WorldWideScience

Sample records for forest biodiversity research

  1. Operational Research Techniques Used for Addressing Biodiversity Objectives into Forest Management: An Overview

    Directory of Open Access Journals (Sweden)

    Marta Ezquerro

    2016-10-01

    Full Text Available The integration of biodiversity into forest management has traditionally been a challenge for many researchers and practitioners. In this paper, we have provided a survey of forest management papers that use different Operations Research (OR methods in order to integrate biodiversity objectives into their planning models. One hundred and seventy-nine references appearing in the ISI Web of Science database in the last 30 years have been categorized and evaluated according to different attributes like model components, forest management elements, or biodiversity issues. The results show that many OR methods have been applied to deal with this challenging objective. Thus, up to 18 OR techniques, divided into four large groups, which have been employed in four or more articles, have been identified. However, it has been observed how the evolution of these papers in time apparently tended to increase only until 2008. Finally, two clear trends in this set of papers should be highlighted: the incorporation of spatial analysis tools into these operational research models and, second, the setting up of hybrid models, which combine different techniques to solve this type of problem.

  2. Plantation forests and biodiversity: oxymoron or opportunity?

    Science.gov (United States)

    Eckehard G. Brockerhoff; Hervé Jactel; John A. Parrotta; Christopher Quine; Jeffrey Sayer

    2008-01-01

    Losses of natural and semi-natural forests, mostly to agriculture, are a significant concern for biodiversity. Against this trend, the area of intensively managed plantation forests increases, and there is much debate about the implications for biodiversity. We provide a comprehensive review of the function of plantation forests as habitat compared with other land...

  3. Forest Resilience, Biodiversity, and Climate Change

    Science.gov (United States)

    I. Thompson; B. Mackey; S. McNulty; A. Mosseler

    2009-01-01

    This paper reviews the concepts of ecosystem resilience, resistance, and stability in forests and their relationship to biodiversity, with particular reference to climate change. The report is a direct response to a request by the ninth meeting of the Conference of the Parties to the CBD, in decision IX/51, to explore the links between biodiversity, forest ecosystem...

  4. Plantation forests, climate change and biodiversity

    Science.gov (United States)

    S.M. Pawson; A. Brin; E.G. Brockerhoff; D. Lamb; T.W. Payn; A. Paquette; J.A. Parrotta

    2013-01-01

    Nearly 4 % of the world’s forests are plantations, established to provide a variety of ecosystem services, principally timber and other wood products. In addition to such services, plantation forests provide direct and indirect benefits to biodiversity via the provision of forest habitat for a wide range of species, and by reducing negative impacts on natural forests...

  5. National forest inventory contributions to forest biodiversity monitoring

    DEFF Research Database (Denmark)

    Chirici, Cherardo; McRoberts, Ronald; Winter, Susanne

    2012-01-01

    Forests are the most biodiverse terrestrial ecosystems. National forest inventories (NFIs) are the main source of information on the status and trends of forests, but they have traditionally been designed to assess land coverage and the production value of forests rather than forest biodiversity....... The primary international processes dealing with biodiversity and sustainable forest management, the Convention on Biological Diversity (CBD), Forest Europe, Streamlining European Biodiversity Indicators 2010 of the European Environmental Agency, and the Montréal Process, all include indicators related...... Forest Inventories in Europe: Techniques for Common Reporting“) of the European program Cooperation in Science and Technology (COST). We discuss definitions and techniques for harmonizing estimates of possible biodiversity indicators based on data from NFIs in Europe and the United States. We compare...

  6. Intentional systems management: managing forests for biodiversity.

    Science.gov (United States)

    A.B. Carey; B.R. Lippke; J. Sessions

    1999-01-01

    Conservation of biodiversity provides for economic, social, and environmental sustainability. Intentional management is designed to manage conflicts among groups with conflicting interests. Our goal was to ascertain if intentional management and principles of conservation of biodiversity could be combined into upland and riparian forest management strategies that would...

  7. Resobio. Management of forest residues: preserving soils and biodiversity

    International Nuclear Information System (INIS)

    Rantien, Caroline; Charasse, Laurent; Wlerick, Lise; Landmann, Guy; Nivet, Cecile; Jallais, Anais; Augusto, Laurent; Bigot, Maryse; Thivolle Cazat, Alain; Bouget, Christophe; Brethes, Alain; Boulanger, Vincent; Richter, Claudine; Cornu, Sophie; Rakotoarison, Hanitra; Ulrich, Erwin; Deleuze, Christine; Michaud, Daniel; Cacot, Emmanuel; Pousse, Noemie; Ranger, Jacques; Saint-Andre, Laurent; Zeller, Bernd; Achat, David; Cabral, Anne-Sophie; Akroume, Emila; Aubert, Michael; Bailly, Alain; Fraysse, Jean-Yves; Fraud, Benoit; Gardette, Yves-Marie; Gibaud, Gwenaelle; Helou, Tammouz-Enaut; Pitocchi, Sophie; Vivancos, Caroline

    2014-03-01

    The Resobio project (management of forest slash: preservation of soils and biodiversity) aimed at updating knowledge available at the international level (with a focus on temperate areas) on the potential consequences of forest slash sampling on fertility and on biodiversity, and at identifying orientations for recommendations for a revision of the ADEME guide of 2006 on wise collecting of forest slash. The first part of this report is a synthesis report which gives an overview of results about twenty issues dealing with the nature of wood used for energy production and the role of slash, about the consequences of this type of collecting for soil fertility and species productivity, and about impacts on biodiversity. Based on these elements, recommendations are made for slash management and for additional follow-up and research. The second part contains five scientific and technical reports which more deeply analyse the issue of fertility, and technical documents on slash management (guides) published in various countries

  8. Forest restoration, biodiversity and ecosystem functioning

    Directory of Open Access Journals (Sweden)

    Aerts Raf

    2011-11-01

    Full Text Available Abstract Globally, forests cover nearly one third of the land area and they contain over 80% of terrestrial biodiversity. Both the extent and quality of forest habitat continue to decrease and the associated loss of biodiversity jeopardizes forest ecosystem functioning and the ability of forests to provide ecosystem services. In the light of the increasing population pressure, it is of major importance not only to conserve, but also to restore forest ecosystems. Ecological restoration has recently started to adopt insights from the biodiversity-ecosystem functioning (BEF perspective. Central is the focus on restoring the relation between biodiversity and ecosystem functioning. Here we provide an overview of important considerations related to forest restoration that can be inferred from this BEF-perspective. Restoring multiple forest functions requires multiple species. It is highly unlikely that species-poor plantations, which may be optimal for above-ground biomass production, will outperform species diverse assemblages for a combination of functions, including overall carbon storage and control over water and nutrient flows. Restoring stable forest functions also requires multiple species. In particular in the light of global climatic change scenarios, which predict more frequent extreme disturbances and climatic events, it is important to incorporate insights from the relation between biodiversity and stability of ecosystem functioning into forest restoration projects. Rather than focussing on species per se, focussing on functional diversity of tree species assemblages seems appropriate when selecting tree species for restoration. Finally, also plant genetic diversity and above - below-ground linkages should be considered during the restoration process, as these likely have prominent but until now poorly understood effects at the level of the ecosystem. The BEF-approach provides a useful framework to evaluate forest restoration in an

  9. Forest restoration, biodiversity and ecosystem functioning.

    Science.gov (United States)

    Aerts, Raf; Honnay, Olivier

    2011-11-24

    Globally, forests cover nearly one third of the land area and they contain over 80% of terrestrial biodiversity. Both the extent and quality of forest habitat continue to decrease and the associated loss of biodiversity jeopardizes forest ecosystem functioning and the ability of forests to provide ecosystem services. In the light of the increasing population pressure, it is of major importance not only to conserve, but also to restore forest ecosystems. Ecological restoration has recently started to adopt insights from the biodiversity-ecosystem functioning (BEF) perspective. Central is the focus on restoring the relation between biodiversity and ecosystem functioning. Here we provide an overview of important considerations related to forest restoration that can be inferred from this BEF-perspective. Restoring multiple forest functions requires multiple species. It is highly unlikely that species-poor plantations, which may be optimal for above-ground biomass production, will outperform species diverse assemblages for a combination of functions, including overall carbon storage and control over water and nutrient flows. Restoring stable forest functions also requires multiple species. In particular in the light of global climatic change scenarios, which predict more frequent extreme disturbances and climatic events, it is important to incorporate insights from the relation between biodiversity and stability of ecosystem functioning into forest restoration projects. Rather than focussing on species per se, focussing on functional diversity of tree species assemblages seems appropriate when selecting tree species for restoration. Finally, also plant genetic diversity and above - below-ground linkages should be considered during the restoration process, as these likely have prominent but until now poorly understood effects at the level of the ecosystem. The BEF-approach provides a useful framework to evaluate forest restoration in an ecosystem functioning context, but

  10. Foundations of biodiversity in managed Douglas-fir forests.

    Science.gov (United States)

    A.B. Carey; D.R. Thysell; L.J. Villa; T.M. Wilson; S.M. Wilson; J.M. Trappe; W. Colgan; E.R. Ingham; M. Holmes

    1996-01-01

    The controversy over old-growth Douglas-fir (Pseudotsuga menziesii) forests and late-seral species has resulted in substantial information about biodiversity (Carey 1989, 1995, Carey and Johnson 1995, Carey et al. 1990, 1992, Forsmann et al. 1984). Major compilations of old-growth related research and its management implications include Gutierrez...

  11. Forest Carbon Sinks and Biodiversity Conservation from China's Perspective

    OpenAIRE

    Mingde Cao, Ying Chen

    2010-01-01

    The Kyoto Protocol established the use of forest carbon sinks as one way of compensating for forest ecological values. Forest carbon sinks can promote sustainable economic development and help developed nations reduce their GHG emissions. But without proper legal regulation they may influence the local ecological environment and, in particular, they may harm biodiversity. States need to make laws that regulate forest carbon sinks and protect biodiversity. Environmental law urgently needs to s...

  12. Primary forests are irreplaceable for sustaining tropical biodiversity.

    Science.gov (United States)

    Gibson, Luke; Lee, Tien Ming; Koh, Lian Pin; Brook, Barry W; Gardner, Toby A; Barlow, Jos; Peres, Carlos A; Bradshaw, Corey J A; Laurance, William F; Lovejoy, Thomas E; Sodhi, Navjot S

    2011-09-14

    Human-driven land-use changes increasingly threaten biodiversity, particularly in tropical forests where both species diversity and human pressures on natural environments are high. The rapid conversion of tropical forests for agriculture, timber production and other uses has generated vast, human-dominated landscapes with potentially dire consequences for tropical biodiversity. Today, few truly undisturbed tropical forests exist, whereas those degraded by repeated logging and fires, as well as secondary and plantation forests, are rapidly expanding. Here we provide a global assessment of the impact of disturbance and land conversion on biodiversity in tropical forests using a meta-analysis of 138 studies. We analysed 2,220 pairwise comparisons of biodiversity values in primary forests (with little or no human disturbance) and disturbed forests. We found that biodiversity values were substantially lower in degraded forests, but that this varied considerably by geographic region, taxonomic group, ecological metric and disturbance type. Even after partly accounting for confounding colonization and succession effects due to the composition of surrounding habitats, isolation and time since disturbance, we find that most forms of forest degradation have an overwhelmingly detrimental effect on tropical biodiversity. Our results clearly indicate that when it comes to maintaining tropical biodiversity, there is no substitute for primary forests.

  13. Role of eucalypt and other planted forests in biodiversity conservation and the provision of biodiversity-related services

    Science.gov (United States)

    Eckehard G. Brockerhoff; Hervé Jactel; John A. Parrotta; Silvio F.B. Ferraz

    2013-01-01

    Forests provide important habitat for much of the world’s biodiversity, and the continuing global deforestation is one of our greatest environmental concerns. Planted forests represent an increasing proportion of the global forest area and partly compensate for the loss of natural forest in terms of forest area, habitat for biodiversity and ecological function. At...

  14. Biodiversity status of urban remnant forests in Cape coast, Ghana ...

    African Journals Online (AJOL)

    Cape Coast Metropolis, which is close to Kakum forest, has its native forests being reduced to fragments. Biodiversity in these forest reserves are exposed to the threat of being cleared over night as a result of urbanization. There are reported cases of some rare or potential medicinal plant species that have disappeared ...

  15. Biodiversity assessment for conservation planning in Uganda's forests

    African Journals Online (AJOL)

    The Uganda Forest Department recently completed a major national inventory of forest biodiversity, aimed at providing the information necessary to design a representative protected area system for the country. The inventory covered five national parks and a further 60 forest reserves, and involved the collection of data on ...

  16. Positive biodiversity-productivity relationship predominant in global forests.

    Science.gov (United States)

    Liang, Jingjing; Crowther, Thomas W; Picard, Nicolas; Wiser, Susan; Zhou, Mo; Alberti, Giorgio; Schulze, Ernst-Detlef; McGuire, A David; Bozzato, Fabio; Pretzsch, Hans; de-Miguel, Sergio; Paquette, Alain; Hérault, Bruno; Scherer-Lorenzen, Michael; Barrett, Christopher B; Glick, Henry B; Hengeveld, Geerten M; Nabuurs, Gert-Jan; Pfautsch, Sebastian; Viana, Helder; Vibrans, Alexander C; Ammer, Christian; Schall, Peter; Verbyla, David; Tchebakova, Nadja; Fischer, Markus; Watson, James V; Chen, Han Y H; Lei, Xiangdong; Schelhaas, Mart-Jan; Lu, Huicui; Gianelle, Damiano; Parfenova, Elena I; Salas, Christian; Lee, Eungul; Lee, Boknam; Kim, Hyun Seok; Bruelheide, Helge; Coomes, David A; Piotto, Daniel; Sunderland, Terry; Schmid, Bernhard; Gourlet-Fleury, Sylvie; Sonké, Bonaventure; Tavani, Rebecca; Zhu, Jun; Brandl, Susanne; Vayreda, Jordi; Kitahara, Fumiaki; Searle, Eric B; Neldner, Victor J; Ngugi, Michael R; Baraloto, Christopher; Frizzera, Lorenzo; Bałazy, Radomir; Oleksyn, Jacek; Zawiła-Niedźwiecki, Tomasz; Bouriaud, Olivier; Bussotti, Filippo; Finér, Leena; Jaroszewicz, Bogdan; Jucker, Tommaso; Valladares, Fernando; Jagodzinski, Andrzej M; Peri, Pablo L; Gonmadje, Christelle; Marthy, William; O'Brien, Timothy; Martin, Emanuel H; Marshall, Andrew R; Rovero, Francesco; Bitariho, Robert; Niklaus, Pascal A; Alvarez-Loayza, Patricia; Chamuya, Nurdin; Valencia, Renato; Mortier, Frédéric; Wortel, Verginia; Engone-Obiang, Nestor L; Ferreira, Leandro V; Odeke, David E; Vasquez, Rodolfo M; Lewis, Simon L; Reich, Peter B

    2016-10-14

    The biodiversity-productivity relationship (BPR) is foundational to our understanding of the global extinction crisis and its impacts on ecosystem functioning. Understanding BPR is critical for the accurate valuation and effective conservation of biodiversity. Using ground-sourced data from 777,126 permanent plots, spanning 44 countries and most terrestrial biomes, we reveal a globally consistent positive concave-down BPR, showing that continued biodiversity loss would result in an accelerating decline in forest productivity worldwide. The value of biodiversity in maintaining commercial forest productivity alone-US$166 billion to 490 billion per year according to our estimation-is more than twice what it would cost to implement effective global conservation. This highlights the need for a worldwide reassessment of biodiversity values, forest management strategies, and conservation priorities. Copyright © 2016, American Association for the Advancement of Science.

  17. Which instruments to preserve forest biodiversity?

    OpenAIRE

    Elodie Brahic

    2010-01-01

    In general, neither the social norms nor market dynamics stimulate spontaneously activities and practices conducive to biodiversity. The nature of public good of biodiversity leads to its rapid erosion. Even if it can respond positively to social expectations and improve welfare in the long term2, taking into account biodiversity often leads to changes in the way we produce or how to exercise its property right. The consideration of biodiversity may determine production losses and income decr...

  18. Biodiversity can help prevent malaria outbreaks in tropical forests.

    Directory of Open Access Journals (Sweden)

    Gabriel Zorello Laporta

    Full Text Available BACKGROUND: Plasmodium vivax is a widely distributed, neglected parasite that can cause malaria and death in tropical areas. It is associated with an estimated 80-300 million cases of malaria worldwide. Brazilian tropical rain forests encompass host- and vector-rich communities, in which two hypothetical mechanisms could play a role in the dynamics of malaria transmission. The first mechanism is the dilution effect caused by presence of wild warm-blooded animals, which can act as dead-end hosts to Plasmodium parasites. The second is diffuse mosquito vector competition, in which vector and non-vector mosquito species compete for blood feeding upon a defensive host. Considering that the World Health Organization Malaria Eradication Research Agenda calls for novel strategies to eliminate malaria transmission locally, we used mathematical modeling to assess those two mechanisms in a pristine tropical rain forest, where the primary vector is present but malaria is absent. METHODOLOGY/PRINCIPAL FINDINGS: The Ross-Macdonald model and a biodiversity-oriented model were parameterized using newly collected data and data from the literature. The basic reproduction number ([Formula: see text] estimated employing Ross-Macdonald model indicated that malaria cases occur in the study location. However, no malaria cases have been reported since 1980. In contrast, the biodiversity-oriented model corroborated the absence of malaria transmission. In addition, the diffuse competition mechanism was negatively correlated with the risk of malaria transmission, which suggests a protective effect provided by the forest ecosystem. There is a non-linear, unimodal correlation between the mechanism of dead-end transmission of parasites and the risk of malaria transmission, suggesting a protective effect only under certain circumstances (e.g., a high abundance of wild warm-blooded animals. CONCLUSIONS/SIGNIFICANCE: To achieve biological conservation and to eliminate

  19. Can Community Forests Be Compatible With Biodiversity Conservation in Indonesia?

    Directory of Open Access Journals (Sweden)

    Agni Klintuni Boedhihartono

    2017-03-01

    Full Text Available Forest lands in Indonesia are classified as state lands and subject to management under agreements allocated by the Ministry of Environment and Forestry. There has been a long-standing tension between the ministry and local communities who argue that they have traditionally managed large areas of forest and should be allowed to continue to do so. A series of recent legal and administrative decisions are now paving the way for the allocation of forests to local communities. There is a hypothesis that the communities will protect the forests against industrial conversion and that they will also conserve biodiversity. This hypothesis needs to be closely examined. Conservation of biodiversity and management for local benefits are two different and potentially conflicting objectives. This paper reviews examples of forests managed by local communities in Indonesia and concludes that there is very limited information available on the conservation of natural biodiversity in these forests. I conclude that more information is needed on the status of biodiversity in community managed forests. When forests are allocated for local management, special measures need to be in place to ensure that biodiversity values are monitored and maintained.

  20. The importance of forest structure to biodiversity?productivity relationships

    OpenAIRE

    Bohn, Friedrich J.; Huth, Andreas

    2017-01-01

    While various relationships between productivity and biodiversity are found in forests, the processes underlying these relationships remain unclear and theory struggles to coherently explain them. In this work, we analyse diversity?productivity relationships through an examination of forest structure (described by basal area and tree height heterogeneity). We use a new modelling approach, called ?forest factory?, which generates various forest stands and calculates their annual productivity (...

  1. Restoring biodiversity and forest ecosystem services in degraded tropical landscapes

    Science.gov (United States)

    John A. Parrotta

    2010-01-01

    Over the past century, an estimated 850 million ha of the world’s tropical forests have been lost or severely degraded, with serious impacts on local and regional biodiversity. A significant proportion of these lands were originally cleared of their forest cover for agricultural development or other economic uses. Today, however, they provide few if any environmental...

  2. Biodiversity Conservation and the Sacred Forests of Emohua, Rivers ...

    African Journals Online (AJOL)

    These sacred sites are regarded as the temples of god by the local people due to their beliefs, but technically the forests are centres of biodiversity. In recent times, anthropogenic interference activities expose the forest to threat and challenges which make the development and adoption of conservation strategies inevitable.

  3. Contribution of sacred forests to biodiversity conservation: case of ...

    African Journals Online (AJOL)

    In the current context of the rapid changes of land cover and land use in Benin, sacred forests are thought to be sanctuaries of biodiversity and representative of primary vegetation. In order to assess the contribution of sacred forests to phytodiversity conservation, this study was carried out in Adjahouto and Lokozoun sacred ...

  4. Original Paper Contribution of sacred forests to biodiversity ...

    African Journals Online (AJOL)

    In the current context of the rapid changes of land cover and land use in Benin, sacred forests are thought to be sanctuaries of biodiversity and representative of primary vegetation. In order to assess the contribution of sacred forests to phytodiversity conservation, this study was carried out in Adjahouto and. Lokozoun ...

  5. Prospects for tropical forest biodiversity in a human-modified world.

    Science.gov (United States)

    Gardner, Toby A; Barlow, Jos; Chazdon, Robin; Ewers, Robert M; Harvey, Celia A; Peres, Carlos A; Sodhi, Navjot S

    2009-06-01

    The future of tropical forest biodiversity depends more than ever on the effective management of human-modified landscapes, presenting a daunting challenge to conservation practitioners and land use managers. We provide a critical synthesis of the scientific insights that guide our understanding of patterns and processes underpinning forest biodiversity in the human-modified tropics, and present a conceptual framework that integrates a broad range of social and ecological factors that define and contextualize the possible future of tropical forest species. A growing body of research demonstrates that spatial and temporal patterns of biodiversity are the dynamic product of interacting historical and contemporary human and ecological processes. These processes vary radically in their relative importance within and among regions, and have effects that may take years to become fully manifest. Interpreting biodiversity research findings is frequently made difficult by constrained study designs, low congruence in species responses to disturbance, shifting baselines and an over-dependence on comparative inferences from a small number of well studied localities. Spatial and temporal heterogeneity in the potential prospects for biodiversity conservation can be explained by regional differences in biotic vulnerability and anthropogenic legacies, an ever-tighter coupling of human-ecological systems and the influence of global environmental change. These differences provide both challenges and opportunities for biodiversity conservation. Building upon our synthesis we outline a simple adaptive-landscape planning framework that can help guide a new research agenda to enhance biodiversity conservation prospects in the human-modified tropics.

  6. Biodiversity differences between managed and unmanaged forests: meta-analysis of species richness in Europe.

    Science.gov (United States)

    Paillet, Yoan; Bergès, Laurent; Hjältén, Joakim; Odor, Péter; Avon, Catherine; Bernhardt-Römermann, Markus; Bijlsma, Rienk-Jan; De Bruyn, Luc; Fuhr, Marc; Grandin, Ulf; Kanka, Robert; Lundin, Lars; Luque, Sandra; Magura, Tibor; Matesanz, Silvia; Mészáros, Ilona; Sebastià, M-Teresa; Schmidt, Wolfgang; Standovár, Tibor; Tóthmérész, Béla; Uotila, Anneli; Valladares, Fernando; Vellak, Kai; Virtanen, Risto

    2010-02-01

    Past and present pressures on forest resources have led to a drastic decrease in the surface area of unmanaged forests in Europe. Changes in forest structure, composition, and dynamics inevitably lead to changes in the biodiversity of forest-dwelling species. The possible biodiversity gains and losses due to forest management (i.e., anthropogenic pressures related to direct forest resource use), however, have never been assessed at a pan-European scale. We used meta-analysis to review 49 published papers containing 120 individual comparisons of species richness between unmanaged and managed forests throughout Europe. We explored the response of different taxonomic groups and the variability of their response with respect to time since abandonment and intensity of forest management. Species richness was slightly higher in unmanaged than in managed forests. Species dependent on forest cover continuity, deadwood, and large trees (bryophytes, lichens, fungi, saproxylic beetles) and carabids were negatively affected by forest management. In contrast, vascular plant species were favored. The response for birds was heterogeneous and probably depended more on factors such as landscape patterns. The global difference in species richness between unmanaged and managed forests increased with time since abandonment and indicated a gradual recovery of biodiversity. Clearcut forests in which the composition of tree species changed had the strongest effect on species richness, but the effects of different types of management on taxa could not be assessed in a robust way because of low numbers of replications in the management-intensity classes. Our results show that some taxa are more affected by forestry than others, but there is a need for research into poorly studied species groups in Europe and in particular locations. Our meta-analysis supports the need for a coordinated European research network to study and monitor the biodiversity of different taxa in managed and unmanaged

  7. Global forest loss disproportionately erodes biodiversity in intact landscapes.

    Science.gov (United States)

    Betts, Matthew G; Wolf, Christopher; Ripple, William J; Phalan, Ben; Millers, Kimberley A; Duarte, Adam; Butchart, Stuart H M; Levi, Taal

    2017-07-27

    Global biodiversity loss is a critical environmental crisis, yet the lack of spatial data on biodiversity threats has hindered conservation strategies. Theory predicts that abrupt biodiversity declines are most likely to occur when habitat availability is reduced to very low levels in the landscape (10-30%). Alternatively, recent evidence indicates that biodiversity is best conserved by minimizing human intrusion into intact and relatively unfragmented landscapes. Here we use recently available forest loss data to test deforestation effects on International Union for Conservation of Nature Red List categories of extinction risk for 19,432 vertebrate species worldwide. As expected, deforestation substantially increased the odds of a species being listed as threatened, undergoing recent upgrading to a higher threat category and exhibiting declining populations. More importantly, we show that these risks were disproportionately high in relatively intact landscapes; even minimal deforestation has had severe consequences for vertebrate biodiversity. We found little support for the alternative hypothesis that forest loss is most detrimental in already fragmented landscapes. Spatial analysis revealed high-risk hot spots in Borneo, the central Amazon and the Congo Basin. In these regions, our model predicts that 121-219 species will become threatened under current rates of forest loss over the next 30 years. Given that only 17.9% of these high-risk areas are formally protected and only 8.9% have strict protection, new large-scale conservation efforts to protect intact forests are necessary to slow deforestation rates and to avert a new wave of global extinctions.

  8. Wildfires, Ecosystem Services, and Biodiversity in Tropical Dry Forest in India.

    Science.gov (United States)

    Schmerbeck, Joachim; Fiener, Peter

    2015-08-01

    This review is intended to contribute to the understanding of the interlinkage between wildfire in India's tropical dry forest (TDF) and selected ecosystem services (ES), namely forest provisioning and water regulating services, as well as biodiversity. TDF covers approximately 146,000 km(2) (4.4%) of India, whereas according to the MODIS fire product about 2200 km(2) (1.4%) burns per year. As studies on wildfire effects upon ESs and biodiversity in Indian TDFs are rare we partly transferred findings from other (dry) forest areas to the environmental situation in India. In India (intentionally lit) wildfires have a very important connection to local livelihoods and the availability of non-wood forest products. Very important adverse long-term effects are the deterioration of forest ecosystems and soil degradation. The potential for TDF to regulate hydrological cycles is expected to be greater in the absence of fire than with it. A general judgment on the effect of fire on biodiversity is difficult as it depends on the community and species involved but a loss of biodiversity under regular burnings is apparent. Consequently, forest managers need sound knowledge regarding the interplay of wildfires and ecosystem behavior in general and more specific knowledge regarding the effects on taxa being considered for conservation efforts. Generally, much more research is needed to understand the trade-offs between the short-term benefits gained from forest provisioning services and long-term adverse effects.

  9. Wildfires, Ecosystem Services, and Biodiversity in Tropical Dry Forest in India

    Science.gov (United States)

    Schmerbeck, Joachim; Fiener, Peter

    2015-08-01

    This review is intended to contribute to the understanding of the interlinkage between wildfire in India's tropical dry forest (TDF) and selected ecosystem services (ES), namely forest provisioning and water regulating services, as well as biodiversity. TDF covers approximately 146,000 km2 (4.4 %) of India, whereas according to the MODIS fire product about 2200 km2 (1.4 %) burns per year. As studies on wildfire effects upon ESs and biodiversity in Indian TDFs are rare we partly transferred findings from other (dry) forest areas to the environmental situation in India. In India (intentionally lit) wildfires have a very important connection to local livelihoods and the availability of non-wood forest products. Very important adverse long-term effects are the deterioration of forest ecosystems and soil degradation. The potential for TDF to regulate hydrological cycles is expected to be greater in the absence of fire than with it. A general judgment on the effect of fire on biodiversity is difficult as it depends on the community and species involved but a loss of biodiversity under regular burnings is apparent. Consequently, forest managers need sound knowledge regarding the interplay of wildfires and ecosystem behavior in general and more specific knowledge regarding the effects on taxa being considered for conservation efforts. Generally, much more research is needed to understand the trade-offs between the short-term benefits gained from forest provisioning services and long-term adverse effects.

  10. BIODIVERSITY MANAGEMENT APPROACHES FOR STREAM-RIPARIAN AREAS: PERSPECTIVES FOR PACIFIC NORTHWEST HEADWATER FORESTS, MICROCLIMATES, AND AMPHIBIANS

    Science.gov (United States)

    Stream-riparian areas represent a nexus of biodiversity, with disproportionate numbers of species tied to and interacting within this key habitat. New research in Pacific Northwest headwater forests, especially the characterization of microclimates and amphibian distributions, is...

  11. Measuring biodiversity and sustainable management in forests and agricultural landscapes.

    Science.gov (United States)

    Dudley, Nigel; Baldock, David; Nasi, Robert; Stolton, Sue

    2005-02-28

    Most of the world's biodiversity will continue to exist outside protected areas and there are also managed lands within many protected areas. In the assessment of millennium targets, there is therefore a need for indicators to measure biodiversity and suitability of habitats for biodiversity both across the whole landscape/seascape and in specific managed habitats. The two predominant land uses in many inhabited areas are forestry and agriculture and these are examined. Many national-level criteria and indicator systems already exist that attempt to assess biodiversity in forests and the impacts of forest management, but there is generally less experience in measuring these values in agricultural landscapes. Existing systems are reviewed, both for their usefulness in providing indicators and to assess the extent to which they have been applied. This preliminary gap analysis is used in the development of a set of indicators suitable for measuring progress towards the conservation of biodiversity in managed forests and agriculture. The paper concludes with a draft set of indicators for discussion, with suggestions including proportion of land under sustainable management, amount of produce from such land, area of natural or high quality semi-natural land within landscapes under sustainable management and key indicator species.

  12. Measuring biodiversity and sustainable management in forests and agricultural landscapes

    Science.gov (United States)

    Dudley, Nigel; Baldock, David; Nasi, Robert; Stolton, Sue

    2005-01-01

    Most of the world's biodiversity will continue to exist outside protected areas and there are also managed lands within many protected areas. In the assessment of millennium targets, there is therefore a need for indicators to measure biodiversity and suitability of habitats for biodiversity both across the whole landscape/seascape and in specific managed habitats. The two predominant land uses in many inhabited areas are forestry and agriculture and these are examined. Many national-level criteria and indicator systems already exist that attempt to assess biodiversity in forests and the impacts of forest management, but there is generally less experience in measuring these values in agricultural landscapes. Existing systems are reviewed, both for their usefulness in providing indicators and to assess the extent to which they have been applied. This preliminary gap analysis is used in the development of a set of indicators suitable for measuring progress towards the conservation of biodiversity in managed forests and agriculture. The paper concludes with a draft set of indicators for discussion, with suggestions including proportion of land under sustainable management, amount of produce from such land, area of natural or high quality semi-natural land within landscapes under sustainable management and key indicator species. PMID:15814357

  13. Special forest products: biodiversity meets the marketplace.

    Science.gov (United States)

    Nan C. Vance; Jane Thomas

    1997-01-01

    Although North American forests traditionally have been viewed as a source of wood and paper,a variety of profitable products are being discovered that come not only from trees, but from nonwoody plants, lichens, fungi, algae, and microorganisms. The northern temperate forests’ abundant biotic resources are being transformed into medicinals, botanicals, decoratives,...

  14. Averting biodiversity collapse in tropical forest protected areas

    Czech Academy of Sciences Publication Activity Database

    Laurence, W. F.; Novotný, Vojtěch

    2012-01-01

    Roč. 489, č. 7415 (2012), s. 290-294 ISSN 0028-0836 Grant - others:NSF grant(AU) RCN-0741956 Institutional support: RVO:60077344 Keywords : biodiversity * tropical forest * collapse Subject RIV: EH - Ecology, Behaviour Impact factor: 38.597, year: 2012 http://www.nature.com/nature/journal/vaop/ncurrent/pdf/nature11318.pdf

  15. Averting biodiversity collapse in tropical forest protected areas

    Science.gov (United States)

    W.F. Laurance; D.C. Useche; J. Rendeiro; and others NO-VALUE; Ariel Lugo

    2012-01-01

    The rapid disruption of tropical forests probably imperils global biodiversity more than any other contemporary phenomenon1–3. With deforestation advancing quickly, protected areas are increasingly becoming final refuges for threatened species and natural ecosystem processes. However, many protected areas in the tropics are themselves vulnerable to human encroachment...

  16. An evergreen, biodiversity rich forest. Amongst the better preserved ...

    Indian Academy of Sciences (India)

    Lying adjacent to Bhimashankar WLS Sanctuary, has contributed substantially to maintenance of environmental balance. Shelters several wildlife species. If this project is sanctioned, it will lead to destruction of evergreen forests, and adversely impact biodiversity, environment and wildlife habitats. It will also lead to serious ...

  17. Co-benefits of biodiversity and carbon from regenerating secondary forests after shifting cultivation in the upland Philippines: implications for forest landscape restoration

    Science.gov (United States)

    Mukul, S. A.; Herbohn, J.; Firn, J.; Gregorio, N.

    2017-12-01

    Shifting cultivation is a widespread practice in tropical forest agriculture frontiers that policy makers often regard as the major driver of forest loss and degradation. Secondary forests regrowing after shifting cultivation are generally not viewed as suitable option for biodiversity conservation and carbon retention. Drawing upon our research in the Philippines and other relevant case studies, we compared the biodiversity and carbon sequestration benefits in recovering secondary forests after shifting cultivation to other land uses that commonly follow shifting cultivation. Regenerating secondary forests had higher biodiversity than fast growing timber plantations and other restoration options available in the area. Some old plantations, however, provided carbon benefits comparable the old growth forest, although their biodiversity was less than that of the regenerating forests. Our study demonstrates that secondary forests regrowing after shifting cultivation have a high potential for biodiversity and carbon sequestration co-benefits, representing an effective strategy for forest management and restoration in countries where they are common and where the forest is an integral part of rural people's livelihoods. We discuss the issues and potential mechanisms through which such dynamic land use can be incorporated into development projects that are currently financing the sustainable management, conservation, and restoration of tropical forests.

  18. Brazil, Preservation of Forest and Biodiversity

    OpenAIRE

    Paunić, Alida

    2016-01-01

    Increased number of extinct, endangered species in South America, especially plants in Brazil and Equator, impose question of importance of Amazon forest. Its declining trend requires constant attention not just from population in Brazil, but as well as in region and world which have their interest in direct/ indirect monetary and non-monetary values. GDP decline can further deteriorate forest areas so it is of importance to diversify and strengthen energy inputs and work on different rene...

  19. Landscape characterization and biodiversity research

    Energy Technology Data Exchange (ETDEWEB)

    Dale, V.H. [Oak Ridge National Lab., TN (United States); Offerman, H. [Univ. of Maryland, College Park, MD (United States). Geography Dept.; Frohn, R. [Univ. of California, Santa Barbara, CA (United States); Gardner, R.H. [Appalachian Environmental Lab., Frostburg, MD (United States)

    1995-03-01

    Rapid deforestation often produces landscape-level changes in forest characteristics and structure, including area, distribution, and forest habitat types. Changes in landscape pattern through fragmentation or aggregation of natural habitats can alter patterns of abundance for single species and entire communities. Examples of single-species effects include increased predation along the forest edge, the decline in the number of species with poor dispersal mechanisms, and the spread of exotic species that have deleterious effects (e.g., gypsy moth). A decrease in the size and number of natural habitat patches increases the probability of local extirpation and loss of diversity of native species, whereas a decline in connectivity between habitat patches can negatively affect species persistence. Thus, there is empirical justification for managing entire landscapes, not just individual habitat types, in order to insure that native plant and animal diversity is maintained. A landscape is defined as an area composed of a mosaic of interacting ecosystems, or patches, with the heterogeneity among the patches significantly affecting biotic and abiotic processes in the landscape. Patches comprising a landscape are usually composed of discrete areas of relatively homogeneous environmental conditions and must be defined in terms of the organisms of interest. A large body of theoretical work in landscape ecology has provided a wealth of methods for quantifying spatial characteristics of landscapes. Recent advances in remote sensing and geographic information systems allow these methods to be applied over large areas. The objectives of this paper are to present a brief overview of common measures of landscape characteristics, to explore the new technology available for their calculation, to provide examples of their application, and to call attention to the need for collection of spatially-explicit field data.

  20. Projecting biodiversity and wood production in future forest landscapes: 15 key modeling considerations.

    Science.gov (United States)

    Felton, Adam; Ranius, Thomas; Roberge, Jean-Michel; Öhman, Karin; Lämås, Tomas; Hynynen, Jari; Juutinen, Artti; Mönkkönen, Mikko; Nilsson, Urban; Lundmark, Tomas; Nordin, Annika

    2017-07-15

    A variety of modeling approaches can be used to project the future development of forest systems, and help to assess the implications of different management alternatives for biodiversity and ecosystem services. This diversity of approaches does however present both an opportunity and an obstacle for those trying to decide which modeling technique to apply, and interpreting the management implications of model output. Furthermore, the breadth of issues relevant to addressing key questions related to forest ecology, conservation biology, silviculture, economics, requires insights stemming from a number of distinct scientific disciplines. As forest planners, conservation ecologists, ecological economists and silviculturalists, experienced with modeling trade-offs and synergies between biodiversity and wood biomass production, we identified fifteen key considerations relevant to assessing the pros and cons of alternative modeling approaches. Specifically we identified key considerations linked to study question formulation, modeling forest dynamics, forest processes, study landscapes, spatial and temporal aspects, and the key response metrics - biodiversity and wood biomass production, as well as dealing with trade-offs and uncertainties. We also provide illustrative examples from the modeling literature stemming from the key considerations assessed. We use our findings to reiterate the need for explicitly addressing and conveying the limitations and uncertainties of any modeling approach taken, and the need for interdisciplinary research efforts when addressing the conservation of biodiversity and sustainable use of environmental resources. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Biodiversity and the functioning of tropical forests

    NARCIS (Netherlands)

    Sande, van der M.T.

    2016-01-01

    Tropical forests are the most diverse terrestrial ecosystems. Moreover, their capacity for removal of carbon from the atmosphere makes them important for climate change mitigation. Theories predict that species use resources in a different way, and therefore high species diversity would result in

  2. Forest biodiversity and woody biomass harvesting

    Science.gov (United States)

    Deahn M. Donner; T. Bently Wigley; Darren A. Miller

    2017-01-01

    With the expected increase in demand for woody biomass to help meet renewable energy needs, one principal sustainability question has been whether this material can be removed from forest stands while still conserving biological diversity and retaining ecosystem functioning (Hecht et al. 2009; Berch, Morris, and Malcolm 2011; Ridley et al. 2013). In general,...

  3. Biodiversity Differences between Managed and Unmanaged Forests: Meta-Analysis of Species Richness in Europe

    NARCIS (Netherlands)

    Paillet, Y.; Bergès, L.; Hjältén, J.; Ódor, P.; Avon, C.; Bernhardt-Römermann, M.; Bijlsma, R.J.; Bruyn, de L.; Fuhr, M.; Grandin, U.; Kanka, R.; Lundin, L.; Luque, S.; Magura, T.; Matesanz, S.; Mészáros, I.; Sebastià, M.T.; Schmidt, W.; Standovár, T.; Tóthmérész, B.; Uotila, A.; Valladares, F.; Vellak, K.; Virtanen, R.

    2010-01-01

    Past and present pressures on forest resources have led to a drastic decrease in the surface area of unmanaged forests in Europe. Changes in forest structure, composition, and dynamics inevitably lead to changes in the biodiversity of forest-dwelling species. The possible biodiversity gains and

  4. Restoring degraded tropical forests for carbon and biodiversity

    International Nuclear Information System (INIS)

    Budiharta, Sugeng; Meijaard, Erik; Wilson, Kerrie A; Erskine, Peter D; Rondinini, Carlo; Pacifici, Michela

    2014-01-01

    The extensive deforestation and degradation of tropical forests is a significant contributor to the loss of biodiversity and to global warming. Restoration could potentially mitigate the impacts of deforestation, yet knowledge on how to efficiently allocate funding for restoration is still in its infancy. We systematically prioritize investments in restoration in the tropical landscape of East Kalimantan, Indonesia, and through this application demonstrate the capacity to account for a diverse suite of restoration techniques and forests of varying condition. To achieve this we develop a map of forest degradation for the region, characterized on the basis of aboveground biomass and differentiated by broad forest types. We estimate the costs of restoration as well as the benefits in terms of carbon sequestration and improving the suitability of habitat for threatened mammals through time. When the objective is solely to enhance carbon stocks, then restoration of highly degraded lowland forest is the most cost-effective activity. However, if the objective is to improve the habitat of threatened species, multiple forest types should be restored and this reduces the accumulated carbon by up to 24%. Our analysis framework provides a transparent method for prioritizing where and how restoration should occur in heterogeneous landscapes in order to maximize the benefits for carbon and biodiversity. (letter)

  5. Restoring degraded tropical forests for carbon and biodiversity

    Science.gov (United States)

    Budiharta, Sugeng; Meijaard, Erik; Erskine, Peter D.; Rondinini, Carlo; Pacifici, Michela; Wilson, Kerrie A.

    2014-11-01

    The extensive deforestation and degradation of tropical forests is a significant contributor to the loss of biodiversity and to global warming. Restoration could potentially mitigate the impacts of deforestation, yet knowledge on how to efficiently allocate funding for restoration is still in its infancy. We systematically prioritize investments in restoration in the tropical landscape of East Kalimantan, Indonesia, and through this application demonstrate the capacity to account for a diverse suite of restoration techniques and forests of varying condition. To achieve this we develop a map of forest degradation for the region, characterized on the basis of aboveground biomass and differentiated by broad forest types. We estimate the costs of restoration as well as the benefits in terms of carbon sequestration and improving the suitability of habitat for threatened mammals through time. When the objective is solely to enhance carbon stocks, then restoration of highly degraded lowland forest is the most cost-effective activity. However, if the objective is to improve the habitat of threatened species, multiple forest types should be restored and this reduces the accumulated carbon by up to 24%. Our analysis framework provides a transparent method for prioritizing where and how restoration should occur in heterogeneous landscapes in order to maximize the benefits for carbon and biodiversity.

  6. Forest Biodiversity Monitoring for REDD+: A Case Study of Actors' Views in Peru

    Science.gov (United States)

    Entenmann, Steffen K.; Kaphegyi, Thomas A. M.; Schmitt, Christine B.

    2014-02-01

    The climate change mitigation mechanism Reducing Emissions from Deforestation and Forest Degradation in developing countries (REDD+) is currently being negotiated under the United Nations Framework Convention on Climate Change (UNFCCC). Integrating biodiversity monitoring into REDD+ facilitates compliance with the safeguards stipulated by the UNFCCC to exclude environmental risks. Interviews with actors engaged in REDD+ implementation and biodiversity conservation at the national and sub-national level in Peru ( n = 30) and a literature review ( n = 58) were conducted to pinpoint constraints and opportunities for monitoring effects of REDD+ management interventions on biodiversity, and to identify relevant biodiversity data and indicators. It was found that particularly sub-national actors, who were frequently involved in REDD+ pilot projects, acknowledge the availability of biodiversity data. Actors at both the national and sub-national levels, however, criticized data gaps and data being scattered across biodiversity research organizations. Most of the literature reviewed (78 %) included indicators on the state of certain biodiversity aspects, especially mammals. Indicators for pressure on biodiversity, impacts on environmental functions, or policy responses to environmental threats were addressed less frequently (31, 21, and 10 %, respectively). Integrating biodiversity concerns in carbon monitoring schemes was considered to have potential, although few specific examples were identified. The involvement of biodiversity research organizations in sub-national REDD+ activities enhances monitoring capacities. It is discussed how improvements in collaboration among actors from the project to the national level could facilitate the evaluation of existing information at the national level. Monitoring changes in ecosystem services may increase the ecological and socioeconomic viability of REDD+.

  7. RESEARCH ARTICLE Biodiversity and selection for scrapie ...

    Indian Academy of Sciences (India)

    RESEARCH ARTICLE. Biodiversity and selection for scrapie ... Chiappini Barbara. Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità,. 00161 Rome .... 90" at 72°C for 35 cycles, 4' 72°C ). Primers and dNTPs were removed enzymatically, incubating 15µl of PCR product with 1.7µl.

  8. Frontiers in research on biodiversity and disease.

    Science.gov (United States)

    Johnson, Pieter T J; Ostfeld, Richard S; Keesing, Felicia

    2015-10-01

    Global losses of biodiversity have galvanised efforts to understand how changes to communities affect ecological processes, including transmission of infectious pathogens. Here, we review recent research on diversity-disease relationships and identify future priorities. Growing evidence from experimental, observational and modelling studies indicates that biodiversity changes alter infection for a range of pathogens and through diverse mechanisms. Drawing upon lessons from the community ecology of free-living organisms, we illustrate how recent advances from biodiversity research generally can provide necessary theoretical foundations, inform experimental designs, and guide future research at the interface between infectious disease risk and changing ecological communities. Dilution effects are expected when ecological communities are nested and interactions between the pathogen and the most competent host group(s) persist or increase as biodiversity declines. To move beyond polarising debates about the generality of diversity effects and develop a predictive framework, we emphasise the need to identify how the effects of diversity vary with temporal and spatial scale, to explore how realistic patterns of community assembly affect transmission, and to use experimental studies to consider mechanisms beyond simple changes in host richness, including shifts in trophic structure, functional diversity and symbiont composition. © 2015 John Wiley & Sons Ltd/CNRS.

  9. Traditional and local ecological knowledge about forest biodiversity in the Pacific Northwest.

    Science.gov (United States)

    Susan Charnley; A. Paige Fischer; Eric T. Jones

    2008-01-01

    This paper synthesizes the existing literature about traditional and local ecological knowledge relating to biodiversity in Pacific Northwest forests in order to assess what is needed to apply this knowledge to forest biodiversity conservation efforts. We address four topics: (1) views and values people have relating to biodiversity, (2) the resource use and management...

  10. Comparison the biodiversity of hardwood floodplain forests and black locust forests

    International Nuclear Information System (INIS)

    Bazalova, D.

    2015-01-01

    The introduction of non-native species starts in the context of global changes in the world. These nonnative species, that have come to our country, whether intentionally or unintentionally, are responsible for the loss of biodiversity, changes in trophic levels and in nutrient cycle, hydrology, hybridizations, and at last could have an impact on the economy. The species black locust (Robinia pseudoaccacia) was introduced to Europe in 1601, first for horticultural purposes, and later broke into forestry. However, due to its ability to effectively spread the vegetative and generative root sprouts seeds and without the presence of natural pest may be occurrence of black locust in European forests highly questionable. Primarily we tried to identify differences in species composition and biodiversity among indigenous hardwood floodplain forest and non-native black locust forest based on numerical methods. In the results we were able to demonstrate more biodiversity in hardwood floodplain forests. (authors)

  11. How natural Forest Conversion Affects Insect Biodiversity in the Peruvian Amazon: Can Agroforestry Help?

    Directory of Open Access Journals (Sweden)

    Jitka Perry

    2016-04-01

    Full Text Available The Amazonian rainforest is a unique ecosystem that comprises habitat for thousands of animal species. Over the last decades, the ever-increasing human population has caused forest conversion to agricultural land with concomitant high biodiversity losses, mainly near a number of fast-growing cities in the Peruvian Amazon. In this research, we evaluated insect species richness and diversity in five ecosystems: natural forests, multistrata agroforests, cocoa agroforests, annual cropping monoculture and degraded grasslands. We determined the relationship between land use intensity and insect diversity changes. Collected insects were taxonomically determined to morphospecies and data evaluated using standardized biodiversity indices. The highest species richness and abundance were found in natural forests, followed by agroforestry systems. Conversely, monocultures and degraded grasslands were found to be biodiversity-poor ecosystems. Diversity indices were relatively high for all ecosystems assessed with decreasing values along the disturbance gradient. An increase in land use disturbance causes not only insect diversity decreases but also complete changes in species composition. As agroforests, especially those with cocoa, currently cover many hectares of tropical land and show a species composition similar to natural forest sites, we can consider them as biodiversity reservoirs for some of the rainforest insect species.

  12. Biodiversity promotes tree growth during succession in subtropical forest.

    Directory of Open Access Journals (Sweden)

    Martin Barrufol

    Full Text Available Losses of plant species diversity can affect ecosystem functioning, with decreased primary productivity being the most frequently reported effect in experimental plant assemblages, including tree plantations. Less is known about the role of biodiversity in natural ecosystems, including forests, despite their importance for global biogeochemical cycling and climate. In general, experimental manipulations of tree diversity will take decades to yield final results. To date, biodiversity effects in natural forests therefore have only been reported from sample surveys or meta-analyses with plots not initially selected for diversity. We studied biomass and growth of subtropical forests stands in southeastern China. Taking advantage of variation in species recruitment during secondary succession, we adopted a comparative study design selecting forest plots to span a gradient in species richness. We repeatedly censored the stem diameter of two tree size cohorts, comprising 93 species belonging to 57 genera and 33 families. Tree size and growth were analyzed in dependence of species richness, the functional diversity of growth-related traits, and phylogenetic diversity, using both general linear and structural equation modeling. Successional age covaried with diversity, but differently so in the two size cohorts. Plot-level stem basal area and growth were positively related with species richness, while growth was negatively related to successional age. The productivity increase in species-rich, functionally and phylogenetically diverse plots was driven by both larger mean sizes and larger numbers of trees. The biodiversity effects we report exceed those from experimental studies, sample surveys and meta-analyses, suggesting that subtropical tree diversity is an important driver of forest productivity and re-growth after disturbance that supports the provision of ecological services by these ecosystems.

  13. Biodiversity promotes tree growth during succession in subtropical forest.

    Science.gov (United States)

    Barrufol, Martin; Schmid, Bernhard; Bruelheide, Helge; Chi, Xiulian; Hector, Andrew; Ma, Keping; Michalski, Stefan; Tang, Zhiyao; Niklaus, Pascal A

    2013-01-01

    Losses of plant species diversity can affect ecosystem functioning, with decreased primary productivity being the most frequently reported effect in experimental plant assemblages, including tree plantations. Less is known about the role of biodiversity in natural ecosystems, including forests, despite their importance for global biogeochemical cycling and climate. In general, experimental manipulations of tree diversity will take decades to yield final results. To date, biodiversity effects in natural forests therefore have only been reported from sample surveys or meta-analyses with plots not initially selected for diversity. We studied biomass and growth of subtropical forests stands in southeastern China. Taking advantage of variation in species recruitment during secondary succession, we adopted a comparative study design selecting forest plots to span a gradient in species richness. We repeatedly censored the stem diameter of two tree size cohorts, comprising 93 species belonging to 57 genera and 33 families. Tree size and growth were analyzed in dependence of species richness, the functional diversity of growth-related traits, and phylogenetic diversity, using both general linear and structural equation modeling. Successional age covaried with diversity, but differently so in the two size cohorts. Plot-level stem basal area and growth were positively related with species richness, while growth was negatively related to successional age. The productivity increase in species-rich, functionally and phylogenetically diverse plots was driven by both larger mean sizes and larger numbers of trees. The biodiversity effects we report exceed those from experimental studies, sample surveys and meta-analyses, suggesting that subtropical tree diversity is an important driver of forest productivity and re-growth after disturbance that supports the provision of ecological services by these ecosystems.

  14. Toward an integrated monitoring framework to assess the effects of tropical forest degradation and recovery on carbon stocks and biodiversity.

    Science.gov (United States)

    Bustamante, Mercedes M C; Roitman, Iris; Aide, T Mitchell; Alencar, Ane; Anderson, Liana O; Aragão, Luiz; Asner, Gregory P; Barlow, Jos; Berenguer, Erika; Chambers, Jeffrey; Costa, Marcos H; Fanin, Thierry; Ferreira, Laerte G; Ferreira, Joice; Keller, Michael; Magnusson, William E; Morales-Barquero, Lucia; Morton, Douglas; Ometto, Jean P H B; Palace, Michael; Peres, Carlos A; Silvério, Divino; Trumbore, Susan; Vieira, Ima C G

    2016-01-01

    Tropical forests harbor a significant portion of global biodiversity and are a critical component of the climate system. Reducing deforestation and forest degradation contributes to global climate-change mitigation efforts, yet emissions and removals from forest dynamics are still poorly quantified. We reviewed the main challenges to estimate changes in carbon stocks and biodiversity due to degradation and recovery of tropical forests, focusing on three main areas: (1) the combination of field surveys and remote sensing; (2) evaluation of biodiversity and carbon values under a unified strategy; and (3) research efforts needed to understand and quantify forest degradation and recovery. The improvement of models and estimates of changes of forest carbon can foster process-oriented monitoring of forest dynamics, including different variables and using spatially explicit algorithms that account for regional and local differences, such as variation in climate, soil, nutrient content, topography, biodiversity, disturbance history, recovery pathways, and socioeconomic factors. Generating the data for these models requires affordable large-scale remote-sensing tools associated with a robust network of field plots that can generate spatially explicit information on a range of variables through time. By combining ecosystem models, multiscale remote sensing, and networks of field plots, we will be able to evaluate forest degradation and recovery and their interactions with biodiversity and carbon cycling. Improving monitoring strategies will allow a better understanding of the role of forest dynamics in climate-change mitigation, adaptation, and carbon cycle feedbacks, thereby reducing uncertainties in models of the key processes in the carbon cycle, including their impacts on biodiversity, which are fundamental to support forest governance policies, such as Reducing Emissions from Deforestation and Forest Degradation. © 2015 John Wiley & Sons Ltd.

  15. Forest biodiversity and its assessment by remote sensing

    International Nuclear Information System (INIS)

    Innes, J.L.; Koch, B.

    1998-01-01

    Several international conventions and agreements have stressed the importance of the assessment of forest biodiversity. However, the methods by which such assessments can be made remain unclear. Remote sensing represents an important tool for looking at ecosystem diversity and various structural aspects of individual ecosystems. It provides a means to make assessments across several different spatial scales, and is also critical for assessments of changes in ecosystem pattern over time. Many different forms of remote sensing are available. While lately the emphasis on laser scanner and synthetic aperture radar data has increased, most work to date has used photographs and digital optical imagery, primarily from airborne and spaceborne platforms. These provide the opportunity to assess different phenomena from the landscape to the stand scale. Remote sensing provides the most efficient tool available for determining landscape-scale elements of forest biodiversity, such as the relative proportion of matrix and patches and their physical arrangement. At intermediate scales, remote sensing provides an ideal tool for evaluating the presence of corridors and the nature of edges. At the stand scale, remote sensing technologies are likely to deliver an increasing amount of information about the structural attributes of forest stands, such as the nature of the canopy surface, the presence of layering within the canopy and presence of (very) coarse woody debris on the forest floor. Given the rate of development in the technology, even greater usage is likely in the future. (author)

  16. Predictable waves of sequential forest degradation and biodiversity loss spreading from an African city

    DEFF Research Database (Denmark)

    Ahrends, A.; Burgess, N.D.; Milledge, S.A.H.

    2010-01-01

    Tropical forest degradation emits carbon at a rate of similar to 0.5 Pg.y(-1), reduces biodiversity, and facilitates forest clearance. Understanding degradation drivers and patterns is therefore crucial to managing forests to mitigate climate change and reduce biodiversity loss. Putative patterns...

  17. Will concern for biodiversity spell doom to tropical forest management?

    Science.gov (United States)

    A.E. Lugo

    1999-01-01

    Arguments against active tropical management are analyzed in light of available data and new research that shows tropical forests to be more resilient after disturbances than previously thought. Tropical forest management involves a diverse array of human activity embedded in a complex social and natural environment. Within this milieu, forest structure and composition...

  18. When you cannot see the forest for the trees: Effect of forest monocultures on biodiversity conservation

    International Nuclear Information System (INIS)

    Cordero Rivera, Adolfo

    2011-01-01

    Human population is growing at rates that were unimaginable only a century ago, creating such pressure on resources, which will only decrease when the decline in birth rate stabilizes population. Among these resources, wood is one of the most demanded. Global consumption of wood is currently more than 3500 million m 3, a rate multiplied by six since 1950. To meet this demand, we manage millions of hectares of forests and forest plantations, part of which are cut down each year. This logging determines drastic effects on forests, affecting the biodiversity associated and the ecosystems services provided to society. This work is a review of the structural and functional characteristics that differentiate forests and forest plantations, in spite of the confusion between both ecosystems by FAO and the forest sector companies, which have coined the oxymoron planted forests. Forest plantations are more productive than forests from the point of view of the volume of wood that can be obtained from them, and if well managed, could minimize the pressure on forests. However, they do not provide many services that forests do provide, especially in the case of monospecific plantations consisting of even aged individuals of exotic species that are managed intensively. Some of the many techniques that combine the production of wood with the conservation of biodiversity are reviewed.

  19. Wildfires in bamboo-dominated Amazonian forest: impacts on above-ground biomass and biodiversity.

    Directory of Open Access Journals (Sweden)

    Jos Barlow

    Full Text Available Fire has become an increasingly important disturbance event in south-western Amazonia. We conducted the first assessment of the ecological impacts of these wildfires in 2008, sampling forest structure and biodiversity along twelve 500 m transects in the Chico Mendes Extractive Reserve, Acre, Brazil. Six transects were placed in unburned forests and six were in forests that burned during a series of forest fires that occurred from August to October 2005. Normalized Burn Ratio (NBR calculations, based on Landsat reflectance data, indicate that all transects were similar prior to the fires. We sampled understorey and canopy vegetation, birds using both mist nets and point counts, coprophagous dung beetles and the leaf-litter ant fauna. Fire had limited influence upon either faunal or floral species richness or community structure responses, and stems <10 cm DBH were the only group to show highly significant (p = 0.001 community turnover in burned forests. Mean aboveground live biomass was statistically indistinguishable in the unburned and burned plots, although there was a significant increase in the total abundance of dead stems in burned plots. Comparisons with previous studies suggest that wildfires had much less effect upon forest structure and biodiversity in these south-western Amazonian forests than in central and eastern Amazonia, where most fire research has been undertaken to date. We discuss potential reasons for the apparent greater resilience of our study plots to wildfire, examining the role of fire intensity, bamboo dominance, background rates of disturbance, landscape and soil conditions.

  20. Quantifying resilience of multiple ecosystem services and biodiversity in a temperate forest landscape.

    Science.gov (United States)

    Cantarello, Elena; Newton, Adrian C; Martin, Philip A; Evans, Paul M; Gosal, Arjan; Lucash, Melissa S

    2017-11-01

    Resilience is increasingly being considered as a new paradigm of forest management among scientists, practitioners, and policymakers. However, metrics of resilience to environmental change are lacking. Faced with novel disturbances, forests may be able to sustain existing ecosystem services and biodiversity by exhibiting resilience, or alternatively these attributes may undergo either a linear or nonlinear decline. Here we provide a novel quantitative approach for assessing forest resilience that focuses on three components of resilience, namely resistance, recovery, and net change, using a spatially explicit model of forest dynamics. Under the pulse set scenarios, we explored the resilience of nine ecosystem services and four biodiversity measures following a one-off disturbance applied to an increasing percentage of forest area. Under the pulse + press set scenarios, the six disturbance intensities explored during the pulse set were followed by a continuous disturbance. We detected thresholds in net change under pulse + press scenarios for the majority of the ecosystem services and biodiversity measures, which started to decline sharply when disturbance affected >40% of the landscape. Thresholds in net change were not observed under the pulse scenarios, with the exception of timber volume and ground flora species richness. Thresholds were most pronounced for aboveground biomass, timber volume with respect to the ecosystem services, and ectomycorrhizal fungi and ground flora species richness with respect to the biodiversity measures. Synthesis and applications . The approach presented here illustrates how the multidimensionality of stability research in ecology can be addressed and how forest resilience can be estimated in practice. Managers should adopt specific management actions to support each of the three components of resilience separately, as these may respond differently to disturbance. In addition, management interventions aiming to deliver resilience

  1. Co-benefits of sustainable forest management in biodiversity conservation and carbon sequestration.

    Directory of Open Access Journals (Sweden)

    Nobuo Imai

    Full Text Available BACKGROUND: Sustainable forest management (SFM, which has been recently introduced to tropical natural production forests, is beneficial in maintaining timber resources, but information about the co-benefits for biodiversity conservation and carbon sequestration is currently lacking. METHODOLOGY/PRINCIPAL FINDINGS: We estimated the diversity of medium to large-bodied forest-dwelling vertebrates using a heat-sensor camera trapping system and the amount of above-ground, fine-roots, and soil organic carbon by a combination of ground surveys and aerial-imagery interpretations. This research was undertaken both in SFM applied as well as conventionally logged production forests in Sabah, Malaysian Borneo. Our carbon estimation revealed that the application of SFM resulted in a net gain of 54 Mg C ha(-1 on a landscape scale. Overall vertebrate diversity was greater in the SFM applied forest than in the conventionally logged forest. Specifically, several vertebrate species (6 out of recorded 36 species showed higher frequency in the SFM applied forest than in the conventionally logged forest. CONCLUSIONS/SIGNIFICANCE: The application of SFM to degraded natural production forests could result in greater diversity and abundance of vertebrate species as well as increasing carbon storage in the tropical rain forest ecosystems.

  2. Key Biodiversity Areas identification in the Upper Guinea forest biodiversity hotspot

    Directory of Open Access Journals (Sweden)

    O.M.L. Kouame

    2012-08-01

    Full Text Available Priority-setting approaches and tools are commons ways to support the rapid extinction of species and their habitats and the effective allocation of resources for their conservation. The Key Biodiversity Area (KBA approach is a method for the identification of fine-scale priority areas for conservation. This process led bottom-up has been used in the Upper Guinea Forest Ecosystem of West Africa where human-induced changes have increased the extinction risk of several endemic and threatened species. The irreplaceability and vulnerability criteria commonly used in conservation planning have been used to identify key biodiversity areas in Ghana, Cote d’Ivoire, Liberia, Guinea and Sierra Leone. Point locality data were compiled from scientific reports, papers published in scientific journals and museum records. The delineation was conducted following a series of decision rules. In most cases existing IBA polygons and protected areas boundaries were used. For the new sites, temporary boundaries have been drawn and will be confirmed with land-use data. Preliminary KBA data were reviewed by specialists during formal workshops. One hundred and fifty four KBA have been identified in the five countries with 202 globally threatened species. Currently 63% of the KBA are protected. Two AZE sites still exist in the region. This assessment is a first step and is driven from the best available data at the time. There is a need to refine it with recent biodiversity surveys to assist decision-makers in achieving their conservation management goals.

  3. Wildfires in bamboo-dominated Amazonian forest: impacts on above-ground biomass and biodiversity.

    Science.gov (United States)

    Barlow, Jos; Silveira, Juliana M; Mestre, Luiz A M; Andrade, Rafael B; Camacho D'Andrea, Gabriela; Louzada, Julio; Vaz-de-Mello, Fernando Z; Numata, Izaya; Lacau, Sébastien; Cochrane, Mark A

    2012-01-01

    Fire has become an increasingly important disturbance event in south-western Amazonia. We conducted the first assessment of the ecological impacts of these wildfires in 2008, sampling forest structure and biodiversity along twelve 500 m transects in the Chico Mendes Extractive Reserve, Acre, Brazil. Six transects were placed in unburned forests and six were in forests that burned during a series of forest fires that occurred from August to October 2005. Normalized Burn Ratio (NBR) calculations, based on Landsat reflectance data, indicate that all transects were similar prior to the fires. We sampled understorey and canopy vegetation, birds using both mist nets and point counts, coprophagous dung beetles and the leaf-litter ant fauna. Fire had limited influence upon either faunal or floral species richness or community structure responses, and stems wildfires had much less effect upon forest structure and biodiversity in these south-western Amazonian forests than in central and eastern Amazonia, where most fire research has been undertaken to date. We discuss potential reasons for the apparent greater resilience of our study plots to wildfire, examining the role of fire intensity, bamboo dominance, background rates of disturbance, landscape and soil conditions.

  4. Forest biodiversity, carbon and other ecosystem services: relationships and impacts of deforestation and forest degradation

    Science.gov (United States)

    Ian D. Thompson; Joice Ferreira; Toby Gardner; Manuel Guariguata; Lian Pin Koh; Kimiko Okabe; Yude Pan; Christine B. Schmitt; Jason Tylianakis; Jos Barlow; Valerie Kapos; Werner A. Kurz; John A. Parrotta; Mark D. Spalding; Nathalie. van Vliet

    2012-01-01

    REDD+ actions should be based on the best science and on the understanding that forests can provide more than a repository for carbon but also offer a wide range of services beneficial to people. Biodiversity underpins many ecosystem services, one of which is carbon sequestration, and individual species’ functional traits play an important role in determining...

  5. Alberta biodiversity monitoring program - monitoring effectiveness of sustainable forest management planning.

    Science.gov (United States)

    Stadt, J John; Schieck, Jim; Stelfox, Harry A

    2006-10-01

    A conceptual model of sustainable forest management is described based on three connected and necessary components: Policy/Strategic Planning, Operational Planning, and Effectiveness Monitoring/Science. Alberta's proposed Forest Management Planning Standard is described as an example of operational planning. The standard utilizes coarse and fine filter approaches to conserving biodiversity and sets requirements for implementation monitoring. The Alberta Biodiversity Monitoring Program (ABMP) is described as an example of effectiveness monitoring supporting Operational Planning. The ABMP is a rigorous science-based initiative that is being developed to monitor and report on biodiversity status and trends throughout the province of Alberta, Canada. The basic survey design consists of 1656 sites, 20 km apart, evenly spaced on a grid pattern across Alberta. Sites will be sampled over a five-year period at a rate of 350 sites/year. Standardized sampling protocols will be used to cover a broad range of species and habitat elements within terrestrial and aquatic environments, as well as broader landscape-level features. Trends and associations detected by ABMP products will be validated through cause-effect research. ABMP focuses research on critical issues and informs both operational planning and the development of policy and strategic-level plans. The Alberta Forest Management Planning Standard and the ABMP are described as key components to implementing resource planning based on ecosystem management principles.

