temperature on the fire retardant retention quantity, the bonding strength and the fire-retardant properties. The results showed that fire retardant retention quantity, oxygen index and bonding strength were 1.4322%-13.4726%, 36.6%-89.9% and 0.131-0.798 MPa with self-made fire retardant treatment while the fire retardant retention quantity, oxygen index and bonding strength were 1.5449%-14.7724%, 45.3%-70.5%and 0.233-0.698 MPa with FRW fire retardant treatment. Through the self-made and FRW fire retardant treatments, the fire retardant properties of poplar plywood were significantly improved, the oxygen index had reached and was much higher than the flame retardant grade request in JISD1322-77, but its bonding strength significantly decreased.%选用自配阻燃剂和FRW阻燃剂处理杨木单板,探讨不同种类阻燃剂、浸渍时间、浸渍浓度、热压温度对胶合板载药量、胶合强度以及阻燃性能的影响。结果表明:选用自配阻燃剂时,载药量1.4322%~13.4726%,氧指数36.6%~89.9%,胶合强度0.131~0.798 MPa;选用FRW阻燃剂时,杨木阻燃胶合板的载药量1.5449%~14.7724%,氧指数45.3%~70.5%,胶合强度0.233~0.698 MPa。经过自配和FRW阻燃剂处理后,杨木胶合板的阻燃性能均得到明显改善,其中氧指数远大于日本JISD1322-77中的难燃一级品的要求,但是其胶合性能显著下降。

  9. Areas of Agreement and Disagreement Regarding Ponderosa Pine and Mixed Conifer Forest Fire Regimes: A Dialogue with Stevens et al.

    Science.gov (United States)

    Odion, Dennis C; Hanson, Chad T; Baker, William L; DellaSala, Dominick A; Williams, Mark A

    2016-01-01

    In a recent PLOS ONE paper, we conducted an evidence-based analysis of current versus historical fire regimes and concluded that traditionally defined reference conditions of low-severity fire regimes for ponderosa pine (Pinus ponderosa) and mixed-conifer forests were incomplete, missing considerable variability in forest structure and fire regimes. Stevens et al. (this issue) agree that high-severity fire was a component of these forests, but disagree that one of the several sources of evidence, stand age from a large number of forest inventory and analysis (FIA) plots across the western USA, support our findings that severe fire played more than a minor role ecologically in these forests. Here we highlight areas of agreement and disagreement about past fire, and analyze the methods Stevens et al. used to assess the FIA stand-age data. We found a major problem with a calculation they used to conclude that the FIA data were not useful for evaluating fire regimes. Their calculation, as well as a narrowing of the definition of high-severity fire from the one we used, leads to a large underestimate of conditions consistent with historical high-severity fire. The FIA stand age data do have limitations but they are consistent with other landscape-inference data sources in supporting a broader paradigm about historical variability of fire in ponderosa and mixed-conifer forests than had been traditionally recognized, as described in our previous PLOS paper.

  10. Areas of Agreement and Disagreement Regarding Ponderosa Pine and Mixed Conifer Forest Fire Regimes: A Dialogue with Stevens et al.

    Directory of Open Access Journals (Sweden)

    Dennis C Odion

    Full Text Available In a recent PLOS ONE paper, we conducted an evidence-based analysis of current versus historical fire regimes and concluded that traditionally defined reference conditions of low-severity fire regimes for ponderosa pine (Pinus ponderosa and mixed-conifer forests were incomplete, missing considerable variability in forest structure and fire regimes. Stevens et al. (this issue agree that high-severity fire was a component of these forests, but disagree that one of the several sources of evidence, stand age from a large number of forest inventory and analysis (FIA plots across the western USA, support our findings that severe fire played more than a minor role ecologically in these forests. Here we highlight areas of agreement and disagreement about past fire, and analyze the methods Stevens et al. used to assess the FIA stand-age data. We found a major problem with a calculation they used to conclude that the FIA data were not useful for evaluating fire regimes. Their calculation, as well as a narrowing of the definition of high-severity fire from the one we used, leads to a large underestimate of conditions consistent with historical high-severity fire. The FIA stand age data do have limitations but they are consistent with other landscape-inference data sources in supporting a broader paradigm about historical variability of fire in ponderosa and mixed-conifer forests than had been traditionally recognized, as described in our previous PLOS paper.

  11. Shifts in functional traits elevate risk of fire-driven tree dieback in tropical savanna and forest biomes.

    Science.gov (United States)

    Pellegrini, Adam F A; Franco, Augusto C; Hoffmann, William A

    2016-03-01

    Numerous predictions indicate rising CO2 will accelerate the expansion of forests into savannas. Although encroaching forests can sequester carbon over the short term, increased fires and drought-fire interactions could offset carbon gains, which may be amplified by the shift toward forest plant communities more susceptible to fire-driven dieback. We quantify how bark thickness determines the ability of individual tree species to tolerate fire and subsequently determine the fire sensitivity of ecosystem carbon across 180 plots in savannas and forests throughout the 2.2-million km(2) Cerrado region in Brazil. We find that not accounting for variation in bark thickness across tree species underestimated carbon losses in forests by ~50%, totaling 0.22 PgC across the Cerrado region. The lower bark thicknesses of plant species in forests decreased fire tolerance to such an extent that a third of carbon gains during forest encroachment may be at risk of dieback if burned. These results illustrate that consideration of trait-based differences in fire tolerance is critical for determining the climate-carbon-fire feedback in tropical savanna and forest biomes. © 2015 John Wiley & Sons Ltd.

  12. Valuing fire planning alternatives in forest restoration: using derived demand to integrate economics with ecological restoration.

    Science.gov (United States)

    Rideout, Douglas B; Ziesler, Pamela S; Kernohan, Nicole J

    2014-08-01

    Assessing the value of fire planning alternatives is challenging because fire affects a wide array of ecosystem, market, and social values. Wildland fire management is increasingly used to address forest restoration while pragmatic approaches to assessing the value of fire management have yet to be developed. Earlier approaches to assessing the value of forest management relied on connecting site valuation with management variables. While sound, such analysis is too narrow to account for a broad range of ecosystem services. The metric fire regime condition class (FRCC) was developed from ecosystem management philosophy, but it is entirely biophysical. Its lack of economic information cripples its utility to support decision-making. We present a means of defining and assessing the deviation of a landscape from its desired fire management condition by re-framing the fire management problem as one of derived demand. This valued deviation establishes a performance metric for wildland fire management. Using a case study, we display the deviation across a landscape and sum the deviations to produce a summary metric. This summary metric is used to assess the value of alternative fire management strategies on improving the fire management condition toward its desired state. It enables us to identify which sites are most valuable to restore, even when they are in the same fire regime condition class. The case study site exemplifies how a wide range of disparate values, such as watershed, wildlife, property and timber, can be incorporated into a single landscape assessment. The analysis presented here leverages previous research on environmental capital value and non-market valuation by integrating ecosystem management, restoration, and microeconomics.

  13. Forest fire in the central Himalaya: climate and recovery of trees

    Science.gov (United States)

    Sharma, Subrat; Rikhari, H. C.

    A forest fire event is influenced by climatic conditions and is supported by accumulation of fuel on forest floor. After forest fire, photosynthetically active solar radiation was reduced due to accumulation of ash and dust particles in atmosphere. Post-fire impacts on Quercus leucotrichophora, Rhododendron arboreum and Lyonia ovalifolia in a broadleaf forest were analysed after a wild fire. Bark depth damage was greatest for L. ovalifolia and least for Q. leucotrichophora. Regeneration of saplings was observed for all the tree species through sprouting. Epicormic recovery was observed for the trees of all the species. Young trees of Q. leucotrichophora (<40 cm circumference at breast height) were susceptible to fire as evident by the lack of sprouting. Under-canopy tree species have a high potential for recovery as evident by greater length and diameter of shoots and numbers of buds and leaves per shoot than canopy species. Leaf area, leaf moisture and specific leaf area were greater in the deciduous species, with few exceptions, than in evergreen species.

  14. Patterns of canopy and surface layer consumption in a boreal forest fire from repeat airborne lidar

    Science.gov (United States)

    Alonzo, Michael; Morton, Douglas C.; Cook, Bruce D.; Andersen, Hans-Erik; Babcock, Chad; Pattison, Robert