  6. Road-networks, a practical indicator of human impacts on biodiversity in Tropical forests

    International Nuclear Information System (INIS)

    Hosaka, T; Yamada, T; Okuda, T

    2014-01-01

    Tropical forests sustain the most diverse plants and animals in the world, but are also being lost most rapidly. Rapid assessment and monitoring using remote sensing on biodiversity of tropical forests is needed to predict and evaluate biodiversity loss by human activities. Identification of reliable indicators of forest biodiversity and/or its loss is an urgent issue. In the present paper, we propose the density of road networks in tropical forests can be a good and practical indicator of human impacts on biodiversity in tropical forests through reviewing papers and introducing our preliminary survey in peninsular Malaysia. Many previous studies suggest a strong negative impact of forest roads on biodiversity in tropical rainforests since they changes microclimate, soil properties, drainage patterns, canopy openness and forest accessibility. Moreover, our preliminary survey also showed that even a narrow logging road (6 m wide) significantly lowered abundance of dung beetles (well-known bio-indicator in biodiversity survey in tropical forests) near the road. Since these road networks are readily to be detected with remote sensing approach such as aerial photographs and Lider, regulation and monitoring of the road networks using remote sensing techniques is a key to slow down the rate of biodiversity loss due to forest degradation in tropical forests

  7. Safeguarding saproxylic fungal biodiversity in Apennine beech forest priority habitats

    Science.gov (United States)

    Maggi, Oriana; Lunghini, Dario; Pecoraro, Lorenzo; Sabatini, Francesco Maria; Persiani, Anna Maria

    2015-04-01

    The FAGUS LIFE Project (LIFE11/NAT/IT/135) targets two European priority habitats, i.e. Habitat 9210* Apennine beech forests with Taxus and Ilex, and Habitat 9220* Apennine beech forests with Abies alba, within two National Parks: Cilento, Vallo di Diano and Alburni; Gran Sasso and Monti della Laga. The current limited distribution of the target habitats is also due to the impact of human activities on forest systems, such as harvesting and grazing. The FAGUS project aims at developing and testing management strategies able to integrate the conservation of priority forest habitats (9210* and 9220*) and the sustainable use of forest resources. In order to assess the responses to different management treatments the BACI monitoring design (Before-After, Control-Intervention) has been applied on forest structure and diversity of focus taxa before and after experimental harvesting treatments. Conventional management of Apennine beech forests impacts a wealth of taxonomic groups, such as saproxylic beetles and fungi, which are threatened throughout Europe by the lack of deadwood and of senescing trees, and by the homogeneous structure of managed forests. Deadwood has been denoted as the most important manageable habitat for biodiversity in forests not only for supporting a wide diversity of organisms, but also for playing a prominent role in several ecological processes, creating the basis for the cycling of photosynthetic energy, carbon, and nutrients stored in woody material. Especially fungi can be regarded as key group for understanding and managing biodiversity associated with decaying wood. The before-intervention field sampling was carried out in Autumn 2013 in 33 monitoring plots across the two national Parks. The occurrence at plot level of both Ascomycota and Basidiomycota sporocarps was surveyed. All standing and downed deadwood with a minimum diameter of 10 cm was sampled for sporocarps larger than 1 mm, and information on decay class and fungal morphogroups

  8. Habitat selection of endemic birds in temperate forests in a biodiversity "Hotspot"

    Directory of Open Access Journals (Sweden)

    Roberto A. Moreno-García

    2014-08-01

    Full Text Available Aim of study: Our objective was to find habitat associations at a microhabitat level for two endemic birds in a Chilean temperate forest (biodiversity “hotspots”, in order to integrate biodiversity into forest planning.Area of study: Nahuelbuta Range, Chile.Material and methods: The two birds studied were Scelorchilus rubecula (Chucao Tapaculo and Scytalopus magellanicus (Magellanic Tapaculo, both belonging to the Rhinocryptidae family. Presence or absence of the two species was sampled in 57 census spots. Habitat was categorized according to presence/absence results. We assessed the influence of abiotic variables (altitude, exposure, slope and vegetation structure (percentage of understory cover, number of strata using a statistical cluster analysis.Main results: The two bird species selected the habitat. Most frequent presence was detected at a range of 600-1100 masl, but Magellanic Tapaculo was associated to more protected sites in terms of vegetation structure (50-75% for understory cover and 2-3 strata. Slope was the most relevant abiotic variable in habitat selection due to its linkage to vegetation traits in this area.Research highlights: Our results can help managers to integrate biodiversity (endemic fauna species into forest planning by preserving certain traits of the vegetation as part of a habitat (at a microhabitat level selected by the fauna species. That planning should be implemented with both an adequate wood harvesting cuts system and specific silvicultural treatments.Key words: Chile; Nahuelbuta; rhinocryptidae; cluster analysis; rorest planning; vegetation structure.

  9. Impacts of cwd on understory biodiversity in forest ecosystems in the qinling mountains, china

    International Nuclear Information System (INIS)

    Yuan, J.; Wei, X.; Shang, Z.; Cheng, F.; Hu, Z.; Zheng, X.; Zhang, S.

    2015-01-01

    The stocks and characteristics of coarse woody debris (CWD) are expected to reflect forest stand features. However, despite their importance, there have been no reports of CWD stocks and characteristics in the Qinling Mountains. We measured the CWD stocks in different CWD types, decay classes and diameter classes of the five forest types in the Qinling Mountains. The highest biomass of CWD was the Pinus tabulaeformis forest (12.57 t-hm /sup -2/), occupied 5.66 percentage in the biomass of this forest, the lowest occupied 1.03 percentage in Betula albo-sinensis forest (1.82 t-hm /sup -2/). Our results revealed that there was a strong correlation between CWD and forest biomass. When the CWD biomass were 9.9 t-hm /sup -2/ and 11.6 hm /sup -2/, the biomass of Pinus armandi forest and P. tabulaeformis forest reached maximum, respectively. CWD is particularly important for biodiversity, but the importance of CWD in the control of diversity in forest systems has not been fully appreciated and certainly has not been evaluated intensively within China, especially in Qinling forests. In our research, we used species richness (S), Shannon-Wiener index (H), Simpson index (D) and Pielou evenness index (J) to assess the diversity of plant community. According to our analysis, we found 1) the effect of CWD biomass on these a diversity index was dependent on tree, shrub and herb in the five forest types, 2) the impacts of CWD biomass on understory biodiversity were more obvious, 3) With the increase of CWD biomass, the species richness (S), Shannon-Wiener index (H) and Simpson index (D) of understory increased significantly. Our results suggested that there was a relatively lower CWD biomass in the Qinling Mountains, but it had significant effects on forest biomass and diversity of plant community. Reserving CWD was important for eco-forestry, but how many and how characteristic of CWD should be retained need further research. Development of CWD reasonable strategies was

  10. Production costs of biodiversity zones on field and forest margins: a case study in Finland.

    Science.gov (United States)

    Miettinen, Antti; Hyytiäinen, Kari; Mäkinen, Antti

    2012-07-30

    This paper estimates and compares the costs incurred to a private landowner from establishing and managing 25-m wide biodiversity zones on field and forest margins in southern Finland. Crop and timber prices being at their long-term averages, current agricultural support paid and the real discount rate 3%, the average annual net costs per hectare of field and forest biodiversity zones were €30 ha(-1) and €108 ha(-1), respectively, the field zones being the less costly alternative in 95% of cases. This result is mainly due to the poor productivity of field cultivation relative to timber production under boreal climate conditions. In addition to soil quality, the initial stand structure affects the costs of both biodiversity zone types. It is less costly for a landowner to establish biodiversity zones in forests where no final felling is imminent but which already contain some tree volume. In field biodiversity zones, costs are slightly lower on fields where forest shading is great. Uneven-aged management practiced in forest biodiversity zones was found to lead to a 3-32% reduction in the net present value of forest land compared to conventional forest management. An increase in the real discount rate increases the relative efficiency of forest biodiversity zones. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Comparison of various sampling methods for evaluation of biodiversity of true bugs (Heteroptera) in a birch forest

    Czech Academy of Sciences Publication Activity Database

    Kula, E.; Bryja, Josef

    2002-01-01

    Roč. 21, č. 2 (2002), s. 137-147 ISSN 1335-342X R&D Projects: GA ČR GA526/98/0537; GA MŽP SE/830/3/00 Institutional research plan: CEZ:AV0Z6093917 Keywords : Heteroptera * birch forest * biodiversity Subject RIV: GK - Forestry Impact factor: 0.246, year: 2002

  12. Biodiversity as a solution to mitigate climate change impacts on the functioning of forest ecosystems.

    Science.gov (United States)

    Hisano, Masumi; Searle, Eric B; Chen, Han Y H

    2018-02-01

    Forest ecosystems are critical to mitigating greenhouse gas emissions through carbon sequestration. However, climate change has affected forest ecosystem functioning in both negative and positive ways, and has led to shifts in species/functional diversity and losses in plant species diversity which may impair the positive effects of diversity on ecosystem functioning. Biodiversity may mitigate climate change impacts on (I) biodiversity itself, as more-diverse systems could be more resilient to climate change impacts, and (II) ecosystem functioning through the positive relationship between diversity and ecosystem functioning. By surveying the literature, we examined how climate change has affected forest ecosystem functioning and plant diversity. Based on the biodiversity effects on ecosystem functioning (B→EF), we specifically address the potential for biodiversity to mitigate climate change impacts on forest ecosystem functioning. For this purpose, we formulate a concept whereby biodiversity may reduce the negative impacts or enhance the positive impacts of climate change on ecosystem functioning. Further B→EF studies on climate change in natural forests are encouraged to elucidate how biodiversity might influence ecosystem functioning. This may be achieved through the detailed scrutiny of large spatial/long temporal scale data sets, such as long-term forest inventories. Forest management strategies based on B→EF have strong potential for augmenting the effectiveness of the roles of forests in the mitigation of climate change impacts on ecosystem functioning. © 2017 Cambridge Philosophical Society.

  13. Carbon and biodiversity loss due to forest degradation – a Cambodian case study

    Science.gov (United States)

    Nophea Sasaki; Kimsun Chheng; Nobuya Mizoue

    2013-01-01

    Tropical forests are diverse in terms of stand and age structures, commercial and biodiversity values of individually trees, and dependency of local communities. Monitoring forest degradation in the tropics remains a challenge despite increasing global interests in reducing carbon emissions from deforestation and forest degradation and safeguarding...

  14. Interaction between the society around forest area with the use of biodiversity in the natural forest ecosystem of Bedugul-Pancasari, Bali

    Directory of Open Access Journals (Sweden)

    BRAMANTYO TRI ADI NUGROHO

    2008-07-01

    Full Text Available Natural ecosystem forest of Bedugul-Pancasari represents an area which located in Tabanan regency, Bali province. This ecosystem area consist of eight laid orchard at strategic area so that do not deny by many society forest exploit variety involve residing in the area. This research aimed to get the information about variance factors that influence the extraction of nature resources by the village and also to know the respondent characteristic. The result from frequency distribution table showed the age of respondent 20-35 (45% was the biggest group which taken the forest biodiversities around Bedugul-Pancasari forest. The respondent who taken the biggest forest biodiversity has income from 50,000-185,000 rupiahs (42% and 82% as a farmer. The age, the distance between house and forest, and the number of family member variables influenced the respondents to take the forest biodiversities. The Cramer’s V value for each variable is 0.592, 0.691 and 0.723 that indicated there was correlation.

  15. Remote Sensing of Forest Loss and Human Land Use to Predict Biodiversity Impacts in Myanmar

    Science.gov (United States)

    Connette, G.; Huang, Q.; Leimgruber, P.; Songer, M.

    2017-12-01

    Myanmar's ongoing transition from military rule towards a democratic government has largely ended decades of economic isolation. The resulting expansion of foreign investment, infrastructure development, and natural resource extraction has led to high rates of deforestation and the concurrent loss of critical wildlife habitat. To identify and mitigate the impacts of rapid land use change on Myanmar's globally-unique biodiversity, researchers at Smithsonian's Conservation Biology Institute have used moderate-resolution satellite imagery to map forest cover change at the national scale, while performing regional- or local-scale analyses to identify ecologically-distinct forest types. At the national scale, forest was lost at a rate of 0.55% annually from 2002-2014. Deforestation was more pronounced in Myanmar's closed-canopy forests (>80% cover), which experienced an annual rate of forest loss of 0.95%. Studies at regional and local scales show that ecologically-distinct forest types vary considerably in both geographic extent and risk of conversion to human land use. For instance, local deforestation rates around a proposed national park in Myanmar's Tanintharyi Region were 7.83% annually and have been accelerating. Recent integration of such results into wildlife habitat mapping and national conservation planning can play an important role in ensuring that future development in Myanmar is both informed and sustainable.

  16. Plants Biodiversity of Jobolarangan Forest Mount Lawu: 2. Spermatophyta

    Directory of Open Access Journals (Sweden)

    SUHAR IRIANTO

    2001-07-01

    Full Text Available The objectives of the research were to make: (1 a list of Spermatophyte plants at Jobolarangan forest in mount Lawu, and (2 the ecological and the economical benefits of the plants. All Spermatophyte plants on the forest were studied. The research procedures were including species collection in the field, make up herbaria, morphological observations in the laboratory, and interview to residents and government administrations. The results showed that in the forest were found 142 species Spermatophyte plants, in which 126 species of 54 family were identified, consisting of 78 species of herbs, 26 species of bushes, and 21 species of trees. Ecological benefits of the plants were hydrological regulation, keep out landslide and erosions etc., however economical benefits of the plants were log, firewood, charcoal, honey bee, medicinal plants, etc.

  17. Household Land Management and Biodiversity: Secondary Succession in a Forest-Agriculture Mosaic in Southern Mexico

    Directory of Open Access Journals (Sweden)

    Rinku Roy Chowdhury

    2007-12-01

    Full Text Available This study evaluates anthropogenic and ecological dimensions of secondary forest succession in Mexico's southern Yucatán peninsular region, a hotspot of biodiversity and tropical deforestation. Secondary succession in particular constitutes an ecologically and economically important process, driven by and strongly influencing land management and local ecosystem structure and dynamics. As agents of local land management, smallholding farmers in communal, i.e., ejido lands affect rates of forest change, biodiversity, and sustainability within and beyond their land parcels. This research uses household surveys and land parcel mapping in two ejidos located along the buffer of the Calakmul Biosphere Reserve to analyze how household socioeconomics and policy institutions drive allocations to successional forests in traditional crop fallows and in enriched fallows. Results indicate that household tenancy, livestock holdings, labor-consumer ratios, and receipts of agricultural subsidies are the strongest determinants of traditional fallow areas. Whereas the latter two factors also influence enriched successions, local agroforestry and reforestation programs were the strongest drivers of fallow enrichment. Additionally, the study conducts field vegetation sampling in a nested design within traditional and enriched fallow sites to comparatively assess biodiversity consequences of fallow management. Although enriched fallows display greater species richness in 10x10 m plots and 2x2 m quadrats, plot-scale data reveal no significant differences in Shannon-Wiener or Simpson's diversity indices. Traditional fallows display greater species heterogeneity at the quadrat scale, however, indicating a complex relationship of diversity to fallow management over time. The article discusses the implications of the social and ecological analyses for land change research and conservation policies.

  18. When does biodiversity matter? Assessing ecosystem services across broad regions using forest inventory and analysis data

    Science.gov (United States)

    Kevin M. Potter; Christopher W. Woodall; Christopher M. Oswalt; Basil V. III Iannone; Songlin. Fei

    2015-01-01

    Biodiversity is expected to convey numerous functional benefits to forested ecosystems, including increased productivity and resilience. When assessing biodiversity, however, statistics that account for evolutionary relationships among species may be more ecologically meaningful than traditional measures such as species richness. In three broad-scale studies, we...

  19. Options for biodiversity conservation in managed forest landscapes of multiple ownerships in Oregon and Washington, USA.

    Science.gov (United States)

    N. Suzuki; D.H. Olson

    2007-01-01

    We review the policies and management approaches used in U.S. Pacific Northwest planted forest to address biodiversity protection. We provide a case-study watershed design from southern Oregon, integrating various stand-to-landscape biodiversity-management approaches.

  20. Biodiversity Meets the Atmosphere: A Global View of Forest Canopies

    Science.gov (United States)

    C. M. P. Ozanne; D. Anhuf; S. L. Boulter; M. Keller; R. L. Kitching; C. Korner; F. C. Meinzer; A. W. Mitchell; T. Nakashizuka; P. L. Silva Dias; N. E. Stork; S. J. Wright; M Yoshimura

    2003-01-01

    The forest canopy is the functional interface between 90% of Earth’s terrestrial biomass and the atmosphere. Multidisciplinary research in the canopy has expanded concepts of global species richness, physiological processes, and the provision of ecosystem services. Trees respond in a species-specific manner to elevated carbon dioxide levels, while climate change...

  1. Assessing Biodiversity in Boreal Forests with UAV-Based Photogrammetric Point Clouds and Hyperspectral Imaging

    Directory of Open Access Journals (Sweden)

    Ninni Saarinen

    2018-02-01

    Full Text Available Forests are the most diverse terrestrial ecosystems and their biological diversity includes trees, but also other plants, animals, and micro-organisms. One-third of the forested land is in boreal zone; therefore, changes in biological diversity in boreal forests can shape biodiversity, even at global scale. Several forest attributes, including size variability, amount of dead wood, and tree species richness, can be applied in assessing biodiversity of a forest ecosystem. Remote sensing offers complimentary tool for traditional field measurements in mapping and monitoring forest biodiversity. Recent development of small unmanned aerial vehicles (UAVs enable the detailed characterization of forest ecosystems through providing data with high spatial but also temporal resolution at reasonable costs. The objective here is to deepen the knowledge about assessment of plot-level biodiversity indicators in boreal forests with hyperspectral imagery and photogrammetric point clouds from a UAV. We applied individual tree crown approach (ITC and semi-individual tree crown approach (semi-ITC in estimating plot-level biodiversity indicators. Structural metrics from the photogrammetric point clouds were used together with either spectral features or vegetation indices derived from hyperspectral imagery. Biodiversity indicators like the amount of dead wood and species richness were mainly underestimated with UAV-based hyperspectral imagery and photogrammetric point clouds. Indicators of structural variability (i.e., standard deviation in diameter-at-breast height and tree height were the most accurately estimated biodiversity indicators with relative RMSE between 24.4% and 29.3% with semi-ITC. The largest relative errors occurred for predicting deciduous trees (especially aspen and alder, partly due to their small amount within the study area. Thus, especially the structural diversity was reliably predicted by integrating the three-dimensional and spectral

  2. Impacts of forest and land management on biodiversity and carbon

    Science.gov (United States)

    Valerie Kapos; Werner A. Kurz; Toby Gardner; Joice Ferreira; Manuel Guariguata; Lian Pin Koh; Stephanie Mansourian; John A. Parrotta; Nokea Sasaki; Christine B. Schmitt; Jos Barlow; Markku Kanninen; Kimiko Okabe; Yude Pan; Ian D. Thompson; Nathalie. van Vliet

    2012-01-01

    Changes in the management of forest and non-forest land can contribute significantly to reducing emissions from deforestation and forest degradation. Such changes can include both forest management actions - such as improving the protection and restoration of existing forests, introducing ecologically responsible logging practices and regenerating forest on degraded...

  3. Northwest Forest Plan research synthesis.

    Science.gov (United States)

    Richard W. Haynes; Gloria E. Perez; [tech. eds.].

    2000-01-01

    This document synthesizes research accomplishments initiated and funded under the Northwest Forest Plan or the President’s Forest Plan (hereafter referred to as the Forest Plan) since its inception in 1994. Three major parts in this document cover, the context for this effort, eight Forest Plan research accomplishments, and a synthesis. The eight accomplishments...

  4. Aquatic biodiversity in forests: A weak link in ecosystem services resilience

    Science.gov (United States)

    Penaluna, Brooke E.; Olson, Deanna H.; Flitcroft, Rebecca L; Weber, Matthew A.; Bellmore, J. Ryan; Wondzell, Steven M.; Dunham, Jason; Johnson, Sherri L.; Reeves, Gordon H.

    2017-01-01

    The diversity of aquatic ecosystems is being quickly reduced on many continents, warranting a closer examination of the consequences for ecological integrity and ecosystem services. Here we describe intermediate and final ecosystem services derived from aquatic biodiversity in forests. We include a summary of the factors framing the assembly of aquatic biodiversity in forests in natural systems and how they change with a variety of natural disturbances and human-derived stressors. We consider forested aquatic ecosystems as a multi-state portfolio, with diverse assemblages and life-history strategies occurring at local scales as a consequence of a mosaic of habitat conditions and past disturbances and stressors. Maintaining this multi-state portfolio of assemblages requires a broad perspective of ecosystem structure, various functions, services, and management implications relative to contemporary stressors. Because aquatic biodiversity provides multiple ecosystem services to forests, activities that compromise aquatic ecosystems and biodiversity could be an issue for maintaining forest ecosystem integrity. We illustrate these concepts with examples of aquatic biodiversity and ecosystem services in forests of northwestern North America, also known as Northeast Pacific Rim. Encouraging management planning at broad as well as local spatial scales to recognize multi-state ecosystem management goals has promise for maintaining valuable ecosystem services. Ultimately, integration of information from socio-ecological ecosystems will be needed to maintain ecosystem services derived directly and indirectly from forest aquatic biota.

  5. Addressing global warming and biodiversity through forest restoration and coastal wetlands creation

    Science.gov (United States)

    Williams

    1999-10-18

    The Climate Challenge is a partnership between the Department of Energy and the electric utility industry to reduce, avoid, and sequester greenhouse gases. A portion of the initiative, the sequestration of greenhouse gases, is the focus of this presentation. Over 4 million acres of bottomland hardwood forests were cleared for agriculture in the Mississippi River Valley in the 1970s. Reestablishing these forests would improve depleted wildlife habitats, serve as wildlife corridors, increase biodiversity, and decrease soil erosion. Louisiana is losing coastal wetlands at a rate of approximately 25 square miles/year. This coastal erosion is due to a number of factors and many efforts are currently underway to address the matter. One such effort is the use of material generated in the dredging of navigational canals; however, this material is low in nutrient value, making the regeneration of marsh grasses more difficult. In addition, bottomland hardwood forests and coastal wetland grasses are excellent 'carbon sinks' because they take carbon dioxide out of the atmosphere and store it in living plant tissue. Entergy Services, Inc. is an electric utility with a service territory that comprises portions of both the Lower Mississippi River Valley and the Gulf of Mexico coastline. This provides an opportunity to positively address both habitat losses noted above while at the same time addressing global warming, forest fragmentation, and biodiversity. Entergy, through its affiliation with the UtiliTree Carbon Company, is participating in projects that will investigate the feasibility of using bottomland hardwood reforestation on cleared marginal farmlands now managed by the Louisiana Department of Wildlife and Fisheries and the US Fish and Wildlife Service. Entergy has also begun a research project with the Environmental Protection Agency and the State of Louisiana. The research is a compost demonstration project that will utilize wood waste generated through our tree

  6. Integrating movement ecology with biodiversity research - exploring new avenues to address spatiotemporal biodiversity dynamics.

    Science.gov (United States)

    Jeltsch, Florian; Bonte, Dries; Pe'er, Guy; Reineking, Björn; Leimgruber, Peter; Balkenhol, Niko; Schröder, Boris; Buchmann, Carsten M; Mueller, Thomas; Blaum, Niels; Zurell, Damaris; Böhning-Gaese, Katrin; Wiegand, Thorsten; Eccard, Jana A; Hofer, Heribert; Reeg, Jette; Eggers, Ute; Bauer, Silke

    2013-01-01

    Movement of organisms is one of the key mechanisms shaping biodiversity, e.g. the distribution of genes, individuals and species in space and time. Recent technological and conceptual advances have improved our ability to assess the causes and consequences of individual movement, and led to the emergence of the new field of 'movement ecology'. Here, we outline how movement ecology can contribute to the broad field of biodiversity research, i.e. the study of processes and patterns of life among and across different scales, from genes to ecosystems, and we propose a conceptual framework linking these hitherto largely separated fields of research. Our framework builds on the concept of movement ecology for individuals, and demonstrates its importance for linking individual organismal movement with biodiversity. First, organismal movements can provide 'mobile links' between habitats or ecosystems, thereby connecting resources, genes, and processes among otherwise separate locations. Understanding these mobile links and their impact on biodiversity will be facilitated by movement ecology, because mobile links can be created by different modes of movement (i.e., foraging, dispersal, migration) that relate to different spatiotemporal scales and have differential effects on biodiversity. Second, organismal movements can also mediate coexistence in communities, through 'equalizing' and 'stabilizing' mechanisms. This novel integrated framework provides a conceptual starting point for a better understanding of biodiversity dynamics in light of individual movement and space-use behavior across spatiotemporal scales. By illustrating this framework with examples, we argue that the integration of movement ecology and biodiversity research will also enhance our ability to conserve diversity at the genetic, species, and ecosystem levels.

  7. Trends over time in tree and seedling phylogenetic diversity indicate regional differences in forest biodiversity change

    Science.gov (United States)

    Kevin M. Potter; Christopher W. Woodall

    2012-01-01

    Changing climate conditions may impact the short-term ability of forest tree species to regenerate in many locations. In the longer term, tree species may be unable to persist in some locations while they become established in new places. Over both time frames, forest tree biodiversity may change in unexpected ways. Using repeated inventory measurements five years...

  8. Conserving forest biodiversity across multiple land ownerships: lessons from the Northwest Forest Plan and the Southeast Queensland Regional Forests Agreement (Australia).

    Science.gov (United States)

    C.A. McAlpine; T.A. Spies; P. Norman; A. Peterson

    2007-01-01

    As the area of the world's forests shrinks, the management of production forests is becoming increasingly paramount for biodiversity conservation. In the United States and Australia, public debate and controversy about the management of production forests during the later decades of the 20th century resulted in governments adopting sweeping top-down changes to...

  9. Positive biodiversity-productivity relationship predominant in global forests

    NARCIS (Netherlands)

    Liang, Jingjing; Crowther, Thomas W.; Picard, Nicolas; Wiser, Susan; Zhou, Mo; Alberti, Giorgio; Schulze, Ernst-Detlef; McGuire, A. David; Bozzato, Fabio; Pretzsch, Hans; de-Miguel, Sergio; Paquette, Alain; Hérault, Bruno; Scherer-Lorenzen, Michael; Barrett, Christopher B.; Glick, Henry B.; Hengeveld, Geerten M.; Nabuurs, Gert-Jan; Pfautsch, Sebastian; Viana, Helder; Vibrans, Alexander C.; Ammer, Christian; Schall, Peter; Verbyla, David; Tchebakova, Nadja; Fischer, Markus; Watson, James V.; Chen, Han Y. H.; Lei, Xiangdong; Schelhaas, Mart-Jan; Lu, Huicui; Gianelle, Damiano; Parfenova, Elena I.; Salas, Christian; Lee, Eungul; Lee, Boknam; Kim, Hyun Seok; Bruelheide, Helge; Coomes, David A.; Piotto, Daniel; Sunderland, Terry; Schmid, Bernhard; Gourlet-Fleury, Sylvie; Sonké, Bonaventure; Tavani, Rebecca; Zhu, Jun; Brandl, Susanne; Vayreda, Jordi; Kitahara, Fumiaki; Searle, Eric B.; Neldner, Victor J.; Ngugi, Michael R.; Baraloto, Christopher; Frizzera, Lorenzo; Bałazy, Radomir; Oleksyn, Jacek; Zawiła-Niedźwiecki, Tomasz; Bouriaud, Olivier; Bussotti, Filippo; Finér, Leena; Jaroszewicz, Bogdan; Jucker, Tommaso; Valladares, Fernando; Jagodzinski, Andrzej M.; Peri, Pablo L.; Gonmadje, Christelle; Marthy, William; O’Brien, Timothy; Martin, Emanuel H.; Marshall, Andrew R.; Rovero, Francesco; Bitariho, Robert; Niklaus, Pascal A.; Alvarez-Loayza, Patricia; Chamuya, Nurdin; Valencia, Renato; Mortier, Frédéric; Wortel, Verginia; Engone-Obiang, Nestor L.; Ferreira, Leandro V.; Odeke, David E.; Vasquez, Rodolfo M.; Lewis, Simon L.; Reich, Peter B.

    2016-01-01

    The biodiversity-productivity relationship (BPR) is foundational to our understanding of the global extinction crisis and its impacts on ecosystem functioning. Understanding BPR is critical for the accurate valuation and effective conservation of biodiversity. Using ground-sourced data from 777,126

  10. Would protecting tropical forest fragments provide carbon and biodiversity cobenefits under REDD+?

    Science.gov (United States)

    Magnago, Luiz Fernando S; Magrach, Ainhoa; Laurance, William F; Martins, Sebastião V; Meira-Neto, João Augusto A; Simonelli, Marcelo; Edwards, David P

    2015-09-01

    Tropical forests store vast amounts of carbon and are the most biodiverse terrestrial habitats, yet they are being converted and degraded at alarming rates. Given global shortfalls in the budgets required to prevent carbon and biodiversity loss, we need to seek solutions that simultaneously address both issues. Of particular interest are carbon-based payments under the Reducing Emissions from Deforestation and Forest Degradation (REDD+) mechanism to also conserve biodiversity at no additional cost. One potential is for REDD+ to protect forest fragments, especially within biomes where contiguous forest cover has diminished dramatically, but we require empirical tests of the strength of any carbon and biodiversity cobenefits in such fragmented systems. Using the globally threatened Atlantic Forest landscape, we measured above-ground carbon stocks within forest fragments spanning 13 to 23 442 ha in area and with different degrees of isolation. We related these stocks to tree community structure and to the richness and abundance of endemic and IUCN Red-listed species. We found that increasing fragment size has a positive relationship with above-ground carbon stock and with abundance of IUCN Red-listed species and tree community structure. We also found negative relationships between distance from large forest block and tree community structure, endemic species richness and abundance, and IUCN Red-listed species abundance. These resulted in positive congruence between carbon stocks and Red-listed species, and the abundance and richness of endemic species, demonstrating vital cobenefits. As such, protecting forest fragments in hotspots of biodiversity, particularly larger fragments and those closest to sources, offers important carbon and biodiversity cobenefits. More generally, our results suggest that macroscale models of cobenefits under REDD+ have likely overlooked key benefits at small scales, indicating the necessity to apply models that include finer

  11. Systematic temporal patterns in the relationship between housing development and forest bird biodiversity.

    Science.gov (United States)

    Pidgeon, Anna M; Flather, Curtis H; Radeloff, Volker C; Lepczyk, Christopher A; Keuler, Nicholas S; Wood, Eric M; Stewart, Susan I; Hammer, Roger B

    2014-10-01

    As people encroach increasingly on natural areas, one question is how this affects avian biodiversity. The answer to this is partly scale-dependent. At broad scales, human populations and biodiversity concentrate in the same areas and are positively associated, but at local scales people and biodiversity are negatively associated with biodiversity. We investigated whether there is also a systematic temporal trend in the relationship between bird biodiversity and housing development. We used linear regression to examine associations between forest bird species richness and housing growth in the conterminous United States over 30 years. Our data sources were the North American Breeding Bird Survey and the 2000 decennial U.S. Census. In the 9 largest forested ecoregions, housing density increased continually over time. Across the conterminous United States, the association between bird species richness and housing density was positive for virtually all guilds except ground nesting birds. We found a systematic trajectory of declining bird species richness as housing increased through time. In more recently developed ecoregions, where housing density was still low, the association with bird species richness was neutral or positive. In ecoregions that were developed earlier and where housing density was highest, the association of housing density with bird species richness for most guilds was negative and grew stronger with advancing decades. We propose that in general the relationship between human settlement and biodiversity over time unfolds as a 2-phase process. The first phase is apparently innocuous; associations are positive due to coincidence of low-density housing with high biodiversity. The second phase is highly detrimental to biodiversity, and increases in housing density are associated with biodiversity losses. The long-term effect on biodiversity depends on the final housing density. This general pattern can help unify our understanding of the relationship

  12. Lessons from native spruce forests in Alaska: managing Sitka spruce plantations worldwide to benefit biodiversity and ecosystem services

    Science.gov (United States)

    Robert L. Deal; Paul Hennon; Richard O' Hanlon; David D' Amore

    2014-01-01

    There is increasing interest worldwide in managing forests to maintain or improve biodiversity, enhance ecosystem services and assure long-term sustainability of forest resources. An important goal of forest management is to increase stand diversity, provide wildlife habitat and improve forest species diversity. We synthesize results from natural spruce forests in...

  13. Social and ecological synergy: local rulemaking, forest livelihoods, and biodiversity conservation.

    Science.gov (United States)

    Persha, Lauren; Agrawal, Arun; Chhatre, Ashwini

    2011-03-25

    Causal pathways to achieve social and ecological benefits from forests are unclear, because there are few systematic multicountry empirical analyses that identify important factors and their complex relationships with social and ecological outcomes. This study examines biodiversity conservation and forest-based livelihood outcomes using a data set on 84 sites from six countries in East Africa and South Asia. We find both positive and negative relationships, leading to joint wins, losses, and trade-offs depending on specific contextual factors; participation in forest governance institutions by local forest users is strongly associated with jointly positive outcomes for forests in our study.

  14. A long-scale biodiversity monitoring methodology for Spanish national forest inventory. Application to Álava region

    Directory of Open Access Journals (Sweden)

    Iciar Alberdi

    2014-04-01

    Full Text Available Aim of study: In this study, a methodology has been designed to assess biodiversity in the frame of the Spanish National Forest Inventory with the aim of evaluating the conservation status of Spanish forests and their future evolution. This methodology takes into account the different national and international initiatives together with the different types and characteristics of forests in Spain. Area of study: Álava province (Basque country, Spain.Material and methods: To analyse the contribution of each of the different indices to the biodiversity assessment, a statistical analysis using PCA multivariate techniques was performed for structure, composition and dead wood indicators. Main Results: The selected biodiversity indicators (based on field measurements are presented along with an analysis of the results from four representative forest types in Álava by way of an example of the potential of this methodology. Research highlights: The statistical analysis revealed the important information contribution of Mingling index to the composition indicators. Regarding the structure indicators, it is remarkable the interest of using standard deviations and skewness of height and diameter as indicators. Finally it is interesting to point out the interest of assessing dead saplings since they provide additional information and their volume is a particularly useful parameter for analyzing the success of regeneration.Keywords: species richness; structural diversity; dead wood; NFI; PCA.

  15. Identification of areas in Brazil that optimize conservation of forest carbon, jaguars, and biodiversity.

    Science.gov (United States)

    De Barros, Alan E; MacDonald, Ewan A; Matsumoto, Marcelo H; Paula, Rogério C; Nijhawan, Sahil; Malhi, Y; MacDonald, David W

    2014-04-01

    A major question in global environmental policy is whether schemes to reduce carbon pollution through forest management, such as Reducing Emissions from Deforestation and Degradation (REDD+), can also benefit biodiversity conservation in tropical countries. We identified municipalities in Brazil that are priorities for reducing rates of deforestation and thus preserving carbon stocks that are also conservation targets for the endangered jaguar (Panthera onca) and biodiversity in general. Preliminary statistical analysis showed that municipalities with high biodiversity were positively associated with high forest carbon stocks. We used a multicriteria decision analysis to identify municipalities that offered the best opportunities for the conservation of forest carbon stocks and biodiversity conservation under a range of scenarios with different rates of deforestation and carbon values. We further categorized these areas by their representativeness of the entire country (through measures such as percent forest cover) and an indirect measure of cost (number of municipalities). The municipalities that offered optimal co-benefits for forest carbon stocks and conservation were termed REDDspots (n = 159), and their spatial distribution was compared with the distribution of current and proposed REDD projects (n = 135). We defined REDDspots as the municipalities that offer the best opportunities for co-benefits between the conservation of forest carbon stocks, jaguars, and other wildlife. These areas coincided in 25% (n = 40) of municipalities. We identified a further 95 municipalities that may have the greatest potential to develop additional REDD+ projects while also targeting biodiversity conservation. We concluded that REDD+ strategies could be an efficient tool for biodiversity conservation in key locations, especially in Amazonian and Atlantic Forest biomes. ©2013 Society for Conservation Biology.

  16. Land abandonment, landscape, and biodiversity: questioning the restorative character of the forest transition in the Mediterranean

    OpenAIRE

    Iago Otero; Joan Marull; Enric Tello; Giovanna L. Diana; Manel Pons; Francesc Coll; Martí Boada

    2015-01-01

    The effects of land abandonment on biodiversity have received considerable attention by scholars, but results are far from conclusive. Different cultural traditions of scientists seem to underlie the contrasting ways in which land abandonment is understood. Although the forest transition (FT) framework considers land abandonment as an opportunity for biodiversity conservation, European landscape ecologists characterize it as a threat. We use insights from both traditions to analyze the effect...

  17. The impact of logging on biodiversity and carbon sequestration in tropical forests

    Science.gov (United States)

    Cazzolla Gatti, R.

    2012-04-01

    Tropical deforestation is one of the most relevant environmental issues at planetary scale. Forest clearcutting has dramatic effect on local biodiversity, on the terrestrial carbon sink and atmospheric GHGs balance. In terms of protection of tropical forests selective logging is, instead, often regarded as a minor or even positive management practice for the ecosystem and it is supported by international certifications. However, few studies are available on changes in the structure, biodiversity and ecosystem services due to the selective logging of African forests. This paper presents the results of a survey on tropical forests of West and Central Africa, with a comparison of long-term dynamics, structure, biodiversity and ecosystem services (such as the carbon sequestration) of different types of forests, from virgin primary to selectively logged and secondary forest. Our study suggests that there is a persistent effect of selective logging on biodiversity and carbon stock losses in the long term (up to 30 years since logging) and after repeated logging. These effects, in terms of species richness and biomass, are greater than the expected losses from commercial harvesting, implying that selective logging in West and Central Africa is impairing long term (at least until 30 years) ecosystem structure and services. A longer selective logging cycle (>30 years) should be considered by logging companies although there is not yet enough information to consider this practice sustainable.

  18. Plant biodiversity of beech forests in central-northern Italy: a methodological approach for conservation purposes

    Directory of Open Access Journals (Sweden)

    Marcantonio M

    2012-07-01

    Full Text Available Forests are reckoned essentials as biodiversity reservoirs and carbon sinks. Current threats to forest ecosystems (e.g., climate changes, habitat loss and fragmentation, management changes call for monitoring their biodiversity and preserving their ecological functions. In this study, we characterized plants diversity of five beech forests located in central and north Apennines mountain chain, using results by a probabilistic sampling. In order to achieve our goals, we have considered species richness and abundance, taxonomic distinctness and species composition, using both old and new analytical approaches. Results have shown how: (1 the forest type dominated by Fagus sylvatica is characterized by high complexity, with marked compositional, structural and biodiversity differences; (2 beech forests of Pigelleto di Piancastagnaio and Valle della Corte show the highest plants diversity values. The ecological characteristics of these areas, which sustain high diversity values, are unique and of great conservation interest; (3 the use of species richness as the only diversity measure have not allowed an efficient differentiation between studied areas. Indeed, the use of different indexes and analytical methods is required to detect multiple characteristics of biological diversity, as well as to carry out efficient biodiversity surveys aimed to develop optimal conservation strategies. In the future, we plan to apply the sampling methodology and the analytical approach used in this paper to characterize plants diversity of similar forest types.

  19. Reviewing the strength of evidence of biodiversity indicators for forest ecosystems in Europe

    DEFF Research Database (Denmark)

    Gao, Tian; Nielsen, Anders Busse; Hedblom, Marcus

    2015-01-01

    With a growing number of forest biodiversity indicators being applied in forest policy documents and even more being suggested by the scientific community, there is a need to evaluate, review and critically assess the strength of evidence for individual indicators, their interrelationships.......e. the indicated aspect of biodiversity); (2) assess the strength of scientific evidence for individual indicators; and (3) identify a set of indicators with confirmed validity for further scientific testing and inclusion in long-term reporting and decision-making regarding forest biodiversity. Ten indicator...... groups and 83 individual indicators were identified with application from stand scale up to landscape scale in 142 eligible scientific papers. In 62 of the 142 studies no statistical correlations between indicator(s) and indicandum were performed and 42 (out of the 62) did not even present a clear...

  20. Does biodiversity make a difference? Relationships between species richness, evolutionary diversity, and aboveground live tree biomass across US forests

    Science.gov (United States)

    Kevin M. Potter; Christopher W. Woodall

    2014-01-01

    Biodiversity conveys numerous functional benefits to forested ecosystems, including community stability and resilience. In the context of managing forests for climate change mitigation/adaptation, maximizing and/or maintaining aboveground biomass will require understanding the interactions between tree biodiversity, site productivity, and the stocking of live trees....

  1. Cultural valuation and biodiversity conservation in the Upper Guinea forest, West Africa

    Directory of Open Access Journals (Sweden)

    James A. Fraser

    2016-09-01

    Full Text Available The cultural valuation of biodiversity has taken on renewed importance over the last two decades as the ecosystem services framework has become widely adopted. Conservation initiatives increasingly use ecosystem service frameworks to render tropical forest landscapes and their peoples legible to market-oriented initiatives such as REDD+ and biodiversity offsetting schemes. Ecosystem service approaches have been widely criticized by scholars in the social sciences and humanities for their narrow focus on a small number of easily quantifiable and marketable services and a reductionist and sometimes simplistic approach to culture. We address the need to combine methods from each of the "three cultures" of natural science, quantitative social science, and qualitative social science/humanities in conceptualizing the relationship between cultural valuation and biodiversity conservation. We combine qualitative data with forest inventories and a quantitative index of cultural value to evaluate the relationship between cultural valuation and biodiversity conservation in Upper Guinea forest in Liberia, West Africa. Our study focuses on "sacred agroforests," spaces that are associated with Mande macro-language speaking groups such as the Loma. We demonstrate that sacred agroforests are associated with different cultural values compared with secondary forests. Although biodiversity and biomass are similar, sacred agroforests exhibit a different species composition, especially of culturally salient species, increasing overall landscape agro-biodiversity. Sacred agroforests are also shaped and conserved by local cultural institutions revolving around ancestor worship, ritual, and the metaphysical conceptual category "salɛ." We conclude that to understand the relationship between cultural valuation and biodiversity conservation, interpretivist approaches such as phenomenology should be employed alongside positivist ecosystem service frameworks.

  2. Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation.

    Science.gov (United States)

    Barlow, Jos; Lennox, Gareth D; Ferreira, Joice; Berenguer, Erika; Lees, Alexander C; Mac Nally, Ralph; Thomson, James R; Ferraz, Silvio Frosini de Barros; Louzada, Julio; Oliveira, Victor Hugo Fonseca; Parry, Luke; Solar, Ricardo Ribeiro de Castro; Vieira, Ima C G; Aragão, Luiz E O C; Begotti, Rodrigo Anzolin; Braga, Rodrigo F; Cardoso, Thiago Moreira; de Oliveira, Raimundo Cosme; Souza, Carlos M; Moura, Nárgila G; Nunes, Sâmia Serra; Siqueira, João Victor; Pardini, Renata; Silveira, Juliana M; Vaz-de-Mello, Fernando Z; Veiga, Ruan Carlo Stulpen; Venturieri, Adriano; Gardner, Toby A

    2016-07-07

    Concerted political attention has focused on reducing deforestation, and this remains the cornerstone of most biodiversity conservation strategies. However, maintaining forest cover may not reduce anthropogenic forest disturbances, which are rarely considered in conservation programmes. These disturbances occur both within forests, including selective logging and wildfires, and at the landscape level, through edge, area and isolation effects. Until now, the combined effect of anthropogenic disturbance on the conservation value of remnant primary forests has remained unknown, making it impossible to assess the relative importance of forest disturbance and forest loss. Here we address these knowledge gaps using a large data set of plants, birds and dung beetles (1,538, 460 and 156 species, respectively) sampled in 36 catchments in the Brazilian state of Pará. Catchments retaining more than 69–80% forest cover lost more conservation value from disturbance than from forest loss. For example, a 20% loss of primary forest, the maximum level of deforestation allowed on Amazonian properties under Brazil’s Forest Code, resulted in a 39–54% loss of conservation value: 96–171% more than expected without considering disturbance effects. We extrapolated the disturbance-mediated loss of conservation value throughout Pará, which covers 25% of the Brazilian Amazon. Although disturbed forests retained considerable conservation value compared with deforested areas, the toll of disturbance outside Pará’s strictly protected areas is equivalent to the loss of 92,000–139,000 km2 of primary forest. Even this lowest estimate is greater than the area deforested across the entire Brazilian Amazon between 2006 and 2015 (ref. 10). Species distribution models showed that both landscape and within-forest disturbances contributed to biodiversity loss, with the greatest negative effects on species of high conservation and functional value. These results demonstrate an urgent need

  3. The effects of forest fragmentation on biodiversity under post-drought conditions

    Science.gov (United States)

    Lawrence, A.; Swei, A.

    2016-12-01

    Habitat fragmentation is the greatest threat to wildlife worldwide. Understanding the impact of habitat fragmentation on biodiversity can benefit from theories established in island biogeography. Landscapes surrounded by human development are analogous to oceanic islands in that the size of habitat fragment can determine biodiversity. For terrestrial ecosystems, species traits can influence how they respond to the disturbance of habitat fragmentation. We tested how habitat patch size correlates to species richness and abundance of mammals in northern California in a post-drought environment. Using GIS and Fragstat we established nine forest fragments of varying size, differing minimally in location, topography, climate, and vegetation cover. This allows us to minimize site differences to test the effects of patch size on biodiversity. We used wildlife cameras to estimate richness of medium and large mammals and mark-and-recapture analysis to estimate species richness and abundance of small mammals. We also collected ticks with standard dragging and flagging techniques to determine the relationship between habitat patch size and species richness on Lyme disease risk. Our preliminary results indicate that meso-and-large mammal richness increases significantly with patch area (P=0.024) as well as larval tick density (P=0.035). At the same time, small mammal richness, abundance and diversity peaks in intermediate sized fragments. Further we found invasive species such as house mouse, Norway rat, and black rat only in patches smaller than 50 ha. Our results support the theory that invasive species are better adapted to disturbed areas versus native habitat. The ways in which habitat destruction and fragmentation are acting upon species and communities has critical consequences for conservation, ecosystem services, landscape planning, and many fields of environmental change research.

  4. The Biodiversity Benefits and Opportunity Costs of Plantation Forest Management: A Modelling Case Study of Pinus radiata in New Zealand

    Directory of Open Access Journals (Sweden)

    Nhung Nghiem

    2016-11-01

    Full Text Available This study modelled the potential biodiversity benefits and the opportunity costs of a patch-clear-cutting strategy over a clear-cutting strategy for Pinus radiata in New Zealand. Patch-clear cutting is a special case of clear cutting involving the removal of all the trees from strips or patches within a stand, leaving the remainder uncut or clear cutting a series of strips or patches. A forest-level optimisation model was extended to include uncertainty in timber growth, plant diversity, and cutting costs. Using a species-area relationship and economies of cutting scale, the net present value and optimal rotation age under alternative management strategies were calculated. Results suggested that the optimal rotation ages were similar (24 and 25 years for the two cutting strategies. Patch-clear cutting provided higher biodiversity benefits (i.e., 59 vs. 11 understorey plant species with an opportunity cost of 27 NZD (18 USD per extra plant species or 1250 NZD (820 USD ha−1. However, the true benefits of patch-clear cutting would be even greater if other benefits of stand retention are included. Our research can potentially inform local decision making and inform international systems of payment for environmental services, such as the REDD+ (Reducing Emissions from Deforestation and Forest Degradation program, to conserve biodiversity in developing countries with plantation forests.

  5. Predictable waves of sequential forest degradation and biodiversity loss spreading from an African city.

    Science.gov (United States)

    Ahrends, Antje; Burgess, Neil D; Milledge, Simon A H; Bulling, Mark T; Fisher, Brendan; Smart, James C R; Clarke, G Philip; Mhoro, Boniface E; Lewis, Simon L

    2010-08-17

    Tropical forest degradation emits carbon at a rate of approximately 0.5 Pgxy(-1), reduces biodiversity, and facilitates forest clearance. Understanding degradation drivers and patterns is therefore crucial to managing forests to mitigate climate change and reduce biodiversity loss. Putative patterns of degradation affecting forest stocks, carbon, and biodiversity have variously been described previously, but these have not been quantitatively assessed together or tested systematically. Economic theory predicts a systematic allocation of land to its highest use value in response to distance from centers of demand. We tested this theory to see if forest exploitation would expand through time and space as concentric waves, with each wave targeting lower value products. We used forest data along a transect from 10 to 220 km from Dar es Salaam (DES), Tanzania, collected at two points in time (1991 and 2005). Our predictions were confirmed: high-value logging expanded 9 kmxy(-1), and an inner wave of lower value charcoal production 2 kmxy(-1). This resource utilization is shown to reduce the public goods of carbon storage and species richness, which significantly increased with each kilometer from DES [carbon, 0.2 Mgxha(-1); 0.1 species per sample area (0.4 ha)]. Our study suggests that tropical forest degradation can be modeled and predicted, with its attendant loss of some public goods. In sub-Saharan Africa, an area experiencing the highest rate of urban migration worldwide, coupled with a high dependence on forest-based resources, predicting the spatiotemporal patterns of degradation can inform policies designed to extract resources without unsustainably reducing carbon storage and biodiversity.

  6. Revealing lay people's perceptions of forest biodiversity value components and their application in valuation method

    DEFF Research Database (Denmark)

    Bakhtiari, Fatemeh; Jacobsen, Jette Bredahl; Strange, Niels

    2014-01-01

    discussions revealed that 'diversity of animals and plants', 'natural appearance and dynamics of ecosystem', and 'peace and quietness' were the attributes of forest ecosystems most frequently mentioned by lay people. In addition, it was found that regardless of familiarity with the various ecological...... valuation studies may improve the consistency of outcomes. Using both qualitative and quantitative methods, we investigated lay people's mental constructs about biodiversity and attitudes to biodiversity management.Applying a coding strategy for analysing data from individual interviews and group...... scientific terminologies, lay people had an intuitive understanding of ecological concepts such as biodiversity. The analyses demonstrated that individuals' perceptions and values of biodiversity could be framed in two interlinking categories: (i) as a good in itself, and (ii) its regulatory function...

  7. Biodiversity and climate determine the functioning of Neotropical forests

    NARCIS (Netherlands)

    Poorter, L.; Sande, van der M.T.; Arets, E.J.M.M.; Ascarrunz, N.; Enquist, B.J.; Finegan, B.; Licona, J.C.; Martinez-Ramos, M.; Mazzei, L.; Meave, J.; Munoz, R.; Nytch, C.J.; Oliveira, de A.A.; Perez-Garcia, E.A.; Prado-Junior, J.A.; Rodriguez-Velazquez, J.; Ruschel, A.R.; Salgado Negret, B.; Schiavini, I.; Swenson, N.G.; Tenorio, E.A.; Thompson, J.; Toledo, M.; Uriarte, M.; Hout, van der P.; Zimmerman, J.K.; Pena Claros, M.

    2017-01-01

    Tropical forests account for a quarter of the global carbon storage and a third of the terrestrial productivity. Few studies have teased apart the relative importance of environmental factors and forest attributes for ecosystem functioning, especially for the tropics. This study aims to relate

  8. Biodiversity and climate determine the functioning of Neotropical forests

    NARCIS (Netherlands)

    Poorter, Lourens; Sande, van der Masha T.; Arets, Eric J.M.M.; Ascarrunz, Nataly; Enquist, Brian; Finegan, Bryan; Licona, Juan Carlos; Martínez-Ramos, Miguel; Mazzei, Lucas; Meave, Jorge A.; Muñoz, Rodrigo; Nytch, Christopher J.; Oliveira, de Alexandre A.; Pérez-García, Eduardo A.; Prado-junior, Jamir; Rodríguez-Velázques, Jorge; Ruschel, Ademir Roberto; Salgado-Negret, Beatriz; Schiavini, Ivan; Swenson, Nathan G.; Tenorio, Elkin A.; Thompson, Jill; Toledo, Marisol; Uriarte, Maria; Hout, van der Peter; Zimmerman, Jess K.; Peña-Claros, Marielos

    2017-01-01

    Aim: Tropical forests account for a quarter of the global carbon storage and a third of the terrestrial productivity. Few studies have teased apart the relative importance of environmental factors and forest attributes for ecosystem functioning, especially for the tropics. This study aims to relate

  9. Forests

    Science.gov (United States)

    Louis R. Iverson; Mark W. Schwartz

    1994-01-01

    Originally diminished by development, forests are coming back: forest biomass is accumulating. Forests are repositories for many threatened species. Even with increased standing timber, however, biodiversity is threatened by increased forest fragmentation and by exotic species.

  10. Effects of reduced impact logging on bat biodiversity in terra firme forest of lowland Amazonia.

    Science.gov (United States)

    Ivan Castro-Arellanos; Steven J. Presley; Luis Nelio Saldanha; Michael R. Willig; Joseph M. Wunderle Jr.

    2007-01-01

    Timber harvest is one of the main causes of degradation of Amazonian tropical forests, where bats represent important components of biodiversity. In addition, bats may represent keystone taxa in the Neotropics, as they are primary agents of pollination and seed dispersal for many pioneer plants. We assessed the impact of low harvest (18m3/ha),...

  11. Cheap carbon and biodiversity co-benefits from forest regeneration in a hotspot of endemism

    Science.gov (United States)

    Gilroy, James J.; Woodcock, Paul; Edwards, Felicity A.; Wheeler, Charlotte; Baptiste, Brigitte L. G.; Medina Uribe, Claudia A.; Haugaasen, Torbjørn; Edwards, David P.

    2014-06-01

    Climate change and biodiversity loss can be addressed simultaneously by well-planned conservation policies, but this requires information on the alignment of co-benefits under different management actions. One option is to allow forests to naturally regenerate on marginal agricultural land: a key question is whether this approach will deliver environmental co-benefits in an economically viable manner. Here we report on a survey of carbon stocks, biodiversity and economic values from one of the world's most endemic-rich and threatened ecosystems: the western Andes of Colombia. We show that naturally regenerating secondary forests accumulate significant carbon stocks within 30 years, and support biodiverse communities including many species at risk of extinction. Cattle farming, the principal land use in the region, provides minimal economic returns to local communities, making forest regeneration a viable option despite weak global carbon markets. Efforts to promote natural forest regeneration in the tropical Andes could therefore provide globally significant carbon and biodiversity co-benefits at minimal cost.

  12. Cultural valuation and biodiversity conservation in the Upper Guinea forest, West Africa

    NARCIS (Netherlands)

    Fraser, James A.; Diabaté, Moussa; Narmah, Woulay; Beavogui, Pépé; Guilavogui, Kaman; Foresta, de Hubert; Braga Junqueira, Andre

    2016-01-01

    The cultural valuation of biodiversity has taken on renewed importance over the last two decades as the ecosystem services framework has become widely adopted. Conservation initiatives increasingly use ecosystem service frameworks to render tropical forest landscapes and their peoples legible to

  13. Standardized Assessment of Biodiversity Trends in Tropical Forest Protected Areas: The End Is Not in Sight.

    Directory of Open Access Journals (Sweden)

    Lydia Beaudrot

    2016-01-01

    Full Text Available Extinction rates in the Anthropocene are three orders of magnitude higher than background and disproportionately occur in the tropics, home of half the world's species. Despite global efforts to combat tropical species extinctions, lack of high-quality, objective information on tropical biodiversity has hampered quantitative evaluation of conservation strategies. In particular, the scarcity of population-level monitoring in tropical forests has stymied assessment of biodiversity outcomes, such as the status and trends of animal populations in protected areas. Here, we evaluate occupancy trends for 511 populations of terrestrial mammals and birds, representing 244 species from 15 tropical forest protected areas on three continents. For the first time to our knowledge, we use annual surveys from tropical forests worldwide that employ a standardized camera trapping protocol, and we compute data analytics that correct for imperfect detection. We found that occupancy declined in 22%, increased in 17%, and exhibited no change in 22% of populations during the last 3-8 years, while 39% of populations were detected too infrequently to assess occupancy changes. Despite extensive variability in occupancy trends, these 15 tropical protected areas have not exhibited systematic declines in biodiversity (i.e., occupancy, richness, or evenness at the community level. Our results differ from reports of widespread biodiversity declines based on aggregated secondary data and expert opinion and suggest less extreme deterioration in tropical forest protected areas. We simultaneously fill an important conservation data gap and demonstrate the value of large-scale monitoring infrastructure and powerful analytics, which can be scaled to incorporate additional sites, ecosystems, and monitoring methods. In an era of catastrophic biodiversity loss, robust indicators produced from standardized monitoring infrastructure are critical to accurately assess population outcomes

  14. Standardized Assessment of Biodiversity Trends in Tropical Forest Protected Areas: The End Is Not in Sight.

    Science.gov (United States)

    Beaudrot, Lydia; Ahumada, Jorge A; O'Brien, Timothy; Alvarez-Loayza, Patricia; Boekee, Kelly; Campos-Arceiz, Ahimsa; Eichberg, David; Espinosa, Santiago; Fegraus, Eric; Fletcher, Christine; Gajapersad, Krisna; Hallam, Chris; Hurtado, Johanna; Jansen, Patrick A; Kumar, Amit; Larney, Eileen; Lima, Marcela Guimarães Moreira; Mahony, Colin; Martin, Emanuel H; McWilliam, Alex; Mugerwa, Badru; Ndoundou-Hockemba, Mireille; Razafimahaimodison, Jean Claude; Romero-Saltos, Hugo; Rovero, Francesco; Salvador, Julia; Santos, Fernanda; Sheil, Douglas; Spironello, Wilson R; Willig, Michael R; Winarni, Nurul L; Zvoleff, Alex; Andelman, Sandy J

    2016-01-01

    Extinction rates in the Anthropocene are three orders of magnitude higher than background and disproportionately occur in the tropics, home of half the world's species. Despite global efforts to combat tropical species extinctions, lack of high-quality, objective information on tropical biodiversity has hampered quantitative evaluation of conservation strategies. In particular, the scarcity of population-level monitoring in tropical forests has stymied assessment of biodiversity outcomes, such as the status and trends of animal populations in protected areas. Here, we evaluate occupancy trends for 511 populations of terrestrial mammals and birds, representing 244 species from 15 tropical forest protected areas on three continents. For the first time to our knowledge, we use annual surveys from tropical forests worldwide that employ a standardized camera trapping protocol, and we compute data analytics that correct for imperfect detection. We found that occupancy declined in 22%, increased in 17%, and exhibited no change in 22% of populations during the last 3-8 years, while 39% of populations were detected too infrequently to assess occupancy changes. Despite extensive variability in occupancy trends, these 15 tropical protected areas have not exhibited systematic declines in biodiversity (i.e., occupancy, richness, or evenness) at the community level. Our results differ from reports of widespread biodiversity declines based on aggregated secondary data and expert opinion and suggest less extreme deterioration in tropical forest protected areas. We simultaneously fill an important conservation data gap and demonstrate the value of large-scale monitoring infrastructure and powerful analytics, which can be scaled to incorporate additional sites, ecosystems, and monitoring methods. In an era of catastrophic biodiversity loss, robust indicators produced from standardized monitoring infrastructure are critical to accurately assess population outcomes and identify

  15. Standardized Assessment of Biodiversity Trends in Tropical Forest Protected Areas: The End Is Not in Sight

    Science.gov (United States)

    O'Brien, Timothy; Alvarez-Loayza, Patricia; Boekee, Kelly; Campos-Arceiz, Ahimsa; Eichberg, David; Espinosa, Santiago; Fegraus, Eric; Fletcher, Christine; Gajapersad, Krisna; Hallam, Chris; Hurtado, Johanna; Jansen, Patrick A.; Kumar, Amit; Larney, Eileen; Lima, Marcela Guimarães Moreira; Mahony, Colin; Martin, Emanuel H.; McWilliam, Alex; Mugerwa, Badru; Ndoundou-Hockemba, Mireille; Razafimahaimodison, Jean Claude; Romero-Saltos, Hugo; Rovero, Francesco; Salvador, Julia; Santos, Fernanda; Sheil, Douglas; Spironello, Wilson R.; Willig, Michael R.; Winarni, Nurul L.; Zvoleff, Alex; Andelman, Sandy J.

    2016-01-01

    Extinction rates in the Anthropocene are three orders of magnitude higher than background and disproportionately occur in the tropics, home of half the world’s species. Despite global efforts to combat tropical species extinctions, lack of high-quality, objective information on tropical biodiversity has hampered quantitative evaluation of conservation strategies. In particular, the scarcity of population-level monitoring in tropical forests has stymied assessment of biodiversity outcomes, such as the status and trends of animal populations in protected areas. Here, we evaluate occupancy trends for 511 populations of terrestrial mammals and birds, representing 244 species from 15 tropical forest protected areas on three continents. For the first time to our knowledge, we use annual surveys from tropical forests worldwide that employ a standardized camera trapping protocol, and we compute data analytics that correct for imperfect detection. We found that occupancy declined in 22%, increased in 17%, and exhibited no change in 22% of populations during the last 3–8 years, while 39% of populations were detected too infrequently to assess occupancy changes. Despite extensive variability in occupancy trends, these 15 tropical protected areas have not exhibited systematic declines in biodiversity (i.e., occupancy, richness, or evenness) at the community level. Our results differ from reports of widespread biodiversity declines based on aggregated secondary data and expert opinion and suggest less extreme deterioration in tropical forest protected areas. We simultaneously fill an important conservation data gap and demonstrate the value of large-scale monitoring infrastructure and powerful analytics, which can be scaled to incorporate additional sites, ecosystems, and monitoring methods. In an era of catastrophic biodiversity loss, robust indicators produced from standardized monitoring infrastructure are critical to accurately assess population outcomes and identify

  16. Forest loss and the biodiversity threshold: an evaluation considering species habitat requirements and the use of matrix habitats.

    Science.gov (United States)

    Estavillo, Candelaria; Pardini, Renata; da Rocha, Pedro Luís Bernardo

    2013-01-01

    Habitat loss is the main driver of the current biodiversity crisis, a landscape-scale process that affects the survival of spatially-structured populations. Although it is well-established that species responses to habitat loss can be abrupt, the existence of a biodiversity threshold is still the cause of much controversy in the literature and would require that most species respond similarly to the loss of native vegetation. Here we test the existence of a biodiversity threshold, i.e. an abrupt decline in species richness, with habitat loss. We draw on a spatially-replicated dataset on Atlantic forest small mammals, consisting of 16 sampling sites divided between forests and matrix habitats in each of five 3600-ha landscapes (varying from 5% to 45% forest cover), and on an a priori classification of species into habitat requirement categories (forest specialists, habitat generalists and open-area specialists). Forest specialists declined abruptly below 30% of forest cover, and spillover to the matrix occurred only in more forested landscapes. Generalists responded positively to landscape heterogeneity, peaking at intermediary levels of forest cover. Open area specialists dominated the matrix and did not spillover to forests. As a result of these distinct responses, we observed a biodiversity threshold for the small mammal community below 30% forest cover, and a peak in species richness just above this threshold. Our results highlight that cross habitat spillover may be asymmetrical and contingent on landscape context, occurring mainly from forests to the matrix and only in more forested landscapes. Moreover, they indicate the potential for biodiversity thresholds in human-modified landscapes, and the importance of landscape heterogeneity to biodiversity. Since forest loss affected not only the conservation value of forest patches, but also the potential for biodiversity-mediated services in anthropogenic habitats, our work indicates the importance of proactive

  17. Forest loss and the biodiversity threshold: an evaluation considering species habitat requirements and the use of matrix habitats.

    Directory of Open Access Journals (Sweden)

    Candelaria Estavillo

    Full Text Available Habitat loss is the main driver of the current biodiversity crisis, a landscape-scale process that affects the survival of spatially-structured populations. Although it is well-established that species responses to habitat loss can be abrupt, the existence of a biodiversity threshold is still the cause of much controversy in the literature and would require that most species respond similarly to the loss of native vegetation. Here we test the existence of a biodiversity threshold, i.e. an abrupt decline in species richness, with habitat loss. We draw on a spatially-replicated dataset on Atlantic forest small mammals, consisting of 16 sampling sites divided between forests and matrix habitats in each of five 3600-ha landscapes (varying from 5% to 45% forest cover, and on an a priori classification of species into habitat requirement categories (forest specialists, habitat generalists and open-area specialists. Forest specialists declined abruptly below 30% of forest cover, and spillover to the matrix occurred only in more forested landscapes. Generalists responded positively to landscape heterogeneity, peaking at intermediary levels of forest cover. Open area specialists dominated the matrix and did not spillover to forests. As a result of these distinct responses, we observed a biodiversity threshold for the small mammal community below 30% forest cover, and a peak in species richness just above this threshold. Our results highlight that cross habitat spillover may be asymmetrical and contingent on landscape context, occurring mainly from forests to the matrix and only in more forested landscapes. Moreover, they indicate the potential for biodiversity thresholds in human-modified landscapes, and the importance of landscape heterogeneity to biodiversity. Since forest loss affected not only the conservation value of forest patches, but also the potential for biodiversity-mediated services in anthropogenic habitats, our work indicates the

  18. Beyond Forest Cover: Land Use and Biodiversity in Rubber Trail Forests of the Chico Mendes Extractive Reserve

    Directory of Open Access Journals (Sweden)

    Jacqueline M. Vadjunec

    2009-12-01

    Full Text Available Among the strategies to promote sustainable tropical forest development around the world, the Federal Extractive Reserve System of Brazil is widely cited as an exemplary model. It is designed to protect rubber tapper communities, their forests, and their livelihoods while preventing deforestation and conserving biodiversity. In response to changing markets and policies, rubber tappers in the Chico Mendes Extractive Reserve have recently diversified production to include market agriculture and cattle production, precipitating deforestation in the reserve, with the implication of increased ecological degradation compared to the extraction of nontimber forest products (NTFPs. Our remote sensing and forest inventory analyses yield different insights about the environmental consequences of distinct land-use mixes in two extractive communities, one of which emphasizes cattle and the other, NTFPs. Remote sensing results show a predictably greater impact on forest cover in the cattle-oriented community. This preliminary study is based on nested household- and community-level forest inventory and biodiversity analyses in two communities. Surprisingly, we found higher tree biodiversity in the rubber trail forests of the cattle-oriented community, and significantly lower tree species richness, tree density, total basal area, and number of trees of commercial size in the same land-use unit in the NTFP-focused community. Land-use surveys indicate lower levels of game consumption and hunting in the cattle-oriented community, and strong support for the development of sustainable timber extraction in both communities. The distinct type and degree of forest impact in the two communities exposes the problem of single-impact assessment as the sole means of performance and categorical land-use prohibitions as an effective mode of regulation in conservation areas.

  19. Will climate change affect biodiversity in pacific northwest forests

    International Nuclear Information System (INIS)

    Henderson, S.; Rosenbaum, B.J.

    1992-01-01

    Global climate change could have significant consequences for biological diversity in Pacific Northwest (PNW) forested ecosystems, particularly in areas already threatened by anthropogenic activities and the resultant habitat modification and fragmentation. The forests of the Pacific Northwest have a high biological diversity, not only in terms of tree species, but also in terms of herbs, bryophytes and hepatophytes, algae, fungi, protist, bacteria, and many groups of vertebrates and invertebrates. Global circulation and vegetation model projections of global climate change effects on PNW forests include reductions in species diversity in low elevation forests as well as elevational and latitudinal shifts in species ranges. As species are most likely to be stressed at the edges of their ranges, plant and animal species with low mobility, or those that are prevented from migrating by lack of habitat corridors, may become regionally extinct. Endangered species with limited distribution may be especially vulnerable to shifts in habitat conditions

  20. Land use, forest preservation and biodiversity in Asia

    OpenAIRE

    Halkos, George; Managi, Shunsuke

    2017-01-01

    Continuous increase in one side of human populations and on the other side on the number of extinct and endangered species in Asia requires appropriate land use and forest preservation. Forests provide a number of benefits such as regulation of global climate and ecosystems, provision of raw materials and wild foods for local communities, watershed protection for a region, national income from ecotourism, carbon sequestration, being a landscape and habitat of rare species. This introduction p...

  1. Epiphyte biodiversity in the coffee agricultural matrix: canopy stratification and distance from forest fragments.

    Science.gov (United States)

    Moorhead, Leigh C; Philpott, Stacy M; Bichier, Peter

    2010-06-01

    Quality of the agricultural matrix profoundly affects biodiversity and dispersal in agricultural areas. Vegetatively complex coffee agroecosystems maintain species richness at larger distances from the forest. Epiphytes colonize canopy trees and provide resources for birds and insects and thus effects of agricultural production on epiphytes may affect other species. We compared diversity, composition, and vertical stratification of epiphytes in a forest fragment and in two coffee farms differing in management intensity in southern Mexico. We also examined spatial distribution of epiphytes with respect to the forest fragment to examine quality of the two agricultural matrix types for epiphyte conservation. We sampled vascular epiphytes in a forest fragment, a shade polyculture farm, and a shade monoculture farm at 100 m, 200 m, and 400 m from the forest. Epiphyte and orchid richness was greater in the forest than in the monoculture but richness was similar in the forest and polyculture farm. Epiphyte species composition differed with habitat type, but not with distance from the forest. In the forest, epiphytes were distributed throughout tree canopies, but in the farms, epiphytes were primarily found on trunks and larger branches. Epiphyte richness and species similarity to forest species declined with distance from the forest fragment in the monoculture, but richness and similarity to forest species did not decline with distance from forest in the polyculture. This suggests polyculture coffee has greater conservation value. In contrast, monoculture coffee is likely a sink habitat for epiphytes dispersing from forests into coffee. Coffee farms differ from forests in terms of the habitat they provide and species composition, thus protecting forest fragments is essential for epiphyte conservation. Nonetheless, in agricultural landscapes, vegetatively complex coffee farms may contribute to conservation of epiphytes more than other agricultural land uses.

  2. Taiwan’s biodiversity research achievements over the past 10 years (2001–2011)

    OpenAIRE

    Kwang-Tsao Shao

    2012-01-01

    Since the 1990s, Taiwan’s academic community has been promoting the conservation, education, and research of biodiversity. The Administration authority passed the “Biodiversity Promotion Plan” in 2001 and the Research Agency established an independent Biodiversity discipline in 2002. Subsequently, several universities and the Academia Sinica either founded or reorganized biodiversity research institutes or centers to actively carry out related research. The Research Agency sponsors basic scie...

  3. Uav-Based Photogrammetric Point Clouds and Hyperspectral Imaging for Mapping Biodiversity Indicators in Boreal Forests

    Science.gov (United States)

    Saarinen, N.; Vastaranta, M.; Näsi, R.; Rosnell, T.; Hakala, T.; Honkavaara, E.; Wulder, M. A.; Luoma, V.; Tommaselli, A. M. G.; Imai, N. N.; Ribeiro, E. A. W.; Guimarães, R. B.; Holopainen, M.; Hyyppä, J.

    2017-10-01

    Biodiversity is commonly referred to as species diversity but in forest ecosystems variability in structural and functional characteristics can also be treated as measures of biodiversity. Small unmanned aerial vehicles (UAVs) provide a means for characterizing forest ecosystem with high spatial resolution, permitting measuring physical characteristics of a forest ecosystem from a viewpoint of biodiversity. The objective of this study is to examine the applicability of photogrammetric point clouds and hyperspectral imaging acquired with a small UAV helicopter in mapping biodiversity indicators, such as structural complexity as well as the amount of deciduous and dead trees at plot level in southern boreal forests. Standard deviation of tree heights within a sample plot, used as a proxy for structural complexity, was the most accurately derived biodiversity indicator resulting in a mean error of 0.5 m, with a standard deviation of 0.9 m. The volume predictions for deciduous and dead trees were underestimated by 32.4 m3/ha and 1.7 m3/ha, respectively, with standard deviation of 50.2 m3/ha for deciduous and 3.2 m3/ha for dead trees. The spectral features describing brightness (i.e. higher reflectance values) were prevailing in feature selection but several wavelengths were represented. Thus, it can be concluded that structural complexity can be predicted reliably but at the same time can be expected to be underestimated with photogrammetric point clouds obtained with a small UAV. Additionally, plot-level volume of dead trees can be predicted with small mean error whereas identifying deciduous species was more challenging at plot level.

  4. Toward an integrated monitoring framework to assess the effects of tropical forest degradation and recovery on carbon stocks and biodiversity

    Science.gov (United States)

    Mercedes M. C. Bustamante; Iris Roitman; T. Mitchell Aide; Ane Alencar; Liana O. Anderson; Luiz Aragao; Gregory P. Asner; Jos Barlow; Erika Berenguer; Jeffrey Chambers; Marcos H. Costa; Thierry Fanin; Laerte G. Ferreira; Joice Ferreira; Michael Keller; William E. Magnusson; Lucia Morales-Barquero; Douglas Morton; Jean P. H. B. Ometto; Michael Palace; Carlos A. Peres; Divino Silverio; Susan Trumbore; Ima C. G. Vieira

    2015-01-01

    Tropical forests harbor a significant portion of global biodiversity and are a critical component of the climate system. Reducing deforestation and forest degradation contributes to global climate-change mitigation efforts, yet emissions and removals from forest dynamics are still poorly quantified. We reviewed the main challenges to estimate changes in carbon stocks...

  5. Risk assessment for biodiversity conservation planning in Pacific Northwest forests

    Science.gov (United States)

    Becky K. Kerns; Alan Ager

    2007-01-01

    Risk assessment can provide a robust strategy for landscape-scale planning challenges associated with species conservation and habitat protection in Pacific Northwest forests. We provide an overview of quantitative and probabilistic ecological risk assessment with focus on the application of approaches and influences from the actuarial, financial, and technical...

  6. Conservation of biodiversity: a useful paradigm for forest ecosystem management.

    Science.gov (United States)

    A.B. Carey; R.O. Curtis

    1996-01-01

    The coniferous forests of the Western Hemlock Zone of western Oregon and western Washington are remarkable in the longevity and stature of their trees, long intervals between stand-replacing events, capacity to produce timber, diversity of life forms and species, and controversy over their management. The controversy is hardly new (Overton and Hunt 1974). But the...

  7. The Fauna Biodiversity of Ikot Ondo Community Forest in Essien ...

    African Journals Online (AJOL)

    Prolonged deforestation, poaching and wildlife habitat loss has been a serious threat to wildlife conservation in Nigeria, thereby endangering fauna diversity resources in the country. This study was carried out to determine the population estimate of wild fauna in the communal land of Ikot Ondo Community forest in Essien ...

  8. biodiversity status of urban remnant forests in cape coast, ghana

    African Journals Online (AJOL)

    User

    The major threats to biological diversity that result from human activity .... stumps, in leaf litter, old termite mounds and rodent burrows). In addition ... diverse (Table 4). Table 1: Mammal species sampled in selected remnant forests in Cape Coast Metropolis. Family. Spices. Common. Name. Cercopitheci- dae. Chlorocebus.

  9. Biodiversity and human activities in the Udzungwa Mountain forests ...

    African Journals Online (AJOL)

    An ethnobotanical survey was conducted between March and September 1997 in the northwestern and southern parts of the Uzungwa Scarp Forest Reserve using strip transects. Altogether 489 plant species from 107 families were recorded, most of them trees (37 %) and shrubs (27 %). Others were lianas, herbs, ferns and ...

  10. Biodiversity assessment of high rain forest under human activities: a ...

    African Journals Online (AJOL)

    Most of these species are under protection of International Union for Conservation of Natural Resources [Vulnerable, Endangered, Threatened species]. It is however concluded that all form of developmental operation activity at the Erinle forest have affected these conservation important species, and also transformed the ...

  11. Mountain cloud forest and grown-shade coffee plantations: A comparison of tree biodiversity in central Veracruz, Mexico

    Directory of Open Access Journals (Sweden)

    Alfredo González-Zamora

    2016-04-01

    Full Text Available Aim of the study: The objective of this work is to compare tree diversity and richness among one grown-shade coffee plantation (CAE and two sites of montane cloud forests, one preserved (MCF1 and other perturbed (MCF2. We also develop an analysis of the importance of coffee plantations as a refuge of tree species, holding a potential role for conservation.Area of study: Our study area is the coffee region of Coatepec-Xico, in the state of Veracruz, Mexico.Material and methods: We compiled a list of all tree species in each site to determine tree diversity and floristic similarity (dissimilarity. We used different similarity indices and a cluster analysis to show relations among sites.Main results: 2721 individuals from 154 species were registered in the montane cloud forests as a whole. In the grown-shade coffee plantation we registered 2947 individuals from 64 species. The most similar sites were the perturbed montane cloud forest and the grown-shade coffee plantation and the least similar were the preserved montane cloud forest and the grown-shade coffee plantation. The high biodiversity found in all sites and the differences in tree composition between the two montane cloud forests supports evidence of the ecosystems richness in the region.Research highlight: Diversity differences among sites determine that the grown-shade coffee plantation is not substitute for montane cloud forest. CAE’s are developed under similar environmental conditions than the MCF; therefore, coexistence and recombination (replacement of species make them particularly complementary. CAE’s in Veracruz have a potential role as refuge for biodiversity.

  12. Mountain cloud forest and grown-shade coffee plantations: A comparison of tree biodiversity in central Veracruz, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    González-Zamora, A.; Esperón-Rodríguez, M.; Barradas, V.L.

    2016-07-01

    Aim of study: The objective of this work is to compare tree diversity and richness among one grown-shade coffee plantation (CAE) and two sites of montane cloud forests, one preserved (MCF1) and other perturbed (MCF2). We also develop an analysis of the importance of coffee plantations as a refuge of tree species, holding a potential role for conservation. Area of study: Our study area is the coffee region of Coatepec-Xico, in the state of Veracruz, Mexico. Material and methods: We compiled a list of all tree species in each site to determine tree diversity and floristic similarity (dissimilarity). We used different similarity indices and a cluster analysis to show relations among sites. Main results: 2721 individuals from 154 species were registered in the montane cloud forests as a whole. In the grown-shade coffee plantation we registered 2947 individuals from 64 species. The most similar sites were the perturbed montane cloud forest and the grown-shade coffee plantation and the least similar were the preserved montane cloud forest and the grown-shade coffee plantation. The high biodiversity found in all sites and the differences in tree composition between the two montane cloud forests supports evidence of the ecosystems richness in the region. Research highlight: Diversity differences among sites determine that the grown-shade coffee plantation is not substitute for montane cloud forest. CAE’s are developed under similar environmental conditions than the MCF; therefore, coexistence and recombination (replacement) of species make them particularly complementary. CAE’s in Veracruz have a potential role as refuge for biodiversity. (Author)

  13. Towards global interoperability for supporting biodiversity research on Essential Biodiversity Variables (EBVs)

    NARCIS (Netherlands)

    Kissling, W.D.; Hardisty, A.; García, E.A.; Santamaria, M.; De Leo, F.; Pesole, G.; Freyhof, J.; Manset, D.; Wissel, S.; Konijn, J.; Los, W.

    2015-01-01

    Essential biodiversity variables (EBVs) have been proposed by the Group on Earth Observations Biodiversity Observation Network (GEO BON) to identify a minimum set of essential measurements that are required for studying, monitoring and reporting biodiversity and ecosystem change. Despite the initial

  14. Impact of mining and forest regeneration on small mammal biodiversity in the Western Region of Ghana.

    Science.gov (United States)

    Attuquayefio, Daniel K; Owusu, Erasmus H; Ofori, Benjamin Y

    2017-05-01

    Much of the terrestrial biodiversity in sub-Saharan Africa is supported by tropical rainforest. Natural resource development, particularly surface mining in the rainforest, poses great risks to the region's rich and endemic biodiversity. Here, we assessed the impact of surface mining and the success of forest rehabilitation on small mammal diversity in the Western Region of Ghana. We surveyed small mammals in the project area and two adjoining forest reserves (control sites) before the mining operation and 10 years after mine closure and forest rehabilitation (topsoil replacement and revegetation). The forest reserves recorded higher species abundance than the mining areas. Majority of the species captured in the forest reserves, including Hylomyscus alleni, Praomys tullbergi, Malacomys cansdalei, and Hybomys trivirgatus, are forest obligate species. Only one individual each of H. alleni and P. tullbergi was captured in the naturally regenerated areas (core areas of mining activities that were allowed to revegetate naturally), while 32 individuals belonging to four species (Lophuromys sikapusi, Mus musculoides, Mastomys erythroleucus, and Crocidura olivieri) were recorded in the rehabilitated areas. Our data suggested negative effects of mining on small mammal diversity and the restoration of species diversity and important ecological processes after rehabilitation of altered habitats. We strongly encourage deliberate conservation efforts, particularly the development of management plans that require the restoration of degraded land resulting from mining activities.

  15. BIOINFORMATICS APPLICATIONS IN RESEARCH ON BIODIVERSITY AND ECOLOGY

    OpenAIRE

    SILVA, Lucas Gonçalves; SANTOS, Leandro Olegário

    2009-01-01

    The technological growth places new tools to researches and general public. Biological databases are spread out for computer’s world network and each time more had access for biological information sources. Categorize and analyze it’s information and your composition objectifying to facilitate the access brings new perspectives to scientific spreading. Databases “Biodiversity Hotspots” and “Species 2000” possess many important biological information, like other databases, molecular and geneti...

  16. Do Community-Managed Forests Work? A Biodiversity Perspective

    Directory of Open Access Journals (Sweden)

    John Terborgh

    2017-03-01

    Full Text Available Community-managed reserves (CMRs comprise the fastest-growing category of protected areas throughout the tropics. CMRs represent a compromise between advocates of nature conservation and advocates of human development. We ask whether CMRs succeed in achieving the goals of either. A fixed reserve area can produce only a finite resource supply, whereas human populations exploiting them tend to expand rapidly while adopting high-impact technologies to satisfy rising aspirations. Intentions behind the establishment of CMRs may be admirable, but represent an ideal rarely achieved. People tied to the natural forest subsist on income levels that are among the lowest in the Amazon. Limits of sustainable harvesting are often low and rarely known prior to reserve creation or respected thereafter, and resource exhaustion predictably follows. Unintended consequences typically emerge, such as overhunting of the seed dispersers, pollinators, and other animals that provide services essential to perpetuating the forest. CMRs are a low priority for governments, so mostly operate without enforcement, a laxity that encourages illegal forest conversion. Finally, the pull of markets can alter the “business plan” of a reserve overnight, as inhabitants switch to new activities. The reality is that we live in a hyperdynamic world of accelerating change in which past assumptions must continually be re-evaluated.

  17. Calcareous forest seepages acting as biodiversity hotspots and refugia for woodland snail faunas

    Science.gov (United States)

    Horsák, Michal; Tajovská, Eva; Horsáková, Veronika

    2017-07-01

    Land-snail species richness has repeatedly been found to increase with the increasing site calcium content and humidity. These two factors, reported as the main drivers of land-snail assemblage diversity, are also among the main habitat characteristics of calcareous seepages. Here we explore local species richness and compositional variation of forest spring-fed patches (i.e. seepages), to test the hypothesis that these habitats might act as biodiversity hotspots and refugia of regional snail faunas. In contrast to treeless spring fens, only little is known about land snail faunas inhabiting forest seepages. Studying 25 isolated calcareous forest seepages, evenly distributed across the White Carpathians Protected Landscape Area (SE Czech Republic), we found that these sites, albeit spatially very limited, can harbour up to 66% of the shelled land-snail species known to occur in this well-explored protected area (in total 83 species). By comparing land snail assemblages of the studied seepages with those occurring in the woodland surroundings of each site as well as those previously sampled in 28 preserved forest sites within the study area, we found the seepages to be among the most species rich sites. Although the numbers of species did not statistically differ among these three systems, we found highly significant differences in species composition. Seepage faunas were composed of many species significantly associated with spring sites, in contrast to the assemblages of both surrounding and preserved forest sites. Our results highly support the hypothesis that calcareous forest seepages might serve as refugia and biodiversity hotspots of regional land snail faunas. Protection of these unique habitats challenges both conservation plans and forest management guidelines as they might act as sources for the recolonization and restoration of forest snail assemblages particularly in areas impoverished by harvesting and clearcutting.

  18. Hydrological services and biodiversity conservation under forestation scenarios: comparing options to improve watershed management

    Science.gov (United States)

    Carvalho-Santos, Claudia; Nunes, João Pedro; Sousa-Silva, Rita; Gonçalves, João; Pradinho Honrado, João

    2015-04-01

    Humans rely on ecosystems for the provision of hydrological services, namely water supply and water damage mitigation, and promoting forests is a widely used management strategy for the provision of hydrological services. Therefore, it is important to model how forests will contribute for this provision, taking into account the environmental characteristics of each region, as well as the spatio-temporal patterns of societal demand. In addition, ensuring forest protection and the delivery of forest ecosystem services is one of the aims included in the European Union biodiversity strategy to 2020. On the other hand, forest management for hydrological services must consider possible trade-offs with other services provision, as well as with biodiversity conservation. Accurate modeling and mapping of both hydrological services and biodiversity conservation value is thus important to support spatial planning and land management options involving forests. The objectives of this study were: to analyze the provision and spatial dynamics of hydrological services under two forest cover change scenarios (oak and eucalyptus/pine) compared to the current shrubland-dominated landscape; and to evaluate their spatial trade-offs with biodiversity conservation value. The Vez watershed (250km2), in northwest Portugal, was used as case-study area. SWAT (Soil and Water Assessment Tool) was applied to simulate the provision of hydrological services (water supply quantity, timing and quality; soil erosion and flood regulation), and was calibrated against daily discharge, sediments, nitrates and evapotranspiration. Good agreement was obtained between model predictions and field measurements. The maps for each service under the different scenarios were produced at the Hydrologic Response Unit (HRU) level. Biodiversity conservation value was based on nature protection regimes and on expert valuation applied to a land cover map. Statistical correlations between hydrological services provision

  19. Monitoring Hawaiian biodiversity: Pilot study to assess changes to forest birds and their habitat

    Science.gov (United States)

    Gorresen, P. Marcos; Camp, Richard J.; Gaudioso, Jacqueline; Brinck, Kevin W.; Berkowitz, Paul; Jacobi, James D.

    2017-01-01

    Biological diversity, or biodiversity, is the variety and abundance of species in a defined area, and is one of the oldest and most basic descriptions of biological communities. Understanding how populations and communities are structured and change over space and time in response to internal and external forces is a management priority. Effective management practices and conservation strategies depend on our understanding of the relationship between changes in biodiversity and ecological drivers such as invasive species, land use and climate change. To demonstrate how changes in biodiversity may be monitored over a large (400 km2) tract of native forest habitat, we compared bird and plant community composition and structure in an upper montane region of Hawai‘i Island originally surveyed in 1977 as part of the Hawai‘i Forest Bird Survey (Scott et al. 1986) with a comprehensive sample of the same region in 2015.Our findings suggest that across a region spanning an elevation range of 600 to 2,000 m considerable changes occurred in the plant and bird communities between 1977 and 2015. Endemic and indigenous plants species richness (i.e., total number of species) decreased dramatically in the low and middle elevations below an invasive weed front, whereas naturalized plant species richness did not change between the two periods at any elevation. Endemic bird abundance decreased and two species were lost in the lower elevations (environment. Forest habitat in a variety of settings (i.e., islands and regions with differing land-use histories and elevation ranges), however, can provide opportunities to evaluate the influence of ecological drivers. Declines in native bird biodiversity in low-elevation areas may be attributed to invasive species as land use and climate conditions have remained relatively similar over the 40-year period. Thus, the shift from an endemic-naturalized co-dominated community in 1977 to one dominated by naturalized, alien birds in 2015, and

  20. The role of forest stand structure as biodiversity indicator

    DEFF Research Database (Denmark)

    Gao, Tian; Hedblom, Marcus; Emilsson, Tobias

    2014-01-01

    be achieved if indicators are derived from existing data. In this study, a model for classifying forest stand structures was developed and tested as an indicator of overall plant species diversity at stand level. The model combines four stand structure parameters: canopy coverage, age of canopy trees, tree...... species composition and canopy stratification. Using data from the National Inventory of Landscapes in Sweden and General Linear Mixed Model, plant species diversity (Shannon diversity index, SHDI) and composition (Sørensen-Dice index, SDI) were tested between 26 different stand structure types and nine...... soil classes. The results showed that mature stands with a stratified canopy had the highest plant species diversity across the soil classes, particularly if they comprised mixed coniferous and broadleaved species with a semi-open canopy. In contrast, young (...

  1. Ecosystem services and opportunity costs shift spatial priorities for conserving forest biodiversity.

    Directory of Open Access Journals (Sweden)

    Matthias Schröter

    Full Text Available Inclusion of spatially explicit information on ecosystem services in conservation planning is a fairly new practice. This study analyses how the incorporation of ecosystem services as conservation features can affect conservation of forest biodiversity and how different opportunity cost constraints can change spatial priorities for conservation. We created spatially explicit cost-effective conservation scenarios for 59 forest biodiversity features and five ecosystem services in the county of Telemark (Norway with the help of the heuristic optimisation planning software, Marxan with Zones. We combined a mix of conservation instruments where forestry is either completely (non-use zone or partially restricted (partial use zone. Opportunity costs were measured in terms of foregone timber harvest, an important provisioning service in Telemark. Including a number of ecosystem services shifted priority conservation sites compared to a case where only biodiversity was considered, and increased the area of both the partial (+36.2% and the non-use zone (+3.2%. Furthermore, opportunity costs increased (+6.6%, which suggests that ecosystem services may not be a side-benefit of biodiversity conservation in this area. Opportunity cost levels were systematically changed to analyse their effect on spatial conservation priorities. Conservation of biodiversity and ecosystem services trades off against timber harvest. Currently designated nature reserves and landscape protection areas achieve a very low proportion (9.1% of the conservation targets we set in our scenario, which illustrates the high importance given to timber production at present. A trade-off curve indicated that large marginal increases in conservation target achievement are possible when the budget for conservation is increased. Forty percent of the maximum hypothetical opportunity costs would yield an average conservation target achievement of 79%.

  2. Land abandonment, landscape, and biodiversity: questioning the restorative character of the forest transition in the Mediterranean

    Directory of Open Access Journals (Sweden)

    Iago Otero

    2015-06-01

    Full Text Available The effects of land abandonment on biodiversity have received considerable attention by scholars, but results are far from conclusive. Different cultural traditions of scientists seem to underlie the contrasting ways in which land abandonment is understood. Although the forest transition (FT framework considers land abandonment as an opportunity for biodiversity conservation, European landscape ecologists characterize it as a threat. We use insights from both traditions to analyze the effects of land abandonment on landscape and biodiversity in a mountain area of metropolitan Barcelona. We do so through an in-depth historical case study covering a period of 160 years. A set of landscape metrics was applied to land-cover maps derived from cadastral cartography to characterize the landscape ecological changes brought about by land abandonment. Cadastral data on land uses were used to understand how landscape ecological changes could be explained by changing socioeconomic activities. Information on past land-management practices from semistructured interviews was used to shed light on how peasants shaped the capacity of landscape to host biodiversity. Our results point to a remarkable landscape deterioration along with the disappearance of the peasant land-use mosaics and the ensuing forest expansion. By using insights from landscape ecology in a historically informed manner, we (1 question the alleged relationship between land abandonment and ecosystem recovery; (2 show that the assumed restorative character of the FT is based on the underestimation of the ecological importance of nonforest habitats; and (3 point at a remarkable trade-off between FT and biodiversity in the Mediterranean. Finally, the case study also serves to illustrate some of the strengths and challenges of using historical approaches to land abandonment.

  3. Ecosystem Services and Opportunity Costs Shift Spatial Priorities for Conserving Forest Biodiversity

    Science.gov (United States)

    Schröter, Matthias; Rusch, Graciela M.; Barton, David N.; Blumentrath, Stefan; Nordén, Björn

    2014-01-01

    Inclusion of spatially explicit information on ecosystem services in conservation planning is a fairly new practice. This study analyses how the incorporation of ecosystem services as conservation features can affect conservation of forest biodiversity and how different opportunity cost constraints can change spatial priorities for conservation. We created spatially explicit cost-effective conservation scenarios for 59 forest biodiversity features and five ecosystem services in the county of Telemark (Norway) with the help of the heuristic optimisation planning software, Marxan with Zones. We combined a mix of conservation instruments where forestry is either completely (non-use zone) or partially restricted (partial use zone). Opportunity costs were measured in terms of foregone timber harvest, an important provisioning service in Telemark. Including a number of ecosystem services shifted priority conservation sites compared to a case where only biodiversity was considered, and increased the area of both the partial (+36.2%) and the non-use zone (+3.2%). Furthermore, opportunity costs increased (+6.6%), which suggests that ecosystem services may not be a side-benefit of biodiversity conservation in this area. Opportunity cost levels were systematically changed to analyse their effect on spatial conservation priorities. Conservation of biodiversity and ecosystem services trades off against timber harvest. Currently designated nature reserves and landscape protection areas achieve a very low proportion (9.1%) of the conservation targets we set in our scenario, which illustrates the high importance given to timber production at present. A trade-off curve indicated that large marginal increases in conservation target achievement are possible when the budget for conservation is increased. Forty percent of the maximum hypothetical opportunity costs would yield an average conservation target achievement of 79%. PMID:25393951

  4. Operationalizing biodiversity for conservation planning

    Indian Academy of Sciences (India)

    Biodiversity has acquired such a general meaning that people now find it difficult to pin down a precise sense for planning and policy-making aimed at biodiversity ... Wildlife and Ecology, Tropical Forest Research Centre and the Rainforest Cooperative Research Centre, PO Box 780, Atherton, Queensland, 4883, Australia ...

  5. Logged peat swamp forest supports greater macrofungal biodiversity than large-scale oil palm plantations and smallholdings.

    Science.gov (United States)

    Shuhada, Siti Noor; Salim, Sabiha; Nobilly, Frisco; Zubaid, Akbar; Azhar, Badrul

    2017-09-01

    Intensive land expansion of commercial oil palm agricultural lands results in reducing the size of peat swamp forests, particularly in Southeast Asia. The effect of this land conversion on macrofungal biodiversity is, however, understudied. We quantified macrofungal biodiversity by identifying mushroom sporocarps throughout four different habitats; logged peat swamp forest, large-scale oil palm plantation, monoculture, and polyculture smallholdings. We recorded a total of 757 clusters of macrofungi belonging to 127 morphospecies and found that substrates for growing macrofungi were abundant in peat swamp forest; hence, morphospecies richness and macrofungal clusters were significantly greater in logged peat swamp forest than converted oil palm agriculture lands. Environmental factors that influence macrofungi in logged peat swamp forests such as air temperature, humidity, wind speed, soil pH, and soil moisture were different from those in oil palm plantations and smallholdings. We conclude that peat swamp forests are irreplaceable with respect to macrofungal biodiversity. They host much greater macrofungal biodiversity than any of the oil palm agricultural lands. It is imperative that further expansion of oil palm plantation into remaining peat swamp forests should be prohibited in palm oil producing countries. These results imply that macrofungal distribution reflects changes in microclimate between habitats and reduced macrofungal biodiversity may adversely affect decomposition in human-modified landscapes.

  6. Does logging and forest conversion to oil palm agriculture alter functional diversity in a biodiversity hotspot?

    Science.gov (United States)

    Edwards, F A; Edwards, D P; Larsen, T H; Hsu, W W; Benedick, S; Chung, A; Vun Khen, C; Wilcove, D S; Hamer, K C

    2014-04-01

    Forests in Southeast Asia are rapidly being logged and converted to oil palm. These changes in land-use are known to affect species diversity but consequences for the functional diversity of species assemblages are poorly understood. Environmental filtering of species with similar traits could lead to disproportionate reductions in trait diversity in degraded habitats. Here, we focus on dung beetles, which play a key role in ecosystem processes such as nutrient recycling and seed dispersal. We use morphological and behavioural traits to calculate a variety of functional diversity measures across a gradient of disturbance from primary forest through intensively logged forest to oil palm. Logging caused significant shifts in community composition but had very little effect on functional diversity, even after a repeated timber harvest. These data provide evidence for functional redundancy of dung beetles within primary forest and emphasize the high value of logged forests as refugia for biodiversity. In contrast, conversion of forest to oil palm greatly reduced taxonomic and functional diversity, with a marked decrease in the abundance of nocturnal foragers, a higher proportion of species with small body sizes and the complete loss of telecoprid species (dung-rollers), all indicating a decrease in the functional capacity of dung beetles within plantations. These changes also highlight the vulnerability of community functioning within logged forests in the event of further environmental degradation.

  7. Relationships between Plant Biodiversity and Soil Fertility in a Mature Tropical Forest, Costa Rica

    Directory of Open Access Journals (Sweden)

    Martin B. Nadeau

    2015-01-01

    Full Text Available We aimed to study relationships between plant biodiversity and soil chemical fertility in a mature tropical forest of Costa Rica. Soil samples were collected in nine sampling plots (5 m by 25 m in order to identify P, K, Ca, Mg, Fe, Zn, Mn, Cu, and Al and total N contents, soil fertility index, CEC, pH, and C/N ratio. Furthermore, species richness, Shannon-Wiener and Simpson’s species diversities, structural richness, and structural diversity were calculated for each plot. Simple linear regression analyses were conducted. Tree species richness was inversely related to concentration levels of K, Ca, and P, CEC, and soil fertility index. Therefore, higher tree species richness tended to be found on sites with lower soil fertility, which is the complete opposite of temperate forests. As a result, tropical and temperate forest ecology should be considered separately. Shannon-Wiener tree species diversity was positively correlated to C/N ratio. Herb structural richness was positively correlated with soil fertility index and P concentration. Therefore, herb structural richness may be a good indicator of soil fertility. This study gives important insights on ecological relationships between plant biodiversity and soil chemical fertility in a primary tropical forest.

  8. Identification of Appropriate Biodiversity Indicators for Ecologically Sustainable Forest Management at National Level

    International Nuclear Information System (INIS)

    Tolunay, A.; Akyol, A.

    2015-01-01

    Sustainable forest management (SFM) practices have started in 1999 in Turkey. A set of criteria and indicators, composed by the General Directorate of Forestry (GDF) on the basis of the criteria and indicators defined in the Pan-European and Near Eastern Processes, was enquired via a survey to serve this purpose. GDF tested the sustainability under the following titles: Situation of forest resources, biodiversity, health and vitality, production capacity and functions, protective functions and environmental and socio-economic functions. There were problems in identification and definition of SFM criteria and indicators. Biological diversity indicators has been selected, described and developed in this study. At this phase, the survey was completed upon receiving the views of the scientists interested in different dimensions of this topic as well as the views of other interest groups affiliated with forestry. As a result, there were 13 indicators that may be used as the basis of a regional or forest management unit level for the purpose of protecting, developing and maintaining biodiversity. Furthermore, these indicators are instruments, which may easily be used by relevant decision-makers in the management of forest resources in a more effective and productive manner. (author)

  9. Spatial patterns of degraded tropical forest and biodiversity restoration over 70-years of succession

    Directory of Open Access Journals (Sweden)

    Janet E. Nichol

    2017-07-01

    Full Text Available Landscape metrics have often been used to analyse the spatial dynamics of habitat fragmentation accompanying forest loss. However, there are few studies of the spatial dynamics of natural forest succession, especially over periods longer than the operational period of imaging satellites. This study applies spatial metrics to understand the spatial processes of a 70-year tropical secondary forest succession in Hong Kong, since World War 2. The highest rate of forest regeneration at 11% a year from 1989 to 2001 occurred when the landscape achieved greatest habitat diversity and juxtapositioning of habitat patches. This rapid regeneration occurred by infilling from remnant forest in adjacent valleys rather than by an advance along a broad forest front, and led to simplification of the landscape and declining habitat diversity. It was also accompanied by declines in species richness and abundance in regenerated forest patches. Thus both habitat and woody plant species diversity show a humped trend over the successional period as disconnected forest patches amalgamate, and shade-intolerant pioneers are shaded out by taller pioneers. From this point onwards, the birds of mixed habitats including bulbuls and hwamei known to disperse seed in the study area, may become less effective as forest patches consolidate, and only a few forest mammals remain. The observed improved connectivity within forest patches and reduced edge disturbances accompanying landscape simplification provide better conditions for dispersion within forest of light-intolerant climax species from the oldest, species-rich valley sites to the newly regenerated areas. However, in addition to the loss of forest dispersal agents, other natural dispersal agents such as gravity, flash floods and slope wash involving downward processes may be ineffective, as forest has regenerated upwards to higher elevations. Progression to a mature, biodiverse and stable forest ecosystem may depend on

  10. Natural disturbance impacts on ecosystem services and biodiversity in temperate and boreal forests.

    Science.gov (United States)

    Thom, Dominik; Seidl, Rupert

    2016-08-01

    In many parts of the world forest disturbance regimes have intensified recently, and future climatic changes are expected to amplify this development further in the coming decades. These changes are increasingly challenging the main objectives of forest ecosystem management, which are to provide ecosystem services sustainably to society and maintain the biological diversity of forests. Yet a comprehensive understanding of how disturbances affect these primary goals of ecosystem management is still lacking. We conducted a global literature review on the impact of three of the most important disturbance agents (fire, wind, and bark beetles) on 13 different ecosystem services and three indicators of biodiversity in forests of the boreal, cool- and warm-temperate biomes. Our objectives were to (i) synthesize the effect of natural disturbances on a wide range of possible objectives of forest management, and (ii) investigate standardized effect sizes of disturbance for selected indicators via a quantitative meta-analysis. We screened a total of 1958 disturbance studies published between 1981 and 2013, and reviewed 478 in detail. We first investigated the overall effect of disturbances on individual ecosystem services and indicators of biodiversity by means of independence tests, and subsequently examined the effect size of disturbances on indicators of carbon storage and biodiversity by means of regression analysis. Additionally, we investigated the effect of commonly used approaches of disturbance management, i.e. salvage logging and prescribed burning. We found that disturbance impacts on ecosystem services are generally negative, an effect that was supported for all categories of ecosystem services, i.e. supporting, provisioning, regulating, and cultural services (P biodiversity, i.e. species richness, habitat quality and diversity indices, on the other hand were found to be influenced positively by disturbance (P biodiversity. A detailed investigation of disturbance

  11. Selecting Focal Songbird Species for Biodiversity Conservation Assessment: Response to Forest Cover Amount and Configuration

    Directory of Open Access Journals (Sweden)

    Robert S. Rempel

    2007-06-01

    Full Text Available Conservation of biodiversity is now a firmly entrenched objective of sustainable forest management, and emulating natural disturbance has been widely adopted as a conservation strategy. Yet the foundation for this approach is still very much a hypothesis based on first principles, and there has been little rigorous testing of the approach. In addition, practical constraints mean that the full range and character of natural patterns can never be implemented, so decisions must still be made in setting forest management targets and levels. An alternative, but complementary approach is to select a focal group of species and use their habitat requirements to define the range of conditions that should be maintained on the landscape. In this study, I used a balanced factorial sample design to test the effect of landscape vs. local scale factors for explaining relative abundance of 30 forest songbird species in boreal Ontario, and then examined components of variance, and used multivariate analysis and logistic regression to describe these relationships in more detail. Based on statistically defendable inferences and habitat model coefficients, 13 species were selected, with habitat associations ranging from high to low edge density, homogeneous to heterogeneous forest matrix, hardwood to softwood dominated overstory, young to old stands, and open to closed canopy. I found that variations in amount and configuration of mature forest cover had relatively little influence on the overall boreal forest songbird community, but that individual species differ in their response to these variables. To be successful, biodiversity conservation strategies must emulate the patterns created through natural disturbance by maintaining the full range of forest cover homogeneity and heterogeneity on the landscape. The habitat requirements for Alder Flycatcher, Black-and-white Warbler, Bay-breasted Warbler, Blackburnian Warbler, Brown Creeper, Common Yellowthroat

  12. Trends in Stream Biodiversity Research since the River Continuum Concept

    Directory of Open Access Journals (Sweden)

    Brett Tornwall

    2015-02-01

    Full Text Available Lotic environments contain a disproportionate amount of biodiversity given their relatively small proportion of the worldwide landscape. We conducted a systematic literature search of research directed towards understanding factors that influence biodiversity in lotic habitats, published in 31 major ecological and freshwater science journals from 1981 to 2014. Our goal was to characterize emergent themes in research successes and identify important areas in need of study. We show an overwhelming taxonomic bias favoring studies of macroinvertebrates and fish, and a paucity in studies of other important groups such as bacteria and fungi. While most studies assessed habitat variables that affect diversity at a local scale, there has been a recent push to investigate regional drivers of beta and gamma diversity. Several factors were consistently found to be important drivers of diversity including local habitat type, hydrologic variables, disturbance, and stream morphometry. Others such as nutrients and chemical variables showed mixed support. Species interactions, dispersal, and evolutionary processes were rarely considered but show promise as fruitful areas for future study. We suggest that researchers should give increased attention to diversity drivers at different scales as well as take advantage of new molecular techniques to address questions regarding organismal diversity in streams.

  13. Spatial congruence between carbon and biodiversity across forest landscapes of northern Borneo

    Directory of Open Access Journals (Sweden)

    Nicolas Labrière

    2016-04-01

    Full Text Available Understanding how carbon and biodiversity vary across tropical forest landscapes is essential to achieving effective conservation of their respective hotspots in a global context of high deforestation. Whether conservation strategies aimed at protecting carbon hotspots can provide co-benefits for biodiversity protection, and vice versa, highly depends on the extent to which carbon and biodiversity co-occur at the landscape level. We used field measurements and easily accessible explanatory variables to model aboveground carbon density, soil carbon density and tree alpha diversity (response variables over a mostly forested area of northern Borneo. We assessed the spatial relationships between response variables and the spatial congruence of their hotspots. We found a significant positive relationship between aboveground carbon density and tree alpha diversity, and an above-than-expected-by-chance spatial congruence of their hotspots. Consequently, the protection of areas of high aboveground carbon density through financial mechanisms such as REDD+ is expected to benefit tree diversity conservation in the study area. On the other hand, relationships between soil carbon density and both aboveground carbon density and tree alpha diversity were negative and spatial congruences null. Hotspots of soil carbon density, mostly located in peatlands, therefore need specific conservation regulations, which the current moratorium on peat conversion in Indonesia is a first step toward.

  14. Bioenergy harvest impacts to biodiversity and resilience vary across aspen-dominated forest ecosystems in the Lake States region, USA

    Science.gov (United States)

    Miranda T. Curzon; Anthony W. D' Amato; Brian J. Palik; Kris Verheyen

    2016-01-01

    Questions: Does the increase in disturbance associated with removing harvest residues negatively impact biodiversity and resilience in aspen-dominated forest ecosystems? How do responses of functional diversity measures relate to community recovery and standing biomass? Location: Aspen (Populus tremuloides, Michx.) mixedwood forests in Minnesota...

  15. The harvested side of edges: effect of retained forests on the re-establishement of biodiversity in adjacent harvested areas

    Science.gov (United States)

    Susan C. Baker; Thomas A. Spies; Timothy J. Wardlaw; Jayne Balmer; Jerry F. Franklin

    2013-01-01

    Most silvicultural methods have been developed with the principal aim of ensuring adequate regeneration of commercial tree species after harvesting. Much less effort has been directed towards developing methods that benefit the re-establishment of all forest biodiversity. The concept of ‘forest influence’ relates the probability of species re-establishment to the...

  16. Estimating animal biodiversity across taxa in tropical forests using shape-based waveform lidar metrics and Landsat image time series

    Science.gov (United States)

    Muss, J. D.; Aguilar-Amuchastegui, N.; Henebry, G. M.

    2012-12-01

    Studies have shown that forest structural heterogeneity is a key variable for estimating the diversity, richness, and community structure of forest species such as birds, butterflies, and dung beetles. These relationships are especially relevant in tropical forests when assessing the impacts of forest management plans on indicator groups and species. Typically, forest structure and biodiversity are evaluated using field surveys, which are expensive and spatially limited. An alternative is to use the growing archive of imagery to assess the impacts that disturbances (such as those caused by selective logging) have on habitats and biodiversity. But it can be difficult to capture subtle differences in the three-dimensional (3D) forest structure at the landscape scale that are important for modeling these relationships. We use a unique confluence of active and passive optical sensor data, field surveys of biodiversity, and stand management data to link metrics of spatial and spatio-temporal heterogeneity with key indicators of sustainable forest management. Field sites were selected from tropical forest stands along the Atlantic Slope of Costa Rica for which the management history was known and in which biodiversity surveys were conducted. The vertical dimension of forest structure was assessed by applying two shape-based metrics, the centroid (C) and radius of gyration (RG), to full waveform lidar data collected by the LVIS platform over central Costa Rica in 2005. We developed a map of the vertical structure of the forest by implementing a recursive function that used C and RG to identify major segments of each waveform. Differences in 3D structure were related to estimates of animal biodiversity, size and type of disturbance, and time since disturbance—critical measurements for achieving verifiable sustainable management and conservation of biodiversity in tropical forests. Moreover, the relationships found between 3D structure and biodiversity suggests that it

  17. Biodiversity assessment (rodents and avifauna) of five forest ...

    African Journals Online (AJOL)

    It is recommended that the reserves be zoned into smaller management areas to enable more efficient management, through initiation of reforestation programmes, anti-poaching patrols, research, and long-term monitoring. There is the need for intensive education of the local inhabitants on wildlife conservation awareness.

  18. Long-term protection effects of National Reserve to forest vegetation in 4 decades: biodiversity change analysis of major forest types in Changbai Mountain Nature Reserve, China.

    Science.gov (United States)

    Bai, Fan; Sang, WeiGuo; Li, GuangQi; Liu, RuiGang; Chen, LingZhi; Wang, Kun

    2008-10-01

    The Changbai Mountain Nature Reserve (CNR) was established in 1960 to protect the virgin Korean pine mixed hardwood forest, a typical temperate forest of northeast China. We conducted systematic studies of vascular diversity patterns on the north slope of the CNR mountainside forests (800-1700 m a.s.l.) in 1963 and 2006 respectively. The aim of this comparison is to assess the long-term effects of the protection on plant biodiversity of CNR during the interval 43 years. The research was carried out in three types of forests: mixed coniferous and broad-leaved forest (MCBF), mixed coniferous forest (MCF), and sub-alpine coniferous forest (SCF), characterized by different dominant species. The alpha diversity indicted by species richness and the Shannon-Wiener index were found different in the same elevations and forest types during the 43-year interval. The floral composition and the diversity of vascular species were generally similar along altitudinal gradients before and after the 43-year interval, but some substantial changes were evident with the altitude gradient. In the tree layers, the dominant species in 2006 were similar to those of 1963, though diversity declined with altitude. The indices in the three forest types did not differ significantly between 1963 and 2006, and these values even increased in the MCBF and MCF from 1963 to 2006. However, originally dominant species, P. koraiensis for example, tended to decline, while the proportion of broad-leaved trees increased, and the species turnover in the succession layers trended to shift to higher altitudes. The diversity pattern of the under canopy fluctuated along the altitudinal gradient due to micro-environmental variations. Comparison of the alpha diversity in the three forests shows that the diversity of the shrub and herb layer decreased with time. During the process of survey, we also found some rare and medicinal species disappeared. Analysis indicates that the changes of the diversity pattern in

  19. Trends over time in tree and seedling phylogenetic diversity indicate regional differences in forest biodiversity change.

    Science.gov (United States)

    Potter, Kevin M; Woodall, Christopher W

    2012-03-01

    Changing climate conditions may impact the short-term ability of forest tree species to regenerate in many locations. In the longer term, tree species may be unable to persist in some locations while they become established in new places. Over both time frames, forest tree biodiversity may change in unexpected ways. Using repeated inventory measurements five years apart from more than 7000 forested plots in the eastern United States, we tested three hypotheses: phylogenetic diversity is substantially different from species richness as a measure of biodiversity; forest communities have undergone recent changes in phylogenetic diversity that differ by size class, region, and seed dispersal strategy; and these patterns are consistent with expected early effects of climate change. Specifically, the magnitude of diversity change across broad regions should be greater among seedlings than in trees, should be associated with latitude and elevation, and should be greater among species with high dispersal capacity. Our analyses demonstrated that phylogenetic diversity and species richness are decoupled at small and medium scales and are imperfectly associated at large scales. This suggests that it is appropriate to apply indicators of biodiversity change based on phylogenetic diversity, which account for evolutionary relationships among species and may better represent community functional diversity. Our results also detected broadscale patterns of forest biodiversity change that are consistent with expected early effects of climate change. First, the statistically significant increase over time in seedling diversity in the South suggests that conditions there have become more favorable for the reproduction and dispersal of a wider variety of species, whereas the significant decrease in northern seedling diversity indicates that northern conditions have become less favorable. Second, we found weak correlations between seedling diversity change and latitude in both zones

  20. Forests and drugs: coca-driven deforestation in tropical biodiversity hotspots.

    Science.gov (United States)

    Dávalos, Liliana M; Bejarano, Adriana C; Hall, Mark A; Correa, H Leonardo; Corthals, Angelique; Espejo, Oscar J

    2011-02-15

    Identifying drivers of deforestation in tropical biodiversity hotspots is critical to assess threats to particular ecosystems and species and proactively plan for conservation. We analyzed land cover change between 2002 and 2007 in the northern Andes, Chocó, and Amazon forests of Colombia, the largest producer of coca leaf for the global cocaine market, to quantify the impact of this illicit crop on forest dynamics, evaluate the effectiveness of protected areas in this context, and determine the effects of eradication on deforestation. Landscape-level analyses of forest conversion revealed that proximity to new coca plots and a greater proportion of an area planted with coca increased the probability of forest loss in southern Colombia, even after accounting for other covariates and spatial autocorrelation. We also showed that protected areas successfully reduced forest conversion in coca-growing regions. Neither eradication nor coca cultivation predicted deforestation rates across municipalities. Instead, the presence of new coca cultivation was an indicator of municipalities, where increasing population led to higher deforestation rates. We hypothesize that poor rural development underlies the relationship between population density and deforestation in coca-growing areas. Conservation in Colombia's vast forest frontier, which overlaps with its coca frontier, requires a mix of protected areas and strategic rural development to succeed.

  1. Deforestation and Forest Fragmentation in South Ecuador since the 1970s - Losing a Hotspot of Biodiversity.

    Science.gov (United States)

    Tapia-Armijos, María Fernanda; Homeier, Jürgen; Espinosa, Carlos Iván; Leuschner, Christoph; de la Cruz, Marcelino

    2015-01-01

    Deforestation and fragmentation are major components of global change; both are contributing to the rapid loss of tropical forest area with important implications for ecosystem functioning and biodiversity conservation. The forests of South Ecuador are a biological 'hotspot' due to their high diversity and endemism levels. We examined the deforestation and fragmentation patterns in this area of high conservation value using aerial photographs and Aster satellite scenes. The registered annual deforestation rates of 0.75% (1976-1989) and 2.86% (1989-2008) for two consecutive survey periods, the decreasing mean patch size and the increasing isolation of the forest fragments show that the area is under severe threat. Approximately 46% of South Ecuador's original forest cover had been converted by 2008 into pastures and other anthropogenic land cover types. We found that deforestation is more intense at lower elevations (premontane evergreen forest and shrubland) and that the deforestation front currently moves in upslope direction. Improved awareness of the spatial extent, dynamics and patterns of deforestation and forest fragmentation is urgently needed in biologically diverse areas like South Ecuador.

  2. Private forest owners motivations for adopting biodiversity-related protection programs.

    Science.gov (United States)

    Polomé, Philippe

    2016-12-01

    Since economic incentives are typically fairly low for many non-industrial private forest owners, it is of interest for public policy to examine whether other motives might play a role on adoption of Biodiversity-related Protection Programs. In a survey of non-industrial private forest owners, a number of current programs, that include biodiversity protection to some degree, are investigated: Prosilva, environmental associations, other programs of forest management. Across the survey, adoption amounts to 22% for all the programs jointly, and is shown to depend on economic, social and intrinsic motives, with significant crowding-out only between the economic and intrinsic motives, that is, intrinsic motives likely lessen the effectiveness of economic incentives. That does not occur with social motives; these results constitute a test of the "reputational crowding-out" theory of Bénabou and Tirole, (2006). Adoption of any program is strongly negatively correlated to the others. Nearly no respondent adopted the Natura 2000 program. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Biodiversity conservation values of fragmented communally reserved forests, managed by indigenous people, in a human-modified landscape in Borneo

    OpenAIRE

    Takeuchi, Yayoi; Soda, Ryoji; Diway, Bibian; Kuda, Tinjan ak.; Nakagawa, Michiko; Nagamasu, Hidetoshi; Nakashizuka, Tohru

    2017-01-01

    This study explored the conservation values of communally reserved forests (CRFs), which local indigenous communities deliberately preserve within their area of shifting cultivation. In the current landscape of rural Borneo, CRFs are the only option for conservation because other forested areas have already been logged or transformed into plantations. By analyzing their alpha and beta diversity, we investigated how these forests can contribute to restore regional biodiversity. Although CRFs w...

  4. Sound-mapping a coniferous forest-Perspectives for biodiversity monitoring and noise mitigation.

    Directory of Open Access Journals (Sweden)

    Anthony Turner

    Full Text Available Acoustic diversity indices have been proposed as low-cost biodiversity monitoring tools. The acoustic diversity of a soundscape can be indicative of the richness of an acoustic community and the structural/vegetation characteristics of a habitat. There is a need to apply these methods to landscapes that are ecologically and/or economically important. We investigate the relationship between the acoustic properties of a coniferous forest with stand-age and structure. We sampled a 73 point grid in part of the UK's largest man-made lowland coniferous plantation forest, covering a 320ha mosaic of different aged stands. Forest stands ranged from 0-85 years old providing an age-gradient. Short soundscape recordings were collected from each grid point on multiple mornings (between 6am-11am to capture the dawn chorus. We repeated the study during July/August in 2014 and again in 2015. Five acoustic indices were calculated for a total of 889 two minute samples. Moderate relationships between acoustic diversity with forest stand-age and vegetation characteristics (canopy height; canopy cover were observed. Ordinations suggest that as structural complexity and forest age increases, the higher frequency bands (4-10KHz become more represented in the soundscape. A strong linear relationship was observed between distance to the nearest road and the ratio of anthropogenic noise to biological sounds within the soundscape. Similar acoustic patterns were observed in both years, though acoustic diversity was generally lower in 2014, which was likely due to differences in wind conditions between years. Our results suggest that developing these relatively low-cost acoustic monitoring methods to inform adaptive management of production landscapes, may lead to improved biodiversity monitoring. The methods may also prove useful for modelling road noise, landscape planning and noise mitigation.

  5. Sound-mapping a coniferous forest-Perspectives for biodiversity monitoring and noise mitigation.

    Science.gov (United States)

    Turner, Anthony; Fischer, Michael; Tzanopoulos, Joseph

    2018-01-01

    Acoustic diversity indices have been proposed as low-cost biodiversity monitoring tools. The acoustic diversity of a soundscape can be indicative of the richness of an acoustic community and the structural/vegetation characteristics of a habitat. There is a need to apply these methods to landscapes that are ecologically and/or economically important. We investigate the relationship between the acoustic properties of a coniferous forest with stand-age and structure. We sampled a 73 point grid in part of the UK's largest man-made lowland coniferous plantation forest, covering a 320ha mosaic of different aged stands. Forest stands ranged from 0-85 years old providing an age-gradient. Short soundscape recordings were collected from each grid point on multiple mornings (between 6am-11am) to capture the dawn chorus. We repeated the study during July/August in 2014 and again in 2015. Five acoustic indices were calculated for a total of 889 two minute samples. Moderate relationships between acoustic diversity with forest stand-age and vegetation characteristics (canopy height; canopy cover) were observed. Ordinations suggest that as structural complexity and forest age increases, the higher frequency bands (4-10KHz) become more represented in the soundscape. A strong linear relationship was observed between distance to the nearest road and the ratio of anthropogenic noise to biological sounds within the soundscape. Similar acoustic patterns were observed in both years, though acoustic diversity was generally lower in 2014, which was likely due to differences in wind conditions between years. Our results suggest that developing these relatively low-cost acoustic monitoring methods to inform adaptive management of production landscapes, may lead to improved biodiversity monitoring. The methods may also prove useful for modelling road noise, landscape planning and noise mitigation.

  6. Introducing Intensively Managed Spruce Plantations in Swedish Forest Landscapes will Impair Biodiversity Decline

    Directory of Open Access Journals (Sweden)

    Lena Gustafsson

    2011-08-01

    Full Text Available Due to pressure to raise forest productivity in Sweden, there are proposals to apply more intensive forestry methods, but they could have potentially large effects on biodiversity. Here we report a compilation and evaluation of the extent and significance of such effects. We evaluated potential effects on biodiversity by introducing intensively fertilized Norway spruce plantations as a management option in Swedish forests with low conservation values on insects, vascular plants, lichens, bryophytes, and red-listed species. Due to a lack of specific studies addressing this question, we based the evaluation on a combination of available and appropriate empiric and anecdotic knowledge; literature data, and expert judgments largely available in species data bases. Our evaluations suggest that such forests will only harbor species that are common and widespread in conventionally managed stands and that species of conservation interest will be lacking, due to the low heterogeneity and light intensity of even-aged monocultures with dense canopies, short rotation times and low availability of coarse woody debris. Effects at the landscape scale are more difficult to evaluate, but will be dependent on the area utilized and the conservation value of sites used. We conclude that negative effects on biodiversity can be reduced if: (1 only land with the lowest conservational value is utilized; (2 plantations are spatially arranged to minimize fragmentation of the landscape; (3 the quality and quantity of key structural elements (e.g., coarse woody debris, old living trees and snags are maintained at the landscape level; and (4 management intensity is relaxed on other land. For effective implementation of these measures, legislative frameworks and policy instruments need to be adjusted and new models for planning and monitoring need to be developed.

  7. Biodiversity assessment in incomplete inventories: leaf litter ant communities in several types of Bornean rain forest.

    Directory of Open Access Journals (Sweden)

    Martin Pfeiffer

    Full Text Available Biodiversity assessment of tropical taxa is hampered by their tremendous richness, which leads to large numbers of singletons and incomplete inventories in survey studies. Species estimators can be used for assessment of alpha diversity, but calculation of beta diversity is hampered by pseudo-turnover of species in undersampled plots. To assess the impact of unseen species, we investigated different methods, including an unbiased estimator of Shannon beta diversity that was compared to biased calculations. We studied alpha and beta diversity of a diverse ground ant assemblage from the Southeast Asian island of Borneo in different types of tropical forest: diperocarp forest, alluvial forest, limestone forest and heath forests. Forests varied in plant composition, geology, flooding regimes and other environmental parameters. We tested whether forest types differed in species composition and if species turnover was a function of the distance between plots at different spatial scales. As pseudo-turnover may bias beta diversity we hypothesized a large effect of unseen species reducing beta diversity. We sampled 206 ant species (25% singletons from ten subfamilies and 55 genera. Diversity partitioning among the four forest types revealed that whereas alpha species richness and alpha Shannon diversity were significantly smaller than expected, beta-diversity for both measurements was significantly higher than expected by chance. This result was confirmed when we used the unbiased estimation of Shannon diversity: while alpha diversity was much higher, beta diversity differed only slightly from biased calculations. Beta diversity as measured with the Chao-Sørensen or Morisita-Horn Index correlated with distance between transects and between sample points, indicating a distance decay of similarity between communities. We conclude that habitat heterogeneity has a high influence on ant diversity and species turnover in tropical sites and that unseen species

  8. Relating landscape structure, environment and management to biodiversity indicators estimated from forest inventory data in Catalonia (NE Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Torras, O.; Martin-Queller, E.; Saura, S.

    2009-07-01

    There is an increasing need to develop efficient methods for characterising and monitoring forest biodiversity. A landscape scale approach and assessment can provide complementary and valuable information in this respect, by considering patterns and processes that operate at broad scales and influence different aspects of forest biodiversity. Here we analysed the relationships between six forest biodiversity indicators (related to the tree and shrub layers and estimated from a large set of field plots from the Third Spanish National Forest Inventory) and landscape structure, environmental and management variables at a 10 x 10 km scale in the region of Catalonia (NE Spain) through the variation partitioning method. The tree layer indicators were those most predictable from the set of explanatory variables considered, and up to 77.2 % of total variation was explained for tree species richness. Landscape variables were much more relevant to explain biodiversity patterns than environmental and spatial factors, and landscape composition outperformed the predictive capacity of configuration metrics. Management had a weak but positive effect on the tree layer indicators, while the amount of early successional forest was negatively associated to the tree layer indicators but positively to those of the shrub stratum. Our results highlight the need to (1) concentrate field sampling efforts in those indicators that are less predictable from the landscape scale, such as those related to rare species with a high conservation value, and to (2) incorporate landscape structure variables for forest biodiversity assessments in the Mediterranean, where a landscape management approach may be particularly suited to allow the adaptation of forest biodiversity to the ongoing landscape dynamics related to broad-scale processes such as rural land abandonment or climate change. (Author) 76 refs.

  9. Deforestation and fragmentation of natural forests in the upper Changhua watershed, Hainan, China: implications for biodiversity conservation.

    Science.gov (United States)

    Zhai, De-Li; Cannon, Charles H; Dai, Zhi-Cong; Zhang, Cui-Ping; Xu, Jian-Chu

    2015-01-01

    Hainan, the largest tropical island in China, belongs to the Indo-Burma biodiversity hotspot. The Changhua watershed is a center of endemism for plants and birds and the cradle of Hainan's main rivers. However, this area has experienced recent and ongoing deforestation and habitat fragmentation. To quantify habitat loss and fragmentation of natural forests, as well as the land-cover changes in the Changhua watershed, we analyzed Landsat images obtained in 1988, 1995, and 2005. Land-cover dynamics analysis showed that natural forests increased in area (97,909 to 104,023 ha) from 1988 to 1995 but decreased rapidly to 76,306 ha over the next decade. Rubber plantations increased steadily throughout the study period while pulp plantations rapidly expanded after 1995. Similar patterns of land cover change were observed in protected areas, indicating a lack of enforcement. Natural forests conversion to rubber and pulp plantations has a general negative effect on biodiversity, primarily through habitat fragmentation. The fragmentation analysis showed that natural forests area was reduced and patch number increased, while patch size and connectivity decreased. These land-cover changes threatened local biodiversity, especially island endemic species. Both natural forests losses and fragmentation should be stopped by strict enforcement to prevent further damage. Preserving the remaining natural forests and enforcing the status of protected areas should be a management priority to maximize the watershed's biodiversity conservation value.

  10. Plant taxonomy and biodiversity researches in Bangladesh: trends and opportunities

    Directory of Open Access Journals (Sweden)

    M Atiqur Rahman

    2014-06-01

    Full Text Available The progress, problems and prospects of biodiversity and plant taxonomic researches conducted in Bangladesh during the last two decades have been analyzed. The inventory of the flora, threatened taxa and family wise itemization in all groups of plants are progressing at a very slow rate. Only 11.6% of the estimated species (c.5000 were inventoried and only 6.2% of the threatened taxa were listed for conservation management. National Conservation Strategies could not be framed and implemented duly for environmental management. Results of the survey of floristic diversity, inventory of threatened taxa for Red Data Book and discovery of new taxa are discussed and up to date data are presented. DOI: http://dx.doi.org/10.3126/ije.v3i2.10645 International Journal of the Environment Vol.3(2 2014: 324-344

  11. Identifying future research directions for biodiversity, ecosystem services and sustainability : perspectives from early-career researchers

    NARCIS (Netherlands)

    Hossain, S.; Pogue, S.J.; Trenchard, L.; Oudenhoven, van A.P.E.; Washbourne, C-L.; Muiruri, E.W.; Tomczyk, A.M.; García-Llorente, M.; Hale, R.; Hevia, V.; Adams, T.; Tavallali, L.; De, Bell S.; Pye, M.; Resende, F.

    2017-01-01

    We aimed to identify priority research questions in the field of biodiversity, ecosystem services and sustainability (BESS), based on a workshop held during the NRG BESS Conference for Early Career Researchers on BESS, and to compare these to existing horizon scanning exercises. This work highlights

  12. Biofuel plantations on forested lands: double jeopardy for biodiversity and climate.

    Science.gov (United States)

    Danielsen, Finn; Beukema, Hendrien; Burgess, Neil D; Parish, Faizal; Brühl, Carsten A; Donald, Paul F; Murdiyarso, Daniel; Phalan, Ben; Reijnders, Lucas; Struebig, Matthew; Fitzherbert, Emily B

    2009-04-01

    The growing demand for biofuels is promoting the expansion of a number of agricultural commodities, including oil palm (Elaeis guineensis). Oil-palm plantations cover over 13 million ha, primarily in Southeast Asia, where they have directly or indirectly replaced tropical rainforest. We explored the impact of the spread of oil-palm plantations on greenhouse gas emission and biodiversity. We assessed changes in carbon stocks with changing land use and compared this with the amount of fossil-fuel carbon emission avoided through its replacement by biofuel carbon. We estimated it would take between 75 and 93 years for the carbon emissions saved through use of biofuel to compensate for the carbon lost through forest conversion, depending on how the forest was cleared. If the original habitat was peatland, carbon balance would take more than 600 years. Conversely, planting oil palms on degraded grassland would lead to a net removal of carbon within 10 years. These estimates have associated uncertainty, but their magnitude and relative proportions seem credible. We carried out a meta-analysis of published faunal studies that compared forest with oil palm. We found that plantations supported species-poor communities containing few forest species. Because no published data on flora were available, we present results from our sampling of plants in oil palm and forest plots in Indonesia. Although the species richness of pteridophytes was higher in plantations, they held few forest species. Trees, lianas, epiphytic orchids, and indigenous palms were wholly absent from oil-palm plantations. The majority of individual plants and animals in oil-palm plantations belonged to a small number of generalist species of low conservation concern. As countries strive to meet obligations to reduce carbon emissions under one international agreement (Kyoto Protocol), they may not only fail to meet their obligations under another (Convention on Biological Diversity) but may actually hasten

  13. Ecology of anopheline mosquitoes (Diptera: Culicidae) in the Central Atlantic Forest Biodiversity Corridor, southeastern Brazil.

    Science.gov (United States)

    Da Silva, Kleber S; Pinto, Israel De S; Leite, Gustavo R; Das Virgens, Thieres M; Dos Santos, Claudiney B; Falqueto, Aloísio

    2013-01-01

    Knowledge of the fauna composition of anopheline mosquitoes, their ecological aspects and behavior, and influence of climatic variables on their population dynamics can help in understanding the transmission of Plasmodium parasites and thus develop more efficient strategies for the control of malaria. In the Central Atlantic Forest Biodiversity Corridor, southeastern Brazil, foci of introduced malaria have been reported among people returning from the Amazon region, north Brazil. Our objective was to evaluate and compare the anopheline fauna from a preserved environment and an adjacent peridomiciliary modified environment at the Central Atlantic Forest Biodiversity Corridor. We collected anopheline mosquitoes on a monthly basis from June 2004 to May 2006 from both these environments to understand the ecological aspects and their association with the occurrence of malaria. We captured 5,491 anopheline mosquitoes belonging to two subgenera and 11 species and studied the correlations between anopheline mosquito species and climatic variables. We considered Anopheles darlingi (Root) as the principal malaria vector and Anopheles albitarsis s. l. (Arribalzaga) as the secondary vector.

  14. Acidic, neutral and alkaline forest ponds as a landscape element affecting the biodiversity of freshwater snails

    Science.gov (United States)

    Spyra, Aneta

    2017-10-01

    In recent years, the number of areas remaining under the influence of acidity has increased. At all levels of ecosystems, biodiversity decreases with acidification, due to the elimination of species that are most sensitive to low pH. Forest ponds belong to a specific group that varied in location, a huge amount of leaf litter, and isolation from other aquatic environments. They are crucial in the industrial landscape with well-developed industry and human activity. The aim was to investigate the relative importance of water chemistry in explaining snail assemblage compositions and species richness in forest ponds of contrasting pH. Patterns in gastropod communities were determined from an analysis in 26 forest ponds with multivariate gradient analysis. Ponds ranged in a base mean pH from 3.0 to 9.0. pH has been found to be an important factor influencing gastropod fauna. Neutral ponds support diverse communities, typical of small water bodies. In two acidic pond types, snail fauna was different. Among the species characteristic for acidic ponds (pH pH. Current knowledge of pH-associated changes in aquatic ecosystems is still incomplete because anthropogenic acidification is a recent phenomenon. It is extremely important in forest habitats, since they react more intensively to climatic factors and are often used in landscape management and planning.

  15. Habitat creation and biodiversity maintenance in mangrove forests: teredinid bivalves as ecosystem engineers

    Science.gov (United States)

    Michie, Laura; Taylor, Ben W.

    2014-01-01

    Substantial amounts of dead wood in the intertidal zone of mature mangrove forests are tunnelled by teredinid bivalves. When the tunnels are exposed, animals are able to use tunnels as refuges. In this study, the effect of teredinid tunnelling upon mangrove forest faunal diversity was investigated. Mangrove forests exposed to long emersion times had fewer teredinid tunnels in wood and wood not containing teredinid tunnels had very few species and abundance of animals. However, with a greater cross-sectional percentage surface area of teredinid tunnels, the numbers of species and abundance of animals was significantly higher. Temperatures within teredinid-attacked wood were significantly cooler compared with air temperatures, and animal abundance was greater in wood with cooler temperatures. Animals inside the tunnels within the wood may avoid desiccation by escaping the higher temperatures. Animals co-existing in teredinid tunnelled wood ranged from animals found in terrestrial ecosystems including centipedes, crickets and spiders, and animals found in subtidal marine ecosystems such as fish, octopods and polychaetes. There was also evidence of breeding within teredinid-attacked wood, as many juvenile individuals were found, and they may also benefit from the cooler wood temperatures. Teredinid tunnelled wood is a key low-tide refuge for cryptic animals, which would otherwise be exposed to fishes and birds, and higher external temperatures. This study provides evidence that teredinids are ecosystem engineers and also provides an example of a mechanism whereby mangrove forests support intertidal biodiversity and nurseries through the wood-boring activity of teredinids. PMID:25276505

  16. The likely impact of climate change on the biodiversity of Italian forests

    Directory of Open Access Journals (Sweden)

    Borghetti M

    2012-12-01

    Full Text Available Based on literature results and our expert evaluation, we report some likely impacts of climate change on the biodiversity of forest communities in Italy by the end of this century. In the Mediterranean region and on the Apennines: at low altitudes, vulnerability of Pinus sp. and Quercus ilex forests, with loss of intraspecific genetic variability; transition from Mediterranean closed-canopy macchia to scattered shrublands; risk of local extinction for coastal populations of mesic/relic hardwood species (e.g., Quercus robur, Carpinus betulus, Zelkova sicula, Fraxinus sp.; ’eastern’ relic species like Quercus troiana, Quercus frainetto, Quercus aegilops, and Q. gussonei in Sicily, and the peripheral low-altitude Fagus sylvatica populations, will be highly vulnerable; in the mid-altitude forest, vulnerability of most demanding species like Quercus cerris and Castanea sativa, possible immigration of Mediterranean species like Quercus ilex; in the montane forest, Fagus sylvatica and Abies alba will be less competitive with respect to more continental and drought-resistant tree species, and could loose genetic variability; relic species like Taxus baccata and Betula aetnensis may be at risk. In the alpine region: upward movement of timberline and changes in timberline communities, for instance Picea abies may be more competitive over Larix decidua, and fragmented species like Pinus cembra might become vulnerable. In general, we recognize the difficulty in separating the effects of climatic variables from those of other processes, like fires and land-use change.

  17. Multiple successional pathways in human-modified tropical landscapes: new insights from forest succession, forest fragmentation and landscape ecology research.