    2017-05-01

    Fire in the boreal region is the dominant agent of forest disturbance with direct impacts on ecosystem structure, carbon cycling, and global climate. Global and biome-scale impacts are mediated by burn severity, measured as loss of forest canopy and consumption of the soil organic layer. To date, knowledge of the spatial variability in burn severity has been limited by sparse field sampling and moderate resolution satellite data. Here, we used pre- and post-fire airborne lidar data to directly estimate changes in canopy vertical structure and surface elevation for a 2005 boreal forest fire on Alaska’s Kenai Peninsula. We found that both canopy and surface losses were strongly linked to pre-fire species composition and exhibited important fine-scale spatial variability at sub-30 m resolution. The fractional reduction in canopy volume ranged from 0.61 in lowland black spruce stands to 0.27 in mixed white spruce and broadleaf forest. Residual structure largely reflects standing dead trees, highlighting the influence of pre-fire forest structure on delayed carbon losses from aboveground biomass, post-fire albedo, and variability in understory light environments. Median loss of surface elevation was highest in lowland black spruce stands (0.18 m) but much lower in mixed stands (0.02 m), consistent with differences in pre-fire organic layer accumulation. Spatially continuous depth-of-burn estimates from repeat lidar measurements provide novel information to constrain carbon emissions from the surface organic layer and may inform related research on post-fire successional trajectories. Spectral measures of burn severity from Landsat were correlated with canopy (r = 0.76) and surface (r = -0.71) removal in black spruce stands but captured less of the spatial variability in fire effects for mixed stands (canopy r = 0.56, surface r = -0.26), underscoring the difficulty in capturing fire effects in heterogeneous boreal forest landscapes using proxy measures of burn

  15. Impact of Siberian forest fires on the atmosphere over the Korean Peninsula during summer 2014

    Science.gov (United States)

    Jung, Jinsang; Lyu, Youngsook; Lee, Minhee; Hwang, Taekyung; Lee, Sangil; Oh, Sanghyub

    2016-06-01

    Extensive forest fires occurred during late July 2014 across the forested region of Siberia, Russia. Smoke plumes emitted from Siberian forest fires underwent long-range transport over Mongolia and northeast China to the Korean Peninsula, which is located ˜ 3000 km south of the Siberian forest. A notably high aerosol optical depth of ˜ 4 was observed at a wavelength of 500 nm near the source of the Siberian forest fires. Smoke plumes reached 3-5 km in height near the source and fell below 2 km over the Korean Peninsula. Elevated concentrations of levoglucosan were observed (119.7 ± 6.0 ng m-3), which were ˜ 4.5 times higher than those observed during non-event periods in July 2014. During the middle of July 2014, a haze episode occurred that was primarily caused by the long-range transport of emission plumes originating from urban and industrial complexes in East China. Sharp increases in SO42- concentrations (23.1 ± 2.1 µg m-3) were observed during this episode. The haze caused by the long-range transport of Siberian forest fire emissions was clearly identified by relatively high organic carbon (OC) / elemental carbon (EC) ratios (7.18 ± 0.2) and OC / SO42- ratios (1.31 ± 0.07) compared with those of the Chinese haze episode (OC / EC ratio: 2.4 ± 0.4; OC / SO42- ratio: 0.21 ± 0.05). Remote measurement techniques and chemical analyses of the haze plumes clearly show that the haze episode that occurred during late July 2014 was caused mainly by the long-range transport of smoke plumes emitted from Siberian forest fires.

  16. Thermal performance of glass fiber reinforced intumescent fire retardant coating for structural applications

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Faiz, E-mail: faizahmad@petronas.com.my; Ullah, Sami; Aziz, Hammad, E-mail: engr.hammad.aziz03@gmail.com; Omar, Nor Sharifah [Department of Mechanical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Tronoh 31750 Perak (Malaysia)

    2015-07-22

    The results of influence of glass fiber addition into the basic intumescent coating formulation towards the enhancement of its thermal insulation properties are presented. The intumescent coatings were formulated from expandable graphite, ammonium polyphosphate, melamine, boric acid, bisphenol A epoxy resin BE-188, polyamide amine H-2310 hardener and fiberglass (FG) of length 3.0 mm. Eight intumescent formulations were developed and the samples were tested for their fire performance by burning them at 450°C, 650°C and 850°C in the furnace for two hours. The effects of each fire test at different temperatures; low and high temperature were evaluated. Scanning Electron Microscope, X-Ray Diffraction technique and Thermo Gravimetric Analysis were conducted on the samples to study the morphology, the chemical components of char and the residual weight of the coatings. The formulation, FG08 containing 7.0 wt% glass fiber provided better results with enhanced thermal insulation properties of the coatings.