    Science.gov (United States)

    Arroyo-Rodríguez, Víctor; Melo, Felipe P L; Martínez-Ramos, Miguel; Bongers, Frans; Chazdon, Robin L; Meave, Jorge A; Norden, Natalia; Santos, Bráulio A; Leal, Inara R; Tabarelli, Marcelo

    2017-02-01

    Old-growth tropical forests are being extensively deforested and fragmented worldwide. Yet forest recovery through succession has led to an expansion of secondary forests in human-modified tropical landscapes (HMTLs). Secondary forests thus emerge as a potential repository for tropical biodiversity, and also as a source of essential ecosystem functions and services in HMTLs. Such critical roles are controversial, however, as they depend on successional, landscape and socio-economic dynamics, which can vary widely within and across landscapes and regions. Understanding the main drivers of successional pathways of disturbed tropical forests is critically needed for improving management, conservation, and restoration strategies. Here, we combine emerging knowledge from tropical forest succession, forest fragmentation and landscape ecology research to identify the main driving forces shaping successional pathways at different spatial scales. We also explore causal connections between land-use dynamics and the level of predictability of successional pathways, and examine potential implications of such connections to determine the importance of secondary forests for biodiversity conservation in HMTLs. We show that secondary succession (SS) in tropical landscapes is a multifactorial phenomenon affected by a myriad of forces operating at multiple spatio-temporal scales. SS is relatively fast and more predictable in recently modified landscapes and where well-preserved biodiversity-rich native forests are still present in the landscape. Yet the increasing variation in landscape spatial configuration and matrix heterogeneity in landscapes with intermediate levels of disturbance increases the uncertainty of successional pathways. In landscapes that have suffered extensive and intensive human disturbances, however, succession can be slow or arrested, with impoverished assemblages and reduced potential to deliver ecosystem functions and services. We conclude that: (i

  18. Integrating movement ecology with biodiversity research-exploring new avenues to address spatiotemporal biodiversity dynamics

    NARCIS (Netherlands)

    Jeltsch, F.; Bonte, D.; Pe'er, G.; Reineking, B.; Leimgruber, P.; Balkenhol, N.; Schröder, B.; Buchmann, C.M.; Mueller, T.; Blaum, N.; Zurell, D.; Böhning-Gaese, K.; Wiegand, T.; Eccard, J.A.; Hofer, H.; Reeg, J.; Eggers, U.; Bauer, S.

    2013-01-01

    Movement of organisms is one of the key mechanisms shaping biodiversity, e.g. the distribution of genes, individuals and species in space and time. Recent technological and conceptual advances have improved our ability to assess the causes and consequences of individual movement, and led to the

  19. Reconciling Biodiversity Conservation and Timber Production in Mixed Uneven-Aged Mountain Forests: Identification of Ecological Intensification Pathways.

    Science.gov (United States)

    Lafond, Valentine; Cordonnier, Thomas; Courbaud, Benoît

    2015-11-01

    Mixed uneven-aged forests are considered favorable to the provision of multiple ecosystem services and to the conciliation of timber production and biodiversity conservation. However, some forest managers now plan to increase the intensity of thinning and harvesting operations in these forests. Retention measures or gap creation are considered to compensate potential negative impacts on biodiversity. Our objectives were to assess the effect of these management practices on timber production and biodiversity conservation and identify potential compensating effects between these practices, using the concept of ecological intensification as a framework. We performed a simulation study coupling Samsara2, a simulation model designed for spruce-fir uneven-aged mountain forests, an uneven-aged silviculture algorithm, and biodiversity models. We analyzed the effect of parameters related to uneven-aged management practices on timber production, biodiversity, and sustainability indicators. Our study confirmed that the indicators responded differently to management practices, leading to trade-offs situations. Increasing management intensity had negative impacts on several biodiversity indicators, which could be partly compensated by the positive effect of retention measures targeting large trees, non-dominant species, and deadwood. The impact of gap creation was more mitigated, with a positive effect on the diversity of tree sizes and deadwood but a negative impact on the spruce-fir mixing balance and on the diversity of the understory layer. Through the analysis of compensating effects, we finally revealed the existence of possible ecological intensification pathways, i.e., the possibility to increase management intensity while maintaining biodiversity through the promotion of nature-based management principles (gap creation and retention measures).

  20. Forest Fragmentation in the Lower Amazon Floodplain: Implications for Biodiversity and Ecosystem Service Provision to Riverine Populations

    Directory of Open Access Journals (Sweden)

    Vivian Renó

    2016-10-01

    Full Text Available This article analyzes the process of forest fragmentation of a floodplain landscape of the Lower Amazon over a 30-year period and its implications for the biodiversity and the provision of ecosystem services to the riverine population. To this end, we created a multi-temporal forest cover map based on Landsat images, and then analyzed the fragmentation dynamics through landscape metrics. From the analyses of the landscape and bibliographic information, we made inferences regarding the potential impacts of fragmentation on the biodiversity of trees, birds, mammals and insects. Subsequently, we used data on the local populations’ environmental perception to assess whether the inferred impacts on biodiversity are perceived by these populations and whether the ecosystem services related to the biodiversity of the addressed groups are compromised. The results show a 70% reduction of the forest habitat as well as important changes in the landscape structure that constitute a high degree of forest fragmentation. The perceived landscape alterations indicate that there is great potential for compromise of the biodiversity of trees, birds, mammals and insects. The field interviews corroborate the inferred impacts on biodiversity and indicate that the ecosystem services of the local communities have been compromised. More than 95% of the communities report a decreased variety and/or abundance of animal and plant species, 46% report a decrease in agricultural productivity, and 19% confirm a higher incidence of pests during the last 30 years. The present study provides evidence of an accelerated process of degradation of the floodplain forests of the Lower Amazon and indicate substantial compromise of the ecosystem services provision to the riverine population in recent decades, including reductions of food resources (animals and plants, fire wood, raw material and medicine, as well as lower agricultural productivity due to probable lack of pollination

  1. European Mixed Forests: Definition and research perspectives

    NARCIS (Netherlands)

    Bravo-Oviedo, A.; Pretzsch, H.; Ammer, C.; Andenmatten, E.; Barbati, A.; Barreiro, S.; Brang, P.; Bravo, F.; Coll, L.; Corona, P.; Ouden, den J.

    2014-01-01

    Aim of study: We aim at (i) developing a reference definition of mixed forests in order to harmonize comparative research in mixed forests and (ii) briefly review the research perspectives in mixed forests. Area of study: The definition is developed in Europe but can be tested worldwide. Material

  2. Interaction between forest biodiversity and people's use of forest resources in Roviana, Solomon Islands: implications for biocultural conservation under socioeconomic changes.

    Science.gov (United States)

    Furusawa, Takuro; Sirikolo, Myknee Qusa; Sasaoka, Masatoshi; Ohtsuka, Ryutaro

    2014-01-27

    In Solomon Islands, forests have provided people with ecological services while being affected by human use and protection. This study used a quantitative ethnobotanical analysis to explore the society-forest interaction and its transformation in Roviana, Solomon Islands. We compared local plant and land uses between a rural village and urbanized village. Special attention was paid to how local people depend on biodiversity and how traditional human modifications of forest contribute to biodiversity conservation. After defining locally recognized land-use classes, vegetation surveys were conducted in seven forest classes. For detailed observations of daily plant uses, 15 and 17 households were randomly selected in the rural and urban villages, respectively. We quantitatively documented the plant species that were used as food, medicine, building materials, and tools. The vegetation survey revealed that each local forest class represented a different vegetative community with relatively low similarity between communities. Although commercial logging operations and agriculture were both prohibited in the customary nature reserve, local people were allowed to cut down trees for their personal use and to take several types of non-timber forest products. Useful trees were found at high frequencies in the barrier island's primary forest (68.4%) and the main island's reserve (68.3%). Various useful tree species were found only in the reserve forest and seldom available in the urban village. In the rural village, customary governance and control over the use of forest resources by the local people still functioned. Human modifications of the forest created unique vegetation communities, thus increasing biodiversity overall. Each type of forest had different species that varied in their levels of importance to the local subsistence lifestyle, and the villagers' behaviors, such as respect for forest reserves and the semidomestication of some species, contributed to

  3. Maintenance of forest biodiversity in a post-Soviet governance model: perceptions by local actors in Lithuania.

    Science.gov (United States)

    Lazdinis, Marius; Angelstam, Per; Lazdinis, Imantas

    2007-07-01

    Successful biodiversity conservation does not depend on ecologic knowledge alone. Good conservation policies and policy implementation tools are equally important. Moreover, the knowledge, skills, and attitudes of local actors, directly in charge of operations in the field, are a key to successful policy implementation. The connections between policy objectives and their implementation as well as the involvement of local actors' efforts in implementing policy objectives largely depend on the governance model in use. This article assesses the knowledge of local actors in relation to the biodiversity conservation objectives and tools in Lithuanian forest management. As a main framework for this study, the needs assessment approach was applied. The study used both in-depth open-ended interviews and follow-up telephone interviews. Two state forest enterprises in Lithuania were selected as the study sites. The findings indicate that policy objectives in the field of forest biodiversity conservation and the related tools are well known but not well understood by those in charge of forest biodiversity policy implementation. To improve the situation, a transition toward adaptive learning and participatory governance as a means of facilitating conservation efforts is proposed.

  4. Empirical Accounting of Adaptation to Environmental Change: Organizational Competencies and Biodiversity in Finnish Forest Management

    Directory of Open Access Journals (Sweden)

    Eeva Primmer

    2009-12-01

    Full Text Available Integration of biodiversity conservation into economic utilization of natural resources has become a central response to the challenges of sustainable development. However, the resources and competencies required to implement such an integrated strategy at the level of the individual, the organization, and the sector are not known. To address this knowledge gap, we have developed an approach to analyze responses of organizations to environmental change and evolving social demands for biodiversity conservation. We analyze the scale, scope, and distribution of the resources and competencies that support the delineation of ecologically significant habitats in intensively managed nonindustrial private forests in Finland, an important international actor in the sector. Based on a national survey of 311 foresters working in public agencies, private firms, and cooperative organizations, we investigate the division of labor in the sector and the patterns of investment in human capital, organizational resources, and information networks that support delineation. We find that communicating frequently with the actors who are directly engaged in field operations is consistently the most productive resource in conserving habitats. Our analysis identifies differences in competencies among different types of organizations, as well as distinct roles for public and private-sector organizations. Beyond identification of differences in conservation behavior and competencies among organizations, our analysis points to substantial uniformity in the sector. We attribute similarities in patterns of investment in conservation resources to historically structured central coordination mechanisms within the sector that include education, training, and broadly shared professional norms. These institutional structures and the resulting uniformity can be potential impediments to radical innovation. Our approach to analyzing adaptation to environmental change highlights the

  5. Re-introducing environmental change drivers in biodiversity-ecosystem functioning research

    Science.gov (United States)

    De Laender, Frederik; Rohr, Jason R.; Ashauer, Roman; Baird, Donald J.; Berger, Uta; Eisenhauer, Nico; Grimm, Volker; Hommen, Udo; Maltby, Lorraine; Meliàn, Carlos J.; Pomati, Francesco; Roessink, Ivo; Radchuk, Viktoriia; Van den Brink, Paul J.

    2016-01-01

    For the past 20 years, research on biodiversity and ecosystem functioning (B-EF) has only implicitly considered the underlying role of environmental change. We illustrate that explicitly re-introducing environmental change drivers in B-EF research is needed to predict the functioning of ecosystems facing changes in biodiversity. Next, we show how this reintroduction improves experimental control over community composition and structure, which helps to obtain mechanistic insight about how multiple aspects of biodiversity relate to function, and how biodiversity and function relate in food-webs. We also highlight challenges for the proposed re-introduction, and suggest analyses and experiments to better understand how random biodiversity changes, as studied by classic approaches in B-EF research, contribute to the shifts in function that follow environmental change. PMID:27742415

  6. Characterization of forest biodiversity in Western Amazon using CAO-VSWIR imaging spectroscopy

    Science.gov (United States)

    Féret, J.; Asner, G. P.

    2012-12-01

    Mapping canopy species richness is a key to the study and conservation of biological diversity in tropical forests, but to date, no reliable methods exist for operational biodiversity mapping of tropical regions. Airborne imaging spectroscopy has proven potential for the discrimination of canopy tree species, as a combination of high spectral and spatial resolution allows measurement of subtle spectral variations among individual tree crowns, corresponding to the chemical properties of the leaves in different species. We developed a method to estimate the Shannon diversity index, a popular biodiversity indicator, of a forest canopy from airborne spectral data by building upon the Spectral Variation Hypothesis, which relates biological diversity to spectral variability. We collected and analyzed hyperspectral data acquired by the Carnegie Airborne Observatory (CAO) Airborne Taxonomic Mapping System (AToMS) over the Los Amigos Conservation Concession in the Peruvian Amazon. The data have a spatial resolution of 2.0 m and 217 bands evenly spaced between 380 nm and 2510 nm. The method relies on a k-means clustering of a subset of pixels randomly selected from a site, each cluster serving as a proxy for different species. Each pixel in the image is then assigned to the nearest 'proxy-species', the Shannon index is computed for a given area, i.e. 1 ha, and the process is repeated several times to obtain the average estimated Shannon index. To test our approach, we applied the method to two types of data acquired by CAO AToMS. The first was an artificial gradient of biological diversity generated using pixels corresponding to species identified during a field campaign. This artificial gradient allowed total control on the number of species (ranging from 1 to 36 species per ha), and accurate quantification of the results. The spectral diversity index mapped using our method showed a strong correlation with the actual Shannon diversity index (R^2=0.81). The second dataset

  7. Habitat creation and biodiversity maintenance in mangrove forests: teredinid bivalves as ecosystem engineers

    Directory of Open Access Journals (Sweden)

    Ian W. Hendy

    2014-09-01

    Full Text Available Substantial amounts of dead wood in the intertidal zone of mature mangrove forests are tunnelled by teredinid bivalves. When the tunnels are exposed, animals are able to use tunnels as refuges. In this study, the effect of teredinid tunnelling upon mangrove forest faunal diversity was investigated. Mangrove forests exposed to long emersion times had fewer teredinid tunnels in wood and wood not containing teredinid tunnels had very few species and abundance of animals. However, with a greater cross-sectional percentage surface area of teredinid tunnels, the numbers of species and abundance of animals was significantly higher. Temperatures within teredinid-attacked wood were significantly cooler compared with air temperatures, and animal abundance was greater in wood with cooler temperatures. Animals inside the tunnels within the wood may avoid desiccation by escaping the higher temperatures. Animals co-existing in teredinid tunnelled wood ranged from animals found in terrestrial ecosystems including centipedes, crickets and spiders, and animals found in subtidal marine ecosystems such as fish, octopods and polychaetes. There was also evidence of breeding within teredinid-attacked wood, as many juvenile individuals were found, and they may also benefit from the cooler wood temperatures. Teredinid tunnelled wood is a key low-tide refuge for cryptic animals, which would otherwise be exposed to fishes and birds, and higher external temperatures. This study provides evidence that teredinids are ecosystem engineers and also provides an example of a mechanism whereby mangrove forests support intertidal biodiversity and nurseries through the wood-boring activity of teredinids.

  8. Systematic temporal patterns in the relationship between housing development and forest bird biodiversity

    Science.gov (United States)

    Anna M. Pidgeon; Curtis H. Flather; Volker C. Radeloff; Christopher A. Lepczyk; Nicholas S. Keuler; Eric M. Wood; Susan I. Stewart; Roger B. Hammer

    2014-01-01

    As people encroach increasingly on natural areas, one question is how this affects avian biodiversity. The answer to this is partly scale-dependent. At broad scales, human populations and biodiversity concentrate in the same areas and are positively associated, but at local scales people and biodiversity are negatively associated with biodiversity. We investigated...

  9. The relationships of forest biodiversity and rattan jernang (Deamonorops draco sustainable harvesting by Anak Dalam tribe in Jambi, Sumatra

    Directory of Open Access Journals (Sweden)

    ANDRIO ADIWIBOWO

    Full Text Available Adiwibowo A, Sulasmi IS. 2012. Relationships of forest biodiversity and rattan jernang (Deamonorops draco sustainable harvesting by Anak Dalam tribe in Jambi, Sumatra. Biodiversitas 13: 00-00. Conservation of tropical trees can be achieved if supported by the sustainable use of forest by community live nearby through harvesting of non timber woods, for instance rattan. Furthermore, rattan jernang individuals and trees have significant associations. Therefore, objective of this paper is to investigate the utilization of rattan jernang (Deamonorops draco Wild related to the forest tree biodiversity by Anak Dalam tribe in several villages in Jambi, Sumatra. The study has identified that populations of Deamonorops draco were varied among villages, ranged from 40 to 71 clumps in the forests and up to 500 clumps in plantations. Moreover, 73 individual trees consisted of 32 species were identified as rattan host and conserved by the community. Dialium platyespalyum. Quercus elmeri, and Adinandra dumosa were rattan host trees with the highest populations. Meanwhile, a biodiversity of non-host trees consisted of 30 individual trees from 16 species. Interviews revealed that traditional harvesters have acknowledged that trees have significant important ecological roles for the rattan livelihood and therefore it is very important to conserve the forests for the sustainability of harvest in the future. Furthermore, to secure the availability of rattan, the traditional harvesters had started rattan plantation.

  10. The Freshwater Information Platform - an online network supporting freshwater biodiversity research and policy

    Science.gov (United States)

    Schmidt-Kloiber, Astrid; De Wever, Aaike; Bremerich, Vanessa; Strackbein, Jörg; Hering, Daniel; Jähnig, Sonja; Kiesel, Jens; Martens, Koen; Tockner, Klement

    2017-04-01

    Species distribution data is crucial for improving our understanding of biodiversity and its threats. This is especially the case for freshwater environments, which are heavily affected by the global biodiversity crisis. Currently, a huge body of freshwater biodiversity data is often difficult to access, because systematic data publishing practices have not yet been adopted by the freshwater research community. The Freshwater Information Platform (FIP; www.freshwaterplatform.eu) - initiated through the BioFresh project - aims at pooling freshwater related research information from a variety of projects and initiatives to make it easily accessible for scientists, water managers and conservationists as well as the interested public. It consists of several major components, three of which we want to specifically address: (1) The Freshwater Biodiversity Data Portal aims at mobilising freshwater biodiversity data, making them online available Datasets in the portal are described and documented in the (2) Freshwater Metadatabase and published as open access articles in the Freshwater Metadata Journal. The use of collected datasets for large-scale analyses and models is demonstrated in the (3) Global Freshwater Biodiversity Atlas that publishes interactive online maps featuring research results on freshwater biodiversity, resources, threats and conservation priorities. Here we present the main components of the FIP as tools to streamline open access freshwater data publication arguing this will improve the capacity to protect and manage freshwater biodiversity in the face of global change.

  11. Biodiversity conservation values of fragmented communally reserved forests, managed by indigenous people, in a human-modified landscape in Borneo.

    Directory of Open Access Journals (Sweden)

    Yayoi Takeuchi

    Full Text Available This study explored the conservation values of communally reserved forests (CRFs, which local indigenous communities deliberately preserve within their area of shifting cultivation. In the current landscape of rural Borneo, CRFs are the only option for conservation because other forested areas have already been logged or transformed into plantations. By analyzing their alpha and beta diversity, we investigated how these forests can contribute to restore regional biodiversity. Although CRFs were fragmented and some had been disturbed in the past, their tree species diversity was high and equivalent to that of primary forests. The species composition of intact forests and forests disturbed in the past did not differ clearly, which indicates that past logging was not intensive. All CRFs contained unique and endangered species, which are on the IUCN Red List, Sarawak protected plants, or both. On the other hand, the forest size structure differed between disturbed and intact CRFs, with the disturbed CRFs consisting of relatively smaller trees. Although the beta diversity among CRFs was also high, we found a high contribution of species replacement (turnover, but not of richness difference, in the total beta diversity. This suggests that all CRFs have a conservation value for restoring the overall regional biodiversity. Therefore, for maintaining the regional species diversity and endangered species, it would be suitable to design a conservation target into all CRFs.

  12. Biodiversity conservation values of fragmented communally reserved forests, managed by indigenous people, in a human-modified landscape in Borneo.

    Science.gov (United States)

    Takeuchi, Yayoi; Soda, Ryoji; Diway, Bibian; Kuda, Tinjan Ak; Nakagawa, Michiko; Nagamasu, Hidetoshi; Nakashizuka, Tohru

    2017-01-01

    This study explored the conservation values of communally reserved forests (CRFs), which local indigenous communities deliberately preserve within their area of shifting cultivation. In the current landscape of rural Borneo, CRFs are the only option for conservation because other forested areas have already been logged or transformed into plantations. By analyzing their alpha and beta diversity, we investigated how these forests can contribute to restore regional biodiversity. Although CRFs were fragmented and some had been disturbed in the past, their tree species diversity was high and equivalent to that of primary forests. The species composition of intact forests and forests disturbed in the past did not differ clearly, which indicates that past logging was not intensive. All CRFs contained unique and endangered species, which are on the IUCN Red List, Sarawak protected plants, or both. On the other hand, the forest size structure differed between disturbed and intact CRFs, with the disturbed CRFs consisting of relatively smaller trees. Although the beta diversity among CRFs was also high, we found a high contribution of species replacement (turnover), but not of richness difference, in the total beta diversity. This suggests that all CRFs have a conservation value for restoring the overall regional biodiversity. Therefore, for maintaining the regional species diversity and endangered species, it would be suitable to design a conservation target into all CRFs.

  13. Assessment and monitoring of long-term forest cover changes (1920-2013) in Western Ghats biodiversity hotspot

    Science.gov (United States)

    Reddy, C. Sudhakar; Jha, C. S.; Dadhwal, V. K.

    2016-02-01

    Western Ghats are considered as one of the global biodiversity hotspots. There is an information gap on conservation status of the biodiversity hotspots. This study has quantified estimates of deforestation in the Western Ghats over a period of past nine decades. The classified forest cover maps for 1920, 1975, 1985, 1995, 2005 and 2013 indicates 95,446 (73.1%), 63,123 (48.4%), 62,286 (47.7%), 61,551 (47.2%), 61,511 (47.1%) and 61,511 km2 (47.1%) of the forest area, respectively. The rates of deforestation have been analyzed in different time phases, i.e., 1920-1975, 1975-1985, 1985-1995, 1995-2005 and 2005-2013. The grid cells of 1 km2 have been generated for time series analysis and describing spatial changes in forests. The net rate of deforestation was found to be 0.75 during 1920-1975, 0.13 during 1975-1985, 0.12 during 1985-1995 and 0.01 during 1995-2005. Overall forest loss in Western Ghats was estimated as 33,579 km2 (35.3% of the total forest) from 1920's to 2013. Land use change analysis indicates highest transformation of forest to plantations, followed by agriculture and degradation to scrub. The dominant forest type is tropical semi-evergreen which comprises 21,678 km2 (35.2%) of the total forest area of Western Ghats, followed by wet evergreen forest (30.6%), moist deciduous forest (24.8%) and dry deciduous forest (8.1%) in 2013. Even though it has the highest population density among the hotspots, there is no quantifiable net rate of deforestation from 2005 to 2013 which indicates increased measures of conservation.

  14. Biodiversity of woody species in large-leaved lime sits in Noshahr forests (Iran

    Directory of Open Access Journals (Sweden)

    SHEYKHOLESLAMI ALI

    2015-04-01

    Full Text Available Species diversity is one of the most important indices used for evaluating the sustainability of forest. This study aims to characterize the large-leaved lime stand and to identify and compare the tree species diversity in the study area. In order to study biodiversity of woody species of large-leaved lime (Tilia platyphyllos Scop. in the forests of Noshahr of Mazandaran province in the north Iran, three experimental sites in three elevations have been selected. Moreover, each selected site covers three plots with an area of one hectare (100×100 meter. In totally, 9 plots have been chosen to study. We described the population structure of the tree species using stem density, basal area, diameter at breast height (DBH distribution, and diversity indices. Richness is defined as the number of species in the study area and abundance as the number of all individuals. To quantify the diversity of the plant species, the Shannon index and the Simpson index were considered. Duncan test was used to investigate the differences in the species richness, diversity and evenness indices among the different sampling plot areas. There were significant differences in the diversity index between sampling plot areas.

  15. Picturing Adoption of Below-Ground Biodiversity Technologies among Smallholder Farmers around Mabira Forest, Uganda

    Directory of Open Access Journals (Sweden)

    Isabirye, BE.

    2010-01-01

    Full Text Available Faced with a multitude of soil and water amendment technologies, farmers have the task of choosing the technologies to adopt for ensuring subsistence and income sustainability. In 2008, a study to characterize the farmers was conducted around Mabira Forest, to assess the adoption of soil technologies fostering Belowground Biodiversity (BGBD. Eighty-four households (38 participating and 46 non-participants from four villages were randomly selected and interviewed. Results showed that the adoption pattern was significantly driven by farm size, labor, household size, age and wealth status of the house. Also important were farm location, gender of household head, primary occupation, soil and water conservation technologies training, land tenure, and social capital. For the few current adopters, there was a perceived increase in labor demand but overall productivity was higher, partly resulting from increased crop productivity due to soil fertility enhancement and soil structure modification. It is therefore concluded that, around Mabira forest, BGBD technologies will be adopted by farming households with sufficient land, labor and social capital.

  16. Scientific research on animal biodiversity is systematically biased towards vertebrates and temperate regions.

    Science.gov (United States)

    Titley, Mark A; Snaddon, Jake L; Turner, Edgar C

    2017-01-01

    Over the last 25 years, research on biodiversity has expanded dramatically, fuelled by increasing threats to the natural world. However, the number of published studies is heavily weighted towards certain taxa, perhaps influencing conservation awareness of and funding for less-popular groups. Few studies have systematically quantified these biases, although information on this topic is important for informing future research and conservation priorities. We investigated: i) which animal taxa are being studied; ii) if any taxonomic biases are the same in temperate and tropical regions; iii) whether the taxon studied is named in the title of papers on biodiversity, perhaps reflecting a perception of what biodiversity is; iv) the geographical distribution of biodiversity research, compared with the distribution of biodiversity and threatened species; and v) the geographical distribution of authors' countries of origin. To do this, we used the search engine Web of Science to systematically sample a subset of the published literature with 'biodiversity' in the title. In total 526 research papers were screened-5% of all papers in Web of Science with biodiversity in the title. For each paper, details on taxonomic group, title phrasing, number of citations, study location, and author locations were recorded. Compared to the proportions of described species, we identified a considerable taxonomic weighting towards vertebrates and an under-representation of invertebrates (particularly arachnids and insects) in the published literature. This discrepancy is more pronounced in highly cited papers, and in tropical regions, with only 43% of biodiversity research in the tropics including invertebrates. Furthermore, while papers on vertebrate taxa typically did not specify the taxonomic group in the title, the converse was true for invertebrate papers. Biodiversity research is also biased geographically: studies are more frequently carried out in developed countries with larger

  17. Scientific research on animal biodiversity is systematically biased towards vertebrates and temperate regions.

    Directory of Open Access Journals (Sweden)

    Mark A Titley

    Full Text Available Over the last 25 years, research on biodiversity has expanded dramatically, fuelled by increasing threats to the natural world. However, the number of published studies is heavily weighted towards certain taxa, perhaps influencing conservation awareness of and funding for less-popular groups. Few studies have systematically quantified these biases, although information on this topic is important for informing future research and conservation priorities. We investigated: i which animal taxa are being studied; ii if any taxonomic biases are the same in temperate and tropical regions; iii whether the taxon studied is named in the title of papers on biodiversity, perhaps reflecting a perception of what biodiversity is; iv the geographical distribution of biodiversity research, compared with the distribution of biodiversity and threatened species; and v the geographical distribution of authors' countries of origin. To do this, we used the search engine Web of Science to systematically sample a subset of the published literature with 'biodiversity' in the title. In total 526 research papers were screened-5% of all papers in Web of Science with biodiversity in the title. For each paper, details on taxonomic group, title phrasing, number of citations, study location, and author locations were recorded. Compared to the proportions of described species, we identified a considerable taxonomic weighting towards vertebrates and an under-representation of invertebrates (particularly arachnids and insects in the published literature. This discrepancy is more pronounced in highly cited papers, and in tropical regions, with only 43% of biodiversity research in the tropics including invertebrates. Furthermore, while papers on vertebrate taxa typically did not specify the taxonomic group in the title, the converse was true for invertebrate papers. Biodiversity research is also biased geographically: studies are more frequently carried out in developed countries

  18. Reconciling timber extraction with biodiversity conservation in tropical forests using reduced-impact logging

    Science.gov (United States)

    Bicknell, Jake E; Struebig, Matthew J; Davies, Zoe G; Baraloto, Christopher

    2015-01-01

    Over 20% of the world's tropical forests have been selectively logged, and large expanses are allocated for future timber extraction. Reduced-impact logging (RIL) is being promoted as best practice forestry that increases sustainability and lowers CO2 emissions from logging, by reducing collateral damage associated with timber extraction. RIL is also expected to minimize the impacts of selective logging on biodiversity, although this is yet to be thoroughly tested. We undertake the most comprehensive study to date to investigate the biodiversity impacts of RIL across multiple taxonomic groups. We quantified birds, bats and large mammal assemblage structures, using a before-after control-impact (BACI) design across 20 sample sites over a 5-year period. Faunal surveys utilized point counts, mist nets and line transects and yielded >250 species. We examined assemblage responses to logging, as well as partitions of feeding guild and strata (understorey vs. canopy), and then tested for relationships with logging intensity to assess the primary determinants of community composition. Community analysis revealed little effect of RIL on overall assemblages, as structure and composition were similar before and after logging, and between logging and control sites. Variation in bird assemblages was explained by natural rates of change over time, and not logging intensity. However, when partitioned by feeding guild and strata, the frugivorous and canopy bird ensembles changed as a result of RIL, although the latter was also associated with change over time. Bats exhibited variable changes post-logging that were not related to logging, whereas large mammals showed no change at all. Indicator species analysis and correlations with logging intensities revealed that some species exhibited idiosyncratic responses to RIL, whilst abundance change of most others was associated with time. Synthesis and applications. Our study demonstrates the relatively benign effect of reduced

  19. Are ungulates in forests concerns or key species for conservation and biodiversity? Reply to Boulanger et al. (DOI: 10.1111/gcb.13899).

    Science.gov (United States)

    Fløjgaard, Camilla; Bruun, Hans Henrik; Hansen, Morten D D; Heilmann-Clausen, Jacob; Svenning, Jens-Christian; Ejrnaes, Rasmus

    2018-03-01

    Increasing species richness of light demanding species in forests may not be a conservation concern if we accept a macroecological and evolutionary baseline for biodiversity. Most of the current biodiversity in Europe has evolved in the Pleistocene or earlier, and in ecosystems markedly influenced by dynamic natural processes, including grazing. Many threatened species are associated with high-light forest environments such as forest glades and edges, as these have strongly declined at least partially due to the decline of large herbivores in European forests. Hence, moderate grazing in forests should be an ecological baseline and conservation target rather than a concern. © 2017 John Wiley & Sons Ltd.

  20. Directory of guidance documents relating to biodiversity and cultural knowledge research and prospecting

    Energy Technology Data Exchange (ETDEWEB)

    Churcher, T. [comp.] [Univ. of California, Berkeley, CA (United States). Dept. of Geography]|[Lawrence Berkeley National Lab., CA (United States)

    1997-06-01

    Biodiversity in both developing and developed countries has been accessed for a long time by local communities as well as by outside researchers and corporate prospectors. Such activities are carried out for various purposes. Sometimes plants, animals and habitats are merely described, other times the goal is to extract for profit. These activities have helped to advance knowledge and create awareness of how precious biodiversity is. These activities have also generated many products that contribute to the health and well-being of global consumers, but may not necessarily provide benefits to their original stewards. Research has also focused attention on particular features of biodiversity. Biodiversity has been conserved, both by local community traditions, and by more formal means, with varying degree of effectiveness. One recently proposed means is the Convention on Biological Diversity. That convention has been ratified by large number of countries and has stimulated global concern over this issue. It has provided a framework for conserving biodiversity. At the same time many local communities, NGOs and people`s organizations are advancing alternative ways to conserve biodiversity and cultural diversity. In many places, the conservation of biodiversity and the protection of cultural diversity are inescapably intertwined. Despite strong links between biodiversity and the land and the water management traditions of the 6000 linguistically distinct cultures, the Convention on Biological Diversity focuses on nation-state sovereignty over biodiversity. We believe that local communities should have greater say in whether and how biodiversity is studied, extracted and commercialized. We consider prior informed consent to be a necessary requirement of such explorations, as is equitable sharing of any benefits arising from them.

  1. Towards more equal footing in north-south biodiversity research: European-sub-Saharan African viewpoints

    OpenAIRE

    JC Habel H Eggermont S Gunter RK Mulwa M Rieckmann LP Koh S Niassy JWH Ferguson G Gebremicha

    2014-01-01

    Research collaboration between developed countries from the northern hemisphere and developing countries in the southern hemisphere is essential for the understanding and protection of the major proportion of biodiversity located in the tropics. Focusing on the case of sub-Saharan Africa, we here assess the real involvement of northern versus southern contributors, and caution against unequal academic benefit sharing arising from non-commercial biodiversity research that may ultimately hamper...

  2. Similar biodiversity of ectomycorrhizal fungi in set-aside plantations and ancient old-growth broadleaved forests.

    Science.gov (United States)

    Spake, Rebecca; van der Linde, Sietse; Newton, Adrian C; Suz, Laura M; Bidartondo, Martin I; Doncaster, C Patrick

    2016-02-01

    Setting aside overmature planted forests is currently seen as an option for preserving species associated with old-growth forests, such as those with dispersal limitation. Few data exist, however, on the utility of set-aside plantations for this purpose, or the value of this habitat type for biodiversity relative to old-growth semi-natural ecosystems. Here, we evaluate the contribution of forest type relative to habitat characteristics in determining species richness and composition in seven forest blocks, each containing an ancient old-growth stand (> 1000 yrs) paired with a set-aside even-aged planted stand (ca. 180 yrs). We investigated the functionally important yet relatively neglected ectomycorrhizal fungi (EMF), a group for which the importance of forest age has not been assessed in broadleaved forests. We found that forest type was not an important determinant of EMF species richness or composition, demonstrating that set-aside can be an effective option for conserving ancient EMF communities. Species richness of above-ground EMF fruiting bodies was principally related to the basal area of the stand (a correlate of canopy cover) and tree species diversity, whilst richness of below-ground ectomycorrhizae was driven only by tree diversity. Our results suggest that overmature planted forest stands, particularly those that are mixed-woods with high basal area, are an effective means to connect and expand ecological networks of ancient old-growth forests in historically deforested and fragmented landscapes for ectomycorrhizal fungi.

  3. Forest biodiversity and the delivery of ecosystem goods and services: translating science into policy

    Science.gov (United States)

    Ian Thompson; Kimiko Okabe; Jason Tylianakis; Pushpam Kumar; Eckehard G. Brockerhoff; Nancy Schellhorn; John A. Parrotta; Robert. Nasi

    2011-01-01

    Biodiversity is integral to almost all ecosystem processes, with some species playing key functional roles that are essential for maintaining the value of ecosystems to humans. However, many ecosystem services remain nonvalued, and decisionmakers rarely consider biodiversity in policy development, in part because the relationships between biodiversity and the provision...

  4. The integration of empirical, remote sensing and modelling approaches enhances insight in the role of biodiversity in climate change mitigation by tropical forests

    NARCIS (Netherlands)

    Sande, van der Masha T.; Poorter, Lourens; Balvanera, Patricia; Kooistra, Lammert; Thonicke, Kirsten; Boit, Alice; Dutrieux, Loic; Equihua, Julian; Gerard, France; Herold, Martin; Kolb, Melanie; Simões, Margareth; Peña-Claros, Marielos

    2017-01-01

    Tropical forests store and sequester high amounts of carbon and are the most diverse terrestrial ecosystem. A complete understanding of the relationship between biodiversity and carbon storage and sequestration across spatiotemporal scales relevant for climate change mitigation needs three

  5. European Mixed Forests: definition and research perspectives

    Directory of Open Access Journals (Sweden)

    Andres Bravo-Oviedo

    2014-12-01

    Full Text Available Aim of study: We aim at (i developing a reference definition of mixed forests in order to harmonize comparative research in mixed forests and (ii review the research perspectives in mixed forests.Area of study: The definition is developed in Europe but can be tested worldwide.Material and Methods: Review of existent definitions of mixed forests based and literature review encompassing dynamics, management and economic valuation of mixed forests.Main results: A mixed forest is defined as a forest unit, excluding linear formations, where at least two tree species coexist at any developmental stage, sharing common resources (light, water, and/or soil nutrients. The presence of each of the component species is normally quantified as a proportion of the number of stems or of basal area, although volume, biomass or canopy cover as well as proportions by occupied stand area may be used for specific objectives. A variety of structures and patterns of mixtures can occur, and the interactions between the component species and their relative proportions may change over time.The research perspectives identified are (i species interactions and responses to hazards, (ii the concept of maximum density in mixed forests, (iii conversion of monocultures to mixed-species forest and (iv economic valuation of ecosystem services provided by mixed forests.Research highlights: The definition is considered a high-level one which encompasses previous attempts to define mixed forests. Current fields of research indicate that gradient studies, experimental design approaches, and model simulations are key topics providing new research opportunities.Keywords: COST Action; EuMIXFOR; mixed-species forests; admixtures of species.

  6. The impacts of increasing drought on forest dynamics, structure, and biodiversity in the United States

    Science.gov (United States)

    James S. Clark; Louis Iverson; Christopher W. Woodall; Craig D. Allen; David M. Bell; Don C. Bragg; Anthony W. D' Amato; Frank W. Davis; Michelle H. Hersh; Ines Ibanez; Stephen T. Jackson; Stephen Matthews; Neil Pederson; Matthew Peters; Mark W. Schwartz; Kristen M. Waring; Niklaus E. Zimmermann

    2016-01-01

    We synthesize insights from current understanding of drought impacts at stand-to-biogeographic scales, including management options, and we identify challenges to be addressed with new research. Large stand-level shifts underway in western forests already are showing the importance of interactions involving drought, insects, and fire. Diebacks, changes in composition...

  7. Current research trends in mountain biodiversity in NW Europe

    Directory of Open Access Journals (Sweden)

    Väisänen, Risto A.

    1998-12-01

    Full Text Available Focusing on four themes in relation to biodiversity (vegetation science, keystone grazers, long-term studies and protected areas, a synthesis of current research in the mountain areas of Fennoscandia, Iceland and Scotland is presented. Recent relevant advances in vegetation science include classifications of mountain habitats which together with species distribution maps offer new possibilities for analysis. Generalisations emerging from comparisons of the ecology and ecophysiology of plants between different mountain areas are greatly needed. Further studies on the ecological impacts of keystone grazers are urgently required because of the alarming rate of degradation of mountain habitats. The topics highlighted from northern Fennoscandia include (i the effect of overgrazing by reindeer on the cover of foliose lichens and on the regeneration of mountain birch, (ii the ecological interactions between the autumnal moth and mountain birch, and (Hi the effect of rodents on vegetation. Long-term studies of slow processes to capture rare but important events are needed to better understand the functioning of mountain ecosystems. Examples of such studies are presented for (i the moss Racomitrium lanuginosum as an indicator of airborne nitrogen pollution, (ii research based on cyclic oscillations of vole numbers, and (Hi the application of breeding birds in environmental assessment. The conservation of appropriate areas is important for mountain biodiversity. Mountain habitats have been protected extensively in northern Europe. The evaluation of how representative the existing areas are and how to use them for research need international co-ordination.

    [fr] On présente une synthèse de la recherche actuelle dans les régions de montagne de la Scandinavie, l'Islande et l'Ecosse, centrée sur quatre sujets autour de la biodiversité (science de la végétation, herbivores principaux, études à long terme et zones protégées. Les r

  8. Biodiversity and Temporal Distribution of Immature Culicidae in the Atlantic Forest, Rio de Janeiro State, Brazil.

    Directory of Open Access Journals (Sweden)

    Jeronimo Alencar

    Full Text Available To increase the knowledge of biodiversity and identify larval habitats used by immature mosquitoes in the Atlantic Forest, we conducted a study in areas with various stages of preservation within the Guapiaçu Ecological Reserve in Cachoeiras de Macacu, Rio de Janeiro state. The Culicidae fauna were sampled during February, April, June, August, October, and December 2012; February, March, April, May, June, August, October, and December 2013; and January and March 2014. Immature mosquitoes were collected with dippers and suction tubes (mouth aspirators. Over the sampling period, 2697 larvae of 56 species were collected, some of which are recognized vectors of human diseases. The larval mosquito community found in artificial habitats, temporary ground water, and phytotelmata differed between sites, except for the mosquito fauna in bromeliads, which were almost 80% similar. Species segregation was more evident between larval habitats than between sites. Culex usquatus was the dominant species and colonized the highest number of larval habitats. The artificial larval habitats found in REGUA were colonized by a great diversity of species and high abundance as well, thus human artifacts left by the public in the area that collect water may promote an increase in mosquito populations. Among the species collected, some are known or suspected vectors of pathogens to humans and/or veterinary relevance, and their medical relevance is discussed.

  9. Biodiversity and Temporal Distribution of Immature Culicidae in the Atlantic Forest, Rio de Janeiro State, Brazil.

    Science.gov (United States)

    Alencar, Jeronimo; de Mello, Cecília Ferreira; Serra-Freire, Nicolau Maués; Guimarães, Anthony Érico; Gil-Santana, Hélcio R; Gleiser, Raquel M

    2016-01-01

    To increase the knowledge of biodiversity and identify larval habitats used by immature mosquitoes in the Atlantic Forest, we conducted a study in areas with various stages of preservation within the Guapiaçu Ecological Reserve in Cachoeiras de Macacu, Rio de Janeiro state. The Culicidae fauna were sampled during February, April, June, August, October, and December 2012; February, March, April, May, June, August, October, and December 2013; and January and March 2014. Immature mosquitoes were collected with dippers and suction tubes (mouth aspirators). Over the sampling period, 2697 larvae of 56 species were collected, some of which are recognized vectors of human diseases. The larval mosquito community found in artificial habitats, temporary ground water, and phytotelmata differed between sites, except for the mosquito fauna in bromeliads, which were almost 80% similar. Species segregation was more evident between larval habitats than between sites. Culex usquatus was the dominant species and colonized the highest number of larval habitats. The artificial larval habitats found in REGUA were colonized by a great diversity of species and high abundance as well, thus human artifacts left by the public in the area that collect water may promote an increase in mosquito populations. Among the species collected, some are known or suspected vectors of pathogens to humans and/or veterinary relevance, and their medical relevance is discussed.

  10. Biodiversity and Temporal Distribution of Immature Culicidae in the Atlantic Forest, Rio de Janeiro State, Brazil

    Science.gov (United States)

    de Mello, Cecília Ferreira; Guimarães, Anthony Érico; Gil-Santana, Hélcio R.; Gleiser, Raquel M.

    2016-01-01

    To increase the knowledge of biodiversity and identify larval habitats used by immature mosquitoes in the Atlantic Forest, we conducted a study in areas with various stages of preservation within the Guapiaçu Ecological Reserve in Cachoeiras de Macacu, Rio de Janeiro state. The Culicidae fauna were sampled during February, April, June, August, October, and December 2012; February, March, April, May, June, August, October, and December 2013; and January and March 2014. Immature mosquitoes were collected with dippers and suction tubes (mouth aspirators). Over the sampling period, 2697 larvae of 56 species were collected, some of which are recognized vectors of human diseases. The larval mosquito community found in artificial habitats, temporary ground water, and phytotelmata differed between sites, except for the mosquito fauna in bromeliads, which were almost 80% similar. Species segregation was more evident between larval habitats than between sites. Culex usquatus was the dominant species and colonized the highest number of larval habitats. The artificial larval habitats found in REGUA were colonized by a great diversity of species and high abundance as well, thus human artifacts left by the public in the area that collect water may promote an increase in mosquito populations. Among the species collected, some are known or suspected vectors of pathogens to humans and/or veterinary relevance, and their medical relevance is discussed. PMID:27404496

  11. The Multiple Impacts of Tropical Forest Fragmentation on Arthropod Biodiversity and on their Patterns of Interactions with Host Plants

    Science.gov (United States)

    Benítez-Malvido, Julieta; Dáttilo, Wesley; Martínez-Falcón, Ana Paola; Durán-Barrón, César; Valenzuela, Jorge; López, Sara; Lombera, Rafael

    2016-01-01

    Tropical rain forest fragmentation affects biotic interactions in distinct ways. Little is known, however, about how fragmentation affects animal trophic guilds and their patterns of interactions with host plants. In this study, we analyzed changes in biotic interactions in forest fragments by using a multitrophic approach. For this, we classified arthropods associated with Heliconia aurantiaca herbs into broad trophic guilds (omnivores, herbivores and predators) and assessed the topological structure of intrapopulation plant-arthropod networks in fragments and continuous forests. Habitat type influenced arthropod species abundance, diversity and composition with greater abundance in fragments but greater diversity in continuous forest. According to trophic guilds, coleopteran herbivores were more abundant in continuous forest and overall omnivores in fragments. Continuous forest showed a greater diversity of interactions than fragments. Only in fragments, however, did the arthropod community associated with H aurantiaca show a nested structure, suggesting novel and/or opportunistic host-arthropod associations. Plants, omnivores and predators contributed more to nestedness than herbivores. Therefore, Heliconia-arthropod network properties do not appear to be maintained in fragments mainly caused by the decrease of herbivores. Our study contributes to the understanding of the impact of fragmentation on the structure and dynamics of multitrophic arthropod communities associated with a particular plant species of the highly biodiverse tropical forests. Nevertheless, further replication of study sites is needed to strengthen the conclusion that forest fragmentation negatively affects arthropod assemblages. PMID:26731271

  12. The Multiple Impacts of Tropical Forest Fragmentation on Arthropod Biodiversity and on their Patterns of Interactions with Host Plants.

    Directory of Open Access Journals (Sweden)

    Julieta Benítez-Malvido

    Full Text Available Tropical rain forest fragmentation affects biotic interactions in distinct ways. Little is known, however, about how fragmentation affects animal trophic guilds and their patterns of interactions with host plants. In this study, we analyzed changes in biotic interactions in forest fragments by using a multitrophic approach. For this, we classified arthropods associated with Heliconia aurantiaca herbs into broad trophic guilds (omnivores, herbivores and predators and assessed the topological structure of intrapopulation plant-arthropod networks in fragments and continuous forests. Habitat type influenced arthropod species abundance, diversity and composition with greater abundance in fragments but greater diversity in continuous forest. According to trophic guilds, coleopteran herbivores were more abundant in continuous forest and overall omnivores in fragments. Continuous forest showed a greater diversity of interactions than fragments. Only in fragments, however, did the arthropod community associated with H aurantiaca show a nested structure, suggesting novel and/or opportunistic host-arthropod associations. Plants, omnivores and predators contributed more to nestedness than herbivores. Therefore, Heliconia-arthropod network properties do not appear to be maintained in fragments mainly caused by the decrease of herbivores. Our study contributes to the understanding of the impact of fragmentation on the structure and dynamics of multitrophic arthropod communities associated with a particular plant species of the highly biodiverse tropical forests. Nevertheless, further replication of study sites is needed to strengthen the conclusion that forest fragmentation negatively affects arthropod assemblages.

  13. Priorities for microbial biodiversity research: Summary and recommendations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    Microbial diversity is an unseen national as well as international resource that deserves greater attention. Too small to be seen no longer means too small to be studied or values. Microbial diversity encompasses the spectrum of microscopic organisms including bacteria, fungi, algae and protozoa. These organisms populate the soil, water and air that surround us and live in more unusual environments such as the boiling water of hydrothermal vents, deep ocean trenches and alkali lakes. This report summarizes a workshop on microbial biodiversity which was organized by the Center for Microbial Ecology at Michigan State University.

  14. A biodiversity hotspot losing its top predator: The challenge of jaguar conservation in the Atlantic Forest of South America.

    Science.gov (United States)

    Paviolo, Agustin; De Angelo, Carlos; Ferraz, Katia M P M B; Morato, Ronaldo G; Martinez Pardo, Julia; Srbek-Araujo, Ana C; Beisiegel, Beatriz de Mello; Lima, Fernando; Sana, Denis; Xavier da Silva, Marina; Velázquez, Myriam C; Cullen, Laury; Crawshaw, Peter; Jorge, María Luisa S P; Galetti, Pedro M; Di Bitetti, Mario S; de Paula, Rogerio Cunha; Eizirik, Eduardo; Aide, T Mitchell; Cruz, Paula; Perilli, Miriam L L; Souza, Andiara S M C; Quiroga, Verónica; Nakano, Eduardo; Ramírez Pinto, Fredy; Fernández, Sixto; Costa, Sebastian; Moraes, Edsel A; Azevedo, Fernando

    2016-11-16

    The jaguar is the top predator of the Atlantic Forest (AF), which is a highly threatened biodiversity hotspot that occurs in Brazil, Paraguay and Argentina. By combining data sets from 14 research groups across the region, we determine the population status of the jaguar and propose a spatial prioritization for conservation actions. About 85% of the jaguar's habitat in the AF has been lost and only 7% remains in good condition. Jaguars persist in around 2.8% of the region, and live in very low densities in most of the areas. The population of jaguars in the AF is probably lower than 300 individuals scattered in small sub-populations. We identified seven Jaguar Conservation Units (JCUs) and seven potential JCUs, and only three of these areas may have ≥50 individuals. A connectivity analysis shows that most of the JCUs are isolated. Habitat loss and fragmentation were the major causes for jaguar decline, but human induced mortality is the main threat for the remaining population. We classified areas according to their contribution to jaguar conservation and we recommend management actions for each of them. The methodology in this study could be used for conservation planning of other carnivore species.

  15. Structure and Evolution of Mediterranean Forest Research: A Science Mapping Approach.

    Science.gov (United States)

    Nardi, Pierfrancesco; Di Matteo, Giovanni; Palahi, Marc; Scarascia Mugnozza, Giuseppe

    2016-01-01

    This study aims at conducting the first science mapping analysis of the Mediterranean forest research in order to elucidate its research structure and evolution. We applied a science mapping approach based on co-term and citation analyses to a set of scientific publications retrieved from the Elsevier's Scopus database over the period 1980-2014. The Scopus search retrieved 2,698 research papers and reviews published by 159 peer-reviewed journals. The total number of publications was around 1% (N = 17) during the period 1980-1989 and they reached 3% (N = 69) in the time slice 1990-1994. Since 1995, the number of publications increased exponentially, thus reaching 55% (N = 1,476) during the period 2010-2014. Within the thirty-four years considered, the retrieved publications were published by 88 countries. Among them, Spain was the most productive country, publishing 44% (N = 1,178) of total publications followed by Italy (18%, N = 482) and France (12%, N = 336). These countries also host the ten most productive scientific institutions in terms of number of publications in Mediterranean forest subjects. Forest Ecology and Management and Annals of Forest Science were the most active journals in publishing research in Mediterranean forest. During the period 1980-1994, the research topics were poorly characterized, but they become better defined during the time slice 1995-1999. Since 2000s, the clusters become well defined by research topics. Current status of Mediterranean forest research (20092014) was represented by four clusters, in which different research topics such as biodiversity and conservation, land-use and degradation, climate change effects on ecophysiological responses and soil were identified. Basic research in Mediterranean forest ecosystems is mainly conducted by ecophysiological research. Applied research was mainly represented by land-use and degradation, biodiversity and conservation and fire research topics. The citation analyses revealed highly

  16. Structure and Evolution of Mediterranean Forest Research: A Science Mapping Approach.

    Directory of Open Access Journals (Sweden)

    Pierfrancesco Nardi

    Full Text Available This study aims at conducting the first science mapping analysis of the Mediterranean forest research in order to elucidate its research structure and evolution. We applied a science mapping approach based on co-term and citation analyses to a set of scientific publications retrieved from the Elsevier's Scopus database over the period 1980-2014. The Scopus search retrieved 2,698 research papers and reviews published by 159 peer-reviewed journals. The total number of publications was around 1% (N = 17 during the period 1980-1989 and they reached 3% (N = 69 in the time slice 1990-1994. Since 1995, the number of publications increased exponentially, thus reaching 55% (N = 1,476 during the period 2010-2014. Within the thirty-four years considered, the retrieved publications were published by 88 countries. Among them, Spain was the most productive country, publishing 44% (N = 1,178 of total publications followed by Italy (18%, N = 482 and France (12%, N = 336. These countries also host the ten most productive scientific institutions in terms of number of publications in Mediterranean forest subjects. Forest Ecology and Management and Annals of Forest Science were the most active journals in publishing research in Mediterranean forest. During the period 1980-1994, the research topics were poorly characterized, but they become better defined during the time slice 1995-1999. Since 2000s, the clusters become well defined by research topics. Current status of Mediterranean forest research (20092014 was represented by four clusters, in which different research topics such as biodiversity and conservation, land-use and degradation, climate change effects on ecophysiological responses and soil were identified. Basic research in Mediterranean forest ecosystems is mainly conducted by ecophysiological research. Applied research was mainly represented by land-use and degradation, biodiversity and conservation and fire research topics. The citation analyses

  17. Forest products research in IUFRO history and potential

    Science.gov (United States)

    Robert L. Youngs; John A. Youngquist

    1999-01-01

    When silviculture researchers in central Europe were gathering together to form IUFRO in 1892, forest products researchers were occupied with making useful forest products and conserving the forest resource through wise use. Forest products researchers did not become an active part of IUFRO until 50 years later. Research in forest products was stimulated by World War I...

  18. Global Forest Rights Action Research | IDRC - International ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    This project, led by the Centre for International Forestry Research (CIFOR), is part of a global advocacy initiative for community forest rights called the Partnership on Rights and Resources (PRR). The initiative strives to address poverty and marginalization in forest areas by working toward more secure tenure and access to ...

  19. Long-Term Impacts of Forest Ditching on Non-Aquatic Biodiversity: Conservation Perspectives for a Novel Ecosystem

    Science.gov (United States)

    Remm, Liina; Lõhmus, Piret; Leis, Mare; Lõhmus, Asko

    2013-01-01

    Artificial drainage (ditching) is widely used to increase timber yield in northern forests. When the drainage systems are maintained, their environmental impacts are likely to accumulate over time and along accompanying management, notably after logging when new forest develops on decayed peat. Our study provides the first comprehensive documentation of long-term ditching impacts on terrestrial and arboreal biodiversity by comparing natural alder swamps and second-generation drained forests that have evolved from such swamps in Estonia. We explored species composition of four potentially drainage-sensitive taxonomic groups (vascular plants, bryophytes, lichens, and snails), abundance of species of conservation concern, and their relationships with stand structure in two-ha plots representing four management types (ranging from old growth to clearcut). We found that drainage affected plot-scale species richness only weakly but it profoundly changed assemblage composition. Bryophytes and lichens were the taxonomic groups that were most sensitive both to drainage and timber-harvesting; in closed stands they responded to changed microhabitat structure, notably impoverished tree diversity and dead-wood supply. As a result, natural old-growth plots were the most species-rich and hosted several specific species of conservation concern. Because the most influential structural changes are slow, drainage impacts may be long hidden. The results also indicated that even very old drained stands do not provide quality habitats for old-growth species of drier forest types. However, drained forests hosted many threatened species that were less site type specific, including early-successional vascular plants and snails on clearcuts and retention cuts, and bryophytes and lichens of successional and old forests. We conclude that three types of specific science-based management tools are needed to mitigate ditching effects on forest biodiversity: (i) silvicultural techniques to

  20. Influence of Anthropogenic Disturbances on Stand Structural Complexity in Andean Temperate Forests: Implications for Managing Key Habitat for Biodiversity

    Science.gov (United States)

    2017-01-01

    Forest attributes and their abundances define the stand structural complexity available as habitat for faunal biodiversity; however, intensive anthropogenic disturbances have the potential to degrade and simplify forest stands. In this paper we develop an index of stand structural complexity and show how anthropogenic disturbances, namely fire, logging, livestock, and their combined presence, affect stand structural complexity in a southern Global Biodiversity Hotspot. From 2011 to 2013, we measured forest structural attributes as well as the presence of anthropogenic disturbances in 505 plots in the Andean zone of the La Araucanía Region, Chile. In each plot, understory density, coarse woody debris, number of snags, tree diameter at breast height, and litter depth were measured, along with signs of the presence of anthropogenic disturbances. Ninety-five percent of the plots showed signs of anthropogenic disturbance (N = 475), with the combined presence of fire, logging, and livestock being the most common disturbance (N = 222; 44% of plots). The lowest values for the index were measured in plots combining fire, logging, and livestock. Undisturbed plots and plots with the presence of relatively old fires (> 70 years) showed the highest values for the index of stand structural complexity. Our results suggest that secondary forests forests should be managed to retain structural attributes, including understory density (7.2 ± 2.5 # contacts), volume of CWD (22.4 ± 25.8 m3/ha), snag density (94.4 ± 71.0 stems/ha), stand basal area (61.2 ± 31.4 m2/ha), and litter depth (7.5 ± 2.7 cm). Achieving these values will increase forest structural complexity, likely benefiting a range of faunal species in South American temperate forests. PMID:28068349

  1. Long-term impacts of forest ditching on non-aquatic biodiversity: conservation perspectives for a novel ecosystem.

    Science.gov (United States)

    Remm, Liina; Lõhmus, Piret; Leis, Mare; Lõhmus, Asko

    2013-01-01

    Artificial drainage (ditching) is widely used to increase timber yield in northern forests. When the drainage systems are maintained, their environmental impacts are likely to accumulate over time and along accompanying management, notably after logging when new forest develops on decayed peat. Our study provides the first comprehensive documentation of long-term ditching impacts on terrestrial and arboreal biodiversity by comparing natural alder swamps and second-generation drained forests that have evolved from such swamps in Estonia. We explored species composition of four potentially drainage-sensitive taxonomic groups (vascular plants, bryophytes, lichens, and snails), abundance of species of conservation concern, and their relationships with stand structure in two-ha plots representing four management types (ranging from old growth to clearcut). We found that drainage affected plot-scale species richness only weakly but it profoundly changed assemblage composition. Bryophytes and lichens were the taxonomic groups that were most sensitive both to drainage and timber-harvesting; in closed stands they responded to changed microhabitat structure, notably impoverished tree diversity and dead-wood supply. As a result, natural old-growth plots were the most species-rich and hosted several specific species of conservation concern. Because the most influential structural changes are slow, drainage impacts may be long hidden. The results also indicated that even very old drained stands do not provide quality habitats for old-growth species of drier forest types. However, drained forests hosted many threatened species that were less site type specific, including early-successional vascular plants and snails on clearcuts and retention cuts, and bryophytes and lichens of successional and old forests. We conclude that three types of specific science-based management tools are needed to mitigate ditching effects on forest biodiversity: (i) silvicultural techniques to

  2. Kinetic energy of Throughfall in subtropical forests of SE China - effects of tree canopy structure, functional traits, and biodiversity.

    Directory of Open Access Journals (Sweden)

    Christian Geißler

    Full Text Available Throughfall kinetic energy (TKE plays an important role in soil erosion in forests. We studied TKE as a function of biodiversity, functional diversity as well as structural stand variables in a secondary subtropical broad-leaved forest in the Gutianshan National Nature Reserve (GNNR in south-east China, a biodiversity hotspot in the northern hemisphere with more than 250 woody species present. Using a mixed model approach we could identify significant effects of all these variables on TKE: TKE increased with rarefied tree species richness and decreased with increasing proportion of needle-leaved species and increasing leaf area index (LAI. Furthermore, for average rainfall amounts TKE was decreasing with tree canopy height whereas for high rainfall amounts this was not the case. The spatial pattern of throughfall was stable across several rain events. The temporal variation of TKE decreased with rainfall intensity and increased with tree diversity. Our results show that more diverse forest stands over the season have to cope with higher cumulative raindrop energy than less diverse stands. However, the kinetic energy (KE of one single raindrop is less predictable in diverse stands since the variability in KE is higher. This paper is the first to contribute to the understanding of the ecosystem function of soil erosion prevention in diverse subtropical forests.

  3. Climate and Pest-Driven Geographic Shifts in Global Coffee Production: Implications for Forest Cover, Biodiversity and Carbon Storage.

    Science.gov (United States)

    Magrach, Ainhoa; Ghazoul, Jaboury

    2015-01-01

    Coffee is highly sensitive to temperature and rainfall, making its cultivation vulnerable to geographic shifts in response to a changing climate. This could lead to the establishment of coffee plantations in new areas and potential conflicts with other land covers including natural forest, with consequent implications for biodiversity and ecosystem services. We project areas suitable for future coffee cultivation based on several climate scenarios and expected responses of the coffee berry borer, a principle pest of coffee crops. We show that the global climatically-suitable area will suffer marked shifts from some current major centres of cultivation. Most areas will be suited to Robusta coffee, demand for which could be met without incurring forest encroachment. The cultivation of Arabica, which represents 70% of consumed coffee, can also be accommodated in the future, but only by incurring some natural forest loss. This has corresponding implications for carbon storage, and is likely to affect areas currently designated as priority areas for biodiversity. Where Arabica coffee does encroach on natural forests, we project average local losses of 35% of threatened vertebrate species. The interaction of climate and coffee berry borer greatly influences projected outcomes.

  4. Responses of leaf processing to impacts in streams in Atlantic rain forest, Rio de Janeiro, Brazil--a test of the biodiversity-ecosystem functioning relationship?

    Science.gov (United States)

    Moulton, T P; Magalhães, S A P

    2003-02-01

    The relationship between biodiversity and ecosystem functioning has been intensely debated and researched in recent times. It is generally agreed that there is redundancy of species in ecosystems such that loss of species does not necessarily result in change in the functioning of the ecosystem in which they occur. However the state of our knowledge does not allow prediction of sensitivity or specificity of this relationship for any particular ecosystem. A widely-held opinion is that ecosystem functioning is relatively stable to environmental impact, whereas biodiversity is more sensitive. We tested this in streams of the Atlantic forest using leaf decomposition as an aspect of ecosystem functioning and measuring the diversity of the associated fauna. In lightly impacted streams of the urban park Parque Estadual da Pedra Branca, RJ, leaf processing rate of a hard-leaf species, Myrcia rostrata (Myrtaceae) was more than 50% slower than in "intact" streams at the biological reserve of Ilha Grande, RJ. Taxon diversity of fauna of the leaves was not significantly lower in the impacted than the intact streams. We construe this as preliminary evidence contrary to the notion that ecosystem functioning is less sensitive than biodiversity to impacts in this system.

  5. Biodiversity and biosystematic research in a brave new 21st century information-technology world

    Directory of Open Access Journals (Sweden)

    Robert Anderson

    2009-09-01

    Full Text Available A variety of challenges to biodiversity and biosystematics research are discussed. Despite escalating estimates of the biodiversity of the planet, resources being devoted to advance this knowledge have been in decline. Despite the proliferation of information technologies, the focus of knowledge has frequently shifted to making information readily available, rather than generating new information. The principles of authorial responsibility and of explicit documentation of knowledge are under siege. The shortfall of investment in training, research, and collections management (the ''taxonomic deficit'' has lead to a ''taxonomic impediment'' to ecological research, at a time when rates of extinction appear to be rising dramatically. The contents of present volume represent stepping-stones of biodiversity research – a discipline vital to the future of life on the planet.

  6. The status of forest management research in the United States.

    Science.gov (United States)

    Donald G. Hodges; Pamela J. Jakes; Frederick W. Cubbage

    1988-01-01

    In 1985, the USDA Forest Service invested nearly $30 million in forest management research, forest industry invested $19 million, and universities invested at least $17 million. Investments in this research have been declining since then. Forest Service data indicate that the public sector is the largest beneficiary of forest management research.

  7. Future Direction of USDA Forest Service Research

    Science.gov (United States)

    A. Dan Wilson

    1995-01-01

    The USDA Forest Service has been involved in Texas oak wilt research since 1976. Despite research successes, there are still many important research areas that have not been addressed or sufficiently investigated to answer the key questions required for making sound disease management decisions. Some of the priority areas planned for future research by the Southern...

  8. Biodiversity conservation in the face of dramatic forest disease: an integrated conservation strategy for tanoak (Notholithocarpus densiflorus) threatened by sudden oak death

    Science.gov (United States)

    Richard C. Cobb; David M. Rizzo; Katherine J. Hayden; Matteo Garbelotto; A.N. Filipe João; Christopher A. Gilligan; Whalen W. Dillon; Ross K. Meentemeyer; Yana S. Vlachovic; Ellen Goheen; Tedmund J. Swiecki; Everett M. Hansen; Susan J. Frankel

    2013-01-01

    Non-native diseases of dominant tree species have diminished North American forest biodiversity, structure, and ecosystem function over the last 150 years. Since the mid-1990s, coastal California forests have suffered extensive decline of the endemic overstory tree tanoak, Notholithocarpus densiflorus (Hook. & Arn.) Manos, Cannon & S. H. Oh...

  9. Relationship between aboveground biomass and multiple measures of biodiversity in subtropical forest of Puerto Rico

    Science.gov (United States)

    Heather D. Vance-Chalcraft; Michael R. Willig; Stephen B. Cox; Ariel E. Lugo; Frederick N. Scatena

    2010-01-01

    Anthropogenic activities have accelerated the rate of global loss of biodiversity, making it more important than ever to understand the structure of biodiversity hotspots. One current focus is the relationship between species richness and aboveground biomass (AGB) in a variety of ecosystems. Nonetheless, species diversity, evenness, rarity, or dominance represent other...

  10. Deforestation and Forest Fragmentation in South Ecuador since the 1970s – Losing a Hotspot of Biodiversity

    Science.gov (United States)

    Tapia-Armijos, María Fernanda; Homeier, Jürgen; Espinosa, Carlos Iván; Leuschner, Christoph; de la Cruz, Marcelino

    2015-01-01

    Deforestation and fragmentation are major components of global change; both are contributing to the rapid loss of tropical forest area with important implications for ecosystem functioning and biodiversity conservation. The forests of South Ecuador are a biological ‘hotspot’ due to their high diversity and endemism levels. We examined the deforestation and fragmentation patterns in this area of high conservation value using aerial photographs and Aster satellite scenes. The registered annual deforestation rates of 0.75% (1976–1989) and 2.86% (1989–2008) for two consecutive survey periods, the decreasing mean patch size and the increasing isolation of the forest fragments show that the area is under severe threat. Approximately 46% of South Ecuador’s original forest cover had been converted by 2008 into pastures and other anthropogenic land cover types. We found that deforestation is more intense at lower elevations (premontane evergreen forest and shrubland) and that the deforestation front currently moves in upslope direction. Improved awareness of the spatial extent, dynamics and patterns of deforestation and forest fragmentation is urgently needed in biologically diverse areas like South Ecuador. PMID:26332681

  11. Identifying key research objectives to make European forests greener for bats

    Directory of Open Access Journals (Sweden)

    Danilo Russo

    2016-07-01

    Full Text Available Bats are a biodiverse mammal order providing key ecosystem services such as pest suppression, pollination and seed dispersal. Bats are also very sensitive to human actions, and significant declines in many bat populations have been recorded consequently. Many bat species find crucial roosting and foraging opportunities in European forests. Such forests have historically been exploited by humans and are still influenced by harvesting. One of the consequences of this pressure is the loss of key habitat resources, often making forests inhospitable to bats. Despite the legal protection granted to bats across Europe, the impacts of forestry on bats are still often neglected. Because forest exploitation influences forest structure at several spatial scales, economically viable forestry could become more sustainable and even favour bats. We highlight that a positive future for bat conservation that simultaneously benefits forestry is foreseeable, although more applied research is needed to develop sound management. Key future research topics include the detection of factors influencing the carrying capacity of forests, and determining the impacts of forest management and the economic importance of bats in forests. Predictive tools to inform forest managers are much needed, together with greater synergies between forest managers and bat conservationists.