  17. Thermal performance of glass fiber reinforced intumescent fire retardant coating for structural applications

    Science.gov (United States)

    Ahmad, Faiz; Ullah, Sami; Aziz, Hammad; Omar, Nor Sharifah

    2015-07-01

    The results of influence of glass fiber addition into the basic intumescent coating formulation towards the enhancement of its thermal insulation properties are presented. The intumescent coatings were formulated from expandable graphite, ammonium polyphosphate, melamine, boric acid, bisphenol A epoxy resin BE-188, polyamide amine H-2310 hardener and fiberglass (FG) of length 3.0 mm. Eight intumescent formulations were developed and the samples were tested for their fire performance by burning them at 450°C, 650°C and 850°C in the furnace for two hours. The effects of each fire test at different temperatures; low and high temperature were evaluated. Scanning Electron Microscope, X-Ray Diffraction technique and Thermo Gravimetric Analysis were conducted on the samples to study the morphology, the chemical components of char and the residual weight of the coatings. The formulation, FG08 containing 7.0 wt% glass fiber provided better results with enhanced thermal insulation properties of the coatings.

  18. Forest Fire Smoke Detection Using Back-Propagation Neural Network Based on MODIS Data

    Directory of Open Access Journals (Sweden)

    Xiaolian Li

    2015-04-01

    Full Text Available Satellite remote sensing provides global observations of the Earth’s surface and provides useful information for monitoring smoke plumes emitted from forest fires. The aim of this study is to automatically separate smoke plumes from the background by analyzing the MODIS data. An identification algorithm was improved based on the spectral analysis among the smoke, cloud and underlying surface. In order to get satisfactory results, a multi-threshold method is used for extracting training sample sets to train back-propagation neural network (BPNN classification for merging the smoke detection algorithm. The MODIS data from three forest fires were used to develop the algorithm and get parameter values. These fires occurred in (i China on 16 October 2004, (ii Northeast Asia on 29 April 2009 and (iii Russia on 29 July 2010 in different seasons. Then, the data from four other fires were used to validate the algorithm. Results indicated that the algorithm captured both thick smoke and thin dispersed smoke over land, as well as the mixed pixels of smoke over the ocean. These results could provide valuable information concerning forest fire location, fire spreading and so on.

  19. A Drone Remote Sensing for Virtual Reality Simulation System for Forest Fires: Semantic Neural Network Approach

    Science.gov (United States)

    Narasimha Rao, Gudikandhula; Jagadeeswara Rao, Peddada; Duvvuru, Rajesh

    2016-09-01

    Wild fires have significant impact on atmosphere and lives. The demand of predicting exact fire area in forest may help fire management team by using drone as a robot. These are flexible, inexpensive and elevated-motion remote sensing systems that use drones as platforms are important for substantial data gaps and supplementing the capabilities of manned aircraft and satellite remote sensing systems. In addition, powerful computational tools are essential for predicting certain burned area in the duration of a forest fire. The reason of this study is to built up a smart system based on semantic neural networking for the forecast of burned areas. The usage of virtual reality simulator is used to support the instruction process of fire fighters and all users for saving of surrounded wild lives by using a naive method Semantic Neural Network System (SNNS). Semantics are valuable initially to have a enhanced representation of the burned area prediction and better alteration of simulation situation to the users. In meticulous, consequences obtained with geometric semantic neural networking is extensively superior to other methods. This learning suggests that deeper investigation of neural networking in the field of forest fires prediction could be productive.

  20. Fire severity filters regeneration traits to shape community assembly in Alaska's boreal forest.

    Directory of Open Access Journals (Sweden)

    Teresa N Hollingsworth

    Full Text Available Disturbance can both initiate and shape patterns of secondary succession by affecting processes of community assembly. Thus, understanding assembly rules is a key element of predicting ecological responses to changing disturbance regimes. We measured the composition and trait characteristics of plant communities early after widespread wildfires in Alaska to assess how variations in disturbance characteristics influenced the relative success of different plant regeneration strategies. We compared patterns of post-fire community composition and abundance of regeneration traits across a range of fire severities within a single pre-fire forest type- black spruce forests of Interior Alaska. Patterns of community composition, as captured by multivariate ordination with nonmetric multidimensional scaling, were primarily related to gradients in fire severity (biomass combustion and residual vegetation and secondarily to gradients in soil pH and regional climate. This pattern was apparent in both the full dataset (n = 87 sites and for a reduced subset of sites (n = 49 that minimized the correlation between site moisture and fire severity. Changes in community composition across the fire-severity gradient in Alaska were strongly correlated to variations in plant regeneration strategy and rooting depth. The tight coupling of fire severity with regeneration traits and vegetation composition after fire supports the hypothesis that disturbance characteristics influence patterns of community assembly by affecting the relative success of different regeneration strategies. This study further demonstrated that variations in disturbance characteristics can dominate over environmental constraints in determining early patterns of community assembly. By affecting the success of regeneration traits, changes in fire regime directly shape the outcomes of community assembly, and thus may override the effects of slower environmental change on boreal forest