  12. A global model of the response of tropical and sub-tropical forest biodiversity to anthropogenic pressures

    Science.gov (United States)

    Newbold, Tim; Hudson, Lawrence N.; Phillips, Helen R. P.; Hill, Samantha L. L.; Contu, Sara; Lysenko, Igor; Blandon, Abigayil; Butchart, Stuart H. M.; Booth, Hollie L.; Day, Julie; De Palma, Adriana; Harrison, Michelle L. K.; Kirkpatrick, Lucinda; Pynegar, Edwin; Robinson, Alexandra; Simpson, Jake; Mace, Georgina M.; Scharlemann, Jörn P. W.; Purvis, Andy

    2014-01-01

    Habitat loss and degradation, driven largely by agricultural expansion and intensification, present the greatest immediate threat to biodiversity. Tropical forests harbour among the highest levels of terrestrial species diversity and are likely to experience rapid land-use change in the coming decades. Synthetic analyses of observed responses of species are useful for quantifying how land use affects biodiversity and for predicting outcomes under land-use scenarios. Previous applications of this approach have typically focused on individual taxonomic groups, analysing the average response of the whole community to changes in land use. Here, we incorporate quantitative remotely sensed data about habitats in, to our knowledge, the first worldwide synthetic analysis of how individual species in four major taxonomic groups—invertebrates, ‘herptiles’ (reptiles and amphibians), mammals and birds—respond to multiple human pressures in tropical and sub-tropical forests. We show significant independent impacts of land use, human vegetation offtake, forest cover and human population density on both occurrence and abundance of species, highlighting the value of analysing multiple explanatory variables simultaneously. Responses differ among the four groups considered, and—within birds and mammals—between habitat specialists and habitat generalists and between narrow-ranged and wide-ranged species. PMID:25143038

  13. CTFS-ForestGEO: a worldwide network monitoring forests in an era of global change

    Science.gov (United States)

    Kristina J. Anderson-Teixeira; Stuart J. Davies; Amy C. Bennett; Erika B. Gonzalez-Akre; Helene C. Muller-Landau; S. Joseph Wright; Kamariah Abu Salim; Angélica M. Almeyda Zambrano; Alfonso Alonso; Jennifer L. Baltzer; Yves Basset; Norman A. Bourg; Eben N. Broadbent; Warren Y. Brockelman; Sarayudh Bunyavejchewin; David F. R. P. Burslem; Nathalie Butt; Min Cao; Dairon Cardenas; George B. Chuyong; Keith Clay; Susan Cordell; Handanakere S. Dattaraja; Xiaobao Deng; Matteo Detto; Xiaojun Du; Alvaro Duque; David L. Erikson; Corneille E.N. Ewango; Gunter A. Fischer; Christine Fletcher; Robin B. Foster; Christian P. Giardina; Gregory S. Gilbert; Nimal Gunatilleke; Savitri Gunatilleke; Zhanqing Hao; William W. Hargrove; Terese B. Hart; Billy C.H. Hau; Fangliang He; Forrest M. Hoffman; Robert W. Howe; Stephen P. Hubbell; Faith M. Inman-Narahari; Patrick A. Jansen; Mingxi Jiang; Daniel J. Johnson; Mamoru Kanzaki; Abdul Rahman Kassim; David Kenfack; Staline Kibet; Margaret F. Kinnaird; Lisa Korte; Kamil Kral; Jitendra Kumar; Andrew J. Larson; Yide Li; Xiankun Li; Shirong Liu; Shawn K.Y. Lum; James A. Lutz; Keping Ma; Damian M. Maddalena; Jean-Remy Makana; Yadvinder Malhi; Toby Marthews; Rafizah Mat Serudin; Sean M. McMahon; William J. McShea; Hervé R. Memiaghe; Xiangcheng Mi; Takashi Mizuno; Michael Morecroft; Jonathan A. Myers; Vojtech Novotny; Alexandre A. de Oliveira; Perry S. Ong; David A. Orwig; Rebecca Ostertag; Jan den Ouden; Geoffrey G. Parker; Richard P. Phillips; Lawren Sack; Moses N. Sainge; Weiguo Sang; Kriangsak Sri-ngernyuang; Raman Sukumar; I-Fang Sun; Witchaphart Sungpalee; Hebbalalu Sathyanarayana Suresh; Sylvester Tan; Sean C. Thomas; Duncan W. Thomas; Jill Thompson; Benjamin L. Turner; Maria Uriarte; Renato Valencia; Marta I. Vallejo; Alberto Vicentini; Tomáš Vrška; Xihua Wang; Xugao Wang; George Weiblen; Amy Wolf; Han Xu; Sandra Yap; Jess Zimmerman

    2014-01-01

    Global change is impacting forests worldwide, threatening biodiversity and ecosystem services including climate regulation. Understanding how forests respond is critical to forest conservation and climate protection. This review describes an international network of 59 long-term forest dynamics research sites (CTFS-ForestGEO) useful for characterizing forest responses...

  14. The value of biodiversity for the functioning of tropical forests: insurance effects during the first decade of the Sabah biodiversity experiment.

    Science.gov (United States)

    Tuck, Sean L; O'Brien, Michael J; Philipson, Christopher D; Saner, Philippe; Tanadini, Matteo; Dzulkifli, Dzaeman; Godfray, H Charles J; Godoong, Elia; Nilus, Reuben; Ong, Robert C; Schmid, Bernhard; Sinun, Waidi; Snaddon, Jake L; Snoep, Martijn; Tangki, Hamzah; Tay, John; Ulok, Philip; Wai, Yap Sau; Weilenmann, Maja; Reynolds, Glen; Hector, Andy

    2016-12-14

    One of the main environmental threats in the tropics is selective logging, which has degraded large areas of forest. In southeast Asia, enrichment planting with seedlings of the dominant group of dipterocarp tree species aims to accelerate restoration of forest structure and functioning. The role of tree diversity in forest restoration is still unclear, but the 'insurance hypothesis' predicts that in temporally and spatially varying environments planting mixtures may stabilize functioning owing to differences in species traits and ecologies. To test for potential insurance effects, we analyse the patterns of seedling mortality and growth in monoculture and mixture plots over the first decade of the Sabah biodiversity experiment. Our results reveal the species differences required for potential insurance effects including a trade-off in which species with denser wood have lower growth rates but higher survival. This trade-off was consistent over time during the first decade, but growth and mortality varied spatially across our 500 ha experiment with species responding to changing conditions in different ways. Overall, average survival rates were extreme in monocultures than mixtures consistent with a potential insurance effect in which monocultures of poorly surviving species risk recruitment failure, whereas monocultures of species with high survival have rates of self-thinning that are potentially wasteful when seedling stocks are limited. Longer-term monitoring as species interactions strengthen will be needed to more comprehensively test to what degree mixtures of species spread risk and use limited seedling stocks more efficiently to increase diversity and restore ecosystem structure and functioning. © 2016 The Authors.

  15. Guinean biodiversity at the edge : rodents in forest patches of southern Mali

    OpenAIRE

    Granjon, Laurent; Duplantier, Jean-Marc

    2011-01-01

    Southern Mali mainly belongs to the Sudanian savanna bioclimatic zone, but forest patches showing botanical affinities with Guinean humid forest remain as gallery forests or ravine forests. To characterize the rodent diversity of this area and check for the presence of some species of Guinean affinities in this group, rodent assemblages were sampled in four regions of southern Mali, using trapping and observational data in forest and surrounding habitats. Twenty-four species were recorded, co...

  16. Human perception of the conservation and biodiversity state of forest remnants under different levels of urbanization

    Directory of Open Access Journals (Sweden)

    Thallita Oliveira de Grande

    2016-07-01

    Full Text Available Human perception of local environmental biodiversity and conservation may provide another dimension to understanding the ecology of urban ecosystems. This perception can vary according to the environmental urbanization level and may contribute towards its conservation. We investigated the relationship between the human perception of the conservation and state of animal richness in urban remnants and level of landscape urbanization, and between the human perception of animal richness and the remnants’ area. In addition, we tested the effectiveness of interviews as the means for evaluating animal richness. The subjects' perception of the conservation of remnants did not correlate with the level of urbanization. Richness was reported as high and varied with the remnant’s area - indicating maintenance of a possible species-area relationship in the studied landscape - but did not correlate with the level of urbanization. Urbanization can standardize the popular knowledge about conservation. Interviews with local residents proved to bring efficient insights into urban animal richness, especially for primates, and can be supplemented by camera-trapping. Human perception, obtained through interviews, is relevant and useful for the description of ecological aspects of urban regions and supports environmental awareness, actions, research projects, and management for conservation purposes.

  17. A novel comparative research platform designed to determine the functional significance of tree species diversity in European forests

    NARCIS (Netherlands)

    Baeten, L.; Verheyen, K.; Wirth, C.; Bruelheide, H.; Bussotti, F.; Finer, L.; Jaroszewicz, B.; Selvi, F.; Vries, de W.

    2013-01-01

    One of the current advances in functional biodiversity research is the move away from short-lived test systems towards the exploration of diversity-ecosystem functioning relationships in structurally more complex ecosystems. In forests, assumptions about the functional significance of tree species

  18. Conventional and Indigenous Biodiversity Conservation Approach: A Comparative Study of Jachie Sacred Grove and Nkrabea Forest Reserve

    Directory of Open Access Journals (Sweden)

    Samuel Boadi

    2017-01-01

    Full Text Available Conventional managed forests and sacred groves are seldom assessed to determine their effectiveness in biodiversity conservation strategies. This study investigated tree and insect diversity in Jachie sacred grove (JSG and Nkrabea forest reserve (NFR in Ashanti region, Ghana. The study area constituted eight plots of 50 × 50 m along two 300 m long transects. Insects were sampled in eight pitfall traps, diagonally between the transects. Out of 150 individuals, 13 species in NFR and 15 species from JSG were registered. Celtis mildbraedii was the most dominant species in NFR = 43.18% and JSG = 23.58%. Mean DBH showed a significant relationship with basal area in NFR and JSG. Tree diversity and richness were higher in JSG (H′ = 1.43–2.3 ± 0.10; D = 1.8–3.69 ± 0.30 compared to NFR (H′ = 0.86–1.56 ± 0.09; D = 1.1–2.3 ± 0.57. However, insect diversity was higher in NFR (H′ = 1.34 ± 0.10 than in JSG (H′ = 0.5 ± 0.005. Camponotus furvus and Pachycondyla tarsata were most abundant in JSG and NFR, respectively. These findings will help conservationists work closely with traditional authorities in protecting sacred groves as key biodiversity hotspots.

  19. Effect of Single Selection Method on Woody and Herbaceous Plant Biodiversity in Khalil-Mahale Forest, Behshahr

    Directory of Open Access Journals (Sweden)

    Sh. Kazemi

    2015-06-01

    Full Text Available This study was undertaken to investigate the role of forest management in tree diversity, regeneration and vegetation in control and managed parcels of series No. 1 of forestry plan in Khalil-Mahale, Behshahr. Thirty samples with an area of 1000 m2 were systematically and randomly taken with a 100 × 75 m grid in both parcels. In each plot, tree number and species type were recorded. In order to study the vegetation, five micro-plots (1 m2, one in the center and four others in four main directions (half radius from the center of the plot were taken in each plot. The type and percentage of herbaceous species were recorded in each microplot. To count the regeneration in the center of the main plot, circular sample plots with an area of 100 m2 were used. To study and compare the biodiversity in the two plots and to calculate the richness and evenness, the Simpson and Shannon-Wiener diversity indices, Margalef and Menhinic indices and the Pilo index were used, respectively, using PAST software. The results showed that the number of plant species was more in managed plots. The biodiversity of woody and herbaceous plants richness indices and regeneration of tree species were higher in managed plots. In fact, the results showed that forest management using single selection method had different effects on woody species regeneration and diversity of herbaceous and tree species.

  20. Using the ratio of optical channels in satellite image decoding in monitoring biodiversity of boreal forests

    Science.gov (United States)

    Rozhkov, Yurj P.; Kondakova, Maria Y.

    2013-10-01

    The study contains the results of forest monitoring at three levels: the forests condition assessment at the time of recording or mapping for this indicator, the seasonal changes assessment in the forests condition, mainly during the vegetation period and the evaluation of long-term changes in the values of the studied parameters on the example of the forests recovery after a fire. The use of two indices - NDVI and Image Difference in the boreal forests monitoring is treated. NDVI assesses the state of plant biomass and its productivity. The rate of Image Difference characterizes the optical density and allows estimate the density of the forest stand. In addition, by identifying Image Difference on summer and autumn pictures it can makes a distinction of different wood species, to divide forest areas, which consist of deciduous and coniferous species and larch which shedded needles at the end of the vegetation period. Therefore, it is possible to differentiate the pine, cedar, spruce forests on the one side and birch, larch, alder on the other side. The optical density of the forest decreases after the needles- and the leaf sheddings. Using the index Image Difference in estimates of long-term changes of the forest stand shows the trend of changes of the forest density and the tree species composition. The results of the analysis of the recovery process of the forest after a fire in the period from 1995 to 2009 showed how shoots of birch, larch and pine recover wastelands.

  1. Application of geoinformatics for landscape assessment and conserving forest biodiversity in northeast India

    Science.gov (United States)

    Ashish Kumar; Bruce G. Marcot; Gautam Talukdar; P.S. Roy

    2012-01-01

    Herein, we summarize our work, within forest ecosystems of Garo Hills in northeast India, on mapping vegetation and land cover conditions, delineating wildlife habitat corridors among protected areas, evaluating forest conservation values of influence zones bordering protected areas, analyzing dispersion patterns of native forests, and determining potential effects of...

  2. Industry and forest wetlands: Cooperative research initiatives

    International Nuclear Information System (INIS)

    Shepard, J.P.; Lucier, A.A.; Haines, L.W.

    1993-01-01

    In 1989 the forest products industry responded to a challenge of the National Wetlands Policy Forum to initiate a cooperative research program on forest wetlands management organized through the National Council of the Paper Industry for Air and Stream Improvement (NCASI). The objective is to determine how forest landowners can manage wetlands for timber production while protecting other wetland functions such as flood storage, water purification, and food chain/wildlife habitat support. Studies supported by the NCASI in 9 states are summarized. Technical support on wetland regulatory issues to member companies is part of the research program. Since guidelines for recognizing wetlands for regulatory proposed have changed frequently, the NCASI has recommend an explicit link between wetland delineation and a classification system that considers difference among wetland types in vegetation, soils, hydrology, appearance, landscape position, and other factors. 16 refs

  3. Sequential Fragmentation of Pleistocene Forests in an East Africa Biodiversity Hotspot: Chameleons as a Model to Track Forest History

    OpenAIRE

    Measey, G. John; Tolley, Krystal A.

    2011-01-01

    Background The Eastern Arc Mountains (EAM) is an example of naturally fragmented tropical forests, which contain one of the highest known concentrations of endemic plants and vertebrates. Numerous paleo-climatic studies have not provided direct evidence for ancient presence of Pleistocene forests, particularly in the regions in which savannah presently occurs. Knowledge of the last period when forests connected EAM would provide a sound basis for hypothesis testing of vicariance and dispersal...

  4. Biodiversity and Climate Change Adaptation in Australia: Strategy and Research Developments

    OpenAIRE

    Booth, Trevor

    2017-01-01

    Many countries are developing national strategies and action plans aimed at minimising the negative impacts of climate change on biodiversity. The purpose of this paper is to provide a brief overview not only of strategies and plans that have been developed in Australia, but also of research that has been carried out in Australia by the Commonwealth Scientific and Industrial Research Organisation (CSIRO) Climate Adaptation Flagship to assist the development of future strategies and plans. Maj...

  5. Harnessing biodiversity: the Malagasy Institute of Applied Research (IMRA

    Directory of Open Access Journals (Sweden)

    Heys Jennifer

    2010-12-01

    Full Text Available Abstract Background Biopiracy – the use of a people’s long-established medical knowledge without acknowledgement or compensation – has been a disturbing historical reality and exacerbates the global rich-poor divide. Bioprospecting, however, describes the commercialization of indigenous medicines in a manner acceptable to the local populace. Challenges facing bioprospectors seeking to develop traditional medicines in a quality-controlled manner include a lack of skilled labor and high-tech infrastructure, adapting Northern R&D protocols to Southern settings, keeping products affordable for the local population, and managing the threat of biopiracy. The Malagasy Institute of Applied Research (IMRA has employed bioprospecting to develop new health treatments for conditions such as diabetes and burns. Because of its integration of Western science and Malagasy cultural traditions, IMRA may provide a useful example for African and other organizations interested in bioprospecting. Discussion IMRA’s approach to drug development and commercialization was adapted from the outset to Malagasy culture and Southern economic landscapes. It achieved a balance between employing Northern R&D practices and following local cultural norms through four guiding principles. First, IMRA’s researchers understood and respected local practices, and sought to use rather than resist them. Second, IMRA engaged the local community early in the drug development process, and ensured that local people had a stake in its success. Third, IMRA actively collaborated with local and international partners to increase its credibility and research capacity. Fourth, IMRA obtained foreign research funds targeting the “diseases of civilization” to cross-fund the development of drugs for conditions that affect the Malagasy population. These principles are illustrated in the development of IMRA products like Madeglucyl, a treatment for diabetes management that was developed

  6. Harnessing biodiversity: the Malagasy Institute of Applied Research (IMRA).

    Science.gov (United States)

    Puri, Manveen; Masum, Hassan; Heys, Jennifer; Singer, Peter A

    2010-12-13

    Biopiracy - the use of a people's long-established medical knowledge without acknowledgement or compensation - has been a disturbing historical reality and exacerbates the global rich-poor divide. Bioprospecting, however, describes the commercialization of indigenous medicines in a manner acceptable to the local populace. Challenges facing bioprospectors seeking to develop traditional medicines in a quality-controlled manner include a lack of skilled labor and high-tech infrastructure, adapting Northern R&D protocols to Southern settings, keeping products affordable for the local population, and managing the threat of biopiracy. The Malagasy Institute of Applied Research (IMRA) has employed bioprospecting to develop new health treatments for conditions such as diabetes and burns. Because of its integration of Western science and Malagasy cultural traditions, IMRA may provide a useful example for African and other organizations interested in bioprospecting. IMRA's approach to drug development and commercialization was adapted from the outset to Malagasy culture and Southern economic landscapes. It achieved a balance between employing Northern R&D practices and following local cultural norms through four guiding principles. First, IMRA's researchers understood and respected local practices, and sought to use rather than resist them. Second, IMRA engaged the local community early in the drug development process, and ensured that local people had a stake in its success. Third, IMRA actively collaborated with local and international partners to increase its credibility and research capacity. Fourth, IMRA obtained foreign research funds targeting the "diseases of civilization" to cross-fund the development of drugs for conditions that affect the Malagasy population. These principles are illustrated in the development of IMRA products like Madeglucyl, a treatment for diabetes management that was developed from a traditional remedy. By combining local and international

  7. Forest Service research natural areas in California

    Science.gov (United States)

    Sheauchi Cheng

    2004-01-01

    Ecological descriptions of 98 research natural areas (of various statuses) in the Pacific Southwest Region of the USDA Forest Service are summarized in this report. These descriptions, basically based on ecological surveys conducted from 1975 through 2000, provide important but largely unknown information on the ecology of California. For each area, descriptions of...

  8. BIOFRAG - a new database for analyzing BIOdiversity responses to forest FRAGmentation

    Science.gov (United States)

    M. Pfeifer; Tamara Heartsill Scalley

    2014-01-01

    Habitat fragmentation studies have produced complex results that are challenging to synthesize. Inconsistencies among studies may result from variation in the choice of landscape metrics and response variables, which is often compounded by a lack of key statistical or methodological information. Collating primary datasets on biodiversity responses to fragmentation in a...

  9. Understanding fungal functional biodiversity during the mitigation of environmentally dispersed pentachlorophenol in cork oak forest soils

    NARCIS (Netherlands)

    Varela, Adelia; Martins, Celso; Nunez, Oscar; Martins, Isabel; Houbraken, Jos A. M. P.; Martins, Tiago M.; Leitao, M. Cristina; McLellan, Iain; Vetter, Walter; Galceran, M. Teresa; Samson, Robert A.; Hursthouse, Andrew; Pereira, Cristina Silva

    Pentachlorophenol (PCP) is globally dispersed and contamination of soil with this biocide adversely affects its functional biodiversity, particularly of fungi – key colonizers. Their functional role as a community is poorly understood, although a few pathways have been already elucidated in pure

  10. Secondary School Students' Environmental Concerns and Attitudes toward Forest Ecosystem Services: Implications for Biodiversity Education

    Science.gov (United States)

    Torkar, Gregor

    2016-01-01

    Alarming declines in biodiversity have encouraged scientists to begin promoting the idea of the services ecosystems offer to humans in order to gain support for conservation. The concept of ecosystem services is designed to communicate societal dependence on various natural ecosystems. Schools play an important role in educating students to be…

  11. Applying the Delphi method to assess impacts of forest management on biodiversity and habitat preservation

    DEFF Research Database (Denmark)

    Filyushkina, Anna; Strange, Niels; Löf, Magnus

    2018-01-01

    consisted of a number of scientists in the field. The data was collected using a semi-structured questionnaire distributed via e-mail in two rounds. Our findings demonstrated that an increase in management intensity for timber production is likely to have a negative effect on the biodiversity and habitats...

  12. Contribution of large-scale forest inventories to biodiversity assessment and monitoring

    Science.gov (United States)

    Piermaria Corona; Gherardo Chirici; Ronald E. McRoberts; Susanne Winter; Anna. Barbati

    2011-01-01

    Statistically-designed inventories and biodiversity monitoring programs are gaining relevance for biological conservation and natural resources management. Mandated periodic surveys provide unique opportunities to identify and satisfy natural resources management information needs. However, this is not an end in itself but rather is the beginning of a process that...

  13. Standardized Assessment of Biodiversity Trends in Tropical Forest Protected Areas: The End Is Not in Sight

    NARCIS (Netherlands)

    Beaudrot, Lydia; Ahumada, J.A.; O’Brien, Timothy; Alvarez-Loayza, Patricia; Boekee, Kelly; Campos-Arceiz, Ahimsa; Eichberg, David; Espinosa, Santiago; Fegraus, Eric; Fletcher, Christine; Jansen, P.A.

    2016-01-01

    Extinction rates in the Anthropocene are three orders of magnitude higher than background and disproportionately occur in the tropics, home of half the world’s species. Despite global efforts to combat tropical species extinctions, lack of high-quality, objective information on tropical biodiversity

  14. Sequential fragmentation of Pleistocene forests in an East Africa biodiversity hotspot: chameleons as a model to track forest history.

    Directory of Open Access Journals (Sweden)

    G John Measey

    Full Text Available The Eastern Arc Mountains (EAM is an example of naturally fragmented tropical forests, which contain one of the highest known concentrations of endemic plants and vertebrates. Numerous paleo-climatic studies have not provided direct evidence for ancient presence of Pleistocene forests, particularly in the regions in which savannah presently occurs. Knowledge of the last period when forests connected EAM would provide a sound basis for hypothesis testing of vicariance and dispersal models of speciation. Dated phylogenies have revealed complex patterns throughout EAM, so we investigated divergence times of forest fauna on four montane isolates in close proximity to determine whether forest break-up was most likely to have been simultaneous or sequential, using population genetics of a forest restricted arboreal chameleon, Kinyongia boehmei.We used mitochondrial and nuclear genetic sequence data and mutation rates from a fossil-calibrated phylogeny to estimate divergence times between montane isolates using a coalescent approach. We found that chameleons on all mountains are most likely to have diverged sequentially within the Pleistocene from 0.93-0.59 Ma (95% HPD 0.22-1.84 Ma. In addition, post-hoc tests on chameleons on the largest montane isolate suggest a population expansion ∼182 Ka.Sequential divergence is most likely to have occurred after the last of three wet periods within the arid Plio-Pleistocene era, but was not correlated with inter-montane distance. We speculate that forest connection persisted due to riparian corridors regardless of proximity, highlighting their importance in the region's historic dispersal events. The population expansion coincides with nearby volcanic activity, which may also explain the relative paucity of the Taita's endemic fauna. Our study shows that forest chameleons are an apposite group to track forest fragmentation, with the inference that forest extended between some EAM during the Pleistocene 1

  15. Sequential fragmentation of Pleistocene forests in an East Africa biodiversity hotspot: chameleons as a model to track forest history.

    Science.gov (United States)

    Measey, G John; Tolley, Krystal A

    2011-01-01

    The Eastern Arc Mountains (EAM) is an example of naturally fragmented tropical forests, which contain one of the highest known concentrations of endemic plants and vertebrates. Numerous paleo-climatic studies have not provided direct evidence for ancient presence of Pleistocene forests, particularly in the regions in which savannah presently occurs. Knowledge of the last period when forests connected EAM would provide a sound basis for hypothesis testing of vicariance and dispersal models of speciation. Dated phylogenies have revealed complex patterns throughout EAM, so we investigated divergence times of forest fauna on four montane isolates in close proximity to determine whether forest break-up was most likely to have been simultaneous or sequential, using population genetics of a forest restricted arboreal chameleon, Kinyongia boehmei. We used mitochondrial and nuclear genetic sequence data and mutation rates from a fossil-calibrated phylogeny to estimate divergence times between montane isolates using a coalescent approach. We found that chameleons on all mountains are most likely to have diverged sequentially within the Pleistocene from 0.93-0.59 Ma (95% HPD 0.22-1.84 Ma). In addition, post-hoc tests on chameleons on the largest montane isolate suggest a population expansion ∼182 Ka. Sequential divergence is most likely to have occurred after the last of three wet periods within the arid Plio-Pleistocene era, but was not correlated with inter-montane distance. We speculate that forest connection persisted due to riparian corridors regardless of proximity, highlighting their importance in the region's historic dispersal events. The population expansion coincides with nearby volcanic activity, which may also explain the relative paucity of the Taita's endemic fauna. Our study shows that forest chameleons are an apposite group to track forest fragmentation, with the inference that forest extended between some EAM during the Pleistocene 1.1-0.9 Ma.

  16. Sequential Fragmentation of Pleistocene Forests in an East Africa Biodiversity Hotspot: Chameleons as a Model to Track Forest History

    Science.gov (United States)

    Measey, G. John; Tolley, Krystal A.

    2011-01-01

    Background The Eastern Arc Mountains (EAM) is an example of naturally fragmented tropical forests, which contain one of the highest known concentrations of endemic plants and vertebrates. Numerous paleo-climatic studies have not provided direct evidence for ancient presence of Pleistocene forests, particularly in the regions in which savannah presently occurs. Knowledge of the last period when forests connected EAM would provide a sound basis for hypothesis testing of vicariance and dispersal models of speciation. Dated phylogenies have revealed complex patterns throughout EAM, so we investigated divergence times of forest fauna on four montane isolates in close proximity to determine whether forest break-up was most likely to have been simultaneous or sequential, using population genetics of a forest restricted arboreal chameleon, Kinyongia boehmei. Methodology/Principal Findings We used mitochondrial and nuclear genetic sequence data and mutation rates from a fossil-calibrated phylogeny to estimate divergence times between montane isolates using a coalescent approach. We found that chameleons on all mountains are most likely to have diverged sequentially within the Pleistocene from 0.93–0.59 Ma (95% HPD 0.22–1.84 Ma). In addition, post-hoc tests on chameleons on the largest montane isolate suggest a population expansion ∼182 Ka. Conclusions/Significance Sequential divergence is most likely to have occurred after the last of three wet periods within the arid Plio-Pleistocene era, but was not correlated with inter-montane distance. We speculate that forest connection persisted due to riparian corridors regardless of proximity, highlighting their importance in the region's historic dispersal events. The population expansion coincides with nearby volcanic activity, which may also explain the relative paucity of the Taita's endemic fauna. Our study shows that forest chameleons are an apposite group to track forest fragmentation, with the inference that forest

  17. Long-Term Impacts of China’s New Commercial Harvest Exclusion Policy on Ecosystem Services and Biodiversity in the Temperate Forests of Northeast China

    Directory of Open Access Journals (Sweden)

    Kai Liu

    2018-04-01

    Full Text Available Temperate forests in Northeast China have been severely exploited by timber harvesting in the last century. To reverse this trend, China implemented the Classified Forest Management policy in the Natural Forest Conservation Program in 1998 to protect forests from excessive harvesting. However, the policy was unable to meet the 2020 commitment of increasing growing stock (set in the Kyoto Protocol because of high-intensity harvesting. Accordingly, China banned all commercial harvesting in Northeast China in 2014. In this study, we investigated the long-term impacts of the no commercial harvest (NCH policy on ecosystem services and biodiversity using a forest landscape model, LANDIS PRO 7.0, in the temperate forests of the Small Khingan Mountains, Northeast China. We designed three management scenarios: The H scenario (the Classified Forest Management policy used in the past, the NCH scenario (the current Commercial Harvest Exclusion policy, and the LT scenario (mitigation management, i.e., light thinning. We compared total aboveground forest biomass, biomass by tree species, abundance of old-growth forests, and diversity of tree species and age class in three scenarios from 2010 to 2100. We found that compared with the H scenario, the NCH scenario increased aboveground forest biomass, abundance of old-growth forests, and biomass of most timber species over time; however, it decreased the biomass of rare and protected tree species and biodiversity. We found that the LT scenario increased the biomass of rare and protected tree species and biodiversity in comparison with the NCH scenario, while it maintained aboveground forest biomass and abundance of old-growth forests at a high level (slightly less than the NCH scenario. We concluded there was trade-off between carbon storage and biodiversity. We also concluded that light thinning treatment was able to regulate the trade-off and alleviate the negative effects associated with the NCH policy. Our

  18. Teaching Biodiversity

    Indian Academy of Sciences (India)

    Author Affiliations. Madhav Gadgil1 2. Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560 012, India. Biodiversity Unit, Jowaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O. Jakkur, Bangalore 560064, India ...

  19. Challenges and a checklist for biodiversity conservation in fire-prone forests: perspecitves from the Pacific Northwest of USA and Southeastern Australia

    Science.gov (United States)

    Thomas A. Spies; David B. Lindenmayer; A. Malcolm Gill; Scott L. Stephens; James K. Agee

    2012-01-01

    Conserving biodiversity in fire-prone forest ecosystems is challenging for several reasons including differing and incomplete conceptual models of fire-related ecological processes, major gaps in ecological and management knowledge, high variability in fire behavior and ecological responses to fires, altered fire regimes as a result of land-use history and climate...

  20. Integrative taxonomy on the fast track - towards more sustainability in biodiversity research

    OpenAIRE

    Riedel, Alexander; Sagata, Katayo; Suhardjono, Yayuk R.; Taenzler, Rene; Balke, Michael

    2013-01-01

    Background: A so called ``taxonomic impediment{''} has been recognized as a major obstacle to biodiversity research for the past two decades. Numerous remedies were then proposed. However, neither significant progress in terms of formal species descriptions, nor a minimum standard for descriptions have been achieved so far. Here, we analyze the problems of traditional taxonomy which often produces keys and descriptions of limited practical value. We suggest that phylogenetics and phenetics ha...

  1. The relationship between tree biodiversity and biomass dynamics changes with tropical forest succession.

    Science.gov (United States)

    Lasky, Jesse R; Uriarte, María; Boukili, Vanessa K; Erickson, David L; John Kress, W; Chazdon, Robin L

    2014-09-01

    Theory predicts shifts in the magnitude and direction of biodiversity effects on ecosystem function (BEF) over succession, but this theory remains largely untested. We studied the relationship between aboveground tree biomass dynamics (Δbiomass) and multiple dimensions of biodiversity over 8-16 years in eight successional rainforests. We tested whether successional changes in diversity-Δbiomass correlations reflect predictions of niche theories. Diversity-Δbiomass correlations were positive early but weak later in succession, suggesting saturation of niche space with increasing diversity. Early in succession, phylogenetic diversity and functional diversity in two leaf traits exhibited the strongest positive correlations with Δbiomass, indicating complementarity or positive selection effects. In mid-successional stands, high biodiversity was associated with greater mortality-driven biomass loss, i.e. negative selection effects, suggesting successional niche trade-offs and loss of fast-growing pioneer species. Our results demonstrate that BEF relationships are dynamic across succession, thus successional context is essential to understanding BEF in a given system. © 2014 John Wiley & Sons Ltd/CNRS.

  2. Aboveground-belowground biodiversity linkages differ in early and late successional temperate forests.

    Science.gov (United States)

    Li, Hui; Wang, Xugao; Liang, Chao; Hao, Zhanqing; Zhou, Lisha; Ma, Sam; Li, Xiaobin; Yang, Shan; Yao, Fei; Jiang, Yong

    2015-07-17

    Understanding ecological linkages between above- and below-ground biota is critical for deepening our knowledge on the maintenance and stability of ecosystem processes. Nevertheless, direct comparisons of plant-microbe diversity at the community level remain scarce due to the knowledge gap between microbial ecology and plant ecology. We compared the α- and β- diversities of plant and soil bacterial communities in two temperate forests that represented early and late successional stages. We documented different patterns of aboveground-belowground diversity relationships in these forests. We observed no linkage between plant and bacterial α-diversity in the early successional forest, and even a negative correlation in the late successional forest, indicating that high bacterial α-diversity is not always linked to high plant α-diversity. Beta-diversity coupling was only found at the late successional stage, while in the early successional forest, the bacterial β-diversity was closely correlated with soil property distances. Additionally, we showed that the dominant competitive tree species in the late successional forest may play key roles in driving forest succession by shaping the soil bacterial community in the early successional stage. This study sheds new light on the potential aboveground-belowground linkage in natural ecosystems, which may help us understand the mechanisms that drive ecosystem succession.

  3. Effects of silvicultural management intensity on fluxes of dissolved and particulate organic matter in 27 forest sites of the Biodiversity Exploratories

    Science.gov (United States)

    Michalzik, Beate; Bischoff, Sebastian; Levia, Delphis; Schwarz, Martin; Escher, Peter; Wilcke, Wolfgang; Thieme, Lisa; Kerber, Katja; Kaupenjohann, Martin; Siemens, Jan

    2017-04-01

    In forested ecosystems, throughfall and stemflow function as key components in the cycling of water and associated biogeochemistry. Analysing annual flux data collected from 27 intensively monitored forest sites of the Biodiversity Exploratories, we found throughfall fluxes of DOC (dissolved organic carbon) linearly related (R2 = 0.40, p losses of DOC and POC from the litter layer of forests increased significantly with increasing forest management intensity. The observed relationships revealed by intensive flux monitoring are important because they allow us to link organic matter fluxes to forest metrics of larger forested areas (e.g. derived from LiDAR imagery), and hence to model and up-scale water-bound OC dynamics to the landscape level.

  4. Research Regarding the New Biodiversity Indicators in Genetic Diversity of the Region -Country Hateg

    Directory of Open Access Journals (Sweden)

    Iudith Ipate

    2010-05-01

    Full Text Available The present research started in June 2009 by identification of the species and breeds in the livestock of the 11 villages and 1 town existing in the Hatseg Land area. We use the modern genotyping tool for the study of zootechnical biodiversity- molecular biology tests- based on identification, amplification and characterization of nucleic acid, revolutionized the conservation of indigene animal genetic resources, gene assisted selection, pathology diagnostic and food traceability. The original Tipy Fix methods – internatinal patented by Prof.Brem - that were used in Romania (using for the first time in Romania by the researchers of CSCBA to reveal DNA polymorphism are described as their applicability in species identification and meat traceability. Vulnerability of farm animal breeds is caused by the lack of interest apart breeders for one breed. In Hateg land area the main mean of reducing biodiversity in farm animals is the crossbreeding. It was analysis the prion protein for scrapie resistance genotyping as codonamino acid at codon 136, 154, 171 from 5 known haplotypes resulting PrP Genotype .In results of analysis in Hateg country 41 the probes present the arginine (R at codon 171 of the prion protein who confers resistance to the structural change of prion scrapie.We presented biodiversity indicator for domestic animal in Hateg country.

  5. Biodiversity and Phytosociological Studies of Upstream and Downstream Riparian Areas of Pakistan: Special Reference to Taunsa Wildlife Sanctuary and Keti Shah Forests

    International Nuclear Information System (INIS)

    Arfeen, R. Z.; Saleem, A.; Mirza, S. N.; Tayyab, H. M.; Akmal, M.; Afzal, O.

    2015-01-01

    Pakistan riparian zone mostly belongs to Sindh and Punjab provinces and prone to climatic problems and anthropogenic activities. The research was conduct to estimate and compare the structure and composition of riverine floral diversity in low riparian zone of River Indus. The data was collected from Keti Shah forest and Taunsa wildlife sanctuary. Total 14259 plants/individuals were recorded, which belong to 54 plant species with 18 different families. In Taunsa pre-monsoon survey, total 30 plant species were found with 4476 plants from 16 different families. In Taunsa post-monsoon survey total 3348 individuals were recorded from 20 plant species and 9 families. Similarly, in Keti Shah forest, total 3975 individual were recorded from 22 species and 11 families during the pre-monsoon season and 2460 plants were recorded in post-monsoon season, belonging to 16 species and 10 families. These species mostly belong to Fabaceae, Poaceae, Cyperaceae and Asclepiadaceae. Different phytosociological parameters indicate Tamarix dioca, Cynodon dactylon, Desmostachya bipinnata, Imperata cylindrica, Fimbristylis hispidula, Acacia nilotica, Phragmites karka, Tamarix sp. and Saccharum bengalense as dominant species. The biodiversity in upstream and downstream areas were rich in pre-monsoon season in comparison to post-monsoon season in surveyed areas. This study is useful for management of the area in the future as conservation strategies can be made through considering the adaptive tree species in future plantation and endangered species can be conserved. (author)

  6. Biodiversity and functional regeneration during secondary succession in a tropical dry forest: from microorganisms to mammals

    Science.gov (United States)

    do Espírito Santo, M. M.; Neves, F. S.; Valério, H. M.; Leite, L. O.; Falcão, L. A.; Borges, M.; Beirão, M.; Reis, R., Jr.; Berbara, R.; Nunes, Y. R.; Silva, A.; Silva, L. F.; Siqueira, P. R.

    2015-12-01

    In this study, we aimed to determine the changes on soil traits, forest structure and species richness and composition of multiple groups of organisms along secondary succession in a tropical dry forest (TDF) in southeastern Brazil. We defined three successional stages based in forest vertical and horizontal structure and age: early (18-25 years), intermediate (50-60 years) and late (no records of clearing). Five plots of 50 x 20 m were established per stage, and the following groups were sampled using specific techniques: rhizobacteria, mycorrhiza, trees and lianas, butterflies, ants, dung beetles, mosquitoes (Culicidae), birds and bats. We also determined soil chemical and physical characteristics and forest structure (tree height, density and basal area). Soil fertility increased along the successional gradient, and the same pattern was observed for all the forest structure variables. However, species richness and composition showed mixed results depending on the organism group. Three groups usually considered as good bioindicators of habitat quality did not differ in species richness and composition between stages: butterflies, ants and dung beetles. On the other hand, rizhobacteria and mycorrhiza differed both in species richness and composition between stages and may be more sensitive to changes in environmental conditions in TDFs. The other five groups differed either in species richness or composition between one or two pairs of successional stages. Although changes in abiotic conditions and forest structure match the predictions of classical successional models, the response of each group of organism is idiosyncratic in terms of diversity and ecological function, as a consequence of specific resource requirements and life-history traits. In general, diversity increased and functional groups changed mostly from early to intermediate-late stages, strengthening the importance of secondary forests to the maintenance of ecosystem integrity of TDFs.

  7. The formation of dense understory layers in forests worldwide: consequences and implications for forest dynamics, biodiversity, and succession

    Science.gov (United States)

    Alejandro A. Royo; Walter P. Carson

    2010-01-01

    Alterations to natural herbivore and disturbance regimes often allow a select suite of forest understory plant species to dramatically spread and form persistent, mono-dominant thickets. Following their expansion, this newly established understory canopy can alter tree seedling recruitment rates and exert considerable control over the rate and direction of secondary...

  8. The formation of dense understory layers in the forest worldwide: consequences and implications for forest dynamics, biodiversity, and succession

    Science.gov (United States)

    Alejandro A. Royo; Walter P. Carson

    2010-01-01

    Alterations to natural herbivore and disturbance regimes often allow a select suite of forest understory plant species to dramatically spread and form persistent, mono-dominant thickets. Following their expansion, this newly established understory canopy can alter tree seedling recruitment rates and exert considerable control over the rate and direction of secondary...

  9. On the formation of dense understory layers in forests worldwide: consequences and implications for forest dynamics, biodiversity, and succession

    Science.gov (United States)

    Alejandro A. Royo; Walter P. Carson

    2006-01-01

    The mechanistic basis underpinning forest succession is the gap-phase paradigm in which overstory disturbance interacts with seedling and sapling shade tolerance to determine successional trajectories. The theory, and ensuing simulation models, typically assume that understory plants have little impact on the advance regeneration layer's composition. We challenge...

  10. History and Productivity Determine the Spatial Distribution of Key Habitats for Biodiversity in Norwegian Forest Landscapes

    Directory of Open Access Journals (Sweden)

    Magne Sætersdal

    2016-01-01

    Full Text Available Retention forestry, including the retention of woodland key habitats (WKH at the forest stand scale, has become an essential management practice in boreal forests. Here, we investigate the spatial distribution of 9470 habitat patches, mapped according to the Complementary Habitat Inventory method (CHI habitats, as potential WKHs in 10 sample areas in Norway. We ask whether there are parts of the forest landscapes that have consistently low or high density of CHI habitats compared to the surveyed landscape as a whole, and therefore have a low or high degree of conflict with harvesting, respectively. We found that there was a general pattern of clumped distribution of CHI habitats at distances up to a few kilometres. Furthermore, results showed that most types of CHI habitats were approximately two to three times as common in the 25% steepest slopes, lowest altitudes and highest site indices. CHI habitats that are most common in old-growth forests were found at longer distances from roads, whereas habitats rich in deciduous trees were found at shorter distances from roads than expected. Both environmental factors and the history of human impact are needed to explain the spatial distribution of CHI habitats. The overrepresentation of WKHs in parts of the forest landscapes represents a good starting point to develop more efficient inventory methods.

  11. [Invertebrate biodiversity in litter layers of natural forest and Eucalyptus plantation in eastern Guangdong, China].

    Science.gov (United States)

    Wang, Jun; Liao, Qing-sheng; Ding, Wei-min; Tong, Xiao-li

    2008-01-01

    A comparative study was made on the community structure of invertebrates and the species diversity of thrips in the litter layers of natural forest and Eucalyptus urophylla plantation in eastern Guangdong of China. The results showed that in natural forest, Acarina, Collembola, Dipteran larvae, Hymenoptera, Thysanoptera, and Coleoptera were the most abundant invertebrates, accounting for 96.5% of the total individuals collected; while in Eucalyptus plantation, Acarina, Collembola, Dipteran larvae, and Lepidopteran larvae were the dominant invertebrate groups, which accounted for 96.3% of the total. The diversity of invertebrate assemblages was much higher in natural forest than in Eucalyptus plantation, based on the comparsions of Shannon-Wiener diversity index (H'), Pielou eveness index (J), Density-group index (DG), and Simpson dominance index (D). The individuals and species of fungus-feeding thrips were also more abundant in natural forest than in Eucalyptus plantation. However, there was no significant difference in the average density of invertebrates between natural forest and Eucalyptus plantation, because the individuals of Acarina were predominant, constituting 77.6% of the total. All of the results suggested that it is important to remain the understory and litter to improve the litter invertebrate diversity in fast-growing Eucalyptus plantation.

  12. Status of fertilization and nutrition research in northern forest types

    Science.gov (United States)

    Miroslaw M. Czapowskyj

    1977-01-01

    Forest fertilization is a useful tool that, when combined with other silvicultural practices, results in increased forest growth. Many experiments have demonstrated that both hardwoods and conifers of the northern forest respond to the addition of one or more nutrients. Examples of pitfalls and successes are given. Present status of research and future research needs...

  13. Research related to roads in USDA experimental forests [Chapter 16

    Science.gov (United States)

    W. J. Elliot; P. J. Edwards; R. B. Foltz

    2014-01-01

    Forest roads are essential in experimental forests and rangelands (EFRs) to allow researchers and the public access to research sites and for fire suppression, timber extraction, and fuel management. Sediment from roads can adversely impact watershed health. Since the 1930s, the design and management of forest roads has addressed both access issues and watershed health...

  14. [Basic theory and research method of urban forest ecology].

    Science.gov (United States)

    He, Xingyuan; Jin, Yingshan; Zhu, Wenquan; Xu, Wenduo; Chen, Wei

    2002-12-01

    With the development of world economy and the increment of urban population, the urban environment problem hinders the urban sustainable development. Now, more and more people realized the importance of urban forests in improving the quality of urban ecology. Therefore, a new subject, urban forest ecology, and correlative new concept frame in the field formed. The theoretic foundation of urban forest ecology derived from the mutual combination of theory relating to forest ecology, landscape ecology, landscape architecture ecology and anthrop-ecology. People survey the development of city from the view of ecosystem, and regard the environment, a colony of human, animals and plants, as main factors of the system. The paper introduces systematically the urban forest ecology as follows: 1) the basic concept of urban forest ecology; 2) the meaning of urban forest ecology; 3) the basic principle and theoretic base of urban forest ecology; 4) the research method of urban forest ecology; 5) the developmental expectation of urban forest ecology.

  15. Biodiversity: role of non-timber forest products in food security ...

    African Journals Online (AJOL)

    Non-timber forest products (NTFPS) are biological materials from the ecosystem which range from plants, parts of plants, fungi, animals and animal products that are consumed either as food, condiments, spices or medicine. NTFPS have been identified to play an important role in providing primary health and nutritional ...

  16. emerging pattern of forest bio-diversity in south western nigeria

    African Journals Online (AJOL)

    survival in their natural form beyond the next few decades. It is hoped therefore, that this work will go a long way in assisting people of the study area to understand, appreciate and conserve viable sample of their forest species and be able to manage them sustainably for the generations yet unborn. Literature Review.

  17. Swedish-Estonian energy forest research cooperation

    International Nuclear Information System (INIS)

    Ross, J.; Kirt, E.; Koppel, A.; Kull, K.; Noormets, A.; Roostalu, H.; Ross, V.; Ross, M.

    1996-01-01

    The Organization of Estonian energetic economy is aimed at cutting the usage of oil, gas and coal and increasing the local resources firewood, oil-shale and peat for fuel. The resources of low-valued firewood-brushwood, fallen deadwood etc. are available during the following 10-15 years, but in the future the cultivation of energy forest (willow) plantations will be actual. During the last 20 years the Swedish scientists have been extensively studying the willow forest selection, cultivation and use in energetics and waste water purification systems. A Swedish-Estonian energy forest research project was started in 1993 between the Swedish Agricultural University on one hand and Toravere Observatory, Institute of Zoology and Botany, Estonian Academy of Sciences and Estonian Potato Processing Association on the other hand. In spring 5 willow plantations were established with the help of Swedish colleagues and obtained from Sweden 36000 willow cuttings. The aim of the project: a) To study experimentally and by means of mathematical modelling the biogeophysical aspects of growth and productivity of willow plantations in Sweden and Estonian climatological conditions. b) To study the possibility of using the willow plantations in waste waters purification. c) To study the economical efficiency of energy forest as an energy resource under the economic and environmental conditions of Estonia. d) To study the economic efficiency of willow plantations as a raw material for the basket industry in Estonia. e) To select the most productive and least vulnerable willow clones for practical application in energy plantations. During 1993 in all five plantations detailed analysis of soil properties has been carried out. In the plantation at Toravere Observatory phytometrical measurements were carried out - the growth of plant biomass leaf and stem area, vertical distribution of dry matter content, biomass and phyto area separately for leaves and stems has been performed. Some

  18. [Advances in the research on hyperspectral remote sensing in biodiversity and conservation].

    Science.gov (United States)

    He, Cheng; Feng, Zhong-Ke; Yuan, Jin-Jun; Wang, Jia; Gong, Yin-Xi; Dong, Zhi-Hai

    2012-06-01

    With the species reduction and the habitat destruction becoming serious increasingly, the biodiversity conservation has become one of the hottest topics. Remote sensing, the science of non-contact collection information, has the function of corresponding estimates of biodiversity, building model between species diversity relationship and mapping the index of biodiversity, which has been used widely in the field of biodiversity conservation. The present paper discussed the application of hyperspectral technology to the biodiversity conservation from two aspects, remote sensors and remote sensing techniques, and after, enumerated successful applications for emphasis. All these had a certain reference value in the development of biodiversity conservation.

  19. Modelling the impact of climate change and atmospheric N deposition on French forests biodiversity.

    Science.gov (United States)

    Rizzetto, Simon; Belyazid, Salim; Gégout, Jean-Claude; Nicolas, Manuel; Alard, Didier; Corcket, Emmanuel; Gaudio, Noémie; Sverdrup, Harald; Probst, Anne

    2016-06-01

    A dynamic coupled biogeochemical-ecological model was used to simulate the effects of nitrogen deposition and climate change on plant communities at three forest sites in France. The three sites had different forest covers (sessile oak, Norway spruce and silver fir), three nitrogen loads ranging from relatively low to high, different climatic regions and different soil types. Both the availability of vegetation time series and the environmental niches of the understory species allowed to evaluate the model for predicting the composition of the three plant communities. The calibration of the environmental niches was successful, with a model performance consistently reasonably high throughout the three sites. The model simulations of two climatic and two deposition scenarios showed that climate change may entirely compromise the eventual recovery from eutrophication of the simulated plant communities in response to the reductions in nitrogen deposition. The interplay between climate and deposition was strongly governed by site characteristics and histories in the long term, while forest management remained the main driver of change in the short term. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Unite research with what citizens do for fun: "recreational monitoring" of marine biodiversity.

    Science.gov (United States)

    Goffredo, Stefano; Pensa, Francesco; Neri, Patrizia; Orlandi, Antonio; Gagliardi, Maria Scola; Velardi, Angela; Piccinetti, Corrado; Zaccanti, Francesco

    2010-12-01

    Institutes often lack funds and manpower to perform large-scale biodiversity monitoring. Citizens can be involved, contributing to the collection of data, thus decreasing costs. Underwater research requires specialist skills and SCUBA certification, and it can be difficult to involve volunteers. The aim of this study was to involve large numbers of recreational divers in marine biodiversity monitoring for increasing the environmental education of the public and collecting data on the status of marine biodiversity. Here we show that thousands of recreational divers can be enrolled in a short time. Using specially formulated questionnaires, nonspecialist volunteers reported the presence of 61 marine taxa encountered during recreational dives, performed as regular sport dives. Validation trials were carried out to assess the accuracy and consistency of volunteer-recorded data, and these were compared to reference data collected by an experienced researcher. In the majority of trials (76%) volunteers performed with an accuracy and consistency of 50-80%, comparable to the performance of conservation volunteer divers on precise transects in other projects. The recruitment of recreational divers involved the main diving and tour operators in Italy, a popular scientific magazine, and mass media. During the four-year study, 3825 divers completed 18757 questionnaires, corresponding to 13539 diving hours. The volunteer-sightings-based index showed that in the monitored area the biodiversity status did not change significantly within the project time scale, but there was a significant negative correlation with latitude, suggesting improved quality in the southernmost areas. This trend could be related to the presence of stressors in the northern areas and has been supported by investigations performed by the Italian Ministry of the Environment. The greatest limitation with using volunteers to collect data was the uneven spatial distribution of samples. The benefits were the

  1. A promising future for integrative biodiversity research: an increased role of scale-dependency and functional biology

    Science.gov (United States)

    Schmitz, L.

    2016-01-01

    Studies into the complex interaction between an organism and changes to its biotic and abiotic environment are fundamental to understanding what regulates biodiversity. These investigations occur at many phylogenetic, temporal and spatial scales and within a variety of biological and geological disciplines but often in relative isolation. This issue focuses on what can be achieved when ecological mechanisms are integrated into analyses of deep-time biodiversity patterns through the union of fossil and extant data and methods. We expand upon this perspective to argue that, given its direct relevance to the current biodiversity crisis, greater integration is needed across biodiversity research. We focus on the need to understand scaling effects, how lower-level ecological and evolutionary processes scale up and vice versa, and the importance of incorporating functional biology. Placing function at the core of biodiversity research is fundamental, as it establishes how an organism interacts with its abiotic and biotic environment and it is functional diversity that ultimately determines important ecosystem processes. To achieve full integration, concerted and ongoing efforts are needed to build a united and interactive community of biodiversity researchers, with education and interdisciplinary training at its heart. PMID:26977068

  2. A promising future for integrative biodiversity research: an increased role of scale-dependency and functional biology.

    Science.gov (United States)

    Price, S A; Schmitz, L

    2016-04-05

    Studies into the complex interaction between an organism and changes to its biotic and abiotic environment are fundamental to understanding what regulates biodiversity. These investigations occur at many phylogenetic, temporal and spatial scales and within a variety of biological and geological disciplines but often in relative isolation. This issue focuses on what can be achieved when ecological mechanisms are integrated into analyses of deep-time biodiversity patterns through the union of fossil and extant data and methods. We expand upon this perspective to argue that, given its direct relevance to the current biodiversity crisis, greater integration is needed across biodiversity research. We focus on the need to understand scaling effects, how lower-level ecological and evolutionary processes scale up and vice versa, and the importance of incorporating functional biology. Placing function at the core of biodiversity research is fundamental, as it establishes how an organism interacts with its abiotic and biotic environment and it is functional diversity that ultimately determines important ecosystem processes. To achieve full integration, concerted and ongoing efforts are needed to build a united and interactive community of biodiversity researchers, with education and interdisciplinary training at its heart. © 2016 The Author(s).

  3. Understanding Environmental Change and Biodiversity in a Dryland Ecosystem through Quantification of Climate Variability and Land Modification: The Case of the Dhofar Cloud Forest, Oman

    Science.gov (United States)

    Galletti, Christopher S.

    The Dhofar Cloud Forest is one of the most diverse ecosystems on the Arabian Peninsula. As part of the South Arabian Cloud Forest that extends from southern Oman to Yemen, the cloud forest is an important center of endemism and provides valuable ecosystem services to those living in the region. There have been various claims made about the health of the cloud forest and its surrounding region, the most prominent of which are: 1) variability of the Indian Summer Monsoon threatens long-term vegetation health, and 2) human encroachment is causing deforestation and land degradation. This dissertation uses three independent studies to test these claims and bring new insight about the biodiversity of the cloud forest. Evidence is presented that shows that the vegetation dynamics of the cloud forest are resilient to most of the variability in the monsoon. Much of the biodiversity in the cloud forest is dominated by a few species with high abundance and a moderate number of species at low abundance. The characteristic tree species include Anogeissus dhofarica and Commiphora spp. These species tend to dominate the forested regions of the study area. Grasslands are dominated by species associated with overgrazing (Calotropis procera and Solanum incanum). Analysis from a land cover study conducted between 1988 and 2013 shows that deforestation has occurred to approximately 8% of the study area and decreased vegetation fractions are found throughout the region. Areas around the city of Salalah, located close to the cloud forest, show widespread degradation in the 21st century based on an NDVI time series analysis. It is concluded that humans are the primary driver of environmental change. Much of this change is tied to national policies and development priorities implemented after the Dhofar War in the 1970's.

  4. Modern analogues from the Southern Urals provide insights into biodiversity change in the early Holocene forests of Central Europe

    Czech Academy of Sciences Publication Activity Database

    Chytrý, M.; Danihelka, Jiří; Horsák, M.; Kočí, M.; Kubešová, S.; Lososová, Z.; Otýpková, Z.; Tichý, L.; Martynenko, V. B.; Baisheva, E. Z.

    2010-01-01

    Roč. 37, č. 4 (2010), s. 767-780 ISSN 0305-0270 Institutional research plan: CEZ:AV0Z60050516 Keywords : bryophytes * broad-leaved trees * mixed oak forests Subject RIV: EF - Botanics Impact factor: 4.273, year: 2010

  5. The Sabah Biodiversity Experiment: a long-term test of the role of tree diversity in restoring tropical forest structure and functioning.

    Science.gov (United States)

    Hector, Andy; Philipson, Christopher; Saner, Philippe; Chamagne, Juliette; Dzulkifli, Dzaeman; O'Brien, Michael; Snaddon, Jake L; Ulok, Philip; Weilenmann, Maja; Reynolds, Glen; Godfray, H Charles J

    2011-11-27

    Relatively, little is known about the relationship between biodiversity and ecosystem functioning in forests, especially in the tropics. We describe the Sabah Biodiversity Experiment: a large-scale, long-term field study on the island of Borneo. The project aims at understanding the relationship between tree species diversity and the functioning of lowland dipterocarp rainforest during restoration following selective logging. The experiment is planned to run for several decades (from seed to adult tree), so here we focus on introducing the project and its experimental design and on assessing initial conditions and the potential for restoration of the structure and functioning of the study system, the Malua Forest Reserve. We estimate residual impacts 22 years after selective logging by comparison with an appropriate neighbouring area of primary forest in Danum Valley of similar conditions. There was no difference in the alpha or beta species diversity of transect plots in the two forest types, probably owing to the selective nature of the logging and potential effects of competitive release. However, despite equal total stem density, forest structure differed as expected with a deficit of large trees and a surfeit of saplings in selectively logged areas. These impacts on structure have the potential to influence ecosystem functioning. In particular, above-ground biomass and carbon pools in selectively logged areas were only 60 per cent of those in the primary forest even after 22 years of recovery. Our results establish the initial conditions for the Sabah Biodiversity Experiment and confirm the potential to accelerate restoration by using enrichment planting of dipterocarps to overcome recruitment limitation. What role dipterocarp diversity plays in restoration only will become clear with long-term results.

  6. The Sabah Biodiversity Experiment: a long-term test of the role of tree diversity in restoring tropical forest structure and functioning

    Science.gov (United States)

    Hector, Andy; Philipson, Christopher; Saner, Philippe; Chamagne, Juliette; Dzulkifli, Dzaeman; O'Brien, Michael; Snaddon, Jake L.; Ulok, Philip; Weilenmann, Maja; Reynolds, Glen; Godfray, H. Charles J.

    2011-01-01

    Relatively, little is known about the relationship between biodiversity and ecosystem functioning in forests, especially in the tropics. We describe the Sabah Biodiversity Experiment: a large-scale, long-term field study on the island of Borneo. The project aims at understanding the relationship between tree species diversity and the functioning of lowland dipterocarp rainforest during restoration following selective logging. The experiment is planned to run for several decades (from seed to adult tree), so here we focus on introducing the project and its experimental design and on assessing initial conditions and the potential for restoration of the structure and functioning of the study system, the Malua Forest Reserve. We estimate residual impacts 22 years after selective logging by comparison with an appropriate neighbouring area of primary forest in Danum Valley of similar conditions. There was no difference in the alpha or beta species diversity of transect plots in the two forest types, probably owing to the selective nature of the logging and potential effects of competitive release. However, despite equal total stem density, forest structure differed as expected with a deficit of large trees and a surfeit of saplings in selectively logged areas. These impacts on structure have the potential to influence ecosystem functioning. In particular, above-ground biomass and carbon pools in selectively logged areas were only 60 per cent of those in the primary forest even after 22 years of recovery. Our results establish the initial conditions for the Sabah Biodiversity Experiment and confirm the potential to accelerate restoration by using enrichment planting of dipterocarps to overcome recruitment limitation. What role dipterocarp diversity plays in restoration only will become clear with long-term results. PMID:22006970

  7. Forest productivity: an integrated research and development program

    Science.gov (United States)

    Daniel C. Dey; Thomas R. Crow; Don E. Riemenschneider

    2003-01-01

    In 2000, the North Central Research Station initiated the Forest Productivity Integrated Research Program (North Central Research Station 2001). This program combines the efforts of scientists from across the Station's 13 research work units to examine the current condition of the forests in the North Central Region and their prospects for producing wood and fiber...

  8. An Overview of Hydrologic Studies at Center for Forested Wetlands Research, USDA Forest Service

    Science.gov (United States)

    Devendra M. Amatya; Carl C. Trettin; R. Wayne Skaggs; Timothy J. Callahan; Ge Sun; Masato Miwa; John E. Parsons

    2004-01-01

    Managing forested wetland landscapes for water quality improvement and productivity requires a detailed understanding of functional linkages between ecohydrological processes and management practices. Studies are being conducted at Center for Forested Wetlands Research (CFWR), USDA Forest Service to understand the fundamental hydrologic and biogeochemical processes...

  9. Continental divide: Predicting climate-mediated fragmentation and biodiversity loss in the boreal forest.

    Science.gov (United States)

    Murray, Dennis L; Peers, Michael J L; Majchrzak, Yasmine N; Wehtje, Morgan; Ferreira, Catarina; Pickles, Rob S A; Row, Jeffrey R; Thornton, Daniel H

    2017-01-01

    Climate change threatens natural landscapes through shifting distribution and abundance of species and attendant change in the structure and function of ecosystems. However, it remains unclear how climate-mediated variation in species' environmental niche space may lead to large-scale fragmentation of species distributions, altered meta-population dynamics and gene flow, and disrupted ecosystem integrity. Such change may be especially relevant when species distributions are restricted either spatially or to a narrow environmental niche, or when environments are rapidly changing. Here, we use range-wide environmental niche models to posit that climate-mediated range fragmentation aggravates the direct effects of climate change on species in the boreal forest of North America. We show that climate change will directly alter environmental niche suitability for boreal-obligate species of trees, birds and mammals (n = 12), with most species ranges becoming smaller and shifting northward through time. Importantly, species distributions will become increasingly fragmented, as characterized by smaller mean size and greater isolation of environmentally-suitable landscape patches. This loss is especially pronounced along the Ontario-Québec border, where the boreal forest is narrowest and roughly 78% of suitable niche space could disappear by 2080. Despite the diversity of taxa surveyed, patterns of range fragmentation are remarkably consistent, with our models predicting that spruce grouse (Dendragapus canadensis), boreal chickadee (Poecile hudsonicus), moose (Alces americanus) and caribou (Rangifer tarandus) could have entirely disjunct east-west population segments in North America. These findings reveal potentially dire consequences of climate change on population continuity and species diversity in the boreal forest, highlighting the need to better understand: 1) extent and primary drivers of anticipated climate-mediated range loss and fragmentation; 2) diversity of

  10. Trade-offs between biodiversity conservation and economic development in five tropical forest landscapes

    DEFF Research Database (Denmark)

    Sandker, Marieke; Ruiz-Perez, Manuel; Campbell, Bruce Morgan

    2012-01-01

    to compensate for lost opportunities to earn cash. However, implementation of strategies for reducing emissions from deforestation and forest degradation in locations with low population densities come close to overcoming opportunity costs. Environmental services and subsistence income enhance...... the attractiveness of conservation scenarios to local people and in situations where these benefits are obvious, PES may provide the extra cash incentive to tip the balance in favor of such a scenario. The paper stresses the importance of external factors (such as industrial investments and the development...

  11. The Biodiversity of Urban and Peri-Urban Forests and the Diverse Ecosystem Services They Provide as Socio-Ecological Systems

    Directory of Open Access Journals (Sweden)

    Stephen J. Livesley

    2016-11-01

    Full Text Available Urban and peri-urban forests provide a variety of ecosystem service benefits for urban society. Recognising and understanding the many human–tree interactions that urban forests provide may be more complex but probably just as important to our urbanised society. This paper introduces four themes that link the studies from across the globe presented in this Special Issue: (1 human–tree interactions; (2 urban tree inequity; (3 carbon sequestration in our own neighbourhoods; and (4 biodiversity of urban forests themselves and the fauna they support. Urban forests can help tackle many of the “wicked problems” that confront our towns and cities and the people that live in them. For urban forests to be accepted as an effective element of any urban adaptation strategy, we need to improve the communication of these ecosystem services and disservices and provide evidence of the benefits provided to urban society and individuals, as well as the biodiversity with which we share our town and cities.

  12. Biogeography of Mediterranean Hotspot Biodiversity: Re-Evaluating the 'Tertiary Relict' Hypothesis of Macaronesian Laurel Forests.

    Directory of Open Access Journals (Sweden)

    Paulina Kondraskov

    Full Text Available The Macaronesian laurel forests (MLF are dominated by trees with a laurophyll habit comparable to evergreen humid forests which were scattered across Europe and the Mediterranean in the Paleogene and Neogene. Therefore, MLF are traditionally regarded as an old, 'Tertiary relict' vegetation type. Here we address the question if key taxa of the MLF are relictual. We evaluated the relict hypothesis consulting fossil data and analyses based on molecular phylogenies of 18 representative species. For molecular dating we used the program BEAST, for ancestral trait reconstructions BayesTraits and Lagrange to infer ancestral areas. Our molecular dating showed that the origins of four species date back to the Upper Miocene while 14 originated in the Plio-Pleistocene. This coincides with the decline of fossil laurophyllous elements in Europe since the middle Miocene. Ancestral trait and area reconstructions indicate that MLF evolved partly from pre-adapted taxa from the Mediterranean, Macaronesia and the tropics. According to the fossil record laurophyllous taxa existed in Macaronesia since the Plio- and Pleistocene. MLF are composed of species with a heterogeneous origin. The taxa dated to the Pleistocene are likely not 'Tertiary relicts'. Some species may be interpreted as relictual. In this case, the establishment of most species in the Plio-Pleistocene suggests that there was a massive species turnover before this time. Alternatively, MLF were largely newly assembled through global recruitment rather than surviving as relicts of a once more widespread vegetation. This process may have possibly been triggered by the intensification of the trade winds at the end of the Pliocene as indicated by proxy data.

  13. Biogeography of Mediterranean Hotspot Biodiversity: Re-Evaluating the 'Tertiary Relict' Hypothesis of Macaronesian Laurel Forests.

    Science.gov (United States)

    Kondraskov, Paulina; Schütz, Nicole; Schüßler, Christina; de Sequeira, Miguel Menezes; Guerra, Arnoldo Santos; Caujapé-Castells, Juli; Jaén-Molina, Ruth; Marrero-Rodríguez, Águedo; Koch, Marcus A; Linder, Peter; Kovar-Eder, Johanna; Thiv, Mike

    2015-01-01

    The Macaronesian laurel forests (MLF) are dominated by trees with a laurophyll habit comparable to evergreen humid forests which were scattered across Europe and the Mediterranean in the Paleogene and Neogene. Therefore, MLF are traditionally regarded as an old, 'Tertiary relict' vegetation type. Here we address the question if key taxa of the MLF are relictual. We evaluated the relict hypothesis consulting fossil data and analyses based on molecular phylogenies of 18 representative species. For molecular dating we used the program BEAST, for ancestral trait reconstructions BayesTraits and Lagrange to infer ancestral areas. Our molecular dating showed that the origins of four species date back to the Upper Miocene while 14 originated in the Plio-Pleistocene. This coincides with the decline of fossil laurophyllous elements in Europe since the middle Miocene. Ancestral trait and area reconstructions indicate that MLF evolved partly from pre-adapted taxa from the Mediterranean, Macaronesia and the tropics. According to the fossil record laurophyllous taxa existed in Macaronesia since the Plio- and Pleistocene. MLF are composed of species with a heterogeneous origin. The taxa dated to the Pleistocene are likely not 'Tertiary relicts'. Some species may be interpreted as relictual. In this case, the establishment of most species in the Plio-Pleistocene suggests that there was a massive species turnover before this time. Alternatively, MLF were largely newly assembled through global recruitment rather than surviving as relicts of a once more widespread vegetation. This process may have possibly been triggered by the intensification of the trade winds at the end of the Pliocene as indicated by proxy data.

  14. 25 CFR 163.37 - Forest management research.

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Forest management research. 163.37 Section 163.37 Indians... Management and Operations § 163.37 Forest management research. The Secretary, with the consent of the authorized Indian representatives' is authorized to perform forestry research activities to improve the basis...

  15. Teaching Biodiversity

    Indian Academy of Sciences (India)

    Madhav Gadgil1 2. Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560 012, India. Biodiversity Unit, Jowaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O. Jakkur, Bangalore 560064, India. Resonance – Journal of Science Education. Current Issue : Vol. 23, Issue 2 · Current Issue

  16. Relative contributions of set-asides and tree retention to the long-term availability of key forest biodiversity structures at the landscape scale.

    Science.gov (United States)

    Roberge, Jean-Michel; Lämås, Tomas; Lundmark, Tomas; Ranius, Thomas; Felton, Adam; Nordin, Annika

    2015-05-01

    Over previous decades new environmental measures have been implemented in forestry. In Fennoscandia, forest management practices were modified to set aside conservation areas and to retain trees at final felling. In this study we simulated the long-term effects of set-aside establishment and tree retention practices on the future availability of large trees and dead wood, two forest structures of documented importance to biodiversity conservation. Using a forest decision support system (Heureka), we projected the amounts of these structures over 200 years in two managed north Swedish landscapes, under management scenarios with and without set-asides and tree retention. In line with common best practice, we simulated set-asides covering 5% of the productive area with priority to older stands, as well as ∼5% green-tree retention (solitary trees and forest patches) including high-stump creation at final felling. We found that only tree retention contributed to substantial increases in the future density of large (DBH ≥35 cm) deciduous trees, while both measures made significant contributions to the availability of large conifers. It took more than half a century to observe stronger increases in the densities of large deciduous trees as an effect of tree retention. The mean landscape-scale volumes of hard dead wood fluctuated widely, but the conservation measures yielded values which were, on average over the entire simulation period, about 2.5 times as high as for scenarios without these measures. While the density of large conifers increased with time in the landscape initially dominated by younger forest, best practice conservation measures did not avert a long-term decrease in large conifer density in the landscape initially comprised of more old forest. Our results highlight the needs to adopt a long temporal perspective and to consider initial landscape conditions when evaluating the large-scale effects of conservation measures on forest biodiversity

  17. Proteomics research on forest trees, the most recalcitrant and orphan plant species.

    Science.gov (United States)

    Abril, Nieves; Gion, Jean-Marc; Kerner, René; Müller-Starck, Gerhard; Cerrillo, Rafael M Navarro; Plomion, Christophe; Renaut, Jenny; Valledor, Luis; Jorrin-Novo, Jesús V

    2011-07-01

    The contribution of proteomics to the knowledge of forest tree (the most recalcitrant and almost forgotten plant species) biology is being reviewed and discussed, based on the author's own research work and papers published up to November 2010. This review is organized in four introductory sections starting with the definition of forest trees (1), the description of the environmental and economic importance (2) and its derived current priorities and research lines for breeding and conservation (3) including forest tree genomics (4). These precede the main body of this review: a general overview to proteomics (5) for introducing the forest tree proteomics section (6). Proteomics, defined as scientific discipline or experimental approach, it will be discussed both from a conceptual and methodological point of view, commenting on realities, challenges and limitations. Proteomics research in woody plants is limited to a reduced number of genera, including Pinus, Picea, Populus, Eucalyptus, and Fagus, mainly using first-generation approaches, e.g., those based on two-dimensional electrophoresis coupled to mass spectrometry. This area joins the own limitations of the technique and the difficulty and recalcitrance of the plant species as an experimental system. Furthermore, it contributes to a deeper knowledge of some biological processes, namely growth, development, organogenesis, and responses to stresses, as it is also used in the characterization and cataloguing of natural populations and biodiversity (proteotyping) and in assisting breeding programmes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Trade-Offs Between Biodiversity Conservation and Economic Development in Five Tropical Forest Landscapes

    Science.gov (United States)

    Sandker, Marieke; Ruiz-Perez, Manuel; Campbell, Bruce M.

    2012-10-01

    This study explores how conservation and development are interlinked and quantifies their reciprocal trade-offs. It identifies interventions which hold a promise to improve both conservation and development outcomes. The study finds that development trajectories can either be at the cost of conservation or can benefit conservation, but in all cases sustained poverty negatively affects conservation in the long term. Most scenarios with better outcomes for conservation come at a cost for development and the financial benefits of payments for environmental services (PES) are not sufficient to compensate for lost opportunities to earn cash. However, implementation of strategies for reducing emissions from deforestation and forest degradation in locations with low population densities come close to overcoming opportunity costs. Environmental services and subsistence income enhance the attractiveness of conservation scenarios to local people and in situations where these benefits are obvious, PES may provide the extra cash incentive to tip the balance in favor of such a scenario. The paper stresses the importance of external factors (such as industrial investments and the development of the national economy) in determining landscape scale outcomes, and suggests a negotiating and visioning role for conservation agencies.

  19. Trade-offs between biodiversity conservation and economic development in five tropical forest landscapes.

    Science.gov (United States)

    Sandker, Marieke; Ruiz-Perez, Manuel; Campbell, Bruce M

    2012-10-01

    This study explores how conservation and development are interlinked and quantifies their reciprocal trade-offs. It identifies interventions which hold a promise to improve both conservation and development outcomes. The study finds that development trajectories can either be at the cost of conservation or can benefit conservation, but in all cases sustained poverty negatively affects conservation in the long term. Most scenarios with better outcomes for conservation come at a cost for development and the financial benefits of payments for environmental services (PES) are not sufficient to compensate for lost opportunities to earn cash. However, implementation of strategies for reducing emissions from deforestation and forest degradation in locations with low population densities come close to overcoming opportunity costs. Environmental services and subsistence income enhance the attractiveness of conservation scenarios to local people and in situations where these benefits are obvious, PES may provide the extra cash incentive to tip the balance in favor of such a scenario. The paper stresses the importance of external factors (such as industrial investments and the development of the national economy) in determining landscape scale outcomes, and suggests a negotiating and visioning role for conservation agencies.

  20. Research on Biodiversity and Climate Change at a Distance: Collaboration Networks between Europe and Latin America and the Caribbean.

    Science.gov (United States)

    Dangles, Olivier; Loirat, Jean; Freour, Claire; Serre, Sandrine; Vacher, Jean; Le Roux, Xavier

    2016-01-01

    Biodiversity loss and climate change are both globally significant issues that must be addressed through collaboration across countries and disciplines. With the December 2015 COP21 climate conference in Paris and the recent creation of the Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES), it has become critical to evaluate the capacity for global research networks to develop at the interface between biodiversity and climate change. In the context of the European Union (EU) strategy to stand as a world leader in tackling global challenges, the European Commission has promoted ties between the EU and Latin America and the Caribbean (LAC) in science, technology and innovation. However, it is not clear how these significant interactions impact scientific cooperation at the interface of biodiversity and climate change. We looked at research collaborations between two major regions-the European Research Area (ERA) and LAC-that addressed both biodiversity and climate change. We analysed the temporal evolution of these collaborations, whether they were led by ERA or LAC teams, and which research domains they covered. We surveyed publications listed on the Web of Science that were authored by researchers from both the ERA and LAC and that were published between 2003 and 2013. We also run similar analyses on other topics and other continents to provide baseline comparisons. Our results revealed a steady increase in scientific co-authorships between ERA and LAC countries as a result of the increasingly complex web of relationships that has been weaved among scientists from the two regions. The ERA-LAC co-authorship increase for biodiversity and climate change was higher than those reported for other topics and for collaboration with other continents. We also found strong differences in international collaboration patterns within the LAC: co-publications were fewest from researchers in low- and lower-middle-income countries and most prevalent from

  1. Temperate mountain forest biodiversity under climate change: compensating negative effects by increasing structural complexity.

    Science.gov (United States)

    Braunisch, Veronika; Coppes, Joy; Arlettaz, Raphaël; Suchant, Rudi; Zellweger, Florian; Bollmann, Kurt

    2014-01-01

    Species adapted to cold-climatic mountain environments are expected to face a high risk of range contractions, if not local extinctions under climate change. Yet, the populations of many endothermic species may not be primarily affected by physiological constraints, but indirectly by climate-induced changes of habitat characteristics. In mountain forests, where vertebrate species largely depend on vegetation composition and structure, deteriorating habitat suitability may thus be mitigated or even compensated by habitat management aiming at compositional and structural enhancement. We tested this possibility using four cold-adapted bird species with complementary habitat requirements as model organisms. Based on species data and environmental information collected in 300 1-km2 grid cells distributed across four mountain ranges in central Europe, we investigated (1) how species' occurrence is explained by climate, landscape, and vegetation, (2) to what extent climate change and climate-induced vegetation changes will affect habitat suitability, and (3) whether these changes could be compensated by adaptive habitat management. Species presence was modelled as a function of climate, landscape and vegetation variables under current climate; moreover, vegetation-climate relationships were assessed. The models were extrapolated to the climatic conditions of 2050, assuming the moderate IPCC-scenario A1B, and changes in species' occurrence probability were quantified. Finally, we assessed the maximum increase in occurrence probability that could be achieved by modifying one or multiple vegetation variables under altered climate conditions. Climate variables contributed significantly to explaining species occurrence, and expected climatic changes, as well as climate-induced vegetation trends, decreased the occurrence probability of all four species, particularly at the low-altitudinal margins of their distribution. These effects could be partly compensated by modifying

  2. Temperate mountain forest biodiversity under climate change: compensating negative effects by increasing structural complexity.

    Directory of Open Access Journals (Sweden)

    Veronika Braunisch

    Full Text Available Species adapted to cold-climatic mountain environments are expected to face a high risk of range contractions, if not local extinctions under climate change. Yet, the populations of many endothermic species may not be primarily affected by physiological constraints, but indirectly by climate-induced changes of habitat characteristics. In mountain forests, where vertebrate species largely depend on vegetation composition and structure, deteriorating habitat suitability may thus be mitigated or even compensated by habitat management aiming at compositional and structural enhancement. We tested this possibility using four cold-adapted bird species with complementary habitat requirements as model organisms. Based on species data and environmental information collected in 300 1-km2 grid cells distributed across four mountain ranges in central Europe, we investigated (1 how species' occurrence is explained by climate, landscape, and vegetation, (2 to what extent climate change and climate-induced vegetation changes will affect habitat suitability, and (3 whether these changes could be compensated by adaptive habitat management. Species presence was modelled as a function of climate, landscape and vegetation variables under current climate; moreover, vegetation-climate relationships were assessed. The models were extrapolated to the climatic conditions of 2050, assuming the moderate IPCC-scenario A1B, and changes in species' occurrence probability were quantified. Finally, we assessed the maximum increase in occurrence probability that could be achieved by modifying one or multiple vegetation variables under altered climate conditions. Climate variables contributed significantly to explaining species occurrence, and expected climatic changes, as well as climate-induced vegetation trends, decreased the occurrence probability of all four species, particularly at the low-altitudinal margins of their distribution. These effects could be partly compensated

  3. Forest Service Global Change Research Strategy, 2009-2019

    Science.gov (United States)

    Allen Solomon; Richard Birdsey; Linda A. Joyce; Jennifer Hayes

    2009-01-01

    In keeping with the research goals of the U.S. Climate Change Science Program, the Research and Development agenda of the Forest Service, U.S. Department of Agriculture (USDA), helps define climate change policy and develop best management practices for forests (both rural and urban) and grasslands. These actions are taken to sustain ecosystem health, adjust management...

  4. Spatially Explicit Analysis of Biodiversity Loss Due to Global Agriculture, Pasture and Forest Land Use from a Producer and Consumer Perspective.

    Science.gov (United States)

    Chaudhary, Abhishek; Pfister, Stephan; Hellweg, Stefanie

    2016-04-05

    Anthropogenic land use to produce commodities for human consumption is the major driver of global biodiversity loss. Synergistic collaboration between producers and consumers in needed to halt this trend. In this study, we calculate species loss on 5 min × 5 min grid level and per country due to global agriculture, pasture and forestry by combining high-resolution land use data with countryside species area relationship for mammals, birds, amphibians, and reptiles. Results show that pasture was the primary driver of biodiversity loss in Madagascar, China and Brazil, while forest land use contributed the most to species loss in DR Congo and Indonesia. Combined with the yield data, we quantified the biodiversity impacts of 1 m(3) of roundwood produced in 139 countries, concluding that tropical countries with low timber yield and a large presence of vulnerable species suffer the highest impact. We also calculated impacts per kg for 160 crops grown in different countries and linked it with FAO food trade data to assess the biodiversity impacts embodied in Swiss food imports. We found that more than 95% of Swiss consumption impacts rest abroad with cocoa, coffee and palm oil imports being responsible for majority of damage.

  5. The taxonomic distinctness of macroinvertebrate communities of Atlantic Forest streams cannot be predicted by landscape and climate variables, but traditional biodiversity indices can.

    Science.gov (United States)

    Roque, F O; Guimarães, E A; Ribeiro, M C; Escarpinati, S C; Suriano, M T; Siqueira, T

    2014-11-01

    Predicting how anthropogenic activities may influence the various components of biodiversity is essential for finding ways to reduce diversity loss. This challenge involves: a) understanding how environmental factors influence diversity across different spatial scales, and b) developing ways to measure these relationships in a way that is fast, economical, and easy to communicate. In this study, we investigate whether landscape and bioclimatic variables could explain variation in biodiversity indices in macroinvertebrate communities from 39 Atlantic Forest streams. In addition to traditional diversity measures, i.e., species richness, abundance and Shannon index, we used a taxonomic distinctness index that measures the degree of phylogenetic relationship among taxa. The amount of variation in the diversity measures that was explained by environmental and spatial variables was estimated using variation partitioning based on multiple regression. Our study demonstrates that taxonomic distinctness does not respond in the same way as the traditional used in biodiversity studies. We found no evidence that taxonomic distinctness responds predictably to variation in landscape metrics, indicating the need for the incorporation of predictors at multiple scales in this type of study. The lack of congruence between taxonomic distinctness and other indices and its low predictability may be related to the fact that this measure expresses long-term evolutionary adaptation to ecosystem conditions, while the other traditional biodiversity metrics respond to short-term environmental changes.

  6. Biodiversity and ecosystem processes: lessons from nature to improve management of planted forests for REDD-plus

    Science.gov (United States)

    Ian D. Thompson; Kimiko Okabe; John A. Parrotta; David I. Forrester; Eckehard Brockerhoff; Hervé Jactel; Hisatomo. Taki

    2014-01-01

    Planted forests are increasingly contributing wood products and other ecosystem services at a global scale. These forests will be even more important as carbon markets develop and REDD-plus forest programs (forests used specifically to reduce atmospheric emissions of CO2 through deforestation and forest degradation) become common. Restoring degraded and deforested...

  7. Range of Variability in Southern Coastal Plain Forests: Its Historical, Contemporary, and Future Role in Sustaining Biodiversity

    Directory of Open Access Journals (Sweden)

    Robert J. Mitchell

    2009-06-01

    Full Text Available Historical range of variation (HRV has been used as a conceptual tool to determine appropriate management actions to sustain or restore diversity of ecological systems. This concept has come into question for both biological and social considerations, and the southeastern United States is a good model system to test its utility. Southeastern Coastal Plain upland pine savannas and woodlands and their associated wetlands are among the most diverse communities in temperate North America, having both high levels of species richness and large numbers of endemic flora and fauna. However, this diversity is intimately linked with disturbance regimes. Maintaining frequent fire, varied in season based on changing management objectives through time, is the most important management tool for sustaining biodiversity. Moreover, the landscape has been molded by a long history of intense land use that has altered both the biological and the social landscape in which management occurs, and threatens the native diversity. Management must anticipate likely trends and adopt strategies that provide flexibility for managers to deal with the future, both socially and ecologically. In the Southeast, the most dominant trend is associated with urbanization and forest fragmentation, which results from urban sprawl. This issue joins others - fire and smoke, logging, access, in-holdings, and the uncertainty of scientific models, for example - as matters of major concern to the public. Ultimately, it is the public that eventually grants or withholds social permission to manage. We explore, here, the potential and the limitations for how history can inform future management. Rather than being used as a specific management tool, we find that one purpose for which HRV may be well suited is serving as a broad communication framework to help diverse publics understand the concept of landscape dynamics. This approach would provide the fundamental background material for

  8. Gap analysis for forest productivity research investments

    Science.gov (United States)

    E.D. Vance

    2010-01-01

    The US forest sector is in the midst of an era of transition and opportunity. Expectations that forests are managed to sustain wildlife, water, soil, and other environmental values are increasing as are certification systems and state and national initiatives designed to insure those expectations are met.

  9. Biodiversity and ecology of algae in mountain bogs (Bohemian Forest, Central Europe)

    Czech Academy of Sciences Publication Activity Database

    Lederer, F.; Papáčková, Lenka

    2002-01-01

    Roč. 144, č. 106 (2002), s. 151-183 ISSN 0342-1120 R&D Projects: GA ČR GA206/96/1115; GA ČR GA206/99/1411; GA ČR GA206/00/P063 Institutional research plan: CEZ:AV0Z6005908 Keywords : cyanobacteria * algae * patterned mires Subject RIV: EF - Botanics

  10. MycoKey round table discussions of future directions in research on chemical detection methods, genetics and biodiversity of mycotoxins

    Science.gov (United States)

    MycoKey, an EU-funded Horizon 2020 project, includes a series of “Roundtable Discussions” to gather information on trending research areas in the field of mycotoxicology. This presentation includes summaries of the Roundtable Discussions on the role of Genetics and Biodiversity in mycotoxin product...

  11. Analysis of long-term forest bird monitoring data from national forests of the western Great Lakes Region

    Science.gov (United States)

    Gerald J. Niemi; Robert W. Howe; Brian R. Sturtevant; Linda R. Parker; Alexis R. Grinde; Nicholas P. Danz; Mark D. Nelson; Edmund J. Zlonis; Nicholas G. Walton; Erin E. Gnass Giese; Sue M. Lietz

    2016-01-01

    Breeding bird communities in forests of the western Great Lakes region are among the most diverse in North America, but the forest environment in this region has changed dramatically during the past 150 years. To address concerns about loss of biodiversity due to ongoing forest harvesting and to better inform forest planning, researchers have systematically monitored...

  12. The Protection of Forest Biodiversity can Conflict with Food Access for Indigenous People

    Directory of Open Access Journals (Sweden)

    Olivia Sylvester

    2016-01-01

    Full Text Available International protected area (PA management policies recognise the importance of respecting Indigenous rights. However, little research has been conducted to evaluate how these policies are being enforced. We evaluated whether Indigenous rights to access traditional food were being respected in La Amistad Biosphere Reserve, Costa Rica. By examining land management documents, we found that PA regulations have the potential to restrict traditional food access because these regulations ban shifting agriculture and heavily restrict hunting; these regulations do not address the harvest of edible plants. By working with Bribri people, we found multiple negative impacts that PAs had on: health, nutrition, passing on cultural teachings to youth, quality of life, cultural identity, social cohesion and bonding, as well as on the land and non-human beings. We propose three steps to better support food access in PAs in Costa Rica and elsewhere. First, a right to food framework should inform PA management regarding traditional food harvesting. Second, people require opportunities to define what harvesting activities are traditional and sustainable and these activities should be respected in PA management. Third, harvesting regulations need to be clearly communicated by land managers to resource users so people have the necessary information to exercise their rights to access food.

  13. Experimental forests and ranges : 100 years of research success stories

    Science.gov (United States)

    Gail Wells; Deborah Hayes; Katrina Krause; Ann Bartuska; Susan LeVan-Green; Jim Anderson; Tivoli Gough; Mary Adams; Thomas Schuler; Randy Kolka; Steve Sebestyen; Laura Kenefic; John Brissette; Susan Stout; Keith Kanoti; Fred Swanson; Sarah Greene; Margaret Herring; Martin Ritchie; Carl Skinner; Tom Lisle; Elizabeth Keppeler; Leslie Reid; Peter Wohlegemuth; Stanley Kitchen; Ward McCaughey; Jim Guldin; Don Bragg; Michael Shelton; David Loftis; Cathryn Greenberg; Julia Murphy

    2009-01-01

    In 2008, Forest Service Research and Development celebrated the Centennial Anniversary of these Experimental Forests and Ranges. This publication celebrates the many scientists who over the course of decades conducted the long-term studies that began and are continuing to shed light on important natural resource issues. Story suggestions were solicited from the...

  14. Nekatere značilnosti biotske pestrosti živalstva slovenskih gozdov: Some characteristics of animal biodiversity of Slovene forest:

    OpenAIRE

    Kos, Ivan

    2000-01-01

    More than a half of the area of Slovenia is covered by forest, which is its most important natural heritage. Due to near-to-nature forest management, the forest is well-preserved, with developed plant and animal communities. Most Slovenian animal species live in the forest and their survival depends on the forest conditions.Species composition is not well known and only few animal groups are investigated in detail; for example mammals (Mammalia), birds (Aves), butterflies (Lepidoptera), spide...

  15. SRTM-DEM and Landsat ETM+ data for mapping tropical dry forest cover and biodiversity assessment in Nicaragua

    Science.gov (United States)

    S.E. Sesnie; S.E. Hagell; S.M. Otterstrom; C.L. Chambers; B.G. Dickson

    2008-01-01

    Tropical dry and deciduous forest comprises as much as 42% of the world’s tropical forests, but has received far less attention than forest in wet tropical areas. Land use change threatens to greatly reduce the extent of dry forest that is known to contain high levels of plant and animal diversity. Forest fragmentation may further endanger arboreal mammals that play...

  16. Biodiversity, carbon stocks and community monitoring in traditional agroforestry practices

    DEFF Research Database (Denmark)

    Hartoyo, Adisti Permatasari Putri; Siregar, Iskandar Z.; Supriyanto

    2016-01-01

    Traditional agroforestry practices in Berau, East Kalimantan, are suitable land use types to conserve that potentially support the implementation of REDD+. The objectives of this research are to assess biodiversity and carbon stock in various traditional agroforestry practices, also to determine...... the accuracy of the ability levels of local community in biodiversity and carbon stock monitoring. This paper presents the implementation plan and preliminary data in Kampung Birang and Kampung Merabu, in Berau district. Professional forester-led methods of biodiversity and carbon stock assessment follow...

  17. Integrative taxonomy on the fast track - towards more sustainability in biodiversity research.

    Science.gov (United States)

    Riedel, Alexander; Sagata, Katayo; Suhardjono, Yayuk R; Tänzler, Rene; Balke, Michael

    2013-03-27

    A so called "taxonomic impediment" has been recognized as a major obstacle to biodiversity research for the past two decades. Numerous remedies were then proposed. However, neither significant progress in terms of formal species descriptions, nor a minimum standard for descriptions have been achieved so far. Here, we analyze the problems of traditional taxonomy which often produces keys and descriptions of limited practical value. We suggest that phylogenetics and phenetics had a subtle and so far unnoticed effect on taxonomy leading to inflated species descriptions. The term "turbo-taxonomy" was recently coined for an approach combining cox1 sequences, concise morphological descriptions by an expert taxonomist, and high-resolution digital imaging to streamline the formal description of larger numbers of new species. We propose a further development of this approach which, together with open access web-publication and automated pushing of content from journal into a wiki, may create the most efficient and sustainable way to conduct taxonomy in the future. On demand, highly concise descriptions can be gradually updated or modified in the fully versioned wiki-framework we use. This means that the visibility of additional data is not compromised, while the original species description -the first version- remains preserved in the wiki, and of course in the journal version. A DNA sequence database with an identification engine replaces an identification key, helps to avoid synonyms and has the potential to detect grossly incorrect generic placements. We demonstrate the functionality of a species-description pipeline by naming 101 new species of hyperdiverse New Guinea Trigonopterus weevils in the open-access journal ZooKeys. Fast track taxonomy will not only increase speed, but also sustainability of global species inventories. It will be of great practical value to all the other disciplines that depend on a usable taxonomy and will change our perception of global

  18. Options for promoting high-biodiversity REDD+

    Energy Technology Data Exchange (ETDEWEB)

    Swan, Steve; Mcnally, Richard; Grieg-Gran, Maryanne; Roe, Dilys; Mohammed, Essam Yassin

    2011-11-15

    International climate and biodiversity conventions agree that to be effective in the long term, strategies to reduce emissions from deforestation, forest degradation, conservation and enhancement of forest carbon stocks, and sustainable forest management (REDD+), must not undermine biodiversity. But how do countries achieve 'high-biodiversity REDD+' in practice? At a global level, options include immediate policy strengthening in international negotiations; promotion of co-benefit standards; and financial incentives and preferences for buying countries. At a national level, developing countries can also promote high-biodiversity REDD+ through more coherent policies; integrated planning; regulatory and economic instruments; and improved monitoring of biodiversity impacts.

  19. Current applications of GPR in forest research

    Science.gov (United States)

    John Butnor; Kurt Johnsen; Lisa Samuelson; Michele Pruyn

    2009-01-01

    Forests, both naturally regenerated stands and plantations are complex, long-lived systems, which can be difficult to assess and monitor over time. This is especially true of belowground biomass and internal features of trees which are inaccessible except by destructive sampling. Traditional methods are expensive, destructive, time-consuming, usually yield a small...

  20. Bridging the gap between biodiversity data and policy reporting needs: An essential biodiversity variables perspective

    CSIR Research Space (South Africa)

    Geijzendorffer, IR

    2016-01-01

    Full Text Available Conservation Monitoring Centre, Pereira, Henrique; German Centre for Integrative Biodiversity Research, ; Institute of Biology, Brotons, Lluis; Center for Ecological Research and Forestry Applications (CREAF), ; European Bird Census Council (EBCC..., 06108 Halle (Saale), 13 Germany 14 5. European Bird Census Council (EBCC) & Forest Science Center of Catalonia (CEMFOR-CTFC), 25280 15 Solsona, Spain. 16 6. Center for Ecological Research and Forestry Applications (CREAF), 08193 Bellaterra, Spain. 17...

  1. Overview of contemporary issues of forest research and management in China

    Science.gov (United States)

    Hong S. He; Stephen R. Shifley; Frank R., III Thompson

    2011-01-01

    With 207 million ha of forest covering 22% of its land area, China ranks fifth in the world in forest area. Rapid economic growth, climate change, and forest disturbances pose new, complex challenges for forest research and management. Progress in meeting these challenges is relevant beyond China, because China's forests represent 34% of Asia's forests and 5...

  2. Effects of small-scale management on biodiversity of an abandoned coppice forest in Japan: a case study on vegetation regeneration and ground beetle community

    Directory of Open Access Journals (Sweden)

    S. Shibuya

    2008-11-01

    Full Text Available We studied the effects of small-scale vegetation disturbances on biodiversity in an abandoned coppice forest in central Japan during 2004–2006. We assessed biodiversity by examining vegetation regeneration and by changes in the diversity and abundance of ground beetles after experimental manipulations including tree felling, vegetation clearing, and litter removal. Our experimental design was dictated by the need of producing only small disturbances; therefore we could not replicate plots. Instead, we used a repeated measures approach during three years to document the consistency of experimental effects. We found that the diversity of regenerating vegetation increased dramatically due to recruitment of many new species after clearing ground vegetation. Tree cutting caused strong environmental changes and affected vegetation regeneration rate but not diversity. Tree cutting also significantly increased the diversity of ground beetle species, while litter removal affected the abundance of ground beetles. Our results suggest that a sound conservation practice shall combine tree cutting with ground vegetation clearing and litter removal. Besides, conservation of abandoned forests may be based on low-intensity labor, including tree cutting on restricted areas. Finally, ground beetles appeared to be surprisingly sensitive to vegetation disturbance on a restricted area and thus can be suggested for monitoring such small-scale-disturbance-based conservation practices.

  3. The Multiple Species Inventory and Monitoring Protocol: A Population, Community, and Biodiversity Monitoring Solution for National Forest System Lands

    Science.gov (United States)

    P. N. Manley; B. Van Horne

    2006-01-01

    The U.S. Forest Service manages approximately 76 million ha (191 million acres) of National Forest System (NFS) lands. The National Forest Management Act (1976) recognizes the importance of maintaining species and ecosystem diversity on NFS lands as a critical component of our ecological and cultural heritage. Information on the condition of populations and habitats of...

  4. Modelling and mapping of spatial differentiated impacts of nitrogen input to ecosystems within the framework of the UNECE-Convention of Air Pollution Prevention. Part III. Modelling the effects of N-deposition on the biodiversity of plant communities in temperate forests; Modellierung und Kartierung raeumlich differenzierter Wirkungen von Stickstoffeintraegen in Oekosysteme im Rahmen der UNECE-Luftreinhaltekonvention. Teilbericht III. Modellierung der Wirkung der Stickstoff-Deposition auf die biologische Vielfalt der Pflanzengesellschaften von Waeldern der gemaessigten Breiten

    Energy Technology Data Exchange (ETDEWEB)

    Jenssen, Martin [Waldkunde-Institut Eberswalde GmbH - W.I.E., Bad Freienwalde (Oder) (Germany)

    2010-03-15

    Semi-natural ecosystems are exposed to high atmospheric deposition for decades. In contrary to sulphur deposition which could be significantly reduced due to international conventions on air pollution prevention during the last decades, deposition of both, reduced and oxidized nitrogen is still on a very high level in average 40 kg N ha{sup -1} yr{sup -1} in forest ecosystems in Germany. The FuE-Project ''Modelling and mapping of spatial differentiated impacts of nitrogen input to ecosystems within the framework of the UNECE - Convention of Air Pollution Prevention'' was jointly conducted by 4 partner institutions and studied impacts of atmospheric nitrogen deposition and climate change on physico-chemical properties of forest soils, nutrient storage and nutrient export (Karlsruhe Research Centre, IMK-IFU) as well as biodiversity of vegetation (OeKO-DATA and Institute for Forest Science Eberswalde) and soil organisms (Giessen University). Work carried out at the Institute for Forest Science Eberswalde concentrated on modeling the effect of N-deposition on plant biodiversity in forests of the Northeast German lowlands. The model approach is based on 722 probability density functions modeling the distribution of about 400 plant species over chemical top-soil parameters C/N-ratio and pH-value. On this base an indicator value model was developed and applied to the analysis of forest vegetation dynamics due to N-deposition-induced top soil dynamics since the middle of the last century. Threshold values for deposition-induced changes of top soil were derived for most important forest ecosystems types on sites not influenced by ground water. These threshold values correspond to four different classes of endangering of plant biodiversity. Coupling with the biogeochemical process model of IMK-IFU yielded projections of endangering of plant biodiversity for selected forest sites up to the year 2050. (orig.)

  5. Tropical forests and the changing earth system.

    Science.gov (United States)

    Lewis, Simon L

    2006-01-29

    Tropical forests are global epicentres of biodiversity and important modulators of the rate of climate change. Recent research on deforestation rates and ecological changes within intact forests, both areas of recent research and debate, are reviewed, and the implications for biodiversity (species loss) and climate change (via the global carbon cycle) addressed. Recent impacts have most likely been: (i) a large source of carbon to the atmosphere, and major loss of species, from deforestation and (ii) a large carbon sink within remaining intact forest, accompanied by accelerating forest dynamism and widespread biodiversity changes. Finally, I look to the future, suggesting that the current carbon sink in intact forests is unlikely to continue, and that the tropical forest biome may even become a large net source of carbon, via one or more of four plausible routes: changing photosynthesis and respiration rates, biodiversity changes in intact forest, widespread forest collapse via drought, and widespread forest collapse via fire. Each of these scenarios risks potentially dangerous positive feedbacks with the climate system that could dramatically accelerate and intensify climate change. Given that continued land-use change alone is already thought to be causing the sixth mass extinction event in Earth's history, should such feedbacks occur, the resulting biodiversity and societal consequences would be even more severe.

  6. Determination of the Sites with Conservation Priority in Research Forests of Yasouj University Based on Physiographic Factors

    Directory of Open Access Journals (Sweden)

    R. Zolfaghari

    2013-03-01

    Full Text Available Regarding high economic and conservative values of Zagros forests, and livelihood dependency of local people these recourses, determination of sites with higher conservation index can help us to maintain biodiversity of these forests more efficiently. Therefore, 49 plots with 450 m2 in area accompanied by 1, 10 and 45 m2 subplots were taken as systematic random design in research forests of Yasouj University. The number of species in each plot and subplot was recorded. The conservation values for different physiographic regions of forest were calculated using integrative parameters such as the number of species per plot, number of rare species per plot, number of tree species per plot, Jaccards similarity coefficient and slope of species-log(area. Comparing the conservation index in different physiographic sites revealed that the areas located in the north, hills and lower altitudes can be considered for in situ conservation due to higher number of trees, rare species and total plant species, species-log (area slope and lower amount of Jaccard similarity coefficient. But, vegetative sites located in lower slopes and south, because of lower conservation index, can be used for other multipurpose forestry activities. Using this index for different forest areas can be potentially conducted for better conservation and management of Zagros forests.

  7. Biodiversity as a multidimensional construct: a review, framework and case study of herbivory's impact on plant biodiversity

    Science.gov (United States)

    Naeem, S.; Prager, Case; Weeks, Brian; Varga, Alex; Flynn, Dan F. B.; Griffin, Kevin; Muscarella, Robert; Palmer, Matthew; Wood, Stephen; Schuster, William

    2016-01-01

    Biodiversity is inherently multidimensional, encompassing taxonomic, functional, phylogenetic, genetic, landscape and many other elements of variability of life on the Earth. However, this fundamental principle of multidimensionality is rarely applied in research aimed at understanding biodiversity's value to ecosystem functions and the services they provide. This oversight means that our current understanding of the ecological and environmental consequences of biodiversity loss is limited primarily to what unidimensional studies have revealed. To address this issue, we review the literature, develop a conceptual framework for multidimensional biodiversity research based on this review and provide a case study to explore the framework. Our case study specifically examines how herbivory by whitetail deer (Odocoileus virginianus) alters the multidimensional influence of biodiversity on understory plant cover at Black Rock Forest, New York. Using three biodiversity dimensions (taxonomic, functional and phylogenetic diversity) to explore our framework, we found that herbivory alters biodiversity's multidimensional influence on plant cover; an effect not observable through a unidimensional approach. Although our review, framework and case study illustrate the advantages of multidimensional over unidimensional approaches, they also illustrate the statistical and empirical challenges such work entails. Meeting these challenges, however, where data and resources permit, will be important if we are to better understand and manage the consequences we face as biodiversity continues to decline in the foreseeable future. PMID:27928041

  8. Biodiversity as a multidimensional construct: a review, framework and case study of herbivory's impact on plant biodiversity.

    Science.gov (United States)

    Naeem, S; Prager, Case; Weeks, Brian; Varga, Alex; Flynn, Dan F B; Griffin, Kevin; Muscarella, Robert; Palmer, Matthew; Wood, Stephen; Schuster, William

    2016-12-14

    Biodiversity is inherently multidimensional, encompassing taxonomic, functional, phylogenetic, genetic, landscape and many other elements of variability of life on the Earth. However, this fundamental principle of multidimensionality is rarely applied in research aimed at understanding biodiversity's value to ecosystem functions and the services they provide. This oversight means that our current understanding of the ecological and environmental consequences of biodiversity loss is limited primarily to what unidimensional studies have revealed. To address this issue, we review the literature, develop a conceptual framework for multidimensional biodiversity research based on this review and provide a case study to explore the framework. Our case study specifically examines how herbivory by whitetail deer (Odocoileus virginianus) alters the multidimensional influence of biodiversity on understory plant cover at Black Rock Forest, New York. Using three biodiversity dimensions (taxonomic, functional and phylogenetic diversity) to explore our framework, we found that herbivory alters biodiversity's multidimensional influence on plant cover; an effect not observable through a unidimensional approach. Although our review, framework and case study illustrate the advantages of multidimensional over unidimensional approaches, they also illustrate the statistical and empirical challenges such work entails. Meeting these challenges, however, where data and resources permit, will be important if we are to better understand and manage the consequences we face as biodiversity continues to decline in the foreseeable future. © 2016 The Authors.

  9. Linking soil biodiversity and agricultural soil management

    NARCIS (Netherlands)

    Thiele-Bruhn, S.; Bloem, J.; de Vries, F.T.; Kalbitz, K.; Wagg, C.

    2012-01-01

    Soil biodiversity vastly exceeds aboveground biodiversity, and is prerequisite for ecosystem stability and services. This review presents recent findings in soil biodiversity research focused on interrelations with agricultural soil management. Richness and community structure of soil biota depend

  10. Socioeconomic Root Causes of Biodiversity Loss in Madagascar

    Science.gov (United States)

    Anitry N. Ratsifandrihamanana; Dawn Montanye; Sarah Christiansen; Sheila O' Connor

    2006-01-01

    In 2000 and 2001 a root cause analysis was conducted for the Spiny Forest Ecoregion in Madagascar, identifying the local level root causes of biodiversity loss in the ecoregion as well as the policy and institutional issues at the national and international levels that contribute to them. Most of the research was conducted in and around Tulear and Fort Dauphin....

  11. Turning data into knowledge for over 50 years: USDA Forest Service research on the Penobscot Experimental Forest

    Science.gov (United States)

    Laura S. Kenefic; Paul E. Sendak; John C. Brissette

    2006-01-01

    Scientists from the Northeastern Research Station of the USDA Forest Service have been conducting long-term silvicultural research on the Penobscot Experimental Forest (PEF) in Maine since the early 1950s. The core experiment, which includes 10 replicated treatments, has generated an extensive dataset on forest response to both silvicultural treatments and exploitative...

  12. Management of Giant Sequoia at Blodgett Forest Research Station

    Science.gov (United States)

    Robert C. Heald

    1986-01-01

    Researchers at Blodgett Forest Research Station, University of California, are studying giant sequoia (Sequoiadendron giganteum [Lindl.] Buchholz) growth under both even-age and selection management in relationship to the presence of several shrub species and five native conifers. The sequoias are also being studied under several types of site...

  13. A Mapping of Marine Biodiversity Research Trends and Collaboration in the East Asia Region from 1996–2015

    Directory of Open Access Journals (Sweden)

    Jungjoon Kim

    2016-10-01

    Full Text Available Many countries define policies to manage oceans and coastal areas in order to utilize marine ecosystems strategically. When we reviewed the strategies and policies of various countries in relation to ocean sustainability, we found that biodiversity preservation is a key issue for policies related to sustainable marine development. We investigated the research trends and collaboration status of China, Japan and South Korea regarding marine biodiversity through the analysis of scientific articles using bibliometric analysis. The results showed that Japan collaborated the most with other countries compared to China and South Korea. All three countries collaborated with the Organization for Economic Cooperation and Development (OECD and Association of Southeast Asian Nations (ASEAN countries frequently. South Korea showed the strongest inter-collaboration amongst China, Japan and South Korea. Microorganism research is a common research topic in China, Japan and South Korea. Each country demonstrated its own prominent research area, such as local region research in China, deep-sea research in Japan and aquaculture research in South Korea.

  14. SRTM-DEM AND LANDSAT ETM+ DATA FOR MAPPING TROPICAL DRY FOREST COVER AND BIODIVERSITY ASSESSMENT IN NICARAGUA

    Directory of Open Access Journals (Sweden)

    Brett G. Dickson

    2008-08-01

    Full Text Available Tropical dry and deciduous forest comprises as much as 42% of the world’s tropical forests, but hasreceived far less attention than forest in wet tropical areas. Land use change threatens to greatly reducethe extent of dry forest that is known to contain high levels of plant and animal diversity. Forest fragmentationmay further endanger arboreal mammals that play principal role in the dispersal of large seeded fruits, plantcommunity assembly and diversity in these systems. Data on the spatial arrangement and extent of dryforest and other land cover types is greatly needed to enhance studies of forest fragmentation effects onanimal populations. To address this issue, we compared two Random Forest decision tree models forland cover classification in a Nicaraguan tropical dry forest landscape with and without the use of terrainvariables derived from Space Shuttle Radar and Topography Mission digital elevation data (SRTM-DEM.Landsat Enhanced Thematic Mapper (ETM+ bands and vegetation indices were the principle source ofspectral variables used. Overall classification accuracy for nine land cover types improved from 82.4% to87.4% once terrain and spectral predictor variables were combined. Error matrix comparisons showedthat class accuracy was significantly greater (z = 2.57, p-value < 0.05 with the inclusion of terrain variables(e.g., slope, elevation and topographic wetness index in decision tree models. Variable importance metricsindicated that a corrected Normalized Difference Vegetation Index (NDVIc and terrain variables improveddiscrimination of forest successional types and wetlands in the study area. Results from this study demonstratethe capability of terrain variables to enhance land cover classification and habitat mapping useful tobiodiversity assessment in tropical dry forest.

  15. Mapping the Forest Type and Land Cover of Puerto Rico, a Component of the Caribbean Biodiversity Hotspot

    Science.gov (United States)

    Eileen Helmer; Olga Ramos; T. DEL M. LÓPEZ; Maya Quinones; W. DIAZ

    2002-01-01

    The Caribbean is one of the world’s centers of biodiversity and endemism. As in similar regions, many of its islands have complex topography, climate and soils, and ecological zones change over small areas. A segmented, supervised classification approach using Landsat TM imagery enabled us to develop the most detailed island-wide map of Puerto Rico’s extremely complex...

  16. Towards monitoring biodiversity in Amazonian forests: how regular samples capture meso-scale altitudinal variation in 25 km2 plots.

    Science.gov (United States)

    Norris, Darren; Fortin, Marie-Josée; Magnusson, William E

    2014-01-01

    Ecological monitoring and sampling optima are context and location specific. Novel applications (e.g. biodiversity monitoring for environmental service payments) call for renewed efforts to establish reliable and robust monitoring in biodiversity rich areas. As there is little information on the distribution of biodiversity across the Amazon basin, we used altitude as a proxy for biological variables to test whether meso-scale variation can be adequately represented by different sample sizes in a standardized, regular-coverage sampling arrangement. We used Shuttle-Radar-Topography-Mission digital elevation values to evaluate if the regular sampling arrangement in standard RAPELD (rapid assessments ("RAP") over the long-term (LTER ["PELD" in Portuguese])) grids captured patters in meso-scale spatial variation. The adequacy of different sample sizes (n = 4 to 120) were examined within 32,325 km2/3,232,500 ha (1293×25 km2 sample areas) distributed across the legal Brazilian Amazon. Kolmogorov-Smirnov-tests, correlation and root-mean-square-error were used to measure sample representativeness, similarity and accuracy respectively. Trends and thresholds of these responses in relation to sample size and standard-deviation were modeled using Generalized-Additive-Models and conditional-inference-trees respectively. We found that a regular arrangement of 30 samples captured the distribution of altitude values within these areas. Sample size was more important than sample standard deviation for representativeness and similarity. In contrast, accuracy was more strongly influenced by sample standard deviation. Additionally, analysis of spatially interpolated data showed that spatial patterns in altitude were also recovered within areas using a regular arrangement of 30 samples. Our findings show that the logistically feasible sample used in the RAPELD system successfully recovers meso-scale altitudinal patterns. This suggests that the sample size and regular arrangement

  17. Loss of biodiversity in a conservation unit of the Brazilian Atlantic Forest: the effect of introducing non-native fish species.

    Science.gov (United States)

    Fragoso-Moura, E N; Oporto, L T; Maia-Barbosa, P M; Barbosa, F A R

    2016-02-01

    The introduction of species has become an important problem for biodiversity and natural ecosystem conservation. The lake system of the middle Rio Doce (MG, Brazil) comprises c. 200 lakes at various conservation states, of which 50 are located within the Rio Doce State Park (PERD). Previous studies had verified several of these lakes suffered non-native fishes introductions and the presence of these species needs for the implementation of actions aiming at not only their control but also the preservation of the native species. This study discusses the effects of non-native fish species in the largest conservation unit of Atlantic Forest in Minas Gerais, southeast of Brazil, using data from 1983 to 2010 distributed as follow: data prior to 2006 were obtained from previous studies, and data from September 2006 to July 2010 were obtained in Lake Carioca at four sampling stations using gillnets, seine nets and sieve. A total of 17 fish species was collected (2006-2010) of which five were introduced species. Among the small to medium size native species (30 to 2000 mm standard length) seven had disappeared, two are new records and one was recaptured. The non-native species Cichla kelberi (peacock bass) and Pygocentrus nattereri (red piranha) are within the most abundant captured species. Integrated with other actions, such as those preventing new introductions, a selective fishing schedule is proposed as an alternative approach to improve the conservation management actions and the local and regional biodiversity maintenance.

  18. Long-term datasets in biodiversity research and monitoring: assessing change in ecological communities through time.

    Science.gov (United States)

    Magurran, Anne E; Baillie, Stephen R; Buckland, Stephen T; Dick, Jan McP; Elston, David A; Scott, E Marian; Smith, Rognvald I; Somerfield, Paul J; Watt, Allan D

    2010-10-01

    The growing need for baseline data against which efforts to reduce the rate of biodiversity loss can be judged highlights the importance of long-term datasets, some of which are as old as ecology itself. We review methods of evaluating change in biodiversity at the community level using these datasets, and contrast whole-community approaches with those that combine information from different species and habitats. As all communities experience temporal turnover, one of the biggest challenges is distinguishing change that can be attributed to external factors, such as anthropogenic activities, from underlying natural change. We also discuss methodological issues, such as false alerts and modifications in design, of which users of these data sets need to be aware. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Temperate and boreal old-growth forests: how do their growth dynamics and biodiversity differ from young stands and managed forests?

    NARCIS (Netherlands)

    Schulze, E.D.; Hessenmoeller, D; Knohl, A.; Luyssaert, S; Boerner, A; Grace, J.

    2009-01-01

    This chapter investigates biomass, net primary productivity (NPP), and net ecosystem productivity (NEP) of boreal and temperate forest ecosystems in relation to stand density and age. Forests may accumulate woody biomass at constant rate for centuries and there is little evidence of an age-related

  20. Could the canopy structure of bryophytes serve as an indicator of microbial biodiversity? A test for testate amoebae and microcrustaceans from a subtropical cloud forest in Dominican Republic.

    Science.gov (United States)

    Acosta-Mercado, D; Cancel-Morales, N; Chinea, J D; Santos-Flores, C J; De Jesús, I Sastre

    2012-07-01

    The mechanisms that ultimately regulate the diversity of microbial eukaryotic communities in bryophyte ecosystems remain a contentious topic in microbial ecology. Although there is robust consensus that abiotic factors, such as water chemistry of the bryophyte and pH, explain a significant proportion of protist and microcrustacean diversity, there is no systematic assessment of the role of bryophyte habitat complexity on such prominent microbial groups. Water-holding capacity is correlated with bryophyte morphology and canopy structure. Similarly, canopy structure explains biodiversity dynamics of the macrobiota suggesting that canopy structure may also be a potential parameter for understanding microbial diversity. Canopy roughness of the dominant bryophyte species within the Bahoruco Cloud Forest, Cachote, Dominican Republic, concomitant with their associated diversity of testate amoebae and microcrustaceans was estimated to determine whether canopy structure could be added to the list of factors explaining microbial biodiversity in bryophytes. We hypothesized that smooth (with high moisture content) canopies will have higher species richness, density, and biomass of testate amoebae and higher richness and density of microcrustaceans than rough (desiccation-prone) canopies. For testate amoebae, we found 83 morphospecies with relative low abundances. Species richness and density differed among bryophytes with different bryophyte canopy structures and based on non-metric multidimensional scaling, canopy roughness explained 25% of the variation in species composition although not as predicted. Acroporium pungens (low roughness, LR) had the lowest species richness (2 ± 0.61 SD per gram dry weight bryophyte), and density (2.1 ± 0.61 SD individual per gram of dry weight bryophyte); whereas Thuidium urceolatum (high roughness) had the highest richness (24 ± 10.82 SD) and density (94 ± 64.30 SD). The fact that the bryophyte with the highest roughness had the highest

  1. How deep can surface signals be traced in the critical zone? Merging biodiversity with biogeochemistry research in a central German Muschelkalk landscape

    Directory of Open Access Journals (Sweden)

    Kirsten eKüsel

    2016-04-01

    Full Text Available The Earth’s Critical Zone (CZ is a thin living layer connecting atmosphere and geosphere, including aquifers. Humans live in the CZ and benefit from the vital supporting services it provides. However, the CZ is increasingly impacted by human activities including land and resource use, pollution and climate change. Recent interest in uniting the many disciplines studying this complex domain has initiated an international network of research infrastructure platforms that allow access to the CZ in a range of geologic settings. In this paper a new such infrastructure platform associated with the Collaborative Research Center AquaDiva is described, that uniquely seeks to combine CZ research with detailed investigation of the functional biodiversity of the subsurface. Overall, AquaDiva aims to test hypotheses about how water connects surface conditions set by land cover and land management to the biota and biogeochemical functions in the subsurface. With long-term and continuous observations, hypotheses about how seasonal variations and extreme events at the surface impact subsurface processes, community structure and function, are tested. AquaDiva has established the Hainich Critical Zone Exploratory (CZE in central Germany in an alkaline geological setting of German Triassic Muschelkalk formations. The Hainich CZE includes specialized monitoring wells to access the vadose zone and two main groundwater complexes in limestone and marlstone parent materials along a ~6 km transect spanning forest, pasture and agricultural land uses. Initial results demonstrate fundamental differences in the biota and biogeochemistry of the two aquifer complexes that trace back to the land uses in their respective recharge areas. They also show the importance of antecedent conditions on the impact of precipitation events on responses in terms of groundwater dynamics, chemistry and ecology. Thus we find signals of surface land use and events can be detected in the

  2. How deep can surface signals be traced in the critical zone? Merging biodiversity with biogeochemistry research in a central German Muschelkalk landscape

    Science.gov (United States)

    Küsel, Kirsten; Totsche, Kai; Trumbore, Susan; Lehmann, Robert; Steinhäuser, Christine; Herrmann, Martina

    2016-04-01

    The Earth's Critical Zone (CZ) is a thin living layer connecting atmosphere and geosphere, including aquifers. Humans live in the CZ and benefit from the vital supporting services it provides. However, the CZ is increasingly impacted by human activities including land and resource use, pollution and climate change. Recent interest in uniting the many disciplines studying this complex domain has initiated an international network of research infrastructure platforms that allow access to the CZ in a range of geologic settings. In this paper a new such infrastructure platform associated with the Collaborative Research Center AquaDiva is described, that uniquely seeks to combine CZ research with detailed investigation of the functional biodiversity of the subsurface. Overall, AquaDiva aims to test hypotheses about how water connects surface conditions set by land cover and land management to the biota and biogeochemical functions in the subsurface. With long-term and continuous observations, hypotheses about how seasonal variations and extreme events at the surface impact subsurface processes, community structure and function, are tested. AquaDiva has established the Hainich Critical Zone Exploratory (CZE) in central Germany in an alkaline geological setting of German Triassic Muschelkalk formations. The Hainich CZE includes specialized monitoring wells to access the vadose zone and two main groundwater complexes in limestone and marlstone parent materials along a ~6 km transect spanning forest, pasture and agricultural land uses. Initial results demonstrate fundamental differences in the biota and biogeochemistry of the two aquifer complexes that trace back to the land uses in their respective recharge areas. They also show the importance of antecedent conditions on the impact of precipitation events on responses in terms of groundwater dynamics, chemistry and ecology. Thus we find signals of surface land use and events can be detected in the subsurface CZ. Future

  3. Using Essential Biodiversity Variables (EBVs) As a Framework for Coordination Between Research and Monitoring Networks: A Case Study with Phenology

    Science.gov (United States)

    Weltzin, J. F.; Jones, K. D.; Brown, J. F.; Elmendorf, S.; Enquist, C.; Rosemartin, A.; Thorpe, A.; Wee, B.

    2014-12-01

    The United Nations Convention on Biological Diversity (CBD) was organized to encourage countries to take action to address issues of declining biodiversity. In2010, the CBD identified specific goals for 2011-2020 (the "Aichi Targets") and a tiered system of indicators necessary to achieve those targets. Essential biodiversity variables (EBVs) are the standardized measurements and observations at the base of this system; they are the basic level of information that is necessary to calculate these indicators. By providing a list of pre-defined EBVs, existing research and research planned for the future can align measurements to address common questions. We assessed the applicability of phenology EBVs for standardizing measurements across observation networks within the US as a test case for use of the standardized used of EBVs. Phenology products from the USA National Phenology Network, a citizen science observer based program, NEON, a multi-scale ecological observatory, and remotely sensed data from USGS EROS were considered for this purpose. Essential Biodiversity Variables currently defined for phenology are insufficient to support consistent measurement across monitoring networks. Specifically, phenology which is a field of study, is currently listed as a single EBV within the general category of 'species traits'. With the only guidance provided to future observation networks being that of measuring 'phenology,' there would likely be as many approaches to achieving this goal as networks participating. We propose more narrowly defined variables which may be more appropriate for standardization and demonstrate how these measurements satisfy the basic characteristics of an EBV in that they are relevant, sensitive to change, biological and generalizable, scalable, feasible, stable and, represent state variables. We map these variables to the tiered indicators identified by the CBD and, finally, to Aichi Targets to which they contribute. EBVs may be used not only to

  4. University of Maine Integrated Forest Product Refinery (IFPR) Technology Research

    Energy Technology Data Exchange (ETDEWEB)

    Pendse, Hemant P.

    2010-11-23

    This project supported research on science and technology that forms a basis for integrated forest product refinery for co-production of chemicals, fuels and materials using existing forest products industry infrastructure. Clear systems view of an Integrated Forest Product Refinery (IFPR) allowed development of a compelling business case for a small scale technology demonstration in Old Town ME for co-production of biofuels using cellulosic sugars along with pulp for the new owners of the facility resulting in an active project on Integrated Bio-Refinery (IBR) at the Old Town Fuel & Fiber. Work on production of advanced materials from woody biomass has led to active projects in bioplastics and carbon nanofibers. A lease for 40,000 sq. ft. high-bay space has been obtained to establish a Technology Research Center for IFPR technology validation on industrially relevant scale. UMaine forest bioproducts research initiative that began in April 2006 has led to establishment of a formal research institute beginning in March 2010.

  5. Long-term forest ecosystem research: a programmatic view

    Science.gov (United States)

    Wayne Swank; James Vose

    2010-01-01

    Long-term research provides the building blocks of knowledge needed to address natural resource and environmental issues. "Long-term" has frequently been considered to span decades with a time frame that usually encompasses at least one generation of scientists and frequently two or more generations. In the rich history of forest science, the origin of long-...

  6. Forest Creeks Research Natural Area: guidebook supplement 39

    Science.gov (United States)

    Reid Schuller; Ron Halvorson

    2010-01-01

    This guidebook describes Forest Creeks Research Natural Area, a 164-ha (405-ac) area comprising two geographically distinct canyons and associated drainages. The two units have been established as examples of first- to third-order streams originating within a ponderosa pine (Pinus ponderosa) zone. The two riparian areas also represent examples of...

  7. Biomass publications of the forest operations research unit: A synthesis

    Science.gov (United States)

    Dana Mitchell; Renee Ayala; [Compilers

    2005-01-01

    The Forest Operations Unit of the Southern Research Station has been studying biomass-related topics since 1977. This CD aids the reader by organizing these publications in one easy-to-use CD. This CD is comprised of an executive summary, two bibliographies, individual publications (in PDF format), and a keyword listing. The types of publications included on this CD...

  8. Understanding conflict in the co-management of forests: the case of Bulungan Research Forest

    NARCIS (Netherlands)

    Yasmi, Y.

    2003-01-01

    The paper describes underlying causes of conflicts between local people in Bulungan Research Forest (BRF), Indonesia with coal-mining and logging companies. Results show that conflict between local people and mining companies was triggered by the fact that the mining operation caused water and air

  9. Evolution of soil, ecosystem, and critical zone research at the USDA FS Calhoun Experimental Forest

    Science.gov (United States)

    Daniel deB. Richter; Allan R. Bacon; Sharon A. Billings; Dan Binkley; Marilyn Buford; Mac Callaham; Amy E. Curry; Ryan L. Fimmen; A. Stuart Grandy; Paul R. Heine; Michael Hofmockel; Jason A. Jackson; Elisabeth LeMaster; Jianwei Li; Daniel Markewitz; Megan L. Mobley; Mary W. Morrison; Michael S. Strickland; Thomas Waldrop; Carol G. Wells

    2015-01-01

    The US Department of Agriculture (USDA) Forest Service Calhoun Experimental Forest was organized in 1947 on the southern Piedmont to engage in research that today is called restoration ecology, to improve soils, forests, and watersheds in a region that had been severely degraded by nearly 150 years farming. Today, this 2,050-ha research forest is managed by the Sumter...

  10. Texture Analysis of satellite imagery in the field of biodiversity and forest structure of the Colombian Andes

    International Nuclear Information System (INIS)

    Anaya A, Jesus A; Duque L, Rosa A; Valencia H, German M

    2008-01-01

    The relationship between texture calculated from an Ikonos image with diversity and structure was evaluated along a corridor with 43 field plots in the Colombian Andes. Diversity indexes were calculated at the 43 plots and Land Use maps were used as an approach to vegetation structure. Texture was obtained from an Ikonos image using Gray Level Co-occurrence Matrix GLCM and Gray Level Difference Vector GLDV. Traditionally, texture has been interpreted from a qualitatively point of view from smooth to rough, however our approach using a matrix allows for a quantitative measurement. Texture was related to field information at two different detail levels: first with diversity measurements (Shannon Index and Richness) established at forest plots and second, with classes of a land use map (primary forest, secondary forests, forest plantation, crops and pastures) considered to be representative of vegetation structure. Results are based on relations between structure diversity,texture diversity and texture structure. Ikonos texture presents a large potential to classify forests at different successional stages however, the relation between diversity and data gathered with remote sensing is still weak. Landsat images are mentioned throughout the text as a reference or comparison with Ikonos images.

  11. Cocoa Intensification Scenarios and Their Predicted Impact on CO2 Emissions, Biodiversity Conservation, and Rural Livelihoods in the Guinea Rain Forest of West Africa

    Science.gov (United States)

    Gockowski, Jim; Sonwa, Denis

    2011-08-01

    The Guinean rain forest (GRF) of West Africa, identified over 20 years ago as a global biodiversity hotspot, had reduced to 113,000 km2 at the start of the new millennium which was 18% of its original area. The principal driver of this environmental change has been the expansion of extensive smallholder agriculture. From 1988 to 2007, the area harvested in the GRF by smallholders of cocoa, cassava, and oil palm increased by 68,000 km2. Field results suggest a high potential for significantly increasing crop yields through increased application of seed-fertilizer technologies. Analyzing land-use change scenarios, it was estimated that had intensified cocoa technology, already developed in the 1960s, been pursued in Cote d'Ivoire, Ghana, Nigeria and Cameroon that over 21,000 km2 of deforestation and forest degradation could have been avoided along with the emission of nearly 1.4 billion t of CO2. Addressing the low productivity of agriculture in the GRF should be one of the principal objectives of REDD climate mitigation programs.

  12. A review of forest economics research in Bolivia

    DEFF Research Database (Denmark)

    Hjortsø, Carsten Nico Portefee; Helles, Finn; Jacobsen, Jette Bredahl

    Economic values play a significant role in social development, whether they are made explicit or just perceived by social actors. In this chapter we introduce a comprehensive concept of resource value. Considering direct use values, indirect use values and non-use values we attempt to encompass t...... the total value of forest resources. Taking Bolivia as an example, we present a review of forest and environmental economics literature, providing an overview of the state-of-the-art of this research field in an Andean country....

  13. New records of Anopheles homunculus in central and Serra do Mar biodiversity corridors of the Atlantic Forest, Brazil.

    Science.gov (United States)

    da Cardoso, Jader C; Bergo, Eduardo S; Oliveira, Tatiane M P; Sant'ana, Denise C; Motoki, Maysa T; Sallum, Maria Anice M

    2012-03-01

    Two new records of Anopheles homunculus in the eastern part of the Atlantic Forest are reported. This species was found for the first time in Barra do Ouro district, Maquiné municipality, Rio Grande do Sul state, located in the southern limit of the Atlantic Forest. The 2nd new record was in the Serra Bonita Reserve, Camacan municipality, southeast Bahia state. These records extend the geographical distribution of An. homunculus, suggesting that the species may be widely distributed in coastal areas of the Atlantic Forest. It is hypothesized that the disjunct distribution of the species may be caused by inadequate sampling, and also difficulties in species identification based only on female external characteristics. Species identification was based on morphological characters of the male, larva, and pupa, and corroborated by DNA sequence analyses, employing data from both 2nd internal transcribed spacer of nuclear ribosomal DNA and of mitochondrial cytochrome c oxidase subunit I.

  14. Doing well by doing good: business cases for forests, people and biodiversity, organized by FAO and Tropenbos International, Ede, the Netherlands

    NARCIS (Netherlands)

    de Man, M.; Verweij, P.A.

    2012-01-01

    This paper provides key insights into different forest-­‐based business cases with positive ecological and social impacts, based on results from the ongoing research project ‘Business Cases for Biodiversity’, carried out by a research consortium consisting of the Copernicus Institute of Utrecht

  15. Forests in catchment areas with special reference to the MUDA and Ahning dams: their roles in biodiversity conservation

    International Nuclear Information System (INIS)

    Mashhor Mansor

    2002-01-01

    During the field surveys conducted at the Muda and Ahning catchment areas, several rare and endemic plant species were recorded. The presence of relatively high population of Lagerstroemia speciosa in Muda is one of the conspicuous features of the forest in this catchment area. Unlike the Muda lake, a blue green algal bloom Oscillatoria kawamurde was observed at some parts of the Ahning lake particularly at the water surface. These catchment areas not only act as a buffer zone in the overall forest hydrological cycle but also play important roles in protecting and harbouring various species of plants and animals. (Author)

  16. The climate and the forest - basis for national research

    International Nuclear Information System (INIS)

    Sonesson, Johan

    2006-01-01

    This report describes a proposed interdisciplinary research program to develop support tools to help decision-makers in forestry to adapt forest management practices to meet challenges posed by anticipated, but uncertain, climatic changes. The Climate and the forest Committee at the Royal Swedish Academy of Agriculture and Forestry (KSLA) invited around 30 scientists from different disciplines to a two-day workshop. During the workshop objectives, goals, and methods for a research program were formulated. The participants of the workshop subsequently made contributions to this document, which has been completed by the four named editors. Climate changes would inevitably affect Swedish forestry. The forests have a direct effect on the climate and forestry may have to adapt to the new conditions. Uncertainties about the future climate pose new challenges for forest management of which we have no experience. To support decision-making in this new situation we need new knowledge as well as rational methods to handle uncertainty and risk. Despite uncertainties in the climate scenarios and lack of knowledge about the responses of forests to likely climatic changes, we can still predict some probable effects of anticipated warming on the Swedish forests. Increased potential for biomass production can be expected, as well as greater opportunities to utilise new tree species in commercial forestry. At the same time, the risks for several kind of damage is likely to increase. The basic assumption underlying this research program is that knowledge of likely climate changes and associated uncertainties will increase the possibility to achieve forestry objectives. We advocate a research program consisting of the following three modules, each focusing on different aspects of these issues: Module 1 FORESTRY with the objectives to: Develop a framework to handle uncertainty and risks in forestry. Develop decision-maps that systematically describe the consequences of both single and

  17. The Influence of Land Subsidence, Quarrying, Drainage, Irrigation and Forest Fire on Groundwater Resources and Biodiversity Along the Southern Po Plain Coastal Zone (Italy)

    Science.gov (United States)

    Antonellini, M. A.; Mollema, P. N.

    2014-12-01

    The coastal zone of the southern Po plain is characterized by low lying land, which is reclaimed to permit settlements and agriculture. The history, tourism resorts and peculiar coastal environments make this territory attractive and valuable. Natural and fluid-extraction-induced land subsidence along with coastal erosion are major problems. Touristic development has strongly modified the landscape; coastal dunes have been in part removed to make room for hotels and quarrying has caused the formation of gravel pit lakes close to the shoreline. Protected natural areas include a belt of coastal dunes, wetlands, and the internal historical forests of San Vitale and Classe. The dunes have largely lost their original vegetation ecosystem, because years ago they have been colonized with pine trees to protect the adjacent farmland from sea spray. These pine forests are currently a fire hazard. Land reclamation drainage keeps the water table artificially low. Results of these anthropogenic disturbances on the hydrology include a decrease in infiltration rates, loss of freshwater surface bodies, encroachment of saltwater inland from the river estuaries, salinization of the aquifer, wetlands and soil with a loss in plant and aquatic species biodiversity. Feedback mechanisms are complex: as land subsidence continues, drainage increases at the same pace promoting sea-water intrusion. The salinity of the groundwater does not allow for plant species richness nor for the survival of large pine trees. Farmland irrigation and fires in the pine forests, on the other hand, allow for increased infiltration and freshening of the aquifer and at the same time promote plant species diversity. Our work shows that the characteristics of the southern Po coastal zone require integrated management of economic activities, natural areas, and resources. This approach is different from the ad hoc measures taken so far, because it requires long term planning and setting a priority of objectives.

  18. Forest damage research programme. Research on atmospheric pollutant deposition in American forests

    International Nuclear Information System (INIS)

    Hertel, G.; Brandt, J.

    1989-01-01

    The possible impact of atmospheric pollutant deposition or 'acid rain' on forest is a major environmental issue in the USA. The National Acid Precipitation Assessment Program (NAPAP) forms important part of an interagency scheme and was evolved on the basis of the activity of a special task force. In NAPAP, the investigation of the question of whether United States forests are damaged by air pollutants is seen as a central task. The individual aims pursued under the program are as follows: (1) Assessment of the impact of roughly environmentally equivalent acid deposition quantities and other oxidants in tree foliage on the productivity and health of the most important tree species. (2) Assessment of the long-term impact of roughly environmentally equivalent acid deposition quantities in different forest soils on the productivity and health of forests. (3) Pinpointing of the crucial factors responsible for externally visible tree injury in the higher ranges of the eastern part of the USA. (4) Stimulation of projects in the fields of biochemistry, physiology and ecology investigating causal relationships between acid deposition and other pollutants. (5) Institution of a programme for the continued documentation and recording of novel phenomena in tree health. (orig.) [de

  19. Water quality, biodiversity, and codes of practice in relation to harvesting forest plantations in streamside management zones

    Science.gov (United States)

    Daniel G. Neary; Philip J. Smethurst; Brenda Baillie; Kevin C. Petrone

    2011-01-01

    Streamside management zones (SMZs) are special landscape units that include riparian areas and adjacent lands that mitigate the movement of sediment, nutrients and other chemicals from upland forest and agricultural management areas into streams. The size, shape, and management of SMZs are governed by various combinations of economic, ecological, and regulatory factors...

  20. Managing forest and marginal agricultural land for multiple tradeoffs : compromising on economic, carbon and structural biodiversity objectives

    NARCIS (Netherlands)

    Krcmar, E.; Kooten, van G.C.; Vertinsky, I.

    2005-01-01

    In this paper, we use compromise programming to solve a multiple-objective land use and forest management planning model. Long- and short- (`fast¿) term carbon uptake, maintenance of structural diversity, and economic (net returns to forestry and agriculture) objectives are simultaneously achieved

  1. AUTOMATION RESEARCHES IN FOREST PRODUCTS INDUSTRY

    Directory of Open Access Journals (Sweden)

    İsmail Aydın

    2004-04-01

    Full Text Available Wood is a natural polymeric material which has a heterogenic nature. The natural growth process and environmental influence can lead to features in wood that are undesirable for certain applications and are known as defects. Defects in wood affect the visual appearance and structural properties of wood. The type of defect is based on whether growth, environmental conditions, handling or processing causes it. The definition and acceptability of defect types can vary between industries. Wood materials such as log, lumber and parquet are usually subject to a classification before selling and these materials are sold based on their quality grades. The ability to detect internal defects both in the log and lumber can save mills time and processing costs. In this study, information on the automation research conducted for detection the defects in wood materials were given. As a result, it is indicated that there are numerous scanning methods able to detect wood features, but no one method is adequate for all defect types

  2. MycoKey Round Table Discussions of Future Directions in Research on Chemical Detection Methods, Genetics and Biodiversity of Mycotoxins

    Science.gov (United States)

    Lattanzio, Veronica; Cary, Jeffrey; Chulze, Sofia N.; Gerardino, Annamaria; Liao, Yu-Cai; Maragos, Chris M.; Meca, Giuseppe; Moretti, Antonio; Munkvold, Gary; Mulè, Giuseppina; Njobeh, Patrick; Pecorelli, Ivan; Pietri, Amedeo; Proctor, Robert H.; Rahayu, Endang S.; Ramírez, Maria L.; Samson, Robert; Stroka, Jörg; Sumarah, Mark; Zhang, Qi; Zhang, Hao; Logrieco, Antonio F.

    2018-01-01

    MycoKey, an EU-funded Horizon 2020 project, includes a series of “Roundtable Discussions” to gather information on trending research areas in the field of mycotoxicology. This paper includes summaries of the Roundtable Discussions on Chemical Detection and Monitoring of mycotoxins and on the role of genetics and biodiversity in mycotoxin production. Discussions were managed by using the nominal group discussion technique, which generates numerous ideas and provides a ranking for those identified as the most important. Four questions were posed for each research area, as well as two questions that were common to both discussions. Test kits, usually antibody based, were one major focus of the discussions at the Chemical Detection and Monitoring roundtable because of their many favorable features, e.g., cost, speed and ease of use. The second area of focus for this roundtable was multi-mycotoxin detection protocols and the challenges still to be met to enable these protocols to become methods of choice for regulated mycotoxins. For the genetic and biodiversity group, both the depth and the breadth of trending research areas were notable. For some areas, e.g., microbiome studies, the suggested research questions were primarily of a descriptive nature. In other areas, multiple experimental approaches, e.g., transcriptomics, proteomics, RNAi and gene deletions, are needed to understand the regulation of toxin production and mechanisms underlying successful biological controls. Answers to the research questions will provide starting points for developing acceptable prevention and remediation processes. Forging a partnership between scientists and appropriately-placed communications experts was recognized by both groups as an essential step to communicating risks, while retaining overall confidence in the safety of the food supply and the integrity of the food production chain. PMID:29494529

  3. MycoKey Round Table Discussions of Future Directions in Research on Chemical Detection Methods, Genetics and Biodiversity of Mycotoxins

    Directory of Open Access Journals (Sweden)

    John F. Leslie

    2018-03-01

    Full Text Available MycoKey, an EU-funded Horizon 2020 project, includes a series of “Roundtable Discussions” to gather information on trending research areas in the field of mycotoxicology. This paper includes summaries of the Roundtable Discussions on Chemical Detection and Monitoring of mycotoxins and on the role of genetics and biodiversity in mycotoxin production. Discussions were managed by using the nominal group discussion technique, which generates numerous ideas and provides a ranking for those identified as the most important. Four questions were posed for each research area, as well as two questions that were common to both discussions. Test kits, usually antibody based, were one major focus of the discussions at the Chemical Detection and Monitoring roundtable because of their many favorable features, e.g., cost, speed and ease of use. The second area of focus for this roundtable was multi-mycotoxin detection protocols and the challenges still to be met to enable these protocols to become methods of choice for regulated mycotoxins. For the genetic and biodiversity group, both the depth and the breadth of trending research areas were notable. For some areas, e.g., microbiome studies, the suggested research questions were primarily of a descriptive nature. In other areas, multiple experimental approaches, e.g., transcriptomics, proteomics, RNAi and gene deletions, are needed to understand the regulation of toxin production and mechanisms underlying successful biological controls. Answers to the research questions will provide starting points for developing acceptable prevention and remediation processes. Forging a partnership between scientists and appropriately-placed communications experts was recognized by both groups as an essential step to communicating risks, while retaining overall confidence in the safety of the food supply and the integrity of the food production chain.

  4. MycoKey Round Table Discussions of Future Directions in Research on Chemical Detection Methods, Genetics and Biodiversity of Mycotoxins.

    Science.gov (United States)

    Leslie, John F; Lattanzio, Veronica; Audenaert, Kris; Battilani, Paola; Cary, Jeffrey; Chulze, Sofia N; De Saeger, Sarah; Gerardino, Annamaria; Karlovsky, Petr; Liao, Yu-Cai; Maragos, Chris M; Meca, Giuseppe; Medina, Angel; Moretti, Antonio; Munkvold, Gary; Mulè, Giuseppina; Njobeh, Patrick; Pecorelli, Ivan; Perrone, Giancarlo; Pietri, Amedeo; Palazzini, Juan M; Proctor, Robert H; Rahayu, Endang S; Ramírez, Maria L; Samson, Robert; Stroka, Jörg; Sulyok, Michael; Sumarah, Mark; Waalwijk, Cees; Zhang, Qi; Zhang, Hao; Logrieco, Antonio F

    2018-03-01

    MycoKey, an EU-funded Horizon 2020 project, includes a series of "Roundtable Discussions" to gather information on trending research areas in the field of mycotoxicology. This paper includes summaries of the Roundtable Discussions on Chemical Detection and Monitoring of mycotoxins and on the role of genetics and biodiversity in mycotoxin production. Discussions were managed by using the nominal group discussion technique, which generates numerous ideas and provides a ranking for those identified as the most important. Four questions were posed for each research area, as well as two questions that were common to both discussions. Test kits, usually antibody based, were one major focus of the discussions at the Chemical Detection and Monitoring roundtable because of their many favorable features, e.g., cost, speed and ease of use. The second area of focus for this roundtable was multi-mycotoxin detection protocols and the challenges still to be met to enable these protocols to become methods of choice for regulated mycotoxins. For the genetic and biodiversity group, both the depth and the breadth of trending research areas were notable. For some areas, e.g., microbiome studies, the suggested research questions were primarily of a descriptive nature. In other areas, multiple experimental approaches, e.g., transcriptomics, proteomics, RNAi and gene deletions, are needed to understand the regulation of toxin production and mechanisms underlying successful biological controls. Answers to the research questions will provide starting points for developing acceptable prevention and remediation processes. Forging a partnership between scientists and appropriately-placed communications experts was recognized by both groups as an essential step to communicating risks, while retaining overall confidence in the safety of the food supply and the integrity of the food production chain.

  5. Are riparian forest reserves sources of invertebrate biodiversity spillover and associated ecosystem functions in oil palm landscapes?

    Czech Academy of Sciences Publication Activity Database

    Gray, C. L.; Simmons, B. I.; Fayle, Tom Maurice; Mann, D. J.; Slade, E. M.

    2016-01-01

    Roč. 194, Feb 01 (2016), s. 176-183 ISSN 0006-3207 R&D Projects: GA ČR GA14-32302S; GA ČR(CZ) GA16-09427S Institutional support: RVO:60077344 Keywords : ecosystem function * forest fragments * tropical agriculture Subject RIV: EH - Ecology, Behaviour Impact factor: 4.022, year: 2016 http://www.sciencedirect.com/science/article/pii/S0006320715301956

  6. Planning and implementing forest operations to achieve sustainable forests: Proceedings of papers presented at the joint meeting of the Council on Forest Engineering and International Union of Forest Research Organizations.

    Science.gov (United States)

    Charles R. Blinn; Michael A. Thompson

    1996-01-01

    Contains a variety of papers presented at the joint meeting of the Council on Forest Engineering and International Union of Forest Research Organizations Subject Group S3.04 and that support the meeting theme "Planning and Implementing Forest Operations to Achieve Sustainable Forests."

  7. Constraining Forest Certificate's Market to Improve Cost-Effectiveness of Biodiversity Conservation in São Paulo State, Brazil.

    Directory of Open Access Journals (Sweden)

    Paula Bernasconi

    Full Text Available The recently launched Brazilian "forest certificates" market is expected to reduce environmental compliance costs for landowners through an offset mechanism, after a long history of conservation laws based in command-and-control and strict rules. In this paper we assessed potential costs and evaluated the cost-effectiveness of the instrument when introducing to this market constraints that aim to address conservation objectives more specifically. Using the conservation planning software Marxan with Zones we simulated different scopes for the "forest certificates" market, and compared their cost-effectiveness with that of existing command-and-control (C&C, i.e. compliance to the Legal Reserve on own property, in the state of São Paulo. The simulations showed a clear potential of the constrained "forest certificates" market to improve conservation effectiveness and increase cost-effectiveness on allocation of Legal Reserves. Although the inclusion of an additional constraint of targeting the BIOTA Conservation Priority Areas doubled the cost (+95% compared with a "free trade" scenario constrained only by biome, this option was still 50% less costly than the baseline scenario of compliance with Legal Reserve at the property.

  8. Constraining Forest Certificate's Market to Improve Cost-Effectiveness of Biodiversity Conservation in São Paulo State, Brazil.

    Science.gov (United States)

    Bernasconi, Paula; Blumentrath, Stefan; Barton, David N; Rusch, Graciela M; Romeiro, Ademar R

    2016-01-01

    The recently launched Brazilian "forest certificates" market is expected to reduce environmental compliance costs for landowners through an offset mechanism, after a long history of conservation laws based in command-and-control and strict rules. In this paper we assessed potential costs and evaluated the cost-effectiveness of the instrument when introducing to this market constraints that aim to address conservation objectives more specifically. Using the conservation planning software Marxan with Zones we simulated different scopes for the "forest certificates" market, and compared their cost-effectiveness with that of existing command-and-control (C&C), i.e. compliance to the Legal Reserve on own property, in the state of São Paulo. The simulations showed a clear potential of the constrained "forest certificates" market to improve conservation effectiveness and increase cost-effectiveness on allocation of Legal Reserves. Although the inclusion of an additional constraint of targeting the BIOTA Conservation Priority Areas doubled the cost (+95%) compared with a "free trade" scenario constrained only by biome, this option was still 50% less costly than the baseline scenario of compliance with Legal Reserve at the property.

  9. UAV-Borne Profiling Radar for Forest Research

    Directory of Open Access Journals (Sweden)

    Yuwei Chen

    2017-01-01

    Full Text Available Microwave Radar is an attractive solution for forest mapping and inventories because microwave signals penetrates into the forest canopy and the backscattering signal can provide information regarding the whole forest structure. Satellite-borne and airborne imaging radars have been used in forest resources mapping for many decades. However, their accuracy with respect to the main forest inventory attributes substantially varies depending on the wavelength and techniques used in the estimation. Systems providing canopy backscatter as a function of canopy height are, practically speaking, missing. Therefore, there is a need for a radar system that would enable the scientific community to better understand the radar backscatter response from the forest canopy. Consequently, we undertook a research study to develop an unmanned aerial vehicle (UAV-borne profiling (i.e., waveform radar that could be used to improve the understanding of the radar backscatter response for forestry mapping and inventories. A frequency modulation continuous waveform (FMCW profiling radar, termed FGI-Tomoradar, was introduced, designed and tested. One goal is the total weight of the whole system is less than 7 kg, including the radar system and georeferencing system, with centimetre-level positioning accuracy. Achieving this weight goal would enable the FGI-Tomoradar system to be installed on the Mini-UAV platform. The prototype system had all four linear polarization measuring capabilities, with bistatic configuration in Ku-band. In system performance tests in this study, FGI-Tomoradar was mounted on a manned helicopter together with a Riegl VQ-480-U laser scanner and tested in several flight campaigns performed at the Evo site, Finland. Airborne laser scanning data was simultaneously collected to investigate the differences and similarities of the outputs for the same target area for better understanding the penetration of the microwave signal into the forest canopy

  10. Overview of Contemporary Issues of Forest Research and Management in China

    Science.gov (United States)

    He, Hong S.; Shifley, Stephen R.; Thompson, Frank R.

    2011-12-01

    With 207 million ha of forest covering 22% of its land area, China ranks fifth in the world in forest area. Rapid economic growth, climate change, and forest disturbances pose new, complex challenges for forest research and management. Progress in meeting these challenges is relevant beyond China, because China's forests represent 34% of Asia's forests and 5% of the worlds' forests. To provide a broader understanding of these management challenges and of research and policies that address them, we organized this special issue on contemporary forest research and management issues in China. At the national level, papers review major forest types and the evolution of sustainable forestry, the development of China's forest-certification efforts, the establishment of a forest inventory system, and achievements and challenges in insect pest control in China. Papers focused on Northern China address historical, social, and political factors that have shaped the region's forests; the use of forest landscape models to assess how forest management can achieve multiple objectives; and analysis and modeling of fuels and fire behavior. Papers addressing Central and South China describe the "Grain for Green" program, which converts low productivity cropland to grassland and woodland to address erosion and soil carbon sequestration; the potential effects of climate change on CO2 efflux and soil respiration; and relationships between climate and net primary productivity. China shares many forest management and research issues with other countries, but in other cases China's capacity to respond to forest management challenges is unique and bears watching by the rest of the world.

  11. Research on machine learning framework based on random forest algorithm

    Science.gov (United States)

    Ren, Qiong; Cheng, Hui; Han, Hai

    2017-03-01

    With the continuous development of machine learning, industry and academia have released a lot of machine learning frameworks based on distributed computing platform, and have been widely used. However, the existing framework of machine learning is limited by the limitations of machine learning algorithm itself, such as the choice of parameters and the interference of noises, the high using threshold and so on. This paper introduces the research background of machine learning framework, and combined with the commonly used random forest algorithm in machine learning classification algorithm, puts forward the research objectives and content, proposes an improved adaptive random forest algorithm (referred to as ARF), and on the basis of ARF, designs and implements the machine learning framework.

  12. Timber productivity research gaps for extensive forest management

    Science.gov (United States)

    L.C. Irland

    2011-01-01

    On extensive areas of small scale forests, significant opportunities for improving the value of future timber harvests while also improving other resource values are now being missed. A new focus on practical extensive management research is needed, especially as implementation of intensive practices has been declining in many areas, and new ‘‘close to nature’’...

  13. Avian studies and research opportunities in the Luquillo Experimental Forest: a tropical rain forest in Puerto Rico

    Science.gov (United States)

    Joseph Wunderle, Jr; Wayne J. Arendt

    2011-01-01

    The Luquillo Experimental Forest (LEF) located on the Caribbean island of Puerto Rico has a rich history of ecological research, including a variety of avian studies, and is one of the most active ecological research sites in the Neotropics. The LEF spans an elevational range from 100 to 1075mover which five life zones and four forest types are found in a warm, humid...

  14. Forest habitats and the nutritional ecology of Sitka black-tailed deer: a research synthesis with implications for forest management.

    Science.gov (United States)

    T.A. Hanley; C.T. Robbins; D.E. Spalinger

    1989-01-01

    Research on forest habitats and the nutritional ecology of Sitka black-tailed deer conducted during 1981 through 1986 is reviewed and synthesized. The research approach was based on the assumption that foraging efficiency is the best single measure of habitat quality for an individual deer. Overstory-understory relations and the influence of forest overstory on snow...

  15. The value of opinion in science and the Forest Service research organization

    Science.gov (United States)

    Leonard F. Ruggiero

    2009-01-01

    There is confusion about conflicts of interest between sources of funding and the extent to which Forest Service researchers are free to publish their findings. Forest Service Research is an independent entity with no administrative accountability to policy makers up to the office of the Chief of the Forest Service. Congressional mandate ensures that research will be...

  16. Three new species of the genus Trachelas (Araneae: Trachelidae) from an oak forest inside the Mesoamerican biodiversity hotspot in Mexico.

    Science.gov (United States)

    Rivera-Quiroz, F Andrés; Alvarez-Padilla, Fernando

    2015-08-07

    Three new species of the spider genus Trachelas L. Koch, 1872 are described and included in the speciosus group based on the following features: embolus as a separate sclerite from the tegulum with no basal coils, legs with a conspicuous fringe of long trichobothria and narrow copulatory ducts coiled irregularly. The new species described are: T. crassus sp. n., T. ductonuda sp. n. and T. odoreus sp. n. A total of 46 specimens were collected in an oak forest near Pico de Orizaba Volcano, Mexico. Most individuals were collected on low vegetation using beating trays and direct collecting at night. Additional images are available at www.unamfcaracnolab.com.

  17. Focus on CSIR research in pollution waste: Planning and policy for the systematic conservation of freshwater biodiversity

    CSIR Research Space (South Africa)

    Roux, D

    2007-08-01

    Full Text Available for the systematic conservation of freshwater biodiversity Key capabilities Cross-sectoral engagement of biodiversity specialists and practitioners in developing policy objectives, setting conservation targets and debating planning options Development... for the conservation of biodiversity. Its primary focus is to identify priority areas for conserving living landscapes, waters and oceans, with both formally protected areas and off-reserve management as options for achieving conservation goals...

  18. Forests, woods, forest plantations

    Directory of Open Access Journals (Sweden)

    Giannini R

    2006-01-01

    Full Text Available In protected areas the forest ecosystem management is directed to define the best approaches with high protection levels from ecological, historical, anthropological and landscape point of view. The conservation purposes have to be taken in consideration to not disturb the natural and functional processes, and therefore any forest human activity has to be done. Through a detailed analysis of the relations among functionality, stability, productivity and genetic diversity, the statement of the reasons for application of close-to-nature silviculture is described and discussed. Some specific silvicultural systems are illustrated on the basis of very large quantity of data and information originated from researches carried out for long time. A major challenge facing modern silviculture is to reconcile the traditional objectives of timber production with the demand for multifunctional forest ecosystems which arises from the society. The preservation of the functionality is strictly related to the forest genetic pool which is the basis of biodiversity, as it represents the basis for adaptation and survival of species and individual.

  19. Applying a framework for landscape planning under climate change for the conservation of biodiversity in the Finnish boreal forest.

    Science.gov (United States)

    Mazziotta, Adriano; Triviño, Maria; Tikkanen, Olli-Pekka; Kouki, Jari; Strandman, Harri; Mönkkönen, Mikko

    2015-02-01

    Conservation strategies are often established without consideration of the impact of climate change. However, this impact is expected to threaten species and ecosystem persistence and to have dramatic effects towards the end of the 21st century. Landscape suitability for species under climate change is determined by several interacting factors including dispersal and human land use. Designing effective conservation strategies at regional scales to improve landscape suitability requires measuring the vulnerabilities of specific regions to climate change and determining their conservation capacities. Although methods for defining vulnerability categories are available, methods for doing this in a systematic, cost-effective way have not been identified. Here, we use an ecosystem model to define the potential resilience of the Finnish forest landscape by relating its current conservation capacity to its vulnerability to climate change. In applying this framework, we take into account the responses to climate change of a broad range of red-listed species with different niche requirements. This framework allowed us to identify four categories in which representation in the landscape varies among three IPCC emission scenarios (B1, low; A1B, intermediate; A2, high emissions): (i) susceptible (B1 = 24.7%, A1B = 26.4%, A2 = 26.2%), the most intact forest landscapes vulnerable to climate change, requiring management for heterogeneity and resilience; (ii) resilient (B1 = 2.2%, A1B = 0.5%, A2 = 0.6%), intact areas with low vulnerability that represent potential climate refugia and require conservation capacity maintenance; (iii) resistant (B1 = 6.7%, A1B = 0.8%, A2 = 1.1%), landscapes with low current conservation capacity and low vulnerability that are suitable for restoration projects; (iv) sensitive (B1 = 66.4%, A1B = 72.3%, A2 = 72.0%), low conservation capacity landscapes that are vulnerable and for which alternative conservation measures are required depending on the

  20. Biodiversity Sustainability of Phytomedicine Research: a 3-dimensions analysis around the North-South divide

    Energy Technology Data Exchange (ETDEWEB)

    Gorry, P.

    2016-07-01

    The use of plants in medicine can be traced to the beginnings of civilization and natural products dominated therapeutics until the end of the 19th century. The Industrial Revolution and the development of organic chemistry resulted in a preference for synthetic products for pharmacological treatments (Rates, 2001). However, according to the World Health Organization (WHO, 2008), about 65 80% of the population in developing countries depend on plants for their primary health care. During the last decades, popularity of alternative medicines increased worldwide, especially phytomedicine. The global trade of medicinal plants was around $62 billion in ted to be $5 trillion by 2050 (Kumari et al., 2011). The rising demand of plant-based drugs is creating heavy pressure on some plant populations in the wild due to over-harvesting, raising conservation and equity issues in regard to biodiversity and traditional knowledge (TK)(Arihan et al., 2007). Reducing the pressure on medicinal plants is therefore a tough challenge both for policy makers and economists (Timmermans, 2003). linked to the use of plants have been debated worldwide and significant divergences exist as to whether IPR should be applied (IBC Working Group, 2010). To protect TK, there are two approaches: a positive protection route and a defensive approach route, with IP or non-IP related tools, legally binding or nonbinding instruments. The debate on the right tools is not over (Van Overwalle, 2005). There are arguments for the benefit sharing under the IPR, considered as a new legal form of biopiracy (Patil, 2012), whereas others argue that the IPR is a legal tool to protect the rights of knowledge holders and sustain innovation for the benefit of public health. (Author)

  1. A systematic review on the contributions of edible plant and animal biodiversity to human diets.

    Science.gov (United States)

    Penafiel, Daniela; Lachat, Carl; Espinel, Ramon; Van Damme, Patrick; Kolsteren, Patrick

    2011-09-01

    The sustainable use of natural and agricultural biodiversity in the diet can be instrumental to preserve existing food biodiversity, address malnutrition, and mitigate adverse effects of dietary changes worldwide. This systematic review of literature summarizes the current evidence on the contribution of plant and animal biodiversity to human diets in terms of energy intake, micronutrient intake, and dietary diversification. Peer-reviewed studies were searched in ten databases using pre-defined search terms. Only original studies assessing food biodiversity and dietary intake were included, resulting in a total of 34 studies. 7, 14, and 17 studies reported information in relation to energy intake, micronutrient intake, and dietary diversification, respectively. In general, locally available foods were found to be important sources of energy, micronutrients, and dietary diversification in the diet of particularly rural and forest communities of highly biodiverse ecosystems. The current evidence shows local food biodiversity as important contributor of nutritious diets. Findings are, however, limited to populations living in highly biodiverse areas. Research on the contribution of biodiversity in diets of industrialized and urban settings needs more attention. Instruments are needed that would more appropriately measure the dietary contribution of local biodiversity.

  2. Applying a framework for landscape planning under climate change for the conservation of biodiversity in the Finnish boreal forest

    DEFF Research Database (Denmark)

    Mazziotta, Adriano; Triviño, Maria; Tikkanen, Olli Pekka

    2015-01-01

    capacities. Although methods for defining vulnerability categories are available, methods for doing this in a systematic, cost-effective way have not been identified. Here, we use an ecosystem model to define the potential resilience of the Finnish forest landscape by relating its current conservation......Conservation strategies are often established without consideration of the impact of climate change. However, this impact is expected to threaten species and ecosystem persistence and to have dramatic effects towards the end of the 21st century. Landscape suitability for species under climate...... change is determined by several interacting factors including dispersal and human land use. Designing effective conservation strategies at regional scales to improve landscape suitability requires measuring the vulnerabilities of specific regions to climate change and determining their conservation...

  3. The ecology of forest insect invasions and advances in their management

    Science.gov (United States)

    Eckehard G. Brockerhoff; Andrew M. Liebhold; Herv& #233; Jactel

    2006-01-01

    Invasions by nonindigenous forest insects can have spectacular effects on the biodiversity, ecology, and economy of affected areas. This introduction explores several critical issues that are generally relevant to invasions by forest insects to provide an extended background for this special issue of the Canadian Journal of Forest Research and...

  4. Funding begets biodiversity

    DEFF Research Database (Denmark)

    Ahrends, Antje; Burgess, Neil David; Gereau, Roy E.

    2011-01-01

    Aim Effective conservation of biodiversity relies on an unbiased knowledge of its distribution. Conservation priority assessments are typically based on the levels of species richness, endemism and threat. Areas identified as important receive the majority of conservation investments, often...... facilitating further research that results in more species discoveries. Here, we test whether there is circularity between funding and perceived biodiversity, which may reinforce the conservation status of areas already perceived to be important while other areas with less initial funding may remain overlooked......, and variances decomposed in partial regressions. Cross-correlations are used to assess whether perceived biodiversity drives funding or vice versa. Results Funding explained 65% of variation in perceived biodiversity patterns – six times more variation than accounted for by 34 candidate environmental factors...

  5. An annotated bibliography of scientific literature on research and management activities conducted in Coram Experimental Forest

    Science.gov (United States)

    Ilana Abrahamson; Katie Lyon

    2012-01-01

    The Coram Experimental Forest represents western larch-mixed conifer forests of the Northern Rockies. Western larch research was centered at Coram Experimental Forest (CEF) to provide a scientific basis to regenerate and grow this important and valuable species. For example, the long-term silvicultural studies installed at CEF are allowing researchers and managers to...

  6. International research to monitor sustainable forest spatial patterns: proceedings of the 2005 IUFRO World Congress symposium

    Science.gov (United States)

    Kurt Riitters; Christine Estreguil

    2007-01-01

    Presentations from the symposium "International Research to Monitor Sustainable Forest Spatial Patterns," which was organized as part of the International Union of Forest Research Organizations (IUFRO) World Congress in August 2005, are summarized in this report. The overall theme of the World Congress was "Forests in the Balance: Linking Tradition and...

  7. Potential impacts of global warming on Australia's unique tropical biodiversity and implications for tropical biodiversity in general

    International Nuclear Information System (INIS)

    Hilbert, David W

    2007-01-01

    Full text: Full text: Globally, forest clearing is often thought to be the greatest threat to biodiversity in the tropics, and rates of clearing are certainly highest there, particularly in tropical South-East Asia. Climate change in the tropics has been less studied in tropical regions than in temperate, boreal or arctic ecosystems. However, modelling studies in Australian rainforests indicate that climate change may be a particularly significant threat to the long-term preservation of the biodiversity of tropical, rainforest biodiversity. Our research has shown that global warming can have a particularly strong impact on the biodiversity of mountainous tropical regions, including the Wet Tropics of north-east Queensland. Here, the mountain tops and higher tablelands are relatively cool islands in a sea of warmer climates. These species-rich islands, mostly limited in their biodiversity by warm interglacial periods, are separated from each other by the warmer valleys and form a scattered archipelago of habitat for organisms that are unable to survive and reproduce in warmer climates. Many of the endemic Australian Wet Tropics species live only in these cooler regions. Similar situations occur throughout south-east Asia and in the highlands of the Neotropics. Unfortunately, these upland and highland areas represent the majority of biodiversity conservation areas because they are less suitable for clearing for agriculture. This presentation will summarise research about the potential impacts of climate change on the biodiversity in Australia's rainforests, the potential implications for tropical biodiversity in general and discuss the limitations of these projections and the need for further research that could reduce uncertainties and inform effective adaptation strategies

  8. Ecosystem services assessments to improve management of marine habitats, amphibians and reptiles, forest biodiversity and silviculture, and medicinal plants

    NARCIS (Netherlands)

    Oudenhoven, van A.P.E.; Groot, de R.S.

    2013-01-01

    In this Issue, a great diversity of article types can be found, ranging from short research papers to research letters and reviews, in addition to several regular research papers. Topic-wise the papers are equally diverse. More ‘traditional’ topics of the journal are dealt with by Vidyarthi et al.

  9. Forests under climate change and air pollution: Gaps in understanding and future directions for research

    NARCIS (Netherlands)

    Matyssek, R.; Wieser, G.; Calfapietra, C.; Vries, de W.; Mohren, G.M.J.

    2012-01-01

    Forests in Europe face significant changes in climate, which in interaction with air quality changes, may significantly affect forest productivity, stand composition and carbon sequestration in both vegetation and soils. Identified knowledge gaps and research needs include: (i) interaction between

  10. Sixty years of research, 60 years of data: long-term US Forest Service data management on the Penobscot Experimental Forest

    Science.gov (United States)

    Matthew B. Russell; Spencer R. Meyer; John C. Brissette; Laura Kenefic

    2014-01-01

    The U.S. Department of Agriculture, Forest Service silvicultural experiment on the Penobscot Experimental Forest (PEF) in Maine represents 60 years of research in the northern conifer and mixedwood forests of the Acadian Forest Region. The objective of this data management effort, which began in 2008, was to compile, organize, and archive research data collected in the...

  11. Planning for biodiversity: bringing research and management together; Proceedings of a Symposium for the South Coast Ecoregion

    Science.gov (United States)

    Barbara E. Kus; Jan L. Beyers

    2005-01-01

    Southern California, recognized as a major center of biodiversity, contains some of the most diverse habitats of any landscape in North America. The ever-expanding human population of the region desires land, water, resources, and recreation, creating conflict with the habitat requirements of many rare species. Managing resources in a way that maximizes biodiversity in...

  12. Comparing Forests across Climates and Biomes: Qualitative Assessments, Reference Forests and Regional Intercomparisons

    Science.gov (United States)

    Salk, Carl F.; Frey, Ulrich; Rusch, Hannes

    2014-01-01

    Communities, policy actors and conservationists benefit from understanding what institutions and land management regimes promote ecosystem services like carbon sequestration and biodiversity conservation. However, the definition of success depends on local conditions. Forests' potential carbon stock, biodiversity and rate of recovery following disturbance are known to vary with a broad suite of factors including temperature, precipitation, seasonality, species' traits and land use history. Methods like tracking over-time changes within forests, or comparison with “pristine” reference forests have been proposed as means to compare the structure and biodiversity of forests in the face of underlying differences. However, data from previous visits or reference forests may be unavailable or costly to obtain. Here, we introduce a new metric of locally weighted forest intercomparison to mitigate the above shortcomings. This method is applied to an international database of nearly 300 community forests and compared with previously published techniques. It is particularly suited to large databases where forests may be compared among one another. Further, it avoids problematic comparisons with old-growth forests which may not resemble the goal of forest management. In most cases, the different methods produce broadly congruent results, suggesting that researchers have the flexibility to compare forest conditions using whatever type of data is available. Forest structure and biodiversity are shown to be independently measurable axes of forest condition, although users' and foresters' estimations of seemingly unrelated attributes are highly correlated, perhaps reflecting an underlying sentiment about forest condition. These findings contribute new tools for large-scale analysis of ecosystem condition and natural resource policy assessment. Although applied here to forestry, these techniques have broader applications to classification and evaluation problems using

  13. Comparing forests across climates and biomes: qualitative assessments, reference forests and regional intercomparisons.

    Science.gov (United States)

    Salk, Carl F; Frey, Ulrich; Rusch, Hannes

    2014-01-01

    Communities, policy actors and conservationists benefit from understanding what institutions and land management regimes promote ecosystem services like carbon sequestration and biodiversity conservation. However, the definition of success depends on local conditions. Forests' potential carbon stock, biodiversity and rate of recovery following disturbance are known to vary with a broad suite of factors including temperature, precipitation, seasonality, species' traits and land use history. Methods like tracking over-time changes within forests, or comparison with "pristine" reference forests have been proposed as means to compare the structure and biodiversity of forests in the face of underlying differences. However, data from previous visits or reference forests may be unavailable or costly to obtain. Here, we introduce a new metric of locally weighted forest intercomparison to mitigate the above shortcomings. This method is applied to an international database of nearly 300 community forests and compared with previously published techniques. It is particularly suited to large databases where forests may be compared among one another. Further, it avoids problematic comparisons with old-growth forests which may not resemble the goal of forest management. In most cases, the different methods produce broadly congruent results, suggesting that researchers have the flexibility to compare forest conditions using whatever type of data is available. Forest structure and biodiversity are shown to be independently measurable axes of forest condition, although users' and foresters' estimations of seemingly unrelated attributes are highly correlated, perhaps reflecting an underlying sentiment about forest condition. These findings contribute new tools for large-scale analysis of ecosystem condition and natural resource policy assessment. Although applied here to forestry, these techniques have broader applications to classification and evaluation problems using crowdsourced

  14. Forest science research and scientific communities in Alaska: a history of the origins and evolution of USDA Forest Service research in Juneau, Fairbanks, and Anchorage.

    Science.gov (United States)

    Max G. Geier

    1998-01-01

    Research interest in the forests of Alaska can be traced from the 1990s back to 1741, when Georg Steller, the surgeon on Vitus Bering's Russian expedition, visited Kayak Island, collected plants, and recorded his observations. Given the scope and scale of potential research needs and relatively high expenses for travel and logistics in Alaska, support for forest...

  15. Research History and Opportunities in the Luquillo Experimental Forest

    Science.gov (United States)

    Sandra Brown; Ariel E. Lugo; Susan Silander; Leon Liegel

    1983-01-01

    Tropical forests account for about 50% of the world's total forest area and tropical countries have a total population of about one billion people. Today many of the tropical forests are being subjected to high rates of deforestation because of the increased demand for agricultural land and fuel by the increasing human population. Management of forest areas in...

  16. Impacts of climate change on Ontario's forests. Forest research information paper number 143

    International Nuclear Information System (INIS)

    Buse, L.J.; Colombo, S.J.

    1998-01-01

    Reviews literature concerning the effects of global climate change on forest plants and communities, and provides opinions on the potential impacts that climate change may have on Ontario forests. Sections of the review discuss the following: The climate of Ontario in the 21st century as predicted by climate models; forest hydrology in relation to climate change; insects and climate change; impacts on fungi in the forest ecosystem; impacts on forest fires and their management; plant physiological responses; genetic implications of climate change; forest vegetation dynamics; the use of models in global climate change studies; and forest management responses to climate change

  17. A review of bioinformatics training applied to research in molecular medicine, agriculture and biodiversity in Costa Rica and Central America.

    Science.gov (United States)

    Orozco, Allan; Morera, Jessica; Jiménez, Sergio; Boza, Ricardo

    2013-09-01

    Today, Bioinformatics has become a scientific discipline with great relevance for the Molecular Biosciences and for the Omics sciences in general. Although developed countries have progressed with large strides in Bioinformatics education and research, in other regions, such as Central America, the advances have occurred in a gradual way and with little support from the Academia, either at the undergraduate or graduate level. To address this problem, the University of Costa Rica's Medical School, a regional leader in Bioinformatics in Central America, has been conducting a series of Bioinformatics workshops, seminars and courses, leading to the creation of the region's first Bioinformatics Master's Degree. The recent creation of the Central American Bioinformatics Network (BioCANET), associated to the deployment of a supporting computational infrastructure (HPC Cluster) devoted to provide computing support for Molecular Biology in the region, is providing a foundational stone for the development of Bioinformatics in the area. Central American bioinformaticians have participated in the creation of as well as co-founded the Iberoamerican Bioinformatics Society (SOIBIO). In this article, we review the most recent activities in education and research in Bioinformatics from several regional institutions. These activities have resulted in further advances for Molecular Medicine, Agriculture and Biodiversity research in Costa Rica and the rest of the Central American countries. Finally, we provide summary information on the first Central America Bioinformatics International Congress, as well as the creation of the first Bioinformatics company (Indromics Bioinformatics), spin-off the Academy in Central America and the Caribbean.

  18. Databases and Geographical Information Systems at the research/teaching interface: palaeoclimate proxies, freshwater biodiversity and the OMEGA project

    Science.gov (United States)

    Horne, David

    2013-04-01

    The Mutual Ostracod Temperature Range (MOTR) method provides Quaternary palaeotemperature range estimates based on fossil ostracod assemblages calibrated using modern distributional databases and climate data. Over the past five years, aspects of the development and application of the MOTR method have been incorporated into undergraduate teaching in two second-year modules (Global Environmental Change and Digital Worlds: Cartography, Geographical Information Systems and Modelling) via lectures and practical exercises. Consequently, several students became sufficiently interested and enthused to undertake successful major projects aimed at developing, testing and applying aspects of the method, leading in turn to postgraduate work on the same topic in two cases and in a third case to co-authorship of a research publication. Thus both research and teaching have benefited from the integration of an innovative geoscience application with undergraduate coursework. The scope of MOTR applications is being expanded from European to global via the Ostracod Metadatabase of Environmental and Geographical Attributes (OMEGA) project; the current focus is on harmonising North American and European datasets, supported by the EU-funded (FP7) BioFresh project which is building a global information platform with access to all available databases of freshwater biodiversity. Undergraduate participation will be sought to underpin a Citizen Science initiative aimed at checking, correcting and validating the geographic referencing of species' records in the databases, using datasets exported as Keyhole Markup Language files for use in Google Earth.

  19. CTFS-ForestGEO: a worldwide network monitoring forests in an era of global change

    Energy Technology Data Exchange (ETDEWEB)

    Anderson-Teixeira, Kristina J. [Smithsonian Tropical Research Inst. (STRI), Panama (Panama). Center for Tropical Forest Science. Forest Global Earth Observatory; Smithsonian Conservation Biology Inst. (SCBI), Front Royal, VA (United States). National Zoological Park. Conservation Ecology Center; Davies, Stuart J. [Smithsonian Tropical Research Inst. (STRI), Panama (Panama). Center for Tropical Forest Science. Forest Global Earth Observatory; National Museum of Natural History, Washington, DC (United States). Dept. of Botany; Bennett, Amy C. [Smithsonian Conservation Biology Inst. (SCBI), Front Royal, VA (United States). National Zoological Park. Conservation Ecology Center; Gonzalez-Akre, Erika B. [Smithsonian Conservation Biology Inst. (SCBI), Front Royal, VA (United States). National Zoological Park. Conservation Ecology Center; Muller-Landau, Helene C. [Smithsonian Tropical Research Inst. (STRI), Panama (Panama). Center for Tropical Forest Science. Forest Global Earth Observatory; Joseph Wright, S. [Smithsonian Tropical Research Inst. (STRI), Panama (Panama). Center for Tropical Forest Science. Forest Global Earth Observatory; Abu Salim, Kamariah [Univ. of Brunei Darussalam, Bandar Seri Begawan (Brunei). Faculty of Science. Environmental and Life Sciences; Almeyda Zambrano, Angélica M. [Smithsonian Conservation Biology Inst. (SCBI), Front Royal, VA (United States). National Zoological Park. Conservation Ecology Center; Stanford Univ., CA (United States). Stanford Woods Inst. for the Environment; Univ. of Alabama, Tuscaloosa, AL (United States). Dept. of Geography; Alonso, Alfonso [Smithsonian Conservation Biology Inst., Washington, DC (United States). National Zoological Park. Center for Conservation Education and Sustainability; Baltzer, Jennifer L. [Wilfrid Laurier Univ., Waterloo, ON (Canada). Dept. of Biology; Basset, Yves [Smithsonian Tropical Research Inst. (STRI), Panama (Panama). Center for Tropical Forest Science. Forest Global Earth Observatory; Bourg, Norman A. [Smithsonian Conservation Biology Inst. (SCBI), Front Royal, VA (United States). National Zoological Park. Conservation Ecology Center; Broadbent, Eben N. [Smithsonian Conservation Biology Inst. (SCBI), Front Royal, VA (United States). National Zoological Park. Conservation Ecology Center; Stanford Univ., CA (United States). Stanford Woods Inst. for the Environment; Univ. of Alabama, Tuscaloosa, AL (United States). Dept. of Geography; Brockelman, Warren Y. [Mahidol Univ., Bangkok (Thailand). Dept. of Biology; Bunyavejchewin, Sarayudh [Dept. of National Parks, Wildlife and Plant Conservation, Bangkok (Thailand). Research Office; Burslem, David F. R. P. [Univ. of Aberdeen (United Kingdom). School of Biological Sciences; Butt, Nathalie [Univ. of Queensland, St. Lucia (Australia). School of Biological Sciences; Univ. of Oxford (United Kingdom). School of Geography and the Environment. Environmental Change Inst.; Cao, Min [Chinese Academy of Sciences (CAS), Kunming (China). Xishuangbanna Tropical Botanical Garden. Key Lab. of Tropical Forest Ecology; Cardenas, Dairon [Sinchi Amazonic Inst. of Scientific Research, Bogota (Colombia); Chuyong, George B. [Univ. of Buea (Cameroon). Dept. of Botany and Plant Physiology; Clay, Keith [Indiana Univ., Bloomington, IN (United States). Dept. of Biology; Cordell, Susan [USDA Forest Service, Hilo, HI (United States). Inst. of Pacific Islands Forestry; Dattaraja, Handanakere S. [Indian Inst. of Science, Bangalore (India). Centre for Ecological Sciences; Deng, Xiaobao [Chinese Academy of Sciences (CAS), Kunming (China). Xishuangbanna Tropical Botanical Garden. Key Lab. of Tropical Forest Ecology; Detto, Matteo [Smithsonian Tropical Research Inst. (STRI), Panama (Panama). Center for Tropical Forest Science. Forest Global Earth Observatory; Du, Xiaojun [Chinese Academy of Sciences (CAS), Beijing (China). Inst. of Botany; Duque, Alvaro [Univ. Nacional de Colombia, Medellin (Colombia). Dept. de Ciencias Forestales; Erikson, David L. [National Museum of Natural History, Washington, DC (United States). Dept. of Botany; Ewango, Corneille E. N. [Okapi Wildlife Reserve, Epulu (Democratic Republic of the Congo). Centre de Formation et de Recherche en Conservation Forestiere (CEFRECOF); Fischer, Gunter A. [Kadoorie Farm and Botanic Garden, Tai Po, Hong Kong (China); Fletcher, Christine [Forest Research Inst. Malaysia (FRIM), Selangor (Malaysia); Foster, Robin B. [The Field Museum, Chicago, IL (United States). Botany Dept.; Giardina, Christian P. [USDA Forest Service, Hilo, HI (United States). Inst. of Pacific Islands Forestry; Gilbert, Gregory S. [Smithsonian Tropical Research Inst. (STRI), Panama (Panama). Center for Tropical Forest Science. Forest Global Earth Observatory; Univ. of California, Santa Cruz, CA (United States). Environmental Studies Dept.; Gunatilleke, Nimal [Univ. of Peradeniya (Sri Lanka). Faculty of Science. Dept. of Botany; Gunatilleke, Savitri [Univ. of Peradeniya (Sri Lanka). Faculty of Science. Dept. of Botany; Hao, Zhanqing [Chinese Academy of Sciences (CAS), Shenyang (China). State Key Lab. of Forest and Soil Ecology. Inst. of Applied Ecology; Hargrove, William W. [USDA-Forest Service Station Headquarters, Asheville, NC (United States). Eastern Forest Environmental Threat Assessment Center; Hart, Terese B. [Lukuru Wildlife Research Foundation, Kinshasa (Democratic Republic of the Congo). Tshuapa-Lomami-Lualaba Project; Hau, Billy C. H. [Univ. of Hong Kong (China). School of Biological Sciences. Kadoorie Inst.; He, Fangliang [Univ. of Alberta, Edmonton, AB (Canada). Dept. of Renewable Resources; Hoffman, Forrest M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Computational Earth Sciences Group; Howe, Robert W. [Univ. of Wisconsin, Green Bay, WI (United States). Dept. of Natural and Applied Sciences; Hubbell, Stephen P. [Smithsonian Tropical Research Inst. (STRI), Panama (Panama). Center for Tropical Forest Science. Forest Global Earth Observatory; Univ. of California, Los Angeles, CA (United States). Dept. of Ecology and Evolutionary Biology; Inman-Narahari, Faith M. [Univ. of Hawaii, Honolulu, HI (United States). College of Tropical Agriculture and Human Resources; Jansen, Patrick A. [Smithsonian Tropical Research Inst. (STRI), Panama (Panama). Center for Tropical Forest Science. Forest Global Earth Observatory; Wageningen Univ. (Netherlands). Resource Ecology Group; Jiang, Mingxi [Chinese Academy of Sciences (CAS), Wuhan (China). Wuhan Botanical Garden; Johnson, Daniel J. [Indiana Univ., Bloomington, IN (United States). Dept. of Biology; Kanzaki, Mamoru [Kyoto Univ. (Japan). Graduate School of Agriculture; Kassim, Abdul Rahman [Forest Research Inst. Malaysia (FRIM), Selangor (Malaysia); Kenfack, David [Smithsonian Tropical Research Inst. (STRI), Panama (Panama). Center for Tropical Forest Science. Forest Global Earth Observatory; National Museum of Natural History, Washington, DC (United States). Dept. of Botany; Kibet, Staline [National Museums of Kenya, Nairobi (Kenya); Univ. of Nairobi (Kenya). Land Resource Management and Agricultural Technology Dept.; Kinnaird, Margaret F. [Mpala Research Centre, Nanyuki (Kenya); Wildlife Conservation Society, New York, NY (United States). Global Conservation Programs; Korte, Lisa [Smithsonian Conservation Biology Inst., Washington, DC (United States). National Zoological Park. Center for Conservation Education and Sustainability; Kral, Kamil [Silva Tarouca Research Inst., Brno (Czech Republic). Dept. of Forest Ecology; Kumar, Jitendra [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Computational Earth Sciences Group; Larson, Andrew J. [Univ. of Montana, Missoula, MT (United States). College of Forestry and Conservation. Dept. of Forest Management; Li, Yide [Chinese Academy of Forestry, Guangzhou (China). Research Inst. of Tropical Forestry; Li, Xiankun [Chinese Academy of Sciences (CAS), Guilin (China). Guangxi Inst. of Botany; Liu, Shirong [Chinese Academy of Forestry, Beijing (China). Research Inst. of Forest Ecology, Environment and Protection; Lum, Shawn K. Y. [Nanyang Technological Univ. (Singapore). National Inst. of Education. Natural Sciences and Science Education Academic Group; Lutz, James A. [Utah State Univ., Logan, UT (United States). Wildland Resources Dept.; Ma, Keping [Chinese Academy of Sciences (CAS), Beijing (China). Inst. of Botany; Maddalena, Damian M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Computational Earth Sciences Group; Makana, Jean-Remy [Wildlife Conservation Society, Brazzaville (Democratic Republic of the Congo); Malhi, Yadvinder [Univ. of Oxford (United Kingdom). School of Geography and the Environment. Environmental Change Inst.; Marthews, Toby [Univ. of Oxford (United Kingdom). School of Geography and the Environment. Environmental Change Inst.; Mat Serudin, Rafizah [Univ. of Brunei Darussalam, Bandar Seri Begawan (Brunei). Faculty of Science. Environmental and Life Sciences; McMahon, Sean M. [Smithsonian Tropical Research Inst. (STRI), Panama (Panama). Center for Tropical Forest Science. Forest Global Earth Observatory; Smithsonian Environmental Research Center, Edgewater, MD (United States). Forest Ecology Group; McShea, William J. [Smithsonian Conservation Biology Inst., Front Royal, VA (United States). National Zoological Park. Conservation Ecology Center; Memiaghe, Hervé R. [Inst. de Recherche en Ecologie Tropicale, Libreville (Gabon). Centre National de la Recherche Scientifique et Technologique; Mi, Xiangcheng [Chinese Academy of Sciences (CAS), Beijing (China). Inst. of Botany; Mizuno, Takashi [Kyoto Univ. (Japan). Graduate School of Agriculture; Morecroft, Michael [Natural England, Sheffield (United Kingdom); Myers, Jonathan A. [Washington Univ., St. Louis, MO (United States). Dept. of Biology; Novotny, Vojtech [New Guinea Binatang Research Centre, Madang (Papua New Guinea); Univ. of South Bohemia, Ceske Budejovice (Czech Republic). Academy of Sciences of the Czech Republic. Faculty of Science. Biology Centre; de Oliveira, Alexandre A. [Univ. of Sao Paulo (Brazil). Inst. of Biosciences. Ecology Dept.; Ong, Perry S. [Univ. of the Philippines Diliman, Quezon City (Philippines). Inst. of Biology; Orwig, David A. [Harvard Univ., Petersham, MA (United States). Harvard Forest; Ostertag, Rebecca [Univ. of Hawaii, Hilo, HI (United States). Dept. of Biology; den Ouden, Jan [Wageningen Univ. (Netherlands). Forest Ecology and Forest Management Group; Parker, Geoffrey G. [Smithsonian Environmental Research Center, Edgewater, MD (United States). Forest Ecology Group; Phillips, Richard P. [Indiana Univ., Bloomington, IN (United States). Dept. of Biology; Sack, Lawren [Univ. of California, Los Angeles, CA (United States). Dept. of Ecology and Evolutionary Biology; Sainge, Moses N. [Tropical Plant Exploration Group (TroPEG), Mundemba (Cameroon); Sang, Weiguo [Chinese Academy of Sciences (CAS), Beijing (China). Inst. of Botany; Sri-ngernyuang, Kriangsak [Maejo Univ., Chiang Mai (Thailand). Faculty of Architecture and Environmental Design; Sukumar, Raman [Indian Inst. of Science, Bangalore (India). Centre for Ecological Sciences; Sun, I-Fang [National Dong Hwa Univ., Hualian (Taiwan). Dept. of Natural Resources and Environmental Studies; Sungpalee, Witchaphart [Maejo Univ., Chiang Mai (Thailand). Faculty of Architecture and Environmental Design; Suresh, Hebbalalu Sathyanarayana [Indian Inst. of Science, Bangalore (India). Centre for Ecological Sciences; Tan, Sylvester [Sarawak Forest Dept., Kuching (Malaysia); Thomas, Sean C. [Univ. of Toronto, ON (Canada). Faculty of Forestry; Thomas, Duncan W. [Washington State Univ., Vancouver, WA (United States). School of Biological Sciences; Thompson, Jill [Centre for Ecology and Hydrology, Penicuik, Scotland (United Kingdom); Univ. of Puerto Rico Rio Pedras, San Juan (Puerto Rico). Dept. of Environmental Science. Inst. for Tropical Ecosystem Studies; Turner, Benjamin L. [Smithsonian Tropical Research Inst. (STRI), Panama (Panama). Center for Tropical Forest Science. Forest Global Earth Observatory; Uriarte, Maria [Columbia Univ., New York, NY (United States). Dept. of Ecology, Evolution and Environmental Biology; Valencia, Renato [Pontifical Catholic Univ. of Ecuador, Quito (Ecuador). Dept. of Biological Sciences; Vallejo, Marta I. [Inst. Alexander von Humboldt, Bogota (Colombia); Vicentini, Alberto [National Inst. of Amazonian Research (INPA), Manaus (Brazil); Vrška, Tomáš [Silva Tarouca Research Inst., Brno (Czech Republic). Dept. of Forest Ecology; Wang, Xihua [East China Normal Univ. (ECNU), Shanghai (China). School of Ecological and Environmental Sciences; Wang, Xugao [Lukuru Wildlife Research Foundation, Kinshasa (Democratic Republic of the Congo). Tshuapa-Lomami-Lualaba Project; Weiblen, George [Univ. of Minnesota, St. Paul, MN (United States). Dept. of Plant Biology; Wolf, Amy [Univ. of Wisconsin, Green Bay, WI (United States). Dept. of Biology. Dept. of Natural and Applied Sciences; Xu, Han [Chinese Academy of Forestry, Guangzhou (China). Research Inst. of Tropical Forestry; Yap, Sandra [Univ. of the Philippines Diliman, Quezon City (Philippines). Inst. of Biology; Zimmerman, Jess [Univ. of Puerto Rico Rio Piedras, San Juan (Puerto Rico). Dept. of Environmental Science. Inst. for Tropical Ecosystem Studies

    2014-09-25

    Global change is impacting forests worldwide, threatening biodiversity and ecosystem services, including climate regulation. Understanding how forests respond is critical to forest conservation and climate protection. This review describes an international network of 59 long-term forest dynamic research sites useful for characterizing forest responses to global change. The broad suite of measurements made at the CTFS-ForestGEO sites make it possible to investigate the complex ways in which global change is impacting forest dynamics. ongoing research across the network is yielding insights into how and why the forests are changing, and continued monitoring will provide vital contributions to understanding worldwide forest diversity and dynamics in a era of global change

  20. Defining the role of silvicultural research in the Northeastern Forest Experiment Station

    Science.gov (United States)

    Chris Nowak; Susan Stout; John Brissette; Laura Kenefic; Gary Miller; Bill Leak; Dan Yaussy; Tom Schuler; Kurt Gottschalk

    1997-01-01

    Research planning in the Northeastern Forest Experiment Station has followed a grass roots model for more than two years-ROADMAP, a research and development management plan. The goals for research within ROADMAP include understanding, protecting, managing, and utilizing forest ecosystems. There are nine research themes set to help achieve these goals, each with a set...

  1. Long-term trends from ecosystem research at the Hubbard Brook Experimental Forest

    Science.gov (United States)

    John L. Campbell; Charles T. Driscoll; Christopher Eagar; Gene E. Likens; Thomas G. Siccama; Chris E. Johnson; Timothy J. Fahey; Steven P. Hamburg; Richard T. Holmes; Amey S. Bailey; Donald C. Buso

    2007-01-01

    Summarizes 52 years of collaborative, long-term research conducted at the Hubbard Brook (NH) Experimental Forest on ecosystem response to disturbances such as air pollution, climate change, forest disturbance, and forest management practices. Also provides explanations of some of the trends and lists references from scientific literature for further reading.

  2. Research priorities for conservation of metallophyte biodiversity and their potential for restoration and site remediation.

    NARCIS (Netherlands)

    Whiting, S.N.; Reeves, R.D.; Richards, D.; Johnson, M.S.; Cooke, J.A.; Malaisse, F.; Paton, A.; Smith, J.A.C.; Angle, J.S.; Chaney, R.L.; Ginocchio, R.; Jaffre, T.; Johns, R.; McIntyre, T.; Purvis, O.W.; Salt, D.E.; Zhao, F.J.; Baker, A.J.M.; Schat, H.

    2004-01-01

    Plants that have evolved to survive on metal-rich soils-metallophytes-have key values that must drive research of their unique properties and ultimately their conservation. The ability of metallophytes to tolerate extreme metal concentrations commends them for revegetation of mines and

  3. An agricultural model for biodiversity conservation

    OpenAIRE

    Travis, A.J.

    2008-01-01

    This presentation discusses the SANREM CRSP long term research activity (LTRA-2), "An Agricultural Markets Model for Biodiversity Conservation," in the Luangwa Valley of Zambia. The objectives are: LTRA-2 (An Agricultural Markets Model for Biodiversity Conservation)

  4. Patterns in Biodiversity: Spatial organisation of biodiversity in the Netherland

    NARCIS (Netherlands)

    Schouten, M.A.

    2007-01-01

    A better understanding of biodiversity and its current threats is urgently needed, especially in the Netherlands where high population density, industrialisation, and intensive land-use have radically altered the natural landscape. Often, biodiversity research is seriously hampered by a lack of

  5. Soil biodiversity for agricultural sustainability

    NARCIS (Netherlands)

    Brussaard, L.; Ruiter, de P.C.; Brown, G.G.

    2007-01-01

    We critically highlight some evidence for the importance of soil biodiversity to sustaining (agro-)ecosystem functioning and explore directions for future research. We first deal with resistance and resilience against abiotic disturbance and stress. There is evidence that soil biodiversity does

  6. Research and development portfolio of the sustainability science team national sustainable operations USDA Forest Service

    Science.gov (United States)

    Trista Patterson; David Nicholls; Jonathan Long

    2015-01-01

    The Sustainability Science Team (SST) of the U.S. Department of Agriculture (USDA) Forest Service Sustainable Operations Initiative is a 18-member virtual research and development team, located across five regions and four research stations of the USDA Forest Service. The team provides research, publication, systems analysis, and decision support to the Sustainable...

  7. The culture collection and herbarium of the Center for Forest Mycology Research: A national resource

    Science.gov (United States)

    J.A. Glaeser; K.K. Nakasone; D.J. Lodge; B. Ortiz-Santana; D.L. Lindner

    2013-01-01

    The Center for Forest Mycology Research (CFMR), U.S. Forest Service, Northern Research Station, Madison, WI, is home to the world's largest collection of wood-inhabiting fungi. These collections constitute a library of the fungal kingdom that is used by researchers thoughout the world. The CFMR collections have many practical uses that have improved the lives of...

  8. An annotated bibliography of scientific literature on research and management activities conducted in Manitou Experimental Forest

    Science.gov (United States)

    Ilana Abrahamson

    2012-01-01

    The Manitou Experimental Forest (MEF) is part of the USDA Forest Service Rocky Mountain Research Station. Established in 1936, its early research focused on range and watershed management. Currently, the site is home to several meteorological, ecological and biological research initiatives. Our collaborators include the University of Colorado, Colorado State University...

  9. Forest meteorology research within the Oak Ridge site, eastern deciduous forest biome, USIBP

    International Nuclear Information System (INIS)

    Hutchison, B.A.; Matt, D.R.

    1977-01-01

    The data presented here indicate that the diurnal trends in forest microclimate are dominated by the diurnal trend in incident solar radiation amounts and the diurnal changes in solar elevations. Absolute values of these microclimatic variables, on the other hand, reflect strongly, the synoptic climatic conditions present and, to a lesser degree, the interactions among synoptic climatic parameters, forest structure, forest physiology, and soil moisture conditions. The seasonal changes in forest microclimate are the result of changes in incident radiation amounts, earth-sun geometry, and phenological change in forest structure along with seasonal changes in synoptic climatic parameters. The temporal and spatial variations of solar radiation within and above a deciduous forest composed predominately of tulip poplar (biriodendron tulipifera) were documented and on attempt was made to relate the variations to forest structure

  10. Biodiversity Conservation in Asia

    OpenAIRE

    Dale Squires

    2014-01-01

    Asian's remarkable economic growth brought many benefits but also fuelled threats to its ecosystems and biodiversity. Economic growth brings biodiversity threats but also conservation opportunities. Continued biodiversity loss is inevitable, but the types, areas and rates of biodiversity loss are not. Prioritising biodiversity conservation, tempered by what is tractable, remains a high priority. Policy and market distortions and failures significantly underprice biodiversity, undermine ecosys...

  11. Biodiversity and productivity

    Science.gov (United States)

    M.R. Willig

    2011-01-01

    Researchers predict that human activities especially landscape modification and climate change will have a considerable impact on the distribution and abundance of species at local, regional, and global scales in the 21st century ( 1, 2). This is a concern for a number of reasons, including the potential loss of goods and services that biodiversity provides to people...

  12. Is splash erosion potential species specific? Measuring of splash erosion potential under forest in different succession stages along a biodiversity gradient in the humid subtropics

    Science.gov (United States)

    Geißler, C.; Kühn, P.; Scholten, T.

    2009-04-01

    It is widely accepted that (forest) vegetation is a key control for the type and intensity of soil erosion. The current paradigm is that natural or quasi-natural vegetation protects the soil from erosion and that agricultural vegetation or land use generally enhances erosion. The latter was in focus of most research during the last decades and less interest was paid on natural systems, which are more difficult to study. Nevertheless, afforestation is widely used as a measure of soil protection against soil erosion. Rainfall can be highly erosive particularly in the humid subtropics. Regarding climate change, also precipitation regime may change in direction to even more severe storms and higher rainfall intensities; it is a research field of growing importance. Key mechanisms of a vegetation cover in reducing or enhancing erosion are modifications of drop-size distribution, retention of raindrop impact on the soil and changes in amount and spatial distribution of rainfall at the ground surface. Controlling determinants are rainfall intensity, drop size distribution, drop fall velocity, height of the canopy as well as density of the canopy, crown and leaf traits, LAI and coverage by a litter layer. Large drops are supposed to be significant sources of splash detachment in forests (Brandt 1989; Vis 1986). However, the mechanisms of reducing (or enhancing?) splash detachment under forest in relation to species richness and species composition are not well understood. Some studies indicate that raindrop impact is species specific (Calder 2001; Nanko et al. 2006) and some neglect the effects of species specific impacts (Foot & Morgan 2005). Our research uses different methods of rainfall characterization (splash cups, tipping-bucket rain gauge, laser distrometer) to reveal the described mechanisms from the canopy through different vegetation layers to the ground. First results of splash cup measurements (revised after Ellison 1947) show that sand loss under vegetation

  13. Global biodiversity: indicators of recent declines

    Science.gov (United States)

    Butchart, Stuart H.M.; Walpole, Matt; Collen, Ben; Van Strien, Arco; Scharlemann, Jorn P.W.; Almond, Rosamunde E.A.; Baillie, Jonathan E.M.; Bomhard, Bastian; Brown, Claire; Bruno, John; Carpenter, Kent E.; Carr, Genevieve M.; Chanson, Janice; Chenery, Anna M.; Csirke, Jorge; Davidson, Nick C.; Dentener, Frank; Foster, Matt; Galli, Alessandro; Galloway, James N.; Genovesi, Piero; Gregory, Richard D.; Hockings, Marc; Kapos, Valerie; Lamarque, Jean-Francois; Leverington, Fiona; Loh, Jonathan; McGeoch, Melodie A.; McRae, Louise; Minasyan, Anahit; Morcillo, Monica Hernandez; Oldfield, Thomasina E.E.; Pauly, Daniel; Quader, Suhel; Revenga, Carmen; Sauer, John R.; Skolnik, Benjamin; Spear, Dian; Stanwell-Smith, Damon; Stuart, Simon N.; Symes, Andy; Tierney, Megan; Tyrrell, Tristan D.; Vie, Jean-Christophe; Watson, Reg

    2011-01-01

    In 2002, world leaders committed, through the Convention on Biological Diversity, to achieve a significant reduction in the rate of biodiversity loss by 2010. We compiled 31 indicators to report on progress toward this target. Most indicators of the state of biodiversity (covering species' population trends, extinction risk, habitat extent and condition, and community composition) showed declines, with no significant recent reductions in rate, whereas indicators of pressures on biodiversity (including resource consumption, invasive alien species, nitrogen pollution, overexploitation, and climate change impacts) showed increases. Despite some local successes and increasing responses (including extent and biodiversity coverage of protected areas, sustainable forest management, policy responses to invasive alien species, and biodiversity-related aid), the rate of biodiversity loss does not appear to be slowing.

  14. Beech forests (order Fagetalia sylvaticae Pawlowski 1928) in Serbia

    OpenAIRE

    Branko Karadžić

    2018-01-01

    Beech forests occupy considerable areas in Serbia. The principal aims of this research were to detect variability patterns and determine biodiversity components in Serbian beech forests. The K-means clustering of a data set comprising 270 relevés and more than 500 species revealed seven ecologically interpretable groups of beech forests in Serbia. The groups are presented in a synoptic table, with calculation of diagnostic species. Canonical correspondence analysis indicates that ...

  15. Louisiana’s Palustris Experimental Forest: 75 years of research that transformed the South

    Science.gov (United States)

    James P. Barnett; James D. Haywood; Henry A. Pearson

    2011-01-01

    The Palustris Experimental Forest, located on Kisatchie National Forest, has been in existence for 75 years. Research at Palustris has focused on southern pine reforestation technology, including seed production, bareroot nursery production, direct seeding, and planting container seedlings. After establishing pine plantations, researchers developed stand management...

  16. An optimization approach to selecting research natural areas in National Forests

    Science.gov (United States)

    Stephanie A. Snyder; Lucy E. Tyrrell; Robert G. Haight

    1999-01-01

    The USDA Forest Service has a long-established program to identify areas in national forests for designation as protected Research Natural Areas (RNAs). One of the goals is to protect high quality examples of regional ecosystems for the purposes of maintaining biological diversity, conducting nonmanipulative research and monitoring, and fostering education. When RNA...

  17. Forest Research Nursery Waste Water Management Plan, Integrated Pest Management Plan, and pesticide safety

    Science.gov (United States)

    Kas Dumroese; David L. Wenny

    1992-01-01

    The University of Idaho Forest Research Nursery was established in 1909 to grow bareroot (field-grown) tree and shrub seedlings for conservation. In 1982, the bareroot production was phased out and replaced by growing seedlings in containers in greenhouses. The nursery emphasizes teaching, research and service. Students learn about forest planting; scientists...

  18. Major characteristics of mixed fir and beech virgin forests in the National park Biogradska Gora in Montenegro

    Directory of Open Access Journals (Sweden)

    Čurović Milić

    2011-01-01

    Full Text Available In order to manage forest ecosystems at a sufficiently high biodiversity level it is necessary to study the ecological, structural and production characteristics of virgin forests. The research was directed towards identifying the characteristics of mixed fir and beech forests (Abieti-Fagetum s. lat. in the area of the strict reserve of the National Park Biogradska Gora in Montenegro. Basic characteristics of these forests were researched in the process of definition of forest types. In this manner, it is for the first time that a realistic base for typological management of forests and forest ecosystems with similar ecological and structural characteristics was provided for the specific sites.

  19. Timber market research, private forests, and policy rhetoric

    Science.gov (United States)

    David N. Wear; Jeffrey P. Prestemon

    2004-01-01

    The development of the profession and practice of forestry in the United States can be linked to urgent concerns regarding timber shortages in the late 19th century (Williams 1989). These were based largely on perceived failures of forest landowners to protect or invest enough in the productive capacity of their forests (Manthy 1977). The South, as the only major...

  20. Forest research notes, Pacific Northwest Forest Experiment Station, No. 08, December 11, 1931.

    Science.gov (United States)

    R.W. Cowlin; F.P. Koon; E.F. Rapraeger; R.E. McArdle; Walter H. Meyer; Herman M. Johnson

    1931-01-01

    In connection with the forest survey of the Douglas fir region, a number of generalized type maps for several counties in Oregon and Washington have been prepared recently for use by the Agricultural Experiment Stations, who will assist in estimating the acreages likely to be withdrawn from forest meals for agricultural use within the next three decades. In the...

  1. Forest research notes, Pacific Northwest Forest Experiment Station, No. 12, January 16, 1934.

    Science.gov (United States)

    Thornton T. Munger; C.W. Kline; W.H. Meyer; Richard E. McArdle; W.G. Morris; J.E. Lodewick; H.M. Johnson

    1934-01-01

    The outstanding publication of this Forest Experiment Station in recent weeks is the bulletin of the above title by Axel J.F. Brandstrom, Senior Forest Economist. Through the generosity of the Charles Lathrop Pack Forestry Foundation and the cooperation of the West Coast Lumbermen's Association, an edition of 2500 has been printed. Most of the edition has been...

  2. Area of old-growth forests in California, Oregon, and Washington. Forest Service research bulletin

    Energy Technology Data Exchange (ETDEWEB)

    Bolsinger, C.L.; Waddell, K.L.

    1993-12-01

    An area of old-growth forests in California, Oregon, and Washington has declined significantly in the second half of the 20th century. The report summarizes available information on old-growth forest area by ownership in California, Oregon, and Washington. Old-growth definitions used by the various owners and agencies are provided.

  3. Natural Variability of Mexican Forest Fires

    Science.gov (United States)

    Velasco-Herrera, Graciela; Velasco Herrera, Victor Manuel; Kemper-Valverdea, N.

    The purpose of this paper was 1) to present a new algorithm for analyzing the forest fires, 2) to discuss the present understanding of the natural variability at different scales with special emphasis on Mexico conditions since 1972, 3) to analyze the internal and external factors affecting forest fires for example ENSO and Total Solar Irradiance, and 4) to discuss the implications of this knowledge, on research and on restoration and management methods, which purpose is to enhance forest biodiversity conservation. 5) We present an estimate of the Mexican forest fires for the next decade. These results may be useful to minimize human and economic losses.

  4. Research on Forest Flame Recognition Algorithm Based on Image Feature

    Science.gov (United States)

    Wang, Z.; Liu, P.; Cui, T.

    2017-09-01

    In recent years, fire recognition based on image features has become a hotspot in fire monitoring. However, due to the complexity of forest environment, the accuracy of forest fireworks recognition based on image features is low. Based on this, this paper proposes a feature extraction algorithm based on YCrCb color space and K-means clustering. Firstly, the paper prepares and analyzes the color characteristics of a large number of forest fire image samples. Using the K-means clustering algorithm, the forest flame model is obtained by comparing the two commonly used color spaces, and the suspected flame area is discriminated and extracted. The experimental results show that the extraction accuracy of flame area based on YCrCb color model is higher than that of HSI color model, which can be applied in different scene forest fire identification, and it is feasible in practice.

  5. RESEARCH ON FOREST FLAME RECOGNITION ALGORITHM BASED ON IMAGE FEATURE

    Directory of Open Access Journals (Sweden)

    Z. Wang

    2017-09-01

    Full Text Available In recent years, fire recognition based on image features has become a hotspot in fire monitoring. However, due to the complexity of forest environment, the accuracy of forest fireworks recognition based on image features is low. Based on this, this paper proposes a feature extraction algorithm based on YCrCb color space and K-means clustering. Firstly, the paper prepares and analyzes the color characteristics of a large number of forest fire image samples. Using the K-means clustering algorithm, the forest flame model is obtained by comparing the two commonly used color spaces, and the suspected flame area is discriminated and extracted. The experimental results show that the extraction accuracy of flame area based on YCrCb color model is higher than that of HSI color model, which can be applied in different scene forest fire identification, and it is feasible in practice.

  6. Critical review of the emerging research evidence on agricultural biodiversity, diet diversity, and nutritional status in low- and middle-income countries.

    Science.gov (United States)

    Jones, Andrew D

    2017-10-01

    The declining diversity of agricultural production and food supplies worldwide may have important implications for global diets. The primary objective of this review is to assess the nature and magnitude of the associations of agricultural biodiversity with diet quality and anthropometric outcomes in low- and middle-income countries. A comprehensive review of 5 databases using a priori exclusion criteria and application of a systematic, qualitative analysis to the findings of identified studies revealed that agricultural biodiversity has a small but consistent association with more diverse household- and individual-level diets, although the magnitude of this association varies with the extent of existing diversification of farms. Greater on-farm crop species richness is also associated with small, positive increments in young child linear stature. Agricultural diversification may contribute to diversified diets through both subsistence- and income-generating pathways and may be an important strategy for improving diets and nutrition outcomes in low- and middle-income countries. Six research priorities for future studies of the influence of agricultural biodiversity on nutrition outcomes are identified based on gaps in the research literature. © The Author(s) 2017. Published by Oxford University Press on behalf of the International Life Sciences Institute.

  7. Interactions of Forests, Climate, Water Resources, and Humans in a Changing Environment: Research Needs

    OpenAIRE

    Ge Sun; Catalina Segura

    2013-01-01

    The aim of the special issue “Interactions of Forests, Climate, Water Resources, and Humans in a Changing Environment” is to present case studies on the influences of natural and human disturbances on forest water resources under a changing climate. Studies in this collection of six papers cover a wide range of geographic regions from Australia to Nigeria with spatial research scale spanning from a tree leaf, to a segment of forest road, and large basins with mixed land uses. T...

  8. Parks versus payments: reconciling divergent policy responses to biodiversity loss and climate change from tropical deforestation

    International Nuclear Information System (INIS)

    Busch, Jonah; Grantham, Hedley S

    2013-01-01

    Biodiversity loss and climate change both result from tropical deforestation, yet strategies to address biodiversity loss have focused primarily on protected areas while strategies to address climate change have focused primarily on carbon payments. Conservation planning research has focused largely on where to prioritize protected areas to achieve the greatest representation of species at viable levels. Meanwhile research on reducing emissions from deforestation and forest degradation (REDD+) has focused largely on how to design payments to achieve the greatest additional reduction in greenhouse gases relative to baseline rates. This divergence of strategies and research agendas may be attributed to four factors: rare species are more heterogeneously distributed than carbon; species are more difficult to measure and monitor than carbon; species are more sensitive to ecological processes and human disturbance than carbon; and people’s value for species diminishes beyond a threshold while their value for carbon storage does not. Conservation planning can achieve greater biodiversity benefits by adopting the concept of additionality from REDD+. REDD+ can achieve greater climate benefits by incorporating spatial prioritization from conservation planning. Climate and biodiversity benefits can best be jointly achieved from tropical forests by targeting the most additional actions to the most important places. These concepts are illustrated using data from the forests of Indonesia. (letter)

  9. Parks versus payments: reconciling divergent policy responses to biodiversity loss and climate change from tropical deforestation

    Science.gov (United States)

    Busch, Jonah; Grantham, Hedley S.

    2013-09-01

    Biodiversity loss and climate change both result from tropical deforestation, yet strategies to address biodiversity loss have focused primarily on protected areas while strategies to address climate change have focused primarily on carbon payments. Conservation planning research has focused largely on where to prioritize protected areas to achieve the greatest representation of species at viable levels. Meanwhile research on reducing emissions from deforestation and forest degradation (REDD+) has focused largely on how to design payments to achieve the greatest additional reduction in greenhouse gases relative to baseline rates. This divergence of strategies and research agendas may be attributed to four factors: rare species are more heterogeneously distributed than carbon; species are more difficult to measure and monitor than carbon; species are more sensitive to ecological processes and human disturbance than carbon; and people’s value for species diminishes beyond a threshold while their value for carbon storage does not. Conservation planning can achieve greater biodiversity benefits by adopting the concept of additionality from REDD+. REDD+ can achieve greater climate benefits by incorporating spatial prioritization from conservation planning. Climate and biodiversity benefits can best be jointly achieved from tropical forests by targeting the most additional actions to the most important places. These concepts are illustrated using data from the forests of Indonesia.

  10. Beech forests (order Fagetalia sylvaticae Pawlowski 1928 in Serbia

    Directory of Open Access Journals (Sweden)

    Branko Karadžić

    2018-02-01

    Full Text Available Beech forests occupy considerable areas in Serbia. The principal aims of this research were to detect variability patterns and determine biodiversity components in Serbian beech forests. The K-means clustering of a data set comprising 270 relevés and more than 500 species revealed seven ecologically interpretable groups of beech forests in Serbia. The groups are presented in a synoptic table, with calculation of diagnostic species. Canonical correspondence analysis indicates that the altitudinal gradient is the main factor affecting diversification of the investigated forests. Species richness and alpha diversity are greatest in beech forests of ravine habitats

  11. Advances of air pollution science: from forest decline to multiple-stress effects on forest ecosystem services.

    Science.gov (United States)

    Paoletti, E; Schaub, M; Matyssek, R; Wieser, G; Augustaitis, A; Bastrup-Birk, A M; Bytnerowicz, A; Günthardt-Goerg, M S; Müller-Starck, G; Serengil, Y

    2010-06-01

    Over the past 20 years, the focus of forest science on air pollution has moved from forest decline to a holistic framework of forest health, and from the effects on forest production to the ecosystem services provided by forest ecosystems. Hence, future research should focus on the interacting factorial impacts and resulting antagonistic and synergistic responses of forest trees and ecosystems. The synergistic effects of air pollution and climatic changes, in particular elevated ozone, altered nitrogen, carbon and water availability, must be key issues for research. Present evidence suggests air pollution will become increasingly harmful to forests under climate change, which requires integration amongst various stressors (abiotic and biotic factors, including competition, parasites and fire), effects on forest services (production, biodiversity protection, soil protection, sustained water balance, socio-economical relevance) and assessment approaches (research, monitoring, modeling) to be fostered. Copyright 2009 Elsevier Ltd. All rights reserved.

  12. Rocky Mountain Research Station Part 2 [U.S. Forest Service scientists continue work with the Lincoln National Forest

    Science.gov (United States)

    Todd A. Rawlinson

    2010-01-01

    The Rocky Mountain Research Station (RMRS) is studying the effects of fuels reduction treatments on Mexican Spotted Owls and their prey in the Sacramento Mountains of New Mexico. One challenge facing Forest Service managers is that much of the landscape is dominated by overstocked stands resulting from years of fire suppression.

  13. Long-term socio-ecological forest research in southeast France

    NARCIS (Netherlands)

    Teissier du Cros, E.; Bariteau, M.; Kramer, K.

    2004-01-01

    France concentrates its research involving Mediterranean forests and related land-use on a series of long-term study sites meant to assess the effect of historical land-use on the current distribution of forest tree species and on the adaptability of these ecosystems to natural and anthropogenic

  14. Built for the future: New directions in silviculture research and demonstration at Montana's Lubrecht Experimental Forest

    Science.gov (United States)

    Christopher R. Keyes; Thomas E. Perry

    2010-01-01

    Manipulative experiments at the University of Montana’s Lubrecht Experimental Forest have long been set aside as permanent research and demonstration areas (RDA’s) to communicate the tradeoffs among different stand management strategies. However, most of these have either degraded over time or have diminished relevance to contemporary forest management issues. An...

  15. Five hydrologic studies conducted by or in cooperation with the Center for Forested Wetlands Research

    Science.gov (United States)

    Devendra M. Amatya; Carl C. Trettin; R. Wayne Skaggs; T.J. Callahan; Ge Sun; J.E. Nettles; J.E. Parsons; M. Miwa

    2005-01-01

    The U.S. Department of Agriculture Forest Service Center for Forested Wetlands Research has conducted or cooperated in studies designed to improve understanding of fundamental hydrologic and biogeochemical processes that link aquatic and terrestrial ecosystems. Five of these studies are discussed here. The first is based on observations made on long-term experimental...

  16. Biodiversity Conservation in the REDD.

    Science.gov (United States)

    Paoli, Gary D; Wells, Philip L; Meijaard, Erik; Struebig, Matthew J; Marshall, Andrew J; Obidzinski, Krystof; Tan, Aseng; Rafiastanto, Andjar; Yaap, Betsy; Ferry Slik, Jw; Morel, Alexandra; Perumal, Balu; Wielaard, Niels; Husson, Simon; D'Arcy, Laura

    2010-11-23

    Deforestation and forest degradation in the tropics is a major source of global greenhouse gas (GHG) emissions. The tropics also harbour more than half the world's threatened species, raising the possibility that reducing GHG emissions by curtailing tropical deforestation could provide substantial co-benefits for biodiversity conservation. Here we explore the potential for such co-benefits in Indonesia, a leading source of GHG emissions from land cover and land use change, and among the most species-rich countries in the world. We show that focal ecosystems for interventions to reduce emissions from deforestation and forest degradation in Indonesia do not coincide with areas supporting the most species-rich communities or highest concentration of threatened species. We argue that inherent trade-offs among ecosystems in emission reduction potential, opportunity cost of foregone development and biodiversity values will require a regulatory framework to balance emission reduction interventions with biodiversity co-benefit targets. We discuss how such a regulatory framework might function, and caution that pursuing emission reduction strategies without such a framework may undermine, not enhance, long-term prospects for biodiversity conservation in the tropics.

  17. Biodiversity Conservation in the REDD

    Directory of Open Access Journals (Sweden)

    Ferry Slik JW

    2010-11-01

    Full Text Available Abstract Deforestation and forest degradation in the tropics is a major source of global greenhouse gas (GHG emissions. The tropics also harbour more than half the world's threatened species, raising the possibility that reducing GHG emissions by curtailing tropical deforestation could provide substantial co-benefits for biodiversity conservation. Here we explore the potential for such co-benefits in Indonesia, a leading source of GHG emissions from land cover and land use change, and among the most species-rich countries in the world. We show that focal ecosystems for interventions to reduce emissions from deforestation and forest degradation in Indonesia do not coincide with areas supporting the most species-rich communities or highest concentration of threatened species. We argue that inherent trade-offs among ecosystems in emission reduction potential, opportunity cost of foregone development and biodiversity values will require a regulatory framework to balance emission reduction interventions with biodiversity co-benefit targets. We discuss how such a regulatory framework might function, and caution that pursuing emission reduction strategies without such a framework may undermine, not enhance, long-term prospects for biodiversity conservation in the tropics.

  18. Potential biodiversity benefits from international programs to reduce carbon emissions from deforestation.

    Science.gov (United States)

    Siikamäki, Juha; Newbold, Stephen C

    2012-01-01

    Deforestation is the second largest anthropogenic source of carbon dioxide emissions and options for its reduction are integral to climate policy. In addition to providing potentially low cost and near-term options for reducing global carbon emissions, reducing deforestation also could support biodiversity conservation. However, current understanding of the potential benefits to biodiversity from forest carbon offset programs is limited. We compile spatial data on global forest carbon, biodiversity, deforestation rates, and the opportunity cost of land to examine biodiversity conservation benefits from an international program to reduce carbon emissions from deforestation. Our results indicate limited geographic overlap between the least-cost areas for retaining forest carbon and protecting biodiversity. Therefore, carbon-focused policies will likely generate substantially lower benefits to biodiversity than a more biodiversity-focused policy could achieve. These results highlight the need to systematically consider co-benefits, such as biodiversity in the design and implementation of forest conservation programs to support international climate policy.

  19. The study of forest dynamics in the pergumid climate of Western Sayan mountains (Ermakovsky research station of V. N. Sukachev Institute of Forest, Russian Academy of Sciences, Siberian Branch

    Directory of Open Access Journals (Sweden)

    D. I. Nazimova

    2015-08-01

    Full Text Available The Ermakovsky territory research station (53°17´–52°28´ N, 92°49´–93°20´ E has served as a long-term site for studies of mountain forest ecosystem structure and its dynamics during the last 50 years. The most interesting results of study in 2000–2014 are presented in the paper concerning biodiversity and forest succession in primary and secondary forest types forming the chern forest formation with Siberian pine (Pinus sibirica Du Tour and Siberian fir (Abies sibirica L.. The data of remote sensing confirm differentiation of landscapes into altitudinal belt complexes (ABC that are characteristic for windward macroslopes of the West and East Sayans: Scotch pine-Birch-Aspen subtaiga (Pinus sylvestris L., Betula pendula Roth., Populus tremula L., chern forest with (Pinus sibirica and Abies sibirica, mountain Siberian fir (Abies sibirica taiga within perhumid climate, subalpine open woodlands with (Pinus sibirica and Abies sibirica. They were singled out earlier with traditional methods. Position of the mountain polygon-transect (study area in the system of natural zonation of Altai-Sayan ecoregion and its belonging to barrier-rain mountain landscapes of South Siberia are defined more exactly with help of forest inventory and remote sensing data. Initial phases of forest successions by the above mentioned four ABCs are considered with special attention to regeneration of Pinus sibirica. In contrast to Abies sibirica it remains weak or absent for more than 50 years. It shows unstable positions of Siberian pine in all ABCs due to high general humidity and well developed herb layers. For chern ABC, the dynamics of primary and secondary stands structure are researched on a number of representative plots with the use of tree layer, shrub layer and herb layer 1:100 mapping three times in a 45 year period. It is shown that species number and composition remain stable on permanent plots whereas synuzial diversity and the share of their

  20. Biodiversity in the Anthropocene: prospects and policy

    Science.gov (United States)

    Mace, Georgina M.; Mouillot, David; Vause, James; Walpole, Matt

    2016-01-01

    Meeting the ever-increasing needs of the Earth’s human population without excessively reducing biological diversity is one of the greatest challenges facing humanity, suggesting that new approaches to biodiversity conservation are required. One idea rapidly gaining momentum—as well as opposition—is to incorporate the values of biodiversity into decision-making using economic methods. Here, we develop several lines of argument for how biodiversity might be valued, building on recent developments in natural science, economics and science-policy processes. Then we provide a synoptic guide to the papers in this special feature, summarizing recent research advances relevant to biodiversity valuation and management. Current evidence suggests that more biodiverse systems have greater stability and resilience, and that by maximizing key components of biodiversity we maximize an ecosystem’s long-term value. Moreover, many services and values arising from biodiversity are interdependent, and often poorly captured by standard economic models. We conclude that economic valuation approaches to biodiversity conservation should (i) account for interdependency and (ii) complement rather than replace traditional approaches. To identify possible solutions, we present a framework for understanding the foundational role of hard-to-quantify ‘biodiversity services’ in sustaining the value of ecosystems to humanity, and then use this framework to highlight new directions for pure and applied research. In most cases, clarifying the links between biodiversity and ecosystem services, and developing effective policy and practice for managing biodiversity, will require a genuinely interdisciplinary approach. PMID:27928040

  1. Biodiversity in the Anthropocene: prospects and policy.

    Science.gov (United States)

    Seddon, Nathalie; Mace, Georgina M; Naeem, Shahid; Tobias, Joseph A; Pigot, Alex L; Cavanagh, Rachel; Mouillot, David; Vause, James; Walpole, Matt

    2016-12-14

    Meeting the ever-increasing needs of the Earth's human population without excessively reducing biological diversity is one of the greatest challenges facing humanity, suggesting that new approaches to biodiversity conservation are required. One idea rapidly gaining momentum-as well as opposition-is to incorporate the values of biodiversity into decision-making using economic methods. Here, we develop several lines of argument for how biodiversity might be valued, building on recent developments in natural science, economics and science-policy processes. Then we provide a synoptic guide to the papers in this special feature, summarizing recent research advances relevant to biodiversity valuation and management. Current evidence suggests that more biodiverse systems have greater stability and resilience, and that by maximizing key components of biodiversity we maximize an ecosystem's long-term value. Moreover, many services and values arising from biodiversity are interdependent, and often poorly captured by standard economic models. We conclude that economic valuation approaches to biodiversity conservation should (i) account for interdependency and (ii) complement rather than replace traditional approaches. To identify possible solutions, we present a framework for understanding the foundational role of hard-to-quantify 'biodiversity services' in sustaining the value of ecosystems to humanity, and then use this framework to highlight new directions for pure and applied research. In most cases, clarifying the links between biodiversity and ecosystem services, and developing effective policy and practice for managing biodiversity, will require a genuinely interdisciplinary approach. © 2016 The Author(s).

  2. Biodiversity monitoring in Europe: the EU FP7 EBONE project. European biodiversity observation NEtwork

    CSIR Research Space (South Africa)

    Lück-Vogel, Melanie

    2008-09-01

    Full Text Available submission Presentation Poster presentation A) Title Biodiversity Monitoring in Europe: The EU FP7 EBONE project European Biodiversity Observation NEtwork B) Short title EBONE - European Biodiversity Observation NEtwork C) Author(s) Vogel, M. (1...), Jongman, R. (2) D) Presenting author Melanie Vogel Institution(s) (1) Council for Scientific Research CSIR, Pretoria, South Africa (2) Alterra, Wageningen UR, the Netherlands E) Keywords Biodiversity Monitoring, EBONE FP7, Europe, Mediterranean...

  3. The Western Bark Beetle Research Group: a unique collaboration with Forest Health Protection-proceedings of a symposium at the 2007 Society of American Foresters conference

    Science.gov (United States)

    J.L. Hayes; J.E. Lundquist

    2009-01-01

    The compilation of papers in this proceedings is based on a symposium sponsored by the Insect and Diseases Working Group (D5) at the 2007 Society of American Foresters (SAF) convention in Portland, Oregon. The selection of topics parallels the research priorities of the Western Bark Beetle Research Group (WBBRG) (USDA Forest Service, Research and Development), which...

  4. Chronic over browsing and biodiversity collapse in a forest understory in Pennsylvania: Results from a 60 year-old deer exclusion plot

    Science.gov (United States)

    Chandra Goetsch; Jennifer Wigg; Alejandro A. Royo; Todd Ristau; Walter P. Carson

    2011-01-01

    We evaluated the impact of chronic deer over browsing on the diversity and abundance of understory forbs and shrubs within a forest stand in the Allegheny High Plateau Region of Pennsylvania by comparing vegetation inside a 60-year-old exclosure to vegetation within an adjacent reference site. This is the oldest known exclosure in the Eastern Deciduous Forest. Browsing...

  5. How does the human impact of footpaths affect flora biodiversity in the rainforest?

    Science.gov (United States)

    Chan, J. H. F.

    2017-12-01

    Tioman Island is the largest Island in the Pahang region in Malaysia, known for its biodiverse reefs and dense rainforests, making it a popular tourist site. Over the course of two weeks, I was able to collect data on how the heavy development of Tioman Island's tourist industry was affecting the biodiversity of the region, specifically the implementation of infrastructure like footpaths. Tioman was an excellent setting for my research as it provided both primary and secondary rainforest with varying amounts of developments, allowing me to draw parallels between the data of the two distinct footpaths. To measure biodiversity against the prevalence of footpaths in forests, I set up 10 adjacent two by one meter quadrats perpendicular to the path, the first being on the path, and counted the quantities of different species within each quadrat. This process was repeated three times with five meter spacings between the various transects to better represent biodiversity in the region. Those three trials were then repeated at a site of contrasting human impact to come up with 60 quadrats' worth of data. Individually, each quadrat's biodiversity was then quantified using the Simpson's Diversity Index, which was then given a Spearman's Rank Correlation Coefficient before being compared with one another. The results of my research showed a general increase in biodiversity levels the further away it was from the path, until a certain point where it dropped and displayed a steady state, which did not fulfill the linear trend I was expecting in my hypothesis.

  6. Biodiversity influences plant productivity through niche-efficiency.

    Science.gov (United States)

    Liang, Jingjing; Zhou, Mo; Tobin, Patrick C; McGuire, A David; Reich, Peter B

    2015-05-05

    The loss of biodiversity is threatening ecosystem productivity and services worldwide, spurring efforts to quantify its effects on the functioning of natural ecosystems. Previous research has focused on the positive role of biodiversity on resource acquisition (i.e., niche complementarity), but a lack of study on resource utilization efficiency, a link between resource and productivity, has rendered it difficult to quantify the biodiversity-ecosystem functioning relationship. Here we demonstrate that biodiversity loss reduces plant productivity, other things held constant, through theory, empirical evidence, and simulations under gradually relaxed assumptions. We developed a theoretical model named niche-efficiency to integrate niche complementarity and a heretofore-ignored mechanism of diminishing marginal productivity in quantifying the effects of biodiversity loss on plant productivity. Based on niche-efficiency, we created a relative productivity metric and a productivity impact index (PII) to assist in biological conservation and resource management. Relative productivity provides a standardized measure of the influence of biodiversity on individual productivity, and PII is a functionally based taxonomic index to assess individual species' inherent value in maintaining current ecosystem productivity. Empirical evidence from the Alaska boreal forest suggests that every 1% reduction in overall plant diversity could render an average of 0.23% decline in individual tree productivity. Out of the 283 plant species of the region, we found that large woody plants generally have greater PII values than other species. This theoretical model would facilitate the integration of biological conservation in the international campaign against several pressing global issues involving energy use, climate change, and poverty.

  7. Do riparian reserves support dung beetle biodiversity and ecosystem services in oil palm-dominated tropical landscapes?

    Science.gov (United States)

    Gray, Claudia L; Slade, Eleanor M; Mann, Darren J; Lewis, Owen T

    2014-04-01

    Agricultural expansion and intensification are major threats to global biodiversity, ecological functions, and ecosystem services. The rapid expansion of oil palm in forested tropical landscapes is of particular concern given their high biodiversity. Identifying management approaches that maintain native species and associated ecological processes within oil palm plantations is therefore a priority. Riparian reserves are strips of forest retained alongside rivers in cultivated areas, primarily for their positive hydrological impact. However, they can also support a range of forest-dependent species or ecosystem services. We surveyed communities of dung beetles and measured dung removal activity in an oil palm-dominated landscape in Sabah, Malaysian Borneo. The species richness, diversity, and functional group richness of dung beetles in riparian reserves were significantly higher than in oil palm, but lower than in adjacent logged forests. The community composition of the riparian reserves was more similar to logged forest than oil palm. Despite the pronounced differences in biodiversity, we did not find significant differences in dung removal rates among land uses. We also found no evidence that riparian reserves enhance dung removal rates within surrounding oil palm. These results contrast previous studies showing positive relationships between dung beetle species richness and dung removal in tropical forests. We found weak but significant positive relationships between riparian reserve width and dung beetle diversity, and between reserve vegetation complexity and dung beetle abundance, suggesting that these features may increase the conservation value of riparian reserves. Synthesis and applications: The similarity between riparian reserves and logged forest demonstrates that retaining riparian reserves increases biodiversity within oil palm landscapes. However, the lack of correlation between dung beetle community characteristics and dung removal highlights the

  8. Impact assessment of the forest fires on Oarai Research and Development Center Waste Treatment Facility

    International Nuclear Information System (INIS)

    Shimomura, Yusuke; Kitamura, Ryoichi; Hanari, Akira; Sato, Isamu

    2016-03-01

    In response to new standards for regulating waste treatment facility ('new regulatory standards'; December 18, 2013 enforcement), it was carried out impact assessment of forest fires on the Waste Treatment Facility existed in Oarai Research and Development Center of Japan Atomic Energy Agency. At first, a fire spread scenario of forest fires was assumed. The intensity of forest fires was evaluated from field surveys, forest fire evaluation models and so on. As models of forest fire intensity evaluation, Rothermel Model and Canadian Forest Fire Behavior Prediction (FBP) System were used. Impact assessment of radiant heat to the facility was carried out, and temperature change of outer walls for the assumed forest fires was estimated. The outer wall temperature of facility was estimated around 160degC at the maximum, it was revealed that it doesn't reach allowable temperature limit. Consequently, it doesn't influence the strength of concrete. In addition, a probability of fire breach was estimated to be about 20%. This report illustrates an example of evaluation of forest fires for the new regulatory standards through impact assessment of the forest fires on the Waste Treatment Facility. (author)

  9. Plots, pixels, and partnerships: prospects for mapping, monitoring and modeling biodiversity.

    Science.gov (United States)

    H. Gyde Lund; Victor A. Rudis; Kenneth W. Stolte

    1998-01-01

    Many biodiversity inventories are conducted in relatively small areas, yet information is needed at the national, regional, and global levels.Most nations have forest inventory plot networks.While forest inventories may not contain the detailed species information that biodiversity inventories do, the forest inventory plot networks do represent large areas.Linkages...

  10. Forest Structure Assessment of a Rehabilitated Forest

    OpenAIRE

    Roland K.J. Heng; Nik M.A. Majid; Seca Gandaseca; Osumanu H. Ahmed; Silvester Jemat; Melvin K.K. Kin

    2011-01-01

    Problem statement: Forest structure assessment provides information on forest succession, dynamics, biodiversity and health which are important but only few information is available on rehabilitated forest. The objective of this study was to assess the forest structure of selected age stands at a rehabilitated forest situated in Universiti Putra Malaysia Bintulu Sarawak Campus, Sarawak, Malaysia. Approach: Four 20± 22years) and all stands were measured for Diameter Breast Height (DBH) ...

  11. Research in Support of Forest Management. Final report, 1986--1991

    Energy Technology Data Exchange (ETDEWEB)

    Marx, D.H. [comp.

    1991-12-01

    This final research report on Research in Support of Forest Management for the Savannah River Forest Station covers the period 1986 thru 1991. This report provides a list of publications resulting from research accomplished by SEFES scientists and their cooperators, and a list of continuing research study titles. Output is 22 research publications, 23 publications involving technology transfer of results to various user groups, and 11 manuscripts in pre-publication format. DOE funding contributed approximately 15 percent of the total cost of the research.

  12. Where to find weather and climatic data for forest research studies and management planning.

    Science.gov (United States)

    Donald A. Haines

    1977-01-01

    Forest-range research or operational study designs should include the possible effects of weather and climate. This document describes the meteorological observational networks, the data available from them, and where the information is stored.

  13. Why do some institutional arrangements succeed? Voluntary protection of forest biodiversity in Southwestern Finland and of the Golden Eagle in Finnish Lapland

    Directory of Open Access Journals (Sweden)

    Juha Hiedanpää

    2014-07-01

    Full Text Available Despite global, regional, and national policy efforts, biodiversity is on the decline worldwide. The purpose of this paper is to explore the critically important institutional and social features of those economic instruments that in practice motivate beneficiaries and stakeholders to protect biodiversity. The paper presents two case studies: the natural values trading (NVT scheme in southwestern Finland and the protection of the golden eagle (Aquila chrysaetos in Finnish Lapland. NVT builds upon the voluntary actions of landowners, payments for ecosystem services, and a fixed-term period of protection (ten years. The protection of the golden eagle is based on tolerance payments. This paper combines legal studies and institutional economics to abduct the reasons underlying the success of both cases. In both cases, institutional entrepreneurship promoted the confidence of stakeholders and beneficiaries in the schemes and the consequent trust amongst the agents encouraged the actors to modify their behaviour.

  14. Forest Service National Visitor Use Monitoring Process: Research Method Documentation

    Science.gov (United States)

    Donald B.K. English; Susan M. Kocis; Stanley J. Zarnoch; J. Ross Arnold

    2002-01-01

    In response to the need for improved information on recreational use of National Forest System lands, the authors have developed a nationwide, systematic monitoring process. This report documents the methods they used in estimating recreational use on an annual basis. The basic unit of measure is exiting volume of visitors from a recreation site on a given day. Sites...

  15. Research strategies for increasing productivity of intensively managed forest plantations

    Science.gov (United States)

    E.D. Vance; D.A. Maguire; R.S. Zalesny

    2010-01-01

    Intensive management practices increase productivity of forest plantations by reducing site, stand, and biological limitations to dry matter production and by maximizing the allocation of production to harvestable tree components. The resulting increase allows greater fiber production from a smaller land base and provides market incentives to keep these lands under...

  16. Use of DNA markers in forest tree improvement research

    Science.gov (United States)

    D.B. Neale; M.E. Devey; K.D. Jermstad; M.R. Ahuja; M.C. Alosi; K.A. Marshall

    1992-01-01

    DNA markers are rapidly being developed for forest trees. The most important markers are restriction fragment length polymorphisms (RFLPs), polymerase chain reaction- (PCR) based markers such as random amplified polymorphic DNA (RAPD), and fingerprinting markers. DNA markers can supplement isozyme markers for monitoring tree improvement activities such as; estimating...

  17. Does Adaptive Collaborative Forest Governance Affect Poverty? Participatory Action Research in Nepal's Community Forests

    NARCIS (Netherlands)

    McDougall, C.L.; Jiggins, J.L.S.; Hari Pandit, B.; Thapa Magar Rana, S.K.; Leeuwis, C.

    2013-01-01

    Despite recognition of forests’ roles in rural livelihoods, there has been relatively little empirical exploration of community forestry’s contribution to poverty alleviation. Similarly, there has been little study of the interaction of social learning-based approaches to forest governance with

  18. Forest research notes, Pacific Northwest Forest Experiment Station, No. 23, November 27, 1937.

    Science.gov (United States)

    J. Elton Lodewick; P.A. Briegleb; F.L. Moravets; Leo A. Isaac; William G. Morris; Wade. DeVries

    1937-01-01

    Douglas fir, the most abundant and most used lumber species in the forests of the Pacific Northwest, is being pulped on a commercial scale by the sulfate and soda processes. The markets for unbleached pulps are limited, and there has been much speculation as to the possibilities of developing pulping processes whereby the enormous quantities of otherwise unutilized...

  19. Educating for preserving biodiversity

    Directory of Open Access Journals (Sweden)

    Méndez, I. E.

    2014-01-01

    Full Text Available The notion of “culture of diversity” is presented in a new dimension. “That of educating for preserving biodiversity” is advanced together with its main challenges. The need of educating the masses for preserving biodiversity is perhaps the most outstanding to be faced, particularly if pedagogic requirements and the diversity of population is to be met. Likewise, it should help to put individuals in contact with the many elements conforming biodiversity and lead them to recognize its value ethically and esthetically. The research presents the framework for designing educating programs enhancing the genetic level, the ecosystem and the qualitative dimension and including materials and energy flood and its meaning for the homeostasis and autopoiesis of the system, together with its interactions with other components for achieving an equilibrium and stability. The importance of the natural evolution tendency is highlighted.

  20. Forests under climate change and air pollution: Gaps in understanding and future directions for research

    International Nuclear Information System (INIS)

    Matyssek, R.; Wieser, G.; Calfapietra, C.; Vries, W. de; Dizengremel, P.; Ernst, D.; Jolivet, Y.; Mikkelsen, T.N.; Mohren, G.M.J.; Le Thiec, D.; Tuovinen, J.-P.

    2012-01-01

    Forests in Europe face significant changes in climate, which in interaction with air quality changes, may significantly affect forest productivity, stand composition and carbon sequestration in both vegetation and soils. Identified knowledge gaps and research needs include: (i) interaction between changes in air quality (trace gas concentrations), climate and other site factors on forest ecosystem response, (ii) significance of biotic processes in system response, (iii) tools for mechanistic and diagnostic understanding and upscaling, and (iv) the need for unifying modelling and empirical research for synthesis. This position paper highlights the above focuses, including the global dimension of air pollution as part of climate change and the need for knowledge transfer to enable reliable risk assessment. A new type of research site in forest ecosystems (“supersites”) will be conducive to addressing these gaps by enabling integration of experimentation and modelling within the soil-plant-atmosphere interface, as well as further model development. - Highlights: ► Research needs are identified for forests under climate change and air pollution. ► Abiotic–biotic interactions in response impede tree-ecosystem upscaling. ► Integration of empirical and modelling research is advocated. ► The concept of multi-scale investigations at novel “Supersites” is propagated. ► “Supersites” warrant mechanistic understanding of soil-plant-atmosphere interface. - Forests under climate change and air pollution require empirical and modelling research needs to be integrated at novel “Supersites” through multi-scale investigations.

  1. Research activities related to the role of forests and forestry in climate change mitigation in Austria. COST E21 Workshop. Contribution of forests and forestry to mitigate greenhouse effects. Joensuu (Finland. 28-30 Sep 2000

    Directory of Open Access Journals (Sweden)

    Weiss P.

    2000-01-01

    Full Text Available Forests and forestry play important roles in Austria with its close to 50/ forest cover. This paper provides details about the Austrian forest carbon inventory, discusses briefly the sources and sinks accounted under the land use, land use change and forestry articles of the Kyoto Protocol, and presents an integrated carbon model (Austrian C-Balance Model that was developed to include not only the forest sector, but other sectors that are greenhouse-gas relevant. Improvements in forest management practices are seen as important possibilities of increasing the carbon sink strength of Austrian forests, but also of pursuing other goals such as increased biodiversity and resistance to future climate-change impacts. This paper presents a process model and a carbon accounting model that are applicable for evaluating carbon impacts of changes in forest management.

  2. Getting the measure of biodiversity.

    Science.gov (United States)

    Purvis, A; Hector, A

    2000-05-11

    The term 'biodiversity' is a simple contraction of 'biological diversity', and at first sight the concept is simple too: biodiversity is the sum total of all biotic variation from the level of genes to ecosystems. The challenge comes in measuring such a broad concept in ways that are useful. We show that, although biodiversity can never be fully captured by a single number, study of particular facets has led to rapid, exciting and sometimes alarming discoveries. Phylogenetic and temporal analyses are shedding light on the ecological and evolutionary processes that have shaped current biodiversity. There is no doubt that humans are now destroying this diversity at an alarming rate. A vital question now being tackled is how badly this loss affects ecosystem functioning. Although current research efforts are impressive, they are tiny in comparison to the amount of unknown diversity and the urgency and importance of the task.

  3. Economic inequality predicts biodiversity loss.

    Directory of Open Access Journals (Sweden)

    Gregory M Mikkelson

    Full Text Available Human activity is causing high rates of biodiversity loss. Yet, surprisingly little is known about the extent to which socioeconomic factors exacerbate or ameliorate our impacts on biological diversity. One such factor, economic inequality, has been shown to affect public health, and has been linked to environmental problems in general. We tested how strongly economic inequality is related to biodiversity loss in particular. We found that among countries, and among US states, the number of species that are threatened or declining increases substantially with the Gini ratio of income inequality. At both levels of analysis, the connection between income inequality and biodiversity loss persists after controlling for biophysical conditions, human population size, and per capita GDP or income. Future research should explore potential mechanisms behind this equality-biodiversity relationship. Our results suggest that economic reforms would go hand in hand with, if not serving as a prerequisite for, effective conservation.

  4. Forests under climate change and air pollution: Gaps in understanding and future directions for research

    DEFF Research Database (Denmark)

    Matyssek, R.; Wieser, G.; Calfapietra, C.

    2012-01-01

    changes in air quality (trace gas concentrations), climate and other site factors on forest ecosystem response, (ii) significance of biotic processes in system response, (iii) tools for mechanistic and diagnostic understanding and upscaling, and (iv) the need for unifying modelling and empirical research......Forests in Europe face significant changes in climate, which in interaction with air quality changes, may significantly affect forest productivity, stand composition and carbon sequestration in both vegetation and soils. Identified knowledge gaps and research needs include: (i) interaction between...... for synthesis. This position paper highlights the above focuses, including the global dimension of air pollution as part of climate change and the need for knowledge transfer to enable reliable risk assessment. A new type of research site in forest ecosystems (“supersites”) will be conducive to addressing...

  5. Can biodiversity, human wellbeing and sustainable development indicators be linked?

    Directory of Open Access Journals (Sweden)

    S.A. Mainka

    2010-12-01

    Full Text Available A mission to reduce the rate of loss of biodiversity as a contribution to poverty reduction was agreed as part of the Strategic Plan for the Convention on Biological Diversity, adopted by the Conference of the Parties in 2002. As 2010 draws to a close it is clear that this target will not be met. To continue and build on momentum generated by the 2010 target, the conservation community has been discussing a potential post-2010 framework that again includes explicit reference to the link between human wellbeing and conservation, and also considers the links with human wellbeing and sustainable development. Given this agreement, we reviewed several human wellbeing and sustainable development indicators compared to existing biodiversity status and trends indicators to determine if clear correlations can be found that could be used to track progress in a new framework. We undertook this review at both the global and continental levels. The indicators for protected area and forest cover showed significant positive correlation across all continents. We found a significant negative correlation between changes in protected area (PA cover and tonnage of greenhouse gas emissions released (GHGe between 1990 and 2005 for all the continents. At the global level we found no other correlation across the indicators reviewed. However, we found that correlations between the biodiversity and human wellbeing and sustainable development indicators varied across continents. As the only indicators for which global level correlations exist, we suggest that either protected area coverage or forest cover may be relevant biodiversity indicators for global analyses of biodiversity-human wellbeing or sustainable development relationships, and that the relationship between protected area cover and greenhouse gases could be one indicator for links between biodiversity and sustainable development. More research is needed to better understand factors involved in the

  6. Forest decline research in Eastern Central Europe and Bavaria

    International Nuclear Information System (INIS)

    Reuther, M.; Kirchner, M.; Kirchinger, E.; Reiter, H.; Roesel, K.; Pfeifer, U.

    1991-07-01

    In 26 conference contributions, the condition of the forest in eastern central Europe (new Federal German laender, CSFR, Hungary, Romania, Bulgaria, Estonia, Poland) and in Bavaria and Austria is described. The methodics of the countries' comprehensive monitoring and ecosystem analyzes in selected sites with their results are presented, mostly for the 80s. Possibilities and advantages of the modelling of forest ecosystems by computer are indicated as well as the gain of knowledge from extensive screening. For some regions, especially the Sudeten, maps showing the spatial distribution of airborne pollutants are presented. Pollutant concentrations are, in part, related to emittors. In almost all cases, indirect effects of acidic gaseous pollutants via changes in soil chemism are blamed for tree disease jointly with other factors or their outcome (silvicultural mistakes, drought, insect infestation). A striking fact is that in Hungary and Romania, unlike other European countries, oak-trees not conifers are most seriously affected. (UWA) [de

  7. Proceedings of the fourth meeting of the International Union of Forest Research Organizations (IUFRO) Working Party S07.02.09: Phytophthoras in forests and natural ecosystems

    Science.gov (United States)

    E.M. Goheen; S.J. Frankel

    2009-01-01

    The fourth meeting of the International Union of Forest Research Organizations (IUFRO) Working Party S07.02.09, Phytophthoras in Forests and Natural Ecosystems provided a forum for current research on Phytophthora species worldwide. Seventy-eight submissions describing papers and posters on recent developments in Phytophthora diseases of trees and natural ecosystems in...

  8. European mountain biodiversity

    Directory of Open Access Journals (Sweden)

    Nagy, Jennifer

    1998-12-01

    Full Text Available This paper, originally prepared as a discussion document for the ESF Exploratory Workshop «Trends in European Mountain Biodiversity - Research Planning Workshop», provides an overview of current mountain biodiversity research in Europe. It discusses (a biogeographical trends, (b the general properties of biodiversity, (c environmental factors and the regulation of biodiversity with respect to ecosystem function, (d the results of research on mountain freshwater ecosystems, and (e climate change and air pollution dominated environmental interactions.- The section on biogeographical trends highlights the importance of altitude and latitude on biodiversity. The implications of the existence of different scales over the different levels of biodiversity and across organism groups are emphasised as an inherent complex property of biodiversity. The discussion on ecosystem function and the regulation of biodiversity covers the role of environmental factors, productivity, perturbation, species migration and dispersal, and species interactions in the maintenance of biodiversity. Regional and long-term temporal patterns are also discussed. A section on the relatively overlooked topic of mountain freshwater ecosystems is presented before the final topic on the implications of recent climate change and air pollution for mountain biodiversity.

    [fr] Ce document a été préparé à l'origine comme une base de discussion pour «ESF Exploratory Workshop» intitulé «Trends in European Mountain Biodiversity - Research Planning Workshop»; il apporte une vue d'ensemble sur les recherches actuelles portant sur la biodiversité des montagnes en Europe. On y discute les (a traits biogéographiques, (b les caractéristiques générales- de la biodiversité, (c les facteurs environnementaux et la régulation de la biodiversité par rapport à la fonction des écosystèmes, (d les résultats des études sur les écosystèmes aquatiques des montagnes et (e les

  9. Dataset on species incidence, species richness and forest characteristics in a Danish protected area

    DEFF Research Database (Denmark)

    Mazziotta, Adriano; Heilmann-Clausen, Jacob; Bruun, Hans Henrik

    2016-01-01

    The data presented in this article are related to the research article entitled "Restoring hydrology and old-growth structures in a former production forest: Modelling the long-term effects on biodiversity" (A. Mazziotta, J. Heilmann-Clausen, H. H.Bruun, Ö. Fritz, E. Aude, A.P. Tøttrup) [1......]. This article describes how the changes induced by restoration actions in forest hydrology and structure alter the biodiversity value of a Danish forest reserve. The field dataset is made publicly available to enable critical or extended analyses....

  10. Sustainability and wildland fire: The origins of Forest Service Wildland Fire Research

    Science.gov (United States)

    Diane M. Smith

    2017-01-01

    On June 1, 2015, the Forest Service, an agency of the U.S. Department of Agriculture (USDA), celebrated the 100th anniversary of the Branch of Research. Established in 1915 to centralize and elevate the pursuit of research throughout the agency, the Branch of Research focused on everything from silvicultural investigations conducted by the experiment stations to...

  11. Likelihood of Timber Management on Nonindustrial Private Forests: Evidence From Research Studies

    Science.gov (United States)

    Ralph J. Alig; Karen J. Lee; Robert J. Moulton

    1990-01-01

    Research on timber management tendencies by nonindustrial private forest owners, while sometimes conflicting, provides useful information to support policy analyses of timber supply and investment behavior. Numerous research studies regarding tree planting, intermediate stand treatments, and timber harvesting are reviewed. Conclusive research findings include that: (1...

  12. Chronicle of 65 years of wood finishing research at the Forest Products Laboratory

    Science.gov (United States)

    Thomas M. Gorman; William C. Feist

    1989-01-01

    For 65 years, the Forest Products Laboratory (FPL) in Madison, Wisconsin, has had a continuous and extensive program of research on finishing wood for outdoor use. The research has stressed the fundamental aspects of wood weathering and the interactions of pretreatments and finishes on wood surfaces. This report outlines the history of the FPL wood finishing research...

  13. A cross-continental comparison of plant and beetle responses to retention of forest patches during timber harvest

    Science.gov (United States)

    Susan C. Baker; Charles B. Halpern; Timothy J. Wardlaw; Christel Kern; Graham J. Edgar; Russell J. Thomson; Richard E. Bigley; Jerry F. Franklin; Kamal J.K. Gandhi; Lena Gustafsson; Samuel Johnson; Brian J. Palik; Thomas A. Spies; Ashley Steel; Jan Weslien; Joachim Strengbom

    2016-01-01

    Timber harvest can adversely affect forest biota. Recent research and application suggest that retention of mature forest elements ('retention forestry'), including unharvested patches (or 'aggregates') within larger harvested units, can benefit biodiversity compared to clearcutting. However, it is unclear whether these benefits can be generalized...

  14. An opinion about the future of forest recreation research

    Science.gov (United States)

    John F., Jr. Hamilton

    1971-01-01

    A discussion of the research environment, with emphasis on the quality of future research. Some current research attitudes are criticized and a suggestion is given for increasing the value of research.

  15. Earth Observation for Biodiversity Assessment (EO-BA)

    CSIR Research Space (South Africa)

    Cho, Moses A

    2012-10-01

    Full Text Available in the Dukuduku coastal forest Earth Observation for Biodiversity Assessment (EO-BA) MA CHO, P DEBBA, R MATHIEU, A RAMOELO, L NAIDOO, H VAN DEVENTER, O MALAHLELA AND R MAIN CSIR Natural Resources and the Environment, Pretoria, South Africa PO Box 395..., Pretoria, South Africa, 0001 Email: mcho@csir.co.za ? www.csir.co.za THE ROLE OF EARTH OBSERVATION IN PROVIDING BIODIVERSITY INFORMATION Biodiversity encompasses four levels: genetic, species, ecosystem and functional diversities. By sustaining...

  16. Mapping the occurrence of Chromolaena odorata (L.) in subtropical forest gaps using environmental and remote sensing data

    CSIR Research Space (South Africa)

    Malahlela, OE

    2015-07-01

    Full Text Available Globally, subtropical forests are rich in biodiversity. However, the native biodiversity in these forests is threatened by the presence of invasive species such as Chromolaena odorata (L.) King and Robinson, which thrives in forest canopy gaps. Our...

  17. Opportunities for biodiversity gains under the world's largest reforestation programme.

    Science.gov (United States)

    Hua, Fangyuan; Wang, Xiaoyang; Zheng, Xinlei; Fisher, Brendan; Wang, Lin; Zhu, Jianguo; Tang, Ya; Yu, Douglas W; Wilcove, David S

    2016-09-06

    Reforestation is a critical means of addressing the environmental and social problems of deforestation. China's Grain-for-Green Program (GFGP) is the world's largest reforestation scheme. Here we provide the first nationwide assessment of the tree composition of GFGP forests and the first combined ecological and economic study aimed at understanding GFGP's biodiversity implications. Across China, GFGP forests are overwhelmingly monocultures or compositionally simple mixed forests. Focusing on birds and bees in Sichuan Province, we find that GFGP reforestation results in modest gains (via mixed forest) and losses (via monocultures) of bird diversity, along with major losses of bee diversity. Moreover, all current modes of GFGP reforestation fall short of restoring biodiversity to levels approximating native forests. However, even within existing modes of reforestation, GFGP can achieve greater biodiversity gains by promoting mixed forests over monocultures; doing so is unlikely to entail major opportunity costs or pose unforeseen economic risks to households.

  18. Vascular Plant Species of the Forest Ecology Research and Demonstration Area, Paul Smith's, New York

    Science.gov (United States)

    Gary L. Wade; Jonathan A. Myers; Cecilia R. Martin; Kathie Detmar; William, III Mator; Mark J. Twery; Mike Rechlin

    2003-01-01

    Five forest harvest methods (single-tree selection, group selection, two-age cut, shelterwood cut, and clearcut) are being demonstrated on 5-acre tracts near the Adirondack Park Agency?s Visitor Interpretation Center (VIC) at Paul Smith?s, New York. The tracts are part of the agency?s Forest Ecology Research and Demonstration Area. A primary goal is to show visitors...

  19. In vitro fruiting of `armillaria` species. Forest Service research note

    Energy Technology Data Exchange (ETDEWEB)

    Reaves, J.L.; McWilliams, M.

    1991-08-01

    Fruiting of Armillaria is sporadic in the interior forests of Western North America, where the most highly pathogenic species of Armillaria occur. If single spores are not available, the species must be determined by haploid/diploid pairings, which may lead to uncertainty over what Armallaria species is present in a particular area. Objectives of this study were to evaluate the feasibility of growing spore-bearing basidiocarps of various Armillaria species in vitro. Spores from these basidiocarps will be used to carry out haploid/diploid pairings.

  20. Biodiversity change is uncoupled from species richness trends: consequences for conservation and monitoring

    NARCIS (Netherlands)

    Hillebrand, Helmut; Blasius, Bernd; Borer, Elizabeth T.; Chase, Jonathan M.; Downing, John; Eriksson, Britas Klemens; Filstrup, Christopher T.; Harpole, W. Stanley; Hodapp, Dorothee; Larsen, Stefano; Lewandowska, Aleksandra M.; Seabloom, Eric W.; Van de Waal, Dedmer B.; Ryabov, Alexey B.

    2018-01-01

    * Global concern about human impact on biological diversity has triggered an intense research agenda on drivers and consequences of biodiversity change in parallel with international policy seeking to conserve biodiversity and associated ecosystem functions. Quantifying the trends in biodiversity is

  1. Biodiversity change is uncoupled from species richness trends : Consequences for conservation and monitoring

    NARCIS (Netherlands)

    Hillebrand, Helmut; Blasius, Bernd; Borer, Elizabeth T.; Chase, Jonathan M.; Downing, John A.; Eriksson, Britas Klemens; Filstrup, Christopher T.; Harpole, W. Stanley; Hodapp, Dorothee; Larsen, Stefano; Lewandowska, Aleksandra M.; Seabloom, Eric W.; Van de Waal, Dedmer B.; Ryabov, Alexey B.

    Global concern about human impact on biological diversity has triggered an intense research agenda on drivers and consequences of biodiversity change in parallel with international policy seeking to conserve biodiversity and associated ecosystem functions. Quantifying the trends in biodiversity is

  2. Forested habitat preferences by Chilean citizens: Implications for biodiversity conservation in Pinus radiata plantations Preferencia por hábitats forestales por ciudadanos chilenos: Implicancias para la conservación de biodiversidad en plantaciones de Pinus radiata

    Directory of Open Access Journals (Sweden)

    NICOLE PÜSCHEL-HOENEISEN

    2012-06-01

    Full Text Available The need for conservation outside protected areas has prompted the modification of productive practices to allow the maintenance of wild biota in productive landscapes such as those associated to timber production. Forest plantations could cooperate in conserving biodiversity outside protected areas if they have a developed understory. However, the success of the production changes depends on the social support they receive. Therefore, we evaluate Chilean citizens' preference for five habitats of different types of forest management. In addition, we assessed perceptions regarding the relationship between pine plantations and native wildlife through surveys administered in Chillán, Santiago and six rural localities in the VII and VIII region. Despite there is not a unanimous opinion regarding pine plantations as a threat to biodiversity, people prefer pine plantations that serve as habitat for endangered fauna. In fact, they agree on paying more for forest products to contribute to conservation in forest plantations, and actually prefer plantations with a developed understory better than those without it. This would suggest that measures aimed at conservation in forest plantations could be supported by the Chilean society.La necesidad de la conservación fuera de áreas protegidas ha llevado a la modificación de las prácticas productivas para permitir el mantenimiento de la biota silvestre en paisajes productivos tales como los asociados a la producción de madera. Las plantaciones forestales podrían cooperar en la conservación de la biodiversidad fuera de áreas protegidas si tienen un sotobosque desarrollado. Sin embargo, el éxito de los cambios en la producción depende del apoyo social que estos reciben. Así, evaluamos la preferencia por cinco paisajes con diferentes tipos de manejo forestal. Además, se evaluó la percepción acerca de la relación entre las plantaciones de pino y la fauna nativa a través de encuestas realizadas en

  3. Habitats and Natural Areas--Some Applications of the 1995-96 Forest Survey of Arkansas on the Conservation of Biodiversity in Arkansas

    Science.gov (United States)

    Douglas Zollner

    2001-01-01

    The conservation status and trend of rare species groups should be better in landscapes with more forest cover due to the presence of quantitatively more habitat, and in the case of aquatic species,qualitatively better habitat. Arkansas provides habitat for 97 species of plants and animals considered critically imperiled globally or imperiled globally.T hese 97 species...

  4. Why financial incentives can destroy economically valuable biodiversity in Ethiopia

    NARCIS (Netherlands)

    Gatzweiler, F.; Reichhuber, A.; Hein, L.G.

    2007-01-01

    Ethiopian montane rainforests are economically valuable repositories of biodiversity, especially of wild Coffea arabica populations, and they are vanishing at accelerating rates. Our research results confirm theory which explains biodiversity loss by diverging private and social net benefits from

  5. Biodiversity influences plant productivity through niche–efficiency

    Science.gov (United States)

    Liang, Jingjing; Zhou, Mo; Tobin, Patrick C.; McGuire, A. David; Reich, Peter B.

    2015-01-01

    The loss of biodiversity is threatening ecosystem productivity and services worldwide, spurring efforts to quantify its effects on the functioning of natural ecosystems. Previous research has focused on the positive role of biodiversity on resource acquisition (i.e., niche complementarity), but a lack of study on resource utilization efficiency, a link between resource and productivity, has rendered it difficult to quantify the biodiversity–ecosystem functioning relationship. Here we demonstrate that biodiversity loss reduces plant productivity, other things held constant, through theory, empirical evidence, and simulations under gradually relaxed assumptions. We developed a theoretical model named niche–efficiency to integrate niche complementarity and a heretofore-ignored mechanism of diminishing marginal productivity in quantifying the effects of biodiversity loss on plant productivity. Based on niche–efficiency, we created a relative productivity metric and a productivity impact index (PII) to assist in biological conservation and resource management. Relative productivity provides a standardized measure of the influence of biodiversity on individual productivity, and PII is a functionally based taxonomic index to assess individual species’ inherent value in maintaining current ecosystem productivity. Empirical evidence from the Alaska boreal forest suggests that every 1% reduction in overall plant diversity could render an average of 0.23% decline in individual tree productivity. Out of the 283 plant species of the region, we found that large woody plants generally have greater PII values than other species. This theoretical model would facilitate the integration of biological conservation in the international campaign against several pressing global issues involving energy use, climate change, and poverty. PMID:25901325

  6. Biodiversity influences plant productivity through niche–efficiency

    Science.gov (United States)

    Liang, Jingjing; Zhou, Mo; Tobin, Patrick C.; McGuire, A. David; Reich, Peter B.

    2015-01-01

    The loss of biodiversity is threatening ecosystem productivity and services worldwide, spurring efforts to quantify its effects on the functioning of natural ecosystems. Previous research has focused on the positive role of biodiversity on resource acquisition (i.e., niche complementarity), but a lack of study on resource utilization efficiency, a link between resource and productivity, has rendered it difficult to quantify the biodiversity–ecosystem functioning relationship. Here we demonstrate that biodiversity loss reduces plant productivity, other things held constant, through theory, empirical evidence, and simulations under gradually relaxed assumptions. We developed a theoretical model named niche–efficiency to integrate niche complementarity and a heretofore-ignored mechanism of diminishing marginal productivity in quantifying the effects of biodiversity loss on plant productivity. Based on niche–efficiency, we created a relative productivity metric and a productivity impact index (PII) to assist in biological conservation and resource management. Relative productivity provides a standardized measure of the influence of biodiversity on individual productivity, and PII is a functionally based taxonomic index to assess individual species’ inherent value in maintaining current ecosystem productivity. Empirical evidence from the Alaska boreal forest suggests that every 1% reduction in overall plant diversity could render an average of 0.23% decline in individual tree productivity. Out of the 283 plant species of the region, we found that large woody plants generally have greater PII values than other species. This theoretical model would facilitate the integration of biological conservation in the international campaign against several pressing global issues involving energy use, climate change, and poverty.

  7. The stimulated recall method as a research tool on the school visit in the Cerrado Biodiversity Museum

    Directory of Open Access Journals (Sweden)

    Lidiane Martins de Oliveira

    2015-12-01

    Full Text Available Along with modernization and scientific and technological development presents new requirements of education and knowledge to integrate the world of work, of science communication, and citizenship. Museums represent this integrative space, relating to the communication dimension to the educational project, and the audience becomes the focus of the study, with special focus on relationships that these spaces provide. So this paper presents a theoretical and methodological study to highlight aspects that were significant to the visitors during the visit to the Cerrado Biodiversity Museum (MBC located in Uberlândia- MG- Brazil. The study followed the procedures and tools Souvenir methodology stimulated Falcão and Gilbert (2005. We conclude that the knowledge in the museum take place through free interaction student-exposure and studentstudent; that the relationship between science and the visit to the MBC occurs through the relationship that the teacher can establish in their classes and the Remembrance Method Stimulated corresponded as a methodological tool to rescue concepts and recall important moments of the visit to MBC

  8. SILVAH-OAK: ensuring adoption by engaging users in the full cycle of forest research

    Science.gov (United States)

    Susan L. Stout; Pat Brose; Kurt Gottschalk; Gary Miller; Pete Knopp; Gary Rutherford; Mark Deibler; Gary Frank; Gary Gilmore

    2007-01-01

    Recent Forest Service Research and Development (FS R&D) logic modeling efforts focused on program delivery stated that an important precondition for effective science delivery was the engagement of users and partners throughout the full research and development cycle. The ongoing partnership among the Pennsylvania Department of Conservation and Natural Resources...

  9. Representativeness assessment of research natural areas on National Forest System lands in Idaho

    Science.gov (United States)

    Steven K. Rust

    2000-01-01

    A representativeness assessment of National Forest System (NFS) Research Natural Areas in Idaho summarizes information on the status of the natural area network and priorities for identification of new Research Natural Areas. Natural distribution and abundance of plant associations is compared to the representation of plant associations within natural areas. Natural...

  10. Does a minimal intervention approach threaten the biodiversity of protected areas? A multi-taxa short-term response to intervention in temperate oak-dominated forests

    Czech Academy of Sciences Publication Activity Database

    Šebek, Pavel; Bače, R.; Bartoš, Michael; Beneš, Jiří; Chlumská, Zuzana; Doležal, Jiří; Dvorský, Miroslav; Kovář, J.; Machač, O.; Mikátová, B.; Perlík, Michal; Plátek, Michal; Poláková, Simona; Škorpík, R.; Stejskal, R.; Svoboda, M.; Trnka, F.; Vlašín, M.; Zapletal, Michal; Čížek, Lukáš

    2015-01-01

    Roč. 358, Dec 15 (2015), s. 80-89 ISSN 0378-1127 R&D Projects: GA ČR GAP504/12/1952; GA ČR GAP505/10/2167 Grant - others:GA JU(CZ) 046/2014/P; European Social Fund(CZ) CZ.1.07/2.3.00/20.0064; European Social Fund(CZ) CZ.1.07/2.3.00/30.0040 Institutional support: RVO:60077344 ; RVO:67985939 Keywords : coppice * open woodlands * biodiversity conservation Subject RIV: EH - Ecology, Behaviour; EH - Ecology, Behaviour (BU-J) Impact factor: 2.826, year: 2015 http://www.sciencedirect.com/science/article/pii/S0378112715004764

  11. Algae of the Bohemian Forest. 1. Specieses richness

    Czech Academy of Sciences Publication Activity Database

    Lederer, F.; Lukavský, Jaromír

    2001-01-01

    Roč. 6, - (2001), s. 97-104 ISSN 1211-7420 R&D Projects: GA AV ČR IA60504; GA ČR GA206/99/1411 Institutional research plan: CEZ:AV0Z6005908 Keywords : Bohemian Forest * species richness * biodiversity * algae * cyanobacteria * lakes * brooks * rivers * bogs Subject RIV: EH - Ecology, Behaviour

  12. Traditional African Knowledge In Biodiversity Conservation ...

    African Journals Online (AJOL)

    The tropical forest ecosystem is one of the most important ecosystems of the world, because it contains a large proportion of the world's biodiversity and provides many environmental functions. Local communities have successfully conserved these resources that are of interest to them through laws and taboos. These range ...

  13. Empirical test of the influence of global warming and forest disturbance on ant fauna at the Gwangneung Forest Long Term Ecological Research site, South Korea

    Directory of Open Access Journals (Sweden)

    Tae-Sung Kwon

    2014-09-01

    Full Text Available This study examined the effects of forest disturbance and climate change on the ant fauna at the Long Term Ecological Research site in Gwangneung Forest, Korea in 2003 and 2012. After forest disturbance, the occurrence and abundance of ants belonging to the functional groups of forest ground forager and soil and litter dweller are predicted to decrease, while the occurrence and abundance of ants belonging to the open land forager and forest vegetation forager functional groups are predicted to increase. In terms of the effects of climate change, if the optimum temperature of the ants is lower than the annual average temperature in the survey area, the occurrence and abundance of the ants are predicted to decrease and vice versa. Ant surveys were carried out using pitfall traps. Changes in the dominant species, occurrence, and abundance mostly corresponded to the predictions for forest disturbance, but did not match the prediction for an increase in temperature.

  14. Status of marine biodiversity of the China seas.

    Science.gov (United States)

    Liu, J Y

    2013-01-01

    China's seas cover nearly 5 million square kilometers extending from the tropical to the temperate climate zones and bordering on 32,000 km of coastline, including islands. Comprehensive systematic study of the marine biodiversity within this region began in the early 1950s with the establishment of the Qingdao Marine Biological Laboratory of the Chinese Academy of Sciences. Since that time scientists have carried out intensive multidisciplinary research on marine life in the China seas and have recorded 22,629 species belonging to 46 phyla. The marine flora and fauna of the China seas are characterized by high biodiversity, including tropical and subtropical elements of the Indo-West Pacific warm-water fauna in the South and East China seas, and temperate elements of North Pacific temperate fauna mainly in the Yellow Sea. The southern South China Sea fauna is characterized by typical tropical elements paralleled with the Philippine-New Guinea-Indonesia Coral triangle typical tropical faunal center. This paper summarizes advances in studies of marine biodiversity in China's seas and discusses current research mainly on characteristics and changes in marine biodiversity, including the monitoring, assessment, and conservation of endangered species and particularly the strengthening of effective management. Studies of (1) a tidal flat in a semi-enclosed embayment, (2) the impact of global climate change on a cold-water ecosystem, (3) coral reefs of Hainan Island and Xisha-Nansha atolls, (4) mangrove forests of the South China Sea, (5) a threatened seagrass field, and (6) an example of stock enhancement practices of the Chinese shrimp fishery are briefly introduced. Besides the overexploitation of living resources (more than 12.4 million tons yielded in 2007), the major threat to the biodiversity of the China seas is environmental deterioration (pollution, coastal construction), particularly in the brackish waters of estuarine environments, which are characterized by

  15. Status of marine biodiversity of the China seas.

    Directory of Open Access Journals (Sweden)

    J Y Liu

    Full Text Available China's seas cover nearly 5 million square kilometers extending from the tropical to the temperate climate zones and bordering on 32,000 km of coastline, including islands. Comprehensive systematic study of the marine biodiversity within this region began in the early 1950s with the establishment of the Qingdao Marine Biological Laboratory of the Chinese Academy of Sciences. Since that time scientists have carried out intensive multidisciplinary research on marine life in the China seas and have recorded 22,629 species belonging to 46 phyla. The marine flora and fauna of the China seas are characterized by high biodiversity, including tropical and subtropical elements of the Indo-West Pacific warm-water fauna in the South and East China seas, and temperate elements of North Pacific temperate fauna mainly in the Yellow Sea. The southern South China Sea fauna is characterized by typical tropical elements paralleled with the Philippine-New Guinea-Indonesia Coral triangle typical tropical faunal center. This paper summarizes advances in studies of marine biodiversity in China's seas and discusses current research mainly on characteristics and changes in marine biodiversity, including the monitoring, assessment, and conservation of endangered species and particularly the strengthening of effective management. Studies of (1 a tidal flat in a semi-enclosed embayment, (2 the impact of global climate change on a cold-water ecosystem, (3 coral reefs of Hainan Island and Xisha-Nansha atolls, (4 mangrove forests of the South China Sea, (5 a threatened seagrass field, and (6 an example of stock enhancement practices of the Chinese shrimp fishery are briefly introduced. Besides the overexploitation of living resources (more than 12.4 million tons yielded in 2007, the major threat to the biodiversity of the China seas is environmental deterioration (pollution, coastal construction, particularly in the brackish waters of estuarine environments, which are

  16. Biofuel consumption, biodiversity, and the environmental Kuznets curve: trivariate analysis in a panel of biofuel consuming countries.

    Science.gov (United States)

    Zaman, Khalid

    2017-11-01

    This study examined the relationship between biofuel consumption, forest biodiversity, and a set of national scale indicators of per capita income, foreign direct investment (FDI) inflows, trade openness, and population density with a panel data of 12 biofuels consuming countries for a period of 2000 to 2013. The study used Global Environmental Facility (GEF) biodiversity benefits index and forest biodiversity index in an environmental Kuznets curve (EKC) framework. The results confirmed an inverted U-shaped relationship between GEF biodiversity index and per capita income, while there is flat/no relationship between carbon emissions and economic growth, and between forest biodiversity and economic growth models. FDI inflows and trade openness both reduce carbon emissions while population density and biofuel consumption increase carbon emissions and decrease GEF biodiversity index. Trade openness supports to increases GEF biodiversity index while it decreases forest biodiversity index and biofuel consumption in a region.

  17. Do riparian reserves support dung beetle biodiversity and ecosystem services in oil palm-dominated tropical landscapes?

    Science.gov (United States)

    Gray, Claudia L; Slade, Eleanor M; Mann, Darren J; Lewis, Owen T

    2014-01-01

    Agricultural expansion and intensification are major threats to global biodiversity, ecological functions, and ecosystem services. The rapid expansion of oil palm in forested tropical landscapes is of particular concern given their high biodiversity. Identifying management approaches that maintain native species and associated ecological processes within oil palm plantations is therefore a priority. Riparian reserves are strips of forest retained alongside rivers in cultivated areas, primarily for their positive hydrological impact. However, they can also support a range of forest-dependent species or ecosystem services. We surveyed communities of dung beetles and measured dung removal activity in an oil palm-dominated landscape in Sabah, Malaysian Borneo. The species richness, diversity, and functional group richness of dung beetles in riparian reserves were significantly higher than in oil palm, but lower than in adjacent logged forests. The community composition of the riparian reserves was more similar to logged forest than oil palm. Despite the pronounced differences in biodiversity, we did not find significant differences in dung removal rates among land uses. We also found no evidence that riparian reserves enhance dung removal rates within surrounding oil palm. These results contrast previous studies showing positive relationships between dung beetle species richness and dung removal in tropical forests. We found weak but significant positive relationships between riparian reserve width and dung beetle diversity, and between reserve vegetation complexity and dung beetle abundance, suggesting that these features may increase the conservation value of riparian reserves. Synthesis and applications: The similarity between riparian reserves and logged forest demonstrates that retaining riparian reserves increases biodiversity within oil palm landscapes. However, the lack of correlation between dung beetle community characteristics and dung removal highlights the

  18. Special Forest Products on the Green Mountain and Finger Lakes National Forests: a research-based approach to management

    Science.gov (United States)

    Marla R. Emery; Clare. Ginger

    2014-01-01

    Special forest products (SFPs) are gathered from more than 200 vascular and fungal species on the Green Mountain National Forest (GMNF) and Finger Lakes National Forest (FLNF). This report documents those SFPs and proposes an approach to managing them in the context of legislation directing the U.S. Forest Service to institute a program of active SFP management. Based...

  19. Livestock biodiversity and sustainability

    NARCIS (Netherlands)

    Hoffmann, I.

    2011-01-01

    Sustainable development equally includes environmental protection including biodiversity, economic growth and social equity, both within and between generations. The paper first reviews different aspects related to the sustainable use of livestock biodiversity and property regimes that influence

  20. Avian research in the U.S. Forest Service

    Science.gov (United States)

    Beatrice Van Horne

    2005-01-01

    Avian research in the Federal Government is in a crisis. Yes, there is a strong interest in avian research, as evidenced by the size and level of interest in this conference. But political parties increasingly see wildlife research as expendable. At the same time, the reaction to environment-friendly legislation of the 1970s and 1980s has been strong from both sides....